
HAL Id: tel-01688005
https://pastel.hal.science/tel-01688005

Submitted on 19 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Mining for Influence Maximization in Social
Networks
Maria Rossi

To cite this version:
Maria Rossi. Graph Mining for Influence Maximization in Social Networks. Artificial Intelligence
[cs.AI]. Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLX083�. �tel-01688005�

https://pastel.hal.science/tel-01688005
https://hal.archives-ouvertes.fr

Graph Mining for Influence

Maximization in Social Networks

Thèse de doctorat de l'Université Paris-Saclay

préparée à l'École Polytechnique

École doctorale n°580 Sciences et technologies

de l'information et de la communication (STIC)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 17 Novembre, par

 Maria Evgenia Rossi

Composition du Jury :

Mme Ioana Manolescu

Senior INRIA Researcher (DR1), HDR Présidente

M. David Gross-Amblard

Professeur, Université de Rennes 1 Rapporteur

M. Vasileios Megalooikonomou

Professeur, University of Patras Rapporteur

M. Yuxiao Dong

Applied Scientist, Microsft Research Edmond Examinateur

M. Cédric Eichler

Maître des Conférences, INSA Centre Val de Loire Examinateur

M. Michalis Vazirgiannis

Professeur, École Polytechnique Directeur de thèse

M. Benjamin Nguyen

Professeur, INSA Centre Val de Loire Co-Directeur de thèse

Text 1: NNT: 2017SACLX083
N

N
T

: 2
01

7S
A

C
LX

08
3

Maria Evgenia Rossi: Graph Mining for Influence Maximization in Social Networks © 2017

A B S T R A C T

Modern science of graphs has emerged the last few years as a field of interest and has been
bringing significant advances to our knowledge about networks. Until recently the existing
data mining algorithms were destined for structured/relational data while many datasets
exist that require graph representation such as social networks, networks generated by
textual data, 3D protein structures and chemical compounds. It has become therefore of
crucial importance to be able to extract in an efficient and effective way meaningful infor-
mation from that kind of data and towards this end graph mining and analysis methods
have been proven essential.

The goal of this thesis is to study problems in the area of graph mining focusing espe-
cially on designing new algorithms and tools related to information spreading and specifi-
cally on how to locate influential entities in real-world social networks. This task is crucial
in many applications such as information diffusion, epidemic control and viral marketing.

In the first part of the thesis, we have studied spreading processes in social networks
focusing on finding topological characteristics that rank entities in the network based on
their influential capabilities. We have specifically focused on the K-truss decomposition
which is an extension of the k-core decomposition of the graph. Both methods partition a
graph into subgraphs whose nodes and/or edges have some common characteristics. For
the case of the K-truss, the edges belonging to such subgraph are contained to at least
K-2 triangles. After extensive experimental analysis in real-world networks, we showed
that the nodes that belong to the maximal K-truss subgraph show a better spreading
behavior when compared to baseline criteria such as degree and k-core centralities. Such
spreaders have the ability to influence a greater part of the network during the first steps
of a spreading process but also the total fraction of the influenced nodes at the end of the
epidemic is greater. We have also observed that node members of such dense subgraphs
are those achieving the optimal spreading in the network.

In the second part of the thesis, we focused on identifying a group of nodes that by
acting all together maximize the expected number of influenced nodes at the end of the
spreading process, formally called Influence Maximization. The Influence Maximization
problem is actually NP-hard though there exist approximation guarantees for efficient
algorithms that can solve the problem while obtaining a solution within the 63% of op-
timal classes of models. As those guarantees propose a greedy approximation which is
computationally expensive especially for large graphs, we proposed the MATI algorithm
which succeeds in locating the group of users that maximize the influence while also be-
ing scalable. The algorithm takes advantage of the possible paths created in each node’s
neighborhood and precalculates each node’s potential influence and achieves to produce
competitive results in quality compared to those of baseline algorithms such as the Greedy,
LDAG and SimPath.

In the last part of the thesis, we study the privacy point of view of sharing such metrics
that are good influential indicators in a social network. We have focused on designing
an algorithm that addresses the problem of computing through an efficient, correct, se-
cure, and privacy-preserving algorithm the k-core metric which measures the influence
of each node of the network. We have specifically adopted a decentralization approach
where the social network is considered as a Peer-to-peer (P2P) system. The algorithm is

iii

built based on the constraint that it should not be possible for a node to reconstruct par-
tially or entirely the graph using the information they obtain during its execution. While
a distributed algorithm that computes once and for all the nodes’ coreness is already pro-
posed, networks that evolve over time are not taken into account. Our main contribution
is an incremental algorithm that efficiently solves the core maintenance problem in P2P
while limiting the number of messages exchanged and computations. Through extensive
experiments we provide a security and privacy analysis of the solution regarding network
de-anonymization. We showed how it relates to previously defined attack models and
discuss countermeasures.

iv

R É S U M É

La science moderne des graphes est apparue ces dernières années comme un domaine
d’intérêt et a apporté des progrès significatifs à notre connaissance des réseaux. Jusqu’à
récemment, les algorithmes d’exploration de données existants étaient destinés à des don-
nées structurés / relationnelles, alors que de nombreux ensembles de données nécessitent
une représentation graphique, comme les réseaux sociaux, les réseaux générés par des
données textuelles, les structures protéiques 3D ou encore les composés chimiques. Il est
donc crucial de pouvoir extraire des informations pertinantes à partir de ce type de don-
nées et, pour ce faire, les méthodes d’extraction et d’analyse de graphes ont été prouvées
essentielles.

L’objectif de cette thèse est d’étudier les problèmes dans le domaine de la fouille de
graphes axés en particulier sur la conception de nouveaux algorithmes et d’outils liés
à la diffusion d’informations et plus spécifiquement sur la façon de localiser des entités
influentes dans des réseaux réels. Cette tâche est cruciale dans de nombreuses applications
telles que la diffusion de l’information, les contrôles épidémiologiques et le marketing
viral.

Dans la première partie de la thèse, nous avons étudié les processus de diffusion dans
les réseaux sociaux ciblant la recherche de caractéristiques topologiques classant les entités
du réseau en fonction de leurs capacités influentes. Nous nous sommes spécifiquement
concentrés sur la décomposition K-truss qui est une extension de la décomposition k-core.
On a montré que les noeuds qui appartiennent au sous-graphe induit par le maximal
K-truss présenteront de meilleurs proprietés de propagation par rapport aux critères de
référence. De tels épandeurs ont la capacité non seulement d’influencer une plus grande
partie du réseau au cours des premières étapes d’un processus d’étalement, mais aussi de
contaminer une plus grande partie des noeuds.

Dans la deuxième partie de la thèse, nous nous sommes concentrés sur l’identification
d’un groupe de noeuds qui, en agissant ensemble, maximisent le nombre attendu de
nœuds influencés à la fin du processus de propagation, formellement appelé Influence
Maximization (IM). Le problème IM étant NP-hard, il existe des algorithmes efficaces
garantissant l’approximation de ses solutions. Comme ces garanties proposent une ap-
proximation gloutonne qui est coûteuse en termes de temps de calcul, nous avons proposé
l’algorithme MATI qui réussit à localiser le groupe d’utilisateurs qui maximise l’influence,
tout en étant évolutif. L’algorithme profite des chemins possibles créés dans le voisinage
de chaque nœud et précalcule l’influence potentielle de chaque nœud permettant ainsi de
produire des résultats concurrentiels, comparés à ceux des algorithmes classiques.

Finallement, nous étudions le point de vue de la confidentialité quant au partage de
ces bons indicateurs d’influence dans un réseau social. Nous nous sommes concentrés
sur la conception d’un algorithme efficace, correct, sécurisé et de protection de la vie
privée, qui résout le problème du calcul de la métrique k-core qui mesure l’influence de
chaque noeud du réseau. Nous avons spécifiquement adopté une approche de décentral-
isation dans laquelle le réseau social est considéré comme un système Peer-to-peer (P2P).
L’algorithme est construit de telle sorte qu’il ne devrait pas être possible pour un nœud
de reconstituer partiellement ou entièrement le graphe en utilisant les informations obti-
ennues lors de son exécution. Notre contribution est un algorithme incrémental qui résout

v

efficacement le problème de maintenance de core en P2P tout en limitant le nombre de
messages échangés et les calculs. Nous fournissons également une étude de sécurité et de
confidentialité de la solution concernant la désanonymisation des réseaux, nous montrons
ainsi la relation avec les strategies d’attaque précédemment definies tout en discutant les
contres-mesures adaptées.

vi

L I S T O F P U B L I C AT I O N S

The following publications and submissions under review are included in parts or in an
extended version in this thesis:

• Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. “Spread
it good, spread it fast: Identification of influential nodes in social networks.” In: Pro-
ceedings of the 24th International Conference on World Wide Web. ACM. 2015, pp. 101–
102.

• Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. “Lo-
cating influential nodes in complex networks.” In: Scientific Reports 6: 19307 (2016).

• Maria-Evgenia G. Rossi and Michalis Vazirgiannis. “Exploring Network Centrali-
ties in Spreading Processes.” In: International Symposium on Web AlGorithms (iSWAG).
2016.

• Konstantinos Skianis, Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis
Vazirgiannis. “SpreadViz: Analytics and Visualization of Spreading Processes in
Social Networks.” In: ICDMW ’16: IEEE 16th International Conference on Data Min-
ing Workshops. IEEE. 2016, pp. 1324–1327.

• Maria-Evgenia G. Rossi, Cédric Eichler, Pascal Berthomé, and Benjamin Nguyen.
“Private, Secure and Distributed Computation of k-cores.” In: Manuscript, presented
in APVP. 2017.

• Maria-Evgenia G. Rossi, Bowen Shi, Nikolaos Tziortziotis, Fragkiskos D. Malliaros,
Christos Giatsidis, and Michalis Vazirgiannis. “MATI: An Efficient Algorithm for
Influence Maximization in Social Networks.” In: Manuscript. 2017.

vii

The truth of a proposition has nothing to do
with its credibility. And vice versa.

– Robert Anson Heinlein

A C K N O W L E D G M E N T S

In the three years I spent doing my PhD, I have been fortunate enough to interact
with several people, both on a personal and a professional level. I believe that each
one of these people has contributed in their own way towards the completion of this
thesis. I am also sure that a few lines are not enough to acknowledge their contribution.
Nonetheless, I will still make an attempt, hoping to include as many people as memory
and time allows.

First and foremost, I would like to thank my supervisors Prof. Michalis Vazirgian-
nis and Prof. Benjamin Nguyen without whom this dissertation would not have been
possible. Prof. Vazirgiannis has been an excellent advisor, with whom I engaged in nu-
merous brainstorming sessions that helped me gain valuable knowledge and contribute
to the field of graph mining. I have really admired his ability to direct me into the re-
search directions that led to fruitful results while enjoying the freedom to experiment
with ideas of my own. The joy and enthusiasm he has for research was contagious and
motivational for me, even during tough times in the PhD pursuit. I am also extremely
grateful to Prof. Nguyen who introduced me into the field of privacy. I have learned a
lot from working with him and interactions with him have always been lively. He gave
me the opportunity to collaborate with him and contribute to the field of privacy. Our
conversations along with his endless passion for research will remain unforgettable.

Furthermore, I want to express my gratitude to the distinguished researchers who
accepted to be part of my Ph.D. thesis defense committee: Dr. Yuxiao Dong, Dr. Cédric
Eichler, Prof. David Gross-Amblard, Prof. Ioana Manolescu and Prof.Vasileios Mega-
looikonomou. Particularly, I want to thank the members that reviewed my dissertation
- Prof. David Gross-Amblard and Prof. Vasileios Megalooikonomou - who gave de-
tailed insightful comments about my PhD research work. The comments have helped
me greatly in preparing this final version of my thesis.

I have been truly lucky to interact with many brilliant people at École Polytechnique.
I would like to thank all the members of the DaSciM group, current and past, for all
I learned from them and especially: Dr. Fragkiskos Malliaros, Konstantinos Skianis, Dr.
Panagiotis Korvesis, Stratis Limnios , Dr. Christos Giatsidis, Dr. Francois Rousseau, Dr.
Antoine Tixier, Dr. Nikolaos Tziortziotis, Dr. Jesse Read, Bowen Shi, Giannis Nikolentzos
and Polykarpos Meladianos.

During my academic years, I was extremely fortunate to have amazing collaborators
(listed in chronological order of collaboration): Dr. Fragkiskos Malliaros, Konstantinos
Skianis, Dr. Cédric Eichler, Prof. Pascal Berthomé, Bowen Shi, Dr. Nikolaos Tziortziotis
and Dr. Christos Giatsidis. I am grateful to all of them for the contributions presented in
this dissertation and for the valuable knowledge I gained after various brainstormings.

I gratefully acknowledge the funding sources that made my PhD work possible. I was
funded by a DigiCosme PhD Fellowship.

On a personal level, there are so many people to which I want to express my most
sincere gratefulness and affection, starting with my friends Demetra and Sophia whom
I’ve known since the tender age of five. Although there is a great distance between us,
I could never imagine going through this journey without their unconditional love and
sometimes everyday support. Special thanks goes to my friend Angelina who honored
me in making me the maid of honor to her wedding and with whom I have been shar-
ing precious moments since highschool. Special credits go to my friends from school

xi

and undergraduate studies, Sotiris, Ioanna, Marianna, Nikos, Markos, Anna, Maria and
Evangelia. I would also like to thank all the wonderful friends I have met in Paris. Spe-
cial thanks go to Simon, Alina, Praksitelis, Nikos, Michalis, Lenia, Ilektra, Anna, Revekka
and Arjola for the precious moments that we have shared and continue to share.

Last but not least, I would like to thank from the depths of my heart my mother Elli
Kamper and godmother Elli Zacharopoulou. They have been my rock through all these
years and especially during these challenging years of the PhD studies and supported
me in every decision I have made so far. This dissertation is dedicated to both of them.
Thank you for everything you have done and continue doing for me.

Maria Rossi
Paris, Fall 2017

xii

To my mother and godmother Elli and Elli
for their endless love and support.

C O N T E N T S

1 introduction . 1

1.1 Social Networks and Social Influence 1

1.2 Social Influence examples . 1

1.3 Social Influence Analysis Applications 2

1.4 Thesis statement and overview of contributions 3

1.4.1 Identification of individual influential spreaders 3

1.4.2 Identification of a group of influential spreaders 4

1.4.3 Secure and Private computation of influential metrics 4

1.5 Outline of the thesis . 5

2 basic concept and preliminaries . 7

2.1 Introduction to Graph Theory . 7

2.2 Adjacency Matrix and Eigenvalues . 9

2.3 Node centralities . 9

2.3.1 Structural centralities . 10

2.3.2 Iterative refinement centralities 12

2.4 Description of Graph Datasets . 13

3 locating influential spreaders in social networks 17

3.1 Introduction . 17

3.2 Preliminaries and Background . 18

3.2.1 k-core decomposition . 19

3.2.2 K-truss decomposition . 19

3.2.3 Epidemic models . 21

3.2.4 The SIR model applied in networks 22

3.3 Related work . 22

3.4 K-truss decomposition for identifying influential nodes 23

3.5 Experimental Evaluation . 26

3.5.1 Datasets and Methodology . 26

3.5.2 Evaluating the spreading performance 27

3.5.3 Comparison to the optimal spreading 31

3.5.4 Impact of infection and recovery rate on the spreading process 36

3.6 Exploration of network centralities in spreading processes 39

3.6.1 Evaluation of Results . 40

3.7 Conclusions and Future Work . 44

4 influence maximization in social networks 47

4.1 Introduction . 47

4.2 Preliminaries and Background . 48

4.2.1 The Influence Maximization (IM) problem 49

4.2.2 Diffusion Models . 50

4.3 Related work . 51

4.4 MATrix Influence (MATI) Algorithm 52

4.4.1 Influence in Social Networks 52

4.4.2 Influence Computation under the LT Model 53

4.4.3 Influence Computation under the IC Model 55

4.5 Experimental Evaluation . 57

4.5.1 Datasets . 58

4.5.2 Baseline Algorithms . 58

xv

contents xvi

4.5.3 Experimental Results . 59

4.6 Conclusions and Future Work . 62

5 private , secure and distributed computation of k-cores . . 65

5.1 Introduction . 65

5.2 Problem Statement and Preliminiaries 66

5.2.1 Problem Statement . 67

5.2.2 Preliminaries and Background 68

5.3 Related work . 69

5.3.1 k-core Computation . 69

5.3.2 Core Maintenance . 69

5.3.3 Decentralized Personal Data Management Platforms 70

5.4 P2P Algorithm for Core Maintenance 70

5.4.1 Local variables . 71

5.4.2 Handling Messages and Events 71

5.4.3 Computing coreness estimations 73

5.4.4 Example . 75

5.5 Analytical and Experimental Study . 79

5.5.1 Analytical study . 79

5.5.2 Complexity: Experimental Study 86

5.6 Security and Privacy Analysis . 91

5.6.1 Attack Model . 91

5.6.2 Privacy and Information Quality 92

5.6.3 Experimental results . 92

5.7 Conclusions and Remarks . 97

6 concluding remarks . 99

6.1 Summary of Contributions and Future Work 99

6.2 Epilogue . 101

bibliography . 103

L I S T O F F I G U R E S

Figure 2.1 Examples of an undirected and a directed graph 8

Figure 2.2 Examples of a connected and a disconnected graph 8

Figure 2.3 Examples of a cyclic and an acyclic graph 9

Figure 2.4 Example of the k-core decomposition 11

Figure 3.1 State diagram of the SIR model 21

Figure 3.2 State diagram of the SIS model 22

Figure 3.3 Schematic representation of the maximal k-core and K-truss sub-
graphs of a graph. 24

Figure 3.4 Complementary cumulative truss number distribution function 28

Figure 3.5 Cumulative difference of the infected nodes per step achieved by
the truss method vs. the core and top degree methods (Continued
in Fig. 3.6) . 32

Figure 3.6 Cumulative difference of the infected nodes per step achieved by
the truss method vs. the core and top degree methods . . . 33

Figure 3.7 Spreading distribution of the nodes in the network 34

Figure 3.8 Distribution of the top-truss PT
W and top-core PC

W nodes among
the nodes with optimal spreading properties under a window of
size W . 35

Figure 3.9 Distribution of node’s truss number with respect to the ranking
of the nodes under their spreading properties 37

Figure 3.10 Impact of infection and recovery probabilities of the SIR model
on the spreading process . 38

Figure 3.11 Complementary cumulative distribution function of nodes’ (a)
degree, (b) core number and (c) truss number of the Epinions

dataset. 40

Figure 3.12 Evolution of the infected nodes’ average (a) degree, (b) core num-
ber and (c) truss number during a simulated spreading process
for the Epinions dataset. 41

Figure 3.13 Comparison of the evolution of the infected nodes’ average (a) de-
gree, (b) core number and (c) truss number, between a simulated
spreading process and real influence data for the Higgs-Twitter

dataset. 43

Figure 4.1 Illustration of the Linear Threshold model. 50

Figure 4.2 Example graph. 53

Figure 4.3 Illustration of Theorem 1. 55

Figure 4.4 Influence spread in number of nodes for the different algorithms,
under the LT model. 60

Figure 4.5 Influence spread in number of nodes for the different algorithms,
under the IC model. 61

Figure 4.6 Comparison of running times in seconds of the different algo-
rithms under the (a) LT and (b) IC models. 63

Figure 5.1 A simple example describing the static part of the algorithm. 76

Figure 5.2 A simple example describing the dynamic part of the algorithm. 78

Figure 5.3 Example graph . 80

Figure 5.4 Toy example to demonstrate the computation of q1, q2 and qN. 94

xvii

List of Figures xviii

Figure 5.5 Distribution of nodes in the top k-core subgraphs in the original
graph formats. 95

Figure 5.6 Normalized Quality qN of different percentages of top spreaders
selected from anonymized versions of real datasets. 96

L I S T O F TA B L E S

Table 2.1 Network datasets used in the thesis 15

Table 3.1 List of symbols and their definitions 19

Table 3.2 Properties of the real-world graphs used in the study 26

Table 3.3 Average number of infected nodes per step of the SIR model 29

Table 3.4 Cumulative number of infected nodes per step of the SIR model 30

Table 3.5 Network datasets used in Section 3.6. 39

Table 4.1 List of symbols used in Chapter 4. 48

Table 4.2 Properties of the real-world graphs used in Chapter 4. . . . 59

Table 4.3 Comparison of running times in seconds and influence spread in
number of nodes for different values of the parameter θ. . . 62

Table 5.1 List of symbols and their definitions 67

Table 5.2 Properties of the real-world graphs used in Chapter 5. . . . 87

Table 5.3 ICS and PIICS statistics for NetHept network 87

Table 5.4 ICS and PIICS statistics for the EmailEnron network 88

Table 5.5 ICS and PIICS statistics for the WikiVote network 89

Table 5.6 ICS and PIICS statistics for the Epinions network 90

xix

1
I N T R O D U C T I O N

N etworks have been getting a lot of attention the recent years. While various
kind of data can be naturally mapped to graph structures [126, 127], the sci-
entific study of networks has greatly benefited from a broad range of ideas

brought by specialists from different disciplines. Information networks, such as Web pages
linked together by hyperlinks [82], virtual networks of computers that allow sharing of
files between computer users over local- or wide-area networks (i.e., Peer-to-peer net-
works) [84] or even citation networks between academic papers [57], have become cru-
cial towards information dissemination and detection of social patterns in the academic
world respectively. Biological networks, such as the network of metabolic pathways [150],
the networks of physical interactions between proteins [85] or genetic regulatory net-
works [76] can be used in order to better understand the phenomena that occur in
nature. Of great importance are also the technological networks, which include man-made
networks designed that distribute resources such as electricity or information: electric
power grids [157], the network of airline routes [5], roads [88] and of course the Inter-
net [59]. Last but not least come the social networks which represent a set of people with
some pattern of contacts (i.e., friendships, business relationships etc.) between them.

1.1 social networks and social influence

Social scientists have been meticulously studying social networks for decades [11, 156].
At first, studies concerned “small-world” cases such as: friendships within small groups
[121], studies of business communities [63, 64], patterns of sexual contacts [17, 87] etc.
The latest years, the Internet and the online social networking sites (e.g., Facebook, Twit-
ter, LinkedIn, Tumblr etc.) have caused a remarkable growth of research on social net-
works. This led to the development of many applications of social networks of which a
rich body of studies has been classified as the analysis of influence or information diffusion
in social networks.

1.2 social influence examples

There exist various real-life phenomena that motivate the study of information propaga-
tion in social networks.

Let us consider a social network as Facebook, where a user Anna posts about her
having dinner at a specific restaurant in town. Such information is normally available to
Anna’s friends. If Anna’s friends react on Anna’s post, then their friends have access to
this information too. In this way, the information contained in Anna’s post is diffused
through the network.

A famous case that dates back to the 1990s is the Hotmail phenomenon [83]. Back then
Hotmail wasn’t a well-known e-mail service provider. The simple idea of attaching at
the end of each mail message a text that invited users to join the MSN Hotmail network,
had the effect of boosting the brand in just 8 months. The recipients of such messages
were inspired by the appended message to try it themselves and triggered other users in
their turn by sending them the same mail to behave similarly. The phenomenon diffused
very soon and Hotmail acquired 8 million users.

1

1.3 social influence analysis applications 2

In a famous study published in the New England Journal of Medicine, Christakis and
Fowler [43] analyzed a network of around 12 thousand people over a period of 32 years.
The focus of this study was on the smoking behavior of people and its association with
his/her social contacts. Their findings suggest that decisions to quit smoking are not
made by individual persons, but reflect choices made by communities that are strongly
connected to each other. Similar results come from another study of the aforementioned
researchers [42] about the social influence of health conditions such as obesity. They
found that having an obese friend icreases by 171% the possibility for an individual to
be obese when compared to a random person.

Examples of social influence exist also in people’s choice on entertainment such as
music. “See you again”, Whiz Khalifa’s music video which serves as a tribute to a beloved
actor who found tragic death in a car accident, reached a bit over 3 billion views on
YouTube almost two year after its release (i.e., April of 2015). It has overtaken “Gangnam
Style” which was the first video to reach 1 billion views as of December 21, 2012. In
August 2017, only seven months after its release, “Despacito” reached 3,2 billion views
much quicker than the 26 months it took Wiz Khalifa’s song to overtake Psy’s “Gangnam
Style.”

The power of diffusion has been various times utilized by people in various kinds
of disasters. During the Paris terror attack on the 13th of November in 2015, as the
events were taking place, millions of “tweets” were posted on Twitter. An analysis on the
respective “tweets”* showed that only the night of the attack, 1,07 million related posts
were published whereas until the 16th of November, that the situation still concurred
the world news, a total of 18,17 million “tweets” contained relevant information. In
the summer of 2011, in Vancouver, Canada, rioters that followed the Stanley Cup final
destroyed public properties in the center of the city†. This triggered broad reactions of
disgust which resulted in vast amounds of footage data: 5000 h worth of 100 types of
digital video available for forensic analysis. The data helped the police to analyze the
riot behavior.

1.3 social influence analysis applications

Influence propagation studies have found applications in various fields. From studying
human, animal or even plant epidemics [78, 92, 133] to viral marketing [99], social media
analytics [161], spread of rumors [122], expert finding [9], recommendation systems [81,
106, 152] etc.

A key task in order to understand information and influence diffusion is the identi-
fication of vital nodes that play a significant role in such cases. Such nodes may allow
us to control the spread of an epidemy [48, 129], to predict successful scientists and sci-
entific publications based on co-authorship and citation networks [54, 135, 165], design
influential advertisements for new products [99, 110] etc.

For example, in the case of virus propagation, such as influenza, the transmission
of the disease mainly depends on the extend of contacts of the infected person to the
susceptible population; thus, being able to locate and vaccinate individuals with good
spreading properties can prevent from a potential outbreak of the disease, leading to
efficient strategies of epidemic control. In a similar way, suppose that our goal is to
promote an idea or a product in order to be adopted by a large fraction of individuals
in the network. A key idea behind viral marketing is the word-of-mouth effect [153];
individuals that have already adopted the product, recommend it to their friends who

* http://tipsandviz.blogspot.fr/2015/11/parisattacks-how-twitter-tells-story.html
† https://en.wikipedia.org/wiki/2011_Vancouver_Stanley_Cup_riot

1.4 thesis statement and overview of contributions 3

in turn do the same to their own social circle, forming a cascade of recommendations
[56]. The basic question here is how to target a few initial individuals (e.g., by giving
them free samples of the product or explaining them the idea), that can maximize the
spread of influence in the network, leading to a successful promotion campaign.

Nevertheless, locating such users in a network is not a trivial task and numerous
research has been conducted to solve the problem in the area [111]. It has been of signifi-
cant importance to identify such nodes that will maximize the influence and information
diffusion at the end of a respective phenomenon in a network. The problem is actually
split into two subtopics: i) Identification of individual influential nodes that have good
spreading properties and ii) Identification of a group of nodes that by acting all together
will maximize the total spread of influence in a network. Indeed the two tasks greatly
differ as finding a ranking of the nodes that by acting individually can influence a great
part of the network cannot be directly used in order to discover the set of nodes that
will – by acting at the same time – maximize the spreading of information in a graph. Of
course this is justified by the fact that putting some of the most influential spreaders to-
gether will not result in a most influential set of such spreaders, because their respective
influences may be and is usually largely overlapped.

The above are the topics that triggered the discoveries of this dissertation which is
involved in graph mining techniques towards studying and analyzing social influence
and specifically the identification of the nodes that play a key role in influence propaga-
tion. To that end, we propose models and algorithmic tools to address the challenging
problems which arise in this area.

1.4 thesis statement and overview of contributions

This thesis contributes algorithms, tools, models and new insights to problems that
arise in the area of graph mining for influence maximization in social networks. We
specifically:

• Develop tools for analyzing the spreading behavior of individual nodes in complex
networks. Special focus is given on ways that can efficiently rank the users based
on their influential capabilities.

• Design algorithms that can locate a privileged group of nodes that – by acting
all together – can maximize the spread of influence in a network at the end of a
diffusion phenomenon.

• Develop models that can calculate metrics which measure the influence of an indi-
vidual in a network in a secure and private way.

Next, we provide an overview of the contributions of the dissertation with respect to
the above points.

1.4.1 Identification of individual influential spreaders

What characterizes the nodes that rank high in terms of their spreading performance?
Locating the users that can efficiently spread information through the network is

not a trivial task. It is an even more challenging task when no personal information
is provided for the users (i.e., age, sex, occupation, city of residence etc.). Usually the
network is presented as a set of connections that represent some type of relationship
between two users which are labelled with numerical ids. A straightforward metric
that someone might think that affects users’ spreading capabilities is the number of

1.4 thesis statement and overview of contributions 4

connections that they have. Even though this can be true for some cases, it has been
showed that the metrics that are more efficient are those that can locate nodes that are
well connected in the network. The k-core decomposition is one of such metrics and has
also been proven to work well towards our primary goal.

In this part of the thesis (Chapter 3) we capitalize on the properties of the K-truss
decomposition, a triangle-based extension of the k-core decomposition towards locating
influential nodes. By simulating a spreading phenomenon on real networks triggered
by the nodes identified by our method we prove that the latter show better spreading
behavior compared to previously used importance criteria, leading to faster and wider
epidemic spreading. We additionally present an extensive analysis of the nodes that
conquer the top places in the optimal spreading ranking. We can conclude that, the
K-truss decomposition can reveal nodes that tend to have good spreading properties –
with the specific metric being highly related to the spreading effect.

Finally, we investigate the topological characteristics of individuals that are influenced
and that participate in a diffusion process and present the patterns that are detected. We
provide a comparison of the individuals’ characteristics between a simulated and a real
world spreading process and show the need for a more comprehensive model in this
area.

1.4.2 Identification of a group of influential spreaders

How can someone locate a group of nodes that can maximize the total influence in the
network?

As mentioned earlier, the current task greatly differs than the one described in the pre-
vious subsection. The nodes that are discovered using such methods cannot be directly
used in order to discover the set of nodes that – by acting at the same time – can maxi-
mize the total influence in the network. That is justified by the fact that the influence of
one can overlap with the influence of another top spreader.

The problem of Influence Maximization – as it is usually called – constitutes an NP-hard
problem. A simple greedy algorithm has been proved to provide good approximation
guarantees. Nevertheless, there are obviously serious scalability concerns – the greedy
algorithm cannot provide results as soon as needed for large-scale networks.

We are proposing an efficient algorithm that can be used under the most famous
diffusion models in the field: the Linear Threshold and Independent Cascade models. Our
algorithm takes into consideration the possible paths that are created in each node’s
neighborhood and pre-calculates the nodes’ influences. By performing extensive experi-
ments in real datasets, we have shown that it is competitive regarding both the quality of
seed nodes and the running time when compared to state-of-the-art algorithms (Chapter
4).

1.4.3 Secure and Private computation of influential metrics

How can we calculate in a secure and privacy preserving way an influential indicator?
Identifying the influential entities in a social network requires sharing its structure to

the entity concerned. However, distribution of such information raises serious privacy
concerns. In order to securely and privately compute influential nodes in a network, we
propose a distributed peer-to-peer algorithm. We constrain our algorithm on the basis
that it should not be feasible for an attacker to reconstruct partially or entirely the graph
using the information that can be obtained during its execution.

1.5 outline of the thesis 5

Specifically, our distributed algorithm computes the k-core number of each node
which has been proved to efficiently rank the nodes in a network based on their spread-
ing capabilities. Our main contribution is an incremental algorithm that succeeds in
computing such a metric for a network that evolves over time. We show via experiments
in real datasets that our solution fulfills the security and privacy requirements against
typical attack models.

1.5 outline of the thesis

The rest of the dissertation is organized as follows. In Chapter 2 we present basic con-
cepts and background material that will be used throughout the dissertation. The next
two Chapters are devoted to our work concerning identification of influential spreaders;
in particular, in Chapter 3 the methods towards identification of individual spreaders is
presented while in Chapter 4 we present our algorithm that efficiently locates a group of
privileged users in social networks. In Chapter 5 we present our work towards a secure
and private computation of k-cores. Finally, in Chapter 6, we offer concluding remarks
about the topics covered in the dissertation and future research directions.

2
B A S I C C O N C E P T A N D P R E L I M I N A R I E S

I n this Chapter we provide the basic concepts and background theory that will
be used throughout the thesis. Initially a basic introduction to graph theory is
given along with the definitions of the node centralities that will be mentioned

throughout the Chapters. The k-core decomposition is given special attention as it is a
basic concept of the thesis, specifically for Chapters 3 and 5. Finally, the graph datasets
that have been used for the experiments in the Chapters to follow are described. In each
Chapter, the necessary background is presented in the respective section along with the
symbols that will be used.

2.1 introduction to graph theory

A network is represented as a graph (the terms graph and network are used interchange-
ably throughout the dissertation). A graph is a pictorial representation of a set of objects
some of the pairs of which are connected with links. Formally a graph G is a pair of
sets (V,E) where V is the set of vertices and E is the set of edges connecting the pairs
of vertices. The number of nodes in the graph is equal to n = |V| and the number of
edges m = |E|.

There are different types of graphs depending upon the number of vertices and edges,
the interconnectivity and their overall structure. Some of those are defined below. Fig-
ures 2.1 to 2.3 depict some examples of different types of graphs.

Definition 2.1. Null Graph
A null graph G = (V, E) contains n isolated nodes and no edges among them. They are also called
endless graphs.

Definition 2.2. Directed and Undirected Graph

• In a directed graph GD = (V, E), every edge (u, v) ∈ E links node u to node v (ordered
pair of nodes).

• An undirected graph G = (V, E) is a directed one where if edge (u, v) ∈ E, then edge
(v, u) ∈ E as well.

Definition 2.3. Weighted Graph
Every edge (u, v) ∈ E in a weighted graph G = (V, E) is associated with a real number wuv
called its weight.

path A path is defined as a sequence of nodes v1, v2, ..., vN−1, vN. Every consecutive
pair of nodes in the path vk, vk+1 is connected with an edge. For a directed graph the
notion of the path is extended as follows: in a directed path a directed edge should exist
from each node of the sequence to the next node. Two nodes u, v ∈ V are called connected
if there is a path in the graph from node u to node v.

Definition 2.4. Connected and Disconnected Graph

• In a connected graph G = (V, E) there exists a path between every pair of vertices. There
should be at least one edge for every vertex u in the graph so that it is connected to some
other vertex v at the other side of the edge.

7

2.1 introduction to graph theory 8

1 1
(a) Undirected graph (b) Directed graph

Figure 2.1: Examples of (a) an undirected and (b) a directed graph. In the case of the directed
graph (b), the arrows indicate the directionality of each edge.

1 1
(a) Connected graph (b) Disconnected graph

Figure 2.2: Examples of (a) a connected and (b) a disconnected graph. In the connected graph
we observe that each vertex has its edge connected to another edge whereas in the
disconnected graph there exist two components which are not connected to each
other.

• A graph G = (V, E) is disconnected if there exists at least a node u which is not connected
to another node v.

Definition 2.5. Cyclic and Acyclic Graph

• A cyclic graph G = (V, E) is a graph that contains at least one cycle: the starting vertex of
its first edge equals the ending vertex of its last edge.

• An acyclic graph G = (V, E) is a graph that contains no cycles.

degree In an undirected graph G = (V, E), a node v ∈ V has a degree dG(v) = d if
it has d incident edges. For the case of a directed graph, every node is characterized
by two types of degrees: its in-degree and its out-degree. The in-degree of node v equals
to the number of incoming edges dinG (v) = |u|(u, v) ∈ E| whereas its out-degree equals to
the number of outcoming edges doutG (v) = |u|(v, u) ∈ E|. In undirected graphs dinG (v) =
doutG (v).

