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partie de mon jury de thèse.
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et mes stages: l’ENS de Lyon, l’École Polytechnique, l’Inria et Microsoft Re-
search.

Je salue Zach Weiner, auteur de “SMBC comics”, ainsi que Satoshi Nakamoto,
génial inventeur de Bitcoin: j’ai consacré à leurs oeuvres respectives une part
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8 Formalizing Apéry’s theorem in Coq 60
8.1 Recurrence and Creative Telescoping . . . . . . . . . . . . . . . . 60

8.1.1 Recurrences as a data structure for sequences . . . . . . . 61
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Chapter 1

Introduction

1.1 Context

Computers and computer science have progressively made themselves indispens-
able to mathematicians. This is of course true of communication with the
ubiquitous use of search engines, of LATEX [80] to write papers, of Math Over-
flow [115] to ask and answer questions from peers, of blogs [56] [105] to discuss
and produce new results.

More directly, the vast computational power available today has allowed
mathematicians to extend their ability to do mental computations: they can
experiment further than before, try to find more complicated counter-examples
to conjectures, visualize patterns on more terms of a sequence. In An Introduc-
tion to Mathematics [125], Whitehead claims about mathematical symbolism
that “civilization advances by extending the number of important operations
which we can perform without thinking about them”. Specialized software (for
numerical computations, computer algebra, etc...) have arguably participated
in this extension.

Not only have computations at the service of mathematicians become more
ambitious, some recent developments have even attempted to cut out the mid-
dleman in the mathematician’s main product: proofs. The Boolean Satisfiabil-
ity Problem (SAT) consists in determining, given a formula φ involving boolean
variables x1,· · · , xn and the and (∧) and or (∨) connectives, whether there exist
boolean values b1,· · · , bn such that when substituting bi for xi, φ evaluates to
true. For example, x1∧(¬x2 ∨ ¬x1) is satisfiable with the assignment x1 := true
and x2 := false. Thus, a successful assignment of boolean values to the vari-
ables of φ constitutes, up to a routine verification which can be accomplished
by a simple program, a proof of the satisfiability of φ. Powerful solvers for the
SAT problem (called SAT-solvers) have been developed. Surprisingly, complex
problems can be reduced to the satisfiability of a (potentially large) boolean for-
mula. The Pythagorean Triples Problem asks whether for all partitions of the
set {1, 2,· · · , n} into 2 parts, at least one partition contains a Pythagorean triple.
A recent paper [72] shows that it holds using a SAT solver, producing a 200-
terabyte file. Finding proofs based on this method raises at least two questions.
A first one is that of whether we can trust the proof checker as a program. This
is a small instance of an issue which will be addressed in the next paragraph.
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Secondly, the boolean encoding changes the statement of the problem so that if
a proof is found, it does not follow the structure of the original problem. Thus,
the proof may carry little to no insight as to why the theorem is true. About an
unintelligible 1500 page computer-generated computer proof [103], Hales argues
that “eventually, we will have to content ourselves with fables that approximate
the content of a computer proof in terms that humans can comprehend” [61].

If we stay on the side of proofs made and checked by humans, many mathe-
matical proofs in the past century have come to rely decisively on computations;
we list several examples from various domains of mathematics. The Four Color
Theorem, stating that every planar graph can be colored with at most four
colors so that no two adjacent nodes bear the same color, was first proved in
1977 [4] by Appel and Haken by examining 1, 936 possible configurations using
a computer. The Double Bubble conjecture, characterizing the shape which
encloses two equal volumes with minimal surface as being made of two pieces
of spheres separated by a flat disk, was first proved in 1995 by Hass, Hutch-
ings and Schlafly. They reduced the proof to showing thousands of inequalities
on simple integrals and wrote a custom C++ program doing interval arithmetic
which ran in 10 seconds at the time. Tucker solved Smale’s 14th problem in
1999, proving that the Lorenz attractor is strange [120], notably by writing and
using a program computing solutions to ordinary differential equations. Hales
and Ferguson solved the Kepler conjecture in 1998 [60], establishing the densest
way to pack spheres in three dimensions, originally needing 2000 hours of com-
putations to solve huge nonlinear optimization problems. After four years, the
12 referees gave up and decided they could not possibly review the whole proof
and computer code. In 2013, Helfgott proved the Ternary Goldbach Conjec-
ture [71]. It states that every odd number n greater than 5 is the sum of three
primes. The proof relies on two different natures of computations: the “manual”
verification that the conjecture holds for n ≤ 1027, and the approximation of
some numerical integrals. In order to compute the latter, he posted a question
on Math Overflow [69] to ask for a tool doing rigorous integration.

Such proofs relying on heavy computations are controversial: programs tend
to have bugs, and the number of bugs is reputed to be proportional to the
number of lines of code. One single bug could render the whole proof invalid.
For this reason, efforts have been made to dramatically increase confidence in
these proofs. One possible route has been to make a new, “computer-free”
proof of the same result, as a later paper [75] on the Double Bubble conjecture
boasts. Another way has been to make computations as rigorous as possible,
like Tucker who used interval arithmetic systematically in his proof. When the
last two solutions are not suitable, there remains an ultimate step: building a
complete mechanized formal proof of the result from elementary mathematical
axioms to remove all possible doubt. This is the way chosen by Gonthier [50]
with the help of Werner when they proved the Four Color Theorem in the Coq
proof assistant in 2005 and by Hales [59] who formalized with his team his proof
of the Kepler conjecture in the Isabelle and HOL Light proof assistants.

These proof assistants are pieces of software which allow to build proofs
from first principles, i.e. logical axioms and inference rules. Despite Bourbaki’s
opinion that “formalized mathematics cannot in practice be written down in
full”, the increase in computational power has in fact made this practical and
numerous theorem provers have flourished in the past three to four decades.

It is possible to adopt a skeptical approach to certifying computations in a
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proof assistant. Suppose for example that we want to prove that some large
number n is not prime. We could have a program produce two numbers 1 <
p < n and q such that

n = p · q. (1.1)

Once we have the result, we can forget about the program and simply build
a proof of Equation (1.1) inside a proof assistant. Here, the representation
of natural numbers, the multiplication operation on them, and equality are
underlying objects of the logic of this proof assistant.

The internal logic of the proof assistant can however also be made efficient
enough to directly deal with non-trivial computations. In this case, the program
doing the computation is written in a language internal to the logic and its result
is natively accepted as valid. This is called an autarkic approach and it is the
path chosen by Gonthier and Werner.

Whether using an autarkic or a skeptical approach to certifying computa-
tions, there still remains to formalize the remaining parts of a proof, which do
not necessarily rely on computations. Furthermore, formalizations of mathemat-
ical proofs have not been limited to controversial, computation-heavy results;
they have also been used for more traditional (but highly non-trivial) results,
such as the Odd Order Theorem [52]. Though this was not a contested re-
sult, one otherwise strong motivation for doing formal proofs in general is to
reduce the risk of human mistakes while writing proofs. This aspect convinced
Fields medalist Voevodsky to turn to formal proofs after a false result which he
published in 1991 [78] remained unquestioned until 1998, when Carlos Simpson
showed that the result could not be true [114] [122]. Voevodsky finally found
the mistake in his paper in 2013 [124].

Whether large proofs are computation-heavy or not, mathematical results
from all the theories involved in the proof must be systematically formalized in
order to mechanize them in proof assistants. Much like when programmers write
complex software, this involves careful choices of data structures and statements.
Tools for helping the users of proof assistants in their tasks must be developed.
Empirical experience shows that what may seem like a “good enough” design
choice at a small scale can become unbearable technical debt for larger projects.

In fact, whereas one might think that formalizing results consists in copying
paper proofs in a slightly more rigorous way, this activity leads to fresh insights
on sometimes well-established mathematical theories. The formalization of the
Odd Order theorem led Gonthier to come up with an original way to model
abstract linear algebra using only matrices as a data structure to represent
spaces, families of vectors [51]. In his paper about the formalization of the
Prime Number Theorem, Avigad [6] gives several examples of “dumbing down”
proofs, that is of coming up with more elementary proofs of a result in the
absence of a library providing the necessary theory to directly adapt a textbook
proof.

Building tools to help users develop formal proofs is not only about building
libraries of theorems, it is also about automating away part of the tedious work
of proving every little detail in a proof. Having a routine which can automati-
cally prove that two rational fractions are equal, or establish simple inequalities
between linear expressions can greatly improve the experience of the user. This
is another way of “extending the number of operations which can be performed
without thinking about them”.
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In this thesis, we illustrate three different ways to use computers to build
mathematical proofs. We describe how experiments with existing matrix mul-
tiplication algorithms led to the discovery of a new family of parallel matrix
multiplication algorithms. We then turn to formal proofs. We fully formalize a
theorem by Apéry, in big part by certifying the outputs of a Computer Algebra
System. Finally, we build an extension of the CoqInterval library which can
compute fully verified approximations of integrals in a certified way.

1.2 Contributions

In this section, we list the contributions made in this thesis, by order of appear-
ance and grouped following the structure of this document. Whenever our work
has been published or refers to code stored online, we include the appropriate
references.

1.2.1 Experiment

The contents of this chapter are partly the result of unpublished work done during
the author’s Master’s degree in an internship supervised by Éric Schost. Part of
this work was presented at the Journées Nationales du Calcul Formel1 in 2015
in Cluny and continued during a three-week visit to University of Waterloo in
November 2016. The theorems of Section 4.3 and the Maple code were done as a
collaboration with Éric Schost. The Ocaml code is mostly our own work, though
it benefited along the way from insights and contributions from Éric Schost.
The whole Specfun team is to be thanked for helping us come up with a hopefully
clearer presentation of these results.

A New Class of Parallel Matrix Multiplication Algorithms We dis-
cover a new class of parallel matrix multiplication algorithms (Theorem 3).
These algorithms can be obtained by applying a practical, finite version of
Schönhage’s τ -theorem to existing “approximation” algorithms by Pan and
Schönhage and observing that one can remove the additional ε variable which
had been introduced in these algorithms. We also provide a constructive proof
of the τ -theorem which is inspired from this result.

A Software Tool for Manipulating Matrix Multiplication Algorithms
We provide a software tool for the symbolic manipulation of tensors encoding
matrix multiplication algorithms. Our software can parse such tensors, compose
them, apply the τ -theorem following our contribution in the previous paragraph,
and export them to various formats including Maple, LATEX and C++. This
software requires git, and a recent version of Ocaml which can be installed
using opam. It can be obtained and installed on Linux or Mac2 by typing the
following three commands:

git clone -b public https://gitlab.com/matrix-product-experiments/mpe

cd mpe/caml

sh build.sh

1Symbolic Computation National Days, a yearly meeting of the French community of
Computer Algebra and Symbolic Computation.

2We have not tested it on a Mac, but there shouldn’t be any specific counter-indication.
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The specific options for using our tool are described in Section 4.4.2.

1.2.2 Certifying Computations

A Full Proof of Apéry’s Theorem in Coq As a result of a collaboration
with Frédéric Chyzak, Assia Mahboubi and Enrico Tassi, we provide a complete
formal proof of Apéry’s theorem stating the irrationality of the constant ζ(3)
(Theorem 5). Part of this work has been published at ITP 2014 [26] and a
longer version, which also includes a simplification and formalization of a proof
by Hanson regarding the asymptotic behavior of the sequence lcm(1,· · · , n),
is currently in the works. Our personal contribution is the development of
a library of arithmetic and number theory results concerning the sequences
of Apéry’s proof, the simplification and formalization of Hanson’s proof, and
assisting Frédéric Chyzak and Assia Mahboubi in coming up with a paradigm
to state sound creative telescoping statements, to develop tactics both to handle
big integers and to automatically resolve some linear inequalities over Z. Our
Coq development can be found at https://specfun.inria.fr/~tsibutpi/

code/apery.zip.

Questioning the status of outputs of creative telescoping algorithms
as straightforward proofs The main part of our proof of Theorem 5 is a
validation of the outputs of creative telescoping algorithms which were intended
to be used as a certificate. We question their status as certificates providing
complete proofs of identities (Section 8.1).

1.2.3 Certified Computations

This work was done in close collaboration with Assia Mahboubi and Guillaume
Melquiond.

An extension of CoqInterval with proper and improper integrals We
provide an extension of the CoqInterval library in order to approximate both im-
proper and proper integrals using a mix of floating-point computations, interval
arithmetic and rigorous polynomial approximations. All computations happen
inside the logic of the Coq proof assistant. Using this tool, we highlight several
irregularities in the published literature concerning integral computations. It
has been published at ITP 2016 concerning proper integrals [86], and a longer
article has been accepted and will appear in a special edition of the Journal of
Automated Reasoning to be published in 2017 [87].

An extension of Coquelicot with a generalized Riemann integral In
order to build the tool described in the previous paragraph, we extended the
Coquelicot [82] [20] library so as to improve the handling of improper integrals
(Section 12.2.5).

1.3 Notations and Conventions

In this section, we present some general notations. More context-specific nota-
tions will be introduced in each of the independent three parts.
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In the context of both Ocaml and Coq code, as is usual, we will write
function application in what is called a currified manner, that is f x instead
of f(x). This generalizes to more parameters. For example, if f is a function
with three parameters x, y and z, then we will write the application of f to x,
y and z as f x y z. The partial application f x y is a function which maps z to
f x y z.

If k ∈ N and if D ⊆ R, we will denote by Ck(D) the set of functions which
are k times continuously differentiable on D, and by Ck the set Ck(R).

We will denote by R[X] the set of polynomials with real coefficients, and if
n ∈ N, Rn[X] will be the set of polynomials P ∈ R[X] of degree at most n.

If X is a finite set, we denote by |X| the cardinal of X.
For n, k1,· · · , kl ∈ N, with k1 +· · ·+ kl = n, the quantity

(
n

k1,···,kl

)
:= n!

k1!···kl!
is called a multinomial coefficient. If µ ∈ Nl, we will write

(
n
µ

)
for
(

n
µ1,···,µl

)
. We

also have (
n

k1,· · · , kl

)
=

l∏
i=1

(
k1 +· · ·+ ki

ki

)
. (1.2)

In particular,
(

n
k1,···,kl

)
∈ N. The multinomial theorem states that

(
n

k1,···,kl

)
is

the coefficient of xk11 · · ·x
kl
l in the formal expansion of (x1 +· · ·+ xl)

n
:

Theorem 1 (Multinomial Theorem). Let A be a commutative ring and let
x1,· · · , xl ∈ A. Then for n ∈ N,

(x1 +· · ·+ xl)
n

=
∑

k1+···+kl=n

(
n

k1,· · · , kl

)
xk11 · · ·x

kl
l .

where we take the convention 00 = 1.

1.4 Programming Languages and Libraries

In this part, we present the various software tools used in the rest of the thesis.
First, Ocaml and Coq are two pieces of software from Inria whose histo-

ries are closely bound together, and which were used extensively in the works
presented in this thesis. The functional programming language Ocaml was in-
strumental in Part I in order to build our software tool to manipulate tensors
representing matrix product algorithms and in Part III to build prototypes
which were later implemented in Coq. The Coq theorem prover was used to
prove Apéry’s theorem in Part II and to build and prove correct our extension
of CoqInterval to approximate integrals in Part III.

1.4.1 Ocaml

Ocaml [83] is a general purpose programming language of the family of ML
languages. ML is the meta-language of Milner’s proof assistant LCF (Logic
for Computable Functions) [94] [54]. One core idea of LCF was to represent
provable theorems as elements of an abstract type theorem which could only be
instantiated with predefined axioms and elementary inference rules. This way,
any element of the type theorem would be provable by construction, since it had
to have been built from first principles.
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On top of predefined base types such as nat for natural numbers, bool for
booleans and float for floating-point numbers, Ocaml provides the possibility
to define inductive types, which are recursive data types well-suited to encode
elementary mathematical and computer science structures. For example, a tree
could be defined as

type tree =

| Leaf

| Node of tree * tree

and an example of an object of type tree would be Node(Node(Leaf,Leaf),Leaf).
Ocaml has strong typing. This means two things. First, every object has

a type. Secondly, in a valid Ocaml program, the only way that the object f x

is a valid object of type B is if the function f can be given the type A -> B

and if x has the type A. Although this may seem a trivial property, many lan-
guages do not have it. For example in Python, the math.exp function has type
float -> float, but math.exp(’foo’) is accepted by the Python compiler in
a function definition. However, if this line of code is ever executed it will result
in a failure at runtime.

Typing in Ocaml is also static, meaning that programs are typechecked as
they are compiled and not at runtime. If the compiler accepts an Ocaml pro-
gram, then it must be well typed.

Experience shows that strong and static typing, which were initially moti-
vated by the theorem proving usecase of ML, allow for the compiler to auto-
matically detect many of the mistakes which are easy to make in more loosely
typed or non-typed programming languages.

Another distinguishing aspect of Ocaml is that it is a functional program-
ming language: functions are first-class objects, and they can be given as input
or returned as outputs of programs. On top of this, Ocaml also has more
common features such as imperative primitives (while and for loops) and an
object-oriented paradigm.

1.4.2 Coq

Coq is a proof assistant. This means that it provides a work environment which
one can use to write mathematical statements and mathematical proofs of these
statements. It can also be used to write programs, program specifications (the
description of the properties a program’s outputs should have) and proofs that
a program satisfies a given specification.

Coq is based on a formal language called the Calculus of Inductive Con-
structions. This language consists of objects called terms, which are assigned
a type. Types are themselves terms, and as such they themselves have a type.
This is unlike Ocaml where only base objects have types. Furthermore, types
are dependent : they are allowed to depend on a term. For example, one can
build the type of matrices m× n for given m, n ∈ N.

Elementary mathematical objects such as booleans, natural numbers or ra-
tionals can be represented in Coq using inductive types (similarly to Ocaml).
Through the Curry-Howard isomorphism, there is a correspondence between
logical statements in intuitionistic logic and types. If t is a type and A is the
corresponding logical statement, then a term p of type t can be seen as a proof
of A. Thus, in Coq, proving the statement A amounts to building a term p
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which typechecks to t: in other words, proving and programming are the same
activity in this context.

The main activity of the Coq software consists in type-checking, which as
explained above is how proofs are checked to be correct. Crucially, one of the
typing rules in particular called the conversion rule allows for computations
to be done inside Coq’s logic. The part of Coq’s code which handles type-
checking is very sensitive: a bug could allow one to prove false statements. For
this reason, this code is maintained in a relatively small trusted kernel which
is kept separated from the rest of the code and to which any modification is
closely examined.

As seen in Figure 1.4.2, a Coq session consists mainly of two windows: a text
editor where one writes definitions, statements and proofs and a goal window
where the remaining goals (i.e. statements which have not yet been proved)
are listed. The part of the text highlighted in blue represents the lines of code
already processed by Coq, while the remaining lines have not. When doing
proofs, one typically writes and executes one line at a time.

Figure 1.1: A Coq session stating: ∀x ∈ N, x = x.

In order to make proofs less tedious, one can write and use procedures which
partially automate the task ot theorem proving. This is done in a high-level
language called Ltac which resembles Ocaml. Crucially, these tactics can only
participate in building a proof, but are completely absent from checking the
proof: thus they are allowed to do arbitrary modifications of the current state
of the proof without hindering the trust in the kernel of Coq. Several examples
of tactics, including of our own, will be described in later chapters.

More contextual information about Coq and Coq libraries will appear about
the encoding of mathematical structures and the handling of computations
(Part II) and about Real Analysis and tactics (Part III).

Finally, it should be noted that there exist many theorem provers, that are
actively developed and used. Not all of them share the same logic as Coq;
however many of them share a common ancestor called LCF. The choice of a
theorem prover can have a significant impact on the way proofs are developed.
The Isabelle theorem prover [101] may use classical rather than intuitionistic
logic. The Lean Theorem Prover [37] is very similar to Coq, but comes with
fewer mathematical libraries as it is more recent.
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Part I

Experiment
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Chapter 2

Introduction

When one tries to gain intuition on a mathematical problem or a conjecture,
one naturally turns to a mix of mental and paper computations. In many cases,
using or writing computer programs can significantly extend the range of the
achievable. Computers can help visualize data, as in the simple case of plotting
a function. They can also be used to check that a conjecture isn’t trivially
false. Pierre de Fermat famously conjectured that all numbers of the sequence
Fn := 22n + 1, for n ∈ N, are prime numbers [42]. He manually checked the first
five instances 3, 5, 17, 257, and 65537.

Had he had access to a computer, Fermat hardly would have missed the
chance to try out the very next element of the sequence, 225

+ 1 = 4294967297.
He could have written a basic primality checking function, which runs through
all integers k less than the square root of its input n to see if n ≡ 0[k]. The
Ocaml code in Listing 2.1, once compiled, runs in less than 2 milliseconds on a
standard laptop:

let is_prime n =

let rec aux k =

if k*k > n then true else

if n mod k == 0 then (Printf.printf "not prime: %d.\n" k; false) else

aux (k+1)

in aux 2;;

let rec pow a = function

| 0 -> 1

| 1 -> a

| n ->

let b = pow a (n / 2) in

b * b * (if n mod 2 = 0 then 1 else a);;

let fermat n = pow 2 (pow 2 n) + 1;;

is_prime (fermat 5);;

Listing 2.1: A simple program which finds a factor of F5

It returns

# not prime: 641 is a factor.

This was in fact pointed out by Leonhard Euler [42] without the help of a
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computer: “I have observed after thinking about this for many days that this
number can be divided by 641”.

Attempting to disprove a conjecture with a program does not always work, if
only because some conjectures may actually be true, or at least counterexamples
may be harder to find. Alan Turing used a computer with only 25, 600 bits of
memory to check that the first 1, 104 zeros of the Riemann zeta function were
consistent with the Riemann hypothesis [68]. The latest such effort of which
we are aware, by Xavier Gourdon [55], computes 1013 zeros of the zeta function,
all consistent with Riemann’s conjecture.

Computers may also be used to come up with conjectures. One example
of this is the technique of guessing employed to find linear recurrence relations
with polynomial coefficients satisfied by a sequence [10] [112].

This small part has two chapters. First we focus on a combinatorics conjec-
ture which states that a square of size 2n−2×2n−2 can be filled without overlap
using tiles made up of pairs of paths of size n. We illustrate how, using the
right software tool, it can be simple to toy with a nontrivial conjecture and we
increase the best known value up to which this conjecture is true from n = 5 to
n = 7.

Then, we consider the well-known problem of the complexity of matrix mul-
tiplication: how many arithmetic operations C(n) in a field K does it take to
multiply two square matrices of size n with coefficients in K? For a long time,
it was believed that the usual naive algorithm in O(n3) was optimal. In 1969,
Strassen [117] first proved that this is not the case by introducing an algorithm
with complexity O(nlog2 7). He started a race to find lower bounds on the small-
est constant ω such that C(n) = O(nω). The idea of introducing a variable ε
in the algorithms by Bini [17] led to the result ω < 2.79. Improvements quickly
became of a purely theoretical nature: Schönhage’s τ -theorem [113], which al-
lowed for the impressive improvement to O(n2.55), is typically presented more
as a result on the real number ω than as a concrete algorithm (with perhaps
one exception [2]).

By contrast, in this work, we are interested in the explicit description of
concrete algorithms. We obtain implementations of some of these more “theo-
retical” algorithms and make observations, for matrices of reasonable size. The
main contributions in this chapter are of two kinds.

First, we provide a constructive proof of Schönhage’s τ -theorem (Section 4.3)
and introduce a new way to obtain “ε-free” algorithms to compute independent
parallel matrix multiplications (Section 4.3.2), and to pre-compute their com-
plexity without directly building them.

Secondly, we present an implementation in Ocaml of a new tool for the
symbolic manipulation of tensors representing matrix product algorithms (Sec-
tion 4.4). This tool allows us to actually build the tensors mentioned in the
previous paragraph, and even to export them to C++ or as LATEX pseudo-code.
Our hope is that this tool can in turn be used for experiments.
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Chapter 3

Experimenting with a
Tiling Conjecture

In this chapter, we experiment with a conjecture submitted to us by Alin Bostan,
using the Combine [110] library developed in Ocaml by Rémy El Sibäıe and
Jean-Christophe Filliâtre. First we state the problem (Section 3.1). Then we
describe the theory underlying the Combine library’s algorithm for solving tiling
problems (Section 3.2). We show the results we found (Section 3.3). Finally, we
conclude (Section 3.4).

3.1 Problem Description

In the following, a step is a vector of Z2. The only steps we consider are East
(1, 0) and North (0, 1). A path p is a finite sequence of steps; p is said to go from
A ∈ Z2 to B ∈ Z2 if A +

∑
s∈p s = B. If p1 and p2 are two paths which start

and end at the same points A and B of Z2, we call tile the finite area enclosed
by the two paths.

The problem we consider is stated by Woan, Shapiro and Rogers [129] in the
following way.

Definition 1. A path-pair of length n ≥ 2 is a pair of paths of Z2 which both
start at the origin (0, 0), consist of n steps and meet again for the first time after
exactly n steps. All steps in these paths go either East or North. We denote by
Pn the set of such path-pairs.

An example of such a tile is given in Figure 3.1: The paths are respectively
NNNEEEEE and EEENNEEN where the letter N stands for North and E stands for
East.

The authors go on to state and prove the following two relevant lemmas:

Lemma 1 (cardinality of Pn). The cardinality of Pn is Cn−1, where (Cn)n∈N
is the sequence of Catalan numbers defined by Cn = 1

n+1

(
2n
n

)
.

Lemma 2 (total area of Pn). The sum of the areas of the path-pairs of Pn is
4n−2.

The conjecture we are interested in is the following:
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Figure 3.1: Example of a tile with n = 8

Conjecture 1 (Tiling of a square using Pn). The figures in Pn can be used to
tile a 2n−2 × 2n−2 checkerboard, allowing rotation of the pieces by a multiple of
π
2 .

Lemma 2 justifies that the tiling is not completely implausible, but aside
from the fact that the areas of the tiles and the square match we are not aware
of any intuition as to why Conjecture 1 may be true. However, if we draw
the tiles for n = 4 or n = 5 (Figure 3.2), we see that Conjecture 1 holds for
these values. The authorship of Conjecture 1 is attributed to a student called

Figure 3.2: Tiling solutions for n = 4 and n = 5

Schwärzler [46]. We could not find references to solutions for n > 5.

3.2 Exact Matrix Cover, The Dancing Links Al-
gorithm and Combine

In this section, we describe some of the theory underlying the Combine library
and the algorithm it uses to look for tilings such as the ones displayed in Fig-
ure 3.2. First, we describe the general Exact Cover problem:

Definition 2 (Exact Cover Problem). Let X be a set and let S be a collection
of subsets of X. An exact cover of X is a set S∗ ⊆ S such that every element
of X appears in exactly one element of S∗. In other words, S∗ is a partition of
X.

When X is finite, finding an exact cover can be reformulated in the following
way. Build a matrix M with |X| columns and |S| rows, indexing the columns
(respectively the rows) with the elements xi of X (respectively the elements
Sj of S), so that mi,j is 1 if xi ∈ Sj and 0 otherwise. Then a set S∗ ⊆ S is
a solution to the exact cover problem if and only if the sub-matrix obtained
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by keeping only the rows indexed by the elements of S∗ has exactly one 1 per
column.

This reformulation is called the exact matrix cover (EMC) problem. It is NP-
complete [48]. In 2000, Knuth published the elegant “Dancing Links” algorithm
for solving this problem [79]. The algorithm’s efficiency relies on the clever use
of a doubly-linked-list based data-structure to represent matrices in memory.

Many well-known problems can be reformulated as instances of the EMC
problem: for instance the n-queens problem (how does one place n queens on a
n× n chessboard so that they don’t attack one another?) or solving a Sudoku
puzzle. The tiling problem of Conjecture 1 is in fact also an instance of the
EMC problem.

The reformulation of the problem in Conjecture 1 as an EMC problem con-
sists in building a matrix which describes all possible positions of the tiles on the
grid. The grid G is formed of 4n−2 squares g. Let T be the set of tiles (in our
case, Pn) and let T ′ be the set of shapes which can be obtained from T : the set
T ′ is obtained by applying all permitted rotations on T , so that each element of
T ′ is identical to (one element of T and) at most three other elements of T ′, up
to a rotation. The “at most” here is because duplicates due to the symmetries
of a tile are removed for efficiency. To each element t′ of T ′, we associate a set
Pt′ of subsets of G. Each element of Pt′ is a legal position of t′ on G.

We form a matrix M with |G|+ |T | columns, the 4n−2 first being indexed by
the elements of G and the last ones by the elements of T . M has one line for each
position p on G of each shape t′ in T ′. Hence M has

∑
t′∈T ′ |Pt′ | lines. Thus,

each of the first set of columns has a 1 on every line indexed by a position which
covers the corresponding square. Each of the second set of columns, indexed by
a tile t, has a 1 on every line indexed by a shape obtained by a rotation of t.
Each line indexed by a shape t′ and a position p has a 1 on every square that
is covered by putting t′ at position p, and a 1 on the tile t from which it was
obtained as a rotation.

Suppose we find a solution to this EMC problem. Since this solution consists
in a set of lines with exactly one 1 on each column, it can be seen to be a tiling
of G with the elements of T up to rotation.

The Combine library provides a powerful solver for tiling problems using the
Exact Matrix Cover encoding and the Dancing Links algorithm [79].

3.3 Solutions for n = 6 and n = 7

We used Combine to confirm the conjecture for n ≤ 7, by first generating the
tiles in Ocaml for each n.

Figure 3.3 and Figure 3.4 show solutions for n = 6 and n = 7. We also
show symmetric solutions found by Paul Zimmermann and his intern Romain
Lemoine in Figure 3.5 and Figure 3.6. This brings a possible variation of the
conjecture: for odd n, there exists a solution which is symmetric with respect
to the central vertical line of the grid.

In the case of n = 7, the computation takes more than one hour on a
standard laptop. Interestingly, when one forces the position of the two lateral
bars (bottom left or bottom right) of size n− 1, the computation only takes 20
seconds.
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Figure 3.3: A tiling solution for n = 6

Figure 3.4: A tiling solution for n = 7

Figure 3.5: A symmetric solution for n = 5

In fact, there are many solutions. Although we did not count them ini-
tially, Paul Zimmermann found for example 640089600 solutions for n=5 with
no constraints, 160022400 when one fixes one of the pieces which has 4 possible
rotations and 2063968 if the lateral bars are fixed.

20



Figure 3.6: A symmetric solution for n = 7

3.4 Conclusion

We have improved the best known value up to which Conjecture 1 holds from
n = 5 to n = 7, using the pre-existing Combine library to find tilings of a square.
Unfortunately, our computer does not have enough memory for the problem to
be stored in memory on our laptop for n = 8. A parallel approach could be
justified and will be attempted later, but it would need some modifications to
the Combine library.

Our point was to illustrate that often, experimenting is not only about having
a computer at hand and typing a simple program such as in Listing 2.1. Having
software tools tailored for specific computations can go a long way towards
effectively tackling a problem.

We also tried a different (not documented here) approach for finding tilings
using a linear programming encoding on a suggestion of Marc Mezzarobba, but
unfortunately this turned out to yield worse times by a factor 10.
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Chapter 4

Experiments with Matrix
Multiplication Algorithms

It may seem like a paradox that a topic so typical of Computer Science as
the complexity of multiplying matrices should serve as an illustration of how
experimenting with a computer can help gain insight on results. In fact, there
is a widely held belief that past some point, “fast” matrix product algorithms
are a purely theoretical amusement which has no bearing on matrices of sizes
typically encountered in the real world. We do not categorically dispute this
notion, but the work we present here is an attempt to reconcile these theoretical
results with more practical approaches to the design of algorithms.

We start by defining the problem of the complexity of Matrix Multiplication
and related concepts (Section 4.1). We recall the major milestones in improv-
ing the ω constant which underlies it (Section 4.2). We present a constructive
proof of Schönhage’s τ -theorem; we also present a result which allows to build
more practical matrix product algorithms from seemingly impractical ones (Sec-
tion 4.3). This result was preceded and followed by custom software implemen-
tations for manipulating matrix product algorithms symbolically; we describe
these implementations and the observations we were able to make thanks to
them (Section 4.4).

4.1 Definitions

4.1.1 Matrix Multiplication

We fix a field K. We callMm,n(K) the space of matrices of size m×n over the
field K.

Let A = (ai,j)1≤i≤m
1≤j≤n

∈ Mm,n(K) and B = (bi,j)1≤i≤n
1≤j≤p

∈ Mn,p(K) be ma-

trices over a field K, of respective dimensions m × n and n × p. The matrix
C = (ci,j)1≤i≤m

1≤j≤p
such that

ci,j =

n∑
k=1

ai,kbk,j

is called the product A ·B of A and B.
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The matrix multiplication mapping

〈m,n, p〉 :Mm,n(K)×Mn,p(K) −→Mm,p(K)

(A,B) 7→ A ·B

is a bilinear map.
We define the complexity of a matrix multiplication algorithm A as the

number of arithmetic operations (additions and multiplications) in K computed
by A. Whenever we focus on the asymptotic complexity of matrix multiplica-
tion, we will tend to only count multiplications as they asymptotically dominate
additions in all the constructs we use.

It is a conjecture that the complexity of matrix multiplication is independent
of K. Until it is proved, all results are implicitly parameterized by K. When
there is an ambiguity, we will be specific about the ambient field K.

4.1.2 Rank of a bilinear map

If U is a vector space over K, we denote by U∗ the space of linear forms over U .

Definition 3 (tensor product of two vector spaces). Let U , V be two vector
spaces over K. There exists a unique (up to isomorphism) vector space over K,
U ⊗ V called the tensor product of the spaces U and V , and a bilinear map

Φ : U × V → U ⊗ V

such that for any vector space W over K and bilinear map f : U × V → W ,
there exists a unique linear map f ′ : U ⊗ V → W such that f = f ′ ◦ Φ. The
map Φ is denoted by Φ(x, y) = x ⊗ y for x ∈ U , y ∈ V . Furthermore, ⊗ is
associative, but not commutative.

Let U , V and W be finite dimensional vector spaces over K and let f :
U × V −→W be a bilinear map.

Definition 4. The tensor rank of f is the smallest integer r such that there
exist xi ∈ U∗, yi ∈ V ∗ and zi ∈W satisfying:

∀u ∈ U, v ∈ V, f(u, v) =

r∑
i=1

xi(u)yi(v)zi. (4.1)

We denote the tensor rank r by R(f).
For any xi, yi and zi satisfying Equation (4.1), the element

tf =

r∑
i=1

xi ⊗ yi ⊗ zi

of the space U∗ ⊗ V ∗ ⊗W is called a tensorial representation of f .

Let us fix bases for U , V and W . Up to the canonical isomorphism between
U and U∗ (respectively V and V ∗, W and W ∗), tf can be seen as an element of
U ⊗ V ⊗W , a product which gives a similar role to U , V and W . Thus, more
generally, we define the tensor rank R(t) of t ∈ U ⊗ V ⊗W as the minimum
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r such that t can be written as a sum of r elementary tensors xi ⊗ yi ⊗ zi, i.e.
that t can be written

t =

r∑
i=1

xi ⊗ yi ⊗ zi.

with xi ∈ U , yi ∈ V and zi ∈ W for 1 ≤ i ≤ r. It is easy to see that for any tf
as in Definition 4, R(tf ) = R(f) by definition, so that we can now indifferently
speak of the tensor rank of f or the tensor rank of tf .

Note that the tensor rank of f or t depends on the field K and should be
written RK(f) or RK(t); when there is no ambiguity we will keep the lighter
notation R(f) and R(t).

