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Résumé
Les méthodes Monte Carlo (MC) sont largement utilisées dans le domaine du nucléaire
pour résoudre les équations du transport neutronique. Ce type de méthode stochastique
offre l’avantage de minimiser les approximations mais présente un taux de convergence
lent régit par la loi des grands nombres, ce qui rend les simulations très coûteuses
en termes de temps de calcul. Auparavant, l’évolution régulière de la puissance des
processeurs permettait d’améliorer les performances du code sans avoir à reconcevoir les
algorithmes. De nos jours, avec l’avènement des architectures many-cœurs (Intel MIC)
et les accélérateurs matériels, les travaux d’optimisation sont indispensables et sont une
préoccupation importante de la communauté MC.

Dans ce type de simulation, les calculs les plus coûteux concernent le calcul des sec-
tions efficaces, qui modélisent l’interaction probabiliste d’un neutron avec les nucléides
qu’il rencontre sur sa trajectoire, au niveau microscopique. L’approche convention-
nelle consiste à pré-calculer avant la simulation les sections efficaces de chaque type de
nucléide, à chaque température intervenant dans le système à partir des informations
des bibliothèques de données nucléaires, et rangé dans des tables indexées par l’énergie
incidente. Ces données sont ensuite chargées en mémoire. Pendant le calcul, elles sont
ensuite récupérées dans des tables et le caractère stochastique du transport MC induit
des accès à la mémoire aléatoires pour un coût de calcul minime correspondant à une
interpolation linéaire. Dans ce cas, l’essentiel du temps de calcul se concentre sur des
recherches dans ces tables de probabilités, qui sont de tailles très variables en fonction
de chaque nucléide.

Afin de minimiser les conflits d’accès mémoire, nous avons étudié et optimisé une vaste
collection d’algorithmes de recherche afin d’accélérer ce processus de récupération de
données. Dans un premier temps, nous avons étudié et proposé plusieurs alternatives à
la recherche binaire conventionnelle, telles que la recherche N-aire (variante vectorisée
de la recherche binaire) et la recherche linéaire vectorisée. Les évaluations montrent
qu’une accélération significative peut être obtenue par rapport à la recherche binaire
conventionnelle à la fois sur CPU classique et architecture many-cœurs. Cependant,
la recherche N-aire n’est pas plus performante que la recherche binaire, ce qui indique
que les efforts de vectorisation sont pénalisés par des accès dispersés et une mauvaise
utilisation du cache. La vectorisation de certains des algorithmes s’est montrée efficace
sur l’architecture MIC grâce à ses unités vectorielles de 512 bits. Cette amélioration
est moins nette sur CPU, où les registres vectoriels étant deux fois plus petits. Dans
la seconde partie, nous avons étudié des multiples structures de données possibles per-
mettant d’optimiser l’accès aux tableaux des sections efficaces. Ainsi, la grille d’énergie
unifiée est la plus performante dans tous les cas. Ce type de méthode synthètise tous les
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tableaux en un seul, donc la recherche dans la table n’a besoin d’être effectuée qu’une
seule fois pour chaque calcul de section efficace macroscopique. Cascade fractionnaire,
un compromis similaire utilisant moins d’espace mémoire, est également implémentée
et évaluée. Les méthodes d’accès par tables de hachage, avec des stratégies de hachage
linéaires et logarithmiques, présente le meilleur compromis entre performance et em-
preinte mémoire. A partir de ces algorithmes existent, nous avons proposé le N-ary map
en utilisant des tampons supplémentaires pour assurer des accès mémoire efficaces lors du
chargement des bordures dans les registres vectoriels. Toutes ces variantes sont évaluées
sur les systèmes de multi-cœurs et de many-cœurs. Cependant, ils sont redoutablement
inefficaces du fait de la saturation de la mémoire et du manque de vectorisation de ces
algorithmes. En d’autres termes, la puissance de calcul des architectures modernes est
en grande partie gaspillée. Une optimisation supplémentaire comme la réduction de la
mémoire s’avère très importante car elle améliore en grande partie les performances in-
formatiques. Un autre problème majeur de ces méthodes est l’empreinte mémoire très
importante qu’elles induisent quand un grand nombre de températures sont à considérer
comme par exemple dans le cadre d’un couplage à la thermo-hydraulique. En effet, les
sections efficaces à une température pour les quatre cent noyaux impliquées dans une
simulation représentent près d’un gigaoctet d’espace mémoire, ce qui rend impossible la
simulation à plusieurs centaines de températures.

Afin de résoudre ce problème, nous avons étudié une approche radicalement opposée :
la reconstruction au vol des sections efficaces. L’idée est de réaliser le calcul des sec-
tions efficaces à partir des données élémentaires se trouvant dans les bibliothèques de
données nucléaires (description des résonances) ainsi que le traitement en température
(élargissement Doppler) pendant la simulation, à chaque fois qu’une section efficace est
nécessaire. Cet algorithme, très calculatoire, repose sur une formulation similaire à celle
utilisée dans le calcul des bibliothèques standards de neutronique. Cette approche per-
met de passer d’un problème de type “memory-bound” à un problème de type “compute-
bound” : seules quelques variables pour chaque résonance sont nécessaires au lieu de la
table conventionnelle. L’espace mémoire est ainsi largement réduit, ainsi que les con-
flits d’accès. Cette méthode est cependant extrêmement coûteuse en temps de calcul.
Après une série d’optimisations, les résultats montrent que le noyau de reconstruction
bénéficie de la vectorisation et peut atteindre 1,806 GFLOPS (en simple précision) sur
un Knights Landing 7250, ce qui représente 67% de la puissance crête. Cela permet
d’envisager des simulations à plusieurs centaines de températures, ce qui est impossible
avec une approche classique.

Même si ces efforts d’optimisation améliorent significativement la performance, ce calcul
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à la volée reste encore beaucoup plus lent que les méthodes de recherche convention-
nelles. Les travaux futurs devront donc se concentrer sur les optimisations algorith-
miques comme des méthodes de fenêtrage de multipole. Si ce travail s’est concentré sur
les architectures many-cœurs, les implémentations sur accélérateur graphique (GPGPU)
méritent d’être étudiées pour espérer atteindre des performances plus élevées. D’autre
part, la prise en compte de l’efficacité énergétique devient cruciale pour évaluer les algo-
rithmes sur les architectures modernes. Une solution de compromis entre la performance
maximale et la consommation d’énergie est désormais nécessaires. Ainsi les algorithmes
proposés devront être réexaminés sous l’angle de la consommation énergétique et pas
uniquement sur leur performance brute ou leur occupation mémoire.
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Chapter 1

Introduction

Energy is not created out of thin air but can be only converted from one form to another.
Compared to other energy sources like coal or natural gas, the nuclear source is “factor of
a million” more powerful [1] due to the dense atomic nucleus representing nearly all the
mass of an atom but six orders of magnitude smaller in diameter. The nucleus is very
stable since protons and neutrons inside it are bound together by the strong nuclear
force. This stability can be broken by certain reactions, for example, when a fissile
nuclide absorbs a free neutron, it has a very high probability to become unstable and
splits into smaller parts. During this splitting process or fission, a large amount of energy
is released. Current nuclear power plants profit from such energy to generate heat, which
then drives steam turbines to produce electricity. Nuclear power has been considered
as an important solution for the energy crisis [2] since it has one of the lowest carbon
dioxide emission out of all commercial base-load electricity technologies [3]. Nowadays,
France derives about 75% of its electricity from nuclear energy, which is the highest
percentage in the world [4].

1.1 Monte Carlo Neutronics

Considering that nuclear energy is so powerful and so widely used, we should give careful
thought to the design and the safe operation of all devices related to nuclear interactions
like nuclear reactor and the Large Hadron Collider (LHC) [5] at European Organization
for Nuclear Research (CERN), where the Monte Carlo (MC) method is used to interpret
a large amount of experimental data [6]. More precisely, neutron transport is dedicated
to study the motions of neutrons with materials and go a step further to understand
how reactors will behave in given conditions. As for modelization, this problem can be

1
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described by the Boltzmann Transport Equation (BTE). There are two prevalent ap-
proaches to solve this equation: the stochastic and the deterministic. Within these two
approaches, the stochastic MC method is largely applied in the nuclear community to
perform reference calculations [7, 8] because it is numerically-accurate with few approxi-
mations. This method simulates the physics by following a neutron inside a system from
birth to absorption or leakage. The entire trajectory during a neutron’s life-cycle is called
a history. All random movements in a history are governed by interaction probabilities
described by microscopic cross-sections. Macroscopic quantities like neutron densities
can be estimated by repeating a large number of histories, which makes the MC method
much more computationally expensive than the deterministic. As can be imagined, the
slow convergence of the MC method leads to the fact that simulations need to be run
on large supercomputers to produce results in reasonable time for real-case problems.

1.2 HPC and Hardware Evolution

High-Performance Computing (HPC) refers to the use of aggregated computing power
in order to solve large problems which can not be handled on a personal desktop due to
various factors, for example, limited computing capability, unaffordable memory require-
ment and so on. By assembling a large number of computing units into one system, HPC
accumulates computational capability via the arithmetic operation and data collection
across individual units within the platform. It gathers technologies such as architecture,
system, algorithms, and applications under a single canopy to solve problems effectively
and quickly. An efficient HPC system requires a high-bandwidth, low-latency network
to connect multiple power-friendly nodes or processors. This multi-discipline field grows
rapidly due to considerable demands in science, engineering, and business.

Evolution of hardware architectures has great impacts on the HPC community. Prior
to 2002, processor performance improves mainly by increasing the number of transistors
per integrated circuit [9]. According to Moore’s law [10], this number doubles every 18
months. Larger transistor count in an integrated circuit indicates smaller size for each,
which allows achieving faster clock rate. Combined with more complicated architectural
and organizational designs, programs at that time required few optimizations since its
computing capability enhanced involuntarily with higher operational frequency. How-
ever, such free lunch is over: overheating brought by higher frequency is approaching
the limit of air cooling, not to mention that there is a cubic dependency between clock
speed and power consumption. Here comes the famous power wall: processors making a
dramatic jump in frequency and power requirement show much less improvement in per-
formance due to thermal losses. From then onwards, the concept of modern architectures
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with multiple processors on-chip, simpler pipeline and lower operating frequency comes
into focus. One representative of such emerging accelerators is the Intel Many Integrated
Core Architecture (MIC) [11]. It exists other competitors like general-purpose computing
on graphics processing units (GPGPU), the many-core SW26010 [12], the Matrix-2000
GPDSP (General-Purpose Digital Signal Processor) [13], the Sun SPARC64 [14], and
so on. In the November 2016 Top 500 list [15], 86 systems out of 500 use accelerator or
coprocessor technology. Moreover, these 86 systems take up a large portion of the top
117 supercomputers with performance greater than one PFLOPS (Peta Floating-Point
Operations Per Second). Combined with or without the host CPU (Central Processing
Unit), low-frequency accelerators have begun playing an important role in the commu-
nity. Jointly with the increasing computing power, the growing disparity of development
between processor and memory, referred as memory wall, is becoming more and more
serious. In contrast to the annual 50% increase rate of processor speed, memory speed
only improves 10% per year [16]. It has been predicted that memory speed would be-
come an overwhelming bottleneck in computer performance [9]. This Two Wall problem
is intractable since every time we focus on optimizing one wall, we aggravate another.

1.3 Motivations and Goals

Computational science represents a broad discipline that uses HPC to understand and
solve complex problems, among which MC neutronics has been selected as one of the
twenty-two key applications to conduct with the oncoming exascale computing [17].
Exascale represents a system with more than one exaFLOPS performance. Compared to
today’s petascale computing, exascale is supposed to achieve 1000× higher performance
by preserving current consumption level [18, 19]. In order to carry out this, new processor
architectures remain still unknown but will surely operate at low clock rate thus the
number of processing units on a single chip will have to increase [20]. Memory bandwidth
and capacity will probably not keep pace with the improvement in FLOPS [21], which
makes certain current algorithms no longer practical. As a result, modern algorithms
should be designed to have high FLOP usage and reduce data movement as much as
possible for both energy and performance concerns. Memory-bound algorithms will
suffer more and more from future architectures and will be outperformed by alternative
compute-bound ones.

The fundamental of MC transport has been established since the appearance of scientific
computing [22]; though some new physics came out from time to time to improve it,
the principle remains the same. In order to prepare MC transport for exascale, several
issues should be taken into serious consideration:
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• Demand: evolved along with hardware development, the numerical expectation to
Monte Carlo calculations progresses constantly. What the community needs is not
to solve current problems more rapidly with more advanced hardware, but to per-
form efficiently much more detailed simulations with larger machines, for example,
we used to simulate a physic-simplified problem with two or three temperatures
but nowadays hundreds of temperatures are required instead.

• Challenge: given the demand of MC transport and the actuality of hardware
evolution, how to carry out MC calculations with modern or future HPC facilities
is not evident. As stated before, the principle of MC calculations has been set up
since the 1940s. Though several algorithms perform well for a long time and would
still be the most effective for the foreseeable future, they have been found using less
computing resources compared to the past. In other words, the improvement on
hardware performance brings less so on simulation performance. To some extent,
this situation is caused by the top500 list where all supercomputers are evaluated
and recognized by solving the LINPACK benchmark [23] — one specific linear al-
gebra problem scaling easily and therefore, applicable for any machine no matter
its size or structure. As a result, manufacturers offer massively regular vectoriza-
tion support at the hardware level to achieve a higher ranking, by ignoring the
fact that this may make no sense to a lot of real case problems related to science
and engineering. Common MC transports show little SIMD (Single Instruction on
Multiple Data) opportunities thus can be a typical example of this issue. On the
other hand, more detailed simulations will require more complicated numerical and
programming model. Though the MC process is intrinsically parallel and requires
a few communications, it will still be a challenge when the parallelism degree in-
creases to the level of billion. Another major issue is memory space: as can be
imagined, memory requirement will increase in order to perform more physically
accurate calculations, thus today’s voluminous nuclear data sheet will not comply
with the future trend.

• How: one direct idea to answer the challenges mentioned above is co-design, which
refers to a computer system design process where scientific problem requirements
influence architecture design and technology and constraints inform formulation
and design of algorithms and software [24]. It requires the cooperation of hardware
architects, system engineers, domain scientists, HPC experts to work together
and balance benefits and drawbacks in the design of the hardware, software and
underlying algorithms. For instance, an ideal machine for the conventional (binary
search on pretabulated cross-section data) MC calculation should consist of:
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– simplified memory hierarchy by removing data cache system since data access
is totally random and cache contributes little to overall performance;

– low latency and large space memory set as closely as possible to the processor
while memory bandwidth is not crucial;

– no vector units but only scalar pipeline;

– shorter pipeline stages since no complex arithmetic operation to deal with;

– hyper-threading support to hide data load overhead and keep processor busy;

– a large number of cores within a processor to fit the embarrassingly parallel
computation;

As can be observed from the above features, several of them strongly oppose the
hardware evolution trend. In fact, actual architectures are not driven by this co-
design process but by the market and hardware vendors. Removing cache means
no data locality, which may be helpful for some specific problems but turns out to
be extremely inefficient for common use. Without vector units, the processor can
only have the same performance at the price of much more power consumption. In
a word, this advanced co-design methodology is not realistic for the current compu-
tational science community due to various difficulties like demand, practicality, and
funding. Consequently, the most practical way of modern computational science
is that software developers are responsible to transform their codes to conform
to hardware features. More precisely for MC transports, simulations should be
performed with small memory requirement and high vectorization usage.

The cross-section calculation has been figured as the number one performance bottleneck
of MC simulations since this process is high-frequently repeated and can take up to 80%
of overall computing time [25]. This is the case in particular with criticality calculations
where many isotopes and few tallies present. A conventional way to perform this lookup
is using the binary search, but retrieving data in large tables with the bouncing search
method results in high cache misses and therefore degrades efficiency. Previous studies
focused on this issue have already proposed several solutions. However, all the proposals
are latency-bound due to the lookup nature. Moreover, the pretabulated data requires
a great deal of memory space: in order to simulate the more than 400 isotopes available
in a neutron cross section library, more than one GB memory space is required for
one single temperature. In simulations coupled with thermal-hydraulic feedback where
hundreds or thousands of different temperatures are involved, cross section calculations
by energy lookups become infeasible for contemporary memory volume. An alternative
cross-section reconstruction can resolve the problems relevant to energy lookups. The
basic idea behind the reconstruction is to do the Doppler broadening (performing a
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convolution integral) computation of cross sections on-the-fly, each time a cross section
is needed, with a formulation close to standard neutron cross section libraries, and
based on the same amount of data. This approach largely reduces memory footprint
since only several variables for each resonance are required instead of the conventional
pointwise table covering the entire resolved resonance region. There is no more frequent
data retrieving, so the problem is no longer memory-bound. The trade-off is that such
on-the-fly calculations are even more time-consuming than received energy lookups.

1.4 Outline

This dissertation is dedicated to optimize the cross section computation of MC codes and
investigate its performance potential by using modern computing architectures. Firstly
in Chapter 2, the concept of computer architecture and three emerging accelerators, Intel
Knights Corner, Intel Knights Landing, and Nvidia P100, will be introduced with details.
Apart from hardware, programming models, useful tools and vectorization techniques
related to the current work will be discussed as well.

Chapter 3 will cover background information around MC transport. It gives a brief
introduction to nuclear analysis, Monte Carlo method, physics, and mathematics of
kinetics involved in neutron transport. Cross section and Doppler broadening will then
be explained since they stand for the primary performance issue. Besides, two reference
codes and the PATMOS prototype that we are working with will be presented. At
last, a discussion about HPC and Monte Carlo transport calculations will present the
state-of-the-art progress in the community.

Chapter 4 focuses on competing energy lookup algorithms of cross section computation.
It begins with algorithm presentation of each proposal. Then, it describes vectorizations
and other optimizations applied in this work. All efforts are firstly tested in a stand-
alone setting independent of PATMOS. After that, numerical results and algorithms
will be evaluated in a full neutron simulation with PATMOS in terms of performance,
scalability and memory footprint.

The following chapter introduces the on-the-fly cross section reconstruction. It will firstly
present the initial multipole cross-section representation and the Faddeeva function.
Then, it will detail our alternative cross-section reconstruction and govern equations
behind it. Corresponding optimizations and implementations will be fully explained.
Evaluation of these efforts will take place in terms of numerical validation, computing
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performance and power consumption on modern multi-core and many-core architec-
tures. FLOP usage and program limitation will be investigated with Roofline analysis
model [26].

The final chapter draws conclusions from the previous chapters. In addition to respective
conclusions for both energy lookup and reconstruction. Global comparison between these
two paths will be analyzed as well. After these concluding remarks, a future roadmap
for cross-section calculation is proposed. Furthermore, other threading and optimization
techniques for PATMOS to perform efficient on-node Monte Carlo transport parallelism
will be enumerated.





Chapter 2

Modern Parallel Computing

2.1 Computing Architectures

Each hardware platform performs calculations in its own way. In order to have a code
running efficiently on target architectures, any optimization efforts should be based on
deep understandings of the target hardware. In this section, state-of-art processors and
accelerators related to the thesis work will be introduced.

2.1.1 CPU Architectures

The von Neumann architecture introduced by the Hungarian-American mathematician
and physicist John von Neumann [27] is valued as the “referential model” of computer
architectures. It is always said that current computing devices are all evolved from this
concept. As shown in Figure 2.1(a), this stored-program system consists of four parts:

• Control unit: comprised of an instruction register (IR) and a program counter
(PC), within which the IR is responsible to hold instructions currently decoded or
executed. The PC is used to indicate the advancement of the executing program.
It is a counter that accumulates itself after executing each instruction, and in the
meanwhile points to the next instruction to be executed;

• Processing unit: comprised of an arithmetic logic unit (ALU) and registers.
ALU is a fundamental component for modern computing architectures since it
handles arithmetic operations on operands and carries out calculations. Registers
are a small-size storage system responsible to provide fast accesses for both data
and instructions;

9
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• Memory: large storage mechanism to hold data and instructions with much higher
latency;

• I/O: input and output devices.

(a) Von Neumann architecture (b) Harvard architecture

Figure 2.1: Computer architectures.

The main problem of the von Neumann architecture is the limited data transfer rate
between CPU and memory. Since both data and instructions in memory share the
same bus to communicate with CPU, computers can not handle data operations and
instruction fetches simultaneously. Such low throughput makes processing unit running
idle and always waiting for data. In order to deal with this von Neumann bottleneck,
several mitigations are applied to solve the problem:

• set up an intermediate memory layer between memory and CPU (for example,
cache and scratchpad memory);

• individual accesses to data and instructions instead of the single shared path.

This improved concept, called Harvard architecture (Figure 2.1(b)), is the fundamental
of modern computing devices. In fact, data and instructions paths are usually separated
at the cache-level for modern chips. Between the main memory and the CPU, however,
instructions are still handled as if they were data for efficiency concern thus the processor
works more like a von Neumann architecture. Such half-von Neumann half-Harvard
concept is referred as the modified Harvard architecture, but always loosely documented
as the Harvard architecture.

2.1.1.1 Memory Access

As shown in Figure 2.2, modern memory systems are usually composed of several stages
to overcome the von Neumann bottleneck and provide high-efficiency data/instruction
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access. Registers are usually at the top of the memory hierarchy and provide the fastest
data transfer rate among the entire memory system. Target data to be dealt with
arithmetic or logic operations (in the form of assembly languages) will be temporarily
held in the register to carry out computations. Due to the limited number of registers,
they are identified from each other by distinct names but not different memory addresses.
Cache is an intermediate memory layer made of Static Random-Access Memory (SRAM).
Unlike the data management in registers, developers do not have full control of data load
by using explicit instructions. Data manipulation at the cache level are directly built on
die and handled by the hardware memory controller (Figure 2.2). Generally, the cache
follows the Least Recently Used (LRU) policy to allocate and release data by the unit
of a cache line. Every time the memory controller indicates a new address, the cache
will load not an arbitrary amount but one cache line (typically 64 bytes) of data. This
notion is really important for code optimizations since it changes a lot the way to profit
from cache and data reusability. For many code developers, the register has so small a
size and the memory is so far away from the processor that making good use of cache is
the most practical way to improve the data transfer efficiency. Locating at the bottom
of the hierarchy, memory has the lowest bandwidth and the highest latency compared to
register and cache. It is made of Dynamic Random-Access Memory (DRAM) in which
binary bits are represented by the high-level or low-level of small capacitors. Compared
to the SRAM used by cache, DRAM sacrifices transfer efficiency for the privilege of
fabrication cost.

Figure 2.2: Modern memory hierarchies composed of register, cache and memory.

The trend in hardware has been towards many cores in one processor, which leads to
a problem for the traditional Symmetric MultiProcessing (SMP) model where a large
number of cores must compete for data access through the unique data bus. One direct
solution is to use multiple system buses and each of them has its own I/O ports. Every
bus serves only a small group of cores and memory. All groups combined together
is determined as a Non-Uniform Memory Access (NUMA) architecture, each group is
called a NUMA node. Data access to memory of remote nodes takes longer than that
of the local node memory. Local and remote memories are usually used in reference
to a currently running thread where local memory indicates the memory on the same
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node as the running thread while remote memory is the memory that does not belong
to the node on which the thread is running. Though both local and remote memories
are transparent to each hardware thread like before, such non-uniform memory access
pattern requires more work and carefulness for program developments. It is important
to make the running thread using local memory as much as possible to avoid additional
access overhead (thread affinity control).

2.1.1.2 Hardware Parallelism

(a) Hyper-threading (b) Multi-threading

Figure 2.3: Hardware-level parallelism where T is thread, C is core, MC is memory
controller.

