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Abstract

Irradiation causes drastic modifications of mechanical properties of austenitic
stainless steels and a decrease in the fracture toughness with irradiation has been
observed. Ductile fracture due to void growth and coalescence remains one dominant
fracture mechanism for doses in the range of 0–10 dpa. Voids may have different
origins: nucleated at inclusions or irradiation-induced precipitates during mechanical
loading, or produced directly by irradiation. The present work is to investigate
ductile fracture of irradiated steels due to growth and coalescence of intragranulaire
voids. Based on continuum crystal plasticity theory, FE simulations are performed
on unit cells for studying effects of lattice orientation and stress triaxiality on void
growth and coalescence. The influence of post-irradiation hardening/softening on
void growth and coalescence is evaluated with a physically based crystal plasticity
model. Besides, an elastoviscoplastic model at finite strains is proposed to describe
void growth up to coalescence in single crystals, and is assessed based unit cell
simulations. The model is then applied to simulate ductile damage in single crystals
and polycrystals. As voids in irradiated steels may have different origins, they may
have different sizes, which potentially have an influence on ductile fracture process
and fracture toughness of irradiated steels. In order to assess the size effect, a
micromorphic crystal plasticity model is proposed and applied to simulate growth
and coalescence of intragranular voids of different sizes.

Keywords: ductile fracture, FCC steels, irradiation, intragranular voids, crystal
plasticity, strain gradient plasticity
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1
Introduction

Résumé
Les aciers austénitiques inoxydables sont largement utilisés dans les réacteurs
nucléaires. L’irradiation peut créer des défauts microstructuraux dans les aciers
et ainsi modifier leurs propriétés mécaniques. Une diminution de la ténacité à la
rupture des aciers en fonction de la dose est observée. La rupture ductile due à la
croissance et la coalescence des cavités est un mécanisme dominant dans les aciers
irradiés jusqu’à 10 dpa. Des cavités peuvent être créées de manière différente :
nucléées à partir des inclusions ou des précipités d’irradiation, ou créées directement
par irradiation. Ces cavités se trouvent souvent au sein des grains et elles sont plus
petites que les grains. Cette thèse a pour objectif d’étudier la rupture ductile des
aciers irradiés due à ces cavités intragranulaires. Dans ce chapitre, une approche
multi-échelle est proposée pour la modélisation de la rupture ductile intragranulaire
des aciers irradiés. La thèse se décompose en 4 parties. La première partie présente
une recherche bibliographique sur les propriétés mécaniques des aciers irradiés et
les modèles existant dans la littérature. Dans la deuxième partie, on montre des
simulations par éléments finis effectuées sur des cellules unitaires pour étudier la
cinétique de la croissance et la coalescence des cavités dans le monocristal. Dans
la troisième partie, un modèle élastoviscoplastique en grandes transformations est
proposé pour le monocristal poreux. Le modèle est appliqué à la simulation de
l’endommagement ductile dans le monocristal et le polycristal. Dans la dernière
partie, un modèle micromorphe de plasticité cristalline est proposé et appliqué
à la simulation de la croissance et la coalescence des cavités intragranulaires de
différentes tailles ainsi qu’aux phénomènes de localisation dans les monocristaux.
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2 1. Introduction

Industrial context

Austenitic stainless steels of 300 series are widely used as structural materials in
nuclear power plants (see fig. 1.1), especially for reactor vessel internals, due to
their good mechanical properties and resistance to corrosion (Zinkle and Was, 2013).
These steels are exposed to complex operating conditions such as high temperature
(over 300 ◦C), mechanical loadings, radiation damage and corrosion. Under such
conditions, properties of the steels evolve over time. Austenitic stainless steels
undergo continual microstructure evolution during neutron irradiation, which leads
to drastic modifications of mechanical properties: increase in yield stress, decrease
in ductility (uniform elongation) and strain hardening capacity, and decrease of
fracture toughness (Pokor et al., 2004a; Pokor et al., 2004b; Zinkle and Was, 2013).
All the modifications in the materials certainly have an influence on the operation
of reactors and cause challenges for designing reactors compatible with the changes.
Thus it is very important to understand why these changes occur and what are
the consequences on fracture properties of austenitic stainless steels.

Figure 1.1: Schematic of the circuits of a pressurized water reactor and materials of
construction (Zinkle and Was, 2013). Stainless steels of 300 series are indicated by red
rectangles.

The modification of mechanical properties are usually related to irradiation-
induced microstructural defects, such as Frank loops (a type of dislocation loops)
which are often observed in austenitic stainless steels (Pokor et al., 2004c). These
defects can interact with dislocations, leading to a change of plastic deformation
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Figure 1.2: Fracture toughness of 304 and 316 stainless steels irradiated in light water
reactor (LWR) conditions at 250–350 ◦C. (Zinkle and Was, 2013)

mechanism. Besides, voids and bubbles can form in the materials during irradiation,
which has been shown to be correlated with the change of mechanical properties
(Neustroev and Garner, 2008; Neustroev and Garner, 2009; Margolin et al., 2016).

Fracture toughness, an important parameter for the integrity assessment, displays
a decreasing trend with radiation, as reported in the literature (see fig. 1.2 from
Zinkle and Was (2013)). Ductile fracture is found to be a dominant fracture mode
of austenitic stainless steels after irradiation (Little, 1986; Fukuya et al., 2008;
Margolin et al., 2016), especially at low irradiation dose, while some non-ductile
modes, e.g., intragranular and channel fracture, are also reported for doses in the
range of 30–80 dpa. However, there is no commonly accepted physical mechanism
explaining the reduction in the fracture toughness after irradiation, because of the
complexity of the phenomena. It is probably related to a kind of localized plastic
deformation mode existing in irradiated materials, to a modification of kinetics of
plastic deformation driven void growth and coalescence, or to formation of new voids.
The present work will concern the latter two phenomena. To better understand
the role of different irradiation-induced microstructural defects in decreasing the
fracture toughness of steels, a multi-scale approach is needed to study fracture
mechanisms in irradiated austenitic stainless steels.

Objectives

As explained above, fracture toughness of austenitic stainless steels decreases
with irradiation, accompanied with change of fracture mechanism. A demand
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of the nuclear industry is to develop theoretical and numerical tools
able to predict the evolution of fracture toughness of austenitic stainless
steels with irradiation.

For this purpose, the objective of the present work is to investigate one
dominant fracture mechanism in irradiated austenitic stainless steels—
ductile fracture due to void growth and coalescence. As well known, void
is an important notion in the mechanics of ductile fracture. In unirradiated steels,
voids can nucleate at inclusions or second phase particles during mechanical loading
(Pineau and Pardoen, 2007; Besson, 2010; Benzerga and Leblond, 2010; Pineau
et al., 2016). Voids can then grow and coalesce in stress fields leading to final failure.
These are known as very important fracture mechanisms. In irradiated steels, voids
may have different origins. Besides the same nucleation sources in unirradiated
steels, voids can also nucleate from irradiation-induced precipitates (Little, 1986).
In addition, irradiation-induced nano-voids may be another origin of voids leading to
fracture (Margolin et al., 2016). In another word, the size of voids varies according
to their origins: micro-sized for those nucleated from irradiation-induced precipitates
and nano-sized for irradiation-induced voids. However, whatever their origins are,
voids are very often located inside grains, i.e, intragranular voids, and thus of a
size smaller than that of the grains. In addition, growth and coalescence of voids
are proved to be controlled by plastic strains. Compared with unirradiated steels,
plastic deformation is influenced by irradiation-induced defects in irradiated steels,
which may in turn change the evolution of voids.

With consideration of the characteristics mentioned above, the ductile fracture
due to void growth and coalescence of unirradiated and irradiated
austenitic stainless steels is investigated in the present work at the scale
of the grain, i.e., single crystal. and voids are regarded as embedded
in a single crystal.

Methodology

For studying void growth and coalescence in single crystals, two approaches are
adopted in the present work, as presented in fig. 1.3. The first approach corresponds
to finite element simulations on unit cells with periodic boundary conditions, i.e.,
unit cell simulations, which will be performed using classical continuum theory
of crystal plasticity to study the effects of

• crystal orientations,
• post-irradiation strain hardening/softening behavior
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Figure 1.3: Multi-scale approach for investigating ductile fracture of irradiated stainless
steels due to void growth and coalescence.

on void growth and coalescence. As the size of voids in irradiated stainless steels
varies from nano to micro-scale,

• effects of void size
will be investigated in a second step. For this purpose, a strain gradient crystal
plasticity model will be derived following the micromorphic approach (Germain,
1973; Forest, 2009; Aslan et al., 2011).

The second approach is to propose an elastoviscoplastic model at finite
strains for porous single crystals, which incorporates effects of strain hardening of
single crystal matrix and is able to describe void growth to coalescence. This model
will be applied to simulate ductile damage evolution in a specimen of single crystal in
the presence of a defect representation of a crack. The model can be further applied
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to the scale of polycrystals. This approach can finally be used to assess effects of
post-irradiation strain hardening/softening on fracture toughness on stainless steels.

Organization of the thesis

According to the approaches proposed for studying ductile fracture of irradiated
austenitic stainless steels, the present work is organized as follows:

• chapter 2: A literature review is given for experimental observations on
mechanical behavior of irradiated stainless steels and modeling tools existing
in the literature. Based on this review, a further explanation will be given for
the multi-scale approach proposed for this study.

• chapter 3: Void growth and coalescence in single crystals are studied with unit
cell simulations based on crystal plasticity finite element method. 1) Some
parameters influencing the void evolution are investigated, such as crystal
orientation, stress triaxiality and initial void volume fracture. 2) Effects of
post-irradiation strain hardening/softening behavior are outlined.

• chapter 4: An elastoviscoplastic model for porous single crystals at finite
strains is formulated based on the work of Han (2012) and assessed numerically
with the results of unit cell simulations. The model will be applied to simulate
ductile damage in a polycrystalline aggregate under triaxial loadings and a
single-edge-notch-tension test on a single crystal specimen of 316L stainless
steels.

• chapter 5: Size effects on void growth and coalescence are studied. To this
end, an enhanced single crystal plasticity model at finite strains is proposed
and implemented in finite element code. Size dependent void growth and
coalescence are investigated by unit simulations with the enhanced model for
verifying if it is important to consider size effects in the multi-scale modeling
of ductile fracture of irradiated austenitic stainless steels.



2
Literature review

Résumé
Ce chapitre présente brièvement les propriétés mécaniques des aciers irradiés
et les approches de modélisation associées. On s’intéresse d’abord aux défauts
microstructuraux induits par l’irradiation dans les aciers et à leur influence sur
le comportement mécanique macroscopique. On montre que la rupture ductile
intragranulaire est un mécanisme de rupture dominant pour les aciers irradiés, en
particulier à faible dose. Les modèles classiques de rupture ductile sont présentés.
En outre, l’effet de la taille des cavités sur la cinétique de la rupture ductile est
discuté.

7
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A literature review is performed in this chapter to first discuss effects of radiation
on stainless steels. Irradiation-induced microstructure changes in stainless steels will
be first considered, followed by a discuss on modifications of mechanical properties
associated with the microstructure evolution. In particular, radiation effects on
fracture behaviors of stainless steels will be outlined. It will be shown in the
following that ductile fracture is one of the fracture mechanisms in irradiated steels.
Hence, classical methods used to study ductile fracture in metallic materials will
be reviewed. In addition, plastic size effects can play a role in ductile fracture
and may also an influence on fracture behaviors of irradiated steels due to void
growth and coalescence. Thus, a review about size effects on void growth will be
performed. Based on the review, the objectives of the thesis will be outlined and
the approaches used to study ductile fracture of irradiated steels will be presented
as the conclusions of the chapter.

2.1 Microstructural effects of radiation damage
on stainless steels

Irradiation produces microstructural defects in materials, mainly Frank loops in
stainless steels, as a result of particles–matter interaction. The defects interact under
irradiation, even without mechanical loading, with grown-in dislocations (already
present before irradiation) resulting in dramatic changes of dislocation densities.
Cavities are also produced during irradiation, which can play a role in fracture
process. Under mechanical loading, dislocations interact with irradiation-induced
defects, which can lead to a particular mode of deformation, where deformation is
localized in channels sometimes called “cleared band”. These points are outlined
in the following.

2.1.1 Frank loops and dislocations

Frank loops correspond to dislocation loops with pure edge character for every
segments, which are often nucleated in a displacement cascade. A displacement
cascade is a collection of point defects, including vacancies and interstitials, resulting
from the interaction of energetic incident particles (irradiation) and lattice atoms.
When the point defects collapse/condense onto a close-packed plane, a Frank loop
may be produced. Two types of Frank loops exist: interstitial and vacancy loops.
They correspond respectively to intrinsic and extrinsic stacking fault as shown in
fig. 2.1. Interstitial Frank loops are often observed in stainless steels and they can be
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Figure 2.1: (a) Vacancy Frank loops; (b) interstitial Frank loops. (Was, 2007)

(a)
b)(b)

Figure 2.2: (a) TEM image showing Frank loops in a baffle bolt made from CW 316
stainless steels extracted from Tihange PWR (Edwards et al., 2003); (b) TEM image
showing Frank loops in 12X18H9T stainless steels irradiated in BR-10 fast reactor to 0.6
dpa at 350 ◦C (Garner et al., 2005).

imaged under TEM as shown in fig. 2.2. During irradiation, the Frank loop density
increases as a result of nucleation and growth and reaches a saturation value (fig. 2.3).

Dislocation evolution in metals during irradiation is closely related to interactions
with irradiation-induced defects and is found to depend on their microstructural
state before irradiation. Typical evolutions of dislocation density with irradiation
dose are presented in fig. 2.4 for cold worked (CW) and solution annealed (SA)
300-series austenitic stainless steels irradiated in a fast breeder reactor at 510 ◦C.
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Figure 2.3: Evolution of Frank loop density in austenitic stainless steels irradiated with
fission neutrons at 375 to 400 ◦C (Zinkle et al., 1993).
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Figure 2.4: Evolution of dislocation density as a function of irradiation dose in SA and
CW 300-series austenitic stainless steels irradiated in a fast breeder reactor at 510 ◦C.
Note that triangle points are for experimental data at 510 ◦C at and that solid lines with
circle points are for simulation results at 470 ◦C. (Zouari et al., 2012)

In annealed metals, dislocation density increases sharply with irradiation dose and
eventually approaches a saturation value. In cold-worked metals, however, the
dislocation density drops and approaches a saturation value. It is often observed
that the saturation values in annealed and cold worked steels are nearly the same.

Inspired by these observations, investigations have been performed for modeling
the dislocation evolution during irradiation. Generation and elimination are two
competitive mechanisms (Wolfer and Glasgow, 1985; Stoller, 1990; Zouari et al.,
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Figure 2.5: Evolution of dislocation density for stainless steels irradiated in BOR-60 at
375 ◦C. (Pokor et al., 2004c)

2012). Two generation mechanisms are often encountered in the literature: the
thermal activation of Bardeen–Herring sources and unfaulting of Frank loops by
mobile dislocations. Bardeen–Herring sources are similar to Frank–Read sources
except that the former are driven by climb while the latter are by glide. Under
irradiation, dislocations move and interact with Frank loops resulting in their
unfaulting. The elimination mechanism corresponds to the annihilation of dislocation
segments with opposite Burgers vectors.

The dose dependent dislocation densities to be used for simulations in the
present thesis is taken from the work of Pokor et al., 2004a (see fig. 2.5). The
results for SA 304 are considered. Notice that the dislocation density measured for
unirradiated SA 304 steels seems lower than usual cases (1012 m−2 usually reported
in the literature, such as in Zinkle et al. (1993) and Lucas (1993)) and that the
dislocation density decreases with irradiation dose, which is different from the
dislocation density evolution trend reported by Zouari et al. (2012).

Frank loops generated by irradiation modify plastic deformation mechanisms of
the steels. Under mechanical loading, Frank loops interact with dislocations and
cause a change in the yielding and hardening process. This is usually believed to lead
to the mechanical effects of radiation damage presented in section 2.2. Numerous
studies have being performed for understanding details about their interactions and
also for modeling the irradiation dose dependent mechanical properties. A detailed
literature review has already been performed in the thesis work of Han (2012).
The author has proposed a single crystal plasticity model for irradiated austenitic
stainless steels based on physical mechanism of Frank loop-dislocation interactions.
This model will be used in the present work and presented later in section 3.1.
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Figure 2.6: Cavities observed in the baffle-former bolts, made of CW 316SS stainless
steels, of Tihange 1 PWR reactor. The material is irradiated at Tirr = 343 ◦C to 12.2 dpa.
The swelling level is about 0.2%. (Edwards et al., 2003)
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Figure 2.7: Decrease of yield stress and ultimate strength with swelling level in in
Fe-18Cr-10Ni-0.5Ti stainless steels (Neustroev and Garner, 2008).

2.1.2 Voids and bubbles

Voids (empty cavities) and bubbles (cavities with gas) are generated by irradiation,
whose densities depend on dose and irradiation temperature. The formation of voids
is associated with clusters of vacancies absorbing more vacancies than interstitials.
Insoluble gases are formed by transmutation when certain metals are irradiated,
which finally leads to the formation of bubbles. Typical cavities observed in stainless
steels are shown in fig. 2.6. Voids and bubbles could cause a change in dimensions of
materials (called “swelling”) and have profound influences on mechanical properties
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(a)

(b)

Figure 2.8: Deformed cavities in irradiated stainless steels: (a) elongated cavities in
front of a crack tip of an ion-irradiated 316 stainless steel (Horton et al., 1981); (b) cavities
deformed by dislocation channeling observed in a 304 stainless steels irradiated in EBR-II
at 370 to 470 ◦C after a tensile test at 370 ◦C (Fish et al., 1973).

of materials. The irradiation swelling causes a great challenge for designing a
reactor to accommodate dimension changes.

It has also been shown that the swelling level is correlated with the modification
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of mechanical properties of stainless steels. Neustroev and Garner (2008) showed an
almost linear reduction of yield stress and ultimate strength with swelling level in Fe-
18Cr-10Ni-0.5Ti stainless steels irradiated in BOR-60 fast neutron reactor (fig. 2.7).
Margolin et al. (2016) showed a decrease of the fracture toughness, evaluated by J-
integral, with swelling level in Fe-18Cr-10Ni-Ti stainless steels irradiated in BOR-60
(fig. 2.14). Furthermore, cavities can lead to nano-dimple fracture in relatively high
swelling level (see section 2.2.2). Some experimental observations have reported
deformed (elongated) cavities located in plastic deformation channels in front of a
crack tip (fig. 2.8a) and in a tension specimen (fig. 2.8b). These elongated cavities
can probably participate in the process of cracking and final fracture of the steels.

As these cavities are potential crack sources, it is important to understand their
behaviors in stress fields. Hence, one of the subjects of the present thesis work is
to study the mechanical effects of cavities at the grain scale.

2.1.3 Cleared bands

It is well known that plastic strain localization occurs at the grain scale as a result
of heterogeneous nature of plastic deformation. A specific plastic strain localization
in defect-free channels has been widely observed in irradiated metallic single and
polycrystals (see, e.g., Sharp, 1967; Tucker et al., 1969; Sharp, 1974; Singh et al.,
1999; Hashimoto et al., 2005; Hashimoto et al., 2006) since a pioneering work of
Greenfield and Wilsdorf (1961) on irradiated copper single crystals. The channel
width is smaller than a few hundred nanometers where irradiation-induced defects
(Frank loops in the case of stainless steels) are partially or fully removed by gliding
dislocations. Since the number of defects are highly reduced within the channels,
they are often called “cleared band” or “clear band” in the literature.

Cleared bands have also been observed in stainless steels (Bailat et al., 2000;
Lee et al., 2001; Byun et al., 2006) even with relatively low irradiation damage
(0.78 dpa in the study of Byun et al. (2006), shown in fig. 2.9). In Ni-ion irradiated
304L stainless steels, it was reported that cleared bands are the dominant plastic
instability mode at high test temperature (about 280 ◦C) and slow strain rate
conditions (Bruemmer et al., 1997; Cole and Bruemmer, 1995). However, Lee
et al. (2001) reported that the channeling process in ion irradiated and deformed
316LN is not test temperature dependent. In addition, the observation of Edwards
et al. (2005) suggested that cleared bands are initiated at places with high stress
concentration such as grain boundaries, inclusions and even previously formed bands.
The authors also observed that some channels can even penetrate through grain
boundaries. Recently, discrete dislocation dynamics simulations were performed to
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Figure 2.9: Dislocation channel structure of a 316 stainless steel irradiated by fast
neutrons at low temperature to 0.78 dpa and tensile strained to 32%. (Byun et al., 2006)

simulate the formation of cleared bands based on interactions between dislocations
lines and Frank loops (Gururaj et al., 2015). According to Sauzay et al. (2010),
cleared bands can promote grain boundary crack initiation and propagation because
of the interactions with grain boundaries. Even though the cleared bands have
being widely studied, their fundamental mechanism is not well understood.

2.2 Mechanical effects of radiation damage on
stainless steels

Neutron irradiation of stainless steels can lead to drastic modifications of mechanical
properties, e.g., increase in yield stress, decrease in ductility (uniform elongation),
decrease of strain hardening capacity and decrease of fracture toughness (Pawel
et al., 1996; Pokor et al., 2004a; Pokor et al., 2004b). In this section, some effects
relevant to ductile fracture of stainless steels are outlined.

2.2.1 Stress–strain relation in tension

Typical stress–strain curves are shown in fig. 2.10 for a solution annealed 304L
stainless steels irradiated by neutrons up to 3.4 displacements per atom (dpa) (Pokor
et al., 2004a). The behavior is dose dependent. For the unirradiated case (0 dpa),
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Figure 2.10: Stress-strain curves at Ttest = 330 ◦C for a solution annealed 304L stainless
steels irradiated by neutrons up to 3.4 dpa. The irradiation was preformed in the OSIRIS
reactor at about Tirr = 330 ◦C. (Pokor et al., 2004a)

Figure 2.11: Tensile test of copper single crystals irradiated with 600 MeV protons to
different doses: resolved shear stress vs. plastic slip. The tests are performed at about
22 ◦C and loading direction is [011]. (Dai, 1995)

a smooth elastic-plastic transition is observed followed by a plastic regime with
small hardening rate before failure. After irradiation, a marked increase of the yield
stress and a reduction of uniform elongation is observed. It is also important to
notice that the hardening rate is also dose dependent. In addition, a sudden stress
drop is observed after yield point at 3.4 dpa. This kind of stress drop, according
to Trinkaus and his co-workers (Trinkaus et al., 1997a; Trinkaus et al., 1997b;
Singh et al., 1997), is related to unpinning process of dislocations from radiation
cascade induced Frank loops. After irradiation, a “cloud” of Frank loops decorating
grown-in dislocations (which present already before irradiation) is often observed.
The Frank loops play a role of trapping the dislocations and make them immobile.
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Figure 2.12: Engineering stress–strain curves for SA 304 and CW 316 steels irradiated
at about 330 ◦C in the BOR-60 reactor. (Pokor et al., 2004b)

Frank loops and immobile dislocations cannot act as dislocation sources. The yield
stress corresponds to the stress needed for unpinning grown-in dislocations from the
Frank loops decorating them. Once the dislocations are unpinned, smaller stress
is required for the plastic flow. It is worth noticing that the stress drop has also
been observed in irradiated single crystals (Blewitt et al., 1960; Dai, 1995; Dai
et al., 1994). An example is shown in fig. 2.11 for copper single crystals irradiated
to 3.9× 10−2 dpa. Compared with polycrystalline materials, a marked hardening
regime was observed before final failure of single crystals.

The mechanical behavior of irradiated steels under tensile loading depends on
many parameters, such as the properties of original materials, irradiation conditions,
test conditions, etc. As an example, engineering stress–strain curves are presented
in fig. 2.12 for solution annealed 304L stainless steels (SA 304) and cold worked
316 stainless steels (CW 316) irradiated to about 20 dpa (Pokor et al., 2004b). A
marked difference between the two types of steels is that a stress drop is observed
in SA 304 and not in CW 316.

2.2.2 Fracture mechanisms

Neutron irradiation generally causes a reduction in fracture toughness of stainless
steels. The fracture toughness of irradiated stainless steels has been shown to be
irradiation dose dependent (figs. 1.2 and 2.13) and swelling dependent (fig. 2.14).
The decrease of fracture toughness in steels after irradiation is associated with a
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(a) (b)

Figure 2.13: Dose dependence of dynamic J -integral calculated for impact tests on 321
austenitic stainless steels irradiated at (a) ~230 and (b) ~400 ◦C. (Little, 1986)

ε

ε

Figure 2.14: Decrease of fracture toughness measured in uniaxial tension tests for Fe-
18Cr-10Ni-Ti stainless steels with irradiation swelling levels. DM-7: irradiation damage
from 35 to 46 dpa; E-65: irradiation damage from 100 to 150 dpa. (Margolin et al., 2016)

change of fracture mechanism, depending on various parameters: original properties
of steels, irradiation conditions, test conditions, etc. A transition from ductile to
brittle fracture with increasing irradiation damage is usually observed in irradiated
stainless steels.

Fukuya et al. (2008) have conducted a systematic study on fracture modes in
CW 316 stainless steels (cut from flux thimble tubes) irradiated up to 73 dpa in a
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Figure 2.15: Typical fracture surface of CW 316 steels irradiated to different doses after
impact tests at different at different test temperature. (Fukuya et al., 2008)

pressurized water reactor (Tirr = 293–323 ◦C). They showed by means of impact
tests that intergranular fracture and dimple fracture occur according to irradiation
dose and test temperature. Some typical fracture surfaces are presented in fig. 2.15.
A transition from intergranular to dimple fracture is observed with temperature
increasing from -196 to 150 ◦C and irradiation dose decreasing from 73 to 2 dpa
(see fig. 2.16). The authors also conducted tensile tests with two strain rates
(conventional: 1.1× 10−4 s−1 and slow: 6.7× 10−8 s−1). According to the tensile
tests results combined with other results in the literature, the authors concluded
that intergranular fracture is promoted under low-temperature high-strain-rate
and high-temperature low-strain-rate conditions. However, it is important to note
that dimple (ductile) fracture remains one dominant fracture mechanism at high
temperature in these steels irradiated up to 38 dpa, i.e., Ttest = 150 ◦C in impact
tests and Ttest = 320 ◦C in tensile tests.

Dimple fracture has been observed in other studies on stainless steels, especially
those irradiated in fast neutron reactors. Solution treated Type 321 austenitic
stainless steels irradiated in Dounreay Fast Reactor at about 230 and 400 ◦C up to
43 dpa were investigated by Little (1986) through impact tests. Fracture toughness
evaluated by the dynamic J -integral was found to decrease with irradiation dose
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Figure 2.16: SEM micrographs showing the center of fracture surfaces of CW 316 steels
irradiated to different doses after impact tests at different test temperature. (Fukuya
et al., 2008)

Figure 2.17: SEM micrographs of fracture surfaces after impact tests at 400 ◦C: (a)
unirradiated; (b) irradiated to 16 dpa at 400 ◦C ; (c) irradiated to 43 dpa at 230 ◦C.
(Little, 1986)

and finally reach a stabilized value (see fig. 2.13). The author found that the ductile
fracture due to void growth and coalescence was the primary fracture mechanism
after irradiation and that the ductile dimples were much finer (see fig. 2.17), initiating
from irradiation-induced micro-sized TiC precipitates. Neustroev and Garner (2009)
investigated fracture behavior of a titanium-stabilized stainless steel cut from
fuel pin claddings and fuel assembly wrappers of the fast reactor BOR-60. The
authors reported a transgranular cup-cone fracture morphology for tensile specimens



22 2.2. Mechanical effects of radiation damage on stainless steels

Figure 2.18: Fracture surface with micro-sized dimples of Fe-18Cr-10Ni-Ti stainless
steels with a swelling level of 30%. (Neustroev and Garner, 2009)

Figure 2.19: Classical dimple fracture surface with voids nucleated on Ti carbonitrides
of stainless steels irradiated to 90 dpa with 0.3% swelling. (Margolin et al., 2016)

extracted from assembly wrappers with high swelling (30%). The fracture surface
exhibited fine dimples which imply that failure proceeded by micropore coalescence
(see fig. 2.18). They emphasized the large amount of local deformation at the failure
site, despite the highly reduced elongation at the macroscopic level. Margolin et al.
(2016) studied fracture mechanisms under uniaxial tension in titanium-stabilized
austenitic steels taken from shield assemblies of BOR-60 reactor. The authors
observed dimple fracture with voids of size 2–10 µm (fig. 2.19) nucleated from Ti
carbonitrides for limited swelling cases (swelling < 2% and irradiation damage up
to 80–150 dpa). For relatively high swelling level (5–6%), flat facets (zone 2 in
fig. 2.20a) together with unstructured zones (zone 1 in fig. 2.20a) were observed



2. Literature review 23

(a)

(b)

Figure 2.20: (a) Fracture surface with unstructured zones (Zone 1) and flat facets (Zone
2) of stainless steels irradiated to 130 dpa with 3% swelling; (b) enlarged micrograph
showing nano-dimples on the unstructured zone. (Margolin et al., 2016)

on fracture surfaces. The fracture mode leading to flat facets is called channel
fracture, which is believed to be associated with cleared bands (see more details
in section 2.1.3). On the so-called unstructured zones, nano-sized voids (about
20 nm) were found, which grow, coalesce and lead to final failure (fig. 2.20b). The
authors reported a specific fracture mode transition with increasing swelling level:
classical dimple fracture → flat facets → nano-dimple fracture.

Ductile fracture due to void growth and coalescence (see section 2.3) is a
dominant fracture mechanism in unirradiated stainless steels. According to the
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experimental studies presented above, this type of fracture mechanism has been
also observed in irradiated stainless steels, however, with a decrease in dimple size
with irradiation. These observations motivate the present thesis work.

2.3 Ductile fracture in metallic materials

Ductile fracture refers to fracture modes involving extensive plastic deformation
before final failure and is widely observed in failure of metallic materials (Pineau
and Pardoen, 2007; Besson, 2010; Benzerga and Leblond, 2010; Pineau et al., 2016).
Ductile fracture is also exhibited by irradiated stainless steels, as presented in
section 2.2.2. Since cavities are extensively involved in the fracture processes of
irradiated stainless steels, some classical mechanisms in metals and alloys associated
with cavities are to be presented in the following.