Definition 2.6. Simple, Regular and Complete Graph

• A graph G = (V, E) is a simple graph when it does not contain any loops (i.e., there exist
no edges connecting a vertex to itself) or any parallel edges (i.e., edges that are incident to

2.2 adjacency matrix and eigenvalues 9

a

b d

c

e

f

g

1

a

b d

c

e

f

g

1
(a) Cyclic graph (b) Acyclic graph

Figure 2.3: Examples of (a) a cyclic and (b) an acyclic graph. In the cyclic graph, we have two
cycles a-b-c-d-a and d-e-f-g-d whereas in the acyclic we observe no cycles.

the same two vertices). The maximum number of edges possible in a single graph with n
vertices is equal to nC2 = n(n− 1)/2. The number of simple graphs possible with n nodes
is 2

nC2 = 2
n(n−1)/2.

• The vertices of a regular graph G = (V, E) have the same degree. If ∀v ∈ V : dG(v) = k
then the graph is called a k-regular graph.

• Every pair of nodes in a complete graph G = (V, E) is connected by a unique edge. A
complete graph with n vertices has m =

(
n
2

)
= n(n− 1)/2 edges.

For a complete introduction to the field of complex networks, the reader may refer to
Refs. [19, 24, 34, 126].

2.2 adjacency matrix and eigenvalues

Every type of graph can be represented as a matrix. This matrix is called the adjacency
matrix A of the graph. Matrix A is a square matrix of size n× n where the rows and
columns represent the nodes of the graph and the entries indicate whether there exists
an edge between the respective pair of nodes.

Definition 2.7. Adjacency Matrix [18]

The adjacency matrix A of a graph G = (V, E) is a n×n matrix such that:

Auv =

 auv, if (u, v) ∈ E, ∀ u, v ∈ 1, . . . , n

0, otherwise.
(2.1)

For weighted graphs, each value auv represents the weight associated with each edge
(u, v) while for unweighted graphs auv = 1, ∀(u, v) ∈ E. For a simple graph with no self-
loops, the adjacency matrix must have zeros on the diagonal. For an undirected graph,
the adjacency matrix is symmetric.

Let A be a symmetric matrix. A vector u is defined as an eigenvector of A if and only if
Au=λ u, where λ is a scalar called eigenvalue corresponding to u. Then A can be written
as A = U Λ UT . The orthogonal matrix U contains as columns the eigenvectors u1, u2,
..., un of A that correspond to real eigenvalues λ1 > λ2 > ... > λn and Λ = diag (λ1, λ2.
..., λn) the diagonal matrix with the eigenvalues as entries.

2.3 node centralities

The concept of centrality is being used in order to define a node’s importance according
to its involvement in the network [20, 25, 26, 61]. In general centrality measures assign

2.3 node centralities 10

values to the nodes of a graph which can be used to rank the latter subject to their im-
portance in the network. The different centralities that will be presented can be split in
two subcategories:

i) Structural centralities which can be obtained exclusively on structural information.

ii) Iterative refinement centralities which use dynamical processes and iterative refine-
ment methods to explore the nodes’ structural properties.

2.3.1 Structural centralities

Structural centralities can be further classified into neighborhood-based and path-based cen-
tralities.

2.3.1.1 Neighborhood-based centralities

Degree centrality

As described earlier in the Chapter, the degree dG(v) of a node v of an undirected
network G = (V, E) represents the number of incindent edges on this node. It can also be
calculated as follows: dG(v) =

∑
u auv where A = {Auv} is the adjacency matrix of the

graph and u ∈ Neighbors(v).
Degree centrality is used for a wide range of applications due to its simplicity and

low-computational complexity. In some cases, degree acts exceptionally good. When the
rate of the spreading of information is very low, degree can identify better the influential
capabilities of nodes than some other centralities which on average are better influen-
tial indicators [94, 107]. Additionally, concerning network vulnerability, degree-targeted
attack can destroy scale-free networks and exponential networks very effectively [86].

As mentioned before, nodes in directed networks are characterized by two types of
degrees the in-degree and the out-degree based on whether the incoming or outcoming
edges of the node are taken into account respectively. In weighted graphs degree is
usually replaced by the strength which is defined as the sum of weights of the node’s
associated edges.

k-core centrality

The k-core centrality or node’s core number or coreness is a number assigned to each
node after the k-core decomposition of the network. The k-core decomposition is a
hierarchical decomposition of the graph into nested subgraphs. Let G = (V, E) be an
undirected graph with k ∈ Z and k > 0.

Definition 2.8. k-core subgraph
Let H be a subgraph of G, (i.e., H ⊆ G). Subgraph H is defined to be a k-core subgraph of G,
denoted by Ck, if it is a maximal connected subgraph in which all nodes have degree at least k.

Definition 2.9. Node’s Core Number
A node i has core number ci = k, if it belongs to a k-core but not to any (k + 1)-core.

It is evident that if all the nodes of the graph have degree at least one, i.e., d(v) >

1, ∀v ∈ V , then the 1-core subgraph corresponds to the whole graph, i.e., C1 ≡ G. Further-
more, assuming that Ci, i = 0, 1, 2, . . . , kmax is the i-core of G, then the k-core subgraphs
are nested, i.e.:

2.3 node centralities 11

3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3

Figure 2.4: Example of the k-core decomposition.

C0 ⊇ C1 ⊇ C2 ⊇ . . . ⊇ Ckmax . (2.2)

Typically, subgraph Ckmax is called maximal k-core subgraph of G. Figure 2.4 depicts
an example of a graph and the corresponding k-core decomposition.

Computing the k-core decomposition of a graph can be done through a simple process
that is based on the following property: to extract the k-core subgraph, all nodes with
degree less than k and their adjacent edges should be recursively deleted [145]. That
way, beginning with k = 0, the algorithm removes all the nodes (and the incident edges)
with degree equal or less than k, until no such nodes have been remained in the graph.
Also notice that, removing edges that are incident to a node may cause reductions to the
degree of neighboring nodes; the degree of some nodes may become at most k, and thus,
they should also be removed at this step of the algorithm. When all remaining nodes
have degree d(v) > k, k is increased by one and the process is repeated until no more
remaining nodes have left in the graph. Since each node and edge is removed exactly
once, the running time of the algorithm is O(n +m) [116]. Batagelj and Zaveršnik later
proposed an O(m) algorithm for k-core decomposition [15] presented in 2.1.

Algorithm 2.1 k-core decomposition

1: Input: Undirected graph G = (V, E)
2: Output: Vector of core numbers ci, i = 1, 2, ...n = |V |

3: Compute the degrees of each node dG(v), ∀v ∈ V
4: Order the nodes in increasing order of their degrees dG(v)
5: for each v ∈ V do
6: cv ← dG(v)
7: for each u ∈ Neighbors(v) do
8: if dG(u) > dG(v) then
9: dG(u)← dG(u) − 1

10: Reorder V accordingly
return Core numbers ci, ∀i ∈ V

2.3 node centralities 12

This algorithm considers unweighted and undirected graphs. Nevertheless lot of ef-
fort has been made from researchers towards extending the k-core decomposition to
other types of graphs. Refs. [58, 65, 68] present extensions on weighted graphs while
Giatsidis et. al [67] present an extension for directed graphs. A core decomposition on
probablistic graphs is proposed by Bon-chi et. al [23]. In a probabilistic or uncertain graph
every edge is associated with a probability of existence.

2.3.1.2 Path-based centralities

Closeness centrality

In a connected graph G = (V, E) the closeness centrality of a node is calculated as the
sum of the length of the shortest paths between the node and all other nodes in the
graph. For a node v ∈ V it can be calculated as follows [62, 142]:

CCv =
n− 1∑
u6=v duv

(2.3)

where n = |V | and duv expresses the distance between vertices u and v. Nevertheless,
when the graph is not connected there exist some node pairs for which duv = ∞. In
this case closeness centrality is defined in terms of the inverse of the harmonic mean
distances between the nodes:

CCv =
1

n− 1

1∑
u 6=v duv

(2.4)

Betweeness centrality

The betweeness centrality [16, 146, 147] is a centrality measure based on the notion
of shortest paths between nodes. In an unweighted and connected graph, there exists
between every pair of nodes one shortest path such that the number of edges passing
through is minimized. For weighted and connected graphs it is the sum of the weights
that is minimized [61]. Then, the betweeness centrality of each node is the number of
these shortest paths passing through this node. It is calculated as follows:

BCv =
∑

v 6=x,v6=y,x 6=y

gvxy

gxy
(2.5)

where gxy is the number of the shortest paths between nodes x and y and gvxy is the
number of the paths which pass through v among all the shortest paths between x and
y.

2.3.2 Iterative refinement centralities

Eigenvector centrality

The eigenvector centrality of a node v is proportional to the summation of the central-
ities of the nodes to which it is connected [21]. It is a measure of the importance of a
node, denoted by xv and is calculated as follows:

xv = c
n∑
u=1

avuxu (2.6)

where c = 1/λ. c is a proportionality constant and λ is the largest eigenvalue of the
adjacency matrix A. The eigenvector centrality can be efficiently computed via the power

2.4 description of graph datasets 13

iteration method [79] at the beginning of which each node is assigned with a score of
1. Every node shares its score in an even way to its neighbors and receives a new value
during every iteration of the method. The process ends when the values of each node
reach a steady state.

PageRank

PageRank (PR) is a famous variant of the eigenvector centrality which supposes that
the importance of an entity in a network is determined by both the quantity and the
quality of its connected neighbors. The PageRank algorithm [29] that calculates the re-
spective centrality is used to rank webpages in the Google search engine but also for
other scenarios in the commercial sector. It distinguishes the importance of a webpage
by performing a random walk on the network created by the linked webpages (i.e., one
website referring to another creates a link between them). Initially, a node in the network,
or equivalently a webpage, is assigned on unit PR value. Then every node distributes its
PR value to its neighbors evenly using its outgoing edges. The PR value for a node v of
graph G at a specific step t can be calculated as follows:

PRv(t) =
n∑
u=1

avu
PRu(t− 1)
doutG (u)

(2.7)

where n is the total number of nodes in G, u ∈ Neighbors(v) and doutG (u) is the
out-degree of node u. The algorithm stops when the PR values reach a steady state.
Nevertheless, Eq. 2.7 cannot guarantee converge in some cases. An example of such a
case is the existence of nodes with zero out-degree that cannot redistribute their PR
value. For that reason, a jumping factor has been introduced assuming that the user will
visit a web page with probability p, and close the current page and open a random page
with probability 1-p.Then Eq. 2.7 is modified as follows:

PRv(t) = p
n∑
u=1

avu
PRu(t− 1)
doutG (u)

+ (1 − p)
1

n
(2.8)

2.4 description of graph datasets

In this section, we briefly describe the graph datasets used in this thesis. We have con-
sidered data from different domains, including social, collaboration, information and
technological networks. All datasets are publicly available. Table 2.1 provides a sum-
mary of the network statistics.

(i) Email-Enron. This email communication network created by email interaction
between the members of Enron Corporation, and made public by the Federal Energy
Regulatory Commission during its investigation [95]. It covers data from 150 users and
a total of half a million messages. Each node represents an email address and an undi-
rected edge was formed between two nodes if at least an address i sent an email to
address j.

(ii) Email-EuAll. This email network was collected from email communication of a
large research institution [101]. To create the graph, each email address is considered as
a node and an edge is created between two nodes if the latter have exchanged messages
both ways. Overall there are 3, 038, 531 emails between 287, 755 different email addresses
recorded from October 2003 to May 2005.

2.4 description of graph datasets 14

(iii) Epinions. This is a trust-based (who-trusts-whom) online social network between
the members of the Epinions.com (www.epinions.com) product review website [137].
The nodes of the network correspond to users of the website and the edges capture
trust relationships between them. Although the network is signed, in our experiments
we discard this information; we also convert the graph to an undirected one to use it on
our experiments.

(iv) Wiki-Vote. The graph was created from the online encyclopedia Wikipedia (www.
wikipedia.org) and more precisely from the elections conducted to promote users to
administrators (till January 2008) [100]. The nodes of the social network correspond to
Wikipedia users and an edge between users i, j denotes that user i voted for user j.

(v) Wiki-Talk. This network is also created by data imported from Wikipedia [100].
Each user has a talk page where all interested users can edit to update various articles
on Wikipedia. The specific dataset contains all discussions between users until January
2008. The nodes of this network correspond to users of Wikipedia and an edge from
node i to node j indicates that user i edited a talk page of user j at least once.

(vi) Slashdot. Slashdot (slashdot.org) is a technology news website. The nodes of
the social network that is created correspond to users and the edges capture friendship
relationships among them (till February 2009) [103]. In fact, users are able to tag other
users as friends or foes, forming a signed social network with positive and negative
types of edges. In our experiments, we do not take into account the type of the edges.

(vii) Higgs Twitter Dataset. The Higgs Twitter dataset has been built after consid-
ering the information spreading process that was triggered after the announcement of
the discovery of a new particle with the features of the elusive Higgs boson. The mes-
sages considered date between 1st and 7th July 2012. The activities that were taken
into account in order to build the dataset are: i) re-tweets, ii) replies and iii) mentions.
Of course the relations among users (friends/followers) relationships and information
about activity on Twitter during the boson discovery were also taken into account.

(viii) NetHEPT.: The dataset constitutes a collaboration network taken from the “High
Energy Physics (Theory)" section of http://arxiv.org, with nodes representing authors and
edges capturing co-authorship relationships. Here, a user publishing a paper is consid-
ered as an action.

www.epinions.com
www.wikipedia.org
www.wikipedia.org
slashdot.org

2.4 description of graph datasets 15

N
et

w
or

k
|V
|

|E
|

D
es

cr
ip

ti
on

Em
a

i
l

-E
n

r
o

n
3

3
,6

9
6

1
8

0
,8

1
1

E-
m

ai
lc

om
m

un
ic

at
io

n
ne

tw
or

k

Em
a

i
l

-E
u

A
l

l
2

2
4
,8

3
2

3
4

0
,7

9
5

E-
m

ai
lc

om
m

un
ic

at
io

n
ne

tw
or

k

Ep
i
n

i
o

n
s

7
5
,8

7
7

4
0

5
,7

3
9

W
ho

tr
us

ts
w

ho
m

ne
tw

or
k

W
i
k

i
-V

o
t

e
7
,0

6
6

1
0

0
,7

3
6

El
ec

ti
on

s
of

W
ik

ip
ed

ia
ad

m
in

is
tr

at
or

s

W
i
k

i
-T

a
l

k
2
,3

8
8
,9

5
3

4
,6

5
6
,6

8
2

U
se

r
co

m
m

un
ic

at
io

n
in

W
ik

ip
ed

ia

Sl
a

s
h

d
o

t
8

2
,1

6
8

5
8

2
,5

3
3

Sl
as

hd
ot

so
ci

al
ne

tw
or

k
(F

eb
.’

0
9

)

H
i
g

g
s

4
5

6
,6

2
6

1
4
,8

5
5
,8

4
2

H
ig

gs
Tw

it
te

r
D

at
as

et
(M

ar
.’

1
5

)

N
e

t
H

e
p

t
1

5
,2

3
3

6
2
,7

7
4

“H
ig

h
En

er
gy

Ph
ys

ic
s

-
Th

eo
ry

”
co

lla
bo

ra
ti

on
ne

tw
or

k

Ta
bl

e
2

.1
:N

et
w

or
k

da
ta

se
ts

us
ed

in
th

e
th

es
is

,a
lo

ng
w

it
h

ba
si

c
st

at
is

ti
cs

:n
im

be
r

of
no

de
s
|V
|;

nu
m

be
r

of
ed

ge
s
|E
|.

3
L O C AT I N G I N F L U E N T I A L S P R E A D E R S I N S O C I A L N E T W O R K S

U nderstanding and controlling spreading processes in networks is an important
topic with many diverse applications. The problem which is of crucial impor-
tance for this task is to identify which entities act as influential spreaders. Our

focus of this Chapter is to identify the entities that while acting individually can propa-
gate information to a large portion of the network. We capitalize on the properties of the
K-truss decomposition, a triangle-based extension of the core decomposition of graphs,
to locate individual influential nodes. Our analysis on real networks indicates that the
nodes belonging to the maximal K-truss subgraph show better spreading behavior com-
pared to previously used importance criteria, including node degree and k-core index,
leading to faster and wider epidemic spreading. We further explored the centralities of
the entities that are involved in a spreading process and showed that epidemic models
cannot reproduce real world diffusion.

3.1 introduction

Spreading processes in complex networks have gained great attention from the research
community due to the plethora of applications that they occur. Typically, the interactions
among individuals are responsible for the formation of information pathways in the
network and to this extend, their position and topological properties have direct effect to
the spreading phenomena occurring in the network. That way, a fundamental aspect on
understanding and controlling the spreading dynamics is the identification of influential
spreaders that can diffuse information to a large portion of the network.

As we discussed in the Introduction, the problem of identifying nodes with good
spreading properties in networks, can be split in two subtopics: (i) identification of in-
dividual and (ii) identification of a group of nodes that are able to maximize the total
spread of influence. In this Chapter, we focus on the problem of identifying single in-
fluential spreaders in networks. A straightforward approach towards finding effective
spreading predictors, is to consider node centrality criteria and in particular the one
of degree centrality. In fact, several studies have examined how the existence of heavy-
tailed degree distribution in real-world networks [2, 59, 126] is related to cascading
effects concerning the robustness of such complex systems [2, 3, 49, 128]. Nevertheless,
there exist cases where a node can have arbitrarily high degree, while its neighbors are
not well-connected, making degree a not very accurate predictor of the spreading prop-
erties. For example, this can occur when a high degree node is located to the periphery
of the network. In fact, the spreading properties of a node are strongly related to the
ones of its neighbors in the graph, and thus, global centrality criteria seem to be more
appropriate for this task.

Of particular importance is the work by Kitsak et al. [93], which stressed out that
highly connected nodes or those having high betweenness and closeness centralities,
have little effect on the range of the spreading process. The main finding of their work
was that, less connected but strategically placed nodes in the core of the network, are
able to disseminate information to a larger part of the population. To quantify the core-
periphery structure of networks, they applied the k-core decomposition algorithm [15,
31, 145] – a pruning process that removes nodes which do not satisfy a particular degree-

17

3.2 preliminaries and background 18

based threshold. Their results indicated that nodes belonging to the maximal k-core
subgraph are able to infect a larger portion of the network, compared to node degree or
betweenness centrality, making the k-core number of a node a more accurate spreading
predictor. Furthermore, extracting the k-core subgraph is a more efficient task compared
to the heavy computation required by some centrality criteria (e.g., betweenness). Nev-
ertheless, the resolution of k-core decomposition is quite coarse; depending on the struc-
ture of the network, many nodes will be assigned the same k-core number at the end
of the process, even if their spreading capability differs from each other. Furthermore,
building upon the good performance of the k-core decomposition, several extensions
have been proposed [7, 13, 27, 80, 130, 160, 162].

Our proposed approach moves on a similar axis as the one by Kitsak et al. [93]; we
argue that the topological properties of the nodes play a crucial role towards under-
standing their spreading capabilities. In particular, we consider that only a relatively
small fraction of the nodes extracted by the k-core decomposition method corresponds
to highly influential nodes. To that end, we propose the K-truss decomposition of a
graph [47, 154, 163], a triangle-based extension of the k-core decomposition, as a more
accurate method to identify privileged spreaders. The algorithm is able to extract a more
refined and even more dense subgraph of the initial graph – compared to the k-core de-
composition – as the K-truss is structurally more close to a clique.

The main contributions of this work can be summarized as follows:

• K-truss decomposition for locating influential nodes: The K-truss decomposition algo-
rithm is proposed, as a mechanism to identify nodes with good spreading proper-
ties in the network.

• Evaluation of our proposed approach on real graphs: We used large scale real-world
graphs while performing our experiments and showed that the maximal K-truss
subgraph of the network can reveal those nodes that show better spreading behav-
ior compared to previously used importance criteria.

• Exploration of the centralities of the entities involved in a diffusion process: We performed
additional experiments where we trigger a diffusion process by different groups
of influential spreaders and study the centralities of the entities involved in the
process. We also compare the simulated diffusion process with real influence and
discuss the capability of epidemic models in reproducing a real diffusion.

The rest of the Chapter is organized as follows. Section 3.2 presents the background
concepts that are used throughout the Chapter and Section 3.3 reviews the related lit-
erature on the problem of identifying individual influential nodes in networks. Then,
in Section 3.4 we present the proposed method for locating influential spreaders. Sec-
tion 3.5 presents a detailed experimental evaluation of our method. In Section 3.6 we
explore the centralities of the entities that are involved in a spreading process. Finally,
in Section 3.7 we present concluding remarks.

3.2 preliminaries and background

In this Section we present the preliminary concepts upon which we present the findings
of this Chapter. We briefly recall the notion of the k-core decomposition, present the K-
truss decomposition and the epidemic models that are used in order to locate individual
influential spreaders in networks. A list of the symbols used in the Chapter is presented
in Table 3.1.

3.2 preliminaries and background 19

Symbol Definition

G = (V, E) Undirected graph G

V, E Node and edge set of graph G

n = |V |,m = |E| Number of node and edges of G

dv Degree of node v ∈ V
cv Core number of node v ∈ V
Nb(v) Set of neighbors of node v

4uvw Triangle subgraph defined by nodes u, v,w

TK K-truss subgraph

Ck k-core subgraph

tedge(e) Truss number of edge e ∈ E
tv Truss number of node v ∈ V
C Set of nodes with maximum core number value c

T Set of nodes with maximum tv value

D Set of nodes with maximum dv values

Mv Average infection size caused by node v

τ Epidemic threshold

Table 3.1: List of symbols and their definitions.

3.2.1 k-core decomposition

Let G = (V, E) be an undirected graph with n = |V | nodes and m = |E| edges and let H
be a subgraph of G, i.e., H ⊆ G. Subgraph H is defined to be a k-core subgraph of G,
denoted by Ck, if it is a maximal connected subgraph in which all nodes have degree at
least k. Then, each node v ∈ V has a core number cv = k, if it belongs to a k-core but not
to a (k + 1)-core. We denote as C the set of nodes with the maximum core number kmax

(i.e., the nodes of the k-core subgraph of G that corresponds to the maximum value of
k) [145]. A detailed description is given in Chapter 2, Section 2.3.1.1.

3.2.2 K-truss decomposition

The K-truss decomposition extends the notion of k-core using triangles, i.e., cycle sub-
graphs of length 3 [47, 154].

Definition 3.1. (Triangle subgraph). Let G = (V, E) be an undirected graph. We define as a
triangle 4uvw a cycle subgraph of nodes u, v,w ∈ V . Additionally, the set of triangles of G is
denoted by 4G.

Definition 3.2. (Edge support). The support of an edge e = (u, v) ∈ E is defined as sup(e,G) =
|{4uvw : 4uvw ∈ 4G}| and expresses the number of triangles that contain edge e.

Definition 3.3. (K-truss subgraph). Then, the K-truss, K > 2, denoted by TK = (VTK , ETK), is
defined as the largest subgraph of G, where every edge is contained in at least K− 2 triangles
within the subgraph, i.e., ∀e ∈ ETK , sup(e, TK) > K− 2.

Definition 3.4. (Edge truss number). The truss number of an edge e ∈ E is defined as tedge(e) =
max{K : e ∈ ETK}. Thus, if tedge(e) = K, then the edge belongs to TK but not to TK+1, i.e.,
e ∈ ETK but e 6∈ ETK+1

. We use Kmax to denote the maximum truss number of any edge e ∈ E.

3.2 preliminaries and background 20

Algorithm 3.1 K-truss decomposition

1: Input: Undirected graph G = (V, E)
2: Output: K-truss subgraphs, for 3 6 K 6 Kmax

3: K← 2

4: for each e = (u, v) ∈ E do
5: sup(e) = |Nb(u), Nb(v)|

6: while |E|6= ∅ do
7: while (∃e = (u, v) : sup(e) < K− 2) do
8: W ← Nb(u)∩Nb(v)
9: for each e ′ = (u,w) or e ′ = (v,w), where w ∈W do

10: sup(e ′)← sup(e ′) − 1

11: Remove e from G

12: Output G as the K-truss subgraph
13: K← K + 1

return TK for 3 6 K 6 Kmax

Definition 3.5. (K-class). The K-class of a graph G = (V, E) is defined as ΦK = {e : e ∈
E, τedge(e) = K}.

Based on the above definitions, we can now introduce the concept of K-truss decom-
position.

Definition 3.6. (K-truss decomposition). Given a graph G = (V, E), the K-truss decomposition
is defined as the task of finding the K-truss subgraphs of G, for all 2 6 K 6 Kmax. That is,
the K-truss can be obtained by the union of all edges that have truss number at least K, i.e.,
ETK =

⋃
j>K Φj.

The computation of the K-truss subgraph, for a specific value of K > 2, follows similar
methodological procedure as the one of k-core, where instead of the degree of a node,
we examine the number of triangles that the node participates to: remove all edges
e = (u, v) ∈ E if they do not participate to at least K− 2 triangles, i.e., |N(u), N(v)|6 K− 2.
We denote as T the set of nodes with maximum node truss number (in other words,
this set contains the nodes of the maximal K-truss subgraph). Algorithm 3.1 presents the
K-truss decomposition of a graph [154].

The complexity of Algorithm 3.1 is polynomial. In general, the computation of the
support values in Step 5, i.e., the number of triangles that each edge participates to,
can be done in O(d2

max) time, where dmax is the maximum degree in G. Step 8 of the
algorithm requires time O(d(u) + d(v)) for each edge e = (u, v) ∈ E, giving total time
complexity proportional to O

(∑
e=(u,v)∈E d(u) + d(v)

)
= O

(∑
v∈V d2(v)

)
. Also, the

algorithm starts from an initialization that computes the support of each edge in G.
Then all the edges are sorted in ascending order of their support. The computation
of the support of the edges can be done in O(m1.5) time by the in-memory triangle
counting algorithm [97, 144] as Wang and Cheng proposed [154]. The time complexity
of the improved algorithm is O(m1.5) and the space complexity O(m +n).

Next, we provide interesting properties of the K-truss subgraphs that will be later
used in our analysis.

Proposition 3.7 ([47]). Every node v in a K-truss subgraph TK has degree dv > K− 1.

Proof. Let v be a node of TK. Since a K-truss subgraph do not contain isolated nodes, v
should be incident to an edge e = (v,w) ∈ ETK . By the definition of TK, nodes v and w
must share at least K− 2 additional neighbors (except from w and v respectively). Then,
there should be at least K− 1 nodes adjacent to v, i.e., dv > K− 1.

3.2 preliminaries and background 21

S I R
β γ

1 −β 1 − γ

Figure 3.1: State diagram of the SIR model.

Proposition 3.8. The K-truss subgraph TK is contained within the (K− 1)-core subgraph.

Proof. According to Proposition 3.7, each node of TK has degree at least K− 1 within the
K-truss subgraph. Thus, TK is part of a (K− 1)-core subgraph.

3.2.3 Epidemic models

Modelling a spreading process is an active research topic that has been troubling re-
searchers from various fields (epidemiology, social science, computer science etc.). As
our approach is based on simuating a diffusion phenomenon with an epidemic model,
we will be presenting a description of the Susceptible-Infected-Revovered (SIR) and
Susceptible-Infected-Susceptible (SIS) models which are the most commonly used in
the litterature. For a general introduction to epidemic models the reader may refer to
Refs. [12, 89, 92, 125].

3.2.3.1 The SIR model

The SIR model [53] is a model that is used to describe an acute infectious disease. The
latter refers to an infection which presents a rapid immune response after a short period
of time.

The model assumes a population of N individuals, divided on the following three
states.

• Susceptible (S): the individual is not yet infected, thus being susceptible to the
epidemic;

• Infected (I): the individual has been infected with the disease and it is capable of
spreading the disease to the susceptible population;

• Recovered (R): after an individual has experienced the infectious period, it is con-
sidered as removed from the disease and it is not able to be infected again or to
transmit the disease to others (immune to further infection or death).

Every individual that is on the I state can infect individuals with probability β, called
infection rate, and afterwards it can recover with probability γ, called recovery rate. The
state diagram of the model is presented in Figure 3.1.

Let S(t), I(t) and R(t) be the number of susceptible, infected and recovered individuals
at time t. Then, the model can be described by the following differential equations:

dS

dt
= −

βSI

N
dI

dt
=
βSI

N
− γI (3.1)

dR

dt
= γI.

The last equation can be considered as redundant, since S(t) + I(t) +R(t) = N. In the limit
of a large population of size N, analytical solutions for several quantities can be derived
from these equations, such as the size of the outbreak.

3.3 related work 22

S I

β

δ

1 −β 1 − δ

Figure 3.2: State diagram of the SIS model.

3.2.3.2 The SIS model

The SIS model is used to simulate infections for which there is no long-lasting immunity
where an individual can be infected numerous times. Examples of such diseases are
rotaviruses, sexually transmitted infections and many bacterial infections.

The model assumes a population ofN individuals, divided on the two states Susceptible(S)
and Infected(I) as described for the SIR model. The model can be described by the fol-
lowing differential equations:

dS

dt
= −

βSI

N
+ δI

dI

dt
=
βSI

N
− δI (3.2)

We see that dSdt + dI
dt = 0 ⇒ S(t) + I(t) + R(t) = N. δ is the fraction of the infected indi-

viduals that recover and re-enter the susceptible class per unit time. The state diagram
of the model is presented in Figure 3.2.

3.2.4 The SIR model applied in networks

In our experiments throughout the Chapter we will be using the SIR model to simulate
a spreading process. Based on its definition, the model assumes a fully mixed population:
an infected individual can equally infect any other member of the population to which
it belongs to. In order to apply the model in a population of individuals which form
connections between them (i.e., a network) we follow a more realistic approach. In such
a case any susceptible node can only be infected by an infected neighbor on the graph.

As we will present in Section 3.5, initially all the nodes of the network are set at the
susceptible state S, except from the one that we are interested to examine its perfor-
mance which is set at the infected state I. Then, at each time step t of the process, every
node that is on the I state can infect its susceptible neighbors with probability β and
afterwards it can recover with probability γ. Note that, a node cannot directly pass from
state I to state R during the same time step t.

3.3 related work

In this section, we present the related work for the problem of identification of individ-
ual influential spreaders in networks. Numerous centrality criteria have been proposed
in order to locate privileged spreaders in networks. Lu et al. [109] proposed Leader-
Rank, a random walk-based algorithm similar to PageRank [29] for identifying influen-
tial users in social networks. Later, Li et al. [104] extended LeaderRank to properly detect
influential nodes in weighted networks. Chen et al. [38] proposed a semi-local centrality
measure which serves as a trade-off between degree and other computationally complex
measures (betweeness and closeness centrality). Additionally, Chen et al. [36] proposed

3.4 k-truss decomposition for identifying influential nodes 23

ClusterRank, a local ranking method that takes into account the clustering coefficient of
a node while in another approach [37], the diversity of the paths that emanate from a
node was considered. The main idea was that the spreading ability of a node may be
reduced if its propagation depends only on a few paths, while the rest ones lead to dead
ends.

Building upon the fact that the k-core decomposition is an effective (and efficient)
measure to capture the spreading properties of nodes, as introduced by Kitsak et al. [93],
several extensions have been proposed. The authors of Ref. [160] introduced a modified
version of the k-core decomposition in which the nodes are ranked taking into account
their connections to the remaining nodes of the graph as well as to the removed nodes
at previous steps of the process. They showed that the proposed node ranking method
is able to identify nodes with better spreading properties compared to the traditional
k-core decomposition. Bae et al. [7] extended the metric of k-core number of each node
by considering the core number of its neighbors. That way, the ranking produced by
the method is more fine-grained in the sense that the effect of assigning the same score
(i.e., k-core number) to many nodes is eliminated. Basaras et al. [13] proposed to rank
the nodes according to a criterion that combines the degree and the k-core number of a
node within an µ-hop neighborhood. In Ref. [80] the authors introduced a criterion that
combines three previously examined measures, namely degree, betweenness centrality
and core number. The intuition was that, most of the widely used centrality criteria pro-
duce highly correlated rankings of nodes; combining them in a proper way, we are able
to achieve a more accurate indicator of influential nodes. Zhang et al. [162] proposed a
method to locate influential nodes taking into account the existence of community struc-
ture in networks. In Ref. [27], the authors considered real social media data, in order
to examine to what extend the structural position of a user in the network allows us to
characterize the ability of an individual to spread rumors effectively. Their results indi-
cate that although the most appropriate feature is the degree of a node, only a few such
highly-connected individuals exist; however, by considering the k-core number metric,
we are able to locate a larger set of individuals that are likely to trigger large cascades.
For a detailed review in the area, we refer to the article by Pei and Makse [130]. It is
important to stress out that most of the above mentioned extensions can also be applied
to the proposed K-truss decomposition-based approach.

3.4 k-truss decomposition for identifying influential nodes

In this Section we present our proposed approach for the identification of individual
influential spreaders in networks. Our method is based on the concept of K-truss, a type
of cohesive subgraph extracted by the K-truss decomposition [47, 154, 163] presented in
Section 3.2.2.

As we described earlier in this Chapter, a K-truss subgraph Tk of G, is defined as the
largest subgraph where all edges belong to at least K− 2 triangles. Respectively, an edge
e ∈ E has truss number tedge(e) = K if it belongs to TK but not to TK+1. Since the K-truss
subgraph is defined on a per edge basis, in the following we extend the definition to the
nodes of the graph.

Definition 3.9. (Node truss number). The truss number of a node v ∈ V , denoted by tv is the
maximum truss number of its incident edges, i.e., tv = max{tedge(e), e = (v, u)∀ u ∈ N(v)},
where N(v) is the set of neighborhood nodes of v.

Let T denote the set of nodes with the maximum node truss number tnode. In fact,
these nodes correspond to the nodes of the maximal K-truss subgraph of the graph. In

3.4 k-truss decomposition for identifying influential nodes 24

Set C
Set T

6

Figure 3.3: Schematic representation of the maximal k-core and K-truss subgraphs of a graph.
The red colored nodes correspond to the 3-core subgraph of the graph (set C); the
gray shadowed region indicate the 4-truss subgraph (set T).

this work, we argue that this set contains highly influential nodes with good spreading
properties.

It has been shown that the maximal k-core and K-truss subgraphs (i.e., maximum
values for k, K) overlap, with the latter being a subgraph of the former; in fact, K-truss
represents the core of a k-core that filters out less important information. Figure 3.3
shows an example of a graph and its k-core and K-truss subgraphs respectively. The red
colored nodes correspond to the set C (i.e., the maximal k-core subgraph of the graph).
The edges of the gray shadowed region are the edges that belong to the maximal K-truss
of the original graph and the corresponding nodes are those belonging to set T , i.e., the
nodes with the maximum node truss number. Building upon the fact that the nodes
belonging to the maximal k-core of the graph perform good spreading properties [93],
here we further refine this set of the most influential nodes, showing that the nodes
having maximum node truss number (i.e., set T defined above) perform even better,
leading to faster and wider epidemic spreading.

To study the spreading process and evaluate the performance of the nodes extracted
by the K-truss decomposition method, we apply the SIR epidemic model (defined in Sec-
tion 3.2.3.1). Algorithm 3.2 presents the steps of the proposed framework for (i) selecting
the initial node that will trigger the epidemic (cascade) and (ii) evaluate the impact of
this individual node with respect to the epidemic spreading under the SIR model.

