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“Fairy tales are more than true, not because they tell us that dragons exist, but because they
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Introduction

Throughout the last century, the engineering scene has seen a surge of instruments,
machines and methodologies inspired by nature. From simple things such as Velcro,
mimicking the cockleburr’s seeds, up to boat hulls covered in a sharkskin facsimile,
scientists and engineers have implemented designs that took thousands of years of
evolution to reach their current optimal form. One clear example of nature’s opti-
mization is the eye: its design varies dramatically between species, each adapted
for the environment they live into maximize their survivability. But the eyes are far
from a perfect imaging system; much of the work is done by the brain, processing
what the eyes see. The evolution of vision happened simultaneously in the eye and
the way the brain processes the signals it receives.

With the dawn of digital technologies and ever faster computers, we can now go
beyond copying nature’s designs and digitally optimize complex systems ourselves.
Optical system design and image processing are two closely related disciplines that
have benefited greatly from the digital era. Optical combinations passed from hav-
ing a handful spherical lenses a hundred years ago to having couple dozens of as-
pherical lenses. Fast computing and efficient algorithms allow to process hundreds
of images in just fractions of a second, allowing techniques such as real-time facial
recognition, independent drone navigation and automated speeding tickets on the
roads. Traditionally, optical systems are optimized to satisfy certain requirements
and only then post-processing is constructed given the specifications of the optics.

The simultaneous co-design of the optical system and the post-processing algo-
rithms, in order to have one that compensates for the shortcomings of the other,
is analogous to our example of the evolution of the eye. Nature’s main method for
change is ’blind’, random mutations discarding suboptimal results until a desirable
performance is obtained. In optical design, the engineers have found optimization
criteria that reflect their technological objectives and also account for the optical sys-
tem’s parameters. On the other hand, while in nature the most important perfor-
mance evaluation is natural selection itself (Endler, 1986), in science and engineer-
ing the optical designer conceives performance evaluation tools to assess the results
from optimizations.

In our work we focus on these evaluation tools in the context of co-design of phase
masks and deconvolution for depth of field extension. In this technique, a wavefront
encoding element, the phase mask, is placed in the aperture stop of an optical system
to obtain a quasi-invariant point spread function across longer field depths than for
the original system (Dowski and Cathey, 1995). This quasi-invariance to defocus
usually blurs the final image, so that a deconvolution has to be applied (Cathey and
Dowski, 2002). Because the deconvolution filter depends on the phase mask profile,
a co-design approach is necessary to obtain an optimal performance (Diaz et al.,
2009).
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In the first chapter of this manuscript we develop the mathematical formalism that
will allow us to jointly optimize phase masks and their deconvolution filter in the
context of DoF extension. We begin by describing the defocus aberration and how
the use of phase masks can make an optical system quasi-invariant to it. We con-
tinue by defining the Wiener-like deconvolution filter, which minimizes, on average
over the considered depth of field, the error between the scene and the deconvolved
image in a linear Gaussian framework. Then we define an optimization criterion,
named image quality, which takes into account the contribution of both the phase
mask and the filter. This criterion is used for the rest of the manuscript to evaluate
the performance and compare different co-designed phase masks.

Chapter 2 focuses on the optimization and a thorough analysis of the performance of
the binary annular phase mask, a phase plate with concentric rings of different phase
value. We study the optimization process and its complications, which guided our
choice of the optimization algorithm. We optimized the masks with an increasing
number of rings for different ranges of depth of field extension. We have designed
this optimization strategy so that we could answer original and fundamental ques-
tions in the co-design of binary masks, such as the amount of rings necessary for an
optimal performance, their general performance limitations and how robust is their
performance in the presence of unexpected residual aberrations.

The methodology applied for the optimization and analysis of binary annular phase
masks in chapter 2 can be applied to any other mask model. In chapter 3 we first
show that the performance criterion used to design the mask has an important im-
pact on the obtained masks. We show that criteria such as the Strehl ratio and the
MTF invariability can lead to suboptimal performances in terms of the image qual-
ity. We analyze and compare the performance of different continuous phase masks
in terms of their number of parameters, profile shape and overall image quality and
show that certain mask types are better adapted to different depth of field ranges.
We draw a link between the final image quality and the modulation transfer func-
tion of the optical systems. We then show that phase masks behave as low-pass
filters with a very distinct cutoff frequency, and that the Wiener filter only amplifies
spatial frequencies lower than this cutoff.

The analysis of the frequency response of the phase masks becomes even more im-
portant when they are being used in optical systems that are not diffraction limited.
The blur produced by the mask is then likely to interfere with techniques such as
superresolution, which exploits the presence of aliasing in a series of undersampled
images to reconstruct a high resolution image of the scene. In chapter 4 we explore
this problematic. We start by defining the mathematical models and considerations
used in superresolution process, which encompasses the shift and add superresolu-
tion algorithm (Elad and Hel-Or, 2001). Examples on real sequences illustrate the
resolution improvement that can be obtained. In collaboration with our industrial
partner, KLA-Tencor, we applied the shift and add algorithm to study the efficiency
of this superresolution algorithm in the industrial inspection of electronic microcom-
ponents. We show that thanks to superresolution, the resolution of their existing
optics can be doubled and that the increase in resolution is enough to be able to ob-
serve defects on the microcomponents that would have been impossible to detect
otherwise. Finally, we show the conditions necessary for superresolution to be pos-
sible when a phase mask optimized for depth of field extension is introduced in the
system. We prove, for the first time to our knowledge, that resolution improvement
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is possible thanks to superresolution techniques on image sequences obtained from
a system designed for DoF extension using binary annular phase masks.
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Chapter 1

Phase masks for depth of field
extension

In the introduction we mentioned the need of tackling optical design problems with
the post-processing in mind, so that one can maximize the desired output. In this
chapter we study phase-only masks used for depth of field (DoF) extension. This
concept was first introduced in (Dowski and Cathey, 1995), by using a cubic-phase
mask to turn the point spread function (PSF) of an optical system invariant to defo-
cus, with the side effect of deforming the PSF so that the final image is blurred. It
was then refined in (Cathey and Dowski, 2002) to include a deconvolution filter that
compensates for the blur and recovers the image quality.

In this chapter we follow the mathematical formalism developed in the work of
(Diaz, 2011) and reach an image quality definition that allows us to optimize the
mask shape and its deconvolution simultaneously. We first describe the wavefront
error caused by defocus, we then introduce the concept of wavefront coding, that is,
manipulating the wavefront shape at the pupil by means of a phase mask. We use
these concepts to define a quality criterion for the processed image and the deconvo-
lution filter that maximizes it. Finally, we show the importance of co-optimization
by comparing the performance of masks obtained with different methods.

1.1 Defocus on a conventional system

1.1.1 Wavefront propagation

All conventional optical systems work under the same basic principle: the light com-
ing from an object in the scene passes through a series of optical elements which
generate an image on a photosensitive surface, namely, the detector. Let us consider
a thin-lens system where a point in the object O is projected onto a point M in the
image plane after passing through a lens set in the pupil plane at the point P , with
angular coordinates (ρP , θP ), see Fig. 1.1.

The complex amplitude of a spherical wavefront that generated the point O at the
pupil, before it passes through the lens, is given by the Huygens-Fresnel propagation
principle:

AO(P ) =
e−ikrOP

rOP
, (1.1)
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FIGURE 1.1: A conventional optical system. The point O of the object
is projected through the point P in the lens onto the point M on the

image plane

with k = 2π/λ the wave number and rOP the vector connecting O and P . After
passing through the lens, the wavefront coming from the point P is shifted with
respect to the light passing through the optical axis by a distance δ so that (f + δ)2 =
f2 + ρ2P , where f is the focal length of the lens (Fig. 1.2). This means that for any
point P , after the lens, the amplitude is given by:

AP (P ) = AO(P )e−ikδ. (1.2)

FIGURE 1.2: A lens shifts the wavefront leaving the point P by a dis-
tance δ, focusing it on the image plane.

The field amplitude at the point M in the image is given by the contribution of all

points in the pupil coming from O, using equation (1.2) and δ =
√
f2 + ρ2P − f :

A(M) = − i
λ

¨
S(xP , yP )

eikrOP

rOP
e−ik
√
f2+ρ2P−f

e−ikrPM

rPM
dxPdyP , (1.3)

where S(xP , yP ) is the aperture of the pupil.
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1.1.2 Paraxial defocus

If we consider ρP to be relatively small compared to the object and image distances,
dO and dI respectively, the so-called paraxial approximation can be used:

rOP ≈ dO +
(xP − xO)2 + (yP − yO)2

2dO
, (1.4)

rPM ≈ dI +
(xM − xP )2 + (yM − yP )2

2dI
, (1.5)

δ ≈
ρ2P
2f
. (1.6)

By using equations (1.4), (1.5) and (1.6) in equation (1.3), we obtain:

A(M) ≈ − i
λ

eikdO

dO

eikdI

dI
e
ik(x2O+Y 2

O)

2dO e
ik(x2M+Y 2

M )

2dI

×
¨

S(xP , yP )e
−ik

[(
xO
dO

+
xM
dI

)
xP+

(
yO
dO

+
yM
dI

)
yP

]
e
iπ
λ

(
1
dO

+ 1
dI
− 1
f

)
(x2P+y

2
P )
dxPdyP , (1.7)

and thus the intensity in the image space:

I(M) ∝
∣∣∣∣¨ S(xP , yP )e

−ik
[(

xO
dO

+
xM
dI

)
xP+

(
yO
dO

+
yM
dI

)
yP

]
e
iπ
λ

(
1
dO

+ 1
dI
− 1
f

)
(x2P+y

2
P )
dxPdyP

∣∣∣∣2 .
(1.8)

We can recognize from the expression of Eq. (1.8) the impulse response of the optical
system, which is the Fourier transform of the pupil function multiplied by an addi-
tional phase, centered in the image plane at the point (xM , yM ) = −dI/dO(xO, yO).
The phase term can be identified as the optical path difference due to defocus aber-
ration:

ψ =
πR2

λ

(
1

dO
+

1

dI
− 1

f

)
, (1.9)

with the coordinate normalization x′P = xP /R and y′P = yP /R, whereR is the radius
of the pupil. Note that this equation can account for depth-of-field (dI fixed and dO
variable) or depth-of-focus (dI variable and dO fixed) for the same value of ψ. Other
aberrations can be introduced in the system in this way by making use of the Seidel
coefficients and we will explore their effects more in-depth in chapter 2. The impulse
response, better known as PSF, from a defocused system can now be rewritten as:

hψ (xM , yM ) ∝
∣∣∣FT

[
S(x′P , y

′
P )eiψ(x′2P+y′

2
P )
]∣∣∣2 , (1.10)

where FT denotes the Fourier transform. This expression for hψ shows the degrada-
tion of a point of the object after passing through a defocused optical system. Finally
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the optical transfer function (OTF) h̃ψ(µ, ν) which is, by construction, the autocorre-
lation of the pupil function, represents the response in the spatial frequency domain,
can also be defined as:

h̃ψ(µ, ν) = FT [hψ (xM , yM )] . (1.11)

By making use of equation (1.10) in (1.11), we obtain the expression of the OTF:

h̃ψ(µ, ν) =

¨
S(x′P + µ, y′P + ν)eiψ((x′P+µ)2+(y′P+ν)

2)

×S∗(x′P − µ, y′P − ν)e−iψ((x′P−µ)2+(y′P−ν)2)dx′Pdy
′
P .

(1.12)

where ·? stands for complex conjugate. The modulus of the OTF is known as the
modulation transfer function (MTF) and is denoted as Hψ(µ, ν) = |h̃ψ(µ, ν)|.

1.1.3 Effects of defocus on the response of a circular pupil

Most imaging optical systems present circular pupils, which makes it an interesting
case to study the effects of defocus. For convenience, let us rewrite the field ampli-
tude in equation (1.7) for a point at infinity:

A(M) ≈ − i
λ

eikdI

dI
eik(x

2
M+Y 2

M )/2dI

¨
S(x′P , y

′
P )e−ik(xMx

′
P+yMy

′
P )eiψ(x′2P+y′

2
P )dx′Pdy

′
P .

(1.13)

This gives, in polar coordinates:

A(M) ≈ − i

λ

eikdI

dI
eik(ρ

2
M/2dI)

¨ 2π,R

0,0
e−ik(ρMρP (cos θM−θP ))eiψρ

2
P dρPdθP , (1.14)

≈− 2iπ

λ

eikdI

dI
eik(ρ

2
M/2dI)

ˆ R

0
ρPJ0

(
k

dI
ρMρP

)
eiψρ

2
P dρP , (1.15)

where Jα(x), α = 0, is the zeroth-order Bessel function, which takes the form:

Jα(x) =
∞∑
n=0

−1n

n!(n+ α)!

(x
2

)2n+α
. (1.16)

From equation (1.15), we can numerically calculate the PSF and the MTF of the op-
tical system and evaluate the effects of defocus on the optical system. In Fig. 1.3
we see the comparison between the on-focus system (ψ = 0) and the system with a
defocus of ψ = 0.75λ and ψ = 1.5λ. Note that the defocus is normalized to units of
wavelength as is any other phase magnitude throughout this manuscript.

As it can be noticed from Fig. 1.3 (top), the modulation transfer function of defocused
systems has a stronger attenuation of high frequencies than the on-focus system;
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μ

H
ψ
(μ
,0
)

ψ

ψ λ

ψ λ

FIGURE 1.3: Top: modulation transfer function of a traditional op-
tical system for defocus values ψ = {0, 0.75, 1.5}λ. Bottom: PSF
of the same system affected by a defocus of values (left to right)

ψ = {0, 0.75, 1.5λ}.

this means that the high-spatial frequency details on the scene will be blurred out.
This blur is evident in the PSFs from Fig. 1.3 (bottom), where we can see that as ψ
increases, a point in the object is projected as an increasingly broader spot on the
image plane.

1.2 Depth of field extension via wavefront coding

1.2.1 Depth of field extension

The problematic of increasing the depth of field of an optical system has been the
object of study for many years. The most common way to achieve this is by reducing
the aperture of the optical system; as we can see in eq. (1.9), we can increase the value
of dO (or alternatively, di) and keep the wavefront error due to defocus ψ constant
by reducing the value of the aperture radius R. This approach and many others
where an amplitude mask is used in the pupil (Mino and Okano, 1971), (Ojeda-
Castañeda, Andres, and Diaz, 1986) have the disadvantage of reducing the power
reaching the detector, and thus, decreasing the signal-to-noise ratio (SNR) of the
image. Before the proposal of phase-only masks for DoF extension, we could only
find one work where the aperture was not apodized (Mino and Okano, 1971), but it
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involved several expositions of the same scene and deconvolution with a different
filter for each exposition.

The use of phase masks for wavefront coding was first introduced by Dowski and
Cathey (Dowski and Cathey, 1995), where they propose the use of a cubic-profile
phase mask, with no apodization, to turn the impulse response of an optical system
invariant to defocus. In this way, the power reaching the detector is not reduced
as with apodization. Additionally, since the system (and thus the PSF) is invariant
to defocus, only a single deconvolution filter is needed for post-processing (Cathey
and Dowski, 2002).

Using the approach of Dowski and Cathey, other works have proposed other phase-
only mask profiles that achieve invariance of different optical quantities. For exam-
ple, in (Castro and Ojeda-Castañeda, 2004) circularly asymmetric-profile masks are
used to turn the axial intensity distribution at the image plane invariant to defocus,
or in (Hu et al., 2013), where they utilize quartic-profile phase masks to make the
Strehl ratio invariant to defocus.

1.2.2 Invariable MTF with a cubic phase mask

Let us now describe in some depth the approach of (Dowski and Cathey, 1995),
where they consider a cubic phase mask to increase the depth of field. To show this
we consider an optical system with a phase mask of profile ϕ(xP , yP ) on its pupil,
the pupil S(xP , yP ) is then described by:

S(xP , yP ) =

{
1√
2
eiπϕ(xP ,yP ), (x2P + y2P ) < 1

0, (x2P + y2P ) > 1.
(1.17)

In their work, Dowski and Cathey consider a rectangular-separable phase mask pro-
file; this is a characteristic of cubic phase masks in particular and simplifies the
mathematical demonstration, but it is not a requisite for depth of field extension.
By making use of equation (1.12) one obtains the following expression for the OTF:

h̃(μ) =

ˆ
eiπϕ(xP+μ/2)ei(xP+μ/2)2ψe−iπϕ(xP−μ/2)e−i(xP−μ/2)2ψdxp,

=

ˆ
eiπϕ(xP+μ/2)e−iπϕ(xP−μ/2)eixPμψdxp. (1.18)

To follow the work of Dowski and Cathey, let us assume that we have a cubic phase
mask in our pupil, defined as ϕ(xP ) = αx3P , leading to

h̃(μ) =

ˆ
eiπα(xP+μ/2)3e−iπα(xP−μ/2)3eixPμψdxp. (1.19)

According to the stationary-phase approximation (Courant and Hilbert, 1965), if
the phase term iα[(xP + μ/2)3 − (xP − μ/2)3] oscillates fast enough, the integral
in eq.(1.19) can be approximated by its stationary term, giving as a result:
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h̃(μ) ≈
(

1

12|αμ|
)1/2

exp

(
iπ

αμ3

4

)
exp

(
−iψ

2μ

3πα

)
. (1.20)

Equation (1.20) can be made insensitive to the defocus term ψ with a sufficiently
large |α|:

h̃(μ) ≈
(

1

12|αμ|
)1/2

exp

(
iπ

αμ3

4

)
, for large|α|. (1.21)

To illustrate this, we can see in figure 1.4 the MTF and the PSF of an optical system
with a cubic phase mask of profile given by the parameter α = 10λ, suffering dif-
ferent degrees of defocus. We can see that for all values of ψ, the MTFs is greatly
degenerated as compared to the diffraction limited system, but the shapes are the
same, as predicted by equation (1.21). We can also see in figure 1.4 the shape of
the PSFs, which are quasi-invariant, but present a very strong deformation and is
oriented towards the bottom right; these deformations create undesired blur in the
image space, which can be corrected partially by digital deconvolution (Cathey and
Dowski, 2002).

μ

H
ψ
(μ
,0
)

ψ

ψ λ

ψ λ

FIGURE 1.4: Top: modulation transfer function of an optical system
with a CPM with α = 10λ for defocus values ψ = {0, 0.75, 1.5}λ; the
dashed line represents the diffraction limit. Bottom: PSF of the same
system affected by defocus of values (left to right): ψ = {0, 0.75, 1.5λ},

the MTFs and PSFs are quasi-identical for all defocus values
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1.3 Definition of an image quality criterion and a deconvolu-

tion filter

Digital image processing is commonly used in optics to numerically process a cap-
tured image, to extract information or simply to make it more visually attractive.
It is thus often used to increase the visual quality of images captured by an optical
system that may have known optical defects. In this section we will introduce a
numerical quantification of the image quality (IQ) and the deconvolution filter that
maximizes it for a given optical system.

1.3.1 Post-processing to improve the image quality

Let us begin by mathematically describing the image produced by an optical system
when captured by a digital detector. Given an object O(x, y) in the scene and an
optical system with PSF h(x, y), the image captured by the detector can be defined
as:

I(x, y) = h(x, y) ∗O(x, y) + n(x, y), (1.22)

where ∗ is the convolution product and n(x, y) represents the detection noise. The
filter d(x, y) that minimizes the mean squared error (MSE) between the object and
the deconvolved image is the so-called Wiener filter (Wiener, 1949), defined in the
frequency domain as:

d̃(μ, ν) =
h̃(μ, ν)�

|h̃(μ, ν)|2 + SOO(μ,ν)
Snn(μ,ν)

, (1.23)

where ·̃ stands for the Fourier transform, SOO(ν) and Snn(ν) are the power spectral
densities of the object and the noise respectively. In figure 1.5 we see a scene blurred
by spherical aberration and the corrected image by use of a Wiener filter.

FIGURE 1.5: Example of an image blurred by spherical aberration
(left) and the deconvolved image via a Wiener filter (right)

The Wiener filter could be used to deconvolve an image blurred by defocus, but be-
cause it depends on the PSF of the optical system, it can only work for a scene at a
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specific defocus value ψi. In the following sections we will introduce a more ade-
quate criterion than the standard MSE, to account for a broad range of DoF, together
with the a filter that minimizes it.

1.3.2 Image quality as optimization criterion

In this subsection we will follow the mathematical derivations presented in the doc-
toral thesis of F. Diaz (Diaz, 2011) to obtain a relevant criterion for phase mask co-
optimization for DoF extension. These derivations coincide with the results in pre-
vious works (Robinson and Stork, 2007), where the quality metric for optimization
proposed is the mean squared error (MSE) between the object scene and the decon-
volved image(s). This approach has the advantage, as we will see in the following,
to take into account artifacts in the deconvolved image inherent to the optical system
itself (e.g. aberrations), the detection (e.g. noise, sampling) and the deconvolution
(e.g. noise amplification). For the sake of simplicity, we will not consider the effects
of sampling until chapter 4.

Given the equation (1.22) we can define the deconvolved image as:

Ô(r) = d(r) ∗ [hϕψ(r) ∗O(r) + n(r)], (1.24)

where hϕψ is the PSF of a system suffering from a defocus ψ and with a phase mask
of profile ϕ. We can now define the mean squared error:

MSE(ϕ, ψ) = E
[ˆ ∣∣∣Ô(r)−O(r)

∣∣∣2 dr] , (1.25)

where E[·] represents the mathematical expectation over the noise n(r) and the ob-
ject O(r) which are both assumed to be zero-mean and independent stationary pro-
cesses. For the sake of conciseness, all the mathematical developments are expressed
using a 1D continuous formalism to represent the finite discrete 2D one, e.g., using
the integral

´ · · · dr to represent a finite double sum
∑L

i=1

∑M
j=i · · · over the pixels of

the image. Under the assumption of independence between the scene and the noise,
it can be demonstrated that, from equations (1.24), (1.25) and using the Plancherel
theorem, we can rewrite the MSE as:

MSE(ϕ, ψ) =

ˆ ∣∣∣d̃(ν)h̃ϕψ(ν)− 1
∣∣∣2 Soo(ν)dν +

ˆ ∣∣∣d̃(ν)∣∣∣2 Snn(ν)dν. (1.26)

Our goal is to find a deconvolution filter d̃(ν) and a mask profile ϕ that minimize
MSE(ϕ, ψ) for any value of ψ ∈ [ψmin, ψmax]. For this purpose the averaged MSE
can be defined as:

MSE(ϕ) =
1

ψmax − ψmin

ˆ ψmax

ψmin

MSE(ϕ, ψ)dψ. (1.27)

For practical purposes, one does not integrate over all the values of ψ, but instead
one averages over K values of ψk ∈ {ψ1 = ψmin, . . . , ψK = ψmax}, leading to the
redefinition of the averaged mean squared error:
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MSE(ϕ) =
1

K

K∑
K=1

MSE(ϕ, ψk). (1.28)

The averaged Wiener filter that minimizes eq.(1.28) is then deduced:

d̃ϕψ(ν) =

1
K

∑
k

(
h̃ϕψk

(ν)
)�

1
K

∑K
k=1

∣∣∣h̃ϕψk
(ν)

∣∣∣2 + Snn(ν)
Soo(ν)

. (1.29)

One can use the averaged MSE from (1.28) as a criterion to co-optimize ϕ and dψϕ, but
the risk is to find an optimal MSE(ϕ, ψ) which has a very low MSE(ϕ, ψk) value
at some ψi but a very high one at another ψj . For this reason Diaz proposes using a
minimax approach, where the criterion is:

MSEmax(ϕ) = max
k

[MSE(ϕ, ψk)], (1.30)

to be minimized over ϕ. In this way, the optimized mask profile ϕ will minimize the
worse MSE in the range of ψk. Throughout this manuscript we will use an equiv-
alent, yet more convenient, way to evaluate the performance of a hybrid optical
system, which is the image quality:

IQ(ϕ, ψ) =
EO

MSE(ϕ, ψ)
, (1.31)

where EO is the energy of the scene defined as EO =
´ |O(r)− E [O(r)]|2 dr. Using

this definition, equations (1.28) and (1.30) can be redefined in terms of image quality:

IQmean(ϕ) =
EO

MSE(ϕ)
, (1.32)

IQmin(ϕ) =
EO

MSEmax(ϕ)
. (1.33)

Thus, the optimal mask profile can be defined as:

ϕopt = argmax
ϕ

[IQcrit(ϕ)] , (1.34)

with IQcrit(ϕ, ψ), corresponding to the chosen criterion IQmin or IQmean. We will
refer to the optimal image quality as:

IQopt = IQcrit(ϕopt), (1.35)

which is the image quality of the optimal mask.

At this point, we can notice that, unlike the work in (Dowski and Cathey, 1995) and
(Zhao et al., 2014), where the objective was to make the PSF or the MTF (and conse-
quently MSE(ϕ, ψ)) as invariant to defocus as possible, the optimization criteria of
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equations (1.32) and (1.33) do not. In particular, the criterion from eq. (1.33) focuses
instead on optimizing the value of MSEmax(ϕ) only for the the ψk with the worst
image quality. This insures that MSE(ϕopt, ψ), for any ψ in the desired DoF range,
is always lower or equal to the MSE(ϕinv, ψ) for a ϕinv obtained by methods that
aim for invariability.