Based on the Harvard architecture, modern processors employ hyper-threading, multi-
threading and SIMD techniques to reinforce their computing power. As shown in Fig-
ure 2.3(a), multiple hardware threads share the same core (or computing resources) and
appear as if there were multiple cores for software developers that can execute different
instructions in parallel. Another evolution for hardware parallelism is multi-threading:
instead of replicating partially the computing resource, the entire core is cloned multiple
times to achieve independently parallel executions for all cores within the processor. As
for the vector processing, the SIMD technique (see Section 2.3) is used inside each core
where multiple data can be handled with same operations so that this can further extend
the hardware parallelism. The change from higher clock rates, which requires significant
increase of power consumption to energy-efficient massive parallelism, transforms the
code performance work depending more on software engineers than hardware engineers.

2.1.1.3 Sandy Bridge and Broadwell

Intel Sandy Bridge micro-architecture [28] with the 32 nm process was firstly released
in early 2011. It implements many new hardware features, among which the AVX
(Advanced Vector Extension) vector instructions introduced the renaissance of SIMD
technique. Intel Broadwell [29] with 14 nm transistors and the more powerful AVX2 has
a lot of improvements like larger out-of-order scheduler, reduced instruction latencies,
larger L2 Translation Lookaside Buffer (TLB), and so on. It should be noted that in
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this thesis, we always compare one MIC with a dual-socket CPU because they share
nearly the same price and power consumption.

2.1.2 Many Integrated Cores

The performance improvement of processors comes from the increasing number of com-
puting units within the small chip area. Thanks to advanced semiconductor processes,
more transistors can be built in one shared-memory system to do multiple things at
once: from the view of programmers, this can be realized in two ways: different data or
tasks execute in multiple individual computing units (multi-thread) or in long uniform
instruction decoders (vectorization). In order to answer the need of parallelism and vec-
tor capabilities, Intel initially introduced wide vector units (512 bits) to an x86-based
GPGPU chip codenamed Larrabee [30]. This project was then terminated in 2010 due
to its poor early performance but techniques around are largely inherited by the latter
high-performance computing architecture – Many Integrated Cores.

The initial MIC board, codenamed Knights Ferry was announced just after the termi-
nation of the Larrabee. Inheriting the ring structure of the initial design, Knights Ferry
has 32 in-order cores built on a 45 nm process with four hardware threads per core [11].
The card supports only single precision floating point instructions and can achieve 750
GFLOPS. Like GPGPUs, it works as an accelerator and connected to the host via PCI
(Peripheral Component Interconnect) bus.

2.1.2.1 Knights Corner

The first commercial MIC card after the prototype Knights Ferry, named Knights Corner
(KNC) [31], follows the same design but is built with the more advanced 22 nm process,
which allows up to 61 cores working at 1.1 GHz and begins to support double-precision
operations.

Each core is very similar to the older Intel Pentium processor [33]. Figure 2.4 shows
the scalar and vector pipelines inside a KNC core and the instruction/data flow model.
Each core supports four hyper-threads to keep pushing data into processing units and
hide memory load latency. It has a two-level cache system in which the L1 cache consists
of a 32-KB L1 instruction cache and a 32-KB L1 data cache. The 512-KB L2 cache is
unified since it does not distinguish data and instructions. Every computing core has an
L2 cache, and all L2 caches are coherent via the bi-directional ring network. Inside of
each core, there are two individual pipelines (U-pipe and V-pipe) allowing it to execute
two instructions per cycle: one on U-pipe and the other on V-pipe [34]. The MIC
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Figure 2.4: Abstraction of a Knights Corner coprocessor core [32].

architecture has relatively short pipelines compared to CPUs. Instruction prefetching
follows a round-robin order so the currently running thread can not deal with instructions
continuously. As a result, using hyper-threading turns out to be necessary for KNC to
hide such overhead and achieve optimum performance. The theoretical performance of
a KNC coprocessor with 60 usable cores can be calculated as follows:

• Single-precision: 16 (SP SIMD lane) × 2 (fused multiply–add or FMA) × 1.1
(GHz) × 60 (cores) = 2112 GFLOPS

• Double-precision: 8 (DP SIMD lane) × 2 (FMA) × 1.1 (GHz) × 60 (cores) =
1056 GFLOPS

The wide 512-bit Vector Processing Unit (VPU) is the key feature of MIC. It can simul-
taneously issue 16 single-precision floats or 32-bit integers; or 8 double-precision floating
point variables. Since there are no bypasses between the double and the single, mixing
these two elements in a code will cause performance penalties. The VPU state per thread
is maintained in 32 512-bit general vector registers, 8 16-bit mask registers, and a status
register VXCSR [35]. The VPU is fully pipelined and executes most instructions with
4-cycle latency. KNC implements a novel instruction set architecture (ISA) called Intel
Initial Many-Core Instructions (IMCI), which supports 218 new instructions compared
to those implemented in the traditional SIMD instruction sets (MMX, SSE, AVX, etc.).
The IMCI supports scatter and gather instructions to enable vectorizations over a sparse
data layout. It also implements mask operations to work on specific elements of a vector
register. It should be noted that common operations (for example, unaligned data load)
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are not fully supported by the preliminary IMCI, which make optimizations by directly
using intrinsics relatively difficult compared to other SIMD instruction sets.

Figure 2.5: The ring organization of a Knights Corner coprocessor [32].

As mentioned before, cores are connected together via a ring structure (Figure 2.5). The
bi-directional ring is composed of ten system buses, five in each direction, which allows
sending data across the ring once per clock per controller. The memory controllers
and the PCIe client logic provide a direct interface to the GDDR5 (Graphics Double
Data Rate) memory (bandwidth ∼350 GB/s) on the coprocessor and the PCIe bus,
respectively. Core-private L2 caches are coherent by the global-distributed tag directory
(TD). Though operands found on remote L2 caches will be literally determined as a
cache hit, a longer access time via the global TD does actually cause a cache miss. KNC
has a Linux-based micro-OS (operating system) running on it. The OS takes up a core
to deal with hardware/software requests like interrupts, so it is a common practice to
use 60 cores out of 61 to perform pure computation tasks.

Serving the host CPU as an accelerator card, KNC has three working models:

• Offload mode: the MIC card works like a GPGPU. This execution model is also
known as the heterogeneous programming mode. The host CPU offloads partial
or whole calculations to the accelerator via PCIe bus. The application starts and
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ends execution on the host, but assigns certain sub-work to execute in the remote
during its lifecycle;

• Native mode: since the coprocessor hosts a micro OS, it can appear as an in-
dependent computing node, and perform the whole calculation all the way from
the beginning to the end. This execution environment allows the users to view the
coprocessor as another compute node. Native execution requires cross-compilation
for the MIC operating environment. The advantage is that such mode avoids the
significant data transfer overhead between CPUs and MICs;

• Symmetric mode: the coprocessor works in a hybrid way by mixing native mode
and offload mode. Host and accelerator communicate through message passing
interface (MPI). This execution treats accelerator card as another node in a cluster
in a heterogeneous cluster environment.

In this thesis, we focus only on the native mode to evaluate KNC’s optimum performance.

2.1.2.2 Knights Landing

Intel officially first revealed the latest MIC codenamed Knights Landing (KNL) in
2013 [36]. Being available as a coprocessor like previous boards, KNL can also serve
as a self-boot MIC processor that is binary compatible with standard CPUs and boot
standard OS [37]. Another key feature is the on-card high-bandwidth memory (HBM)
which provides high bandwidth and large capacity to run large HPC workloads.

Figure 2.6: The organization of a Knights Landing processor [38].
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Unlike the previous ring structure, KNL cores based on Silvermont microarchitecture [39]
are organized as a matrix of up to 36 active tiles (Figure 2.6a). Each tile comprises two
cores which share a one MB L2 cache (Figure 2.6b). The new out-of-order core has
2 VPUs, and includes many changes to better support HPC workloads: higher cache
bandwidth, deeper out-of-order buffers, new instructions, etc.

The new 2D cache-coherent mesh interconnect is introduced to link all components
on die, such as tiles, memory controllers, I/O controllers, etc. All L2 caches are kept
coherent by the mesh with the MESIF (modified, exclusive, shared, invalid, forward)
protocol [40], which provides more uniform data access with high bandwidth to different
parts of the chip. To maintain cache coherency, KNL has a distributed tag directories
(DTD) to identify the state and the location of any cache line with a hashing function.
This change in cache organization requires more complicated hardware and increases the
complexity of cache management. In order to prepare the cache for different applications,
various cache clustering modes are offered by KNL:

• All-to-All: memory addresses are uniformly distributed to all L2 caches. Gener-
ally, all cache accesses are remote so the latency of cache hits and cache misses is
long. It is designed not to perform daily computations but only to provide backup
solution for hardware fault;

• Quadrant: the mesh structure is divided into four quadrants where each has its
own memory controller. It is the default clustering mode in KNL, in which four
quadrants are hidden from the OS and appear as one contiguous memory block
from the user’s perspective [41]. Memory addresses are guaranteed to be locally
mapped within the quadrant, so there is no remote memory request at all;

• Hemisphere: similar to quadrant mode but the mesh is divided into two hemi-
spheres.

• Sub-NUMA clustering (SNC): SNC-2 and SNC-4 further extend quadrant and
hemisphere components to individual NUMA nodes to the OS. This kind of clus-
tering mode can have the best latency at the price of more NUMA optimizations
to deal with.

Memory bandwidth is one of the common performance bottlenecks for computational
applications due to the memory wall. KNL implements a two-level memory system to
address this issue. The first 16 GB HBM based on Multi-Channel Dynamic Random
Access Memory (MCDRAM) has a 400 GB/s bandwidth, and the second DDR4 mem-
ory can deliver about 90 GB/s with up to 384 GB in size. For any bandwidth-bound
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Figure 2.7: Memory modes in Knights Landing processor.

applications on KNL, the key to getting optimum performance is to fully profit from MC-
DRAM. HBM on a KNL can be used either as a last-level cache (LLC) or an addressable
memory. Like the cache clustering mode in KNL, this configuration is also determined
at boot time via BIOS (Basic Input Output System) with three models (Figure 2.7):

• Cache mode: MCDRAM is seen as an LLC caching the main DDR4 memory, and
itself cached by L2 cache. In this mode, HBM cache is hidden from the plat-
form so no user-side adjustment is required for computing applications. However,
deeper cache hierarchy results in longer access to the addressable memory (HBM
bandwidth ∼300 GB/s);

• Flat mode: both MCDRAM and DDR4 are used as addressable memory and
cached by L2 cache. Access to the main DDR4 memory is no longer necessary
to query HBM (bandwidth ∼400 GB/s). CPU and DDR4 are set in one NUMA
node while HBM is separated in another node without cores. This mode allows
finer manipulations over MCDRAM but also requires more development work since
memory allocation will take place on DDR4 by default. Performance tuning around
HBM and NUMA configurations need specific optimization knowledge as well as
considerable working hours;

• Hybrid mode: as shown in the figure, part of the HBM is served as addressable
and the rest is used as LLC. The ratio between the two can be chosen at boot
time. Generally, this mode is designed for large clusters where different users have
their own configuration requirements.

Since there are three memory modes available to perform computations on KNL, how to
choose the optimal mode of HBM utilization for target application becomes an impor-
tant question for developers. Typically, if the program can entirely fit into MCDRAM,
which is the ideal case for KNL, the flat mode and the numactl [42] instructions should
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be used. This mode requires no source code changes, and the program can naturally
take advantage of the HBM. If the entire program is too voluminous for HBM but the
bandwidth-bound kernel within it can fit in HBM. the flat mode and the memkind [43])
library are recommended. Developers only need to explicitly allocate the critical kernel
on HBM with a few code modifications and leave the rest of the code unchanged like
before. The worst case is that the program is too large, and it is difficult to extract a
critical kernel fitting into HBM. In this case, the cache mode is recommended to at least
make use of the HBM as much as possible.

By supporting all legacy instruction sets including 128-bit SSE (Streaming SIMD Exten-
sions) and 256-bit AVX technologies, KNL also introduces a new AVX-512 instruction
set which is composed of four sub-sets:

• AVX-512F: the fundamental instruction set. It contains vectorized arithmetic op-
erations, comparisons, data movement, bitwise operations and so on. It is similar
to the core category of the AVX2 instruction set, with the difference of wider
registers, and more double-precision support;

• AVX-512CD: CD indicates “conflict detection”. Previous ISA are not capable to
perform basic analysis of data dependencies inside a loop so they have to leave the
loop unvectorizable for safety concern. AVX-512CD can improve this situation
and allow more loops to be auto-vectorized by the compiler;

• AVX-512ER: ER stands for “exponential and reciprocal”. Exponential functions
and reciprocals are programmed in the card for both single-precision and double-
precision variables with rounding and masking options. Previously, such operations
were realized via software implementations thus were computationally expensive;

• AVX-512PF: the hardware “prefetch” support dedicated to gather and scatter in-
structions.

There are nine sub-sets in total for the AVX-512 instruction set, of which some are sup-
ported by KNL, and some are supported by the upcoming Intel Xeon Scalable Processor
Family (Skylake) [44]. If one wants to maintain binary compatibility between KNL and
SKL, only AVX-512F and AVX-512CD can be used in the implementation. Otherwise,
if optimum code performance on KNL is desirable, using AVX-512ER and AVX-512PF
is necessary.
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2.1.3 GPGPU

A graphics processing unit is an electronic device specialized to rapidly perform image-
array operations for outputs to a display device. Graphical pixels presented as large
uniform datasets are offloaded from the host CPU to the remote graphic card to carry
on certain compute-intensive calculations which are typically linear algebra operations.
Before, GPU calculations were hidden to developers since non-graphic operations like
looping and floating point math were not supported, and only high-level APIs (Applica-
tion Programming Interface) were provided to communicate CPU and GPU. Since the
turn of the century, GPUs have been found a powerful backup to overcome the power
wall thus the general purpose graphics processing unit has been rapidly developed. With
the general purpose support for non-graphic operations, GPGPUs are tailored to deal
with a large amount of science and engineering problems that can be abstracted as linear
algebra calculations. Due to its specific functionality, the GPGPU will not be a replace-
ment of the main CPU but serves as an accelerator to improve the overall performance
of the computer.

Figure 2.8: The architectural difference between CPUs and GPUs: CPUs are narrow
and deep, while GPUs are wide and shallow [45].

Fundamentally, the CPU and the GPU architecture differ in their overall shape: the CPU
has a small number of complex cores and massive caches while the GPU has thousands
of simple cores and small caches. The host character of the CPU requires complicated
cores and deep pipelines to deal with all kinds of operations. It usually runs at higher
frequency and supports branch prediction. The GPU only focuses on data-parallel image
renderings thus the pipeline is shallow. The same instructions are used on large datasets
in parallel with thousands of hardware cores, so the branch prediction is not necessary,
and memory access latency is hidden by important arithmetic operations instead of
caching.
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2.1.3.1 Tesla P100

Named after the French mathematician Blaise Pascal, Pascal is currently the latest
micro-architecture developed by Nvidia. It was firstly introduced with the P100 card in
mid-2016. According to Nvidia, one P100 can deliver 5.3 TFLOPS in double-precision
floating point thus 10.6 TFLOPS in single-precision [46].

Figure 2.9: Tesla P100 streaming multiprocessor [46].

The basic computing unit of one Nvidia’s GPGPU is a streaming multiprocessor or SM.
As shown in Figure 2.9, each Pascal SM has been partitioned into two processing blocks.
Though the total number of cores in a P100 SM is only half of the previous Maxwell
SM, the entire card supports more registers within an SM and more SMs within a chip.
Pascal SM units natively support reduced-precision (16-bit) operations thus could be
competitive candidates for many deep learning algorithms. In total, one P100 has up to
3840 single-precision CUDA (Compute Unified Device Architecture) cores and eight 512-
bit memory controllers. Each memory controller is attached to 512 KB of L2 cache, and
each HBM2 DRAM stack is controlled by a pair of memory controllers. The full GPU
includes a total of 4096 KB of L2 cache [46]. HBM2 memory is used to address the issue
of memory access overhead where it can deliver three times higher memory bandwidth
compared to the previous GDDR5. NVLink interconnect is employed to replace the
previous PCIe bus for high-efficiency communications (5× memory bandwidth compared
to PCIe) among multiple GPUs or between CPU and GPU [47]. Besides, unified memory
and atomic operations are largely improved at both software and hardware level as well.
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2.2 Programming Models

After the introduction of physic background and hardware, threading libraries involved
in this thesis work will be presented in this section.

2.2.1 OpenMP

OpenMP [48] is a set of directives that extends C/C++ and Fortran languages for par-
allel executions in shared memory environment. When target machines do not support
OpenMP, these directives can be ignored by the compiler and the program can execute
in a sequential way. By switching on the -qopenmp option for Intel compilers, pragmas or
directives are interpreted to guide the compiler for parallel execution. Using OpenMP
to parallelize a serial program is simple but requires a lot of specific knowledge for
profit its full efficiency. Since OpenMP 3.0 [49], it has begun to support task scheduling
strategies. It includes (since version 4.0 [50]) also SIMD directives to aid high-level vec-
torization. Besides, it has been extended with offload directives to perform calculations
in heterogeneous systems [51, 52].

The most common use of this API is to distribute a loop in parallel:

#pragma omp p a r a l l e l for
for ( . . . )

do some c a l c u l a t i o n s . . .

By using the “fork and join” execution model, the initial thread executes the program
sequentially until the parallel construct is encountered. Then, this master thread creates
a number of child threads (a thread pool) and distributes workload for each of them in
order to have all threads work simultaneously. Finally, all threads join at the end of
the parallel construct. In OpenMP, all threads have access to the same shared global
memory. Each thread has access to its private local memory. Threads synchronize
implicitly by reading and writing shared variables. No explicit communication is needed
between threads.

2.2.2 Threading Building Blocks

Threading Building Blocks (TBB) [53] is a C++ template library that provides task-
parallel solutions for modern multi-core and many-core systems. It is highly portable
since workloads are organized as tasks instead of threads and thread management to
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specific architectures are abstracted by the universal C++ templates. TBB also pro-
vides subsets of C++ native threading, thread-safe data containers, scalable memory
allocators, mutual exclusions, and atomic operations.

TBB is designed to work without any compiler changes. In order to use TBB in the
program, developers simply include the < tbb/tbb.h > header and functions can be found
in tbb and tbb:flow namespaces. For a loop:

for ( i = f i r s t ; i < l a s t ; ++i ) f ( i ) ;

the easiest way to parallelize it with TBB is:

tbb : p a r a l l e l f o r ( f i r s t , l a s t , f ) ;

Where first and last indicate the begin and the end of the loop, and f represents the
calculations to perform in each iteration. Complex loops can be performed by other
high-level templates like parallel do, parallel reduce, parallel pipeline and so on. If the
algorithm does not map onto one of the high-level templates, developers can also create
their own templates with the optional task scheduler.

2.2.3 OpenACC

OpenACC (Open ACCelerators) [54] is a portable parallel programming model dedi-
cated to heterogeneous CPU/GPU systems. Support of OpenACC is available in PGI
compilers since the version 12.6 [55]. Experimental GCC support for OpenACC has
been included since the version 5.1. Similar to OpenMP, it utilizes compiler directives
to perform high-level parallelizations for C/C++ and Fortran source codes: #pragma
acc parallel and #pragma acc kernels can be used to define the parallel construct for
remote accelerators. #pragma acc data and its subsets are responsible to handle data
transfer between the host and the remote. #pragma acc loop defines the type of paral-
lelism in the parallel construct. Precise optimizations like data reduction, loop collapse,
asynchronous operation, and multi-device programming can be also realized with cor-
responding directives. Compared to the native CUDA programming, using OpenACC
requires few code modifications and much less parallel-computing skills for developers.

2.3 Vectorization

Processors usually include a set of 16 registers that perform arithmetic operations on
integers. These registers are called scalar registers since each of them holds just one
variable at any time. A 64-bit processor indicates the width of each scalar register is
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64-bit. In order to add two integers together, the program transformed by compiler tells
the processor to get the two variables from the scalar registers and add them. Due to
the “scalar” nature, if thirty-two pairs of integers are required to perform such addition,
the above process will be repeated for thirty-two times:

for ( int i =0; i <32; ++i )
C[ i ] = A[ i ] + B[ i ] ;

In recent years, modern processors have added an extra set of large registers (128-bit,
256-bit, or 512-bit) besides the scalar one. Rather than hold a single value, those large
vector registers can contain a small set of variables at one time. Together with the help
of vector instructions, same arithmetic operations can be carried out simultaneously
on multiple data elements. Take the former case, for example, here one 256-bit vector
register can hold eight 32-bit integer variables:

for ( int i =0; i <32; i +=8)
doEightIntegerAddit ionsAndStoreResu l t (C[ i ] , A[ i ] , B[ i ] ) ;

In the same time that it took to add one pair of integers with the scalar register, a single
vector instruction abstracted as doEightIntegerAdditionsAndStoreResult() can add eight
pairs of integers. Instead of repeating the scalar operation thirty-two times, using the
vector instruction repeat the same process only four times. In computer science, such
effort by using the vector register as well as its corresponding instructions to rewrite a
loop is called vectorization (Figure 2.10).

Figure 2.10: Vectorization is the process of rewriting multiple independent instruc-
tions with one SIMD instruction.

Along with the appearance of vector machines, the notion of vectorization can date back
to the early 1970s. Vector machines dominated the supercomputer design for about
thirty years until the late 1990s, and then they were gradually replaced by clusters of
conventional microprocessors. Modern processors renounce the pure vector design but
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ISA Architecture Register
MMX P5-based Pentium 64-bit MM
SSE Pentium III 128-bit XMM
AVX Sandy-Bridge 256-bit YMM
IMCI Knights Corner 512-bit ZMM

AVX-512 Knights Landing 512-bit ZMM

Table 2.1: SIMD extensions in the Intel processor family.

adapt vector unit as an additional computing engine besides the scalar pipeline. Ta-
ble 2.1 shows SIMD extensions for the traditional x86 architectures. Different ISAs can
be distinguished by their specific register type. This notion is really important because
developers may need to verify the vectorization efficiency by checking assembly codes.
Even if a loop compiled for KNL is reported as “vectorized” by the Intel vectorization
report (see Subsection 2.4.3), it can happen that most instructions are performed on
non-ZMM registers, which indicates that the 512-bit vector unit is underutilized with
some 128-bit or 256-bit instructions. In this case, replacing these instructions with the
corresponding AVX-512 ones will aid to achieve full vectorization efficiency.

The number one reason for vectorizing a loop is to achieve better execution performance.
This is also the key for fully using accelerators like MIC and GPGPU (though SIMD
potential fulfilled alternatively). Since vectorization is so important, is this true that
all kinds of loops can be vectorized? The answer is no. Take the Intel compiler, for
example, generally, vectorization candidates should meet the following criteria [56]:

1. Constant loop count: The loop trip count must be constant for the duration
of the loop, and the exit of the loop should be independent of the trip count.
Uncountable loops can not be vectorizable because the loop exit is not predictable;

2. No algorithm branches: The essential of SIMD instructions is to perform the
same operations on different data elements. It does not allow different iterations
to have different control flow [56] which indicates that there should not be “if”
statements inside the loop. Though “mask” assignments can help vectorization
sometimes depending on the hardware, they are neither efficient nor feasible all
the time;

3. Innermost loop: Except for the case by using techniques like loop unrolling and
loop collapsing, only the innermost loop of a nest can be vectorized;

4. No function calls: A loop with user-defined function calls inside is not vector-
izable by intrinsics programming because it is seen as a “nonstandard loop” by
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the compiler. Common math operations like sin and inline functions are two ex-
ceptions. The lastest declare and its sub-directives are proved to be a practical
solution for this problem (see Subsection 5.3.3.4).