2.3.1 Experimental observations and micromechanisms

Void nucleation, growth and coalescence are important mechanisms of ductile
fracture in metals and alloys. An example of the observations in the literature is
presented in fig. 2.21 showing the failure process from void formation to final cracking.
Some dimple characteristics are often observed on fracture surface, as shown in

Figure 2.21: Ductile fracture process: transition from void formation to cracking in a
notched bar of steel. (see Benzerga (2000) and Benzerga et al. (2004), also Pineau et al.
(2016))
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(a) (b)

Figure 2.22: Typical dimple fracture surface: (a) tensile test at 285 ◦C on 304LN
stainless steels (Das and Tarafder, 2009); (b) tensile test on a pipeline steel X100 (Luu,
2006).

Primary inclusions

Secondary inclusions

(a) Internal necking (b) Void sheeting

Figure 2.23: Ductile fracture micromechanisms: (a) internal necking; (b) void sheeting.
(Besson, 2010)

fig. 2.22a. The presence of dimples is usually used to rationalize fracture induced
by void growth and coalescence. Dimples are usually formed by void nucleation at
second-phase particles or inclusions, followed by subsequent growth and coalescence.
According to experimental observations, different micromechanisms are proposed
(Besson, 2010). A first micromechanism is called “internal necking” (fig. 2.23). It
corresponds to formation of large primary voids at high stress triaxiality, growth
of voids, and necking of inter-void ligaments of neighbouring voids. In this case,
failure occurs with little or no smaller secondary voids nucleation. An example of
this mechanism is shown in fig. 2.22a. Recently, this mechanism was visualized
by X-ray tomography in high-purity copper with artificial holes (fig. 2.24). A
second micromechanism, named “void sheeting”, refers to failure with secondary
voids (smaller than primary ones) nucleated in strain localization bands as shown in
fig. 2.23. An example of this mechanism involving two populations of voids are shown
in fig. 2.22b. In this case, primary voids remain small due to low stress triaxiality.
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Figure 2.24: X-ray tomography showing internal necking in high-purity copper with
artificial holes. (Weck et al., 2008)

2.3.2 Models for porous isotropic materials and single crys-
tals

Numerous studies have being devoted to the modeling of mechanical behavior of
elasto-(visco-)plastic media containing voids. After a pioneering work of McClintock
(1968), Rice and Tracey (1969) treated the enlargement of a spherical void under
remotely uniform stress in a rigid perfectly plastic von Mises material. For high
stress triaxiality case, the increase rate of void radius R under a simple tension
remote field writes:

Ṙ

R
= 0.283 exp

(
3
2
σ∞m
σ∞eq

)
ṗ∞, (2.1)

with the remote von Mises equivalent stress σ∞eq , the remote mean stress σ∞m , the
remote accumulated strain rate ṗ∞ =

√
2
3 ε̇∼
∞ : ε̇∼∞. The result reveals the influence

of stress triaxiality, i.e., T = σ∞m
σ∞eq

, on void growth rate.
Another seminal work concerning voided isotropic material was conducted by

Gurson (1977). The author performed limit analysis on a rigid perfectly plastic
von Mises matrix containing a void and an effective yield function accounting for
void volume fraction f was derived:

σ2
eq

σ2
0

+ 2f cosh
(3

2
σm
σ0

)
− 1− f 2 = 0, (2.2)
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where σ0 is the tensile yield stress of the von Mises matrix and f is the void volume
fraction. One can further formulate a porous plasticity framework combining the
yield function with the normality rule and the evolution law of void volume fraction
f based on mass conservation ḟ = (1− f) tr ε̇∼p, where ε̇∼p is plastic strain rate. This
model was then extended by Tvergaard and Needleman (Tvergaard, 1982; Tvergaard
and Needleman, 1984), called GTN model in the literature, to better represent
unit cell simulations and experimental results. The Gurson model has also been
extended for introducing void shape effects (Gologanu et al., 1993; Gologanu et al.,
1994) and matrix anisotropy (Benzerga and Besson, 2001). The same approach has
also been used for a matrix obeying other yield criteria such as Tresca criterion
(Cazacu et al., 2014) and Mohr–Coulomb criterion (Anoukou et al., 2016) among
others. Besides, other extensions of the Gurson model and other approaches for
porous materials can be found in recent reviews of Besson (2010), Benzerga and
Leblond (2010), Pineau et al. (2016), and Benzerga et al. (2016).

In the past few years, an increasing number of studies have been devoted to the
development of models accounting for void growth in a single crystal matrix. A first
yield function derived by Han et al. (2013) based on the variational homogenisation
approach of DeBotton and Castaneda (1995) is written as:(

τ s2

τ02 + α
2
45f

σ2
eq

τ02

)
+2q1f cosh

q2

√
3
20
σm
τ0

−1−q2
1f

2 = 0, s = 1, 2, · · · , N (2.3)

where N is the number of slip systems, τ s is the resolved shear stress for slip system
s, τ0 is the critical resolved shear stress, and α, q1 and q2 are heuristic parameters
(as in the GTN model for q1 and q2). The three parameters were identified by
comparison with yield surfaces predicted by unit cell simulations for different crystal
orientations and void volume fractions: α = 6.456, q1 = 1.471 and q2 = 1.325. Note
that the obtained value of q1 close to 1.5 is in good agreement with the value for
GTN model obtained in the literature (see Faleskog et al., 1998; Gao et al., 1998).
The model is able to accurately represent the numerical limit analysis results.

Then, another model was developed by Paux et al., 2015 based on the approach
of limit analysis using a regularised form of the Schmid law (Arminjon, 1991;
Gambin, 1992). The yield function writes

(∑N
s=1 |τ s|n

)1/n

τ0

+ 2qf cosh
(
κ′
σm
τ0

)
− 1− (qf)2 = 0, (2.4)

where q is a heuristic parameter and κ′ = 0.506 is derived semi-analytically. Notice
that κ′ = q2

√
3
20 ≈ 0.513 is obtained in Eq. (2.3) with q2 = 1.325. The two yield



28 2.3. Ductile fracture in metallic materials

functions Eqs. (2.3) and (2.4) share some similarities. However, Eq. (2.3) is a
multi-criterion yield function, while Eq. (2.4) is a single criterion yield function.

More recently, a more complex model accounting for void shape effects was
developed by Mbiakop and his co-workers (Mbiakop et al., 2015a; Mbiakop et
al., 2015b) following the variational method of Danas and Aravas (2012). The
model was first derived for elliptical voids in two-dimensional case and it was then
extended to three-dimensional case for ellipsoidal voids. The proposed model is
expressed in the form of the effective stress potential Ũ which is related to the
effective strain rate tensor D∼ by

D∼ = ∂Ũ

∂σ∼
, (2.5)

where σ∼ is the average Cauchy stress of the porous medium. With n denoting
the parameter of power law and γ̇s0 the reference slip rate, Ũ for single crystals
with ellipsoidal voids is given by

Ũ = (1− f)
N∑
s=1

γ̇s0(τ s0 )−n
n+ 1

(
σ∼ : Ŝ

≈

(mvar),s : σ∼
)(n+1)/2

, (2.6)

where
Ŝ
≈

(mvar),s = Ŝ
≈

(var),s + (q2
J − 1)J

≈
: Ŝ
≈

(var),s : J
≈
, (2.7)

and

qJ =
√

15
f

{
(1− f)(βn)1/n

n(f−1/n − 1)

}n/(n+1)

with βn = 4
256−n/2. (2.8)

Here,
Ŝ
≈
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2E≈
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N
Ŝ
≈

∗
, E
≈
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s
sym ⊗N∼

s
sym, Jijkl = 1

3δijδkl, (2.9)

where N∼
s
sym is the symmetric Schmid tensor for slip system s, δij is the Kronecker

delta, and Ŝ
≈

∗ is a fourth order microstructural tensor given by

Ŝ
≈
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≈

−1
−
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1
2E∼

s, Q̂
≈
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where K
≈

and J
≈

are the fourth order shear and hydrostatic projection tensors.
P̂∼ is given by

P̂∼ = 1

4π det
(
Z
≈

) ∫
|ξ |=1

(S−1
iakbξaξb)−1ξjξl|(ij)(kl)

Z
≈
−1.ξ

dS. (2.12)
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The brackets (ij)(kl) denote symmetrization with respect to the corresponding
indices, ξ is a unit three-dimensional vector and Z

≈
is a second order tensor

describing the shape and orientation of the voids, i.e.,

Z
≈

= w1n
1 ⊗ n 1 + w2n

2 ⊗ n 2 + n 3 ⊗ n 3, (2.13)

where w1 and w2 are two aspect ratios of the ellipsoidal void and the vectors n i

(i = 1, 2, 3) define an orthonormal basis set, which coincides with the principal
axes of the ellipsoidal void.

However, to the authors’ knowledge, there is currently no model for porous
single crystals at finite strains, which is able to describe the void evolution up
to coalescence and which is simple enough for finite element implementation in
order to carry out structural computations.

2.4 Plasticity size effects in metallic materials

2.4.1 Experimental observations

Size effects in plasticity have attracted intensive attention since the 1990s. Size
dependent plastic behaviors of metals and alloys were observed in various exper-
iments. Fleck et al. (1994) performed torsion tests on commercially pure, cold
drawn copper wires of diameter in the range 12 to 170 µm. The authors reported a
strong dependence of torsional response on diameter. Size effect was also observed
in indentation tests (see Stelmashenko et al., 1993; Poole et al., 1996; McElhaney
et al., 1998; Suresh et al., 1999). For example, McElhaney et al. (1998) (see also
Nix and Gao, 1998) reported an indentation depth dependence of the hardness
measured by nanoindentation test for polycrystalline and single crystal copper
shown in fig. 2.25. Stölken and Evans (1998) performed microbending tests on
high-purity nickel foils of thickness in the range 12.5 to 50 µm. The authors showed
a size dependent bending response on foil thickness (fig. 2.26).

Those size effects are usually explained by strengthening of materials by strain
gradient (Fleck et al., 1994). Strong strain gradient is also expected in the plastic
zone at the tip of a crack and in the plastic deformation of polycrystals at the grain
boundary because of the mismatch of slip between grains. Therefore, size effects
are also observed in these cases (see, e.g., Wei and Hutchinson, 1997; Smyshlyaev
and Fleck, 1996, and references therein). Strain gradients result in the storage of
geometrically necessary dislocations (GND) (Ashby, 1970), which is regarded as the
physical foundation of the size effect. This will be presented in the next section.
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Figure 2.25: Indentation depth dependence of the hardness measured by nanoindentation
of single crystal copper and cold worked polycrystalline copper. (McElhaney et al., 1998)

Figure 2.26: Plot of the normalized bend moment against the surface strain for different
thickness of foils of nickel. (Stölken and Evans, 1998)

More recently, size effects were also reported in the absence of strain gradients
(see, e.g., Uchic et al. (2004), Dimiduk et al. (2005), and Greer et al. (2005)), such
as in uniaxial compression of micro/nano-pillar specimens. Some other candidate
mechanisms for plasticity size effects were proposed such as dislocation starvation
(Greer et al., 2005), stochastics of dislocation source lengths (Parthasarathy et al.,
2007), etc. These mechanisms are not considered in the present work.

2.4.2 Geometrically necessary dislocations and strain gra-
dient plasticity

Size effects in plasticity are often associated with strain gradients which physically
require the storage of GNDs for compatibility reasons (Ashby, 1970). In contrast to
GND, statistically-stored dislocations are responsible for uniform plastic deformation.
A well-known illustration of GND, proposed by Fleck et al. (1994), concerns non-
uniform shear of a single crystal beam (fig. 2.27). For a single crystal with a single
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slip system with normal to the slip plane aligned with the x2 and slip direction
aligned with the x1 direction, it is shown that a gradient of plastic slip along the
x1 direction causes a density ρG of GNDs to be stored.

Figure 2.27: Sketch for non-uniform shear of a single crystal beam showing a gradient
of plastic slip along the x1 direction causes a density ρG of GNDs to be stored. (Fleck
et al., 1994)

However, classical continuum mechanics fails to predict the size effect for lack of
length scale in the theory. Thus, tremendous efforts have been devoted to enhance
the theory by different approaches. A well-known approach to do so is to include
strain gradient hardening. By this way, the so-called “strain gradient plasticity”
models were first proposed for isotropic materials.

One candidate idea of modeling (Fleck and Hutchinson, 2001; Gudmundson,
2004; Gurtin and Anand, 2009) is assuming that the plastic internal work increment
δwp in a volume V follows the form:

δwp =
∫
V
sδp+m .δ∇p dV, (2.14)

where p is the effective plastic strain (also called “accumulated plastic strain”) with
its rate ṗ =

√
2
3 ε̇∼

p : ε̇∼
p, and ∇p is the gradient of p, s andm are generalized stresses

which are work-conjugate respectively to p and ∇p. Another important point of the
models is assuming a constitutive dependence on the generalized effective plastic
strain rate Ėp (Fleck and Hutchinson, 2001) which is defined as

Ė2
p = ṗ2 + l2∗∇ṗ.∇ṗ (2.15)

with the length parameter l2∗.
Another candidate way to include strain gradient hardening is to account for

the gradient of the total plastic strain tensor ε∼p. Thus, the plastic internal work
increment in a volume V writes

δwp =
∫
V
s∼ : δε∼

p +m
∼

... δ∇ε∼
p dV, (2.16)

where the generalized stresses s∼ and m
∼

are respectively a second order and third
order tensor. Note that, up to now, there is no common agreement on the formulation
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of the theories. Detailed discussions on the formulation of strain gradient plasticity
can be found in the works of Forest and Sievert (2003), Gudmundson (2004), Forest
(2009), and Gurtin and Anand (2009).

In addition to the models for isotropic plastic materials, strain gradient plasticity
models were also proposed for single crystals. They can be classified into three
categories. The first category is based on the notion of dislocation density tensor
α∼ (Nye, 1953) which is defined as

α∼ = −curlE∼
−1 = − 1

J
(CurlP∼ ).F∼

T , (2.17)

where F∼ is the deformation gradient, E∼ and P∼ are its elastic and plastic part
resulting from the multiplicative decomposition F∼ = E∼ .P∼ (Lee, 1969; Mandel,
1973), J is the determinant of F∼ .1 The microcurl model introduced by Cordero
and his co-workers (Cordero et al., 2010) and that proposed by Gurtin and his
co-workers (Gurtin, 2002) belong to this category. Both of them assume a free
energy dependence on α∼ . However, the microcurl model involves directly α∼
in the power of internal forces, while the Gurtin model relates α∼ to the scalar
dislocation densities and thus α∼ does not appear explicitly in the derivation of
balance equations. The second category is based on the scalar dislocation densities
defined on crystallographic slip systems. Statistically stored dislocations (SSD) and
geometrically necessary dislocations (GND) are often taken into account in the
models of the second category. Various models of this category can be found in the
literature, such as Evers et al. (2004), Bayley et al. (2006), Bayley et al. (2007), Ekh
et al. (2007), Kuroda and Tvergaard (2008), Ertürk et al. (2009), and Bargmann
et al. (2010), among others. An unified formulation of the models is proposed by
Svendsen and Bargmann (2010). A third category corresponds to the enhancement
of classical crystal plasticity model with the gradient of a single scalar plastic slip
variable, which was firstly proposed in the work of Wulfinghoff and Böhlke (2012).

Numerical implementation of the models for single crystal plasticity is of great
challenge especially for finite strain formulation, partly due to the complexity of the
models. The number of additional degrees of freedom (DOF) besides displacement
for finite element implementation is shown in table 2.1 for some models. Note that,
for the model of Evers et al. (2004), 12 edge and 6 screw dislocations are taken into
account for the densities GND. Thus, 18 additional DOFs are needed. It can be seen
that many additional DOFs are needed for FE implementation. This usually leads to
bad computational convergence or high computation time. Therefore, the numerical

1The curl operator is also denoted by ∇× or rot .
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Models Additional DOFs Number of
additional DOFs

(Gurtin, 2002) γs 12
(Cordero et al., 2010) curlP∼ 9
(Evers et al., 2004) ρGND 18

(Wulfinghoff and Böhlke, 2012) γcum or γeq 1

Table 2.1: Degrees of freedom needed for FE implementation of some strain gradient
crystal plasticity in the case of FCC single crystals (12 slip systems). Additional DOFs

besides displacements are pointed out.

implementation is usually restricted to small strain formulation or finite strain
formulation with planar double slip. However, the numerical efficiency of the model
with a single additional DOF has been shown by Wulfinghoff and Böhlke (2012).

In addition, it is worth noticing that Miehe and his co-workers (Miehe, 2014;
Miehe et al., 2014b; Miehe et al., 2014a) proposed a variational formulation for
strain gradient plasticity models at finite strains and showed its numerical efficiency
through 3D simulations.

2.5 Size effects on void growth

2.5.1 Experimental observations

Size effects are expected in the plastically driven void growth, when void dimensions
are of the same order as the spacing between mobile dislocations and dislocations
sources. Even though it lacks of direct evidence, some indications have been shown
by recent experiments that the growth of voids is size dependent. Khraishi et al.
(2001) studied the growth of a machined cylindrical hole in a thin plate made of a
superplastically deforming metal. For the hole diameters considered (203, 243 and
635 µm), it was shown that void growth rate was higher for a bigger hole. In these
experiments, the size of the plates was kept unchanged. Thus, the porosity, which
is generally believed to affect void growth, changed with increasing hole diameter.
However, as the diameter of the hole was far smaller than the width of the plate
(6.35 mm), the influence of the porosity was negligible.

Even though few experimental investigations have been devoted to size effects on
void growth and coalescence, discrete dislocations dynamics (DDD) and molecular
dynamics (MD) have offered a great deal of details about void growth at micro-
and nano-scale. However, in these studies, high strain rate loading conditions
are often considered.
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2.5.2 MD and DDD simulations

Figure 2.28: (a) Dislocation loops after shearing the void in the crystal of 2 µm at an
applied strain of 0.15%. (b) Void shape after multiple shearing by dislocations. (Chang
et al., 2015)
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Figure 2.29: DDD simulations showing: (a) void area change as a function of applied
strain under biaxial deformation for different void radii (Segurado and Llorca, 2009); (b)
normalized void area fraction as a function of the remote strain for different void radii
(Huang et al., 2007).

Size effects have been observed in a wide range of DDD and MD simulations,
and it has been found that the mechanism responsible for the size effect is different
at micro- and nano-scale. DDD simulations were usually carried out for voids with
radius of several microns. At this scale, voids grow due to dislocations nucleating
from sources, such as Frank-Read sources, in the matrix near the void (Huang
et al., 2007; Segurado and Llorca, 2009; Chang et al., 2015). It was shown that the
generated dislocation loops expand and shear successively the void surface resulting
in the growth of the void (see fig. 2.28). Under this circumstance, increasing void
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Figure 2.30: Typical curves for the Peach-Koehler force as a function of the distance to
the void surface for different void radii a. The Peach-Koehler force was estimated to be
equal to fN ≈ τelab, where b is the norm of Burgers vector (Huang et al., 2007)

Figure 2.31: Propagation of multiple shear loops in hydrostatic tensile loading at a
strain rate of 108 s−1. The radii of void is 3.3 nm. (Tang et al., 2011)

size leads to an increase in the void growth rate (see fig. 2.29), which was
explained as a matter of availability of dislocation sources near the void. As the
void size increases, the number of active sources increases. As a result, for a bigger
void, a larger amount of dislocations can reach the void surface, which leads to a
higher void growth rate. In addition, Huang et al. (2007) estimated the driven force
of dislocations, i.e., the Peach-Koehler force, as a function of distance to the void
surface. It was found that the force is larger at the same distance to the void for
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Figure 2.32: Sequence showing formation of shear and prismatic loops in hydrostatic
tensile loading at a strain rate of 108 s−1. (Tang et al., 2011)

larger voids and that thus the dislocation mobility is higher. This was believed
to be the second reason for the size effect on the void growth rate. Moreover,
Segurado and Llorca (2009) found a size effect on the strain hardening rate. In
their simulations, the external boundaries of the single crystal were assumed to be
impenetrable. This barrier mimics the effect of grain boundaries or of passivation
layers in a microcrystal. When dislocations move towards the external boundaries,
they stop at the boundaries and form pile-ups. They generate then back-stresses,
reduce the mobility of following dislocations and also the activity of sources. This
process results in an increasing flow stress. In this case, the strain hardening rate
was found to be higher in the single crystal with smaller void. This effect was
explained by two mechanisms. Firstly, dislocation density increases more rapidly as
the size decreases, which indicates more dislocations within the pile-ups and leads to
a higher strain hardening rate. Secondly, dislocations available in small crystals are
limited by crystal size and the applied strain has to be partially absorbed through
elastic deformation which causes a higher strain hardening rate.

MD simulations were applied for nano-sized voids rather than micro-sized ones,
limited by the computationally expensive simulation process. At this scale, the
amount of dislocation sources around the void is limited and dislocations nucleating
from sources in the matrix are no longer sufficient for its growth. In this case, void
growth by dislocation emission at the void surface was widely observed. It was
found in the MD simulations that dislocations begin to nucleate at the void surface,
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Figure 2.33: Typical MD simulations results showing size effects on porous single
crystals. (a) Stress-strains curves for different void sizes. R denotes radius of the void.
(Traiviratana et al., 2008). (b) Yield strength of nano-voided single crystals as a function
of cell size Lx. a0 is the lattice constant and fv is the void volume fraction. (Zhao et al.,
2009)

1

2

3

4

0 10 20 30 40 50

80

133.33

160

200

266.66

2
D
  
(e

V
/n

m
)

Void radius, R (nm)

cell size (nm)

(a)

(a)

0 10 20 30 40 50
0

2

4

6

8

10

0 20 40 60 80 100

10%

4%

Y
ie

ld
 s

tr
e
s
s
 (

G
P

a
)

Void radius, R (nm)

(b)

void volume 
fraction

(b)

Figure 2.34: (a) Energy density associated with the void surface as a function of the
void radius; (b) influence of void radius on the yield strength. (Chang et al., 2013)

allowing the significant growth of void. Concerning the kinetics of dislocation
evolution, there is still a debate (Bulatov et al., 2010). The evolution of generated
dislocations differs in details, which depends on various aspects, such as crystal
structure considered (BCC, FCC or HCP) (Rudd, 2009), strain rate (Potirniche
et al., 2006; Rudd, 2009; Tang et al., 2010; Xu et al., 2011; Tang et al., 2014),
stress triaxiality (Seppälä et al., 2004), crystallographic orientation (Zhu et al., 2007;
Bringa et al., 2010) and so on. However, it was widely observed that, following
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Figure 2.35: Evolution of the void volume fraction as a function of strain under biaxial
deformation for different void radii. (Chang et al., 2013)
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Figure 2.36: A map of mechanisms of void growth by plastic deformation: normalized
yield strength as a function of void radius. (Chang et al., 2013)

the generation of dislocations at the surface and their interactions,
1. partial shear loops formed and expanded with the extremities attached to the

void surface;
2. prismatic loops formed and were punched out from the void surface.

As a result, atoms are moved away from the void leading to the growth of the void.
These two mechanisms are presented in figs. 2.31 and 2.32 (Tang et al., 2011). In
addition, twinning was also found by (Tang et al., 2012; Rudd, 2009) to be a possible
mechanism for void growth. More details concerning physical mechanisms of void
growth at nano-scale under high strain rate are not discussed here. Nevertheless,
it should be pointed out that strong size effects were reported by MD simulations
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(see Potirniche et al., 2006; Traiviratana et al., 2008; Zhao et al., 2009; Xu et al.,
2011; Tang et al., 2012; Chang et al., 2013; Krasnikov and Mayer, 2015):

• yield strength increased with decreasing void size;
• dislocation evolution patterns were influenced by void size.

It should be noticed that the definition of the yield strength can be different.
The overall stress needed to nucleate the first dislocation from the void surface
was often used for the yield strength. As shown in figs. 2.33a and 2.33b, the
yield strength decreases with increasing void size and asymptotically approaches
a constant value. The size dependence of yield strength is associated with the
surface energy of the void. For 2D simulations, Chang et al. (2013) calculated the
energy γ2D per unit length at the void perimeter for various void radii presented
in fig. 2.34a. They argued that the surface energy becomes small for voids with a
radius below 5 nm, meaning that the void becomes more stable. It is thus more
difficult to nucleate dislocations at void surface for the very small voids, which
can be confirmed by higher yield strength for void radius smaller than 5 nm (see
fig. 2.34b). However, the size effect on void growth rate was quite limited
according to Potirniche et al. (2006) and Chang et al. (2013) (see fig. 2.35). No
explanation is given for this negligible effect.

Combining the investigations at micro and nano-scale, a map of mechanisms
and size effects for plastic void growth can be established, according to Chang et al.
(2013), which is presented in fig. 2.36. It can be summarized as follows. For voids
with radius larger than 100 nm, plastic deformation occurs by the nucleation of
dislocation in the bulk from dislocation sources. Larger voids grow faster than small
one, because the higher number of dislocation sources around the void increases
the number of available dislocations, leading to faster void growth. For voids below
50 nm, few dislocation sources are available around the void, voids can only grow
by the nucleation of dislocations at the void surface. This mechanism requires
higher stress to initiate plastic deformation around the void and the void growth
rate is independent of its size. In this regime, the yield stress does not depend
on void size. The surface energy density remains constant for the radius in the
range from 10 to 50 nm. For voids with radius smaller than 10 nm, the void
surface becomes more stable and higher stress is necessary to nucleate dislocations
from the void surface. These argument are in agreement with the micromechanics
analysis of Ahn et al. (2007) based on the interaction between a void and emitted
dislocations. They reported that the surface energy plays a significant role only
for voids with radius smaller than 100 nm.
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2.5.3 Investigations by strain gradient plasticity

Strain gradient plasticity theories have been widely used to study size effects in
plasticity, among which size dependent void growth at micron-scale is frequently
concerned. In the literature, two modeling approaches can be encountered:

• an isolated void in an infinite medium;
• a void in a finite medium (unit cell).

The first kind of model considers a spherical or cylindrical void embedded in an finite
matrix subjected to a uniform remote loading, as shown in fig. 2.37. The model is
usually used in analytical analysis to obtain a relation between the void growth rate
and the remote loading, as in the well-known work of Rice and Tracey (1969). In
contrast to the first type of model, the second accounts for a finite matrix, i.e., unit
cell, which can be regarded as a representative volume element (RVE). The RVE is
often supposed to be a cube in three dimension (3D) or a square in two dimension
(2D) (see fig. 2.38a). This kind of model is frequently used in finite element analysis
to study influences of different aspects on void growth rate, such as effects of stress
triaxiality, initial void volume fraction, etc. However, the unit cell can also be of
other shapes, especially spherical or spheroidal as considered in the well-known
work of Gurson and in those for extending the Gurson model (see fig. 2.38b).

(a) (b)

Figure 2.37: Illustration for the model of an isolated void in an infinite medium: (a) a
cylindrical void, (b) a spherical void. (Huang and Wang, 2006)

In early works, the matrix is assumed to be isotropic in order to simply analysis
process. However, as radii of voids are reduced to several microns, whose size is
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(a)

(b)

Figure 2.38: Illustration for (a) a cubic unit cell containing an initially spherical void,
and (b) a spherical unit cell containing an initially spherical void (Gurson, 1977).

smaller than that of the grain, it is more reasonable to consider voids embedded
inside a grain whose properties are naturally anisotropic (or at the grain boundary
for some special cases). It means that as the size of the void is comparable with that
of the grain, the matrix should assume to be anisotropic. This particular aspect
attracts an increasing attention in recent years (see, e.g., Kysar et al., 2005; Gan
et al., 2006; Borg and Kysar, 2007; Borg et al., 2008; Hussein et al., 2008).

Even though the approach used is different from one study to another, some
common results are predicted by strain gradient theories:

1. smaller is stronger;
2. smaller is slower.

It implies that, with a given void volume fraction but a decreasing void size, loading
carrying capacity of porous materials increases and void growth rate decreases,
which are in agreement with the observations in DDD and MD simulations.

Apart from the very conclusions, some specific issues were addressed in different
works, which will be presented in the following. Results obtained by the two models
(a void in an infinite matrix and in a finite matrix) are described separately. Besides,
works regarding the extension of the Gurson model accounting for the size effect
will be exclusively summarized in section 2.5.5.
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A void in an infinite matrix

Fleck and Hutchinson (Fleck and Hutchinson, 1993; Fleck and Hutchinson, 1997;
Fleck and Hutchinson, 2001) established in their works the termed phenomenological
strain gradient plasticity theory, where size effects in void growth were concerned
as an implication of their theories. The problem was solved based on a variational
principle established for an infinite matrix containing an isolated spherical void. The
matrix is subjected to uniform remote axisymmetric loading specified by σ∞33 = S and
σ∞11 = σ∞22 = T . Results for the normalized void growth rate have the functional form

V̇

ε̇∞33V
= F

(
X,

l

a
, n

)
(2.18)

where ε∞33 denotes the remote strain, X the remote stress triaxiality, l the material
length parameter, a the radius of the void and n the parameter of power law.
Representative results (Fleck and Hutchinson, 1997) are given in fig. 2.39, which
illustrates the variation of void growth rate with respect to the relative size of the
void l/a. A pronounced size effect is predicted by the Toupin-Mindlin theory (SG)
1 which accounts for both the rotation and stretch gradients: the void growth is
constrained when the void radius a is of the same order with the material length
scale l. However, a much weaker effect is predicted by the couple stress theory
(CS) 2 that only considers the rotation gradients, which implies that the rotation
gradients do not play a significant role in the size dependent void growth.

The problem of an isolated void in an infinite matrix was also investigated by
Huang et al. (2000) based on the termed mechanism-based strain gradient plasticity
of Gao et al. (1999). Analyzing a spherical void in the matrix subjected to remote
spherically symmetric tension, the authors showed, as presented in fig. 2.40, the
remote stress σ∞ normalized by the yield strength σY as a function of the normalized
displacement on the void surface u0/R0, where R0 is the initial void radius. It
was concluded that small voids (large value of l/R0) are less susceptible to growth
at a given stress state than larger ones.

Because of the nonlinear nature and complexities of the problem, it is not
always possible to derive an analytical result. Instead, numerical approaches,
especially the finite element method, offer an efficient way to explore the size
effects under different conditions.

1In the Toupin-Mindlin theory, the yield strength of the solid is taken to depend upon strain
and second gradient of displacement.