1.4 Co-design of phase mask and deconvolution

As we saw in section 1.2.2, it is possible to design a cubic phase mask that is guar-
anteed to produce an MTF invariable to defocus if the value of α is sufficiently high.
Then we showed that a Wiener filter can be applied to recover the image quality. It
has been shown that the invariability approach does not necessarily convey the best
image quality of the post-processed image (Robinson and Stork, 2007), (Diaz et al.,
2009). In this section we show the process of calculating the masks that is best for a
given optimization problems using the mathematical definitions we have shown in
section 1.3.2.

1.4.1 Finding an optimal mask

In order to illustrate the importance of co-design, we use as an example the cubic
phase mask previously shown to turn the MTF invariant to defocus. To do this, we
calculate the value of the criterion from eq. (1.33), that is IQmin(ϕ), as a function
of the parameter α of the cubic phase mask for a DoF range of ψ ∈ [0, 1.5]λ. As
we can see in Fig. 1.6, the maximum value of the quality criterion for this specific
co-design problem is at αopt = 1.9λ, far lower than the value α = 10λ required for
an invariant MTF. It will later be shown, on chapter 2, that the MTF is not an ideal
metric of performance when co-designing an optical system where a deconvolution
step is required.

α λ

I
Q

m
in
(ϕ

)[
d
B
]

FIGURE 1.6: Plot of IQmin(ϕ) as a function of the cubic mask param-
eter α
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In Fig. 1.7, we show the MTFs and the PSFs of a system using a cubic phase mask
with α = αopt = 1.9λ at the defocus values ψ = {0, 0.75, 1.5}λ. For comparison, ac-
cording to the so called Rayleigh’s quarter wavelength rule (Born, Wolf, and Bhatia,
1999), (Maréchal, 1947), in a classical diffraction limited optical system the effects of
defocus are considered to be noticeable when |ψmax| ≥ 0.25λ. We can see that neither
the MTF nor the PSF are now invariant to defocus and that slight variations exist for
different values of ψ. This shows that, as proposed, invariability of the MTF does
not necessarily convey optimal image quality results.

μ

H
ψ
(μ
,0
)

ψ

ψ λ

ψ λ

FIGURE 1.7: Top: modulation transfer function of an optical system
with a CPM with α = 1.7 for defocus values ψ = {0, 0.75, 1.5}λ, the
dashed line represents the diffraction limit. Bottom: PSF of the same
system affected by a defocus of, from left to right, ψ = {0, 0.75, 1.5λ}.

We see this in figure 1.8, where the mask designed for an invariant MTF has a much
noisier deconvolved image than the mask co-designed for the desired DoF range
(ψ ∈ [−1.5, 1.5]λ) to have the maximum value of IQmin(ϕ).

For systems with multiple variables, the approach of calculating the value of IQmin

for all values of the mask parameters used in this section is not possible due to com-
putational times increasing exponentially with the number of variables. For this
reason, to co-design an optical system for depth of field extension, an iterative joint-
optimization has to be performed so that the phase mask and the Wiener filter are
simultaneously modified on each optimization cycle.
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FIGURE 1.8: Comparison of images obtained under different degrees
of defocus with: (top) a conventional system; (middle) a system with
a CPM and deconvolution designed to have an invariant MTF; (bot-

tom) a system with a co-designed CPM and deconvolution

1.4.2 Principle of co-design

As we have shown in the previous section, masks that aim for invariability may
cause undesirable artifacts in the deconvolved image, as well as amplifying noise
during deconvolution. For this reason and due to the complexity of the multi-
variable problem, a joint optimization of the phase mask and the deconvolution filter
has been proposed, in order to have the right compromise between DoF extension
and noise amplification for a specific optical design problem (Diaz, 2011).

Figure 1.9 shows a flowchart with general steps for co-optimization of a phase mask
and its deconvolution. We can see that on each cycle of the optimization loop, both
the phase mask and the filter are modified, but the only variables are the mask pa-
rameters.

In reality, the optimization is performed without calculating the final images Ôϕψk
(r),

since the quality criterion from equation (1.30) can be calculated faster by using
equation (1.26) directly in the frequency domain.
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FIGURE 1.9: Co-design flowchart, showing the steps to optimize a
mask and the deconvolution filter

1.5 Conclusions

Optical systems can suffer greatly from the blurring effects of aberrations, particu-
larly from defocus. It has been shown that digital deconvolution can help mitigate
these effects, as long as the aberration is known, but in the case of defocus it varies
so greatly over the z-axis that a single deconvolution filter cannot be used. This is
the interest of wavefront coding, where a phase mask in the pupil can be used to
have an a PSF blur invariant to defocus, so that a single deconvolution filter can be
used.

We have shown that this approach works, but masks that make the system invari-
ant to defocus are not necessarily the optimal solution in terms of final image qual-
ity. Another approach was proposed, where the phase mask profile is co-designed
taking into account the subsequent deconvolution, proving that a PSF that is only
quasi-invariant to defocus is sufficient to be used for depth of field extension.

In systems with more parameters, a co-optimization is required to obtain the optimal
mask, since a simple solution-map search like the one we used in this chapter would
be impractical. In the following chapters we tackle the problem of optimization of a
binary annular phase mask with multiple parameters, explore the characteristics of
their optimization and study the range and limits of their performance.
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Chapter 2

Performance limits of phase masks
for DoF extension

In the previous chapter we have shown how a conveniently designed mask can mod-
ify the wavefront from an optical system to make it invariant to defocus. We have
then demonstrated the importance of co-optimization of both the mask and the de-
convolution, and that invariability of the MTF is not a requirement for optimal per-
formance in terms of image quality.

In this chapter we now study the characteristics of binary annular phase masks
(BAPM) and their depth of field (DoF) extension capabilities. These masks present
various attractive features, such as a symmetric PSF and ease of manufacture. We
will use the methodology described in chapter 1 to co-optimize the masks and their
respective Wiener filter.

We first describe the characteristics of the binary annular phase masks which help us
show the need of a global optimization algorithm. We provide an in-depth analysis
of their performance and the limits they have. Finally we do thorough analyses of
their robustness to different aberrations and scene models.

2.1 Co-optimization of a binary annular phase mask

In this section we study the main properties of the BAPM and compare them with
other commonly used phase masks. This study then drives us to choose a global op-
timization algorithm that can deal with the different complications from the BAPM
optimization landscape. Lastly, we analyze the mask profiles of the local optima
found by the optimization.

2.1.1 Binary annular phase masks for depth of field extension

Binary annular phase masks consist of a series of N concentric annular regions of
phase modulation of alternatively 0 or π radians at the nominal wavelength λ. Each
annular constant phase area corresponds to what we will refer as ring, so that an
N-ring mask of clear aperture radius R is parametrized by N − 1 normalized radius
values ϕ = {ρ1, ...ρN−1}, with ρ = ρ′P = ρP /R (Fig. 2.1).

To illustrate some of the features of the binary annular phase masks, in Fig. 2.2 we
compare the monochromatic PSF of three different masks: the cubic mask obtained
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FIGURE 2.1: Example of a 4-ring annular binary phase mask. Gray
areas induce a phase of ϕ = 0 and white areas a phase of ϕ = π.

in section 1.2.2, a quartic phase mask (QPM), a circularly symmetric mask which we
will further study in Chapter 3, with profile ϕ = β(ρ4 − 1

2ρ
2) and a BAPM. These

three masks have been optimized for the DoF range ψmax = 1.5λ. In Fig. 2.2 (top)
we show a cut at the XM axis of the PSF around the focal point as a function of the
defocus ψ, In Fig. 2.2 (bottom) we show the PSF at ψ = 0.

A characteristic of circularly symmetric masks is that they always produce an equally
circularly symmetric PSF around the Z-axis. In contrast, most non-circularly sym-
metric phase masks, such as the CPM, have the heavily skewed PSFs. This skewing
comes with a shift of the center of the PSF as a function of ψ, as we can appreciate
on the cut across XM of Fig. 2.2 for the CPM.

We can see that the PSF of the QPM is not symmetric as a function of ψ around
ψ = 0, while the CPM and BAPM are symmetric. Most circularly symmetric masks
have asymmetric PSFs as a function of ψ. This is not the case of the BAPM, since the
rings have precisely 0 or π phase steps, with −π = π modulo 2π and therefore the
BAPM can be considered to behave as what is commonly called an odd profile mask.
Odd masks have the property that ϕ(x, y) = −ϕ(−x,−y), and therefore the value of
the PSF in equation (1.10), is the same for positive or negative values of ψ. Although
this analysis is only valid for monochromatic light, phase masks have been used in
common wave bands, like near infrared (Diaz et al., 2011) and visible (Burcklen et
al., 2015).

As we can see, the binary annular phase masks present a series of attractive features
for co-design, such as the circularly symmetric PSF, which makes the subsequent
deconvolution less prone to visual artifacts. Finally, in practical terms, BAPMs are
also considerably easier to manufacture than other mask types: their binary profile
makes them very simple to manufacture by means of photolitography in contrast
to continuous masks and, particularly for non-rotationally symmetric mask profiles,
conventional diamond turning would be impossible to use.

2.1.2 Optimization methodology

In this section we present the optimization of BAPM using the ring radii ϕ as op-
timization parameters for a given DoF range ψmax and a given number of rings N .
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FIGURE 2.2: Comparison of the PSF of three different masks, from left
to right: Cubic phase mask, quartic phase mask and binary annular
phase mask. On top we see a cut across at XM = 0 of the PSF for
defocus values in the range ψ = [−2, 2]λ. On the bottom we see a cut

at ψ = 0 of the three PSF

Since binary annular masks introduce a phase modulation of 0 or π radians and as
the optical system is aberration-free, the value of IQ(ϕ, ψ) is symmetric around the
focal point ψ = 0. Thus, to save computational time, our optical system is optimized
only for positive values of ψ ∈ {ψ1 = 0, · · · , ψK = ψmax} with the underlying as-
sumption that the total DoF range is [−ψmax,+ψmax] around the focal point. The
evaluation points of the DoF range are chosen such that they are evenly spaced and
that ψk − ψk−1 = 0.5λ, this step size has been observed to be sufficient to obtain a
near-optimal mask profile for a given ψmax.

To calculate the MSE from Eq. (1.26) and the filter from Eq. (1.29) we use a generic
ideal scene model with a power-law PSD (Ruderman, 1997) Soo(ν) = Gν−a, with
a being fixed to 2.5 and the constant G being given by the SNR value assuming´
Snn(ν)dν = 1.

The optimization of the mask with profile ϕ is not simple since the function IQmin(ϕ)
(Eq. (1.33)) presents several local maxima and is highly nonconvex. This is clearly
seen in Fig. 2.3 (left), were we have represented the value of IQmin(ϕ) for a 2-ring
mask as a function of the radius ρ1 and for different values of ψmax. It can be noticed
that depending on the value of ψmax, there may be several local maxima of IQmin(ϕ).
Moreover, these local maxima have very similar values for a given value of ρ1 in the
range ψmax ∈ {2.0, 2.5, 3.0}λ. Similarly, we have represented in Fig. 2.3 (right) the
variation of IQmin(ϕ) for a three-ring mask as a function of ρ1 and ρ2 for ψmax = 2.0λ;
the most prominent local maxima are marked with black crosses, many of them
presenting similar values of IQmin(ϕ).

To optimize binary phase masks with a larger number of rings, a graphical rep-
resentation of IQmin(ϕ) is no longer possible and therefore a global optimization
algorithm is needed.
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FIGURE 2.3: Evolution of IQmin(ϕ) for (left) 2-ring masks calculated
for ψmax ∈ [1.0, 1.5, 2.0, 2.5, 3.0]λ and (right) 3-ring masks for
ψmax = 2.0λ; the crosses mark the most prominent local maxima.

2.1.3 Particle Swarm global optimization algorithm

For all optimizations in this manuscript we have chosen the population-based Parti-
cle Swarm algorithm (Shi and Eberhart, 1998). This algorithm is commonly used in
multi-variable optimizations that contain non-convex, non-derivable optimization
landscapes and has been used in the design of optical elements such as gratings
(Shokooh-Saremi and Magnusson, 2007), antenna array design (Gies and Rahmat-
Samii, 2003) and design and manufacture of electronic and mechanic components
(Yıldız, 2009).

The particle swarm global optimization consists of a collection of M particles with a
random uniform distribution within the lower bound (lb) and upper bound (ub) of
our optimization problem, lb = 0 and ub = 1 for BAPMs. The algorithm also gives
each particle an initial position xi0 and a velocity vi0. At each iteration j the position
pi = xij is updated as the position with the best value of the objective function the
particle i has found, and the best position found over all particles is stored in dj .

At each iteration, the particles move within the optimization landscape with a speed
vij ,

vij = Wj ∗ vij−1 + y1u
i
1(p

i − xij) + y2u
i
2(dj − xij), (2.1)

where ui1 and ui2 are normalized uniformly distributed random vectors of length N ,
y1 and y2 are the self adjustment weight and social adjustment range respectively, and are
set by the user before the optimization begins, in order to manipulate the influence of
the neighbors in the particle’s speed. Wj ∈ [0.1, 1.1] is an inertial weight, it decreases
as the algorithm progresses and increases with the number of stagnant iterations,
meaning iterations with relative change in the value of the objective function bj =
MSEmax(dj) below a certain threshold.

The termination of the optimization loop is triggered when a certain number of stag-
nant iterations is reached. Alternatively, the optimization stops when a maximum
number of optimization cycles is reached, but this scenario is unlikely and generally
undesirable.



2.1. Co-optimization of a binary annular phase mask 23

2.1.4 Optimization results

The randomness of the algorithm added to the complexity of the optimization prob-
lem makes it not always possible to find the global maximum in a single optimiza-
tion run. For this reason, a large number of optimization runs, with randomly gen-
erated starting points, were calculated in parallel on a 48 core cluster of computers,
leading to up to 40 different local maxima found, depending on the complexity of
the optimization landscape. After multi-hour computations with computation time
increasing with N , the best obtained masks for each case were then selected as opti-
mal.

We have noticed that the number of local maxima of the optimization landscape
increases along with the number of rings. It also starts to increase with the required
DoF range, it reaches its maximum value for ψmax around 2.0λ and then slightly
decreases when ψmax reaches 2.5λ as the optimization landscape becomes smoother.
Similarly to the cases shown in Fig. 2.3, different mask shapes with very similar
IQmin(ϕ) values were found. As an example, we show in Fig. 2.4 two of the best
masks obtained for 6 rings and ψmax = 2.5λ. These masks have different shapes
but very similar image quality. This being said, we can observe that the last ring of
Fig. 2.4.b is very thin so that from a technological point of view, the mask in Fig. 2.4.a
would certainly be easier (or cheaper) to manufacture.

FIGURE 2.4: Comparison of two equivalent local maxima of J(ϕ) ob-
tained by optimization for 6-ring masks and for ψmax = 2.5λ.

Some global pattern can be observed on the shapes of the optimal masks as ψmax

and the number of rings increase. In Fig. 2.5 we show the profiles of the optimal
masks obtained for DoF ranges ψmax = 2.0λ and 2.5λ, with 5, 6 and 7 rings each.
A similar feature on all the masks is a wide annular region between two rings at
ρk−1 ∼= 0.60 and ρk ∼= 0.75. We can see that, for a given DoF, when the number of
optimization parameters (rings) increases, the masks have similar profiles with the
new rings appearing after the aforementioned annular region. This can probably
be related to the parabolic shape of the wavefront error due to defocus, with the
central part being relatively flat and thus not requiring to be engineered to enhance
the image quality.
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FIGURE 2.5: Masks optimized with (from left to right) 5, 6 and 7 rings
and for DoF ranges ψmax = 2.0λ (top row) and ψmax = 2.5λ (bottom

row).

2.2 Performance limits of binary annular phase masks

We now evaluate the performance of the BAPM we have optimized with the method
shown in Section 2.1.2. We do so by observing the changes in the performance ob-
tained by using an increasing amount of rings at a given DoF range. This study will
help us identify what are the limits in DoF extension of binary annular phase masks
and how these limits are affected by the number of rings.

2.2.1 Image quality as a function of the ring radii

In most optimization problems, increasing the number of parameters that are opti-
mized automatically increases the value of the performance criterion. In the case of
DoF extension via phase masks, it is therefore reasonable to suppose that increasing
the number of rings would allow the co-designed system to reach higher DoF or to
improve the image quality achievable.

In this section we evaluate the behavior of IQopt as a function of the number of rings
for different values of ψmax, the values obtained can be seen in Fig. 2.6. We observe
that the image quality naturally increases as more rings are added, but rapidly levels
off in all cases. Take the case when ψmax = 1.0λ, the increase on IQopt from 2 to 3
rings is of [∆IQ]2→3 = 0.92dB, a considerable gain in this range, but adding extra
rings does not increase significantly the image quality.

When ψmax = 1.5λ, the overall behavior of IQopt as a function of the number of rings
is the same as for ψmax = 1λ, with the difference that the value of IQopt is lower
at all points. Another important difference is that last significant gain of quality
happens when passing from 3 to 4 rings, for a value of [∆IQ]3→4 = 0.55dB, leveling-
off afterwards.
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FIGURE 2.6: Performance comparison of optimal annular
phase masks with different amount of rings for ψmax ∈
{1.0, 1.5, 2.0, 2.5, 3.0}λ. The case where the number of rings

is equal to 1 is equivalent to having no mask.

The increase in performance between 3 and 4 rings becomes larger when the DoF
increases, [∆IQ]3→4 = 1.4dB for ψmax = 2.0λ, [∆IQ]3→4 = 1.8dB for ψmax = 2.5λ
and [∆IQ]3→4 = 3.0dB for ψmax = 3.0λ. This trend clearly shows a need for extra
rings as ψmax increases.

However, for all values of ψmax, a saturation of the performance with the number of
rings is observed. When ψmax = 1.0λ, it occurs after 3 rings and for ψmax = 1.5λ,
after 4 rings. When ψmax = 2.0λ, the behavior is slightly different, since the growth
of IQopt slows down gradually, until it stops at 7 rings. The case of ψmax = 2.5λ is
somehow more intricate, but, again, shows no practical improvement after 7 rings.

This behavior seems to be due to the optimization landscape being the most noncon-
vex and prone to local maxima at values of ψmax around 2.0λ. On the other hand,
when ψmax = 3.0 λ, the IQ stops increasing as soon as with 5 rings, with a rather low
IQ maximal value. This shows that we have reached a limit on how much the DoF
of a system can be extended with an annular binary phase mask and a mean Wiener
filter, regardless of how complex that mask is.

2.2.2 Performance of the optimal masks through the DoF range

To understand better the behavior of the hybrid imaging system throughout the DoF
range, it is useful to see the evolution of IQ(ϕopt, ψ) as a function of ψ. This is shown
in Fig. 2.7 for the masks obtained for the DoF ranges of ψmax = 1.5, 2.0, 2.5 and 3.0λ,
and for different numbers of rings.

The first observation is that, as ψmax increases from one graph to the next, all curves
get lower values for a given number of rings. This indicates that, as ψmax increases,
the problem becomes more difficult and the reachable optimal performance decreases.
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When ψmax = 1.5λ, it is seen that all the curves for more than 4 rings yield a quasi-
constant performance throughout the DoF range and are almost identical. This is
consistent with the fact, observed in Fig. 2.6, that for this DoF range, the increase
of performance levels off after 4 rings. When ψmax = 2.0λ, the variation of IQ as
a function of ψ is wider; we observe a drastic change of the curve shape between
3-ring and 4-ring masks, then the curves are smoother and become flatter, to reach a
stable behavior from 7 rings onwards.

When ψmax = 2.5λ, the performance of the 5-ring and 6-ring masks is very similar,
but adding a 7th ring makes it possible to suppress the valley around ψ = 0.72λ
while following the path of the 6-ring mask afterward; this leads to the small increase
of IQopt observed for this value of ψmax when going from 6 to 7 rings. When ψmax =
3.0λ, we see that the mask with 3 rings is clearly insufficient to compensate for such
a large value of the defocus, and all the optimized masks have a similar performance
after 5 rings.

FIGURE 2.7: Performance comparison of masks optimized for differ-
ent ψmax and number of rings as a function of ψ.

Finally, it is interesting to notice that in all cases, increasing the number of rings
tends to reduce the peak to valley variation of IQ(ϕ,ψ) even if it does not increase
considerably the minimum of IQ(ϕ,ψ) compared to the situation with less rings.
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2.2.3 Considerations on mask manufacture and design

Binary annular phase masks optimized for DoF extension have been manufactured
for different imaging applications, such as extending the DoF of non-cooled infrared
cameras (Diaz et al., 2011), or athermalization of high definition cameras in the visi-
ble spectrum (Burcklen et al., 2015). The process of manufacture and implementation
depends greatly on the application, since the manufacturing method will depend on
constraints such as the spectral range and the usable materials, the pupil size of the
targeted system and the cost of the manufacturing. Many manufacturing methods
can be envisaged, such as direct diamond turning, molding, photolithography asso-
ciated with chemical, plasma or reactive ion etching, effective index sub-wavelength
patterning, among others. Each method has its own limitations in terms of materials
that can be etched, on the minimal lateral size of the pattern that can be imprinted,
on the maximum depth of the etch, and on the overall area that can be worked at
affordable cost or within a realistic duration.

Since the masks we optimize in this chapter depend only on the DoF range ψmax and
N , the number of rings, they can be used for systems working at any wavelength or
pupil diameter. For example, let us consider a system with effective focal length
f = 20mm and F-number F# = 2. If the spectral operating range is in the visible
(λ = 587 nm), a mask optimized for ψmax = 2.5λ, as represented in Fig. 2.4, provides
a depth-of-focus (DoFs) for an object at infinity, of Δzi = ±2(ψmax/λ)λf

2/R2 =
±8(ψmax/λ)λ(F#)2, that is ≈ 47μm. This value should be compared to the DoFs of
a diffraction limited standard lens of the same F-number (Δzstandard = ±2λ(F#)2)
of ≈ 4.7μm, showing, as expected, a tenfold increase of the DoFs, since the DoFs
of a diffraction limited standard lens corresponds to ψmax = 0.25λ according to the
Rayleigh’s quarter wavelength rule. The same generic masks of Fig. 2.4 could also
be used to extend the DoF of a system with longer effective focal length f = 200mm
and F# = 4. In this case, the DoFs would be ≈ 190μm while the DoFs of a standard
lens of the same F-number is ≈ 19μm.

For the f = 20mm, F# = 2 system, and a DoF extension of ψmax = 2.5λ, the ra-
dius of the mask should thus be R = 5mm. A mask with such a radius can be
manufactured with many different technologies, such as diamond turning or pho-
tolithography. Let us now assume that the mask in Fig. 2.4.a is used: the smallest
normalized ring width is Δρ = ρk − ρk−1 = 0.05, which corresponds to a real width
of Δr = R·Δρ = 0.25mm= 250μm. This value is a priori affordable by all the above-
mentioned manufacturing methods. On the other hand, the mask of Fig. 2.4.b, which
provides the same DoF extension as the one in Fig. 2.4.a, has a minimal normalized
ring width of Δρ = 0.01, which leads to an actual width of Δr = 50μm, which is
too thin for usual diamond turning but clearly affordable for photolithography or
subwavelength patterning. The generic mask of Fig. 2.4.a could also be used to ex-
tend the DoF of the long focal system (f = 200mm, F# = 4). In this case, the real
diameter of the mask would be 50mm, and some technologies, such as microlithog-
raphy or subwavelength patterning, would be difficult to use at an affordable cost.
On the other hand, the minimum ring width would be Δr = 1.5mm, well within the
capabilities of diamond turning.

In terms of manufacturing costs, an important consequence of the image quality
leveling-off at a given number of rings is that the less complex a mask is, the cheaper
it is to manufacture it. As we have shown by comparing the masks of Fig. 2.4, the fact
that several local optima with similar performances are found, means that the optical
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designers can chose the mask with a profile more appropriate for the manufacturing
tools they have access to. In the case of the optimal phase masks we have found,
for ψmax ≤ 3λ and N ≤ 7, there is always a mask with near-optimal performance
having a smallest normalized ring width greater than 0.05. They thus could all be
easily manufactured for the two optical systems we have taken as examples.

2.3 Frequency response of the masks and deconvolution

The modulation transfer function is one of the most used criteria in conventional
optical system design, among others, such as the Strehl ratio or the spot size. In this
section we will define an effective MTF, that considers the effects of deconvolution,
and use it to study the optimized masks and their Wiener filter. We will finally
assess the relevance of such and how it compares with the image quality defined in
Eq. (1.31).

2.3.1 Effective MTF

A great deal of information on the effects of the optical system on the captured image
are directly linked to the modulation transfer function H(µ, ν). A typical guideline
to assess the behavior of an optical system, among others, is the cutoff frequency
νc; the point where the MTF drops significantly so that frequencies ν ≥ νc will be
blurred in the final image. A system is said to be well resolved when it satisfies the
Nyquist criterion 2νc < νs, where νs is the sampling frequency.