Example: Identifying row and column matrices with Kn, the mapping

〈1, 2, 1〉 :K2 ×K2 → K
((u, v), (x, y)) 7→ u · x+ v · y

has tensor rank ≤ 2. Indeed, if we take π1 : K2 → K to be the first projec-
tion (u, v) 7→ u and π2 : K2 → K to be the second projection (u, v) 7→ v, then if
A, B ∈ K2

〈1, 2, 1〉 (A,B) = π1(A)π1(B)
(
1
)

+ π2(A)π2(B)
(
1
)
.

In fact, as soon as |K| ≥ 2, RK(〈1, 2, 1〉) = 2.

The particular case of the matrix multiplication

Computing the tensor rank of 〈m,n, p〉 gives a hint of the complexity of matrix
multiplication. In fact, it can be seen that the tensor rank of 〈n, n, n〉 is less
than twice the arithmetic complexity of multiplying two n × n matrices in K.
This is proved for example in a book by Burgisser et al. [22].

Each algorithm computing the matrix multiplication 〈m,n, p〉 that we con-
sider corresponds to a particular way of writing 〈m,n, p〉 as a sum of elementary
tensors. For instance, the naive matrix product algorithm can be written∑

i,j,k

ai,k ⊗ bk,j ⊗ ci,j = 〈m,n, p〉 (4.2)

so that in particular
R(〈m,n, p〉) ≤ mnp. (4.3)

The substitution of tensor rank for arithmetic complexity leads us to define
the following constant:

ω := inf{τ ∈ R |R(〈n, n, n〉) = O(nτ )}.

In this part, we are thus interested in minimizing the rank R(〈n, n, n〉). Equa-
tion (4.3) yields a first upper bound for ω, as the sum has mnp terms, i.e n3 if
m = n = p :

ω ≤ 3. (4.4)
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Obtaining a lower bound requires introducing more technical material outside
of the scope of the present text, but the reader can refer to the book [22] by
Burgisser et al. to see how to obtain:

ω ≥ 2. (4.5)

Let us consider some aspects of the tensor notation as regards matrix mul-
tiplication algorithms.

First, consider the tensor product ⊗ of two tensors: the object 〈m1, n1, p1〉⊗
〈m2, n2, p2〉 can be seen as the tensor obtained when associating to each of the
elementary tensors of 〈m1, n1, p1〉 a copy of the tensor 〈m2, n2, p2〉. This is
exactly what we do when we perform a block matrix product: for a moment,
we see each block as a coefficient, only to remember later that it is actually a
matrix.

It should hence be no surprise that for all m1, n1, p1,m2, n2, p2 we have:

〈m1, n1, p1〉 ⊗ 〈m2, n2, p2〉 ∼= 〈m1m2, n1 n2, p1 p2〉, (4.6)

where the meaning of ∼= is the following: let n denote {1,· · · , n}. There exists a
bijective function

f :
(
m1 × n1 × p1

)
×
(
m2 × n2 × p2

)
−→ m1m2 × n1n2 × p1p2

((i1, j1, k1), (i2, j2, k2)) 7→ (m2(i1 − 1) + i2, n2(j1 − 1) + j2, p2(k1 − 1) + k2)

such that if we replace ai,k ⊗ bk,j ⊗ ci,j ⊗ ai1,k1 ⊗ bk1,j1 ⊗ ci1,j1 with ai2,k2 ⊗
bk2,j2 ⊗ ci2,j2 , where (i2, j2, k2 = f((i, j, k), (i1, j1, k1)), then the tensor product
on the left becomes the tensor on the right.

Another important operation for our purposes is taking a direct sum of
tensors. Let t1 ∈ U1 ⊗ V1 ⊗ W1 and t2 ∈ U2 ⊗ V2 ⊗ W2. Then the direct
sum t1 ⊕ t2, which lives in the space (U1 ⊗ V1 ⊗W1) ⊕ (U2 ⊗ V2 ⊗W2) can be
interpreted as the independent parallel computation of t1 and t2. We will denote
the sum t⊕ t· · · ⊕ t︸ ︷︷ ︸

s times

by s� t. In practice, as long as t1 and t2 do not share any

variables, we will simply obtain t1 ⊕ t2 as t1 + t2.

Algorithmic interpretation: In this context, any elementary tensor can be
seen as a description of a program computing a matrix product, where the first
two components of the tensor provide the coefficients to be multiplied, and the
third one, a weighted list of the result matrix; i.e. the one where the results will
eventually be stored.

Hence the elementary tensor (a1,2 + a3,5)⊗ b2,4⊗ (c1,4 + 2 · c2,4) reads as the
algorithm

tmp← (a1,2 + a3,5) · b2,4
c1,4 ← tmp

c2,4 ← 2 · tmp

We consider a few important properties of the tensor rank, which also justify
why it is called this way.
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4.1.3 Usual properties of the rank

The following properties of the rank are stated without their proofs, which
can be found for example in Burgisser et al. [22]. We will give an intuition
of what these properties mean in the context of tensors representing matrix
multiplication algorithms.

Definition 5. Let π be a permutation of {1, 2, 3} and t ∈ U1 ⊗ U2 ⊗ U3. We
define π(t) ∈ Uπ−1(1) ⊗ Uπ−1(2) ⊗ Uπ−1(3) to be the corresponding permutation
of components on elementary tensors.

We have π (〈m1,m2,m3〉) =
〈
mπ−1(1),mπ−1(2),mπ−1(3)

〉
.

Lemma 3. Let f : U × V −→ W and f ′ : U ′ × V ′ −→ W ′ be bilinear maps,
and t ∈ U ⊗ V ⊗W , then we have:

• R(f ⊕ f ′) ≤ R(f) +R(f ′);

• R(f ⊗ f ′) ≤ R(f) R(f ′).

• R(π(t)) = R(t)

The first item expresses that it is not more complicated to compute the
sum of two independent tensors than to compute one and then the other. The
second item simply states that the number of terms in the expansion of the
product of two sums is the product of the number of terms in each sum. In
terms of matrix multiplication, it implies that if we can compute 〈m1, n1, p1〉 in
r1 multiplications and 〈m2, n2, p2〉 in r2 multiplications, then we can compute
〈m1m2, n1n2, p1p2〉 in r1r2 multiplications: divide matrices into blocks so that
you can do r1 block products, and do every product between two blocks using
r2 multiplications.

Finally, we prove the third point in the particular case of interest for us,
that of matrix multiplication. Consider the trace trilinear form (A,B,C) 7→
Tr(ABC) on matrices of sizes (m,n), (n, p) and (p,m) for some positive integers
m, n and p. Notice that for 1 ≤ i ≤ m and 1 ≤ j ≤ p, the coefficient of
cj,i in Tr(ABC) (seen as a polynomial expression) is the matrix coefficient
of index (i, j) of the matrix product AB (corresponding to 〈m,n, p〉). In the
same way, the coefficient of bk,j , 1 ≤ k ≤ n, 1 ≤ j ≤ p in Tr(CAB) is the
matrix coefficient of index (j, k) of the product CA (corresponding to 〈p,m, n〉).
A similar property holds for Tr(BCA). Any permutation of 〈m,n, p〉 can be
obtained, possibly by transposing A, B or C. By observing that Tr(ABC) =
Tr(CAB) = Tr(BCA), we can then convert any explicit tensor for 〈m,n, p〉 into
a tensor for a permutation of 〈m,n, p〉 by a simple syntactic rewriting which does
not change the number of terms, thus all six permutations have the same rank.

Lemma 4.
R(〈n, n, n〉) ≤ r ⇒ nω ≤ r ⇒ ω ≤ logn(r)

This a consequence of the second item of Lemma 3. From Lemmas 3 and 4
we can deduce

Lemma 5.
R(〈m,n, p〉) ≤ r ⇒ (mnp)ω ≤ r3.
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Proof. Let π be the cyclic permutation mapping 1 to 2, 2 to 3, and 3 to 1.

〈mnp,mnp,mnp〉 ∼= 〈m,n, p〉 ⊗ π (〈m,n, p〉)⊗ π2 (〈m,n, p〉)

so that using the second and third items of Lemma 3,

R(〈mnp,mnp,mnp〉) ≤ r3

which yields the result by Lemma 4.

4.1.4 Degeneration and border rank

The notion of border rank was crucial in improving the upper bound on ω. The
general idea is to relax tensors to be, not just a particular way of writing a
matrix product algorithm, but some perturbation of one containing a special
variable ε. Such algorithms are usually called approximation algorithms.

In the following, U , V , W designate vector spaces over K.

Definition 6. We define UK[ε] to be the extension of scalars of U to the ring
K[ε].

From now on, we will use the notation T for U ⊗ V ⊗W (whose elements
will be called plain tensors) and Tε for UK[ε] ⊗ V K[ε] ⊗WK[ε] (whose elements
will be called tensors with ε’s or polynomial tensors).

The following definition may seem a bit dry, but the idea is actually simple:
suppose the plain tensor we are trying to write as a minimal sum of elementary
tensors is t1 ∈ T . The previous problem we considered until now was to find a
way to directly write t1 as a sum of elementary tensors. Now, we relax this by
finding some tensor t2 ∈ Tε such that t1 is the “tensor of lowest degree of t2”:

t2 = εq−1t1 + εqt3

where t3 ∈ Tε.

Definition 7. Let t1 ∈ T and t2 ∈ Tε. We say that t2 is a degeneration of
order q of t1 (denoted t1 Eq t2) if there exists t3 ∈ Tε such that

t2 = εq−1t1 + εqt3.

The border rank R(t) of t ∈ T is the smallest r such that there exist ui ∈
UK[ε], vi ∈ V K[ε], wi ∈WK[ε] and q ≥ 1 such that:

tEq

r∑
i=1

ui ⊗ vi ⊗ wi.

When there is no ambiguity, we will leave q implicit and write t1 E t2.

We want to show that we can extract a tensor of low rank computing a
tensor t using such a degeneration of t. First we state that the degree q of
approximation does not grow too fast (linearly) when we take N -th powers:

Lemma 6. Let t ∈ T , t1 ∈ Tε and N ∈ N.

tEq t1 ⇒ t⊗N EN(q−1)+1 t
⊗N
1 .
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This enables us to establish a result analogous to Lemma 4, but for tensors
with ε’s:

Lemma 7. Suppose
R (〈m,n, p〉) ≤ r.

Then

ω ≤ 3 log(r)

log(mnp)
.

This means that if we can find a degeneration of a matrix product with r
(polynomial) multiplications, it yields the same bound on ω as if it were a plain
tensor. The proof of Lemma 7 relies on the following lemma:

Lemma 8. Let t ∈ T and r ∈ N. Then if R(t) ≤ r,

R(t) ≤ r q(q + 1)

2

Proof. Suppose R(t) ≤ r, and write t Eq
r∑
i=1

ui ⊗ vi ⊗ wi as in Definition 7

(with possibly some terms equal to zero if R(t) < r). Expand each elementary
polynomial tensor ui(ε)⊗ vi(ε)⊗ wi(ε) into a polynomial in ε with coefficients
in U ⊗ V ⊗W . Keep only the terms of degree q− 1: there are at most as many
as there are triples of nonnegative integers (i, j, k) whose sum is q − 1 (because
each monomial is built from the product of three monomials in ε), which is
q(q+1)

2 . The tensor obtained by removing terms of higher degree is εq−1t, and

it can be written as the sum of at most r q(q+1)
2 elementary tensors, so that

R(t) ≤ r q(q + 1)

2
.

We can now conclude the proof of Lemma 7: R (〈m,n, p〉) ≤ r so that
R
(
〈m,n, p〉⊗N

)
≤ rN for N ∈ N. Thanks to Lemma 6, we get

R
(
〈m,n, p〉⊗N

)
≤ rN · P (N, q)

where P (N, q) is a bivariate polynomial in N and q. Now we can apply Lemma 7
and let N tend to infinity and we get our result.

The intuition behind this result is that finding the coefficient of εq−1 is
asymptotically smaller than the overhead cost of computing with polynomials,
since the degree of the approximation grows linearly when the rank grows ex-
ponentially with N . This is in contrast with the case of low values of N , for
which this overhead is less justifiable. Thus, although border rank constitutes
a formidable mathematical jump forward and allowed for spectacular improve-
ments on ω, it is often mentioned as one of the reasons for matrix product
algorithms to be deemed impractical, because extracting the coefficients only
becomes faster for extremely large matrices.
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4.2 A Quick Overview of Some Matrix Product
Algorithms

This chapter describes some of the landmark results which have improved the
best lower bound on ω from the naive estimate ω < 3 (see Equation (4.4)) to
the current record by Le Gall [81]: ω < 2.37287. It is not exhaustive; for this we
suggest a few references [116][22][2][127]. Dumas and Pan recently published a
review [39] with an emphasis on practical matrix multiplication, which we can
informally define as the multiplication of matrices of size n ≤ 106.

4.2.1 Strassen’s algorithm (1969)

Strassen’s algorithm was the first to break the ω < 3 barrier, much like Karat-
suba was the first to break the barrier of O(n2) for multiplying polynomials.
Strassen [117] proves that

R (〈2, 2, 2〉) ≤ 7

by exhibiting an algorithm to compute 〈2, 2, 2〉 in 7 multiplications. From there,
invoking Lemma 4, we get ω ≤ log2(7) ≈ 2.81. Note that Winograd proposed
an improvement on Strassen’s algorithm which reduces the number of addi-
tions [128], but also proved that 7 multiplications is optimal.

4.2.2 Bini’s Approximate Algorithms (1979)

The idea to use the border rank, presented in Section 4.1.4 was first introduced
by Bini [17]. It was the first departure from the idea of finding “Strassen-
like” exact matrix multiplication algorithms for a specific format with fewer
multiplications than the naive algorithm. Bini introduced an approximative
(i.e., using ε’s) algorithm for the product(

a1,1 a1,2

a2,1 0

)(
b1,1 b1,2
b2,1 b2,2

)
(4.7)

using 5 polynomial multiplications:

φ(ε) :=(a1,2 + εa1,1)⊗ (b1,2 + εb2,2)⊗ c2,1 + (a2,1 + εa1,1)⊗ b1,1 ⊗ (c1,1 + εc1,2)−
a1,2 ⊗ b1,2 ⊗ (c1,1 + c2,1 + εc2,2)− a2,1 ⊗ (b1,1 + b1,2 + εb2,1)⊗ c1,1+

(a1,2 + a2,1)⊗ (b1,2 + εb2,1)⊗ (c1,1 + εc2,2)

From this, one can easily deduce an approximative algorithm for 〈3, 2, 2〉 by
gluing two copies of φ (and changing indices appropriately). By using permu-
tations, one can deduce approximative algorithms for 〈2, 3, 2〉 and 〈2, 2, 3〉, and
subsequently for 〈12, 12, 12〉 in 10 · 10 · 10 = 1000 multiplications.

Finally, this gives
R (〈12n, 12n, 12n〉) ≤ 1000n

so that ω < 2.78 by Lemma 7.
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4.2.3 Schönhage’s τ-theorem (1981)

In 1981, Schönhage [113] departed even further from Strassen’s algorithm. While
Bini had relaxed the goal of finding matrix product algorithms to that of finding
approximate matrix product algorithms, Schönhage relaxed it even further to
approximate, independent and parallel matrix product algorithms. The follow-
ing theorem states that if we have a tensor t which is a degeneration of the sum
of s independent matrix products of various sizes, we can deduce from it an
asymptotic upper bound for the complexity of matrix multiplication of square
matrices. This complexity depends on the sizes of these matrices and on the
border rank of t.

Theorem 2 (Schönhage’s τ -theorem). Suppose that for s ∈ N∗ and for positive
integers mi, ni, pi, 1 ≤ i ≤ s, we have

R

(
s⊕
i=1

〈mi, ni, pi〉

)
≤ r.

Then, if β > 0 is such that

s∑
i=1

(mi ni pi)
β

= r,

we have
ω ≤ 3β.

An equivalent statement is that

s∑
i=1

(mi ni pi)
ω ≤ r.

Schönhage then presents a tensor computing 〈4, 1, 4〉 ⊕ 〈1, 9, 1〉 with border
rank 17, which immediately gives the corollary that ω < 2.55. This tensor is
presented as an illustration of Pan tables in the next section.

Although this theorem has been a substantial tool to improve bounds on ω,
the usual proof is non-constructive. By this, we mean two things. First, it relies
on an implicit argument of existence of a family of algorithms whose complexity
tends to the resulting value of ω rather than exhibiting one. Secondly, it does not
give a way to build the algorithm concretely. This discourages one from building
them and looking at the complexity of these algorithms, and encourages the idea
that the resulting complexity is only interesting asymptotically.

4.2.4 Pan’s Trilinear aggregation (1984)

In this section, we present an idea by Pan which consists in combining disjoint
matrix product tensors to take advantage of Theorem 2. The tensors are pre-
sented as rows of three-column tables, and Pan’s idea consists in adding them
column by column. The tensor obtained this way then needs a correction term
to remove terms of low degree: the hope is that the rank of this correction term
is low. This idea is called trilinear aggregation and was extensively developed in
a book [100] and is more clearly and concisely recalled in [39]. Here is a simple
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example of such a table. This tensor is actually from Schönhage, but we adopt
a “Pan table” view of it. [

xi,0 y0,k ε2zk,i
εu0,k,i εvk,i,0 w0,0

]
(4.8)

Each line almost represents a different (and disjoint) matrix multiplication,
and each column represents a component of the tensor. The almost is because
the variables u0,k,0 and v0,i,0 are adjustment variables and do not correspond
to actual matrix entries.

One should specify bounds, which are here i = 0..m − 1 and k = 0..p − 1.
Thus the tensor represented by the table in Equation (4.8) reads:

t1 :=

m−1∑
i=0

p−1∑
k=0

(xi,0 + εu0,k,i)⊗ (y0,k + εvk,i,0)⊗ (ε2zk,i + w0,0). (4.9)

One should also specify the value of the adjustment variables, under the
form of linear constraints, like for instance

m−1∑
i=0

u0,k,i = 0 (4.10)

p−1∑
k=0

vk,i,0 = 0 (4.11)

The tensor t we are interested in obtaining is the coefficient of degree 2 in
ε of the tensor in Equation (4.9). In order to have t E2 t1 (see Definition 7),
we need to get rid of terms of degree lower than 2. Thus we add the correction
term

σ = −

(
m−1∑
i=0

xi,0

)
⊗

(
p−1∑
k=0

y0,k

)
⊗ w0,0

and we get a tensor

t2 := t1 + σ (4.12)

with mp+ 1 multiplications in K[ε].
Now, looking closely at each component of the tensor, corresponding to each

row of the Table (4.8)), we can see that the two matrix products we are looking
at are in fact 〈m, 1, p〉 and 〈1, (m− 1) (p− 1), 1〉.

This would be done in a naive way in (m · 1 · p) + (1 · (m− 1)(p− 1) · 1) =
2mp−(m+p−1) elementary tensors, but t2 in Equation (4.12) has only mp+1
operations. Using Theorem 2 this gives

(mp)ω + ((m− 1)(p− 1))
ω ≤ mp+ 1 (4.13)

For m = p = 4, this gives ω < 2.55. Pan also proposes a three-row table
which gives ω < 2.522, and then improves it with other techniques leading to
ω < 2.5167.
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4.3 A Constructive Proof of the τ-Theorem and
a New Family of Algorithms

In this section, we first present a constructive proof of the τ -theorem (The-
orem 2). This proof then inspires a theorem about a new family of matrix
multiplication algorithms.

4.3.1 Proof

Part of the following proof is inspired from that of [2, Chapter 7]. We as-
sume that R (

⊕s
i=1〈mi, ni, pi〉) ≤ r and we take β ∈ R, β > 0, such that∑s

i=1 (mi ni pi)
β

= r. Let us show that ω ≤ 3β. We can assume that r > s,
unless all products are 〈1, 1, 1〉, which is not an interesting case: it would mean
we are doing s independent scalar multiplications. We will make the assumption
that we are not in that case.

Recall that if t is a tensor and s ∈ N, s� t stands for t⊕ t· · · ⊕ t︸ ︷︷ ︸
s times

.

We should first remark that ⊗ and ⊕ behave just like multiplication and
addition up to an isomorphism. Analogously to Theorem 1, we have for k ∈ N:(

s⊕
i=1

〈mi, ni, pi〉

)⊗k
∼=

⊕
µ

µ1+···+µs=k

(
k

µ

)
� 〈

s∏
i=1

mµi
i ,

s∏
i=1

nµii ,

s∏
i=1

pµii 〉 (4.14)

Similarly to Equation (4.6), the ∼= sign hides a bijective rewriting function
to go from left to right.

Denote t0 =

s⊕
i=1

〈mi, ni, pi〉, recall that we have by hypothesis:

R(t0) ≤ r

so that
R(t⊗k0 ) ≤ rk.

For each µ in the direct sum on the right side of Equation (4.14), let us denote
by Eµ the vector space in which each term lives. Now expand t⊗k0 as in Equa-
tion (4.14) and choose µ ∈ Ns with µ1 +· · ·+µs = k. If we zero out all variables
which do not belong to Eµ, we get:

R

((
k

µ

)
� 〈

s∏
i=1

mµi
i ,

s∏
i=1

nµii ,

s∏
i=1

pµii 〉

)
≤ rk. (4.15)

We rename the quantities in Equation (4.15) as :

R (Sk � 〈Mk, Nk, Pk〉) ≤ rk. (4.16)

At this point, we prove the following

Lemma 9. If mnp > 1 and s < r,

R (s� 〈m,n, p〉) ≤ r ⇔ s(mnp)ω ≤ r ⇒ ω ≤ log(r/s)

log(mnp)
.
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In fact, Lemma 9 is an easier case of the τ -theorem when all disjoint matrix
products are of the same size.

Proof. The idea is to recursively compute 〈mk, nk, pk〉. To this end, we see
〈mk, nk, pk〉 as 〈mk−1, nk−1, pk−1〉 ⊗ 〈m,n, p〉.

We define the sequence (Kk)k≥1 by

Kk =
(r
s

)k−1
(
mnp+ r

k−1∑
i=1

(s
r

)i)
.

Notice that if k ≥ 1, we have

Kk+1 =
r

s
Kk + r.

We now prove by induction on k ≥ 1 the assertion

Hk := R(〈mk, nk, pk〉) ≤ Kk.

• H1 is true, since K1 = mnp.

• Suppose Hk−1 is true for some k ≥ 2.

Recall that 〈mk, nk, pk〉 ∼= 〈mk−1, nk−1, pk−1〉 ⊗ 〈m,n, p〉: this consists
in cutting the matrix multiplication 〈mk, nk, pk〉 as a higher-level matrix
multiplication of size 〈mk−1, nk−1, pk−1〉, but where the base operation is
the lower-level matrix multiplication 〈m,n, p〉. The higher level multipli-
cation can be done by induction hypothesis in less than Kk−1 operations,
each being a 〈m,n, p〉 multiplication.

Now, we cut this set of multiplications into dKk−1

s e stacks of s multiplica-
tions, padding the last stack with zeroes if necessary. We get the formula:

R(〈mk, nk, pk〉) ≤
⌈
Kk−1

s

⌉
(R (s � 〈m,n, p〉)))

≤
(
Kk−1

s
+ 1

)
r = Kk.

Our induction is proved.
Remember that s

r < 1 , so that the sum in Kk can be bounded by 1
1− sr

.

Thus

R(〈mk, nk, pk〉) ≤
(r
s

)k−1
(
mnp+

r

1− s
r

)
.

Thus by Lemma 7,

kω

3
≤

(k − 1) log( rs )

log(mnp)
+

log
(
mnp+ r

1− sr

)
log(mnp)

.

Dividing on both sides by k and letting k tend to infinity, we get the expected
result.
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We can now use Lemma 9 to write from (4.16):

ω ≤ 3
log( r

k

Sk
)

log(MkNkPk)
. (4.17)

Consider the equality:

rk =

(
s∑
i=1

(minipi)
β

)k
=

∑
µ

µ1+···+µs=k

(
k

µ

)( s∏
i=1

(minipi)
µi

)β
. (4.18)

The biggest term on the right is bigger than the average over the
(
k+s−1
s−1

)
≤

(k+ 1)s−1 terms of the sum, so that we may choose the term Sk�〈Mk, Nk, Pk〉
in Equation (4.16) such that:

Sk (MkNkPk)
β ≥ rk

(k + 1)s−1
. (4.19)

However, this is not effective if we want to actually find Sk. In practice, we may
choose a central multinomial coefficient as in the following lemma.

Lemma 10 (Maximal Multinomial Coefficient). Let k, s ∈ N∗. Write the
euclidean division of k by s, k = qs + r. Then k!

q!s−r(q+1)!r is maximal among

all multinomial coefficients
(

k
ν1,···,νs

)
.

Proof. First, we prove that in a maximal tuple ν1,· · · , νs, all νi necessarily satisfy
q ≤ νi ≤ q + 1. Notice first that for every element νi < q there exists some
νj ≥ q + 1. Assume for convenience that i = 1 and j = 2:

k!

ν1! ν2! · · · νs!
<

ν2

ν1 + 1

k!

ν1! ν2! · · · νs!
=

k!

(ν1 + 1)! (ν2 − 1)! · · · νs!
.

This contradicts our maximality assumption, which proves our first point.
Assume there are t values of νi which are equal to q, and s − t which are

equal to q + 1. Then we have

k = t q + (s− t) (q + 1) = k

so that t = s− r, which proves our lemma.

In order to compute the asymptotics, we keep to Equation (4.19).
Using Equation (4.17) and Equation (4.19) we get:

ω ≤ 3
log
(
(k + 1)s−1(MkNkPk)β

)
log(MkNkPk)

≤ 3β + 3(s− 1)
log (k + 1)

log(MkNkPk)
.

Since

• log(MkNkPk) ≥ 1
β log( r

k

Sk
) by Equation (4.19);

• Sk =
(

k
µ1,···,µs

)
< sk (by applying Theorem 1 with xi = 1 for all i);
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• s < r;

we get

ω ≤ 3β + 3(s− 1)β
log(k + 1)

log(
(
s+1
s

)k
)

and so by letting k tend to infinity, we have the desired result.

Interpretation of this result

Using the τ -theorem, spectacular theoretical improvements can be made. Equa-
tion (4.14) is mentioned as being obvious in most papers and books on the
topic, but it is not so straightforward to actually write this bijection. We will
not write it down here, but we programmed it in Maple and later Ocaml. We
wrote a procedure Extract(t, k, µ) which takes as input a tensor t such that⊕s

i=1〈mi, ni, pi〉 E t, an integer k ∈ N and a vector µ = (µ1,· · · , µs) ∈ Ns with
µ1 +· · ·+ µs = k, and returns a tensor (i.e., an algorithm) t′ such that(

k

µ

)
� 〈

s∏
i=1

mµi
i ,

s∏
i=1

nµii ,

s∏
i=1

pµii 〉E t
′.

Of course, if one uses a direct sum of naive matrix multiplications, one
only gets

(
k
µ

)
naive products of the type 〈Mk, Nk, Pk〉. Only tensors already

constituting an improvement on the naive algorithm are susceptible to yield
improvements.

4.3.2 Removing ε’s and counting operations

As seen in Section 4.2.4, Pan proposes a method called trilinear aggregation
to build degenerate tensors representing disjoint matrix products using as few
operations as possible.

Combining this idea with the above algorithm Extract associated to Schönhage’s
τ -theorem proves to be a fruitful approach. The following are some new defini-
tions and propositions.

Definition 8 (Homogeneity). Let t be a disjoint matrix product tensor of length
h with the 3s variables

(x1,k)k=1..s , (x2,k)k=1..s , (x3,k)k=1..s

the 3s exponents

(q1,k)k=1..s, (q2,k)k=1..s, (q3,k)k=1..s

and the 3sh coefficients

(λi,1,k)i=1..h,k=1..s, (λi,2,k)i=1..h,k=1..s, (λi,3,k)i=1..h,k=1..s,

such that

t =

h∑
i=1

(
s∑

k=1

λi,1,k x1,kε
q1,k ⊗

s∑
k=1

λi,2,k x2,kε
q2,k ⊗

s∑
k=1

λi,3,k x3,kε
q3,k

)
.

Then we say that t is s-homogeneous.
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The key point is that each variable always appears with the same exponent.
An example of a homogeneous tensor is presented in Equation (4.9).

Theorem 3. Let t be a s-homogeneous tensor. Let µ = (µ1,· · · , µs), k such that
s∑
i=1

µi = k and let t′ = Extract(t, k, µ). The
(
k
µ

)
products

(
k
µ

)
� 〈Mk, Nk, Pk〉 :=

t′ are of the form εq t1 , where q =

3∑
u=1

s∑
i=1

qu,iµi and t1 is an ε-free tensor (i.e,

q only depends on µ).

Proof. Let

s∑
l=1

λij ,1,l x1,lε
q1,l ⊗

s∑
l=1

λij ,2,l x2,lε
q2,l ⊗

s∑
l=1

λij ,3,l x3,lε
q3,l , j = 1..k

be k terms (possibly repeated) of t. Their product appears in the expansion of
t⊗k:

k⊗
j=1

(
s∑
l=1

(
λij ,1,l x1,lε

q1,l
)
⊗

s∑
l=1

(
λij ,2,l x2,lε

q2,l
)
⊗

s∑
l=1

(
λij ,3,l x3,lε

q3,l
))
(4.20)

=

3⊗
u=1

 k⊗
j=1

(
s∑
l=1

λij ,u,l xu,l ε
qu,l

) (4.21)

From the 3ks terms of

3⊗
u=1

 k⊗
j=1

(
s∑
l=1

λij ,u,l xu,lε
qu,l

), the only elementary

tensors which appear in t′ are those of the shape x = x1⊗x2⊗x3 with non-zero
components of the form

xu ∼=

 s⊗
l=1

∏
j∈Jl

λij ,u,l xu,lε
qu,l

⊗µl (4.22)

∼= εqu,1µ1+···+qu,sµs
s⊗
l=1

∏
j∈Jl

λij ,u,l xu,l

⊗µl . (4.23)

As all elementary tensors of t′ are of the shape (4.23), we can set q =

3∑
u=1

s∑
i=1

qu,iµi

and factor t′ by εq. The remaining term of this factorization is ε-free.

Theorem 3 means that we can benefit from the τ -theorem’s improvements on
Pan’s degenerated tensors without the ε’s . Indeed, in the proof of the τ -theorem,
we were interested in upper bounding the border rank R (Sk � 〈Mk, Nk, Pk〉).
Then, we computed an asymptotic complexity for this upper bound as we
knew that the tensor rank R (Sk � 〈Mk, Nk, Pk〉) would be higher because of
Lemma 8. However, in this case, our tensor is of the shape εqt with t an ε-free
tensor, so that by setting ε to 1, we can see that our bound on the border rank
of t′ is also a bound on the tensor rank of Sk � 〈Mk, Nk, Pk〉.
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Remark 1. In Theorem 3, the terms of t′ all had the same degree in ε. If
we look closely, there might be other terms of the multinomial expansion of
Theorem 2 which happen to have the same degree. An improvement would be to
keep, not only

(
k
µ

)
�〈Mk, Nk, Pk〉 but all terms corresponding to a

(
k
ν

)
such that∑3

u=1

∑s
i=1 qu,iνi =

∑3
u=1

∑s
i=1 qu,iµi. One could then iterate the “τ -theorem

algorithm” on the newly obtained disjoint matrix product. This might motivate
a particular choice of the powers of ε in Pan’s trilinear aggregating tables.

A natural question arises after this: how do we count the number r of
elementary tensors in Extract(t, k, µ)? We will be able to compute

(
k
µ

)
products

of the type 〈
s∏
i=1

mµi
i ,

s∏
i=1

nµii ,

s∏
i=1

pµii 〉 (where the mi, ni, pi are the dimensions of

each of the s disjoint matrix products) in parallel:

R

(
〈1,
(
k

µ

)
, 1〉 ⊗ 〈

s∏
i=1

mµi
i ,

s∏
i=1

nµii ,

s∏
i=1

pµii 〉

)
≤ r (4.24)

so that

ω ≤ log(r)

log

((
k
µ

)( s∏
i=1

mµi
i n

µi
i p

µi
i

)) (4.25)

There is a way to compute r without computing tk.

Definition 9. Let t be a s-homogeneous tensor and let ti =

3⊗
u=1

(
s∑

k=1

λij ,1,l xu,kε
λu,k

)
be an elementary tensor of t. A 3s-tuple p(ti) ∈ {0, 1}3×s is called a pattern of
ti if

∀1 ≤ k ≤ s, 1 ≤ l ≤ 3, p(ti)l,k =

{
0 if λi,j,k = 0

1 otherwise

Definition 10. The monomial M(p) associated with a pattern p ∈ {0, 1}3×s is

3∏
u=1

s∏
i=1

X
p1,i
i Y

p2,i
i Z

p3,i
i

The polynomial Pt1,···,ts ∈ Z[X1,· · · , Xs, Y1,· · · , Ys, Z1,· · · , Zs] associated with a
decomposition of an s-homogeneous tensor t as a sum of elementary tensors

t =

s∑
i=1

ti is defined as

s∑
i=1

M(p(ti)).

From now on we write Pt for Pt1,···,ts as we fix a decomposition of t.

Theorem 4. Let t be a s-homogeneous tensor of length s. Let P = Pt be its
associated polynomial. Let k ∈ N and let µ be a s-tuple of sum k. Let Q be the
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polynomial obtained by keeping only the monomials of P k which are multiples

of R :=

(
s∏
i=1

Xµi
i

)(
s∏
i=1

Y µii

)(
s∏
i=1

Zµii

)
i.e.,

Q = P k −
(
P k mod R

)
.

Then the number of multiplications in the algorithm yielded by Theorem 3 for
N and µ is equal to the sum of the coefficients of Q (the value of Q when all its
variables are set to 1).

Proof. As there is one monomial for each term of t written as a homogeneous
tensor, the products of monomials M1· · ·Mk in the expansion of P kt are in one-
to-one correspondence with the tensor products of the elementary tensors in t⊗k

(see Equation (4.21)).
The operation P k −

(
P k mod R

)
keeps only the monomials of P k which

are multiples of the monomial R. Thus, we need to show that these mono-
mials are exactly the ones corresponding to the elementary tensors we kept in
Equation (4.21). We define V [1] = X, V [2] = Y and V [3] = Z.

We kept an elementary tensor of t⊗k as in Equation (4.21) if and only if
one of its sub-terms had the shape of Equation (4.22). This corresponds to
keeping a monomial M1· · ·Mk if and only if for each l, among the k monomials
M1,· · · ,Mk, for u ∈ {1, 2, 3}, there are at least µl which correspond to a tensor
containing a non-zero term xu,l . The latter is equivalent to saying that for
each l, there are at least µl monomials among M1,· · · ,Mk which are divisible
by V [u]l, which is equivalent to saying that the product M1· · ·Mk is divisible
by R = (

∏s
i=1X

µi
i ) (

∏s
i=1 Y

µi
i ) (

∏s
i=1 Z

µi
i ).

Theorem 4 gives us an algorithm to compute the number of multiplications
of the result of Extract(t, k, µ) for t a s-homogeneous tensor.

4.4 Scaling the Experiment Up: Implementa-
tions from Maple to Ocaml

4.4.1 Maple Implementation: Description, Advantages and
Downsides

In Section 4.3, we considered a simple question: what do algorithms “produced”
with the τ -theorem look like in practice?

We first decided to write an implementation of the Extract algorithm in
the Maple symbolic computation software. Recall that this algorithm takes as
input a tensor t such that

⊕s
i=1〈mi, ni, pi〉E t, a natural number k ∈ N, a vector

µ = (µ1,· · · , µs) such that
∑s
i=1 µi = k, and returns a tensor (i.e., an algorithm)

t′ such that (
k

µ

)
�

〈
s⊗
i=1

mµi
i ,

s⊗
i=1

nµii ,

s⊗
i=1

pµii

〉
E t′.