All implementations preventing auto-vectorization can be described with two features:
discontiguous memory access and data dependency. Discontiguous memory access can
be in different forms:

// memory acces s wi th a s t r i d e o f 2
for ( int i =0; i<N; i +=2)

C[ i ] = A[ i ] + B[ i ] ;

// i n d i r e c t addre s s ing
for ( int i =0; i<N; ++i )

C[ i ] = A[B[ i ] ] + B[ i ] ;

Both non-unit stride access and indirect addressing will high-probably hinder auto-
vectorization because the compiler does not vectorize a loop without knowing whether
it is efficient to do so or not. An ideal loop is in which data elements written in one
iteration will not ever be read or written again in any other iteration of the loop. In
most cases, the compiler can not analyze data dependencies by itself so it prevents
auto-vectorization by default for safety concern.

After the introduction of requirements and obstacles to vectorization, there are a general
guideline for developers to write vectorizable codes:

• Determine a loop with constant trip count. Use the conventional loop form
for(i=start;i<end;++i) by explicitly defining the begin and the end of the loop,
STL loop functions like std:accumulate() and std:for each() have not been recog-
nized by the compiler yet.

• Write straight line codes, which means that algorithm branches like if, switch, goto
and return statements should be avoided in the implementation.

• Design or reorganize a loop to remove potential data dependencies (or at least
read-after-write dependencies [56]).

• Prefer pointers to STL containers (for example, std:vector and std:list) to express
array notation. High level language-specific containers are not recognizable by the
compiler thus will prevent auto-vectorization.

• Use efficient memory accesses: create unit stride loops, avoid indirect addressing,
align array data, use SoA (Structure of Array) instead of AoS (Array of Structure).
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• Minimize function calls by inlining or using performance libraries like Intel math
kernel library (MKL) [57].

2.3.1 Methodology

Efficient vectorization comes from a combination of efficient data movement and recog-
nition of vectorization opportunities in the program. A general six-step approach intro-
duced by Jeffers has been proved really useful to achieve vectorization [58]:

1. Set up baseline build: before all profiling and optimization work, using opti-
mization levels 2 or 3 to avoid debug build, and enable compiler auto-vectorization
to set up a baseline release build. This step will help developers to get a first idea
of how efficient compilers can do for auto-vectorization. This baseline performance
will be a reference to illustrate how following optimizations go on.

2. Find hotspots: identifying hotspots will help developers to find which areas of
the code take the most execution time, and allow them to focus on the right kernels
to carry out following work. According to the Amdahl’s law [59], concentrating
on unimportant performance bottlenecks or serialization portions of the code will
bring few speedups for the overall performance. It is recommended to only focus
on functions taking at least 10% of the program’s overall execution time [58].

3. Determine loop candidates: starting an initial performance investigation with
the help of Intel Optimization Report (Subsection 2.4.3). This Intel tool will per-
form a brief vectorization bulletin at compile time. Without running the code,
programmers can know whether the hotspot loops identified in the last step are
vectorized or not. Moreover, it provides useful information like the theoretical
speedup brought by vectorization or why the loop is not vectorized. It should be
noted this preliminary profiling is not accurate since it is based on the compile-time
check, finer runtime profiling is necessary to achieve full optimization efficiency.

4. Profile with Intel Advisor: profiling with the vectorization analysis of Intel
Advisor (Subsection 2.4.4), developers can have a global picture of the program’s
runtime behavior. For each loop in the program, all detail information around
vectorization will be fully presented. Corresponding optimization suggestions will
be given.

5. Implement recommendations: developers must verify that the suggestions
provided at the previous step will not change the semantics of the code before
implementing them in the program.
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6. Repeat: iterate through the process until the desired performance is achieved.

After the general methodology, there are eventually four approaches to achieve vectoriza-
tion: from low-level intrinsics to high-level libraries, directives, and auto-vectorization;
each has its advantages and constraints which will be explained in the following subsec-
tions:

2.3.1.1 Intrinsics

Intrinsic functions are built-in in the compiler which allows to perform operations di-
rectly when possible, rather than linking to libraries for implementation. Due to the
intimate connection between intrinsic and compiler, these functions are usually used to
implement optimizations which are not addressed by high-level programming languages.
Take the Intel compiler, for example, intrinsics map directly to x86 SIMD instructions
(MMX, SSE, AVX/AVX2, IMCI, and AVX-512). Intrinsic functions are quite similar to
assembly language: they are both low-level programming languages that have a strong
correspondence to the target hardware. Generally, they are not portable across different
architectures, and do not need interpreting or compiling.

mmask8 mm512 cmp pd mask ( m512d a , m512d b , const int imm8)

Here is an example of the “compare” instruction supported by IMCI and AVX-512:
mm512 signifies that this is a 512-bit instruction; cmp indicates comparison; pd means
that it is used for double-precision variables. a and b are two inputs with each consisting
of eight double-precision variables. The third input imm8 is responsible for specifying
the comparison operand. According to the Intel Intrinsics Guide [60], thirty-two types of
comparisons can be performed with this instruction, which includes “equal”, “less than”,
“greater than” and so on. The final output is a 8-bit mmask8 (or char) variable where
the comparison result for each pair of double-precision variables is represented by 1
(true) or 0 (false). The Intel Intrinsics Guide is a practical online manual describing all
Intel intrinsics. Developers can search for specific instructions with their semantics (load,
mask, etc.) or technologies (SSE, AVX, etc.). For each instruction, detail information
like corresponding header-file and instruction description will be introduced as well.

The advantage of using intrinsics is that developers can fully profit from the hardware’s
computing capability by explicitly calling the latest (the most powerful) instructions
supported by the target architecture. Using intrinsics can help to get the best execu-
tion performance among four vectorization approaches. However, as shown in the above
example, programming with such low-level intrinsics is not productive at all because it
requires developers to take care of hardware details, which indicates a large amount of
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extra development work. Moreover, the program is not portable meaning that the im-
plementation work should be repeated, and the program should be adjusted for every in-
dividual architecture. Such redundancy makes intrinsics impossible for the optimization
of a whole project like TRIPOLI, where tens of thousands of lines of codes are involved.
Therefore, intrinsics are usually applied in a small part (the most computationally ex-
pensive kernel) of large codes to balance the requirement of higher performance and the
productivity problem.

2.3.1.2 Directives

The SIMD directives become standard since OpenMP 4.0. Extra directives added into
the original program will not change the program’s runtime behavior if no hardware
or software supports are available. They enforce vectorization of loops with simple
pragmas, which places all the burden on the developer to ensure code correctness.

Two kinds of directives are employed for the current work: the Intel directives and the
OpenMP directives. These two directives are generally identical but the Intel one is
only functional with the Intel compiler while the OpenMP standard is universal to all
available compilers. The following example gives a simple demonstration for the use of
these two directives:

// I n t e l d i r e c t i v e s
#pragma vec to r a l i gned
for ( i = 0 ; i < N; ++i )

a [ i ] = a [ i ] ∗ b ;

// OpenMP d i r e c t i v e s
#pragma omp simd a l i gned ( a : 3 2 )
for ( i = 0 ; i < N; ++i )

a [ i ] = a [ i ] ∗ b ;

In Intel directives, vector indicates that the following loop is forced to vectorized; aligned
mandates the compiler that any array variables involved in the loop have been already
aligned to the right boundary to avoid any potential check. The expression with the
OpenMP directives is slightly different: omp simd plays the same role as vector ; data
alignment is more manual since the aligned array a and the aligned boundary (32-
bit in this case) should be specified explicitly. Clauses are used to modify or extend
the meaning of the original directive, the additional aligned clause after the omp simd
directive provides more vectorization control over the target loop. Take omp simd for
example, the directive can be decorated with seven clauses: aligned, collapse, lastprivate,
linear, private, reduction, and safelen.
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Compared to the intrinsics, using directives to aid vectorization requires much less imple-
mentation work. Instead of rewriting the program with excessive intrinsic instructions,
adding several directives to the target loop is simple and direct. The modified code is
still readable, which also makes code maintenance much easier. Besides, optimizations
are no longer restricted to individual architectures but could be portable from one sys-
tem to another. The only issue of using directives is that the developer should carefully
handle the code in order not to change its semantics. This problem sounds easy to deal
with but occurs too often during implementation.

2.3.1.3 Libraries

Another practical way to achieve vectorization is to use libraries. Thanks to this ap-
proach, developers are no longer necessary to have strong hardware and optimization
background. The work is much simplified with encapsulated interfaces.

There are a lot of SIMD libraries to help vectorization. For example, Intel MKL is
one of the most commonly used libraries on multi-core and many-core systems which
concludes popular functions like Basic Linear Algebra Subprograms (BLAS), Fastest
Fourier Transform (FFT), etc. The functions are highly optimized and require no code
change for utilization. It is compatible with different languages, operating systems,
linking and threading models. Cilk/Clik+ is initially a threading library to extend C
and C++ by the fork-join idiom. Since Cilk+ [61], vector extensions like new array
notation (A[0 : n]) and SIMD directives are introduced to help code vectorization. Intel
SIMD Data Layout Templates (SDLT) [58] is a template library to provide SIMD-specific
containers for C++. Instead of the naive standard containers provided by STL, these
new containers encourage SIMD code generation and solve the productivity problem
of low-level techniques. Concerns around data movement (alignment, prefetching, etc.)
are automatically handled by the library so there is a higher chance for the program
to achieve efficient vectorization. Other libraries like Vc [62], Boost.SIMD [63], and
Eigen [64] not all enumerated here could also be a solution for high-level vectorization.

2.3.1.4 Auto-Vectorization

Auto-vectorization counts on the compiler to figure out all the work. Developers con-
centrate on code programming and let the compiler do its best for vectorization. Basic
tips to help compiler auto-vectorization have been already listed at the beginning of
this section. This will aid compiler to better understand the program’s semantics thus
may generate more efficient SIMD codes, but such method is not reliable at all because
vectorization will always limit by language and compiler technology. Compiling work
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do not consider hardware features of different architectures so it generates SIMD codes
with no difference between an SSE Pentium and an AVX-512 Knights Landing. As a
consequence, the vectorization is not portable since it may use the latest ISA by random
choice on one system, and do the opposite on others. It exists compilers like ispc (Intel
SPMD Program Compiler) [65] that can improve auto-vectorization, but they require
supplementary work to babysit the compiler with specific options thus make them no
different from common libraries. In a conclusion, there is no free lunch – counting on
the compiler is not reliable for high-efficiency vectorization.

2.4 Useful Tools for Performance Analysis

Performance analysis tools are important for optimization. They help developers to
concentrate on the right kernel, and can also provide useful optimization suggestions.
In this section, four profiling tools involved in this thesis will be introduced.

2.4.1 TAU

TAU [66, 67] is a profiling and tracing toolkit for performance analysis of parallel pro-
grams. The project was originally proposed by the University of Oregon, and now be-
comes a cooperative work between the University of Oregon, the Los Alamos National
Laboratory, and the Jülich Research Centre.

TAU is capable to deal with programming languages like Python, Java, Fortran, C/C++
or even mixed programming. This cross-platform toolkit is free and can run on different
architectures like CPU, GPGPU, and MIC. It includes parallel profiling and tracing not
only for shared-memory systems but also for distributed ones. Besides, code profiling
can measure time as well as hardware performance counters like cache miss, memory
bandwidth and FLOP usage with the help of PAPI [68]. Users can start the analysis
by the auto-instrumentation: no code changes are required in this mode; users only
need to recompile the program with the package. Basic information like performance
bottlenecks, hotspot loops will be shown directly with the help of ParaProf visualizer.
More detailed analysis can be realized by manual instrumentation. Probe instructions
need to be used to indicate explicitly the target part of the code and the type of analysis
to perform. The manual mode provides more precise evaluation with the price of extra
implementation work.
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2.4.2 Intel VTune

VTune [69] is a performance analysis toolkit dedicated to serial and multithreaded ap-
plications. This profiler has two user-modes: GUI (graphic user interface) and command
line. Though in the latest release (version 2018) it begins to support MPI profiling and
programming languages other than Fortran and C/C++, using these new features to
perform code profiling is not included in the current thesis’s work.

Compared to TAU, VTune has better supports for analyzing programming languages
and a much more user-friendly GUI. One common use of VTune is to find program’s
hotspots – the most time-consuming program units. By running the Basic Hotspots
analysis, users will have a first profiling summary for the target program (Figure 2.11):
the ratio between serial execution time and parallel region time, the potential gain with
optimal OpenMP codes, top five hotspots, etc. Without stepping into details, users can
already have a global picture of major performance issues of the code.

Figure 2.11: Summary report of a Basic Hotspots analysis.

In the Bottom-up view, one can explore finer information about the hotspots (Fig-
ure 2.12). Double-clicking on each hotspot allows users to identify the hotspot directly
in the source code as well as the assembly (Figure 2.13), which is really useful for fol-
lowing optimization work.

Except for the hotspot detection (with Basic Hotspots and Advanced Hotspots modes),
VTune also provides other performance analysis like:
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Figure 2.12: Bottom-up report show hotspots from the largest to the smallest.

Figure 2.13: Identify instructions in the source code corresponding to the hotspot.

• Locks and Waits: Identify synchronization objects that cause contention and
prevent parallelization.

• General Exploration: Identify hardware-issues like data sharing, cache misses,
branch misprediction, etc.

• Memory Access: Analyze memory latency, memory bandwidth, false sharing,
etc.
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With this information, developers can identify the candidate kernels for optimizations
and understand why the hotspots come out.

2.4.3 Intel Optimization Report

Since the version 15.0 of Intel compiler, the optimization report [70] has been introduced
to provide developers with a readable compiling report for further application tuning.
Firstly, the report informs developers which loops in the code are vectorized. Then, it
reports also why the compiler did not vectorize a loop. The aim of this report is not only
to help developers understand what the compiler does, but also to help them understand
the obstacles that encountered so that corresponding actions can be taken to improve
the situation.

By adding -qopt-report[=N] into compile options, developers can choose N from 0 to 5
(2 by default) levels of report details (0: no diagnostic information, 5: the greatest level
of detail reporting non-vectorized loops and dependency information). After compila-
tion, the report will be stored in a file ended by .optrpt. The following example shows
the layout of a N = 5 level report on the major loop of the Faddeeva unit-test (see
Subsection 5.4.1):

LOOP BEGIN at special .cc (407 ,3)

<Peeled loop for vectorization >

remark #15331: loop was not optimized

LOOP END

LOOP BEGIN at special .cc (407 ,3)

remark #15389: vectorization support : reference vz_r has

unaligned access [ faddeeva .cc (408 ,5) ]

remark #15389: vectorization support : reference vz_i has

unaligned access [ faddeeva .cc (408 ,5) ]

remark #15381: vectorization support : unaligned access

used inside loop body

remark #15305: vectorization support : vector length 8

remark #15399: vectorization support : unroll factor set

to 2

remark #15309: vectorization support : normalized

vectorization overhead 0.082

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15442: entire loop may be executed in remainder

remark #15450: unmasked unaligned unit stride loads: 2
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remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 117

remark #15477: vector loop cost: 16.000

remark #15478: estimated potential speedup : 5.810

remark #15484: vector function calls: 1

remark #15487: type converts : 2

remark #15488: --- end vector loop cost summary ---

remark #15489: --- begin vector function matching report

---

remark #15490: Function call: wofz(float , float , float &,

float &, int *) with simdlen =8, actual parameter types:

(vector ,vector , linear :4, linear :4, uniform ) [ faddeeva .cc

(408 ,5) ]

remark #15492: A suitable vector variant was found (out

of 2) with ymm2 , simdlen =8, unmasked , formal parameter

types: (vector ,vector ,vector ,vector , vector )

remark #15493: --- end vector function matching report

---

LOOP END

LOOP BEGIN at special .cc (407 ,3)

<Remainder loop for vectorization >

remark #15389: vectorization support : reference vz_r has

unaligned access [ faddeeva .cc (408 ,5) ]

remark #15389: vectorization support : reference vz_i has

unaligned access [ faddeeva .cc (408 ,5) ]

remark #15381: vectorization support : unaligned access

used inside loop body

remark #15335: remainder loop was not vectorized :

vectorization possible but seems inefficient . Use vector

always directive or -vec - threshold0 to override

remark #15305: vectorization support : vector length 4

remark #15309: vectorization support : normalized

vectorization overhead 0.038

LOOP END

The compiler generates a “LOOP BEGIN” and a corresponding “LOOP END” message
to signify the scope of the loop. Filename, line number, and column number listed just
after are practical to fast locate the target loop. As shown in the report, the compiler



Chapter 2. Modern Parallel Computing 36

generated supplementary peeled loop and remainder loop outside the main loop body,
which indicates that data are not aligned in the main loop, and the loop trip count
is not multiple of the vector length, respectively. The data alignment problem is then
confirmed by the message “remark #15389: vectorization support: reference ... has
unaligned access” and “remark #15381: vectorization support: unaligned access”. For
a single-precision floating point variable (32-bit), an AVX2 register can simultaneously
hold eight such variables. This information is represented by the message “remark
#15305: vectorization support : vector length 8” since 256(bit)/32(bit) = 8. It reflects
another fact that the compiler vectorized the loop with 256-bit instructions. It is a
good sign in this case because the code was compiled to run on an AVX2 architecture
where the 256-bit instructions are the latest ISAs supported by the system. According
to the message “remark #15399: vectorization support: unroll factor set to 2”, the
compiler chose to unroll the single loop content to two. “OpenMP SIMD LOOP WAS
VECTORIZED” indicates that the main loop body was vectorized with the help of
OpenMP directives. According to the “vector loop cost summary”, the scalar execution
of the target loop should be 117 seconds, and after vectorization, the figure is around
16. Besides, even if an external function call presents inside the loop body (“remark
#15484: vector function calls : 1”), the compiler succeeded to vectorize it with the help
of declare directives (not shown here, see Subsection 5.3.3.4). The 5.81× speedup is a
theoretical figure estimated by the compiler, the real speedup should be measured with
runtime results (for example, using Intel Advisor). Unlike the main loop body, the peeled
loop and the remainder loop were not vectorized because the compiler thought it is not
efficient to do so. Moreover, the vector length in the remainder loop was recognized as
four instead of eight, which indicates that the hardware feature was not fully used by
the compiler.

For such a small example, the report can already provide a rich source of information
to guide the following work. This compile-time tool allows developers to begin initial
optimizations without time-consuming run time profilings thus is a good start-point for
the entire optimization process.

2.4.4 Intel Advisor

Profiling tools like TAU and VTune can identify performance bottlenecks of the program,
but none of them indicates explicitly how to deal with these problems. Intel Advisor
is an optimization assistance toolkit that provides developers with optimization tips.
Figure 2.14 shows an example of analysis results. In the FLOPS tab, GFLOPS indicates
the FLOP usage of the loop; AI represents the loop’s arithmetic intensity (ratio between
arithmetic operations and memory accesses). For non-vectorized loops, the toolkit will
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Figure 2.14: Advisor analysis with trip counts and FLOPS for the target program on
a Broadwell architecture.

explain why vectorization did not happen. For vectorized loops, Advisor shows which
ISA was used to carry out the vectorization (as the AVX2 shown in the figure); vec-
torization efficiency and gain are highlighted to tell if vector units were fully used (for
VL=8, the ideal gain brought by vectorization should be 8× instead of 5.40× or 6.25×
shown in the result). Instruction Set Analysis shows time-consuming instructions
present in the loop body, for example, divisions, FMA, reciprocal approximations, etc.
Like VTune, Advisor also supports hotspot identifications in the source code (Source

and Assembly tabs in Figure 2.14). In the Recommendations pane, optimization tips
are listed and explained with external links as well as code examples. These tips are
sorted by their confidence, which allows developers to distinguish optimization priority
and focus on important suggestions. As shown in the figure, the remainder loop largely
reduces vectorization efficiency due to the hint: Confidence:High, so data padding to
make the trip count a multiple of vector length should bring significant speedup. It
should be noted that these tips are extremely important to get optimal performance
with Intel architectures since several techniques mentioned can be found nowhere in
open-access manuals.

By specifying the target loop or function, users can obtain further optimization hints
with more detailed Check Dependencies and Check Memory Access Pattern analy-
sis. It should be noted that finer the analysis is, the more time it will take. For a
Survey analysis which takes about several seconds, a duration around several minutes
is expected for just analyzing one most important kernel with the corresponding Check

Dependencies. Intel Advisor also provides the Roofline analysis to target applications
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Figure 2.15: Direct Roofline analysis with Advisor.

(Figure 2.15). This model was firstly proposed by Williams [26] in 2009, and then
was improved as a “cache-aware” representation by Ilic [71] in 2013. It can be used
to visualize the relationship between application performances and effective hardware
limitations and therefore, help developers figure out performance bottlenecks and their
corresponding solutions.

Figure 2.16: An example of the naive Roofline model [72].

The basic Roofline chart (Figure 2.16) consists of two hardware-specific limits: the
processor’s computing performance and the memory bandwidth. The X-axis is the
arithmetic intensity (ratio of floating-point operations to memory accesses) and the Y-
axis represents the FLOP usage. Both axes are in logarithmic scale. Generally, for a
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given computing kernel, it is memory-bound if its arithmetic intensity is underneath
the bandwidth roof, and it is compute-bound if underneath the computation roof. The
Roofline model integrated into Advisor is improved with multiple ceilings for each limit.
Effects of the cache/memory hierarchy, the vector unit, and FMA are also taken account
into the performance modeling, which allows for more accurate bottleneck analysis.





Chapter 3

Monte Carlo Neutron Simulations

3.1 Nuclear Reactors

Generally speaking, the nuclear energy can be harnessed in two main ways: fusion and
fission. Fusion is a kind of nuclear reaction in which two or more light nuclei collide at
a very high energy and merge together as a new heavy nucleus. The total mass of the
heavy nucleus is smaller than the total mass of the fusing nuclei and the mass difference is
released as energy. Though the fusion power offers an inexhaustible source of energy and
fusion reactions have energy density much higher than nuclear fission, how to trigger and
sustain such reaction in a practical manner is still unknown. Nuclear fission can be seen
as the opposite of fusion reaction: contrary to fuse together, a heavy nucleus absorbs a
neutron and decays by splitting into smaller elements. This process produces energy and
free neutrons, which are candidates to initiate new fissions. Such subsequent processes
result in a self-propagating nuclear chain reaction, which often releases several million
times more energy per reaction than any chemical one. At present, nuclear power plants
are all based on this fission chain reaction. Like conventional thermal power stations
generate electricity by harnessing the thermal energy released from burning fossil fuels,
nuclear reactors convert the energy released from fissions to heat which then drives steam
turbines to produce electricity.

One major difference between the conventional fossil power and the nuclear power is the
way they deal with fuel. Instead of feeding the thermal power plant by continuously
burning fossils, nuclear fuel in forms of assemblies or bundles is carefully kept inside the
reactor core during its whole operating-cycle. There are many nuclei that can undergo
fission, but only a few of them (for example, 233U, 235U and 239Pu) can sustain a fission
chain reaction and therefore be used to produce nuclear fuel.

41
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In a nuclear reactor, the neutron population is a function of the rate of neutron pro-
duction and the rate of neutron loss. If the production rate is exactly the same as the
loss rate, the chain reaction is self-sustaining and can be referred to as critical or with
keff = 1, where keff stands for the effective multiplication factor of a finite multiplying
system. A critical reactor indicates that the reactor can be operated in a stationary
fashion and the neutron flux is stable at a given power level, or in other words, it is able
to maintain a constant neutron population and reaction rate without any external neu-
tron sources. The effective multiplication factor can also describe the time rate of change
of the neutron population if the average neutron lifetime is known. It is an important
quantity in characterizing the reactor behavior since reactor power is proportional to the
reaction rate, and the multiplication factor, therefore, dictates the time rate of change
of the core power [73].

3.2 Nuclear Reactions

Neutrons that travel in matter collide with the different nuclides present. The probability
of a collision with a certain nuclide is given by its microscopic cross-section. Upon
collision, a compound nucleus is generally formed, in an excited state. This compound
nucleus then decays back to its ground state by emitting one or more particles and
eventually some gamma rays. From the point of view of predicting the behavior of the
neutron population, what is important is the number of neutrons emitted and their
kinetics parameters after emission: energy and direction. Accordingly, the reactions can
be classified as follows:

• Elastic scattering: one neutron is emitted and the collided nucleus goes back
to its ground state. The kinetics parameters of the exiting nucleus can be deduced
from two-body kinematics (preservation of total momentum and total kinetic en-
ergy).