On a hybrid imaging system, the MTF is not enough to assess the total impact on the
final image, since the post-processing is not taken into account. From Eq. (1.24), a
system where a filter d(x, y) is applied to the captured image has the following final
image expression in the Fourier domain:

FT(Ô) = d̃(µ, ν) ·H(µ, ν) · Õ(µ, ν) + d̃(µ, ν) · ñ(µ, ν) (2.2)

We can identify from this expression a term for the effective MTF

Heff (µ, ν) = d̃(µ, ν) ·H(µ, ν), (2.3)

and a term for the noise amplification due to filtering d̃(µ, ν) · ñ(µ, ν). The impor-
tance of considering the effective MTF is better exemplified in Fig. 2.8 where we
show the frequency response of a system with a 5-ring BAPM optimized for a DoF
of ψmax = 1.5λ. The defocus value ψk = 0.5λ, used to calculate the MTF shown, sat-
isfies Eq. (1.33); it is the point of the lowest IQ value for which IQopt is calculated.
On top is the frequency response of the Wiener filter, on the bottom-left the MTF
of the optical system (blue) and the detection noise (green) and on the bottom-right
the effective MTF and the effect of deconvolution on the noise. Note that, since the
pupil, the mask, and the Wiener filter are circularly symmetric, these 1-dimensional
representations of the effective MTF are sufficient to understand the behavior in two
dimensions.
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FIGURE 2.8: Effect of the Wiener filter on the optical transfer function
of a 5-ring mask co-optimized for a DoF of ψmax = 1.5λ. The MTF’s
are shown at the defocus point ψk = 0.5λ, which presents the lowest

value of IQ

We can see in the MTF of the BAPM that there is a rapid drop of contrast at low
frequencies, and that beyond µ = 0.26 the value of the MTF is below the noise
level at almost every point. On the other hand, the effective MTF stays at rather
high values at all frequencies lower than µ = 0.26, with a just dip at µ = 0.16.
We see that this BAPM has a very definite cutoff frequency at µ = 0.26 before and
after deconvolution. Moreover, due to the noise amplification, frequencies that were
originally close to the noise level cannot be recovered by means of Wiener filtering.

2.3.2 Frequency response as a function of the number of rings

It has been established in section 2.2 that co-optimized optical systems with a BAPM
and a Wiener filter have an image quality that increases with the number of rings and
that levels-off for a certain number of rings. We have also shown that the effective
MTF from equation (2.3) can give us more information about the spatial frequency
response of a hybrid imaging system than just the conventional MTF. In this section
we will use the image of a butterfly shown in figure 2.9 as the scene. For the decon-
volved images we use the generic Wiener filter shown in equation (1.29) using the
image model SOO ∝ ν−2.5 and supposing a detection noise of 34dB.



30 Chapter 2. Performance limits of phase masks for DoF extension

FIGURE 2.9: Photograph of a butterfly, used as the scene for many of
the signal processing examples through this work

On the left column of Fig. 2.10 we show the effective MTF of the hybrid optical sys-
tem co-optimized for a DoF of ψmax = 2.5λ with a number of rings increasing from
2 to 6. As in Fig. 2.8, the defocus values ψk used to calculate the Heff shown satisfy
Eq. (1.33) and are the point of the lowest IQ value for which IQopt is calculated. On
the center column we can see the deconvolved image of the butterfly at that same
value of ψk and on the right column we see a detail of the same image.

For the 2-ring mask, the effective MTF has a very steep drop at µ = 0.02 and stays
low for higher frequencies, staying below the noise level at µ = 0.22. This is notice-
able on the deconvolved image where only the low-frequency details are visible and
the image is severely blurred. We can also notice ringing in the detail on the right.
For the 3-ring mask, the effective MTF is overall better and the cutoff frequency is at
µ = 0.32, coinciding with the considerable increase in image quality we see from 2
to 3 rings in Fig. 2.6. On the other hand, there are considerable decreases of contrast
for µ = 0.03 and µ = 0.08. Comparing the deconvolved images of the 2-ring and
the 3-ring masks, we see that for the 3-ring mask high frequency details are more
apparent; we can completely distinguish the details on the wings and the antennae
are sharp, but there is some ringing around high-contrast details, such as at the edge
of the wings. In the detail we see that the background is not as smooth as in Fig. 2.9.
These defects are most likely due to the decreases of contrast seen at µ = 0.02 and
µ = 0.09 (see Fig 2.10).

On the plot of the effective MTF for the 4-ring mask we see again only one reduction
at low frequencies, µ = 0.04, but it is not as pronounced as for the 3-ring mask.
Interestingly, the cutoff frequency here is much shorter than for the 3-ring, at µ =
0.19. In the deconvolved image we can see that the ringing is much less pronounced
than for the previous two masks. In the the zoom-in, on the other hand, the finer
details are more blurred than for the 3-ringed mask, but the background is more
homogeneous. We know from Fig. 2.6 that this mask has a considerably better value
of IQopt than the 3-ring mask, meaning that, for scenes with power spectra similar
to SOO ∝ ν−2.5, lower frequency details contribute more to the image quality, as
defined in eq. (1.31), than the higher frequency ones.

For the 5-ring mask the effective MTF has a less varying shape for frequencies below
µ = 0.11, and drops smoothly to its cutoff frequency at around µ = 0.22, further than
with 4-rings, but still shorter than for 3-rings. We can see in the deconvolved image
that the ringing artifact is almost gone and that the image is overall better defined.
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We see that it is sharper than for the 4-ring mask, but suffers slightly more from
noise amplification in the background. Finally, for the 6-ring mask, the shape of the
effective MTF is similar than for the 5-ring mask, but with slightly higher values at
most points until its cutoff frequency at μ = 0.24. In the deconvolved image it is
difficult to see much difference with the 5-ring case; only in the zoom-in we can spot
some differences, like a slight reduction in the blur, as well as some details close to
the edge of the wings being more noticeable.

We have seen from this study that the effective MTF is a useful tool to analyze the
behavior of a hybrid optical system. Thanks to it, we observed that the BAPM cuts
down high-frequency details while the Wiener filter amplifies the contrast for low-
frequencies. This low-pass filtering has been observed in all the optimized masks
to a certain degree, but, as we could observe from the 3-ring mask, having a larger
cutoff frequency does not guarantee higher image quality. Nevertheless, there may
be cases where considering the cut-off frequency during the optimization may be
advantageous, for example, to consider effects of aliasing; this will be studied in
chapter 4.

Finally we can conclude that, although the effective MTF is useful to assess the per-
formance of a hybrid imaging system, this assessment has to be based on several
characteristics from the MTF and the scene, making IQ a much simpler, yet reliable,
quantification of the performance.

2.4 Robustness of the BAPM performance

Until now, the masks and deconvolution filters were optimized by assuming a generic
scene model with power-law PSD Soo(ν) ∝ ν−2.5 and an aberration-free system. To
check the robustness of our results and conclusions to these assumptions, we now
evaluate the performance of the masks optimized for this model on systems that
possess some amount of 3rd order aberrations, or that act on scenes whose PSDs fol-
low a power law with different coefficients. We finally validate the masks on scenes
simulated by sharp real-world photographs.

2.4.1 Sensitivity to aberrations

The binary phase masks obtained in the previous section were optimized consid-
ering an aberration-free system. If these masks were to be used in a real system,
they could have to deal with a small amount of residual aberrations additionally to
the defocus. Aberration correction with phase masks for DoF extension has been
studied in the past. In the works of (Prasad et al., 2004) and (Tucker, Cathey, and
Dowski, 1999), asymmetric masks are used to extend DoF and to correct a certain de-
gree of spherical aberration. The study of phase masks has also been focused on the
correction of aberrations, without extending the DoF, an example being (Mezouari,
Muyo, and Harvey, 2006), where the authors studied the use of quartic phase masks
to correct coma or astigmatism

To study the sensitivity of the mask performance to residual aberrations, we first in-
clude in our simulated optical system a known amount of aberrations with a wave-
front error expressed by the following Seidel terms (Smith, 1966): Ws = αρ4 for
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FIGURE 2.10: Comparison of the different masks optimized for
ψmax = 2.5λ, shown at the defocus point ψk with the lowest value
of IQmin, used to optimize. Effective MTF (left), deconvolved images

(center), detail in the images (right)
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spherical aberration, Wc = βρ3 cos(θ) for coma and Wa = γρ2 cos(2θ) for astigma-
tism. The Seidel aberration terms are a very convenient way to decompose the wave-
front error and they are commonly used to simulate aberrations.

As a reference, a conventional optical system was simulated to show the effects on
IQ(ψ, ϕ) of each aberration in addition to defocus. As mentioned in section 1.4.1, ac-
cording to the Rayleigh’s quarter wavelength rule, a peak-to-valley wavefront error
due to aberration larger than λ/4 in a diffraction limited optical system is considered
to be visually noticeable. The tolerable RMS error depends strongly in the applica-
tion. On a non diffraction-limited system, such as professional photographic cam-
eras, the design could allow more residual aberrations as long as the PSF spot radius
is below a certain threshold. On the other hand, high-precision diffraction limited
scientific equipment is usually required to have residual wavefront errors on the or-
der of λ/20 (Suematsu et al., 2008) or even λ/100 for photolithography (Hudyma,
2000).

In Fig. 2.11.a, Fig. 2.11.c, Fig. 2.11.e and Fig. 2.11.g, the image quality is shown as a
function of the DoF obtained with the 5-ring binary annular phase mask optimized
for ψmax = 2.0λ after spherical, coma, astigmatism, or a combination of the three
were added to the pupil function of the optical system. Each aberration was neither
taken into account when optimizing the mask, nor when calculating the averaged
Wiener filter and therefore in these graphs we evaluate the sensitivity of the mask
to aberrations that were not considered for their conception. On the other hand
Fig. 2.11.b, Fig. 2.11.d, Fig. 2.11.f and Fig. 2.11.h show the values of the image quality
as a function of the DoF on a traditional system when affected by the aforementioned
aberrations. Notice that we now use the full DoF range from −ψmax to +ψmax in the
graphs, including the negative values, since some aberrations break the symmetry
of the PSF around ψ = 0.

We can observe in Fig. 2.11.a that for spherical aberration, the values of IQ(ϕ, ψ)
close to ψ = 0 stay very close to the aberration-free case, but as |ψ| increases, the
values of IQ(ϕ, ψ) are reduced. We can see that for α > 0.2λ, the minimum values
of IQ(ϕ, ψ) drop by almost 2dB, and drop by 3.3dB for α = 0.5λ. Comparatively,
for the classical system shown in Fig. 2.11.b, IQ(ϕ, ψ) drops by 2.9dB from α = 0 to
α = 0.5λ at ψ = 0. We can also notice the shift of the “point of best focus” towards
−ψ as α grows and that, without a mask, the values of IQ(ψ, ϕ) drop rapidly outside
of this point; IQ(ϕ, ψ) = 6.6dB for ψ = 2λ and α = 0.5λ, whereas with the 5-
ring BAPM, IQ(ϕ, ψ) = 10.6dB for the same defocus and spherical aberration. This
shows that the systems optimized solely for DoF correction are somewhat sensitive
to small spherical aberrations while still extending the DoF considerably. The drop
in image quality is comparable to conventional systems at the focal point ψ = 0.

For coma, we can see in Fig. 2.11.c that when passing from β = 0 to β = 0.5λ,
IQ(ϕ, ψ) has a drop of less than 1dB between ψ = −1λ and ψ = 1λ but drops by
2.9dB outside of this range. In comparison, in Fig. 2.11.d, the drop is 4.2dB for the
conventional system at ψ = 0, reaching an IQ(ϕ, ψ) below that of the system with
a phase mask. This comparison shows that the system with the binary phase mask
is more robust to coma aberration than a conventional system, even if the mask
optimization did not take it into account.

For astigmatism, shown in Fig. 2.11.e and Fig. 2.11.f, we can see that the drop in
IQ(ϕ, ψ) is 3.6dB for the system with a binary phase mask and 4.0dB for the conven-
tional system. The behavior is, similarly to coma, more stable between ψ = −1λ and
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ψ = 1λ and varies more dramatically beyond this range.

Finally, for the combined effects of the aberrations in Fig. 2.11.g and Fig. 2.11.h, we
can see a maximum drop of IQ(ψ,ϕ) of 2.7dB for the system with a binary mask and
deconvolution and of 2.7dB for the conventional system at ψ = 0. We can see the
effects of spherical aberration on the values of IQ(ψ,ϕ), for the system with a phase
mask, from the strong dissymetry in the range 1 < |ψ| < 2, that occurs similar to
what we observe in (Fig. 2.11.a). On the other hand, the conventional system has a
more pronounced drop of IQ(ψ,ϕ) at the “point of best focus” than in the case with
only spherical aberration, meaning that it is also affected strongly by the other two
aberrations.

From this analysis, we can conclude that systems with binary annular phase masks
are robust to residual aberrations. The corresponding performance loss is then com-
parable to conventional systems affected by similar residual aberrations.

2.4.2 Robustness to scene model

To evaluate the robustness of the optimized masks and filters to different scenes, let
us consider the minimal value of image quality obtained with the masks optimized
for Soo(ν) ∝ ν−2.5 on a scene having another PSD. This image quality will be defined
as:

IQmin = min
k

[
IQ(ϕ2.5

opt, ψk)
]
. (2.4)

where ϕ2.5
opt defines the optimal mask for Soo(ν) ∝ ν−2.5. It has to be noted that IQmin

is computed using the averaged Wiener filter based on the nominal PSD Soo(ν) ∝
ν−2.5, which is different from the PSD of the scene that is observed.

2.4.2.1 Simulated scenes

We have plotted in Fig. 2.12.a the value of IQmin obtained with a generic image
with PSD Soo(ν) ∝ ν−2, for different values of ψmax, as a function of the number
of rings. Since this PSD has a more high-frequency content, the images have fine
details that are difficult to recover with the generic Wiener filter, and we indeed
observe that the values of IQmin are globally smaller than those of IQopt obtained in
Fig. 2.6. However, the global behavior of IQmin is similar: it grows with the number
of rings until, at a certain amount of rings, it levels off and has a much slower growth,
additionally, in the cases of ψmax = {2, 2.5, 3}λ, it levels off for a larger number of
rings than in Fig. 2.6.

On the other hand, we have represented in Fig. 2.12.b the value of IQmin obtained
with a generic image with PSD Soo(ν) ∝ ν−3. Since the PSD now has less high-
frequency content, the images are easier to deconvolve and we indeed observe that
the values of IQmin are globally larger than in Fig 2.6. The value of IQmin still grows
with the number of rings until it levels off, but it saturates for smaller number of
rings than in Fig. 2.6 and Fig. 2.12.a. It is to be noted that the slight decrease of
image quality with the number of rings observed in some curves (for example, for
ψmax = 1λ) is due to the fact that the deconvolution filter, based on the nominal PSD,
is not perfectly adapted to the actual PSD of the scene. We can conclude from these
simulations that as the high-frequency content of the image increases, the overall
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FIGURE 2.11: Comparison of a hybrid system with a 5-ring binary an-
nular phase mask optimized for ψmax = 2.0λ and a conventional sys-
tems with the addition of: a)-b) spherical aberration corresponding to
α = {0, 0.1, ..., 0.5}λ; c)-d) coma corresponding to β = {0, 0.1..., 0.5}λ;
e)-f) astigmatism corresponding to γ = {0, 0.1, ..., 0.5}λ; e)-f) aberra-

tions such that α = β = γ = {0, 0.05, ..., 0.25}λ



36 Chapter 2. Performance limits of phase masks for DoF extension

hybrid imaging performance decreases and more rings are needed to saturate the
performance.

FIGURE 2.12: Performance comparison of optimal annular phase
masks obtained for the model Soo(ν) ∝ ν−2.5 and applied to scenes

following the model (a) Soo(ν) ∝ ν−2 and (b) Soo(ν) ∝ ν−3.

2.4.2.2 Real scenes

Let us now consider the performance of the optimized masks on real-world scenes.
Fig. 2.13.a (referred to in the following as “Lena") has a small high-frequency content,
and we have checked that its PSD Soo(ν) falls between ν−2.5 and ν−3. On the other
hand, Fig. 2.13.b (referred to in the following as “Sea"), contains more high spatial
frequency details and we have checked that its PSD falls between ν−2.5 and ν−2. In
both cases, the scene has the same resolution as the detector, 512x512 pixels, since we
are considering a diffraction limited system and therefore, effects of sampling such
as aliasing are not present.

FIGURE 2.13: Natural images used as scenes to test the performance
of the hybrid imaging system

In Figs. 2.14.a and 2.14.c, we have represented the values of IQmin obtained on Lena
and on Sea respectively. The conclusions are similar to those drawn from Fig. 2.12,
showing that the scene PSD is indeed the main factor influencing the final imaging
performance of the hybrid system. On Fig. 2.14.b and Fig. 2.14.d, we have repre-
sented the values of IQopt obtained on Lena (b) and Sea (d) with masks optimized for
the PSD model best adapted to each scene, that is, Soo(ν) ∝ |Õ(ν)|2, the square mod-
ulus of the Fourier transform of the scene. By comparing Fig. 2.14.b with Fig. 2.14.a,
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we can see that the behavior of the curves and the obtained values of IQopt, obtained
with the optimal masks, are very close to the values of IQmin obtained with mask
optimized with Soo(ν) ∝ ν−2.5. The same conclusion can be drawn from the Sea
image (Fig. 2.14.d and Fig. 2.14.c). This shows that the optimization of the masks is
robust to the chosen PSD model of the scene.

FIGURE 2.14: Variation of IQmin and IQopt for different values of
ψmax and different numbers of rings, using two different scenes: Lena
(a and b) and Sea (c and d). The masks are optimized using the model
PSD Soo(ν) ∝ ν−2.5 (a and c respectively) and using the PSD of the

scenes themselves where Soo(ν) ∝ |Õ(ν)|2 (b and d).

2.4.3 Visual performance comparison

Let us now visually assess the performance of the hybrid imaging systems based
on the optimized masks on images perturbed with a simulated defocus blur. For
simplicity, the deconvolutions are performed in the Fourier domain directly using
Eq. (1.29) with no truncation of the deconvolution filter. We have displayed in
Fig. 2.15.a the simulated image of Lena that would be obtained by a well-focused
diffraction limited optical system followed by deconvolution with a Wiener filter
adapted to the observed scene. This "best possible image" will be our reference. In
Fig. 2.15.b, we have represented a simulated image of the same scene that would be
obtained with an imaging system defocused of ψ = ψmax = 2.0λ followed by decon-
volution with an averaged Wiener filter as defined in Eq. (1.29). We can see that for
this level of defocus the image is strongly blurred.

In Fig. 2.16 are displayed the simulated images obtained with a hybrid imaging sys-
tem with masks optimized at ψmax = 2.0λ and composed of 3 to 8 rings and zoom-ins
of the brim of the hat, its feathers and the eye of Lena so we can better appreciate
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FIGURE 2.15: Images produced by a diffraction limited system with
SNR = 34dB after deconvolution at (a) ψ = 0λ and (b) ψ = 2.0λ.

the differences. These masks have been optimized with the generic power-law PSD
model Soo(ν) ∝ ν−2.5 and not the PSD of the scene, Soo(ν) ∝ |Õ(ν)|2. The aver-
aged Wiener filter used for deconvolution is also based on the generic power-law
PSD. For all the deconvolved images in Fig. 2.16 we reach the goal of having a better
sharpness and image quality than for the maskless system in Fig. 2.15.b. Of course,
the sharpness is inferior to that obtained in Fig. 2.15.a, as the phase mask alters the
optical transfer function of the system to extend the DoF. We note that the quality of
the deconvolved images increases with the number of rings; with the 3-ring mask,
all the features of the scene can be identified, but there is an important loss of sharp-
ness, as well as ringing artifacts around high spatial frequency details, like the brim
of the hat or the feathers. With the 4-ring mask, the ringing is greatly reduced, but
there is a slight increase in blur as can be seen on feathers.

With the 5-ring mask the sharpness is increased and ringing is reduced even more;
we can now identify finer feathers on the hat. With the 6-ring mask, there is a very
slight increase in visual quality, mostly in contrast: this is consistent with the shape
of the curve corresponding to ψmax = 2 in Fig. 2.14.a. The image obtained with
a 7-ring mask corresponds to a more significant sharpness improvement, which is
again consistent with the increase of IQmin observed in Fig. 2.14.a. Finally, passing
from 7 to 8 rings decreases IQmin by 0.1dB. This somehow counter-intuitive result,
also observed in Fig. 2.14.a, is due to the fact that the masks were optimized for a
generic PSD model and not for the PSD of the scene. Indeed, this drop disappears in
Fig. 2.14.b.
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FIGURE 2.16: Image and zoom-ins of Lena obtained for defocus
ψ = ψmax with the simulated hybrid imaging system with masks op-

timized for ψmax = 2.0λ and different numbers of rings.

2.5 Conclusions

In this chapter we have studied thoroughly the binary annular phase masks for
depth of field extension, from the way we co-design them to their robustness to vari-
ations of the scene and optical system. Phase mask co-optimization is complicated
for the BAPM since the optimization landscape is highly nonconvex and plagued
with local maxima. Some of these local maxima have the interesting property of
having very similar IQ values while having vastly different shapes, which can pro-
vide different choices when manufacturing.

Binary annular phase masks require more rings to reach higher DoF, but the best pos-
sible image quality decreases as the required DoF range increases, so that the DoF
extension reachable with binary phase masks is bounded. Moreover, for a given
value of the required DoF, there is a point where augmenting the amount of rings
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does not improve the performance anymore, indicating that a limited number of
rings is enough to obtain the best possible performance. The optimal masks with
number of rings past the leveling point just add thin rings close to the border of the
mask compared to the mask at the leveling point, showing that there is a a com-
mon optimal pattern for a given optimization problem. These results are important
for mask manufacturing, since the number and thickness of the rings reachable by
technology may be limited given a numerical aperture and a target DoF.

The visual quality of the images, as a function of the number of rings, is shown
to be consistent with the value of the image quality criterion used to optimize the
masks. This is true even if the scene different than the generic model used for opti-
mization or with the presence of aberrations, showing that our conclusions for the
BAPM are robust even beyond our assumptions for optimizations.We have also de-
fined an effective MTF that takes into account the deconvolution step. We have
shown that BAPMs have a low-pass filtering effect and that the Wiener filter am-
plifies those frequencies. Moreover, we can relate the shape of the effective MTF to
visual characteristics of the deconvolved images, making it an useful tool to analyze
the performance of the optical system.

Other assumptions, such as monochromatic light or the diffraction limited system
were not contested by studying broadband wavelengths nor aliasing effects. The
broadband case is usually not considered for simulations, but it has been shown
(Diaz, 2011) that it does not reduce dramatically the performance of the mask since
the optical path differences caused by the mask at different wavelengths are similar.
The sampling considerations will be introduced in chapter 4 where we will assess
the feasibility of using phase masks for DoF extension in conjunction with super-
resolution techniques.

In the next chapter we will use the tools developed this far to study continuous-
profile phase masks, such as the QPM and the CPM introduced previously, as well
as other masks with a free-form continuous phase. We will also compare their per-
formance, using the BAPM as a baseline.
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Chapter 3

Optimization and evaluation of
different mask shapes

In chapter 2 we made an in-depth analysis of the performance of a specific hybrid
imaging system for depth of field extension using a binary annular phase mask. We
optimized these phase masks using the image quality criterion IQmin, defined in
chapter 1. In that same chapter, we briefly showed that this quality criterion could
be used to calculate the optimal profile of a cubic phase mask for DoF extension.

The tools used to optimize and to analyze the performance and robustness of BAPMs
can be applied to masks with any profile, such as masks with continuous-phase
profiles, which makes it possible to compare them on a quantitative basis. In this
chapter we first demonstrate the superiority of the criterion IQmin defined in chap-
ter 1 against another commonly used criterion, the Strehl ratio in the case of co-
optimized hybrid optical systems. The rest of the chapter is dedicated to the use of
this co-design criterion for the optimization and analysis of the performance of three
generic types of continuous-phase masks in terms of their image quality, their MTF
and visual inspection. We compare these results among the masks themselves and
to the BAPMs we obtained in previous chapters.

3.1 Importance of the performance criterion

As we have established in chapters 1 and 2, the design of phase masks for DoF ex-
tension requires a careful choice of the optimization criterion. We have used the
theoretical framework in the work of (Diaz et al., 2011) to show that the invariabil-
ity of the MTF as a function of the defocus parameter ψ is not an ideal criterion to
use with a hybrid optical system consisting of a phase mask and a digital decon-
volution. We indeed show that the criterion must be able to take into account the
deconvolution step, reason why we use the image quality IQ performance criterion.

In this section our priority is to perform a deeper analysis of the implications of
choosing one performance criterion or another. We first introduce another criterion
frequently used to evaluate the quality of imaging systems, the Strehl ratio. We then
consider different types of systems, including a binary annular phase mask (BAPM),
a quartic phase mask (QPM) and a cubic phase mask (CPM). We determine, for these
systems, the masks that optimizes the Strehl ratio and the IQmin criterion. This
enables us to draw conclusions about the relative merits of each criterion
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3.1.1 The Strehl ratio

3.1.1.1 Definition of the Strehl ratio

The Strehl ratio is a metric commonly used in optical system design as a mean
to evaluate the performance of the system when balancing aberrations (Maréchal,
1947). It is defined as the ratio between the maximum irradiance point of the aber-
rated PSF of an optical system and the maximum unaberrated (diffraction limited)
PSF but it provides a fair prediction of an optical system’s performance. The Strehl
ratio is not, by any means, the only performance metric used by optical designers.
In our hybrid system, this equates to compare the point of maximum irradiance of
the PSF hϕψ generated by a system with a phase mask ϕ(xP , yP ) at a defocus of value
ψ with the on-axis value of the PSF of a focused maskless system, h0(0, 0), in other
words:

SR =
maxx,y

[
hϕψ(x, y)

]
h0(0, 0)

. (3.1)

The point of maximum irradiance of the PSF of a system with a circularly symmetric
phase mask and no defocus is always on-axis. As mentioned briefly in chapter 1,
this is not true for asymmetric masks, such as the cubic phase mask. For this reason,
we cannot directly use other, simpler, definitions of the SR, such as using the on axis
value of the aberrated PSF (Maréchal, 1947) instead of its maximum, or the statistical
derivation found by (Mahajan, 1982).