We illustrate the symbolic operations performed by this algorithm by going
informally through an example with k = 2.
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Input tensor: Suppose we start with the direct sum of two naive matrix
multiplications, 〈2, 1, 2〉 ⊕ 〈1, 3, 1〉:

t :=

1∑
i=0

1∑
j=0

ai,0 ⊗ b0,j ⊗ ci,j+

2∑
k=0

x0,k ⊗ yk,0 ⊗ z0,0

For this example we choose k = 2 and µ = (1, 1).

Computing t⊗k: First, we compute t⊗2. The tensor product of variables is
done in the following way. Indices are computed according to the rule already
exposed just after Equation (4.6), which correspond to block matrix multipli-
cation, and names are concatenated. For example when we take the product∑1
i=0 ai,0⊗

∑2
k=0 x0,k, the variable a implicitly represents a matrix of size (2, 1)

and x represents a matrix of size (1, 3). Thus we create a variable ax rep-
resenting a matrix of size (2 · 1, 1 · 3) = (2, 3) and the tensor product gives∑1
i=0

∑2
k=0 axi,k. Here is t⊗2:

1∑
i=0

1∑
j=0

1∑
i′=0

1∑
j′=0

aa(2·i+i′),0 ⊗ bb0,(2·j+j′) ⊗ cc(2·i+i′),(2·j+j′)+

1∑
i=0

1∑
j=0

2∑
k′=0

axi,k′ ⊗ byk′,j ⊗ czi,j+

2∑
k=0

1∑
i′=0

1∑
j′=0

xai′,k ⊗ ybk,j′ ⊗ zci′,j′+

2∑
k=0

2∑
k′=0

xx0,(3·k+k′) ⊗ yy(3·k+k′),0 ⊗ zz0,0

By grouping sums together, we can see the terms of the expansion in Equa-
tion (4.14) which we recall is:

(
s⊕
i=1

〈mi, ni, pi〉

)⊗k
∼=

⊕
µ

µ1+···+µs=k

(
k

µ

)
� 〈

s∏
i=1

mµi
i ,

s∏
i=1

nµii ,

s∏
i=1

pµii 〉

• The variable aa (respectively bb, cc) represents the vector µ = (2, 0); in
other words the one in which all variables come from the first component
of the direct sum 〈2, 1, 2〉 ⊕ 〈1, 3, 1〉;

• The variables ax and xa (respectively by and yb, cz and zc) represent the
vector µ = (1, 1); in other words the one in which there is one variable (a)
from the first component of the direct sum and one variable (x) from the
second component of the direct sum;

• The variable xx (respectively yy, zz) represents the vector µ = (0, 2).
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Extracting the term corresponding to µ and renaming variables to
reflect parallel independent matrix multiplications: Suppose now that
we want to extract the term corresponding to µ = (1, 1), which according to our
expansion above (and in Equation (4.14)), should give us

(
2

1,1

)
= 2 independent

copies of 〈2 · 1, 1 · 3, 2 · 1〉 = 〈2, 3, 2〉. We need to set to zero all variables which
correspond to another term. We also rename the variables in a more convenient
way, with a0, b0, c0 for the first copy of 〈2, 3, 2〉 and a1, b1, c1 for the second
copy:

1∑
i=0

1∑
j=0

2∑
k0=0

a0i,k0 ⊗ b0k0,j ⊗ c0i,j+

2∑
k=0

1∑
i0=0

1∑
j0=0

a1i0,k ⊗ b1k,j0 ⊗ c1i0,j0

which is the output of our algorithm.
Of course, the tensor t was rather uninteresting: it consisted of two copies of

a naive matrix multiplication algorithm, and we can’t expect the output to be
better than several copies of a naive algorithm. The main goal of this example
was to explain how variables are combined, renamed and extracted depending
on µ.

Let us now consider a tensor t which is a degeneration of 〈2, 1, 2〉 ⊕ 〈1, 3, 1〉,
that is a tensor with ε’s with strictly less elementary tensors than the naive
algorithm, that is stricly less than 2 · 1 · 2 + 1 · 3 · 1 = 7 elementary tensors.
Let us apply the exact same transformations as above to t⊗2, and let us call
the result t′. The tensor t′ is a degeneration of 2 � 〈2, 3, 2〉, i.e it computes 2
matrix products of the shape (2, 3, 2). The hope is to be able to pick sufficiently
big values for k and µ, so that t′ features strictly less than 2 · (2 · 3 · 2) = 24
elementary tensors, or, algorithmically speaking, strictly less than 24 polynomial
multiplications. Of course, in the case of our example, sticking to k = 2 makes
finding such good values unlikely.

Symbolic computation systems are natural candidates for the implementa-
tion of such an algorithm: manipulating variables, subscripts and polynomials
is one of the core use cases for such programs. We hence made a first attempt
using Maple [95]. In fact, the numerous commands available in Maple to extract
information from data (normalizing polynomials to see if they are equal, look-
ing at a specific coefficient, substituting in an algebraic way) were invaluable to
make quick experiments which led to the observations of Section 4.3.2.

However, there were several reasons which ultimately led us to depart from
a computer algebra system like Maple to a functional programming language
like Ocaml.

The Maple implementation of the τ -theorem worked really well with con-
crete instances of tensors, i.e. when the number of elementary tensors was static.
When we started to do substitutions under a binder “

∑k
i=1” for tensors repre-

sented as sums of a variable number of elementary tensors, it became hard to
tame the behavior of Maple, although this may very well be due to inexperience
with the latter on our part. In particular, in Pan’s tensors as presented in his
book [100], there is often a clean presentation such as in Equation (4.9) which
is then followed by a set of rewriting rules such as in Equation (4.10). Correctly
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rewriting these under a sum can prove tricky and we found it easier to write
this ourself in Ocaml.

Related to the previous part is that we realized that some of what we wanted
was similar to manipulations of an abstract syntax tree as it is done for instance
in compilers; a statically typed functional programming language such as Ocaml
is much more suited to that purpose than Maple. The abstract data structures
used in Ocaml enables us to export our tensors in a modular way to a Symbolic
Computation Software such as Maple or Sage, but also to C++ (in order to get
actual runnable algorithms for parallel matrix computations) and to LATEX.

4.4.2 Ocaml Implementation

We built a software tool in Ocaml enabling us to do symbolic manipulations on
tensors.

Input

The input can be given this way. It consists of three parts: a list of tables, a
set of constraints, and a list of the dimensions of the matrices. Each table is
itself a collection of matrix multiplications (one on each row) representing Pan
tables as described in Section 4.2.4. The constraints are a collection of rewriting
rules of the form x[i1,· · · , in] := e where x is a variable with subscripts i1,· · · , in
(usually n = 2 in our examples, but we don’t constrain it) and e is an arithmetic
expression of variables. Subscripts are either static natural numbers such as 0 or
1, free variables such as k, l or they can be explicit substitution such as k := 0.
The difference between x[0] = e and x[k := 0] = e is that in the first case, we
will only substitute the syntactic expression x[0] by e but we won’t substitute

under the sum in
∑1
i=0 x[i]; whereas in the second case, we will substitute in

both cases. When a variable has no subscript, it can also be written x instead
of x[].

Here is Schönhage’s algorithm from Section 4.2.4 for instance. The table T1

corresponds to Equation (4.8) and the table T2 corresponds to

Table T1 :

Line l11 :

Seq([x[i,0];y[0,k];z[k,i] * eps^2],i = 0 .. (m-1),k = 0..(p-1))

Line l12 :

Seq([u[0,k,i] * eps;v[k,i,0]*eps;w[0,0]],i = 0.. m-1,k = 0..p-1)

Table T2 :

Line l21 :

[sum(x[dd,0],dd=0..(m-1));sum(y[0,ee],ee=0..(p-1));-w[0,0]]

;;

Constraints :

u[x:=0,k:=0,i] = 0

v[k,i:=0,x:=0] = 0

u[x:=0,k,i:=0] = - sum(u[0,k,dd],dd=1..m-1)

v[k:=0,i,x:=0] = - sum(v[ee,i,0],ee=1..p-1)

x[i,0] = a1[i,0]

x[dd,0] = a1[dd,0]

y[0,k] = b1[0,k]
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y[0,ee] = b1[0,ee]

z[k,i] = c1[i,k]

u[0,k,i] = a2[0,(k-1)*(m-1)+(i-1)]

v[k,i,0] = b2[(k-1)*(m-1)+(i-1),0]

w[0,0] = c2[0,0]

eps = 1

;;

Spaces :

a1 b1 c1 (m,1,p)

a2 b2 c2 (1,(m-1)*(p-1),1)

;;

Notice that eps = 1 is part of the constraints, where eps is the variable ε. This
is justified by our Theorem 3. This input format is not very restrictive, and
in fact we can input more classical matrix multiplication algorithms. Here is
Strassen’s algorithm for instance:

Table T1 : Line l11 : [a[1,2] - a[2,2];b[2,1] + b[2,2]; z[1,1]]

Table T2 : Line l21 : [a[2,1] - a[1,1];b[1,2] + b[1,1]; z[2,2]]

Table T3 : Line l31 : [ a[1,1];b[1,2] - b[2,2];z[2,1] + z[2,2]]

Table T4 : Line l41 : [a[2,2];b[2,1] - b[1,1];z[1,2] + z[1,1]]

Table T5 : Line l51 : [a[2,1] + a[2,2];b[1,1];z[1,2] - z[2,2]]

Table T6 : Line l61 : [a[1,2] + a[1,1];b[2,2];z[2,1] - z[1,1]]

Table T7 : Line l71 : [a[1,1]+a[2,2];b[1,1]+b[2,2];z[1,1]+z[2,2]]

;;

Constraints:

(* no constraints *)

;;

Spaces : a b c (2,2,2)

;;

The first seven lines, shown as one-line Pan tables represent each of the seven
elementary tensors in Strassen’s algorithm:

(a1,2 − a2,2)⊗ (b2,1 + b2,2)⊗ z1,1+

(a2,1 − a1,1)⊗ (b1,2 + b1,1)⊗ z2,2+

a1,1 ⊗ (b1,2 − b2,2)⊗ (z2,1 + z2,2)+

a2,2 ⊗ (b2,1 − b1,1)⊗ (z1,2 + z1,1)+

(a2,1 + a2,2)⊗ b1,1 ⊗ (z1,2 − z2,2)+

(a1,2 + a1,1)⊗ b2,2 ⊗ (z2,1 − z1,1)+

(a1,1 + a2,2)⊗ (b1,1 + b2,2)⊗ (z1,1 + z2,2)

Finally, the “Spaces” line expresses that a is a matrix variable of size 2, 2, as
well as b and c.

Here are the options currently permitted by our tool, which are showed when
it is called with the option --help:

Tool to parse tensors in the shape of Pan’s tables

-f Name of file to parse

-pow Specifies the power at which we want to compute the tensor
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-output {plain|tautheorem} Type of output to compute:

plain tensor (nothing set to zero) or tau-theorem

-style {latex|cpp|maple|sage} Style of output

-raw Set to true if your tensor is not a direct sum of matrix products

-constraints Should constraints specified in <file.in> be applied?

Defaults to true

-laser Special option for the laser method, sets all parameters right

--help Display this list of options

The -raw option decides whether we want to interpret our tensor in terms of
matrix products, which is the case for all examples presented here, or if we
just want to see it as a “raw” tensor, meaning a tensor not directly encoding
a matrix product. This would be the case for Strassen’s initial tensor for the
“laser” method [118], which does not represent a direct sum of matrix products.
We chose not to detail here our support for the laser method, as it is still too
rudimentary for now.

Style of Output

Maple: Any tensor can be outputted to a format which will accepted as the
input of a Symbolic Computation Software format. For now, only the syntax of
Maple is supported, but little effort would be needed to support others such as
Sage.

C++: If a tensor represents a matrix product or a direct sum of matrix prod-
ucts in a way that is made explicit by the spaces section, and if it doesn’t
have any extra variables left (such as ε in our previous examples), it can be
extracted to a C++ program computing the corresponding matrix multiplica-
tions. Of course, the latter are just necessary conditions: the correctness of the
algorithm is contingent on the correctness of the tensor.

Latex: Tensors can also be exported to Latex. This feature was used to write
down the examples in Section 4.4.1.

Power

One can compute powers of tensors using the -pow option. Composition will be
done differently depending on whether the raw option is set to :

• true: To compose two variables xi1,..,ik and yj1,..,jl we concatenate both
their names and indices into xyi1,..,ik,j1,..jl ;

• false: we compose variables in a way that reflects block matrix product,
as shown in Section 4.1.2. This assumes that each variable has exactly
two indices and has an associated matrix size which has been specified to
the program, in the “spaces” part of the input file.

Output

The -output option can be either
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• plain: in which case the computed power of the tensor will be exported
as is (with no terms set to zero, possibly with ε’s remaining, and with no
attempt to rename variables)

• tautheorem: this will only be valid if raw is false, and will apply the
algorithm Extract described in Section 4.4.1 to the power of the input
tensor with a µ which maximizes

(
k
µ

)
.

Constraints

The constraints option defaults to true, but can be set to false if the user
does not want to take constraints specified in the input into account.

4.4.3 Exact Complexity of Some Matrix Product Algo-
rithms

In this section, we explore exactly how many operations (scalar multiplications
and additions) it takes to compute matrix products using some of the algorithms
explored.

Methodology

Contrary to the number of multiplications implied by an algorithm represented
by a tensor, which is straightforward (it is exactly the number of elementary
tensors, which our program outputs), the number of additions is more tricky to
estimate, at least given a tensor depending on parameters. Given an elementary
tensor

(a1,1 + a1,2)⊗ (b2,1 + b2,2)⊗ (c1,1 + c2,2)

we could say there is one addition to compute A := a1,1 + a1,2, one for B :=
b2,1 + b2,2 and then one to add AB to c1,1 and another to add it to c2,2. If we
do this naively across all elementary tensors, we might miss common terms: in
a1,1 ⊗ (b2,1 + b2,2) ⊗ c1,1 + a1,2 ⊗ (b2,1 + b2,2) ⊗ c2,1, we don’t want to count
the addition b2,1 + b2,2 twice as it could easily be done only once. We tried two
approaches for counting additions:

• The first one was to use the optimize function from the codegen library
in Maple. Given a set of algebraic expressions S to compute, it gives an
“optimized computation sequence”, meaning a sequence of steps which
will obtain all the elements of S in a hopefully small number of steps
by identifying linear common subexpressions. This works well on concrete
tensors, as for example when parameters such as m and p are replaced with
small numeric values in the case of Schönhage’s tensor in Equation (4.9);

• The second one was to statically estimate in Ocaml the number of addi-
tions, memorizing each (symbolic) encountered expression and putting it
in a hashtable so that whenever we saw it again, we didn’t count it again.

The downside of the first method is that it only works on relatively small tensors,
so we took the minimum of both values when we had access to both, and only
the Ocaml estimate otherwise.
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Remark: Both methods are actually slightly overestimating the number of
additions, because they are counting each variable representing the output ma-
trix as one addition, whereas the first value stored at the initialization of the
variable should not count as an addition. For example, our method applied to
the naive algorithm for 〈m,n, p〉 gives mnp additions instead of mn(p− 1), and
it gives 22 additions for Strassen’s algorithm instead of 18.

Schönhage’s tensor

Recall Schönhage’s tensor, already presented in Equation (4.9) as an example
for Pan’s tables:

(m−1)∑
i=0

(p−1)∑
k=0

(u0,k,i · ε+ xi,0) · (vk,i,0 · ε+ y0,k) · (w0,0 + zk,i · ε2)+

(−1) ·
(m−1)∑
dd=0

xdd,0 ·
(p−1)∑
ee=0

y0,ee · w0,0

It can be seen to be a degeneration of 〈m, 1, p〉⊕ 〈1, (m− 1)(p− 1), 1〉 in mp+ 1
(polynomial) multiplications.

In Table A.1, we computed the 25 best values we get for ω with concrete
values for m and p between 2 and 15, and by taking the tensor to a power
between 2 and 4 and applying our method. For example, the last row of this
table gives a “practical ω” of 2.774065. This means if one makes multiple copies
of the 6 � 〈49, 1764, 64〉 that we obtained and packs them into a rectangular
matrix product, one can build an algorithm with the corresponding ω for that
rectangular matrix product. Alternatively, one can directly compute 6 matrix
products of size 〈49, 1764, 64〉 and get a speedup of 6∗49∗1764∗64

10308816 ' 3.22 in terms
of the number of multiplications.

A tensor from Pan

We wrote an input file for a tensor presented by Pan [100], which can be seen
in Appendix A.2. This tensor is a degeneration of the following direct sum of
matrix products:

〈m− 1, 1, 2p− 2〉 ⊕ 〈2, p− 1,m− 1〉 ⊕ 〈p− 1, 2m− 2, 1〉 (4.26)

and it consists in 2m(p+ 1) (polynomial) multiplications.
We found a mistake in the description of this tensor and had to incorporate

some correcting (scalar) factors for it to be a degeneration of the disjoint matrix
multiplications described in Equation (4.26). We detected this thanks to our
implementation by outputting a term to Maple and trying to match it with the
claimed matrix products. Once we did the correction, on top of checking the
terms in Maple again, we used a testing function in Ocaml to multiply random
matrices of integers to make sure we had gotten it right. The result is the tensor
presented in Listing A.1, and which also comes with our distributed code.
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4.5 Conclusion

In this part, we have presented the result of our experiments with programming
theoretical matrix multiplication algorithms in Maple and Ocaml. We wrote a
constructive proof of Schönhage’s τ -theorem. We discovered that starting with
elements of a new class of s-homogeneous degenerate tensors, we could build
exact (ε-free) algorithms computing several matrix products of reasonable sizes
in parallel, with significantly less multiplications than the naive algorithm and
in some cases than Strassen’s algorithm. We built an Ocaml tool which allows
us to manipulate matrix multiplication tensors symbolically, and output them
in various formats. The data structure of Pan tables is general enough that we
were able to encode every matrix multiplication tensor we could get our hands
on into it.

It is our hope that this tool can be of help to discover more properties of ma-
trix multiplication tensors in the future. We have started looking at Strassen’s
Laser method [118] and the Coppersmith-Winograd algorithm [33] which are
both crucial for more recent improvements by Williams [127] and Le Gall [81].
We do not yet have results on the last two, beyond the fact that they can be
encoded as Pan tables and so they can be made into actual, concrete algorithms.
To the best of our observations so far, it seems like the number of multiplica-
tions needed by these two types of algorithms for reasonable matrix sizes is not
competitive, consistently with what is usually claimed. Nevertheless there could
be a pedagogical utility to being able to manipulate such tensors.

It turns out that the ε-free independent parallel matrix product algorithms
from Theorem 3 do not perform well (about 10 times worse than the naive mul-
tiplication algorithm), at least in the way we extract them to C++. Although
this is disappointing, it need not be the end of the story. First, the way we
output code to C++ is probably far from optimal. Secondly, we hope that our
tool and findings can be used to experiment and build new ε-free matrix prod-
uct algorithms, just like we used the Combine library to find new tilings in
Chapter 3.
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Part II

Certifying Computations
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Chapter 5

Introduction

The result of a computation can provide a varying degree of confidence in a
mathematical fact. On the skeptical side, the output of a calculator is not
enough to be convinced of a numerical fact: Ramanujan famously conjectured
that exp(π

√
163) ∈ N [104]. The Maple session in Listing 5.1 shows why one

might believe this: using 29 digits for intermediary computations in the Maple
software, it seems as though exp(π

√
163) = 262537412640768744:

> Digits := 29:

> evalf(exp(Pi * sqrt(163)));

262537412640768744.00000000000

> Digits := 40:

> evalf(exp(Pi * sqrt(163)));

262537412640768743.9999999999992500725972

Listing 5.1: A Maple session examining Ramanujan’s “almost integer”

On the more trusting side, consider the game of Sudoku which consists in filling
out a 9 by 9 grid with integers so that for each row, column, or 3 by 3 square
box as delimited in bold in Figure 5.1, there be exactly one instance of each
integer i ∈ {1,· · · , 9}. If a piece of software fills out the empty squares in a
Sudoku grid with numbers, one need only do a quick visual check in order to be
convinced that they are correct.

Figure 5.1: A Sudoku grid

When possible, one would wish to obtain as much confidence as possible in
outputs of computations while still benefiting from the considerable engineering
feats of scientific software. In particular, this would not require to reinvent
the wheel and implement a suboptimal algorithm in order to obtain better
guarantees that the result was obtained in a sound way.
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Proof assistants are programs in which one can manually define mathemati-
cal objects, make mathematical statements about them and write proofs of such
statements. They emphasize soundness: a great amount of care is taken so that
only valid proofs are accepted. This often comes at the expense of efficiency:
even though they usually support doing computations, the latter are typically
slower than equivalent code in a powerful programming language.

This power of computer algebra software comes with different assumptions.
Maple will gladly simplify x

x = 1 without knowing what type of object x is or
whether it can be 0 when that makes sense, and thus it is not clear what cor-
rectness might mean in most settings. Moreover, Section 12.3 will establish that
regarding numerical integral computations, neither correctness (the outputted
value is within some guaranteed precision of the actual value) nor termination
(the program finished computing in finite time) are guaranteed.

One way to obtain more trustworthy computations would be to write pro-
grams inside a proof assistant, prove them correct, and execute them to get an
indisputable answer. However, on top of the efficiency problem already men-
tioned, proving modern scientific software correct is a huge endeavor. A formal
proof of the correctness of GMP’s square root algorithm [12] took 13, 000 lines
of Coq, and this is a small routine in a huge piece of software.

Not all problems have solutions which are as trivial to check as the correct-
ness of a Sudoku board. However, many problems lie in a larger class: those
for which checking a solution is easier than finding a solution. This distinction
is natural if one thinks about complexity theory, whose most famous challenge
consists in comparing the class P of problems for which there exists a deter-
ministic algorithm which can find a solution in polynomial time to the larger
class NP of problems for which there exists a deterministic algorithm which
can check a solution in polynomial time.

Analogously, a hybrid solution for problems which lie in the right class of
easily checkable solutions is to divide the work between an oracle and a verifier.
A tongue-in-cheek example of this paradigm is the “twittersort” algorithm1 for
sorting arrays. When the user inputs an array of numbers to sort, the twitter-
sort program publishes the array on the Twitter social network, and waits for
someone to respond with a sorted array. If and when someone does, it checks
that the numbers in the array are sorted and correspond to the input array, and
if it is correct it accepts it as the final result. The oracle produces a result and
a certificate.

In this paradigm, the only part which needs to be carefully proved is the
specification of the work of the verifier, i.e., the verifier accepts a result if and
only if it is valid. If the verifier function is not too complex, this can be done in
a proof assistant so as to obtain high confidence in our results. The oracle can
be implemented however one wishes, in any programming language, without
any requirement of termination, completeness or correctness. This laxness is
fortunate in the case of scientific software for which none of these is guaranteed.

Harrison and Théry [65] develop the idea of a skeptic’s approach in the
particular context of Computer Algebra Software (CAS). They implement an
interface between the Maple CAS and the HOL proof assistant which can call
the simplify and factor Maple commands.

This separation of concerns in the paradigm of certificate-based proofs pro-

1https://github.com/exPHAT/twitter-sort
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vides an ideal combination between the power and speed of scientific computing
software and the uncompromising mathematical rigor of formal proof systems.
One uses each system for what it does best and avoids it for what it does worst.

The technique of creative telescoping is a class of algorithms which take
as input recurrence relations satisfied by a summand, and produce certificates
from which one can deduce recurrence relations satisfied by a sum of this sum-
mand [25]. They output a formal identity which is often easy to check, and
then getting the recurrence boils down to summing a telescoping sum, that is, a
sum of the shape

∑
k (uk+1 − uk). The easy and mechanical aspect of checking

these outputted certificates may lead one to think that they constitute proofs of
recurrence relations. A natural step would be to make these proofs into formal
proofs, by using a proof assistant to fully verify them. In a Maple sheet [111],
Salvy uses creative telescoping algorithms and in particular their implementa-
tion in the Algolib [27] Maple library to present a creative-telescoping-based
proof of the following theorem in Number Theory:

Theorem 5 (Apéry, 1978). The constant ζ(3) :=
∑∞
i=1

1
i3 is irrational.

This result was the first dent in the problem of the irrationality of the evalu-
ation of the Riemann ζ function at odd positive integers. As of today, this prob-
lem remains a long-standing challenge of number theory. Although Rivoal [107]
and Zudilin [134] showed that at least one of the numbers ζ(5),ζ(7),ζ(9), and
ζ(11) must be irrational, ζ(3) is the only one known to be irrational.

In the present part, we describe a formal proof of Theorem 5 inside the Coq
proof assistant, using the Mathematical Components libraries [1]. This for-
malization follows the structure of Apéry’s original proof. However, we replace
the manual verification of the recurrence relations proposed by Apéry with an
automatic discovery of these equations, using the symbolic computations pro-
posed by Salvy. For this purpose, we use Maple packages to perform calculations
outside the proof assistant, and we verify a posteriori the resulting claims inside
Coq. By combining these verified results with additional formal developments,
we obtain a complete, constructive formal proof of Theorem 5. We report on
the implementation of this cooperation between a computer algebra system and
a proof assistant.

We describe in detail the formalization of an upper bound on the asymptotic
behavior of lcm(1, ..., n), the least common multiple of the integers from 1 to n,
a part of the proof which was missing in a published paper [26].

The rest of the present part is organized as follows. We first describe the
background formal theories used in our development (Section 7). We then out-
line the proof of Theorem 5 (Chapter 6). We summarize the algorithms used in
the Maple session, the data this session produces and the way this data can be
used in formal proofs (Section 8.1). We then describe the proof of the conse-
quences of Apéry’s recurrence (Section 8.2). Finally, we present an elementary
proof of the bound on the asymptotic behavior of the sequence lcm(1, ..., n),
which is used in this irrationality proof (Section 8.3), before concluding (Chap-
ter 9).
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Chapter 6

History and outline of
Apéry’s theorem

Van der Poorten [123] reports that Apéry’s announcement of the result of The-
orem 5 was at first met with wide skepticism. His obscure presentation featured
“a sequence of unlikely assertions” without proofs, not the least of which was
an enigmatic recurrence (Lemma 13) satisfied by two sequences (an) and (bn).
It took two months of collaboration between Cohen [32], Lenstra, and Van der
Poorten, with the help of Zagier, to obtain a thorough proof of Theorem 5.

There exists other proofs of Apéry’s theorem, such as the one by Beuk-
ers [14]. As explained for example in Fischler’ survey [44], all these proofs share
a common structure. They rely on the asymptotic behavior of the sequence `n,
the least common multiple of integers between 1 and n, and they proceed by ex-
hibiting two sequences of rational numbers an and bn, which have the following
properties:

1. For a sufficiently large n:

an ∈ Z and 2`3nbn ∈ Z;

2. The sequence δn = anζ(3)− bn is such that:

lim sup
n→∞

|2δn|
1
n ≤ (

√
2− 1)4;

3. For an infinite number of values n, δn 6= 0.

Altogether, these properties entail the irrationality of ζ(3). Indeed, if we suppose
that there exists p, q ∈ Z such that ζ(3) = p

q , then 2q`3nδn is an integer when

n is large enough. One variant of the Prime Number theorem [63] states that
`n = en (1+o(1)) and since (

√
2−1)4e3 < 1, the sequence 2q`3nδn has a zero limit,

which contradicts the third property. Actually, the Prime Number theorem can
be replaced by a weaker estimation of the asymptotic behavior of `n, that can
be obtained by more elementary means.

Lemma 11. Let `n be the least common multiple of integers 1 . . . n, then

`n = O(3n).
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Since we still have (
√

2 − 1)433 < 1, this observation [62, 43] is enough to
conclude. Section 8.3 discusses the formal proof of Lemma 11, an ingredient
which was missing at the time of writing the previous report on this work [26].

In our formal proof, we consider the pair of sequences proposed by Apéry in
his proof [5, 123]:

an =

n∑
k=0

(
n
k

)2(n+k
k

)2
, bn = anzn +

n∑
k=1

k∑
m=1

(−1)m+1
(
n
k

)2(n+k
k

)2
2m3

(
n
m

)(
n+m
m

) (6.1)

where zn denotes
∑n
m=1

1
m3 , as already used in Proposition 1.

By definition, an is a positive integer for any n ∈ N. The integrality of
2`3nbn is not as straightforward, but rather easy to see as well: each summand
in the double sum defining bn has a denominator that divides 2`3n. Indeed, after
a suitable re-organization in the expression of the summand, using standard
properties of binomial coefficients, this follows easily from the following slightly
less standard property:

Lemma 12. For any integers i, j, n such that 1 ≤ j ≤ i ≤ n, j
(
i
j

)
divides `n.

Proof. Using Lemma 14, observe that for any prime p, the p-valuation of j
(
i
j

)
is smaller than the one of `n.

The rest of the proof is a study of the sequence δn = anζ(3)− bn. It is not
difficult to see that δn tends to zero, from the formulas defining the sequences
a and b, but we also need to prove that it does so fast enough to compensate
for `3n, while being positive. In his original proof, Apéry derived the latter facts
by combining the definitions of the sequences a and b with the study of the
mysterious recurrence relation (6.2). Indeed, he made the surprising claim that
Lemma 13 holds:

Lemma 13. For n ≥ 0, the sequences (an)n∈N and (bn)n∈N satisfy the same
second-order recurrence:

(n+ 2)3yn+2 − (17n2 + 51n+ 39)(2n+ 3)yn+1 + (n+ 1)3yn = 0. (6.2)

Equation 6.2 is a typical example of a linear recurrence equation with poly-
nomial coefficients and standard techniques [111, 123] can be used to study the
asymptotic behavior of its solutions. Using this recurrence and the initial con-
ditions satisfied by a and b, one can thus obtain the last two properties of our
criterion, and conclude with the irrationality of ζ(3). Our formal proof relies
on an elementary version of this asymptotic study, mostly based on variations
on the presentation of van der Poorten [123]. We detail this part of the proof
in Section 8.2.

Using only Equation 6.2, and sufficiently many initial conditions, it would
not be easy to obtain the first property of our criterion, about the integrality of
an and bn for a large enough n. In fact, it would also be difficult to prove that
the sequence δ tends to zero: we would only know that it has a finite limit, and
how fast the convergence is. By contrast, it is fairly easy to obtain these facts
from the explicit Formulas 6.1.

The proof of Lemma 13 was by far the most difficult part in Apéry’s original
exposition. In his report [123], van der Poorten describes how he, with other
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colleagues, devoted significant efforts to this verification after having attended
the talk in which Apéry exposed his result for the first time. The proof of
Lemma 13 boils down to a routine calculation using the two auxiliary sequences

Un,k and Vn,k, themselves defined in terms of λn,k =
(
n
k

)2(n+k
k

)2
(with λn,k = 0

if k < 0 or k > n):

Un,k = 4(2n+ 1)(k(2k + 1)− (2n+ 1)2)λn,k,

Vn,k = Un,k

(
n∑

m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

))+
5(2n+ 1)k(−1)k−1

n(n+ 1)

(
n

k

)(
n+ k

k

)
The key idea is to compute telescoping sums for U and V . For instance, we
have:

Un,k−Un,k−1 = (n+ 1)3λn+1,k− (34n3 + 51n2 + 27n+ 5)λn,k +n3λn−1,k (6.3)

Summing Equation 6.3 on k shows that the sequence a satisfies the recurrence
relation of Lemma 13. A similar calculation proves the analogue for b, using
telescoping sums of the sequence V .

Not only is the statement of Formula 6.2 difficult to discover: even when
this recurrence is given, finding the suitable auxiliary sequences U and V by
hand is a difficult task. Moreover, there is no other known way of proving
Lemma 13 than by exhibiting this nature of certificates. Fortunately, the se-
quences a and b belong in fact to a class of objects well known to combinato-
rialists and computer-algebraists, called ∂-finite sequences. Following seminal
work of Zeilberger’s [131], algorithms have been designed and implemented in
computer-algebra systems, which are able to obtain linear recurrences for these
sequences. For instance the Maple package Mgfun (distributed as part of the
Algolib [27] library) implements these algorithms, among others. Salvy’s work-
sheet [111] is based on this implementation and follows Apéry’s original method
but interlaces Maple calculations with human-written parts. In particular, this
worksheet illustrates how parts of this proof, including the discovery of Apéry’s
mysterious recurrence, can be performed by symbolic computations. Our for-
mal proof of Lemma 13 follows an approach similar to the one of Salvy. It is
based on calculations performed using the Algolib [27] library, and certified a
posteriori. This part of the formal proof is discussed in Section 8.1.
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Chapter 7

Preliminaries

This section provides some hints about the representation of the different natures
of numbers at stake in this proof in the libraries backing the formal development.
It also describes a few extensions devised for these libraries and fixes some
notations used throughout the present part. Most of the material presented
here is related to the Mathematical Components libraries [1] [52].

7.1 Integers

In Coq, the set N of natural numbers is usually represented by the type nat:

Inductive nat := O | S : nat -> nat.

This type is defined in a prelude1 library, which is automatically imported by
any Coq session. It models the elements of N using a unary representation:
Coq’s parser reads the number 2 as the term S (S O). This inductive type
comes with the usual recurrence scheme on natural numbers. This is conve-
nient for defining elementary functions on natural numbers, like comparison or
arithmetical operations, and for developing their associated theory. However,
the resulting programs are usually very naive and inefficient implementations,
which should only be evaluated for the purpose of small scale computations.

The set Z of integers can be represented by gluing together two copies of
type nat, which provides a signed unary representation of integers:

Inductive int : Set := Posz of nat | Negz of nat.

If the term n : nat represents the natural number n ∈ N, then the term (Posz n) : int

represents the integer n ∈ Z and the term (Negz n) : int represents the integer
−(n + 1) ∈ Z. In particular, the constructor Posz : nat -> int implements the
embedding of type nat into type int, which is invisible on paper because it is
just the inclusion N ⊂ Z. In order to mimic the mathematical practice, the
constant Posz is declared as a coercion, which means in particular that unless
otherwise specified, this function is hidden from the terms displayed by Coq to
the user (in the current goal, in answers to search queries,. . . ) and automatically
inserted.

The Mathematical Components libraries provide formal definitions of a
few concepts and results from elementary number theory, defined on the type

1This prelude can be seens at https://coq.inria.fr/library/Coq.Init.Prelude.html.
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nat. For instance, they provide the theory of Euclidean division, a boolean
primality test, the elementary properties of the factorial function, of binomial
coefficients,. . . In the rest of the present part, we use the standard mathemat-
ical notations n! and

(
n
m

)
for the corresponding formal definition of factorial

and binomial coefficients. These libraries also define the p-valuation vp(n) of a
number n: if p is a prime number, vp(n) corresponds to the exponent of p in
the prime decomposition of n. However, we had to extend the available formal
theory with a few extra standard results like the formula giving the p-valuation
of factorials:

Lemma 14 (Legendre’s Formula). For any n ∈ N and for any prime number
p:

vp(n!) =

blogp nc∑
i=1

⌊
n

pi

⌋
.

Incidentally, the formal version of this formula is a typical example of the
slight variations one may introduce in a mathematical statement, in order to
come up with a formal sentence which is not only correct and faithful to the
original mathematical result, but also a tool which is easy to use in subsequent
formal proofs. In the formal library, Lemma 14 is in fact stated as:

For any prime p and any j, n ∈ N, with n < pj+1, vp(n!) =

j∑
i=1

⌊
n

pi

⌋
. (7.1)

and the Coq counterpart is

Lemma fact_logp_sum_small p j n : prime p -> (n < p ^ j.+1) ->

logn p n‘! = \sum_(i < j) (n %/ p ^ i.+1).