Initially, we choose a node that belongs to T (i.e., maximal K-truss subgraph) and set
it to the infected (I) state. In general, the initial node can be any node of the graph; the
same procedure is also performed for the baseline methods (as we will present later in
the experimental evaluation). The rest of the nodes are assigned to the susceptible state
S. Notice that, we keep track of the infected, susceptible and recovered nodes for each
time step of the process. At each time step, an infected node can infect a susceptible
neighbor with probability β. Additionally, any node that got infected at previous time
steps of the process, can recover with probability γ. The process is repeated until no
more infected nodes are left. Finally, the algorithm returns Mv which is the number of
the infected individuals under the cascade triggered by node v.

computational complexity The K-truss decomposition is computationally a more
difficult task compared to the one of k-core decomposition. Its time complexity is pro-
portional to O(m1.5), since it requires the computation of the number of triangles that

3.4 k-truss decomposition for identifying influential nodes 25

Algorithm 3.2 Identify nodes and evaluate spreading process

1: Input: Undirected graph G = (V, E), parameters β, γ
2: Output: Size of infected population Mv for cascade triggered by node v
3: Select node v ∈ T

4: State(v)← I, State(V \ v)← S /∗ Initialization steps ∗/
5: I(0)← {v}, S(0)← V \ v, R(0)← ∅
6: t← 0

7: repeat
8: t← t + 1

9: I(t)← ∅, R(t)← ∅
10: for each node w ∈ V do
11: /∗ Infected (I) nodes can infect susceptible neighbors ∗/
12: if State(w) = I then
13: for each node z ∈ {Nb(w) : State(z) = S} do
14: Pr(State(z)← I) = β (also I(t)← I(t)∪ {z})
15: /∗ Nodes that got infected at previous time steps can recover (R) ∗/
16: if State(w) = I and w 6∈ I(t) then
17: Pr(State(w)← R) = γ (also R(t)← R(t)∪ {w})
18: until I(t) = ∅ /∗ No more infected nodes left ∗/
19: return Mv ← I(1)∪ I(2)∪ . . .∪ I(t)

each node participates to. In our approach, we are only interested for the maximal K-
truss subgraph and by taking into account Proposition 3.8 which states that a K-truss
subgraph is contained within a (K− 1)-core subgraph we speedup the computation of
the maximal K-truss subgraph. That is, we first compute the maximal k-core subgraph
in linear time with respect to the total number of edges and then we extract the maximal
K-truss subgraph. That way, the overall complexity of the task is significantly reduced.

parameter settings In the SIR model used to simulate the epidemic spreading,
one has to set values for parameters β and γ. As we described in Section 3.2.3.1, param-
eter β concerns the probability that a node passes from the susceptible S to the infected
state I (i.e., a susceptible node will be infected by an already infected neighbor), while
parameter γ describes the probability of a node passing form the infected state I to the
recovered state R where the nodes cannot be infected again in the future.

Setting such parameters are crucial for the evolution of the spreading process. Setting
β to a high value will result to a large fraction of the nodes to be infected. This actually
diminishes the role of individual nodes in the spreading process. In fact, parameters
β and γ define the epidemic threshold which determines whether the epidemic will
spread to the network or will die out early [12].

Definition 3.10 (Epidemic threshold τ). The epidemic threshold τ is defined as a value such
that

β

γ
< τ⇒ infection dies out over time,

β

γ
> τ⇒ infection becomes an epidemic.

The epidemic threshold depends on the spreading model that is under consideration as
well as on the properties of the underlying graph. In our work, we adopt the estimation
proposed by Chakrabarti, Wang et al. [35, 155] and Prakash et al. [134], in which the
epidemic threshold is

3.5 experimental evaluation 26

Network Name Nodes Edges kmax Kmax |C |−|T | |T | τ

Email-Enron 33, 696 180, 811 43 22 230 45 0.00840

Epinions 75, 877 405, 739 67 33 425 61 0.00540

Wiki-Vote 7, 066 100, 736 53 23 286 50 0.00720

Email-EuAll 224, 832 340, 795 37 20 230 62 0.00970

Slashdot 82, 168 582, 533 55 36 38 96 0.00074

Wiki-Talk 2, 388, 953 4, 656, 682 131 53 463 237 0.00870

Table 3.2: Properties of the real-world graphs used in this study (Table 3.1 provides definitions
of the symbols). kmax and Kmax denote the maximum k-core and K-truss numbers
respectively (as produced by the decompositions); |T | represents the number of nodes
belonging to set T ; |C |−|T | represents the number of the nodes belonging to set C ,
excluding the nodes that belong to set T ; τ is the epidemic threshold of the graph.

τ =
1

λ1

, (3.3)

where λ1 is the largest eigenvalue of the adjacency matrix A of the graph. That way,
we set parameter β close to the epidemic threshold τ of the graph, in order to reduce
the effect of the spreading model on the number of infected nodes. Parameter γ is set
to a value close to one (γ = 0.8 in our experimental results). As we will present in the
following Section, we have performed experiments with several values of β and γ and
the results are persistent concerning the comparison of the proposed method to other
baselines.

3.5 experimental evaluation

In this Section we present the experimental results concerning the performance of the
proposed method for the identification of individual influential spreaders in networks.

3.5.1 Datasets and Methodology

datasets We study real-world networks arising from online social networking and
communication platforms. In particular, we investigate the following network datasets:
(i) Email-Enron, (ii) Email-EuAll, (iii) Epinions, (iv) Wiki-Vote, (v) Wiki-Talk and
(vi) Slashdot. All datasets are considered undirected and unweighted. We considered
the largest connected component in our experiments since it fills most of the network
(usually more than half but in the specific datasets used over 85%) and the rest of the
components are disconnected. High level characteristics of the networks are shown in
Table 3.2. A more detailed description of the datasets is presented in Section 2.4 of
Chapter 2.

methodology In the experimental results that follow, we are comparing the spread-
ing performance of the nodes belonging to the set T (truss method), to those belonging
to the set C −T (core method), i.e., the nodes belonging to the maximal k-core exclud-
ing those that belong to the maximal K-truss of the graph – since T is subset of C , as
discussed above.

The core method constitutes the basic baseline approach, since it has been shown that
outperforms other well known node importance criteria such as betweenness centrality

3.5 experimental evaluation 27

[93]. For completeness in the experimental evaluation, we also compare the spreading
capabilities of the nodes that belong to the maximal K-truss subgraph to those belonging
to the set D that contains the highest degree nodes in the graph (top degree method);
we choose |C |−|T | high degree nodes to achieve fair comparison between the different
methods.

properties of the K-truss subgraphs We have examined the distribution of
the node truss numbers tnode of the graphs presented in Table 3.2 and the results are
depicted in Fig. 3.4. Each plot shows the complementary cumulative distribution func-
tion (CCDF) of the nodes’ truss number in log-log scale. As we can observe, in most of
the cases the distribution is skewed, indicating that very few nodes have high truss num-
ber; the majority of the nodes belong to “low" K-truss subgraphs, i.e., small values of
parameter K of the decomposition. We have also fitted a power-law distribution [44] to
the data (red colored line) and the exponent is shown in Fig. 3.4. Here, we do not claim
that the truss number distribution is fully captured by a power-law; nevertheless, it cor-
responds to heavy-tailed distribution and this fact can help us to better understand the
underlying properties of the data. In our case, this means that we can reduce the graph
into a subgraph with exponentially smaller size and try to locate influential spreaders
within this subgraph.

We have additionally examined the maximum level of the K-truss decomposition, i.e.,
value Kmax, for the various graphs. As we can observe from Table 3.2, Kmax values vary
from dataset to dataset, but compared to the kmax values of the k-core decomposition,
they tend to be much smaller. This is rather expected since the K-truss decomposition
relies on triangle participation, which is a more strict criterion compared to node degree.
This last point is also a justification for the differences on the number of nodes belonging
to the truss set T and core set C (i.e., the set of nodes belonging to the maximal k-core
subgraph of the graph). Although these sets are overlapping, the one that corresponds
to K-truss has significantly smaller size compared to the maximal k-core subgraph. This
was also one of the motivations of the proposed work; since the nodes of the maximal
k-core subgraph perform well in information spreading, how to further refine this set
by selecting a small subset that is characterized by even better spreading properties.

3.5.2 Evaluating the spreading performance

Next, we describe the experimental results concerning the performance of the proposed
technique. To evaluate the spreading efficiency of the methods, we focus on the follow-
ing quantities:

(i) the number of nodes that become infected at each time step of the process and the
corresponding cumulative one

(ii) the total number of infected nodes at the end of the epidemic

(iii) the time step where the epidemic fades out.

For each node, we repeat the simulation 100 times (10 times for the Wiki-Talk graph
due to its large size) and report the average behavior. In each case, we repeat the above
for all the respective nodes and calculate the average behavior for the nodes of each set
(truss method versus the two baselines core and top degree).

The experimental results are shown in Table 3.3. We set β close to the epidemic thresh-
old and parameter γ = 0.8, as used by Kitsak et al. [93]. The values of parameter β of

3.5 experimental evaluation 28

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 P

r(
X

 ≥
 t

)

Node Truss Number t

Data

Fitted Power Law (a = 3.5)

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 P

r(
X

 ≥
 t

)

Node Truss Number t

Data

Fitted Power Law (a = 3.5)

(a) Email-Enron (b) Email-EuAll

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 P

r(
X

 ≥
 t
)

Node Truss Number t

Data

Fitted Power Law (a = 2.78)

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 P

r(
X

 ≥
 t

)

Node Truss Number t

Data

Fitted Power Law (a = 3.5)

(c) Epinions (d) Slashdot

10
0

10
1

10
2

10
−7

10
−5

10
−3

10
−1

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 P

r(
X

 ≥
 t

)

Node Truss Number t

Data

Fitted Power Law (a = 2.75)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 P

r(
X

 ≥
 t

)

Node Truss Number t

Data

Fitted Power Law (a = 2.08)

(e) Wiki-Talk (f) Wiki-Vote

Figure 3.4: Complementary cumulative truss number distribution function. Each plot depicts the
distribution of the truss numbers for the nodes of the graph on log-log scale. The red
line corresponds to the fitted power-law distribution.

3.5 experimental evaluation 29

Ti
m

e
St

ep

M
et

ho
d

2
3

4
5

6
7

8
9

1
0

Fi
na

ls
te

p
σ

M
ax

st
ep

Em
a

i
l

-
tr

us
s

8
.4

4
1

8
.5

8
4

6
.6

6
1

0
4
.1

1
2

0
4
.0

8
3

2
8
.3

9
4

1
8
.7

7
4

2
5
.0

6
3

5
5
.8

4
2
,5

9
6
.5

2
1

3
6
.7

3
3

En
r

o
n

co
re

4
.7

8
1

2
.8

2
3

1
.9

7
7

3
.7

7
1

5
2
.5

5
2

6
4
.3

6
3

6
7
.2

8
4

0
3
.9

8
3

6
4
.1

3
2
,4

6
5
.6

0
1

9
9
.6

3
7

to
p

de
gr

ee
6
.8

9
1

3
.8

7
3

4
.1

3
7

6
.6

7
1

5
5
.4

8
2

6
4
.1

3
3

6
0
.8

9
3

9
4
.3

7
3

5
7
.0

8
2
,4

7
1
.6

7
3

5
4
.8

3
6

Ep
i
n

i
o

n
s

tr
us

s
4
.1

7
9
.2

5
1

9
.7

0
3

9
.5

6
7

5
.0

4
1

3
0
.4

8
2

0
4
.1

4
2

7
8
.6

9
3

2
9
.0

8
2
,5

6
7
.6

9
2

2
7
.8

3
7

co
re

3
.4

5
7
.1

8
1

4
.7

2
2

9
.1

1
5

5
.2

7
9

8
.1

1
1

5
8
.5

6
2

2
6
.1

7
2

8
0
.0

3
2
,3

2
5
.3

7
3

2
7
.2

4
3

to
p

de
gr

ee
4
.2

2
7
.9

4
1

6
.0

3
3

1
.3

2
5

8
.8

4
1

0
3
.9

1
1

6
6
.2

3
2

3
4
.9

6
2

8
9
.4

9
2
,4

1
4
.9

9
3

3
1
.7

4
7

W
i
k

i
-

tr
us

s
2
.9

2
4
.3

7
6
.9

2
1

0
.4

3
1

5
.2

7
2

1
.6

3
2

8
.7

3
3

5
.9

3
4

2
.4

6
5

6
0
.6

6
1

1
4
.9

5
2

Vo
t

e
co

re
1
.9

2
3
.0

7
4
.7

8
7
.2

2
1

0
.6

5
1

5
.1

8
2

0
.6

6
2

6
.7

0
3

2
.4

0
4

6
6
.0

1
1

0
4
.5

5
7

to
p

de
gr

ee
2
.4

3
3
.5

3
5
.4

6
8
.1

7
1

2
.0

5
1

7
.0

4
2

3
.0

5
2

9
.4

9
3

5
.5

5
5

0
2
.8

8
1

0
4
.5

6
2

Em
a

i
l

-
tr

us
s

1
1
.6

2
2

8
.0

4
6

2
.2

5
1

2
7
.7

9
2

4
0
.9

7
4

0
5
.5

3
5

8
4
.8

7
7

0
5
.8

9
7

2
5
.4

2
5
,0

1
8
.5

2
4

8
7
.9

4
3

6

Eu
A

l
l

co
re

9
.8

5
1

8
.6

9
4

0
.8

2
8

2
.2

8
1

5
8
.7

2
2

7
9
.4

1
4

3
3
.8

1
5

7
4
.9

7
6

4
4
.7

6
4
,5

7
9
.8

4
4

9
8
.7

1
3

8

to
p

de
gr

ee
1

7
.9

6
1

6
.7

4
3

9
.9

3
7

3
.6

6
1

4
4
.6

9
3

8
4
.0

7
5

0
3
.1

8
5

6
5
.0

6
5

4
8
.2

5
4
,1

3
7
.5

6
1
,1

7
4
.8

4
3

9

Sl
a

s
h

d
o

t
tr

us
s

5
.3

6
2

0
.5

7
6

6
.2

1
1

8
8
.5

2
4

6
1
.3

5
9

1
7
.2

1
,3

9
0
.5

2
1
,5

7
1
.9

7
1
,3

5
9
.9

9
8
,2

0
7
.4

6
3

6
8
.3

7
3

2

co
re

6
.4

8
1

9
.6

8
6

1
.1

3
1

6
8
.3

6
4

1
0
.1

9
8

2
0
.7

7
1
,2

7
2
.2

9
1
,4

8
6
.5

1
,3

4
4
.3

3
8
,0

0
2
.7

6
5

1
8
.4

3
3

2

to
p

de
gr

ee
1

3
.9

5
2

7
.8

8
8

3
.2

9
2

0
4
.6

0
4

8
3
.9

5
9

4
0
.4

9
1
,4

2
6
.8

1
1
,6

1
6
.5

5
1
,4

0
3
.8

0
8
,4

8
9
.4

5
5

9
.0

1
3

2

W
i
k

i
-T

a
l

k
tr

us
s

6
4
.2

1
4

3
5
.7

9
3
,2

5
9
.0

5
1

6
,2

2
7
.2

5
3

4
,5

4
3
.2

3
2

3
,8

1
8
.0

6
9
,8

5
3
.8

4
3
,4

8
7
.6

5
1
,1

8
6
.4

1
9

3
,4

9
1
.8

1
4

7
6
.2

2
2

1

co
re

4
1
.7

7
2

6
9
.9

6
2
,0

2
7
.6

9
1

1
,1

6
9
.2

3
1
,2

2
3
.2

1
2

8
,7

3
2
.0

6
1

3
,0

5
5
.4

5
4
,8

0
5
.1

1
1
,6

6
4
.5

2
9

3
,4

9
6
.5

0
7

6
7
.3

5
2

3

to
p

de
gr

ee
8

8
.8

4
3

2
4
.1

1
2
,4

7
5
.0

1
1

1
,7

1
8
.2

8
2

9
,6

9
4
.4

5
2

7
,0

0
9
.0

5
1

3
,7

2
0
.1

5
5
,3

9
6
.4

5
1
,9

3
7
.8

9
9

3
,4

1
1
.1

8
1
,1

6
6
.7

7
2

4

Ta
bl

e
3

.3
:A

ve
ra

ge
nu

m
be

r
of

in
fe

ct
ed

no
de

s
pe

r
st

ep
of

th
e

SI
R

m
od

el
us

in
g
β

cl
os

e
to

th
e

ep
id

em
ic

th
re

sh
ol

d
of

ea
ch

gr
ap

h
an

d
γ

=
0
.8

.A
t

th
e

Fi
na

ls
te

p
co

lu
m

n,
w

e
sh

ow
th

e
to

ta
l

nu
m

be
r

of
in

fe
ct

ed
no

de
s

at
th

e
en

d
of

th
e

pr
oc

es
s

(M
ax

st
ep

),
w

it
h

st
an

da
rd

de
vi

at
io

n
σ

.

3.5 experimental evaluation 30

Ti
m

e
St

ep

M
et

ho
d

2
3

4
5

6
7

8
9

1
0

Fi
na

ls
te

p
σ

M
ax

st
ep

Em
a

i
l

-
tr

us
s

9
.4

4
2
8
.0

3
7
4
.6

9
1
7
8
.8

0
3
8
2
.8

8
7
1
1
.2

7
1
,1

3
0
.0

5
1
,5

5
5
.1

1
1
,9

1
0
.9

5
2
,5

9
6
.5

2
1
3
6
.7

3
3

En
r

o
n

co
re

5
.7

8
1
8
.6

0
5
0
.5

7
1
2
4
.3

5
2
7
6
.9

0
5
4
1
.2

6
9
0
8
.5

4
1
,3

1
2
.5

2
1
,6

7
6
.6

5
2
,4

6
5
.6

0
1
9
9
.6

3
7

to
p

de
gr

ee
7
.8

9
2
1
.7

6
5
5
.9

0
1
3
2
.5

7
2
8
8
.0

5
5
5
2
.1

8
9
1
3
.0

7
1
,3

0
7
.4

5
1
,6

6
4
.5

3
2
,4

7
1
.6

7
3
5
4
.8

3
6

Ep
i
n

i
o

n
s

tr
us

s
5
.1

7
1
4
.4

2
3
4
.1

3
7
3
.6

9
1
4
8
.7

4
2
7
9
.2

3
4
8
3
.3

7
7
6
2
.0

6
1
,0

9
1
.1

4
2
,5

6
7
.6

9
2
2
7
.8

3
7

co
re

4
.4

5
1
1
.6

4
2
6
.3

6
5
5
.4

8
1
1
0
.7

5
2
0
8
.8

7
3
6
7
.4

3
5
9
3
.5

9
8
7
3
.6

2
2
,3

2
5
.3

7
3
2
7
.2

4
3

to
p

de
gr

ee
5
.2

2
1
3
.1

6
2
9
.2

0
6
0
.5

2
1
1
9
.3

6
2
2
3
.2

7
3
8
9
.4

9
6
2
4
.4

6
9
1
3
.9

5
2
,4

1
4
.9

9
3
3
1
.7

4
7

W
i
k

i
-

tr
us

s
3
.9

2
8
.3

0
1
5
.2

3
2
5
.6

6
4
0
.9

4
6
2
.5

7
9
1
.3

1
1
2
7
.2

5
1
6
9
.7

1
5
6
0
.6

6
1
1
4
.9

5
2

Vo
t

e
co

re
2
.9

2
5
.9

9
1
0
.7

8
1
8
.0

1
2
8
.6

6
4
3
.8

5
6
4
.5

0
9
1
.2

0
1
2
3
.6

0
4
6
6
.0

1
1
0
4
.5

5
7

to
p

de
gr

ee
3
.4

3
6
.9

6
1
2
.4

3
2
0
.6

1
3
2
.6

6
4
9
.7

0
7
2
.7

5
1
0
2
.2

5
1
3
7
.8

1
5
0
2
.8

8
1
0
4
.5

6
2

Em
a

i
l

-
tr

us
s

1
2
.6

2
4
0
.6

6
1
0
2
.9

2
2
0
3
.7

2
4
7
1
.6

9
8
7
7
.2

2
1
,4

6
2
.1

0
2
,1

6
8
.0

0
2
,8

9
3
.4

3
5
,0

1
8
.5

2
4
8
7
.9

4
3
6

Eu
A

l
l

co
re

1
0
.8

5
2
9
.5

5
7
0
.3

7
1
5
2
.6

5
3
1
1
.3

8
5
9
0
.7

9
1
,0

2
4
.6

0
1
,5

9
9
.5

7
2
,2

4
4
.3

4
4
,5

7
9
.8

4
4
9
8
.7

1
3
8

to
p

de
gr

ee
1
8
.9

6
3
5
.7

1
7
5
.6

4
1
4
9
.3

0
2
9
4
.0

0
5
4
3
.4

5
9
2
7
.5

2
1
,4

3
0
.7

0
1
,9

9
5
.7

7
4
,1

3
7
.5

6
1
,1

7
4
.8

4
3
9

Sl
a

s
h

d
o

t
tr

us
s

6
.3

6
2
6
.9

3
9
3
.1

4
2
8
1
.6

7
7
4
3
.0

3
1
,6

6
0
.2

3
3
,0

5
0
.7

5
4
,6

2
2
.7

3
5
,9

8
2
.7

3
8
,2

0
7
.4

6
3
6
8
.3

7
3
2

co
re

7
.4

8
2
7
.1

7
8
8
.3

1
2
5
6
.6

7
6
6
6
.8

6
1
,4

8
7
.6

4
2
,7

5
9
.9

3
4
,2

4
6
.4

3
5
,5

9
0
.7

6
8
,0

0
2
.7

6
5
1
8
.4

3
3
2

to
p

de
gr

ee
1
4
.9

5
4
2
.8

4
1
2
6
.1

3
3
3
0
.7

4
8
1
4
.6

9
1
,7

5
5
.1

8
3
,1

8
1
.9

9
4
,7

9
8
.5

5
6
,2

0
2
.3

5
8
,4

8
9
.4

5
5
9
.0

1
3
2

W
i
k

i
-T

a
l

k
tr

us
s

6
5
.2

1
5
0
1
.0

0
3
,7

6
0
.0

6
1
9
,9

8
7
.3

1
5
4
,5

3
0
.5

5
7
8
,3

4
8
.6

2
8
8
,2

0
2
.4

6
9
1
,6

9
0
.1

1
9
2
,8

7
6
.5

3
9
3
,4

9
1
.8

1
4
7
6
.2

2
2
1

co
re

4
2
.7

7
3
1
2
.7

4
2
,3

4
0
.4

3
1
3
,5

0
9
.6

4
4
4
,7

3
2
.8

5
7
3
,1

0
4
.9

2
8
6
,1

6
0
.3

8
9
0
,9

6
5
.4

9
9
2
,6

3
0
.0

1
9
3
,4

9
6
.5

7
6
7
.3

5
2
3

to
p

de
gr

ee
8
9
.8

4
4
1
3
.9

5
2
,8

8
8
.9

6
1
4
,6

0
7
.2

4
4
4
,3

0
1
.6

9
7
1
,3

1
0
.7

4
8
5
,0

3
0
.9

0
9
0
,4

2
7
.3

5
9
2
,3

6
5
.2

5
9
3
,4

1
1
.1

8
1
,1

6
6
.7

7
2
4

Ta
bl

e
3

.4
:C

um
ul

at
iv

e
nu

m
be

r
of

in
fe

ct
ed

no
de

s
pe

r
st

ep
of

th
e

SI
R

m
od

el
us

in
g
β

cl
os

e
to

th
e

ep
id

em
ic

th
re

sh
ol

d
of

ea
ch

gr
ap

h
an

d
γ

=
0
.8

.A
t

th
e

Fi
na

ls
te

p
co

lu
m

n,
w

e
sh

ow
th

e
to

ta
l

nu
m

be
r

of
in

fe
ct

ed
no

de
s

at
th

e
en

d
of

th
e

pr
oc

es
s

(M
ax

st
ep

),
w

it
h

st
an

da
rd

de
vi

at
io

n
σ

.

3.5 experimental evaluation 31

the SIR model for each graph, are shown in Table 3.2. Tables 3.3 and 3.4 show the num-
ber of the newly infected nodes for some of the first ten time steps of the spreading
process, which we consider as the outbreak of the epidemic and the cumulative number
of infected nodes per step respectively. We also report the total number of nodes that
were infected at the end of the process (Final step) and the time step where the epidemic
dies out (Max step).

As we can observe, the truss method achieves significantly higher infection rate dur-
ing the first steps of the epidemic. Furthermore, in almost all cases, the total number of
infected nodes at the end of the process (Final step) is larger, while the fade out occurs
earlier (Max step). Lastly, as we discussed above, the number of nodes in the truss set
T is much smaller compared to the set C −T (Table 3.2). By refining significantly the
set of influential nodes in truss set T , the “weaker" spreaders of C are left in core set
C −T , explaining the inferior behavior of the core method compared to top degree.

Some small deviations from this behavior are observed in the Slashdot and Wiki-
Talk graphs. In the Slashdot graph, the best performance is achieved by the top de-
gree method, which from the very first steps is able to infect a larger amount of nodes.
In the case of the Wiki-Talk graph, although the total number of infected nodes at the
end (Final step) of the epidemic is almost the same for all methods, the proposed truss
method performs quite effectively at the first steps of the process. In fact, it significantly
outperforms both baseline methods achieving an increase of almost 23% on the cumu-
lative number of infected nodes compared to both core and top degree methods, at the
sixth step of the process.

We have also computed the cumulative difference of the number of infected nodes
per step achieved by the methods. Let Itruss

t be the number of infected nodes at step t
achieved by the truss method (similar for core and top degree). We define the cumula-
tive difference for the truss and core methods at step t as

Dtruss-core
t = cumsum

z=1...t
(Itruss
z − Icore

z). (3.4)

Similarly, we can define the same quantity for the truss vs. top degree methods. The re-
sults are shown in Figures 3.5 and 3.6. For each graph, we have performed experiments
for two values of parameter β and γ = 0.8. We observe that the cumulative difference of
the number of nodes that are being infected at every step is always larger between truss
and core than between truss and top degree. Both differences increase during the out-
break of the epidemic until they stabilize to the number of nodes which is actually the
final difference of the number of nodes that got infected (i.e., entered state I of the SIR
model) during the epidemic process of the two compared methods. Clearly, as in almost
all cases the differences are always above zero, one can conclude to the effectiveness of
information diffusion when the spreading is triggered by the nodes that belong to the
maximal K-truss subgraph.

3.5.3 Comparison to the optimal spreading

Since we lack ground-truth information about the best spreaders in the network, to
further study the performance of the proposed K-truss decomposition method, we have
examined the spreading achieved by each node of the graph. More precisely, we set
each node v ∈ V at the infected state I and simulate the spreading capabilities of this
node using the SIR model, as described earlier. Figure 3.7 depicts the distribution of the
nodes with respect to the infection size M, for the Email-Enron and Wiki-Vote graphs
(parameter β of the SIR model was set to β = 0.01 for this experiment). In both cases, the
axes of the plot have been set to logarithmic scale. As we can observe, the distribution of

3.5 experimental evaluation 32

0 10 20 30
0

50

100

150

200

250

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

0 10 20 30
0

100

200

300

400

500

Number of Steps

C
u

m
u

la
ti
v
e

 D
is

ta
n

c
e

(truss − core)

(truss − degree)

(a) Email-Enron: β = 0.01 (b) Email-Enron: β = 0.03

0 10 20 30
0

50

100

150

200

250

300

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

0 10 20
0

50

100

150

200

250

300

350

400

450

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

(c) Epinions: β = 0.007 (d) Epinions: β = 0.01

0 10 20 30 40 50
0

20

40

60

80

100

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

0 10 20
0

50

100

150

200

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

(e) Wiki-Vote: β = 0.009 (f) Wiki-Vote: β = 0.01

Figure 3.5: Cumulative difference of the infected nodes per step achieved by the truss method
vs. the core (truss - core) and top degree (truss - degree) methods. Parameter γ of the
SIR models is set to γ = 0.8. Continued in Fig. 3.6.

3.5 experimental evaluation 33

0 10 20 30
0

200

400

600

800

1000

1200

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

(a) Email-EuAll: β = 0.01 (b) Email-EuAll: β = 0.03

0 5 10 15 20

0

2000

4000

6000

8000

10000

12000

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

0 5 10 15

0

5000

10000

15000

20000

Number of Steps

C
u

m
u

la
ti
v
e

 D
if
fe

re
n

c
e

(truss − core)

(truss − degree)

(c) Wiki-Talk: β = 0.01 (d) Wiki-Talk: β = 0.03

Figure 3.6: Cumulative difference of the infected nodes per step achieved by the truss method
vs. the core (truss - core) and top degree (truss - degree) methods. Parameter γ of the
SIR model is set to γ = 0.8.

the infection size M is skewed; only a small percentage of nodes are highly influential,
while the majority of the nodes are able to infect only a small portion of the graph (small
values of infection size M). Thus, our goal is to examine how the nodes detected by the
K-truss decomposition are distributed on this small subset of spreading-efficient nodes.
Note that, similar observations have been made for the rest of the graphs described at
Table 3.2.

To that end, we rank the nodes v ∈ V of the graph, according to the infection size
M(v). Let

OPT1 = argmax
v∈V

M(v) (3.5)

be the node that achieves that highest infection sizeM among all nodes in the graph, i.e.,
OPT1 > OPT2 > . . . > OPT|V |. The aforementioned ranking is based on the assumption
that the spreading process evolves as suggested by the SIR model with the specific β and
γ parameters. In order to examine how the nodes detected by the K-truss decomposition
are distributed among the most efficient (optimal) spreaders, we consider a variable size
window W over the ranked nodes and define PT

W to be the fraction of nodes of set T

that can be found within W as follows:

3.5 experimental evaluation 34

10
2

10
3

10
4

10
1

10
2

10
3

10
4

Infection Size M

N
u

m
b

e
r

o
f

N
o

d
e

s

10
1

10
2

10
3

10
4

10
1

10
2

10
3

Infection Size M

N
u

m
b

e
r

o
f

N
o

d
e

s
(a) Email-Enron (b) Wiki-Vote

Figure 3.7: Spreading distribution of the nodes in the network, in log-log scale. The horizontal
axis corresponds to the infection size M achieved by each node in the graph, after a
binning process. The vertical axis captures the number of nodes that fall on each bin.
Observe that only a small percentage of nodes achieves high spreading. In both cases,
we have set β = 0.01 in the SIR model.

PT
W =

|TW |/|T |

|W|/|V |
, (3.6)

where TW is the set of nodes v ∈ T that are located in the window W of size |W| (in a
similar way, we can define PC

W for the nodes of the maximal k-core subgraph). We are
interested in examining how the quantities PT

W and PC
W behave with respect to the size

of the window W.
Figure 3.8 depicts the distribution of the top-truss PT

W and top-core PC
W nodes, for

various sizes of window W (i.e., fractions of the most efficient spreaders). As we can
observe, for almost all datasets, PT

W reaches the maximum value (i.e., 100%) relatively
early and for small window sizes, compared to PC

W . The maximum value of PT
W indicates

that we have found all the nodes belonging to set T in the window of fractional size W.
An early and intense upward trend of the curve implies that a large fraction of the nodes
belonging to the set of interest (T or C), corresponds to nodes with the best spreading
properties on the graph. For example, in the Email-EuAll graph, the maximum for the
nodes of set T is reached in window W = 1.7%, while in the case of set C in window
W = 2.8%. Thus, the nodes detected by the K-truss decomposition method (set T) are
better distributed among the most efficient spreaders, compared to those located by the
k-core decomposition (set C). A slightly different behavior is observed in the Wiki-Talk

and Slashdot graphs; in both graphs, the values of PT
W and PC

W are very close to each
other for almost all choices of windowW, indicating that both sets have almost the same
overlap with the set of optimal spreaders. Nevertheless, as we have already presented in
Tables 3.3, for those two datasets the spreading performance of the truss nodes achieved
during the first steps of the epidemic is much better.

Furthermore, we are interested to study the distribution of the nodes’ truss num-
ber tnode with respect to window W. Similar to what described above, we consider a
fraction of the best spreaders in the graph (as specified by W) and we examine the dis-
tribution of all truss numbers (and not only the maximum one) within it. Since nodes
with high truss number are of particular importance here, we have considered groups
of nodes as follows:

3.5 experimental evaluation 35

0 0.5 1 1.5
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C

T

0 0.5 1 1.5
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C

T

(a) Email-Enron (b) Epinions

0 5 10
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C

T

0 0.1 0.2 0.3
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C

T

(c) Wiki-Vote (d) Email-EuAll

0 0.05 0.1
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C

T

0 0.5 1 1.5 2
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C

T

(e) Wiki-Talk (f) Slashdot

Figure 3.8: Distribution of the top-truss PT
W and top-core PC

W nodes among the nodes with opti-
mal spreading properties under a window of size W. Observe that for small values of
window size W (i.e., closer to the optimal spreading), the number of top-truss nodes
is always higher compared to the number of top-core nodes.

3.5 experimental evaluation 36

(i) Individual groups for each of the top five truss numbers, i.e., Kmax to Kmax−4. That
way, the first group contains nodes with truss number equal to Kmax, the second
group nodes with truss number Kmax−1 and so on.

(ii) The rest of the groups concern truss numbers in the range Kmax−5 to K = 2, group-
ing together five consecutive truss numbers each time. For example, the sixth
group contains nodes with truss number in the range Kmax−5 to Kmax−9. Note
that, the last group may contain less than five truss numbers.

Figure 3.9 depicts the distribution of truss numbers for various values of window W.
The colors on each bar correspond to the groups of truss number (darker colors for truss
numbers closer to the maximum one). As we can observe in most of the datasets, for
small values of window W, a large number of the nodes belong to the first group, i.e.,
their truss number is the maximum one. Since in most of the cases only a tiny fraction
of the nodes of the graph belong to the very first groups (i.e., close to Kmax), even for
small window sizes we also observe nodes from groups that correspond to smaller truss
numbers. As the window W increases, i.e., deviate from the optimal spreading behavior,
groups of smaller truss numbers start to evolve. From these results, it is evident that
the truss number is related to the spreading capabilities of the nodes. Until now, we
had only examined the effect of the nodes that belong to the maximal K-truss subgraph.
However, from this experiment we can conclude that, in general, nodes with high truss
number tend to have good spreading properties – with the truss number being highly
related to the spreading effect.

3.5.4 Impact of infection and recovery rate on the spreading process

In the experiments that have been already presented, parameters β and γ of the SIR
model have been set to some constant values; the infection rate β is typically set close
to the epidemic threshold of the graph (as defined by the maximum eigenvalue of the
adjacency matrix of the graph), while the recovery rate is considered constant and al-
ways set to γ = 0.8. Here, we examine the impact of the infection and recovery rate on
the epidemic spreading achieved by the proposed method (truss) and the two baseline
methods (core and top degree). To that end, we simulate the spreading process for each
of the above methods, setting parameters β and γ as follows:

(i) Parameter β is set close to the epidemic threshold of the graph, while varying
parameter γ ∈ {0.5, 0.8, 1}. Parameter γ = 1 implies that each infected node moves
to the recovered (R) state with probability one, in the next step of the model.

(ii) The recovery rate is set to γ = 0.8, while considering different values of parameter
β, always above the epidemic threshold of the graph. As we discussed in the main
text, if we consider high values of the infection rate β, a relatively high fraction of
nodes will be infected, and thus, the spreading capabilities of individual nodes is
diminished.

Fig. 3.10 shows the results. In all cases, we have computed the cumulative fraction of
infected nodes It per step of the process, for each of the three methods, along with the
standard deviation (depicted as error bars in the plot). As we can observe, while the
recovery probability γ decreases, the number of infected nodes increases both during
the first time steps of the process, as well as at the end of the epidemic. This behavior is
expected since, as we discussed above, with high recovery rate γ most of the nodes will
move to the R state, thus being inactive in subsequent iterations of the model. Regarding

3.5 experimental evaluation 37

0 2 4 6 8 10
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

u
ti
o

n
 o

f
T

ru
s
s
 N

u
m

b
e

rs
 w

it
h

in
 W

K (max value)

K − 1

K − 2

K − 3

K − 4

K − 5 to K − 9

K − 10 to K − 14

K − 15 to K = 2

0 1 2 3 4 5
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

u
ti
o
n
 o

f
T

ru
s
s
 N

u
m

b
e
rs

 w
it
h
in

 W

K (max value)

K − 1

K − 2

K − 3

K − 4

K − 5 to K − 9

K − 10 to K − 14

K − 15 to K − 19

K − 20 to K − 24

K − 25 to K = 2

(a) Email-Enron (b) Epinions

0 5 10 15 20
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

u
ti
o

n
 o

f
T

ru
s
s
 N

u
m

b
e

rs
 w

it
h

in
 W

K (max value)

K − 1

K − 2

K − 3

K − 4

K − 5 to K − 9

K − 10 to K − 14

K − 15 to K = 2

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

u
ti
o
n
 o

f
T

ru
s
s
 N

u
m

b
e
rs

 w
it
h
in

 W

K (max value)

K − 1

K − 2

K − 3

K − 4

K − 5 to K − 9

K − 10 to K = 2

(c) Wiki-Vote (d) Email-EuAll

Figure 3.9: Distribution of node’s truss number with respect to the ranking of the nodes under
their spreading properties. The nodes are classified in groups (different colors) de-
pending on their truss number; for each window size W, we plot the distribution of
truss numbers observed within it. Observe that, for small window sizes a large num-
ber of the nodes belong to the first group, i.e., their truss number is Kmax. When the
window is enlarged, the groups of lower truss numbers involve a large percentage of
the considered nodes.