3.1.1.2 Strehl ratio as a performance criterion

The interest of using the Strehl ratio in optical design is that it provides information
on the proportion of the light from a point-source on the scene that is projected into
a point - a pixel - on the detector and it is considered to be suitable for a conventional
aberrated system when SR> 0.8 (Maréchal, 1947) . In this section we will study its
pertinence in co-design of phase masks for DoF extension.

The idea of using SR as a performance criterion for DoF extension has been used in
several works (Mezouari and Harvey, 2002), in particular, we will use the approach
of (Hu et al., 2013), where they use the convention of SR> 0.8 to define the effective
DoF of the mask. As we will see later this approach exemplifies one of the limitations
of the Strehl ratio as a performance criterion in co-design.

To study the behavior of the Strehl ratio we will consider a DoF of ψ ∈ [−1.5, 1.5]λ,
a 34dB detection noise and a PSD model SOO ∝ ν−2.5 for the scene. For the analysis
we will use two different quartic phase masks (QPM) of profile ϕ(r) = α4ρ

4 − α2ρ
2:

the first one, named QPMSR, and was analytically calculated in (Hu et al., 2013) so
that the SR is symmetric around ψ = 0, and has parameters α2 = α4 = 2.36λ. The
second mask, QPMopt was optimized using the IQmin criterion and has parameters
α4 = 2.60λ, α2 = 2.29λ. We also use the two cubic phase masks (QPM) of profile
ψ(x, y) = α(x3+ y3) that were shown in chapter 1 section 1.4.1, one of them, CPMinv
is the mask with α = 10λ calculated to have an invariant PSF and the other mask,
CPMopt, is the optimized one with α = 1.96λ. Finally, we use the 5-ring binary
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annular phase mask optimized on 2 for ψmax = 1.5λ. On figure 3.1 we show the
comparison of the SR between the five masks and compare it with the maskless
system.
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FIGURE 3.1: Comparison of the SR as a function of the defocus pa-
rameter ψ of: a conventional system (red), a QPM calculated to max-
imize the SR (green) on |ψ| < 1.5λ, an optimized QPM for the same
range (blue), a CPM calculated for invariant defocus (violet) and an

optimized BAPM for the same range.

At first glance, we can see that the conventional optical system has value of SR higher
than any of the masks on the range |ψ| < 0.65λ, but, as we have seen in chapter 2,
BAPMs have a superior performance beyond the limits of the Rayleigh criterion of
|ψ| > 0.25λ. We can see that, the masks with the highest SR are both QPM, with
a slight advantage for the optimized one if we consider the total DoF. On the other
hand, the cubic phase masks have the lowest SR, particularly CPMinv, which has a
much more spread PSF. The 5-ring BAPM sits in the middle, having sections as low
as the optimized CPM and others almost as high as the QPMSR.

Continuing the analysis of Fig.3.1, we see that all the masks shown have a symmetric
SR around ψ = 0, with the exception of the optimized QPMopt, whose symmetry is
shifted by −0.25λ, so that its effective DoF is ψ ∈ [−1.75, 1.25]λ; this coincides with
the shift that spherical aberration causes on conventional systems. As we will see in
the following, SR symmetries do not necessarily equate to symmetric image quality.

3.1.2 Comparison of SR-based and MSE-based performance criteria

3.1.2.1 Image quality as a function of the defocus

As established on chapter 2, the use of the image quality, IQ(ϕ,ψ) as a performance
criterion gives a good insight on the expected deconvoluted image. On figure 3.2
we show the comparison of the IQ(ϕ,ψ) as a function of ψ for the different masks
we have presented in section 3.1.1.2. The Wiener filters for deconvolution were cal-
culated for the range ψ ∈ [−1.5, 1.5]λ. In particular, for the maskless system, the
deconvolution is performed with a Wiener filter calculated with the averaged defo-
cused PSFs.
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FIGURE 3.2: Performance comparison as a function of the defocus pa-
rameter ψ of: a conventional system (red), a QPM calculated to max-
imize SR (green) on |ψ| < 1.5λ, a QPM optimized for the IQmin crite-
rion on the same DoF range (blue), a CPM calculated for invariance
to defocus (black), a CPM optimized for the IQmin criterion (violet),

and a BAPM optimized for the IQmin criterion.

As we can see, although all masks had a symmetric SR, the IQ of the deconvolved
images from the QPMs is not; there is a steep decline for defocus values ψ < 0.
Even more, on the positive side of the DoF the optimal CPM and BAPM have IQ
values comparable to the QPM, with the extra perk of having a DoF which is twice
as large. On figure we show the PSF of the QPMSR at two symmetric defocus points:
ψ = −1.0λ and ψ = 1.0λ. We can see that although the maximum value of the PSF
is identical, and so is the Strehl ratio, the point spread functions are vastly different
and, since we are using a single deconvolution filter, the qualities of the deconvolved
images are not the same.

FIGURE 3.3: Point spread function of a system with the QPMSR at the
defocus points ψ = −1.0λ and ψ = 1.0λ

This result shows how SR as a performance criterion for hybrid systems fails to give
insight on the final image quality and why it is necessary that the criterion we chose
considers the deconvolution step. Additionally, we have shown that the CPM is
outperformed by other masks, such as the QPM and the BAPM, in DoF extension
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problems involving only defocus aberration correction. This result is not a discour-
agement for using QPM for DoF, these masks have the property of compensating for
other first order aberrations, such as spherical aberration, as we can see in (Mezouari
and Harvey, 2002), (Mezouari, Muyo, and Harvey, 2006).

3.1.2.2 Mean and minimum image quality criteria

In chapter 1 we have defined two different performance criteria for optimization: the
mean image quality, IQmean and the minimum image quality IQmin. We explained
our reasoning to use IQmin for the optimizations in chapter 2, explaining that op-
timizing IQmean will always reach a performance that is, at best, the same as for
IQmin. In this section we further the discussion, using the quartic, cubic and binary
annular phase masks to illustrate these decisions.

In figure 3.4 are plotted the values of the IQmean and IQmin parameters calculated
for a DoF range of ψ ∈ [−1.5, 1.5]λ. As we can see, the BAPM optimized for this
range has the highest performance in both IQmin and IQmean, being ≈ 0.5dB higher
than the CPMopt on each metric. The case of the QPMs is interesting, since their
IQmean values are practically the same, the optimization algorithm could end up
in either local maxima. On the other hand, their values of IQmin are almost 2dB
apart, making the QPMopt a better mask. This result highlights why once we chose
our performance metric, such as the image quality IQ, the way of evaluating it can
affect the results we obtain from optimization.
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FIGURE 3.4: Comparison of the IQmean and IQmin performance cri-
teria for: a conventional system (red), a QPM calculated to maximize
the SR (green) on |ψ| < 1.5λ, an optimized QPM for the same range
(blue), a CPM calculated for invariant defocus (violet) and an opti-

mized BAPM for the same range.
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3.1.3 Visual inspection

The results obtained in section 3.1.2 show that the Strehl ratio is not an ideal perfor-
mance criterion for DoF extension, but only shows this in the context of IQ evalua-
tion. This analysis is incomplete without a visual inspection of real images, since it
could be that IQ is not successfully representing the visual performance of the sys-
tem.In figure 3.5 we have compared the effects of each hybrid system on the image
of the butterfly from Fig. 2.9 at the defocus distances ψ = {−1.5, 0, 1.5}λ.

FIGURE 3.5: Comparison of the image at ψ = {−1.5, 0, 1.5}λ pro-
duced by systems with, from top to bottom: No mask, a quartic phase

mask

We can see that QPMSR has a rather sharp image at ψ = 1.5λ, it presents some
ringing at ψ = 0 and is blurred for ψ = −1.5λ, showing a strong dissymmetry,
as with the IQ(ϕ,ψ), despite the symmetrical SR. We see a similar effect for the
optimized QPMopt, but the artifacts on the negative ψ are weaker, since this mask
was optimized for the full DoF. For both CPMs and the BAPM we have the results



3.2. Continuous phase masks for depth of field extension 47

we have already seen in chapters 1 and 2, although it is worth mentioning that the
images generated by both QPMs are much sharper at ψ = 1.5λ than for all the other
masks. Additionally CPMinv has a very strong noise amplification, and its visual
quality could be considered worse than for the QPMopt at ψ = 1.5λ. This coincides
with the values of IQ(ϕ, ψ = 1.5λ) shown on figure 3.2, where the image quality of
the system with the CPMopt is higher than for QPMSR but lower than for QPMopt

The results from this section show the relevance, not only of the performance crite-
rion chosen, such as SR or IQ, but also that in a problem such as DoF extension the
way these criteria are evaluated and optimized is of critical importance to achieve
the desired visual performance. We have pointed out several problems that come
with using SR as a performance criterion in the context of co-design of phase masks
for DoF extension, such as possible symmetries that do not reflect the actual imaging
performance of these hybrid systems.

We have found that IQ is a strong metric that mirrors the actual visual image quality
obtainable by a given system, but also that having a strong metric requires also to
choose the right way to evaluate it during optimization. By the results shown in
this chapter, plus many others leading to the optimal masks studied in chapter 2, we
have reached the conclusion that IQmin works consistently better than aiming for
invariability of the PSF or optimizing the averaged IQmean.

3.2 Continuous phase masks for depth of field extension

In the previous section we have stablished the importance of the performance evalu-
ation tools in the co-design process; now we will use these tools to study the relation
between profile shapes and the capacity of extending the depth of field. This is done
by making use of continuous phase masks, which have been extensively used in the
literature to provide analytical solutions to DoF extension problems, as Dowski and
Cathey did with the cubic mask (Dowski and Cathey, 1995), or as Mezouari et al. did
with quartic phase masks for the mitigation of third order aberrations (Mezouari,
Muyo, and Harvey, 2006).

In these works, a specific mask shape was analytically obtained in order to turn the
PSF invariant to defocus or aberrations. The mask profiles proposed by them were
exceptionally simple, with only one parameter to calculate since the analytical solu-
tion of a multi-parameter problem can be challenging or even impossible to obtain.
In this section, we generalize the continuous phase mask profile shapes to include
more terms. This is possible due to the co-optimization approach we use to obtain
the mask shapes, allowing us to go beyond the limits of analytical solutions.

Continuous-phase masks encompass any mask whose profile is derivable at all points
and has no occlusions within the pupil radius. This definition being very broad, we
focus mainly on three kinds: masks with asymmetric polynomial profiles, circularly
symmetric masks whose profile is defined by a polynomial generatrix curve and cir-
cularly symmetric masks whose profile is defined by a free-form generatrix. In the
following we mathematically describe these masks and discuss the results of their
optimization.

Throughout this section all the optimizations are made under the same assumptions
as for BAPMS: a diffraction limited system with a phase mask in the pupil, with a
generic scene of PSD SOO ∝ ν−2.5 and SNR of 34dB. For each mask we performed the
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optimization for only the positive values of the DoF ψ ∈ [0, ψmax], with ψmax = 1.5λ.
The deconvolution is performed by an averaged Wiener filter as defined in equation
(1.29).

3.2.1 Polynomial phase masks

We use the polynomial phase masks (PPM) as defined in (Caron and Sheng, 2008)
for DoF extension in microscopes. Their profile is described by:

ϕ(xP , yP ) = α(x3P + y3P ) + β(x2P yP + xP y
2
P ) + γ(x5P + y5P )

+δ(x4P yP + xP y
4
P ) + ε(x3P y

2
P + x2P y

3
P ) + ...,

(3.2)

where the profile of the mask is fully described by the value of the coefficients
α, β, γ, δ, ε, ... These masks are a generalization of the cubic phase mask used by
(Dowski and Cathey, 1995) shown in chapter 1 and have the characteristic of pro-
ducing PSFs that are symmetric on the DoF around ψ = 0 but have an asymmetric
PSF spot shape. As was discussed in chapter 2, when analyzing figure 2.2, the PSF
of asymmetric masks, such as the PPM is off-center by a distance proportional to the
value of ψ and the strength of the mask profile, meaning the peak-to-valley differ-
ence of the mask profile. This off-centering of the PSF will cause the final image to
be off-centered as well, and has to be taken into account during the optimization in
order to properly evaluate the mask performance.

3.2.1.1 PPM optimization results

For the optimization of these masks we consider cases with different combinations
of the polynomial coefficients. We optimize the following configurations:

• A third degree polynomial (cubic) phase mask, (α 
= 0) denoted PPMα.

• A third degree polynomial with crossed terms (α, β 
= 0), denoted PPMα,β .

• A fifth degree mask (α, γ 
= 0), denoted PPMα,γ .

• A fifth degree mask with crossed terms (α, β, γ, δ, ε 
= 0), denoted PPMα,β,γ,δ,ε.

• A seventh degree mask (α, γ, η 
= 0), denoted PPMα,γ,η.

This collection of masks lets us not only compare masks of different degrees, but
also to see the difference between choosing crossed terms or not, since they add a
significant amount of optimization parameters for a given polynomial degree.

As we mentioned in section 3.2, to correctly assess the performance of the PPM, im-
age registration must be performed on the deconvolved image before calculating
IQ(ϕ, ψ) in order to properly compare the scene O and the final image Ô. For our
optimization we evaluate the shift by minimizing the mean squared error between
the PSF of the system at ψ = 0 and at whichever evaluation point ψk is being ana-
lyzed. This intermediate step in the evaluation of IQ(ϕ, ψ) makes the optimization
process much slower than with other masks, limiting the amount of parameters we
can optimize at the same time.
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The profiles of the optimal masks found are shown in Fig. 3.6. We can appreci-
ate how all the masks have the same overall shape, typical from odd-polynomial
surfaces. We can see that PPMα,γ and PPMα,γ,η masks have a mask profile peak-
to-valley difference of ∆ϕPV ≈ 5.6λ whereas the PPMα, PPMα,β and PPMα,β,γ,δ,ε

have strengths of ∆ϕPV ≈ 3.8λ. Finally, we can see that the PPMα,β,γ,δ,ε has a more
rounded profile in the −45 deg diagonal, compared to the other four profiles; this is
because in this diagonal the crossed terms have the most influence and this is the
PPM with most crossed terms we have optimized.

FIGURE 3.6: Comparison of PPM profiles of different degrees: a)
PPMα, b) PPMα,β , c) PPMα,γ , d) PPMα,β,γ,δ,ε, e) PPMα,γ,η .

3.2.1.2 PPM performance comparison

Studying BAPMs, we have found that the value of IQopt, for a given depth of field
ψmax, increased with the number of rings, and leveled-off at a certain amount. In the
case of PPMs, the number and the value of each parameter modify the profile in a
more complex way. In figure 3.7 we compare the performance of the five optimized
PPM as a function of the defocus parameter ψ. We have increased the ψ axis by 0.5λ
around the DoF range considered for optimization so we can appreciate the behavior
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of the performance at the edges of this DoF range. If we analyze the behavior of the
two 3rd degree PPMs, PPMα and PPMα,β , they follow very similar trajectories, with
a marginally better IQopt for PPMα,β , at ψ = 1.5λ. The same can be said for the
PPMα,γ and PPMα,γ,η, the 5th and 7th degree masks, with the difference that their
performance is considerably better than for the 3rd degree masks around ψ = 0.

Finally we have the 5th degree with crossed terms mask, PPMα,β,γ,δ,ε which per-
forms overall better than all the other optimized PPMs. The image quality behav-
ior is similar to PPMα,γ and PPMα,γ,η, but with IQ(ϕ,ψ) being ≈0.5dB higher at
all points. The 5th and 7th degree masks have a very stable performance up until
ψ = 1λ, where it starts decreasing steadily.
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FIGURE 3.7: Comparison of the performance of hybrid systems with
PPMs of 3rd, 5th and 7th degree polynomial profiles, for 3th and 5th

degree polynomials, the crossed terms are also included.

It is worth noticing that, as for BAPMs, the PPMs have a total DoF of |2ψmax|, reason
why there is no decay on IQ(ϕ,ψ) below ψ = 0, as we will see with the circularly
symmetric continuous masks.

3.2.2 Aspheric phase masks

Aspheric phase masks (APM) have a phase profile defined by a rotationally symmet-
ric polynomial (in other words, a surface of revolution where the generatrix curve is
a polynomial), their phase profile can be defined as:

ϕ(ρ) =

N∑
i=1

αiρ
i, (3.3)

where N is the polynomial degree. In this case, the mask is defined by the pa-
rameters αi. For an N th degree polynomial, there will be N optimization param-
eters: we have fixed α0 = 0, since adding a constant phase has no effect on the
wavefront. These masks are a generalization of the quartic phase mask of profile
ϕQPM (ρ) = α4ρ

4 − α2ρ
2, which was shown earlier in this chapter.
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3.2.2.1 APM optimization results

In order to see the effects of the polynomial degree N in the image quality of APMs,
we have optimized masks of increasing polynomial degrees, from N = 2 up to N =
7, N = 1 was ignored since it just produces just a tip effect on the wavefront with
no effect on the final quality. As with the BAPM optimization problem, we find that
the solution landscapes are plagued with local maxima with very similar IQopt but
vastly different profiles. To illustrate the different profiles found, we show in Fig.3.8
the generatrix of two of the optimal masks found for ψmax = 1.5λ and N = 6.
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FIGURE 3.8: Profile comparison of two local maxima of aspheric
phase masks optimized for ψmax = 1.5λ for N = 6.

As we can see in Fig.3.8, these two masks have very similar performance values
IQopt, but their shapes have just a few similarities. The mask labeled APM2, which
has the best performance found for N = 6, has the profile with the least peak-to-
valley change in phase; it increases, until it reaches its maximum atϕ(ρ = 0.6) = 1.1λ
and then decreases until it reaches zero again. On the other hand, APM1 seems
to mirror APM2 at low radii, growing in opposite directions at the same rate until
ρ = 0.2, but while APM2 slope becomes smaller, APM1 continues to decrease until
ρ = 0.8, where it increases slightly.

The two general mask behaviors that we observe in Fig. 3.8 were also found in most
of the local optima, for all values of N , as we can see in Fig. 3.9 where we show the
masks optimized for N = {2, 3, 4, 5, 6, 7}. The two patterns we have seen for N = 6
are all present here for masks with N ≥ 4; we can appreciate that their IQopt values
are very similar, increasing by only 0.1dB when passing from N = 5 to N = 6. It
is interesting to notice that, as for the BAPMs, we have a quick increase of image
quality when increasing the number of parameters, but we find an optimal shape —
two in this case — at N = 4, and afterwards the performance levels-off.

Revolution polynomials are not commonly used to represent wavefronts in optical
design, since they are usually unstable; after 40 particle swarm optimizations, with
20N random starting points, we have found the reported maxima only two to five
times forN ≥ 5. As briefly explained in section 2.4, more common polynomial bases
to express wavefront shapes are the Zernike or Seidel polynomials, which are used
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FIGURE 3.9: Profile comparison of different local maxima of aspheric
phase masks optimized for ψmax = 1.5λ for N = {2, 3, 4, 5, 6, 7}.

for aberrations but could be extended for phase masks for DoF extension. Another
possible base are the Forbes polynomials (Forbes, 2010), proposed specifically for
aspherical optical elements. Using the correct base to describe the phase mask will
reduce the number of redundant optimization results and would ultimately provide
optimal mask shapes more reliably. The only reference of such bases used for phase
masks in DoF that we could find is relatively recent (Liu et al., 2016), and is used in
photolitography, not in imaging optics, so there was no deconvolution stage.

3.2.2.2 APM performance comparison

In figure 3.10 we can see the image quality as a function of the defocus parameter ψ
for the optimized APMs of degrees N = {2, ..., 7}. We can appreciate that between
ψ = 0.25λ and ψ = 1.25λ, all masks have a performance between 15dB and 16dB
and the main difference in their IQopt value comes to the point where their perfor-
mance start dropping. As expected, masks with N = 4, 6 and N = 5, 7 have similar
performance behaviors respectively. It is interesting to notice that the performances
of APMN=4 and APMN=6 mirror almost perfectly the performance of APMN=5 and
APMN=7 around ψ = 0.75λ, just in the middle of the desired DoF.

We can conclude from our observations of Fig. 3.9 and Fig. 3.10, that the two solu-
tions found for N = 6 are equivalent, with negative mask profiles having slightly
higher IQ(ϕ, ψ) for the first half of the DoF while the masks with positive profiles
having higher IQ(ϕ, ψ) on the second half of the DoF range. We have found that this
type of APMs have two local maxima of equivalent performance in opposite sides
of the solution map.

3.2.3 Free-form phase masks

For a high enough number of parameters N , the aspheric polynomial masks can
provide a great variety of rotationally symmetric continuous surface shapes, but the
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FIGURE 3.10: Performance comparison of aspheric phase masks op-
timized for ψmax = 1.5λ as a function of ψ and for the polynomial

order N = {2, 3, 4, 5, 6, 7}.

computational power to handle a large N , as well as the complexity of the prob-
lem, limit this versatility. For this reason, we propose the use of free-form phase mask
(FFPM), a surface of revolution mask where the generatrix is a curve defined by a
collection of evaluation points ϕff (ρff ) of the phase over equidistant radii points
ρff = {ρ0 = 0, ρ1, ..., ρN−1, ρN = 1}. These points are then connected by a cubic
spline interpolation (Hazewinkel, 2001).

3.2.3.1 FFPM optimization results

Free form phase masks are conceived as a way to provide rotationally symmetric
masks that can assume more freely a shape required by the DoF extension problem
at hand. As we have seen on the optimizations of BAPM, PPM and APM, there are
several local maxima that provide a similar performance; this is, unsurprisingly, also
true for the FFPMs, the more optimization parameters are used in the optimization,
the more local minima were found. We show in figure 3.11 optimal FFPM profiles,
two for N = 5 and two for N = 10. These profiles have, for the same number of
parameters, almost equal values of IQopt. Another important detail is that, although
the shapes have considerably different values at each control point, the interpolated
curves have points of inflection at very similar spots, reflecting each other’s behav-
ior, particularly for ρ > 0.2. This shows how that although several local maxima
may exist, the optimal FFPMs tend to have similar effects on the wavefront.

We have plotted in figure 3.12 the generatrix curves of optimized FFPMs with control
points N ∈ {2, 4, 6, 8, 10}. We do not show the odd-numbered profiles for the sake of
conciseness and to not overcloud the other shapes. The main behavior that we can
identify is that increasing the number of control points subsequently increases the
complexity of the curve, producing several inflection points and even two crossings
through zero for N = 8 and N = 10. It is interesting to notice that as the number of
parameters increases, the masks seem to get a more stepped profile; with N = 6 we
can recognize a rapid increase between ρ ≈ 0.2 and ρ ≈ 0.3, followed by a rather flat
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FIGURE 3.11: Profile comparison of four local maxima of free-form
phase masks optimized for ψmax = 1.5λ for N = 5 and N = 10.

area until ρ = 0.8, where the value of ϕ(ρ) decreases again. This is true for N = 8
and N = 10, each one having steps and flat areas at similar values of ρ, but with a
steeper change of profile at the steps as N increases.

Another interesting point coincides with what we have seen with APMs in the previ-
ous subsection: the best performing masks have shapes with values that stay closer
to zero. This result may come from the fact that when having enough parameters, the
mask can have the flexibility to vary more, better shaping the wavefront to the given
need. On the other hand, when having less parameters the masks show stronger
profiles. Since the effect on the wavefront of a point of the mask follows the rule
ϕ(ρ) + 1λ = ϕ(ρ), thus having profiles with values that cross ϕ = 1λ effectively
creates foldings on the profile, akin to the steps we see in more complex masks.
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FIGURE 3.12: Profile comparison of FFPMs optimized for ψmax =
1.5λ with N = {2, 4, 6, 8, 10} equidistant control points.
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3.2.3.2 FFPM performance comparison

To analyze the performance of the masks, we have plotted in figure 3.13 the value of
IQ(ϕ,ψ) as a function of the defocus parameterψ for the cases withN = {2, 4, 6, 8, 10}
equidistant control points. We can see that the performance behavior is very similar
when increasing the number of control points: a very fast increase on IQ(ϕ,ψ) for
ψ > 0, then a couple of semi-symmetric peaks around a shallow valley at ψ ≈ 0.75λ
and then a steep descent after ψ > ψmax = 1.5λ.

Continuing the analysis of Fig. 3.13, we can see that, as the number of parameters
increases, not only the value of IQopt increases, but also the performance becomes
more symmetric throughout the DoF range, making the peaks flatter and the valley
at the center more shallow.
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FIGURE 3.13: Performance comparison of FFPMs optimized for
ψmax = 1.5λ with N = {2, 4, 6, 8, 10} equidistant control points.

This behavior has been observed for all the studied mask profiles; as the number
of parameters increases, the gain in IQopt is less pronounced, but the masks tend
to have a more stable performance, with less drops of IQ(ϕ,ψ) throughout the DoF
range.