Listing 7.1: The Coq statement of Equation (7.1).

Adding an extra variable to generalize the upper bound of the sum is a
better option because it will ease unification when this formula is applied or
used for rewriting. For example, suppose that we want to prove that vp(n!) =∑blogp nc+1

i=1

⌊
n
pi

⌋
. Before applying Lemma 14, we would first need to break down

the sum into two parts, and then prove that the second term
⌊

n

pblogp nc+1

⌋
is zero.

However, we can directly apply the lemma in Equation (7.1): Coq will unify j

with
⌊
logp n

⌋
+ 1 and ask us to prove n < p(blogp nc+1)+1 which is easy.

Moreover, we do not really need to introduce logarithms to state this lemma:
indeed,

⌊
logp n

⌋
is used to denote the largest power of p smaller than n. For this

purpose, we could use the function trunc_log : nat -> nat -> nat provided by the
Mathematical Components libraries, which computes the greatest exponent
α such that nα ≤ m, in other words blognmc. Better yet, since the summand is
zero when the index i exceeds this value, we can simplify the side condition on
the extra variable and require only that n < pj+1. Finally, although the fraction
in the original statement of Lemma 14 may suggest that rational numbers play
a role here,

⌊
n
m

⌋
is in fact exactly the quotient of the Euclidean division of n

by m. In the present part, for n,m ∈ N and m non-zero, we thus write
⌊
n
m

⌋
for

the quotient of the Euclidean division of n by m.
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The basic theory of binomial coefficients present in the Mathematical
Components libraries describes their role in elementary enumerative combi-
natorics. However, when viewing binomial coefficients as a sequence which is
a certain solution of a recurrence system, it becomes natural to extend their
domain of definition to integers: we thus developed a small library about these
generalized binomial coefficients. We also needed to extend these libraries with
properties of multinomial coefficients. We used the formula

∏l
i=1

(
k1+···+ki

ki

)
from Equation (1.2) in our formal definition, as it provides for free the fact that
multinomial coefficients are non-negative integers, and proved the other charac-
terizations, including the generalized Newton formula of Theorem 1 describing
the expansion of (x1 +· · ·+ xl)

n
.

7.2 Sharing theories and notations

The Mathematical Components libraries feature a hierarchy of algebraic
structures [49], which organizes a corpus of theories and notations shared by all
the instances of the structures. This hierarchy implements inheritance, so that
for example Z seen as a ring inherits from the properties of Z as an additive
group. The hierarchy also implements sharing, so that the properties of the +
and ∗ operations of rings can be used in any instance of ring. Inheritance and
sharing are made possible in Coq by mechanisms called coercions and canonical
structures [88]. Each structure in the hierarchy is modeled by a structure called
a dependent record, which packages a carrier type with some operations on this
type and with requirements on these operations. For example, these structures
are all discrete, which means that they require a boolean equality test. Part
of this hierarchy deals with ordered structures [31], which means that they
require an additional binary boolean predicate. This predicate has an infix
notation ≤ and it is used to model an order relation which is (possibly partial
and) compatible with the algebraic laws of the structure.

Some structures in the hierarchy feature operations that make sense only on
a subset of the elements of the carrier type: for instance, by definition, only the
units of a ring have an inverse. In the dependent type theory implemented by
Coq, it would be possible to use a dependent pair in order to model the source
type of such an inverse operation. Instead, as a rule of thumb, the signature of
a given structure avoids using rich types as the source types of their operations
but rather “curry” the specification. For instance, the source type of the inverse
operation in the structure of ring with units is the carrier type itself, but the
signature of this structure also has a boolean predicate, which selects the units
in this carrier type. The inverse operation has a default behavior outside units
and the equations of the theory that involve inverses are typically guarded with
invertibility conditions. Hence although the expression x^-1 * x makes sense for
any term x of an instance of ring with units, it can be rewritten to 1 only when
x is known to be invertible.

In order to equip a given type with a certain structure, one should package
this type with enough operations and properties, following the signature pre-
scribed by the structure. For example, the type int introduced in Section 7.1 is
an instance of ordered integral domain. Unlike the case of Posz, the canonical
embedding of type int in any instance of ring cannot be declared as a coer-
cion, and eluded in formal statements. Its formal definition hence comes with a
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generic postfix notation _%:~R, used to cast an integer as an element of another
ring. As for rational numbers, they are represented using a dependent pair of a
pair (p, q) of integers, together with a proof that the corresponding fraction is
normalized: p and q integers have to be coprime and q should be positive. By
Hedberg’s theorem [67], this proof can be made irrelevant by using a boolean
predicate in order to express this normal form condition. Thus it is possible
to compare rational numbers by comparing only the first components of the
dependent pairs, and therefore to implement boolean operations of comparison.
As a result, the type rat modeling the set Q of rational numbers is equipped
with a structure of ordered field.

The Mathematical Components libraries also include a construction of
the algebraic closure Q of the field of rational numbers (more in Section 7.3),
resulting in the definition of a type algC which is an instance of a (partially)
ordered, algebraically closed field [52]. As a result, the statement 0 < x * y

makes sense in Coq whether x and y are of type int, rat or even algC, because
all these types share the notations of the signature of ordered rings. Moreover,
in all these cases, this statement can be turned into 0 < y * x using the same
lemma:

Lemma mulrC (R : comRingType) (r1 r2 : R) : r1 * r2 = r2 * r1.

because all these types are instances of the structure of commutative ring.

7.3 Algebraic numbers, real numbers

Almost all the irrational numbers involved in the proof are real algebraic num-
bers, and more precisely, they are of the form r

1
n for some rational number r

(and with n ∈ N). These numbers are involved in inequalities expressing signs
and estimations. It might come as a surprise that we use the type algC of al-
gebraic (complex) numbers mentioned in Section 7.2 to cast these quantities,
although we do not actually need complex numbers. But this choice proved
convenient due to the fact that the type algC features both a definition of n-th
roots, and a clever choice of partial order. Indeed, although Q cannot be ordered
as a field, it is equipped with a binary relation, denoted ≤, which coincides with
their real order relation on Q ∩ R:

∀x, y ∈ Q, x ≤ y ⇔ y − x ∈ R+.

In particular, for any z ∈ Q:

0 ≤ z ⇔ z ∈ R+ and z ≤ 0⇔ z ∈ R−.

Moreover, the type algC comes with a function n.-root : algC -> algC, for any
(n : nat), which computes the n-th (complex) root of its input which has a
minimal non-negative argument. Crucially, when (z : algC) represents a non-
negative real number, (n.-root z) coincides with the definition of the real n-th
root:

Lemma rootC_ge0 (n : nat) (x : algC) : n > 0 -> (0 <= n.-root x) = (0 <= x).

The shape of Lemma rootC_ge0 is typical of the style pervasive in the Mathe-
matical Components libraries, where equivalences between decidable state-
ments are stated as boolean equalities. It expresses that for an algebraic number
x ∈ Q, x

1
n ∈ R+ if and only if x ∈ R+.
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The one notable place at which we need to resort to a larger set of real
numbers is the definition of the number ζ(3), if only because as of today, it
is not even known whether ζ(3) is algebraic or transcendant. This number is
defined as the limit of the sums zn =

∑n
m=1

1
m3 , so we start our formal study by

establishing the existence of this limit. In fact we formalize the part of this proof
concerned with asymptotic properties using Cauchy sequences. A Cauchy real
is a sequence (xn)n∈N ∈ QN together with a modulus of convergence mx such
that if ε ∈ Q+∗, any two elements of index greater than mx(ε) are separated at
most by ε.

Proposition 1. The sequence zn =
∑n
m=1

1
m3 is a Cauchy real.

Lemma creal_z3seq : creal_axiom z3seq.

Listing 7.2: Coq counterpart of Proposition 1. The predicate creal_axiom

expresses the property of being a Cauchy real.

Two Cauchy reals x and y are equal, written x = y, if eventually |xn−yn| <
ε, for any ε > 0. The Cauchy real x is smaller than y, written x < y, if
there is an ε > 0 such that eventually xn + ε ≤ yn. There is no effective way
to compare two Cauchy reals, so these numbers cannot be equipped with the
structures described in Section 7.2. We resort to the construction of Cauchy
reals provided by Cohen [28] [29]. His libraries provides a type for Cauchy reals,
and implements field operations for these numbers. It also provides a tactic
called bigenough, which eases construction of the effective moduli of convergence
required in the proofs that a certain property on Cauchy reals is eventually true.

7.4 Computations

In this section, we consider some aspects of computing inside Coq which are
relevant to the present part, both manual and automatic.

Using the unary representation of integers described in Section 7.1, the com-
mand:

Compute 100*1000.

which asks Coq to evaluate this product, triggers a stack overflow. For the
purpose of running computations inside Coq’s logic, on integers of a medium
size, an alternate datastructure is required, together with less naive implemen-
tations of the arithmetical operations. The present formal proof requires this
nature of computations at several places, for instance in order to evaluate se-
quences defined by a recurrence relation at a few particular values. For these
computations, we used the binary representation of integers provided by the
ZArith library included in the standard distribution of Coq, together with the
fast reduction mechanism embarked inside Coq’s kernel [57].

These two ingredients are also used behind the scene by tactics implement-
ing decision procedures. For instance, the development makes extensive use of
proof commands dedicated to the normalization of algebraic expressions like
the field and ring tactics [85]. The field tactic generates proof obligations
describing sufficient conditions for the simplifications it made. For instance,
the command ring might be used to automatically prove a goal of the shape
(x - 1) (x - 2) = x2 - 3 x + 2, for x in a ring. On the goal (x - 1) / (x - 1) = 1,
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the command field would generate a side condition x <> 1 as a new goal, and
prove in the background the implication that x <> 1 -> (x - 1) / (x - 1) = 1.

In our case, such side conditions in turn are automatically solved using
the lia decision procedure for linear integer arithmetic [13] so that in practice,
calling field and then lia completely solves the goal if these side conditions are
implied by the current proof context.

In the case of automated tactics, the conversion of the formulas in the goal
into data structures suitable for larger scale computation is not visible to the
user: it is performed by extra-logical code which is part of the internal im-
plementation of these tactics. The situation is different when a computational
step in a proof requires the evaluation of a formula at a given argument, and
when both the formula and the argument are described using proof-oriented,
inefficient representations. In that case, for instance for evaluating terms in a
given sequence, the CoqEAL library [30] was used, which provides an infrastruc-
ture automating the conversion between different datastructures and algorithms
used to model the same mathematical objects, like different representations of
integers or different implementations of a matrix product.
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Chapter 8

Formalizing Apéry’s
theorem in Coq

8.1 Recurrence and Creative Telescoping

Recall from Equation (6.1) that (zn)n∈N is the sequence
∑n
m=1

1
m3 , and that

an =

n∑
k=0

(
n
k

)2(n+k
k

)2
, bn = anzn +

n∑
k=1

k∑
m=1

(−1)m+1
(
n
k

)2(n+k
k

)2
2m3

(
n
m

)(
n+m
m

) .

Lemma 13 is the bottleneck in Apéry’s proof; recall that it states that for n ≥ 0,
(an)n∈N and (bn)n∈N both satisfy the second-order recurrence:

(n+ 2)3yn+2 − (17n2 + 51n+ 39)(2n+ 3)yn+1 + (n+ 1)3yn = 0.

Both sums an and bn are instances of parametrised summation: they follow

the pattern Fn =
∑β(n)
k=α(n) fn,k in which the summand fn,k, potentially the

bounds, and thus the sum, depend on a parameter n. This makes it appealing to
resort to the algorithmic paradigm of creative telescoping, which was developed
for this situation in computer algebra.

To demonstrate how this works, let us look at a very simple example. Sup-
pose we want to find a recurrence satisfied by the sequence Fn =

∑n
k=0

(
n
k

)
. We

start by adopting a characterization of fn,k :=
(
n
k

)
through an implicit represen-

tation by two recurrences, which are natural if we think of the usual definition(
n
k

)
= n!

k!(n−k)! :(
n+ 1

k

)
=

n+ 1

n+ 1− k

(
n

k

)
,

(
n

k + 1

)
=
n− k
k + 1

(
n

k

)
. (8.1)

We put aside for now the question of the initial conditions which would be
necessary to fully characterize them. Creative telescoping derives the following
formal relation, with finite difference with respect to k on the right-hand side:(

n+ 1

k

)
− 2

(
n

k

)
=

((
n

k + 1

)
−
(
n+ 1

k + 1

))
−
((

n

k

)
−
(
n+ 1

k

))
(8.2)
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Let us check this formal identity, which is the output of an algorithm. If we
expand the first part of the right-side of Equation (8.2) using the rules (8.1), we
get

((
n

k + 1

)
−
(
n+ 1

k + 1

))
−
((

n

k

)
−
(
n+ 1

k

))
= (8.3)(

1− n+ 1

n− k

)(
n

k + 1

)
−
((

n

k

)
−
(
n+ 1

k

))
= (8.4)

−
(
k + 1

n− k

)(
n− k
k + 1

)(
n

k

)
−
((

n

k

)
−
(
n+ 1

k

))
= (8.5)(

n+ 1

k

)
− 2

(
n

k

)
. (8.6)

Notice that in order to prove this, we only used the equations (8.1) so that
this property is general to any bivariate sequence satisfying them.

The idea is then to sum Equation (8.2) over k from 0 to n+ 1, which gives:

Fn+1 − 2Fn =

((
n

n+ 2

)
−
(
n+ 1

n+ 2

))
− (8.7)((

n

0

)
−
(
n+ 1

0

))
(8.8)

=0− (1− 1) = 0 (8.9)

since the right-hand side of Equation (8.2) was of the shape vk+1−vk. From this
we get that Fn = 2nF0, so that with the right initial conditions for fn,k, namely
fn,0 = 1 and fn,n = 1, we get the usual identity

∑n
k=0

(
n
k

)
= 2n. This kind of

proof is a typical albeit very elementary example of what the book A=B [102]
calls automating the discovery and proof of identities.

Given both the magical nature of Apéry’s recurrence in Lemma 13 and the
painful efforts of Van der Porten, Cohen and Zagier [123] to prove it, one could
try to apply creative telescoping techniques to re-discover both the recurrence
and its proof automatically. This was done by Salvy in a Maple sheet [111] using
the Algolib [27] library. From the formal proof point-of-view, the prospect of
only checking what are essentially pre-baked proofs or rather, proof certificates,
seems enticing enough.

8.1.1 Recurrences as a data structure for sequences

As already encountered in Equation (8.1), a fruitful idea from the realm of
Computer Algebra is to represent sequences not explicitly, such as the univari-
ate (n!)n or the bivariate (

(
n
k

)
)n,k, but by a system of linear recurrences with

coefficients which are polynomials in the variables on which this sequence de-
pends, accompanied with sufficient initial conditions. We borrow the following
description from Chyzak [25].

A sequence (un1,···,nr )n1,···,nr∈N is called hypergeometric if for each i ∈ {1,· · · , r},
there exists a rational function Ri(n1,· · · , nr) such that

un1,···,ni+1,···,nr = Ri(n1,· · · , nr) · un1,···,nr ,
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in other words, if u is cancelled by the operators Ri − Sni where Sni is the
shift operator which maps un1,···,nr to un1,···,ni+1,···,nr . For example,

(
n
k

)
is hy-

pergeometric: the recurrences (8.1) once rewritten as equalities to zero can be
represented as P · f = 0 for P = Sn − n+1

n+1−k and P = Sk − n−k
k+1 , respectively.

This notion can be generalized. First, consider a skew polynomial algebra
A = Q(n1,· · · , nr) < Sn1

,· · · , Snr > with the commutation rules

Si1n1
· · ·Sirnrc(n1,· · · , nr) = c(n1 + i1,· · · , nr + ir)S

i1
n1
· · ·Sirnr

for any rational fraction c(n1,· · · , nr). A polynomial

P =
∑

(i1,···,ir)

p(n1,· · · , nr)Si1n1
· · ·Sirnr ∈ A

acts on a r-variable sequence (un1,···,nr ) by

(P · u)n1,···,nr =
∑

(i1,···,ir)

p(n1,· · · , nr)un1+i1,···,nr+ir ,

where subscripts denote evaluation.
To any sequence f , one associates the set of skew polynomials that annihilate

it. This set, {P ∈ A : P · f = 0} is a left ideal of A, named the annihilating
ideal of f , and denoted ann f . A hypergeometric sequence can be redefined as
a function f whose quotient module A/ ann f is a vector space of dimension 1
over the rational function field Q(n1,· · · , nr). A ∂-finite sequence is a function
whose quotient module A/ ann f has finite dimension ≥ 1.

A non-commutative extension of the usual Gröbner-basis theory is available,
together with algorithmic analogues. In this setting, a good representation of a
∂-finite sequence is obtained as a Gröbner basis of ann f for a suitable ordering
on the monomials in Sn1

,· · · , Snr . For the example of fn,k =
(
n
k

)
, a Gröbner

basis consists of both already-mentioned skew polynomials encoding (8.1). In
general, a Gröbner basis provides us with a (vectorial) basis of the quotient
moduleA/ ann f , which is isomorphic toAf . This basis can be explicitly written
in the form B = {fn1+i1,···,nr+ir}(i1,···,ir)∈U , where the finite set U of indices is
given as the part under the classical stair shape of the Gröbner-basis theory.
Given a Gröbner basis GB for ann f , the normal form NF(p,GB) is unique for
any p ∈ A. Again in the binomial example, the finite set is U = {(0, 0)}, and
normal forms are rational functions.

This is the basis of algorithms for a number of operations under which the
∂-finite class is stable, which all operate by looking for enough dependencies
between normal forms: application of an operator, addition, product. Although
the following applies in the general case, we now restrict ourselves to the bivari-
ate case which interests us more specifically from now on.

The case of summing a sequence (fn,k) into a parametrized sum Fn =∑n
k=0 fn,k is more involved: it follows the method of creative telescoping [132],

in two stages. First, an algorithmic step determines pairs (P,Q) satisfying

P · f = (Sk − 1)Q · f (8.10)

with P ∈ Q(n)[Sn] and Q ∈ A. To continue with our example fn,k =
(
n
k

)
,

this corresponds to Equation 8.2 with P = Sn − 2 and Q = 1 − Sn. Second, a
systematic step follows: summing (8.10) for k between 0 and n+ degP yields

(P · F )n = (Q · f)k=n+degP+1 − (Q · f)k=0. (8.11)
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Continuing with our binomial example, this corresponds to the summation lead-
ing to Equation (8.7).

8.1.2 Apéry’s sequences are ∂-finite constructions

The sequences a and b in (6.1) are ∂-finite: they have been announced to be
solutions of (6.2). But more precisely, they can be viewed as constructed from
“atomic” sequences by operations under which the class of ∂-finite sequences is
stable. This is summarized in Table 8.1.

step explicit form GB operation input(s)

1 cn,k =
(
n
k

)2(n+k
k

)2
C direct

2 an =
∑n
k=1 cn,k A creative telescoping C

3 dn,m = (−1)m+1

2m3(nm)(n+m
m )

D direct

4 sn,k =
∑k
m=1 dn,m S creative telescoping D

5 zn =
∑n
m=1

1
m3 Z direct

6 un,k = zn + sn,k U addition Z and S

7 vn,k = cn,kun,k V product C and U

8 bn =
∑n
k=1 vn,k B creative telescoping V

Table 8.1: Construction of an and bn: At each step, the Gröbner basis named in
column GB, which annihilates the sequence given in explicit form, is obtained
by the corresponding on the inputs given in the last column.

In this table, Gröbner bases are systems of recurrence operators: at each line
in the table, the sequence given in explicit form is a solution of the system of
recurrences described by the operators in the Gröbner basis column. Note that
in fact none of these results rely on the specific sequences in the explicit form:
at each step, a new Gröbner basis is obtained from known ones, the ones that
are cited in the input column, just like we obtained the operator Sn+1 − 2Sn
in Equation (8.7) from Sn − n+1

n+1−k and Sk − n−k
k+1 . The table can also be read

bottom-up for the purpose of verification: the Gröbner basis obtained at a given
step can be verified using only the Gröbner bases obtained at some previous
steps, all the way down to C and D. These operators describe a more general
class of sequences than just the explicit sequences used in this table, thus initial
conditions are needed to describe a precise sequence.

8.1.3 Provisos and sound creative telescoping

Let us go back to our proof of the binomial identity in Equations (8.3) to (8.6).
This proof in fact only holds if n 6= k which makes taking the sum for k from 0
to n+ 1 an illegitimate operation. In another example, one can “almost prove”
Pascal’s triangle rule using only the recurrences (8.1):(
n+ 1

k + 1

)
−
(

n

k + 1

)
−
(
n

k

)
=

(
n+ 1

n− k
n− k
k + 1

− n− k
k + 1

− 1

)(
n

k

)
= 0×

(
n

k

)
= 0,
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but this requires k 6= −1 and k 6= n. Therefore, this does not prove Pascal’s rule
for all n and k. This incomplete modelling of sequences by algebraic objects
may cast doubt on the output of creative-telescoping algorithms.

By contrast, in our formal proofs, we augmented the recurrences with pro-
visos that restrict their applicability. In this setting, we validate a candidate
identity like the Pascal triangle rule by a normalization modulo the elements of
a Gröbner basis plus a verification that this normalization only involves legal
instances of the recurrences. In the case of creative telescoping, Equation (8.10)
takes the form:

(n, k) /∈ ∆⇒ (P · f ,k)n = (Q · f)n,k+1 − (Q · f)n,k, (8.12)

where ∆ ⊂ Z2 guards the relation and where f ,j denotes the univariate se-
quence obtained by specializing the second argument of f to j. Thus our formal
analogue of Eq. (8.11) takes this restriction into account and has the shape

(P · F )n =
(

(Q · f)n,n+β+1 − (Q · f)n,α

)
+

r∑
i=1

i∑
j=1

pi(n) fn+i,n+β+j

+
∑

α≤k≤n+β ∧ (n,k)∈∆

(P · f ,k)n − (Q · f)n,k+1 + (Q · f)n,k,

(8.13)

for F the sequence with general term Fn =
∑n+β
k=α fn,k and where P =

r∑
i=0

pi(n)Sin,

with the pi polynomials with rational coefficients.
The proof of identity (8.13) is a straightforward reordering of the terms of

the left-hand side, (P ·F )n =
∑r
i=0 p(n)Fn+i, after unfolding the definition of F

and applying relation (8.12) everywhere allowed in the interval α ≤ k ≤ n+ β.
The first part of the right-hand side is the usual difference of border terms,
already present in Equation (8.11). The middle part is a collection of terms
that arise from the fact that the upper bound of the sum defining Fn depends
linearly on n and that we do not assume any nullity of the summand outside the
summation domain. The last part, which we will call the singular part, witnesses
the possible partial domain of validity of relation (8.12). The operator P is a
valid recurrence for the sequence F if the right-hand side of Equation (8.13)
normalizes to zero, at least outside of an algebraic locus ∆ that will guard the
recurrence.

The Coq counterpart to Equation (8.13) is the following

Lemma sound_telescoping

(cf0 : int -> R := fun _ => 0)

(r : nat := size Pseq)

(P : (int -> R) -> int -> R := horner_seqop Pseq)

(U : int -> R := fun n => \sum_(a <= k < n + b :> int) u n k)

(n : int)

(range_correct : a <= n + b)

(PeqDQ :

∀ (n k : int), not_D n k ->

P (u ^~ k) n = Q u n (k + 1) - Q u n k) :

P U n =

Q u n (n + b) - Q u n a +

\sum_(a <= k < n + b :> int | ~~ not_D n k)

(P (u ^~ k) n - (Q u n (k + 1) - Q u n k)) +

\sum_(0 <= i < degree P)
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\sum_(0 <= j < i)

Pi * u (n + i) (n + j + b).

Listing 8.1: Our sound telescoping lemma in Coq

The notation u ^~ k stands for fun n => u n k, Pi denotes the i-th coefficient of
the polynomial P. The outside of the locus ∆ is represented by the predicate
not_D.

Let us now apply the theorem of Equation (8.13) to our example of the
binomial identity. The forbidden domain ∆ is the singleton {(n, n)}, because
that is the only point at which Equation (8.2) is not valid. We get

(Sn − 2)Fn = Fn+1 − 2Fn = ((fn,n+1 − fn+1,n+1) + (fn,0 − fn+1,0)) + fn+1,n+1+

(((Sn − 2)f ,n)n − (fn,n+1 − fn+1,n+1) + (fn,n − fn+1,n))

=(−1) + 1+

(n+ 1− 2)− (0− 1) + (1− (n+ 1))

=0.

The automatic nature of the process of creative telescoping takes a hit here,
both because ∆ has to be built manually and because it may depend on the order
in which recurrences are rewritten in the proof of identity (8.12). Furthermore,
we are aware of no guarantees that given a rewriting order, the various terms
of Formula (8.13) will cancel as nicely as in the case of the binomial identity
above.

8.1.4 Generated operators, hand-written provisos, and for-
mal proofs

For each step in Table 8.1, we make use of the data computed by the Maple
session in a systematic way. Figure 8.1 illustrates this pattern on the example
of step 7. As mentioned in Section 8.1.3, we annotate each operator produced
by the computer-algebra program with provisos (see below) and turn it this way
into a conditional recurrence predicate on sequences. To each sequence in the
program corresponds a file defining the corresponding conditional recurrences,
for instance annotated_recs_c, annotated_recs_u, and annotated_recs_v

for c, u, and v, respectively. More precisely these files contain all the operators
obtained by the Maple script for a given sequence, not only the Gröbner basis.
We use rounded boxes to depict the files that store the definitions of these pred-
icates. These are generated by the Maple script which pretty-prints its output
in Coq syntax, with the exception of the definition of provisos. Throughout this
section, a maple leaf tags the files that are generated by our Maple script. Yet
automating these annotations is currently out of reach.

In our formal proof, each step in Table 8.1 consists in proving that some
conditional recurrences on a composed sequence can be proved from some con-
ditional recurrences known for the arguments of the operation. We use square
boxes to depict the files that store these formal proofs. The statement of the
theorems proved in these files are composed from the predicates defined in the
round boxes: a dashed line points to (predicates used to state) conclusions and
a labelled solid line points to (predicates used to state) hypotheses.

65



Figure 8.1: Proving that V is C × U

8.1.5 Definitions of conditional recurrence predicates

All files defining the conditional recurrence predicates obtained from the opera-
tors annihilating sequences of the program share the same structure. An excerpt
of the generated part of the file annotated_recs_c is displayed on Listing 8.2. The
constants Sn, Sk, and CT_premise are recurrence predicates, defined in terms
of a bound variable c. Constants Sn and Sk are elements of the Gröbner basis.
The definition of these recurrences is named to reflect the term it rewrites, e.g.,
the left-hand sides in (8.1): these names are the result of pretty-printing the
(skew) monomial that encodes these left-hand sides, the prefix S standing for
“shift”. For example Sn is the name of a recurrence defining cn+1,k, while SnSk

would be for cn+1,k+1. Rewriting a given term with such an equation makes the
term decrease for the order associated with the Gröbner basis. Another part of
the file defines the recurrences obtained from a creative-telescoping pair (P,Q)
generated for the purpose of the summation defining the sequence a.

(* Coefficients of every recurrence, P, and Q. *)

Definition Sn_cf0_0 n k := (n + 1 + k)2 / (-n - 1 + k)2.

Definition Sk_cf0_0 n k := (-n + k)2 * (n + 1 + k)2 / (k + 1)4.

Definition P_cf0 n := (n + 1)3.

...

(* Conditional recurrences. *)

Definition Sn c := ∀ n k, precond.Sn n k -> c (n + 1) k = Sn_cf0_0 n k * c n k

Definition Sk c := ∀ n k, precond.Sk n k -> c n (k + 1) = Sk_cf0_0 n k * c n k

(* Operators P and Q. *)

Definition P c n := P_cf0 n * c n + P_cf1 n * c (n + 1) + P_cf2 n * c (n + 2).

...

(* Statement P = ∆k Q. *)

Definition CT_premise c := ∀ n k, precond.CT_premise n k ->

P (c ^~ k) n = Q c n (k + 1) - Q c n k.

Listing 8.2: Maple-generated part of annotated rec c

Observe that these generated definitions feature named provisos that are
in fact placeholders. In the preamble of the file, displayed on Listing 8.3, we
provide by a manual annotation a concrete definition for the proviso of each
recurrence defined in the generated part. Observe however that part of these
definitions can be inferred from the coefficients of the recurrences. For example
the k 6= n+ 1 condition in precond.Sn, the proviso of recurrence Sn, is due to
the denominator (−n− 1 + k)2 of the coefficient (Sn_cf0_0 n k).

Module precond.

Definition Sn n k := (k != n + 1) ∧ (n != -1).

Definition Sk n k := (k + 1 != 0) ∧ (n != 0).

Definition CT_premise n k := (n >= 0) ∧ (k >= 0) ∧ (k < n).

End precond.

Listing 8.3: Hand-written provisos in annotated rec c
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In the last part of the file, see Listing 8.4, a record collects the elements of the
Gröbner basis C. Maple indeed often produces a larger set of annihilators for
a given sequence, for instance CT_premise in Listing 8.2 is related to a creative
telescoping pair but not to the Gröbner basis. Also, the Gröbner basis can
be obtained by refining a first set of annihilators, which happens at step 4 of
Table 8.1.

(* Choice of recurrences forming a Groebner basis. *)

Record Annihilators c := { Sn : Sn c; Sk : Sk c }.

Listing 8.4: Selection of a Gröbner basis

8.1.6 Formal proofs of a conditional recurrence

We take as a running example the file ops_for_a, which models step 2 in Ta-
ble 8.1. This file proves theorems about an arbitrary sequence c satisfying the
recurrences in the Gröbner basis displayed on Listing 8.4, and about the se-
quence a by definite summation over c.

Require Import annotated_recs_c.

Variables (c : int -> int -> rat) (ann_c : Annihilators c).

Theorem P_eq_Delta_k_Q : CT_premise c. Proof. ... Qed.

Let a n := \sum_(0 <= k < n + 1) c n k.

The formal proof of lemma P_eq_Delta_k_Q is an instance of Equation (8.12). Us-
ing this property, we prove that the sequence a verifies a conditional recurrence
associated to the operator P . As suggested in Section 8.1.3, this proof consists
in applying the lemma sound_telescoping (see Equation (8.13) and Listing 8.1),
which formalizes a sound creative telescoping, and in normalizing to zero the
resulting right-hand side of Equation (8.13). Listing 8.5 displays the first lines
of the corresponding proof script, which select and name the three components
of the right-hand side of Equation (8.13), with self-explanatory names. The
resulting proof context is displayed on Listing 8.6.

Theorem recApery_a n (nge2 : n >= 2) : P a n = 0.

Proof.

rewrite (punk.sound_telescoping P_eq_Delta_k_Q).

set boundary_part := (X in X + _ + _).

set singular_part := (X in _ + X + _).

set overhead_part := (X in _ + _ + X).

Listing 8.5: Begining of a proof of sound creative telescoping

boundary_part := Q c n (n + 1) - Q c n 0

singular_part := \sum_(0 <= i < n + 1 | precond.CT_premise n i)

P (c ^~ i) n - (Q c n (i + 1) - Q c n i)

overhead_part := \sum_(0 <= i < degree P)

\sum_(0 <= j < i) Pi n * c (n + i) (n + j + 1)

============================

boundary_part + singular_part + overhead_part = 0

Listing 8.6: Corresponding goal

In Listing 8.6, degree P is the degree of P, two in this specific case. Note that
we have access to degree P because in addition to the definition displayed on
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Listing 8.2, we also have at our disposal a list representation [:: P_cf0; P_cf1]

of the same operator.
The proof of the goal of Listing 8.6, proceeds in three steps. The first step

is to inspect the terms in singular_part and to chase ill-formed denominators,
like n − n. These can arise from the specialisations, like k = n, induced when
unrolling the definition of (the negation of) precond.CT_premise. In our formal-
ization, a division by zero is represented by a conventional value: we check that
these terms vanish by natural compensations, independently of the convention,
and we keep only the terms in singular_part that represent genuine rational num-
bers. The second step consists in using the annihilator ann_c of the summand to
reduce the resulting expression under the stairs of the Gröbner basis. In fact,
this latter expression features several collections of terms, that will be reduced
to as many independent copies of the stairs. In the present example, we ob-
serve two such collections: (i) terms that are around the lower bound (n, 0) of
the sum, of the form cn,0, . . . cn,s; (ii) terms that are around the upper bound
(n, n) of the summation, of the form cn,n, . . . , cn,n+s for a constant s. The
border terms induce two such collections but there might be more, depending
in particular on the shape of the precond.CT_premise proviso. For example, the
sum

∑n
k=0(−1)k

(
n
k

)(
3k
n

)
= (−3)n leads to a proviso involving n = 3k + 1 and

similar terms: an additional category of terms around (n, n/3) drifts away from
both (n, 0) and (n, n) when n grows.

============================

P_cf2 n * c (n + 2) n + P_cf1 n * c (n + 1) n +

P_cf0 n * c n n + Q_cf0_0 n n * c n n + P_cf1 n * c (n + 1) (n + 1) +

P_cf2 n * c (n + 2) (n + 1) + P_cf2 n * c (n + 2) (n + 2) = 0

Listing 8.7: Terms around the upper bound

The collection of terms around the upper bound in our running example is
displayed on Listing 8.7. The script of Listing 8.8 reduces this collection under
the stairs of ann_c, producing the expression displayed on Listing 8.9. The
premise of each rule in this basis being an integer linear arithmetic expression, we
check its satisfiability using our front-end intlia to the lia proof command [13],
which automates the formal proof of first-order formulae of linear arithmetics.

rewrite (ann_c.Sk (n + 2) (n + 1)); last by intlia.

rewrite (ann_c.Sk (n + 2) n); last by intlia.

rewrite (ann_c.Sk (n + 1) n); last by intlia.

rewrite (ann_c.Sn (n + 1) n); last by intlia.

rewrite (ann_c.Sn n n); last by intlia.

set cnn := c n n.

Fail set no_more_c := c _ _.

Listing 8.8: Reduction modulo the Gröbner basis of c

============================

P_cf2 n * Sn_cf0_0 (n + 1) n * Sn_cf0_0 n n * cnn + P_cf1 n * Sn_cf0_0 n n * cnn

+

P_cf0 n * cnn + Q_cf0_0 n n * cnn + P_cf1 n * Sk_cf0_0 (n + 1) n * Sn_cf0_0 n n *

cnn +

P_cf2 n * Sk_cf0_0 (n + 2) n * Sn_cf0_0 (n + 1) n * Sn_cf0_0 n n * cnn +

P_cf2 n * Sk_cf0_0 (n + 2) (n + 1) * Sk_cf0_0 (n + 2) n *

Sn_cf0_0 (n + 1) n * Sn_cf0_0 n n * cnn = 0

Listing 8.9: Rational function with folded coefficients
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The third and last step consists in checking that the rational-function co-
efficient of every remaining evaluation of c is zero. For this purpose, we start
by unfolding the definitions of the coefficients P_cf2, Sn_cf0. Previous steps kept
them carefully folded as these values play no role in the previous normalizations
but can lead to large expressions if expanded, significantly slowing down any
other proof command. The resulting rational function is proved to be zero by a
combination of the field [38] and lia [13] proof commands. The former reduces
the rational equation into a polynomial one between the cross product of two ra-
tional functions. This equation is then solved by the ring proof command [85].
The algebraic manipulations performed by field produce a set of non-nullity
conditions for the denominators. These are solved by the lia proof command.
To this end, our Maple script generates rational fractions with factored denom-
inators, that happen to feature only linear factors in these examples.