3.5 experimental evaluation 38

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Steps

N
u

m
b

e
r

o
f

In
fe

c
te

d
 N

o
d

e
s
 I

truss γ = 0.8

core γ = 0.8

top degree γ = 0.8

truss γ = 0.5

core γ = 0.5

top degree γ = 0.5

truss γ = 1

core γ = 1

top degree γ = 1

γ = 0.8

β = 0.01

γ = 1

γ = 0.5

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

Number of Steps

N
u

m
b

e
r

o
f

In
fe

c
te

d
 N

o
d

e
s
 I

truss β = 0.1

truss β = 0.05

truss β = 0.03

truss β = 0.01

core β = 0.05

core β = 0.03

core β = 0.01

core β = 0.1

top degree β = 0.03

top degree β = 0.01

top degree β = 0.05

top degree β = 0.1

β = 0.1

β = 0.05

β = 0.03 β = 0.01

γ = 0.8

(a) Email-Enron: β = 0.01 (b) Email-Enron: γ = 0.8

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

Number of Steps

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s
 I

core γ = 0.8

truss γ = 0.8

top degree γ = 0.8

truss γ = 0.5

core γ = 0.5

top degree γ = 0.5

truss γ = 1

core γ = 1

top degree γ = 1

γ = 0.5 γ = 0.8

γ = 1

β = 0.009

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

Number of Steps

N
u

m
b

e
r

o
f

In
fe

c
te

d
 N

o
d

e
s
 I

top degree β = 0.009

truss β = 0.009

core β = 0.009

truss β = 0.01

core β = 0.01

top degree β = 0.01

truss β = 0.03

core β = 0.03

top degree β = 0.03

truss β = 0.05

core β = 0.05

top degree β = 0.05

β = 0.03

γ = 0.8

β = 0.05

β = 0.01

β = 0.009

(c) Wiki-Vote: β = 0.009 (d) Wiki-Vote: γ = 0.8

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

Number of Steps

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s
 I

truss γ = 0.8

core γ = 0.8

top degree γ = 0.8

truss γ = 0.5

core γ = 0.5

top degree γ = 0.5

truss γ = 1

core γ = 1

top degree γ = 1

γ = 0.5

γ = 0.8

γ = 1

β = 0.01

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Steps

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s
 I

truss β = 0.01

core β = 0.01

top degree β = 0.01

truss β = 0.03

core β = 0.03

top degree β = 0.03

truss β = 0.05

core β = 0.05

top degree β = 0.05

truss β = 0.1

core β = 0.1

top degree β = 0.1β = 0.01β = 0.03

β = 0.05

β = 0.1

γ = 0.8

(e) Email-EuAll: β = 0.01 (f) Email-EuAll: γ = 0.8

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Steps

N
u

m
b

e
r

o
f

In
fe

c
te

d
 N

o
d

e
s
 I

top degree γ = 0.8

core γ = 0.8

truss γ = 0.8

truss γ = 0.5

core γ = 0.5

top degree γ = 0.5

truss γ = 1

core γ = 1

top degree γ = 1

γ = 1

γ = 0.8

γ = 0.5

β = 0.007

0 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

4

Number of Steps

N
u

m
b

e
r

o
f

In
fe

c
te

d
 N

o
d

e
s
 I

truss β = 0.007

core β = 0.007

top degree β = 0.007

truss β = 0.01

core β = 0.01

top degree β = 0.01

truss β = 0.05

core β = 0.05

top degree β = 0.05

truss β = 0.1

core β = 0.1

top degree β = 0.1

β = 0.05

β = 0.01

β = 0.1

γ = 0.8

β = 0.007

(g) Epinions: β = 0.007 (i) Epinions: γ = 0.8

Figure 3.10: Impact of infection and recovery probabilities of the SIR model on the spreading
process: (i) parameter β is set close to the epidemic threshold of the graph, while
varying parameter γ ∈ {0.5, 0.8, 1}; (ii) setting parameter γ = 0.8 and considering
different values of parameter β (always above the epidemic threshold of the graph).

3.6 exploration of network centralities in spreading processes 39

Network Nodes Edges dmax kmax Kmax

EmailEnron 33,696 180,811 1383 43 22

Epinions 75,877 405,739 3044 67 33

Higgs 456,626 14,855,842 51386 125 72

Table 3.5: Network datasets used in Section 3.6.

the performance of the methods, it is evident that the proposed truss outperforms both
baselines for all different settings of parameter γ.

In the second case where the recovery rate γ is constant, while the infection probability
is increasing, the number of infected nodes naturally increases. However, for higher
values of β, the total number of infected nodes is almost the same for all methods. This
behavior is rather expected; by increasing the infection rate, the importance of individual
nodes in the epidemic process is reduced. For these values of β, the difference between
the methods can be observed during the outbreak of the epidemic (i.e., first steps of the
process), where the truss method performs qualitatively better.

3.6 exploration of network centralities in spreading processes

In this Section we explore the centralities of the entities that are involved in a spreading
process which is triggered by different groups of influential spreaders of a network. We
analyze the patterns that occur by simulating the spreading process with the SIR epi-
demic model [125]. We also compare the simulated diffusion process with real influence,
in terms of the evolution of the centralities of the infected nodes.

datasets We have performed experiments with the following real-world networks:
EmailEnron, Epinions and Higgs. All graphs are considered undirected and unweighted.
High level characteristics of the networks are shown in Table 3.5. A more detailed de-
scription of the datasets is presented in Section 2.4 of Chapter 2.

distribution of the examined centralities We have examined the distribu-
tion of the node degree (dv)), core number (cv) and truss number (tv) of these networks
and the results for the Epinions dataset are depicted in Figure 3.11. The rest of the
networks show a similar behavior. The plot shows the complementary cumulative dis-
tribution function of the nodes’ aforementioned centralities in log-log scale. We observe
that all three distributions are skewed, indicating that few nodes have high centralities
and the majority of them have "low" degree and participate in "low" k-core and K-truss
subgraphs.

methodology To simulate the spreading process, we use the SIR model. Initially,
we set a single node to be at the infected state I and the rest of the nodes at the suscep-
tible state S. We set the parameter β close to the epidemic threshold and the parameter
γ = 0.8 same as in Section 3.5.2. In our experiment, we compare three node centralities:

(i) degree (dv),

(ii) core number (cv) and

(iii) truss number (tv).

3.6 exploration of network centralities in spreading processes 40

100 101 102 103 104

Degree (dv)

10-5

10-4

10-3

10-2

10-1

100

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Pr
(X

 ≥
 d

v)

Data
Fitted Power Law a=1.69

100 101 102

Core number (cv)

10-5

10-4

10-3

10-2

10-1

100

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Pr
(X

 ≥
 c

v)

Data
Fitted Power Law a=1.79

100 101 102

Truss number (tv)

10-5

10-4

10-3

10-2

10-1

100

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Pr
(X

 ≥
 t v)

Data
Fitted Power Law a=2.79

(a) degree dv (b) core number cv (c) truss number tv

Figure 3.11: Complementary cumulative distribution function of nodes’ (a) degree dv, (b) core

number cv and (c) truss number tv of the Epinions dataset in log-log scale. The
red line corresponds to the fitted power-law distribution.

Those are the centralities of the nodes that are being infected at every time step of the
process while the epidemic was triggered from three different groups of nodes:

(a) group D denoting the set of nodes with the highest degree in the graph,

(b) group C ′ denoting the set of nodes belonging to the k-core excluding those that
belong to the K-truss of the graph,

(c) group T denoting the set of nodes with the maximum node truss number.

For every node of the group, we simulate the process 100 times and get the average
behavior of the node. In order to get the average behavior of all the nodes of each group,
we repeat the above for all respective nodes.

3.6.1 Evaluation of Results

The results from the experiments are depicted in Figure 3.12. We can observe that the
behavior of all three centralities is divided in three distinctive periods:

i) the outburst of the epidemic,

ii) the "plateau" period and

iii) the fadeout of the epidemic.

We can observe that in case of the Epinions dataset, nodes originating from group
T , achieve to influence on average nodes with higher degree, core and truss centralities
during the outburst of the epidemic – specifically during the first four steps. In case
of the Email-Enron dataset, group T and C ′ seem to influence nodes with similar cen-
tralities during the first timesteps. In both datasets though, the superiority of the latter
groups compared to group D is easily recognizable during the first period of the spread-
ing process. After the outburst of the epidemic (after the 6th time step), we observe in
both datasets that nodes being infected are characterized by similar centralities for all
the three compared behaviors. It should be noted that the centralities of the nodes in-
fected during this "plateau" period are quite high considering the fact that most of the
nodes of the network are characterized by low centralities. We realize that most of the
nodes infected in all cases during such an epidemic are characterized by the centralities
observed during the "plateau" period. For example for the Epinions dataset, from the
8th until the 14th timestep, we observe that nodes being infected have a degree ranging

3.6 exploration of network centralities in spreading processes 41

0

100

200

300

1 3 5 7 9 11 13 15 17 19
Time Steps

D
eg

re
e

(d
v)

group D
group C'
group T

(a) degree dv

0

20

40

60

1 3 5 7 9 11 13 15 17 19
Time Steps

C
or

e
nu

m
be

r
(c

v)

group D
group C'
group T

(b) core number cv

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19
Time Steps

Tr
us

s
nu

m
be

r
(t

v)

group D
group C'
group T

(c) truss number tv

Figure 3.12: Evolution of the infected nodes’ average (a) degree dv, (b) core number cv and (c)
truss number tv during a simulated spreading process using the SIR model for the
Epinions dataset having triggered the epidemic from nodes of sets D, C ′ and T .

3.6 exploration of network centralities in spreading processes 42

from 77 to 87, a core number ranging from 29 to 31 and a truss number ranging from
8 to 9. Finally, during the fadeout (during the 5 last time steps), the centralities of the
nodes infected are severely decreased in all cases. Note that the process stops when no
more nodes get infected (for the Epinions dataset this happens at time step 19).

comparison to a real spreading process . In order to explore the information
spreading in a real world setting we have used the Higgs Twitter dataset [52]. The
dataset is built by studying the diffusion (in means of tweets) of the announcement of
the Higgs boson-like particle at CERN on the Twitter social network between the 1st
and 7th of July 2012. The interactions that were considered were retweets, mentions and
replies.

In order to fairly compare the specific spreading process with the simulation models
that were previously discussed, specific assumptions have to be made [131, 132]. The
spreading activity that is recorded, involves around 562,556 asynchronous timestamps
during which at least one spreading interaction is recorded. We have decided to study
the influence that is triggered from nodes belonging to group C (i.e., the totality of
the nodes participating in the maximum k-core subgraph of the network) as they have
been proven to represent a great percentage of the spreading activity in a network.
The timestamp where each of the respective nodes is firstly influenced by a user of its
network is considered as the first timestep of the specific node’s spreading activity. The
following timestep is considered after 5000 consecutively recorded timestamps. We are
considering the nodes being influenced during every such period by all the nodes that
were influenced during the preceding periods. We have considered for our experiments
totally ten such periods which we will be refering to as timesteps.

We are specifically interested in the three centralities of those nodes that are being
infected during these timesteps which we have compared with the respective centralities
after running the SIR model for ten timesteps starting from the same C nodes. As in our
previous experiments, the process is simulated 10 times for every node of the group
(due the dataset’s size) and the average behavior of the node is calculated. The above
is repeated for all the nodes of the C set. Results from the experiments are shown in
Figure 3.13.

We observe that there are great differences between the two settings. While the simu-
lation shows that during the first steps, nodes with high centralities are influenced, real
data show that the nodes that are influenced do not differ much in terms of centralities
during these 10 time steps that we study. It has indeed been proven that epidemic mod-
els fail to reproduce the realistic viral spreading pattern [132] in terms of i) number of
nodes being infected and ii) of the characteristics of the diffusion trees created during
the process.

We prove that the model also fails to indicate the centrality characteristics of the nodes
being infected during the process. This can be explained by the definition of the models.
First and foremost the probability of an entity influencing a neighboring entity shouldn’t
be the same for all entity relations. There is an extensive literature proposing methods to
modelize users’ influence [77, 98, 117]. Moreover, considering the SIR model, an entity
does not get "recovered" while in a spreading process such as an information diffusion
in a Twitter network.

User behavior contains more complex patterns concerning the way information is
disseminated. Users may stop diffusing information for some period of time but start
"spreading the word" again in a later period for indefinite reasons. This resembles the
SIS model where infected nodes can return to the susceptible state and with a probability
can start again infecting their neighbors. But unfortunately, neither this model can be

3.6 exploration of network centralities in spreading processes 43

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10
Time Steps

D
eg

re
e

(d
v)

group C − Simulation
group C − Real data

(a) degree dv

0

25

50

75

100

125

1 2 3 4 5 6 7 8 9 10
Time Steps

C
or

e
nu

m
be

r
(c

v)

group C − Simulation
group C − Real data

(b) core number cv

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10
Time Steps

Tr
us

s
nu

m
be

r
(t

v)

group C − Simulation
group C − Real data

(c) truss number tv

Figure 3.13: Comparison of the evolution of the infected nodes’ average (a) degree dv, (b) core

number cv and (c) truss number tv, between a simulated spreading process us-
ing the SIR model and real influence data for the Higgs-Twitter dataset having
triggered the epidemic from nodes of set C.

3.7 conclusions and future work 44

compared with the real influence data of our study. While the latter may be extremely
hard to model, we believe that there exist "who-influences-whom" patterns in influence
data that can help towards a better definition of the probabilities of an entity influencing
a fellow neighbor. Those patterns can be found while exploring the aforementioned
centralities of entities influencing their peers between steps of the spreading process.

3.7 conclusions and future work

Understanding and controlling the mechanisms that govern spreading processes in com-
plex networks is a fundamental task in various domains, including disease propagation
and viral marketing. Central to these tasks is the problem of identification of influential
nodes with good spreading properties, that are able to diffuse information to a large
part of the network. It has been empirically observed that widely used node centrality
criteria such as degree and betweenness, have drawbacks when applied to find nodes
with good spreading properties; a node may have a large number of neighbors but if it
is located to the periphery of the network, its spreading capability is reduced. Kitsak et
al. [93] applied the k-core decomposition method in order to locate centrally placed indi-
viduals with good spreading properties; their observations suggested that the identified
nodes outperform previously used criteria with respect to the spreading effectiveness.
However, the main drawback of the k-core decomposition is that its resolution is quite
coarse. Depending on the structure of the network, many nodes will be assigned the
same k-core number, even if their spreading capability differs from each other.

The fact that a relatively large fraction of the nodes that are extracted by the k-core de-
composition method corresponds to highly influential nodes, was the motivating force
behind our approach. To deal with this issue, we have considered the K-truss decom-
position of a network – a triangle-based extension of the k-core structure. By setting a
more strict criterion upon which nodes are assigned into layers of the graph, we have
shown that the K-truss decomposition can effectively reduce the number of candidate
influential spreaders in the network, as it further refines the set of nodes belonging to
the maximal k-core subgraph (recall that the maximal K-truss is a subgraph of the max-
imal k-core, see Proposition 3.8). Using the SIR epidemic model, we have shown that
such spreaders have the ability to influence a greater part of the network during the
first steps of the process; also the total fraction of influenced nodes at the end of the
epidemic is higher, compared to the performance of the rest nodes that belong to the
maximal k-core subgraph and the top degree nodes of the network. Our experimental
results also indicate that the K-truss decomposition filters out the best spreaders of the
k-core structure; the spreading effectiveness of the remaining nodes is weakened, and
those nodes show even worst behavior compared to the top degree ones.

Additionally we observed that those nodes belonging to the maximal K-truss sub-
graph are distributed well among the optimal spreaders of the graph, presenting better
behavior compared to the remaining nodes of the maximal k-core subgraph. Further-
more, we observed that the truss number in general, is closely related to the spreading
effect. The nodes of the network are distributed among the optimal spreaders (after
ranking) in a way that a relationship to truss number occurs.

Finally, we explored the centralities of the entities that are involved in a spreading
process which is triggered by different groups of influential spreaders of a network. We
obtain interesting results by simulating the spreading process with the SIR epidemic
model that let us conclude that i) degeneracy algorithms help us detect groups of nodes
that will influence nodes with high centralities during the outburst of the epidemic and
ii) there exists a "plateau" period during the spreading process where a significant part

3.7 conclusions and future work 45

of the nodes are influenced and iii) the nodes influenced in this "plateau" period have
relatively high degree, core and truss centralities considering the respective centrality
distributions of the network. Finally, by comparing the simulated diffusion process with
real influence, we observe that epidemic models cannot reproduce the real diffusion in
terms of the evolution of the centralities of the infected nodes. Thus we conclude that a
further research direction could be the search for a diffusion model fitting the real world
process.

4
I N F L U E N C E M A X I M I Z AT I O N I N S O C I A L N E T W O R K S

I nfluence maximization has attracted a lot of attention due to its numerous ap-
plications, including diffusion of social movements, the spread of news, viral mar-
keting and outbreak of diseases. The objective is to discover a group of users (i.e.,

nodes) that are able to maximize the spread of influence across the network. It con-
stitutes an NP-hard problem, for which a simple greedy algorithm provides good ap-
proximation guarantees. Nevertheless, there are obviously serious scalability concerns.
In this Chapter, we propose Matrix Influence, MATI, an efficient algorithm that can
be used under both the Linear Threshold and Independent Cascade diffusion models.
MATI is based on the precalculation of the influence by taking advantage of the simple
paths in the node’s neighborhood. An extensive empirical analysis has been performed
on multiple real-world datasets showing that MATI has competitive performance when
compared to other well-known algorithms with regards to running time and expected
influence spread.

4.1 introduction

The interest in influence propagation has been exponentially increasing the recent years,
with applications ranging from social media analytics [10] and adoption of innovations,
to personalised recommendations [149], identification of influential tweeters [8] and
viral marketing [14, 30, 56, 69, 70, 113]. The way entities in a social network interact
with each other creates information pathways in the network, making their position be
critical towards their spreading capabilities in the network. Thus, an important aspect on
understanding the influence dynamics is the identification of privileged users that can
diffuse information to the greatest possible part of the network. Assuming we are aware
of the extent to which each individual can influence one another in a social network
and that we would like to introduce a new product so that it is adopted by the largest
possible fraction of the network [56, 113], the question is how to choose those specific
individuals that will trigger a cascade where their friends will recommend the product
to their friends until a lot of individuals will try it.

In this Chapter we will be studying the specific problem that concerns the identifica-
tion of a group of nodes that are able to maximize the total spread of influence – usually
called the influence maximization problem [39, 40, 46, 74, 75, 90, 102]. Influence maxi-
mization can formally be described as follows: given a social network where the relations
among users are revealed, a diffusion model that simulates how information propagates
through the network and a parameter k, the goal is to locate those k users (represented
as nodes in the graph) that maximize the spread of influence. Kempe et al. [90] formu-
lated the problem in the aforementioned manner while adopting two diffusion models
borrowed from mathematical sociology: the Linear Threshold (LT) and the Independent
Cascade (IC) model. According to both, at any discrete time step a user can be either
active or inactive (i.e., has adopted the product or not) and the information propagates
until no more users can be activated.

Kempe et al. [90] proved that the function of the influence spread under both LT and
IC models is monotone and submodular. By exploiting these properties, they presented a
greedy algorithm that achieves (1− 1/e) approximation ratio. However, as the greedy al-

47

4.2 preliminaries and background 48

Notation Description

pu,v Influence weight on directed edge (u, v)

σ(S) Influence of a set of nodes S to the graph

A (u, v) Influence of node u to node v

Ω(u, v) Forward cumulative influence of node u to node
v

T (u) = {τ1, τ2, . . . , τM} Set of all possible paths starting from node u

τi = {ni1, ni2, . . . , niN} Path consisting of N nodes starting from node u

F (τi) = {fi1, fi2, . . . , fiN} Cumulative probability path for path τi

pτ`,`+1
Influence weight between successive nodes in τ

Ψ(u, v) = {ψ1, ψ2, . . . , ψL} Set of all possible paths between nodes u and v

ψi = {ni1, ni2, . . . , niN} Path between nodes u and v

Φ(ψi) = {φi1, φi2, . . . , φiN} Cumulative probability path for path ψi

Table 4.1: List of symbols used in the Chapter.

gorithm repeatedly selects in every iteration the node with the maximum marginal gain
by running Monte Carlo simulations, we are lead towards great performance downsides.
Indeed, Feige’s [60] result implied that any algorithm that guarantees a solution of at
least (1 − 1/e + ε) times the optimum, will probably not scale with the number of seeds.

The main contributions of this work can be summarized as follows:

• Efficient influence maximization algorithm: We propose the Matrix Influence (MATI)
algorithm, an efficient influence maximization algorithm under the two well-known
diffusion models in the field: the linear threshold (LT) and independent cascade
(IC) models.

• Evaluation of our proposed approach on real graphs: We used large scale real-world
graphs while performing our experiments and showed that for both the cases of
the LT and IC models, MATI performs better than the baseline methods both in
terms of influence and computation time.

The rest of this Chapter is structured as follows: In Section 4.2 we present the influence
maximization problem along with the diffusion models used in the field. Section 4.3 re-
views the related literature on the problem of influence maximization. In Section 4.4
we describe the MATI algorithm for the linear threshold (LT) and the independent cas-
cade (IC) diffusion models. In Section 4.5 we show the results conducted in real-world
datasets and in Section 4.6 we present concluding remarks.

4.2 preliminaries and background

In this Section we present the problem of Influence Maximization (IM) as well as a de-
scription of two well-known diffusion models used in the field: the Linear Threshold
(LT) and Independent Cascade (IC) models and some further extensions. A list of the
symbols used in the Chapter is presented in Table 4.1.

4.2 preliminaries and background 49

4.2.1 The Influence Maximization (IM) problem

Let us define a network as G = (V, E) with V being the set of nodes and E the set of edges
between those nodes. If there exists an influence function f(S) : S→ IR with S ⊆ V , then
the problem of influence maximization (IM) is to discover this subset S that maximizes
f. S has a given size k with k� |V |.

Kempet, Kleinberg and Tardos [90] proposed a general framework for IM. The spread-
ing models they consider (see Section 4.2.2) categorize every node in two states: the active
and the inactive state. Initially a set A of active nodes is considered. The latter trigger a
spreading process at the end of which, f(A) nodes will be active. Such a number cannot
be obtained analytically, an estimation though can be given after extensive simulations
of the process. In this framework, IM requires a set A of k nodes that maximizes f(A).

With the IM problem being NP-hard [90], the majority of the literature provides ap-
proximate rather than the exact solution. The most common approximate algorithms
would be: i) heuristic and ii) greedy algorithms. An example of a heuristic algorithm
would be to rank all the nodes according to a centrality measure and select the k top-
ranking nodes.

The earliest greedy algorithm was provided by Kempe, Kleinberg and Tardos [90]
(see Algorithm 4.1). Let S be the subset of vertices selected to initiate the influence prop-
agation, called the seed set. Let InfModel(S) denote a model that simulates a spreading
process triggered by set S of which the output is a set of vertices influenced by S. At
each round i, one node is added to set S by the algorithm. This node, together with the
current set S is the one maximizing the total influence spread (Line 10). To select such a
node, for each v ∈ S the influence of S∪ {v} is estimated by performing R simulations of
InfModel(S∪ {v}). Typically the number of simulations is set to 10.000.

Algorithm 4.1 Greedy Algorithm

1: Input: G = (V, E), k and R . k: budget, R : #simulations
2: Output: S
3: Initialize: S = ∅ and R = 10.000

4: for i = 1 to k do
5: for each v ∈ V \ S do
6: σ(v) = 0

7: for j = 1 to R do
8: σ(v)+ = |InfModel(S∪ {v})|
9: σ(v) = σ(v)/R

10: S = S∪ {argmaxv∈V\S{σ(v)}}

11: return S

Before presenting the approximation guarantee of the greedy algorithm, we should
first introduce the definition of a submodular function.

Definition 4.1. (Submodular function)
Given a finite ground set V , a set function f : 2

V → IR is submodular if:

f(S∪ {v}) − f(S) > f(T ∪ {v}) − f(T)

for all elements v ∈ V \ T and all pairs of sets S ⊆ T .

If f is monotone (i.e., f(S ∪ {v}) > f(S)) for all elements v and sets S, then it has been
shown [50, 124] that the greedy algorithm provides an approximate solution S∗ within

4.2 preliminaries and background 50

v1 v2

u v3

v1 v2

u v3

Figure 4.1: Illustration of the Linear Threshold model. The white colored nodes are in an inactive
state whereas the pink colored nodes are in an active state. Node u will be activated
if pv1,u+pv3,u > θu.

a factor 1 − 1/e ≈ 0.63:

f(S) > (1 − 1

e)f(S∗)

4.2.2 Diffusion Models

Diffusion models are used to simulate the process of information propagation in the
network. Next, we describe two of the most widely applied models, namely the LT and
IC models and some extensions. As we will present later on, the proposed algorithm
is designed to deal with both of those models – contrary to most of the state-of-the-art
algorithms which have been designed for one of the two models.

4.2.2.1 Linear Threshold (LT) model

In this model, each directed link u → v is assigned a weight pu,v satisfying that∑
u∈Nb(v) pu,v 6 1, whereNb(v) is the set of node v’s neighbors. Notice that pu,v 6= pv,u.

Each node u chooses a threshold θu uniformly at random from the interval [0, 1] which
represents the weighted fraction of u’s neighbors that must become active in order for u
to become active (an example is provided in Fig 4.1). The linear threshold model starts
with some active nodes (with all other nodes being inactive) and a random choice of
thresholds. Then at each time step, a node v will become active if

∑
v∈Nb∗(u) pv,u > θu,

with Nb∗(u) being the set of u’s active neighbors. The diffusion process unfolds in a
synchronous and deterministic way in discrete steps until no further changes of nodes’
states happen.

4.2.2.2 Independent Cascade (IC) model

In the IC model, when a node u first becomes active in timestep t, it is given a single
chance to activate each neighbor v – which is currently inactive – and succeeds with
a probability pu,v. If u succeeds, then v will become active in the next timestep. If u
does not succeed, it cannot further attempt to activate v in future timesteps. The process
continues as long as node activations are possible.

Kempe et al. [90] proved that for both the aforementioned models, the objective func-
tions on the expected number of active nodes f(.) are submodular concluding that the
greedy algorithm provides a (1 − 1/e)-approximation to the problem of influence maxi-
mization.

4.2.2.3 Further extensions

In the IC model, each weight pu,v that concerns link u → v is independent of the
spreading process history. Nevertheless social networks have shown that information
diffusion presents memory effects [33, 55, 96, 108]. Thus, Kempe et al. [91] presented

4.3 related work 51

the decreasing cascade model which extends the IC model by assigning weights at links
that depend on history. Let us denote as S the set of node v’s neighbors that already
attempted to activate v. Then pu,v(S) expresses u’s success probability to activate v. The
model contains two constraints: i) order-independent: the order in which the attempts of
the nodes trying to activate node v does not affect the probability of the latter being
active at the end; ii) non-increasing: function pu,v(S) satisfies pu,v(S) > pu,v(T) with
S ⊆ T . The authors proved that the objective function f(.) for the decreasing cascade
model is also submodular concluding that the greedy algorithm provides a (1 − 1/e)-
approximation.

4.3 related work

Following the seminal work by Kempe et al. [90], a series of algorithms have been
proposed in order to: (i) reduce the number of influence spread evaluations, (ii) make
batch computations of the influence spread, and (iii) design scalable heuristics towards
computing the respective spread.

Leskovec et al. [102] proposed the CELF algorithm, based on a “lazy-forward” opti-
mization scheme, that finds near-optimal solutions guaranteed to achieve at least 1/2(1−
1/e) of the optimal ones by being 700 times faster than the greedy algorithm. The fact
that the marginal gain of a node cannot be greater than the one achieved in previous
iterations is taken into account. A table which stores every node and its marginal gain
(with regards to the influence achieved by the so far selected candidates) is stored in de-
creasing order. Only the marginal gain of the most profitable (top) node is re-evaluated
when it is needed and the table is sorted again. The node remaining at the top of the
table is selected as the next seed node. Goyal et al. [75] introduced an algorithm that
further optimized the aforementioned one by 35 − 55%, called CELF++. By exploiting
the submodularity property of the spread function for the diffusion models (e.g., LT and
IC) it avoids the unnecessary re-computations of the marginal gains.

Chen et al. [40] proposed the LDAG algorithm which is tailored for the LT model and
achieves to produce results by being orders of magnitude faster than the greedy algo-
rithm. They firstly show that the computation of influence in directed acyclic graphs
(DAGs) can be done in linear time. Based on that, they construct a local DAG for ev-
ery node of the network and restrict the influence of the node in this local area. After
constructing the DAGs the greedy seed selection approach is applied together with an
accelerated solution for updating the incremental influence spread of each node.

The MIA algorithm, proposed by Chen et al. [39], is a maximum influence arbores-
cence model based on the assumption that information diffusion occurs according to the
IC model. They succeed in proposing a scalable algorithm which produces results that
outperform the other so far proposed heuristics by 100 − 120%. They propose a) a best-
effort algorithm that estimates the upper bounds of location-aware influence spread and
prunes users having small influences thus achieving an approximation ratio of (1 − 1/e)
and b) a topic-materialization-based algorithm that estimates the bounds of influence
spread and avoids computation of the actual influence of least influential users while
finally achieving an approximation of ε(1− 1/e). Goyal et al. [74] proposed SimPath, an
algorithm tailored for the LT model which computes the influence spread by enumerat-
ing simple paths within a small neighborhood. With the help of a parameter, a balance
between running time and quality of the solution can be achieved.

Tang et al. [151] designed the Two-phase Influence Maximization (TIM) algorithm
which runs in near-linear time while also returning (1 − 1/e− 1/ε)-approximate solu-
tions. In the first phase, a lower-bound of the maximum spread is calculated in order

4.4 matrix influence (mati) algorithm 52

to derive a parameter θ. In the second phase, the parameter θ is used so that random
reverse reachable (RR) sets (as defined by Borg et al. [28]) are sampled. The k-sized node
set that covers a large number of RR sets is the final result. TIM supports the triggering
model which is a general diffusion model incorporating both the LT and IC models.

Another interesting approach is the one by Cohen et al. [46]. They designed a SKetch-
based Influence Maximization (SKIM) algorithm which uses per-node summary struc-
tures called combined reachability sketches representing the node’s influence coverage [45].
They introduce influence oracles which can answer influence queries in an efficient way.
This algorithm is designed based on the IC diffusion model. Goyal et al. [73] proposed
a new probability model, the credit distribution model which directly estimates influence
spread by exploiting historical data. This makes the need for knowing the influence
probabilities and making Monte Carlo simulations to compute the respective influence
redundant thus avoiding costly computations.

4.4 matrix influence (mati) algorithm

In this Section we introduce the proposed MATI algorithm, under both the LT and IC
models. After presenting some preliminaries on calculating influence in social networks,
we describe in detail how we compute the influence under each model and we provide
the algorithms used. Similar to the case of the greedy algorithm [90], at each round
of MATI, the node with the largest marginal influence estimate is chosen as the next
candidate. The novelty of our algorithm lies on the fact that, by having pre-calculated
all possible paths between nodes along with the respective influences of the nodes -
acting individually- in the network, we are able to efficiently compute the marginal gain
of adding a candidate node.

4.4.1 Influence in Social Networks

A social network is typically modeled as a directed graph G = (V, E), consisting of |V |

users represented as nodes and |E| edges reflecting the relationship between users. An
influence weight pu,v ∈ [0, 1] is also associated with each directed edge (u, v) ∈ E, and
represents the probability of node u to influence node v.

We assume that T (u) = {τ1, τ2, . . . , τM} represents the set of all possible paths that
exist in the graph starting from node u and leading to "leaf" nodes (i.e., the paths that
cannot be further extended). It should be noticed that in our paths no nodes are allowed
to be repeated. All these paths are generated by using the Depth-first search (DFS)
algorithm, with the node to be the root of the tree. τi represents each possible path and
M is the number of all possible paths which start from node u. Each path τi consists of
a sequence of nodes: τi = {ni1, ni2, . . . , niN} and N represents the number of the nodes
and simultaneously the index of the terminal node of path τi. M and N can obviously
be different for every user u and every path τi, respectively, but they are defined as such
for the sake of the simplicity of the model.

Let pτ`,`+1
, 1 6 ` 6 N− 1, represent the influence weight (probability) between two

successive nodes (ni` and ni(`+1)) in path τ. Then F (τi) = {fi1, fi2, . . . , fiN} represents
the probability path for every path τi starting from node u to be active (i.e., a path is
considered active if each one of its edges is active). Each fij is defined as follows:

fij =

∏j−1

`=1
pτi`,`+1

if j > 1,

1 otherwise.
(4.1)

4.4 matrix influence (mati) algorithm 53

u a

b

v c

d e

f
0.1

0.2

0.3

0.2

0.1

0.15

0.30.3

0.1

0.2

Figure 4.2: Example graph.

Let us now define as Ψ(u, v) = {ψ1, ψ2, . . . , ψL} the set of all possible (unique) paths
from a node u to a node v. ψi represents each possible path and L is the number
of all possible paths between nodes u and v. Each path ψi consists of a sequence of
nodes: ψi = {ni1, ni2, . . . , niN} and N represents again the number of nodes of path ψi.
Obviously L 6 M and again L and N can be different for every set of paths between
two nodes and every path ψi, respectively. We can now respectively define as Φ(ψi) =
{φi1, φi2, . . . , φiN} the probability for every path ψi between two nodes u and v and is
calculated in the same way as fij (see Eq. (4.1)).

Let us illustrate the above notations with an example. For this purpose, we consider
the graph illustrated in Fig. 4.2 that consists of |V |= 8 nodes and |E|= 9 edges. The set of
paths starting from node u is defined as T (u) = {τ1, τ2, τ3, τ4, τ5, τ6} with M = 6 and the
different paths starting from node u being the following:

τ1 = {u, a, v, c, f}, N = 5

τ2 = {u, a, v, c, e}, N = 5

τ3 = {u, a, v, d, e}, N = 5

τ4 = {u, a, b, v, c, f}, N = 6

τ5 = {u, a, b, v, c, e}, N = 6

τ6 = {u, a, b, v, d, e}, N = 6

Therefore, the probability path for τ1 is defined as: F (τ1) = {f11, f12, f13, f14, f15}, where
f11 = 1, f12 = 0.1, f13 = 0.03, f14 = 0.003 and f15 = 0.0009.

In the same way, the set of all possible paths from node u to node v is defined as
Ψ(u, v) = {ψ1, ψ2} with L = 2 and the different paths between the two nodes being the
following:

ψ1 = {u, a, v}, N = 3

ψ2 = {u, a, b, v}, N = 4.

Then the probability path for ψ1 is defined as: Φ(ψ1) = {φ11, φ12, φ13} with φ11 = 1,
φ12 = 1∗0.1 = 0.1 and φ13 = 1∗0.1∗0.3 = 0.03. Similarly,Φ(ψ2) = {φ21, φ22, φ23, φ24} with
φ21 = 1, φ22 = 1 ∗ 0.1 = 0.1, φ23 = 1 ∗ 0.1 ∗ 0.2 = 0.02 and φ24 = 1 ∗ 0.1 ∗ 0.2 ∗ 0.2 = 0.004.