2In the couple stress theory, the yield strength of the solid is taken to depend upon strain and
curvature (spatial gradient of the material rotation).
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Figure 2.39: Effect of void radius a on normalized void growth rate. (Fleck and
Hutchinson, 1997)

Figure 2.40: The remote applied stress normalized by the yield stress vs the normalized
displacement on the surface of a spherical void. l is the material length parameter. β is
a parameter of the strain gradient model to be determined from experiments. (Huang
et al., 2000)

Unit cell model

Based on unit cell models, finite element simulations with strain gradient plasticity
have been performed for both isotropic materials (see, e.g., Niordson, 2008) and
anisotropic single crystals (see Shu, 1998; Borg and Kysar, 2007; Borg et al., 2008;
Hussein et al., 2008). Basically, most of the works predicted reduced void growth
rate and increased loading carrying capacity with decreasing void size (see, e.g.,
fig. 2.41 by Niordson (2008) for an isotropic material, fig. 2.42 by Shu (1998) for
a single crystal with two planar slip systems, and fig. 2.43 by Borg et al. (2008)
for a single crystal with three planar slip systems). These works are summarized
in table 2.2 by indicating the material assumption of the matrix and the void



44 2.5. Size effects on void growth

Reference Isotropic or Crystal Void Small or
single crystal structure shape finite strains

(Niordson, 2008) isotropic — spherical finite strains(axi-symmetry)

(Shu, 1998) single crystal 2 planar cylindrical small strainsslip systems

(Borg and Kysar, 2007) single crystal 3 planar cylindrical small strainsslip systems

(Borg et al., 2008) single crystal 3 planar cylindrical finite strainsslip systems

(Hussein et al., 2008) single crystal 3 planar square finite strainsslip systems (2D)

Table 2.2: Unit cell simulations in the literature on size dependent void growth in
isotropic or single crystal matrix.

shape. Besides, some more implications can be found from this numerical approach,
which are outlined in the following.

(a) (b)

Figure 2.41: Size effects on (a) the overall stress strain response and (b) the evolution
of the normalized void volume fraction for a material with f0 ≈ 5.33 × 10−3. Both
conventional and size dependent results with Rv/l∗ = 1.0 and Rv/l∗ = 0.5 are shown for
three stress ratios ρ. Rv denotes the void radius and l∗ the material length parameter.
(Niordson, 2008)

Niordson (2008) has studied size effects on both void growth and coalescence
in isotropic materials. The strain gradient theory of Fleck and Hutchinson (2001)
with its extension to finite strains by Niordson and Redanz (2004) was utilized. In
addition to the common results, the author also showed that, for decreasing void
size, the onset of coalescence is significantly delayed and the void volume fraction
at the onset of coalescence decreases. Furthermore, it was also found that the size
effect is negligible at low stress triaxialities, e.g., T = 0.67.

Given the anisotropy of the grain, a series of studies have been performed to
understand size effects in single crystals. Shu (1998) applied the model of Shu
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Figure 2.42: The normalized void growth rate εv at ε22 = 1% as a function of l/a. l is
a length scale parameter and a the void radius. (Shu, 1998)

and Fleck (1999), which fits within the framework of Mindlin (1964) and of Fleck
and Hutchinson (1997), to a unit cell with a cylindrical void. Different initial void
volume fractions and loading conditions were considered. It was found that the
size effect is more significant under biaxial loadings than that at uniaxial loadings.
In addition, the effect on the void growth is reduced and that on the macroscopic
stress is enhanced with increasing void volume fraction. Note that even though
the simulations were performed at small strains, the influence of strain gradients
on void shape evolution was not concerned.

Borg and Kysar (2007) analyzed a unit cell with a cylindrical void accounting
for 3 in-plane slip systems. The model of Borg (2007) based on the principle
of virtual power introduced by Gurtin (2002) with the constitutive equations
motivated from Fleck and Hutchinson (2001) was used. Borg (2007) assumed that
plastic slips and plastic slip gradients contribute to plastic work and the plastic
dissipation dp per unit volume writes:

dp =
N∑
s=1

Qsγ̇s + ξsl l
s.∇γ̇s + ξsmm

s.∇γ̇s, (2.19)

where Qs (s = 1, 2, · · · , N) are the generalized stresses work-conjugate to the plastic
slips, ξsl and ξsm are the generalized stresses work-conjugate to the slip gradients
along the slip direction ls and the slip transverse direction ms. The slip transverse
direction vector m s forms a triad with the slip direction vector ls and the normal
vector to the slip plane ns. The power of internal forces pi are written as

pi = σ∼ : D∼ +
N∑
s=1

(Qs − τ s)γ̇s +
N∑
s=1

(ξsl ls + ξsmm
s) .∇γ̇s (2.20)

with the strain rate tensor D∼ and the resolved shear stress τ s. In the study, the
authors focused on deformation and stress fields around the void and void growth
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(a) (b)

(c) (d)

Figure 2.43: Size effects on the evolution of the relative void growth ((b),(d)) and that
of the overall response in terms of the true stress ((a),(c)) with respect to the logarithmic
strain. Figs. (a) and (b) are for the initial void volume fraction f0 = 3.1% and fig. (c)
and (d) for f0 = 12.6%. l denotes a length scale parameter and r0 the void radius, and κ
the stress ratio σ22/σ11. (Borg et al., 2008)

was not studied. It has been found that the angular structure of plastic slip around
the void is different when using the classical theory and the strain gradient crystal
plasticity. Especially, the double slip sectors are bigger with the non-local theory.
The authors also found that the applied stress to activate plastic slip at the void is
up to three times higher for smaller voids than for larger ones. Hussein et al. (2008)
compared the results obtained by the strain gradient crystal plasticity model of Borg
(2007) with those by DDD. The work was done at small strains considering plane
strain conditions with planar slip systems. The internal length scale of the strain
gradient theory was fixed according to the DDD simulations. The two theories
predicted similar results for two loading conditions: shearing and equi-biaxial
straining. For the equi-biaxial straining, the results obtained were consistent with
the common conclusion, however, under shearing, an overall stress independent on
the void size was found. Note that void growth was not considered in this work. Borg
et al. (2008) analyzed the growth of cylindrical voids under plane strain conditions
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within finite strain framework. Two levels of initial void volume fractions (12.6%,
3.1%), two crystal orientations and three stress ratios (σ22/σ11 = 0.5, 0.75, 1.0) were
considered. The simulations predicted a strong size effect on the overall stress strain
response for all the cases considered. However, the effect on void growth is more
pronounced for lower initial void volume fraction and higher stress ratios. The
authors also found that using the strain gradient theory changes the symmetric
structure of plastic slip, and that it makes the deformed void shape smoother.

2.5.4 Effects of surface energy

When material length scale reduces to nano-scale, surface energy can be introduced
in continuum mechanics for investigating size effects. Energy associated with the
void surface is believed to play a role in void growth when it is nano-sized.

Figure 2.

figure 2

Figure 3

Figure 4

Figure 2.44: The effect of initial void radius R0 on loading-deformation curves. (Huo
et al., 1999)

To this purpose, the problem of a spherical void of radius R0 in a finite (spherical)
elasto-plastic matrix subjected to uniform remote hydrostatic tensile stress σm was
considered by Huo et al. (1999). The matrix was supposed to be isotropic and obey
a power hardening law. It is solved based on a variational principle accounting for
the contribution of surface energy to void growth. Typical results for the initial
void volume fraction f = 0.01 are given in fig. 2.44, where the remote stress σm
normalized by the yield strength σY is plotted as a function of the actual radius r0 of
the void normalized by its initial value R0, i.e., η0 = r0/R0. It can be seen that small
voids are less susceptible to growth than larger ones. The authors also concluded
for typical metals that the effect of the surface energy is negligible for voids larger
than 100 nm in size, while may become significant when the void size is of 10 nm.
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In addition, some efforts have also been devoted to development of homoge-
nization models for voided materials accounting for surface energy. The details
of the models are presented in the next section.

2.5.5 Extension of the Gurson model accounting for void
size effects

In the past years, efforts have been dedicated to extend the Gurson model in order to
account for effects of void size. All the models predict a reduced void growth rate and
an increased loading carrying capacity. The models are summarized in the following.

Model based on Taylor dislocation model

Wen et al. (2005) introduced the intrinsic material length l:

l = 18α2
(
µ

σ0

)2
b (2.21)

with an empirical material constant α around 0.3, the shear modulus µ, the Burgers
vector b and the yield stress σ0, based on the Taylor dislocation model (Taylor,
1934), which associates the shear flow stress τ with the dislocation density ρ:

τ = αµb
√
ρ, (2.22)

Considering an axisymmetric macroscopic strain rate case, the authors obtained
the yield surface for a rigid perfectly plastic material containing void given by

1
3 tr Σ∼ = σ0

6π

∫
Ω
dΩ

∫ 1

f
[2D + λ

2 (1− 3 cos2 φ)]

√√√√√ 1 +
√

5
2L
(
f
λ4

)1/3

λ2 + 2Dλ(1− 3 cos2 φ) + 4D2
dλ

λ
(2.23)

Σe = σ0

6π

∣∣∣∣∣∣∣∣
∫

Ω
dΩ

∫ 1

f
[(1− 3 cos2 φ)D + λ]

√√√√√ 1 +
√

5
2L
(
f
λ4

)1/3

λ2 + 2Dλ(1− 3 cos2 φ) + 4D2 dλ

∣∣∣∣∣∣∣∣
(2.24)

where f denotes the void volume fraction, D is the ratio of macroscopic volumetric
strain rate to the effective strain rate, and λ = r3/b3 with the external radius of
the matrix b.

∫
Ω dΩ =

∫ π
0 sin θ dθ

∫ 2π
0 dφ is the integration over spherical angles θ

and φ. L, a parameter associated with the intrinsic material length l, is defined by

L = l trE∼
a

(2.25)

with the trace of the macroscopic strain E∼ and the radius of the void a. Based
on the yield stress, a set of constitutive equations has been established for an



2. Literature review 49

elastic-plastic work hardening solid following the approach of Tvergaard (1989).
However, this model predicts a very weak size effect on the overall stress-strain
curves in uniaxial tension.

Model considering an von Mises interface

Figure 2.45: Unit cell with the consideration of interface stress for incorporating the
void size effect into the Gurson model. (Morin et al., 2015)

Dormieux and Kondo (2010) introduced the size effect into the Gurson model
by considering an interface at the void surface (see fig. 2.45). Assume that the
solid matrix obeys the von Mises yield criterion

σ2
eq = 3

2σ∼
′ : σ∼

′ 6 σ2
0 (2.26)

with the von Mises equivalent stress σeq, the stress tensor deviator σ∼ ′ and the
yield stress in simple tension σ0, and that the interface obeys a 2D plane stress
von Mises-type criterion

3
2σ∼
′
S

: σ∼
′
S
6 k2

int (2.27)

with the plane stress deviator tensor σ∼ ′S and the yield limit of the interface kint.
A non-dimensional parameter Γ is therefore introduced, characterizing the void
size effect:

Γ = kint
aσ0

(2.28)

with the void radius a. Through the limit analysis, the authors obtained a yield
surface given by

tr Σ∼ = σ0

2
arcsinh(ξ)− arcsinh(fξ) + Γ 6ξ√

ξ2 + 3/5

 (2.29)
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and

Σeq = σ0

√1 + f 2ξ2 − f
√

1 + ξ2 + Γ 9f
5
√
ξ2 + 3/5

 , (2.30)

where f denote the void volume fraction and the parameter ξ = (2/f)(Dm/Deq) is
define from the mean and the equivalent deviatoric parts Dm, Deq of the macroscopic
strain rate D∼ . Based on this yield surface, a set of constitutive equations was
formulated and implemented in a finite element code by Morin et al. (2015).
The same approach was also used by Monchiet and Kondo (2013) for a matrix
containing a spheroidal void.

Model based on Fleck–Hutchinson strain gradient plasticity theory

Monchiet and Bonnet (2013) extended the Gurson model considering the phe-
nomenological strain gradient plasticity theory of Fleck and Hutchinson (1997) for
the solid matrix. Note that the macroscopic strain gradient was not taken into
account in the macroscopic dissipation, which was justified by the hypothesis that
the size of the representative volume element is large compared with the internal
length scales and the size of the voids. With some approximations, an explicit
expression of the macroscopic yield surface was obtained, defined by

Φ(Σ∼ , f, η) =
Σ2
eq

σ2
0

+ 2f cosh
(

3
2η

Σm

σ0

)
− 1− f 2 = 0, (2.31)

where η is a coefficient related to the material length parameter evaluated by

η = 3
ln(f)

arcsinh
(
α

u

)
−
√

1 + u2

α2

u=1

u=f1/3

(2.32)

with

α = 1
3

√
2
5
a

l1
. (2.33)

Here, a denotes the void radius and l1 is the material length parameter in the
strain gradient plasticity theory of Fleck and Hutchinson (1997). A plastic model
was also derive based on the yield surface, which predicted a strong size effect
on both the stress-strain response and the void growth rate for relatively high
stress triaxiality T = 3.
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2.6 Conclusions

Austenitic stainless steels of 300 series are widely used as structural materials
in nuclear power plants, because of their good mechanical properties. However,
irradiation produces in the materials different microstructural defects, e.g., Frank
loops, voids, etc, resulting in a modification of mechanical properties of the materials.
It has been observed that the fracture toughness of the steels decreases rapidly with
radiation dose, especially for the radiation damage less than 10 dpa. In stainless
steels irradiated up to 10 dpa, ductile fracture is a dominant fracture mechanisms.
Besides the decrease of fracture toughness with irradiation, a transition from classical
dimple fracture to channel fracture and nano-dimple fracture has been observed
with increasing dose in stainless steels. The physical foundation of the transition
of fracture mechanism is still not well understood.

Dimple fracture, i.e., ductile fracture due to void growth and coalescence, is a
dominant fracture mechanism in unirradiated stainless steels. Ductile fracture has
being studied in numerous studies. Among various works, FE unit cell simulations
are often used to investigate the process of void growth and coalescence under
different conditions, e.g., different stress states and initial void volume fractions;
Analytical models are proposed for simulating ductile damage/fracture at structure
level. A large number of works were devoted to materials assumed to be isotropic
(von Mises materials).

The fracture due to void growth and coalescence remains in stainless steels
after irradiation with a trend of decreasing dimple size. These smaller dimples
could result from irradiation-induced micro-sized precipitates or nano-sized cavities.
Although voids involved in the ductile fracture process of irradiated steels may have
different origins, they are usually intragranular voids, i.e., voids located inside a
grain. Few works were devoted to growth and coalescence of intragranular voids,
and this problem attracts increasing attentions in recent years. Intragranular voids
can be equivalently considered as voids embedded in a single crystal matrix. In
this case, effects of the anisotropy of single crystal matrix on void evolution (void
growth and coalescence) need to be investigated. In addition, as presented in this
section, irradiated stainless steels exhibit a particular strain hardening/softening
behavior, whose effects on void evolution is still not clear. Moreover, different
approaches were recently adopted for obtaining the effective yield surface of single
crystals containing voids. However, there is currently no model for voided single
crystals, which is able to describe the void growth up to coalescence and can be
used to carry out structural computations.
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As mentioned above, voids that are involved in ductile fracture process of
irradiated stainless steels have potentially different size (nano to micrometers).
Size effects have been predicted by different approaches for voided materials. In
general, it has been found that “smaller is stronger” and “smaller is slower”. It
implies that, with a given void volume fraction but a decreasing void size, loading
carrying capacity of porous materials increases and void growth rate decreases. It
is thus necessary to investigate size effects on void growth in FCC single crystals.
Moreover, for taking into account size effects, the Gurson model has been extended
through different approaches, such as introducing strain gradient plasticity, interface
energy, etc. However, there is currently no ductile fracture model incorporating
size effects at single crystal scale.

In the following, ductile fracture due to void growth and coalescence at grain
scale will be investigated. FE unit cell simulations will be performed for studying
void growth and coalescence in a matrix governed by single crystal plasticity
(chapter 3). Effects of some basic aspects, including crystal orientation and stress
triaxiality, will be first studied in the case of unirradiated crystals. Effects of post-
irradiation hardening/softening behavior will assessed in a second step. Following
the simulations, an elastoviscoplastic model at finite strains will be proposed for
single crystals containing voids (chapter 4). The model incorporates heuristically
influences of hardening behavior of single crystal matrix and is able to describe void
growth up to coalescence. The model will then be assessed based on the results
of the unit cell simulations in the case of unirradiated single crystals. Size effects
on void growth and coalescence in single crystals will be investigated (chapter 5).
For this purpose, a strain gradient crystal plasticity model at finite strains will
be derived following the micromorphic approach. FE unit cell simulations will be
performed with this model for size dependent void growth. This model can be
further coupled with the model for porous single crystals, resulting a non-local
ductile fracture model for single crystals.
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Porous single crystals: unit cell

simulations

Résumé
Ce chapitre présente les simulations par éléments finis pour étudier la croissance
et la coalescence des cavités dans le monocristal. Pour cela, des cellules unitaires
tri-dimensionnelles avec une cavité sphérique sont utilisées. Le modèle de plasticité
cristalline utilisé est présenté. Les simulations sont d’abord réalisées pour compren-
dre l’influence de l’orientation cristallographique, de la triaxialité et de la porosité
initiale sur la croissance et la coalescence des cavités. L’effet de l’irradiation est
ensuite introduit par un écrouissage post-irradiation. On montre que la croissance
de cavité est plus rapide et que la coalescence commence à une déformation plus
petite dans un monocristal irradié.
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The aim of the section is to study mechanical behaviors of voided FCC single
crystals, including effective stress–strain relations, void growth and coalescence,
by 3D UC simulations. The single crystal plasticity model for the matrix of
voided single crystals in described in a first step, followed by the presentation
of the FE formulation of UC simulations. The first part of simulations will be
devoted to assessment of effects of several parameters, including stress triaxiality,
initial void volume fraction and crystal orientation of the matrix, in unirradiated
single crystals. The second part of simulations will be devoted to irradiated
single crystals. Effects of the post-irradiation hardening law on void growth and
coalescence are investigated, by comparison with results obtained by the hardening
law for unirradiated single crystals.

3.1 Crystal plasticity model for void-free single
crystals

3.1.1 FCC single crystals

In the present work, face-centered cubic (FCC) single crystals are considered, since
the crystal structure of austenitic stainless steels corresponds to this type. FCC
lattice structure, as shown in fig. 3.1, has lattice points on the faces of the cube in
addition to the corner lattice points. In FCC single crystals, plastic slip occurs on
12 slip systems, which are specified by the slip direction vector m s and the normal
vector n s to the slip plane as summarised in table 3.1 (Schmid and Boas, 1935).

(a)
(b)

Figure 3.1: (a) FCC lattice structure; (b) Plastic slip systems for FCC single crystals.
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s 1 2 3 4 5 6 7 8 9 10 11 12
label B4 B2 B5 D4 D1 D6 A2 A6 A3 C5 C3 C1
n s (111) (11̄1) (1̄11) (1̄1̄1)
m s [1̄01] [01̄1] [1̄10] [1̄01] [011] [110] [01̄1] [110] [101] [1̄10] [101] [011]

Table 3.1: Slip systems in FCC single crystals. The labels are given according to the
Schmid–Boas convention (Schmid and Boas, 1935).

p 1 2 3 4
plane(p) (111) (11̄1) (1̄11) (1̄1̄1)

Table 3.2: Frank loop systems. Plane(p) denotes the normal to the plane of system p.

Frank loops are one of irradiation-induced microstructural defects in austenitic
stainless steels and will be considered in the hardening laws in the following. In the
present work, Frank loops are supposed to remain on the four {111} dislocation
slip planes (see table 3.2).

3.1.2 Kinematics

Figure 3.2: Multiplicative decomposition of the deformation gradient.

For void-free single crystals, a lattice orientation is attributed to each material
point. The existence of directors1 associated with lattice orientation allows for the
definition of a unique isoclinic intermediate local configuration Ci, as recommended
by Mandel (1973). This ensures the uniqueness of the multiplicative decomposition of
the deformation gradient F∼ (see. fig. 3.2) adopted within the finite strain framework:

F∼ = E∼ .P∼ , (3.1)
1Director vectors are the notion that Mandel (1973) used for define the plastic media. According

to Mandel, the plastic deformation is the result of the discontinuity of displacement or rotation
between micro-elements which constitute the macroscopic media. Within one micro-element, there
is no discontinuity. In order to describe movement of a micro-element, a triplet of director vectors
d k (k = 1, 2, 3) is attached to the center of each micro-element, whose position indicates the
orientation of the micro-element.
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with the elastic part E∼ and the plastic part P∼ of the deformation gradient F∼ .
The crystal orientation is the same in the initial local configuration C0 and the
intermediate local configuration Ci. The determinants of F∼ , E∼ and P∼ describe
the change of volume and of density of a material point:

J = det (F∼ ) = V

V0
= ρ0

ρ
, (3.2)

Je = det (E∼ ) = V

Vi
= ρi

ρ
, (3.3)

Jp = det (P∼ ) = Vi
V0

= ρ0

ρi
, (3.4)

where V0, Vi and V denote the volume at the reference configuration C0, the
intermediate configuration Ci and the current configuration C; ρ0, ρi and ρ represent
the density at the reference configuration C0, the intermediate configuration Ci and
the current configuration C. Note that Jp = 1 due to the incompressible plasticity
of void-free single crystals undergoing plastic slip.

The velocity gradient L∼ can be expressed as

L∼ = Ḟ∼ .F∼
−1 = L∼

e +E∼ .L∼
p.E∼

−1, (3.5)

with the elastic part of the velocity gradient L∼
e in the current configuration C

L∼
e = Ė∼ .E∼

−1, (3.6)

and the plastic part of the velocity gradient L∼
p in the intermediate configuration Ci

L∼
p = Ṗ∼ .P∼

−1. (3.7)

3.1.3 Definition of stresses

According to the approach of Mandel (1973) (see also Sabnis et al. (2012) and
Sabnis et al. (2013)), stress tensors are defined as follows.

The second Piola–Kirchhoff stress tensor Π∼
e, defined with respect to the

intermediate configuration Ci, is given by

Π∼
e = JeE∼

−1.σ∼ .E∼
−T , (3.8)

where σ∼ is the Cauchy stress defined in the current configuration C.
The elastic Green–Lagrange strain tensor E∼

e
GL

is defined as

E∼
e
GL

= 1
2
(
E∼
T .E∼ − 1∼

)
. (3.9)
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Π∼
e is related to E∼

e
GL

by the elasticity law:

Π∼
e = C

≈
: E∼

e
GL
, (3.10)

where C
≈

is the fourth-order anisotropic elasticity tensor, which can be expressed
in terms of three parameters C11, C12 and C44 for cubic elasticity.

In addition, the driving force for single crystal plasticity is known as the
Mandel stress M∼ , which is defined in the intermediate configuration and is work-
conjugate to L∼

p:

M∼ = JeE∼
T .σ∼ .E∼

−T = E∼
T .E∼ .Π∼

e. (3.11)

3.1.4 Flow rule

For each slip system, s, a yield function can be defined as:

φs = τ ∗s − τ sc , with τ ∗s > 0 (3.12)

where τ ∗s is a scalar stress and τ sc is the critical resolved shear stress (CRSS). For
void-free single crystals, the scalar stress τ ∗s for system s is given by

τ ∗s =
√
τ sτ s = |τ s|, (3.13)

where τ s is the resolved shear stress defined as:

τ s = M∼ : N∼
s, (3.14)

with the Schmid tensor N∼
s = m s ⊗ n s (m s is the slip direction vector and n s is

the normal vector to the slip plane of slip system s). For each slip system, yielding
occurs for φs > 0. The definition of τ ∗s provides a possibility for formulating the
void-free and porous single crystal model in a unified form (see section 4.1).

The plastic strain rate L∼
p can be defined as

L∼
p = Ṗ∼ .P∼

−1 =
N∑
s=1

γ̇s
∂φs

∂M∼
=

N∑
s=1

γ̇sN∼
∗s, (3.15)

with N∼
∗s

N∼
∗s = ∂φs

∂M∼
= ∂|τ s|

∂τ s
∂τ s

∂M∼
= sign (τ s)N∼

s (3.16)

and the plastic slip rate γ̇s given by

γ̇s = γ̇ref

〈
τ ∗s − τ sc
τref

〉n
, (3.17)

where γ̇ref is the reference slip rate and τref is a reference resolved shear stress.
Note that 〈•〉 = • if • > 0, else 〈•〉 = 0. Here, γ̇s is non-negative by its definition.
The sign of plastic slip is given in Eq. (3.15).
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3.1.5 Hardening rule
Unirradiated single crystals

For the hardening rule of unirradiated single crystals, an evolution law involving
dislocation densities as the only source of hardening is chosen. Following Kubin et al.,
2008, the slip resistance τ sc , i.e., the critical resolved shear stress, on a particular
slip system s is decomposed into a thermal part τ sT and an athermal part τ sA:

τ sc = τ sT + τ sA. (3.18)

τ sT corresponds to lattice friction which is dependent on temperature and assumed
to be constant at a given temperature. τ sA represents the athermal contribution of
the flow stress. For unirradiated single crystals, only the interaction of dislocation
network contribute to τ sA (Franciosi and Zaoui, 1982), which is expressed as

τ sA = µbD

√√√√ 12∑
u

asuρuD, (3.19)

where bD is the norm of the Burgers vector of dislocations, µ the shear modulus, ρuD
the dislocation density of system u, and asu the matrix of long-range interactions
between dislocations. The form of interaction matrix asu is given in appendix A
for FCC crystals.

The description of the evolution of dislocation densities is based on two
mechanisms: the multiplication and the annihilation of dislocations (Mecking
and Lücke, 1970; Essmann and Rapp, 1973; Teodosiu and Sidoroff, 1976; Tabourot
et al., 1997; Cheong and Busso, 2004). The dislocation density ρsD follows:

ρ̇sD = 1
bD

( 1
Ls
− gcρsD

)
γ̇s, (3.20)

where Ls is the mean free path of the dislocation segment before being stopped at
obstacles in the form of forest dislocations and gc is the critical distance controlling
the annihilation of dislocations with opposite signs. For unirradiated crystals,
Ls is written as

Ls = LsD = κ√
12∑
u
bsuρuD

. (3.21)

The κ parameter is proportional to the number of obstacles crossed by a dislocation
before being pinned. The matrix bsu describes the interaction between dislocations;
it has the same form as the interaction matrix asu (see appendix A).
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Irradiated single crystals

For irradiated single crystals, the slip resistance τ sc is also decomposed, following
Eq. (3.18), into the thermal part τ sT , which assumes to be a constant at a given
temperature, and the athermal part τ sA . For the athermal contribution of the
flow stress τ sA, in addition to the dislocation term (Eq. (3.19)), two more terms are
considered to contribute to the athermal slip resistance for the irradiated material:

τ sA = µbD

√√√√ 12∑
u

asuρuD︸ ︷︷ ︸
dislocation term

+αLµbL

√√√√ 4∑
p

φLρ
p
L︸ ︷︷ ︸

loop term

+ τa exp
(
−γ

s

γ0

)
︸ ︷︷ ︸

unpinning term

, (3.22)

where αL denotes a parameter setting the relative contribution of Frank loops to
the hardening, bL the norm of the Burgers vector of Frank loops, φL the mean
diameter of Frank loops, ρpL the density of Frank loops in the slip plane p, τa a
reference shear stress for dislocation unpinning and γ0 a coefficient to adjust the
avalanche speed after unpinning the dislocations.1

The first term (called the dislocation term in the following) on the right-hand
side of Eq. (3.22) is the slip resistance provided by the interaction of dislocation
network (Franciosi and Zaoui, 1982). The second term (loop term) accounts for the
effect of Frank loops generated by irradiation impeding dislocation motion. Based
on Mughrabi’s observation (Mughrabi, 1996) that the junction energy of dislocations
and loops is significantly greater than that of thermal activation, the hardening due
to Frank loops is considered to contribute to the athermal part. The third term
(unpinning term) is introduced based on the observation of Tanguy et al. (2013) that
the hardening effect is under-estimated if only the hardening due to Frank loops is
considered as a dispersed barrier hardening. This unpinning term aims at modeling
the static ageing effects arising once irradiation defect cascades are present in the
material microstructure (Trinkaus et al. (1997a), Trinkaus et al. (1997b), and Singh
et al. (1997)). For the unirradiated material, only the dislocation term is considered.

In irradiated stainless steels, the evolution of dislocation densities also follows
the form of Eq. (3.20) but with modified mean free path Ls. In fact, Frank loops
produced by irradiation are not rigid obstacles. Molecular dynamics simulations by
Rodney and Martin (1999) showed that Frank loops can interact with dislocations,
resulting in the unfaulting of the loops. According to Yang et al. (2003), dislocations
can be emitted from the circumference of the loop during the interaction. These

1A more complex equation taking into account the effect of voids on hardening can be derived
as proposed in Tanguy et al. (2013). However, considering the dose range of interest in this study,
the effect of voids on hardening is considered negligible.



3. Porous single crystals: unit cell simulations 61

results motivate the modification of the mean free path Ls in order to include the
influence of Frank loops; it is assumed to take the following form:

1
Ls

= 1
LsD

+ 1
LL

, (3.23)

where LsD is still given by Eq. (3.21) and the Frank loop contribution to the
mean free path writes

LL = κ√
kdl

4∑
p
φLρ

p
L

, (3.24)

where kdl is a coefficient setting the effective interaction between Frank loops
and dislocations.

The model proposed by Krishna and his co-workers (Krishna et al., 2010; Krishna
and De, 2011) is adopted to describe the evolution of Frank loop densities. It is
based on the mechanism of annihilation of Frank loops by dislocations gliding in
the loop’s plane. The probability and frequency of the annihilation of a Frank loop
are taken into account. The decrease rate of Frank loop density ρ̇pL on plane p is

ρ̇pL = −A
 ∑
s∈plane(p)

ρsD

 φL
bD

(
ρpL − ρsat

L

) ∑
s∈plane(p)

γ̇s

 , (3.25)

where A denotes the annihilation area and ρsat
L the stabilized effective density of

Frank loops. s ∈ plane(p) represents all the dislocation slip systems having the
same slip plane as the Frank loop p.

3.2 FE formulation of unit cell simulations

The simulations are performed with the FE software Zset (Besson and Foerch,
1998). Throughout the section, variables at microscopic and macroscopic scale
are distinguished. The variables with an overline symbol (e.g., F∼ ) are used for
macroscopic scale at which an effective behavior of the unit cell is observed, while
the variables without the overline symbol describe the behavior at the microscopic
scale, i.e., at each material point inside the unit cell.

The problem setup is shown in fig. 3.3. It is assumed that the distribution of
voids in the single crystal is homogeneous. Thus, a unit cell, i.e., a representative
elementary volume, Ωtot

0 can be considered as a cube of length L0 with a spherical
void of radius R0 at its center (see fig. 3.4a). Notice that L0 characterizes the
average distance between voids. Thus, the initial void volume fraction f0 is

f0 = 4
3π

R3
0

L3
0
. (3.26)
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Figure 3.3: Problem setup for unit cell simulations.