8.1.7 Composing closures and reducing the order of B

Figure 8.2 describes the global dependencies of the files proving all the steps
in Table 8.1. In order to complete the formal proof of Lemma 13, we verify

Figure 8.2: Formal proofs of Ta-
ble 8.1

Figure 8.3: Formal proof of
Lemma 13

formally in file algo_closures that each sequence involved in the construction
of an and bn is a solution of the corresponding Gröbner system of annotated
recurrence, starting from cn, dn, and zn and applying the lemmas proved in the
ops_for_* files all the way to the the final conclusions of ops_for_a and ops_for_b.
This proves that an is a solution of the recurrence (6.2) but provides only a
recurrence of order four for bn; let us call this recurrence R4.

In file reduce_order, we prove that b as well satisfies the recurrence (6.2)
using four evaluations b0, b1, b2, b3 that we compute in file initial_conds. The
reasoning is the following: define b′ as the unique sequence obtained by fixing
b′0 = b0, b′1 = b1 and such that b′ satisfies the Apéry recurrence (6.2) of order 2.
Then prove that b′ coincides with b for n = 0, 1, 2, 3. Finally, establish that any
solution of Apéry’s recurrence is also a solution of R4. Thus b′ = b, and this
proves that b satisfies Apéry’s recurrence.

8.2 Consequences of Apéry’s recurrence

In this section, we detail the elementary proofs of the properties obtained as
corollaries of Lemma 13. We recall from Chapter 6 that these properties describe
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the asymptotic behavior of the sequence δn = anζ(3)− bn, with:

an =

n∑
k=0

(
n
k

)2(n+k
k

)2
, bn = anzn +

n∑
k=1

k∑
m=1

(−1)m+1
(
n
k

)2(n+k
k

)2
2m3

(
n
m

)(
n+m
m

) (8.14)

In this section, we use the vocabulary and notations of Cauchy real numbers
(see Section 7.3). For instance, we have the equality between the two Cauchy
reals:

Lemma 15. ζ(3) = b
a

Proof. Easy from the definition of the sequences a and b.

However, the Mathematical Components libraries do not cover any topic
of analysis, and even the most basic definitions of transcendental functions like
the exponential or the logarithm are not available. Fortunately, it is possible to
obtain the required properties of the sequence δ by very elementary means, and
almost all these elementary proofs can be inferred from a careful reading and a
combination of Salvy’s proof [111] and of van der Poorten’s description [123].

Following van der Poorten, we introduce an auxiliary sequence (wn) ∈ Qn,
defined as:

wn =

∣∣∣∣bn+1 an+1

bn an

∣∣∣∣ = bn+1an − an+1bn.

The sequence w is called a Casoratian: as a and b are solutions of a same linear
recurrence relation (6.2) of order 2, this can be seen as a discrete analogue of the
Wronskian for linear differential systems. For example, w satisfies a recurrence
relation of order 1, which provides a closed form for w:

Lemma 16. For n ≥ 2, wn = 6
(n+1)3 .

Proof. Since a and b satisfy the recurrence relation (6.2), we have for n ∈ N:(
bn+2 an+2

bn+1 an+1

)
=

(
(17n2+51n+39)(2n+3)

(n+2)2 − (n+1)3

(n+2)3

1 0

)
·
(
bn+1 an+1

bn an

)
.

Taking determinants on both sides, we get

wn+1 =
(n+ 1)3

(n+ 2)3
wn.

The result then follows from the computation of w0.

From this formula, we can obtain the positivity of the sequence δ, and an
evaluation of its asymptotic behavior in terms of the sequence a.

Corollary 1. For any n ∈ N, 0 < ζ(3)− bn
an

.

Proof. Since ζ(3) = b
a , it is sufficient to show that for any k < l, we have

0 < bl
al
− bk
ak

. Thus it is sufficient to observe that for any k, we have 0 < bk+1

ak+1
− bk
ak

,

which follows from Lemma 16.

Corollary 2. ζ(3)− bn
an

= O( 1
a2n

).
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Proof. Since ζ(3) = b
a , it is sufficient to show that there exists a constantK, such

that for any k < l, blal−
bk
ak
≤ K

a2k
. But since a is an increasing sequence, Lemma 16

proves that for any k < l, bl
al
− bk
ak
≤
∑l−1
i=k

wi
aiai+1

≤
∑l−1
i=k

6
(i+1)3a2k

≤ K
a2k

, for any

K greater than 6ζ(3).

The last remaining step of the proof is to show that the sequence a grows
fast enough.

Lemma 17. 33n = O(an).

Proof. Consider the auxiliary sequence ρn = an+1

an
. Since ρ51 is greater than 33,

we only need to show that the sequence ρ is increasing. For the sake of readabil-
ity, we denote µn and νn the fractions coefficients of the recurrence satisfied by
a, obtained from Equation (6.2) after division by its leading coefficient. Thus a
satisfies the recurrence relation:

an+2 − µnan+1 + νn = 0.

For n ∈ N, we also introduce the function hn(x) = µn + νn
x , so that ρn+1 =

hn(ρn). The polynomial Pn(x) = x2 − µnx + νn has two distinct roots x′n <
xn, and the formula describing the roots of polynomials of degree 2 show that
0 < x′n < 1 < xn and that the sequence xn is increasing. But since hn(x)− x =

−Pn(x)
x , for 1 < x < xn, we have hn(x) > x. A direct recurrence shows that for

any n ≥ 2, ρn ∈ [1, xn], which concludes the proof.

In the formal proof of Lemma 17, the computation of ρ51 was made possible
by using the CoqEAL library, with the help of Cyril Cohen. This proof also
requires a few symbolic computations that are a bit tedious to perform by hand:
in these cases, we used Maple as an oracle to massage algebraic expressions,
before formally proving the correctness of the simplification. This was especially
useful to study the roots x′n and xn of Pn.

We can now conclude with the limit of the sequence `3nδn, under the assump-
tion that `n = O(3n).

Corollary 3. lim
n→∞

(`3nδn) = 0.

Proof. Immediate, since δn = O( 1
an

) by Corollary 2, and `3n = O((33)n), and

33 < 33.

In the next Section, we describe the proof of the last remaining assumption,
about the asymptotic behavior of `n.

8.3 Asymptotics of lcm(1, ..., n)

The asymptotic behavior of the sequence lcm(1, ..., n) is an elementary corollary
of the Prime Number Theorem. The proof of this corollary is based on a simple
remark about the p-valuations of lcm(1, ..., n).

Remark 2. For any integer n, let `n denote the least common multiple of the
integers no greater than n, denoted lcm(1, ..., n). For any prime number p,
pvp(`n) is the highest power of p not exceeding n, so that:

vp(`n) =
⌊
logp(n)

⌋
.
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Proof. Noticing that vp(lcm(a, b)) = max(vp(a), vp(b)), we see by induction on n

that vp(`n) =
n

max
i=1

vp(i). Recall from Section 7.1 that blogp(n)c is a notation for

the greatest integer α such that pα ≤ n. Since α = vp(p
α), we have α ≤ vp(`n).

Now suppose that vp(`n) = vp(i) for some i ∈ {1,· · · , n}. Then i = pvp(i)q with
gcd(p, q) = 1 so that pvp(`n) = pvp(i) ≤ i ≤ n and thus vp(`n) ≤ α. This proves
that vp(`n) = α.

By Remark 2, `n can hence be written as
∏
p≤n p

blogp(n)c and therefore:

ln(`n) =
∑
p≤n

⌊
logp(n)

⌋
ln(p).

If π(n) is the number of prime numbers no greater than n, we hence have:

ln(`n) ∼ π(n) ln(n).

The Prime Number theorem states that π(n) ∼ n
ln(n) ; we can thus conclude:

`n = en (1+o(1)).

J. Avigad and his co-authors provided the first machine-checked proof of the
Prime Number theorem [6], which was considered at the time as a formaliza-
tion tour de force. Their formalization is based on a proof by A. Selberg and
P. Erdös. Although the standard proofs of this theorem use tools from com-
plex analysis like contour integrals, their choice was guided by the corpus of
formalized mathematics available for the Isabelle proof assistant, or the limits
thereof. Although less direct, the proof by A. Selberg and P. Erdös is indeed
more elementary and avoids complex analysis completely.

8.3.1 Notations and Outline

In order to prove Corollary 3 in Section 8.2, we already mentioned in Chapter 6
that a weaker description of the asymptotic behavior of (`n) is sufficient, stated
in Lemma 11:

`n = O(3n). (8.15)

This sort of weaker description was in fact known before the first proofs of the
Prime Number theorem but our formal proof is a variation on an elementary
proof proposed by Hanson [62].

The idea of the proof is to replace the study of `n by that of another sequence
C(n). The latter is defined as a multinomial coefficient depending on elements

of a fast-growing sequence α. The fact that
∏n
i=1 α

1/αi
i < 3 independently of n

then allows to show that C(n) = O(3n).

8.3.2 Proof

Define the sequence (αn)n∈N by α1 = 2, and αn+1 = α1α2· · ·αn + 1 for n ≥ 1.
By an induction on n, this is equivalent to αn+1 = α2

n − αn + 1. For n, k ∈ N,
let

C(n, k) =
n!

bn/α1c!bn/α2c!· · · bn/αkc!
.
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As soon as αk ≥ n, C(n, k) is independent of k and we denote C(n) = C(n, k)
for all such k. Hanson directly works with C(n), but we found this to be
inconvenient to manipulate in the proof. Moreover, most inequalities stated on
C(n) actually hold for C(n, k) with little or no more hypotheses. Notice that

C(n, k) =
(

n
bn/α1c,bn/α2c,···,bn/αkc

)
·
(
n−

k∑
i=0

⌊
n
αi

⌋)
! . In particular, C(n, k) ∈ N.

The goal is now to show that `n ≤ C(n) < K · 3n for some K.

Lemma 18. For k ∈ N,

k∑
i=1

1

αi
=
αk+1 − 2

αk+1 − 1
< 1 and thus for x ∈ Q with x ≥ 1, bxc >

k∑
i=1

⌊
x

αi

⌋
.

The proof is done by induction and relies on the fact that if a ∈ Q and

m ∈ N+, we have
⌊
a
m

⌋
=
⌊
bac
m

⌋
.

In the following, for n, k ∈ N and p prime, we denote βp(n, k) for valp(C(n, k)).

Lemma 19. For all n, k ∈ N and p prime, βp(n, k) ≥ blogp(n)c = valp(`n).
Therefore C(n, k) ≥ `n.

Proof. The proof uses Lemma 14.

βp(n, k) =valp(n!)−
k∑
i=1

valp(bn/αic!)

=

blogp(n)c∑
i=1

bn/pic −
k∑
i=1

blogp(b nαi c)c∑
j=1

⌊
n

αipj

⌋

=

blogp(n)c∑
i=1

bn/pic − k∑
j=1

⌊
b npi c
αj

⌋
≥
blogp(n)c∑
i=1

1 (thanks to the fact that
∑ 1

αi
< 1 from lemma 18).

Since `n =
∏
p≤n

pblogp(n)c from remark 2, we get `n ≤ C(n, k) =
∏
p≤n

pβp(n,k).

Lemma 20. For i ≥ 1 and n ≥ αi,(
n
αi

) n
αi⌊

n
αi

⌋b nαi c <
(

10n

αi

)αi−1

αi

.

Proof. If n = αi, we have 1 <
√

10 ≤ 10
αi−1

αi , hence the result. Otherwise n > αi

and then, if we write n = bαi + r, with 0 ≤ r < αi, we have n−αi+1
αi

−
⌊
n
αi

⌋
=

−1 + 1
αi
< 1

2 < 0 so that n−αi+1
αi

<
⌊
n
αi

⌋
.
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It is easy to deduce that
(
n−αi+1

αi

)n−αi+1

αi
<
⌊
n
αi

⌋b nαi c
, hence we have

(
n
αi

) n
αi⌊

n
αi

⌋b nαi c <
(
n
αi

) n
αi

(
n−αi+1

αi

)n−αi+1

αi

=

(
1 +

αi − 1

n− αi + 1

)n−αi+1

αi−1

αi−1

αi

·
(
n

αi

)αi−1

αi

.

The first operand in the last expression is of the shape
((

1 + 1
x

)x)αi−1

αi , where
x is rational. We showed using only elementary properties of algebraic numbers
that for x ∈ Q, 0 < x,

(
1 + 1

x

)x
< 10, hence the result. Note that we only

needed that there exist a constant K > 0 such that
(
1 + 1

x

)x
< K.

Of course, using elementary real analysis allows for the tighter bound e for(
1 + 1

x

)x
, which was used in Hanson’s paper, but this bound is irrelevant for

the final result. Using the previous facts, we obtain the following bound:

Lemma 21. For k ≥ 1 and n ≥ 2,

C(n, k) <
nn

b nα1
cb

n
α1
c· · · b nαk c

b nαk c
.

Proof. First observe that if m = m1 +· · ·+mk where m and the mi are (not all
zero) nonnegative integers, we have because of Theorem 1:

(m1 +· · ·+mk)
m ≥

(
m

m1,· · · ,mk

)
mm1

1 · · ·m
mk
k . (8.16)

Let k ≥ 1, and define:

t =

k∑
i=1

⌊
n

αi

⌋
.

Then t < n by lemma 18. We have

C(n, k) =n · (n− 1)· · · (t+ 1)

(
t

bn/α1c, bn/α2c,· · · , bn/αkc

)
. (8.17)

Because of equation (8.16), we know that

(
t

bn/α1c, bn/α2c,· · · , bn/αkc

)
≤ tt

bn/α1cbn/α1cbn/α2cbn/α2c· · · bn/αkcbn/αkc
.

(8.18)

From equations (8.17) and (8.18) we deduce that

C(n, k) <
nn

bn/α1cbn/α1cbn/α2cbn/α2c· · · bn/αkcbn/αkc
.
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Lemma 22. Let k ≥ 3, n ∈ N. If αk ≤ n then

k < blog2 blog2 ncc+ 2.

Proof. First observe by a simple induction that for all k ≥ 3, αk > 22k−2

+ 1 so
that k − 2 < blog2 (blog2 αkc)c ≤ blog2 (blog2 nc)c.

Lemma 23. Let k ≥ 1, n ∈ N. If αk ≤ n,

C(n, k) <
nn( 10n

α1
)
α1−1
α1 ( 10n

α2
)
α2−1
α2 · · · ( 10n

αk
)
αk−1

αk(
10n
α1

) 10n
α1
(

10n
α1

) 10n
α1 · · ·

(
10n
αk

) 10n
αk

.

Proof. The result is straightforward by combining lemmas 20 and 21.

Lemma 24. Let wk =
k∏
i=1

α
1
αi
i , k ≥ 1. Then wk is increasing and there exists

w ∈ R, with
w < 2.98,

such that wk < w.

Proof. The sequence wk is increasing because αi
1
αi > 1 (because αi > 1). Since

α2
i > αi+1 > (αi − 1)2, one can see that for i ≥ 3, α

1
αi+1

i+1 <

√
α

1
αi
i , so that for

all k ≥ 1 and l ≥ 0,

wk+l ≤
k∏
i=1

α
1
αi
i · α

1
αk+1

∑l
i=0

1

2i

k+1 ≤ wk · α
2

αk+1

k+1 .

We establish by an elementary external computation verified in Coq that

α
1
α1
1 < 283

200 , α
1
α2
2 < 1443

1000 , α
1
α3
3 < 1321

1000 , α
1
α4
4 < 273

250 and α
1
α5
5 < 201

200 . From the

bound above with k = 4 we get w < w4 · α
2
α5
5 ≤ 5949909309448377

2·1015 < 2.98.

Remark 3. For k ≥ 1, we have

α1 − 1

α1
+
α2 − 1

α2
+· · ·+ αk − 1

αk
= k − 1 +

1

αk+1 − 1
.

Proof. It is a direct consequence of Lemma 18.

Note that the statement of Remark 3 actually corrects a typo in the original
paper.

Theorem 6. If αk ≤ n < αk+1,

C(n, k) = C(n) < (10n)k−
1
2wn+1.
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Proof. From lemma 23, recall that we have

C(n, k) <
nn( 10n

α1
)
α1−1
α1 ( 10n

α2
)
α2−1
α2 · · · ( 10n

αk
)
αk−1

αk(
n
α1

) n
α1
(
n
α2

) n
α2 · · ·

(
n
αk

) n
αk

=

nn(10n)

(
k∑
i=1

αi−1

αi

)(∏k
i=1 α

1
αi
i

)n
n
n
∑k
i=1

1
αi

∏k
i=1 α

αi−1

αi
i

.

It can be seen using lemma 18 that:

n
n
(

1−
∑k
i=1

1
αi

)
≤ n.

Thus

C(n, k) <n
(10n)

k−1+ 1
αk+1−1wnk∏k

i=1 α
αi−1

αi
i

thanks to remark 3

≤n (10n)
k−1+ 1

αk+1−1wn∏k
i=1 α

αi−1

αi
i

because wk ≤ w.

Since n < αk+1 = 1 +
∏k
i=1 αi, n ≤

∏k
i=1 αi, and we have

k∏
i=1

α
αi−1

αi
i =

k∏
i=1

αi

wk
≥ n

wk
.

Thus

C(n, k) <(10n)
k−1+ 1

αk+1−1wnwk

≤(10n)k−
1
2wn+1 as αk+1 ≥ 3 and wk ≤ w.

We can now prove lemma 11:

Proof.

`n/3
n ≤ C(n, k)/3n = (10n)k−

1
2

(w
3

)n+1

.

Remembering that k < blog2 blog2 ncc + 2 and w < 3, it is elementary to
show that the quantity on the right is eventually decreasing to 0 and therefore
bounded, which proves the result. We once again make use of the fact that(
1 + 1

x

)x
is bounded in the course of this elementary proof.
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Chapter 9

Conclusion

9.1 Proving Inequalities in Coq

In the proof of Section [62], we repeatedly had to prove inequalities between
expressions in an ordered ring or field. This was quite tedious for two reasons.
We present these reasons and suggest ideas for tools which could relieve the
user. Such tools would replace something humans do without thinking about
it.

Chained Inequalities: Proofs of statements of the style e1 ≤ en which are
done using a chain of inequalities e1 ≤ e2 ≤ · · · ≤ en are currently wearisome,
especially in the case where the ei are big expressions. The way one typically
proceeds is by first proving that e1 ≤ e2, which involves writing down the
expressions of e1 and e2 in Coq. Once this is done, one invokes transitivity of
inequality so that one is left with the goal e2 ≤ en. One then states e2 ≤ e3,
which again involves writing down both e2 and e3, and so on. This incurs a lot
of manual copy-pasting, which makes the code inelegant and the work of doing
proofs tedious. One could hope for something similar as the “calc” environment
in the Lean theorem prover [37]. For example, we could have a tool allowing
something in the style

Goal e_1 <= e_n.

- # <= e_2.

by proof_1.

...

- # <= e_{n-1}.

by proof_{n-1}

(* the final goal is e_{n-1} <= e_n *)

- by proof_n.

where the vernacular # <= X on a goal of the shape a ≤ b would apply transitivity
and create the two new goals a ≤ X and X ≤ b.

Side Conditions: We lack a tool for the automation of side-condition prov-
ing in inequalities. Suppose we want to prove inequalities in an ordered ring R
between products x1 · y1 · z1 ≤ a1 · b1 · c1, where x1, z1, a1 and c1 are a (possi-
bly empty) product of nonnegative expressions, and y1 and b1 are nonnegative
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elements of R.
Typically, this is done by inlining inequalities on y1 and b1 alone. For ex-

ample, we may know that y1 ≤ y2, and we can use this fact so that the initial
goal x1 · y1 · z1 ≤ a1 · b1 · c1 becomes x1 · y2 · z1 ≤ a1 · b1 · c1.

Thus, we do a series of ’rewritings’ of the shape x1 · y1 · z1 ≤ a1 · b1 · c1  
x1 · y2 · z1 ≤ a1 · b1 · c1, justified by proving that y1 ≤ y2. To do so, the only
lemma at our disposal is typically of the shape:

∀a, b, c, d, 0 ≤ a⇒ 0 ≤ b⇒ a ≤ b⇒ c ≤ d⇒ a · c ≤ b · d.

This means that we will have to re-prove several times that each quantity ap-
pearing in the product is nonnegative in the course of the rewritings. Moreover,
this lemma only works directly for products of two elements of R; when we
apply it to the product of k elements, we need to apply it k − 1 times. .

A tool to tackle this problem would have to be able to deal with products of
arbitrary arity, to propose a sensible deterministic mechanism to describe where
and how we want to rewrite inequalities, and to keep track of already proven
goals (typically the non-negativity of terms in the product).

9.2 Casts

As mentioned in Section 7.2, inclusions between sets in the Mathematical
Components hierarchy are represented by injective functions between datatypes.
Sometimes, coercions and notations can make two different representations in-
distinguishable to the eye in a Coq session. One consequence is that the user
will fail to be able to rewrite or apply a theorem on what seems to be a valid
instance. For example, if n is of type nat, Posz (n + 1) and (Posz n) + 1 can both
appear as n+1, because the coercion Posz is hidden by default. Rewriting n + 1

to S n (successor of n) will succeed in the first case and fail in the second.
For a similar reason, proof commands like ring will fail on what seems like

a valid equation, and only careful inspection of the Coq terms in the goal will
reveal the source of failure. In fact, we had to rewrite tactics which started by
normalizing expressions to a standard form in order to be able to apply the ring

and field proof commands to the type rat representing the set Q.
However, the formalization of nontrivial mathematics would not be possible

if it were not for the abundant notations and coercions at our disposal to be able
to “forget” the precise nature of every object manipulated, just like we do when
we write proofs on paper. A balance must be struck between an abundance of
tools which may lead to not understanding what object we are manipulating,
or which may lead to the inexplicable failure of proof automation tools, and a
lack of such tools which would prevent formal proofs from being done.

9.3 Related Work

Number theory is an area of mathematics where very simple statements often
require extremely difficult proofs. We are not aware of a comprehensive formal
proof library on the topic, although there exist formal proofs of a few emblematic
results. The elementary fact that

√
2 is irrational was used as an example

problem in a comparative study of the styles of various theorem provers [126],
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including Coq. The Prime Number theorem was proved formally for the first
time by Avigad et al. [6] and later by Harrison [63]. The transcendence of e was
formalized by Bingham [16] in HOL-Light. More recently, the transcendence of
both π and e was formalized in Coq [11]. Some of the ingredients needed in the
present proof are however not specific to number theory. For instance, we here
use a very basic infrastructure to represent asymptotic behaviors, but “big Oh”
notations have been discussed by Avigad [6] in his formalization of the Prime
Number Theorem, and by Boldo et al. [19] in a continuous context. Another
example of such a secondary topic is the theory of multinomial coefficients,
which is also relevant to combinatorics, and which is also defined by Hivert in
his Coq library Coq-Combi [73]. However, up to our knowledge this library
does not feature a proof of the generalized Newton identity.

We used Cohen’s Cauchy reals to define ζ(3), and algebraic complex numbers
in our simplification of Hanson’s proof. We considered using instead the C-
CoRN library of constructive analysis [35], but we found out that it would
have been too much work compared to what we eventually did, in part because
of the necessity to write a “bridge” to link mathematical structures from the
Mathematical Components libraries to those of C-CoRN.

Harrison [64] recently presented a way to produce rigorous proofs from cer-
tificates produced by the Wilf-Zeilberger certificates, by seeing sequences as
limits of complex functions. His method applies to the sequence a, which satis-
fies the recurrence Equation (6.2). However, this method does not allow for a
proof that b satisfies Equation (6.2), because the summand is itself a sum but is
not hypergeometric. Up to our knowledge, there is no way to justify the output
of the efficient algorithms of creative telescoping used here without handling a
trace of provisos.

As already mentioned, the idea to use computer algebra software (CAS) as
an oracle outputting a certificate to be checked by a theorem prover, dubbed a
skeptic’s approach, was described in several papers [8] [7] [65]. This technique
takes the best of both worlds to produce reliable proofs requiring large scale
computations. In the case of Coq, this viewpoint is especially fruitful since
the kernel of the proof assistant includes efficient evaluation mechanisms for the
functional programs written inside the logic [57]. Notable successes based on this
idea include the use of Pocklington certificates to check primality inside Coq [58]
or external computations of commutative Groebner bases, with applications for
instance in geometry [106]. Delahaye and Mayero proposed [38] to use CAS to
help experimenting with algebraic expressions inside a proof assistant, before
deciding what to prove and how to prove it. Unfortunately, their tool was not
usable in our case, where algebraic expressions are made with operations that
come from a hierarchy of structures.

Organizing the cooperation of a CAS and a proof assistant sheds light on
their respective differences and drawbacks. The initial motivation of this work
was to study the algorithms used for the automatic discovery and proof of re-
currences. Our hope was to be able to craft an automated tool providing formal
proofs of recurrences, by using the output of these algorithms, in a skeptical
way. This plan did not work and Section 8.1 illustrates the impact of confusing
the rational fractions manipulated by symbolic computations with their evalua-
tions, which should be guarded by conditions on the denominators. On the other
hand, proof assistants need to be handled carefully if one wants to manipulate
the large expressions imported during the cooperation, even those which are of
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a small to moderate size for the standards of computer algebra systems. For in-
stance, we have highlighted in our previous report [26] the necessity to combine
two distinct natures of data-structures in our libraries: one devoted to formal
proofs, which may use computation inside the logic to ease bureaucratic steps
in formal proofs, and one devoted to large scale computations, which provides
a fine-grained control on the complexity of operations.

On several occasions in this work, we wrote more elementary versions of the
proofs than what we had found in the texts we were formalizing. We agree with
Avigad [6] when he says that this can be both frustrating and enjoyable: on
one hand, it can illustrate the lack of mathematical libraries for theorems which
mathematicians would find simple, such as elementary analysis for studying the
asymptotics of sequences as in Section 8.2. Ten years later, “the need for ele-
mentary workarounds” is still present, despite his fear that it would “gradually
fade, and with it, alas, one good reason for investing time in such exercises”[6].
On the other hand, this need gives an opportunity to better understand the
minimal scope of mathematical theories used in a proof, with the help of a com-
puter. For instance, it was not clear to us that we could manage to completely
avoid the need to define transcendental functions, or even the constant e, to for-
malize Hanson’s paper [62], although it sometimes comes at the price of some
slightly pedestrian calculations.
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Part III

Certified Computations
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Chapter 10

Introduction

Sometimes validating external computations is not an option. For some prob-
lems, there does not seem to exist a certificate for which verification is cheaper
than computation. In those cases, what matters is that there exist a formal
specification of the way the result is obtained, so that one can prove that this
result is correct by construction.

The problem described in this part of the thesis falls in the latter category.
The goal is to estimate integrals numerically: given two bounds u and v and a
function f : R→ R, find A and B such that

A ≤
∫ v

u

f(t)dt ≤ B (10.1)

and with the interval [A;B] preferably tight. This problem was already posed
long before computers, for example when trying to estimate π by enclosing the
unit disk between two n-gons. Numerical integration distinguishes itself from
symbolic integration which aims at finding an equivalent exact mathematical
formula for an integral, for example:∫ 1

0

cos(t)dt = sin(1).

However, this is not always possible using elementary functions, as in the ex-
ample, for x ∈ R, of ∫ x

0

et
2

dt.

Harnessing the power of computers to obtain a precise numerical value for pre-
viously unattainable integrals is becoming an issue for mathematicians, as esti-
mates of numerous values of integrals become part of some modern mathematical
proofs, such as that of the Ternary Goldbach Conjecture by Helfgott [70] or the
Double Bubble Conjecture by Hass and Schlafly [66].

The problem of numerical integration is typically presented as an approxi-
mation problem. The goal is to find a natural number n, as well as n points
u ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ v and n weights w1, w2,· · · , wn ∈ R such that that
the integral of f is well approximated by a linear combination of evaluations of
f :
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∫ v

u

f ' w1f(x1) + w2f(x2) +· · ·+ wnf(xn). (10.2)

Many numerical integration methods exist with different choices of weights.
We borrow from Fousse [45] the following list: the family of Newton-Cotes
methods, the Romberg method, the Gaussian quadrature methods, the Gauss-
Kronrod quadrature, the Clenshaw-Curtis method and the double-exponential
method. With enough hypotheses on f and its derivatives when they exist,
each method comes with an error bound for the expression on the right of
Equation (10.2).

As an example, the 2-point trapezoidal rule, which is an instance of the
Newton-Cotes method, uses n = 2, x1 = u, x2 = v, and w1 = w2 = v−u

2 . Then
if f ∈ C2([u; v]),

∣∣∣∣∫ v

u

f(t)− v − u
2

(f(x1) + f(x2))

∣∣∣∣ = − (v − u)3f
′′
(ξ)

12
(10.3)

for some ξ ∈ [u; v]1.
The first problem with this approach is that this error bound analysis is

done assuming that all the performed operations (e.g. additions, multiplications,
divisions) are exact. Most of the actual implementations of quadrature methods
are made using floating-point number operations, and are thus prone to round-
off errors.

Another problem is that an error bound such as in Equation (10.3) is often
not used systematically by mathematical software to provide an error interval
at the end of the computation, but simply as a heuristic to both justify that the
method does eventually converge to the value of the integral, and to know how
to adjust the parameters to reach the user-requested error.

There exists rigorous software which takes into account both these pitfalls.
By “rigorous”, we mean that the correctness of the method used by the soft-
ware is proved on paper. The INTLAB [109] library by Rump uses a rigorous
Romberg method [108], which is a Newton–Cotes quadrature formula, to inte-
grate four times differentiable functions using interval arithmetic for both the
value and the error bound. The software library Correctly Rounded Quadra-
ture (CRQ) by Fousse [45] implements integration algorithms with rigorous error
bounds for the Newton-Cotes and Gauss-Legendre methods.

At the end of his PhD thesis, Fousse calls for the validation of his algorithms
using formal proofs. To our knowledge, formally verified computations currently
provide the strongest assurance of correctness. This is appropriate in order to
obtain the kind of guarantee required by large mathematical proofs. The main
contribution of this part is the description of a tool to automatically verify
integral enclosures inside the Coq proof assistant.

In Section 11, we start by giving an introduction to the efficient and rigorous
numeric real computation methods which we use to obtain our enclosures, along
with the Coq libraries we rely on.

1A proof of this error bound along with ones for more advanced quadrature methods are
detailed in the book Methods of Numerical Integration [36] by Davis and Rabinowitz.
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In Section 12, we describe how we obtain formally proved enclosures of both
proper and improper integrals inside the Coq proof assistant. We present bench-
marks on various integrals found in the literature. These benchmarks include
two instances where we found previously undetected mistakes.

Finally, in Section 13, we compare these results with a custom implemen-
tation of Simpson’s method; on the way, we present several iterations of our
attempts to implement automatic differentiation of order n, for fun and profit.
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Chapter 11

Efficient and Rigorous
Numeric Real
Computations

11.1 Interval Arithmetic

11.1.1 Notations and definitions

In the following, an interval is a closed connected subset of the set of real
numbers. We use I to denote the set of intervals:

I := {[a; b] | a, b ∈ R ∪ {±∞}}.

A point interval is an interval of the shape [a; a] where a ∈ R. The set I can be
equipped with an addition

+I :I× I→ I
([a; b], [c; d]) 7→ [a+ c; b+ d]

with neutral element [0; 0] which makes I a commutative monoid. The set I can
also be equipped with a multiplication

·I :I× I→ I
([a; b], [c; d]) 7→ [min(a · c, a · d, b · c, b · d); max(a · c, a · d, b · c, b · d)]

with neutral element [1; 1]. When there will be no ambiguity, +I (resp. ·I) will
be simply noted + (resp. ·).

Any interval variable will be denoted using a bold font. For any interval x ∈
I, inf x (resp. sup x) denotes its left (resp. right) bound, with inf x ∈ R∪{−∞}
(resp. sup x ∈ R∪{+∞}). An enclosure of x ∈ R is an interval x ∈ I such that
x ∈ x.

Definition 11. The closed convex hull of a set A ⊆ R is the smallest interval
containing A, denoted here hull(A). Moreover, the interval hull(a,b) denotes
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the convex hull of (the union of) two intervals a and b. Finally, hull(a,+∞)
designates the interval [inf a; +∞).

Throughout the present part, we manipulate real numbers which are the
evaluation of expressions. These expressions belong to a set E built from π,
n ∈ Z, a countable set of variables x, y, z, · · ·, the addition (+), the product
(·), division (/), the inverse (·−1), the absolute value (|·|), the integer power
(·n), the exponential function (exp), the natural logarithm function (ln), and
the trigonometric functions cos, sin, tan, and arctan.

Fix an enumeration of the variables. We define a function evalR in the fol-
lowing way. Let s ∈ N. The function evalR takes as input an expression e ∈ E , a
vector x = (x1,· · · , xs) ∈ Rs, and it returns the evaluation evalR(e,x) of the ex-
pression by following inductively the structure of e, applying the corresponding
real operation, and replacing the i-th variable with xi. Whenever an operation
is not defined or a variable of index greater than s appears, the function evalR
returns an error ⊥.

When there is no ambiguity, we identify a variable-free expression with its
evaluation. When we write “e(x) ∈ E”, this means that e(x) is an expression
whose only variable is x. If there is no ambiguity, we write t 7→ e(t) for the
function t 7→ evalR(e, t), and if t ∈ R, we write e(t) for evalR(e, t).

11.1.2 Interval Arithmetic

The paradigm of interval arithmetic

As the name indicates, interval arithmetic is a paradigm of computation in
which, instead of manipulating real values, one handles intervals of real values.
For example, we might represent the number π by the interval:

[3.14159; 3.14160].

One of the goals of interval arithmetic is, given a real number x ∈ R presented
as an expression e ∈ E , to build an interval x such that

x ∈ x. (11.1)

Naive interval arithmetic

There are several ways to implement interval arithmetic. In the simplest one
called naive interval arithmetic, usual unary and binary operations are over-
loaded to the realm of intervals and an enclosure of an expression e is built
by composing these overloaded operators following the inductive structure of
e. The following inclusion properties ensure that equation (11.1) holds by an
induction on the structure of e ∈ E .

• Given a unary operator � on real numbers, naive interval arithmetic pro-
vides a unary operator ♦ on intervals such that

∀x ∈ R, ∀x ∈ I, x ∈ x⇒ �(x) ∈ ♦(x). (11.2)

♦ is said to be an interval extension of �.
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An example would be the exponential function: if � = exp, define

Exp : I→ I
[a, b] 7→ [exp(a), exp(b)].

Since exp is an increasing function, ♦ := Exp satisfies (11.2).

• Given a binary operator � on real numbers, naive interval arithmetic pro-
vides a binary operator ♦ on intervals such that

∀x, y ∈ R, ∀x,y ∈ I, x ∈ x ∧ y ∈ y⇒ x � y ∈ x♦y. (11.3)

In this binary case, we also say that ♦ is an interval extension of �.
If we take � to be the multiplication operation, then ·I defined in Section
11.1.1 satisfies (11.3).

Informative Extensions

An interval extension can be more or less informative. In the unary case of a
function f : R→ R, the most informative extension F is the convex hull of the
image of f :

F : I→ I
x 7→ hull({f(t) | t ∈ x})

Thanks to (11.2), for any interval extension G of f and any x, F (x) ⊆ G(x).
In the other direction, the least informative interval extension of a total

function f : R→ R is certainly

F : I→ I
x 7→ (−∞,+∞).

Correlation

The approach of naive interval arithmetic cannot keep track of correlations
between subexpressions and might compute overestimated enclosures which are
thus useless for proving some goals. This is true even in the case when each
operator in the definition of E is overloaded with the most informative interval
extension.

For instance, assume that x ∈ [3; 4], so −x ∈ [−4;−3] using the (optimal)
interval extension of the negation, so x+ (−x) ∈ [3 + (−4); 4 + (−3)] using the
(optimal) interval extension of the addition. If the goal was to prove that x− x
is always 0, the interval [−1; 1] obtained by naive interval arithmetic is useless.