4.4.2 Influence Computation under the LT Model

Kempe et al. [90] have shown the equivalence of the Linear Threshold model to the
live-edge model. According to this model, a node u ∈ V chooses just one of its incoming
edges with probability pu,v. If an edge is selected, it is considered live, otherwise blocked.
We can deduce from the above that the nodes expected to be activated by a seed set S is
the expected number of nodes that can be reached from S over all possible worlds. As it
has been shown by Goyal et al. [74], the expected spread of seed set S can be calculated
as follows:

σ(S) =
∑
v∈V

∑
X

Pr[X]I(S, v, X) =
∑
v∈V

A (S, v), (4.2)

4.4 matrix influence (mati) algorithm 54

where X is a possible live-edge graph, Pr[X] is the sampling probability of graph X,
I(S, v, X) is an indicator function which equals to 1 if there exists a live path in X from
S to v and 0 otherwise, and A (S, v) is the probability the single node v to be activated
(influenced) by S. In the special case of a single node u, its expected spread to a node v
(u 6= v) is defined as:

A (u, v) =
∑

ψi∈Ψ(u,v)

Pr[ψi]

=
∑

ψi∈Ψ(u,v)

N−1∏
`=1

p
ψi
`,(`+1)

=
∑

ψi∈Ψ(u,v)

φiN =
L∑
i=1

φiN (4.3)

where Pr[ψi] is the probability of path ψi being live and Ψ(u, v) is the set of all possible
paths between nodes u and v. It becomes apparent that the influence of a node u to itself
is equal to 1 (i.e., A (u, u) = 1). According to the above, the influence of node u to node
v in our example graph (see Fig. 4.2) is equal to:

A (u, v) =
2∑
i=1

φiN = [φ13]ψ1
+ [φ24]ψ2

= 0.034

We can now define the expected total influence spread of a single node u to the
network:

σ(u) =
∑
v∈V

A (u, v) ≈
∑
v∈I(u)

A (u, v), (4.4)

where I(u) represents the nodes in the graph that can be influenced by node u de-
pending on a threshold θ which is set in order to limit the calculations of probability
and cumulative probability paths. Roughly speaking, a node v belongs to set I(u), iff
A(u, v) > θ. Therefore, the lower the parameter value θ is, the higher the accuracy that
can be achieved.

The forward cumulative influence Ω(u, v) is another quantity of interest, that corre-
sponds to the influence of node u to v and of node u to the nodes that can be found
right after node v in the paths T (u) of node u. Algorithms 4.3 and 4.4 show how Ω is
calculated.

Practically each Ω(u, v) element is calculated as the sum of i) the probabilities that all
unique paths between nodes u and v are live and ii) the probabilities that all unique
paths to nodes visited after node v while performing a Depth-first search starting from
node u are live. In our example graph (see Fig. 4.2) the aforementioned paths are the
following: {u,a,v}, {u,a,b,v}, {u,a,v,c}, {u,a,v,c,f}, {u,a,v,c,e}, {u,a,v,d}, {u,a,v,d,e}, {u,a,b,v,c},
{u,a,b,v,c,f}, {u,a,b,v,c,e}, {u,a,b,v,d}, {u,a,b,v,d,e}. According to the above, the cumulative
influence of node u to node v in our example graph is equal to: Ω(u, v) = 0.03 + 0.004 +
0.003 + 0.0009 + 0.0003 + 0.0045 + 0.0009 + 0.0004 + 0.00012 + 0.00004 + 0.0006 + 0.00012 =
0.04488.

Revisiting the case of a set of nodes, Goyal et al. [74] showed that the spread of a set
S of nodes is the sum of the spread of each individual node u ∈ S on the subgraphs
induced by the set V − S + u:

σ(S) =
∑
u∈S

σV−S+u(u), (4.5)

where σV−S+u(u) denotes the total influence of u in the subgraph induced by V − S +u.
Similar to [74], we write V − S to denote the difference of sets V and S, V \ S, and
V − S + u to denote ((V \ S)∪ {u}).

4.4 matrix influence (mati) algorithm 55

Sx

V

Figure 4.3: Illustration of Theorem 1.

By taking advantage of the A (u, v) (Eq. 4.5) and Ω(u, v) definitions, we get the follow-
ing key result that helps towards the calculation of the influence gain after the addition
of a node x to a set of nodes S. This result constitutes the basis of the proposed MATI
algorithm under the LT diffusion model.

Theorem 1. Under the LT model, to calculate the influence after adding a node x to a set
of nodes S, one has to subtract from the sum of the individual spread of S and x the
forward cumulative influence ˙ of all the nodes that belong to set S which contain node
x in paths connecting the latter to nodes in set S. That is,

σ(S∪ {x}) = σ(S) + σ(x) −
∑
y∈S

Ω(x, y) −
∑
y∈S

Ω(y, x). (4.6)

Proof.

σ(S∪ {x}) (1)
=

∑
u∈S∪{x}

σV−S−x+u(u)

(2)
= σV−S(x) +

∑
u∈S

σV−S−x+u(u)

(3)
= σV−S(x) + σV−x(S)
(4)
= σ(x) + σ(S) −

∑
y∈S

Ω(x, y) −
∑
y∈S

Ω(y, x).

Equality (1) is a direct application of Eq. 4.5 (see [74] for its proof). (2) and (3) can easily
be verified by making simple calculations. (4) comes from set theory (see Fig. 4.3 for an
illustration). Roughly speaking, (4) expresses that the influence gain after adding node
x to a set S, is equal to the summation of the influence gain of x and S independently,
subtracting from this value the nodes that can be influenced by x or S, through paths
that pass via nodes on set S or node x, respectively. For instance, if both x and S influence
nodes that do not cross each other, we get that σ(S∪ {x}) = σ(x) + σ(S).

Algorithms 4.2 to 4.5 show the complete structure of MATI algorithm under the LT
model. Routine CalcStatsLT (Algorithm 4.3) computes A and Ω, and routine CalcInf

(Algorithm 4.5) returns the influence of all nodes v ∈ V , as was described in this section.
We use a CELF queue which is a queue storing the nodes’ marginal gains in decreasing
order, as in [75]. At each iteration, we add the top node of the CELF queue at the seed
set, until the budget k is reached (see Algorithm 4.2). The influence gain of every node to
be selected is calculated by subtracting the respective influence for which the candidates
selected so far are responsible for, through common paths as shown in Theorem 1.

4.4.3 Influence Computation under the IC Model

In the IC diffusion model, the activation probability of a node to another one in a path
can be calculated by multiplying the influence weights pτ`,`+1

leading to it in path ψi.

4.4 matrix influence (mati) algorithm 56

Algorithm 4.2 MatiLT

1: Input: G = (V, E), k . k: budget (number of seed nodes)
2: Initialize: S = ∅
3: A ,Ω = CalcStatsLT(G)
4: Q = CalcInf(A , V)
5: for i = 1 to k do
6: s, σ(s) = Q.top()
7: S = S∪ {s}
8: U = V\S
9: for each u ∈ U do

10: σ(u) = Q(u)
11: for each v ∈ S do
12: σ(u) −=Ω(v, u)
13: σ(u) −=Ω(u, v)

14: Q.add((u, σ(u)))

15: return S

Algorithm 4.3 CalcStatsLT

1: Input: G = (V, E)
2: Initialize: A ,Ω = 0

3: for each u ∈ V do
4: A(u, u) = 1

5: A(u, :),Ω(u, :), _ = DFStatistics(G,u, 1, A(u, :),Ω(u, :))

6: return A , Ω

Algorithm 4.4 DFStatistics

1: Input: G = (V, E), u, pu, Ar,Ωr
2: Initialize: Ωtemp = pu
3: for each w ∈ Neighbors(u) do . w /∈ Predecessors(u)
4: pw = pu,w ∗ pu
5: Ar(w) += pw
6: Ar,Ωr,Ω

′
temp = DFStatistics(G,w, pw, Ar,Ωr)

7: Ωtemp +=Ω ′temp

8: Ωr(u) +=Ωtemp
9: return Ar,Ωr,Ωtemp

Algorithm 4.5 CalcInf

1: Input: A , V
2: Initialize: Q = ∅;σ(u) = 0, ∀u ∈ V
3: for each u ∈ V do
4: for each v ∈ I(u) do . I(u): nodes influenced by u
5: σ(u) += A (u, v)

6: Q.add((u, σ(u)))

7: return Q

That is, in a path ψi = {ni1 = u,ni2, ..., niN = v}, the influence of node u to node v can
be calculated as follows:

Aψi(u, v) =
N−1∏
`=1

p
ψi
`,`+1

= φiN (4.7)

4.5 experimental evaluation 57

The total activation probability of node v from node u, while taking into consideration
the L different (unique) paths Ψ(u, v) = {ψ1, ψ2, ..., ψL} that lead from u to v, can be
computed as:

A (u, v) = 1 −
∏

ψi∈Ψ(u,v)

(1 − σψi(u, v)) = 1 −

L∏
i=1

(1 −φiN), (4.8)

where
∏L
i=1

(1 −φiN) is equal to the probability that node u does not influence v (i.e.,
none of the paths from u to v is active).

In the case of the IC model, Ω(u, v) cannot be calculated only according to the influ-
ence weights pk,k+1 in a specific path. In fact, the calculation of the influence in the case
of the addition of a node u will change the so far calculated influence of a set of seed
nodes S. Therefore, we use the following heuristics to compute the additional influence
of node u, i.e., σ(S∪ {u}):

σ(S∪ {u}) computation:

1. For every path originating from node u (i.e., T (u)) or a node belonging to seed
set S, we keep the subpaths before falling into a node belonging to S∪ {u}.

2. The σ(S ∪ {u}) is equal to the sum of the influence probabilies that correspond to
each of these subpaths.

Algorithm 4.6 MatiIC

1: Input: G = (V, E), k . k: budget (number of seed nodes)
2: Initialize: S = ∅, σ(S) = 0

3: A = CalcStatsIC(G)
4: Q = CalcInf(A , V)
5: for i = 1 to k do
6: s, σ(s) = Q.top()
7: S = S∪ {s}
8: U = V\S
9: σ(S) = σ(S) + σ(s)

10: for each u ∈ U do
11: σ(S∪ {u}) = |S∪ {u}|
12: σ(S∪ {u})+= AdditiveInf(T (u), F (u), S)
13: σ(S∪ {u})+= AdditiveInf(T (S), F (S), S∪ {u})
14: Q.add((u, σ(S∪ {u}) − σ(S))) . Order is maintained

15: return S

Algorithm 4.6 shows the structure of the MATI algorithm under the IC model. Initially,
routines CalcStatsIC (Algorithm 4.7) and CalcInf (Algorithm 4.5) are called to com-
pute A and the contents of CELF queue Q, respectively. While calculating the marginal
influence for every candidate node u, routine AdditiveInf (Algorithm 4.8) computes
the additional influence as previously described (see σ(S∪ {u}) computation).

4.5 experimental evaluation

In this Section, we present experimental results concerning the performance of the pro-
posed algorithm for influence maximization. We have conducted experiments in real-
world datasets in order to evaluate the performance of the MATI algorithm and com-
pare it to state-of-the-art influence maximization algorithms on the quality of results

4.5 experimental evaluation 58

Algorithm 4.7 CalcStatsIC

1: Input: G = (V, E)
2: Initiaze: A = 0

3: for each u ∈ V do
4: Generate T (u) and F (τi), ∀ τi using DFS
5: for each v ∈ V do
6: pr = 1

7: Generate Ψ(u, v) and Φ(ψi), ∀ψi (based on T (u))
8: for each ψi ∈ Ψ(u, v) do
9: pr = pr ∗ (1 −φij)

10: A (u, v) = 1 − pr

11: return A

Algorithm 4.8 AdditiveInf

1: Input: T ,F , S . T : set of paths, S: set of nodes
2: Initialize: i = 0; inf = 0

3: for each τ ∈ T do
4: i = i + 1

5: for each u ∈ τ do
6: j← index(u)
7: if j == 1 then
8: continue
9: else if u /∈ S then

10: inf += fij
11: else
12: break
13: return inf

and efficiency. The algorithm has been implemented in Python and all experiments are
run on a Linux machine with a 3.00GHz CPU Intel Xeon CPU and 64GB memory.

4.5.1 Datasets

We have used four publicly available graph datasets: NetHept, WikiVote, Epinions and
Email-EuAll. High level characteristics of the networks are shown in Table 4.2. A more
detailed description of the datasets is presented in Section 2.4 of Chapter 2. To generate
influence weights on all edges, we adopt the classical uniform method by [72, 90]. More
precisely, we set the weight of every incoming edge of a node v to be equal to 1

dv
, where

dv is the in-degree of node v. It has to be noted that the datasets were transformed from
an undirected format to a directed one by simply assuming that if an edge between two
nodes exists the one can influence the other. Thus, the number of the edges used in the
experiments is twice the one that is reported.

4.5.2 Baseline Algorithms

In order to evaluate the performance of the MATI algorithm, we compare the respective
results with those of four baseline algorithms which are described below:

• Degree: A heuristic based on the concept of “degree centrality”, considering high-
degree nodes as influential [90]. The seeds are nodes with k highest out-degrees.

4.5 experimental evaluation 59

Dataset NetHEPT WikiVote Epinions Email-EuAll

Nodes 15K 7K 75K 225K

Edges 62K 103K 405K 341K

Table 4.2: Properties of the real-world graphs used.

• Greedy: The original greedy algorithm with Monte-Carlo Simulations. Following
the literature [90], we run 10, 000 Monte Carlo (MC) simulations to estimate the
spread of any seed set.

• LDAG: The algorithm using locality properties as proposed in [40]. Influence pa-
rameter θ is set to 1

320
as used by the authors.

• SimPath: The algorithm proposed in [74]. The pruning threshold is set to 10
−3 and

the look-ahead value l is set to 4 as proposed by the authors.

Unless noted otherwise, the threshold θ for the proposed MATI algorithm is set to 0.0001.
The value was chosen experimentally, based on performance observation.

4.5.3 Experimental Results

We compare the performance of the aforementioned algorithms, with respect to the
quality of seed sets and efficiency aspects.

quality of seed sets . The quality of the seed sets obtained by different algorithms
is evaluated based on the expected spread of influence measured in number of nodes.
Figures 4.4 and 4.5 show the spread of influence versus the size of seed set, under the
LT and IC models respectively.

Under the LT model, the seed sets obtained via MATI are quite competitive in quality
compared to those of the Greedy, LDAG and SimPath algorithms. For all four datasets,
the influence loss for up to 50 seeds is less than 2%. Under the IC model, our algorithm
is still efficient, despite the heuristics involved in the influence estimation.

We have also performed experiments for different values of the parameter θ of our
algorithm for the NetHEPT dataset, in order to observe the running time of our algo-
rithm with respect to the influence that is achieved. The results are depicted in Table 4.3.
As θ decreases, the running time is always increasing. This is justified by the fact that a
smaller θ allows computation of influence in a greater neighborhood around each node.
In most of the cases, the influence achieved also increases. This is justified by the fact
that the formation of paths of greater length provide a more accurate computation of a
node’s influence.

efficiency of mati . We have also examined the running time of the proposed
algorithm. Figure 4.6 reports the execution time required by various algorithms for the
LT and IC models respectively. The figures have a logarithmic scale on the y-axis. In
all cases, MATI is faster than the Greedy and LDAG algorithms. In all datasets except
WikiVote, MATI also performs better that SimPath. It takes Greedy more than one week
to select 50 seed nodes for datasets such as Epinions. We should also mention here that,
although the Degree heuristic is time efficient, it fails to output a seed set of high quality.

4.5 experimental evaluation 60

0 10 20 30 40 50
Number of seeds

0

1000

2000

3000

4000

5000

6000

In
fl
u
e
n
c
e

Degree
Greedy
LDAG
SimPath
MATI

0 10 20 30 40 50
Number of seeds

0

200

400

600

800

1000

1200

1400

In
fl
u
e
n
c
e

Degree
Greedy
LDAG
SimPath
MATI

(a) WikiVote (b) NetHEPT

0 10 20 30 40 50
Number of seeds

0

0.5

1

1.5

2

2.5

3

In
fl
u
e
n
c
e

×10
4

Degree
Greedy
LDAG
SimPath
MATI

0 10 20 30 40 50
Number of seeds

0

2

4

6

8

10

In
fl
u
e
n
c
e

×10
4

Degree
Greedy
LDAG
SimPath
MATI

(b) Epinions (c) Email-EuAll

Figure 4.4: Influence spread in number of nodes for the different algorithms, under the LT
model. We show results for the following networks: (a)WikiVote; (b)NetHEPT;
(c)Epinions; (d)Email-EuAll. Each plot depicts the influence in number of nodes
achieved by the different methods: Degree, Greedy, LDAG, SimPath and MATI.
Each point shows the number of nodes that the respective number of seed nodes
- given by the different methods - achieves to influence.

4.5 experimental evaluation 61

0 10 20 30 40 50
Number of seeds

0

500

1000

1500

2000

2500

3000

In
fl
u
e
n
c
e

Degree
Greedy
MATI

0 10 20 30 40 50
Number of seeds

0

200

400

600

800

1000

In
fl
u
e
n
c
e

Degree
Greedy
MATI

(a) WikiVote (b) NetHEPT

0 10 20 30 40 50
Number of seeds

0

0.5

1

1.5

2

In
fl
u
e
n
c
e

×10
4

Degree
Greedy
MATI

0 10 20 30 40 50
Number of seeds

0

2

4

6

8

10

In
fl
u
e
n
c
e

×10
4

Degree
Greedy
MATI

(c) Epinions (d) Email-EuAll

Figure 4.5: Influence spread in number of nodes for the different algorithms, under the
IC model. We show results for the following networks: (a)WikiVote; (b)NetHEPT;
(c)Epinions; (d)Email-EuAll. Each plot depicts the influence in number of nodes
achieved by the different methods: Degree, Greedy and MATI. Each point shows the
number of nodes that the respective number of seed nodes - given by the different
methods - achieves to influence.

4.6 conclusions and future work 62

θ Running Time (s) Influence

0.1 1.2 984.7

0.01 6.5 1162.3

0.001 88.6 1209.6

0.0001 708.2 1190.8

(a)

θ Running Time (s) Influence

0.1 1.2 867.77

0.01 6.8 959.42

0.001 106.5 938.21

0.0001 820.6 950.32

(b)

Table 4.3: Comparison of running times in seconds and influence spread in number of nodes
for different values of the parameter θ under (a) the LT and (b) the IC model for the
NetHEPT network.

4.6 conclusions and future work

Identifying vital nodes in networks which are associated with some certain structural
or functional objectives is a very significant task with various applications in numerous
domains. In the previous Chapter the problem of identifying individual vital nodes was
introduced. Nevertheless, many real-world applications require a small set of nodes
that play a crucial role in information diffusion. A common marketing strategy when
the budget is limited, is to show advertisements and provide small samples or even
discounts to the specific set of customers that are highly probable to buy the product
and inluence many people to buy it too. For some military applications, it is required
that some few critical nodes of the enemy are destroyed in order to the greatly reduce
their communication capacity.

A greedy algorithm has been proposed for the so-called problem of influence maxi-
mization which is proven to provide good approximation guarantees. The serious draw-
back of the greedy algorithm is that it is very time-consuming. Many algorithms have
been proposed in order to surpass greedy’s main drawback. They focus on reducing
the computation time either by reducing the number of spread evalutations, either by
making batch computations of the influence spread or by designing heuristics that will
efficiently compute the respective spread.

In this Chapter, we proposed MATI, an efficient influence maximization algorithm
under both the LT and IC diffusion models. By taking advantage of the possible paths
that are created in each node’s neighborhood, we have designed an algorithm that suc-
ceeds in locating the users that can maximize the influence in a social network while
also being scalable for large datasets.

Specifically we take advantage of the fact that when we want to calculate the influence
gain that a node will add to the influence of a group of nodes, we just need to subtract
the influence of the common paths of the new node and those of our already existing
seeds from this new node’s individual influence to the network. Our algorithm can
be seen an extension of the SimPath algorithm in what concerns its formulation for
the LT model. Taking advantage of the possible paths created and pre-calculating the

4.6 conclusions and future work 63

WikiVote NetHEPT EpinionsEmail-EuAll
10

-2

10
0

10
2

10
4

10
6

R
u
n
n
in

g
 t
im

e
 (

s
)

Greedy
SimPath
LDAG
MATI
Degree

(a) Running time - LT model

WikiVote NetHEPT EpinionsEmail-EuAll
10

-2

10
0

10
2

10
4

10
6

R
u

n
n

in
g

 t
im

e
(s

)

Greedy
MATI
Degree

(b) Running time - IC model

Figure 4.6: Comparison of running times in seconds of the different algorithms under the
(a) LT and (b) IC models. We show results for the following networks: WikiVote;
NetHEPT; Epinions; Email-EuAll. Each plot depicts the running time in seconds
that each different algorithm requires to produce a group of k = 50 seed nodes.
Results for the following methods are shown: Degree, Greedy, LDAG, SimPath and
MATI.

influence gain of a node for the IC model though has not beed proposed, in the best
of our knowledge, by any related work. The methods used to precalculate each node’s
potential influence depends on the creation of matrices which may on one hand increase
the memory consumption of the algorithm while at the same time facilitating the re-
computation of the seeds in the case that some nodes and edges are deleted. In order
to limit the computation of the possible paths and the respective probabilities of them
being “active”, we use a pruning threshold θ which reduces the running time but also
the accuracy of the influence computation. Extensive experiments show that for both the
cases of the LT and IC models, MATI performs better than the baseline methods both in
terms of influence and computation time.

As future work, we plan to further evaluate our algorithm by doing more experiments
with larger datasets and comparing it with more baseline methods. Additionally we are
experimenting with heuristics that can speed up more the running time and efficient
data structures that may reduce the memory consumption of our algorithm. It would be
interesting to experiment with the structural centralities that have been proven efficient

4.6 conclusions and future work 64

in identifying individual influential spreaders in order to see whether those centralities
can also provide useful insights for the influence maximization problem. Finally we are
studying how our method can be extended for the case of a dynamic graph where nodes
and edges are added or deleted from the network.

5
P R I VAT E , S E C U R E A N D D I S T R I B U T E D C O M P U TAT I O N O F
K - C O R E S

T he focus of the dissertation until now was on identifying those specific nodes
in the network that would, as individuals or by acting all together as a group,
maximize the spread of influence across the network. This information can be

proven invaluable specifically for advertisers, for building on-line services and viral mar-
keting campaigns. However, sharing such social networks raises severe privacy concerns.
The goal of this Chapter is to calculate a metric which measures the influence of each
node of the network in a secure and privacy-preserving way. To that end, we capitalize
on the k-core decomposition which has been proved to locate higly influential spreaders.
We build a distributed Peer-to-peer (P2P) algorithm that securely calculates the k-core
numbers and therefore the spreading properties of the nodes in a network. We show that
our algorithm can succesfully calculate the specific metric for dynamic graphs while lim-
iting the calculations and the number of the messages exchanged among peers. Finally
we show that our algorithm can run on anonymized graphs while maintaining good
quality of results.

5.1 introduction

Identification of influential spreaders in networks has been the focus of many researchers
from various different scientific fields. Numerous metrics and algorithms have been in-
troduced in order to locate those “important” nodes in complex network structures as
presented in the previous Chapters. Indeed, it has been shown [93, 115, 138] that the
identification of dense subgraphs can lead to a good estimation of the “best” initial
nodes (called influential nodes), both in terms of spread speed and total number of nodes
reached. The results of such studies have been proven significant to a great range of
applications that include collective dynamics and viral marketing.

Nevertheless, the aforementioned methods require knowledge of the social network.
Such practices raise serious concerns associated with the publishing of such sensitive
information. A trivial solution to this problem would be to remove the identifying in-
formation from the network by removing user-specific data concerning each individual
node. Unfortunately such a solution is not impenetrable to possible attacks that aim to
reveal the true identities of targeted users [6]. The latter work triggered the proposal
of several anonymization methods whose purpose is to limit the risk of privacy breach
in shared data [22, 159]. Another trend that exists towards circumventing the privacy
problem is secure computation using cryptographic techniques such as homomorphic
encryption [66, 71]. The major drawbacks of the cryptographic approach is that, for the
moment, it is computationnaly costly (when not unfeasible).

In this work, we adopt the decentralization approach to favor privacy. Distributed graph
computation models have gained great attention the latest years as they can effectively
perform computations over large-scale graphs which became very relevant for numer-
ous Web-related applications.

We specifically propose a Peer-to-peer (P2P) algorithm for distributed k-core decom-
position. k-coreness has been proved to be a metric that efficiently locates those nodes
that –while acting individually – will disseminate information to a larger part of the

65

5.2 problem statement and preliminiaries 66

population [93]. Montresor et al. [120] were the first to propose an algorithm devised
with a Peer-to-Peer scenario in mind (i.e., fully distributed). They succeed in designing
an algorithm that completes the k-core decomposition in O(N) rounds for graph with
N number of nodes. However, in real-world applications, the network evolves over time.
Several nodes and/or edges may be added to the initial state of the graph. In such dy-
namic networks, it is crucial to have the up-to-date k-core values of the nodes which
constitutes a difficult problem – usually called the core maintenance problem.

An edge addition or deletion may affect though not only the coreness of the two
end nodes, but also that of their neighbors. The update could even spread across the
network and change various k-core values. Thus we deduce that determining which
node in a network should update its core number given the network changes is not a
straightforward task. For a small network with few updates, a trivial alternative would
be to execute the P2P k-core decomposition algorithm [120] every time an update takes
place. This solution would lead to a high number of messages and computations as well
as to a non-negligible convergence time which could cause issues if updates are frequent.
It could possibly be an acceptable solution for small networks with low dynamism but
it is inadequate in our context: fully distributed computations in a large network with
frequent updates.

Our proposed approach, inspired by the one by Montresor et al., constitutes an incre-
mental algorithm that solves the core maintenance problem while limiting the number
of computations and messages exchanged for each update. The main contributions of
this work can be summarized as follows:

• P2P algorithm that solves the core maintenance problem: We propose an incremental
algorithm that efficiently solves the core maintenance problem in P2P, limiting
the number of messages and computations needed to successfully update the core
numbers for the vertices when an edge is inserted or deleted, thus respecting these
constraints.

• Complexity analysis on real graphs: We provide an experimental evaluation of our
proposed P2P algorithm, that shows that it can correctly scale to large-scale net-
works.

• Security and privacy analysis on real graphs: We analyse the security and privacy
aspects of our algorithm using two different adversary models. We discuss the
desired privacy and information quality that needs to be achieved in our scenario
and perform experiments on real datasets.

The rest of the Chapter is organized as follows. Section 5.2 presents the problem
statement and some background concepts that are used throughout the Chapter and
Section 5.3 reviews the related literature on k-core decomposition and core maintenance
algorithms. Then, in Section 5.4 we present the proposed P2P algorithm for core main-
tenance. Sections 5.5 and 5.6 present a detailed computational complexity and security
and privacy analysis of our method respectively. Finally, in Section 5.7 we present con-
cluding remarks.

5.2 problem statement and preliminiaries

In this Section, we present the problem studied and the preliminary concepts upon
which our approach for a P2P core maintenance algorithm is built. Initially, we recall
the concept of k-core decomposition in graphs. Then, we present the theorems and defi-

5.2 problem statement and preliminiaries 67

nitions that were the basis towards the composition of our algorithm. Table 5.1 provides
a list of symbols used in this Chapter, along with their definitions.

5.2.1 Problem Statement

In this work, we are interested in the following problem: how to compute through an
efficient, correct, secure, and privacy-preserving algorithm a metric which will measure the
influence of each node of the network.

Hypothesis 1. (Peer-to-Peer) The social network is considered as a P2P system. The algo-
rithms developed must be P2P algorithms.

There have also been many attempts to propose distributed and private social net-
works [51]. Arguably, the most successful is Diaspora, in which pods represent end-
points to which users connect, and constitute the distributed infrastructure. In a fully
decentralized context, which is the case considered in this work, each user would create
and manage his own pod. There is no central entity that has a global knowledge of the
network.

Nevertheless, creating algorithms in a decentralized setting still raises the following
question: what is the privacy leakage of the information shared with other nodes when running
the algorithm? In our work, we consider the following privacy constraint, applied to the
computation of k-cores:

Constraint 1. (Privacy) It must not be possible for a node (resp. a set of colluding nodes)
to reconstruct partially or entirely the graph using the information it (resp. they) obtain
during the execution of our algorithm.

Symbol Definition

G = (V, E) Undirected graph G

V, E Node and edge set of graph G

dG(v) Degree of node v ∈ V
neighborG(v) Function returning the set of nodes u such that (u, v) ∈ E
kG(v) Coreness/ k-core number of node v of graph G

ICS(v) Induced Core Subgraph of node v

PIICS(v) Potential Incrementation Induced Core Subgraph of node v

DICS(v) Decrementation Induced Core Subgraph ofnode v

Ganon, G̃ Anonymized and modified version of graph G

α,β percentage of nodes to be added and deleted

q,qN Quality and Normalized Quality

q1, q2 base and randomized quality

X%, z percentage and actual number of influential nodes

VN,Vi<N set of nodes of the Nth and N− 1 top coreness groups of G

V ′N, V ′i<N set of nodes of the Nth and N− 1 top coreness groups of G̃

Table 5.1: List of symbols and their definitions.

5.2 problem statement and preliminiaries 68

5.2.2 Preliminaries and Background

We assume that each individual node of the graph G = (V, E) is actually one of the
hosts of the distributed system. Each node v is initially only aware of its degree dG(v)
and has access to the function neighborG(v) which returns the set of nodes u such that
(u, v) ∈ E.

We briefly recall to the notion of k-core decomposition in networks (a detailed descrip-
tion can be found in Chapter 2, Section 2.3.1.1). Let G = (V, E) be an undirected graph.
Ck is defined to be the k-core subgraph of G if it is a maximal connected subgraph
in which all nodes have degree at least k. Then, each node v ∈ V has a core number
kG(v) = k – also known as coreness, if it belongs to a k-core but not to a (k + 1)-core.

Our distributed algorithm is based on locality theorem proved by Montresor et al. [120]
and the k-core update theorem [105] that follow.

Theorem 5.1 (Locality [120]). For every node v ∈ V of graph G, kG(v) = k if and only if a)
there exist k neighbors of v whose coreness is greater than or equal to k and b) there are no k + 1

neighbors of u whose coreness is greater than or equal to k + 1.

From the locality theorem, we conclude that knowing the coreness of its neighbors
is sufficient for a node to compute its own coreness. Based on this theorem, Montresor
et al. [120] developed a distributed peer-to-peer algorithm for the computation of the k-
core decomposition of a network. Nevertheless, in real-world applications, the network
evolves over time. Our distributed algorithm incorporates a first round of computations
similar to the aforementioned algorithm where each individual node v is finally aware
of its own coreness and that of its neighbors. Then, each time a change occurs, addi-
tional computations are triggered so that the coreness of all the nodes affected by the
aforementioned change is updated. Potentially affected nodes are limited to some sub-
graph:

Definition 5.2 (Induced Core Subgraph (ICS)). The core subgraph of G induced by a node
v ∈ V , noted ICS(v) = (VvI , E

v
I) is the maximal connected subgraph of the kG(v)-core containing

v such as:

1. v ∈ VvI ; v is in H (i.e., the vertex inducing the ICS is in the ICS).

2. ∀u ∈ VvI , kG(u) = kG(v); all node of ICS(v) has a coreness exactly equal to (and no greater
than) kG(v).

Accordingly, the k-core update theorem limits the potential changes as follows:

Theorem 5.3 (k-core update theorem [105]). Given our graph G and two nodes u and v in
G, the insertion or deletion of an edge between u and v:

• if kG(u) > kG(v), may impact VvI , the nodes that belong to ICS(v).

• if kG(u) < kG(v), may impact VuI , the nodes that belong to ICS(u).

• if kG(u) = kG(v), may impact VvI and VuI ,the nodes that belong to the union of ICS(v)
and ICS(u).

The coreness of such a node may:

• remain unchanged.

• in the case of an edge addition, increase by 1.

• in the case of an suppression, decrease by 1.

5.3 related work 69

Based on this theorem, whenever an edge between two nodes is added/deleted in G,
only the nodes in the ICS induced by the node(s) with the smaller coreness may need
to be updated. Node addition and deletion are not considered in the update theorem. A
simple node addition -without any edges being added to connect the latter to nodes al-
ready existing in the graph- does not modify the corenesses of any node. Node deletion
in itself has no impact, rather it’s the apparition -and subsequent deletion- of dangling
edges that does.

5.3 related work

In this section the relevant state-of-art in the areas of i) k-core decomposition and ii)
core maintenance algorithms will be reviewed. Finally we take a look at decentralized
personal data management platforms which demonstrate the soundness of the consid-
ered context and provide examples of systems where our proposed approach could be
applied.

5.3.1 k-core Computation

The standard algorithm for k-core decomposition was proposed by Batagelj and Zaver-
snik [15]. They propose an algorithm which recursively deletes nodes (and the edges
incident to them) that have a degree less than k. The core subgraphs are computed in
increasing order (1-core,2-core, 3-core etc) and in linear time to the number of edges
in the network. This algorithm runs efficiently if the entire network can fit in the main
memory.

For graphs that cannot be kept in the main memory, Cheng et al. [41] proposed EM-
core, an algorithm for massive networks. Contrary to the aforementioned bottom-up
approach, they propose a top-down approach starting from the smallest-size core and
recursively decreasing the search space and disk I/O cost for every core computed.

Wen et al. [158] propose a semi-external algorithm comprising optimization tech-
niques to reduce I/O and CPU cost for core decomposition on web-scale graphs. Core
decomposition is also studied in random graphs [112, 119] and uncertain graphs [23].

Montresor et al. [120] proposed a distributed k-core algorithm assuming that nodes
of the network are located on separate computing nodes. They present two different
models: i) one which assumes that one computational unit is associated with one node
in the graph similar to Pregel, the distributed framework proposed by Google [114] and
ii) one assuming one host stores a group of nodes with their local and remote edges. It
is assumed that everything is held in the memories of the computing nodes.

5.3.2 Core Maintenance

Moriandi and Pelegrini [118] rely solely on the algorithm in [15]. If the graph is updated,
the algorithm is re-executed and the core number of every node is re-calculated from
scratch. This is obviously a computationally expensive solution for large graphs. Li and
Yu [105] proposed a more efficient solution which limits the computations needed by
determining the minimal subgraph for which the k-core decomposition might have to
be updated.

Aksu et al. [1] propose a batch maintenance as changes occur dynamically in the
graph. The proposed algorithms prune the search space to minimize the messages ex-
changed among the computing nodes that store the partitioned data. Saríyüce et al. [143]
present an incremental k-core decomposition scheme. Based on the observation that

5.4 p2p algorithm for core maintenance 70

when an edge is inserted or removed, the subgraph that may need to be updated is
connected and reside in the subcore which the edge is in, they propose an algorithm
linear in the size of the subcore. Zhang et al. [164] further improve the aforementioned
approach by proposing a new order-based algorithm. By maintaining a k-order among
vertices they significantly outperform the state-of-the-art algorithm up to 3 orders of
magnitude.

5.3.3 Decentralized Personal Data Management Platforms

The work proposed in this Chapter is to be considered in the context of a distributed
social network, or more generally a distributed data management platform, or personal
cloud. Many companies such as OwnCloud, SandStorm, SeaFile, Tonido, You-nity, Cozy-
Cloud, Lima or governmental initiatives such as the British* initiative, offer a logically
decentralized approach to the management of personal data.

Compared to Diaspora†, which is a decentralized social network, the current trend
of empowering users to manage their own data goes further and continues to pursue
a privacy objective, often with physical decentralization. For instance, OpenPDS and
the SafeAnswers framework aim to minimize to the bare minimum the (personal) in-
formation shared with others when computing a query. Allard et al. [4] proposed an
initial design for the Personal Data Server approach to use low-price secure hardware
to execute local computations, while protecting the system from the user himself.