In this work, 5 different initial void volume fractions are taken into account for
the simulations: f0 = 0.005, 0.01, 0.02, 0.05 and 0.1. In addition, the edges of the
unit cell are initially parallel to the Cartesian coordinate xi axes.

The unit cell is meshed with reduced-integration quadratic hexahedral elements
(see fig. 3.4b). Numerical periodic homogenization at finite strains is used for
the simulations and the elements are enhanced by introducing average strains
(F ij) as degrees of freedom. The unit cell is subjected to periodic boundary
conditions expressed by:

u = F∼ .X + v , (3.27)

where F∼ denotes the macroscopic deformation gradient, u the displacement vector
and v a periodic fluctuation vector which obey the following periodicity condition:

v (x+) = v (x−) (3.28)

where x+ and x− denote the position of homologous nodes on opposite faces
of the unit cell.

(a) (b)

Figure 3.4: Unit cell: (a) the geometry, (b) half of a typical FE mesh with f0 = 0.01.
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The microscopic first Piola–Kirchhoff stress tensor S∼ and the associated
macroscopic tensor S∼ are related by

S∼ = 1
V tot

0

∫
Ωtot

0

S∼ dV0 = (1− f0) 1
V mat

0

∫
Ωmat

0

S∼ dV0, (3.29)

where V tot
0 and V mat

0 denote respectively the total volume of the unit cell and the
volume of the matrix in the reference configuration. In uniaxial tension, the first
Piola–Kirchhoff stress corresponds to the so-called engineering stress.

The macroscopic Cauchy stress tensor σ∼ is related to the macroscopic first
Piola–Kirchhoff stress tensor by:

σ∼ = 1
J
S∼ .F∼

T
, (3.30)

with J = det
(
F∼

)
. The Cauchy stress tensor corresponds to the true stress in

the uniaxial tension case.
The microscopic deformation gradient F∼ and the macroscopic tensor F∼ are

related by:

F∼ = 1
V tot

0

∫
Ωtot

0

F∼ dV0. (3.31)

Constant macroscopic Cauchy stress triaxiality T is imposed with

σ∼ =

 σ11 0 0
0 σ22 0
0 0 σ33

 = σ11

 1 0 0
0 η2 0
0 0 η3

 = σ11η
∼

(3.32)

with
η2 = σ22

σ11
, η3 = σ33

σ11
, 0 6 η2, η3 6 1, (3.33)

such that

T = σm
σeq

= 1 + η2 + η3

3
√

1− η2 − η3 − η2η3 + η2
2 + η2

3

. (3.34)

In the present study, axisymmetric loadings are mainly considered, which implies
η2 = η3 = η so that the imposed macroscopic Cauchy stress triaxiality is given by

T = 1 + 2η
3(1− η) . (3.35)

Moreover, moderate to high stress triaxialities are investigated (see table 3.3), as
they correspond to the stress triaxialities encountered in ductile failure process
zones, such as in the vicinity of a crack tip. The method used to impose a constant
triaxiality with periodic boundary conditions is described in appendix B.
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T 1.0 1.5 2.0 3.0
η 0.4 0.538 0.625 0.727

Table 3.3: Values of the stress triaxiality T and corresponding η for axisymmetric
loadings used in the simulations.

Each unit cell has a different crystal orientation characterized by the lattice
orientations aligned with the three coordinate axes x1–x2–x3. Five crystal
orientations are considered: [100]–[010]–[001], [110]–[1̄10]–[001], [111]–[2̄11]–[01̄1],
[210]–[1̄20]–[001] and [1̄25]–[12̄1]–[210]. They have different symmetry about the
coordinate planes and correspond to different number of primary slip systems
activated in uniaxial tension (see table 3.4). For the sake of brevity, the crystal
orientations are named in the following by the lattice orientation along the main
loading direction (axis x1), i.e., [100], [110], [111], [210] and [1̄25].

Orientation name
Crystallographic orientation Number of

Schmid factor
along x1–x2–x3 primary slip systems

[100] [100]− [010]− [001] 8 1√
6
≈ 0.408

[110] [110]− [1̄10]− [001] 4 1√
6
≈ 0.408

[111] [111]− [2̄11]− [01̄1] 6 2
3
√

6
≈ 0.272

[210] [210]− [1̄20]− [001] 2
√

6
5 ≈ 0.490

[1̄25] [1̄25]− [12̄1]− [210] 1
√

6
5 ≈ 0.490

Table 3.4: Crystal orientations, number and Schmid factor of primary slip systems
activated in uniaxial tension along x1.

3.3 Results for unirradiated single crystals

The simulations are first performed for unirradiated single crystals. The material
parameters used are closely related to those of a solution annealed 304 austenitic
stainless steel at 340 ◦C (see Han (2012)).Among the parameters, asu and bsu

are two matrices (12 × 12 for FCC single crystal), describing the interaction
between dislocations. Each of them is constructed by 6 independent parameters:
a1, a2, · · · , a6 for asu and b1, b2, · · · , b6 for bsu (see appendix A). The matrix asu is
assumed to be identical for all s, u = 1, ..., 12 (this is different from the matrix used
in the work of Han (2012) which is identified by DDD simulations) to avoid some
numerical bifurcation problems maybe encountered later in section 4.1; bsu is set
equal to 0 if s = u and equal to 1 if s 6= u. Due to the crystal structure and to
the considered slip systems, τ sT can be considered as having the same value for all
systems. The initial dislocation density is supposed to be equal for every system.
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Hence, the initial value of the dislocation density for system s is ρsD|ini = ρtot
D /12,

where ρtot
D is the total dislocation density measured in experiments. bD is the norm

of the Burgers vector 1
2a 〈110〉 of dislocations. All the material parameters used

for the simulations are given in table 3.5.

C11 C12 C44 τ sT n
199 GPa 136 GPa 105 GPa 88 MPa 15
γ̇ref τref µ gc κ

1.47× 1014 s−1 88 MPa 65.6 GPa 2.6× 10−9 m 42.8
asu bsu (s 6= u) bsu (s = u) bD ρs0
0.124 1 0 2.54 Å 8.33× 108 m−2

Table 3.5: Material parameters for the unit cell simulations.

The most relevant results could be discussed after choosing the three following
orientations: [100], [111] and [1̄25] (see table 3.4). In uniaxial tension, [100] is
a multiple slip (8 primary slip systems) orientation with mirror symmetry about
three coordinate planes; [111] is a multiple slip (6 primary slip systems) orientation
with mirror symmetry about the x1–x2 coordinate plane, and [1̄25] represents
single slip orientation with no mirror symmetry about the coordinate planes. Note
that the same primary slip systems are activated in axisymmetric loading as
in uniaxial tension along axis x1. Schmid factors calculated for the different
orientations in the case of uniaxial tension along axis x1 (see table 3.4) will be
used to interpret the results.

3.3.1 FE discretisation effect

Before discussing simulation results, a study of the effect of finite element
discretisation was first conducted to optimise computation time while keeping
sufficient accuracy. Due to the anisotropy of the matrix, complete unit cells are
used for the simulations. Two different finite element discretisations are considered
as shown in fig. 3.5a and fig. 3.5b for one eighth of the FE mesh. The total number
of elements used for the meshes can by calculated by 24× n3, where n = 5 (3000
elements) for the coarse mesh (fig. 3.5a) and n = 10 (24000 elements) for the fine
mesh (fig. 3.5b). The variable n is used to characterize the number of elements
of the unit cell as shown in fig. 3.5b. The crystallographic orientation [100] is
chosen for this study with initial void volume fraction f0 = 0.01 and two levels
of stress triaxiality are considered: T ∈ {1, 3}.
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(a) (b)

Figure 3.5: Different FE discretisation: (a) the coarse mesh (n = 5) for 1/8 of the full
geometry (d) the fine mesh (n = 10) for 1/8 of the full geometry.

The influence of the FE discretisation on the overall stress strain behaviour and
the void volume fraction evolution is evaluated. The overall Cauchy stress σ∼ is

σ∼ = 1
V tot

∫
Ωtot

σ∼ dV = (1− f) 1
V mat

∫
Ωmat

σ∼ dV, (3.36)

where V tot and V mat denote respectively the total volume of the unit cell Ωtot

and the volume of the matrix Ωmat in the current configuration, and the void
volume fraction f is calculated by

f = V tot − V mat

V tot
, (3.37)

where the volume of the matrix V mat in the current configuration is calculated
by a post-processing of Zset software and the total volume of the unit cell V tot

in the current configuration can be obtained as

V tot = det
(
F∼

)
V tot

0 , (3.38)

with V tot
0 the initial volume of the unit cell.

The evolution of normalised macroscopic Cauchy stress component σ11/τ
s
T and

the void volume fraction f with respect to the deformation in the main loading
direction F 11 − 1 are shown in fig. 3.6. It can be seen that the influence of FE
discretisation on the overall stress strain behaviour and the evolution of void volume
fraction is negligible for both low stress triaxiality (T = 1) and high stress triaxiality
(T = 3). Even in the softening regime at T = 3, its influence is weak.

Based on this result, the coarse mesh (n = 5) will be used in the following,
except otherwise stated, to obtain the curves of the macroscopic Cauchy stress
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σ11 and the void volume fraction f . In particular, the fine mesh (n = 10) will
be used to investigate local plastic slip fields in section 3.3 but the coarse mesh
(n = 5) will be used later in section 3.4.
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Figure 3.6: FE discretisation effect on (a) the overall stress strain behaviour (b) the
void volume fraction for the [100] orientation and f0 = 0.01.

3.3.2 Overall stress–strain response

Figure 3.7a shows the overall stress strain response of the unit cell for the [100]
orientation with f0 = 0.01 and the stress triaxiality T varying from 1 to 3. The
macroscopic stress σ11 is normalised with respect to τ sT . It can be seen that the
behaviour consists of a hardening regime followed by a softening regime, resulting
from the competition between the strain hardening of matrix, the softening due
to void growth and the softening due to void coalescence. The softening occurs
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earlier at high stress triaxiality compared to that at low stress triaxiality. This can
be explained by faster void growth at higher stress triaxiality.

Moreover, a transition from triaxial to uniaxial straining associated with
the localization of the plastic flow in the intervoid ligament is observed, which
corresponds to the onset of void coalescence according to Koplik and Needleman
(1988). In this work, it is determined by plotting the transverse macroscopic
strain F 33 − 1 as a function of the longitudinal macroscopic strain F 11 − 1. It
is observed that F 33 − 1 reaches a stabilized value. In this study, by convention,
the time step for which the transverse strain F 33 − 1 reaches 99% of its stabilized
value, is regarded as the onset of coalescence. The corresponding longitudinal

(a)

(b)

Figure 3.7: Effect of stress triaxiality on the overall behaviour of the unit cell for the
crystallographic orientation [100], f0 = 0.01 and triaxiality T from 1 to 3: (a) overall
stress–strain curves and (b) evolution of the transverse strain F 33 − 1 vs. longitudinal
strain F 11 − 1.
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F 11 − 1 and porosity are defined as the critical strain F 11c − 1 and critical porosity
fc at the onset of coalescence. The onset of void coalescence is indicated by a
hollow square on each curve. It can be observed that the critical strain F 11c − 1
decreases when the stress triaxiality T increases. Void coalescence will be discussed
in more details later in this section.

(a)

(b)

Figure 3.8: Effect of crystallographic orientation on the overall behaviour of the unit
cell for f0 = 0.01, triaxiality T = 2 and different crystallographic orientations: (a) overall
stress–strain curves and (b) evolution of the transverse strain vs. longitudinal strain.

The effect of crystallographic orientation on the overall behaviour is presented
in fig. 3.8, where the five crystallographic orientations are considered with the
initial void volume fraction f0 = 0.01 and the stress triaxiality T = 2. The [111]
orientation shows the hardest response and the orientations [210] and [1̄25] exhibit
the softest response (see fig. 3.8a). The peak stress depends on the orientation
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and this agrees with the results obtained by Ha and Kim (2010) for FCC single
crystals and by Yerra et al. (2010) for BCC single crystals. In particular, the [110]
orientation exhibits the highest peak stress and this is also observed by Ha and Kim
(2010). As a general result, the softening regime starts earlier for the orientation
[111] compared with the other orientations, which implies the fastest void growth
for the [111] orientation, as will be confirmed in fig. 3.10.

For the asymmetric orientations, especially [210] and [1̄25], the straining of the
unit cell along the loading axis is accompanied by shearing, and the transverse
straining of the unit cell may stop only along one transverse axis (x2 or x3 axis),
which is interpreted as the preferred direction of coalescence. In that case, the
onset of coalescence is determined in the “preferred coalescence direction”, where
void coalescence occurs first. As shown in fig. 3.8b, the [111] orientation leads
to the earliest onset of coalescence.

3.3.3 Void growth

Figure 3.9 shows the effect of stress triaxiality on the evolution of void volume
fraction f for the [100] orientation with the initial void volume fraction f0 = 0.01
and the stress triaxiality T varying from 1 to 3. The results confirm the previous
analysis: higher stress triaxiality leads to faster void growth, which induces earlier
softening of the unit cell. These results are consistent with the observation of
Ha and Kim (2010) for FCC single crystals.
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Figure 3.9: Evolution of void volume fraction: effect of stress triaxiality for crystallo-
graphic orientation [100], f0 = 0.01 and triaxiality T from 1 to 3.

The evolution of void volume fraction for different orientations with f0 = 0.01
is presented in fig. 3.10a for the stress triaxiality T = 1 and in fig. 3.10b for
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Figure 3.10: Evolution of void volume fraction: (a) effect of stress triaxiality for
crystallographic orientation [100], f0 = 0.01 and triaxiality T from 1 to 3, (b) effect of
crystallographic orientation for f0 = 0.01 and stress triaxiality T = 1 and (c) effect of
crystallographic orientation for f0 = 0.01 and stress triaxiality T = 3.

the stress triaxiality T = 3. Generally, the void growth rate depends on the
crystallographic orientation. The effect of crystallographic orientation is significant
when the stress triaxiality is small (T = 1 as in fig. 3.10a), which is in agreement
with the results of Yerra et al. (2010) for BCC single crystals and those of Ha
and Kim (2010) for FCC single crystals. However, the influence of the orientation
becomes much weaker at high stress triaxiality (T = 3 as in fig. 3.10b). Moreover,
in both cases of T = 1 and T = 3, the void growth rate is significantly higher
in the [111] orientation than the other orientations, which is in good agreement
with the previous analysis. A significant result from this calculation is the very
limited void growth and the quasi-incompressible response for the [210] and [1̄25]
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orientations at low stress triaxiality T = 1.
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Figure 3.11: Evolution of void aspect ratios W2 and W3 for (a) the crystallographic
orientation [100] and (b) [1̄25] with triaxiality T = 1 and T = 3.

Void aspect ratios are also investigated, allowing to characterise the evolution
of the void shape. The evolution of two aspect ratios W2 = R1

R2
and W3 = R1

R3

are presented in fig. 3.11a for the [100] orientation and in fig. 3.11b for the [1̄25]
orientation with the initial void volume fraction f0 = 0.01. Ri (i = 1, 2, 3) is the
length from the centre of void to the node at the initial pole of the void surface in
the xi direction. Two levels of stress triaxiality T = 1 and T = 3 are considered
here. For both orientations, the aspect ratios become larger than 1 before void
coalescence at T = 1, which implies a void elongation in the main loading direction
at low stress triaxiality. For the [100] orientation at T = 3, the void aspect ratios
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decrease without exceeding the value of 1 before the onset of coalescence, which
leads to an oblate shape of the void. For the [1̄25] orientation at T = 3, the
void aspect ratio W2 remains close to 1 and W3 becomes somewhat larger than
1 before the onset of coalescence. For symmetry reasons, W2 is equal to W3 for
the [100] orientation at both high and low stress triaxiality. However, W3 becomes
much larger than W2 for the [1̄25] especially at low stress triaxiality, which can
be explained by the anisotropy in the transverse plane x2–x3 of the unit cell. It
can also be observed that the difference in the evolution of the void aspect ratios
between the [100] orientation and the [1̄25] orientation is much more significant
at low stress triaxiality than that at high stress triaxiality.

3.3.4 Field of total accumulated slip

The total accumulated slip γcum, defined as

γcum =
12∑
s=1

γs, (3.39)

is used to display the field of plastic slip around the void, and to explain some
results obtained about void growth. The total accumulated slip fields in the middle
x1–x2 and x1–x3 cross sections (the definition of the cross sections is shown in
fig. 3.4a) of the unit cell are shown for the stress triaxialities T = 1 in fig. 3.12 and
T = 3 in fig. 3.13 with the [100], [111] and [1̄25] orientations and the initial void
volume fraction f0 = 0.01 at F 11 − 1 = 0.1. The fine mesh (n = 10, see fig. 3.5b) is
used here to obtain the plastic slip field with more accurate local results. Recall
that the macroscopic responses obtained with the fine mesh are identical to those
with the coarse mesh, as shown in fig. 3.6. For symmetry reasons, the surfaces of
the unit cell remain planes and the unit cell keeps its cubic shape during loading
for the [100] orientation. For the other orientations, the unit cell does not remain
cubic during loading, as a result of lattice re-orientation and shearing of the mesh.

It is observed that for each configuration (crystallographic orientation and stress
triaxiality) a different pattern of plastic slip localisation develops. For example,
for the [100] orientation at T = 1 and T = 3, the unit cell shows a symmetric
cross shaped localisation zone and the field in the x1–x2 cross section is the same
as that in the x1–x3 cross section, as expected from matrix material symmetries.
However, such symmetry is not observed for the two other orientations. For almost
all six cases, the plastic slip is highly localised around the void, i.e., the red zone,
except for the [1̄25] orientation at T = 1, where the localisation around the void
is much weaker. A zone where no slip system is activated, i.e., the blue zone,
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Figure 3.12: Fields of accumulated plastic slip γcum in the x1–x2 (left column) and x1–x3
(right column) cross sections of the fine unit cell mesh (n = 10) for three crystallographic
orientations and stress triaxiality T = 1 with the overall deformation F 11 − 1 = 0.1. The
initial void fraction is f0 = 0.01.

is observed in all cases, except for the [1̄25] orientation at T = 1. In the case
of the [1̄25] orientation at T = 1, the activation of the slip systems is nearly
homogeneous in the matrix and it is found that only one slip system is activated
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Figure 3.13: Fields of accumulated plastic slip γcum in the x1–x2 (left column) and x1–x3
(right column) cross sections of the fine unit cell mesh (n = 10) for three crystallographic
orientations and stress triaxiality T = 3 with the overall deformation F 11 − 1 = 0.1. The
initial void fraction is f0 = 0.01.
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almost everywhere in the matrix except in the vicinity of the void. One can
conclude that the plastic slip heterogeneity introduced by the void in the matrix
is negligible for the [1̄25] orientation at low stress triaxiality, but that the plastic
slip heterogeneity will increase with stress triaxiality.

Figure 3.12 and fig. 3.13 also show the void shape at F 11 − 1 = 0.1. The
elongation of the void in the x1 axes can be observed at T = 1 for the three
orientations. For the [100] orientation at T = 3, the void evolves into a polygon-like
shape. For [111] at T = 3, the void is of lemon-like shape in the x1–x2 cross section
and polygon-like in the x1–x2 cross section. For [1̄25] at T = 3, one can see that
the cut of the void in the x1–x2 cross section is almost a circle, i.e. R1 = R2

remains, however the void is elongated in the x1–x3 cross section. These results
are in good agreement with the results shown in fig. 3.11.

3.3.5 Field of lattice rotation

The polar decomposition of the elastic part of deformation gradient E∼ follows

E∼ = R∼ .U∼ , (3.40)

with the rotation tensor R∼ and the right stretch tensor U∼ . Neglecting the elastic
distortion U∼ , R∼ can be interpreted as the lattice rotation. The corresponding
rotation angle θ is given by

θ = arccos 1
2(traceR∼ − 1). (3.41)

The fields of θ (in radian) in the middle x1–x2 and x1–x3 cross sections are
shown for the [100], [111] and [1̄25] orientations with the initial void volume fraction
f0 = 0.01 and the stress triaxiality T = 1 in fig. 3.14 and T = 3 in fig. 3.15 at
F 11 − 1 = 0.1. At T = 1, lattice rotation occurs mainly around the void for [100]
and [111], while it is almost homogeneous in the matrix for [1̄25]. This is consistent
with the fields of total accumulated slip observed in section 3.3.4. For [1̄25], the
quasi-homogeneous lattice rotation in the matrix leads to void-free-like macroscopic
behaviour of the unit cell, i.e., the unit cell exhibits nearly pure shear, for a single
slip orientation, in terms of macroscopic deformation pattern. At T = 3, the lattice
rotation around the void is more significant compared with that at T = 1. In
particular, the field of θ is no longer quasi-homogeneous for the [1̄25] orientation
and the macroscopic deformation deviates from homogeneous shear.
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Figure 3.14: Lattice rotation θ (in radian) in the x1–x2 (left column) and x1–x3 (right
column) cross sections of the fine unit cell mesh (n = 10) for three crystallographic
orientations and stress triaxiality T = 1 with the overall deformation F 11 − 1 = 0.1. The
initial void fraction is f0 = 0.01.
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Figure 3.15: Lattice rotation θ (in radian) in the x1–x2 (left column) and x1–x3 (right
column) cross sections of the fine unit cell mesh (n = 10) for three crystallographic
orientations and stress triaxiality T = 3 with the overall deformation F 11 − 1 = 0.1. The
initial void fraction is f0 = 0.01.
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3.3.6 Slip sectors

The number of activated slip systems is investigated. In all the simulations, plastic
deformation always begins in single slip in some regions near the void. The plastic
regions expand and single slip quickly evolves into multiple slip. These results are
different from the observation of Kysar et al. (2005) who showed the slip sectors
in the regions near the void within which the material points deformed plastically
in single slip. The transition of slip sectors from single slip to multiple slip in the
present work is closely related to the hardening laws that are used.

In fig. 3.16, the number of activated slip systems are shown in the elements
bounding the void at F 11 − 1 = 0.005 for T = 1 and at F 11 − 1 = 0.003 for T = 3,
before a dramatic change of the void shape. The [100], [111] and [1̄25] orientations
are considered. The slip sectors display regular structures determined by the
crystallographic orientation and the stress triaxiality. For the three orientations
with the stress triaxiality T = 1, the plastic slip occurs in some parts near the
void but the rest remains elastic. The structures of slip sectors, including their
geometry and the number of activated systems, vary from one to another. Under
the high stress triaxiality T = 3, the slip sectors cover the whole void for the three
orientations. Notice that the the slip sectors of the different orientations display
very similar structure (both the geometry and the number of activated systems)
with only an orientation deviation between them.

For the different orientations, the multiple slip sectors are shown to be different
at T = 1 but similar at T = 3. This observation is consistent with that on the total
accumulated slip in section 3.3.4, which shows the different slip localisation modes
at T = 1 but the slip localisation covering the void for all the orientations considered
at T = 3. These results may be one of possible reasons explaining the observation of
significant orientation effects on void growth at T = 1 but reduced effects at T = 3.

3.3.7 Void coalescence

Figure 3.17a presents the evolution of the critical strain F 11c − 1 for the onset of
void coalescence with respect to the stress triaxiality T for different orientations
with the initial void volume fraction f0 = 0.01. For the [210] and [1̄25] orientations,
the simulations are not able to provide coalescence at low stress triaxiality, even
though the longitudinal macroscopic strain F 11c − 1 reaches 130%. This is related
to extremely low void growth rate for these two orientations at low stress triaxiality.
For all the orientations, the critical strain F 11c − 1 decreases with increasing
stress triaxiality T . This result agrees with the observation of Yerra et al. (2010)
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Figure 3.16: Slip sectors for the different orientations in the elements bounding the void
for T = 1 at F 11− 1 = 0.005 and for T = 3 at F 11− 1 = 0.003. Half of the void is shown.

for BCC single crystals. The difference of the critical strain F 11c − 1 between
different orientations is significant at low stress triaxiality, but less pronounced
at high stress triaxiality.

Once the critical strain F 11c − 1 for the onset of void coalescence has been
determined, the corresponding critical void volume fraction fc for the void
coalescence can readily be obtained. In fig. 3.17b, the critical void volume fraction
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(a)

(b)

Figure 3.17: Effect of stress triaxiality and crystallographic orientation on (a) the
critical deformation F 11c − 1 and (b) the critical void volume fraction fc at the onset of
coalescence for various crystallographic orientations and fixed initial void volume fraction
f0 = 0.01.

fc is plotted as a function of stress triaxiality T for different orientations with
f0 = 0.01. With the stress triaxiality T varying from 1 to 3, the critical void volume
fraction fc appears sensitive to the orientation but almost not sensitive to triaxiality.
As fc is nearly constant and void growth is more rapid at high stress triaxiality,
the onset of coalescence occurs at smaller values of macroscopic deformation for
high stress triaxiality. These results motivate the introduction of a criterion for
the onset of void coalescence in single crystals which can incorporate the strong
dependence of the critical void volume fraction on the crystallographic orientation.

The above results are presented only for one initial void volume fraction f0 = 0.01.
Unit cell simulations with larger or smaller initial void volume fractions show similar
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influences of stress triaxiality and crystallographic orientation on the overall stress
strain response and void evolution. For the sake of clarity, these results have
not been reported in this section, but they will be used for the assessment of the
macroscopic porous single crystal model presented in the next section.

3.3.8 Conclusions

Unit cell simulations have been performed in this section for investigating void growth
and coalescence in unirradiated FCC single crystals. Effects of two parameters,
i.e., stress triaxiality and crystal orientation, are studied.

The unit cell simulations have shown the dependence of overall stress strain
response on the stress triaxiality and the crystallographic orientation. The [111]
orientation exhibits harder response compared to the other orientations considered.
Void growth rate has been found to increase with stress triaxiality for a given
crystal orientation. The void growth also displays an orientation dependence which
is more significant at lower stress triaxialities than higher stress triaxialities. In
particular, a quasi absence of void growth is observed for the [1̄25] orientation with
small initial void volume fraction at low stress triaxiality, which leads to quasi-
incompressible overall behaviour. In addition, the critical void volume fraction
fc for the onset of coalescence highly depends on crystallographic orientation,
while it is almost not influenced by stress triaxiality varying from 1 to 3 for a
given crystallographic orientation.

Having understood mechanical behaviors of voided single crystals whose matrix
is governed by hardening laws for unirradiated crystals, effects of post-irradiation
hardening/softening laws on void growth and coalescence will be studied in the
next section.

3.4 Results for irradiated single crystals

UC simulations are also carried out for irradiated single crystals with the coarse
mesh (n = 5, see fig. 3.5a). Three crystal orientations are considered: [100], [111]
and [1̄25]. The material parameters used in the simulations were identified in the
work of Han (2012) for 304L stainless steels irradiated up to 13 dpa.

The identification of the material parameters was performed by fitting a
polycrystalline aggregate FE model response to the tensile test results of Pokor
and his co-workers (Pokor et al., 2004a; Pokor et al., 2004b) at 340 ◦C. Note that,
different from in section 3.3, the values of a1, a2, · · · , a6 are obtained by discrete
dislocation dynamics (Monnet, 2009). The initial dislocation density is supposed to
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C11 C12 C44 n τref γ̇ref
199 GPa 136 GPa 105 GPa 15 6.3 MPa 10−3 s−1

τ sT µ gc κ bD bL
88 MPa 66 GPa 2.64 nm 42.8 2.54 Å 2.08 Å
a1 a2 a3 a4 a5 a6

0.124 0.124 0.07 0.625 0.137 0.122
b1 b2 b3 b4 b5 b6
0 1 1 1 1 1

0 dpa 13 dpa
φL - 7.3 nm
αL - 0.57
kdl - 1.7× 10−7

A - 1.25× 10−12 m2

ρsatL - 1022 m−3

τa - 61.2 MPa
γ0 - 5× 10−3

ρsD|ini 8.3× 108 m−2 1.6× 108 m−2

ρpL|ini - 1.6× 1022 m−3

Table 3.6: Material parameters for the simulations (Han, 2012).

be equal for every system. Hence, the initial value of the dislocation density for
system s is ρsD|ini = ρtot

D /12, where ρtot
D is the total dislocation density measured in

experiments. The same hypothesis is made for the density of Frank loops and each
system has an initial value of Frank loop density following ρpL|ini = ρtot

L /4 with the
total Frank loop density being ρtot

L (Renault et al., 2010). bD is the norm of the
Burgers vector 1

2a 〈110〉 of dislocations and bL is the norm of the Burgers vector
1
2a 〈111〉 of Frank loops. Two cases, unirradiated (0 dpa) and irradiated (13 dpa),
are taken into account in the following simulations for emphasizing effects of the
post-irradiation hardening/softening behavior on void growth and coalescence. The
parameters for the two cases are listed in table 3.6.

3.4.1 Void-free single crystal: a reference

Simulations are first performed using a single finite element. The results will provide
a reference for comparisons with the porous single crystal. Figure 3.18a shows the
evolution of the overall first Piola–Kirchhoff stress component S11 with respect to
the strain measure F 11 − 1 of the void-free single crystal (dashed lines) for the
unirradiated state (0 dpa) and the irradiated state (13 dpa) for the [100] orientation
at T = 1. Recall that the first Piola–Kirchhoff stress corresponds to the engineering
stress in uniaxial tension, which can be directly compared with experimental results.
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For 0 dpa, a strain hardening regime can be observed, which is related to the
interaction among dislocations considered in Eqs. (3.20) and (3.22). With increasing
strain, S11 decreases slightly, since S11 is evaluated on the undeformed section.
This corresponds to the cross section area reduction of the unit cell due to finite
strains. Note that the Cauchy stress σ11 is increasing in that case due to hardening
and to the absence of damage. Compared to the behavior at 0 dpa, the void-free
single crystal at 13 dpa displays a marked increase of the yield stress and a sharp
softening at the beginning of the plastic regime followed by a slight hardening.
This sharp softening corresponds, according to the observation in the experiments
(Pokor et al., 2004a; Pokor et al., 2004b), to the unpinning term in Eq. (3.22). In
fig. 3.18b, stress–strain curves are presented for T = 3. As expected, the maximum
stresses at T = 3 are larger than those at T = 1.