11.1.3 Interval Arithmetic and CoqInterval

The CoqInterval library

CoqInterval is a Coq library for computing numerical enclosures of real-valued
expressions [91]. It also provides a tactic interval to automatically deduce cer-
tain goals from these enclosures.
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The tactic typically takes a goal A ≤ e ≤ B where e is an expression in E , and
A and B are constants. Using the paradigm of interval arithmetic described in
Section 11.1.2, it builds a set e such that e ∈ e holds by construction and such
that e evaluates to an interval [inf e; sup e] by computation. Then it checks
that A ≤ inf e and sup e ≤ B, again by computation, from which it proves
A ≤ e ≤ B. All the computations on interval bounds are performed using a
rigorous yet efficient formalization of multi-precision floating-point arithmetic.

Because of the problem of correlation described in Section 11.1.2, the Co-
qInterval library also comes with refinements of naive interval arithmetic, such
as automatic differentiation and rigorous polynomial approximations, so as to
reduce this loss of correlations.

Data structures for reals and intervals

CoqInterval defines R as the set R∪{⊥R} of extended reals, that is the set of real
numbers completed with the extra point ⊥R. This is an option type: an element
of R is either a real number r, or it is a “default value” ⊥R. The value ⊥R is
typically outputted when an operation is applied outside of its usual domain of
definition. For instance, the result of dividing one by zero in R is ⊥R, while it
is unspecified in R. This ⊥R element is then propagated along the subsequent
operations.

Similarly, CoqInterval defines a type I = I ∪ {⊥I} of extended intervals.
An interval operator produces the value ⊥I whenever the input intervals are
not fully included in the definition domain of the corresponding real operator.
In other words, an interval operator produces ⊥I whenever the corresponding
operator on R would have produced ⊥R for at least one value in one of the
input intervals. Just like ⊥R, ⊥I propagates along computations. The · ∈ ·
membership relation is hence extended:

Definition 12 (membership in R and I). The elements ⊥R and ⊥I have the
following properties with regard to membership:

• ⊥R /∈ [u, v] for all u, v ∈ R ∪ {−∞,+∞};

• x̄ ∈ ⊥I for all x̄ ∈ R.

In particular, a crucial remark is that ⊥I is the only interval containing ⊥R.
The implementation of interval arithmetic on which we build uses pairs of

floating-point numbers [inf x; sup x]. Unless otherwise specified, we will be iden-
tifying I and I from now on.

11.1.4 Representation of functions, efficient computations:
straight-line programs

The CoqInterval library represents expressions in E as straight-line programs.
This allows for explicit sharing of common subexpressions. Such a program is
just a list of statements indicating what the operation is and where its inputs
can be found. The place where the output is stored is left implicit: the result
of an operation is always put at the top of the evaluation stack. The evaluation
model is simple: the stack grows linearly with the size of the expression since
no element of the stack is ever removed. The stack is initially filled with values
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corresponding to the constants of the program. The result of evaluating a
straight-line program is at the top of the stack.

Below is an example of a straight-line program corresponding to the expres-
sion (t+ π)

√
t− (t+ π). It is a list containing the operations to be performed.

Each list item first indicates the arity of the operation, then the operation itself,
and finally the relative depth at which the inputs of the operation can be found
in the evaluation stack. Note that, in this example, t and π are seen as con-
stants, so the initial stack contains values that correspond to these subterms1.
The comments in the term below indicate the content of the evaluation stack
before evaluating each statement.

(* initial stack: [t, pi] *) Binary Add 0 1

(* current stack: [t+pi, t, pi] *) :: Unary Sqrt 1

(* current stack: [sqrt t, t+pi, t, pi] *) :: Binary Mul 1 0

(* current stack: [(t+pi)*sqrt t, sqrt t, ...] *) :: Binary Sub 0 2

(* current stack: [(t+pi)*sqrt t - (t+pi), ...] *) :: nil

The evaluation of a straight-line program depends on the interpretation of
the arithmetic operations and on the values stored in the initial stack. For
instance, if the arithmetic operations are the operations from the Reals library
(e.g. Rplus) and if the stack contains the symbolic value of the constants, then
the result is the actual expression over real numbers. If u is a unary operator,
we will denote by JuKR the real interpretation of u. So if u is the Sqrt operator,
JuKR =

√
·. Similarly, if b is a binary operator, then JbKR will denote its real

interpretation, so that if b is Add, JbKR = +. We will use a similar notation JuKA
and JbKA for other evaluation schemes into a set A.

Let us denote JpKR(~x) the result of evaluating the straight-line program p
with operators from Reals over an initial stack ~x of real numbers. Similarly,
JpKI(~x) denotes the result of evaluating p with interval operations over a stack
of intervals. Then, thanks to the inclusion property of interval arithmetic, we
can prove the following formula once and for all:

∀p, ∀~x ∈ Rn, ∀~x ∈ In, (∀i ≤ n, xi ∈ xi)⇒ JpKR(~x) ∈ JpKI(~x). (11.4)

In particular, Formula (11.4) implies that if a function f can be reified into
t 7→ JpKR(t, ~x), then t 7→ JpKI(t, ~x) is an interval extension of f if ∀i, xi ∈ xi.

Formula (11.4) is the basic block used by the interval tactic for proving
enclosures of expressions [91]. Given a goal A ≤ e ≤ B, the tactic first looks for
a program p and a stack ~x of real numbers such that JpKR(~x) = e. This process
of finding a program p is called reification. It is done by a tactic outside the
logic of Coq, so that the fact that JpKR(~x) = e holds is checked by Coq. More
precisely, the goal A ≤ e ≤ B is convertible to JpKR(~x) ∈ [A;B] if A and B are
floating-point numbers and if the tactic successfully reified the term.

The tactic then looks in the context for hypotheses of the form Ai ≤ xi ≤ Bi
so that it can build a stack ~x of intervals such that ∀i, xi ∈ xi. If there is no
such hypothesis, the tactic just uses (−∞; +∞) for xi. The tactic can now
apply Formula (11.4) to replace the goal by JpKI(~x) ⊆ [A;B]. It then attempts
to prove this new goal entirely by computation. Note that even if the original
goal holds, this attempt may fail due to loss of correlation inherent to interval
arithmetic as seen in Section 11.1.2.

1The only thing that will later distinguish the integration variable t from an actual constant
such as π is that its value is placed at the top of the initial evaluation stack.
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11.2 Rigorous Polynomial Approximations

11.2.1 CoqApprox: Rigorous Polynomial Approximations
and Taylor Models in Coq

Although naive interval arithmetic is useful for approximating real expressions,
we have seen in Section 11.1.2 that it suffers from loss of correlation. A less
crude way of approximating real numbers on an interval is the use of uniform
approximations of functions by polynomials:

Definition 13 (Rigorous Polynomial Approximations). Let x ∈ I and let f :
x→ R be a function which is n+1 times differentiable.

A rigorous polynomial approximation (RPA) for a f is a pair (P,∆) where
P ∈ Rn[X] and ∆ ∈ I, such that

∀x ∈ x, f(x)− P (x) ∈∆.

RPAs as defined in Definition 13 are agnostic as to the way in which they
are obtained. However, the usual privileged method of producing them is by
truncating a Taylor series expansion of the function f around a point x0 ∈ x.
This method uses an interval version of the Taylor-Lagrange formula to estimate
the remainder:

∀x ∈ x, f(x)−
n∑
i=0

f (i)(x0)

i!
(x− x0)i ∈ f (n+1)(x− x0)

(n+ 1)!
(x− x0)n+1 (11.5)

Such a RPA is called a Taylor Model [90]. The CoqApprox [91] library
is an extension to CoqInterval which provides a generic theory of RPAs. It
also comes with an formalized effective implementation which can build Taylor-
Model-based RPAs for univariate expressions in the set E described in Section
11.1.1. The formalization is based on the algorithms developed in the PhD
thesis of Joldes [77].

Since this formalization contains an effective version of RPAs using interval
arithmetic, the actual data types used during computations are different from
those in the idealized context of Definition 13: polynomials have interval co-
efficients, f takes its values in R to accommodate for its domain, x0 becomes
an interval X0. The CoqApprox library defines a predicate specifying what it
means for such a Rigorous Polynomial Approximation to be correct with respect
to a function it approximates:

Definition 14 (Validity predicate for RPAs in CoqApprox). Let P :=
∑n
i=0 αiX

i

be a degree-n polynomial with interval coefficients and let ∆ ∈ I. Then (P,∆)
is a valid RPA for f : R→ R on I around X0 if

1. f is defined on I, that is,

∀x ∈ I, (f(x) = ⊥R =⇒ ∆ = ⊥I) ;

2. I = ⊥I =⇒ ∆ = ⊥I;

3. 0 ∈∆;
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4. X0 ⊆ I;

5. ∀x0 ∈ X0,∃Q ∈ Rn[X],
Q ∈ P ∧ ∀x ∈ I, f(x)−Q(x− x0) ∈∆.

where Q ∈ P means that if Q =
∑n
i=0 akX

k,

∀i, 0 ≤ i ≤ n =⇒ ai ∈ αi.

11.2.2 Primitives of RPAs

The following work is a contribution and was integrated into CoqInterval.
We place ourselves within the context of Definition 13 in order not to make

the exposition cumbersome with interval coefficient polynomials. If T = (P, I)
is a valid RPA for f : X→ R with respect to X0 ⊂ X, we want to build a valid
RPA U = (Q,J) for x 7→

∫ x
x0
f(s)ds with respect to the same X0,X. We write

P =
n∑
k=0

akX
k, and for all c ∈ R, we define prim(P, c) by

prim(P, c) = c+

n∑
k=0

ak
k + 1

Xk+1

In other words, prim(P, c) is the only primitive of P which evaluates to c at
0. Consider R = prim(P, 0). If x0, x1 ∈ X0, then

∀x ∈ X,

∫ x

x0

f(s) ds−R(x− x1) =

∫ x

x0

f(s) ds− [R(s− x1)]xx1

=

∫ x

x0

f(s) ds−
∫ x

x1

P (s− x1) ds

=

∫ x

x1

(f(s)− P (s− x1)) ds+

∫ x1

x0

f(s) ds

but for s ∈ [x0, x1]2, thanks to Definition 13,

f(s)− P (s− x0) ∈ I

so that
f(s) ∈ P (s− x0) + I

and then ∫ x1

x0

f(s) ∈
∫ x1

x0

P (s− x0) ds+ (X0 −X0)I

and thus ∫ x1

x0

f(s) ds ∈ R(X0 −X0) + (X0 −X0)I

which brings us to the inclusion:

∀x ∈ X,
∫ x

x0

f(s) ds−R(x− x1) ∈ (x− x0)I +R(X0 −X0) + (X0 −X0)I

2where [x0, x1] represents the interval whose ends are x0 and x1 irrespective of their relative
order. This interval is included in X0.
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and finally in all generality

∀x ∈ X,

∫ x

x0

f(s) ds−R(x− x1) ∈ (X−X0)I +R(X0 −X0) + (X0 −X0)I

so that (R, (X−X0)I+R(X0−X0)+(X0−X0)I) is an RPA for x 7→
∫ x
x0
f(s) ds

on (X0,X).
Notice that if X0 is thin (which is a reasonable scenario, as we are developing

around X0), the error reduces to (X−X0)I which is simply the scaling of the
error by the size of the interval.
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Chapter 12

Computing Estimates of
Integrals in Coq

12.1 Estimating Proper Integrals

In this section, we describe how to compute a numerical enclosure of the real
number

∫ v
u
f from enclosures of the finite bounds u and v and of the Riemann-

integrable function f . In other words, we only deal with proper integrals: the
case of improper integrals will be handled later in Section 12.2. We describe two
basic methods based respectively on the evaluation of a simple interval extension
and on a polynomial approximation of f . They can be combined and improved
by a dichotomy process.

This is integrated into the interval tactic of CoqInterval.

12.1.1 A Naive Approach

Our first approach uses an interval extension of the integrand. Let us formalize
and extend this notion already mentioned in Section 11.1.2.

Definition 15. For any function f : Rn → R, a function F : In → I is an
interval extension of f on R if

∀x1, . . . ,xn, {f(x1, . . . , xn) | ∀i, xi ∈ xi} ⊆ F(x1, . . . ,xn).

In the rest of the section we suppose that F : I→ I is an interval extension
of the univariate function f , and we want to compute an enclosure of

∫ v
u
f , with

u, v ∈ R, and f integrable on [u; v].

Lemma 25 (Naive integral enclosure).∫ v

u

f ∈ (v − u) · hull{f(t) | t ∈ [u; v] or t ∈ [v;u]}. (12.1)

Proof. Let us first suppose that u ≤ v. Denote f([u; v]) := {f(t) | t ∈ [u; v]}.
Assume without loss of generality that f([u; v]) is bounded. If [m;M ] :=
hull(f([u; v])), then for any t ∈ [u; v], we have m ≤ f(t) ≤ M . So (v − u)m ≤∫ v
u
f ≤ (v − u)M , hence Formula (12.1). The case v ≤ u is symmetrical.
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In practice we do not compute with f but only with its interval extension
F. Moreover, we want the computations to operate using only enclosures of the
bounds. So we adapt Formula (12.1) accordingly.

Lemma 26 (Interval naive integral enclosure). For any intervals u,v such that
u ∈ u and v ∈ v, we have∫ v

u

f ∈ (v − u) · F(hull(u,v)). (12.2)

Note that if u and v are point intervals and if F is the optimal interval extension
of f , then equation (12.2) reduces to equation (12.1).

Proof. If u ∈ u and v ∈ v, then by (12.1) and reusing notations from the proof,
we have

∫ v
u
f ∈ (v − u) · hull(f([u; v])). Since (v − u) ∈ (v − u), we only have

to show that hull(f([u; v])) ⊆ F (hull(u,v)). Since [u; v] ⊆ hull(u,v) and F is
an interval extension of f , we have f([u; v]) ⊆ f(hull(u,v)) ⊆ F (hull(u,v)).
Therefore hull(f([u; v])) is included in the interval F (hull(u,v)), by definition
of the closed convex hull.

The naive_integral Coq function implements (12.2). Given u,v ∈ I and F a
function of type I→ I, (naive_integral prec F u v) computes an interval i using
floating-point arithmetic at precision prec. If F is an interval extension of f , if
u ∈ u and v ∈ v, and if f is integrable on [u; v], then

∫ v
u
f ∈ i.

12.1.2 Another Approach using RPAs

The enclosure method described in Section 12.1.1 is crude. Better knowledge
of the integrated function allows for a more efficient approach. The goal of this
section is to use RPAs introduced in Section 11.2.1 to obtain better enclosures
of integrals.

Lemma 27 (Polynomial approximation). Suppose f is approximated on [u; v]
by p ∈ R[X] and ∆ ∈ I in the sense that ∀x ∈ [u; v], f(x) − p(x) ∈ ∆. Then
for any primitive P of p we have∫ v

u

f ∈ P (v)− P (u) + (v − u) ·∆.

Proof. We have
∫ v
u
f − (P (v)− P (u)) =

∫ v
u

(f(t)− p(t)) dt. By hypothesis, the
constant function ∆ is an interval extension of t 7→ f(t) − p(t) on [u; v], hence
Lemma 25 applies (notice that hull(∆) = ∆).

Note that our method and proofs do not depend on the way polynomial
approximations are obtained.

Incidentally, we recently realized while reading Rall and Corliss [34] that by
putting c = u+v

2 and choosing p to be of the shape
∑n
i=0 ai(x − c)i, P can be

chosen so that P (v) − P (u) can be computed in half as many operations. We
plan to take benefit from this remark in our code in the near future.
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12.1.3 Polynomial Approximations Are Not Always Bet-
ter

Polynomial approximations usually give tighter enclosures of an integral
∫ v
u
f

than the naive approach. In fact, the naive approach is an instance of the poly-
nomial one: let y be the midpoint of F(hull(u,v)) and let ∆ := F(hull(u,v))−y.
Then (y,∆) is a polynomial approximation of degree 0 for f since for all
t ∈ [u; v], f(t) ∈ F(hull(u,v)) and thus f(t)− y ∈∆.

However, due to the way polynomial approximations are obtained in Coq-
Approx, it can happen that a polynomial approximation is less accurate than
the use of naive interval arithmetic.

One first instance could be around a singularity preventing the Taylor series
of f to exist at all points of [u; v], as in the example of x 7→

√
x on [0; ε],

with ε > 0. In this case, CoqApprox returns a pair (P,⊥I) which yields the
uninformative enclosure ⊥I for

∫ ε
0

√
x dx, whereas the naive estimate would

have given (ε− 0) · [0;
√
ε] = [0; ε

√
ε].

Another instance would be if we wanted to integrate a strongly oscillating
function over a large interval. In Section 12.3, we will be looking at the integral∫ 8

0

sin(x+ exp (x)) dx

Indeed, let us use the software Sollya [24], which implements the same al-
gorithm as CoqApprox, to find a Taylor Model for the integrand on the whole
interval [0; 8]. In Figure 12.1, we use the command taylorform which takes as
input the function f , the approximating degree n, the point around which to
develop the Taylor series x0, and the interval I on which to find the approxi-
mation. It returns a Taylor model (P,∆). We only look at ∆ for our purposes
here, in the cases of n = 10 and n = 50.

Figure 12.1: Sollya Session

> TL=taylorform(sin(x + exp(x)), 10, 0, [0,8]);

> TL[2];

[-4.2589929933332345326623361369068740662104390570317e30;

4.2458685067031149053103989041910036815095504573458e30]

> TL=taylorform(sin(x + exp(x)), 50, 0, [0,8]);

> TL[2];

[-1.14722088059037692970526490071119314283016871650084e111;

1.13115598945164611003185544497692438747503367195052e111]

In the case of n = 10, the error ∆ has width greater than 2 · 1030; when we
try to increase the degree to 50, it is greater than 2 · 10111. The reason is that
the n-th derivative of this function is big and the error interval obtained from
Equation (11.5) is not tight. Lemma 27 is going to yield a useless estimate.
Now if we use a naive estimate, we get the much better enclosure
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∫ 8

0

sin(x+ exp (x)) dx ∈ 8 · [−1; 1] = [−8; 8].

12.1.4 Dichotomy

Both methods presented in Sections 12.1.1 and 12.1.2 can compute an interval
enclosing

∫ v
u
f when u and v are proper bounds. As seen in Section 12.1.3,

polynomial approximations usually give tighter enclosures of the integral, but
not always, so we combine both methods by taking the intersection of their
result.

This may still not be sufficient for getting a tight enough enclosure, in which
case we recursively split the integration domain in two parts, adding up the
results. The function integral_float_absolute performs this dichotomy and the
integration on each subdomain. It takes an absolute error parameter ε; it stops
splitting as soon as the width of the computed integral enclosure is smaller than
ε. The function also takes a depth parameter, which means that the initial
domain is split into at most 2depth+1 subdomains. Note that, because the depth
is bounded, there is no guarantee that the target width will be reached.

Let us detail more precisely how the function behaves. It starts by splitting
[u; v] into [u;m] and [m; v] where m = u+v

2 . It then computes some enclosures

i1 of
∫m
u
f and i2 of

∫ v
m
f . If depth = 0, the function returns i1 + i2. Otherwise,

several cases can occur:

• If w(i1) ≤ ε
2 and w(i2) ≤ ε

2 , the function simply returns i1 + i2.

• If w(i1) ≤ ε
2 and w(i2) > ε

2 , the first enclosure is sufficient but the second
is not. So integral_float_absolute calls itself recursively on [m; v] with
depth − 1 as the new maximal depth and ε − w(i1) as the new target
accuracy, yielding i′2. The function then returns i1 + i′2.

• If w(i1) > ε
2 and w(i2) ≤ ε

2 , we proceed symmetrically.

• Otherwise, the function calls itself on [u;m] and [m; v] with depth − 1 as
the new maximal depth and ε

2 as the new target accuracy, yielding i′1 and
i′2. It then returns i′1 + i′2.

12.1.5 Accuracy

Both methods described in Sections 12.1.1 and 12.1.2 use a single approximation
of the integrand on the integration interval. A decomposition of this interval
into smaller pieces may increase the accuracy of the enclosure, if tighter approx-
imations are obtained on each subinterval. In this section we give an intuition
of how the naive and polynomial approaches compare, from a time complexity
point of view. What we mean here by complexity is the number of operations
needed to obtain a result of width less than a parameter 0 < ε given as an input
to the algorithm.

The naive (resp. polynomial) approach here consists in using a simple in-
terval approximation (resp. a valid polynomial approximation) to estimate the
integral on each subinterval. Let us suppose that we split the initial integration
interval, before computing integral enclosures:
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∫ v

u

f =

∫ x1

x0

f + . . .+

∫ xn

xn−1

f with xi = u+ i
n (v − u).

Let w(x) = sup x− inf x denote the width of an interval. The smaller w(x)
is, the more accurately any real x ∈ x is approximated by x. Any sensible
interval arithmetic respects w(x + y) ' w(x) + w(y) and w(k · x) ' k · w(x).

We consider the case of the naive approach first. We assume that F is an
optimal interval extension of f and that f has a Lipschitz-constant equal to
k0, that is, w(F (x)) ' k0 · w(x). Since w(naive([xi;xi+1])) ' (xi+1 − xi) ·
w(F ([xi;xi+1])), we get the following accuracy when computing the integral:

w

(∑
i

naive([xi;xi+1])

)
'
∑
i

(xi+1 − xi) · k0 · w(([xi;xi+1])) (12.3)

' k0 · (v − u)/n ·
∑
i

w(([xi;xi+1])) (12.4)

' k0 · (v − u)2/n. (12.5)

Suppose we want to gain one bit of accuracy by going from n1 integrals
in the above sum to some number n2 of integrals. This means that we want
k0 ·(v−u)2/n2 ≤ 1

2 ·k0 ·(v−u)2/n1, so that n2 ≥ 2n1, so that we have to multiply
the computation time by at least two, hence the complexity is exponential.

Now for the polynomial enclosure. Let us assume we can compute a poly-
nomial approximation of f on any interval x with an error ∆(x). Because of
Formula (11.5), we can expect this error to satisfy w(∆(x)) ' kd ·w(x)d+1 with
d the degree of the polynomial approximation and kd depending on f . Since

w(poly([xi;xi+1])) ' (xi+1 − xi) · w(∆([xi, xi+1])),

developing as in (12.3), the accuracy is now

w

(∑
i

poly([xi;xi+1])

)
' kd · (v − u)d+2/nd+1.

For a fixed d, kd · (v − u)d+2/nd+1
2 ≤ 1

2 · kd · (v − u)d+2/nd+1
1 implies that

n2 ≥ 2
1
d+1n1: one still has to increase n exponentially with respect to the target

accuracy. The power coefficient, however, is much smaller than for the naive
method. By doubling the computation time, one gets d + 1 additional bits of
accuracy.

In order to improve the accuracy of the result, one can increase d instead
of n. If f behaves similarly to exp or sin, Taylor-Lagrange formula tells us that
kd decreases as fast as (d!)−1. Moreover, the time complexity of computing a
polynomial approximation usually grows like d3. If e.g. n ' v − u, doubling
the computation time is thus done by increasing d to d′ by a factor of about
2

1
3 ' 1.25. This gives about 25% more bits of accuracy.

As can be seen from the considerations above, striking the proper balance
between n and d for reaching a target accuracy in a minimal amount of time
is difficult, so we have made the decision of letting the user control d (see Sec-
tion 12.1.4) while the implementation adaptively splits the integration interval.
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12.1.6 Automatic Continuity and Integrability

When computing the enclosure of an integral, the tactic should first obtain a
formal proof that the integrand is integrable on the integration domain, as this
is a prerequisite to all the theorems in Section 12. In fact we can be more clever:
we prove that, if we succeed in numerically computing an informative enclosure
of the integral, the function was actually integrable. This way, the tactic does
not have to prove anything beforehand about the integrand.

For this, we use the data type for extended reals R = R ∪ {⊥R} defined in
Section 11.1.3. In order to gain intuition of what we are trying to do, let us
look at a simple example first.

Suppose we have a function ln : R→ R such that

∀x ∈ R, x > 0 =⇒ lnx = lnx; (12.6)

∀x ∈ R, x ≤ 0 =⇒ lnx = ⊥R; (12.7)

ln(⊥R) = ⊥R. (12.8)

Suppose that ln : I → I is an extension of ln and ln([u; v]) 6= ⊥I, that is
ln([u; v]) = [u′; v′] for some u′, v′ ∈ R. Since ⊥I * [u′; v′], ⊥R /∈ [u′; v′] because
of Definition 12. Furthermore, we can deduce from Equations (12.6), (12.7)
and (12.8) that [u; v] ⊆ (0; +∞). Hence ln is defined on [u; v], and since ln is
continuous on its domain of definition, we can deduce that ln is continuous on
[u; v]. We just deduced from computation that a function was continuous. As
any continuous function on a compact interval is also integrable on that interval,
we will be using this principle to automatically deduce integrability.

Let us make this more formal. We already saw two evaluation schemes JpKR
and JpKI in Section 11.1.4. The alternate scheme JpKR produces the value ⊥R as
soon as an operation is applied to inputs that are outside the usual definition
domain of the operator (this would be a way to define ln in the example above).
This ⊥R element is then propagated along the subsequent operations. Thus, the
following equality holds, using the trivial embedding from R into R:

∀p, ∀~x ∈ Rn, JpKR(~x) 6= ⊥R ⇒ JpKR(~x) = JpKR(~x). (12.9)

Taking advantage of the properties of ⊥R and ⊥I in Definition 12, we can
also prove a variant of Formula (11.4):

∀p, ∀~x ∈ Rn, ∀~x ∈ In, (∀i ≤ n, xi ∈ xi)⇒ JpKR(~x) ∈ JpKI(~x). (12.10)

In CoqInterval, Formula (11.4) is actually just a consequence of both Formu-
las (12.9) and (12.10). This is due to two properties of ⊥I. First, (−∞; +∞) ⊆
⊥I holds, so the conclusion of Formula (12.10) trivially holds whenever JpKI(~x)
evaluates to ⊥I. Second, ⊥I is the only interval containing ⊥R. As a conse-
quence, whenever JpKI(~x) does not evaluate to ⊥I the premise of Formula (12.9)
holds.

Let us go back to the issue of proving integrability. By definition, whenever
JpKR(~x) does not evaluate to ⊥R the inputs ~x are part of the definition domain of
the expression represented by p. But we can actually prove a stronger property:
not only is ~x part of the definition domain, it is also part of the continuity
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domain. More precisely, we can prove the following property:

∀p, ∀t0 ∈ R, ∀~x ∈ Rn, JpKR(t0, ~x) 6= ⊥R ⇒
t 7→ JpKR(t, ~x) is continuous at point t0. (12.11)

By combining Formulas (11.4) and (12.11), we obtain a numerical method
to prove that a function is continuous on a domain. Indeed, we just have to
compute an enclosure of the function on that domain, and to check that it is not
⊥I. A closer look at the way naive integral enclosures are computed provides
the following corollary: whenever the enclosure of the integral is not ⊥I, the
function is actually continuous and thus integrable on any compact set of the
input domain.

Note that Property (12.11) intrinsically depends on the operations that can
appear inside p, i.e. the operations belonging to the class E of Section 11.1.2.
Therefore, its proof has to be extended as soon as a new operator is supported
in E . This proof relies on the invariant:

Lemma 28 (Invariant on operators of E). For all unary operators u included
in the definition of E, for all x ∈ R:

JuKR(x) 6= ⊥R =⇒ JuKR is continuous at x.

For all binary operators b included in the definition of E, for all x, y ∈ R:

JbKR(x, y) 6= ⊥R =⇒ JbKR is continuous at (x, y).

Suppose that we want to extend E with the integer part b·c. Now Lemma 28
is not true any more. An unsolved question for now is: what more general
invariant could be used to obtain integrability?

12.2 Estimating Improper Integrals

Following usual mathematical terminology, we qualify integrals as improper
when their range is unbounded, as for

∫∞
1

1
x2 dx, or when the integrand is un-

bounded, such as
∫ 1

0
lnx dx. They are defined as limits of proper integrals.

In this section, we describe how to compute a numerical enclosure of some
improper integrals. Improper integrals are computed by splitting the interval
into two parts, a proper part which is treated with the methods described pre-
viously in Section 12.1, and the remainder which is handled in a specific way.
The splitting is automatically performed by a variant of the adaptive method
presented in Section 12.1.4 where the splitting point m for [u; +∞) when u > 0
is chosen to be 2 · u. We now describe how we handle the remainder. On pa-
per, when we want to show that an improper integral

∫ v
u
f is well-defined, we

typically show that

∀t ∈ [u; v], |f(t)| ≤ C · g(t) (12.12)

where C > 0 and g is a well-known integrable function such as 1
x2 , lnx or

exp(−x2). On top of establishing that the integral exists, this leads to a natural
way of bounding the integral:
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∣∣∣∣∫ v

u

f(t) dt

∣∣∣∣ ≤ ∫ v

u

|f(t)| dt ≤ C
∫ v

u

g(t) dt

so that ∫ v

u

f(t) dt ∈ [−C;C]

∫ v

u

g(t) dt.

Establishing the bound (12.12) is not so easy to automate as it can involve
complicated algebraic manipulations of usual functions. For this reason, we
restrict ourselves to the case when this work has already been done for us. We
consider improper integrals of the shape

∫ v
u
fg where either u = 0+ or v = +∞,

and f is bounded. Function g belongs to a catalog of functions with known
enclosures of their integral, such as xα lnβ x.

In Sections 12.2.1 and 12.2.2 we focus on integrals of the shape
∫ +∞
u

fg.
Section 12.2.1 presents the general theorem, while Section 12.2.2 lists the func-
tions contained in our catalog. Finally, Section 12.2.3 focuses on integrals of the
shape

∫ v
0+ fg.

12.2.1 Improper integral of a product

Let h : R → R be a function. To determine that
∫ +∞
u

h exists, we have added
a proof of the following Cauchy criterion: this integral exists if and only if for
any v ≥ u,

∫ v
u
h exists and for all ε > 0, there exists M > 0 such that for all

u, v ≥M , |
∫ v
u
h| ≤ ε. We use this criterion to show the following lemma.

Lemma 29. Let f, g : R→ R. Suppose that, on [u; +∞), f is bounded, f and

g are continuous, and g has a constant sign. Moreover, suppose
∫ +∞
u

g exists.

Then
∫ +∞
u

fg exists, and∫ +∞

u

fg ∈ hull{f(t) | t ≥ u} ·
∫ +∞

u

g.

Proof. Since f is bounded on [u; +∞), let [m;M ] := hull{f(t) | t ≥ u}. Suppose
without loss of generality that g ≥ 0 on [u; +∞). Let v ≥ u. For u ≤ t ≤ v, we
have m · g(t) ≤ f(t) · g(t) ≤ M · g(t), hence m ·

∫ v
u
g ≤

∫ v
u
fg ≤ M ·

∫ v
u
g. Let

ε > 0. Since g is integrable, the Cauchy criterion gives some neighborhood P of
+∞ such that ∀u, v ∈ P, |

∫ v
u
g| < ε

1+max(|m|,|M |) . But |
∫ v
u
fg| ≤ max(|m|, |M |) ·∫ +∞

u
g < ε; hence fg is integrable. Moreover m

∫ +∞
u

g ≤
∫ +∞
u

fg ≤ M
∫ +∞
u

g.

Thus
∫ +∞
u

fg ∈ [m;M ] ·
∫ +∞
u

g. If g ≤ 0, the proof is similar.

We provide an effective version of the previous lemma, in the same spirit as
Lemma 26, with a similar proof:

Lemma 30. Let F, Ig : I → I be interval extensions respectively of f and

x 7→
∫ +∞
x

g. For any interval u such that u ∈ u:∫ +∞

u

fg ∈ F (hull(u,∞)) · Ig(u).
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12.2.2 Catalog of supported integrable functions

In order to be able to use Lemma 30, we need to be able to find a suitable
extension Ig : I → I for the improper part of the integral of g. We thus look
at two scales of well-known integrable functions for which we can build Ig:
Bertrand functions (Section 12.2.2) and exponential functions (Section 12.2.2).

Bertrand integrals

We consider functions g(x) = xα lnβ x with α ∈ R, β ∈ R, and which from now
on we will call Bertrand functions. These functions are of constant positive sign
on [1; +∞). They are integrable at +∞ only when α < −1, or when α = −1
and β < −1. Now we focus on how to compute them. If α < −1, β = 0 and
u > 0,

∫ +∞

u

xα dx = − u
α+1

α+ 1
. (12.13)

When β ≥ 1, integrating by parts shows that∫ +∞

u

xα lnβ x dx = −

(
uα+1 lnβ u

α+ 1

)
− β

α+ 1

∫ +∞

u

xα lnβ−1 x dx. (12.14)

Note that in order to prove this identity, we had to extend Coquelicot with
a proof of the general formula for integration by parts (more details in Sec-
tion 12.2.5).

When α < −1 and β < 0, there is no closed form, but by moving lnβ x into
the bounded part of Lemma 29, we can nevertheless compute bounds on the
integral. If f is bounded on [u;∞], then∫ +∞

u

f · xα lnβ x dx =

∫ +∞

u

(
f lnβ x

)
︸ ︷︷ ︸

bounded

·xα dx

and then Formula (12.13) can be used in Lemma 29.
When α = −1 and β < −1, we have a closed form:∫ +∞

u

lnβ x

x
dx = − lnβ+1 u

β + 1
.

When β ∈ N, using Equations (12.13) and (12.14), we can recursively obtain
a closed form to evaluate Bertrand integrals with α < −1 and β ≥ 0. For
instance, using (12.14) then (12.13), we get:∫ +∞

1

lnx

x2
dx = −

(
1−1 ln 1

−1

)
− 1

−1

∫ +∞

1

dx

x2
= 0 + (−)

1−1

−1
= 1.

Exponential

We also handle the case of the positive function g(x) = eγx with γ < 0, using
the fact that ∫ +∞

u

eγx dx = −e
γu

γ
.
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12.2.3 Case of 0+

When the singular bound is 0+ instead of +∞, we use a variant of Lemma 29.

Lemma 31. Let f, g : R → R. Suppose that, on (0; v], f is bounded, f and g
are continuous, and g has a constant sign. Moreover, suppose that

∫ v
0+ g exists.

Then
∫ v

0+ fg exists, and∫ v

0+

fg ∈ hull{f(t) | 0 ≤ t ≤ v} ·
∫ v

0+

g.

As in the case of +∞, we provide a catalog of supported functions. Consider
g(t) = tα(− ln t)β with α ∈ R, β ∈ R. This function is of constant sign on (0; v],
where v < 1. Observe that using the substitution t = 1

x , we get∫ v

0+

tα(− ln(t))βdt =

∫ ∞
1/v

x−2−αlnβ x dx.

The right-hand-side integral has the shape treated in Section 12.2.2, so we
have a way to bound the left-hand-side integral. To do so, we added a proof of
the substitution lemma to Coquelicot (see Section 12.2.5).

Note that the functions recognized by the CoqInterval library are actually
of the shape tα lnβ t, with α and β integers.

12.2.4 Integrability

Just like in the case of proper integrals in Section 12.1.6, we deduce integrability
from computation.

As mentioned above, for improper integrals
∫ v
u
fg, the enclosure of the func-

tion f has to be bounded. This is not always very easy to obtain in the case
of an integration domain extending to +∞. Indeed, the input domain ~x is no
longer bounded in that case, which means that RPAs become useless. Let us
consider the following integral to illustrate the issue (u > 0):∫ +∞

u

x+ 1

x+ 2
e−x dx.