We believe that the work presented in this Chapter belongs to this context and that
our approach could be integrated into any logically or physically decentralized system.

In this next section, we formalize our P2P algorithm which is based on the theo-
rems presented in the Section 5.2. It solves the core maintenance problem by triggering
update mechanisms that involve the exchange of a limited number of messages and
performance of computations whenever a change occurs.

5.4 p2p algorithm for core maintenance

The algorithm can be divided in two parts:

i) the static part which involves the initial calculations so that all the nodes of the
initial format of the graph are aware of their own and their neighbors’ corenesses.
This part is similar to the "one node, one host" algorithm introduced by Montresor
et al. [120].

ii) the dynamic part involving isolated graph perturbations during which new coreness
estimations are calculated. We consider that the system is stable prior to graph
evolutions and that the maintenance algorithms are performed after the static al-
gorithm has converged.

Before describing the algorithms that concern the coreness estimation for each node,
we will be giving a description of the local variables stored in each node and the different
types of messages exchanged among them.

* mydex.org
† diasporafoundation.org/

5.4 p2p algorithm for core maintenance 71

5.4.1 Local variables

Each node u maintains some variables representing their local knowledge. The three
first variables are similar to the static case:

• myCrns is an integer that represents node’s u own estimated coreness; initially set
to its degree.

• est{}, the partial view of u, is a map linking node u’s neighbors ids to the most
up-to-date information regarding their respective coreness estimations. Initially, all
the estimations are set to +∞.

• changed is a Boolean flag set to true if u’s state has been modified since its last
communication. It is initialized to false.

The following variables are related in particular to core maintenance:

• isInc is a Boolean flag set to true if the node is handling a possible incrementation
of its coreness. It is initially set to false.

• incrEst{}, similar to est is a hashmap containing node u’s neighbors ids and some
coreness estimations. Used during an attempted incrementation, estimations are
made assuming neighbors with coreness kG(u) will be affected (i.e., increased). It
is initially empty.

• toHandle is an identifier of events to be handled by u. Such events are a particular
kind of change in the graph topology: edge additions. It is initially empty. Since
concurrent events are not considered for now, toHandle is supposed to be a single
identifier in the remainder of the section.

• handled is a set of identifiers containing already handled events in order to avoid
redundant treatments and ensure convergence. It is initially empty.

5.4.2 Handling Messages and Events

Each node can send and receive different types of messages. Graph evolution and
message exchange trigger corresponding routines described in Algorithm 5.1 and Al-
gorithm 5.3, respectively.

5.4.2.1 Events and graph evolutions

The routine execute by each peer (i.e., each node u) that handles graph evolutions is
described in Algorithm 5.1.

• During Initialization the variables listed in the previous section are set to their
initial values. The creation of some node u (i.e., its addition to the network) simply
triggers the initialization routine on u. Note that when added, a node has no
neighbor and therefore has no particular impact on other nodes’ coreness.

• The Suppression routine triggers the suppression of all edges incident to u.

• The Edge Suppression routine concerns the deletion of an edge (u, v). It is a unilat-
eral decision taken by v, one of u’s extremity nodes. v sends a message <v> to u,
terminating its relation with the receiver.

5.4 p2p algorithm for core maintenance 72

Algorithm 5.1 Handling graph evolutions in P2P k-core decomposition with mainte-
nance; routine executed by node u.

1: on Initialization/creation do
2: myCrns← d(u)
3: isInc← false
4: changed← true
5: handled← ∅
6: toHandle← NULL

7: for each v ∈ neighbor(u) do
8: est[v]← +∞
9: send < u,myCrns > to v

10: on Suppression do
11: for each v ∈ neighbor(u) do
12: send < u > to v
13: on Edge Suppression (u, v) do
14: send < u > to v
15: changed← true
16: est[v]← 0

17: if isInc then
18: incrEst[v]← 0

19: on Edge Addition <v,k,eventID> do
20: est[v]← k
21: if myCrns 6 k then
22: tryIncrement(eventID)

• An Edge Addition is a bilateral event. Accordingly, we suppose that during such
addition, extremities exchange their coreness estimation, agree on an identifier
eventID, and trigger the corresponding routine: on edge addition <v,k,eventID>
where v is the identifier of the other extremity and k its coreness estimation. For
the addition of an edge (u, v) the identifier is assumed to be generated by a hashing
function hash taking as input u, v and the local time of u and/or v. In concordance
with theorem 5.3, the extremity with the lowest coreness may have to increment
its estimation.

5.4.2.2 Attempting coreness incrementation

The tryIncrement procedure, described in Algorithm 5.2, initializes a coreness incremen-
tation attempt of node u. It sets the isInc flag to true and stores the id of the event
to handle. Most importantly, it builds an alternate partial view incEst integrating the
hypothesis that all neighbors of u that could be impacted by the event eventID will be;
i.e. all neighbors belonging to the ICS will increment their coreness. In the next round of
computations, the node will determine whether it is possible for its coreness to be incre-
mented with this hypothesis. Depending on the outcome, the node will send a message
to its neighbors either propagating the potential incrementation or notifying its failure
to increment.

5.4.2.3 Messages

Here we provide a description of the messages that are exchanged between the nodes.
The first two types of messages serve to notify for an update of the coreness estima-
tion while the third notifies for an edge suppresion. The protocol is described in Algo-

5.4 p2p algorithm for core maintenance 73

Algorithm 5.2 Initializing an incrementation attempt on node u.

1: procedure tryIncrement(eventID)
2: toHandle← eventID
3: isInc← true
4: changed← true
5: incEst← est
6: for each v ∈ neighbor(u) do
7: if incEst[v] = myCrns then
8: incEst[v]← incEst[v] +1

rithm 5.3.

• <u,k>: the sender, node u, sends an update of its own coreness estimation, k. This
message is similar to the message exchanged in the static case. The receiving node
will update its local knowledge (i.e., its own and immediate neighbors coreness
estimations) and switch the changed flag to true accordingly. Note that, in the
dynamic case, this message is also used to notify for a failure of coreness incre-
mentation.

• <u,k,eventID>: the sender, node u, sends an update of its own coreness estimation,
k, and propagates the event with id eventID. The receiver, node v, updates its
local knowledge accordingly and triggers a potential coreness incrementation. In
concordance with theorem 5.3, this incrementation may occur only if v belongs
to the Induced Core Subgraph (ICS) of u, and therefore only if its coreness is k− 1

(i.e., the coreness of v before its incrementation). In addition, the incrementation
may only occur if v did not already handle the event. If it already did but is
still of coreness k − 1, it means that v’s coreness could not increment after the
event occured. Since u, during its incrementation attempt, made the hypothesis
that v’s coreness could increment, v notifies u of its failure through the message:
< u, k− 1 > in order to invalidate this hypothesis.

• <u>: the sender, node u, notifies that an edge has been deleted. The receiver deletes
u as its neighbor, which is equivalent to considering u having a coreness of 0. The
est map is updated accordingly and the changed flag is set to true.

5.4.3 Computing coreness estimations

Periodically, each node re-estimates its coreness according to its new local knowledge.
The periodic behaviour and the process leading to the estimation are described in Algo-
rithms 5.4 and 5.5.

5.4.3.1 Periodic behaviour

Similar to the static case [120], the protocol execution is divided in periodic rounds to
limit computations and the number of exchanged messages. Every δ time units, the
variable changed is checked; if the local knowledge has been modified, a new coreness
estimation – newCrns – is computed. Flags are set back to false and, if relevant, the
event handled is pushed to the handled set. The result of this computation may be
broadcasted to neighbors.

5.4 p2p algorithm for core maintenance 74

Algorithm 5.3 Handling messages in P2P k-core decomposition with maintenance; rou-
tine executed by node u.

1: on Receive <v,k> do
2: if est[v] 6= k then
3: changed← true
4: est[v]← k
5: if isInc then
6: incrEst[v]← k

7: on Receive <v,k,eventID> do
8: if est[v] 6= k then
9: changed← true

10: est[v]← k
11: if isInc then
12: incrEst[v]← k

13: if myCrns=k-1 then
14: if eventID ∈ handled then
15: send < u,myCrns > to v
16: else
17: tryIncrement(eventID)

18: on Receive <v> do
19: changed← true
20: est[v]← 0

21: if isInc then
22: incrEst[v]← 0

Algorithm 5.4 Estimating local coreness; routine executed by node u.

1: repeat every δ time units (round duration)
2: if changed then
3: if ! isInc then
4: newCrns← computeEstimate(est)
5: if newCrns < myCrns then
6: myCrns← newCrns
7: for each v ∈ neighbor(u) do
8: send < u,newCrns > to v
9: else

10: newCrns← computeEstimate(incEst)
11: if newCrns>myCrns then
12: est← incEst
13: for each v ∈ neighbor(u) do
14: send <u,newCrns, toHandle> to v

15: else
16: for each v ∈ neighbor(u) do
17: send < u,newCrns > to v

18: handled← handled ∪ {toHandle}
19: toHandle← NULL
20: isInc← false
21: changed← false
22: myCrns← newCrns

5.4 p2p algorithm for core maintenance 75

Algorithm 5.5 Computation of node u’s upper bound coreness.

1: procedure computeEstimate(estimation)
2: for i from 1 to myCrns do
3: count[i]← 0

4: for each v ∈ neighbor(u) do
5: j← min(myCrns, estimation[v])
6: count[j]← count[j]+1

7: for i from myCrns downto 2 do
8: count[i-1]← count[i-1] + count[i]

9: i← myCrns
10: while i > 1 and count[i] < i do
11: i← i - 1

return i

• During the static case (isInc=false):

– Node u is not handling an incrementation. If the new estimated coreness
newCrns has decreased,myCrns takes its value and the message< u,newCrns >
is sent to u’s neighbors to notify them for the update of the coreness estima-
tion.

• When the node is handling a potential incrementation (isInc=true):

– If the node’s coreness estimation has increased, the message < u,newCrns,
toHandle > is sent, notifying for the update of the coreness estimation
and propagating the potential incrementation corresponding to the event
toHandle. The local knowledge of u, stored in est, is replaced by incEst:
u maintains its hypothesis that all of its neighbors belonging to the same ICS
will manage to increment their coreness estimation.

– If the node’s coreness estimation has not increased, a message< u,newCrns >
is sent. Even if its estimation remains the same, the message will serve to in-
validate the hypothesis made by one or several of its neighbors that u could
increment its coreness. The local knowledge of u remains stored in est while
the incremented coreness estimations of the neighbors included in incEst are
discarded.

5.4.3.2 Estimating coreness

The procedure computeEstimate described in Algorithm 5.5 is used to estimate an
upper-bound of a node’s coreness. It is similar to the static case [120] and stems directly
from the locality theorem (Theorem 5.1). The only difference is that, in the case of an
incrementation attempt, the local knowledge used to estimate coreness is incEst rather
than est; the node then supposes that its neighbors in the same ICS will increment their
coreness.

5.4.4 Example

In this section we are describing a run of the algorithm on a sample graph. At first,
with no perturbation, the algorithm runs similarly to its static counterpart as depicted
in Figure 5.1. Then, its dynamic behaviour when confronted to the addition of an edge
is detailed and illustrated in Figure 5.2.

5.4 p2p algorithm for core maintenance 76

b

[1]

c

[3]
d

[3]

a
[3]

e

[2]
f

[2]

←
→

←
1(a) At t= 0.

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]
→
← →↓ ↑ →←←

→
1(b) At t= δ.

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

1(c) At t=2*δ.

Figure 5.1: A simple example describing the static part of the algorithm.

5.4.4.1 Static run

Initially all nodes have a coreness equal to their degree and the flag isChanged is set to
true.

– At t=0. Nodes a, c, and d propagate their coreness estimation (MyCorness) of 3 by
sending their neighbors the messages < a, 3 >, < c, 3 >, and < d, 3 >, respectively.
Their neighbors update their local knowledge est accordingly. These updates do
not however cause any change to their own estimations. Similarly, node b notifies
node a that its myCrns = 1, so that the latter will update its coreness estimate to
2 at the end of the round when re-computation occurs. At the same time, nodes
f and e notify node c and d respectively about their estimation being equal to
2 which will cause the myCrns value of the latter nodes to change from 3 to 2

during the next computation (see Figure 5.1a).

– At t= δ. All nodes re-compute their estimation and set their flag isChanged to
false. As seen previously, nodes a, c, and d modify their estimation and notify
their neighbors {b,c,d}, {a,d,f} and {a,c,e}, respectively (see Figure 5.1b). All nodes
therefore change their local knowledge est and switch their isChanged flag to
true.

5.4 p2p algorithm for core maintenance 77

– At t=2*δ. All nodes re-compute their estimation. Nevertheless, myCrns estimates
of the nodes do not change from now on; the algorithm has converged for this
initial state of the graph (see Figure 5.1c).

5.4.4.2 Dynamic run - One perturbation

– At (k-1)*δ ≤ t < k ∗ δ. An event occurs: an edge is added between nodes a and e
(see Fig. 5.2a). They exchange messages in order to notify each other about their
current coreness estimation, agree on an event identifier –eventID– and trigger
the corresponding routines On edge addition <e,2,eventID> and On edge addition
<a,2,eventID>, respectively. Since they have the same coreness, it is possible for the
coreness of both to be incremented according to theorem 5.3. Both therefore trigger
tryIncrement. Flags are set to true, eventID is stored in toHandle, and incEst is
built by making the hypothesis that all neighbours in the same ICS will increment
their coreness. Note that the ICS induced by e and a are the same graph, which is
the sub-graph induced by {a, c, d, e, f}. Consequently, e considers, in incEst, that
all its neighbors have coreness 3. On the other hand, the incEst of node a maps
c, d, and e with coreness 3 and b with 1 (b’s coreness remains unchanged since it
does not belong to the ICS induced by a).

– At t = k ∗ δ. Nodes a and e re-compute an estimation using incEst. Both have
three neigbors of coreness 3 and therefore change their estimated coreness to 3.
Flags are set back to false, est takes the values of incEst (the hypothesis regarding
neighbors incrementation are not discarded), and the event is propagated. a and e
send < a, 3, eventId > and < e, 3, eventId > to {b, c, d, e} and {a, d, f}, respectively.
a and e are unaffected by the messages, b updates its knowledge of a, and c,d, and
f update their knowledge and trigger tryIncrement. The situation is depicted in
Figure 5.2b.

– At t = (k + 1) ∗ δ. b recomputes its coreness but no change occurs. Nodes c, d
and e handle the potential incrementation. c and d manage to increment and be-
have similarly to a and e in the previous step. Node f, however, having only two
neighbors, can not increment its coreness to 3. The local knowledge remains est,
incEst is discarded, and f sends < f, 2 > to {e, c}. e and c update their estimation
of f: the hypothesis according to which f would have incremented its coreness is
invalidated – see Figure 5.2c.

– At t = (k + 2) ∗ δ. Nodes e and c re-compute their estimation due to the modifica-
tion of their knowledge regarding node f. They both have exactly two neighbors
with an estimated coreness of 3 and one of 2 –node f. They both change their esti-
mation to 2 and notify about this modification by sending < e, 2 > and < c, 2 > to
{a, d, f} –see Figure 5.2d.

– At t = (k + 3) ∗ δ. Node f recomputes its estimation but it remains unchanged.
Nodes a and d, however, update their estimated coreness to 2 and notify their
neighbors with the messages < a, 2 > and < d, 2 >, respectively – see Figure 5.2e.

– At t = (k + 4) ∗ δ. Nodes a, b, c, d, and e recompute their estimation due to
the modification of a and/or d. Nevertheless, all estimations remain unchanged;
the algorithm has converged and the event eventID has been fully handled as
depicted in Figure 5.2f.

5.4 p2p algorithm for core maintenance 78

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

←
→

1(a) At (k-1)*δ ≤ t < k ∗ δ.

b

[1]

c

[2]
d

[2]

a
[3]

e

[3]
f

[2]

← →↓ →←
→ ←

1(b) At t = k ∗ δ.

b

[1]

c
[3]

d
[3]

a
[3]

e

[3]
f

[2]

→
←

→ ←↑

←

←
→

1(c) At t = (k + 1) ∗ δ.

b

[1]

c

[2]
d

[3]

a
[3]

e

[2]
f

[2]

↑ →

→

←
← →

1(d) At t = (k + 2) ∗ δ.

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

← →↓ → ←

←
→

1(e) At t = (k + 3) ∗ δ.

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

1(f) At t = (k + 4) ∗ δ.

Figure 5.2: A simple example describing the dynamic part of the algorithm.

5.5 analytical and experimental study 79

5.5 analytical and experimental study

In this Section, we perform an extensive study of our P2P algorithm both analytically
and experimentally. Firstly, and for each possible type of perturbation, we show that
the algorithm converges. We then provide upper and lower bounds for its analytical
complexity in terms of time, exchanged messages and local computations and prove its
correctness. Finally, we transpose the complexity study in the real world by performing
an analysis on real online social networks and datasets.

5.5.1 Analytical study

5.5.1.1 Complexity: remarks and notations

In the following, we provide an analytical complexity analysis for the maintenance rou-
tines that correspond to each of the four events presented in Sec. 5.4.2.1: node addition
(na), node deletion (nd), edge addition (ea) and edge deletion (ed) whose complexity
is noted Cna(v), Cnd(v), Cea(e), and Ced(e), respectively. v corresponds to a node v ∈ V
and e to an edge e ∈ E of graph G = (V, E).

For each kind of event, the complexity is studied w.r.t. three aspects:

1. time – Ctevent(el): it refers to the number of rounds necessary for the algorithm to
converge, the duration of a single round being δ. In this section, we assume that
the transmission time of a message from a neighbor to another is less than δ, so
that a message sent in round i will always be treated in round i + 1;

2. exchanged messages – Cmevent(el): refering to the sum of all exchanged messages.
Considered messages are those presented in Sec. 5.4.2.3, of type < v >, < v, k >,
or < v, k, eventId >;

3. local computations – Ccevent(el): refering to the sum of local coreness re-estimation
through computeEstimate.

with event ∈ {na,nd, ea, ed} and el being the concerned element either a node v or an
edge e.

5.5.1.2 Edge suppression

preliminaries .

Let us consider the deletion of some edge e between nodes v and u. Let G and G ′ be
the considered graph before and after the deletion of e, respectively. In the complexity
analysis, and so as to isolate consequences of the perturbation, we consider that the
system is stable prior to the perturbation.

According to the k-core update theorem (see Theorem 5.3), the nodes that may be
affected by the deletion of e belong to ICS(v) or ICS(u) or ICS(v)∪ ICS(u) . In particular,
and by design of the algorithm, the nodes that will decrement their coreness belong to
some sub-graphs:

Definition 5.4 (Decrementation Induced Core Subgraph
(DICS)). The DICS = (VvD, E

v
D) induced by some vertex v for a graph G = (VG, EG), noted

DICS(v,G), is the maximal (induced) connected subgraph of the core subgraph induced by v on
G (ICS(v,G)) such as:

5.5 analytical and experimental study 80

a b

cd

e

f

g

h

i

j

k

l m

coreness = 1
coreness = 2
coreness = 3

1

Figure 5.3: Example graph.

1. ∀u ∈ VvI , dICS(v) + |{ (u ′ ∈ VG) | (u ′ /∈ VvI) ∧ ((u, u ′) ∈ EG) ∧ (k(u ′) > k(v)) }| =
k(v); all nodes of DICS(v) have exactly k(v) neighbors that are either in G with a coreness
greater than k(v) or in ICS(v).

2. v ∈ VvD ∨ VvD = ∅.

Indeed, the extremity with the lowest coreness decrements its estimation if it previ-
ously had exactly kG(v) neighbors of coreness greater or equal to kG(v) since it now has
kG(v)-1 such neighbors. In turn, its neighbors that had exactly kG(v) neighbors of core-
ness greater or equal to kG(v) now have kG(v) − 1 such neighbors and will decrements
their estimation before propagating the perturbation.

Example. Let us illustrate the above with an example. For this purpose, we consider
the graph G illustrated in Fig. 5.3. Suppose that the edge between nodes c and h is
deleted. According to the k-core update theorem and as kG(h) < kG(c), the nodes that
may be affected belong to ICS(h). ICS(h) contains 7 nodes: VhI = {g, h, i, j, k, l,m}. In
reality, the nodes that will be affected belong to DICS(h,G) = {h, j}. Node h has exactly
one neighbor in ICS(h) (node j) and one neighbor in G of coreness 3 (node c). Similarly,
node j is a neighbor of h in ICS(h) and has exactly kG(h) = 2 neighbors that are both in
ICS(h) (i.e., nodes h and k). Node k, however, has 3 neighbors in ICS(h) and is therefore
not in DICS(h,G). After the edge deletion, node h has kG(h) − 1 = 1 neighbor and will
decrement its estimation before propagating the perturbation. The perturbation reaches
jwhich now has kG(h)− 1 = 1 neighbors of coreness kG(h) = 2. It will also decrement its
estimation and propagates the perturbation that will not lead to further decrementation
(as h has already been impacted and k will not be).

complexity.

The deletion of an edge creates a perturbation that is propagated within the concerned
DICS as nodes in the DICS broadcast the perturbation until reaching nodes outside of
the DICS whose coreness remains unchanged.

Time. Here, the time required for a perturbation to be propagated is equivalent to
the distance it travels in the graph thanks to the hypothesis that δ is greater than the
communication time between neighbors. Thus, with ε(v,G) the eccentricity of v in G,
the number of round taken by initial perturbation to reach all concerned nodes is:

Cted((v, u)) = ε(v,DICS(v,G)) + 1 if kG(v) < kG(u)

Cted((v, u)) = max(ε(v,DICS(v,G)), ε(u,DICS(u,G))) + 1 if kG(v) = kG(u)
(5.1)

5.5 analytical and experimental study 81

Messages. All nodes in the concerned DICS(s) will be affected by the decrementation
and will broadcast their new coreness. Thus, the number of messages exchanged in
order to calculate the updated coreness after an edge deletion is:

Cmed((v, u)) =
∑
n∈VvD

dG(n) if kG(v) < kG(u)

Cmed((v, u)) =
∑

n∈VvD∪VuD

dG(n) if kG(v) = kG(u)
(5.2)

Local computations. By design of the algorithm:

• Upon deletion of an edge, both extremities re-compute their coreness estimation.

• Apart from that, no computation can occur in absence of messages.

We thus trivially have:
Cced((v, u)) 6 2 +Cmed((v, u)) (5.3)

correctness .

In order to prove the corectness of an edge suppression event, we should define the
liveness theorem as proposed by Montresor el al.[120]:

Theorem 5.5 (Liveness [120]). There is a time after which the coreness estimation of each node
v ∈ V is always equal to kG(v).

From the locality theorem (see Thm 5.1), it is obvious that, for the computation of
one’s coreness, a non-existant neighbor is equivalent to a neighbor of coreness 0*. There-
fore, both extremities of the deleted edge have an accurate representation of their neigh-
borood after setting their coreness estimate of the other extremity at 0.

From there, the process can be seen as a regular event of the static algorithm where a
node is notified by one of its neighbors of a decrease in the latter’s coreness estimation.
In particular, the liveness property of the algorithm is conserved. Therefore, the edge
deletion process is correct as the static algorithm is itself correct [120]. Note that this is
true even in the presence of concurrent perturbations and regardless of the state of the
system (stable or not) when the event occurs.

5.5.1.3 Node suppression

complexity.

A node suppression is equivalent to multiple edge deletions as all edges incident to
it are suppressed. We thus trivially have:

Ctnd(v) 6 max{u∈VG|(v,u)∈EG}C
t
ed((v, u))

Cmnd(v) 6
∑

{u∈VG|(v,u)∈EG}

Cmed((v, u))

Ccnd(v) 6
∑

{u∈VG|(v,u)∈EG}

Cced((v, u))

(5.4)

* Note that it is not normally possible for a node to have a neighbor of coreness 0 as only isolated nodes
have a coreness equal to 0.

5.5 analytical and experimental study 82

correctness .

The node suppression process is correct for the exact same reason that the edge sup-
pression process is. It is similar to a regular event of the static algorithm where a node
notifies all of its neighbors of a decrease in its coreness estimation.

5.5.1.4 Edge addition

preliminaries .

Let’s consider the addition of some edge e between nodes v and u. Let G and G ′ be
the considered graph before and after the addition of e, respectively. In the complexity
analysis, and so as to isolate consequences of the perturbation, we consider that the
system is stable prior to the perturbation.

According to the k-core update theorem (see Theorem 5.3), the nodes that may be
affected by the addition of e belong to ICS(v) or ICS(u) or ICS(v)∪ ICS(u) . In particular,
in our algorithm, the nodes that can possibly manage to increment their coreness are
those belonging to the following subgraph:

Definition 5.6 (Potential Incrementation Induced Core Subgraph
(PIICS)). The PIICS = (VvPI, E

v
PI) induced by some vertex v for a graph G = (VG, EG), noted

PIICS(v,G), is the maximal (induced) connected subgraph of the core subgraph induced by v on
G (ICS(v,G)) such as:

1. v ∈ VvPI.

2. ∀u ∈ (VvI \v), dICS(v) + |{ (u ′ ∈ VG) | (u ′ /∈ VvI) ∧ ((u, u ′) ∈ EG) ∧ (k(u ′) > k(v))
}| > k(v); all nodes of PIICS(v) have at least k(v) + 1 neighbors that are either in G with a
coreness greater than k(v) or in ICS(v).

Indeed, nodes of the PIICS are the one that can increment their coreness estimation
through the computeEstimate routine. Note that the incrementation will not necessar-
ily happen: they may go back to their initial coreness afterwards.

Example. Let us assume that an edge is added between nodes b and l in our example
graph (see Fig. 5.3). According to the k-core update theorem and as kG(b) < kG(l),
the nodes that may be affected belong to ICS(l, G). ICS(l, G) contains 7 nodes: VlI =
{g, h, i, j, k, l,m}. In reality the nodes that will be affected belong to PIICS(l, G) and
are {g, i, k, l}. Nodes i and k have 3 neighbors that are in ICS(l, G) and node g has
2 neighbors in ICS(l) and one neighbor (node b) in G with a coreness greater than
kG(b) > kG(l).

complexity.

The best case scenario is quite trivial. It happens when extremities have different
coreness numbers and the PIICS induced by the extremity with the lowest coreness is
limited to said extremity. Let’s assume that v is the extremity with the lowest coreness.
This case is characterized by kG(v) < kG(u) ∧ PIICS(v) = ({v}, ∅).

After edge addition, tryIncrement is triggered on v. As isChanged is set to true, v re-
computes its coreness, fails to increment it, and notifies its dG ′(v) (= dG(v) + 1) neighbors
by broadcasting the message < v, kG(v) >. Neighbors won’t be affected as none did any
hypothesis regarding a potential incrementation of v’s coreness.

5.5 analytical and experimental study 83

Therefore:

Ctea((v, u)) > 2

Ccea((v, u)) > 1

Cmea((v, u)) > dG ′(v).

(5.5)

Worst-case scenario. Similarly to edge deletion, to maximize the number of poten-
tially affected nodes, both extremities should have the same coreness in G so that
both ICS(v,G) and ICS(u,G) will be affected. Hence, the worst case happens when
kG(v) = kG(u). Note that, in this case, ICS(v,G ′) = ICS(u,G ′).

The addition of an edge creates a perturbation that is propagated within the con-
cerned PIICS. Nodes in the PIICS propagate the perturbation that eventually reach
some nodes in the ICS (but not in the PIICS) that fail to increment. If enough nodes fail
to increment, secondary, inverse, perturbations are propagated within some subgraph
of the PIICS as nodes will decrement their estimations and propagate the secondary
perturbations.

To maximize the number of messages and computations, all nodes that can possibly
affected should indeed be. They should also be affected in the worst possible way: suc-
cessfully increment during one round, and then decrement.

Time. As noted previously, the time required for a perturbation to be propagated is
equivalent to the distance it travels in the graph. Thus, regarding time, the initial per-
turbation (incrementation) will take at most max(ε(v, PIICS(v,G)), ε(u, PIICS(u,G))) + 1

rounds to reach all concerned nodes.
In the worst case scenario, the node being the furthest away from the initial source of

the perturbation will trigger a secondary perturbation that will:

• reach the PIICS in 1 round.

• be propagated within the whole PIICS. Let diam(G) be the diameter of the graph
G. The perturbation traverses the PIICS in diam(PIICS(u,G ′) rounds.

• be broadcasted one last time by the last node to be reached in the PIICS.

Therefore:

Ctea((v, u)) 6 ε + diam(PIICS(u,G ′)) + 3

with ε = max(ε(v, PIICS(v,G)), ε(u, PIICS(u,G)))

(5.6)

Messages. A node n belonging to PIICS may be affected by an edge modification and
will, in a worst case scenario:

• broadcast a message < n, kG(v) + 1, eventID > to its neighbor to propagate the
incrementation;

• broadcast a message < n, kG(v) > to its neighbor to propagate the decrementation;

• upon reception of an incrementation message sent by a neighbor in the PIICS reply
with < n, kG(v) > to signify that the event has been handled but the incrementa-
tion failed. Since n had to handle the perturbation before sending such messages,
this can occur:

– at most once per neighbor in PIICS minus one (the one whose message lead
to the event being handled) if n is neither u nor v,

5.5 analytical and experimental study 84

– at most once per neighbor in PIICS if n is either u or v (the sources of the
perturbation).

Neighbors of n that are not in the PIICS will receive messages and may also send
messages in response. Let NPI(v,G) be the neighbors of nodes in PIICS(v,G) that are
not themselves in the PIICS(v,G):

NPI(v,G) = {n ∈ (VG\VPI(v,G))|(n ′ ∈ VvPI ∧ ((n,n ′) ∈ EG)}.

Example. Considering again an edge addition between nodes b and l in our exam-
ple graph. As discussed PIICS(l, G) is the graph induced by {g, i, k, l} which makes
NPI(v,G) = {b,m, j}.

Nodes in NPI but not in the ICS will not send any message. However, nodes n ∈
NPI ∩ VI will in the worst case:

• broadcast a message < n, kG(n) > after failing to increment.

• upon reception of an incrementation message sent by a neighbor in the PIICS
reply with < n, kG(n) > to signify that the event has been handled but the incre-
mentation failed. This can occur at most once per neighbor in PIICS minus one
(the one whose message lead to the event been handled).

Thus, we conclude the upper bound of the number of messages exchanged in order
to calculate the updated coreness after an edge modification :

Cmea((v, u)) 6(
∑

n∈VvPI∪VuPI

2 ∗ dG(n) + (dPIICS(v,G ′)(n) − 1)) + 2

+
∑
n∈S

dG(n) + |{n ′ ∈ VvPI ∪ VuPI|(n,n ′) ∈ EG}|−1

with S = (NPI(v,G)∩ VI(v,G))∪ (NPI(u,G)∩ VI(u,G))

(5.7)

Local computations. By design of the algorithm:

• Upon addition of an edge, the extremity with the lowest coreness re-computes
its coreness estimation. If both extremities have the same coreness, they both re-
compute their coreness estimation.

• Apart from that, no computation can occur in absence of messages.

We thus trivially have:
Ccea((v, u)) 6 2 +Cmea((v, u)) (5.8)

A finer upper bound can however be found. Indeed:

• For nodes in the PIICS, the initial perturbation triggers a single computation, no
matter how many messages of type < v, k, eventID > are received, as long as they
all contain the same eventID.

• As seen previously, when a node broadcasts a message of type < v, k, eventID >,
it may get replies of type < v, k > from neighbors that already handled the event
but failed to increment. These replies are received during the same round and can
therefore trigger a single re-computation.

5.5 analytical and experimental study 85

Therefore:

Ccea((v, u)) 6 2

+
∑

n∈VvPI∪VuPI

2 ∗ dG(n) + 1

+
∑
n∈S

dG(n) + |{n ′ ∈ VvPI ∪ VuPI|(n,n ′) ∈ EG}|−1

with S = {n ∈ VvI ∪ VuI |(n ′ ∈ VvPI ∪ VuPI) ∧ ((n,n ′) ∈ EG)}

(5.9)

correctness

We have seen that the edge addition process has a bounded complexity. It is therefore
terminating. Let’s demonstrate that it stops with the correct coreness. We assume here
that the system was stable prior to edge addition (i.e., all vertices did estimate their
coreness correctly). By contradiction, let’s assume that the process does not accurately
update the estimation of each node. Nodes affected by the process have their estimated
coreness either unchanged or incremented by one. According to the update theorem, an
edge addition may lead to the coreness incrementation of some nodes. Therefore, there
are basically two possibilities; (1) some node(s) do not have an incremented coreness
estimation while their actual coreness is changed, (2) some node(s) have an incremented
coreness estimation while their actual coreness is unchanged. Let k− 1 be the coreness
of the potentially affected node prior to the edge addition.

(1) Erroneous equality. Let’s assume that some vertices did not increment their es-
timation while they should have and let V= be the set of such vertices. They either (i)
did not initially increment their estimations or (ii) did increment their estimations but
decrement it at some point during the process. Estimation updates occurs at the end of a
round, for each u ∈ V= one of these two events thus occurred at the end of some round
ru. Let v be a node V= such as ∀u ∈ V=, rv 6 ru. (i) No initial incrementation. Let’s assume
that v receives a message of type < u, k, eventID > in round rv but did not increment
its coreness. Since we consider the initial incrementation attempt, eventID should not
be in handled. Since we assumed that v’s coreness increments due to the edge addition,
according to the update theorem, its coreness should be k− 1 prior to the perturbation.
Therefore, due to the stability hypothesis, v’s estimation at the beginning of rv is k− 1

and tryIncrement is triggered on v. At the end of the round, v recomputes its coreness
with incEst and, by hypothesis, v’s estimation remains unchanged. Therefore, it has
less than k neighbors with an estimated coreness of at least k − 1 (neighbors of core-
ness k− 1 are considered to have coreness k in incEst). According to the core update
theorem, it means that after the edge addition v has necessarily less than k neighbors
of coreness k. According to the locality theorem, this contradicts the hypothesis that v’s
coreness increments after the edge addition. (ii) Erroneous decrementation. Let’s assume
that v decrements its estimation at the end of round rv. Necessarily, it has received
some message(s) < ui, k− 1, eventID > from a set of neighbors ui in that round. These
messages notify an estimation update calculated at the end of round rv − 1. Since v
decrements its coreness at the end of rv, its set est contains (after its update according
to these messages) less than k neighbors of estimated coreness at least k due to the
update. By definition of v and rv, coreness updates emitted before the end of round rv
are legitimate and v has indeed less than k neighbors of coreness at least k after the
edge addition. According to the locality theorem, this contradicts the hypothesis that v’s
coreness increments after the edge addition. Therefore, it is not possible for a node to

5.5 analytical and experimental study 86

erroneously not increment its coreness estimation during the edge addition process.

(2) Erroneous incrementation. Let’s assume that some vertices did increment their
estimation while they should not have. Let V+ be the set of such nodes and let v be
a node in V+. Note that, in spite of the incrementation hypotheses, each node has a
consistent view of its neighbors’ estimations at the end of the process (i.e., the values
stored in est are consistent with local estimations). By hypothesis, v’s estimation is k.
Since each time est is modified the node re-computes its coreness, v has at least k
neighbors of estimated coreness greater or equal to k. Let K be the largest connected
subgraph containing v and whose nodes all have an estimated coreness greater or equal
to k. For all vk ∈ K, either

• vk is of coreness k. According to the locality theorem, it has at least k neighbors
of coreness greater or equal to k. By definition of K, these neighbours are in K.
Therefore, vk has at least k neighbors of coreness greater or equal to k in K.

• vk ∈ V+. As seen before, it therefore has at least k neighbors of estimated coreness
greater or equal to k who are in K by definition of K.

Therefore, K is contained in a k-core by definition. Since v is in K, v is of coreness at
least k. This is a contradiction. Therefore, it is not possible for a node to erroneously
increment its coreness estimation during the edge addition process.
Thus, the edge addition process is correct.

5.5.1.5 Node addition

In the case of node addition, the study is quite trivial: obviously, the addition of some
node v with no edge does not impact the coreness of other nodes as v’s neighborhood
is empty.