3.2.4 Comparison of all optimized masks

We now study the best performing masks from each type of continuous phase masks
we have explored throughout this section; the PPM, APM and FFPM. We compare
them against each other and against the optimal BAPM found for the DoF ψmax =
1.5λ with 5 rings. We start by comparing their profiles, as we did for each mask,
and draw conclusions on their similarities and differences. Then, we compare their
performance on the range ψ ∈ [0, 1.5]λ. Since the BAPM and the PPM masks have
DoFs which are symmetric around ψ = 0, their effective DoF is of 3λ, so we end this
section by comparing these two masks against APM and FFPM optimized for the
same total DoF.
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3.2.4.1 Different mask profile comparison

Figure 3.14 presents the 1-dimensional profiles of the PPM, APM, FFPM and BAPM.
In the case of the PPM, we have chosen the profile along the x-axis, since it shows
the largest phase amplitude of the mask and it is identical to the y-axis. We can see
that all the masks have profiles of amplitude below 2λ, which coincides with our
previous observations that optimal masks tend to have less ample profiles. An in-
teresting comparison is between the FFPM and the BAPM: we see that their profiles
tend to follow each other, with the FFPM having inflection points close to where the
steps are on the BAPM, as well as similar (flat) areas between ρ ≈ 0.2 and ρ ≈ 0.7,
although the FFPM seems to transition slightly later.
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FIGURE 3.14: Profile comparison of the best polynomial, aspheric,
free-form and binary phase masks optimized for the range ψ ∈

[0, 1.5]λ.

The fact that a mask with as much freedom on its profile as the FFPM converges to
a profile that is akin to a BAPM is interesting. It supports the idea that, for a given
DoF extension problem, there is an underlying optimal mask profile shape that co-
optimized masks converge towards. It would seem that the BAPM is a binarization
of this underlying mask profile folded at the points ϕ(r) = ϕ(r) + 1.

3.2.4.2 Performance comparison of different masks

As stated previously in this chapter, rotationally-symmetric continuous masks have
a non-symmetric PSF around ψ = 0; for this reason, the revolution polynomials
and the free-form masks optimized in this chapter have a DoF equivalent to the one
used in optimization [0, ψmax]. On the other hand, PPM and BAPM have a DoF
equivalent to 2ψmax, but since the range of optimization was the same for all four
masks, [0, ψmax], we compare their performance as it is. At the end of this section we
will include a comparison where the masks have the same full DoF.

In figure 3.15 the image quality is plotted as a function of the defocus value ψ for
the best polynomial, aspheric, free-form and binary masks. We have expanded the
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range to ψ ∈ [−0.5, 2.0]λ so that we can better appreciate the drop on IQ(ϕ,ψ) out
of the desired DoF range. As it can be seen, the polynomial mask has the most stable
value of IQ(ϕ,ψ) over the DoF range; its performance is mostly flat and is higher
than the BAPM up to half the DoF, at ψ = 0.75λ. On the other hand, we can see that
the FFPM has a better performance than the other three, at all points, except a small
area at the center of the DoF where its value IQ(ϕFFPM, 0.75λ) = 15.9dB is slightly
lower than the APM.
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FIGURE 3.15: Performance comparison of polynomial, aspheric, free-
form and binary phase masks optimized for ψmax = 1.5λ as a function

of ψ.

3.2.4.3 Comparison at the full depth of field

On our examples throughout this chapter we have used a total DoF of 1.5λ for the
APM and FFM whereas the PPM and BAPM, having a symmetric IQ around ψ = 0,
have a total DoF range of 3.0λ. To truly compare the mask performances, we have
optimized new sets of masks for each relevant total DoF range. For a total DoF range
of 1.5λ, we optimized a 4-ring BAPM and a 5th degree PPM on the ψ ∈ [−0.75, 0.75]λ
range. For a total DoF range of 3.0λ, we have also optimized a 6th degree APM and
a FFPM with 10 control points for ψ ∈ [0, 3]λ. In figure 3.16 we show the values of
IQ(ϕ,ψ) as a function of ψ. We have plotted the IQ in such a way that the DoFs of
each mask overlap, therefore for the PPM and the BAPM the range of ψ is shifted by
a value of ψmax towards the positive side of the DoF.

In Fig. 3.16.a) we can see that IQ(ϕ,ψ) for the PPM, the FFPM and the BAPM have
very similar M-shapes, with a valley just at the center of the DoF, whereas the APM
has an asymmetric shape, with its maximum at ψ ≈ 0.5λ. We can see that in this
case, it is the BAPM who shows the best performance at all points, followed by the
FFPM by 0.5dB in practically all the DoF and by the PPM by 0.7dB. On the other
hand in Fig. 3.16.b) we can see a bigger difference on the profiles; the BAPM and
the FFPM have similar M -shaped profiles, although the BAPM is vastly superior,
whereas the PPM has a more flat shape with only lower values than the BAPM close
to the edges of the DoF. In this instance, the APM copes similarly to the FFPM, but,
as we have seen before, with a non-symmetric profile.
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FIGURE 3.16: Performance comparison of polynomial, aspheric, free-
form and binary phase masks with the same total DoF, the plots for
the PPM and the BAPM have been shifted by ψmax so that the total
DoFs overlap. a) Masks optimized for a total DoF range of 2ψmax =
1.5λ and b) masks optimized for a total DoF range of 2ψmax = 3.0λ.

From the observations of figure 3.16 we can gather that the BAPMs are the best
performing masks for small DoF ranges, and are on-par to the PPMs for a total Dof
range 3λ. Also that the optima we found for circularly symmetric masks such as
APMs and FFPMs have a comparable performance to the BAPM and PPM for low
DoF, but get quickly outclassed when the DoF increases. It is necessary to notice that
due to the high complexity of the optimization problem, particularly for APMs and
FFPM, we can never be sure to have found the true optimum, but we are confident
that the results shown are representative of the behaviors of the masks. Indeed, the
numerous initialization values led to solutions where most local maxima found for
APM and FFPM had a similar IQopt value.

Finally, we can see that since the value of IQopt for BAPMs and PPMs is more sim-
ilar when the DoF range doubles, it hints that for larger DoF ranges the PPMs may
have better performance than the BAPMS. This result is in good agreement with the
ones obtained by Fréderic Diaz in his doctoral thesis (Diaz, 2011) where it is shown
that BAPMs have a better performance than PPMs for low DoF, but after a certain
threshold, the performance of the PPM takes over.

3.3 Hybrid system response for different masks

Throughout this chapter we have studied the performance of a collection of masks
used for depth of field extension. As we have shown, the MTF or PSF provide addi-
tional information on the performance behavior of these co-optimized systems and
allow for a more thorough comparison of different masks when used along with the
image quality criteria.

In this section we use the PSF and the effective MTF, defined in chapter 2, to analyze
the different optimal masks we have studied throughout this chapter. We start by
drawing the PSF spot as a function of the defocus, then we study the effective MTF
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and we finally assess the visual quality of the image, so that we can draw conclusions
based on our analysis of the MTF and PSF.

3.3.1 Impulse response comparison

In chapter 1 we have described the effect of the system on a point source of the
object as the point spread function hϕψ on equation (1.10). The PSF of the optical
system with a mask is directly related to the final image quality, both due to its effect
on the captured image and because it is essential to calculate the deconvolution filter
(Eq. (1.29)).

In figure 3.17 we show a cut of the PSF across the X-axis calculated at values of
defocus on the range ψ ∈ [−2, 2]λ for the following masks: a PPM, an APM, a FFPM
and a BAPM optimized for a DoF range of ψ ∈ [0, 1.5]λ. The PSF of the cubic phase
mask and the quartic phase mask has already been shown on figure 2.2 on chapter 2
and, for the sake of conciseness, will not be included. We have also plotted the PSF
cut a conventional maskless system for comparison. The first that can be observed
is that for all the masks their PSF spot varies considerably across the ψ range, this
is the result of the IQmin criterion since it does not require invariability. Even more,
we can see a direct correlation between the variation of the PSFs of each mask and
the variations of IQ shown on 3.16.

We can see that the PSF of the maskless system diverges greatly for values |ψ| >
0.25λ, as is expected from the Marechal criterion. In the case of the PPM, we see
that the DoF is curved, as it is for the CPM, and extends quasi-invariantly beyond
the required DoF and up to |ψ| = 2.0λ. The APM on the other hand presents an
asymmetric PSF, being very weak out of the range ψ ∈ [−0.25, 1.5]λ. For the FFPM
the PSF is better in the range ψ ∈ [−0.25, 1.75]λ, but is symmetric around ψ = 0.75λ
and has a rather similar profile to the BAPM but shifted towards positive values of
ψ. If we go back to figure 3.15, we can see that the behavior of IQ(ϕ,ψ) as a function
of ψ correlates with the PSF: where IQ(ϕ,ψ) is higher, the PSF is narrower, whereas
the drops of IQ(ϕ,ψ) correspond to points where the PSF is more disperse. It is
worth noticing that although these results show a clear correlation between the PSF
shape and the image quality, it is not possible to directly deduce the quality of the
final image from the PSF since there is an intermediate deconvolution step.

On figure 3.18 we show the PSF spots produced by systems with the APM, PPM,
FFPM and the BAPM for defocus values ψ = {0, 0.75, 1.5}λ. These PSF spots confirm
the observations from 3.17 and show us the shape of the PPM PSF, which is similar
to the PSF of the CPM but with a more curved spread. For the FFPM the central
spot is the broadest at ψ = 0.75λ while the much smaller spots at ψ = 0 and ψ =
1.5λ are quasi-identical close to the center. We see some faint external rings on ψ =
1.5λ which do not appear at ψ = 0; this difference does not seem to hamper the
performance after deconvolution as seen on Fig. 3.15. The BAPM has a seemingly
different spot at each value of ψ shown, having the central spot of ψ = 0 and ψ =
0.75λ being rather similar but with fairly different rings around them. As we know,
the value of IQ(ϕ,ψ) at ψ = 0 and ψ = 0.75λ is very similar and is over 0.8dB lower
than for ψ = 1.5 (see Fig. 3.15), showing, as for the FFPM, that the central spot of the
PSF has the largest influence in the performance. This last result shows that, once
again, having a completely invariant PSF is not a requirement for DoF extension.



60 Chapter 3. Optimization and evaluation of different mask shapes

FIGURE 3.17: Comparison of the PSF profile across the DoF range of
systems with polynomial, aspherical, free-form and binary annular

phase masks optimized for ψmax = 1.5λ.

3.3.2 Frequency response comparison

Through chapters 1 and 2 we have shown how the frequency response of a hybrid
optical system, with a phase mask and deconvolution, can be more effectively stud-
ied by using an effective modulation transfer function that considers the effects of
the deconvolution in the final stage.

In figure 3.19 we have plotted the effective MTF for the systems with circularly sym-
metric masks optimized for ψmax = 1.5λ: the QPM, the APM, the FFPM and the
BAPM at the defocus distances ψ = {0, 0.75, 1.5}λ. Since these masks and the PSD
model of the scene are both circularly symmetric, the effective MTF of these masks is
circularly symmetric as well and any radial profile of the MTF fully describes it. As a
reference we also show the MTFs of each system with a phase mask before deconvo-
lution. For the QPM we see that the effective MTF is different at each defocus value;
at ψ = 0 in particular we can see a valley on the MTF at µ ≈ 0.21 which translates
as strong decrease in contrast for that spatial frequency. Additionally, although the
effective MTFs for ψ = 0 and ψ = 0.75λ are different, we can see in figure 3.2 that
their image qualities are similar at IQ ≈ 14.5dB. The cutoff created by the mask is
at µ = 0.5 for ψ = {0, 0.75}λ and µ = 0.37 for ψ = 1.5λ, coinciding with the reduc-
tion of IQ at this defocus value compared to the other two. This low-pass effect we
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FIGURE 3.18: Comparison of the PSF generated by, from top to bot-
tom: a system with an APM, a system with a PPM, a system with
a FFPM and a BAPM at defocus distances ψ = 0 (left), ψ = 0.75λ

(middle) and ψ = 1.5λ (right).

observe at all values of ψ explains the overall lower IQ of the QPM compared to the
other masks which have a cutoff at higher spatial frequencies.

The effective MTF of the APM on Fig. 3.19 shows a cutoff at µ = 0.85 for ψ = 0
and µ = 0.78 for the other two defocus points. As for the QPM, the MTFs are not
identical, but their shape does not diverge from each other as much as for the QPM.
From figure 3.15, we can see that the image quality has a value IQ ≈ 15.4dB at ψ = 0
and ψ = 1.5λ, whereas it is slightly higher at ψ = 0.75λ. There is a correspondence
between these values of the image quality and the shapes of the MTFs: the values of
the MTF at ψ = 0 are lower than for ψ = 0.75λ for most of the spatial frequencies, on
the other hand, for ψ = 1.5λ the MTF has a shorter cutoff frequency, which explains
the lower IQ value.

Passing to the FFPM in figure 3.19 we see that the the effective MTF values for all
defocus points are very similar until µ = 0.6, where the MTF for ψ = 0.75λ drops
sharply to a cutoff frequency of µc = 0.65 whereas the other two have their cutoff
frequency at µ = 0.8. This is very consistent with behavior of IQ on figure 3.15,
where the performance at ψ = 0 and ψ = 1.5λ are very similar and is significantly
lower for ψ = 0.75λ.

The BAPM presents, on the other hand, an MTF that varies more across the DoF than
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the FFPM and with a narrower cutoff than the APM and FFPM, which coincides
with its relatively lower IQ value observed. Once again, we see in figure 3.19 that
the defocus point with the highest IQ, ψ = 1.5λ, has also a cutoff that is slightly
higher, at µ = 0.71 than the other two ψ points at µ = 0.63.

FIGURE 3.19: Comparison of the effective MTF at different defocus
values produced by: a QPM, an APM, a FFPM and a BAPM

The analysis along the µ axis we performed of figure 3.19 was only possible because
of the rotational symmetries of the system. Polynomial phase masks, as we have
seen earlier in this section, do not possess a circularly symmetric profile, and thus
their MTF is not either. For this reason, on figure 3.20 we show both the effective
MTF over the µ axis and over the diagonal µ = −ν. At first glance, the plots on the
µ axis make it look like these masks have better DoF enhancing properties than the
other masks, having a larger cutoff frequency and MTF that does not diverge too
much. But we see that on the diagonal this is not true; the CPM has some sharp
drops on the MTF at low frequencies, particularly for ψ = 0 at µ = ν = 0.16 and the
cutoff is down to µ = 0.6.

For the PPM we have a similar behavior as for the CPM, we see again the drops on
the MTF for low frequencies, but with a lower amplitude, and a faster drop towards
the cutoff frequency than the cut across the µ axis. We saw previously on figure 3.15
that the PPM and the BAPM have comparable performances at this DoF range, and
from the shape of their effective MTF we can conclude that, although the effective
MTF of the PPM across the µ axis is better than the one of the BAPM, the fact that
the effective MTF across the µ = −ν diagonal is relatively worse ends up producing
a similar IQ value.

This is an interesting result to consider in terms of applications, since the PPMs will
introduce artifacts on the diagonal sections of the deconvolved image, whereas the
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BAPMs introduce artifacts spread symmetrically around each spot. The choice of
the mask therefore is strongly application dependent, in an industrial inspection
environment, where the samples are neatly organized in a grid, it may be more in-
teresting to have a very good spatial resolution across the x and y axes, whereas in a
surveillance situation, the user does not a-priori know the scene and may prioritize
having an acceptable resolution in all directions.

FIGURE 3.20: Comparison of the effective MTF at different defocus
values produced by a CPM and a PPM: along the μ-axis (left) and on

the μ = −ν diagonal (right).

We have shown that most of the shown hybrid systems reduce the cutoff frequency
as compared to the diffraction limited optical system they are based on. The final
image quality comes as a trade off between keeping this new cutoff as large as possi-
ble and keeping the effective MTF high for the frequencies that fall below this cutoff.
We have also shown that the use of a single averaged deconvolution filter natu-
rally leads the system co-optimization to have MTFs through the DoF range that
are similar, since disparities in the MTF are amplified when applying the Wiener
filter, leading to a potential loss of contrast in certain frequencies at certain defocus
distances.

3.3.3 Visual comparison of the frequency response

Throughout this section we have illustrated how the co-designed systems respond
in the spatial domain with the PSF and, in the frequency domain, with the effective
MTF. In this section we will study the cases of the BAPM and the CPM and we will
draw connections between their effective MTFs and PSFs and the final images each
co-designed system produces. A thorough analysis of the response of CPMs and its
relation with artifacts was performed in (Demenikov and Harvey, 2010) where they
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analytically find the causes of artifacts, but in their analysis they deconvolve using
the inverse PSF on focus, instead of an averaged Wiener filter, and noise was not
considered. They found that the artifacts in systems with CPMs can be predicted by
analyzing the modulation and phase transfer functions and demonstrated that the
artifacts are produced by phase mismatches between the deconvolution filter and
the OTF of the optical system.

It is not always simple to visually interpret the behaviors seen in the system response
on a natural scene, such as the picture of the butterfly (see Fig. 2.9) shown before.
In figure 3.21 we have used a radial frequency target that allows us to clearly ob-
serve some of the artifacts that are apparent in the effective MTF. On Fig. 3.21 (top)
we show the computer generated target (left) and the target after passing through a
diffraction limited system for comparison. The ring radii go from 2 pixels, (which
is ν = 1.0, our Nyquist frequency) up to 16 pixels (ν = 0.13) at the outer ring. On
figure 3.21 (bottom) we show the same target after passing through the co-designed
systems with a BAPM (left) and CPM (right). On the system with the BAPM we can
see distinct "ripple" artifact at the edge of each ring and is particularly noticeable
after the outer ring. On the system with the CPM we see the presence of a simi-
lar artifact on the bottom-right quadrant and less pronounced on the top-right and
bottom-left quadrants. These artifacts are a vestige from a highly asymmetric and
downwards spread PSF, typical of the polynomial-profiled masks we see in figures
2.2 and 3.18.

On figure 3.22 we show a detail on the bottom-right quadrant of the images shown
in figure 3.21. We can see that the image produced by the BAPM system is blurred
at the center, so much that the central dark spot has completely disappeared. We can
spot other artifacts on this image, such as the gray lines on the center of most rings.
For the CPM we see a clear blur spreading from the center towards the bottom-right
corner of the image. It is interesting to notice that on the x and y axes the image is
sharper than with the binary mask, confirming our predictions based on the effective
MTFs, where we saw that the polynomial masks present MTFs with high values on
the axes but gets lower on the diagonals.

3.4 Conclusions

In conventional design, the optical engineer usually optimizes the optical system
based on the value of an objective function which is crafted based on several opti-
cal properties of the designed system, such as RMS value of different aberrations,
Strehl ratio, MTF values, among others. On the case of hybrid optical systems, co-
optimizing using these metrics only may lead to sub-optimal designs since they do
not directly consider the deconvolution step. In chapters 1 and 2 we used the work
of (Diaz, 2011) to develop a series of optimization and analysis tools that are more
pertinent to the design of hybrid imaging systems.

We have shown in this chapter the importance of the choice of the metric and that IQ
is a strong metric that, by design, yields better performances than other traditional
ones such as the Strehl ratio, which may lead to wrong assumptions on the total DoF
range, or the invariability of the MTF, which often produces masks with an unnec-
essarily strong profile causing artifacts and noise amplification upon deconvolution.
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FIGURE 3.21: Comparison of the images of a bullseye target af-
ter passing through different optical systems at ψ = 0: (top-left)
the scene, (top-right) an on-focus diffraction limited system with-
out deconvolution, (bottom-right) a hybrid system with a CPM and

(bottom-left) a hybrid system with a BAPM

Then we have shown that in the context of the IQ criterion, the maximin optimiza-
tion produces masks with better performance than using the mean optimization or,
as we mentioned before, the invariance over the DoF range.

We then made use of this criterion and optimization methodology to co-design and
compare a series of types of continuous-phase masks commonly found in literature,
such as the QPM, the CPM and their generalized forms, the APM and the PPM
respectively. We proposed for analysis another mask, the FFPM, whose profile is de-
fined by the phase values of a series of control points on the radius. There are other
hybrid systems in literature we have not covered, such as the exponential phase
mask (Yang, Liu, and Sun, 2007) or the sinusoidal phase mask (Zhao and Li, 2010),
and we believe that the analysis tools presented in this chapter can be used by any-
one interested in co-design for DoF extension and even other co-design tasks with
any kind of wavefront coding masks.

We have obtained that most masks have an increasing performance as the param-
eters increase, and levels-off at a certain number of parameters, as we originally
observed for the BAPMs.



66 Chapter 3. Optimization and evaluation of different mask shapes

FIGURE 3.22: Detail of the images of a bullseye target after passing
through different optical systems at ψ = 0: (top-left) the scene, (top-
right) a diffraction limited system without deconvolution, (bottom-
right) a hybrid system with a CPM and (bottom-left) a hybrid system

with a BAPM

The case of the FFPMs is interesting; when enough parameters are added, the opti-
mal FFPM masks seem to have steps, not unlike the profile of a BAPM although no
condition was introduced enforcing this behavior. This agrees with the notion that
there is an underlying mask profile that is ideal for a given optimization problem
and for low total DoF ranges, such as 1.5λ, the BAPM seems to have the best per-
formance from the studied masks. On the other hand, for larger DoF ranges, 3.0λ
in our case, the PPM seems to perform marginally better than the BAPM, coinciding
with the observations of (Diaz, 2011) when comparing phase masks.

The shape of the PSF is a preliminary indicator of the performance of the system; by
seeing the PSF spot we can predict the general shape and distribution of the artifacts
that may be present in the final image. With the diagram of the PSF as a function
of ψ we can also draw connections between the overall performance, IQ(ϕ, ψ), and
the mask’s shape. The main limitation of the PSF is that it does not consider decon-
volution, so the observations do not necessarily predict performance.The effective
MTF on the other hand has the advantage of showing the response with the filtering
included. Thanks to this metric we have seen that most of the phase masks reduce
the effective cutoff frequency of the optical system, causing information loss that
cannot be recovered by deconvolution. The final image quality depends strongly of
this cutoff frequency, but also on the contrast of the frequencies after deconvolution.

The analysis of the frequency response of the phase masks becomes more important
when they are being added to optical systems that are not diffraction limited. When
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considering the pixel size for example, an undersampled conventional system has a
longer DoF that a system that is diffraction limited, since the pixel size is relatively
larger than the PSF spot. Additionally, techniques such as superresolution make
use of the aliasing of oversampled images to form a high resolution image past the
diffraction limit. To achieve this, it requires the sampling frequency to be many times
shorter than the cutoff frequency, therefore, a mask envisioned for both DoF exten-
sion and superresolution cannot have too-short cutoff frequency. We will devote the
next chapter to the study of the performance of phase masks for DoF extension when
the detector’s sampling and possible aliasing are considered.
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Chapter 4

Aliasing of hybrid systems and
superresolution

Most modern optical systems work with solid state sensor arrays, which discretize
the continuous image generated by the optical system in a process called sampling.
Except for very specific systems, such as astronomical telescopes and some infrared
systems, the discretization is such that the PSF of the diffraction limited system is
not properly sampled. This means that the Nyquist frequency of the detector is
smaller than the optical cutoff frequency of the diffraction limited system. In this
case, frequencies above the Nyquist frequency (and below the cutoff frequency) will
be folded below the Nyquist frequency leading to a loss of spatial resolution. In this
case, we will say that there is undersampling.

We start this chapter by describing the discretization process and how undersam-
pling in conventional systems generates an undesired artifact called aliasing. Then
we illustrate the recovering of frequencies beyond the Nyquist frequency using su-
perresolution, which combines a series of aliased low-resolution images to obtain
one image with higher resolution after post-processing, using the simple shift-and-
add algorithm (Elad and Hel-Or, 2001). We then present the experimental results
obtained along with the industrial partner KLA-Tencor, where superresolution was
used to improve the detection of imperfections in microcomponents. We conclude
the chapter by considering the case of aliasing on hybrid systems for DoF extension
and showcase the situations where superresolution is relevant.

4.1 Effects of sampling on a conventional system

In this section we mathematically describe the sampling process and show its effects
on a conventional system. From this description we define the aliasing artifact and
how it affects the quality of the captured image.

4.1.1 Sampling on a conventional system

In chapter one we described the image formation process of an optical system un-
der the assumption that the system was well sampled, this is the cutoff frequency νc
and the sampling frequency νs are such that νc/νs < 0.5. According to the Shannon-
Nyquist theorem, the corresponding diffraction limited system has no loss of fre-
quency information due to discretization. This assumption allowed us to disregard
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the different effects of sampling from our calculations. In reality, many optical sys-
tems, such as photographic cameras and video cameras, are deliberately made so
that νc = νc/νs > 0.5, where νc is known as the effective cutoff frequency of the
system. This measurement is rather useful, since the undersampling factor 2νc rep-
resents how much larger is the pixel pitch p as compared to a pixel pitch that satisfies
the Shannon-Nyquist criterion.

To model the effect of sampling on the produced image, we start by the definition of
the continuous image I(x, y) of the sceneO(xo, yo) projected in the image plane after
passing through the optical system of PSF h:

I(x, y) = h(x, y) ∗O(x, y).