The quotient is bounded on [u; +∞). Yet using naive interval arithmetic
gives [u+1; +∞)/[u+2; +∞) = [0; +∞), which is not bounded. Thus the tactic
is unable to prove integrability and to compute an enclosure of the integral. To
circumvent this issue, the user has to massage the bounded part of the integrand
into a form suitable for naive interval arithmetic, e.g. (1 + 1/x)/(1 + 2/x). This
time, the tactic obtains [1/(1 + 2/u); 1 + 1/u], which is bounded. Note that
this kind of transformation of the integrand is not always possible. Consider for
example the integral ∫ ∞

1

lnx

x
e−x dx

One would hope to apply Lemma 29 by proving that f(x) := ln x
x is bounded

on [1;∞] and using e−x as the function g. However, given the primitives of E
there is no way to massage the expression ln x

x so that naive interval arithmetic
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sees is as bounded. In fact, we can not compute an enclosure of this integral
automatically as of now.

We conclude this part about integrability with a remark about the fact that
the only functions integrable at ∞ that we handle are bounded, whereas of
course there exist unbounded integrable functions. One might be tempted to
think that the only functions in the class E which are integrable at +∞ are
necessarily bounded. This is actually false, as the following example suggested
by Philippe Dumas shows:∫ ∞

0

t

(
1 + sin2 t

2

)t5
dt <∞.

12.2.5 Extending Coquelicot

In order to be able to handle improper integrals, a nontrivial amount of work
was needed to improve the existing results provided by the Coquelicot library.
This section dives into more technical details about implementations of concepts
in Coq. Although some parts of this section may seem at times to be overly
focused on proof-engineering details, these reflect the kind of challenges which
arise when one wants to extend a library of proofs and tactics. First, we will
look at the way the Coq standard library defines real numbers and the basic
notions of Real Analysis. Then, we will examine the Coquelicot library which
extends the standard library and improves it usability. Finally, we will explain
the work which was necessary to extend the tactic to improper integrals.

The Coq standard library of real numbers

Coq’s standard library Reals1 axiomatizes real arithmetic with a classical fla-
vor [92]. This means that a type R of real numbers is declared as an axiom
(as opposed to being constructed) and that the elements 0, 1, the operators
+,∗,/,·−1 are assumed as well as a list of axioms. For example, the comparison
operator < is assumed to be total:

Axiom total_order_T : ∀ r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

This means that given two reals x and y, it is decidable to compare them,
i.e. there exists a Coq function whose result determines either x < y, x = y, or
x > y. This is a very strong assumption since in practice, for any given concrete
representation of real numbers, such a function can’t be built. The library also
contains the following axiom:

Axiom completeness :

∀ E : R -> Prop, bound E -> (∃ x : R, E x) -> {m : R | is_lub E m}

where is_lub is defined in the following way:

Definition is_upper_bound (E:R -> Prop) (m:R) := ∀ x:R, E x -> x <= m.

Definition is_lub (E:R -> Prop) (m:R) :=

is_upper_bound E m ∧ (∀ b:R, is_upper_bound E b -> m <= b).

The completeness lemma states that any bounded non-empty subset of R
has a computable least upper-bound. Note that this is both very strong (it

1https://coq.inria.fr/distrib/current/stdlib/
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postulates a Coq program which takes as input any bounded non-empty subset
of R and returns its upper-bound u) and weaker than what is typically assumed
in textbook mathematics: this axiom is not enough to obtain a sequence (un)n∈N
of elements of E converging to u.

The standard library comes with a formalization of the properties of usual
mathematical functions like sin, cos, exp, and so on, defined as series. It also
provides some notions of elementary real analysis, including the definition of
continuity, differentiability, and Riemann integrability:

Definition RiemannInt (f:R -> R) (u v:R) (pr:Riemann_integrable f u v) : R.

This definition uses a dependent type: one needs a proof pr that f is
Riemann-integrable between u and v in order to write the object

∫ v
u
f . If one

wants to add two integrals
∫ v
u
f and

∫ v
u
g, one first needs to come up with a

proof that f + g is integrable between u and v before one can even write down
the integral

∫ v
u
f + g.

Coquelicot

This section describes the Coquelicot library as it stood before the present work.
This library is a conservative extension of the theory of real numbers from the
Coq standard library, meaning that it uses the same axiomatization of real
numbers and does not add any axiom of its own.

Coquelicot introduces the notion of filters in order to manipulate limits in a
uniform (e.g. between sequences, functions and functionals) and elegant (with
less δ/ε manipulations) way; this idea is borrowed from a similar scheme in
Isabelle/HOL [74]; the notion dates back to Cartan [23] [21]. A filter is a family
of sets with properties related to inclusion (see Definition 16). Filters allow to
treat in similar ways various kinds of limits such as sequence limits, limits of
functions at one point or on one side of a point, and asymptotic limits. They can
in fact be thought of as a way to encode the familiar notion of neighborhoods
in analysis.

Definition 16 (filter). Let E be a set. F ∈ P(E) is a filter of E if:

• E ∈ F ;

• For all A, B ⊂ E, if A ∈ F and B ∈ F then A ∩B ∈ F ;

• If A ∈ F and A ⊂ B, then B ∈ F .

Here is an example of filter containing the neighbourhoods of ∞:

Definition 17. Let f∞ := {E ⊂ R | ∃M ∈ R,∀x ≥M,x ∈ E}. Then f∞ is a
filter of R.

Coquelicot has an inductive type Rbar encoding reals extended with ∞ and
−∞:

Inductive Rbar : Set :=

| Finite : R -> Rbar

| p_infty : Rbar

| m_infty : Rbar.

A filter encoding a neighborhood of x ∈ Rbar can be obtained by evaluating
Rbar_locally x:
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Definition Rbar_locally (a : Rbar) (P : R -> Prop) :=

match a with

| Finite a => locally a P

| p_infty => ∃ M : R, ∀ x, M < x -> P x

| m_infty => ∃ M : R, ∀ x, x < M -> P x

end.

The predicate locally a P expresses that the predicate P is valid in a neighbor-
hood of the real number a.

Given a point x ∈ R, at_point x is a filter for x:

Definition at_point (P : R -> Prop) : Prop := P x.

Coquelicot also features a formalization of the product of two filters:

Lemma 32 (product of two filters). Let F be a filter of the set S and G be a
filter of the set T . Suppose Q ∈ F and R ∈ G. Then {P ∈ S × T |Q×R ⊂ P}
is a filter of E × F .

Coquelicot adopts a systematic approach of replacing dependent types used
in the standard library (like in Listing 12.2.5) with total functions. It also
provides an alternative formalization of the theory of Riemann integration. Let
V be a complete normed R-module:

Variable V : CompleteNormedModule R.

The definition of the (proper) Riemann integral between two reals a and b
has the type:

Definition is_RInt (f : R -> V) (a b : R) (If : V) : Prop.

and it expresses the fact that Riemann sums of f between a and b converge to
the value If ∈ R when their step tends to 0. Coquelicot provides a total operator
that outputs a value in R from a function f : R→ R and two bounds u, v ∈ R:

Definition RInt (f : R -> V) (u : R) (v : R) : V.

When the function f is Riemann-integrable on [u; v], the value (RInt f u v)

is equal to
∫ v
u
f(t) dt. Otherwise it is left unspecified and thus most properties

about the actual value of (RInt f u v) hold only if f is integrable on [u; v].
The library also features a notion of generalized Riemann integrals used to

represent integrals such as
∫ +∞

0+ lnx/(1 + x2)dx. The bounds of such integrals
are not real numbers, but filters. There is a predicate is_RInt_gen similar to
is_RInt:

Definition is_RInt_gen :

(R -> V) -> ((R -> Prop) -> Prop) -> ((R -> Prop) -> Prop) -> V -> Prop.

The definition of is_RInt_gen amounts to the following. Let f : R→ V be a func-
tion, and let u, v be two bounds. If l ∈ R, l is said to be the generalized integral

of f between u and v if
∫ b
a
f(t)dt is well-defined for all (a, b) in a neighborhood

of (u, v) and if If (a, b)→ l when (a, b)→ (u, v).
Contrary to the previous case of proper integrals, the library does not feature

a total function computing the improper Riemann integral of f between two
filters F and G. The function is_RInt_gen is in fact a relation. Even with a
proof that this relation locally describes a function, it is not possible to directly
mention the value of this function, i.e. the integral. For example, we can write
in Coquelicot
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is_RInt_gen (fun x => exp(-x2)) (at_point 0) (Rbar_locally p_infty)
√
π
2

to mean that
∫∞

0
e−x

2

dx =
√
π

2 but it is not as straightforward to express that∫∞
0
e−x

2

dx ∈ [0; 1]:

∃ l, is_RInt_gen (fun x => exp(-x2)) (at_point 0) (Rbar_locally p_infty) l ∧
l ∈ [0; 1].

Using such statements would have made it quite cumbersome for us to extend
our tactic to generalized integrals.

New definitions

In order to be able to state and prove in Coq the theorems of Sections 12.2.1,
12.2.2, 12.2.3 and 12.2.4 as well as to extend the tactic to improper integrals,
we needed a total operator computing such integrals and some more lemmas of
Real Analysis on them.

A new definition of is_RInt_gen: We redefined is_RInt_gen in a more natural
way in order to simplify proofs. If a ∈ R and f : R→ R, a natural way to define∫∞
a
f is

∫ ∞
a

f = lim
b→∞

∫ b

a

f,

where this equality is meant as: “there exists a neighborhood U of ∞ such that

when b ∈ U ,
∫ b
a
f exists and limb∈U,b→∞

∫ b
a
f exists”. This is so cumbersome

to express because the function (f, a, b) 7→
∫ b
a
f itself is partial. Since the

generalized integral is in some sense the “limit” of this relation, this motivated
the introduction of the notion of limit of a partial function defined implicitly by
a predicate:

Definition filterlimi {T U : Type} (R : T -> U -> Prop) F G : Prop.

For any relation R on elements x of type T and y of type U, and for any
filters F and G, the predicate filterlimiR F G states that for any neighborhood
Q ∈ G, the set {x ∈ T |∃y ∈ Q, Rx y} of “antecedents” of Q by R is itself a
neighborhood of F . Now we are ready to read the definition of is_RInt_gen:

Definition is_RInt_gen (f : R -> V) (Fa Fb : (R -> Prop) -> Prop) (l : V) :=

filterlimi

(fun (a,b) => is_RInt f a b)

(filter_prod Fa Fb)

(locally l).

This is saying that for any function f : R→ V, for any real numbers a and
b, for any neighborhood W of l, for any w ∈ W, the set of pairs (a,b) such that
is_RInt f a b w holds is in the filter product of Fa and Fb.

A Total Operator for Generalized Integrals: The following non-computable
iota function is useful for building a total function from a predicate on a com-
plete space T:

Definition iota (P : T -> Prop) : T := lim (fun A => (∀ x, P x -> A x)).
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The function lim is here given as input a filter N formed of all sets A containing
P. Assuming 1) that N does not contain the empty set and 2) that for all ε,
there is some x such that the ball B(x, ε) ⊆ N, lim N returns an element x ∈ T

such that all open balls centered on x are in N. In the particular case above, if
one can prove that any two points in P are equal (which is the case for is_RInt

or is_RInt_gen, for instance), iota is effectively a choice function for the input
property. If the property P is true for exactly one value x of the complete space
T, then iota P returns this value; otherwise, it returns a default value.

Using iota, we defined the function

Definition RInt_gen (f : R -> V) (a b : (R -> Prop) -> Prop) :=

iota (is_RInt_gen f a b).

Just like for RInt, the output of this function only makes sense if f is integrable
between the bounds a and b. Notice that RInt_gen is more general than RInt: it
takes as argument a function whose values are in a complete normed R-module.
We redefined RInt in a similar way (defined on more general functions):

Definition RInt (f : R -> V) (a b : R) :=

iota (is_RInt f a b).

Unanticipated Consequences of the New Definitions

As we saw above, the new definition of RInt using iota accepts functions with a
more general type. This allows for example to define proper integrals of complex-
valued functions. As we defined it in this more general way, we realized that
some elementary theorems about RInt had been proven using arguments which
are specific to R. For instance,

Lemma is_RInt_derive (f df : R -> V) (a b : R) :

(∀ x : R, Rmin a b <= x <= Rmax a b -> is_derive f x (df x)) ->

(∀ x : R, Rmin a b <= x <= Rmax a b -> continuous df x) ->

is_RInt df a b (minus (f b) (f a)).

which states that if f is continuously differentiable on [a, b], and if df : R → R
coincides with f ′ on [a, b], then∫ b

a

df(x)dx = f(b)− f(a), (12.15)

had been proved for f : R → R using the Intermediate Value Theorem and
Riemann sums. Such a proof does not generalize to normed modules in general.
A more usual way of proving this is to set

F (x) := f(a) +

∫ x

a

df(x) dx− f(x) (12.16)

and then to observe that

∀x ∈ [a, b], F ′(x) = 0 (12.17)

and that F (a) = 0, so that ∀x ∈ [a, b], F (x) = 0 hence the result. However, it
turns out that the following lemma, implicitly used in this usual proof, was not
proved in Coquelicot with the necessary generality:
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Lemma eq_is_derive :

∀ (f : R -> V) (a b : R),

(∀ t, a <= t <= b -> is_derive f t zero) ->

a < b -> f a = f b.

This lemma states that if the derivative of a function f is uniformly zero in
[a; b], then f is a constant function. It is in fact not so trivial as it may seem at
first, because the first simple proof which comes to mind relies on the theorem
is_RInt_derive which we are trying to prove. Our proof relies on the completeness

axiom of the Reals library presented in Section 12.2.5 which states the existence
of a least upper bound for bounded and non-empty subsets of R. Here is our
proof of eq_is_derive:

Proof. Let ε > 0. We want to prove that for all x ∈ [a, b], |f(x)−f(a)| ≤ ε. Let
A = {x ≤ b | ∀t, a ≤ t ≤ x =⇒ |f(t)− f(a)| ≤ ε(t− a)}. A is non-empty since
a ∈ A, and A is certainly bounded by b, so that A has an upper bound u. Let
c ∈ A be such that c < b.

Since f ′(c) = 0, we can find δ > 0 so that c+ δ ≤ b and

∀x ∈ [c− δ; c+ δ], f(x)− f(c) ≤ (x− c)ε
If x ∈ [c; c+ δ], since c ∈ A,

|f(x)− f(a)| ≤ |f(x)− f(c)|+ |f(c)− f(a)|
≤ (x− c)ε+ (c− a)ε

= (x− a)ε.

Thus, x ∈ A so that [c; c+ δ] ⊂ A.
We know that u ≤ b. Moreover, u cannot be less than b by the above

argument. The only remaining option is that b = u. Hence, for all x ∈ [a; b],
|f(x)− f(a)| ≤ ε. Since this is true for arbitrary ε, we conclude that

∀x ∈ [a; b], f(x) = f(a).

In order to finish the proof of is_RInt_derive, we also needed a proof of the
fact that the derivative of

∫ x
a
f(x) at x ∈ [a; b] is f(x), which in Coquelicot is

formulated more generally as:

Lemma is_derive_RInt (f If : R -> V) (a b : R)

(Hloc : locally b (fun x => is_RInt f a x (If x))) :

-> continuous f b

-> is_derive If b (f b).

Listing 12.1: Derivative of an integral in Coquelicot

The first hypothesis Hloc is very strong. Applied to our specific case, and
assuming a ≤ b, it mandates that

∫ x
a
f(x)dx exist in a neighborhood of b, that

is a little to the left of b (that we can do with, especially when a < b) but also
to the right of b. This has no chance to be true in our case, as the following
counterexample shows: Take a = −1, b = 0, and f(x) = x on [−∞, 0], and
f(x) = xχQ(x) on [0,∞], where χQ is the characteristic function of Q on R, i.e
χQ returns 1 on rational numbers and 0 on irrational numbers. Then f satisfies
all the preconditions of is_RInt_derive, as it is C1 at all points of [a, b] = [−1, 0]:
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• f is C1 trivially at any point in [−1, 0);

• f is continuous at any point of [−1, 0].

• f ′ is defined and is continuous to the left of 0, with f ′left(0) = 1;

• For x ≥ 0, f(x) − f(0) − 1 · x = x(χQ(x) − 1) → 0 when x → 0, hence
f ′right(0) = 1 and thus f ′(0) = 1.

However it can’t be that f(x) =
∫ x
a
df(x)dx in a neighborhood of 0, as the

quantity on the right is continuous on that neighborhood while f is not, at least
to the right of 0.

Therefore, how can we use is_derive_RInt in the proof of is_RInt_derive? We
want

∀x ∈ [a; b],

(∫ x

a

df(x)dx

)′
= df(x) (12.18)

However, in the hypotheses of is_RInt_derive, the function f is continuously
differentiable on [a; b], so that df is continuous, which is weaker than what the
Hloc hypothesis of is_derive_RInt mandates. Let g be a C1 extension of f on
[a; b], meaning that f and g coincide on [a; b], and g is affine on (−∞; a] and on
[b; +∞), and C1 on R. Then since g′ is continuous everywhere, x 7→

∫ x
a
g′(x)dx

is defined everywhere so that Hloc is true for x 7→
∫ x
a
g′(x)dx and g′. Hence

is_derive_RInt tells us that

∀x ∈ [a; b],

(∫ x

a

g′(x)dx

)′
= g′(x) (12.19)

But g′ and df coincide on [a; b], which entails (12.18).

Substitution lemma

We also (re-)proved the substitution lemma for proper integrals for the same
reason as is_RInt_derive: the proof was using the Intermediate Value Theorem
which is specific to real-valued functions and was broken by the generalization
of the type of is_RInt. This lemma was crucial for handling Bertrand integrals
at 0+ (see Section 12.2.3).

Lemma is_RInt_comp (f : R -> V) (g dg : R -> R) (a b : R) :

(∀ x, Rmin a b <= x <= Rmax a b -> continuous f (g x)) ->

(∀ x, Rmin a b <= x <= Rmax a b -> is_derive g x (dg x) ∧ continuous dg x) ->

is_RInt (fun y => scal (dg y) (f (g y))) a b (RInt f (g a) (g b)).

Just like in Section 12.2.5, this proof uses a continuously differentiable ex-
tension of the function g.

12.2.6 Conclusion

The changes described in this section are now part of Coquelicot 3.0.0 and
later versions.
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12.3 Benchmarks

This section presents the behavior of the tactic on several integration problems,
each given as a symbolic integral, its value (approximate if no closed form exists),
and a set of absolute error bounds that must be reached by the tactic. Each
problem is translated into a set of Coq scripts as follows, one for each bound:

Goal Rabs (RInt[_gen] function domain - value) <= error.
interval with options.
Qed.

The tactic options have been set using the following experimental protocol.
First, the target relative accuracy is computed from the error bound and the
initial estimation of an integral. The floating-point precision is then set at
about 10 more bits than the target accuracy, so that round-off errors do not
make interval enclosures too large. The maximal depth is originally set to a
large enough value. Then, various degrees of RPAs are tested and the one that
leads to the fastest execution is kept. Finally, the maximal depth is reduced
as long as the tactic succeeds in proving the bounds, so that we get an idea of
how deep splitting has to be performed to compute an accurate enclosure of the
integral. Note that reducing the maximal depth might improve timings in case
the adaptive algorithm had been overly conservative and did too much domain
splitting. Reducing the target relative accuracy could also improve timings
(again by preventing some domain splitting), but this was not done.

The tables below indicate, for each error bound, the time needed and the
tactic settings. Timings are in seconds and are obtained on a standard-grade
laptop. All timings are obtained with a version of the tactic that uses the
vm compute machinery to perform computations. Modern versions of Coq also
have a native compute machinery [18], which can improve the longest compu-
tation times by an order of magnitude, at the expense of a long initialization
time which makes it unsuitable for the present benchmarks.

12.3.1 Proper integrals

For each proper integral, we also ran several quadrature methods from Oc-
tave [40]: quad, quadv, quadgk, quadl, quadcc. We also used IntLab [109]; it
provides verifyquad, an interval arithmetic procedure that computes integral
enclosures using a verified Romberg method. For each method, we ask for an
absolute accuracy of 10−15. We only comment when the answer is off, or when
the execution time exceeds 1 second. Finally, we also tested VNODE-LP [98]
on each example by representing the integral as the value of the solution of a
differential equation.

The first problem is the integral of the derivative of arctan, a highly reg-
ular function. As expected, the tactic behaves well on it, since it takes about
3 seconds to compute 18 decimal digits of π by integration. Note that the
time needed for reifying the goal and performing the initial computations is
incompressible, so there is not much difference between 10−3 and 10−6.

110



∫ 1

0

dx

1 + x2
=
π

4

Error Time Accy Degree Depth Prec
10−3 0.3 10 15 0 30
10−6 0.3 20 6 2 30
10−9 0.6 30 7 3 40
10−12 1.0 40 7 4 50
10−15 1.7 50 10 5 60
10−18 2.9 60 12 5 70

The second problem is Ahmed’s integral [3]. It is a bit less regular and
uses more operators than the previous problem, but the tactic still behaves well
enough: adding ten bits of accuracy doubles the computation time.

∫ 1

0

arctan
√
x2 + 2√

x2 + 2 (x2 + 1)
dx =

5π2

96

Error Time Accy Degree Depth Prec
10−3 0.5 9 5 1 30
10−6 1.2 19 7 3 30
10−9 2.8 29 7 3 40
10−12 5.5 39 10 3 50
10−15 11.2 49 10 4 55

The third problem involves a function that is harder to approximate using
RPAs, so the tactic performs more domain splitting, degrading performances.

∫ π

0

x sinx

1 + cos2 x
dx =

π2

4

Error Time Accy Degree Depth Prec
10−3 1.1 11 9 2 30
10−6 2.3 21 6 5 30
10−9 5.0 31 9 5 40
10−12 11.5 41 11 7 50
10−15 27.2 51 11 7 65

The fourth problem is an example from Helfgott [69] in the spirit of [70].
The polynomial part crosses zero, so there is a point where the integrand is
not differentiable because of the absolute value. Thus only degenerate Taylor
models can be computed around that point. Although the tactic has to perform
a lot of domain splitting to isolate that point, it still computes an enclosure
of the integral quickly. Note that the approximate value of the integral was
computed using the interval_intro tactic.∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x− 6
)
ex
∣∣ dx ' 11.14731055005714

On this example, quadrature methods have some troubles: quad gives only
10 correct digits; verifyquad gives a false answer (a tight interval not containing
the value of the integral) without warning;2 quadgk gives only 9 correct digits.
VNODE-LP cannot be used because of the absolute value.

Error Time Accuracy Degree Depth Precision
10−3 0.7 14 5 8 30
10−6 0.9 24 6 13 40
10−9 1.3 34 8 18 50
10−12 1.9 44 10 22 60
10−15 2.7 54 12 28 70

2The bug lies in an incorrect implementation of Taylor models for absolute value. It has
now been fixed by removing support for absolute values.
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The last two problems are inherently hard to numerically integrate. The
first one is the 12-th coefficient of a Chebyshev expansion. Note that the initial
estimation of the integral is completely off, which explains why the relative
accuracy has to be set about 30 bits higher than one would expect. As with the
previous problem, there are some points where no RPAs can be computed. The
approximate value was again computed using the interval_intro tactic.∫ 1

−1

(
2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1

)
exp

(
−
(
x− 3

4

)2)√
1− x2 dx ' −3.2555895745 · 10−6

The quad, quadl, and quadcc procedures give completely off but consistent
answers without warning; quadv gives an answer which is off the mark as well,
but it gives a warning “maximum iteration count reached”; verifyquad works
only for functions that are four times differentiable, hence its failure here; quadgk
gives yet another off answer with no warning. Finally, VNODE-LP fails here
because of computational errors such as divisions by 0.

Error Time Accuracy Degree Depth Precision
10−6 10.7 32 8 17 40
10−9 22.9 42 10 22 50
10−12 48.3 52 13 28 60
10−15 111.8 62 13 35 70

The last problem is an example taken from Tucker’s book [121] and origi-
nally suggested by Rump in [109, page 372]. This integral is often incorrectly
approximated by computer algebra systems, because of the large number of os-
cillations (about 950 sign changes) and the large value of the n-th derivatives
of the function. While the maximal depth is not too large, the tactic reaches it
for numerous subdomains, hence the large computation time.

The quad, quadcc, and quadgk procedures give off values without any warn-
ing; quadv gives an off value with a warning; verifyquad takes 1.7 seconds to
give a correct answer; quadl takes 9 seconds to return a correct answer.

∫ 8

0

sin(x+ ex) dx ' 0.3474

Error Time Accy Degree Depth Prec
10−1 81.0 6 6 12 30
10−2 123.6 9 8 12 30
10−3 183.4 12 10 12 30
10−4 277.6 15 12 12 30

12.3.2 Improper integrals

Few tools are able to handle unbounded integration domains and even fewer
can give reliable bounds on the integral value. So this section is mostly about
CoqInterval. The first example shows a simple integrand with an exponential
bound:
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∫ +∞

1

e−x√
x
dx =

√
π · erfc(1)

Error Time Accy Degree Depth Prec
10−3 0.4 8 7 3 30
10−6 0.9 18 7 6 30
10−9 2.8 28 9 7 40
10−12 5.6 38 13 7 50
10−15 13.1 48 13 8 60

The second example is similar to the integral from Tucker’s book, in the
sense that the high number of oscillations of the integrand makes it hard to
give an accurate approximation of the integral. For instance, Maple 18 forfeits
after 10 seconds of computations. The tactic does not perform much better
since it is not able to compute more than two digits in a reasonable amount of
time. This is partly due to the adaptive splitting algorithm, which is built upon
the assumption that splitting an integration domain into two parts eventually
improves the accuracy by more than one bit on each part; this is not the case
for the remainder of this example.

∫ +∞

1

cosx
lnx

x2
dx ' −0.1595

Error Time Accy Degree Depth Prec
10−1 2.7 3 6 12 30
10−2 42.6 6 8 19 30

The last example comes from Helfgott’s proof of the ternary Goldbach con-
jecture [70, page 35]:∫ ∞

−∞

(0.5 · ln(τ2 + 2.25) + 4.1396 + lnπ)2

0.25 + τ2
dτ

The tactic cannot handle this integral fully automatically since the integrand
is not syntactically a product with a term xα lnβ x. It is up to the user to split
the integral into two parts: one proper part between −100,000 and 100,000 (as
was done in the original paper) and one improper part between 100,000 and
+∞ (counted twice, since the integrand is an even function). The proper part
is handled in the same way as all the previous examples. It takes about 30
seconds to get the relative accuracy of 10−6 needed by the original paper. For
the improper part, the integrand first has to be transformed into the following
form, which was proved to be equal to the original integrand in a few lines of
Coq:

∫ +∞

100 000

1 +
(

0.5·ln(1+2.25/τ2)+4.1396+lnπ
ln τ

)2

1 + 0.25/τ2
· ln2 τ

τ2
dτ ' 3.17742 · 10−3.

Error Time Accuracy Degree Depth Precision
10−3 0.6 2 3 0 30
10−4 0.8 5 5 2 30
10−5 1.5 8 7 6 30
10−6 3.1 11 9 11 30
10−7 5.6 15 12 12 30
10−8 11.2 18 15 15 30
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Bounding the remainder with a low accuracy is sufficient to prove that the
integral on the whole domain is included in [226.849; 226.850] and thus that the
upper bound 226.844 used in [70] is incorrect, although this does not invalidate
the proof. Here we present benchmarks from both the proper and the improper
case for estimating integrals.
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Chapter 13

Quadrature and Automatic
Differentiation of order n

13.1 Quadrature Methods: A quick introduc-
tion

As mentioned in Chapter 10, quadrature methods based on the evaluation of a
linear combination of evaluations of the integrand f can be made rigorous under
certain assumptions on the regularity of f . In this case, an error bound depend-
ing on some iterated derivative of the integrand on the integration interval is
typically provided, as in the case of Formula (10.3) for the trapezoidal rule.
Another example of a popular and efficient quadrature method is the so-called
Simpson’s method. Rabinowitz is quoted [36] claiming that ”95% of all pratical
work in numerical analysis boiled down to applications of Simpson’s rule and
linear interpolation”:

Theorem 7 (Simpson’s method). Let f ∈ C4([u, v]). Then there exists ξ ∈ [u; v]
such that

∫ v

u

f(x) dx− b− a
6

[
f(u) + 4f

(
u+ v

2

)
+ f(v)

]
= − (v − u)5

2880
f (4)(ξ).

In practice, the compound rule is often used:

Theorem 8 (Compound rule version of Simpson’s method). Let f ∈ C4([u, v])
and n ∈ N, with n ≥ 1 and N = 2n. Let x0 = u < x1 < · · · < xN−1 < xN = v
be equally spaced points, with h = v−u

N = xi+1− xi for all i. For 0 ≤ k ≤ N , let
fk denote f(xk). There exists ξ ∈ [u; v] such that

∫ v

u

f(x) dx− h

3

[
f0 + 4

n∑
k=1

f2k−1 + 2

n−1∑
k=1

f2k + f2n

]
︸ ︷︷ ︸

In(f)

= − (v − u)5

180N4
f (4)(ξ)︸ ︷︷ ︸

en(f)

.

As claimed above, most popular integration software uses Simpson’s rule
or other Newton-Cotes-based methods to compute approximations of integrals.
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They usually only make use of In(f) and compute it using floating-point ap-
proximations (as opposed to interval methods) and ignore the error term en(f).

In order to make Theorem 8 effective and rigorous, we need two things. The
first requirement is to correctly evaluate f at the points xk, which thanks to
the methods exposed in Sections 11.1 and 11.2 we know how to do for at least
a class of functions f by building an interval extension F of f which is correct
by construction. The second requirement is of a nature which has not been
mentioned yet: we need to produce a correct enclosure of f (4) at the point ξ.
Since ξ could be any point in [u; v], what we really want is an interval evaluation
of f (4) on [u; v]. All this suggests an interval version of the theorem:

Theorem 9 (Interval compound rule version of Simpson’s method). Let f ∈
C4([u, v]) and n ∈ N, with n ≥ 1 and N = 2n. Let u,v ∈ I with u ∈ u, v ∈ v.
Let F be an interval extension of f , and let G be an interval extension of f (4)

on [u; v]. For 0 ≤ k ≤ 2n, pose h := v−u
2n and xk := u + k ·h and Fk := F(xk).

Then∫ v

u

f(x) dx ∈ h

3

[
F0 + 4

n∑
k=1

F2k−1 + 2

n−1∑
k=1

F2k + F2n

]
︸ ︷︷ ︸

In(F)

− (v − u)5

180N4
G([u; v])︸ ︷︷ ︸

En(G)

.

In order to use Theorem 9 in an implementation, we need a way to estimate
the k-th derivative of a function in E for k ≥ 2. The usual technique to obtain
numerical approximations of k-th derivatives is called Automatic Differentiation
(AD): AD of order k is a numerical method to compute an enclosure of the k-th
derivative of a function f . AD of order 1 is already implemented in CoqInterval,
but not for higher orders.

Once we obtained results using naive interval arithmetic and RPAs, we com-
pared how far off we are from more traditional quadrature methods. For this,
we made several attempts at implementing AD of arbitrary order, which are
recounted (Section 13.1.1). Then, a few benchmarks about computation times
are presented (Section 13.1.2).

13.1.1 AD of order n

Automatic Differentiation or Algorithmic Differentiation (AD) is a process for
computing the numerical derivative of a function. We restrict ourselves to the
case of a univariate differentiable real function f : R→ R and a real number t0,
and the goal is to simultaneously compute an interval approximation of f(t0)
and f ′(t0). AD distinguishes itself from two other natural ways of approximat-
ing derivatives: the first one is to symbolically compute the derivative of the
function when it is presented as an expression made of additions, multiplica-
tions, divisions, composition and usual mathematical functions; the second one

is to try to approximate f ′(x) = f(x+h)−f(x)
h for some well-chosen h.

There exists a large literature on the topic of AD. The combination of AD
with interval arithmetic is covered in Moore [96] and Tucker [121] among others.
Interval AD of order 1, which is described below, was formalized in CoqInter-
val [91]. To our knowledge, the only other implementation in a formal proof
system is in a paper focused on differentiating FORTRAN programs using only
basic arithmetic operations [93].
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Here we restrict ourselves to a specific flavor of univariate AD which uses
operator overloading. The functions f : R → R that we consider belong to the
class E presented in Section 11.1.

AD of order 1

Let us first describe automatic differentiation of order 1. Let e(x) ∈ E be an
expression, and let f be the function defined by t 7→ e(t). Suppose we want
to compute f(t0) and f ′(t0) for some t0 ∈ R such that these quantities are
well-defined.

The idea is to build the pair pe(t0) = (f(t0), f ′(t0)) ∈ R2
recursively on the

structure of e(x) ∈ E . The operations are done assuming that f is both defined
and differentiable at t0: when f(t0) or f ′(t0) is ill-defined, it is replaced by the
⊥R value which then propagates. The following rules are used:

• if e(x) = c where c is a constant of E , then pe(t0) = (c, 0);

• if e(x) = x, then pe(t0) = (x, 1);

• if e(x) = eg(x) + eh(x), if peg (t0) = (vg, vg′) and peh(t0) = (vh, vh′) then
pe(t0) = (vg + vh, vg′ + vh′);

• if e(x) = eg(x) · eh(x), if peg (t0) = (vg, vg′) and peh(t0) = (vh, vh′) then
pe(t0) = (vg · vh, vg · vh′ + vh · vg′);

• if e(x) =
eg(x)
eh(x) , then if peg (t0) = (vg, vg′) and peh(t0) = (vh, vh′) then

pe(t0) = (
vg
vh
,
vg·vh′−vh·vg′

v2h
);

• if e(x) = (eg(x))−1 and peg (t0) = (vg, vg′), then pe(t0) = (v−1
g ,−vg′

(
vg
−1
)2

);

• If e(x) = uf (g(x)), where uf is a usual function (such as ·n, exp, log,
sin, cos, tan, or any unary function of E) and g(x) ∈ E , then if peg (t0) =
(vg, vg′), pe(t0) = (uf (vg), vg′ · u′f (vg));

• If e(x) = |eg(x)| and peg (t0) = (vg, vg′), then pe(t0) =


(vg, vg′) if vg > 0

(vg,−vg′) if vg < 0

⊥R otherwise

The following lemma describes the correctness of this process for construct-
ing pe(t0):

Lemma 33. For any expression e(x) ∈ E, for all t0 ∈ R if f := t 7→ e(t) is
differentiable at t0, then

pe(t0) = (f(t0), f ′(t0)).

Proof. The proof is by induction on the structure of e(x) ∈ E :

• It is straightforward for the two base cases of c and x;

• For the three binary operators +, ·, and /, it simply amounts to the well-
known derivation rules for these operators;
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• For unary operators corresponding to a usual function uf , correctness is
deduces from the formula for differentiating uf and the chain rule;

• For the absolute value, it is a simple case analysis.

The above description is not yet an effective algorithm, because the data

type of the pair pe(x) is R2
. In order to make an implementation which is able

to provide correct numerical enclosures of first-order derivatives, we replicate all
the above steps with the usual interval operations and, from an input interval
t0, build a pair of intervals pe(t0) with the following property:

Lemma 34. For any expression e(x) ∈ E, for all t0 ∈ I and t0 ∈ R such that
t0 ∈ t0 ,

pe(t0) ∈ pe(t0).

Proof. Since pe(t0) is built the same way as pe(t0), and since every interval
operation used is an interval extension of the corresponding real operation, the
result follows by induction on the structure of e.

The pair pe(t0) := (i0, i1) also has the nice property that if i1 6= ⊥I, then
f := t 7→ e(t) is differentiable at t0. This property is similar to the way integra-
bility is inferred in Section 12.1.6.