A simple initialization is performed on v, taking a single round. During the initializa-
tion, isChanged is set to false and the procedure computeEstimate is thus triggered
once. The coreness of v equals its degree, 0, and the estimated coreness is not modified.
No messages are exchanged as v has no neighbours. Therefore:

Ctna(v) = Ccna(v) = 1

Cmna(v) = 0

(5.10)

5.5.2 Complexity: Experimental Study

In this subsection we perform an analysis on real online social networks as it is impor-
tant to see how our analytical results translate in the real world. We specifically focus
on edge addition as it is the most costly event and also the one that differs the most from
the static version of the algorithm.

datasets We have performed experiments with several real-world networks. Ta-
ble 5.2 presents the datasets used in our study, along with some relevant properties.
A detailed description of the datasets is presented in Section 2.4 of Chapter 2.

results Tables 5.3 to 5.6 present for every of the aforementioned datasets the average
ICS size, average PIICS size, average ICS diameter and average PIICS diameter for every
coreness group. We specifically focus on the aforementioned values as those are the
ones related to the complexity of an edge addition event. The size of the aforementioned

5.5 analytical and experimental study 87

Dataset NetHEPT WikiVote Email-Enron Epinions

Nodes 15K 7K 34K 75K

Edges 62K 103K 180K 405K

kmax 31 53 43 67

Table 5.2: Properties of the real-world graphs used.

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1.79 1.14 0.75 0.14

2 3.44 1.69 1.37 0.55

3 17.33 6.20 4.05 2.03

4 109.58 22.59 14.81 3.00

5 376.35 206.91 12.64 9.48

6 256.05 152.94 11.57 9.26

7 147.37 99.27 7.80 8.12

8 191.58 154.45 5.19 4.22

9 10.00 1.00 1.00 0.00

18 19.00 1.00 1.00 0.00

20 21.00 1.00 1.00 0.00

23 24.00 1.00 1.00 0.00

31 32.00 1.00 1.00 0.00

Table 5.3: ICS and PIICS statistics for NetHept network

subgraphs define the number nodes that will be impacted while their diameter is related
to the upper bound of the time complexity for such an event.

We have seen that the total number of messages that will be sent in case of an edge
addition is approximately bounded by three times the sum of the degree of nodes in
the PIICS induced by the respective vertex. We observe that for the NetHept dataset the
largest average PIICS detected is the one for nodes in the 5-core subgraph and consists on
average of 206.91 nodes. This is just a 1.36% fraction of the total number of nodes in the
dataset. Similar values are observed for the rest of the datasets, even for the largest of the
four chosen datasets for this study, Epinions, the the largest average PIICS detected is
the one for nodes in the 53-core subgraph and consists on average of 324.04 node which
is just a 0.63% fraction of the total number of nodes. From this analysis we conclude
that it is a lot less costly to use our P2P algorithm, in terms of number of messages that
will be sent, than Montresor’s algorithm [120] which in the case of an edge addition,
requires that all nodes broadcast a message at least once in order to calculate the new
coreness estimations.

In terms of temporal complexity, again for the case of an edge addition, the number of
steps that will be performed by our algorithm is approximately bounded by two times
the diameter of the PIICS. We observe that for the WikiVote dataset the largest average
PIICS diameter detected is the one for nodes in the 51-core subgraph and equals to 13.76.
For the Email-Enron dataset the largest average PIICS diameter detected is the one for
nodes in the 39-core subgraph and equals to 10.45.

5.5 analytical and experimental study 88

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1.05 1.02 0.03 0.02

2 1.58 1.15 0.48 0.13

3 3.24 1.67 1.03 0.47

4 3.85 2.00 1.05 0.56

5 3.59 1.91 1.08 0.52

6 4.76 2.35 1.38 0.68

7 9.95 6.33 1.77 1.22

8 5.61 3.72 1.34 0.84

9 6.72 3.90 1.94 1.10

10 3.72 2.62 1.28 0.72

11 4.48 3.35 1.18 0.77

12 3.73 2.67 1.20 0.64

13 3.16 1.93 0.96 0.42

14 5.86 4.02 2.21 1.25

15 2.66 1.60 1.20 0.39

16 3.37 1.89 1.37 0.49

17 2.74 1.79 1.25 0.55

18 2.61 1.75 1.28 0.63

19 2.09 1.30 0.98 0.24

20 4.26 2.44 2.04 0.82

21 2.59 1.73 1.29 0.65

22 12.44 5.68 5.17 1.69

23 5.61 2.22 2.31 0.61

24 9.00 2.77 4.70 1.13

25 11.91 2.85 6.01 0.89

26 3.47 1.79 2.12 0.58

27 25.05 14.30 6.83 4.46

28 10.96 4.03 4.68 1.51

29 18.74 5.34 7.34 1.37

30 44.68 22.87 6.87 4.14

31 44.25 11.13 11.63 1.73

32 75.04 28.39 13.57 3.70

33 8.27 3.48 4.19 1.40

34 140.40 101.53 10.54 9.00

35 54.30 33.55 9.63 8.00

36 58.51 36.62 7.04 7.25

37 26.80 17.24 6.49 5.20

38 76.00 59.22 6.00 7.00

39 58.03 42.03 9.83 10.45

40 86.00 76.12 6.00 6.00

41 37.28 24.86 5.58 5.40

42 50.04 42.35 4.90 4.90

43 275.00 267.03 3.00 3.00

Table 5.4: ICS and PIICS statistics for the EmailEnron network

5.5 analytical and experimental study 89

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1.02 1.01 0.01 0.01

2 1.01 1.00 0.01 0.00

3 1.06 1.02 0.06 0.02

4 1.01 1.00 0.01 0.00

5 1.08 1.03 0.08 0.02

6 1.04 1.00 0.04 0.00

7 1.21 1.12 0.18 0.09

8 1.19 1.06 0.19 0.04

9 1.18 1.10 0.18 0.10

10 1.14 1.06 0.14 0.06

11 1.26 1.08 0.26 0.07

12 1.90 1.67 0.58 0.44

13 1.09 1.03 0.09 0.03

14 1.20 1.09 0.20 0.09

15 1.36 1.15 0.36 0.12

16 1.37 1.15 0.37 0.15

17 1.23 1.08 0.23 0.08

18 2.03 1.29 0.91 0.20

19 1.17 1.02 0.17 0.02

20 2.26 1.61 0.89 0.47

21 5.15 2.04 2.78 0.65

22 3.63 2.11 1.49 1.06

23 1.58 1.24 0.58 0.24

24 2.09 1.42 0.70 0.28

25 1.67 1.19 0.56 0.15

26 1.61 1.06 0.61 0.06

27 1.30 1.11 0.30 0.11

28 2.82 1.49 1.38 0.27

29 2.62 1.77 1.54 0.60

30 2.18 1.39 1.08 0.33

31 9.43 5.83 3.22 2.41

32 6.68 2.39 3.18 0.73

33 12.09 5.35 4.74 1.56

34 4.14 3.27 1.95 1.43

35 4.50 1.79 2.33 0.79

36 8.91 2.93 4.52 0.87

37 14.33 5.49 4.97 2.74

38 25.39 10.33 10.33 2.79

39 11.00 4.05 5.00 1.40

40 58.45 22.68 12.21 4.84

41 18.62 2.53 8.30 0.74

42 7.47 4.03 2.82 1.68

43 4.45 3.00 3.05 1.23

44 9.93 4.05 4.21 1.77

45 40.60 21.66 9.00 4.60

46 38.63 22.18 11.23 8.43

47 73.08 26.40 8.77 8.91

48 39.31 19.18 7.51 9.64

49 139.00 112.19 6.00 6.99

50 45.24 28.59 7.53 7.94

51 52.04 31.43 6.87 13.76

52 144.00 132.08 5.00 5.00

53 336.00 324.04 3.00 3.00

Table 5.5: ICS and PIICS statistics for the WikiVote network

5.5 analytical and experimental study 90

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1.33 1.12 0.24 0.12

2 1.73 1.24 0.56 0.21

3 1.92 1.38 0.60 0.24

4 1.87 1.35 0.63 0.27

5 2.02 1.43 0.66 0.28

6 2.11 1.54 0.67 0.35

7 2.07 1.44 0.68 0.29

8 2.13 1.52 0.73 0.34

9 2.80 1.83 1.01 0.44

10 2.23 1.49 0.80 0.27

11 3.39 2.63 0.83 0.46

12 2.26 1.68 0.70 0.33

13 1.80 1.34 0.57 0.28

14 2.71 1.87 0.92 0.48

15 2.01 1.40 0.73 0.28

16 2.79 1.62 1.32 0.40

17 1.72 1.33 0.56 0.25

18 4.38 3.02 1.46 0.80

19 4.86 3.71 1.18 0.48

20 2.77 1.54 1.19 0.36

21 2.97 1.89 1.35 0.55

22 8.71 6.40 1.95 1.23

23 2.29 1.33 1.07 0.27

24 5.60 1.89 3.37 0.64

25 2.14 1.38 1.14 0.38

26 2.46 1.48 1.18 0.33

27 2.44 1.70 1.08 0.50

28 4.04 1.89 2.13 0.72

29 2.78 2.01 1.09 0.52

30 3.13 1.78 1.56 0.56

31 3.47 2.00 1.88 0.80

32 9.23 2.65 3.55 0.77

33 5.97 2.73 2.52 0.99

34 5.71 2.48 3.23 1.19

35 3.60 2.09 1.52 0.75

36 6.58 2.29 3.40 0.54

37 46.31 8.00 10.72 1.62

38 20.65 5.50 5.73 1.01

39 3.83 1.93 2.07 0.70

40 13.52 3.65 5.43 1.05

41 28.64 15.62 7.99 3.73

42 7.98 3.95 3.70 1.43

43 31.39 10.65 7.90 3.18

44 28.77 9.88 7.77 2.20

45 114.53 94.06 6.64 7.95

46 19.67 8.77 6.33 2.68

47 19.82 6.68 5.76 1.71

48 11.24 3.62 5.74 1.21

49 23.81 10.70 6.91 3.77

50 81.93 41.35 11.84 13.36

51 20.57 5.98 7.02 1.00

52 36.80 13.97 10.43 3.38

53 51.25 9.52 10.14 1.47

54 63.91 43.86 7.84 4.84

55 96.02 56.90 7.92 7.19

56 53.68 23.08 9.11 5.32

57 80.07 53.38 6.83 11.48

58 72.03 42.64 6.91 10.88

59 11.91 4.88 6.18 2.33

60 56.19 39.13 8.56 6.39

61 40.14 15.59 11.45 6.36

62 77.17 55.92 6.77 5.58

63 38.19 19.86 6.71 4.29

64 73.00 52.75 6.00 5.84

65 36.15 21.95 6.65 7.17

66 231.00 217.06 4.00 4.00

67 486.00 477.02 3.00 3.00

Table 5.6: ICS and PIICS statistics for the Epinions network

5.6 security and privacy analysis 91

5.6 security and privacy analysis

Whenever confronted with sensitive data, such as social networking data, security and
privacy questions come to mind. Most importantly, using pseudonyms (i.e. removing
node identifiers) is not sufficient to provide privacy to social network users [123]. In this
section, we perform a security and privacy analysis of our approach, by overviewing
existing privacy models for graphs, and by showing how such models can be used in
our context to anonymize the data. We then perform a quality analysis to show that
our coreness computation remains robust even when running on anonymized graphs.
We thus discuss the impact of security and privacy, which depends on anonymization
parameters, on the quality of the output, measured by comparing the results of our
algorithm executed on the initial and anonymized graphs.

First of all, we will describe the general anonymization process for graphs, and a state
of the art methodology to reconstruct the original while using its anonymized version.
Our contribution in this Chapter is to propose a secure protocol to apply state of the
art graph anonymization techniques and subsequently to study the influence of state of
the art graph anonymization on the quality of the results of our coreness computation
algorithm.

5.6.1 Attack Model

The social network de-anonymization attacks considered in this work are those de-
scribed in the work of Narayanan et al. [123]. In this context, the attacker A is assumed
to know Gaux which represents some knowledge of the real graph topology G (partial
or complete), and the attack consists in trying to map nodes of Gaux to nodes in G̃
which is the observed graph that the attacker can obtain during the execution of the
algorithm. In a worst case scenario, one can assume that Gaux = G.

Obviously, in a real context, Gaux ⊂ G and nodes in G̃ contain additional information
that A wishes to append to his own knowledge of Gaux.

We consider the following kind of attackers in our scenario:

1. Aint: The attacker is a member of the network. He knows his own neighbors
and receives their messages. Therefore he knows the degree and the evolution of
estimated coreness of its neighbors.

2. Aext: The attacker is outside of the network but manages to have access to all the
exchanged messages. He knows which nodes are communicating with one another,
as well as the degree and the evolution of estimated coreness of each node.

Our approach to security and privacy for both these attackers is similar : is the at-
tacker able to reconstruct (part of) the original graph from the information that he has?
Although exact graph reconstruction simply from the knowledge of the degrees of the
graph is difficult, Narayanan and Shmatikov [123] have shown that it is possible to re-
construct parts of it, based on finding some “seed” nodes who have rare degrees, and
progress from that point to de-anonymize a large portion of the graph. Thus, it is not
acceptable for any attacker to obtain the exact degrees of the graph.

In case of Aext, one can easily see that if the algorithm runs on the real topology, then
Aext can reconstruct G without even using Gaux since G̃ = G.

Therefore, in order to have G̃ 6= G, our algorithm should obviously not run on the
original graph but on a modified version, and any observation of the network should
lead to seeing the anonymized topology and in no case G itself. In this case, the attacker

5.6 security and privacy analysis 92

knows G̃ 6= G and Gaux and tries to reconstruct G by mapping vertices from G̃ to Gaux.
This model is equivalent to the global surveillance attacker model defined in [123].

In order to secure the coreness computation process, two complementary techniques
are used: messages are all encrypted, so that no information may actually leak from
the contents of the messages for an external observer (such as temporary coreness val-
ues) and 2) communications of the nodes must be modified so that the actual topology
observed by the attackers is different from the real topology. Casas-Roma et al. [32] pro-
posed a technique to produce such a graph G̃ by switching, adding and deleting edges
of G. In particular they aim at preserving information quality, meaning that algorithms
should have similar results whether they are run on G̃ or G. Different algorithms are
more or less robust to such an anonymization process. We will show in what follows
that our distributed coreness computation algorithm is very robust to anonymization.

In practice, we need to implement this anonymization model in a distributed context.
This can be achieved by i) not broadcasting to a set of random neighbors (which cor-
responds to deleting an edge from the graph) and ii) by sending messages to random
nodes of the graph which are not neigbours (which corresponds to adding edges to the
graph). In a social network, these random nodes can be selected by simply contacting
non-neigbour nodes in a connected component.

In the rest of this Section, we will assume that G̃ 6= G in other words, that the graph
that can be observed by a global attacker has been anonymized with a specific pro-
cess which we will describe next, and whose precise parameters will be explained in
section 5.6.3. By running our algorithm on such a graph, we achieve the security and
privacy objective. We will next show that our algorithm continues to produce good re-
sults in terms of coreness ranking, thus achieving the quality objective.

5.6.2 Privacy and Information Quality

In our case, the quality (i.e. robustness) of an algorithm is linked to the similarity of
nodes’ corenesses when computed on G and G̃. The objective is that the distribution of
nodes with regards to their coreness is similar when running on both G and G̃.

Indeed, the applications that we consider are interested in selecting nodes with high-
est coreness values, regarless of this actual value, since coreness is studied in particular
to identify highly influential individuals. Specifically, the nodes that belong to the dens-
est k-core subgraph are proved to be more efficient information spreaders [93]. To assess
the quality of G̃, we will therefore compare the resulting nodes when influential individ-
uals are chosen from the different versions of the graph. Those influential individuals
are obviously chosen from the top k-core subgraph (or subgraphs depending on the
number of individuals required) as previously suggested.

In other words, we do not necessarily want nodes to have the exact same coreness
values when computing our algorithm on G and G̃, but we want sets of nodes ranked by
coreness to be the same.

5.6.3 Experimental results

In this Section we present experimental results concerning the quality of the influential
entities acquired from anonymized versions of a graph.

5.6 security and privacy analysis 93

5.6.3.1 Datasets and methodology

datasets For the experiments of this Section we have used the NetHept, WikiVote

and Email-Enron datasets, some relevant properties of which are presented in Table 5.2.
A detailed description of the datasets is presented in Section 2.4 of Chapter 2.

anonymization process We produce anonymized versions of the datasets by ran-
domly adding and/or deleting edges from the initial graph. The edges are added/deleted
based on two parameters α and β. They represent the percentage of the total edges to
be added and deleted respectively. We specifically consider two different settings:

• Setting I: Only random deletions of edges occur. In this case α is obviously equal
to 0 whereas β can take values from 0.1 to 0.9.

• Setting II: Both random additions and deletions of edges occur. Both α and β take
values from 0.1 to 0.9.

Definition 5.7 (Anonymization Security AS). The anonymization security AS of an algorithm
is measured by α in Setting I and by the couple (α,β) in Setting II.

Obviously in Setting II, values of AS are not necessarily comparable, but form a lattice.

methodology Experimentally, as the edges are added/dele-ted in a random way,
for each anonymized version (i.e., for a specific choice of an AS value) we repeat the
process 10 times and report average behavior.

In order to evaluate the quality of influential entities that are acquired from the
anonymized versions of the graphs we define the following metrics.

Definition 5.8 (Quality q). The Quality q of the influential nodes computed using an anonymized
version of a graph is defined as the number of nodes returned that are indeed influential in G. In
other words, it is the number of influential nodes that are common whether they were computed
using the anonymized graph G̃ or the original graph G.

The most common practice in respective applications, is to require a specific amount
of influential nodes of the graph. Let us define as X% the percentage of influential nodes
required out of the total number of nodes of the graph. We note z the actual number of
influential nodes required, hence the following definition of Normalized Quality qN.

We note as Gz the top z nodes computed using our algorithm running on G. We note
G̃z the top z nodes computed using our algorithm running on G̃. As some nodes may
have the same coreness value, it is possible that |Gz|> z and/or G̃z > z.

Definition 5.9 (Normalized Quality qN). The Normalized Quality qN of the influential nodes
acquired from an anonymized version of the graph, is the number of influential nodes that are
common when chosen from either version of the graph (G̃ or G) averaged over the number z of
influential nodes required.

Obviously qN takes values between 0 and 1. It should be noted that the value that
will be reported in the results is the average of the values produced by the different
iterations performed for the production of each anonymized version of the graph.

A first idea would be simply to compute qN by using the Jaccard index :

qN =
|Gz ∩ G̃z|
|Gz ∪ G̃z|

(5.11)

5.6 security and privacy analysis 94

(a) original graph (b) modified graph

Figure 5.4: Toy example to demonstrate the computation of q1, q2 and qN which represent
the base, randomized and normalized quality of influential nodes acquired from an
anonymized version of a graph. The top 3 corenesses (left column) and the nodes
characterized by them (right column) are depicted for the (a) original graph and
the (b) modified graph When z = 3 - when 3 influential nodes are required - q1 = 2,
q2 = 0 and qN = 0.667. Whereas when z = 4, then q1 = 2, q2 = 0.75 and qN = 0.6875.

However, in fact our algorithm does not return a set of z nodes, but instead a partially
ordered list. We should take this order into account when deciding which nodes to select.
Thus in fact, qN can be better calculated as follows:

qN =
q1 + q2

z
(5.12)

where q1 is the base quality and q2 the randomized quality. In order to define q1 and
q2, let us denote as VN and Vi<N the set of nodes that belong in the Nth and the N− 1

top coreness groups of the original graph respectively. The equivalent sets of nodes of a
modified version of the graph are denoted as V ′N and V ′i<N. Let Y be the natural number
such that |Vi<Y | < z 6 |Vi<Y+1|. Equivalently Y ′ is the natural number such that |V ′i<Y ′ |6
z < |V ′i<Y ′+1

|. Then the base and randomized quality can be calculated as follows:

q1 = |V ′i<Y ′ ∩ Vi<Y+1| (5.13)

q2 = |S|
|P ∩ Vi<Y+1|

|P|
(5.14)

where |S| is the number of nodes remaining to be picked after having selected |V ′i<Y ′ |

nodes (i.e., |S|= z− |V ′i<Y ′ |). In this case where |S|>0, |V ′i<Y ′+1
| > |Vi<Y+1| > |V ′i<Y ′ |. Let

A = V ′i<Y ′ ∩ Vi<Y+1 which defines the set of correct influential spreaders that we need
to select based on their ranking. Then P = V ′i<Y ′ \A ∪ V ′i=Y ′ which defines the set of all
nodes that have not already been considered and that will be considered now.
q2 actually represents the mean of a hypergeometric distribution [136]. The latter

represents a discrete probability distribution describing the probability of ` successes in
m draws, without replacement, from a finite population of size M that contains exactly
L successes, wherein each draw is either a success or a failure. The mean of such a
distribution is calculated as follows:

Meanhg = m
L

M
(5.15)

In our case we are interested in knowing the mean of the probability of m = z −

|V ′i<Y ′ | draws without replacement from a population of size |P| that contains exactly
|P ∩ Vi<Y+1| successes (i.e., nodes that are indeed the correct top spreaders in the orig-
inal graph). We could have simply considered the hypergeometric mean of sampling

5.6 security and privacy analysis 95

(a) NetHept (b)WikiVote (c) EmailEnron

Figure 5.5: Distribution of nodes in the top k-core subgraphs in the original fomat of the
real datasets tested. The data reported for the following datasets: (a) NetHept,
(b)WikiVote and (c) EmailEnron. The coreness values of X%=1%, 5% and 10% of
top spreaders selected are shown.

z individuals from V ′i<Y ′+1
with|V ′i<Y ′+1

∩ Vi<Y+1| correct individuals. However, as we
have a ranking of spreaders, we initially take all the V ′i<Y ′ (computation of q1), and
simply sample the V ′i<Y ′+1

ones (computation of q2).

A toy example is presented in 5.4 in order to demonstrate the calculation of q1, q2

and qN. The example depicts the nodes belonging to the top 3 coreness groups in the
(a) original and the (b) modified graph respsectively. The ′ was added to the notation of
the coreness groups of the modified graph as the value k of the densest k-core subgraph
may change after addition and/or deletion of edges. Let us consider the case where 3

influential nodes (i.e., z = 3) need to be picked from the modified graph. Then Vi<Y+1 =
{b, h, j}, V ′i<Y ′ = {a, b, h} and V ′i<Y ′ ∩ Vi<Y+1 = {b, h}. Which means that q1 = 2. As
|S|= z− |V ′i<Y ′ |= 0 also q2 = 0. Finally the normalized quality equals to qN = 2 + 0/3 = 0.667.
If z = 4, then Vi<Y+1 = {b, h, j, a, c, d}, V ′i<Y ′ = {a, b, h} and V ′i<Y ′ ∩Vi<Y+1 = {b, h} which
results in q1 = 2. In this case |S|= 1, P = {c, d, j, n}. Then the randomized quality equals to
q2 = 1 ∗ 3

4
which results in a randomized quality qN = 0.6875.

5.6.3.2 Evaluating the quality of influential spreaders on anonymized graphs

Figure 5.6 depicts the normalized quality qN of top influential nodes selected from anony-
mized versions of real datasets produced as Settings I and II suggest. The qN values
presented are calculated for different numbers of nodes - X% represents the percentage
of the nodes required out of the total number of nodes of the dataset. It should be noted
that even if the proportions of edges added are the same with those that are deleted in
Setting II, the actual edges deleted are different from those that were added in order to
create the anonymized versions of the graph.

We observe that for the NetHept dataset, the qN values are greater than 65% up
until there are 50% of edge deletions (Setting I, a=0, b=0.5). Whereas when both edges
are added and deleted, the normalized quality is greater than 70% for the first four
anonymized versions (i.e., until there are a=0.4 and b=0.4 additions and deletions re-
spectively). In the case of the WikiVote dataset, the quality results are more promising
even for large perturbations. We observe that even for 90% of edge deletions (Setting I,
a=0, b=0.9), qN is approximately 78% when 10% of top spreaders are to be selected. In
general for both Settings I and II the normalized quality is greater than approximately
70% and 60% respectively. For the Email-Enron dataset the results are still convincing,
the qN values are greater than 70% up until there are 80% of edge deletions (Setting I,

5.6 security and privacy analysis 96

2 4 6 8 10

X% of top spreaders

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 q

u
a

lit
y
 q

N

a=0, b=0.1
a=0, b=0.2
a=0, b=0.3
a=0, b=0.4
a=0, b=0.5
a=0, b=0.6
a=0, b=0.7
a=0, b=0.8
a=0, b=0.9

2 4 6 8 10

X% of top spreaders

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 q

u
a

lit
y
 q

N

a=0.1, b=0.1
a=0.2, b=0.2
a=0.3, b=0.3
a=0.4, b=0.4
a=0.5, b=0.5
a=0.6, b=0.6
a=0.7, b=0.7
a=0.8, b=0.8
a=0.9, b=0.9

(a) NetHept: Setting I (b) NetHept: Setting II

2 4 6 8 10

X% of top spreaders

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 q

u
a

lit
y
 q

N

a=0, b=0.1
a=0, b=0.2
a=0, b=0.3
a=0, b=0.4
a=0, b=0.5
a=0, b=0.6
a=0, b=0.7
a=0, b=0.8
a=0, b=0.9

2 4 6 8 10

X% of to pspreaders

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 q

u
a

lit
y
 q

N

a=0.1, b=0.1
a=0.2, b=0.2
a=0.3, b=0.3
a=0.4, b=0.4
a=0.5, b=0.5
a=0.6, b=0.6
a=0.7, b=0.7
a=0.8, b=0.8
a=0.9, b=0.9

(c) WikiVote: Setting I (d) WikiVote: Setting II

2 4 6 8 10

X% of top spreaders

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
a

liz
e

d
 q

u
a

lit
y
 q

N

a=0, b=0.1
a=0, b=0.2
a=0, b=0.3
a=0, b=0.4
a=0, b=0.5
a=0, b=0.6
a=0, b=0.7
a=0, b=0.8
a=0, b=0.9

2 4 6 8 10

X% of top spreaders

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 q

u
a

lit
y
 q

N

a=0.1, b=0.1
a=0.2, b=0.2
a=0.3, b=0.3
a=0.4, b=0.4
a=0.5, b=0.5
a=0.6, b=0.6
a=0.7, b=0.7
a=0.8, b=0.8
a=0.9, b=0.9

(c) EmailEnron: Setting I (d) EmailEnron: Setting II

Figure 5.6: Normalized Quality qN of different percentages of top spreaders selected from
anonymized versions of real datasets.

5.7 conclusions and remarks 97

a=0, b=0.8) and 70% of edge additions and deletions (Setting II, a=0.7, b=0.7). It is im-
portant to note that Narayanan et al. have shown in [123] that graph de-anonymiza-tion
attacks are ineffective when b > 0.75.

In consequence, experimental results show that even for the case when the original
graph is subject to great perturbations, the normalized quality is sufficiently high. Thus,
we can indeed run our algorithm on a modified version of the graph G̃ for high AS
values thus preventing reconstruction of the original graph from possible attackers while
preserving the desired information quality.

What is interesting to mention, is that the qN values presented for a range of per-
turbations below 50% or 70% for Net-Hept and WikiVote respectively show a similar
behavior. Under such perturbations the graph has not yet lost the required information
quality for nodes’ spreading capabilities. Observe for example the behavior of the qN
values for both Settings for the WikiVote dataset up until there are 70% of edge modifi-
cations. Similarly for the NetHept dataset up until there are 50% of edge modifications.
This behavior may be justified by the specific coreness distribution of the nodes in the
original graph with which the comparison occurs in order to calculate the normalized
quality values. Figure 5.5 depicts the number of nodes distributed in top coreness groups
for the original forms of the datasets examined. The coreness groups depicted include
the top 10% of nodes that are used to provide the quality results.

Finally, let us note that it would be possible to conduct experiments by controlling
even more how edges are added and deleted, in order to increase the difficulty of de-
anonymization techniques (e.g. by increasing the probability of removing edges for high
degree nodes). We have not studied the impact of such optimizations since we believe
that current results are already very convincing and show that our anonymization ap-
proach is feasible and provides good quality while achieving good security and privacy.

To conclude on the privacy aspect, one could reflect on the privacy risk of publishing
the coreness value of a node. Coreness value is not a direct identifier, such as degree can
be, where some nodes (or small groups of nodes) have unexpectedly high and/or rare
degree values, and are consequently easy to deanonymize. On the contrary, coreness de-
fines an equivalence class. As shown in column ICS of Tables 5.6 and 5.5, the cardinality
of the smallest equivalence groups is usually hundreds of nodes, thus coreness benefits
from an intrinsic form of k-anonymization.

5.7 conclusions and remarks

In this Chapter we have studied the privacy point of view of sharing metrics that are
good indicators concerning the spreading capabilities of a node in a network. We have
specifically focused on the k-core centrality of a node which has been proved to be an
efficient metric to locate the nodes that succeed in disseminating information to a large
part of the population.

We have designed an algorithm that computes in an efficient, correct, secure and
privacy-preserving way this k-core metric and adopted a decentralization approach
where the social network is considered as a Peer-to-peer (P2P) system. While a dis-
tributed algorithm that computes once and for all the nodes’ coreness is already pro-
posed, networks that evolve over time are not taken into account. Our main contribution
is an incremental algorithm that succesfully computes the up-to-date k-core values that
limits the number of messages and computations needed when a modification occurs to
the network.

By performing a complexity analysis and experimenting on real graphs, we show that
our algorithm is less costly than the existing baseline algorithm in terms of numbers of

5.7 conclusions and remarks 98

messages that will be sent between peers, number of local computations and temporal
complexity.

We finally perform a security and privacy analysis of our system. After describing the
possible attacks that may occur in a social network, we discuss the desired privacy and
information quality that needs to be achieved in our scenario. After performing exper-
iments on real datasets, we show that the information quality achieved is sufficiently
high even when the original graph is subject to great perturbations that serve to provide
anonymized versions of the graph for privacy purposes.

As future work we plan to extend our algorithm to support concurrent changes in
the network. We also intend to propose a distributed algorithm that succeds in correctly
computing other influence indicators (e.g., the K-truss centrality) for dynamic networks.

6
C O N C L U D I N G R E M A R K S

N etworks are ubiquitous and have introduced numerous challenging problems
to the research community. This dissertation has focused on social networks
and specially on social influence. We specifically use graph mining techniques

to study influence propagation and influence maximization in social networks. We par-
ticularly:

- Develop tools that can efficiently rank the users based on their influential capabil-
ities.

- Design algorithms that can locate a privileged group of nodes that – by acting
all together – can maximize the spread of influence in a network at the end of a
diffusion phenomenon.

- Develop models that can calculate metrics which measure the influence of an indi-
vidual in a network in a secure and private way.

In the next Section, we provide an overview of the main contributions of the thesis
and discuss future research directions.

6.1 summary of contributions and future work

identification of individual influential spreaders In Chapter 3 we fo-
cused on identifying individual influential spreaders in social networks. Even if degree
centrality may seem an effective metric in locating such privileged entities, it appears
to present some drawbacks. A node may have a great number of neighbors but if it is
located in the periphery of the network its influential capabilities are reduced. It has
been shown that those nodes that are centrally placed in the network are those that
can efficiently spread information to the greatest possible number of individuals. We
specifically proposed to use the K-truss decomposition to locate such individuals and
we showed that indeed the specific nodes can influence a greater part of the network
during the first steps of the spreading process but also the total fraction of influenced
nodes at the end is higher.

Moreover, we explored the centralities of the entities that are involved in a spread-
ing process which is triggered by different groups of influential spreaders of a network.
While using models borrowed from the field of epidemics to simulate the process, we
observed specific patterns during the spreading phenomenon. By comparing the simu-
lated diffusion process with real influence, we observe that the aforementioned models
cannot reproduce the real diffusion in terms of the evolution of the centralities of the
infected nodes.

It would be interesting to experiment in the future with dynamic networks where
node and/or edge modifications may occur. The question seems to be whether the K-
truss decomposition is a robust enough metric to provide such entities that will still
retain their spreading capabilities after changes in the network occur. Finally it would
be interesting to check whether the already proposed metrics for locating privileged
spreaders work equally well when different models are used to simulate the process.
We would furthermore like to examine what is the behavior of the centralities of the

99

6.1 summary of contributions and future work 100

entities when different spreading models are used and whether those can reproduce
real diffusion.

identification of a group of influential spreaders In Chapter 4 we stud-
ied the problem of locating a group of nodes in a social network that by acting together
can maximize information diffusion. Nodes that are discovered using methods men-
tioned in Chapter 3 cannot be directly used in order to discover the set of nodes in
question. That is justified by the fact that the influence of one can overlap with the influ-
ence of another top spreader. The problem of Influence Maximization(IM) – as it is usually
called – constitutes an NP-hard problem. A simple greedy algorithm has been proved
to provide good approximation guarantees. Nevertheless, there are obviously serious
scalability concerns – the greedy algorithm cannot provide results as soon as needed for
large-scale networks.

We proposed a Matrix Influence (MATI) algorithm, an efficient influence maximiza-
tion algorithm designed for both the Linear Threshold (LT) and Independent Cascade
(IC) diffusion models. MATI takes advantage of the possible paths that are created in
each node’s neighborhood and succeeds in locating the users that can maximize the
influence in a social network while also being scalable for large datasets.

It would be interesting to experiment with the centralities used to identify individual
spreaders in order to see whether they can describe the group of nodes that are discov-
ered after applying influence maximization algorithms. If the respective group of nodes
is well defined by the aforementioned centralities, it would be interesting to use them
as heuristics to speed up the IM algorithms. It has been shown that the already existing
models that simulate information diffusion cannot efficiently reproduce a real spreading
process in networks. It would be interesting to design new models that can represent
better a spreading phenomenon by incorporating memory of past events (succesful or
unsuccesful efforts of entities to influence one another) or by taking into account also
the fact that in real life influence is not always positive but might be negative as well.

secure and private computation of influential metrics In Chapter 5

we focused on the secure and private computation of metrics that reveal influential
entities in social networks. Nevertheless such metrics require knowledge of the social
network. Such practices raise serious concerns associated with the publishing of such
sensitive information. We have adop-ted a decentralization approach to favor privacy, we
specifically proposed a P2P algorithm that can efficiently calculate the k-core centrality
of each node.

The k-core centrality has been proven to be a metric that succesfully ranks the nodes
in a network based on their spreading capabilities. A distributed algorithm that calcu-
lates said metric already exists, though networks that evolve over time are not taken
into account. Our main contribution is an incremental algorithm that succesfully com-
putes the up-to-date k-core values that limits the number of messages and computations
needed when a modification occurs to the network.

We performed a complexity analysis and made experiments on real graphs to show
that our algorithm is less computationally expensive in terms of numbers of messages
that are sent between peers, number of node computations and temporal complexity.
Additionally, a security and privacy analysis has been performed along with experi-
ments on real datasets. There is a need of good information quality in anonymized
versions of the datasets in order to prevent attackers from reconstructing the original
dataset. We showed that great perturbations do not result in severe loss of the quality of

6.2 epilogue 101

the spreaders that can be provided by the k-core decomposition thus our algorithm can
indeed securely calculate such a measure.

Our algorithm treats each update individually but we are currently working on ex-
tending it in order to support concurrent changes in the network. It would be interesting
to design a distributed algorithm that calculates other influence indicators such as the
K-truss centrality which as presented in Chapter 3 has been proven to filter out the best
spreaders of the k-core structure.

6.2 epilogue

Social networks have presented numerous demanding but at the same time interesting
problems to the research community. Throughout this dissertation we have presented
our understanding of the area of influence maximization and reported findings that
will hopefully help its comprehension and progress. Even though a lot of work has been
done in the field, there are still unanswered questions and challenging problems that
will further enlighten our knowledge about networks but also social behavior.