If we consider a detector with squared pixels and a 100% fill factor, the pixel pitch
and the pixel lateral size are identical and the sampling frequency is νs = 1/p. In the
following, we will work with the a detector of N ×N pixels of size p× p so that we
can model the sampled image Is(n,m) as:

Is(ip, jp) = Xp(x, y) · [Πp(x, y) ∗ I(x, y)] + n(ip, jp), (4.1)

where Xp(x, y) =
∑N−1

i=0

∑N−1
j=0 δ(x− ip, y − jp) is 2-dimensional Dirac comb which

represents the position of each pixel of the detector array and Πp(x, y) is a box func-
tion defined as

Πp(x, y) =

{
1 |x| < p/2 and |y| < p/2,

0 otherwise,

which represents the windowing produced by the pixel. The Fourier transform of
the box function of width p is a sinus cardinal of pseudo-period 2/p and that for a
comb function of period p the Fourier transform is a comb of period νs = 1/p. We
can now write equation (4.1) in a more convenient form in the Fourier domain:

Ĩs(µ, ν) = [sinc(µp) · sinc(νp) · h̃(µ, ν) · Õ(µ, ν)] ∗Xνs(µ, ν) + ñ(µ, ν). (4.2)

From this expression we can recognize the MTF of the sampled system (called here-
after sampled MTF), h̃s(µ, ν) expressed as:

h̃s(µ, ν) = [sinc(µp) · sinc(νp) · h̃(µ, ν)] ∗Xνs(µ, ν). (4.3)

The first zero of the centered sinc(µp) functions is at νs = 1/p and the comb function
produces replicas of the continuous MTF centered at νs. For this reason, as shown
in figure 4.1, the replica MTFs are beyond the cutoff frequency and do not affect the
system MTF. For such systems we used in previous chapters the approximation that
h̃ ≈ h̃s.

The pixel box function is usually overlooked in most calculations that involve sam-
pling since the first zero of its Fourier transform is at the sampling frequency νs.
From now on, we include the pixel windowing function directly in the PSF of the
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FIGURE 4.1: Replication of the MTF in a properly sampled optical
system where νc = 0.4. The red line represents the detected MTF
and the black dashed lines represent the replicas. The blue dotted
lines marks the cutoff frequency, while the green dotted lines mark

the sampling frequency.

optical system h, so that it will be included in all deconvolution filters in the follow-
ing sections. With this assumption we can simplify equation (4.1) as:

I(i/νs, j/νs) = Xp(x, y) · [h(x, y) ∗O(x, y)] + n(i/νs, j/νs), (4.4)

=

N∑
i=0

N∑
j=0

δ(x− i/νs, y − j/νs) · [h(x, y) ∗O(x, y)] + n(i/νs, j/νs), (4.5)

=
N∑
i=0

N∑
j=0

h(i/νs, j/νs) ∗O(i/νs, j/νs) + n(i/νs, j/νs), (4.6)

where the nomenclature convention for the Dirac delta

f(k) = δ(x− k)f(x) (4.7)

has been used.

4.1.2 Aliasing

As it has been mentioned at the beginning of this chapter, many conventional optical
systems do not satisfy the Shannon-Nyquist theorem. From equation (4.3), we can
use the Dirac delta convention from (4.7) to separate the spurious signal from the
initial MTF:

h̃s(µ, ν) =
∑
ĩ∈Z

∑
j̃∈Z

h̃(µ− ĩνs, ν − j̃νs) (4.8)

= h̃(µ, ν) +
∑
ĩ∈Z\0

∑
j̃∈Z\0

h̃(µ− ĩνs, ν − j̃νs). (4.9)
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Equation (4.9) is the classical result that the sampled MTF is the infinite sum of the
initial MTFs shifted by integer multiples νs, or equivalently that the sampled MTF
corresponds to the periodisation of the initial MTF. In figure 4.2 we show what hap-
pens to the sampled MTF h̃s with an undersampling νc = 0.75. As we can see now,
part of the replicas of the MTF are folded within the cutoff frequency.
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FIGURE 4.2: Replication of the MTF of a sampled optical system
where νc = 0.75. The red line represents the portion of the MTF
within the cutoff frequency and the black dashed lines represent the
replicas. The blue dotted lines marks the cutoff frequency, while the

green dotted lines mark the sampling frequency.

In figure 4.3 we show the effect of this folding on the sampled MTF. This artificially
increases the contrast of some high spatial frequencies of the discrete image, which
is commonly known as aliasing.

-ν
c

0 ν
c

µ

0

0.2

0.4

0.6

0.8

1

h̃
s

FIGURE 4.3: Sampled MTF h̃s of an optical system where νc = 0.75.
The red line represents the detected MTF and the black dashed lines
represent the replicas. The blue dotted lines mark the cutoff fre-

quency, while the green dotted lines mark the sampling frequency.

An example of aliasing on a one-dimensional signal is given in figure 4.4. We have
plotted a sinusoidal continuous signal (in blue), the blue dots represent a sampling
at twice the Nyquist frequency νc = 0.25 so the signal is properly sampled. The
red dots on the other hand represent an undersampled system with a sampling fre-
quency νc = 0.75; the dashed red line represents a cubic interpolation between the
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undersampled points, which corresponds to an aliased signal of period three times
larger than the original signal.

FIGURE 4.4: Aliasing of a one-dimensional sinusoidal signal. The
blue line represents the continuous sinusoidal signal, the blue dots
mark a sampling of νc = 0.25, the red dots mark an undersampling
of νc = 0.75. The red dashed line represents a cubic interpolation of

the undersampled points
.

Aliasing is a very common artifact in optical systems, typically seen in photography
or video taken without an anti-aliasing filter. In figure 4.5 we see a typical example of
an aliased image: a stripped shirt. On the left we can see the image at full resolution
whereas on the right we can see a simulated image with 1/5th of the resolution
(νc = 2.5). We can see on the low-resolution image that on the areas where the shirt
has folds, the strips of the shirt merge together and several spurious stripes appear.
This effect is particularly noticeable on the right area, where curved horizontal lines
appear over most of the length of the shirt.

FIGURE 4.5: Example of a scene prompt to aliasing due to sampling
of νc = 2.5). On the left the properly sampled image and on the right

an undersampled image suffering from aliasing

Most modern optical systems have methods to reduce aliasing; one way is to treat
the continuous signal with a low-pass filter before the discretization step. In optics
this would be done by modifying the pupil transmittance or in simulations with low-
pass filters such as sinc, Hann or Gaussian filters. This actually is how most computer
softwares deal with aliasing when shrinking images below their original resolution
on-screen (Tucker, 2004). Another way is on the contrary to exploit the presence of
aliasing using superresolution, where several low-resolution frames are combined
to generate a high-resolution version of the scene. This will be studied further in
section 4.2.
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4.1.3 Effects of sampling on image quality

As mentioned, sampling has an effect on the MTF, such as modifying certain fre-
quencies due to folding. Since the definitions of the MSE from equation (1.26) and
the Wiener filter from equation (1.29) depend on the MTF of the system, the presence
of aliasing has repercussions on the IQ value of the deconvolved image. In figure
4.6 we show the evolution of the image quality as a function of the undersampling
factor νc calculated for a generic scene model with SOO = ν−2.5. The values rep-
resented by an asteristk are aliased whereas for the values represented by triangles
the spatial frequencies of the scene O(x, y) larger than νs/2 have been filtered out
before passing through the optical system. The values in blue, connected by dashed
lines, represent sampled images deconvolved by an ideal Wiener filter. On the other
hand the values in red, with continuous lines, represent sampled images without
deconvolution, that is the images produced by the detector.
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FIGURE 4.6: Evolution of the IQ of conventional systems as a func-
tion of the undersampling factor 2νc with deconvolution (asterisks)
and without deconvolution (triangles). The red lines represent non-

aliased systems whereas the blue lines represent aliased systems.

As for the phase masks, the highest impact on the IQ value comes from the loss of
high frequencies, since the image quality steadily drops as the undersampling in-
creases. The second impact comes from the presence of aliasing, in both the raw and
deconvolved images, the ones with aliasing presenting a slightly lower IQ value.
Finally, deconvolution by Wiener filter increases the quality of the image by practi-
cally the same amount for the aliased and non-aliased images. This last observation
means that the presence of aliasing does not hinder the ability of the Wiener filter to
deconvolve the images, which is vital for hybrid optical systems.

4.1.3.1 Aliasing reduction by filtering

A common problem in digital signal processing is to reduce the aliasing in a dis-
cretized signal. This is commonly achieved by filtering the continuous signal with
a low-pass filter before the sampling step. When rescaling an already digitalized
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image into a smaller one or when displaying an image in a screen with a lower res-
olution than the image itself, anti-aliasing is performed with numerical filters, as
tackled below.

The simplest filter one can conceive to avoid aliasing is to multiply the Fourier trans-
form of the high-resolution image by a box function Πνs(μ, ν), discarding all the po-
tentially aliased frequencies outside the box. This simple filter, or sinc filter, is not
widely used in practice since it presents a ringing artifact, the well known Gibbs
effect: since FT(Πνs) = sinc(xνs), the reverberations beyond the central lobe of the
cardinal sinus are present throughout all the image, particularly on areas with sharp
contrasts. Filters commonly used in the literature are the Gaussian filter, which has
the advantage of being separable, so that it is simple to model analytically but leads
generally to more blurred images, or the bicubic filter which does not suffer from
either artifact.

In figure 4.7 is shown a resolution target, the aliased low-resolution (LR) image with
2νc = 4 (4.7.(a)), and the LR image after filtering of the HR image by (b) a sinc
filter, (c) a Gaussian filter and (d) a bicubic filter. On each case, the filter blurs out
all the high-frequency details that appear aliased on 4.7.(a). As expected, the sinc
filter produces ringing artifacts around high-contrast details, such as the sides of the
wedge on the right. The Gaussian filter and the bicubic filter do not present these
artifacts, with the Gaussian filter having some blur still present on the undersampled
image.

The bicubic filter will thus be preferred for the simulation of undersampled optical
systems in the following.

4.2 Superresolution

In the previous section we studied some of the consequences the discretization pro-
cess has on the response of the optical system, such as aliasing. As noted earlier,
in most mainstream optical systems, the optical cutoff frequency is high and the
Nyquist frequency is considerably smaller, producing sharper and more visually
pleasing images. In this section we will rather focus on situations where frequencies
above the Nyquist frequency are to be recovered from spatially shifted low reso-
lution frames to improve the spatial resolution closer to the diffraction limit of the
optics. A simplistic 1D diagram of this principle is shown in figure 4.8, where three
different samplings of the same sinusoidal signal are used to reconstruct a properly
sampled signal.

4.2.1 Superresolution model

In section 4.1.2 we have seen that in sampled systems the frequencies higher than
νs/2 get cut out from the MTF, but they are still present on the MTF due to folding.
In this work we define superresolution as a family of signal processing techniques
that aim to take advantage of the information from the scene that is carried over due
to folding to increase the resolution of an optical system and retrieve the lost spatial
frequencies. It was proposed first in (Tsai and Huang, 1984) and then expanded
upon by later works, see for example (Schultz and Stevenson, 1996; Hardie, Barnard,
and Armstrong, 1997; Borman and Stevenson, 1998).
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FIGURE 4.7: Resolution target used as scene (HR image), the aliased
LR image with 2νc = 4 (a), and the LR image after the scene was
filtered with (b) a sinc filter, (c) a Gaussian filter and (d) a bicubic

filter.

We will first start by modeling the shifted frames from the detector so that we
can then model the superresolution technique. For the sake of conciseness we will
write the mathematical expressions of this section only in one spatial dimension, re-
indexing the pixels so that we can express them as a 1-dimensional signal, so that:
i ∈ Z. We can now express the value of the ith pixel of the detected image as:

Ii = h ∗O(i/νs) + ni. (4.10)

To make the mathematical demonstrations simpler, from now onwards we will use
the pixel size p as our implicit spatial unit, in this way νs = 1 and νc = νc, so that the
undersampling factor is simply twice the optical cutoff frequency of the diffraction
limited system. To be able to apply superresolution, we require a series of K frames
Fk taken by the detector, each with an associated continuous shift τk relative to the
detector:
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FIGURE 4.8: Diagram of the reconstruction of a well-sampled signal
from several undersampled ones.

Fk,i = h ∗O(i− τk) + nk,i. (4.11)

The values of the shifts τk can always be considered to take values between 0 ≤
τk ≤ 1, since it depends only on how the pixels were indexed in the first place. The
two block diagrams shown in figures 4.9 and 4.10 are taken from (Champagnat, Le
Besnerais, and Kulcsár, 2009). Figure 4.9 shows the steps of the image generation
model starting from the continuous scene O to the K shifted scenes Fk.

FIGURE 4.9: Block diagram modelling the generation of the K shifted
low-resolution frames

In general terms, the reconstruction of the super-resolved (SR) image is a multichan-
nel filtering, as shown by the diagram in figure 4.10.

The reconstructed image Ô(x) can be defined as:

Ô(x) =
∑
i

FT
i w(x− i), (4.12)

where Fi = [Fi1, · · · , FiK ], and w(x) = [w1(x), · · · , wK(x)] represents the filters in
charge of processing each frame including shift compensation. In practice, we must
define a practical magnification factor (PMF) M , that represents the relative increase
in size between the LR frames and the SR reconstructed image. The value of M
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FIGURE 4.10: Block diagram of the general linear SR reconstruction
with a multichannel filter

dictates how the pixels from the LR frames are allocated on the reconstructed image,
so that:

Ô(i′/M) =
∑
i

FT
i w(i′/M − i), (4.13)

where i′/M ∈ Z are the pixel coordinates of the reconstructed image, so that i′ is
the pixel index of the SR image. This expression encompasses many linear SR re-
construction algorithms with pure translation motion, given by the definition of the
multichannel filter w(i′/M − i). Following the same reasoning used in chapter 2
to define the DoF deconvolution filter, the optimal multichannel filter w̃o that mini-
mizes the MSE between the scene and the SR image is given, in the Fourier domain,
by a Wiener filter under the form

w̃o(ν) =
SOO(ν)h̃(ν)

�

SFF (ν)
vν , (4.14)

where SFF (ν) =
∑

i SOO(ν+ i)|h̃(ν)|2vν+iv
�
ν+i+SnnI| corresponds to the PSD of the

captured frames and vν = [exp(2iπντ1), . . . , exp(2iπντK)]T contains the phases pro-
duced by the shifts in the spatial domain (Champagnat, Le Besnerais, and Kulcsár,
2009).

4.2.2 Shift and add reconstruction

We will now concentrate on a simple, fast and relatively intuitive suboptimal so-
lution for the SR problem described earlier this section, the shift and add (S&A) al-
gorithm (Elad and Hel-Or, 2001). The results presented in this section come from
(Champagnat, Le Besnerais, and Kulcsár, 2009). The S&A filter is a suboptimal ver-
sion of the Wiener filter from equation (4.14), where the filter is separated into a
two-step deconvolution:

w̃SA = ω̃(ν)v(ν), (4.15)
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where ω̃(ν) is a scalar deconvolution filter. This expression of the multichannel filter
has separated the shift compensation of the LR frames on one part with v(ν) and the
deconvolution filter on the other. The Wiener filter that minimizes the MSE between
the scene and the SR image under constraint of this diagonal structure is:

ω̃o(ν) =
SOO(ν)h̃?(ν)∑

i SOO(ν + i)|h̃(ν + i)|2 |v
?
0vi|
K + Snn

. (4.16)

In practice, for the S&A method, the subpixel shifts estimated from the LR frames
are projected by into the geometry of the SR image by multiplying them by the PMF
and rounding to the closest integer value. Solving the MSE for ω̃o(ν) bounds the
performance of this suboptimal approach by two cases: the lower bound is when
all the shifts in the LR system are integer pixels, so that superresolution becomes
simply an interpolation plus deconvolution problem, since no new information is
obtained from the frames. The other boundary case is having all the subpixel shifts
equispaced, which some systems achieve by having controlled shifts on the detector
or the object observed (micro-scanning). In most cases, the shifts are randomly dis-
tributed, therefore, in our future simulations we will always consider the shifts as
evenly distributed series of random observations.

Due to the random nature of the frame acquisition, after the SR processing some
SR pixels may end up without having any LR pixel allocated, so that an inpainting
algorithm has to be applied after each SR run. On the opposite, more than one LR
pixel may be allocated to the same SR pixel, in this case the pixels are averaged.
These two effects affect the SNR of the SR images, so that the noise prior in the
Wiener filter may not coincide anymore with the noise characteristics of the image
to be deconvolved. In the following, we will however consider them to be equal, in
order to evaluate the performance in a simplified situation where the Wiener filter
used for deconvolution does not depend on the shifts and number of frames.

4.2.3 Simulation results

We have conducted a series of simulations using the S&A plus Wiener algorithm
to show its performance on a resolution target. For the Wiener filter we assume
a SNR of 34dB and a generic PSD model of SOO = ν−2.5. The images have been
downsampled so that 2νC = 4 and the PMF for the reconstruction isM = 4. In figure
4.11.a) we show the high resolution image of the resolution target. The numbers
next to the wedges represent the number of lines per 10 pixels, so that a resolution
marked as R implies R/10lpp (lines per pixel). In figure 4.11.b) we can see one of
the LR frames, interpolated to the size of the HR image. Aliasing begins to affect the
resolution of the image at 0.375lpp, leading to a quite low IQ value.

On figure 4.11.c) we show that the image obtained with 16 equispaced LR frames;
we see that the image quality has increased considerably and that the maximum
resolution achieved is close to 1lpp. In 4.11.d), we show the reconstructed image
from 16 LR frames with uniformly distributed random shifts. We see that the im-
age quality is low, only 7.9dB. In the sequence, many SR pixels had no LR pixels
allocated, so that inpainting was often necessary (done by interpolating the value of
a pixel based on its neighbors). Regardless of this, the resolution has increased to
about 0.6lpp. In 4.11.e) we processed 32 randomly shifted LR images, and we still
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notice few artifacts due to inpainting. The resolution is close to 1lpp and the image
quality has increased, but it is lower than for the equispaced case with 16 LR images
in c). Finally, 4.11.f) shows the SR image reconstructed with 64 frames, leading to no
inpainted pixels. The resolution is 1lppm and the image quality is similar to the IQ
of the equispaced case. The apparent difference in contrast between the SR images
comes from the ringing artifact commonly produced by the Wiener filtering, which
produces pixels with values beyond and below the dinamic range of the scene. Al-
though the dinamic range of the SR images was left as obtained, the contrast can be
improved by limiting their dinamic range to the range of the LR frame.

FIGURE 4.11: Simulations of superresolved images for an undersam-
pling 2νc = 4 and PMF M = 4. a) The high-resolution scene, b) one
aliased low-res frame, c) a superresolved image with K = 16 known
equispaced subpixel shifts d) a superresolved image with K = 16
known random subpixel shifts, e) a superresolved image with K = 32
known random subpixel shifts, f)a superresolved image with K = 64

known random subpixel shifts.

This shows the capabilities of the algorithm in a situation where the noise is rela-
tively low, the shifts are known, or well estimated, and the number of frames K
is high enough. The PMF of 4 leads to a rather severe rounding of the shifts, so
that a higher PMF could lead to much better results if the number of frames is high
enough. Also, the equispaced shifts case gives significantly better IQ values than the
random shifts case. These results are globally consistent with that of (Champagnat,
Le Besnerais, and Kulcsár, 2009).

4.3 Superresolution for industrial inspection

Semiconductor electronics is one of the fastest growing markets in the world, see-
ing a growth of 20.8% in 2017 with respect to the same trimester of the past year
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(Vipress, 2017). This growth, parallel to the sophistication of semiconductor micro-
components, makes it more important than ever to have a reliable and accurate way
to guarantee that no faulty pieces leave the manufacturing process towards the final
users’ hands.

The industrial partner of this doctoral program is KLA-Tencor (Leuven, Belgium),
specialized in the automation of the inspection of semiconductor microcomponents.
Their optical inspection machines can observe cracks in microchip packaging molds
and silicon components of few tenths of millimeters in width. But with further
miniaturization of microcomponents comes the challenge of being able to observe
even smaller details. In this section we explore experimentally the feasibility of ap-
plying superresolution techniques as part of the industrial inspection process.

4.3.1 Superresolution experimental setup

The experimental setup used was conceived to replicate, on an optical test bench,
the conditions in which the inspection is done. The test bench is shown on figure
4.12 (left) and features an 8-bit (256 gray levels) monochromatic 25Mpx (5120×5120)
ADIMEC IVC detector with a pixel pitch of p = 4.5μm working in the visible spec-
trum. The system was illuminated by a custom-made a coaxial quasi-monochromatic
led lamp at λ = 470 nm. Two different lenses were used during the experiment, a
f/5.6 lens with focal length f = 120mm, which we will for now on refer to as system
1, and a faster f/4 lens with focal length f = 50mm which we will refer to as system
2. The known subpixel translations on the sample are made thanks to two ThorLabs
DRV014 trapezoidal stepper motors that, according to the manufacturer, have a min-
imum step of 50 nm and a repeatability < 1μm. The object size in the image plane
was calculated using a caliber plate, with 2mm inter-cross distance, shown on figure
4.12 (right).

FIGURE 4.12: Setup for superresolution experiments. (Left) Experi-
mental bench with 25Mpx detector, lens, coaxial illumination, sample
holder, and two stepper motors. (Right) caliber plate used to measure

the object size in the image plane.
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During the calibration step we could confirm that the stepper motor specifications
were reasonably correct, but throughout the experiment we observed that the re-
peatability of the positions was worse than δτ = 4μm, probably due to vibrations in
the room, thermal drift, etc. These problems, added to the fact that there is always
an unknown angle between the camera XY axes and the dx, dy steps of the motor,
imply that we cannot consider the subpixel shifts to be known. Thus a systematic
estimation of the shifts via the efficient subpixel image registration by crosscorrelation
algorithm (Guizar-Sicairos, Thurman, and Fienup, 2008) is performed.

Thanks to the caliber plate on figure 4.12 (right) we were able to calculate the spatial
resolution of our systems. For system 1 we obtained a resolution of y1 = 8.33μm
per pixel in the object plane, which translates to a theoretical Nyquist frequency
corresponding to ν1 = 60lpmm (lines per millimeter). On the other hand, system 2
had a resolution of y2 = 40.8μm per pixel in the object plane, so that the theoretical
Nyquist frequency is ν2 = 12.5lpmm. This means that we should expect aliasing for
spatial frequencies higher than those Nyquist frequencies.

For the Wiener deconvolution step we have assessed the SNR by estimating the noise
levels in featureless areas of the captured images. The PSF of the system is also
unknown a priori, so we have estimated it by using the approximation of the Airy
pattern of a diffraction limited PSF as a Gaussian with standard deviation given by:

σi = 0.42(1 +mi)Niλ, (4.17)

where mi = p/yi is the magnification of the lens and Ni is the f -number of the lens.
This means that system 1 has σ1 = 1.7μm and system 2 has σ2 = 0.9μm.

4.3.2 Assessment on the resolution improvement

In general, it is difficult to evaluate the increase of quality of a real image, from a
real system, beyond what we can visually assess. The problem is that, unlike for the
simulations made in chapters 2 and 3, the exact values of the scene, optical system
response, noise levels, etc., are difficult to obtain. Despite these limitations, carefully
crafted experiments can help evaluate the response of the system (Landeau, 2014)

To assess the actual resolution of our optical systems before and after superresolu-
tion has been applied on the LR frames, we have used an Edmund Optics variable
resolution target going from 5lppm up to 120lppm shown in figure 4.13.

For both systems, 64 frames were captured with 8 × 8 controlled displacements of
the motors at steps of dx = dy = 5μm, in the understanding that the true shift differs
due to the vibrations. We have estimated the standard deviation of the noise to be
σ1n = 2.26, and σ2n = 2.46 (in gray levels), respectively. The scene model for de-
convolution was set as SOO = ν−2.3 for the frequency targets aas it is the model that
better fits the PSD of the resolution target along the x-axis, where most of the alias-
ing is observed. Due to the large size of the samples, superresolution was performed
for a PMF M = 8, but only on an area of interest of 1000 × 300 pixels, along the x-
axis, encompassing the theoretical Nyquist frequencies calculated for each system:
ν1 = 60lpmm for system 1 and ν2 = 12.5lpmm for system 2).The resolution target
is slightly rotated in-plane for both systems, so that the SR reconstruction is more
visible.
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FIGURE 4.13: Variable frequency target used to measure the increase
of resolution attainable by our optical systems

On figure 4.14 (top) we show two interpolated segments of the low-resolution frame
captured by system 1. On the left, we see the portion between 40lpmm and 45lpmm,
where we start to see aliasing. The theoretical limit calculated was originally 60lpmm,
yet we see aliased lines at lower values; this is because ν1 was calculated along the
XY axes of the detector but in diagonal lines the sampling period is longer, pro-
ducing aliasing at shorter spatial frequencies. On the right we show a portion of the
target between 85lpmm and 90lpmm, which are aliased and blurred. After SR we are
able to recover spatial frequencies up to 90lpmm, so we managed to double the res-
olution from 45lpmm. Beyond 90lpmm the deconvolved SR images are completely
blurred. This blur can be associated to different causes, such as registration errors,
the fact that the deconvolution filter was approximated based on measurements, the
effect of detection noise on deconvolution or on the MTF of the pixel, that has very
low values beyond the second lobe of the sinc function.