This process of interval automatic differentiation of order 1 is not a contri-
bution: it is already implemented in CoqInterval and is used for example to
refine some interval enclosures by looking at the sign of the derivative.

AD of Order n

It is natural to want to extend the principle of the previous subsection to the n-
th derivative by computing, still by induction on the structure of the expression
e(x) defining f , the vector pne (x) := (f(x), f ′(x),· · · , f (n)(x)) ∈ Rn+1.

When implementing order 1 automatic differentiation, the only variation in
the derivation formulas which might have an impact on numerical accuracy is
the associativity and distributivity of operators.

A typical presentation of AD of order n establishes a direct formula for the
n-th derivative of each operator. Up to an integer factor, the elements of pne (t0)
are really the n+ 1 first coefficients of the Taylor series development of f about
t0. Formulas for each operation in the definition of E can be inferred from this
fact, as explained in Tucker [121] for example.

However, in the context of an implementation in a formal proof system such
as Coq which we expect to eventually verify, we would like to minimize the
effort in proving each and every specific formula and benefit from the elegance
of functional programming to obtain this n-th derivative recursively. We would
also like for the proof of correctness to only involve facts about derivatives of
order 1 when that is possible.

In this subsection, we explore two approaches meeting these criteria. The
first one is presented mostly as an oddity which takes advantage of the ab-
stractions of functional programming; however, it is extremely inefficient to
implement in practice. The second one is our final implementation; although it
has not been proved correct yet, it is both functionally elegant and amenable
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to formal proof. Expressions in E are left implicit in this part to keep formulas
legible, but the functions mentioned should still be understood as elements of
E univariate in the same variable x.

A peculiar kind of recursion Let us first describe a surprisingly simple way
of doing AD of order n.

Looking back at the previous subsection, what we did was overload common
mathematical operators. For example,

· : R× R→ R
(x, y) 7→ x · y

became

·1 : R2 × R2 → R2

((x1, x2), (y1, y2)) 7→ (x1 · y1, x1 · y2 + x2 · y1).

Let us rename multiplication · as ·0. We had the nice property that for all
x ∈ R, for all f and g differentiable at x,

(f(x), f ′(x)) ·1 (g(x), g′(x)) = (f(x) ·0 g(x), (f(x) ·0 g(x))′)

We can operate this renaming for all operators described in the previous
subsection, for instance (x, y) +1 (z, t) = (x+ z, y + t). Now if we pose

·2 : (R2)2 × (R2)2 → (R2)2

((x1, x2), (y1, y2)) 7→ (x1 ·1 y1, x1 ·1 y2 +1 x2 ·1 y1)

we can see the following: Let x ∈ R, f, g : R→ R twice differentiable at x. For
all functions h, let us denote h′ for h(x), h′′ for h′′(x). We have:

((f, f ′), (f ′, f ′′)) ·2 ((g, g′), (g′, g′′)) =

((f, f ′) ·1 (g, g′), (f, f ′) ·1 (g′, g′′) +1 (f ′, f ′′) ·1 (g, g′)) =

((f ·0 g, (f ·0 g)′), ((f ·0 g)′, f ·0 g′′ + f ′ ·0 g′ + f ′ ·0 g′ + f ′′ ·0 g′)) =

((f ·0 g, (f ·0 g)′), ((f ·0 g)′, (f ·0 g)′′))

so that although we have a redundancy in the middle, we now have the deriva-
tives of order 0, 1 and 2 of f · g at x.

In the same way, we could recursively define

·n+1 : (R2n)2 × (R2n)2 → (R2n)2

((x1, x2), (y1, y2)) 7→ (x1 ·n y1, x1 ·n y2 +n x2 ·n y1)

as well as for all the other operators of E . An induction on the index n of the
operators would show that it is possible by iterating this construct to obtain
a vector of exponential size in n containing all of f(x), f ′(x),· · · , f (n)(x). We
have iterated the formal construction of automatic differentiation from base
operations by applying it recursively to itself. Although this is a pretty result,
it is not usable in practice, which is why we move on to a more reasonable way
of implementing AD or order n.

119



Building AD of order n more realistically From now on the notation opn
introduced in subsection 13.1.1 is superseded by the following. Let us define

·n : Rn+1 × Rn+1 → Rn+1

x̄, ȳ 7→ (x0 · y0,· · · ,
k∑
i=0

(
k

i

)
xixk−i,· · · ,

n∑
i=0

(
n

i

)
xixn−i)

so that if f , g are two n-times differentiable functions at x ∈ R, we have

(f(x), f ′(x),· · · , f (n)(x)) ·n (g(x), g′(x),· · · , g(n)(x)) =

((f · g)(x), (f · g)′(x),· · · , (f · g)(n)(x)).

In the same way for op ∈ {+,−, /} we can define:

opn : Rn+1 × Rn+1 → Rn+1

so that if f , g are two n-times differentiable functions at x ∈ R,

(f(x), f ′(x),· · · , f (n)(x)) opn (g(x), g′(x),· · · , g(n)(x)) =

((f op g)(x), (f op g)′(x),· · · , (f op g)(n)(x)).

and similarly for unary operations op ∈ {exp, ln, cos, sin, tan, arctan}:

opn : Rn+1 → Rn+1

so that f is a n-times differentiable function at x ∈ R, opn(f(x), f ′(x),· · · , f (n)(x)) =
((op f)(x), (op f)′(x),· · · , (op f)(n)(x).

If we want to inductively define each operation as in Section 13.1.1, we will
need a formula for the k-th derivative of each operation for 1 ≤ k ≤ n. A
first idea is to compute these formulas through iterated symbolic derivation: for
example, the formula for the 2 first derivatives of multiplication given by this
process is:

(x0, x1, x2) ·2 (y0, y1, y2) = (x0y0, x0y1 + x1y0, (x0y2 + x1y1) + (x1y1 + x2y0))

This example exposes a major problem with using iterated derivation: ex-
pressions can blow up exponentially with n and when evaluating the same com-
putations will be done several times. Furthermore, adding the same expression
to itself several times will cause a loss of precision which may make the n-th
derivative unusable at best, if it is computed in a rigorous way (through interval
arithmetic for example), or completely incorrect at worst if it is computed using
floating-point numbers.

An interval version of the symbolic derivation method was programmed in
Coq using interval arithmetic and, as expected, it quickly becomes uninfor-
mative as n grows. The approach we chose uses a “hardcoded formula” for
multiplication in order to avoid this explosion, but tries to be more generic for
most operations to facilitate (future) formal proofs. Here is our construction.

• (x0,· · · , xn) +n (y0,· · · , yn) := (x0 + y0,· · · , xn + yn)
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• (x0,· · · , xn)·n(y0,· · · , yn) := (x0·y0,· · · ,
∑k
i=0

(
k
i

)
xixk−i,· · · ,

∑n
i=0

(
n
i

)
xixn−i)

• (x0,· · · , xn)/n(y0,· · · , yn) := (x0,· · · , xn) ·n ((y0,· · · , yn))
−1n (the inverse is

considered as belonging to the class of usual functions here, and so it is
treated below)

• Let f be any of the other (unary) operators in E . It can be checked that
the first derivative of f is also an expression df ∈ E . Let us define fn
recursively:

– f0(x) = f(x);

– fn+1(x0,· · · , xn+1) = f(x0) :: ((x1,· · · , xn+1) ·n dfn(x0,· · · , xn)) where
:: denotes concatenation.

We need to justify the correctness of this construction. The first two bullet
points are straightforward. The third bullet point only replaces a division by a
product with the inverse. For the fourth bullet point, suppose that for some g
and x,

(x0,· · · , xn) = (g(x), g′(x),· · · , g(n)(x))

dfn (x0,· · · , xn) = (df(x0), d′f (x0),· · · , d(n)
f (x0))

Then since df = f ′, we have

dfn (x0,· · · , xn) = (f ′(x0), f ′′(x0),· · · , f (n+1)(x0))

hence

((x1,· · · , xn+1) ·n dfn(x0,· · · , xn)) =

(g′(x),· · · , g(n)(x)) ·n (f ′(g(x)), f ′′(g(x)),· · · , f (n+1)(g(x)))

so that

f(x0) :: ((x1,· · · , xn+1) ·n dfn(x0,· · · , xn)) =

(f(g(x)), g′(x) · f ′(g(x)),· · · , (x 7→ g′(x) · f ′(g(x)))(n)(x)) =

(f(g(x)), (f ◦ g)′(x),· · · (f ◦ g)(n+1)(x))

which is exactly what we wanted.

Remark 4. This technique generalizes to the case when we have a differential
equation on f of the shape f (k+1)(t) = g(t, f(t), f ′(t),· · · , f (k)(t)), where g is
defined as an expression of E, and some initial conditions at x: y0 := f(x), · · ·,
yk := f (k)(x).

We have implemented an interval version of this method in Coq, on top of
CoqInterval. It has not been proved correct yet, however it was used to perform
benchmarks on Simpson’s method for quadrature.
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13.1.2 Test of Simpson’s Method in Coq

In Section 12.3, we compared our implementation against some integration soft-
ware which uses quadrature methods. This was fruitful for correctness and
accuracy, but the speed of interpreted Coq code is still much slower than a
well-tuned C implementation. It makes more sense to compare speeds with a
Coq implementation of a quadrature method.

Our implementation uses the same strategy of dichotomy as the one de-
scribed in Section 12.1.4, but uses our implementation of Simpson’s method
instead of Taylor Models. There are two variants: one which uses the simple
version of Simpson’s method as in Theorem 7, and one which uses the compound
rules with n points as in Theorem 9.

First, we looked at the group of the three first integrals from Section 12.3.
They have in common that the integrand is four times differentiable on the
whole integration interval. For each of them, we started with the parameters
from the corresponding array in Section 12.3 for the line with the best accuracy.
The simple Simpson rule being always slower than Taylor Models in practice, we
then tried to vary the depth and number of points to reach the fastest possible
execution reaching comparable accuracy as the Taylor Model based one. We
indicate the target accuracy, depth of the dichotomy, and precision of interme-
diary computations used to obtain the new result. The column “Points” gives
the number of points used in Simpson’s compound rule. Results are comparable
with an edge in favor of Simpson’s method.

Integral Time Time (TM) Error Depth Prec. Points∫ 1

0

dx

1 + x2
1.9 2.9 10−18 6 70 55∫ 1

0

arctan
√
x2 + 2√

x2 + 2 (x2 + 1)
dx 11.854 11.2 10−15 6 55 25∫ π

0

x sinx

1 + cos2 x
dx 20.2 27.2 10−15 6 65 25

The second group of tests was more problematic as the integrands are not
differentiable on the whole domain. Just like in the case of Rigorous Polynomial
Approximations, when this was the case on a subinterval, we reverted to the
naive method. For lack of space in the table below, we redefine here

I1 :=

∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x− 6
)
ex
∣∣ dx

and

I2 :=

∫ 1

−1

(
2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1

)
exp

(
−
(
x− 3

4

)2)√
1− x2 dx.

In both cases, the input depth has to be severely constrained compared to
Section 12.3 in order to get a result in a reasonable time. The column “Accy”
corresponds to the accuracy in bits which was asked for and is the same as with
Taylor Models.

For I1, the computation took 33 seconds instead of 2.7, using the same
(asked) accuracy of 2−54, using 50 points in the Simpson compound rule but
only allowing a depth of 10 instead of 28 in the dichotomy.
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For I2, we reduced the depth from 35 to 10, only computing Simpson with
10 points and still the computation takes 204 seconds, and returns a result with
an accuracy of 10−4 instead of 10−15.

Int. Time Time (TM) Error Actual Accy Depth Prec. Points
I1 33 2.7 10−15 10−4 10 70 50
I2 204 112 10−15 10−4 10 70 10

We can only conclude that in both cases, Rigorous Polynomial Approxi-
mations give more accurate results earlier in the binary search; thanks to this
property, giving a high depth parameter like 28 or 35 does not penalize the
search since this is only used around the singularities. However, Simpson’s
method doesn’t seem so effective in reducing the breadth of search and we are
forced to constrain the depth more, which in turns gives much less accurate
results.

These results should be taken with caution as they are computed using an
unproved implementation which could very well have flaws and inefficiencies.
However, it seems to indicate that a quadrature method such as Simpson’s
method has the same order of magnitude as our methods based on Rigorous
Polynomial Approximations. Our observations seem to be supported by Rall
and Corliss [34] whose FORTRAN implementation in the 1980s of a similar
scheme was competitive with routines from the then state-of-the-art QUAD-
PACK numerical integration library also written in FORTRAN.
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Chapter 14

Conclusion and
Perspectives

In this part, we have presented a method for computing and formally verifying
numerical enclosures of univariate definite integrals inside the Coq proof assis-
tant. This method deals with both proper and improper integrals. It has been
integrated into the interval tactic of CoqInterval. In the same computation
step, it proves that integrals exist and provides formally verified enclosures of
their value. These proofs rely on the formal theory of generalized Riemann
integrals provided by our extension to the Coquelicot library. In the proper
case, the enclosing method only requires that there exist a Rigorous Polynomial
Approximation of the integrand, so that its only limit is the underlying CoqIn-
terval library. Any new functions added to the set of expressions E handled by
the library would be almost immediately supported.

The current treatment of improper integrals is less automated. In particular,
the syntactic expression of the integrand has to make explicit the element of the
appropriate scale which models its asymptotic behavior near the singularity.
The tactic currently supports two scales, the exponential eγx and xα lnβ x. We
could provide more scales to users, or at least merge these two into the more
common eγxxα lnβ x scale which has the advantage of being totally ordered with
respect to the ”small o” relation o(·) at e.g. +∞.

One possible direction to automate the discovery of asymptotics could then
be to build yet another interpretation for elements in E in terms of their asymp-
totic behavior. Suppose for example that u > 0 and we define a function
J·K[u;+∞) : E → I×Z3 with the specification that for all real expressions e(x) ∈ E ,
if JeK[u;+∞) = (x, (α, β, γ)) then there exists a continuous function f such that

∀x ∈ [u; +∞), f(x) ∈ x and Je(x)KR = f(x) · xα lnβ(x) eγx. (14.1)

We would need to explain how this interpretation propagates along the op-
erators of E . For example, multiplication is straightforward: if Je1K[u;+∞) =
(x1, (α1, β1, γ1)) and Je2K[u;+∞) = (x2, (α2, β2, γ2)), then Je1 · e2K[u;+∞) could
be defined as (x1 · x2, (α1 + α2, β1 + β2, γ1 + γ2)).

A more difficult example is addition, with two cases. In the easy case, if
(α1, β1, γ1) = (α2, β2, γ2) then Je1 + e2K[u;+∞) = (x1 + x2, (α1, β1, γ1)) works.

However, if xα1 lnβ1(x) eγ1x = o(xα2 lnβ2(x) eγ2x) at +∞, then if f1 and f2 are
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the continuous functions from the specification (14.1) for e1 and e2 respectively,
for x ∈ [u;∞)]:

e1(x) + e2(x) =f1(x) · xα1 lnβ1(x) eγ1x + f2(x) · xα2 lnβ2(x) eγ2x

=
(
f1(x) · xα1−α2 lnβ1−β2(x) e(γ1−γ2)x + f2(x)

)
· xα2 lnβ2(x) eγ2x.

Since xα1−α2 lnβ1−β2(x) e(γ1−γ2)x is continuous and bounded, we would then
be able to compute a new interval y such that

Je1(x) + e2(x)K[u;+∞) = (y, (α2, β2, γ2))

while being correct with respect to the specification in Formula (14.1). This
is possible because the scale constituted by the xα lnβ(x) eγx is totally ordered
with respect with the relation o(·).

After we would program a procedure which computes
∫∞
u
xα lnβ(x) eγx dx

given α, β and γ, we would then treat previously inaccessible examples at the
current stage of the code as seen in Section 12.2.4.

In the introduction of this part, we opposed specification to validation of
computations. However, there need not be such a clear cut between the two
notions, and parts of our computations in the context of integrals could be
delegated to an external oracle. For example, the “depth tree” describing where
to use dichotomy in an interval when computing a proper integral could be
provided by a fast Ocaml program. Similarly, the initial estimate used to find
the absolute error from the relative error provided by the user in the integral

tactic need not be proved and we can replace it by the approximation part
(without the error) of Simpson’s method.

Before writing the programs and tactics described in Section 12, we wrote
prototypes in Ocaml, as well as other routines for solving Ordinary Differential
Equations using Taylor Models. It might seem at first that in the absence of a
need for complex built-in features, prototyping in Ocaml before writing a Coq
program would be a duplication of effort. However, certain realities of Coq
development made this orders of magnitude faster in our case.

First, Coq is not such a great testing environment: computations are slow,
there is no profiling, logging or printing possible1 and in particular no pretty-
printing, for example of floats. These aspects of programming are crucial for
rapid development.

Secondly, since the libraries we could have used for prototyping are geared
towards their use in tactics, most of what they do is handled by Ltac which is
untyped, unhelpful when it fails, and needs a lot of side-knowledge to be made
to work. Alternatives like Mtac [133] may be steps in the right direction.

Nested integrals are not supported by our method. The naive enclosure ap-
proach could easily be adapted to support them, but performances would be
even worse due to the curse of dimensionality. As there exists no general ap-
proach for integrating multivariate polynomials,2 being able to compute rigorous
multivariate polynomial approximations would presumably not help.

1although this is changing with a recent pull request https://github.com/coq/coq/pull/

714
2Any 3-SAT instance can be reduced to approximating the integral of a multivariate poly-

nomial.
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While our adaptive bisection algorithm and our rigorous quadrature based on
primitives of polynomials might seem crude, they proved effective in practice.
They produce accurate approximations of non-pathological integrals in a few
seconds, and thus they are usable in an interactive setting. Moreover, they are
able to handle functions with unbounded second derivatives in a rigorous way,
as well as unbounded integration domains. Another contribution is the way we
are able to infer that a function is integrable from a successful computation of
its integral.

Following Rall & Corliss [34], we could have extended this adaptivity even
more to include the order chosen for each subinterval.

We could also have tried a much more general method, that is, solving a dif-
ferential equation built from the integrand, as we did with VNODE-LP. There
has been some work done for Coq in the setting of exact real arithmetic [89] [99],
but the performances are not good enough in practice. Much closer to actual
numerical methods is Immler’s work in Isabelle/HOL [76], which uses an arith-
metic on affine forms. This approach is akin to computing with degree-1 RPAs.
Note that such computations in Isabelle are treated in a slightly different way
from Coq: they are performed by an extracted Ocaml program whose result is
then imported inside the proof assistant.
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Part IV

Conclusion
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In this concluding part, we discuss the general question of when and how
to trust proofs relying on computations. Then, we suggest how the domains of
formal methods and cryptocurrencies might benefit each other.

Can we trust computations used in mathematical proofs?

Despite numerical integration being an old problem and despite the relative
simplicity of the mathematical ingredients of our methods, we easily found mis-
takes on elementary examples. One cannot exclude other mistakes in numerical
computations in published works. We can speculate that most of the time, as
in the case of the slightly off integral we found in the Ternary Goldbach Conjec-
ture, they are only slightly wrong and do not impact the correctness of results.
However, not only is there no guarantee that this is always the case, but this
level of uncertainty is not acceptable.

In both cases, the mistakes we found happened despite using state-of-the-art
integration software. However, computation-based proofs which use custom-
written code are not a rare occurrence. In that case, there are even further
reasons to be circumspect. We closely examined the proof of correctness of
the C++ code in the original proof of the Double Bubble conjecture [66], and it
turns out that the pseudo-code described in the paper has discrepancies with
the distributed code. For example in Figure 14.1, the value assigned to the

variable R is
√

3
2

−Hi− 1
Y

in the C++ code and 1
−Hi− 1

Y

in the pseudocode.

Figure 14.1: Discrepancy between the pseudo-code in the paper and the dis-
tributed C++ code for the Double Bubble Conjecture

We re-wrote the pseudo-code in Ocaml using our own interval arithmetic
library and barring an error on our side, it is not semantically equivalent. How-
ever, when we changed the parameters scrupulously to the actual C++ code we
were able to replicate their results. Thus, it is difficult to assess whether these
were harmless changes with a justification that did not make it to the paper
or if there were typos in the code, rendering the proof invalid. This seems to
validate a posteriori the decision of the reviewers of the first proof of the Kepler
conjecture which relied on 3 Gigabytes of code [60] to assert that they could not
certify the correctness of the proof: The Double Bubble code is only 849 lines
or 21 kilobytes of code.

We acknowledge that there is no satisfactory tool, as of now, which will meet
the computational needs of all modern mathematical proofs at the level of assur-
ance of formal proofs. There are already a range of certified tools which tackle
specific domains, such as solving differential equations numerically [76], proving
nonlinear inequalities [84], checking satisfiability [41], or checking primality [58].
It is possible that some types of computations will remain out of reach of proof
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assistants in the near future. For these, one may either develop a new tool to
produce formally verified results or fall back on unverified computations.

We contributed to this Swiss-knife-like array of tools destined to the verifica-
tion of proofs relying on demanding computations, by providing a methodology
to validate the recurrences outputted by creative telescoping algorithms. How-
ever, in this case, this validation is not as automatic as we had hoped it to be.
This work is an example of another problem: the program may be doing exactly
what it is supposed to do, but do the semantics of the object it produces match
with those of the object we think we are reasoning on? For this reason, using a
proof assistant is of precious help.

Some Remarks Concerning Tools for Formal Proofs

In Parts II and III, we commented on the ease or difficulty of using a proof
assistant. If it may seem at times that our comments are too negative, this
is also because of our enthusiasm and eagerness for improvements to theorem
proving. One should also keep in mind that our experience was mainly with the
Coq proof assistant and in particular with the Mathematical Components
libraries, using the SSReflect proof language; surely other proof assistants
provide a better experience on some aspects, and worse on others.

During an internship in the summer of 2016, we used the Lean theorem
prover [37] to attempt to port some of Mathematical Components’s elemen-
tary group theory. Lean is based on the Calculus of Inductive Constructions,
like Coq, but it is comparatively very young. For this reason, at the time of
this internship, the tactic language was still rudimentary and few libraries were
available: this made the task very hard, and we did not succeed in proving
Sylow’s theorem as we had intended in the beginning. This is of course no fault
of Lean’s, which has been evolving at a remarkable speed, but it is a testimony
to how much combined work has been put into making theorem proving in Coq
both effective and agreeable.

Formal Proofs and Cryptocurrencies

We would like to discuss how the domain of computer-aided proofs, with its
tools and principles can benefit the emerging domain of blockchains and cryp-
tocurrencies, but also how this domain raises new challenges.

In the domain of formal proofs, as ruthless as the peer review process may
sometimes be, authors and reviewers are in a relationship of trust. We mean this
in the sense that even though the reviewer carefully checks all of the author’s
claims, she does not assume that the person who wrote the proof is actively
trying to trick them into thinking that they have proved a certain theorem,
when in fact they have either proved a different theorem or made use of a bug
to build a fake proof.

In 2014, on a website called Proof Market which set bounties in the digital
currency Bitcoin for Coq proofs of theorems submitted by users, someone man-
aged to walk away with 1 Bitcoin (about 600 euros at the time) by providing a
proof of False along the lines of the following script:

Definition False := True.

Lemma foo : False.
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Proof.

unfold foo; trivial.

Qed.

This website created a completely new setting for formal proofs, where an
automated checker would trigger a transaction upon receiving (what it thought
to be) a valid proof. Since no human was in the loop, this created an incentive
to find bugs in the checker rather than to write a correct proof.

A Blockchain is a linked list of blocks such that the i+ 1-th block contains
a cryptographic hash of the i-th block. Blockchains are typically built using
a distributed protocol which gives the right to add a new block to a node se-
lected randomly in proportion of their commitment in the form of some rare
resource (such as computing power, or money, or storage, etc...). This scheme
was invented by Satoshi Nakamoto who created the first decentralized digital
currency, Bitcoin, where blocks contain lists of transactions [97]. Several im-
provements have been proposed since, including the idea of a general purpose
cryptocurrency where transactions contain function calls and blocks addition-
ally maintain the state of a global decentralized computer [130]. In particular,
the notion of “smart contracts”, which are autonomous program-agents imag-
ined in 1995 by Nick Szabo, became a reality in the shape of autonomous pieces
of code “running” on the blockchain. In light of several high-profile hacks and
thefts of tens of millions of euros in recent years, providing formal guarantees on
the behavior of such code, which can typically manipulate considerable amounts
of money or handle authorization of access to other contracts, has become an
urgent problem.

We have participated in a Microsoft Research hackathon in which we built
a proof-of-concept program capable of analyzing both high-level and low-level
code of smart contracts in the Ethereum cryptocurrency [15]. We used the
F∗ [119] functional language.

We also discovered the Easycrypt [9] proof assistant, geared towards proofs
on cryptographic protocols and more generally on probabilistic programs. We
formalized a model called “the Bitcoin Backbone Protocol” [47], an attempt at
proving elementary properties of the Bitcoin protocol, together with Pierre-Yves
Strub. However, a complete formal proof is likely to necessitate improvements
to Easycrypt.

Finally, we did some work in formalizing in Coq the semantics of the smart-
contract language of another general-purpose cryptocurrency called Tezos [53].
The main difference with Ethereum is that Tezos proposes formal semantics of
this language, which, like Ocaml, is strongly typed and purely functional.

To sum up, we think this is a new type of context for formal proofs, because
of the unique adversarial model. When one checks a formal development, one
does not usually assume malice from the person who wrote it. By contrast,
if someone anonymous manages to take advantage of a weakness in a theorem
prover to pretend that a smart contract has a certain behavior, they could walk
away with millions with no chance of ever getting caught. Specific tools to tackle
such security challenges are being developed.
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Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In Foun-
dations of Security Analysis and Design VII, pages 146–166. Springer,
2014.

[10] François Bergeron and Simon Plouffe. Computing the generating function
of a series given its first few terms. Experimental mathematics, 1(4):307–
312, 1992.

[11] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub.
Formal proofs of transcendence for e and π as an application of multivari-
ate and symmetric polynomials. CoRR, abs/1512.02791, 2015.

[12] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of gmp
square root. Journal of Automated Reasoning, 29(3):225–252, Sep 2002.

131

http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/


[13] Frédéric Besson. Fast reflexive arithmetic tactics the linear case and
beyond. In TYPES’06, LNCS, pages 48–62, Berlin, Heidelberg, 2007.
Springer-Verlag.

[14] Frits Beukers. A note on the irrationality of ζ(2) and ζ(3). Bull. London
Math. Soc., 11(3):268–272, 1979.

[15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-
tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago
Zanella-Béguelin. Formal Verification of Smart Contracts: Short Paper.
In ACM Workshop on Programming Languages and Analysis for Security,
Vienna, Austria, October 2016.

[16] Jesse Bingham. Formalizing a proof that e is transcendental. Journal of
Formalized Reasoning, 4(1):71–84, 2011.

[17] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti.

O(n2.7799) complexity for n*n approximate matrix multiplication. Inf.
Process. Lett., 8(5):234–235, 1979.

[18] Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full reduc-
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Appendix A

Complexity of Some Matrix
Multiplication Algorithms

The following tables were deferred to the Appendix from Chapter 4. Table A.2
concerns the following tensor from Pan, which we present as a table:

Table T13_1 :

Row t13_1_row1 :

Seq(

[

a[i,0];

b[0,k]*epsilon3;

c[i,k]*epsilon5

],

i=0..m-1,

k=0..p-1

)

Row t13_1_row2 : Seq(

[

u[0,k]*epsilon4;

v[k,i]*epsilon4;

w[0,i]

],

i=0..m-1,

k=0..p-1

)

Row t13_1_row3 : Seq(

[

x[k,i]*epsilon6;

y[i,0];

z[k,0]*epsilon2

],

i=0..m-1,

k=0..p-1

)

Table T13_2 :

Row t13_2_row1 : Seq(
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[

-a[i,0];

-bb[0,k]*epsilon3;

cc[i,k]*epsilon5

],

i=0..m-1,

k=0..p-1

)

Row t13_2_row2 : Seq(

[

u[1,k]*epsilon4;

v[k,i]*epsilon4;

w[1,i]

],

i=0..m-1,

k=0..p-1

)

Row t13_2_row3 : Seq(

[

xx[k,i]*epsilon6;

yy[i,0];

z[k,0]*epsilon2

],

i=0..m-1,

k=0..p-1

)

Table T13_3 :

Row t13_3_row1 : Seq(

[

-a[i,0];

(sum((1/p)*b[0,eb],eb=1..p-1))*epsilon3;

0

],

[

i=0..m-1

]

)

Row t13_3_row2 : Seq(

[

0;

(sum((1/p)*v[ev1,i],ev1=1..p-1))*epsilon4;

p*w[0,i]

],

[

i=0..m-1

]

)

Row t13_3_row3 : Seq(

[

0;

y[i,0];

sum(z[ez,0],ez=1..p-1)*epsilon2

],
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[

i=0..m-1

]

)

Table T13_4 :

Row t13_4_row1 : Seq(

[

a[i,0];

(sum((- (1/p))*bb[0,ebb],ebb=1..p-1))*epsilon3;

0

],

[

i=0..m-1

]

)

Row t13_4_row2 : Seq(

[

0;

(sum((1/p)*v[ev2,i],ev2=1..p-1))*epsilon4;

p*w[1,i]

],

[

i=0..m-1

]

)

Row t13_4_row3 : Seq(

[

0;

yy[i,0];

sum(z[ez,0],ez=1..p-1)*epsilon2

],

[

i=0..m-1

]

)

;;

Constraints :

a[i:=0,0] = - sum(a[ha,0],ha=1..m-1) (* constr_a_1 *)

w[0,i:=0] = - sum(w[0,hw0],hw0=1..m-1) (* constr_w_1 *)

w[1,i:=0] = - sum(w[1,hw1],hw1=1..m-1) (* constr_w_2 *)

y[i:=0,0] = - sum(y[hy,0],hy=1..m-1) (* constr_y_1 *)

yy[i:=0,0] = - sum(yy[hyy,0],hyy=1..m-1) (* constr_y_2 *)

u[0,k:=0] = - sum(u[0,eu0],eu0=1..p-1) (* constr_u_1 *)

u[1,k:=0] = - sum(u[1,eu1],eu1=1..p-1) (* constr_u_2 *)

c[i,k:=0] = - sum(c[i,ec],ec=1..p-1) (* constr_c_1 *)

cc[i,k:=0] = - sum(cc[i,ecc],ecc=1..p-1) (* constr_c_2 *)

x[k:=0,i] = - sum(x[ex,i], ex=1..p-1) (* constr_x_1 *)

xx[k:=0,i] = - sum(xx[exx,i],exx= 1..p-1) (* constr_x_2 *)

c[i:=0,k] = 0

cc[i:=0,k] = 0

v[k,i:=0] = 0

x[k,i:=0] = 0

xx[k,i:=0] = 0

b[0,k:=0] = 0
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bb[0,k:=0] = 0

z[k:=0,0] = 0

v[k:=0,i] = 0

(* substitutions *)

a[i,k:=0] = a1[i-1,0] (* instSubsa *)

b[i:=0,k] = b1[0,k-1] (* instSubsb *)

bb[i:=0,k] = b1[0,k+p-2] (* k-1 + (p-1) instSubsbb*)

c[i,k] = c1[i-1,k-1] (* instSubsc *)

cc[i,k] = c1[i-1,p+k-2] (* instSubscc *)

u[i,k] = a2[i,k-1] (* instSubsu *)

v[k,i] = b2[k-1,i-1] (* instSubsv *)

w[k,i] = c2[k,i-1] (* instSubsw *)

x[k,i] = a3[k-1,i-1] (* instSubsx *)

xx[k,i] = a3[k-1,i+m-2] (* instSubsxx *)

y[i,k:=0] = b3[i-1,0] (* instSubsy *)

yy[i,k:=0] = b3[i+m-2,0] (* instSubsyy *)

z[k,0] = c3[k-1,0] (* instSubsz *)

epsilon = 1

;;

Spaces :

(* assignment of variables to our different spaces in the direct sum *)

a1 b1 c1 (m-1,1,2*p-2) (* m=3,p=3 -> 2 * 1 * 4 = 8 *)

a2 b2 c2 (2,p-1,m-1) (* m=3,p=3 -> 2*2*2 = 8 *)

a3 b3 c3 (p-1,2*m-2,1) (* m=3,p=3 -> 2*4*1 = 8 *)

;;

Listing A.1: One of Pan’s tables in the input format of our software

which visualized as an expression does not give much intuition:

(m−1)∑
i=0

(p−1)∑
k=0

((xk,i · ε
6

+ u0,k · ε
4
) + ai,0) · ((yi,0 + vk,i · ε

4
) + b0,k · ε

3
) · ((z0,k · ε

2
+ wi,0) + ck,i · ε

5
)+

(m−1)∑
i=0

(p−1)∑
k=0

((xxk,i · ε
6

+ u1,k · ε
4
) − ai,0) · ((yyi,0 + vk,i · ε

4
) − bb0,k · ε

3
) · ((z0,k · ε

2
+ wi,1) + cck,i · ε

5
)+

(m−1)∑
i=0

(−1) · ai,0 · ((yi,0 + 1/p ·
(p−1)∑
ev1=1

vev1,i · ε
4
) + 1/p ·

(p−1)∑
eb=0

b0,eb · ε
3
) · (

(p−1)∑
ez=1

z0,ez · ε
2

+ p · wi,0)+

(m−1)∑
i=0

(−1) · ai,0 · ((yyi,0 + 1/p ·
(p−1)∑
ev2=1

vev2,i · ε
4
) + (−1)/p ·

(p−1)∑
ebb=1

bb0,ebb · ε
3
) · (

(p−1)∑
ez=1

z0,ez · ε
2

+ p · wi,1)
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Titre : Investigations en Mathématiques Assistées par Ordinateur: Expérimenta-
tion, Calcul et Certification

Mots clefs : Preuve formelle, Calcul numérique, Calcul formel

Résumé : Cette thèse présente trois contributions
au thème des preuves assistées par ordinateur: il
s’agit de preuves reposant sur le calcul et de preuves
formelles produites et vérifiées à l’aide d’un logiciel
appelé assistant à la preuve.
Nous illustrons d’abord le thème de l’expérimenta-
tion au service de la preuve, en programmant un
outil de manipulation symbolique et en l’utilisant
pour trouver et démontrer un résultat concernant
les produits de matrices.
Dans une seconde partie, nous utilisons un assis-

tant à la preuve pour écrire une démonstration du
théorème d’Apéry, qui repose sur des calculs com-
plexes. Ces calculs sont effectués par un programme
externe efficace; ils sont ensuite vérifiés par ce logi-
ciel de preuve.
Dans la troisième contribution, nous proposons un
programme qui calcule des intégrales et construit
simultanément une preuve que le résultat est cor-
rect. Nous utilisons ce programme pour trouver des
erreurs dans des résultats publiés.

Title : Investigations in Computer-Aided Mathematics: Experimentation, Com-
putation, and Certification

Keywords : Formal proof, Numeric Computations, Computer Algebra

Abstract : This thesis presents three contribu-
tions to the topic of computer-assisted proofs: both
in the case of proofs relying on computations and
of formal proofs produced and verified using a piece
of software called a proof assistant.
We first illustrate the theme of experimentation at
the service of proofs by programming a symbolic
manipulation tool and using it to find and demons-
trate a result about matrix multiplications.

In a second part, we use a proof assistant to write
a proof of Apéry’s theorem, which is based on com-
plex computations. These computations are perfor-
med by an efficient external program and are then
verified by this proof software.
In the third contribution, we propose a pro-
gram which computes integrals and simultaneously
builds proof that the result is correct. We use this
program to find errors in published results.
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