B I B L I O G R A P H Y

[1] Hidayet Aksu, Mustafa Canim, Yuan-Chi Chang, Ibrahim Korpeoglu, and Özgür
Ulusoy. “Distributed k-Core View Materialization and Maintenance for Large
Dynamic Graphs.” In: IEEE Transactions on Knowledge and Data Engineering 26.10

(2014), pp. 2439–2452.

[2] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex net-
works.” In: Reviews of modern physics 74 (1 2002), pp. 47–97.

[3] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and attack tol-
erance of complex networks.” In: Nature 406.6794 (2000), pp. 378–382.

[4] Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le Folgoc,
Benjamin Nguyen, Philippe Pucheral, Indrajit Ray, Indrakshi Ray, and Shaoyi
Yin. “Secure personal data servers: a vision paper.” In: Proceedings of the VLDB
Endowment 3.1-2 (2010), pp. 25–35.

[5] Luıs A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene Stan-
ley. “Classes of small-world networks.” In: Proceedings of the National Academy of
Sciences 97.21 (2000), pp. 11149–11152.

[6] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. “Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography.” In:
WWW ’07: Proceedings of the 16th International Conference on World Wide Web. ACM.
2007, pp. 181–190.

[7] Joonhyun Bae and Sangwook Kim. “Identifying and ranking influential spread-
ers in complex networks by neighborhood coreness.” In: Physica A: Statistical
Mechanics and its Applications 395 (2014), pp. 549–559.

[8] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. “Every-
one’s an influencer: quantifying influence on twitter.” In: WSDM ’11: Proceedings
of the Fourth ACM International Conference on Web Search and Data Mining. ACM.
2011, pp. 65–74.

[9] Krisztian Balog, Leif Azzopardi, and Maarten De Rijke. “Formal models for ex-
pert finding in enterprise corpora.” In: SIGIR ’06: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information Re-
trieval. ACM. 2006, pp. 43–50.

[10] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. “Topic-Aware Social
Influence Propagation Models.” In: ICDM ’12: Proceedings of the 12th International
Conference on Data Mining. 2012, pp. 81–90.

[11] John Arundel Barnes. “Class and committees in a Norwegian island parish.” In:
Human Relations 7.1 (1954), pp. 39–58.

[12] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes
on complex networks. Cambridge University Press, 2008.

[13] Pavlos Basaras, Dimitrios Katsaros, and Leandros Tassiulas. “Detecting Influen-
tial Spreaders in Complex, Dynamic Networks.” In: Computer 46.4 (2013), pp. 24–
29.

[14] Frank Bass. “A New Product Growth Model for Consumer Durable.” In: Manage-
ment Sciences 15.5 (1969), pp. 215–227.

103

Bibliography 104

[15] Vladimir Batagelj and Matjaz Zaversnik. “An O(m) Algorithm for Cores Decom-
position of Networks.” In: CoRR (2003).

[16] Alex Bavelas. “A mathematical model for group structures.” In: Human organiza-
tion 7.3 (1948), pp. 16–30.

[17] Peter S Bearman, James Moody, and Katherine Stovel. “Chains of affection: The
structure of adolescent romantic and sexual networks.” In: American Journal of
Sociology 110.1 (2004), pp. 44–91.

[18] Norman Biggs. Algebraic graph theory. Cambridge University Press, 1993.

[19] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.
“Complex networks: Structure and dynamics.” In: Physics Reports 424.4 (2006),
pp. 175–308.

[20] Phillip Bonacich. “Power and centrality: A family of measures.” In: American
Journal of Sociology 92.5 (1987), pp. 1170–1182.

[21] Phillip Bonacich. “Some unique properties of eigenvector centrality.” In: Social
Networks 29.4 (2007), pp. 555–564.

[22] Francesco Bonchi and Elena Ferrari. Privacy-aware knowledge discovery: novel appli-
cations and new techniques. Chapman and Hall/CRC Press, 2010.

[23] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.
“Core decomposition of uncertain graphs.” In: KDD ’14: Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM. 2014, pp. 1316–1325.

[24] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with
applications. Vol. 290. London: Macmillan, 1976.

[25] Stephen P Borgatti. “Centrality and network flow.” In: Social Networks 27.1 (2005),
pp. 55–71.

[26] Stephen P Borgatti and Martin G Everett. “A graph-theoretic perspective on cen-
trality.” In: Social Networks 28.4 (2006), pp. 466–484.

[27] Javier Borge-Holthoefer, Alejandro Rivero, and Yamir Moreno. “Locating privi-
leged spreaders on an online social network.” In: Physical Review E 85 (6 2012),
p. 066123.

[28] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. “Maxi-
mizing Social Influence in Nearly Optimal Time.” In: SODA ’14: Proceedings of the
Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 2014, pp. 946–
957.

[29] Sergey Brin and Lawrence Page. “Reprint of: The anatomy of a large-scale hyper-
textual web search engine.” In: Computer Networks 56.18 (2012), pp. 3825–3833.

[30] Jacqueline Johnson Brown and Peter H Reingen. “Social ties and word-of-mouth
referral behavior.” In: Journal of Consumer Research 14.3 (1987), pp. 350–362.

[31] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. “A
model of Internet topology using k-shell decomposition.” In: Proceedings of the
National Academy of Sciences 104.27 (2007), pp. 11150–11154.

[32] Jordi Casas-Roma, Jordi Herrera-Joancomartí, and Vicenç Torra. “k-Degree anonymity
and edge selection: improving data utility in large networks.” In: Knowledge and
Information Systems 50.2 (2017), pp. 447–474.

[33] Damon Centola. “The spread of behavior in an online social network experi-
ment.” In: Science 329.5996 (2010), pp. 1194–1197.

Bibliography 105

[34] Deepayan Chakrabarti and Christos Faloutsos. “Graph mining: laws, tools, and
case studies.” In: Synthesis Lectures on Data Mining and Knowledge Discovery 7.1
(2012), pp. 1–207.

[35] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec, and Christos
Faloutsos. “Epidemic Thresholds in Real Networks.” In: ACM Transactions on
Information and System Security (TISSEC) 10.4 (2008), 1:1–1:26.

[36] Duan-Bing Chen, Hui Gao, Linyuan Lü, and Tao Zhou. “Identifying Influential
Nodes in Large-Scale Directed Networks: The Role of Clustering.” In: PLoS ONE
8.10 (2013), e77455.

[37] Duan-Bing Chen, Rui Xiao, An Zeng, and Yi-Cheng Zhang. “Path diversity im-
proves the identification of influential spreaders.” In: EPL (Europhysics Letters)
104.6 (2013), p. 68006.

[38] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao
Zhou. “Identifying influential nodes in complex networks.” In: Physica A: Sta-
tistical Mechanics and its Applications 391.4 (2012), pp. 1777–1787.

[39] Wei Chen, Chi Wang, and Yajun Wang. “Scalable Influence Maximization for
Prevalent Viral Marketing in Large-scale Social Networks.” In: KDD ’10: Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2010, pp. 1029–1038.

[40] Wei Chen, Yifei Yuan, and Li Zhang. “Scalable Influence Maximization in Social
Networks Under the Linear Threshold Model.” In: ICDM ’10: Proceedings of the
10th International Conference on Data Mining. 2010, pp. 88–97.

[41] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. “Efficient core decom-
position in massive networks.” In: ICDE ’11: IEEE International Conference on Data
Engineering. IEEE. 2011, pp. 51–62.

[42] Nicholas A Christakis and James H Fowler. “The spread of obesity in a large
social network over 32 years.” In: New England Journal of Medicine 357.4 (2007),
pp. 370–379.

[43] Nicholas A Christakis and James H Fowler. “The collective dynamics of smok-
ing in a large social network.” In: New England Journal of Medicine 358.21 (2008),
pp. 2249–2258.

[44] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law Distri-
butions in Empirical Data.” In: SIAM Review 51.4 (2009), pp. 661–703.

[45] Edith Cohen. “Size-Estimation Framework with Applications to Transitive Clo-
sure and Reachability.” In: Journal of Computer and System Sciences 55.3 (1997),
pp. 441–453.

[46] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. “Sketch-
based Influence Maximization and Computation: Scaling Up with Guarantees.”
In: CIKM ’14 : Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management. 2014, pp. 629–638.

[47] Jonathan Cohen. “Trusses: Cohesive subgraphs for social network analysis.” In:
National Security Agency Technical Report 16 (2008).

[48] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. “Efficient immuniza-
tion strategies for computer networks and populations.” In: Physical Review Let-
ters 91.24 (2003), p. 247901.

Bibliography 106

[49] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. “Break-
down of the Internet under Intentional Attack.” In: Physical Review Letters 86 (16

2001), pp. 3682–3685.

[50] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. “Exceptional
paper—Location of bank accounts to optimize float: An analytic study of exact
and approximate algorithms.” In: Management Science 23.8 (1977), pp. 789–810.

[51] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. “Safebook: A privacy-
preserving online social network leveraging on real-life trust.” In: IEEE Commu-
nications Magazine 47.12 (2009), pp. 94–101.

[52] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. “The
anatomy of a scientific rumor.” In: Scientific Reports 3: 2980 (2013).

[53] Klaus Dietz. “Epidemics and rumours: A survey.” In: Journal of the Royal Statistical
Society. Series A (General) 130.4 (1967), pp. 505–528.

[54] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. “PageRank for rank-
ing authors in co-citation networks.” In: Journal of the Association for Information
Science and Technology 60.11 (2009), pp. 2229–2243.

[55] Peter Sheridan Dodds and Duncan J Watts. “Universal behavior in a generalized
model of contagion.” In: Physical Review Letters 92.21 (2004), p. 218701.

[56] Pedro Domingos and Matt Richardson. “Mining the Network Value of Customers.”
In: KDD ’01: Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2001, pp. 57–66.

[57] Leo Egghe and Ronald Rousseau. Introduction to informetrics: Quantitative methods
in library, documentation and information science. Elsevier Science Publishers, 1990.

[58] Marius Eidsaa and Eivind Almaas. “S-core network decomposition: A generaliza-
tion of k-core analysis to weighted networks.” In: Physical Review E 88.6 (2013),
p. 062819.

[59] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. “On power-law rela-
tionships of the internet topology.” In: ACM SIGCOMM Computer Communication
Review. Vol. 29. 4. ACM. 1999, pp. 251–262.

[60] Uriel Feige. “A threshold of ln n for approximating set cover.” In: Journal of the
ACM (JACM) 45.4 (1998), pp. 634–652.

[61] Linton C Freeman. “A set of measures of centrality based on betweenness.” In:
Sociometry 40.1 (1977), pp. 35–41.

[62] Linton C Freeman. “Centrality in social networks conceptual clarification.” In:
Social networks 1.3 (1978), pp. 215–239.

[63] Joseph Galaskiewicz. Social organization of an urban grants economy: A study of busi-
ness philanthropy and nonprofit organizations. Elsevier, 2016.

[64] Joseph Galaskiewicz and Peter V Marsden. “Interorganizational resource net-
works: Formal patterns of overlap.” In: Social Science Research 7.2 (1978), pp. 89–
107.

[65] Antonios Garas, Frank Schweitzer, and Shlomo Havlin. “A k-shell decomposition
method for weighted networks.” In: New Journal of Physics 14.8 (2012), p. 083030.

[66] Craig Gentry. “Fully homomorphic encryption using ideal lattices.” In: STOC
’09: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing.
2009, pp. 169–178.

Bibliography 107

[67] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. “D-cores:
Measuring collaboration of directed graphs based on degeneracy.” In: ICDM ’11:
IEEE 11th International Conference on Data Mining. IEEE. 2011, pp. 201–210.

[68] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. “Evaluating
cooperation in communities with the k-core structure.” In: ASONAM ’11: Inter-
national Conference on Advances in Social Networks Analysis and Mining. IEEE. 2011,
pp. 87–93.

[69] Jacob Goldenberg, Barak Libai, and Eitan Muller. “Talk of the network: A com-
plex systems look at the underlying process of word-of-mouth.” In: Marketing
Letters 12.3 (2001), pp. 211–223.

[70] Jacob Goldenberg, Barak Libai, and Eitan Muller. “Using complex systems anal-
ysis to advance marketing theory development: Modeling heterogeneity effects
on new product growth through stochastic cellular automata.” In: Academy of
Marketing Science Review 2001 (2001), p. 1.

[71] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption & how to play men-
tal poker keeping secret all partial information.” In: STOC ’82: Proceedings of the
fourteenth annual ACM symposium on Theory of computing. ACM. 1982, pp. 365–377.

[72] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. “Learning influence
probabilities in social networks.” In: WSDM ’10: Proceedings of the Third ACM
International Conference on Web Search and Data Mining. ACM. 2010, pp. 241–250.

[73] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. “A data-based ap-
proach to social influence maximization.” In: Proceedings of the VLDB Endowment
5.1 (2011), pp. 73–84.

[74] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. “SIMPATH: An Efficient Algo-
rithm for Influence Maximization Under the Linear Threshold Model.” In: ICDM
’11: Proceedings of the 11th International Conference on Data Mining. 2011, pp. 211–
220.

[75] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. “Celf++: optimizing the greedy
algorithm for influence maximization in social networks.” In: WWW ’11: Proceed-
ings of the 20th International Conference Companion on World Wide Web. ACM. 2011,
pp. 47–48.

[76] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and François Képès. “Topologi-
cal and causal structure of the yeast transcriptional regulatory network.” In: Na-
ture Genetics 31.1 (2002), pp. 60–63.

[77] Michelle Gumbrecht. “Blogs as ‘protected space’.” In: WWW 2004 Workshop on
the Weblogging Ecosystem: Aggregation, Analysis and Dynamics. Vol. 2004. 2004.

[78] Frank Hoppenstaedt. Mathematical theories of populations: demographics, genetics and
epidemics. SIAM, 1975.

[79] Harold Hotelling. “Simplified calculation of principal components.” In: Psychome-
trika 1.1 (1936), pp. 27–35.

[80] Bonan Hou, Yiping Yao, and Dongsheng Liao. “Identifying all-around nodes for
spreading dynamics in complex networks.” In: Physica A: Statistical Mechanics and
its Applications 391.15 (2012), pp. 4012–4017.

[81] William H Hsu, Andrew L King, Martin SR Paradesi, Tejaswi Pydimarri, and
Tim Weninger. “Collaborative and Structural Recommendation of Friends using
Weblog-based Social Network Analysis.” In: AAAI ’06: Proceedings of Computa-
tional Approaches to Analyzing Weblogs. 2006, pp. 55–60.

Bibliography 108

[82] Bernardo A Huberman. The laws of the Web: Patterns in the ecology of information.
MIT Press, 2001.

[83] Oliver Hugo and Elizabeth Garnsey. “Hotmail: Delivering E-mail to the World.”
In: Cambridge Judge Business School, University of Cambridge (2002).

[84] Adriana Iamnitchi, Matei Ripeanu, and Ian Foster. “Locating data in (small-
world?) peer-to-peer scientific collaborations.” In: In Proceedings of International
Workshop on Peer-to-Peer Systems (IPTPS) (2002), pp. 232–241.

[85] Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira Hattori,
and Yoshiyuki Sakaki. “A comprehensive two-hybrid analysis to explore the
yeast protein interactome.” In: Proceedings of the National Academy of Sciences 98.8
(2001), pp. 4569–4574.

[86] Swami Iyer, Timothy Killingback, Bala Sundaram, and Zhen Wang. “Attack ro-
bustness and centrality of complex networks.” In: PloS one 8.4 (2013), e59613.

[87] James Holland Jones and Mark S Handcock. “An assessment of preferential at-
tachment as a mechanism for human sexual network formation.” In: Proceedings
of the Royal Society of London B: Biological Sciences 270.1520 (2003), pp. 1123–1128.

[88] VK Kalapala, V Sanwalani, and C Moore. “The structure of the United States
road network.” In: Preprint, University of New Mexico (2003).

[89] Matt J Keeling and Pejman Rohani. Modeling infectious diseases in humans and
animals. Princeton University Press, 2008.

[90] David Kempe, Jon M. Kleinberg, and Éva Tardos. “Maximizing the spread of
influence through a social network.” In: KDD ’03: Proceedings of the ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003,
pp. 137–146.

[91] David Kempe, Jon M Kleinberg, and Éva Tardos. “Influential Nodes in a Dif-
fusion Model for Social Networks.” In: ICALP ’05: Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Programming. Springer. 2005,
pp. 1127–1138.

[92] William O Kermack and Anderson G McKendrick. “Contributions to the math-
ematical theory of epidemics. II. The problem of endemicity.” In: vol. 138. 834.
JSTOR, 1932, pp. 55–83.

[93] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,
H Eugene Stanley, and Hernán A Makse. “Identification of influential spreaders
in complex networks.” In: Nature physics 6.11 (2010), pp. 888–893.

[94] Konstantin Klemm, M Ángeles Serrano, Víctor M Eguíluz, and Maxi San Miguel.
“A measure of individual role in collective dynamics.” In: Scientific Reports 2: 292

(2012).

[95] Bryan Klimt and Yiming Yang. “The enron corpus: A new dataset for email clas-
sification research.” In: ECML ’04: Proceedings of the 15th European Conference on
Machine Learning (2004), pp. 217–226.

[96] Paul L Krapivsky, Sidney Redner, and D Volovik. “Reinforcement-driven spread
of innovations and fads.” In: Journal of Statistical Mechanics: Theory and Experiment
2011.12 (2011), P12003.

[97] Matthieu Latapy. “Main-memory triangle computations for very large (sparse
(power-law)) graphs.” In: Theoretical Computer Science 407.1-3 (2008), pp. 458–473.

Bibliography 109

[98] Damien Leprovost, Lylia Abrouk, Nadine Cullot, and David Gross-Amblard.
“Temporal semantic centrality for the analysis of communication networks.” In:
ICWE ’12: Proceedings of the 12th International Conference on Web Engineering (2012),
pp. 177–184.

[99] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. “The dynamics of
viral marketing.” In: ACM Transactions on the Web (TWEB) 1.1 (2007), p. 5.

[100] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. “Predicting positive and
negative links in online social networks.” In: WWW ’10: Proceedings of the 19th
International Conference on World Wide Web. ACM. 2010, pp. 641–650.

[101] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graph evolution: Densi-
fication and shrinking diameters.” In: ACM Transactions on Knowledge Discovery
from Data (TKDD) 1.1 (2007), p. 2.

[102] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. “Cost-effective Outbreak Detection in Networks.” In:
KDD ’07: Proceedings of the 13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. 2007, pp. 420–429.

[103] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. “Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters.” In: Internet Mathematics 6.1 (2009), pp. 29–123.

[104] Qian Li, Tao Zhou, Linyuan Lü, and Duanbing Chen. “Identifying influential
spreaders by weighted LeaderRank.” In: Physica A: Statistical Mechanics and its
Applications 404 (2014), pp. 47–55.

[105] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. “Efficient core maintenance in large
dynamic graphs.” In: IEEE Transactions on Knowledge and Data Engineering 26.10

(2014), pp. 2453–2465.

[106] David Liben-Nowell and Jon Kleinberg. “The link-prediction problem for social
networks.” In: Journal of the Association for Information Science and Technology 58.7
(2007), pp. 1019–1031.

[107] Jian-Guo Liu, Jian-Hong Lin, Qiang Guo, and Tao Zhou. “Locating influential
nodes via dynamics-sensitive centrality.” In: Scientific Reports 6: 21380 (2016).

[108] Linyuan Lü, Duan-Bing Chen, and Tao Zhou. “The small world yields the most
effective information spreading.” In: New Journal of Physics 13.12 (2011), p. 123005.

[109] Linyuan Lü, Yi-Cheng Zhang, Chi Ho Yeung, and Tao Zhou. “Leaders in social
networks, the delicious case.” In: PloS one 6.6 (2011), e21202.

[110] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and
Tao Zhou. “Recommender systems.” In: Physics Reports 519.1 (2012), pp. 1–49.

[111] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng Zhang,
and Tao Zhou. “Vital nodes identification in complex networks.” In: Physics Re-
ports 650 (2016), pp. 1–63.

[112] Tomasz Łuczak. “Size and connectivity of the k-core of a random graph.” In:
Discrete Mathematics 91.1 (1991), pp. 61–68.

[113] Vijay Mahajan, Eitan Muller, and Frank M Bass. “New product diffusion models
in marketing: A review and directions for research.” In: Diffusion of Technologies
and Social Behavior. Springer, 1991, pp. 125–177.

Bibliography 110

[114] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel: a system for large-scale
graph processing.” In: SIGMOD ’10: Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data. ACM. 2010, pp. 135–146.

[115] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. “Lo-
cating influential nodes in complex networks.” In: Scientific Reports 6: 19307 (2016).

[116] David W Matula and Leland L Beck. “Smallest-last ordering and clustering and
graph coloring algorithms.” In: Journal of the ACM (JACM) 30.3 (1983), pp. 417–
427.

[117] Ericka Menchen. “Blogger motivations: Power, pull, and positive feedback.” In:
6th International and Interdisciplinary Association of Internet Researchers (2005).

[118] Daniele Miorandi and Francesco De Pellegrini. “K-shell decomposition for dy-
namic complex networks.” In: WiOpt ’10: 8th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks. IEEE. 2010, pp. 488–496.

[119] Michael Molloy. “Cores in random hypergraphs and Boolean formulas.” In: Ran-
dom Structures & Algorithms 27.1 (2005), pp. 124–135.

[120] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. “Distributed
k-core decomposition.” In: IEEE Transactions on Parallel and Distributed Systems
24.2 (2013), pp. 288–300.

[121] Jacob L Moreno. Who shall survive. Vol. 58. JSTOR, 1934.

[122] Yamir Moreno, Maziar Nekovee, and Amalio F Pacheco. “Dynamics of rumor
spreading in complex networks.” In: Physical Review E 69.6 (2004), p. 066130.

[123] Arvind Narayanan and Vitaly Shmatikov. “De-anonymizing social networks.” In:
30th IEEE Symposium on Security and Privacy. IEEE. 2009, pp. 173–187.

[124] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An analysis of
approximations for maximizing submodular set functions—I.” In: Mathematical
Programming 14.1 (1978), pp. 265–294.

[125] Mark E. J. Newman. “Spread of epidemic disease on networks.” In: Physical Re-
view E 66.1 (2002), p. 016128.

[126] Mark E. J. Newman. “The structure and function of complex networks.” In: SIAM
review 45.2 (2003), pp. 167–256.

[127] Mark E. J. Newman. Networks: an introduction. Oxford university press, 2010.

[128] Romualdo Pastor-Satorras and Alessandro Vespignani. “Epidemic Spreading in
Scale-Free Networks.” In: Physical Review Letters 86 (14 2001), pp. 3200–3203.

[129] Romualdo Pastor-Satorras and Alessandro Vespignani. “Immunization of com-
plex networks.” In: Physical Review E 65.3 (2002), p. 036104.

[130] Sen Pei and Hernán A Makse. “Spreading dynamics in complex networks.” In:
Journal of Statistical Mechanics: Theory and Experiment 2013.12 (2013), P12002.

[131] Sen Pei, Lev Muchnik, José S Andrade Jr, Zhiming Zheng, and Hernán A Makse.
“Searching for superspreaders of information in real-world social media.” In: Sci-
entific Reports 4: 5547 (2014).

[132] Sen Pei, Lev Muchnik, Shaoting Tang, Zhiming Zheng, and Hernán A Makse.
“Exploring the complex pattern of information spreading in online blog commu-
nities.” In: PloS one 10.5 (2015), e0126894.

[133] James Edward Van der Plank. Plant diseases: epidemics and control. Elsevier, 2013.

Bibliography 111

[134] B.Aditya Prakash, Deepayan Chakrabarti, NicholasC. Valler, Michalis Faloutsos,
and Christos Faloutsos. “Threshold conditions for arbitrary cascade models on
arbitrary networks.” In: Knowledge and Information Systems 33.3 (2012), pp. 549–
575.

[135] Filippo Radicchi, Santo Fortunato, Benjamin Markines, and Alessandro Vespig-
nani. “Diffusion of scientific credits and the ranking of scientists.” In: Physical
Review E 80.5 (2009), p. 056103.

[136] John Rice. Mathematical statistics and data analysis. Nelson Education, 2006.

[137] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. “Trust manage-
ment for the semantic web.” In: The Semantic Web-ISWC 2003 (2003), pp. 351–368.

[138] Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. “Spread
it good, spread it fast: Identification of influential nodes in social networks.”
In: Proceedings of the 24th International Conference on World Wide Web. ACM. 2015,
pp. 101–102.

[139] Maria-Evgenia G. Rossi and Michalis Vazirgiannis. “Exploring Network Cen-
tralities in Spreading Processes.” In: International Symposium on Web AlGorithms
(iSWAG). 2016.

[140] Maria-Evgenia G. Rossi, Bowen Shi, Nikolaos Tziortziotis, Fragkiskos D. Malliaros,
Christos Giatsidis, and Michalis Vazirgiannis. “MATI: An Efficient Algorithm for
Influence Maximization in Social Networks.” In: Manuscript. 2017.

[141] Maria-Evgenia G. Rossi, Cédric Eichler, Pascal Berthomé, and Benjamin Nguyen.
“Private, Secure and Distributed Computation of k-cores.” In: Manuscript, pre-
sented in APVP. 2017.

[142] Gert Sabidussi. “The centrality index of a graph.” In: Psychometrika 31.4 (1966),
pp. 581–603.

[143] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and
Ümit V Çatalyürek. “Streaming algorithms for k-core decomposition.” In: Proceed-
ings of the VLDB Endowment 6.6 (2013), pp. 433–444.

[144] Thomas Schank. Algorithmic aspects of triangle-based network analysis. PhD thesis,
Universität Karlsruhe (TH), 2007.

[145] Stephen B Seidman. “Network structure and minimum degree.” In: Social net-
works 5.3 (1983), pp. 269–287.

[146] Marvin E Shaw. “Group structure and the behavior of individuals in small groups.”
In: The Journal of Psychology 38.1 (1954), pp. 139–149.

[147] Alfonso Shimbel. “Structural parameters of communication networks.” In: The
Bulletin of Mathematical Biophysics 15.4 (1953), pp. 501–507.

[148] Konstantinos Skianis, Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis
Vazirgiannis. “SpreadViz: Analytics and Visualization of Spreading Processes in
Social Networks.” In: ICDMW ’16: IEEE 16th International Conference on Data Min-
ing Workshops. IEEE. 2016, pp. 1324–1327.

[149] Xiaodan Song, Belle L. Tseng, Ching-Yung Lin, and Ming-Ting Sun. “Personal-
ized Recommendation Driven by Information Flow.” In: SIGIR ’06: Proceedings of
the 29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. 2006, pp. 509–516.

[150] Jorg Stelling, Steffen Klamt, Katja Bettenbrock, Stefan Schuster, and Ernst Dieter
Gilles. “Metabolic network structure determines key aspects of functionality and
regulation.” In: Nature 420.6912 (2002), p. 190.

Bibliography 112

[151] Youze Tang, Xiaokui Xiao, and Yanchen Shi. “Influence Maximization: Near-
optimal Time Complexity Meets Practical Efficiency.” In: SIGMOD ’14: Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data.
2014, pp. 75–86.

[152] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. “Link prediction
in relational data.” In: NIPS ’04: Advances in Neural Information Processing Systems.
2004, pp. 659–666.

[153] Michael Trusov, Randolph E. Bucklin, and Koen Pauwels. “Effects of Word-of-
Mouth Versus Traditional Marketing: Findings from an Internet Social Network-
ing Site.” In: Journal of Marketing 73.5 (2009), pp. 90–102.

[154] Jia Wang and James Cheng. “Truss decomposition in massive networks.” In: Pro-
ceedings of the VLDB Endowment 5.9 (2012), pp. 812–823.

[155] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. “Epi-
demic Spreading in Real Networks: An Eigenvalue Viewpoint.” In: SRDS ’03: Pro-
ceedings of the 22nd International Symposium on Reliable Distributed Systems. IEEE
Computer Society, 2003, pp. 25–34.

[156] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and ap-
plications. Vol. 8. Cambridge University Press, 1994.

[157] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-world’
networks.” In: Nature 393.6684 (1998), pp. 440–442.

[158] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. “I/o efficient
core graph decomposition at web scale.” In: ICDE ’16: IEEE 32nd International
Conference on Data Engineering. IEEE. 2016, pp. 133–144.

[159] Xintao Wu, Xiaowei Ying, Kun Liu, and Lei Chen. “A survey of privacy-preservation
of graphs and social networks.” In: Managing and Mining Graph Data. Advances in
Database Systems (2010), pp. 421–453.

[160] An Zeng and Cheng-Jun Zhang. “Ranking spreaders by decomposing complex
networks.” In: Physics Letters A 377.14 (2013), pp. 1031–1035.

[161] Daniel Zeng, Hsinchun Chen, Robert Lusch, and Shu-Hsing Li. “Social media
analytics and intelligence.” In: IEEE Intelligent Systems 25.6 (2010), pp. 13–16.

[162] Xiaohang Zhang, Ji Zhu, Qi Wang, and Han Zhao. “Identifying influential nodes
in complex networks with community structure.” In: Knowledge-Based Systems 42

(2013), pp. 74–84.

[163] Yang Zhang and Srinivasan Parthasarathy. “Extracting Analyzing and Visualiz-
ing Triangle K-Core Motifs within Networks.” In: ICDE ’12: Proceedings of the 2012
IEEE 28th International Conference on Data Engineering. 2012, pp. 1049–1060.

[164] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. “A fast order-based ap-
proach for core maintenance.” In: ICDE ’17: Proceedings of the IEEE 33rd Interna-
tional Conference on Data Engineering. IEEE. 2017, pp. 337–348.

[165] Yan-Bo Zhou, Linyuan Lü, and Menghui Li. “Quantifying the influence of scien-
tists and their publications: distinguishing between prestige and popularity.” In:
New Journal of Physics 14.3 (2012), p. 033033.

colophon

This document was typeset in LATEX using the typographical look-and-feel classicthesis.
The graphics in this dissertation are generated using the Matlab numerical computing
environment, the R language, the Ipe extensible drawing editor and pgf/tikz. The bib-
liography is typeset using biblatex.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Fouille de Graphes pour Maximisation de l'Influence dans les Résaux Sociaux

Mots clés : fouille de graphes, fouille de données, maximisation de l’influence, réseaux sociaux

Résumé : La science moderne des graphes est
apparue ces dernières années comme un
domaine d'intérêt et a apporté des progrès
significatifs à notre connaissance des réseaux.
Jusqu' à récemment, les algorithmes
d'exploration de données existants étaient
destinés à des données structurés /
relationnelles, alors que de nombreux
ensembles de données nécessitent une
représentation graphique, comme les réseaux
sociaux, les réseaux générés par des données
textuelles, les structures protéiques 3D ou
encore les composés chimiques. Il est donc
crucial de pouvoir extraire des informations
pertinantes à partir de ce type de données et,
pour ce faire, les méthodes d'extraction et
d'analyse de graphes ont été prouvées
essentielles.
L'objectif de cette thèse est d'étudier les
problèmes dans le domaine de la fouille de
graphes axés en particulier sur la conception de

nouveaux algorithmes et d'outils liés à la
diffusion d'informations et plus spécifiquement
sur la façon de localiser des entités influentes
dans des réseaux réels. Cette tâche est cruciale
dans de nombreuses applications telles que la
diffusion de l'information, les contrôles
épidémiologiques et le marketing viral. Dans la
première partie de la thèse, nous avons étudié
les processus de diffusion dans les réseaux
sociaux ciblant la recherche de caractéristiques
topologiques classant les entités du réseau en
fonction de leurs capacités influentes. Dans la
deuxième partie de la thèse, nous nous sommes
concentrés sur l'identification d'un groupe de
noeuds qui, en agissant ensemble, maximisent
le nombre attendu de nœuds influencés à la fin
du processus de propagation, formellement
appelé Influence Maximization (IM).
Finallement, nous étudions le point de vue de
la confidentialité quant au partage de ces bons
indicateurs d’influence dans un réseau social.

Title : Graph Mining for Influence Maximization in Social Networks

Keywords : graph mining, data mining, influence maximization, social networks

Abstract: Modern science of graphs has
emerged the last few years as a field of interest
and has been bringing significant advances to
our knowledge about networks. Until recently
the existing data mining algorithms were
destined for structured/relational data while
many datasets exist that require graph
representation such as social networks,
networks generated by textual data, 3D protein
structures and chemical compounds. It has
become therefore of crucial importance to be
able to extract in an efficient and effective way
meaningful information from that kind of data
and towards this end graph mining and analysis
methods have been proven essential.
The goal of this thesis is to study problems in
the area of graph mining focusing especially on
designing new algorithms and tools related to

information spreading and specifically on how
to locate influential entities in real-world social
networks. This task is crucial in many
applications such as information diffusion,
epidemic control and viral marketing. In the
first part of the thesis, we have studied
spreading processes in social networks
focusing on finding topological characteristics
that rank entities in the network based on their
influential capabilities. In the second part of the
thesis, we focused on identifying a group of
nodes that by acting all together maximize the
expected number of influenced nodes at the end
of the spreading process, formally called
Influence Maximization. In the last part of the
thesis, we study the privacy point of view of
sharing such metrics that are good influential
indicators in a social network.

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Social Networks and Social Influence
	1.2 Social Influence examples
	1.3 Social Influence Analysis Applications
	1.4 Thesis statement and overview of contributions
	1.4.1 Identification of individual influential spreaders
	1.4.2 Identification of a group of influential spreaders
	1.4.3 Secure and Private computation of influential metrics

	1.5 Outline of the thesis

	2 Basic Concept and Preliminaries
	2.1 Introduction to Graph Theory
	2.2 Adjacency Matrix and Eigenvalues
	2.3 Node centralities
	2.3.1 Structural centralities
	2.3.2 Iterative refinement centralities

	2.4 Description of Graph Datasets

	3 Locating Influential Spreaders in Social Networks
	3.1 Introduction
	3.2 Preliminaries and Background
	3.2.1 k-core decomposition
	3.2.2 K-truss decomposition
	3.2.3 Epidemic models
	3.2.4 The SIR model applied in networks

	3.3 Related work
	3.4 K-truss decomposition for identifying influential nodes
	3.5 Experimental Evaluation
	3.5.1 Datasets and Methodology
	3.5.2 Evaluating the spreading performance
	3.5.3 Comparison to the optimal spreading
	3.5.4 Impact of infection and recovery rate on the spreading process

	3.6 Exploration of network centralities in spreading processes
	3.6.1 Evaluation of Results

	3.7 Conclusions and Future Work

	4 Influence Maximization in Social Networks
	4.1 Introduction
	4.2 Preliminaries and Background
	4.2.1 The Influence Maximization (IM) problem
	4.2.2 Diffusion Models

	4.3 Related work
	4.4 MATrix Influence (MATI) Algorithm
	4.4.1 Influence in Social Networks
	4.4.2 Influence Computation under the LT Model
	4.4.3 Influence Computation under the IC Model

	4.5 Experimental Evaluation
	4.5.1 Datasets
	4.5.2 Baseline Algorithms
	4.5.3 Experimental Results

	4.6 Conclusions and Future Work

	5 Private, Secure and Distributed Computation of k-cores
	5.1 Introduction
	5.2 Problem Statement and Preliminiaries
	5.2.1 Problem Statement
	5.2.2 Preliminaries and Background

	5.3 Related work
	5.3.1 k-core Computation
	5.3.2 Core Maintenance
	5.3.3 Decentralized Personal Data Management Platforms

	5.4 P2P Algorithm for Core Maintenance
	5.4.1 Local variables
	5.4.2 Handling Messages and Events
	5.4.3 Computing coreness estimations
	5.4.4 Example

	5.5 Analytical and Experimental Study
	5.5.1 Analytical study
	5.5.2 Complexity: Experimental Study

	5.6 Security and Privacy Analysis
	5.6.1 Attack Model
	5.6.2 Privacy and Information Quality
	5.6.3 Experimental results

	5.7 Conclusions and Remarks

	6 Concluding remarks
	6.1 Summary of Contributions and Future Work
	6.2 Epilogue

	Bibliography