The stress–strain curves are also shown in fig. 3.19 for the [111] orientation and
fig. 3.20 for [1̄25]. The [111] orientation exhibits similar stress–strain response as
the [100] orientation. A higher stress level is reached due to the lower Schmid factor
of primary slip systems (see table 3.4). However, the [1̄25] orientation displays
a different response. Recall that the [1̄25] orientation has only one primary slip
system (s = 1) and one secondary slip system (s = 12). For 0 dpa, a change in
the hardening rate can be observed, which is associated with the activation of the
secondary slip system leading to greater strain hardening. At 13 dpa and before the
activation of the second slip system, results show the initial load drop (unpinning
term) followed by a limited hardening. The activation of the secondary system
at about F 11 − 1 = 0.25 has several consequences: (1) it activates the unpinning
term of Eq. (3.22) for s = 12, as γ12 starts to increase, causing a dramatic drop
in its slip resistance (indicated by a arrow in fig. 3.22b); (2) it annihilates Frank
loops in the slip plane p = 4, resulting in a decrease in the Frank loop density ρ4

D

(see fig. 3.21b); (3) the decreasing Frank loop density leads to a small reduction
in the component of the athermal slip resistance related with the dislocation-loop
interaction, i.e., loop term in Eq. (3.22), for the slip system s = 1 and s = 12 (see
the blue lines in figs. 3.22a and 3.22b). After this transient evolution, a smooth
load decrease is once again observed due to cross section reduction.
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Figure 3.18: Overall stress–strain curves of unit cells with void (f0 = 0.01, solid lines)
and without void (dashed lines) at irradiated and unirradiated state. The crystallographic
orientation is [100]–[010]–[001]. (a) T = 1, (b) T = 3.
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Figure 3.19: Overall stress–strain curves of unit cells with void (f0 = 0.01, solid lines)
and without void (dashed lines) at irradiated and unirradiated state. The crystallographic
orientation is [111]–[2̄11]–[01̄1]. (a) T = 1, (b) T = 3.
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Figure 3.20: Overall stress–strain curves of unit cells with void (f0 = 0.01, solid lines)
and without void (dashed lines) at irradiated and unirradiated state. The crystallographic
orientation is [1̄25]–[12̄1]–[210]. (a) T = 1, (b) T = 3.
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Figure 3.21: Evolution of (a) plastic slip and (b) Frank loop density for the activated
systems in irradiated void-free single crystal for [1̄25] at T = 3.
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Figure 3.22: Evolution of the athermal slip resistance τ sA and its components for the
activated systems (a) s = 1 and (b) s = 12 in irradiated void-free single crystal for [1̄25]
at T = 3.
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3.4.2 Irradiation effects on stress–strain response of the
unit cell

Figure 3.18a also presents overall stress–strain responses of the voided single crystal
(solid lines) for the [100] orientation at T = 1. For the voided single crystal, the
stress level that can be reached is reduced compared to the void-free one at both 0
dpa and 13 dpa. Moreover, strain hardening at 0 dpa is weakened and the strain
softening at 13 dpa is enhanced because of void growth. After reaching a certain
strain level, the stress decreases dramatically due to void coalescence with a greater
void growth rate. This trend is in agreement with the work of Koplik and Needleman
(1988) on a von Mises material: the onset of void coalescence is characterised by
the transition to a uniaxial straining associated to the localization of the plastic
flow in the intervoid ligament and a sharp load drop.

With stress triaxiality increasing up to T = 3 as shown in fig. 3.18b, strain
softening begins earlier than at T = 1. Voids also lead to the decrease of the
yield stress. This effect is stronger for the irradiated material. The presence of
the void induces a plastic strain gradient so that the cell is progressively yielded,
which prevents the macroscopic sharp peak load associated with the unpinning
term. In addition, the strain hardening regime following initial softening which was
observed on the void-free material completely disappears. Instead, the voided single
crystal exhibits a strong softening. At the structural level this kind of behavior
can lead to strain localization (so called “shear bands”) and consequently to a
quasi-brittle behavior.

The stress–strains curves are also shown in fig. 3.19 for the [111] orientation
and fig. 3.20 for [1̄25]. Effects of the voids shown at 0 dpa and 13 dpa for both
orientations are similar to those for [100]. However some differences were observed
and are described in the following.

For [111], the peak stress drops by about 50% at 13 dpa at T = 3 due to the
presence of voids. This peak drop is more severe than that observed for [100] and
[1̄25]. This effect is related to the low Schmid factor of this orientation. As already
outlined above, the presence of voids creates a plastic strain gradient so that the
local Schmid factor in areas close to the void boundary is higher than the nominal
Schmid factor; this promotes an early yielding of the cell.

The presence of the plastic strain gradient around the void strongly influences
the cell behavior for the [1̄25] orientation. In the voided single crystal, different slip
systems are activated in the vicinity of the void and multiple slip occurs whereas
single slip prevails in the sound material. As a result, the single to double slip
transition is not observed. In addition, latent hardening is locally triggered at the
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early stages of deformation so that the voided crystal may exhibit a higher flow stress
up to a given strain where void growth will induce softening (see fig. 3.20b for 0 dpa).

3.4.3 Irradiation effects on void growth

The evolution of the void volume fraction f under a fixed stress triaxiality T ∈
{1, 1.5, 2, 3} is presented in fig. 3.23. As expected, void growth rate increases
with the stress triaxiality for whatever orientation. For both unirradiated and
irradiated voided single crystals, the void growth rate is the highest for the [111]
orientation for all considered triaxialities and a quasi-absence of void growth is
predicted for 1̄25 with T = 1. As shown in Ling et al. (2016), this is due to
single slip which cannot lead to void growth. For the [1̄25] orientation, however,
void growth becomes significant and cannot be neglected as the stress triaxiality
reaches T = 1.5 as shown in fig. 3.23b.
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Figure 3.23: Evolution of void volume fraction for three crystallographic orientations
under four stress triaxialities: (a) T = 1.0, (b) T = 1.5, (c) T = 2.0 and (d) T = 3.0.
Solid lines are for irradiated materials and dashed lines for unirradiated materials.
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Compared with unirradiated single crystal, a higher growth rate (with respect
to the overall strain F 11) is systematically observed in the irradiated crystal before
the onset of coalescence for all investigated orientations and triaxialities. The
effect of the irradiation is particularly strong at moderate stress triaxialities (i.e.
T = 1.5 (see fig. 3.23b) and T = 2 (see fig. 3.23c)) for the [1̄25] orientation. In
those cases, the void growth rate at the beginning of plastic regime is multiplied
by 2.5 and 1.7 for the irradiated crystal.

3.4.4 Irradiation effects on onset of coalescence
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Figure 3.24: Influence of stress triaxiality and crystallographic orientation on (a) the
critical deformation F 11c − 1 and (b) the critical void volume fraction fc at the onset
of coalescence for various crystallographic orientations. f0 = 0.01. Solid lines are for
irradiated materials and dashed lines for unirradiated materials.
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The onset of void coalescence is determined in the same way as in sections 3.3.2
and 3.3.7: it is determined by plotting the transverse macroscopic strain F 33 − 1
as a function of the longitudinal macroscopic strain F 11 − 1. It is observed that
F 33 − 1 reaches a stabilized value. By convention, the time step for which the
transverse strain F 33 − 1 reaches 99% of its stabilized value, is regarded as the
onset of coalescence. The corresponding longitudinal F 11 − 1 and porosity are
defined as the critical strain F 11c − 1 and critical porosity fc at the onset of
coalescence. The onset of void coalescence is indicated by a hollow square on each
curve. In the void coalescence regime, the void growth rate is fully determined
by the coalescence kinematics (uniaxial straining).

The critical strain F 11c−1 for the onset of coalescence is plotted as a function of
stress triaxiality T for the three orientations in fig. 3.24a. The decrease of F 11c − 1
with increasing stress triaxiality can be observed for a given orientation. Compared
with the unirradiated cases, the onset of coalescence occurs at a smaller strain
in the irradiated single crystals. Especially for the [1̄25] orientation, the decrease
of F 11c − 1 even reaches about 40% at T = 1.5.

The evolution of critical void volume fraction fc for the onset of coalescence
as a function of stress triaxiality T is presented in fig. 3.24b. Considering one
crystallographic orientation, fc is almost unchanged for a given irradiation level.
The [111] orientation shows a higher fc than the [100] and [1̄25] orientations. With
stress triaxialities varying from 1.5 to 3, similar values of fc are predicted for [100]
and [1̄25]. Given one orientation, the value of fc of the irradiated single crystals
is lower than that of unirradiated ones.

3.4.5 Irradiation effects on fields of accumulated plastic slip

The fields of γcum in the middle x1–x2 cross section (fig. 3.4a) are shown in fig. 3.25
for [100] with T = 1.5 (F 11− 1 = 0.35) and T = 3 (F 11− 1 = 0.2). The evolution of
the void shape is different at different stress triaxialities. In particular, at a relatively
low stress triaxiality T = 1.5, the void becomes elongated along the loading axis x1.
Moreover, at the same stress triaxiality, a more significant localization of plastic slip
is observed in the irradiated case than that in the unirradiated case, especially in
the horizontal region near the void. This leads to a larger deformation of the void
along the horizontal axis in the irradiated case, resulting in a faster void growth
and an earlier void coalescence as shown previously (see fig. 3.23). These results
for the irradiated porous single crystal, combined with the rather brittle overall
behavior shown previously, are consistent with the experimental observations of
Neustroev and Garner (2009) in AISI 321 stainless steels irradiated in BOR-60,



3. Porous single crystals: unit cell simulations 93

0 90.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 8.25

����� ������

(a)

0

����� ������

80.667 1.33 2 2.67 3.33 4 4.67 5.33 6 6.67 7.33

(b)

Figure 3.25: Field of accumulated slip on x1–x2 middle cross section on of the unit cell
for [100]. (a) T = 1.5 and F 11 − 1 = 0.35, (b) T = 3.0 and F 11 − 1 = 0.2.
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Figure 3.26: Field of accumulated slip on x1–x2 middle cross section on of the unit cell
for [111] with (a) T = 1.5 and (b) T = 3.0. F 11 − 1 = 0.14.

which showed an embrittlement after irradiation at the macroscopic level but a
large amount of deformation at the failure site showing fine dimples.

The fields of γcum are presented for [111] and [1̄25] in figs. 3.26 and 3.27. For
these two orientations, the voids develop different deformed shapes. Especially
for [111], a rotation of the void is observed which is caused by the shearing of
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Figure 3.27: Field of accumulated slip on x1–x2 middle cross section of the unit cell for
[1̄25]. (a) T = 1.5 and F 11 − 1 = 0.50, (b) T = 3.0 and F 11 − 1 = 0.2.
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the matrix, associated with the anisotropy of the single crystal. Besides, the void
displays different shapes in other cross sections, e.g., the x1–x3 cross section, which
has been discussed in section 3.3 and is not discussed here. Furthermore, in the
irradiated case, again, more significant plastic slip localization can be seen for [111]
and [1̄25] than that in the unirradiated cases. Larger voids can be observed in
the irradiated cases, especially for [125] at T = 1.5 (fig. 3.27a) which is consistent
with faster void growth presented in fig. 3.23.

3.4.6 Conclusions

In this section, the void growth and coalescence at constant stress triaxiality in
irradiated FCC single crystals are investigated using unit cell FE simulations. A
single crystal plasticity model is used accounting for the modification of mechanical
properties associated to the irradiation-induced defects. From these unit cell
simulations, the following conclusions can be drawn:

• Voids grow at a higher rate in the irradiated single crystal.
• The onset of void coalescence occurs at a smaller value of the overall strain

and at a smaller value of the void volume fraction in the irradiated crystals .
• More significant plastic strain localization in the region near the void is

predicted in the irradiated crystal, correlated with the faster void growth and
earlier onset of void coalescence.

• Brittle-like overall behavior is predicted at high level of stress triaxiality,
i.e. T = 3, in the voided irradiated crystal, while a large amount of plastic
deformation is reached in the vicinity of the void.

It is worth emphasizing that the numerical results showing faster void growth
and earlier onset of void coalescence in irradiated single crystals are in agreement
with the experimental observation of decreasing fracture toughness with irradiation.
Furthermore, enhanced plastic strain localization predicted for irradiated single
crystals is also in good agreement with the observations of Neustroev and Garner
(2009) in AISI 321 stainless steels irradiated in BOR-60.

3.5 Concluding remarks

In this chapter, unit cell simulations have been performed to investigate void
growth in FCC single crystals. Effects of stress triaxiality, crystal orientation and
post-irradiation strain hardening/softening have been studied.

In order to investigate influences of irradiation on the fracture toughness of
stainless steels, a fracture model is needed. As explained above, voids involved
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in ductile fracture process of irradiated steels are often located within grains, i.e.,
intragranular voids. Due to this fact, a micromechanics model of ductile fracture
model will be proposed at the scale of a grain, i.e., a single crystal, in the next chapter.
The model aims to account for the effects of different parameters (stress triaxiality,
crystal orientation and post-irradiation strain hardening/softening) outlined in this
chapter. The model will be assessed based on the results of the unit cell simulations
and then applied to study ductile fracture in single crystals and polycrystals.
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4
Porous single crystals: an

elastoviscoplastic model at finite strains

Résumé
Un modèle élastoviscoplastique en grandes transformations est proposé pour le
monocristal poreux dans ce chapitre. Le modèle prend en compte l’effet de
l’orientation cristallographique, de la triaxialité des contraintes et de la porosité
initiale. En comparant avec les simulations de cellules unitaires, on montre que le
modèle est capable de décrire qualitativement la croissance de cavité et la réponse
mécanique macroscopique du monocristal poreux. Le modèle est ensuite appliqué à
la simulation l’endommagement ductile dans un agrégat polycrystallin et dans une
éprouvette monocristalline entaillée.
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A first yield function for single crystals containing voids has been derived by
Han et al. (2013) based on a variational approach at infinitesimal strains. The
model accounts for the effects of initial void volume fraction, stress triaxiality and
crystal orientation. In order to describe ductile fracture in single crystals due to void
growth and coalescence, it is needed to introduce finite strain framework. In the
present section, only void growth is considered and the porous single crystal model is
extended to finite strain by introducing flow rule and evolution law for void growth.
In this section, an elastoviscoplastic model at finite strains is formulated based on
the model of Han et al. (2013). The model also incorporates heuristically strain
hardening of single crystal matrix, in the same manner as that proposed by Tvergaard
and Needleman (1984). It is then assessed through three-dimensional unit cell finite
element simulations based on periodic homogenisation with prescribed constant
stress triaxiality. Axisymmetric and non-axisymmetric loadings are taken into
account for the assessment. The model is then applied to simulate ductile damage
in polycrystalline aggregates and a single-edge-notch tension test on a single crystal.

4.1 Porous single crystal plasticity model

The porous single crystal plasticity model is formulated within the framework
presented in section 3.1. For the sake of brevity, only new notions related to
porous single crystals are outlined.

For porous single crystals, it is assumed that, in spite of the presence of pores
inside the single crystal volume element and associated inhomogeneous deformation,
a unique single crystal lattice orientation can be attributed to each material point.
The definition of a unique isoclinic intermediate local configuration Ci is allowed
by the existence of directors1 associated with lattice orientation. The uniqueness
of the multiplicative decomposition of the deformation gradient F∼ = E∼ .P∼ thus
remains. As a result, the kinematics of porous single crystals follows what is
described in section 3.1.2, except that det (P∼ ) 6= 1 as a result of compressibility
of porous single crystals. The initial porous single crystal orientation is taken
that of the undeformed single crystal matrix.

The same number of slip systems N are attributed to each material point
of the porous single crystal as the single crystal matrix. They have the same
crystallographic definition as that of the undeformed single crystal matrix. For
the flow rule, the yield criterion developed in the work of Han et al. (2013) for
porous single crystals is used. The definition of effective resolved shear stress τ ∗s ,

1See the footnote in page 56
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derived by Han et al. (2013) in the infinitesimal strain framework, is extended
to finite strain framework:

Ψs = τ s2

τ ∗s
2 + α

2
45fi

M2
eq

τ ∗s
2 + 2q1fi cosh

q2
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def= 0, τ ∗s > 0, (4.1)

where Mm is the mean stress of Mandel stress defined as Mm = 1
3traceM∼ ; Meq

is the equivalent stress of Mandel stress defined as Meq =
√

3
2M∼

′ : M∼
′ with the

deviatoric part of Mandel stress M∼
′ = M∼ −Mm1∼; fi is the void volume fraction

in the intermediate configuration and can be calculated as

fi = 1− 1− f0

det (P∼ ) (4.2)

with the initial void volume fraction f0. Note that α, q1 and q2 are parameters to
be identified. The yield function for each slip system, taking the same form
of Eq. (3.12), follows

φs = τ ∗s − τ sc (4.3)

with the effective resolved shear stress τ ∗s defined above.
The plastic strain rate L∼

p can be defined by
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Note that L∼
p is corrected by the factor 1− fi resulting from the definition of τ ∗s in

Eq. (4.1) which is obtained by the homogenisation in the matrix of porous single
crystal excluding the pores. It corresponds to the vanishing plastic work in the
pores (Besson, 2009; Besson, 2010). When fi = 0, the model of porous single
crystals is reduced to that of void-free single crystals.

The plastic slip rate γ̇s, the same as Eq. (3.17), is given by

γ̇s = γ̇ref

〈
τ ∗s − τ sc
τref

〉n
, (4.8)

where γ̇ref is the reference slip rate and τref is a reference resolved shear stress.
The hardening rule described in section 3.1.5 holds for porous single crystals.
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4.2 Numerical assessment

The simulations results presented in section 3.3 for unirradiated single crystals
combined with some additional simulations with non-axisymmetric loadings are
used to assess the proposed porous single crystal model at finite strains.

4.2.1 Calibration of model parameters

The overall stress strain curves and the evolution of the void volume fraction obtained
by the unit cell simulations with axisymmetric loading are used for calibrating the
parameters α, q1 and q2 in Eq. (4.1) of the macroscopic porous single crystal model.
The calibration has been conducted with the material parameters given in table 3.5
which aim to represent the behavior of a solution annealed 304 austenitic stainless
steel. The crystallographic orientations, the initial void volume fractions f0 and the
stress triaxialities T considered for the calibration are summarised in table 4.1.

Test number Crystallographic orientation Initial void volume fractions Stress triaxialities
1 [100]− [010]− [001] 0.005, 0.01, 0.02, 0.05, 0.1 1.0, 1.5, 2.0, 3.0
2 [110]− [1̄10]− [001] 0.005, 0.01, 0.02 1.0, 1.5, 2.0, 3.0
3 [111]− [2̄11]− [01̄1] 0.005, 0.01, 0.02, 0.05, 0.1 1.0, 1.5, 2.0, 3.0
4 [210]− [1̄20]− [001] 0.005, 0.01, 0.02 1.0, 1.5, 2.0, 3.0
5 [1̄25]− [12̄1]− [210] 0.005, 0.01, 0.02, 0.05, 0.1 1.0, 1.5, 2.0, 3.0

Table 4.1: Crystallographic orientations, initial void volume fractions and stress
triaxialities used for the calibration of material parameters α, q1 and q2, see Eq. (4.1).

The parameters α, q1 and q2 have been identified using Levenberg–Marquardt
algorithm and taking into account at the same time the stress–strain response and
the evolution of void volume fraction by minimizing the cost function:

F = 1
F t

11

F t11∫
0

w1(σ11 − σ11)2 + w2(fi − f)2 dF11, (4.9)

where σ11 denotes the component of Cauchy stress tensor of the porous single
crystal model, σ11 the component of the macroscopic Cauchy stress tensor of the
unit cell, fi the void volume fraction of the porous single crystal model defined by
Eq. (4.2) and f the void volume fraction determined from the unit cell simulations
(see Eq. (3.37)). F t

11 is chosen to be 1.1, i.e., the calibration is done from the
beginning of the loading to the strain value F11 − 1 = 0.1 (for the porous single
crystal model) and F 11 − 1 = 0.1 (for the unit cell). This level of macroscopic
deformation corresponds to the regime before void coalescence for all the cases
considered. In addition, the weight w1 and w2 are chosen in such a way that stress
and void volume fraction have the same order of contribution to the cost function.
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Optimised values of the parameters are given in table 4.2. Note that the obtained
calibrated parameters, accounting for the hardening of the matrix and the evolution
of the void volume fraction, are slightly different from those determined by Han
et al. (2013), where only the yield surface was taken into account. Comparison
between the predictions of the porous single crystal model and the results obtained
by the unit cell will be presented in the next sections.

α q1 q2
the present work 5.69 1.60 1.19
Han et al. (2013) 6.46 1.47 1.33

Table 4.2: Identified values of the porous single crystal model parameters, see Eq. (4.1).

4.2.2 Assessment for axisymmetric loading cases

In this part, the porous single crystal model is assessed for axisymmetric loading
cases, which were used to calibrate the model parameters.

Figure 4.1 shows the evolution of the normalised Cauchy stress σ11/τ
s
T with

respect to the strain F11 − 1 for the porous single crystal model and that of the
normalised macroscopic Cauchy stress σ11/τ

s
T with respect to the macroscopic strain

F 11 − 1 for the unit cell for [100], [111] and [1̄25] orientations with f0 = 0.01 at (a)
T = 1 and (b) T = 3. To simplify the notation, the overline for the macroscopic
variables of the unit cell will be dropped in the following (e.g., F11 instead of F 11).
As void coalescence is not incorporated in the porous single crystal model, the
curves are plotted before void coalescence predicted by the unit cell simulations. At
low stress triaxiality T = 1, the porous single crystal model successfully predicts the
tendency of the orientation effect on the stress strain response. However the model
slightly overestimates the strain hardening for the [100] and [111] orientations and
underestimates the strain hardening for the [1̄25] orientation. This can imply that
the model will underestimate the void growth for the [100] and [111] orientations
and overestimate the void growth for the [1̄25] orientation, which will be confirmed
in the next section. At high stress triaxiality T = 3, the prediction of the model for
the [111] orientation is generally in good agreement with the unit cell simulations,
while the difference between the model and the unit cell simulation for the [1̄25]
orientation is more significant.

The comparison of the stress strain response is also shown in fig. 4.2 for larger
initial void volume fraction f0 = 0.05. Similar trends can be observed, except for
an increased difference between the unit cell and the model for the [125] orientation
at low triaxiality T = 1 for this higher initial void volume fraction.
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(a)

(b)

Figure 4.1: Comparison between the unit cell (UC) simulations and the porous single
crystal model predictions: evolution of normalised macroscopic stress σ11/τ

s
T with respect

to axial strain F11 − 1 for different crystallographic orientations with fixed triaxiality, (a)
T = 1 and (b) T = 3, and initial void volume fraction f0 = 0.01.

Figure 4.3 shows the comparison of the evolution of the void volume fraction f
for three orientations with f0 = 0.01 at stress triaxiality (a) T = 1 and (b) T = 3.
It can be observed that the porous single crystal model satisfactorily describes
the tendency of the orientation effect on the evolution of the void volume fraction
at both low and high stress triaxiality. However, the model underestimates the
void growth for the [100] and [111] orientations, and overestimates the void growth
for the [1̄25] orientation at low stress triaxiality T = 1. These discrepancies are
consistent with those presented in the previous section. At high stress triaxiality
T = 3, the model well predicts the void growth for the [100] and [1̄25] orientations,
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Figure 4.2: Comparison between the unit cell simulations and the porous single crystal
model predictions: evolution of normalised macroscopic stress σ11/τ

s
T with respect to

axial strain F11 − 1 for various crystallographic orientations with fixed triaxiality, (a)
T = 1 and (b) T = 3, and initial void volume fraction f0 = 0.05.

but overestimates the void growth for the [111] orientation, which is probably
related to the void rotation shown in fig. 3.12.

The same comparison for larger initial void volume fraction f0 = 0.05 is shown
in fig. 4.4. Similar results are found, i.e., the model well predicts the orientation
effect on the evolution of void volume fraction. However, the model underestimates
the void growth in the case of the [1̄25] orientation at low stress triaxiality T = 1.
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Figure 4.3: Comparison between the unit cell simulations and the porous single crystal
model predictions: evolution of void volume fraction f with respect to axial strain F11− 1
for various crystallographic orientations with fixed triaxiality, (a) T = 1 and (b) T = 3,
and initial void volume fraction f0 = 0.01.
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Figure 4.4: Comparison between the unit cell simulations and the porous single crystal
model predictions: evolution of void volume fraction f with respect to axial strain F11− 1
for various crystallographic orientations with fixed triaxiality, (a) T = 1 and (b) T = 3,
and initial void volume fraction f0 = 0.05.
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4.2.3 Assessment for non-axisymmetric loading cases

The porous single crystal model calibrated from the axisymmetric loading cases
is used to predict macroscopic stress–strain behaviour and void volume fraction
evolution under non-axisymmetric loadings in this part. The loadings with η2 =
0.727 and η3 ∈ {0.4, 0.538, 0.625} are considered for the [100], [111] and [1̄25]
orientations with f0 = 0.01.

The stress–strain responses predicted by the porous single crystal are compared
to those of unit cell simulations in fig. 4.5. In spite of insufficient strain hardening
for the [111] and the [1̄25] orientations, the model satisfactorily describes, for the
non-axisymmetric loadings considered, the hierarchy of stress–strain response with
respect to crystallographic orientation. For example, the [111] orientation shows
the hardest response while the [1̄25] orientation has the softest response.

The assessment of the porous single crystal model in terms of void volume
fraction evolution is presented in fig. 4.6. The hierarchy of void volume fraction
evolution with respect to crystallographic orientation is well predicted by the model.
In addition, for the [111] orientation with η2 = 0.727 and η3 = 0.4, the unit cell
simulation displays low void growth. This situation is poorly captured by the
model that predicts significant void growth and in turn insufficient hardening. This
discrepancy has not been observed for the axisymmetric loading cases with this
orientation at η2 = η3 = 0.4 (T = 1) in fig. 4.1a and fig. 4.3a and at η2 = η3 = 0.4
(T = 3) in fig. 4.1b and fig. 4.3b. This can probably be explained by the potential
influence of the third invariant of the macroscopic stress tensor, which is not yet
taken into account in the porous single crystal model.

4.2.4 Discussion

The comparisons between the porous single crystal model and the unit cell
simulations have been presented. The model with the identified parameters
successfully predicts the hierarchy of the macroscopic stress strain behaviour and
the evolution of void volume fraction with respect to (i) crystallographic orientation,
(ii) stress triaxiality, and (iii) initial void volume fraction. An exhaustive list of
initial conditions for the simulations was considered. While the model has been
verified for most conditions, specific modeling issues have been highlighted.

The most significant difference between the porous single crystal model and
the UC simulations is observed for the [1̄25] orientation. It has been observed that
the porous single crystal model underestimates the strain hardening of the unit
cell for the [1̄25] with f0 = 0.01 and f0 = 0.05 at high stress triaxiality T = 3.
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Figure 4.5: Assessment of porous single crystal model for non-axisymmetric cases:
evolution of normalised macroscopic stress σ11/τ

s
T with respect to axial strain F11 − 1

for different crystallographic orientations with initial void volume fraction f0 = 0.01,
η2 = 0.727 and (a) η3 = 0.625, (b) η3 = 0.538 and (c) η3 = 0.4.
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Figure 4.6: Assessment of porous single crystal model for non-axisymmetric cases:
evolution of void volume fraction f with respect to axial strain F11 − 1 for different
crystallographic orientations with initial void volume fraction f0 = 0.01, η2 = 0.727 and
(a) η3 = 0.625, (b) η3 = 0.538 and (c) η3 = 0.4.
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The overall stress strain response of the unit cell simulation and that predicted
by the porous model are replotted in fig. 4.7 for f0 = 0.01 with the stress strain
response of the void-free single crystal at the same stress triaxiality. For the void-free
single crystal, the plastic deformation begins with small hardening rate due to the
fact that only one slip system is activated. A change of hardening rate occurs
when a secondary slip system being activated. For the voided single crystal (the
unit cell simulation), on the contrary, the plastic part begins with a significant
hardening rate, which is related to an important latent hardening as a result of
the multiple slip in the regions near the void as shown in fig. 3.13 and fig. 3.16.
To be more precise, an indicator is proposed as

I = 1
V

∫
V

12∑
s=1

H

(
|γ̇s|
Ḟ11

)
dV, (4.10)

where the Heaviside function H(x) = 1 if x > 0, else H(x) = 0. This quantity
indicates the effective number of activated slip systems depending on crystallographic
orientation and the stress triaxiality in both the model and the unit cell. In fig. 4.8,
the evolution of the indicator with respect to the strain F11 − 1 is presented for
the [1̄25] orientation with f0 = 0.01. It reveals that the macroscopic porous model
predicts single slip pattern for the [1̄25] orientation at T = 3. However the factor
reaches 4 before void coalescence in the unit cell simulation, which significantly
deviates from the single slip pattern. This is confirmed by fig. 3.13 and fig. 3.15. Since
fewer activated slip systems are predicted by the porous model, strain hardening is
underestimated by the model. The enhancement of latent hardening by the high
stress triaxiality observed in the unit cell simulation for the single-slip orientation
is difficult to be incorporated in the homogenisation model.

For the [1̄25] orientation with small initial void volume fraction f0 = 0.01 at the
low stress triaxiality T = 1, the porous model overestimates the void growth rate
as compared to the unit cell simulation (see fig. 4.3a). The unit cell shows nearly
no void growth in terms of void volume fraction. Notice that the [1̄25] orientation
corresponds to single slip orientation for a void-free FCC single crystal. For this type
of orientation with small initial void volume fraction at low stress triaxiality, the void
does not induce significant plastic slip heterogeneity in the single crystal matrix, as
shown in section 3.3.4. As a result, the voided single crystal behaves like a void-free
single crystal and exhibits a nearly single slip pattern with quasi-incompressible
overall behaviour. No void growth is predicted by the unit cell simulation in this
case. In contrast, the macroscopic model predicts a weak void growth for this case,
due to the term 2q1fi cosh

{
q2
√

3
20
Mm

τ∗s

}
in Eq. (4.1), which is strictly positive even
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Figure 4.7: Stress-strain curves of the void-free and the voided single crystals for the
[1̄25] orientation. T = 3 and f0 = 0.01.
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Figure 4.8: Comparison between the unit cell simulation and the porous single crystal
model: evolution of plastic slip indicator I with respect to axial strain F11 − 1 for the
[1̄25] orientation.

in the case of single slip and, by virtue of normality rule, induces void growth. As
the initial void volume fraction increases to f0 = 0.05, the plastic slip heterogeneity
introduced by the void becomes significant even at low stress triaxiality. The porous
single crystal deviates significantly from single slip and much more slip systems
are activated around the void. As a result, in the unit cell simulation, the strain
hardening rate is increased and the void growth is accelerated. As the model only
considers a single slip situation, it underestimates the strain hardening and the void
growth for the [1̄25] orientation with f0 = 0.05 even at low stress triaxiality T = 1.