• Inelastic scattering: one neutron is emitted, but the nucleus is left in an
excited state. If the excitation energy is known, then the kinetic parameters of the
exiting neutron can still be deduced from two-body kinematics. Gamma rays are
also usually emitted.

• Absorption: no neutron is emitted, but only gamma rays and eventually other
particles like protons, deutons, etc. which are not followed further.

• Fission: several (between 0 and 7) neutrons can be emitted, with an energy
distribution specific to each nuclide. Two fission fragments are also emitted, which
carry most of the fission energy (200 MeV per fission), as well as gamma rays.
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Each reaction type is characterized by its own cross-section.

3.2.1 Cross-Section

Figure 3.1: Energy-dependent cross-section tables 1H and 238U [74].

Figure 3.1 shows the total cross-sections for 1H and 238U. We see that the cross-section
value depends on the (kinetic) energy of the neutron undergoing collision. This depen-
dency can vary wildly from light elements, for which the plot is rather smooth, to heavy
elements which present many (up to several thousand) resonances. A resonance, which is
related to the energy levels of the compound nucleus, is a region where the cross-section
can change of several orders of magnitude (from one to 105 barns) in a very little energy
range (about a fraction of eV). These resonances have a very pronounced effect on the
neutron behavior and need to be carefully taken into account in the neutron transport
simulations.

As a general behavior, at low energy (< 1eV ), cross-sections are smooth and propor-
tional to the time the neutron spends within the reach of the nuclear force (1/

√
E). At

intermediate energy, resonances occur randomly spaced and with unpredictable char-
acteristics (height and width). Above 1 MeV the cross-sections go back to a smooth
behavior as a function of energy.

Cross-sections and resonance parameters are available from Evaluated Nuclear Data
Files or Nuclear Data Libraries, of which ENDF/B-VII.1 [75] from the USA and JEFF-
3.1 [76] from Europe are examples. Starting from that data pointwise cross-sections can
be reconstructed according to a small number of resonance models like Single Level and
Multilevel Breigt-Wigner, Reich-Moore, and R-Matrix (see Chapter 6).
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Reconstructed cross-sections are stored as long tables of σ as a function of energy, meant
for linear reconstruction. That is, whenever we need σ(E) we can compute it as:

σ(E) = σ(Ek) + E − Ek
Ek+1 − Ek

[σ(Ek+1)− σ(Ek)] (3.1)

where Ek and Ek+1 are the nearest lower and upper energy points in the energy grid
which bound the arbitrary energy E. Energy lookups are thus required to find these
two points and then retrieve corresponding data from memory. The number of points
necessary for the linear reconstruction with given accuracy (usually 0.1 percent), varies
with the isotope behavior, spanning from 600 points for Hydrogen to 150000 points for
238U. Figure 3.2 gives an idea of the variability of the number of energy points needed.
It should be noted that energy points are not evenly distributed within the entire energy
range covered by the cross-section tables. Resonance regions need much more data to
express the abrupt change of cross-section values. A consequence is that each isotope
has its own energy grid, optimized for its cross-section behavior.

When a neutron travels through a material made up of different nuclides, its mean
free path is the inverse of the macroscopic cross-section, defined from the microscopic
cross-sections of its constituents as:

Σ(E) =
∑
i

Niσi(E) (3.2)

where i is the nuclide index, Ni its concentration in the material, and σi(E) the corre-
sponding microscopic cross-section at energy E.

Figure 3.2: Isotopic energy table lengths for 390 isotopes at T = 300K. The minimum
is for 3H, which has only 469 energy points, and the largest is for 238U with 156,976

points. The average length over all isotopes is around 12,000.
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3.3 Effects of Temperature on Cross-sections

The cross-sections given in the Nuclear Data Libraries are valid for a neutron colliding
with an isotope at rest; they are thus called cross-sections at 0 Kelvin. The thermal
motion of atoms can influence the interaction between target nuclei and free neutrons.
If the neutron is fast enough, with a kinetic energy above 1 MeV, we can neglect the
thermal motion of the nuclides and use the 0K cross-sections.

In order to accurate cross-sections on considering temperature effects, one must be aware
of the distribution of target velocities. The thermal velocity of the target system follows
the Maxwell-Boltzmann distribution [77], and can be expressed as a function of absolute
temperature (T ) and target mass (M):

P (vT )dvT = 4
π
β

3
2 v2
T exp

−βv2
T dvT (3.3)

where β = M/2kBT , kB is the Boltzmann constant. High temperatures change the shape
of cross-section resonances by broadening the resonance width and pulling down the
resonance peak. This widening of resonances is referred to as Doppler broadening [78].
Such effect caused by the wider target motion distribution results in a significant increase
of absorption probability in the resonance region as neutrons scatter down to thermal
energies. It has an advanced meaning for reactor safety since it establishes a negative
feedback mechanism for temperature increase, and therefore prevents a meltdown of the
system.

In order to conserve the real reaction rate, the effective probability of collision should
be obtained by considering the material temperature. This process is described by:

σeff (v) = 1
v

∫
all:v′>0

v′σ(v′)P (vT )dvT (3.4)

where v is the velocity of the neutron, v′ = |v − vT | is the relative velocity between the
neutron and the target nucleus, and P (vT ) is the target motion distribution. Expanding
the above formula with Equation 3.3, the complex integral can be transformed into a
much simpler form:

σeff (v) =

√
β

π

∫ ∞
0

(v
′

v
)
2
σ(v′)[exp−β(v′−v)2 − exp−β(v′+v)2 ]dv′ (3.5)

A lot of studies have been done on how to efficiently implement this equation, among
which the SIGMA1 method [79] is an exact one without numerical simplification thus
known as the reference. It is commonly used by preprocessing tools like NJOY [80].
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3.4 Neutron Transport

The objective of neutron transport is to compute the distribution of the neutron popu-
lation inside a nuclear reactor. From this knowledge, many quantities of interest can be
computed, such as the power production distribution inside the reactor, the hot spots,
vessel fluence, the energy deposited to structural material, the dose that operator will
encounter if they where to approach the reactor. It helps nuclear scientists and engi-
neers to understand the behavior of a nuclear reactor in both nominal and accidental
conditions, inside and outside a reactor core, and thus operate it in safety conditions.

Since neutrons are neutral particles, they always travel in straight lines and only deviate
from their path when they collide with a nucleus to be scattered into a new direction
or absorbed. One common assumption in neutron transport is that neutrons do not
interact with each other. This follows from the fact that the neutron concentration in a
nuclear reactor is much less than that of materials, so neutrons are much more likely to
interact with materials than between themselves.

3.4.1 Neutron Transport Equation

1
v(E)

∂

∂t
ψ(−→r , Ω̂, E, t)+

Steaming︷ ︸︸ ︷
Ω̂ · ∇ψ(−→r , Ω̂, E, t) +

Collisions︷ ︸︸ ︷
Σt(−→r , E)ψ(−→r , Ω̂, E, t)

=
Scattering︷ ︸︸ ︷∫ ∞

0
dE′

∫
Ω̂
dΩ′Σs(E′ → E, Ω̂′ → Ω̂)ψ(−→r , Ω̂′, E′, t)

+

Fissions︷ ︸︸ ︷
χ(E)
4π

∫ ∞
0

dE′
∫

Ω̂
dΩ′ν(E′)Σf (−→r , E′)ψ(−→r , Ω̂′, E′, t)

+Sexternal

(3.6)

The neutron transport equation, derived from the Boltzmann transport equation, is a
linear equation which represents a balance statement where the number of neutrons
gained equals to the number of neutrons lost. Equation 3.6 represents such a balance
for the angular neutron density ψ in the element of the phase-space (−→r , E, Ω̂) at time
t. −→r is the spatial position of the neutron, E its kinetic energy, and Ω̂ its direction of
propagation.
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The quantities introduced are:

• Σt(−→r , E): is the total cross-section describing the inverse of the mean free path
of a neutron in the material in position −→r .

• Σs(E′ → E, Ω̂′ → Ω̂): the differential scattering cross-section characterizing the
probability that a scattered neutron of energy E in a direction Ω̂ exits the collision
with energy E′ and direction Ω̂′.

• Σf (−→r , E′): the fission probability for a neutron of energy E in the material at
position −→r .

• χ(E): the fission spectrum, which describes the energy distribution of neutrons
produced by fission.

• ν: the average number of neutrons produced per fission.

• Sexternal: the external source that accounts for any neutron sources not induced
by the neutron flux. itself

The deterministic methods for neutron transport simulations start from this integro-
differential equations and try to solve it by discretizing its variables (−→r , E, Ω̂), and t

and applying various approximations and numerical methods. These methods are widely
used in nuclear applications, but they suffer from approximations and numerical errors
which are hard to quantify, and thus require massive efforts for justifying their use in a
particular situation.

3.4.2 Monte Carlo Simulation

There are two prevalent approaches to deal with the neutron transport equation: the
deterministic and the stochastic. The deterministic method directly solves the equation
in a numerically approximated manner by discretizing numerous variables like spatial,
angular, energy and time. Although such method requires less memory footprint dur-
ing simulation, the approximations along with discretization result in numerical errors.
Moreover, in complex problems where spatial and energy variables are impractical or
impossible to discretize, the alternative stochastic method turns out to be the only
solution.

The Monte Carlo simulation, also called the stochastic method, has a completely dif-
ferent approach and does not directly deal with the transport equation. The idea is
straightforward and brute-force: rather than solving a complex equation for the neu-
tron flux distribution, the MC method attempts to reproduce exactly (simulate) what
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happens in reality. The essence of the Monte Carlo method is to use a given data-
generating mechanism for the process model one wishes to understand, produce new
samples of simulated data, and examine the results of those samples.

In neutron transport, a neutron is followed from its birth to its demise, either by ab-
sorption or by leakage out of the system. The simulation is repeated a large number
of times. Macroscopic quantities like fluxes and reaction rates are then computed from
individual traces.

In order to follow a neutron, we need to compute:

• distance to next collision

• isotope the neutron is having the collision with

• which type of interaction the neutron is going through

• kinetic parameters of the exiting neutrons (if any)

All of the above are random variables whose distributions are described by cross-sections
known from the Nuclear Data Libraries. Those distributions can be sampled via the use
of random numbers; pseudo-random number generator is universally used in order to
make simulations reproducible, which is of invaluable for numerical verification.

Figure 3.3: The random walk process of a neutron from its birth to disappearance.

As mentioned before, the main advantage of the Monte Carlo method is its minimal
approximations: it has no geometry approximations as long as only planar, cylindrical,
spherical, and toroidal surfaces are present; there are no phase space mesh problems
related to discretization; from the view of physical part, cross-section data of ENDF
(Evaluated Nuclear Data Files) format [75] preserves full numerical accuracy without
simplifications. In addition, as long as neutron histories are independent, the embar-
rassingly parallel nature of MC transport makes it always an ideal candidate for parallel
computing.
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The crucial downside of the Monte Carlo method is its slow convergence rate governed
by the central limit theorem. For a calculation involved with N neutron histories, this
method displays a 1/

√
N convergence. One direct consequence is that Monte Carlo

simulations are more computationally expensive than other methods. As a result, any
efforts to accelerate Monte Carlo methods are of great interest to the neutron transport
community and accelerators like MICs and GPGPUs are widely explored in this field.
Apart from issues related to the numerical nature, more and more concentrations are
focused on how to efficiently perform the MC calculation on modern architectures. As
stated before, the pretabulated cross-section data requires large memory spaces — nearly
one GB per temperature, which makes it impractical to perform complex simulations
with modern computing materials (where only a dozen GB on-chip memory present),
not to mention burn-up computations in which hundreds of temperatures are involved.
Besides, there is little vectorization potential for the conventional MC transport cal-
culations meaning the code can not profit the full computing capability of advanced
processors, and therefore results in significant resource waste.

3.5 Simulation Codes

There are a certain number Monte Carlo simulation codes developed in the neutron
transport community, among which MCNP and TRIPOLI are chosen as the two refer-
ences for the numerical validation of PATMOS.

3.5.1 MCNP

MCNP, short for Monte Carlo N-Particle transport code, is a general-purpose transport
code developed by Los Alamos National Laboratory since the late 1950s. This code tries
to include all physical features related to nuclear processes and is valued as the “gold
standard” of Monte Carlo neutron transport codes [81]. The latest release – MCNP6 is
a combination of MCNP5 and MCNPX, which can be used to simulate radiation protec-
tion and dosimetry, radiation shielding, radiography, medical physics, nuclear criticality
safety, detector design and analysis, nuclear oil well logging, accelerator target design,
reactor design, decontamination, and decommissioning [82].

3.5.2 TRIPOLI

TRIPOLI is a 3-D Monte Carlo particle transport code developed at CEA Saclay. It
is capable to perform neutron, photon, electron, and positron transport calculations
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for studies in shielding, reactor physics with depletion, criticality safety, and nuclear
instrumentation [7]. This code is the reference in France for both industry and research
activities.

The history of the TRIPOLI code family can date back to the late 1960s [83–85], while
the current version TRIPOLI-4 has been developed since 1990s [86]. The TRIPOLI-4 is
rewritten based on previous code versions by using the object-oriented C++ language.
The entire code project consists of six components: one geometry component (written in
C), one cross-section interpretation component connecting NJOY (written in Fortran),
one memory management component, one simulation component and two components
dedicated to parallel computing. The code is keeping maintained by the development
team and updated with recent features.

3.5.3 PATMOS

PATMOS (PArticle Transport Monte Carlo Object-oriented System) is a new Monte
Carlo neutron transport code developed at CEA [87]. The code is prototyped with the
fast abstraction language – Python, and then written in the latest C++11/14 [88] for
performance efficiency. Polymorphism is largely used in order to evaluate competing al-
gorithms in the model, for example, PATMOS is capable to perform hybrid cross-section
computation by combining pretabulated data with on-the-fly Doppler broadening.

The physics of PATMOS is simplified: only neutrons and mono-kinetic pseudo-particles
and implemented in the code; only the most probable nuclear reactions are supported by
the current implementation; though only simple geometries (box, sphere, cylinder) are
implemented in native mode, it has been interfaced to the ROOT [89] geometric package
for dealing with complex geometries. However, representative physics to perform a
real simulation are fully featured in PATMOS thus it can run benchmark calculations
like Hoogenboom-Martin [90]. Numerical validation is realized by comparisons with
TRIPOLI-4 and MCNP5 [8]. The final aim is to carry out pin-by-pin full core depletion
calculations (a great number of nuclides are present in each material) for large power
reactors.

This new Monte Carlo code is dedicated to easily test new physics as well as new
computing resources. The main purpose is to study the algorithm behavior with SIMD
paradigms or accelerators like MICs and GPGPUs. Mutable and constant variables
have been separated explicitly from the beginning of the code development, since in
the shared-memory parallel model, one needs to well distinguish mutable and constant
variables, and give them thread-private or global access respectively. The PATMOS
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project has considered HPC notions all the way from its birth and evolves as a prototype
to evaluate new features for the future Monte Carlo reference code in France.

3.6 HPC and Monte Carlo Transports

Algorithm 1 shows the general procedure of a history-based MC neutron transport cal-
culation. The simulation can be loosely represented with four nested loops.

Algorithm 1: Overall procedure of history-based MC neutron transport calculations.
1 Distribute all particles in the simulation into N processes;
2 for Process i from 0 to N-1 do
3 Dispatch all particles in the current process into n batches;
4 for Batches j from 0 to n-1 do
5 ...
6 #pragma omp parallel for
7 for Every particle k in batch j do
8 ...
9 for All isotopes in material do

10 Compute macroscopic cross-section...
11 end
12 ...
13 end
14 ...
15 end
16 ...
17 end

The parallelism of distributed systems usually takes place over the outermost loop (line
2 of Algorithm 1). Particles in the simulation system are evenly distributed into all MPI
processes. Each process has its own copy of the basic global data thus MPI paralleliza-
tion is generally not performed for on-node optimization for memory concern. Current
PATMOS employs simplified algorithms in which there is no communication across dif-
ferent processes during the simulation. A large number of particles to calculate in each
process cancel out the load balance issue of parallelism. It is only in the end that all
processes will sum up to accumulate the final result. Thanks to the “embarrassingly
parallel” nature of MC transports and all factors mentioned above, parallelism at MPI
level can be expressed spontaneously without extra optimization needs. In the future,
however, synchronous communication along with more accurate physical model may lead
to new scalability problems, not to mention the “billion-way parallelism” brought by the
exascale computing which will worsen this situation.
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The second loop (line 4) is responsible for dividing the large particle pool into smaller
batches (with a total number around 102). Just like the outermost loop, a balanced
workload is still preserved for each iteration. In a history-based algorithm, the third
loop (line 7) contains the largest number of loop iterations (between 105 and 106).
Every neutron in a batch is tracked individually by one loop iteration from its birth to
the disappearance. Though the random walk process of each history varies each time
(for example, collision type, number of collisions and free-distance, etc.), choosing a
reasonable granularity of thread task can help get rid of such unbalance.

In the current PATMOS implementation, we perform OpenMP parallelizations at this
level due to its largest trip count among the four loops. Computing workloads are
organized as threads and the total number of threads depends on the hardware. For
example, on a dual-socket Sandy Bridge with sixteen hardware threads, the loop is
parallelized statically with sixteen software threads. Such “thread parallelism” has been
and is being proved efficient for MC calculations.

This natural threading approach inherits the typical strategy used for distributed mem-
ory systems. It is simple and direct to implement: no matter how many cores the
architecture has, we use all of them to maximize the degree of parallelism. As hardware
evolves constantly, however, the problem of this concept becomes serious as well. Com-
pared to traditional CPUs with several dozen of cores in maximum, new accelerators
like GPGPU can include up to several thousand of cores. As a consequence, the thread
granularity varies greatly from one architecture to another. For the same simulation on
both architectures, the workload of a GPGPU thread is significantly different from that
of CPU which indicates that optimizations specific to certain thread granularity only
make sense locally and can not be generalized for general use. For instance, computing
cross-sections with the on-the-fly Doppler broadening leads to unbalanced workloads on
MIC systems but not on conventional CPUs. Larger thread number results in fewer his-
tories to be calculated in each thread so differences of runtime behavior between histories
become non-negligible.

Future implementations could consider the “task parallelism” with which parallel work-
loads are organized by fixed size tasks. Though the capability of dealing with simul-
taneous tasks may differ from one architecture to another, the workload distributed to
each task is always the same. Compared to the naive parallelism controlled haphazardly
by the number of available hardware cores, uniform tasks are more friendly to code
portability and sustainability.

Another issue coming along with load balancing is thread scheduling. As stated before,
conventional MC transports hide unbalanced workload by launching a large number of
neutrons in a single thread, characteristics of individual neutrons have little influence
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on the overall behavior of the neutron population. With new algorithms like on-the-fly
reconstruction, however, the algorithm complexity raises from O(log(n)) (energy lookup
with binary search) to O(n2). The increase in computational cost results in the fact
that large neutron populations can no longer cover the load balancing issue, so dynamic
scheduling should be introduced for better execution performance.

One major problem of dynamic scheduling is that thread execution order depends on the
runtime environment. Data reductions in random orders produce changeable numerical
results which make big difficulties for code validation, especially for high-fidelity reactor
simulations. In addition to concerns mentioned before, optimal scalability is and will
be always visible but not attainable on shared-memory models. Even if the threading
strategy is simple, obstacles like complicated cache hierarchies, NUMA systems, shared
bus and so on are far more complex than the distributed ones and will always limit
speedups. In this situation, code optimizations should go deeper down to the SIMD
level in order to achieve better FLOP usage and better energy efficiency instead of
seeking for ideal speedups.

The innermost loop (line 9 of Algorithm 1) referring to Equation 3.2 iterates over all
nuclides present in the undergoing material to calculate the macroscopic total cross-
section. In each iteration, a linear-interpolation (Equation 3.1) is used to get the cross-
section corresponding to the given energy and then, isotopic cross-sections should be
accumulated to obtain the material cross-section. Since the cross-section computation
is typically the most computationally expensive hotspot in the simulation, one previous
study [91] proposes a fine-grained threading technique to accelerate this process: based
on the coarse-grained threading being described as “thread parallelism” in the previous
paragraph, a part of threads are still preserved to parallelize the third loop (line 7 of
Algorithm 1); while the rest is used to perform multi-threading for calculating cross-
sections.

For modern architectures equipped with SIMD units, vectorization might be a better
solution. According to Section 2.3, it is usually in the innermost loop we perform
vectorization to achieve optimal execution performance. However, even where SIMD
potentials can be identified and exposed, it is far from guaranteed that vectorizations
can be carried out efficiently in a real application.

In the PATMOS code, the overall cross-section calculation is composed of a series of
functions located in different objects within a deep code hierarchy due to C++ language
features: the innermost loop is positioned at material level; the energy lookup and
the linear interpolation belong to an energy grid object. Not to mention that there
are several hierarchies like nuclide, Doppler broadening approach in the code structure
between these two objects. Indirect external function calls present in the innermost
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loop inhibit natural vectorization. Moreover, polymorphism widely used to evaluate
competing algorithms complicates the situation due to its considerable call overhead.

As stated before, effective vectorization is a combination of efficient data movement and
high SIMD identification. Typical cross-section data are organized by isotopes in MC
calculations. It is a natural way to store the data since this is how data are obtained
from physical experiments. As for calculation, however, required data are actually far
from each other due to the traditional AoS organization.

How to organize data to aid natural vectorization in MC calculations is definitely worth
investigating. Even applying vectorization in MC calculations is important, there is
little reported on this subject. Liu [92] explores vector processing strategies for MC
calculations with the XSBench code [93]. Results show that using SIMD technique can
bring 11% speedup for energy lookups but data prefetch is the crucial (speedup around
43%) to achieve higher performance on CPU, MIC, and GPGPU.

This work confirms the fact that energy lookup algorithms are all memory-bound thus
data prefetching to reduce cache misses brings more acceleration than vectorization. A
paper by Ozog [94] presents two techniques to vectorize MC calculations. The first one,
particle banking, can help the simulation code have higher SIMD potential. The second
one is to optimize the conventional history-based algorithm with tunings like SIMD
directives, intrinsics, MKL, data alignment and so on. Both papers mention that data
prefetch can bring significant performance improvement.

3.6.1 History-Based and Event-Based

The conventional history-based Monte Carlo simulations do not fit well with novel archi-
tectures due to the lack of natural vectorization potential. In this algorithm, the basic
computing unit always starts with calculating a physic event (for example, cross-section,
free-distance, interaction type, etc.) and followed by a geometry event to determine
where takes place the next physic event. The entire history continually repeats such
event-switch between the physic and the geometry until the target neutron disappears
in the system.

In order to have better data locality in each event, Brown [95] presents an event-based
algorithm with the help of “shuffle” operations: calculations are organized as events
thus parallel computing units always do the same operations at the same time. This
vector-friendly was popular in the 1980s when supercomputers mainly relied on large
vector machines but then disappeared from the scene along with the decline of vector
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processors. Recently, it comes back in the spotlight due to the renaissance of SIMD
technique.

One early attempt [73, 81] has been made for employing history-based algorithm in
a continuous-energy MC code on GPGPU architectures. The WARP simulation code
described in this work is not a GPGPU adaptation of some existing CPU code. It is an
application targeting the GPGPU platform since its creation. Host CPU is responsible
for initialization and collecting data, important computing tasks including the main
transport loop are all offloaded to remote accelerators.

In another paper [94], it has been briefly explained that full event-based implementation
is difficult to carry out due to obstacles like vector compatible data structure, unpre-
dictable data transfers and choosing proper SIMD candidates. This opinion is confirmed
by a recent work [96] in which a simplified event-based model is created to evaluate its
pure improvement. Results show that event-based particle banking can achieve up to
90% of vector efficiency and a speedup of 4× over the traditional history-based algo-
rithms. Considering this is a simplified ideal case for event executions, such performance
improvement might never appear in a real-case simulation. Besides, it should be noted
that achieving data-level parallelism is only one aspect of full hardware utilization.