On figure 4.15(top) we show two segments of a LR frame obtained with system 2
presenting aliasing. On the left we show the portion between 10lpmm and 15lpmm.
As for system 1, we see aliasing below the theoretical Nyquist frequency of ν2 =
12.5lpmm due to the rotation of the target with respect to the detector. On the right
we show the segment between 20lpmm and 25lpmm, which corresponds to the max-
imum observed resolution after SR has been applied. It is interesting to notice that
in the LR frame, no typical aliasing patterns are noticeable for 25lpmm, yet we man-
age to observe the frequency details on the SR image, although with a rather poor
contrast. In this case we have increased the resolution 2.5 times, from 10lpmm up
to 25lpmm, 50% more than with system 1. This larger increase is due to the object
pixel size: on system 2 it is y1 = 40.6 µm, and therefore the 8 × 8 step motor shifts
dy ≈ 5 µm are evenly spaced within a LR pixel, if we ignore vibrations of the bench.
On the other hand on system 1 the object pixel size is y1 = 8.33 µm, so that the step
motor shifts are closer to the pixel size itself. These two results coincide with the
performance bounds of the Wiener filter in equation 4.16 mentioned on section 4.2.2.

4.3.3 Tests on industrial samples

The industrial inspection devices that KLA-Tencor designs are conceived to detect
cracks and fissures on the package or the semiconductor components themselves.
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FIGURE 4.14: Test results for superresolution on system 1. (Top
left) Segment of a low resolution frame showing aliasing starting be-
tween 40lpmm and 45lpmm, (top right) a segment of the LR frame
between 85 and 90 lpmm. (Bottom) Segment of the superresolved

frame, showing the maximum obtained resolution at 90lpmm.

This is achieved by pairing a high resolution detector with an image processing soft-
ware that finds abnormal lines or patterns on the inspected surfaces and, upon con-
firmation, removes faulty components from the production line. The ability of the
processing software to detect these cracks and fissures relies on the resolution of the
optical system, which as we have seen, is undersampled and presents aliasing on
very high frequencies.

4.3.3.1 Package molds

Package molds are an essential part of the semiconductors, as they protect them
from impact and corrosion, disperse heat and keep the connection pins in place. To
perform the superresolution tests, two packing molds were studied. The first one,
P1, presenting a known crack of ≈ 11 µm at its thinnest point and the second, P2,
with a known crack of ≈ 6 µm at its thinnest point. The cracks were measured with
the help of an optical microscope of 100x magnification. We proceeded then to study
P1 with the system 1 and P2 with system 2, since the crack of P2 was thiner than the
crack of P1 and the system 2 has a lower resolution than the system 1. Once again,
we captured 64 shifted frames for both systems, the PSD model for deconvolution
was SOO = ν−3.2, since this was the PSD that better fitted the PSD of the obtained
frames.

The package mold P1, shown on figure 4.16 with a zoom-in of the crack, had a total
area of 7mm×7mm which occupied an area on the detector of 812× 812 pixels. The
zoom-in shows a 145 × 145 pixel extract where the crack is the thinest. We can see
that although blurry and poorly resolved close to the center of the zoom-in, the crack
is clearly visible even in the full-frame LR image.
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FIGURE 4.15: Test results for superresolution on system 2. (Top
left) Segment of a low resolution frame showing aliasing starting be-
tween 10lpmm and 15lpmm, (top right) a segment of the LR frame
between 20 and 25 lpmm. (Bottom) Segment of the superresolved

frame, showing the maximum obtained resolution at 25lpmm.

We ran the superresolution algorithm on the 64 captured frames. On figure 4.17 we
show the results on the same area we have zoomed-in on figure 4.16. On the left side
of figure 4.17 we show the LR frames after a bicubic interpolation to resize them by
PMF M = 3 (top) and M = 8 (bottom). To the right, we show the superresolved
images calculated for the corresponding PMF. As we can see, for M = 3, the SR
image is just marginally sharper than the interpolated image. On the other hand
for M = 8 we have an important increase in contrast, sharpness and resolution.
In particular, we can clearly see that at the center of the image, that the crack does
not disappear, but just becomes thiner. This is consistent with the simulations from
section 4.2, where we concluded that the shift and add SR technique performs better
for large PMFs is, as long as there are enough frames to fill most of the SR image.

Now we pass to P2, where another packing mold of 7mm×7mm is observed through
system 2, as seen in figure 4.18, along with a zoom-in around an area of interest.
Since the focal length of this system is smaller than for system 1, is field of view is
larger and the mold occupies an area of the detector of only 176×176 pixels. The
area of interest in this case is 54×54 pixels. We can see that within the area of interest
the crack is not clearly noticeable and seems rather straight.

Figure 4.19 shows the interpolated (left) and superresolved images (right). We can
see that for M = 3, the interpolated image fails to show details on the center of
the crack. On the other hand both the superresolved image for M = 3 and the
interpolated image for M = 8 fully show the crack, although the superresolved
image has better contrast. Finally, the superresolved image for M = 8 shows the
sharpest image of the crack, where its width can be easily measured and we can see
that is curved at some points, not just a straight line from top to bottom.

In this sample the crack is also in the LR image, as it was for P1, but it is thiner
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FIGURE 4.16: Cracked package mold P1 observed by system 1 and
zoom-in of an area of interest

FIGURE 4.17: Sections of package 1 where a crack is visible. On the
left are shown, low resolution frames interpolated by factors M = 3
(top) and M = 8 (bottom). On the right are shown the reconstructed
SR images for practical magnification factors M = 3 (top) and M = 8

(bottom).

and less recognizable. The automated inspection system from KLA-Tencor discerns
cracks from harmless scratches by distinguishing between their shapes. Scratches
are mostly straight and thin while cracks are thicker and curvy. In this case the
crack is so thin that it may be overlooked by the inspection machine, which could be
prevented by superresolution.

4.3.3.2 Silicon microcomponent

The last sample studied is a silicon microcomponent of 7mm×7mm with a known
crack of width < 1μm. Silicon components are different from the packing molds
in that their surface is highly reflective, not rugged black, which makes searching
for fine cracks a complicated yet interesting problem. In most cases the system is
illuminatd at a low angle, so the light scattered by the crack can be observed. This
interesting solution has the drawback of requiring a different setup to study silicon
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FIGURE 4.18: Cracked package mold P2 observed by system 2 and
zoom-in of an area of interest

FIGURE 4.19: Sections of package 2 where a crack is visible. On the
left are shown, low resolution frames interpolated by factors M = 3
(top) and M = 8 (bottom). On the right are shown the reconstructed
SR images for practical magnification factors M = 3 (top) and M = 8

(bottom).

components from the packing molds, which increases the complexity, and the price,
of the inspection equipment. For this component we used system 1, since it has the
highest resolution.

In figure 4.20 we show the silicon microcomponent, occupying 786×784 pixels and
the area of interest, which does not seem to show any features other than detection
noise.

In figure 4.21 we show the processed images of the area of interest. We see that
neither of the interpolated LR frames show the crack, there is just a slightly darker
zone close to the left edge of the frame. The superresolved images on the other hand
manage to show parts of the crack in both instances, being sharper for M = 8 but
more contrasted for M = 3. This difference in contrast is likely to be related to the
noise level; for lower PMF values, more LR pixels get averaged into one SR pixel,
considerably reducing the noise on each of those pixels and increasing the overall
contrast.
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FIGURE 4.20: Silicon microcomponent observed by system 1 and
zoom-in of an area of interest

FIGURE 4.21: Sections of interest of the silicon microcomponent. On
the left are shown, low resolution frames interpolated by factors M =
3 (top) and M = 8 (bottom). On the right are shown the reconstructed
SR images for practical magnification factors M = 3 (top) and M = 8

(bottom).

4.4 Phase masks for Dof extension and superresolution

In the previous section we have shown the perks and limitations of the shift and add
technique for industrial inspection. From the two systems studied the one with the
shorter focal length, f2 = 50mm, has a larger field of view but less spatial resolution,
so it would benefit more from superresolution. According to equation (1.9) shorter
focal lengths also imply shallower DoFs, this opens up the question of the possibility
of DoF extension and superresolution used together. In this section we explore this
concept, study its limitations and the cases where it would be relevant.

4.4.1 Effects of the pixel size on the depth of field

As we have discussed in chapter 2, optical aberrations are produced by phase devi-
ations of the wavefront in the pupil, these deviations cause the PSF to deform and,
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usually, widen. This is the case as well for defocus, which we can use alongside
paraxial optics to describe the DoF. Consider the optical system in figure 4.22, where
we have represented the point in the scene A which is on-focus, and the points B
and C which are at the edges of the DoF, so that ψ ∈ [ψB, ψC ].

FIGURE 4.22: Paraxial optics diagram showcasing the dependency of
the DoF on the pixel size

In chapter 1 we have shown the paraxial DoF equation (1.9) for a diffraction limited
system. By substituting the notation from the diagram in figure 4.22 on equation
(1.9) we can describe the defocus on the points B and C:

ψB =
πR2

λ

(
1
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+

1
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− 1
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)
=
πR2
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(
1
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− 1
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)
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)
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where R is the pupil radius, the left hand part of the equation was calculated from
the paraxial optics property (AP )−1 + (A′P )−1 = f−1 and the relations between the
distances a, b and c. Now if we use the similar triangle theorem to prove that:

b =
ap

2R+ p
,

c =
ap

2R− p
,

we can use equations (4.18) and (4.19) to calculate the DoF solely as a function of the
pixel size p, the distance a and the pupil radius R:

DoF = ψC − ψB =

[
πRp

2λa

]
−
[
−πRp

2λa

]
=
πRp

λa
. (4.20)

In equation (4.20) we see that the DoF is directly proportional to the pixel size p,
therefore an increase of the pixel size of 2νc times would increase the nominal DoF
of a conventional system by the same amount.
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4.4.2 Aliasing on phase masks

As has been mentioned in chapter 3, most phase masks behave as low-pass filters
when introduced in the optical system. Since the cutoff frequency of these masks is
lower than the nominal cutoff frequency of the diffraction limited system, introduc-
ing a BAPM or a QPM on the system’s pupil would reduce the value of νc, poten-
tially eliminating alias from the detected scene. As in chapters 2 and 3, we define
the cutoff frequency of a phase mask, νPMc , as the first zero-valued point of the MTF.
On table 4.1 we show the cutoff frequencies of the optimal BAPMs reported in chap-
ters 2 and 3, the cutoff frequencies shown correspond to the lowest cutoff frequency
among the ψk = {0, ..., ψmax} evaluation points used to calculate the Wiener filter.
The values of νPMc shown are normalized with respect to the cutoff frequency of a
diffraction limited system of the same aperture.

TABLE 4.1: Cutoff frequency of BAPMs νPMc , normalized with re-
spect to the diffraction limited cutoff frequency νc, optimized for DoF
ψmax = 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, column 2 shows the number of rings

of each optimal mask

ψmax[λ] N rings νPMc /νc

0.75 3 0.70
1.00 4 0.65
1.50 5 0.59
2.00 6 0.51
2.50 7 0.46
3.00 6 0.47

As we can see, all masks would lead to aliased images if the undersampling factor
of the diffraction limited system satisfies

νPMc
νs

> 0.5, (4.21)

which is true in most modern optical systems, so that phase masks could be intro-
duced in such systems to asses the performance of SR combined with DoF extension.
These masks could then be used without modification since, as shown in chapter 2,
BAPMs are robust to the small amounts of aberrations that would be present in com-
mercial optical systems. For example, according to the expression for the diffraction
limited cutoff frequency: νc = (λN)−1, we can approximate the undersampling fac-
tor of the systems presented in section 4.3 to be ν1c = 1.7 and ν2c = 2.4. Since
νPMc /νs = (νPMc /νc) · νc, and using the values of νPMc /νc provided in table 4.1, we
see that all the optimized BAPMs satisfy equation (4.21) in both systems.

4.4.3 Superresolution and DoF extension

We have established the conditions an optical system should satisfy so that systems
with phase masks produce aliased images. In this section we make use of this infor-
mation to simulate a hybrid optical system for DoF extension and superresolution.
In figure 4.23 we show the deconvolved images from two optical systems aliased
with an undersampling factor of 2νc = 4, one having a 5-ring mask optimized for
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ψmax = 1.5λ (top) and the other having a 6-ring mask optimized for ψmax = 3.0λ
(bottom) at defocus points ψ = {0, ψmax/2, ψmax}. In all cases, the images where
upscaled by bicubic interpolation to the size of the HR scene to calculate IQ. We can
observe aliasing in both images from 0.375lpp, just like the conventional maskless
system from figure 4.11.

FIGURE 4.23: Deconvolved images from an aliased optical system
with νc = 2 and BAPMs optimized for (top) ψmax = 1.5λ and
(bottom) ψmax = 3.0λ. The images show the defocus points ψ =
{0, ψmax/2, ψmax}. The frames shown were interpolated to the size

of the HR scene for comparison.

For the superresolution simulations we use again the shift and add algorithm. We
simulated 16 LR frames with known equispaced subpixel shifts, a SNR=34dB and
an undersampling factor 2νc = 4. We have chosen the equispaced case since every
LR pixel is allocated only once on each SR pixel, providing the same SNR for the SR
grid, before deconvolution, than for the LR frames.

For the deconvolution we use the Wiener filter defined in equation (4.15) for shift
and add, but we substitute the OTF of the conventional optical system h̃ for the
averaged OTF

∑
k h̃ψk that appears in the averaged Wiener filter for DoF extension

in equation (1.29).

On figure 4.24 we show the images produced by the superresolution and DoF exten-
sion model we have just described. We can see that in all cases, we have doubled
the resolution, going from 0.375lpp in the LR frames up to, at least, 0.75lpmm in the
SR image. This increase in resolution has a clear effect on the values of IQ, which
increased considerably compared to the deconvolved LR frames..

In the zoom-ins we can appreaciate that the system with the 5-ring mask optimized
for ψmax = 1.5λ has its lowest resolution at ψ = 0, of value 0.8lpp, and its best
resolution at ψ = 1.5λ, of value 0.95lpp, which is consistent with the MTFs we have
shown on figure 3.19, where this BAPM has the same value of νPMc for ψ = 0 and
ψ = 0.75λ and higher νPMc for ψ = 1.5λ. The IQ values we see are related to the
artifacts we observe in the images; the reconstructed images for ψ = 0 and ψ =
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1.5λ have IQ = 12.2dB, and they also have a strong ringing around high frequency
details. On the other hand, the image for ψ = 0.75λ has IQ = 13.2dB and presents
almost no ringing.

Similar observations can be made for the 6-ring mask optimized for ψmax = 3.0λ. Its
best resolution, of value 0.85lpp, is seen at ψ = 3λ, whereas the other two defocus
points have a resolution of 0.75lpp. The image qualities vary less than for the mask
optimized for ψmax = 1.5λ, but we still see that the stronger the ringing, the lower
the IQ value is.

FIGURE 4.24: Deconvolved images, and detail of the high frequency
resolution wedge, from superresolved images with BAPMs opti-
mized for (top) ψmax = 1.5λ and (bottom) ψmax = 3.0λ. The images

show the defocus points ψ = {0, ψmax/2, ψmax}.

The artifacts we see in many of the images, and particularly the ringing and the noise
amplification are a consequence of deconvolution on this type of scene, indeed, bi-
nary images, with very sharp black and white transitions between their elements
tend to produce ringing artifacts upon deconvolution in systems without or with
phase masks. We have shown that, in an equispaced subpixel shift scenario, phase
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masks are capable of extending the depth of field of SR system as long as the condi-
tion νPMc /νs > 0.5 is satisfied.

4.5 Conclusions

In this chapter we introduced the concept of undersampling and its main repercus-
sion in the captured image, aliasing. We have defined the consequences of aliasing
and the different ways it is tackled, either by preventing it through low-pass filters
or exploiting it to achieve superresolution. A superresolution algorithm has been
implemented, and tested through the shift and add method.

We have used this scheme to prove the feasibility of using superresolution in indus-
trial inspection of microcomponents thanks to our cooperation with the enterprise
KLA-Tencor. We have proven that, without changing the current optical systems
the company uses, it is possible to double their spatial resolution and detect defects
on the components that were undetectable before. These results have been obtained
with the simple S&A algorithm and a suboptimal deconvolution filter; this means
that a dedicated algorithm tailored for their needs could bring faster computation
times using an optimized implementation and even better resolutions than what
our feasibility experiment achieved.

The S&A algorithm also allowed us to prove for the first time, to the best of our
knowledge, that BAPMs are a viable option to perform both DoF extension and
superresolution with a single hybrid optical system. Although phase masks are
typically considered low-pass filters and thus not adapted to superresolution, most
modern optical systems have an undersampling large enough to allow DoF exten-
sion without sacrificing the possibility of superresolving such system. The reachable
increase of resolution is restricted to the inherent cutoff frequency of the phase mask
and the right management of the noise, so for a given application, the mask and the
Wiener filter should be jointly optimized through a criterion that accounts for the SR
processing as well.
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General conclusions

In this work we have made a thorough study of the co-design, performance and ap-
plications of phase masks for depth of field extension (Dowski and Cathey, 1995),
(Cathey and Dowski, 2002),(Robinson and Stork, 2007). We have used a rigorous
mathematical model for the joint optimization that considers both the phase mask
and the Wiener deconvolution filter. We have chosen the so-called image quality
(Diaz, 2011) to evaluate the performance of the co-designed system. For optimiza-
tions, our performance criterion, IQmin, is the minimal value of IQ within the de-
sired DoF.

The phase mask we chose to co-optimize is the binary annular phase mask, consist-
ing of N concentric rings of optical path difference modulation 0 or λ. These masks
feature several interesting properties, such as a circularly symmetric PSF spot, the
same performance around the point of best focus and a relatively easy to manufac-
ture profile. We have shown that the co-optimization of binary annular phase masks,
in terms of the image quality, is a complicated endeavor, since its solution landscape
is highly nonconvex and non-derivable at all points. We have decided to optimize
the masks using the particle swarm global optimization algorithm, which probes
many areas of the optimization landscape simultaneously, akin to having several
optimizations running simultaneously.

For the joint optimization of the masks we have supposed a generic scene model.
We have successfully co-optimized BAPMs with increasing number of rings for DoF
ranges from 4 to 12 times larger than in a conventional diffraction limited system.
We show that for a given DoF the value of IQopt of the optimal masks increases
rapidly with the number of rings and levels-off at a certain amount of rings (Falcón,
Kulcsar, and Goudail, 2016). On the other hand, for a given number of rings, the
value of IQopt decreases as the DoF increases, so that the performance of BAPMs for
DoF extension is bounded. We also show that this behavior is robust when the scene
changes, when aberrations are present and even when the masks are optimized us-
ing different priors for the scene model (Falcón et al., 2017).

We have shown that other common performance criteria in traditional optical de-
sign, such as the Strehl ratio and the invariability of the modulation transfer func-
tion are not adapted for co-design, since they do not account for the deconvolution
step. In particular, the MTF used in conjunction with the deconvolution filter can
give insight on the mask performance, but its interpretation is more complex than
the image quality.

The methodology for optimization and analysis used for the BAPMs was applied
to other phase masks found in the literature such as the polynomial-profile phase
mask, aspheric-profile phase masks and a circularly symmetric mask with a free-
form generatrix. We have found that in the context of DoF extension, the aspheric
phase masks do not perform as well as the others, since they have a narrower DoF.
The polynomial phase masks show a slightly lower performance than the free-form
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masks and BAPMs at low DoF ranges and a performance very similar to BAPMs at
higher DoF. The optimal free-form had a performance similar to BAPM at low DoF
but a lower performance at high DoF. Interestingly, the optimized freeform masks
had a profile that resembles a BAPM, as its continuous profile shows sharp changes
of phase modulation.

Throughout this manuscript the relation between the phase masks frequency re-
sponse and the final performance has been evidenced. Due to the scene model we
have chosen, the value of the MTF at low frequencies influences the final image qual-
ity value much more than at high frequencies. For this reason, optimal masks tend to
have a very pronounced cutoff frequency and a Wiener filter that amplifies only the
frequencies lower than the cutoff. Due to this dynamic of the phase masks, they are
usually considered to perform as low-pass filters. This raises the question whether
DoF extension could be used in conjunction with superresolution, an image process-
ing technique that exploits the presence of folded high frequencies in a sequence of
low resolution images in order to improve the resolution.

Superresolution is only possible when the Nyquist frequency of the detector is lower
than the cutoff frequency of the optical system, producing an effect called aliasing.
In collaboration with our industrial partner, KLA-Tencor, we have implemented the
well known shift and add SR algorithm (Elad and Hel-Or, 2001) and tested it in both
simulated low-resolution frames and in a laboratory setup. We have shown that SR
is efficient in industrial inspection, doubling the resolution of two of the company’s
optical systems on which the experiments were conduced, and allowing the clear
detection of defects in electronic microcomponents.

We have also shown that aliasing in the captured images does not affect gain brought
by the deconvolution step, a critical part in DoF extension with phase masks. We
have demonstrated that all the BAPMs we have optimized have a cutoff frequency
high enough to permit superresolution to be used. We show with simulations that
it is advantageous to perform the shift and add technique on raw image sequences
from a system with a BAPM, using a deconvolution filter adapted to the phase mask.

The optimization and analysis tools in this manuscript are of great interest for an
optical engineer in order to make informed decisions when co-designing a system
for DoF extension before proceeding to the test bench.

Perspectives

Throughout this manuscript we have studied binary annular phase masks opti-
mized solely for depth of field extension and proved them robust in situations they
were not optimized for, such as the presence of residual aberrations, different scenes
or even using them alongside superresolution. This raises the question: how much
would the performance increase if these conditions were considered in the optimiza-
tion.

Some works have shown that phase masks can be used to simultaneously extend the
DoF and mitigate optical aberrations (Ojeda-Castañeda, Andres, and Diaz, 1986),
(Mezouari and Harvey, 2002), (Prasad et al., 2004). It could be of interest to use the
performance criterion presented in this work for co-optimization of system present-
ing aberrations and compare them to the masks in this work in terms of criteria such
as performance, number of necessary parameters or robustness to other aberrations.



General conclusions 97

In this work we have used different tools to compare the performance of five differ-
ent optimized masks. Many other masks for DoF extension exist in the literature,
(Sauceda and Ojeda-Castañeda, 2004), (Sherif, Cathey, and Dowski, 2004), (Yang,
Liu, and Sun, 2007), and works comparing these masks usually include only a hand-
ful of them (Hu et al., 2013). An analysis and comparison methodology such as the
one presented in chapters 2 and 3 on other phase mask profiles would be of interest.
Such a comparison has been done in the context of the image quality (Diaz, 2011), but
restricted to the optimization criterion and not other analysis methodologies, such as
the impulse response, robustness to scene model or robustness to aberrations. These
analyses can be useful to discriminate which type of phase mask is more adapted to
a given optical design problem.

We have shown, for the first time to our knowledge, the potential of phase masks
for DoF extension to be used in conjunction with superresolution. This has been
done using shift and add, one of the simplest SR algorithms in the literature, with a
suboptimal Wiener filter and a phase mask that was not optimized for this purpose.
The proof of concept we have done could also be expanded upon, with a phase
mask and a postprocessing co-optimized for the purpose of DoF extension of super-
resolved systems. For this optimization, not only the quality of the images would
be of concern, but also the resolution improvement, so the research for a suitable
optimization criterion is necessary.

Most of the results shown in this manuscript are the product of simulated systems.
The logical next step is to experimentally validate these results. Binary annular
phase masks optimized for different DoF ranges and number of rings would need
to be manufactured and compared in a laboratory setting with well sampled detec-
tor. The scene for the experiment has to include different depths, so an on-focus
maskless camera has to present blur on the out-of-focus elements of the scene. At
the moment of this publication, a number of BAPMs that we consider of scientific
interest have been selected for manufacture and the experimental set up is already
being designed. For the validation of superresolution, these masks would have to
be included in an undersampled system, with a scene that has frequency targets at
different out-of-focus points. We can then observe the change of resolution after de-
convolution at different focal distances. These two experimental setups can help us
draw a link between the modeled performance and the one experimentally obtained.
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Résumé de la these

Co-conception des systèmes optiques avec masques de phase

pour l’augmentation de la profondeur du champ : évaluation

de la performance et contribution de la super-résolution.

Depuis le début de l’ère numérique, la conception des systèmes optiques a pro-
gressé considérablement avec l’apparition de logiciels capables d’optimiser des sys-
tèmes complexes impossibles à modéliser analytiquement. D’autre part, les pro-
grès des moyens de calcul ont conduit à l’utilisation, dans les systèmes optiques,
d’algorithmes de traitement d’image conçus pour améliorer la qualité des images,
augmenter l’information qu’on peut en extraire ou simplement les rendre plus agré-
ables visuellement. Dans cette thèse, on utilise un modèle de co-conception optique,
où sont optimisés de manière conjointe les paramètres du système optique et du
processus de traitement d’image pour obtenir la meilleure qualité d’image possible.

Masques de phase pour l’augmentation de la profondeur du

champ

Les masques de phase sont des dispositifs réfractifs situés généralement au niveau
de la pupille d’un système optique pour en modifier la réponse impulsionnelle (PSF
en anglais), par une technique connue sous le nom de codage de front d’onde. Ces
masques sont mis dans la pupille des systèmes d’imagerie pour corriger des aberra-
tions, athermaliser ou, dans le cas qu’on étudie, augmenter la profondeur du champ
(DoF en anglais) sans diminuer la quantité de lumière qui entre dans le système.
L’utilisation des masques de phase pour l’augmentation du DoF a été proposée pour
la premiere fois par (Dowski and Cathey, 1995), où ils utilisent un masque de phase
cubique pour générer une PSF ayant une plus grande invariance à la défocalisation.
Cependant, plus le DoF est grand et plus l’image acquise est floue, et une opération
de déconvolution doit alors lui être appliquée (Cathey and Dowski, 2002). Par con-
séquent, la conception des masques de phase doit prendre en compte ce traitement
pour atteindre le compromis optimal entre invariance de la PSF à la défocalisation
et qualité de la déconvolution (Robinson and Stork, 2007; Diaz et al., 2009).