4.2.5 Conclusions

An elastoviscoplastic model is proposed for porous single crystals undergoing finite
deformations. The effective resolved shear stress defined in the work of Han
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et al. (2013) at infinitesimal strains is extended to finite strains and the work
hardening of the matrix of porous single crystals is incorporated. To the best
knowledge of the author, the proposed macroscopic model is the first model for
porous single crystals at finite strains.

The model is calibrated from unit cell simulations for unirradiated single crystals,
presented in section 3.3. Compared with the unit cell simulations, the porous single
crystal model satisfactorily describes the hierarchy of porous single crystal responses
with respect to crystal orientation and void volume fraction. However, the model
cannot predict the quasi-incompressible behaviour observed for strongly asymmetric
orientations, e.g., [1̄25], with small initial void volume fraction at low stress triaxiality.
The model underestimates the strain hardening for strongly asymmetric orientations
with small initial void volume fraction at high stress triaxiality and with large f0

at all levels of stress triaxiality considered.

4.3 Application to simulations of ductile damage
in a polycrystalline aggregate

The final goal of the modeling tools developed in this study is their application to
evaluate fracture toughness of austenitic strainless steels. A first attempt is done in
this section to simulate polycristal aggreggates with the developed porous crystal
model. For the sake of simplicity, the stress state ahead of a crack is represented by
applying different stress triaxiality levels to a simplified polycristal aggregate.

4.3.1 Problem setup

The FE mesh of a polycrystalline aggregate with 343 cubic grains (7× 7× 7) is used
for the simulations, shown in fig. 4.9a. Each cubic grain is meshed with 27 20-node
quadratic brick elements with reduced integration. A random distribution of crystal
orientations , as indicated in the inverse pole figure (fig. 4.9b), is attributed to
the aggregate. Axisymmetric loadings are applied on the aggregate with constant
stress triaxialities (T = 1, 2, 3). The surfaces of the aggregate are kept plane
during the loading. The material parameters for unirradiated single crystals (see
table 3.6) are used for the simulations with the parameters α = 5.69, q1 = 1.60
and q2 = 1.19 identified in table 4.2. It is assumed that the initial void volume
fraction of the grains takes the same value f0 = 0.01. Effects of post-irradiation
hardening/softening are not yet investigated in this section.
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(a) (b)

Figure 4.9: (a) FE mesh of the polycrystalline aggregate with 343 cubic grains. Each
grain is meshed with 27 elements; (b) Inverse pole figure showing the random distribution
of the grain orientations.

4.3.2 Results

The evolution of overall Cauchy stress as a function of overall strain F 11 − 1 is
shown in fig. 4.10 for different stress triaxialities. A softening regime is predicted
at the aggregate scale for the stress triaxialities T = 2 and 3. For T = 1, the
simulation diverged before strain softening. The strain softening begins at a smaller
overall strain for T = 3 than T = 1. The strain softening observed at the aggregate
scale is associated with the evolution of void volume fraction at the grain scale.

Figure 4.10: Overall stress-strain curves for different stress triaxialities.

The evolution of local void volume fraction fi with the overall strain F 11 − 1
is first shown in fig. 4.11 for the stress triaxiality T = 3. At the beginning of the
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Figure 4.11: Evolution of void volume fraction fi with the overall strain F − 1 for the
imposed stress triaxiality T = 3, showing a propagation of ductile damage between grains.

Figure 4.12: Stress triaxiality effects: void volume fraction fi for (a) T = 3 at F 11−1 =
0.07 and (b) T = 1 at F 11 − 1 = 0.38.

straining, e.g., F 11 − 1 = 0.032, the local void volume fraction fi remains around
its initial value (0.01). As the straining continues, void volume fraction increases
inhomogeneously in the aggregate. For example, in the zoomed region of three
grains, the void volume fraction at F 11−1 = 0.051 is higher than in the surrounding
grains. A propagation of ductile damage (void volume fraction is regarded as a
damage parameter) from one grain to another is also observed, as shown in the
zoomed region, which results in a crack on the edge of the aggregate. The damage
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intensively formed on the top of the aggregate is associated with the boundary
condition used, which may increase locally the stress triaxiality on the boundary.

The void volume fraction for T = 1 at F 11 − 1 = 0.38 is compared with
T = 3 at F 11 − 1 = 0.07 in fig. 4.12. A inhomogeneous evolution of ductile
damage is also observed for T = 1. However, the damage is localized in grains
and the damage propagation from grain to grain is not observed at this relatively
low level of stress triaxiality.

4.3.3 Conclusions

In this section, the porous single crystal model is applied to simulate ductile damage
of polycrystalline aggregates containing intragranular voids. The evolution of void
volume fraction is studied by the simulations. A strain softening behavior due to
the increase of the porosity inside grains has been predicted. A propagation of
ductile damage has been observed at a relatively high stress triaxiality T = 3, while
ductile damage is localized inside grains for the stress triaxiality T = 1.

As cracking criterion is not introduced in the simulations, crack propagation
and fracture cannot be simulated. This will be done in future works. In addition,
more realistic FE meshes, such as Voronoi-type polycrystalline aggregates or meshes
obtained from the X-ray tomography, can also be used in future works.

4.4 Application to simulations of the single-edge-
notch tension

4.4.1 Experiment and simulation

A single-edge-notch tension (SENT) was performed on a single crystal of 316L
stainless steel in the Material Aging Institute of EDF. The test provides experimental
data to validate the porous single crystal model (a ductile damage model for
single crystal).

The geometry of the specimen is shown in fig. 4.13 with the length of the reduced
section L = 8 mm, the width of the reduced section W = 3 mm and the thickness
T = 1.02±0.02 mm. A notch of length d = 605±5 µm with a round tip is machined
in the center of the specimen with a wire saw. The initial value of the notch opening
is a = 164.5±1.5 µm. The crystallographic orientation of the specimen was measured
by electron backscatter diffraction (EBSD) shown in fig. 4.14. The orientation
corresponds to Euler angles (φ1,Φ, φ2) = (175.65°, 33.64°, 146.94°) following the
zxz convention. The Euler angles rotate the spatial basis to the crystal basis. Then,
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Figure 4.13: The geometry and a 3D FE mesh of the specimen for SENT.

(a)
(b)

Figure 4.14: Crystal orientation measured by EBSD: (a) the inverse pole figure for the
direction normal to the specimen along the z axis; (b) a map showing microstructure of
the single crystal with some inclusions of ferrite.

speckles of gold were created by electron-beam lithography on a zone of the specimen
surface near the notch tip in order to measure surface strain fields by digital image
correlation (DIC) methods (see fig. 4.15). An in-situ SENT test was performed in a
scanning electron microscope (SEM) with a loading speed of 2× 10−6 m s−1 at 20 ◦C.
The notch opening displacement ∆a, corresponding to the increase of a, is measured
using SEM micrographs. The imposed straining is planned to be large enough so
that ductile fracture can occur. However, it was not achieved, partly because of the
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Figure 4.15: SEM micrograph showing gold speckles created on a zone of the specimen
surface near the notch tip for the digital image correlation.

Figure 4.16: SEM micrograph showing inclusions of ferrite at the front of the notch tip.

high ductility of the material. Besides, it is important to note that inclusions of
ferrite were observed (see fig. 4.14b) including one located in the front of the notch
tip (see fig. 4.16), which may have an influence on the experiment results.

A 3D FE mesh with five elements in the thickness is created according to the
geometry of the specimen to simulate the test (see fig. 4.13). The mesh is refined in
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the region near the notch tip where a high level of strain is expected. In terms of
boundary conditions, the bottom is fixed in three directions; the top is fixed in the
directions of x and z axes and the displacement is prescribed along the y-axis. The
crystallographic orientation measured by EBSD is considered for the simulation. In
absence of the material parameters for the 316L single crystal, those identified for
the unirradiated polycrystalline 304L steel at 340 ◦C (table 3.6) are used with two
levels of initial void volume fraction: f0 = 0 and 0.01. Even though damage/fracture
does not occur during the experiment, the simulation with porous single crystal
model, as a preliminary study, can offer some implications for further studies.

4.4.2 Results: surface slip traces

During the test, slip traces are observed on the surface of the specimen as a result
of dislocation glide, as shown in fig. 4.17 for different normalized notch opening
displacements ∆a/a0 (a0 is the initial value of a). A few traces of three slip planes
can be observed around the notch tip at the beginning of plastic deformation
(indicated by black lines in fig. 4.17a) and they become more pronounced with
larger notch opening (fig. 4.17b).

slip trace p1 p2 p3 p4
slip system 1 2 3 4 5 6 7 8 9 10 11 12

n s (111) (11̄1) (1̄11) (1̄1̄1)
m s [1̄01] [01̄1] [1̄10] [1̄01] [011] [110] [01̄1] [110] [101] [1̄10] [101] [011]

Table 4.3: Slip systems and slip traces for FCC single crystals.

The surface slip traces can be theoretically predicted. According to the Euler
angles measured by EBSD, four types of surface slip traces are expected and their
angles with respect to the x-axis are calculated and shown in fig. 4.18. One type of
slip traces corresponds to dislocations with the same slip plane. In the case of FCC
single crystals, there are four types of slip planes and the normal to the planes are
respectively: (111), (11̄1), (1̄11) and (1̄1̄1) (see table 4.3). The four types of slip
traces are denoted respectively by p1, p2, p3 and p4. Comparing the theoretical
predictions and the experimental observations, we conclude that three types, i.e.,
p1, p2 and p3, are activated. Theoretical and experimental angles of surface slip
traces with respect to the x-axis are in good agreement.

To better illustrate the results, accumulated plastic slip for four slip planes
are defined:

γp1 = γ1 + γ2 + γ3, γp2 = γ4 + γ5 + γ6, (4.11)
γp3 = γ7 + γ8 + γ9, γp4 = γ10 + γ11 + γ12. (4.12)
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(a)

(b)

Figure 4.17: SEM micrographs showing surface slip traces with different notch opening
displacements: (a) ∆a/a0 = 0.18; (b)∆a/a0 = 0.95.

Plastic slip predicted by FE simulations is shown in fig. 4.19 with f0 = 0 and
f0 = 0.01. Note that plastic slips vary in the direction of thickness, the results
in fig. 4.19 correspond to plastic slips which can be observed on specimen surface.
The simulations predict that two types of slip traces, i.e., p1 and p2, are intensively
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Figure 4.18: Theoretical prediction of slip traces on the free surfaces.
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Figure 4.19: Simulations showing plastic slip of four families with (a) f0 = 0 and (b)
f0 = 0.01. ∆a/a0 = 0.18.

activated in front of the notch tip. The intensive activation of slip traces p1 and p2
and their position are in agreement with the experiment observation. The other two
types p3 and p4 are very weakly activated in the simulations, which is different from
experimental observations. In the experiment, slip traces p4 are not observed and
slip traces p3 is relatively dense in front of the notch tip (these are more visible with
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DIC, see fig. 4.20 in the next section). These differences between the experiment
and the simulation are probably related to the ferrite inclusions located in front of
the notch tip. The inclusions can change activation of plastic slip at the notch tip.

4.4.3 Results: strain fields at the notch tip

Strain fields on the surface of the specimen during loading were measured by DIC.
The measured field of the strain E22 = F22 − 1 for the normalized notch opening
∆a/a0 = 0.95 in the region near the notch tip is shown in fig. 4.20a. The obtained
result shows a discontinuous strain field which is related to the discrete nature of
plastic slip. Furthermore, a strong strain localization is observed in front of the
notch tip; three types (p1, p2 and p3) of slip traces display which is in agreement
with the observation in section 4.4.2. Besides, slip traces of type p1 and p2 are
very intensive even in the region relatively far from the notch tip, while slip traces
of type p3 are found only in the region near the notch tip. This is consistent
with the FE predictions shown in fig. 4.19.

The damage fi predicted by the porous single crystal model with the initial void
volume fraction f0 = 0.01 is presented in fig. 4.21 for ∆a/a0 = 0.95. The evolution
of the damage parameter fi is not homogeneous in the direction of the thickness
around the notch. The maximum value of fi, reaching 0.06, is not found on the
surface of the specimen. Since the ductile fracture does not occur in the experiment,
this simulation result about ductile damage is not compared with the experiment.

The results of the simulations, presented in fig. 4.20b, succeed in predicting
basic characteristics of the strain field observed in the experiment: a strong strain
localization in an asymmetric region near the notch tip; an asymmetric mode of notch
opening; an activation of plastic slip in the region relatively far from the notch tip.
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Figure 4.20: Surface strain filed E22 for ∆a/a0 = 0.95: (a) experimental result measured
by DIC; (b) simulation predictions.
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Figure 4.21: Void volume fraction fi in the region near the notch tip at ∆a/a0 = 0.95
predicted by the porous single crystal model with the initial porosity f0 = 0.01

4.4.4 Results: force–notch-opening-displacement relation
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Figure 4.22: Evolution of loading force as a function of normalized notch opening
displacement: comparison experiment–simulations.

The evolution of loading force is plotted in fig. 4.22 as a function of normalized
notch opening displacement ∆a/a0 for the experiment and the simulations. For
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the simulations with f0 = 0 and 0.01, a first hardening regime is observed followed
by a second one with a higher hardening rate. The activation of the second
hardening regime is related to an increase in the number of activated slip systems
with increasing notch opening displacement. In the case of f0 = 0, a strain
softening regime following the hardening regimes is also observed. Compared
with the simulations, the experiment exhibits a lower yield stress and a much
higher strain hardening rate.

The differences between the experiment and the simulations are closely related
to the material parameters used for the simulations which are not calibrated for the
material of the test. In particular, in the single crystal plasticity models, the yield
stress is directly associated with the initial dislocation densities (see Eq. (3.22)).
Hence, the dislocation densities in the single crystal of 316L should be carefully
measured/estimated before the test. In addition, the under-estimation of the
hardening by the simulations is not well understood. It is probably associated
with the interaction matrices of the hardening law, i.e., asu in Eq. (3.22) and bsu in
Eq. (3.21). The components of the matrix asu were evaluated by DD simulations,
while a strong assumption has been made about the matrix bsu due to a lack of
studies. Further works are needed for accurate calibration of the two matrices.

4.4.5 Conclusions and outlook

The model is applied to simulate the SENT test performed on a single crystal of
316L stainless steel in this section. The prediction of the model about plastic slip
activation on the specimen surface and plastic strain filed in front of the notch tip is
in good agreement with the experimental observation. However, compared with the
experiment, the simulation predicts a notch-opening-displacement relation showing
a higher yield stress and a much lower strain hardening rate. These differences
are probably related to: 1) the material parameters used for the simulations is
identified on polycrystalline 304L stainless steels, not the material used for the
SENT test; 2) the ferrite inclusions in the 316L stainless steel single crystal may
have an influence on mechanical behaviors of the material, which is not taken
into account in the simulation.

Note that this work is not finished yet. The ongoing works concentrate on the
improvement of the simulations. Two aspects are being studied:

1. Decrease the initial value of dislocation densities and investigate its influences
on strain hardening rate;
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2. Introduce inclusions of ferrite by some particles with higher yield stress than
the matrix in the FE mesh and study their influences on strain hardening
rate;

3. Investigate influences of boundary conditions prescribed in the simulations on
the results.

4.5 Concluding remarks

In this chapter, an elastoviscoplastic model at finite strains has been formulated
porous single crystals based on the work of Han et al. (2013). The model incorporates
heuristically strain hardening of single crystal matrix. The model has been shown
to be able to predict ductile damage due to void growth to coalescence in single
crystals with different orientations. The model has then been applied to simulate
ductile damage in polycrystalline aggregates and a single-edge-notch tension test
on a single crystal.

In this chapter, effects of post-irradiation hardening/softening behavior is not
taken into account. This will be considered in future works. Crack propagation
due to ductile fracture at the scale of grains can also be investigated with the
proposed model and simulations. To this end, a cracking criterion should be
introduced in the future.

The model proposed in this chapter accounts for intragranular voids in poly-
crystalline materials. As presented in the previous chapters, in irradiated stainless
steels, intragranular voids can correspond to irradiation-induced swelling voids or
to voids nucleated on irradiation-induced precipitates during plastic straining. The
former can lead to nano-sized fracture dimples and their size can be as small as
20–30 nm according to Margolin et al., 2016. The latter, as reported in Little, 1986,
can result in fracture dimples of size < 10 µm in irradiated steels, which is smaller
than in unirradiated materials (size > 25 µm). In a word, voids of different sizes
exist in irradiated steels. Moreover, it is well known that size effects in plasticity
exist at the crystal level (see, e.g., Fleck et al., 1994; Stelmashenko et al., 1993;
Poole et al., 1996; Suresh et al., 1999; Stölken and Evans, 1998) and size effects
in turn are also expected on void growth and coalescence Fleck and Hutchinson,
2001; Borg et al., 2008. It is hence of importance to investigate the effect of void
size on the ductile fracture process and fracture toughness at the grain scale. This
aspect will be treated in the next chapter.
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5
Micromorphic single crystal plasticity

model and its applications

Résumé
Dans les aciers irradiés, la rupture ductile peut avoir lieu en raison des cavités de
tailles différentes. La taille des cavités peut avoir une influence sur la cinétique
de la croissance et la coalescence des cavités. Pour étudier cet effet, un modèle
micromorphe de plasticité cristalline en grandes transformations est proposé dans ce
chapitre. Le modèle est basé sur une variable scalaire et il est donc numériquement
efficace. Selon les variables d’état choisies, deux formulations sont présentées et
l’une est implémentée dans le code par éléments finis. Le modèle est d’abord utilisé
pour étudier la localisation de la déformation dans le monocristal. On montre que
le modèle peut régulariser à la fois la bande de glissement et la bande en genou. Le
modèle est ensuite appliqué à la croissance de cavité. Les simulations des cellules
unitaires montrent que les petites cavités croissent moins vite que les grandes.
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In irradiated stainless steels, ductile fracture can probably occur due to
intragranular voids of size varying from nano to micrometers. Plasticity size
effects could thus be involved in the particular fracture process associated with void
growth and coalescence in irradiated steels. In order to study influence of void size
on the ductile fracture process at grain scale, a micromorphic single crystal plasticity
model at finite deformation is proposed. The first part of this section is devoted
to the formulations of the model. FE implementation of one of the formulations is
described in the second part. Then, the model is first applied to study analytically
and numerically strain localization in single crystals with single slip, where a material
length scale is derived for the model. Finally, UC simulations are performed for
investigating size dependent void growth and coalescence in single crystals.

5.1 Micromorphic single crystal plasticity at fi-
nite deformation

5.1.1 Kinematics of a micromorphic single crystal

We consider a crystalline body occupying the region B0 in a fixed reference
configuration. A point X in B0 is referred to as a material point. Following
the micromorphic approach (see Germain (1973), see also Forest (2009) and Aslan
et al. (2011)), two types of degrees of freedom (DOF) are attributed to a material
point, i.e., the displacement u (X , t) and an additional strain type DOF γχ(X , t):

DOF = {u , γχ}. (5.1)

In the present work, the additional DOF, γχ, is a scalar variable called microslip
variable.

At time t, the deformed body occupies the region B in space, called the current
configuration. The Lagrangian gradients of the degrees of freedom are

H∼ (x , t) = ∂u

∂X
= Gradu , (5.2)

K (x , t) = ∂γχ
∂X

= Grad γχ, (5.3)

where H∼ is the displacement gradient which is related to the deformation gradient
F∼ by F∼ = 1∼ +H∼ , and K is referred to as the microslip gradient vector. Besides,
the Eulerian gradient of γχ, which is useful in the following, follows

k = ∂γχ
∂x

= grad γχ, (5.4)
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where x is the current position of material point X at time t. K and k are
related to each other by

k = K .F∼
−1 = F∼

−T .K . (5.5)

Taking the time derivative of the DOFs gives the generalized velocities {u̇ , γ̇χ}:

u̇ = ∂u (X , t)
∂t

, (5.6)

γ̇χ = ∂γχ(X , t)
∂t

. (5.7)

The Eulerian gradient of the generalized velocities is computed as

grad u̇ = Grad u̇ .F∼
−1 = ˙Gradu .F∼

−1 = Ḟ∼ .F∼
−1, (5.8)

grad γ̇χ = Grad γ̇χ.F∼
−1 = ˙Grad γχ.F∼

−1 = K̇ .F∼
−1, (5.9)

where the commutativity between the Lagrangian gradient and time derivatives is
used. Note that Eq. (5.8) represents the classical velocity gradient L∼ = Ḟ∼ .F∼

−1.

5.1.2 Principle of virtual power and generalized balance
of moment

The principle of virtual power is formulated in the static case following the approach
of Germain, 1973. Consider the virtual motion of a subdomain D of the body B
specified by the generalized virtual velocity V = {u̇ , γ̇χ}. The principle of virtual
power asserts that, given any subdomain D, the virtual power of internal forces P i

is equal to the virtual power of external forces P e for any virtual motion V.
The virtual power of internal forces P i is assumed to comprise three parts,

which are associated respectively to the strain of the subdomain, the microslip
and its gradient:

P i =
∫
D
pi dV =

∫
D

(σ∼ : (grad u̇ ) + sγ̇χ +m . grad γ̇χ) dV, ∀D ⊂ B, (5.10)

where s and m are generalized stresses.
In the absence of body forces, the virtual power of external forces is presumed to

arise from a surface traction t related to the macroscopic motion and a generalized
surface traction m related to the microslip. P e is thus written in the current
configuration as

P c =
∫
∂D
pc dS =

∫
∂D

(t .u̇ +mγ̇χ) dS, ∀D ⊂ B. (5.11)
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Applying the principle of virtual power with Eq. (5.10) and Eq. (5.11) yields∫
D

(σ∼ : (grad u̇ ) + sγ̇χ +m . grad γ̇χ) dV =
∫
∂D

(t .u̇ +mγ̇χ) dS, ∀u̇ ,∀γ̇χ,∀D.
(5.12)

Using the divergence theorem, it can be found that∫
D

((divσ∼ ).u̇ + (divm − s) γ̇χ) dV+∫
∂D

((t − σ∼ .n ) u̇ + (m−m .n ) γ̇χ) dS = 0, ∀u̇ ,∀γ̇χ,∀D, (5.13)

where n is the normal to the surface element dS of the boundary ∂D of the
subdomain D in the current configuration. Since this relation must hold for all
D, all u̇ and all γ̇χ, one gets the balances

divσ∼ = 0, ∀x ∈ D, (5.14)
divm − s = 0, ∀x ∈ D, (5.15)

and the Neumann boundary conditions

t = σ∼ .n , ∀x ∈ ∂D, (5.16)
m = m .n , ∀x ∈ ∂D. (5.17)

Analogously, one can derive the balance laws in the reference configuration:

DivS∼ = 0, ∀X ∈ D0, (5.18)
DivM − S = 0, ∀X ∈ D0, (5.19)

where S∼ is the Boussinesq stress tensor which generates power over Ḟ∼ in any
subdomain D0 of the body B0, M is the generalized stress which generates power
over K̇ in D0 and S is the generalized stress which generates power over γ̇χ
in D0. In addition,

S∼ = ρ0

ρ
σ∼ .F∼

−T ; (5.20)

M = ρ0

ρ
F∼
−1.m ; (5.21)

S = ρ0

ρ
s. (5.22)

The Neumann boundary conditions then become

T = S∼ .n 0, ∀X ∈ ∂D0, (5.23)
M = M .n 0, ∀X ∈ ∂D0. (5.24)

where T is the surface traction measured with respect to ∂D0, M is the generalized
surface traction which generates power over γ̇χ in D0 and n 0 is the normal to
the surface element of the subdomain D0.
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5.1.3 Second law of thermodynamics

The second law of thermodynamics asserts non-negative energy dissipation rate d for
any subdomainD of the crystalline body B in the current configuration, which writes

d =
∫
D
pi dV −

˙∫
D
ρψ dV > 0 (5.25)

with the free energy density ψ measured per unit mass and the mass density ρ
measured in the current configuration. The second term represents the temporal
increase in the free energy of subdomain D, which follows

˙∫
D
ρψ dV =

˙∫
D0
ρ0ψ dV0 =

∫
D0
ρ0ψ̇ dV0 =

∫
D
ρψ̇ dV, (5.26)

where D0 denotes the considered subdomain in the reference configuration and ρ0

the reference mass density. Thus Eq. (5.25) can be written as∫
D

(
pi − ρψ̇

)
dV > 0. (5.27)

As D is arbitrary, the local form of the entropy imbalance is

pi − ρψ̇ > 0. (5.28)

5.1.4 Constitutive equations

The goal is to propose a set of constitutive equations accounting for the generalized
stress variables and the microslip variables, fulfilling the entropy inequality. To
this end, we first consider the multiplicative decomposition of the deformation
gradient F∼ :

F∼ = E∼ .P∼ , (5.29)

where E∼ denotes the elastic part and P∼ the plastic part of the deformation gradient
F∼ . By this decomposition, a local intermediate configuration C] is introduced
(Mandel, 1973). The reference and current local configuration at X are called C0

and C respectively. It is assumed that plastic deformation takes place through
the slip of dislocations on prescribed slip planes with normal n s along prescribed
slip direction l s, and that the evolution of P∼ is governed by the plastic slip γs

on slip systems s via the relation

Ṗ∼ .P∼
−1 =

N∑
s=1

γ̇sN∼
s (5.30)
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with the Schmid tensor N∼
s = l s⊗n s and the total number of slip systems N . The

uniqueness of the decomposition (Eq. (5.29)) is obtained by choosing the isoclinic
local configuration C] where the crystal lattice has the same orientation as in C0

(Mandel, 1973). A cumulative total slip variable γcum is introduced as

γcum =
∫ t

0

12∑
s=1
|γ̇s| dt. (5.31)

γcum is related to the microslip variable γχ via a variable e(X , t) called relative
plastic slip and given by

e(X , t) = γcum − γχ. (5.32)

The relative plastic slip variable e measures the deviation of γχ from γcum and will
be associated with an energy cost in the free energy potential in the following.

Considering Eq. (5.29), L∼ can be expressed as

L∼ = Ḟ∼F∼
−1 = L∼

e +E∼ .L∼
p.E∼

−1 (5.33)

with
L∼
e = Ė∼ .E∼

−1, L∼
p = Ṗ∼ .P∼

−1. (5.34)

With the consideration of Eqs. (5.32) and (5.33), the internal power density pi

in Eq. (5.10) can be further developed as

pi = ρ

ρ]
Π∼
e : Ė∼

e

GL
+ ρ

ρ]
Π∼
M : (Ṗ∼ .P∼

−1) + s(γ̇cum − ė) +m . grad γ̇χ. (5.35)

with

Π∼
e = ρ]

ρ
E∼
−1.σ∼ .E∼

−T , Π∼
M = ρ]

ρ
E∼
T .σ∼ .E∼

−T = E∼
T .E∼ .Π∼

e, E∼
e
GL

= 1
2
(
E∼
T .E∼ − 1∼

)
(5.36)

where ρ] is the density measured w.r.t. the intermediate configuration C], E∼
e
GL

denotes the Green-Lagrange elastic strain tensor, Π∼
e the Piola stress tensor w.r.t.

C] and Π∼
M the Mandel stress tensor. Note that ρ] = ρ0, because of the plastic

incompressibility of the crystalline body. As Eulerian gradient and time derivative
do not generally commute, it is more convenient to expressm . grad γ̇χ in Eq. (5.35)
in terms of Lagrangian gradient. Considering Eqs. (5.9) and (5.21), one obtains

m . grad γ̇χ = m .
(
Grad γ̇χ.F∼

−1
)

=
(
F∼
−1.m

)
.Grad γ̇χ

= ρ

ρ0

(
ρ0

ρ
F∼
−1.m

)
.Grad γ̇χ = ρ

ρ0
M .Grad γ̇χ. (5.37)
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Because of the commutativity between Lagrangian gradient and time derivative,
one gets

ρ

ρ0
M .Grad γ̇χ = ρ

ρ0
M . ˙Grad γχ = ρ

ρ0
M .K̇ . (5.38)

As a result, Eqs. (5.35) and (5.38) yield

pi = ρ

ρ]
Π∼
e : Ė∼

e

GL
+ ρ

ρ]
Π∼
M : (Ṗ∼ .P∼

−1) + s(γ̇cum − ė) + ρ

ρ0
M .K̇ (5.39)

In the present model, the vector microslip variable K and the relative plastic
slip e are assumed to be state variables in addition to the usually considered term —
elastic strain E∼ GL. The free energy density ψ is hence a function of E∼ GL, K and e:

ψ = ψ
(
E∼
e
GL
, e,K

)
. (5.40)

Thus, ρψ̇ yields

ρψ̇ = ρ
∂ψ

∂E∼
e
GL

: Ė∼
e

GL
+ ρ

∂ψ

∂e
ė+ ρ

ψ

K
.K̇ . (5.41)

Considering Eqs. (5.28), (5.39) and (5.41) yields

ρ

(
Π∼
e

ρ]
− ∂ψ

∂E∼
e
GL

)
: Ė∼

e

GL
+ ρ

ρ]
Π∼
M :

(
Ṗ∼P∼

−1
)
−
(
s+ ρ

∂ψ

∂e

)
ė+ρ

(
M

ρ0
− ∂ψ

∂K

)
.K̇ +sγ̇cum > 0.