For problems limited by memory latency or bandwidth, optimizations other than im-
proving vector efficiency is more crucial. Even the advantage of event-based algorithms
is widely reported by similar studies [97–100], the community always hesitates to spread
them in real applications owing to various implementation difficulties. Finally, history-
based algorithms are still of priority for energy lookup calculations.

3.6.2 Accelerators

Computing accelerators expose a manycore feature to perform massively parallel calcu-
lations. There has been much research done on applying them to accelerate Monte Carlo
particle transport calculations which include PATMOS, WARP, XSBench, ARCHER [101],
OpenMC, RMC [102, 103], and so on. It can be found that among these research work,
GPGPUs are greatly studied for the MC calculation while only a few papers report on
MIC evaluation. Implementations details for each project are not repeated here, but
several thoughts about accelerator utilization will be discussed.

GPGPUs maximize parallelism at the expense of high data transfer overhead through
I/O buses, so recognizing the proper computing kernel to offload to devices is impor-
tant for execution efficiency. For Monte Carlo transport calculations, identifying the
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candidate kernel is not evident. In a recent work of PATMOS [87], cross-section calcula-
tions have been ported on GPGPUs. This hotspot performs computationally expensive
Doppler broadening on the fly thus it should benefit well from accelerators. Results
show that the on-the-fly calculation with three Nvidia K80 GPUs can achieve the same
performance as the binary lookup on one CPU in a real simulation. However, further
evaluation indicates that one Knights Landing can outperform two K80s combined with
one CPU.

The GPGPU code is carried out with the cooperation of Nvidia, various algorithms
and manual tuning are evaluated to make an optimal implementation choice. Even with
these efforts, the code efficiency is much lower than expected. One possible reason is that
cross-section calculations are not the right hierarchy level to make full use of GPGPU for
Monte Carlo transports. Exact performance analysis is necessary to determine whether
the speedup brought by massive parallelism at this level is inhibited by the expensive
data transfer between the host and the remote. Other GPGPU projects like WARP
and ARCHER call the GPGPU kernel from the higher level transport loop, which could
provide useful insights for future PATMOS development.

Modern CPUs tend to include more computing cores to improve performance, but this
trend makes GPGPU accelerations more complicated to realize. Suppose we want to
achieve full GPGPU utilization and in the meanwhile keep the host CPU busy for
efficiency concern, multiple GPU kernels launched from different CPU cores will lead to
serious concurrency problem. As far as we are concerned, this issue has not been reported
in the MC community since common applications rarely perform multi-threading and
GPU parallelism at the same time. On the flip side, simplex GPU parallelism wastes
most CPU computing resources because only one out of a dozen cores is used. As can
be imagined, effective hybrid parallelism requires considerable implementation efforts.

Not like so many attempts to vectorize (or parallelize) memory-bound energy lookups
with accelerators, optimizing the on-the-fly Doppler broadening is rarely reported in the
community. PATMOS carried out the first evaluation for the on-the-fly SIGMA1 on
both GPGPU and MIC. Since the cross-section reconstruction should be totally CPU-
bound and possess high SIMD potential, the corresponding vectorization on MIC and
GPU is really worth investigating.

3.6.3 Cross-Section Computations

The energy lookup process in MC calculations typically employs the binary search. A
number of methods have been proposed in the past as alternatives to improve lookup
efficiency. Brown [104] describes a new hash-based energy lookup method performed
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on a logarithmic scale. An unionized energy grid [105] presented by Leppänen shows
significant speedups but require much more memory space. Lund [106] reports a similar
fractional cascading algorithm to relieve memory requirement. One recent work [107]
has compared a number of optimizations on unionized methods and hashing methods
with OpenMC, and their results show that overall code speedup factors of 1.2-1.5× can
be obtained compared to the conventional binary search. Apart from these existing
algorithms, other variations of the binary search or table lookup schemes (for example,
interpolation search, tree search, etc.) might be useful for cross-section calculations.

Doppler broadening of cross-section data has been an important problem in neutron
transport simulations for a long time. Several algorithms have been developed in this
category. The most well-known SIGMA1 [79] proposed by Cullen is the reference algo-
rithm employed by preprocessing libraries like NJOY. The Serpent code [108] revisits
and optimizes a target motion sampling temperature treatment method [109] proposed
in the 1980s. This method can reconstruct cross-sections with an arbitrary base tem-
perature at a cost of considerable computational time. Yesilyurt [110] introduces a
regression model based on a series expansion of the multi-level Adler-Adler formalism
with temperature dependence. It has been reported that this method has a relatively
high performance but requires more memory space due to extra precomputed data. The
multipole method introduced by Hwang [111] show a different way to represent resonance
information in the cross-section tables: only a few thousand poles are required instead of
hundreds of thousand pointwise energy values. A drawback is the accuracy degradation
at higher temperatures, as well as the high computational cost. Despite these disad-
vantages, the multipole method has the lowest memory requirement among all methods
and thus could make detailed simulations involving thermal-hydraulic feedback possible
in a Monte Carlo code. A new windowed-multipole method proposed by Josey [112]
simplifies the original physical model by ignoring certain resonance-interference. The
optimized method is by itself 40% slower than the conventional table lookup and leads
to 7.9% performance degradation in a real simulation. In addition to reconstructions
of resolved resonance region, two methods to perform on-the-fly Doppler broadening of
unresolved resonance region cross-sections are presented in a recent work by Walsh [113].

3.6.4 Shared-Memory Model

The parallelism of shared-memory systems is more complicated than that of distributed
ones due to complex cache/memory subsystems. Therefore, multi-threading applications
rarely get the same performance scaling that can be observed with MPI multi-processing.
One former study [114] provides comprehensive insights into this topic. This paper shows
that the reservation station (RS) stalls from high latency operations make computing
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units doing nothing but wait for data in most of the time; both FLOP usage and memory-
bandwidth are far from exhausted. As a conclusion, the calculation is basically limited
by memory access latency.

Though increasing the RS size and reducing processor’s clock rate can improve this
situation, the paper suggests exploring new algorithms with more floating-point opera-
tions (for example, on-the-fly Doppler broadening) instead of memory accesses. Using
hyper-threading can improve memory access capacity but such effort will also transform
the problem from latency-bound to bandwidth-bound. In another paper [115] from the
same group, an energy banding method has been introduced to improve cache efficiency
for energy lookup calculations. By dividing the entire energy range into small segments,
corresponding cross-section tables are light enough to fit into the last level cache (LLC).
This method allows better data locality within the random walk process and efficiently
reduces LLC misses.



Chapter 4

Energy Lookup Algorithms

It has been pointed out that the energy lookup in large cross section tables is the
major performance hotspot of Monte Carlo calculations. This is the case in particular
with criticality calculations involving many isotopes and few tallies. Because of the
considerable variations between different isotopic cross section (Figure 3.2), finding a
generic energy lookup solution well-suited for any isotope in any problem is not evident.
Typically, a simple binary search is employed to perform the indexing in the cross section
tables. However, retrieving data in large tables with the bouncing binary search results
in high cache misses (65% at last level cache [114]) and therefore degrades efficiency.
Moreover, this algorithm shows very little vectorization potential.

This part of work started with the PATMOS using the binary search and the isotope
hashing as two energy lookup methods. A polymorphism interface had been preserved
in order to switch between the two methods. At that time, the code had been paral-
lelized on the shared-memory and distributed-memory systems with OpenMP and MPI
respectively but no studies on vectorization had been carried out.

Previous studies focused on this problem have already proposed several alternatives,
but none of them addressed the issue of evolving architectures and especially many-core
ones. Therefore, in the first part of the thesis work, we decide to implement a large
collection of competing energy lookup algorithms in PATMOS and investigate useful
techniques for the performance improvement on both CPU and MIC.

4.1 Working Environments

Before introducing the implementation and optimization work, target architectures and
the test case involved in this part of work will be detailed in this section.

59
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4.1.1 Machines

The experimental environment for tests presented in this chapter is comprised of:

• SB: dual-socket Intel Xeon Sandy Bridge E5-2670 workstation with 2×8 cores run-
ning at 2.6 GHz hosting 4 MIC PCIe cards.

• KNC: Intel Xeon Phi coprocessor, pre-production of Knights Corner prototype C0,
61 cores running at 1.2 GHz, 16 GB GDDR5 memory with ECC enabled, MPSS
version 3.3.

• BDW: dual-socket Intel Xeon Broadwell E5-2697v4@2.3GHz, 2×18 cores, hyper-
threading & Intel Turbo Boost disabled, 256 GB DDR4.

• KNL: Knights Landing 7250@1.4GHz, 68 cores with 4 threads per core, 16GB MC-
DRAM, 96GB DDR4, clustering mode: quadrant, memory mode: flat.

In the beginning of the thesis, SB and KNC represented the latest architectures at
that time thus all tests were initially performed on these two architectures. In mid-
2016, BDW and KNL came out so the same evaluations are re-performed on the new
machines as well.

4.1.2 PointKernel Benchmark

Unless otherwise specified, one single test case called PointKernel is applied for all
performance analysis in this chapter.

The test case is the neutron simulation of a slowing down problem from a 2 MeV source
in an infinite medium at a temperature of 900 K, composed of all the 390 isotopes of
the nuclear data library ENDFBVII.0 [116]; the main components of the mixture are 1H

(2 × 1O22atoms/cm3) and 238U (1O22atoms/cm3) in order to have a classical Pressur-
ized Water Reactor (PWR) spectrum, the other isotopes intervening as trace elements
(1O16atoms/cm3). This simulation is a representative of PWR burn-up computations
with 100,000 particles in each batch.

4.2 Porting and Profiling

4.2.1 Adaptations to KNC

KNC is a coprocessor computer architecture running its own operating system. Building
around the standard x86-64 instruction set, it is expected to extend the parallel execution
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infrastructure with little or no modification of source code. Compared to other acceler-
ators like GPGPU, the main advantage of MIC is the simplicity of porting work [117].
Programmers do not have to learn a new programming language but may compile their
source codes by specifying MIC as the target architecture. The classic programming
languages (Fortran, C, C++), as well as parallel libraries like OpenMP and MPI, can
be directly used regarding MIC as a “classic” x86 based many-core architecture.

The initial PATMOS code had been evaluated on CPU before porting on KNC, how-
ever, extra code adaptations to KNC are necessary since the C++ language is partially
supported by the compiler on coprocessors. For example, using = default to explic-
itly declare member functions has been found not available on MIC. Besides, Standard
Template Library (STL) containers (like std::vector and std::list) of user-defined objects
without the default constructor can not be identified by the compiler thus a container
of pointers pointing to objects instead of a container of objects should be used to solve
the problem.

4.2.2 Code Profiling

Code profiling is the essential work before all optimizing efforts. After transforming
the prototype on KNC, finding performance bottlenecks of the code becomes the major
concern. The idea is to take the same simulation benchmark on both SB and KNC so
as to make a comparative analysis. Profiling differences between the two tests provide a
better understanding of these two architectures and guide on where to carry out following
optimizations.

4.2.2.1 Profiling on Intel Sandy Bridge

Intel VTune is a user-friendly multi-thread profiling tool. With its practical graphic
user interface, users can easily carry out profiling on different modes. By analyzing the
conventional binary search method with the Basic Hotspots mode, it has been found that
the calculation of material’s total cross section can take up to 90% of overall simulation
time in the PointKernel test case on SB. Results show that all top five performance hot-
spots are related to the calculation of macroscopic total cross section. Taking a more
specific look at Figure 4.1, one can observe that the STL std::lower bound() function (the
binary search used to perform table lookups) takes about 64.1% of overall computing
time. When counting on all operations involved with cross section computation, this
figure will raise up to 95.8%. Such conclusion is confirmed by previous studies as well
[104–106], thus how to optimize the cross section computation become a very important
issue for any Monte Carlo neutronic codes.
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Figure 4.1: Caller-Callee view for PointKernel on Intel Sandy Bridge.

4.2.2.2 Profiling on KNC

Profiling work on KNC was more complicated than what one has been supposed to be.
There were always certain problems to use VTune on the first generation KNC since it
could not collect profiling data back to the host and therefore the profiling crashed every
time. Under this circumstance, TAU was utilized as a temporary replacement. TAU
is capable of gathering performance information from both OpenMP and MPI codes.
Besides, it is supported to run profilings on KNC. TAU-specific compilation options
should be added into the program CMake files. We verify that the TAU performance
analysis corresponds well to that of VTune (Figure 4.2). However, this toolkit could not
recognize new STL functions: loops with std::generate(), or std::for each() declarations
are treated as irregular events instead of loops. As a consequence, profiling results are
far less readable and comprehensive compared to that of VTune. Finally, using VTune
to perform code profiling on KNC has been realized with the relatively latest VTune
release. Performance analysis of the binary search method shows that the cross-section
computation is always the number one performance bottleneck on both SB and KNC.

4.3 Binary Search and Alternative Search Methods

The binary search method is the “reference” search scheme for Monte Carlo neutron
transport codes. For every computation of the macroscopic cross-section, the binary
search is applied respectively to the energy grid of each nuclide (390 in total in PointKernel).
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Figure 4.2: TAU profiling for PointKernel on Intel Sandy Bridge.

No extra data need to be pre-computed or stored and therefore it suffers less memory
penalty from complicated problems. Another consideration for using the binary search
is that it preserves the computation accuracy without simplifying standard nuclear data.
Due to these two reasons, this time-consuming method is still popular at present. Espe-
cially for reference codes like TRIPOLI and MCNP, which are required to afford large
problem size and maintain full numerical accuracy.

4.3.1 Manual Binary Search

PATMOS employs the std::lower bound function as the standard binary search method.
Moreover, another manual binary search is also evaluated in PATMOS to improve lookup
efficiency:

int lowerBound ( const vector <double>& vec , double key ) {
int begin = 0 , end = vec . s i z e ( ) ;
while ( begin < end ) {

int mid = ( begin + end ) >> 1 ; // b i t s h i f t i n s t e a d o f d i v i s i o n
i f ( key > vec [ mid ] )

begin = mid + 1 ;
else

end = mid ;
}
return begin ;

}
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This function has two unconditional branches per iteration, one of which is essentially
unpredictable. There is no way for the processor to know in which of the two halves of
the search space the element we are looking for will be, which means that it expects to
get on average one branch miss-prediction per two iterations [118]. The essential of this
implementation is quite similar to the STL function, except that the STL uses templates
such as iterator,advance, and distance instead of bit-set operations.

4.3.2 Vectorized N-ary Search

One natural idea to vectorize a binary search is to extend the conventional half-interval
search to an N-interval search, or N-ary search. In theory, this method should not be
more efficient than the binary search due to the gather operation. On the other hand, it
is also a method which can benefit from vectorization since multiple border elements can
be compared simultaneously against the key value compared to the one middle element
of the binary search (Algorithm 2). In order to investigate the efficiency contribution
of vectorization as well as the overhead related to the gather operation, the following
N-ary search is evaluated in PATMOS:

Algorithm 2: N-ary search method.
1 index = 0;
2 Load 8 copies of key value to vec key (vmovapd);
3 range = array size � 3;
4 while range > 1 do
5 Load (from array[index+range*0] to array[index+range*7]) to vec boundaries;
6 Compare vec boundaries with vec key (vcmppd), store the result in cmp;
7 res: Count the number of bits set to 1 in cmp (popcnt);
8 index += (8-res-1)*range;
9 range = range � 3;

10 end
11 while array[index] < key do
12 ++index;
13 end
14 return index;

When the lookup process arrives at the root of the tree structure where no more than
two array elements are presented within each search interval, we then use a simple linear
search to find the final index. It should be noted that a minimum of 16 elements in an
array is needed to kick off the use of SIMD instructions, and for smaller arrays, the
simple linear search is used for efficiency.
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4.3.3 Vectorized Linear Search

Vectorizing the conventional binary search sacrifices the cache locality due to the gather
operation. The linear search, however, performed on a contiguous memory space can be
also vectorized in order to take advantage of the powerful VPU on MIC. Moreover, with
the help of hashing (Section 4.6), the search interval is dramatically narrowed to a small
range with often only a few elements, where a simple linear search may fully profit from
cache effects and become more efficient than the binary search. Our optimizations follow
the idea of one former study [118] which provides a comprehensive view of optimizing
linear and binary search with SSE2 instructions.

Algorithm 3: Basic vectorized linear search. The key value is the target energy.
1 index = 0;
2 Load 8 copies of key value to vec key (vmovapd);
3 for do
4 Load 8 (from array[index] to array[index+7]) array elements to vals (vmovapd);
5 Compare vals with vec key (vcmppd), store the result in res;
6 if res 6= 0 then
7 break;
8 end
9 index += 8;

10 end
11 Count trailing zero bits of res (tzcnt), store the result in offset;
12 return index + offset;

The basic SIMD algorithm for linear search is represented in Algorithm 3. The 512-bit
VPU allows 8 simultaneous double operations. For each iteration in the loop, 8 elements
in the array pointed by index are compared with the key value. Since all vcmppd
operations in IMCI are already combined with a mask operation, the output of the
comparison is a 8-bit char variable. Once the result is no longer zero, we determine the
offset by counting trailing zero bits of this result. The final result is the accumulated
index plus offset. In the basic algorithm, there is one conditional branch per 8 array
elements, but such proportion can still be reduced by unrolling the loop (Algorithm 4).
With the branchless method, each iteration makes 16 comparisons and the final offset

is packed from 2 8-bit variables with a simple bit-set operation.

Further loop unrolling with 4 and 6 elements has been tried, but only minor improvement
can be observed.
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Algorithm 4: Branchless vectorized linear search.
1 index = 0;
2 Load 8 copies of key value to vec key (vmovapd);
3 for do
4 Load 8 (from array[index] to array[index+7]) array elements to vals0

(vmovapd);
5 Load another 8 (array[index+8] to array[index+15]) elements to vals1

(vmovapd);
6 Compare vals with vec key (vcmppd), store the result in res0;
7 Compare vals with vec key (vcmppd), store the result in res1;
8 res = res0 + (res1�8);
9 if res 6= 0 then

10 break;
11 end
12 index += 2×8;
13 end
14 Count trailing zero bits of res (tzcnt), store the result in offset;
15 return index + offset;

4.3.3.1 Data Alignment for C++ Member Variables

One issue of using IMCI intrinsics is the restriction brought by data alignment. Most
IMCI intrinsic instructions require aligned data as input. Utilizing such intrinsics with
non-aligned data will result in segmentation fault during execution. In addition, aligned
data would increase code performance due to the way CPUs handle memory accesses,
thus data alignment is rather important and necessary for programming with intrinsics.
PATMOS employs STL containers (or functions) as much as possible in order to facilitate
implementation and guarantee code reliability, including vector, map, etc. Although
boost aligned allocator will handle any STL containers, it should be noted that
such alignment only effects on the first element of containers but not each element of
them. Moreover, the problem becomes a little more complicated in our case, cause except
for the standard STL container, we also need align object member variables like int,
double, or even m512d for VPU register. Generally speaking, declspec(align(n))

instruction can be used to align member variables of a C++ object only if the object is
allocated statically. In our code, however, STL containers are largely used and allocated
dynamically thus the declspec(align(n)) instruction is no longer workable. On
the other hand, mm malloc() only work for variables inside member functions but not
for object member variables. One possible solution to align C++ member variables is
rewriting new and delete operators:

void ∗operator new ( s i z e t s i z e )
{

return mm malloc ( s i z e , 6 4 ) ; // or a l i g n e d m a l l o c ( ) depending on compi ler
}
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void ∗operator new [ ] ( s i z e t s i z e )
{

return mm malloc ( s i z e , 6 4 ) ;
}

void operator delete ( void ∗mem)
{

mm free (mem) ; // or a l i g n e d f r e e ( ) depending on compi ler
}

void operator delete [ ] ( void ∗mem)
{

mm free (mem) ;
}

4.3.4 Comparison of Different Search Algorithms

Figure 4.3 represents timing results of different search algorithms performed on these two
architectures respectively, while running on a single thread. The test result is the average
time over ten million searches for retrieving the index corresponding to a random energy
input. The points of the grid are randomly chosen and the array size is varied from
10 to 500 elements. SIMD optimization has significant speedup for the linear search.
The vectorized branchless linear search can bring a factor of 10× improvement over the
basic linear search on MIC. On CPU, however, it performs less efficiently than the basic
vectorized linear search. For any array less than 200 elements, the optimized linear
search turns out to be always more efficient than the binary search on MIC. Similar
conclusions can be drawn on CPU as well. Results indicate that the threshold array size
for choosing between the linear or the binary search is 200. Under this value, the linear
search is more efficient.

As for the N-ary search, it does not seem to be able to outperform the binary search.
Profiling tests indicate that gathering split array elements to prepare the comparison
tree make the optimization counterproductive. Though larger width decreases the depth
of a tree structure, the non-cache friendly memory access to separated array elements
introduces a penalty which leads to worse lookup efficiency.
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Figure 4.3: Performance of several versions of search method as a function of array
size. The standard binary search has been tested in two different implementations, one
coming from the STL std::lowerbound and one rewritten for this work (Manual Binary).
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4.4 Unionized Energy Grid

The unionized energy grid is used to assemble cross-section datasets of all isotopes into
one global table. Complementary energy points for isotopic datasets should be inter-
polated and supplemented in the unified table. Extra data lead to a huge increase in
the memory demand. However, since only one lookup is performed for every macro-
scopic cross-section update, the speedup brought by the unionized grid can be also very
impressive.

Leppänen figured out two methods to overcome the problem with insufficient memory:
the grid thinning method and double indexing method. The grid thinning method
preserves only important energy points (local min. and max. bound, minimum of
threshold reactions, etc.) in the unified grid. This method indeed reduces memory
requirement, but with a loss of numerical accuracy. The second solution is constructing
an indexing table over the unified grid. For a target energy value: a first indexing
provides its location on the unified table; a second indexing with the indexing table
indicates its original locations in each isotopic cross section table. Compared to the
original unionized grid, less extra energy points need to be pre-computed or stored
before simulation and therefore this optimized method requires less memory space. In
order to guarantee the simulation accuracy, the double indexing is chosen for PATMOS
implementation.

4.4.1 Optimizations for the Unionized Method

4.4.1.1 Initialization

The global unionized table combines grids of all nuclides without duplicates. Algorithm
5 shows the naive serial algorithm to establish the unionized grid: we firstly check if one
energy point already exists in the unionized grid (with user-defined Contained()); if
it’s true, we do nothing; otherwise, we will put this value as the last element of u grid

(with std::remove copy if()); at last, we sort u grid to get the final unionized grid.
Thanks to the use of STL functions, the implementation is direct and simple. But results
shown in Table 4.1 indicate that such algorithm has rather poor performance. On one
hand, we can certainly optimize the sequential implementation with parallelism but on
the other hand, it should be noted that std::remove copy if() works well with an
unsorted array, but maybe not proper for sorted ones in our case.

We then tried Algorithm 6 to improve this situation: the std::merge() is dedicated
to combine two sorted containers into a new one with all its elements in order; in the
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Algorithm 5: Initializing unionized grid with std::remove copy if().
1 Initialize an empty unionized grid (std::vector<double>): u grid;
2 for Nuclide i in all nuclides in the material do
3 Load energy grid of nuclide i: vals;
4 std::remove copy if(

vals.begin(),vals.end(),
std::back inserter(u grid),
Contained(u grid.begin(),u grid.end())
);

5 end
6 Sort the u grid;

end, std::erase() and std::unique() are employed to remove duplicates. Such a
few changes by using different STL functionalities bring significant speedup (see Table
4.1), which points out that choosing proper STL algorithm is very important for the
implementation.