Le système d’imagerie hybride que l’on considère dans cette thèse consiste en une
lentille idéale, un masque de phase placé dans la pupille du système optique et un
filtre de déconvolution numérique qui traite l’image obtenue par le capteur. Dans
cette étude, on considère une plage spectrale quasi-monochromatique proche de la
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fréquence nominale λ. L’image produite Ô(r) par ce système optique peut être mod-
élisée par :

Ô(r) = d(r) ∗ [hϕψ(r) ∗O(r) + n(r)], (4.22)

où O(r) est la scène nette de moyenne nulle, ∗ représente l’opérateur de convolu-
tion, hϕψ est la PSF du système optique, n(r) est le bruit de détection, d(r) représente
le filtre de déconvolution et r représente les coordonnées spatiales. On suppose que
la lentille a une ouverture de rayon R, la réponse impulsionnelle hϕψ est une fonction
des paramètres du masque de phase ϕ et du déphasage dans la pupille par défo-
calisation ψ. Pour évaluer la qualité d’image produite par le système optique, on
utilise l’écart quadratique moyen (MSE en anglais) entre l’image traitée et l’image
nette (Diaz et al., 2009) :

MSE(ϕ, ψ) = E
[ˆ ∣∣∣Ô(r)−O(r)

∣∣∣2 dr] , (4.23)

où E[·] représente l’espérance mathématique. Le bruit n(r) et l’image nette O(r) sont
supposés être des processus stationnaires de moyenne nulle. Ce critère est capa-
ble de prendre en compte à la fois le flou de l’image finale Ô(r) et l’amplification
du bruit produite par la déconvolution, qui doivent être minimisés et équilibrés de
manière simultanée par l’optimisation pour garantir une bonne qualité d’image fi-
nale. Pour optimiser le système optique, on minimise le MSE sur une DoF donnée
par un ensemble de K valeurs de ψ = {ψ1, ψ2, . . . , ψK}, la valeur maximale de la
DoF est notée ψmax avec |ψk| ≤ |ψK | = ψmax. Donc, le filtre moyen de Wiener dϕψ qui
minimise

∑
k MSE(ϕ, ψ) a pour expression en Fourier :

d̃ϕψ(ν) =

1
K

∑
k

(
h̃ϕψk

(ν)
)�

1
K

∑K
k=1

∣∣∣h̃ϕψk
(ν)

∣∣∣2 + Snn(ν)
Soo(ν)

, (4.24)

où ·� représente la conjugaison complexe. Dans cette thèse, on utilise la « qualité
d’image » (IQ), une quantité plus pratique définie par :

IQ(ϕ, ψ) = 10 log10

(
EO

MSE(ϕ, ψ)

)
, (4.25)

où EO est l’énergie de la scène définie par EO =
´ |O(r)− E [O(r)]|2 dr. On peut

donc définir le critère d’optimisation en termes de qualité d’image :

IQmin(ϕ) =
EO

MSEmax(ϕ)
, (4.26)

où MSEmax(ϕ) = maxk[MSE(ϕ, ψk)]. Donc, le profil du masque optimal peut être
écrit comme :

ϕopt = argmax
ϕ

[IQmin(ϕ)] . (4.27)

On peut alors définir la qualité d’image optimale comme :

IQopt = IQmin(ϕopt), (4.28)
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qui est un critère qui maximise la qualité d’image la plus basse dans la plage de défo-
calisation. Le diagramme représenté dans la figure 4.25 montre les étapes nécessaires
pour l’optimisation conjointe du masque de phase et du filtre de déconvolution.

FIGURE 4.25: Diagramme de co-conception optique, marquant les
étapes nécessaires pour optimiser conjointement le masque et le fil-

tre de déconvolution

Limites des masques de phase pour l’augmentation de la DoF

Dans la littérature ont été proposés plusieurs types de profils de masques de phase
pour l’augmentation de la profondeur de champ : les masques polynomiaux, qui
peuvent être modelisés mathématiquement, les masques quartiques qui compensent
aussi quelques aberrations. Dans la première partie de la thèse, on se concentre sur
les masques annulaires binaires (BAPM en anglais), qui possèdent des caractéris-
tiques intéressantes, comme une PSF symétrique autour du point ψ = 0, une tache
de PSF circulaire et le fait de pouvoir les fabriquer relativement facilement. Les
BAPM consistent en N régions annulaires concentriques de modulation de phase
0 ou π en alternance. Chaque région annulaire correspond à un anneau, de sorte
qu’un masque avec N anneaux est paramétré par N − 1 valeurs normalisées de
rayons ϕ = {ρ1, · · · , ρN−1} où la ième transition de phase se place à ri = ρiR et
satisfait la condition 0 < ρ1 < · · · < ρN−1 = 1 (voir Fig.4.26).

Le problème d’optimisation de ces multiples paramètres est très compliqué, partic-
ulièrement pour des BAPM, car le paysage d’optimisation contient plusieurs max-
ima locaux avec des valeurs très similaires. Pour cette raison on utilise un algorithme
d’optimisation globale appelé, en anglais, particle swarm, où un essaim de particules
sonde le paysage d’optimisation en cherchant le point optimal. Pour les optimisa-
tions sont considérés : un modèle de scène SOO = ν−2.5, un rapport signal-sur-bruit
(SNR en anglais) de 34dB et des DoF ψmax = {1.01.52.02.53.0}λ. On montre que
quand le nombre d’anneaux est incrémenté, le masque optimal présente une forme
similaire à la forme précédente, avec les nouveaux anneaux apparaissant près du
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FIGURE 4.26: Exemple d’un masque de phase annulaire binaire de 4
anneaux. Les régions grises correspondent à une phase ϕ = 0 et les

régions blanches à une phase ϕ = π.

bord du masque. On montre également, voir la figure 4.27, que pour toutes les DoF,
la qualité d’image augmente rapidement avec le nombre d’anneaux puis se stabilise.
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FIGURE 4.27: Comparaison des performances de masques an-
nulaires binaires avec divers nombres d’anneaux pour ψmax ∈
{1.0, 1.5, 2.0, 2.5, 3.0}λ. Le cas où le nombre d’anneaux vaut 1 est

équivalent à n’avoir aucun masque.

On a confirmé que ce comportement est conservé même si on change la PSD de la
scène et en présence d’autres aberrations optiques telles que l’aberration sphérique,
la coma, l’astigmatisme ou une combinaison des trois. On peut aussi observer l’effet
du système hybride sur des images réelles : dans la figure 4.28 on montre les im-
ages obtenues avec un système hybride simulé avec des masques optimisés pour
ψmax = 2.0λ et un nombre d’anneaux croissant. Les images sont montrées pour une
défocalisation de ψ = ψmax = 2.0λ. On observe que la qualité visuelle des images
change avec le nombre d’anneaux du masque, de la même façon que la valeur de
IQ : elle augmente rapidement jusqu’à 5 anneaux, il y a une amélioration marginale
de 5 à 6 anneaux, de 6 à 7 anneaux quelques détails s’améliorent et pour 8 anneaux,
il n’y a plus aucune différence.
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FIGURE 4.28: Image et zoom de l’image de Lena obtenus avec le sys-
tème hybride simulé pour la défocalisation ψ = ψmax et des masques
optimisés pour ψmax = 2.0λ et pour un nombre d’anneaux croissant.

Optimisation et évaluation des divers masques de phase

Le choix du critère de performance est justifié en comparant IQmin avec d’autres
critères qui apparaissent dans la littérature, comme le rapport de Strehl, la forme
de la fonction de transfert de modulation (MTF en anglais) et IQmean, un critère
similaire à IQmin où au lieu de maximiser le valeur de IQmin on maximise la valeur
IQmean = EO(1/K

∑
k[MSEk])

−1. On montre qu’utiliser seulement le SR ou la MTF
comme critères de performance n’est pas suffisant dans le contexte de l’imagerie
hybride car ils ne prennent pas en compte la contribution du bruit et le processus
de déconvolution. D’autre part, un masque optimisé par IQmean peut présenter des
valeurs très hautes et très basses dans la plage de défocalisation et, par définition,
la valeur de IQ la plus basse obtenue en optimisant la moyenne sera toujours plus
basse qu’en optimisant le minimum.

On applique ensuite les outils d’analyse utilisés pour les BAPM aux masques de
phase continus qui apparaissent communément dans la littérature, non seulement
pour évaluer et comparer leurs avantages, mais aussi parce qu’en analysant leurs
différences il est possible de mieux comprendre leurs propriétés.

Le premier masque analysé est le masque de phase polynomial (PPM), dont le pro-
fil est donné par les coefficients de ϕ(xP , yP ) = α(x3P + y3P ) + β(x2P yP + xP y

2
P ) +

γ(x5P + y5P ) . . . , le masque cubique (CPM) étant un cas particulier de ce masque où
seulement α 
= 0 (Dowski and Cathey, 1995; Diaz, 2011). Pour ce masque on montre
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que les valeurs croisées de degré inférieur influencent la qualité d’image finale de
manière plus importante que les valeurs prises séparément.

La deuxième masque qu’on étudie est le masque de phase asphérique (APM) de
profil ϕ(ρ) =

∑N
i=1 αiρ

i, le masque quartique (QPM) étant un cas particulier de ce
masque ou α2 = −α4 
= 0. Ces masques ont une performance très similaire pour
N ≥ 3. En général, ces masques sont moins performants que les autres étudiés dans
ce chapitre, mais ils sont populaires dans la littérature car ils permettent de corriger
d’autres aberrations optiques (Robinson and Stork, 2007).

Enfin, on utilise un masque de phase de profil free-form (FFPM), pour lequel le profil
est donné par la surface de révolution produite avec une génératrice ϕff (ρff ) définie
par des points d’évaluation équidistants ρff = {ρ0 = 0, ρ1, ..., ρN−1, ρN = 1}. Ces
points sont connectés par une interpolation cubique pour former la génératrice du
FFPM. Les masques optimisés de ce type tendent à avoir un profil comparable aux
BAPMs quand le nombre de paramètres N augmente. Cette similarité est observée
aussi au niveau des performances, où les masques optimisés pour une même DoF se
comportent de manière similaire aux BAPM optimaux correspondants.

Dans la figure 4.29 on compare les performances des BAPM, PPM, APM et FFPM
optimisés pour la même DoF. On voit que pour la plus faible DoF, 2ψmax = 1.5λ,
le BAPM fonctionne marginalement mieux que les autres masques. Pour une DoF
plus grande, 2ψmax = 3.0λ, le BAPM et le PPM ont des performances comparables
et considérablement supérieures aux deux autres masques. Ces observations sont
cohérentes avec les résultats rapportés par (Diaz, 2011).

FIGURE 4.29: Comparaison des performances des masques poly-
nomiaux, asphériques, free-form et binaires optimisés pour la même
DoF. Les valeurs pour le BAPM et le PPM ont été décalés de ψmax

de manière à ce que leur DoF totale coïncide avec celle des autres
masques. a) Masques optimisés pour une DoF totale 2ψmax = 1.5λ et

b) masques optimisés pour une DoF totale 2ψmax = 3.0λ.

Ces observations sont confirmées aussi en analysant les fonctions de transfert de
modulation effectives, MTFeff = d̃ · h̃, c’est-à-dire la MTF multipliée par le filtre de
Wiener de chaque masque. On voit qu’il y a une corrélation entre la performance du
système hybride et sa fréquence de coupure.
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Aliasing des systèmes hybrides et super-résolution

Le théorème de Shannon-Nyquist impose que pour qu’un système optique soit bien
échantillonné pendant la capture numérique de l’image il doit satisfaire νc = νc/νs <
0.5 : la fréquence de coupure optique νc doit être inférieure à la fréquence de Nyquist
νs/2. La majorité des systèmes optiques commerciaux sont conçus avec νc > 0.5 car
ils produisent des images plus nettes. Ce sous-échantillonnage produit une périodi-
sation de la MTF du système lors de la capture de l’image, induisant un phénomène
connu sous le nom de repliement de spectre ou aliasing en anglais. Un exemple uni-
dimensionnel est montré dans la figure 4.30, où le signal sinusoïdal de fréquence
νc est sous-échantillonné par un capteur de fréquence d’échantillonnage νc = 0.75,
qui produit un signal aliasé (donc incorrect) de période 3 fois plus grande que le
signal original. Ces artefacts sont visibles quand le système optique ne respecte pas
la condition de Shannon-Nyquist mais également communément quand une image
numérique haute-résolution (HR) est modifiée en une image de plus basse résolu-
tion (LR) sans utilisation d’un filtre anti-aliasing.

FIGURE 4.30: Aliasing d’un signal unidimensionnel sinusoïdal. La
courbe bleue représente le signal sinusoïdal continu, les points bleus
marquent un échantillonnage de νc = 0.25, les points rouges mar-
quent un sous-échantillonnage de νc = 0.75. La courbe pointil-
lée rouge représente une interpolation cubique des points sous-

échantillonnés.

La technique de reconstruction numérique connue sous l’appellation de super-résolu-
tion (SR) utilise des images d’une même scène affectées de repliement pour aug-
menter la résolution du système optique. Cette technique dépend de l’obtention de
plusieurs images de la même scène avec des décalages subpixelliques de manière à
ce qu’une quantité suffisante d’information relative aux hautes fréquences spatiales
de la scène soit présente. Le diagramme de la figure 4.31, repris de (Champagnat,
Le Besnerais, and Kulcsár, 2009), montre les étapes d’un tel système. On commence
à gauche par le processus de génération des scènes décalées, avec passage par le
système optique de K images, l’échantillonnage et l’ajout de bruit. Les images LR
obtenues, Fik, sont ensuite reconstruites par filtrage linéaire pour obtenir une image
SR Ô.

L’algorithme choisi pour la SR est ici le shift-and-add (SA) où, après avoir fixé un
facteur de SR M (PMF en anglais, qui fixe le ratio entre la taille de l’image super-
résolue et celle de l’image LR), on affecte chaque pixel LR Fik, où i est l’index du
pixel LR et k est l’index de l’image dans la séquence, à une position i′ dans l’image
super-résolue Ô :

Ô(i′/M) =
∑
i

FT
i w(i′/M − i), (4.29)
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FIGURE 4.31: Schéma de simulation d’une séquence d’images et de
reconstruction SR par l’algorithme de shift-and-add.

où Fi = [Fi1, · · · , FiK ] et w(x) = [w1(x), · · · , wK(x)] est un filtre multicanal chargé
d’additionner les pixels des images de la séquence LR dans l’image super-résolue
et d’appliquer un filtre de Wiener pour prendre en compte la PSF du système op-
tique. Les décalages, estimés au préalable, sont supposés connus. Dans la figure
4.32 on montre une image affectée d’aliasing correspondant à un facteur de sous-
échantillonnage de 2νc = 4 et l’image SR reconstruite a partir de 64 images LR et
un PMF de M = 4. On peut voir que l’image SR est passée d’une résolution de 1
lpp (lignes par pixel) à une résolution de 0.375 lpp (il présente de l’aliasing au point
marqué 3.75). L’image SR a récupéré les hautes fréquences jusqu’à 0.8 lpp, et les plus
hautes fréquences ont été perdues à cause du bruit et de la MTF du détecteur.

FIGURE 4.32: Simulation des images dans un système de SR : (en
haut) la scène nette, (en bas à gauche) image basse résolution aliasée
avec 2νc = 4, (en bas à droite) image reconstruite par l’algorithme SA

Les masques de phase fonctionnent comme des filtres passe-bas sur des systèmes
limités par la diffraction, réduisant en pratique les phénomènes de repliement spec-
tral. Il est donc intéressant d’évaluer la pertinence de la super-résolution sur des
systèmes où l’échantillonnage ne respecte pas la condition de Shannon-Nyquist,
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mais conçus pour l’augmentation de la profondeur de champ. Dans la figure 4.33
on montre les images reconstruites par SA et déconvoluées par un filtre de Wiener
conçu pour une MTF du système optique correctement échantillonnée. Dans les
deux cas, on a réussi à récupérer des hautes fréquences de la scène grâce à la SR.
On voit qu’il y a certains artefacts présents dans les images, particulièrement pour
ψ = 0, lesquels probablement apparaissent car le filtre de Wiener utilisé est un fil-
tre générique adapté uniquement à l’augmentation de la profondeur de champ sans
prendre en compte la super-résolution.

FIGURE 4.33: Simulation des images dans un système avec super-
resolution incluant des BAPM : (en haut) masque optimisé pour une
DoF de ψmax = 1.5λ (en bas) masque optimisé pour une DoF de
ψmax = 3.0λ. Les images sont montrées pour des défocalisations de

ψ ∈ {0, ψmax/2, ψmax}

On a demontré que les systèmes hybrides pour l’augmentation de la profondeur de
champ pouvaient être utilisés en conjonction avec des systèmes sous-échantillonnés
et traités par super-résolution. À notre connaissance, cela n’a jamais été fait, mais
suite à cette preuve de faisabilité, il serait intéressant de considérer le problème de
SR global pour un système à extention de DoF, et de concevoir également des filtres
de déconvolution mieux adaptés à l’augmentation de la profondeur de champ dans
le cas de méthodes de SR de type shift-and-add.

Cette problématique de super-résolution a été explorée suite à une période de dé-
tachement chez le partenaire industriel de la thèse, KLA-Tencor, à Louvain (Bel-
gique). J’y ai appliqué l’algorithme shift-and-add sur des séquences d’images ex-
périmentales pour évaluer la pertinence d’utiliser la super-résolution dans le cadre
de l’inspection industrielle. J’ai réussi à doubler la résolution d’un système d’inspection
industrielle de semi-conducteurs sur un banc d’essai, ce qui permet de détecter des
imperfections précédemment invisibles par optique traditionnelle. Dans la figure
4.34 on montre le micro-composant étudié, un zoom dans une de ses imperfections
connues, observable seulement au microscope et invisible dans le système conven-
tionnel. On a utilisé 64 images de la scène et un filtre de Wiener générique pour
reconstruire les images montrées en bas. Dans le cas M = 3, les détails plus fins
de l’image sont encore flous, mais la rayure au milieu de l’image est bien visible.
L’image pour M = 8 l’image est plus nette, mais ne donne pas de nouvelles infor-
mations concernant la rayure.
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FIGURE 4.34: Exemple d’une scène réelle améliorée par la super-
résolution (algorithme SA), obtenue chez le partenaire industriel de
la thèse KLA-Tencor. En haut : l’image LR du micro-composant. En
bas : images récupérées pour PMF=3 (à gauche) et PMF=8 (à droite).

Conclusions

Le travail développé dans cette thèse présente les caractéristiques et les limites de
performance des systèmes hybrides avec masques de phase pour l’augmentation
de la profondeur de champ. On a concentré les efforts sur les BAPM, qui possè-
dent des caractéristiques intéressantes. On a démontré que la performance des sys-
tèmes hybrides avec les BAPM augmente avec le nombre d’anneaux, puis se stabilise
rapidement. Ce comportement est intéressant pour la fabrication des masques, car
l’utilisation d’un nombre limité d’anneaux permet de gagner en temps de fabrication
et en coût de production.

On a aussi comparé divers masques de phase et critères d’optimisation. On a montré
que le critère de performance IQ est plus adapté que d’autres critères plus conven-
tionnels, tels que le rapport de Strehl ou la MTF. On montré que les BAPM ont une
performance supérieure à plusieurs masques continus de la littérature. On a mon-
tré enfin qu’il existe une corrélation entre la fréquence de coupure du masque et la
qualité d’image.

Dans la dernière partie de la thèse, on a montré la faisabilité d’utiliser des tech-
niques de super-résolution dans deux contextes différents : l’inspection industrielle
et l’augmentation de la profondeur de champ avec des masques de phase. On a
montré que les masques de phase permettent l’utilisation de techniques de super-
résolution même si le filtre de déconvolution n’est pas optimal. Pour l’inspection in-
dustrielle, on a réussi à trouver des imperfections dans les micro-composants étudiés
qui étaient invisibles pour un système conventionnel.
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Les résultats de cette étude ont permis de répondre à plusieurs questions de co-
conception optique autour des masques de phase, mais d’autres questions restent en
suspens : trouve-t-on des limites de performance similaires dans les autres masques
de phase ? Est-il possible d’optimiser encore plus les systèmes hybrides pour l’augmentation
de la DoF afin de prendre en compte d’autres traitements, comme la super-résolution ?
Il serait aussi intéressant de réaliser les masques optimaux conçus dans cette thèse
afin de corroborer de manière expérimentale les résultats observés par simulation.
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Title : Co-design of optical systems with phase masks for depth of field extension:

performance evaluation and contribution of superresolution
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Abstract : Phase masks are wavefront encoding devices typically situated at the aperture
stop of an optical system to engineer its point spread function (PSF) in a technique commonly
known as wavefront coding. These masks can be used to extend the depth of field (DoF) of
imaging systems without reducing the light throughput by producing a PSF that becomes more
invariant to defocus; however, the larger the DoF the more blurred the acquired raw image so
that deconvolution has to be applied on the captured images. Thus, the design of the phase
masks has to take into account image processing in order to reach the optimal compromise
between invariance of PSF to defocus and capacity to deconvolve the image. This joint design
approach has been introduced by Cathey and Dowski in 1995 and refined in 2002 for continuous-
phase DoF enhancing masks and generalized by Robinson and Stork in 2007 to correct other
optical aberrations. In this thesis we study the different aspects of phase mask optimization for
DoF extension, such as the different performance criteria and the relation of these criteria with
the different mask parameters. We use the so-called image quality (IQ), a mean-square error
based criterion defined by Diaz et al., to co-design different phase masks and evaluate their
performance. We then compare the relevance of the IQ criterion against other optical design
metrics, such as the Strehl ratio, the modulation transfer function (MTF) and others. We focus
in particular on the binary annular phase masks, their performance for various conditions,
such as the desired DoF range, the number of optimization parameters, presence of aberrations
and others. We use then the analysis tools used for the binary phase masks for continuous-
phase masks that appear commonly in the literature, such as the polynomial-phase masks. We
extensively compare these masks to each other and the binary masks, not only to assess their
benefits, but also because by analyzing their differences we can understand their properties.
Phase masks function as a low-pass filter on diffraction limited systems, effectively reducing
aliasing. On the other hand, the signal processing technique known as superresolution uses
several aliased frames of the same scene to enhance the resolution of the final image beyond
the sampling resolution of the original optical system. Practical examples come from the works
made during a secondment with the industrial partner KLA-Tencor in Leuven, Belgium. At the
end of the manuscript we study the relevance of using such a technique alongside phase masks
for DoF extension.
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Résumé : Les masques de phase sont des dispositifs réfractifs situés généralement au niveau
de la pupille dun système optique pour en modifier la réponse impulsionnelle (PSF en anglais),
par une technique habituellement connue sous le nom de codage de front donde. Ces masques
peuvent être utilisés pour augmenter la profondeur du champ (DoF en anglais) des systèmes
dimagerie sans diminuer la quantité de lumière qui entre dans le système, en produisant une
PSF ayant une plus grande invariance à la défocalisation. Cependant, plus le DoF est grand
plus limage acquise est floue et une opération de déconvolution doit alors lui être appliquée.
Par conséquent, la conception des masques de phase doit prendre en compte ce traitement
pour atteindre le compromis optimal entre invariance de la PSF à la défocalisation et qualité
de la déconvolution.. Cette approche de conception conjointe a été introduite par Cathey et
Dowski en 1995 et affinée en 2002 pour des masques de phase continus puis généralisée par
Robinson et Stork en 2007 pour la correction dautres aberrations optiques. Dans cette thèse
sont abordés les différents aspects de loptimisation des masques de phase pour laugmentation
du DoF, tels que les critères de performance et la relation entre ces critères et les paramètres
des masques. On utilise la ń qualité dimage ż (IQ en anglais), une méthode basée sur lécart
quadratique moyen définie par Diaz et al., pour la co-conception des divers masques de phase
et pour évaluer leur performance. Nous évaluons ensuite la pertinence de ce critère IQ en com-
paraison dautres métriques de conception optique, comme par exemple le rapport de Strehl ou
la fonction de transfert de modulation (MTF en anglais). Nous nous concentrons en particulier
sur les masques de phase annulaires binaires, létude de leur performance pour différents cas
comme laugmentation du DoF, la présence daberrations ou limpact du nombre de paramètres
doptimisation. Nous appliquons ensuite les outils danalyse exploités pour les masques binaires
aux masques de phase continus qui apparaissent communément dans la littérature, comme les
masques de phase polynomiaux. Nous avons comparé de manière approfondie ces masques entre
eux et aux masques binaires, non seulement pour évaluer leurs avantages, mais aussi parce quen
analysant leurs différences il est possible de comprendre leurs propriétés Les masques de phase
fonctionnent comme des filtres passe-bas sur des systèmes limités par la diffraction, réduisant en
pratique les phénomènes de repliement spectral. Dun autre côté, la technique de reconstruction
connue sous lappellation de ń superresolution ż utilise des images dune même scène perturbées
par du repliement de spectre pour augmenter la résolution du système optique original. Les
travaux réalisés durant une période de détachement chez le partenaire industriel de la thèse,
KLA-Tencor à Louvain, Belgique, illustrent le propos. A la fin du manuscrit nous étudions la
pertinence de la combinaison de cette technique avec lutilisation de masques de phase pour
laugmentation du DoF.
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