(5.42)
Following the Coleman-Noll procedure, we require that Eq. (5.42) holds for all
arbitrarily prescribed Ė∼

e

GL
, ė and K̇ . In order to satisfy this requirement, the

coefficients associated with the three terms mush vanish, which gives the state laws:

Π∼
e = ρ]

∂ψ

∂E∼
e
GL

, (5.43)

s = −ρ∂ψ
∂e
, (5.44)

M = ρ0
∂ψ

∂K
. (5.45)

Note that, as the free energy potential is assumed to depend on the Lagrangian
term K , a constitutive relation is thus directly obtained for the work-conjugate
pair K and M in the reference configuration C0. Furthermore, Eq. (5.42) yields
the residual dissipation (also called reduced dissipation) inequality:

dres = ρ

ρ]
Π∼
M :

(
Ṗ∼P∼

−1
)

+ sγ̇cum > 0. (5.46)
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Given Eq. (5.30), the term Π∼
M :

(
Ṗ∼P∼

−1
)
yields

Π∼
M :

(
Ṗ∼P∼

−1
)

= Π∼
M :

( 12∑
s=1

γ̇sN∼
s

)
=

12∑
s=1

(
Π∼
M : N∼

s
)
γ̇s =

12∑
s=1

τ sγ̇s, (5.47)

with the resolved shear stress τ s = Π∼
M : N∼

s in C]. Thus, the residual dissipation
inequality writes

dres = ρ

ρ]

12∑
s=1

τ sγ̇s + sγ̇cum > 0. (5.48)

With γcum defined by Eq. (5.31), Eq. (5.48) can be written as

dres = ρ

ρ]

12∑
s=1

τ sγ̇s + s
12∑
s=1
|γ̇s| > 0. (5.49)

Noticing that sign (τ s) = sign (γs), one has τ sγ̇s = |τ s||γ̇s|. Eq. (5.49) can be
further written as

dres = ρ

ρ]

12∑
s=1
|τ s||γ̇s|+ s

12∑
s=1
|γ̇s| = ρ

ρ]

12∑
s=1

(
|τ s|+ ρ]

ρ
s

)
|γ̇s| > 0. (5.50)

Considering the term |τ s|+ ρ]
ρ
s in Eq. (5.50), we propose to introduce the following

yield function:

f s = |τ s|+ ρ]
ρ
s− τ sc = |τ s| −

(
τ sc −

ρ]
ρ
s

)
6 0, , ∀s = 1, 2, ..., N, (5.51)

where τ sc is the critical resolved shear stress (CRSS) for the slip system s. As can
be seen from the yield function, the generalized stress s is regarded as a source
of isotropic hardening and changes the yield limit of slip systems. Accordingly, a
rate-dependent law is chosen for the plastic slip γs, expressed as

γ̇s =
〈 |τ s| − (τ sc − ρ]

ρ
s
)

K

〉n
sign (τ s) . (5.52)

5.1.5 Alternative formulation of constitutive equations

In the previous sections, the constitutive equations are derived by accounting for
K , or equivalently k , as an argument of the free energy potential. However,
other choices exist. Inspired from the Green-Lagrange elastic tensor E∼

e
GL

which
is measured in the intermediate configuration C], we push forward K into C], or
equivalently pull back k into C], and define K ] as:

K ] = P∼
−T .K = E∼

T .k . (5.53)
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The generalized stress M ] work-conjugate to K ] in the intermediate configuration
C] can be found according to the requirement that the work generated by M over
the vector microslip variable K on a volume element dV0 in C0 is equal to that by
M ] over K ] on the volume element dV] in C]. Thus, M .K follows

M .K dV0 = ρ]
ρ0
M .K dV] = ρ]

ρ0
M .P∼

T .P∼
−T .K dV] = ρ]

ρ0
M .P∼

T .K ] dV] = M ].K ] dV],

(5.54)
where

M ] = ρ]
ρ0
M .P∼

T = ρ]
ρ0
P∼ .M . (5.55)

Substituting Eq. (5.21) into the previous equation leads to

M ] = ρ]
ρ
E∼
−1.m (5.56)

Accordingly, an alternative constitutive formulation can be proposed for which the
free energy potential depends on K ] instead of K , i.e., ψ = ψ

(
E∼
e
GL
, e,K ]

)
.

It follows that

ρψ̇ = ρ
∂ψ

∂E∼
e
GL

: Ė∼
e

GL
+ ρ

∂ψ

∂e
ė+ ρ

ψ

K ] .K̇
]
. (5.57)

Substitution of Eqs. (5.53) and (5.55) into the power density of internal forces,
Eq. (5.39), leads to

pi = ρ

ρ]
Π∼
e : Ė∼

e

GL
+ ρ

ρ]
Π∼
M : (Ṗ∼ .P∼

−1) + s(γ̇cum − ė) + ρ

ρ0
M .K̇ (5.58)

= ρ

ρ]
Π∼
e : Ė∼

e

GL
+ ρ

ρ]
Π∼
M : (Ṗ∼ .P∼

−1) + s(γ̇cum − ė)+
ρ

ρ]
P∼
−1.M ].(Ṗ∼

T
.K ] + P∼

T .K̇ ]) (5.59)

= ρ

ρ]
Π∼
e : Ė∼

e

GL
+ ρ

ρ]
Π∼
M : (Ṗ∼ .P∼

−1) + s(γ̇cum − ė) + ρ

ρ]
P∼
−1.Ṗ∼ .M

].K ]

+ ρ

ρ]
P∼
−1.P∼ .M

].K̇ ] (5.60)

= ρ

ρ]
Π∼
e : Ė∼

e

GL
+ ρ

ρ]
Π∼
M : (Ṗ∼ .P∼

−1) + s(γ̇cum − ė) + ρ

ρ]
(K ] ⊗M ]) : (Ṗ∼ .P∼

−1)

+ ρ

ρ]
M ].K̇ ]. (5.61)

Substituting Eqs. (5.57) and (5.61) into Eq. (5.28) writes

pi − ρψ̇ = ρ

(
Π∼
e

ρ]
− ∂ψ

∂E∼
e
GL

)
: Ė∼

e

GL
−
(
s+ ρ

∂ψ

∂e

)
ė+ ρ

(
M ]

ρ]
− ∂ψ

∂K ]

)
.K̇ ]

+ ρ

ρ]

(
Π∼
M +K ] ⊗M ]

)
:
(
Ṗ∼P∼

−1
)

+ sγ̇cum > 0. (5.62)
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Following the Coleman-Noll procedure results in the constitutive equations
Eqs. (5.43) and (5.44) and another one connecting M ] and K ]

M ] = ρ]
∂ψ

∂K ] . (5.63)

Then, the residual dissipation inequality writes

dres = ρ

ρ]

(
Π∼
M +K ] ⊗M ]

)
:
(
Ṗ∼P∼

−1
)

+ sγ̇cum > 0. (5.64)

Considering Eqs. (5.30) and (5.31) yields

dres = ρ

ρ]

(
Π∼
M +K ] ⊗M ]

)
:
( 12∑
s=1

γ̇sN∼
s

)
+ s

12∑
s=1
|γ̇s| > 0. (5.65)

Given the resolved shear stress τ s = Π∼
M : N∼

s with N∼
s = l s ⊗ n s, the previous

inequality follows

dres = ρ

ρ]

12∑
s=1

{[
τ s + (K ].l s)(M ].n s)

]
γ̇s + ρ]

ρ
s|γ̇s|

}
(5.66)

= ρ

ρ]

12∑
s=1

(
|τ ]s|+ ρ]

ρ
s

)
|γ̇s| > 0, (5.67)

where a generalized resolved shear stress is defined as

τ ]s = τ s + xs (5.68)

with
xs = (K ].l s)(M ].n s). (5.69)

It can be seen that the residual dissipation section 5.1.5 takes the same form as
Eq. (5.50), except that τ ]s is used instead of τ s. Moreover, xs plays the role of
a gradient induced back-stress for each slip system. Therefore, a second yield
function is thus proposed in the form:

f s = |τ ]s|−
(
τ sc −

ρ]
ρ
s

)
= |τ s+(K ].l s)(M ].n s)|−

(
τ sc −

ρ]
ρ
s

)
6 0, ∀s = 1, 2, ..., 12.

(5.70)
Compared with the previous formulation of the theory, gradient terms come into
play not only through isotropic hardening but also kinematic hardening, as a result
of introducing the gradient of microslip measured in the intermediate configuration.
Accordingly, the rate-dependent law to determine the plastic slip writes

γ̇s =
〈 |τ ]s| − (τ sc − ρ]

ρ
s
)

K

〉n
sign (τ s) . (5.71)
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5.1.6 Hardening laws

The hardening laws describe the evolution of the critical resolved shear stress τ sc
with some internal variables. In the present work, the hardening laws based on the
evolution of dislocation densities are taken into account. Since the thermodynamics
of the evolution of dislocation densities is not known (Busso and Cailletaud, 2005),
the hardening laws are not involved in the previous development of the present model.

Following Kubin et al. (2008), τ sc of the slip system s can be expressed as:

τ sc = τ0 + µ

√√√√ 12∑
s=1

asuru, (5.72)

where τ0 is the thermal component of the CRSS due to the lattice friction, rs

denotes adimensional dislocation density (rs = b2ρs with the dislocation density ρs

and the norm of Burgers vector of the dislocation b), µ is the shear modulus, and
asu is a matrix for describing long-range interactions between dislocations.

Considering the multiplication and the annihilation of dislocations due to the
interactions among them, the evolution of adimensional dislocation densities rs

is governed by

ṙs = |γ̇s|
(√

bsuru

κ
−Gcr

s

)
, (5.73)

where κ is proportional to the number of obstacles crossed by a dislocation
before being immobilized, Gc is the critical distance controlling the annihilation
of dislocations with opposite signs, and bsu describes the interactions between
dislocations. The structure of the matrices asu and bsu are given in appendix A
for FCC crystals.

5.2 Constitutive choices for the free energy po-
tential

Different free energy potentials can be chosen for the two formulations of the
constitutive equations. Several potentials as well as resulting regularization
equations are proposed in the following. The two formulations are discussed
separately.

5.2.1 Formulation with free energy potential depending on
K or k

Choices of free energy potential are first discussed for the constitutive formulation
presented in section 5.1.4. Choices of free energy potential leads to different state
laws, yield functions and regularization functions as shown below.
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Model based on the state law M = A∼ .K

A first quadratic potential is considered in the form:

ρψ = 1
2
ρ

ρ]
E∼
e
GL

: Λ
≈

: E∼
e
GL

+ 1
2
ρ

ρ0
Hχe

2 + 1
2
ρ

ρ0
K .A∼ .K , (5.74)

where Λ
≈

is the fourth rank tensor of elastic moduli, Hχ a penalty modulus and A∼
a second rank tensor of high order moduli. With this potential, the constitutive
relations Eqs. (5.43) to (5.45) yield

Π∼
e = Λ

≈
: E∼

e
GL
, (5.75)

s = − ρ

ρ0
Hχe, (5.76)

M = A∼ .K , (5.77)

with e = γcum − γχ. Noticing S = ρ0
ρ
s, one can write Eq. (5.76) as

S = −Hχe. (5.78)

Substituting Eqs. (5.5) and (5.21) into Eq. (5.77) yields a nonlinear relation between
the associated Eulerian vectors:

m = ρ

ρ0
F∼ .A∼ .F∼

T .k . (5.79)

Then, we consider the yield function Eq. (5.51). Noticing that ρ] = ρ0 for
crystal plasticity and that S = ρ0

ρ
s, one can obtain

f s = |τ s| −
(
τ sc −

ρ]
ρ
s

)
= |τ s| −

(
τ sc −

ρ0

ρ
s

)
= |τ s| − (τ sc − S) (5.80)

Substituting the balance law Eq. (5.19) into the previous yield function gives

f s = |τ s| − (τ sc −DivM ) . (5.81)

In the present work, the model will be applied to crystals with cubic symmetry.
It follows that A∼ must be a spherical tensor, i.e., A∼ = A1∼. The constitutive
relations Eqs. (5.77) and (5.79) thus become

M = A.K , (5.82)
m = ρ

ρ0
AB∼ .k , (5.83)

where B∼ = F∼ .F∼
T is the left Cauchy–Green tensor. Taking into account the state

law Eq. (5.82), one can further get

f s = |τ s| − (τ sc − ADiv (Grad γχ)) = |τ s| − (τ sc − A4Xγχ) (5.84)



142 5.2. Constitutive choices for the free energy potential

As can be seen in this expression, the term Grad γχ comes into play as a source
of isotropic hardening proportional to the Laplacian of microslip in the spirit of
Aifantis model (Aifantis, 1987).

Moreover, one can obtain the regularization equation connecting γχ and γcum.
Combining Eqs. (5.19), (5.32), (5.78) and (5.82) gives

γχ −
A

Hχ

4Xγχ = γcum. (5.85)

Here, the regularization equation with a Lagrangian Laplace operator is thus
obtained in the reference configuration. Besides, it is also possible to get a
regularization function with an Eulerian Laplace operator by choosing a different
free energy potential as shown below.

Model based on the state law m = A∼ .k

For obtaining an Eulerian Laplace operator in the regularization equation, a second
potential is considered in the form:

ρψ = 1
2
ρ

ρ]
E∼
e : Λ

≈
: E∼

e + 1
2Hχe

2 + 1
2K .F∼

−1A∼ .F∼
−T .K . (5.86)

By Eq. (5.43), the same constitutive equation as Eq. (5.75) is obtained, while
Eqs. (5.44) and (5.45) lead to

s = −Hχe, (5.87)
M = ρ0

ρ
F∼
−1A∼ .F∼

−T .K . (5.88)

With Eqs. (5.5), (5.21) and (5.88), one can readily find

m = A∼ .k . (5.89)

For crystals with cubic symmetric, i.e., A∼ = A1∼, the constitutive relations
Eqs. (5.88) and (5.89) become

M = ρ0

ρ
AC∼

−1.K , (5.90)

m = Ak , (5.91)

where C∼ = F∼
T .F∼ is the right Cauchy–Green tensor. Following the same derivation

procedure as in the previous section, one can find that the yield function Eq. (5.51)
writes

f s = |τ s| −
(
τ sc −

ρ]
ρ
A div(grad γχ)

)
= |τ s| −

(
τ sc −

ρ]
ρ
A4xγχ

)
. (5.92)

and the regularization equation as

γχ −
A

Hχ

4xγχ = γcum, (5.93)

where the Eulerian Laplace operator appears.
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5.2.2 Formulation with free energy potential depending on
K ]

In the following, the formulation presented in section 5.1.5 is developed. Three
choices of free energy potential are shown.

Model based on the state law K ] = A∼ .M
]

A first quadratic free energy potential is considered in the form:

ρψ = 1
2
ρ

ρ]
E∼
e : Λ

≈
: E∼

e + 1
2Hχe

2 + 1
2
ρ

ρ]
K ].A∼ .K

]. (5.94)

Substituting the potential into Eqs. (5.44) and (5.63) gives:

s = −Hχe, (5.95)

M ] = A∼ .K
], (5.96)

with e = γcum − γχ. With S = ρ0
ρ
s, one has

S = −ρ0

ρ
Hχe. (5.97)

We express the yield function in terms of γχ and first consider the Lagrangian
treatment of the variables. Substituting Eqs. (5.53) and (5.55) into Eq. (5.96) yields

M = ρ0

ρ]
P∼
−1.A∼P∼

−T .K (5.98)

Noticing that ρ] = ρ0 for crystal plasticity and that S = ρ0
ρ
s, one can write

Eq. (5.70) as

f s = |τ ]s| −
(
τ sc −

ρ]
ρ
s

)
= |τ ]s| −

(
τ sc −

ρ0

ρ
s

)
= |τ ]s| − (τ sc − S) . (5.99)

In the case of A∼ = A1∼, the constitutive equations Eqs. (5.96) and (5.98) become

M ] = AK ], , (5.100)

M = ρ0

ρ]
AC∼

p−1.K , (5.101)

with C∼
p = P∼

T .P∼ . Considering Eqs. (5.19) and (5.101), one can further write
the yield function as

f s = |τ ]s| −
(
τ sc − A Div (ρ0

ρ]
C∼
p−1.K )

)
, (5.102)
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with

τ ]s = τ s + xs and xs = (K ].l s)(M ].n s) = (P∼
−T .K .l s)(AP∼

−T .K .n s).
(5.103)

Combining Eqs. (5.19), (5.97) and (5.98), one can obtain the regularization function:

γχ −
A

Hχ

ρ

ρ0
Div (ρ0

ρ]
C∼
p−1.Grad γχ) = γcum. (5.104)

It can be seen that the Lagrangian Laplace operator is not involved in the equation.
For the same formulation, we then consider the Eulerian treatment of the

variables to see whether the Eulerian Laplace operator will be obtained. With
Eqs. (5.21) and (5.55), m follows

m = ρ

ρ0
F∼ .M = ρ

ρ]
E∼ .M

]. (5.105)

Combining Eqs. (5.5) and (5.53) gives

K ] = E∼
T .k . (5.106)

Hence, Eq. (5.96) yields

m = ρ

ρ]
E∼ .A∼ .E∼

T .k . (5.107)

For crystals with cubic symmetry, the previous equation becomes

m = ρ

ρ]
AB∼

e.k , (5.108)

with B∼
e = E∼ .E∼

T . The yield function Eq. (5.70) thus writes

f s = |τ ]s| −
(
τ sc −

ρ]
ρ

div
(
ρ

ρ]
AB∼

e. grad γχ
))

6 0. (5.109)

According to Eqs. (5.15), (5.95) and (5.107), the regularization function writes

γχ −
A

Hχ

div ( ρ
ρ]
B∼
e. grad γχ) = γcum. (5.110)

This function does not involve the Eulerian Laplace operator. It is thus demonstrated
that the second formulation based on K ] with the potential Eq. (5.94) cannot lead
to neither Lagrangian nor Eulerian Laplace operator in the regularization equation.
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Model based on the state law M = A∼ .K

For involving the Lagrangian Laplace operator in the regularization equation, a
second potential is proposed in the form:

ρψ = 1
2
ρ

ρ]
E∼
e : Λ

≈
: E∼

e + 1
2
ρ

ρ0
Hχe

2 + 1
2
ρ

ρ0
K ].P∼ .A∼ .P∼

T .K ], (5.111)

According to Eqs. (5.44) and (5.63), the potential leads to

s = − ρ

ρ0
Hχe, (5.112)

M ] = ρ]
ρ0
P∼ .A∼ .P∼

T .K ]. (5.113)

With S = ρ0
ρ
s, one has

S = −Hχe. (5.114)

Substituting Eqs. (5.53) and (5.55) into Eq. (5.113) yields

M = A∼ .K . (5.115)

For crystals with cubic symmetry, the constitutive relations Eqs. (5.113)
and (5.115) become

M ] = AB∼
p.K ], (5.116)

M = AK , (5.117)

with B∼
p = P∼ .P∼

T . The yield function can be written as:

f s = |τ ]s| − (τ sc − A4Xγχ) = |τ s + xs| − (τ sc − A4Xγχ) 6 0, (5.118)

with

xs = (K ].l s)(M ].n s) = (P∼
−T .K .l s)(AB∼

p.P∼
−T .K .n s). (5.119)

Analogously, the regularization function is found to be

γχ −
A

Hχ

4Xγχ = γcum. (5.120)

This regularization function involves the Lagrangian Laplace operator as expected.
Note that this regularization function is the same as Eq. (5.85), but that the yield
function is defined with the generalized resolved shear stress τ ]s instead of τ s.



146 5.2. Constitutive choices for the free energy potential

Model based on the state law m = A∼ .k

Based on the idea to obtain a regularization equation with the Eulerian Laplace
operator, a third potential considered follows:

ρψ = 1
2
ρ

ρ]
E∼
e : Λ

≈
: E∼

e + 1
2Hχe

2 + 1
2K

].E∼
−1.A∼ .E∼

−T .K ] (5.121)

The potential leads to

s = −Hχe, (5.122)

M ] = E∼
−1.A∼ .E∼

−T .K ]. (5.123)

Using Eqs. (5.105) and (5.106),one can obtain

m = A∼ .k . (5.124)

For crystals with cubic symmetry, the constitutive relations become

M ] = AC∼
e−1.K ], (5.125)

m = Ak , (5.126)

with C∼
e = E∼

T .E∼ . The yield function is found to be

f s = |τ ]s| −
(
τ sc −

ρ]
ρ
A4xγχ

)
= |τ s + xs| −

(
τ sc −

ρ]
ρ
A4xγχ

)
6 0. (5.127)

with

xs = (K ].l s)(M ].n s) = (P∼
−T .K .l s)(AC∼

e−1.P∼
−T .K .n s). (5.128)

The regularization function can readily be obtained:

γχ −
A

Hχ

4xγχ = γcum. (5.129)

Notice that the obtained regularization function is the same as Eq. (5.93) but
the corresponding yield function is defined with the generalized resolved shear
stress τ ]s instead of τ s.
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5.3 Numerical implementation

5.3.1 Integration of constitutive equations

The formulation of the constitutive equations presented in section 5.1.4 is chosen
for the numerical implementation. The free energy potential given by Eq. (5.74)
is chosen for the implementation.

The problem of the numerical integration of constitutive equations can be
stated as follows: given the initial values of the stress variables S∼ , S and M and
associated internal variables vint to be integrated , if the strain variables F∼ , γχ, K
increase to F∼ + ∆F∼ , γχ + ∆γχ, K + ∆K , what are the final values of the stress
variables and the internal variables vint? The strain variables are referred to as
the input variables (vIN) and the stress variables as the output variables (vOUT),
the problem is briefly depicted in fig. 5.1. For the sake of brevity, the increments
of the variables are written in the rate form.

���������	��
����
���


� �

� �

� �

� �� � �

� � �

Figure 5.1: Problem setup of the numerical integration of the constitutive equations.

Ṡ and Ṁ can be given directly by Eqs. (5.77) and (5.78), while the calculation
of Ṡ∼ requires some further derivation of equations. Combining Eqs. (5.20), (5.36)
and (5.75) leading to

S∼ = Jσ∼ .F∼
−T = J

Je
E∼ .

Λ
≈

2 (E∼
T .E∼ − 1∼)

 .E∼ T .F∼ −T , (5.130)

which shows that S∼ depends on E∼ and F∼ . Since the current value of F∼ is given, the
problem of looking for the current value of F∼ becomes to find that of E∼ . In order to
obtain the equations governing E∼ , one can combine Eqs. (5.33) and (5.34) and get

Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .Ṗ∼ .P∼

−1. (5.131)
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Notice that Ṗ∼ .P∼
−1 is given in Eq. (5.30) and governed by

Ṗ∼ .P∼
−1 =

12∑
s=1

γ̇sN∼
s. (5.132)

With this relation, Ė∼ is expressed by

Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .

( 12∑
s=1

γ̇sN∼
s

)
. (5.133)

Recall that γ̇s is determined by Eq. (5.52):

γ̇s =
〈
|τ s| − (τ sc − S)

K

〉n
sign (τ s) , (5.134)

where S = Hχ(γχ−γcum) and τ sc is given by the hardening law. Note that τ sc −S > 0
is considered. For γcum, we consider the rate form of Eq. (5.31)

γ̇cum =
12∑
s=1
|γ̇s|, (5.135)

Therefore, for calculating the current value of E∼ , the differential equations
that must be integrated are



Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .

( 12∑
s=1

γ̇sN∼
s

)

γ̇s =
〈
|τ s| − (τ sc − S)

K

〉n
sign (τ s)

ṙsD = |γ̇s|

√
bsuruD

κ
−Gcr

s
D


γ̇cum =

12∑
s=1
|γ̇s|,

(5.136)

(5.137)

(5.138)

(5.139)

For facilitating the description of the algorithm, the variables to integrate are denoted
by vint in the following, i.e., vint = {E∼ , γs, rs, γcum}. The numerical integration of
the differential equations is performed with the Newton-Raphson method, which
concerns solving the residual equations

{R} = {∆vint} −∆t{v̇int}(t+ θ∆t) = {0}. (5.140)
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For the considered differential equations, the residual equations follow

RE∼ = ∆E∼ −∆F∼ .F∼
−1.E∼ +E∼ .

( 12∑
s=1

∆γsN∼
s

)

Rγs = ∆γs −
〈
|τ s| − (τ sc − S)

K

〉n
sign (τ s) ∆t,

Rrs = ∆rs − |∆γs|
(√

bsuru

κ
−Gcr

s

)

Rγcum = ∆γcum −
12∑
s=1
|∆γs|

(5.141)

(5.142)

(5.143)

(5.144)

Within the Newton-Raphson algorithm, the Jacobian [J ] needs to be evaluated
and writes

[J ] = ∂{R}
∂{∆vint}

= [1]−∆t ∂{v̇int}
∂{∆vint}

. (5.145)

The Jacobian for the previous residual equation system can be expressed in a
partitioned matrix 

∂RE∼
∂∆E∼

∂RE∼
∂∆γp

∂RE∼
∂∆rq

∂RE∼
∂∆γcum

∂Rγs

∂∆E∼

∂Rγs

∂∆γp
∂Rγs

∂∆rq
∂Rγs

∂∆γcum
∂Rrs

∂∆E∼

∂Rrs

∂∆γp
∂Rrs

∂∆rq
∂Rrs

∂∆γcum
∂Rγcum

∂∆E∼

∂Rγcum

∂∆γp
∂Rγcum

∂∆rq
∂Rγcum

∂∆γcum


. (5.146)

Analytical expressions for each block is presented in appendix C.

5.3.2 Finite element formulation

The model is implemented in the finite element (FE) code Zset using a total
Lagrangian finite element formulation in three dimensions. To this end, we first
convert the principle of virtual power, given by Eq. (5.12) and expressed in the
current configuration C:∫

D
(σ∼ : (grad u̇ ) + sγ̇χ +m . grad γ̇χ) dV =

∫
∂D

(t .u̇ +mγ̇χ) dS, (5.147)

to the formulation in the reference configuration C0∫
D0
S∼ : Ḟ∼ + Sγ̇χ +M .K̇ dV0 =

∫
∂D0

(T .u̇ +Mγ̇χ) dS0. (5.148)
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Note that since the FE equations will be solved by an iterative method, the rate

terms (Ḟ∼ , γ̇χ, K̇ , u̇ ) correspond to their increments (∆F∼ , ∆γχ, ∆K , ∆u ).

Next, we carry on the FE discretisation on the crystalline body considered.

Tensors and vectors are written in index notation, except otherwise stated. Besides

the displacement ui, the microslip γχ is regarded as an additional nodal degree of

freedom. Assuming that the considered crystalline body occupying the domain D0

in C0 is discretized by l finite elements, one can write the principle of virtual

power (Eq. (5.148)) as

∫
D0

(
SijḞij + Sγ̇χ +MiK̇i

)
dV0 =

∫
∂D0

(Tiu̇i +Mγ̇χ) dS0 (5.149)

=⇒
l∑

e=1

∫
De0

(
SijḞij + Sγ̇χ +MiK̇i

)
dV0 =

l∑
e=1

∫
∂De0

(Tiu̇i +Mγ̇χ) dS0. (5.150)

Here, the subdomain De
0 corresponds to the space occupied by an individual element.

The summation is done for the repeated subscripts, e.g., SijḞij denotes
3∑
i=1

3∑
j=1

SijḞij ;

for the sake of brevity, the summation operator will not be written for the subscripts.

In general, it is assumed that, within one individual element, ui is interpolated

from the displacement values of p nodes and γχ from the values of q nodes. ui
and γχ within one element are given by

ui =
p∑
a=1

uNaũai (5.151)

γχ =
q∑
b=1

χN bγ̃bχ, (5.152)

where uNa and χN b are shape functions respectively for ui and γχ, and ũai and

γ̃bχ respectively denote the nodal values of ui on node a and those of γχ on node

b. Unlike the subscripts, the summation operators are written explicitly for the

superscripts denoting the nodes. The deformation gradient Fij and the Lagrangian

gradient of microslip Ki are given by

Fij =
p∑
a=1

uBa
j ũ

a
i (5.153)

Ki =
q∑
b=1

χBb
i γ̃

b
χ (5.154)
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with uBa
j = ∂uNa

∂Xj

and χBb
i = ∂χN b

∂Xi

. Using these relations in Eq. (5.150) leads to

l∑
e=1

∫
De0

[
Sij

p∑
a=1

(
uBa

j
˙̃uai
)

+
q∑
b=1

(
SχN b ˙̃γbχ +Mi

χBb
i
˙̃γbχ
)]

dV0 =

l∑
e=1

∫
∂De0

(
Ti

p∑
a=1

uNa ˙̃uai +M
q∑
b=1

χN b ˙̃γbχ
)
dS0 (5.155)

=⇒
l∑

e=1

p∑
a=1

[∫
De0

(
Sij

uBa
j

)
dV0

]
˙̃uai +

l∑
e=1

q∑
b=1

[∫
De0

(
SχN b +Mi

χBb
i

)
dV0

]
˙̃γbχ =

l∑
e=1

p∑
a=1

[∫
∂De0

(TiuNa) dS0

]
˙̃uai +

l∑
e=1

q∑
b=1

[∫
∂De0

(
MχN b

)
dS0

]
˙̃γbχ. (5.156)

According to Eq. (5.156), an internal reaction is associated with each degree of
freedom. We thus refer to Ra

int(ui,e) as the internal reaction on node a related to ui

Ra
int(ui,e) =

∫
De0

(
Sij

uBa
j

)
dV0 (5.157)

and to Rb
int(γχ,e) as the internal reaction on node b related to γχ

Rb
int(γχ,e) =

∫
De0

(
SχN b +Mi

χBb
i

)
dV0. (5.158)

Analogously, an external reaction is associated with each degree of freedom. We
refer to Ra

int(ui,e) as the external reaction on node a related to ui

Ra
int(ui,e) =

∫
∂De0

(TiuNa) dS0 (5.159)

and to Rb
ext(γχ,e) as the external reaction on node b related to γχ

Rb
ext(γχ,e) =

∫
∂De0

(
MχN b

)
dS0. (5.160)

With these expressions, (5.156) writes

l∑
e=1

p∑
a=1

Ra
int(ui,e)

˙̃uai +
l∑

e=1

q∑
b=1

Rb
int(γχ,e)

˙̃γbχ =
l∑

e=1

p∑
a=1

Ra
int(ui,e)

˙̃uai +
l∑

e=1

q∑
b=1

Rb
ext(γχ,e)

˙̃γbχ.

(5.161)
Note that, in the terms associated with displacement ui, the summation
is done for the subscript i (i = 1, 2, 3) which is not written for the sake of
brevity. This is the FE equation for the entire FE mesh and can be solved
by Newton’s method.
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5.3.3 Details on implementation in FE code

In order to facilitate the numerical implementation in FE code, we rewrite the
previous equations in vector and matrix form. The rates of nodal degrees of freedom
˙̃ua and ˙̃γbχ are arranged in vector form as

{ ˙̃uai } = { ˙̃ue} =



˙̃u1
1

˙̃u1
2

˙̃u1
3
...
˙̃up1
˙̃up2
˙̃up3



and { ˙̃γbχ} = { ˙̃γeχ} =



˙̃γ1
χ

˙̃γ2
χ

...
˙̃γqχ


. (5.162)

Here, we drop the superscripts a and b used for summation over the nodes of one
element and add a superscript label e, in order to indicate that the vector is for
one individual element and to distinguish it from vectors for the entire FE mesh.
Recall that p is the number of nodes possessing displacement degrees of freedom
and q is that for microslip γχ. Voigt’s notation is used for writing tensors in the
form of vectors and matrices. Especially, the second-order non-symmetric tensor
F∼ and the vector K are arranged in the form:

{F∼ } =



F11
F22
F33
F12
F23
F31
F21
F32
F13



and {K } =


K1
K2
K3

 . (5.163)

Thus, shape functions uNa
i and χN b can thus be written as

[uN] =


uN1 0 0 · · · uNp 0 0
0 uN1 0 · · · 0 uNp 0
0 0 uN1 · · · 0 0 uNp

 (5.164)

and
[χN] =

[
χN1 χN2 χN3 · · · χN q.