Algorithm 6: Initializing unionized grid with std::merge().
1 Initialize two empty std::vector<double>: u grid, temp grid;
2 for Nuclide i in all nuclides in the material do
3 temp grid = std::move(u grid);
4 Load energy grid of nuclide i: vals;
5 std::merge(

vals.begin(),vals.end(),
temp grid.begin(),temp grid.end(),
std::back inserter(u grid)
);

6 end
7 u gird.erase(std::unique(u grid.begin(), u grid.end()), u grid.end());

Further optimization can be carried out with the concurrent container of Intel TBB
library. Intel TBB is a C++ template library for shared memory parallel programming.
Compared to the STL, TBB concurrent containers allow simultaneous data access and
update by multiple threads. To create an unionized grid with TBB, we only need
push back() member function to insert every energy points into the concurrent vector:
u grid. The grid itself can automatically handle everything (e.g. vary container size,
load new elements) in parallel. Results (Table 4.1) show that TBB containers bring
impressive gain against the two previous methods.

std::remove copy if() std::merge() TBB
CPU 453.47 4.32 1.06
KNC 3,269.35 36.93 4.65

Table 4.1: Time (s) to initialize an unionized grid with different methods.
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4.4.1.2 Data Structure

In our preliminary implementation, an indexing table is constructed for each isotope; we
then combine all the list into one 2D indexing table. For the benchmark PointKernel,
for example, we have an indexing table with 390×3,574,598 elements. Profiling re-
sults show that access to the indexing table is one of the performance hotspots for the
unionized method because the indexes for each isotope belong to different arrays. A
better data structure can be accomplished by simply transposing the indexing table to
3,574,598×390 form: for each energy points in the unionized grid, the corresponding
indexes of all 390 isotopes are contiguous in the memory space and can be loaded at
once for all isotopes. Table 4.2 shows that such an optimization can bring a speedup
between 20% and 50% for the simulation, but with worsening performance efficiency as
the number of threads increases.

SB KNC
Serial 16 threads 60 threads 240 threads

Original 131.39 s 12.22 s 60.92 s 25.18 s
Optimized 85.06 s 10.23 s 39.56 s 20.63 s
Speedup 1.54× 1.20× 1.54× 1.21×

Table 4.2: Speedup of optimized unionized method for the PointKernel test case.

4.5 Fractional Cascading

Fractional cascading is a technique to speed up search operations for the same value in
a series of relevant datasets [119]. Lund [106] firstly applied it in the OpenMC code
to improve the energy lookup process for Monte Carlo transports. The basic idea is
to build a unified grid for the first and second isotopes, then for the second and third,
etc. When using this mapping technique, once we find the energy index in the first
energy grid, all the following indexes can be read directly from the extra index tables
without further computations. Compared to the global unionized method, the fractional
cascading technique greatly reduces memory usage. The construction of cascading grid
can be represented in following steps:

• For each isotopic energy grid E, create an extra grid M. The last extra grid Mk

equals to Ek itself

• Mi is a sorted list containing every element of Ei and every other element of Mi+1
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• For each element of Mi, a first pointer p1 gives its index (std::lowerbound-1: last
element less than the given value) in Ei; a second pointer p2 gives its index
(std::lowerbound: first element no less than the given value) in Mi+1

Given an energy e, the algorithm of calculating macroscopic cross section is shown in
Algorithm 7.

Algorithm 7: Energy lookup with cascading grid
1 for all isotope in a material do
2 if first isotope then
3 get index i of e in M0 with std::lowerbound;
4 get current isotopic energy grid index: pointers[i].current;
5 get next isotopic extra grid index: pointers[i].next;
6 else
7 // get current isotopic energy grid index with former next index i next;
8 if e ≤ Mi[i next-1] then
9 get current isotopic energy grid index: pointers[i next-1].current;

10 get next isotopic extra grid index: pointers[i next-1].next;
11 else
12 get current isotopic energy grid index: pointers[i next].current;
13 get next isotopic extra grid index: pointers[i next].next;
14 end
15 calculate microscopic cross section;
16 update macroscopic cross section;
17 end
18 end

4.5.1 Reordered Fractional Cascading

The fractional cascading method builds augmented grids and associated indirection in-
dexes for each isotope and the next. Since every isotope has an energy grid length
largely differing from each other and we always perform a search process only in the
first mapping table, the order in which the energy grids maps are generated may have a
significant effect on searching performance.

SB KNC
Serial 16 threads 60 threads 240 threads

Alphabetical 135.09 s 14.94 s 74.94 s 28.45 s
Min-Max 124.21 s 14.21 s 65.65 s 26.19 s
Speedup 1.09× 1.05× 1.14× 1.09×

Table 4.3: Effects of isotope ordering when constructing fractional cascading maps
for the PointKernel test case.



Chapter 4. Energy Lookup Algorithms 73

We thus tested several ordered approaches: a) alphabetical (this is the order in which
the isotopes are actually read into memory; a) randomized; c) from longer to shorter
grid; d) from shorter to longer grid. The first three approaches gave similar results,
while the ordering of grids from shortest to longest gave a performance improvement of
10% (see Table 4.3 where we show the results for alphabetical and min-max orders).

4.6 Hash Map

Recently, Brown [104] revisited a hash map algorithm for Monte Carlo energy lookup.
Results show that this method remarkably improved search efficiency without significant
increase in memory requirements. Another feature of this scheme is that there is no data
thinning, so numerical accuracy can be fully preserved. It has been pointed out that
hash table is a useful scheme recommended for any Monte Carlo optimization efforts.

The original hashing energy lookup is based on a logarithmic scale energy grid. The
entire energy range is divided up into N equal intervals, and for every individual isotope
inside the material an extra table called U Grid is established to store isotopic bounding
indexes of each interval. The new search intervals are thus largely narrowed with respect
to the original range and can be reached by a single floating-point division. The hashing
can be also performed on a linear scale; the search inside each interval can be performed
by a binary or linear search. In the original paper, a logarithmic hashing was chosen
with N = 8000 as the best compromise between performance and memory usage. A
key value computed with the input energy indicates the minimum and maximum of the
narrowed search interval. In PATMOS, hashing functions characterized by the U Grid
are evaluated on two levels: one at the isotope level and another at the material level.

4.6.1 Isotope Hashing

Hashing at isotope level means each nuclide has its own U Grid. these bounding infor-
mation are valid only within isotope. In PATMOS, Constructing isotope hashing can
be represented in following steps:

1. Take the first and the last element in the energy grid as emin and emax;

2. Determine the U Grid size with a N value;

3. Make du = log(emax)−log(emin)
N ;

4. For each energy value E = emin × exp(n × du) n=1,2...N, store its energy grid
index in U Grid.
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Given an energy E, the lookup process is:

• Compute a key value for each isotope u = (int) log(E)−log(emin)
du ;

• Use search schemes (linear search, binary search, etc.) to locate E in the energy
grid between two bounding indexes: U Grid[u] and U Grid[u+1].

4.6.2 Material Hashing

Material hashing is quite similar to isotope hashing. The only difference is that U Grid
determines its minimum and maximum bound by checking all energy grids in the mate-
rial. Isotopic cross-sections are hashed by the same U Grid parameter, thus a key value
at the material level will be valid for all isotopes within it. In this way, the key value
computation will be performed only once at the beginning instead of being repeated for
every isotope and therefore the computation is supposed to be more efficient.

4.6.3 Efficient Hashing Strategies

The efficiency of two hash-based methods depends on several factors. Unit tests are
carried out respectively for each aspect in order to find the optimal solution.

4.6.3.1 Hashing Size

The hashing size N determines the number of energy points in the hash bins. A greater
value of N means more bins and therefore fewer elements in each bin. In theory, larger
hashing size requires more memory space but performs better. It has been mentioned
[104] that dividing the whole energy range into N ' 8000 segments is a reasonable
compromise between performance and memory usage.

Our first test case PointKernelU238 is a variation of PointKernel, where the only isotope
present is 238U. We have carried out the test varying the hashing size N from 200 to
32,000 and found that a larger hashing size always provides better search efficiency. But
when we switched to the PointKernel test, where all 390 isotopes are present, N ' 500
is observed to be the most efficient value with a gain of around 7% over the original
optimal N ' 8, 000. This may be due to the fact that the average energy grid size is
around 12,000 (see Figure3.2) which is not much bigger than 8,000.

In the hashing method at isotope level, we can specify a different hashing strategy for
each isotope, based on its own energy grid properties. Following this idea, we imple-
mented a hashing method with N = 500 for energy grids with less than 30,000 elements
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and N = 10, 000 for the rest. Results show that such adapted hashing size provides a
5% speedup over the universal N = 8, 000.

4.6.3.2 Logarithmic vs. Linear Hashing

The hashing method revisited by Brown [104] is based on a logarithmic scale. It is not
obvious that such hashing organization is optimal for all cases. Therefore, Walsh [107]
proposed to establish the hash function simply on a linear scale. In the benchmark
PointKernel, we observed that linear scale takes up to 2.2× more time than the loga-
rithmic scale and performs even slightly slower than the conventional binary search.

A detailed analysis of energy point distributions shows that while a logarithmic scale
is the most appropriate to have balanced hash bins outside the resonance region when
resonances are involved a linear scale may be more effective for bin balance. We thus
implemented a mixed hashing, using linear scale between 1eV and the end of the re-
solved resonance region and a log scale otherwise. Timing results performed on the
PointKernelU238 test case shows that this mixed hashing method brings no accelera-
tion on either CPU or MIC and it performs a little slower (no more than 10%) than the
pure logarithmic method. Such performance degradation comes from algorithm branch-
ing when determining in which hashing region the lookup is to be carried on. Further
optimization by varying hash size and reorganizing hashing region could still be worth
exploring.

4.6.3.3 Search Efficiency within Hashing Bins

Figure 4.4: The average hash bin size for an isotope varies significantly from each
other.
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The energy point distributions are very irregular, due to the presence of resonances
where the cross sections change of several order of magnitude in intervals of just 1 eV.
Hashing the 390 isotopes with N = 500 for example, the average number of elements in
each bin is around 21. But ' 81% of hash bins have no more than 3 elements, while in
the resonance region isotopes like 239PU and 238U may have bins with up to 4000 energy
points (Figure 4.4). Such unbalanced distribution leads to performance degradation. In
order to investigate this issue, we measured average search time in each hash bin. The
results confirm that larger hash bins take longer during indexing, but timing differences
between isotopes are not very important (see Table 4.4). For example, the largest 238U

energy grid is 246× more voluminous than the smallest 3H, but indexing energy points
using linear search in a 238U hash bin is on average only 1.5× longer than in 3H.

Isotope Energy grid size Average bin size Time (s)
3H 469 1 2.473e-07
127I 50,759 101.52 2.997e-07
239PU 53,284 106.57 3.039e-07
235U 53,936 107.87 3.058e-07
238U 122,567 245.13 3.756e-07
Average: 10,761 21.52 2.49e-07

Table 4.4: Search performance in the hash bin (with N=500).

4.7 N-ary Map

After revisiting all existed energy lookup algorithms for Monte Carlo codes, we figure
out that none of them is improved by the use of SIMD techniques. Since it has been
mentioned above that vectorization is the key to evaluate algorithms for multi and
many-core systems, so we propose a variation on N-ary tree [120] for its vectorization
and cache-locality properties.

Figure 4.5: Balanced bin size with N-ary map method.

Directly vectorizing a binary search to an N-ary search (Subsection 4.3.2) can lead to
a significant increase of discontiguous memory accesses. But if we pre-gather these
separator values and store them in VPU registers before calculations, the overhead
should be much less significant. Following this idea, we propose and evaluate an N-ary
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energy lookup method: corresponding mapping points are pre-retrieved from the array
and stored in VPU registers. SIMD instructions help to locate the interval between
two mapping points; a binary search is then performed to carry out the lookup within
mapping bins to find the final index.

Generally speaking, the width and the depth can affect the lookup efficiency of a tree
structure, and this is also true for the N-ary energy lookup. Test results show that
multi-level tree structures increase memory access overhead since indexing from one
level to the next causes longer access latency. The deeper and wider a tree structure
is, the more memory space is required and the more cache misses will be caused. More
memory requirement also indicates that the program would have more register splits,
because all mapping information is pre-computed and stored in VPU registers, and the
number of 512-bit registers is rather limited for each core. Moreover, boundary points
of one interval may be located in different branches of a tree, which can directly result
in algorithm branching and enforce serialization inside SIMD instructions.

Finally, a flat N-ary map with only one level has been found the most suitable for the
energy lookup. This method is similar to hashing, but the energy bins are not built on
equal energy intervals but on an equal number of energy grid points. The algorithm is
the following, where we use IMCI intrinsics:

1. For each isotope, divide the energy grid E into 32 segments with range r = grid size
32

2. Create an extra indexing list I containing r × j, (j = 0, 1, 2...31) and insert the
index of last element in the energy grid at the end of the list

3. Store 32 variables E[I[j]] (j = 0,1,2...31) into 4 m512d vector variables

Such a method creates only a few hundreds of bytes of extra mapping information for
each isotope. The procedure for indexing an energy value (the key value) is represented
by the following steps:

1. Load 8 copies of key value to vec key (with instruction vmovapd)

2. Compare vec key with 4 m512d vector variables, store 4 comparison results in 4
8-bit variables: cmp0, cmp1, cmp2, cmp3 (vcmppd)

3. Pack 4 results into one 32-bit unsigned variable: res = cmp0 + (cmp1�8) + (cmp2

+ (cmp3�8))�16

4. Find the final index with a binary search in the interval between E[I[res-1]] and
E[I[res]]
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4.8 Full Simulation Results

In this section, we present the comparison of different lookup methods in terms of
performance, scalability, and memory footprint. It should be noted that optimizations
for each method have been already taken into account.

4.8.1 Performance

SB (16 threads) KNC (60 threads) KNC (240 threads)
Time (s) Speedup Memory (MB) Time (s) Speedup Memory (MB) Time (s) Speedup Memory (GB)

Binary 32.90 1.00× 514 107.28 1.00× 970 35.76 1.00× 2.88
Cascading 14.21 2.32× 640 65.65 1.63× 1126 26.19 1.37× 2.9

HashIsotope 15.59 2.11× 527 69.81 1.54× 1030 25.86 1.38× 2.89
HashMaterial 14.05 2.34× 526 68.51 1.57× 1027 24.33 1.47× 2.89

N-ary map - - - 84.96 1.26× 982 31.52 1.13× 2.88
Unionized 10.23 3.22× 5862 39.56 2.86× 6348 20.63 1.73× 8.0

Table 4.5: Performance and memory usage for energy lookup algorithms for the
PointKernel test case.

As shown in Table 4.5, the reference binary search is the slowest method in the test.
The unionized grid is the most efficient time-wise, but at the cost of a dramatic increase
in memory foot-print (times 11× on CPU). The two variants of hashing methods and
fractional cascading have nearly the same efficiency on both CPU and MIC.

A disappointing fact is that with all the algorithms tested the CPU always outperforms
the KNC. This is true even for vectorized algorithms like the N-ary search, in spite of
the fact that the theoretical vectorization speedup is twice as big in the KNC (×8) that
in the CPU (×4).

4.8.2 Memory Optimization

As can be found in Table 4.5, certain data related to isotopic exiting distributions were
still replicated for each working thread which requires about 10 MB of supplementary
memory space per thread. While when working with CPU this is hardly noticeable, in
MIC architecture the added cost in memory footprint is far from negligible (see Table
4.5).

We have therefore optimized the PATMOS data structures to reduce the memory foot-
print of the duplicated objects to about 200KB∼500KB (depending on the method) per
thread, which corresponds to a reduction factor of about 20 with respect to the previ-
ous version. Moreover, the code structure of material hashing and fractional cascading
methods has also been re-designed to improve data locality. Results show that such
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Figure 4.6: Performance comparison between naive and memory-optimized prototype
(the lower the better).

reduction efforts bring considerable acceleration (Figure 4.6) to all methods but the N-
ary search. Basically, both time performances and speedup against the reference binary
search are improved (Table 4.6). Compared to the common multi-core architecture, we
can conclude that the many-core benefits more from memory reduction. Among the
methods, hashing at the material level shows the most improvement from this optimiza-
tion, especially on KNC where it approaches the performance of the unionized grid. An
exception to this general trend is the N-ary map on KNC, which is improved with hyper-
threading (240 threads) but not without (60 threads). This behavior is not completely
understood.

Memory SB (16 threads) KNC (60 threads) KNC (240 threads)
(MB) Time (s) Speedup Time (s) Speedup Time (s) Speedup

Binary 367 32.88 1.00× 85.47 1.00× 31.98 1.00×
Cascading 502 11.27 2.91× 44.02 1.63× 21.61 1.47×

HashIsotope 368 16.05 2.04× 48.8 1.54× 23.44 1.36×
HashMaterial 368 11.96 2.74× 29.5 1.57× 13.67 2.34×

N-ary map 367 - - 89.42 0.96× 27.04 1.18×
Unionized 5862 8.2 4.0× 23.74 3.6× 10.95 2.92×

Table 4.6: Performance and memory usage after memory optimization.

4.8.3 Scalability

As for algorithm scalability (Figure 4.7), we note that algorithm efficiency on MIC
with 60 threads is much better than the efficiency on CPU with 16 threads. Though
hyper-threading with 4 threads per core results in shorter computing times on MIC,
the algorithm efficiency (compared to one single thread) degrades as well. Results on
CPU are quite coherent with previous work: algorithms with better performance have
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Figure 4.7: Speedup for energy lookup algorithms for the PointKernel test case.

a strong tendency to have worse scalability. Even after memory optimization, however,
the material hashing and fractional cascading methods have poorer scalability on KNC
than the unionized grid method. The N-ary map method has been found to have the
best scalability on MIC architecture. The logarithmic material hashing method seems
to retain the best balance between performance, scalability and memory footprint.
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4.8.4 Results on Latest Architectures

In order to evaluate the contribution of latest architectures to the energy lookup algo-
rithm, similar performance tests are repeated on BDW and KNL. The implementations
used to evaluate different architectures are basically the same except few code adapta-
tions for the intrinsic instructions.

Figure 4.8: Execution performance of competing energy lookup algorithms.

As shown in Figure 4.8, execution performance on BDW is quite similar to that of SB.
In both cases, the unionized grid has the best performance since it has relatively bet-
ter cache utilization. Fractional cascading and material hashing have nearly the same
performance since they both do the major computation at the material level (no need
to perform calculations individually in each nuclide). Compared to the isotope hashing,
computing at higher hierarchy allows these two methods to possess more data locality.
As for many-core architectures, it can be observed that the material hashing approaches
the performance of the unionized grid on KNL. Moreover, a significant difference be-
tween KNC and KNL is that all lookup algorithms benefit little from hyper-threading
on the latest MIC processor. The previous KNC employs the in-order execution with
which instructions are statically scheduled in a compiler-generated order. KNL, how-
ever, extends the instruction-level parallelism with the out-of-order execution where the
program can still execute other instructions behind a stalled instruction. Therefore, the
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hyper-threading on KNC can hide the frequent stall overhead during the random walk
process while on KNL such overhead does not exist anymore due to the dynamically-
scheduled instructions.

Figure 4.9: KNL shows 1.5× performance improvement over KNC for energy lookup
algorithms by using hyper-threading.

Figure 4.10: BDW shows > 2× speedup over KNL for energy lookup algorithms.

Figure 4.9 shows an overall performance comparison between these two architectures
with and without hyper-threading. It can be observed that KNL has an overall 2.5×
over KNC without using hyper-threading. By using all four hardware threads per core,
however, KNL computing efficiency decreases more significantly than that of KNC which
results in poorer performance improvement (around 1.5×). In conclusion, our implemen-
tation proposed for KNC works well on KNL. Porting codes to the latest architecture
will directly have performance improvement. Results (Figure 4.10) show that even KNL
outperforms the latest generation KNC with a factor of 2×, it is still 2× less efficient than
the same generation CPU. This situation can be mitigated by finding new algorithms
with more FLOP work.
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Cross-section Reconstruction

RECONS [121] is a mini-app dedicated to evaluating algorithms for the on-the-fly
Doppler broadening. The code is developed by François-Xavier Hugot of CEA/DEN/
SERMA. It performs direct reconstructions for the cross-sections located in the resolved
resonance region (Figure 5.1); in other regions, cross-sections are computed with energy
lookup methods. Cross-section data are from the library ENDF/B-VII.1 [75]. PRE-
PRO [122] is used to transform the standard data to meet the calculation require-
ment of RECONS. STL functions and lambda expressions are largely used for the fast-
implementation. Physical results can be evaluated by a comparative test between the
reconstruction and the pretabulated data.

Unlike previous work in which different energy lookup methods are evaluated directly
in PATMOS, RECONS is an independent code that should be integrated into our im-
plementation. In this chapter, the algorithms used in RECONS, the implementation in
PATMOS, and test results will be presented.

5.1 Working Environments

Before introducing algorithms and implementations, involved architectures and the test
case will be detailed in this section.

5.1.1 Machines

The experimental environment for tests presented in this chapter is comprised of:

• BDW: dual-socket Intel Xeon Broadwell E5-2697v4@2.3GHz, 2×18 cores, hyper-
threading & Intel Turbo Boost disabled, 256 GB DDR4.

83
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• KNL: Knights Landing 7250@1.4GHz, 68 cores with 4 threads per core, 16GB MC-
DRAM, 96GB DDR4, clustering mode: quadrant, memory mode: flat.

This part of work started in mid-2016 when BDW and KNL were already available, so
studies on SB and KNC were abandoned.

5.1.2 PointKernel Benchmark

The PointKernel applied in this chapter is different from previous ones. It is a neu-
tron simulation in an infinite medium at a temperature of 300 K. 100,000 particles are
calculated in each batch. The nuclear data library ENDFBVII.1 is used. The main
components of the mixture are 1H (2 × 1O22atoms/cm3) and 240PU (1O22atoms/cm3),
other isotopes intervening as trace elements (1O16atoms/cm3). Interaction types are
restricted in elastic scattering and radiative capture.

5.2 Algorithm

The on-the-fly Doppler broadening in RECONS employs formulas which are similar
to the multipole method. It should be noted that only Single-Level Breit-Wigner and
Multi-Level Breit-Wigner formalism have been implemented in the code; investigations
on the Reich-Moore formalism are still ongoing.

5.2.1 Resolved Resonance Region Formula

For the resolved resonance region, cross sections of different reaction types are calculated
with formulas presented in the ENDF manual [124, 125].

5.2.1.1 Single-Level Breit-Wigner

The elastic scattering cross section in the Single-Level Breit-Wigner (SLBW) formalism
can be written as:

σ(E) =
NLS−1∑
l=0

σl(E) (5.1)

where

σl(E) =(2l + 1)4π
k2 sin2 φl

+ π

k2

∑
J

gJ

NRJ∑
r=1

Γ2
nr − 2ΓnrΓ sin2 φl + 2(E − E′r)Γnr sin(2φl)

(E − E′r)2 + Γ2
r/4

(5.2)
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Figure 5.1: On-the-fly Doppler broadening applies on the resonance region [123].

In this formula:

• E: energy of the neutron

• l: relative neutron-nucleus angular momentum

• NLS: number of spin levels l

• J : angular momentum (“spin”) of the resonance state

• NRJ : number of resonances for a given pair of l and J values.

• Γnr: neutron line width at energy E

• Γr: total resonance width at energy E

Besides, the statistical spin factor gJ is given by the following equation:

gJ = (2J + 1)
2(2I + 1) (5.3)

where I is the angular momentum of the target nucleus.

The neutron wave number k at energy E in the center-of-mass system is calculated with
the following relation:

k = 2.196771× 10−3 AWRI
AWRI + 1.0

√
E (5.4)
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where AWRI is the ratio of the target isotope mass to the neutron mass.

The shifted resonance energy E′r is defined as:

E′r = Er + Sl(|Er|)− Sl(|E|)
2Pl(Er)

Γnr(|Er|) (5.5)

where Sl is the level-shift factor presented as a function of angular momentum:

S0 = 0

S1 = − 1
1 + ρ2

S2 = − 18 + 3ρ2

9 + 3ρ2 + ρ4

S3 = − 675 + 90ρ2 + 6ρ4

225 + 45ρ2 + 6ρ4 + ρ6

S4 = − 44100 + 4725ρ2 + 270ρ4 + 10ρ6

11025 + 1575ρ2 + 135ρ4 + 10ρ6 + ρ8

(5.6)

and the penetration factor Pl is defined as:

P0 = ρ

P1 = ρ3

1 + ρ2

P2 = ρ5

9 + 3ρ2 + ρ4

P3 = ρ7

225 + 45ρ2 + 6ρ4 + ρ6

P4 = ρ9

11025 + 1575ρ2 + 135ρ4 + 10ρ6 + ρ8

(5.7)

The angular momentum hard-sphere phase shift φl at energy E is calculated with:

φ0 = ρ̂

φ1 = ρ̂− tan−1ρ̂

φ2 = ρ̂− tan−1 3ρ̂
3− ρ̂2

φ3 = ρ̂− tan−1 ρ̂(15− ρ̂2)
15− 6ρ̂2

φ4 = ρ̂− tan−1 ρ̂(105− 10ρ̂2)
105− 45ρ̂2 + ρ̂4

(5.8)

Parameters ρ and ρ̂ are defined as k × a, where a is channel radius defined as:

a = 0.123×AWRI1/3 + 0.08 (5.9)
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The radiative capture cross section in the SLBW formalism can be written as:

σ(E) =
NLS−1∑
l=0

σlγ(E) (5.10)

where

σlγ(E) = π

k2

∑
J

gJ

NRJ∑
r=1

ΓnrΓγr
(E − E′r)2 + Γ2

r/4
(5.11)

and Γγr is the gamma width at the resonance energy.

The fission cross section in the SLBW formalism can be written as:

σ(E) =
NLS−1∑
l=0

σlf (E) (5.12)

where

σlf (E) = π

k2

∑
J

gJ

NRJ∑
r=1

ΓnrΓfr
(E − E′r)2 + Γ2

r/4
(5.13)

and Γfr is the fission width at the resonance energy.

5.2.1.2 Multi-Level Breit-Wigner

In the Multi-Level Breit-Wigner (MLBW) formalism, the equations are nearly the same
as SLBW, except that a resonance-resonance interference term should be taken into
consideration for the elastic scattering cross section. So the Equation 5.2 should be
rewritten as:

σl(E) = π

k2

∑
J

gJ

NRj∑
r=1

GrΓr + 2Hr(E − E′r)
(E − E′r)2 + 1

4Γ2
r

(5.14)

where

Gr = 1
2

NRJ∑
s=1;s 6=r

ΓnrΓns(Γr + Γs)
(E′r − E′s)2 + 1

4(Γr + Γs)2 (5.15)

Hr =
NRJ∑

s=1;s 6=r

ΓnrΓns(E′r − E′s)
(E′r − E′s)2 + 1

4(Γr + Γs)2 (5.16)

5.2.1.3 Doppler Broadening

All above equations are given for a particular isotope without Doppler broadening (at
0K). In order to reconstruct the cross section at a higher temperature T , we can use
the formula that says that if cross section value at T = 0 can be written as [126]:

σ(E, T = 0) =
∑ A+B(E − E′)

(E − E′)2 + Γ2/4 (5.17)
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then it follows that

σ(E, T ) =
∑ 1√

π∆

{2πA
Γ < [W (ξ)]− πB= [W (ξ)]

}
(5.18)

where
ξ = E′ − E

∆ + i
Γ

2∆; ∆(E, T ) ∼
√
TE, (5.19)

and W is the Faddeeva function (Section 5.2.2).

5.2.2 Faddeeva Function

Faddeeva function [127] is a complex error function involving an integral of et2 , which
makes it closely related to the Fresnel and Dawson functions. The real and imaginary
parts are called the Voigt functions. The functions are scaled by e−z

2 , which gives it
favorable numeric properties that help to avoid numeric overflow.

Faddeeva function is defined as:

W (x) = e−x
2(1 + 2i√

π

∫ x

0
et

2
dt) = e−x

2 [1 + erf(ix)] = e−x
2erfc(−ix) (5.20)

Integral representations:

W (x) = i

π

∫ ∞
−∞

e−t
2

x− t
dt = 2ix

π

∫ ∞
0

e−t
2

x2 − t2
dt (5.21)

5.3 Implementations and Optimizations

RECONS has been integrated into PATMOS with considerable adaptation work. For
calculations outside the resolved resonance region, the hashing isotope (Subsection 4.6.1)
is used instead of the binary search for higher lookup efficiency. In this section, the imple-
mentation choice of the Faddeeva function, as well as optimizations of the reconstruction
kernel, will be presented with details.

5.3.1 Faddeeva Implementations

The choice of the Faddeeva implementation in PATMOS is important since the function
is not provided by standard performance libraries like MKL. In our cross-section recon-
struction algorithm, it is the only external and computationally expensive function in
the hotspot kernel. Efficient implementations should be used to obtain a good runtime
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performance and also to preserve a high numerical accuracy. In the following of this
section, two implementations evaluated in PATMOS will be presented.

5.3.1.1 ACM680 W

The default Faddeeva implementation in RECONS (referred to as ACM680::W) is de-
veloped on C++ by François-Xavier Hugot. The program is inspired by the ACM
Algorithm 680 proposed by Poppe and Wijers [128]. For a given complex number z,
the subroutine computes exp(−z2) · erfc(−iz) where erfc is the complex complementary
error function. The accuracy of the algorithm for z in the first and the second quadrant
is fourteen significant digits; in the third and forth is thirteen significant digits outside
a circular region. The calculation efficiency of the algorithm is enhanced by using a
different approximation in the neighborhood of the origin, where the naive Gautschi
algorithm [129] becomes ineffective.

The original ACM 680 implementation uses double precision, while ACM680::W evaluates
both single and double precision in terms of performance and accuracy. It should be
noted that for small |z| values, ACM680::W evaluates the Faddeeva function by using a
power-series (Equation 7.1.5 in [130]).

5.3.1.2 MIT W

Faddeeva Package [131] (or MIT::W) is an open-source C++ code developed by Steven G.
Johnson from the Department of Mathematics of MIT (Massachusetts Institute of Tech-
nology). It has wrappers for other languages like C, Matlab, Python, and so on. Unlike
the ACM680::W implementation, MIT::W uses a hybrid algorithm to compute the Fad-
deeva function: a continued-fraction expansion similar to Algorithm 680 and 363 [129]
for sufficiently large |z| values while a new Algorithm 916 [132] for small |z| values. The
package developer indicates that the continued-fraction expansion significantly outper-
forms the 916 for larger |z| at the cost of certain accuracy loss. MIT::W uses Taylor
expansions in certain regions to avoid cancellation errors and Chebyshev polynomial
approximations to converge faster. Precomputed lookup tables are usually used in the
implementation to transform the costly computing kernel to a simple memory read. Ac-
cording to the developer, significant speedup has been observed by using this technique.
The overall accuracy is at least thirteen significant digits in both the real and imaginary
parts [131].
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5.3.2 Scalar Tuning

From this subsection, reconstruction algorithms and optimizations implemented in PAT-
MOS will be presented in the order of scalar tuning, vectorization, and parallelism. As
shown in the previous section, the calculation of elastic is more complicated and ex-
pensive than capture and fission. Furthermore, elastic of MLBW is much heavier than
that of SLBW. Therefore, only MLBW elastic is discussed for brevity. Algorithm 8
shows the primitive computing kernel, which follows tightly the equations presented
before(Equation 5.14). This implementation has a lot defects, such as duplicates, no
vectorization, branching inside the loop, etc. So in the rest of section, our optimization
work will be detailed.

Algorithm 8: Primitive MLBW σelastic kernel
Input: Energy E, AoS R[N ]
Output: Cross section σe

1 for resonance R[i] i← 0 to N do
2 E′r,Γnr,Γr ← E,R[i]; // E′r,Γnr,Γr of resonance i
3 for resonance R[j] j ← 0 to N do
4 if i 6= j then // do not accumulate itself
5 E′s,Γns,Γs ← R[i], E; // E′s,Γns,Γs of resonance j
6 gr ← E′s,Γns,Γs, E′r,Γnr,Γr;
7 Gr += gr; // accumulate Gr
8 end
9 end

10 for resonance R[j] j ← 0 to N do
11 if i 6= j then // do not accumulate itself
12 E′s,Γns,Γs ← R[i], E; // E′s,Γns,Γs of resonance j
13 hr ← E′s,Γns,Γs, E′r,Γnr,Γr;
14 Hr += hr; // accumulate Hr

15 end
16 end
17 if theta = 0 then // temperature at 0K
18 σ ← E,R[i], E′r,Γnr,Γr, Hr, Gr;
19 σe += σ; // accumulate σe
20 else // Doppler broadening
21 enrc← (E, theta,E′r,Γr);
22 w ← faddeeva(enrc);
23 σ ← E,R[i], E′r,Γnr,Γr, Hr, Gr, w;
24 σe += σ; // accumulate σe
25 end
26 end

Scalar tuning includes optimization efforts related to mono-thread sequential executions.
In order to prepare the application for further vectorization or parallelization, an opti-
mized scalar implementation can benefit more from subsequent enhancements.
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Algorithm 9: Simplified MLBW σelastic kernel (other than 0K)
Input: Energy E, AoS R[N ]
Output: Cross section σe

1 initialize arrays: E′r[N ],Γnr[N ],Γr[N ];
2 for resonance R[i] i← 0 to N do
3 E′r[i],Γnr[i],Γr[i]← E,R[i]; // E′r[i],Γnr,Γr of resonance i
4 end
5 for resonance R[i] i← 0 to N do
6 for resonance R[j] j ← 0 to N do
7 if i 6= j then // do not accumulate itself
8 hr, gr ← Γnr[..],Γr[..], E′r[..];
9 Hr += hr; Gr += gr; // accumulate Hr & Gr

10 end
11 end
12 enrc← (E, theta,E′r,Γr);
13 w ← faddeeva(enrc);
14 σ ← E,R[i], E′r[i],Γnr[i],Γr[i], Hr, Gr, w;
15 σe += σ; // accumulate σe
16 end

5.3.2.1 Algorithm Simplification

In a lot of cases, simulation codes are developed to completely reflect all details of the
numerical model. This can leads to a fact that model-loyal implementations replicate a
lot of calculations and therefore, degrade the execution performance. For example, com-
puting intermediate variables like E′r,Γnr,Γr is repeated three times for each resonance
calculation (lines 2,5,12 of Algorithm 8). To solve this problem, in place of calculating
them on-the-fly whenever they are required, E′r,Γnr,Γr are precomputed only once in
the beginning (lines 2-4 of Algorithm 9). Two inner loops (lines 3-9 and lines 11-15 in
Algorithm 8) basically compute the same intermediate variables and only make a differ-
ence for the final accumulation. As a result, these two loops can be merged into one to
avoid replications (lines 6-11 of Algorithm 9).

5.3.2.2 Code Reorganization

At the program structure level, alternative processes like SLBW or MLBW as well as
base temperature or other temperatures are originally manipulated in the same C++
class. If-conditions are largely used to distinguish different processes at runtime. For
optimization, inheritance is used to separate each individual properly in their own class

to avoid runtime branch check.
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To calculate the penetration and shift factor, the naive implementation uses a recursive
algorithm as shown below:

std : : pa ir<double , double> p e n e t r a b i l i t y s h i f t ( int l , double rho )
{

i f ( l ==0) return std : : make pair ( rho , 0 . ) ;
double rho2=sqr ( rho ) ;
auto ps = p e n e t r a b i l i t y s h i f t ( l−1 , rho ) ;
double plm=ps . f i r s t , slm=ps . second ;
double denum = square ( l−slm)+square ( plm ) ;
return std : : make pair ( rho2∗plm/denum , rho2 ∗( l−slm )/denum− l ) ;

}

This recursive algorithm will introduce problems for vectorization, thus we chose a
straight-line implementation by following tightly Equation 5.6 and Equation 5.7. The
switch-condition in these equations lead to algorithm branching again. Since the l-value
is a constant for each resonance, the branching down at the function level can be lifted
up to the initialization. A first attempt is to use polymorphism to determine the corre-
sponding calculation for each individual l-value. For such light functions, the overhead
of polymorphism may counteract the enhancement by removing branches. Further op-
timizations could use templates with explicit specialization, but initial tests show such
metaprogramming prevents directive vectorization in PATMOS.

5.3.2.3 Strength Reduction

Strength reduction is an operation that replace expensive calculations with equivalent
simpler ones. Such simplification can improve execution performance but usually results
in accuracy loss. According to the Colfax training [133], operations like exp2(), log2(),
and sqrt() are programmed directly on the processor without software calculations. So
in PATMOS, exp() calls are all replaced by the hardware-supported exp2(). Generally
for modern processors, addition, subtraction and multiplication all take about five clock
cycles while a division operation may require up to several dozen clock cycles. In a
consequence, divisions should be transformed to corresponding multiplications or bitwise
operations wherever possible:

// r e p l a c e exp () wi th e q u i v a l e n t exp2 ()
constexpr double f a s t e x p ( double x ) {return exp2 ( x ∗1 .44269504089) ;}

// use m u l t i p l i c a t i o n i n s t e a d o f d i v i s i o n
const f loat X rec ip = 1 . f /X;
for ( int i =0; i<N; ++i )

Y[ i ] ∗= X rec ip ;



Chapter 5. Cross-section Reconstruction 93

// b i t s h i f t to c a l c u l a t e x = y / 8 .
double x = >> 3 .

5.3.2.4 STL Functions

Since C++11, a large number of new loop representations combined with lambda func-
tion has been added into the STL. Functionalities of these new functions can be known
directly from their definitions. For example, std::generate is responsible to initial-
ize arrays; std::accumulate is used to perform reductions. With a quick glance at
the function name, developers can understand the global semantics of the target loop.
The advent of these functions can largely enhance code readability and simplify code
implementations. From the view of the compiler, however, identifying these new STL
functions as vectorization candidates is not considered as a first priority. Even with
the indication of SIMD directives, compilers are not capable yet to perform vectoriza-
tions on these loops. The naive reconstruction algorithm heavily employs these loop
functions, thus all of them have been rewritten back to the standard for(;;) form for
better compiler compatibility.

5.3.3 Vectorization

Effective vectorization comes from a complicated balance of data layout and arithmetic
operation [58], thus this work require developers with deep understandings for both
software and hardware. In order to maintain the readability and performance of the
code, we choose to use SIMD directives instead of low-level intrinsics or libraries.

As shown in Algorithm 10, omp simd directives are used for explicit vectorization of
each loop. More precise manual tunings involved in our work will be detailed in the
following of this section.

5.3.3.1 Collapse

Vectorization is supposed to apply on the innermost loop of the computing kernel. For
implementations like PATMOS in which a dozen levels of nested loops are present,
vectorizing associated loops is desired. The collapse clause (line 6 of Algorithm 10)
is responsible to unroll multi-level loops into one flattened loop body. The figure 2

indicates that two loops are associated with the SIMD construct.
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Algorithm 10: Optimized MLBW σelastic kernel (other than 0K)
Input: Energy E, SoA A[Np], B[Np]...
Output: Cross section σe

1 aligned initialization: E′r[Np],Γnr[Np],Γr[Np], tempgr[Np], Gr[Np], Hr[Np];
2 #pragma omp simd aligned(..)
3 for i← 0 to Np do
4 E′r[i],Γnr[i],Γr[i], tempgr[i],← E,A[i], B[i]...; // E′r,Γnr,Γr of i
5 end
6 #pragma omp simd collapse(2) aligned(..)
7 for i← 0 to Np do
8 #pragma omp simd reduction(+:Hr[i], Gr[i]) aligned(..)
9 for j ← 0 to Np do

10 hr, gr ← Γnr[..],Γr[..], E′r[..];
11 Hr[i] += hr; Gr[i] += gr; // accumulate Hr & Gr
12 end
13 Gr[i] -= tempgr[i]; // subtraction to remove branching
14 end
15 #pragma omp simd reduction(+:σelastic) aligned(..)
16 for i← 0 to Np do
17 enrc← (E, theta,E′r,Γr);
18 w ← faddeeva(enrc);
19 σ ← E,E′r[i],Γnr[i],Γr[i], Hr, Gr, w,A[i], B[i]...;
20 σe += σ; // accumulate σe
21 end
22 ...
23 #pragma omp declare simd processor(mic avx512)
24 faddeeva(enrc) ...

5.3.3.2 No Algorithm Branch

Algorithm branch inside a loop body can seriously decrease the vectorization efficiency.
As shown in the inner loop (lines 6-11 of Algorithm 9), the influence of other resonances
in the region should all be accumulated for the target central resonance. If-condition
(line 7 of Algorithm 9) is used to not accumulate itself. It should be noted that such
algorithm branch can be auto-vectorized with mask operations. However, the vectoriza-
tion efficiency can not be high as long as branches present inside the loop. In order to
solve this problem, the self-influence is precalculated (lines 3-5 of Algorithm 10) before
the main loop thus the if-branch can be avoided by simply subtract the precalculated
value at the end of the loop (line 13 of Algorithm 10). For implementations that difficult
to remove algorithm branches, another possible solution is to move if-conditions outside
of the loop body. In this situation, at least in each if-branch SIMD operations can be
guaranteed.
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5.3.3.3 Loop Splitting

We often see that vectorization may not apply for the entire loop in a real problem due
to issues like non-straight codes, sequential executions, etc. In this situation, separating
the original one unique loop into several smaller ones and vectorizing those who have
SIMD opportunities can improve execution performance.

for ( int i =0; i<N; ++i ) {
Z [ i ] = X[ i ] + Y[ i ] ;
func (Z [ i ] ) ; // e x t e r n a l f unc t i on t h a t can not be v e c t o r i z e d

}

The loop shown above consists of two major operations: one is array addition; another
is external function call. With the help of loop splitting, the array addition can be
vectorized by directives:

#pragma omp simd
for ( int i =0; i<N; ++i )

Z [ i ] = X[ i ] + Y[ i ] ;

for ( int i =0; i<N; ++i )
func (Z [ i ] ) ; // e x t e r n a l f unc t i on t h a t can not be v e c t o r i z e d

Though split loops result in redundant work, such overhead turns out to be negligible if
used properly. Another case to use loop splitting is when a huge amount of calculations
present in the loop body. Even the whole loop can be vectorized, there are so many
intermediate variables to calculate and to store for each iteration. Since KNL concludes
thirty-two 512-bit vector registers for each computing unit, extra data which can not fit
into these registers will be put to the main memory. This is what is called a register
spilling which can lead to significant performance degradation. Here, loop splitting can
relieve vector register pressure by avoiding the register spilling. According to profiling
results, the second loop (lines 5-16) in Algorithm 9 are already cause register spilling
on BDW. Therefore, we separate the loop of accumulation and the loop of Doppler
broadening in the optimized implementation (lines 7-14 and lines 16-20 in Algorithm
10).

5.3.3.4 Declare SIMD Directives

The Faddeeva function (line 13 of Algorithm 9) present in the inner-loop prohibits nat-
ural vectorization. Before, one possible solution could be inlining external functions to
make them locally to the loop body. In the case of Faddeeva function, however, inlining



Chapter 5. Cross-section Reconstruction 96

is not practical cause the function concludes complex instructions like if-conditions, for-
loops with several hundred lines of codes in total. Even developers can enforce inlining,
related issues like branches inside the loop will result in performance degradation.

Thanks to the declare simd directive, such complex non-straight-line expressions is
now vectorizable. By simply using #pragma omp declare simd during function dec-
laration, developers can fully rely on the compiler for vectorization. Our tests show
that if-conditions or loops inside the function negatively impact the efficiency, but jump
instructions (e.g. goto) will completely stop vectorization. It should be noted that the
current declare simd directive can only apply on functions with regular inputs and
outputs (pointers, int, float, double, etc.). Using classes or STL containers will cause
compilation error. Another important point is that the declare simd directive can not
be applied on a pure virtual function. Moreover, specifying CPUID [134] when using
Intel compiler is necessary for full utilization of SIMD opportunities (line 23 of Algo-
rithm 10). Though compile options like -xHost can indicate the compiler the latest
ISA supported by the processor, the efficiency of vectorized functions without explicit
hardware specification is far from optimal.

5.3.3.5 Float

Generally, double precision floating point variables are used in MC transport to guar-
antee numerical accuracy. For the multipole method in PATMOS, the single precision
is also tested to achieve better performance. Theoretically, using float instead of double
can directly bring a 2× performance speedup. Along with a different data type, consis-
tency of precision should be carefully handled as well. Here the consistency consists of
two parts: variables and functions.

const f loat pi = 3.14159265358979 // e x c e s s i v e exp re s s i on
const f loat pi = 3.141593 f // proper exp re s s i on

long p = q ∗ 2 ; // 2 i s ” i n t ” , shou ld use 2L
double y = x + 1 ; // 1 i s ” i n t ” , shou ld use 1 .
f loat m = n ∗ 2 . ; // 2 . i s ” doub le ” , shou ld use 2 . f
f loat a = b ∗ 1e3 . ; // 1e3 i s ” doub le ” , shou ld use 1 e3 f

Appropriate variable declarations shown above can avoid the costly runtime type conver-
sion. This tiny code change seems to be negligible for the entire application development,
but it can become a serious issue that decreases performance. As for functions, one can
choose to transform them manually from double to float (e.g. sinf() instead of sin())
or explicitly use C++ std functions instead of C ones (std::sin() instead of sin()).
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5.3.3.6 SoA

The input of the naive computing kernel is a list of resonances: each resonance rep-
resents a data structure containing resonance features like resonance energy, “spin” of
resonance, etc. For scalar executions, each iteration calculates one resonance where all
required data are contiguous in the memory. As for vectorization, however, the multi-
ple data needed for each single instruction is far from each other. After optimization,
several lists of resonance variables replace the original list of resonances. This AoS to
SoA conversion brings better memory access pattern for vectorization (Input of Algo-
rithm 9 and Algorithm 10). Meanwhile, flattened C-style arrays take the place of original
std::vector containers for efficiency purposes;

5.3.3.7 Data Alignment and Data Padding

Modern processors have multiple levels of cache/memory hierarchy to efficiently transfer
the data. Data read action through all hierarchies is set to start at specific address
boundaries. Misaligned accesses to these boundaries will overlap two cache lines, and
this will require an entirely new cache read in order to obtain the data. It could miss
all the way out to the DRAM.

Generally, the compiler will generate a peeled loop before the main loop body to deal
with elements beyond the alignment boundary. Similarly, a remainder loop just after
the main loop will be created when loop iteration is not a multiple of vector register size
(VL). These extra loops normally with a few iterations might be more costly than the
main loop since they are usually under scalar execution or poorly vectorized with mask
operations. Thanks to the AVX-512CD, emerging architectures like KNL and Skylake
can mechanically vectorize them. Still, their presence will introduce vectorization ef-
ficiency issues. In our implementation, aligned data is allocated dynamically by using
mm malloc; aligned clauses (lines 2,6... of Algorithm 10) are used to get rid of runtime

alignment check and help the compiler choose effective instructions without issues. On
the other hand, we pad data for each array up to a VL-multiple size Np (lines 1,3...
of Algorithm 10). Padded data are set to be zero during accumulation in order not to
change numerical results.

5.3.4 Threading

Generally, MC transport simulations divide input particles into batches and carry out
calculations within several nested loops. Parallelism takes place at batch level due to the
largest iteration number (between 105 and 106). Unbalanced workloads are hidden by
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launching considerable particles for each thread task. Static scheduling is used to ensure
the reproducibility of numerical results. This pattern works well with the “pretabulated”
method since the efficiency of table lookups vary a little among different isotopes. In
the case of the multipole, however, cross-section computing rates of isotopes significantly
differ from one to another. According to profiling results, optimal OpenMP region can
bring a further gain of 20% to our multipole implementation on KNL. Therefore, thread
affinity, as well as OpenMP scheduling with smaller workloads for each thread, are
explored to approach ideal performance.

5.4 Tests and Results

Several tests are carried out inside and outside the PATMOS in order to evaluate series
of optimization efforts.

5.4.1 Unit Test of Faddeeva Functions

An effective Faddeeva algorithm is important for Doppler broadening within cross-
section reconstruction. Profiling results show that this function can represent 70% of
overall computing time for an SLBW cross-section. Two Faddeeva implementations
mentioned in Section 5.2.2 are tested outside the PATMOS. Optimizations presented in
Section 5.3 make sense for Faddeeva implementations as well thus a unit test is estab-
lished to evaluate the effectiveness of these efforts. The test performs a loop with 100
million calls of the Faddeeva function on a single thread. The total calculation time is
recorded for performance evaluation. As shown in Table 5.1, the baseline ACM680::W

Baseline Float Strength R. SIMD CPUID SoA Alignment MIT
BDW 33.86 30.74 30.73 25.56 14.47 9.82 8.92 18.61
KNL 113.14 111.52 110.21 104.25 24.63 9.50 8.76 67.58

Table 5.1: Elapsed time (s) of 100,000,000 calls of Faddeeva functions on a single
thread with accumulated optimization efforts.

is much slower than MIT::W. It can be found that without vectorization, the speedup
brought by double to float conversion is not as significant as assumed before. Another
important point is specifying CPUID with processor clause: in the SIMD step, declare

simd pragma is already disposed to vectorize the function call. However, without explicit
CPUID, the Intel compiler seems not to handle vectorization with the hardware’s latest
instruction sets. This small change brings a speedup of 1.77× on BDW and 4.23× on
KNL. With the help of AVX-512 [44], one many-core thread can have the same perfor-
mance as one multi-core thread with much lower frequency. Same efforts have been put
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in trying to optimize MIT::W as well, but jump instructions inside the code make the
function unvectorizable. At last, the optimized ACM680::W outperforms MIT::W with a
gain of 2.09× on BDW and 8.71× on KNL.

Figure 5.2: Performance tests of 100,000,000 calls of Faddeeva function on a single
thread.

5.4.1.1 Preliminary Numerical Evaluation

As for numerical accuracy, comparisons of ACM680::W and MIT::W to some precalculated
reference values are shown in Table 5.2. The original ACM680::W function has very a high
quality compared to MIT::W. With the use of strength reduction and SIMD instructions,
optimized ACM680::W functions lose considerable numerical accuracy. Though the fact
that SIMD instructions will cause accuracy loss has been mentioned in the Intel manual
[135], the exact numerical difference has been precised nowhere in accessible publications.
Our test results show that the relative error by using SIMD instructions is around
1e − 7. With all optimizations taken in account, finally, we preserve two optimized
ACM680::W implementations for the double and single precision respectively. Compared
to the double precision implementation, accuracy loss brought by the single is really
small. For MC transport calculations, an absolute difference no more than 1e−5 obtained
by the current single precision implementation is acceptable.
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Implementations Average ∆absolute Max. ∆absolute

MIT::W 2.97e-09 1.65e-07
Original “double” ACM680::W 7.68e-16 8.68e-15

Optimized “double” ACM680::W 2.24e-07 6.19e-06
Optimized “float” ACM680::W 1.17e-06 7.34e-06

Table 5.2: Accuracy evaluation of Faddeeva implementations.

5.4.2 Reconstruction in PATMOS

Three main tests of the on-the-fly reconstruction are carried out with PATMOS: the
first one is a unit-test to explore cross-section efficiency; the second one is the evaluation
with all SLBW isotopes and only one MLBW in a simulation; At last, a comparative
test between the reconstruction and energy lookups involving all SLBW and MLBW
isotopes will be presented.

5.4.2.1 Unit Test of Cross Section Calculation

Before evaluating the reconstruction performance in a real simulation, we create a mini-
test to explore the pure cross-section efficiency for the binary search and our on-the-fly
method. A parallelized for-loop by using all 272 threads on KNL performs 100,000,000
cross-section calculations. The reason to employ all hardware threads is to have the
same execution environment as how the cross section kernel called in a real simulation.

240U (68 resonances) 96ZR (30 resonances) 240PU (268 resonances)
Binary Reconstruction Binary Reconstruction Binary Reconstruction

Performance (xs/sec.) 2.52e8 3.70e7 2.51e8 1.36e7 2.52e8 2.55e6
Average ∆relative - 6.08e-4 - 6.72e-4 - 1.59e-3

Table 5.3: Evaluation of cross section calculation rate.

As shown in Table 5.3, the SLBW 240U with sixty-eight resonances has the highest
calculation rate among three isotopes. The MLBW 96ZR with nearly half number of
resonances is however, about 2.7× more time-consuming than 240U. This proves that
the MLBW calculation is more complex than the SLBW. Comparing the two MLBW
isotopes: 96ZR and 240PU, we can easily find that the computation cost of the on-the-fly
calculation is proportional to the number of resonances in the nuclide while the same
cost is almost constant with the binary search. Therefore, it can be estimated that the
on-the-fly calculation will introduce more load-balancing problems than energy lookups.
More vectorized reduction operations in MLBW lead to more significant accuracy loss.
Generally speaking, the on-the-fly reconstruction itself is about 10 ∼ 102 slower than
the binary search depending on the number of resonances in the nuclide. For the worst
case with 238U, a much lower computing rate is expected.
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5.4.2.2 Performance in PointKernel

The PointKernel test case presented in this section is a preliminary simulation with
all SLBW isotopes and one MLBW isotope: 240PU. All available hardware threads are
employed (36 on BDW, 272 on KNL) since using hyper-threading can bring a 25%
speedup in this benchmark.

Baseline Simplification SIMD No-Branching Loop Splitting Float SoA Alignment Padding Scheduling Lookup
BDW 157.60 6.07 6.12 4.02 4.03 1.78 1.78 1.77 1.75 2.13 0.48
KNL 250.18 10.63 3.44 2.32 2.30 1.64 1.58 1.55 1.55 1.51 1.26

Table 5.4: Timing performance (s) per batch with accumulated optimizations.

Table 5.4 shows performance change brought by different efforts detailed in Section 5.3.
Each optimization step has taken in account all steps before it. It should be noted that
every step is totally independent of each other, thus changing orders of optimizations will
not affect final efficiency. As shown in the table, KNL is 1.59× slower than BDW with
the primitive code. SIMD directives bring direct speedup on KNL, but this is not the
case with BDW. Following measures like removing if-branch inside the loop are necessary
to help compiler vectorize on BDW. Another interesting point is that the AoS to SoA
conversion brings only little speedup in our implementation. This may be due to the fact
that our most time-consuming mid-loop already performs on intermediate SoA data. So
changing data layout of the trivial pre-loop and post-loop from AoS to SoA does not have
a big effect. Moreover, we can also find that dynamic scheduling negatively impacts the
performance on BDW due to the already balanced workloads, but it can be anticipated
that thread scheduling would be necessary for more complicated problems where much
more MLBW isotopes are present. Finally, compared to the baseline code, the optimized
implementation obtains a speedup of 74× on BDW and 166× on KNL and for numerical
results, a maximum relative error of 10−4 is acceptable in MC simulations due to the
cross-section uncertainty. A comparison between the conventional binary lookup and
the reconstruction shows that the on-the-fly calculation is 3.65× slower on BDW but
only 23% less efficient on KNL. These results are very encouraging, if we remember that
with table lookup we can only treat a few temperatures, while our reconstruction can
deal with an arbitrary number of temperatures.

Figure 5.3 shows the FLOP usage of the most important hotspot in each step of the op-
timization, the baseline implementation starts from a very low FLOP utilization. Then
the situation has been significantly improved with the simplified algorithm. The SIMD

step represents all vectorization work like vectorizing external function, loop collapse,
reduction, etc. It can be observed that KNL recognizes well SIMD potentials indi-
cated by directives and clauses while it is not the case for BDW. Speedups from the
Branching step show that straight-line instructions are so important for vectorization
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Figure 5.3: FLOP usage of the PointKernel benchmark on BDW and KNL.

efficiency. BDW can begin to benefit from vectorization only if the if-condition is re-
moved from the loop body. Passing the calculation from double to float can directly
double the FLOP usage. Other useful tunings further improving execution performance
bring visible enhancement for FLOPS. After series of optimization work, we succeed to
improve the FLOP usage from 28.06 and 22.05 GFLOPS (double precision) to 1045.62
and 1728.44 GFLOPS (single precision) on BDW and KNL, respectively.

5.4.2.3 Memory Requirement

Current cross section reconstruction model in PATMOS is a preliminary implementation
of the multipole method. Compared to the real pole representations in the original
model, our implementation requires more data as input. Each resonance is an object
containing variables listed below:

• ER: resonance energy

• J: spin of resonance state

• GT: total width

• GN: neutron width
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• GG: radiation width

• GF: fission width

• GJ: statistical factor (2J + 1)/[2(2I + 1)]

Besides, each object also has three precomputed constants which makes ten variables
in total for every resonance (thus 80 bytes in double or 40 bytes in float). A complete
memory footprint comparison is difficult to carry out because PATMOS still uses the
binary search outside the resolved resonance region. When preparing data for the simu-
lation, the entire pretabulated cross section tables are fully loaded into memory so there
are duplicated data in the current implementation.

5.4.2.4 Roofline Analysis

Figure 5.4 shows Roofline analysis of our naive implementation. Red dots represent
kernels (loops or functions) occupying more than 6% of overall computing time (green:
less than 1%, yellow: between 1% and 6%). The entire simulation is overall memory-
bound. More precisely, two kernels representing 70% of total computation time are
limited by the L2 cache bandwidth of KNL; another two kernels representing 18% time
are limited by the MCDRAM bandwidth. All four kernels have low arithmetic intensity
(0.0001 - 0.1) and no vectorization is applied. As a result, optimizations by reducing
memory access should be explored; computing-intensive kernels need to be extracted for
vectorization.

Figure 5.4: Roofline Analysis of the naive implementation on KNL.
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Figure 5.5: Roofline Analysis of the optimized implementation on KNL.

Figure 5.5 shows Roofline analysis of the optimized implementation. Two major hotspots
(red dots) presented in the chart become both compute-bound. The most time-consuming
kernel referring to the loop accumulating Gr and Hr (lines 7-14 of Algo. 10) achieves
1806 GFLOPS with vectorization. Another major hotspot referring to calls of the Fad-
deeva function has less FLOP usage due to algorithm branching inside the function.
The chart indicates that the following work could focus on this branching issue as well
as medium kernels (yellow dots) by exploring higher SIMD opportunities.

5.4.3 Energy Lookups vs. On-the-fly Reconstruction

The PointKernel test case presented in this section involves all SLBW and MLBW
isotopes (267 isotopes in total in ENDF/B-VII.1). The main components of the mixture
are 1H and 240PU. This test case is dedicated to evaluating the reconstruction with other

Binary Cascading HashMaterial HashIsotope Unionized Reconstruction
BDW 6.21 2.38 2.27 3.84 1.45 104.73

KNL (68 thds, flat) 14.14 4.24 3.83 9.35 2.89 89.89
KNL (272 thds, flat) 11.19 4.09 2.98 8.75 2.06 55.75

KNL (272 thds, cache) 15.275 5.08 3.94 9.83 3.28 69.89

Table 5.5: Timing performance (s) per batch of cross section computation methods.

energy lookup algorithms in terms of performance. As shown in Table 5.5, the unionized
grid significantly outperforms other algorithms. The fractional cascading has nearly
the same performance as hashing material on BDW but visibly slower on KNL. The
hashing isotope is always less efficient than the two methods performed at material
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level (hashing material and fractional cascading). The binary search has the lowest
execution performance among all lookup algorithms. It can be observed that the on-
the-fly calculation is much slower than all energy lookups. Even compared with the
binary search, the reconstruction is 17× slower on BDW and 5× slower on KNL. Except
for the reconstruction, all energy lookup algorithms show better timing performance
(about 2×) on BDW than on KNL. The 512-bit AVX-512 greatly improves vectorization
performance than the 256-bit AVX2 while even with this powerful SIMD support, the
current on-the-fly reconstruction is still too time-consuming to use in real simulations.
Compared to the result of Table 5.4, the reconstruction shows less efficiency because
all MLBW isotopes are involved in the calculation. It should be noted that many
voluminous Reich-Moore cross sections have not been considered yet in the current
implementation. According to the conclusion of Subsection 5.4.2.1, performing on-the-
fly calculations for these isotopes will result in further performance degradation. As a
result, non-algorithmic optimizations like vectorization and threading tuning can not
remove the performance issue of the on-the-fly reconstruction. New algorithms like the
Windowed-Multipole method seems to be necessary for applying the on-the-fly Doppler
broadening in real simulations.

Figure 5.6: The performance effect of the memory mode on KNL.

In terms of hardware configuration, using hyper-threading brings a few performance
improvement (around 20%) for energy lookups but about 62% for the reconstruction.
The thread affinity control can bring a further 5% speedup for using 68 threads on KNL
but makes no difference in the case of using all 272 hardware threads. Results shown
in Figure 5.6 indicate that all cross-section algorithms benefit from the high bandwidth
memory. Since all data involved in the PointKernel can fit into the 16 GB MCDRAM,
using the flat memory mode will always get better execution performance.





Chapter 6

Conclusion and Perspective

6.1 Conclusion

The work presented in this thesis focuses on accelerating Monte Carlo neutron transport
calculations with the help of emerging hardware accelerators, especially the Intel Many
Integrated Core architecture. The main purpose is to identify and solve issues for MC
simulations in terms of threading, vectorization, and memory organization.

Profiling results show that the cross-section computation is the major performance bot-
tleneck of MC calculations. Typically, cross-section data are pre-calculated and stored
into memory before simulations for each nuclide, thus during the simulation, only table
lookups are required to retrieve data from memory and the compute cost is trivial. The
binary search is usually used to locate the target cross-section data in large tables. In
fact, this bouncing lookup method makes good sense in terms of the algorithm but is not
friendly at all to the memory access pattern of modern computing processors. Random
memory accesses result in high cache misses and moreover, there is little potential for
vectorization.

In the first part of this thesis, we have investigated and proposed several SIMD-friendly
alternatives of the traditional binary search. Then, a large collection of competing
algorithms have been evaluated to accelerate the energy lookup process. In unit-tests
outside the prototype, we were able to show that the vectorized linear search provides
substantial gains on both CPU and MIC architecture. For an array of double variables,
the SIMD-optimized linear search would be more efficient than the binary search when
array size is less than 200. Vectorized N-ary search performs never better than the
binary due to heavy discontiguous memory access. The speedup provided by MIC
512-bit VPU is relatively more significant than that of CPU due to the larger VPU

107
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width. By using such optimized search scheme in the simulation, non-trivial additional
speedup can be observed over existing solutions. A new SIMD-based lookup algorithm,
N-ary map, has been proposed and tested for MIC architecture. It produces an 18%
speedup over the conventional binary search with negligible increase in the memory
footprint. This algorithm would be more favorable to the future architecture with more
powerful vector units. Compared to the vectorization, memory optimization by reducing
data duplication brings more acceleration in the simulation. This is due to the fact
that all energy lookup methods are in principle a memory-bound problem. Regarding
the performance of all tested algorithms, the unionized method is the fastest on both
CPU and MIC architecture but at the cost of an order of magnitude increase in the
memory footprint. On the other hand, the time-consuming binary search has the best
scalability on CPU while on KNC the best is the similar N-ary map. Finally, it can be
concluded that the logarithmic material hashing method is a good compromise between
performance and memory foot-print on both CPU and MIC and could thus be the best
choice for performing energy lookup in MC codes. Otherwise, the unionized grid can
have the best performance if one can afford the extra memory footprint (∼6GB per
temperature).

In order to solve the problem like restricted memory space and few vectorization of energy
lookup methods, we have investigated another on-the-fly Doppler broadening method,
which is a direct reconstruction for the cross-sections. This method is a variant of the
multipole representation, the basic idea behind which is to do the Doppler broadening
computation of cross sections each time a cross-section data is required. This method
converts the problem from memory-bound to compute-bound: only several variables for
each resonance are required instead of the conventional pointwise table covering the en-
tire resolved resonance region. Such tremendous decrease of memory requirement makes
it possible to use MC codes to perform simulations with the thermal-hydraulic feedback
where thousands of temperature may be involved in the simulation. The major downside
of this method is its considerable execution time. Previous studies [136] indicate that it
can even be two orders of magnitude slower than the inefficient binary search.

Our naive reconstruction implementation shows a very low execution efficiency. Us-
ing this method in a simulation is about 200× slower than the binary search on both
CPU and MIC. The FLOP usage is also extremely far from the peak even the com-
puting kernel should be completely CPU-bound. A series of optimization efforts have
been applied to improve this situation, such as loop splitting, data alignment, removing
algorithm branching, and so on. Implementations and optimizations are then evalu-
ated by some unit tests and a small benchmark in PATMOS on both multi-core and
many-core systems. Through our progressive optimizations with scalar tuning, vector
processing, and parallel adjustment, we found that this algorithm has high optimization
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potential and offers abundant vectorization opportunities. Finally, the major computing
kernel achieves 67% of Knights Landing’s effective peak performance (1,806 GFLOPS
/ 2,693 GFLOPS in single precision). Compared to the classical memory-bound algo-
rithm, important hotspots of the reconstruction all become limited by the capability of
floating-point operations.

In this thesis, we succeeded to demonstrate the possibility to transform a problem from
memory-bound to compute-bound in order to achieve higher hardware utilization on
both CPU and MIC architectures. We proved that the vectorization during this process
can bring significant performance enhancement. Even this transformation can not be
completely applied to all kinds of algorithms, it is certainly worth investigating to explore
alternative solutions for problems facing the exascale computing in which there will be
more and more simplified computing cores with less enhancement on memory.

6.2 Future Work

The initial goals of the thesis have been completed, performance bottlenecks have been
identified and corresponding optimizations are evaluated on modern computing proces-
sors, but there are still a lot of problems that should be further explored for the current
work.

The current PATMOS code organizes the thread-task according to the available number
of cores of the architecture. This leads to a fact that workload of a KNL thread is not
the same as a BDW thread. Every time the platform is changed, series of tuning work is
necessary since the content of each software thread is completely different. In order to
have a better scaling on various computing architectures, the task-parallel model should
be used to replace the current thread-parallel one.

The polymorphism is widely used in PATMOS to implement competing algorithms with
same inputs and outputs. During the implementation of different energy lookup meth-
ods, however, each method has its own input and output requirements so the interface
can be no longer uniform. A redesign of the code structure seems to be necessary if these
algorithms will be preserved in PATMOS. Another problem is the function overhead be-
cause calling a polymorphism function usually takes much more time than a common
function. For small polymorphism functions with only several instructions (for exam-
ple, computing the l-value-depended penetration and shift factor with the on-the-fly
reconstruction), the call overhead might become a serious performance issue.
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The study of energy lookup algorithms has been well developed since a great deal of
work has been reported to deal with the issue. There are actually few problems wor-
thing further investigation. Many alternatives of the binary search can be applied to
Monte Carlo calculations for higher lookup efficiency, but none of them could remove the
memory-bound nature of table lookup. Though algorithms are already fixed, continuous
re-architecturing or tuning work is certainly necessary to maintain the code efficiency.
One former paper [92] shows that data prefetching brings considerable performance
speedup. This simple work not evaluated in PATMOS is worth testing.

As for the cross-section reconstruction, this on-the-fly Doppler broadening still shows
poor execution performance compared to the conventional binary lookup (5× slower in
a simplified simulation). Other Faddeeva algorithms [137, 138] can be evaluated for the
vector processing. Removing jump instructions inside the MIT::W could make the imple-
mentation vectorizable, but other factors like pre-calculated lookup tables, large function
body, and so many if-conditions inside the function will greatly degrade vectorization
efficiency. Further performance improvement is relatively limited with non-algorithmic
optimizations thus new algorithms like the windowed-multipole is worth testing. Numer-
ical validation of the on-the-fly reconstruction is crucial for the future work especially
in order to decide whether it is possible to lower the precision for obtaining higher
vectorization efficiency.

Preliminary GPGPU investigations have been started in this work. The idea is to per-
form shared-memory parallelism on the host CPU and offload the costly reconstruction
kernel to remote devices. Since the kernel is completely compute-bound, porting it on
the high FLOP-capability GPGPU should get a significant speedup. Programming mod-
els like StarPU [139], Kokkos [140] and OpenACC should be evaluated instead of the
low-level CUDA library.
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Titre : Optimisation du code Monte Carlo neutronique à l’aide d’accélérateurs de cal-
culs
Mots-clés : Monte Carlo, transport de neutron, section efficace, algorithme de
recherche, élargis-sement Doppler, programmation parallèle, vectorisation
Résumé : Les méthodes Monte Carlo (MC), très coûteuses en termes de temps de
calcul, sont largement utilisées pour résoudre les problèmes de neutronique avec des ap-
proximations minimales. Le calcul des sections efficaces a été identifié comme le goulot
d’étranglement principal pour les codes de MC neutronique. L’approche conventionnelle
consiste à pré-calculer avant la simulation les sections efficaces. Ces données sont en-
suite chargées en mémoire. Pendant le calcul, elles sont récupérées dans des tables et le
caractère stochastique du transport MC induit des accès à la mémoire aléatoires. Afin
de minimiser les conflits d’accès mémoire, nous avons étudié et optimisé une vaste collec-
tion d’algorithmes de recherche afin d’accélérer ce processus de récupération de données.
Les résultats montrent qu’une accélération significative peut être obtenue sur des archi-
tectures modernes. Cependant, toutes ces solutions de recherche sont redoutablement
inefficaces du fait de la saturation de la mémoire et du manque de vectorisation. Un
autre problème majeur de ces méthodes est l’empreinte mémoire très importante pour
les cas complexes. Afin de résoudre ce problème, nous avons étudié la reconstruction
au vol des sections efficaces. Cet algorithme, très calculatoire, permet de passer d’un
problème de type “memory-bound” à un problème de type “compute-bound” : l’espace
mémoire est ainsi largement réduit. Après une série d’optimisations, les résultats mon-
trent que le noyau de reconstruction bénéficie de la vectorisation et peut atteindre une
utilisation élevée à la fois sur CPU classique et architecture many-cœurs.

Title: Optimization of Monte Carlo neutron transport simulations by using emerging
architectures
Keywords: Monte Carlo, neutron transport, cross-section, energy lookup, Doppler
broadening, cross-section reconstruction, parallel computing, vectorization
Abstract: Monte Carlo (MC) neutron transport simulations are widely used to perform
reference calculations with minimal approximations. This method is time-consuming due
to the law of large numbers. The cross-section computation has been identified as the
major performance bottleneck for MC calculations. Typically, cross-section data are
pre-calculated and stored into memory before simulations, thus during the simulation,
only table lookups are required to retrieve data from memory and the compute cost is
low. In the first part of the work, a large collection of lookup algorithms have been
implemented and optimized to accelerate the data retrieving process. Results show that
significant speedup can be achieved on modern architectures. However, since these en-
ergy lookup algorithms are naturally memory-bound, performance enhancement brought
by vectorization is negligible. Moreover, considerable memory requirement along with
energy lookups makes more complex problems unaffordable with current architectures.
An on-the-fly cross-section reconstruction was then investigated to improve the situa-
tion. This method requires the minimum elementary data, and performs cross-section
reconstruction and temperature treatment only when needed. It converts the problem
from memory-bound to compute-bound: memory space is largely reduced, but the cal-
culation is computationally expensive. After a series of optimizations, results show that
the reconstruction kernel benefits well from vectorization and can achieve high hardware
utilization on both multi-core and many-core systems.
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