]
(5.165)
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Accordingly, uBa
ij and χBa

i can also be written in matrix form denoted by [uB]
and [χB]:

[uB] =



∂uN1

∂X1
0 0 · · · ∂uNp

∂X1
0 0

0 ∂uN1

∂X2
0 · · · 0 ∂uNp

∂X2
0

0 0 ∂uN1

∂X3
· · · 0 0 ∂uNp

∂X3
∂uN1

∂X2
0 0 · · · ∂uNp

∂X2
0 0

0 ∂uN1

∂X3
0 · · · 0 ∂uNp

∂X3
0

0 0 ∂uN1

∂X1
· · · 0 0 ∂uNp

∂X1

0 ∂uN1

∂X1
0 · · · 0 ∂uNp

∂X1
0

0 0 ∂uN1

∂X2
· · · 0 0 ∂uNp

∂X2
∂uN1

∂X3
0 0 · · · ∂uNp

∂X3
0 0



(5.166)

and

[χB] =


∂χN1

∂X1
∂χN2

∂X1
∂χN3

∂X1
· · · ∂χNq

∂X1
∂χN1

∂X2
∂χN2

∂X2
∂χN3

∂X2
· · · ∂χNq

∂X2
∂χN1

∂X3
∂χN2

∂X3
∂χN3

∂X3
· · · ∂χNq

∂X3

 (5.167)

The interpolation of increment of the displacement u̇i and that of the microslip
γ̇χ in one element thus write

{u̇ } = [uN].{ ˙̃ue} (5.168)

{γ̇χ} = [χN].{ ˙̃γeχ} (5.169)

and their Lagrangian gradients follows

{Ḟ∼ } = [uB].{ ˙̃ue} (5.170)

{K̇ } = [χB].{ ˙̃γeχ}. (5.171)

With stress and strain variables expressed with Voigt’s notation, Eqs. (5.157)
to (5.160) follow

{Re
int(u)} =

∫
De0

[uB]T .{S∼} dV0, (5.172)

{Re
int(γχ)} =

∫
De0

[χN]T .{S}+ [χB]T .{M } dV0, (5.173)

{Re
ext(u)} =

∫
∂De0

[uN]T .{T } dS0, (5.174)

{Re
ext(γχ)} =

∫
∂De0

[χN]T .{M} dS0, (5.175)
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where [uB]T is the transpose of the matrix [uB] and the same notation is used for

other matrix. The global FE equation is obtained by applying assembly operator

A on internal reactions and external reactions:

{Rint(u)} = A({Re
int(u)}) (5.176)

{Rint(γχ)} = A({Re
int(γχ)}) (5.177)

{Rext(u)} = A({Re
ext(u)}) (5.178)

{Rext(γχ)} = A({Re
ext(γχ)}). (5.179)

The reader is referred to Besson et al. (2009) for the description of the assembly

procedure. Thus, the global FE equation (Eq. (5.161)) to be solved can be written as

{
{Rint(u)}
{Rint(γχ)}

}
.

{
{ ˙̃u}
{ ˙̃γχ}

}
=
{
{Rext(u)}
{Rext(γχ)}

}
.

{
{ ˙̃u}
{ ˙̃γχ}

}
. (5.180)

Since the system is nonlinear, it can be solved by Newton’s method which requires the

calculation of the Jacobian matrix with respect to the internal reactions (Besson et

al., 2009). The Jacobian matrix of an individual element, split into four blocks, writes

[
[Ke

(uu)] [Ke
(ug)]

[Ke
(gu)] [Ke

(gg)]

]
=


[
∂{Re

int(u)}
∂{ũe}

] [
∂{Re

int(u)}
∂{γ̃eχ}

]
[
∂{Re

int(γχ)}
∂{ũe}

] [
∂{Re

int(γχ)}
∂{γ̃eχ}

]
 . (5.181)

Using the assembly operation A, one can calculate the global Jacobian matrix [K]

[K] = A

 [Ke
(uu)] [Ke

(ug)]

[Ke
(gu)] [Ke

(gg)]

 (5.182)
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One calculates the blocks for an individual element and obtains the so-called
element stiffness matrix:

[Ke
(uu)] =

∂{Re
int(u)}

∂{ũe}
=
∫
D0

[uB]T . ∂{S∼}
∂{F∼ }

.
∂{F∼ }
∂{ũe}

dV0

=
∫
D0

[uB]T . ∂{S∼}
∂{F∼ }

.[uB] dV0 (5.183)

[Ke
(ug)] =

∂{Re
int(u)}

∂{γ̃eχ}
=
∫
D0

(
[uB]T . ∂{S∼}

∂{γχ}
.
∂{γχ}
∂{γ̃eχ}

+ [uB]T . ∂{S∼}
∂{K }

.
∂{K }
∂{γ̃eχ}

)
dV0

=
∫
D0

(
[uB]T . ∂{S∼}

∂{γχ}
.[χN] + [uB]T . ∂{S∼}

∂{K }
.[χB]

)
dV0 (5.184)

[Ke
(gu)] =

∂{Re
int(γχ)}

∂{ũe}
=
∫
D0

(
[χN]T . ∂{S}

∂{F∼ }
.
∂{F∼ }
∂{ũe}

+ [χB]T .∂{M }
∂{F∼ }

.
∂{F∼ }
∂{ũe}

)
dV0

=
∫
D0

(
[χN]T . ∂{S}

∂{F∼ }
.[uB] + [χB]T .∂{M }

∂{F∼ }
.[uB]

)
dV0 (5.185)

[Ke
(gg)] =

∂{Re
int(γχ)}

∂{γ̃eχ}
=
∫
D0

(
[χN]T . ∂{S}

∂{γχ}
.
∂{γχ}
∂{γ̃eχ}

+ [χB]T .∂{M }
∂{γχ}

.
∂{γχ}
∂{γ̃eχ}

+ [χN]T . ∂{S}
∂{K }

.
∂{K }
∂{γ̃eχ}

+ [χB]T .∂{M }
∂{K }

.
∂{K }
∂{γ̃eχ}

)
dV0

=
∫
D0

(
[χN]T . ∂{S}

∂{γχ}
.[χN] + [χB]T .∂{M }

∂{γχ}
.[χN]

+[χN]T . ∂{S}
∂{K }

.[χB] + [χB]T .∂{M }
∂{K }

.[χB]
)
dV0. (5.186)

In the element stiffness matrix, one can find nine derivatives which will be evaluated
by consistent tangent matrix {J∗} in the next section. The consistent tangent
matrix {J∗} are defined as:

∂{∆S∼}
∂{∆F∼ }

∂{∆S∼}
∂{∆γχ}

∂{∆S∼}
∂{∆K }

∂{∆S}
∂{∆F∼ }

∂{∆S}
∂{∆γχ}

∂{∆S}
∂{∆K }

∂{∆M }
∂{∆F∼ }

∂{∆M }
∂{∆γχ}

∂{∆M }
∂{∆K }


. (5.187)

In addition, it will be shown that ∂{∆S}
∂{∆K }

and ∂{∆M }
∂{∆γχ}

vanish for the constitutive
model implemented in this work.

5.3.4 Consistent tangent matrix

As presented in sections 5.3.2 and 5.3.3, the tangent operators are necessary for
evaluating the element stiffness matrix. In the present work, they are estimated from
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the incremental form of constitutive equations (Besson et al., 2009). In section 5.3.1,
we have shown that the integration of the constitutive equations concerns solving
the residual equations (Eqs. (5.141) to (5.144)). It is important to notice that the
residual equations is expressed in terms of increments of the integration variables
∆vint and increments of the input variables ∆vIN. The calculation of the consistent
tangent matrix is performed after the integration of the constitutive equations,
and one has thus vanish residual equations

{R(∆vint,∆vIN)} = {0} (5.188)

with imposed ∆vIN and obtained ∆vint. If applying an infinitesimal variation to
the increments ∆vIN, one can obtain a new ∆vint according to the requirement of
vanish residual equations. The variation of ∆vint resulting from the variation of
∆vIN should make the variation of {R} vanish, which follows

{δR} = {∂R}
{∂∆vint}

{δ∆vint}+ {∂R}
{∂∆vIN}

{δ∆vIN} = {0}. (5.189)

Therefore, one can have

{δ∆vint} =
−( {∂R}

{∂∆vint}

)−1 {∂R}
{∂∆vIN}

 {δ∆vIN}, (5.190)

where −
(
{∂R}
{∂∆vint}

)−1 {∂R}
{∂∆vIN}

gives an evaluation of {δ∆vint}
{δ∆vIN}

, i.e., ∂{∆vint}
∂{∆vIN}

.

Moreover, noticing the constitutive equations Eqs. (5.77), (5.78) and (5.130), one
can find that vOUT depends on not only vint, but also vIN, i.e.,

vOUT = vOUT(vint, vIN), (5.191)

which can be written in incremental form as

∆vOUT = ∆vOUT(∆vint,∆vIN). (5.192)

The variation of ∆vOUT should follow

δ∆vOUT = ∂∆vOUT

∂∆vint
δ∆vint + ∂∆vOUT

∂∆vIN
δ∆vIN. (5.193)

Substituting Eq. (5.190) into the previous equation leads to

δ∆vOUT =
∂∆vOUT

∂∆vint

−( ∂R

∂∆vint

)−1
∂R

∂∆vIN

+ ∂∆vOUT

∂∆vIN

 δ∆vI , (5.194)

where
∂∆vOUT

∂∆vint

−( ∂R

∂∆vint

)−1
∂R

∂∆vIN

+ ∂∆vOUT

∂∆vIN

, denoted by {J∗}, is the

consistent tangent matrix. As can be seen, {J∗} is calculated from four matrix:
∂∆vOUT

∂∆vint
, ∂R

∂∆vint
, ∂R

∂∆vIN
and ∂∆vOUT

∂∆vIN
. Note that the inverse of ∂R

∂∆vint
is obtained

numerically. Details concerning calculation of the matrix are given in appendix D.
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5.3.5 Convergence improvement of integration of the
power law

The integration of Eq. (5.52) displays some difficulties, because of the penalty
parameter Hχ in Eq. (5.78) which should be of a large value. To improve the
convergence, an improved algorithm for Newton’s method has been proposed by
Wulfinghoff and Böhlke, 2013. It is based on the fact that the solution τ s of
Eq. (5.52) is located around τ sc − Jes with Je = ρ]

ρ
.

�����������
��	
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Figure 5.2: Improved algorithm for integrating the power law.

The algorithm is illustrated in fig. 5.2 and can be stated as follows: in first
iterations, the power law is linearized for large values of τ s; as soon as the slip
rate γ̇s calculated during an iteration is smaller than a critical value γ̇L, the
original law is integrated. A smooth transition is considered at γ̇L. In another
word, the modified law follows

γ̇s =


(
f s

K

)n
sign (τ s) , if γ̇s < γ̇L

n

K
γ̇
n−1
n

L

(
f s −Kγ̇

1
n
L

)
+ γ̇L, if γ̇s > γ̇L

(5.195)

with

f s = |τ s| − (τ sc − Jes) . (5.196)

Notice that γ̇L should be small enough for ensuring the convergence improvement
but should not be too small for obtaining a correct solution of the original power
law. In this study, γ̇L = 2 s−1 is chosen. Some simple tests have been performed for
showing the convergence improvement by the algorithm, as presented in appendix E.
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5.4 Application to strain localization in single
crystals

Strong strain gradients arise in particular in the presence of localization phenomena.
Such a situation involving strain softening is investigated in this section using
the proposed micromorphic model.

5.4.1 Shear banding with single slip
Analytical solutions

����������

���������

Figure 5.3: Single crystal with a single slip system.

Shear banding with single slip is analyzed within the framework of finite strains
in 2D. The analysis is inspired from the work of Gurtin (2000) and Forest et al.
(2005). Only one slip system is considered for the single crystal as shown in fig. 5.3.
The slip direction l and the normal to the slip plane n are

l = (1, 0), n = (0, 1). (5.197)

Superscript s = 1 is dropped for brevity. Simple shearing is imposed on the single
crystal and motions of material points of single crystal follow

x = X + u(Y )l (5.198)

with the displacement u(Y ) of the material points in the direction of slip, which
is taken as a function of Y . Thus, F∼ takes the form

F∼ = 1∼ + κl ⊗ n , (5.199)

where κ = ∂u

∂Y
. As single slip is considered, we assume

Ṗ∼ .P∼
−1 = 1∼ + γ̇l ⊗ n , (5.200)



5. Micromorphic single crystal plasticity model and its applications 159

with γ = γ(Y ). P∼ obeys the following relation in the case of single slip:

P∼ = 1∼ + γl ⊗ n , (5.201)

because no lattice rotation takes place under the chosen conditions. Since F∼ = E∼ .P∼ ,
one obtains

E∼ = 1∼ + κel ⊗ n (5.202)

with κe = κ − γ, where κ = κ(Y ).
In the following, small elastic strains are assumed, i.e., small κe, which leads to

C∼
e = E∼

T .E∼ ≈ 1∼ + κe(l ⊗ n + n ⊗ l ). (5.203)

Thus, the Green-Lagrange elastic tensor E∼
e
GL
, the Mandel stress Π∼

M and the
resolved shear stress τ have the following approximate forms:

E∼
e
GL
≈ 1

2κ
e(l ⊗ n + n ⊗ l ), (5.204)

Π∼
M = C∼

e.Π∼
e ≈ Π∼

e, (5.205)
τ ≈ Π∼

e : (l ⊗ n ). (5.206)

Assuming that µ denotes the shear modulus and substituting Eq. (5.204) into
Eq. (5.75), one can obtain Π∼

e

Π∼
e = τ(l ⊗ n + n ⊗ l ), (5.207)

with τ = µκe. In addition, the Boussinesq stress tensor S∼ is approximated by

S∼ = Jσ∼ .F∼
−T = E∼ .Π∼

e.P∼
−T ≈ Π∼

e.P∼
−T = Π∼

e − τγl ⊗ l . (5.208)

Since DivS∼ = 0 (see Eq. (5.19)), one has

∂τ

∂Y
= 0, (5.209)

which makes τ = τ spatially constant.
Consider the linear softening law:

τc = τ0 +Hγ (5.210)

with H < 0. In the following, the derivation is carried out first for the formulation
presented in section 5.1.3. The free energy potential given by Eq. (5.74) is chosen
so that one has the following constitutive equations:

K = AM (5.211)
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and
S = −Hχe. (5.212)

Given Eq. (5.212), the yield condition (Eq. (5.51)) writes

f = |τ | − (τc − S) = |τ | − [τ0 +Hγ −Hχ(γχ − γ)] = 0, (5.213)

from which one can express γ as

γ = |τ | − τ0 +Hχγχ
H +Hχ

. (5.214)

For the special case of single slip, we assume γχ = γχ(Y ). Considering Eq. (5.211),
DivM becomes

DivM = ADivK = ADiv (∂γχ
∂X

l + ∂γχ
∂Y

n ) = A
∂2γχ
∂Y 2 . (5.215)

Combining the balance equation Eq. (5.19) with the previous equation and
Eq. (5.212) leads to

A
∂2γχ
∂Y 2 = Hχ(γχ − γ). (5.216)

Substituting Eq. (5.214) into the previous equation, one gets

A
∂2γχ
∂Y 2 −

HHχ

H +Hχ

γχ + HHχ

H +Hχ

(|τ | − τ0) = 0. (5.217)

Recall that τ is spatially constant (cf. Eq. (5.209)). One thus has the differential
equation governing γχ:

A
∂2γχ
∂Y 2 −

HHχ

H +Hχ

γχ + HHχ

H +Hχ

(|τ | − τ0) = 0. (5.218)

One trivial solution of Eq. (5.218) is

γχ = |τ | − τ0 = constant, (5.219)

which results in a spatially constant shearing strain κ.
As H is negative, a general sinusoidal solution exists in the form:

γχ = C1 sin
(2π
λc
Y
)

+ C2 cos
(2π
λc
Y
)

+ (|τ | − τ0), (5.220)

with the integration constants C1 and C2, and the wave length

λc = 2π/

√√√√ Hχ|H|
A(Hχ +H) . (5.221)

Note that λc comes into play as a material length scale. Within one period, γχ
increases to its maximum value and then decreases, which represents a shear
band. Since a large value is usually taken for the penalty parameter Hχ such that
Hχ � |H|, λc ∼

√
A
|H| . Thus, increasing the value of A results in a wider shear

band. Another form of periodic solution exists, which represents a periodic array
of shear bands separated by nearly constant values.
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Analysis with the alternative formulation

In this section, we consider the second formulation of the theory presented in
section 5.1.5. The free energy potential given by Eq. (5.111) is considered so
that one has the constitutive equations Eqs. (5.211) and (5.212). The yield
function (Eq. (5.70)) writes

f = |τ + (K ].l )(M ].n )| − [τ0 +Hγ −Hχ(γχ − γ)] . (5.222)

Noticing K ] = P∼
−T .K , M ] = P∼ .M and M = AK , one considers P∼ =

1∼ + γl ⊗ n and further obtains:

K ] = ∂γχ
∂X

l +
(
∂γχ
∂Y
− γ ∂γχ

∂X

)
n , (5.223)

M ] = A

[(
∂γχ
∂X

+ γ
∂γχ
∂Y

)
l + ∂γχ

∂Y
n

]
. (5.224)

Substituting the previous equations into Eq. (5.222) results in

f = |τ + xs| − [τ0 +Hγ −Hχ(γχ − γ)] (5.225)

with

xs = A
∂γχ
∂X

∂γχ
∂Y

. (5.226)

Here, a kinematic hardening is found. It can exhibit only in the presence of a
gradient of slip in both directions X and Y . Since we assume γχ = γχ(Y ), ∂γχ

∂X
= 0.

Thus, the yield function is reduced to

f = |τ | − [τ0 +Hγ −Hχ(γχ − γ)] , (5.227)

which is the same as in Eq. (5.213).
As the balance laws Eqs. (5.18) and (5.19) hold for the two formulations, one

can obtain the same differential equation governing γχ as Eq. (5.218). It means
that the two formulations lead to the same solution for the special case of single
slip. However, it is important to notice that the term A

∂γχ
∂X

∂γχ
∂Y

in Eq. (5.225)

will come into play for the case with ∂γχ
∂X
6= 0 in shear bands, e.g., pile-ups are

considered. Further studies are needed for this term in the second formulation
especially with FEM. This is out of the scope of the present study.



162 5.4. Application to strain localization in single crystals

Figure 5.4: FE mesh for studying shear banding.

FE solutions

For the FE analysis, a single row of elements with side length L = 1 mm is
considered and shown in fig. 5.4. Periodic boundary conditions are applied for
the displacement field u such that

u = F∼ .X + v (5.228)

with F∼ denotes the overall deformation gradient and v a periodic fluctuation vector.
The periodicity is also enhanced for the γχ field, i.e., γχ takes the same value at
homologous points on the opposite sides of the strip. Simple shear is imposed by
prescribing the overall deformation gradient F 12.

As for the material parameters, the softening parameter is fixed to be H =
−103 MPa the shear modulus µ = 104.7 GPa, and τ0 = 10 MPa. The parameters
of power law is chosen as K = 0.1 MPa and n = 15 such that the viscous effect is
negligible. Note that, for triggering the localization, the value of τ0 for a line of
elements is set to be τ0 = 9.9 MPa, which is slightly smaller than that of the others.

The effect of the penalty parameter Hχ is first studied. To this end, the higher
order modulus is fixed to be A = 5 N, and the value of Hχ is changed from 103

to 106 MPa. The overall stress-strain response and the distribution of γχ along
axis Y at the shear strain F 12 = 0.0005 are shown in fig. 5.5. As can be seen,
the overall stress–strain curves and the distribution of γχ converge to the same
result with increasing Hχ. However, when Hχ is too small, i.e., Hχ = 103 MPa,
a completely different solution of γχ is found. These results confirm the penalty
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Figure 5.5: Influence of Hχ on (a) overall stress-strain curve and (b) distribution of γχ
along Y direction at F 12 = 0.0005. A = 5 N.

role of the parameter Hχ and shows the necessity of choosing a large value for
Hχ. However, a too large value of Hχ will cause numerical problems. Thus, the
value of Hχ should not be too large, neither too small.
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Figure 5.6: Influence of A on (a) overall stress-strain curve and (b) distribution of γχ
along Y direction at F 12 = 0.0005. Hχ = 105 MPa.

The effect of A is then investigated by fixing Hχ = 105 MPa and varying A from
0.1 to 5 N. The stress-strain curves and γχ as a function of Y at the overall shear
strain F 12 = 0.0005 are presented in fig. 5.6. The results show the regularization
of the shear band, i.e., its finite width. The width of the band increases with
increasing value of A, which is in good agreement with the analytical solution (cf.
the material length scale λc by Eq. (5.221)). It can also been observed in fig. 5.6a
that the hardening due to slip gradient is more significant with a large value of A,
which counteracts the softening due to the term Hγ with H < 0 in Eq. (5.213).
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Figure 5.7: Comparison analytical and numerical results: distribution of γχ along Y
direction at F 12 = 0.002. A = 5 N and Hχ = 105 MPa.

For obtaining the analytical solution for this problem, boundary conditions
need to be considered. The solution corresponds to a shear band surrounded by
elastic zones within which γχ = 0. At the boundary between the elastic and the
plastic region, γχ = 0 and ∂γχ

∂Y
= 0 are considered; the continuity of γχ and ∂γχ

∂Y
are

guaranteed. The analytical solution obtained for A = 5 N and Hχ = 105 MPa is
compared with the numerical result in fig. 5.7 at the shear strain F 12 = 0.002. It
shows a perfect agreement between the FE and the analytical result.

5.4.2 Strain localization with single slip under uniaxial
tension

Strain localization in single crystals has been observed in many studies (see, e.g.,
Chang and Asaro, 1981). It was analyzed in a seminal work of Asaro and Rice (1977)
by considering crystals deformed by single slip. The problem was then investigated
by Peirce et al. (1982) using FE simulations for double slip. In the present work,
we will study strain localization in single crystals using FE simulations with the
micromorphic model and consider crystals deformed by single slip. Slip and kink
bands are expected in the simulations, which have been investigated in different
works (see Forest (1998) for analysis and simulations, and Kysar and Briant (2002),
Flouriot et al. (2003), and Sabnis et al. (2012) for experimental observations of
slip and kink bands at the crack tip or the notch tip). Mesh dependence of the
simulations of slip and kink bands will be studied.

Problem setup

Simulations are performed with a plate as shown in fig. 5.8. The plate is meshed by
brick elements with reduced integration (20 nodes for the displacement DOFs and 8
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nodes for the microslip DOF) and one element is used in the thickness direction.
An in-plane single slip system is defined, whose slip plane has an angle of 56.3°
with respect to the vertical direction. The crystal orientation is chosen such that
both the slip direction and the slip plane normal of the single slip system are
parallel to the X–Y plane. This results in plane plastic strain conditions. The
boundary conditions are considered as follows:

UX(Y = L0) = 0, UY (Y = L0) = U(t), (5.229)

UX(Y = 0) = 0, UY (Y = 0) = 0. (5.230)

Figure 5.8: A typical FE mesh for simulations of strain localization. The total number
of elements used is n× 6n with n for the width and 6n for the height. The mesh with
n = 8 shown in the figure. An in-plane single slip system is also shown in the figure,
whose slip direction has an angle of 56.3° with respect to the vertical direction.

The simulations are performed with both the conventional and micromorphic
model. A linear hardening law is considered with τc given by:

τc = τ0 +Hγ (5.231)

with H > 0. For the simulations, a weak hardening is considered with H = 1 MPa.
For the micromorphic model, Hχ = 5× 104 MPa and A = 0.1 N are taken. Strain
localization due to the prescribed boundary conditions and lattice rotation will
be studied in the following.
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Results

Different FE discretizations are considered with n elements for the width and 6n for
the height, i.e., totally 6n2 elements. Four meshes with respectively n = 8, 16, 24, 32,
are considered (see fig. 5.8 for a mesh with n = 8).

Figure 5.9: Stress–strain curves obtained by the conventional and micromorphic model
with different FE meshes.

The evolution of the loading force F normalized by initial section area S0 is
plotted in fig. 5.9 as a function of the elongation ∆L (in the direction Y axis)
normalized by the initial height L0 of the mesh. For the simulations with the
conventional model, a softening regime due to change in section and lattice rotation
is found. Recall that a weak hardening is considered in the constitutive relation of
the crystal. Zigzags are found are the curves and a mesh dependence of the curves
is also observed. As the FE mesh is refined to n = 32, the simulation diverges
at ∆L/L0 = 0.1 as a result of strong strain localization.

For the simulations with the micromorphic model, a softening regime is also
observed. However, the stress level is higher than that obtained by the conventional
model and it results from the strain gradient hardening taken into account in the
micromorphic model. The mesh convergence is observed for the micromorphic
model. Moreover, the curves obtained by the micromorphic model with n = 24 and
n = 32 are smoother than those obtained by the conventional model.

The evolution of plastic slip γ field with ∆L/L0 is shown in fig. 5.10 for
the conventional model and in fig. 5.11 for the micromorphic model. Complex
localization modes are observed in the simulations with the conventional and
micromorphic model. Both the models predict a formation of two kink bands at the
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Figure 5.10: Evolution of plastic slip γ field with ∆L/L0 predicted by the conventional
model with the FE mesh n = 24.

beginning of the loading. As the loading increases, strain localizes in the kink band
located in the lower part of the crystal. Finally, intense slip bands form crossing the
initial kink bands, leading to final necking of the plate. A slip band is a localization
band parallel to the slip plane. A kink band is a localization band perpendicular to
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Figure 5.11: Evolution of plastic slip γ field with ∆L/L0 predicted by the micromorphic
model with the FE mesh n = 24.

the slip direction. A major difference between slip and kink bands is that strong
lattice curvature occurs at the kink band boundaries.

Some differences are noticed for the two simulations. Compared with the
conventional model, the distance between the two kink bands predicted by the
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micromorphic model is smaller. Besides, the band width (band size along Y direction)
predicted by the micromorphic model is larger than that by the conventional model,
i.e., the plastic slip field is more diffuse in the simulation with the micromorphic
model than with the conventional model.

Figure 5.12: The lattice rotation angle θ predicted by the conventional model for (a)
∆L/L = 0.012 and (b) ∆L/L = 0.033

For further confirming the formation of kink bands, lattice rotation needs to be
checked. The polar decomposition of the elastic part of deformation gradient
E∼ follows

E∼ = R∼ .U∼ , (5.232)

with the rotation tensor R∼ and the right stretch tensor U∼ . Neglecting the elastic
distortion U∼ , R∼ can be interpreted as the lattice rotation. The corresponding
rotation angle θ is given by

θ = arccos 1
2(traceR∼ − 1). (5.233)

The field of θ is shown in fig. 5.12 for the simulation with the conventional model
when ∆L/L0 = 0.012 and ∆L/L0 = 0.033. The formation of kink bands at
∆L/L0 = 0.012 is verified, because of relatively high level of θ within the bands.
The formation of slip band crossing the kink band at ∆L/L0 = 0.067 is also
checked, because significant plastic slip is observed in the band parallel with the
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Figure 5.13: The lattice rotation angle θ predicted by the micromorphic model for (a)
∆L/L = 0.017 and (b) ∆L/L = 0.067

slip plane, where no lattice rotation is found. The formation of kink and slip band
are verified in the same way for the micromorphic model as shown in fig. 5.13
for ∆L/L0 = 0.017 and ∆L/L0 = 0.067.

In addition, for the simulations with the micromorphic model, the material
length scale, estimated by Eq. (5.221), is found to be λc = 2 mm, which is larger
than the width of the plate (1 mm). The element size (~ 0.04 mm for n = 24 and
~ 0.03 mm for n = 32) should be much smaller than λc for the mesh convergence.
Note that the band width (band size along Y direction) at ∆L/L0 = 0.25 (see
fig. 5.11) is of the same order of λc = 2 mm.

5.5 Application to ductile fracture of single crys-
tals

Void growth and coalescence are known as the mechanisms controlling ductile
fracture of metallic materials. In single crystals, lattice orientation has been shown
to have an impact on void growth and coalescence (cf. Ling et al., 2016 and
references therein). As void size decreases to micro-scale, size effects are expected
in single crystals, which have been predicted by different approaches (e.g., see Shu,
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1998, Borg and Kysar, 2007 and Borg et al., 2008 for FE unit cell simulations
with strain gradient plasticity, see Hussein et al., 2008 and Chang et al., 2015
for DDD simulations and see Zhao et al., 2009 for MD). In this section, unit cell
simulations are carried out with the micromorphic model for predicting size effects
on void growth and coalescence in single crystals.

5.5.1 Unit cell simulation

Figure 5.14: Typical FE mesh for the unit cell simulations.

A cylindrical void of radius R0 in a square plate of side length L0 is considered. A
typical FE mesh with one element in thickness w0 is shown in fig. 5.14 for an initial
void volume fraction f0 = πR2

0/L
2
0 = 0.1. A biaxial tensile is imposed under plane

strain conditions. The boundary conditions applied on the faces of the unit cell are

UX(X = 0) = 0, UX(X = L0) = U1(t), (5.234)

UY (Y = 0) = 0, UY (Y = L0) = U2(t), (5.235)

UZ(Z = 0) = 0, UZ(Z = w0) = 0. (5.236)

Two external forces F1 and F2 are associated with U1(t) and U2(t). The prescribed
U2 is adjusted by one additional element for keeping a constant biaxiality ratio
a = σ22/σ11 during the loading, where the overall stresses σ11 and σ22 are defined by

σ11 = F1

w0(L0 + U2) , σ22 = F2

w0(L0 + U1) . (5.237)

The FCC single crystal with 12 slip systems is considered. The slip systems are
specified by the slip direction l s and the normal to the slip plane n s in the crystal
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s 1 2 3 4 5 6 7 8 9 10 11 12
n s (111) (11̄1) (1̄11) (1̄1̄1)
l s [1̄01] [01̄1] [1̄10] [1̄01] [011] [110] [01̄1] [110] [101] [1̄10] [101] [011]

Table 5.1: Slip systems in FCC single crystals

coordinate system. They are listed in table 5.1. In the simulation, one crystal
orientation is taken into account. The crystal orientation is specified with the lattice
directions [100]–[010]–[001] along the coordinate axes X-Y -Z. A cubic elasticity is
considered and thus Λ

≈
can be specified by three independent moduli C11, C12 and

C44. The critical resolved shear stress τ sc of slip systems is determined by Eqs. (5.72)
and (5.73). The material parameters used in the simulations are summarized in
table 5.2. Note that asu and bsu are 12 × 12 matrices and they can be specified
by 6 independent parameters a1, a2, · · · , a6 and b1, b2, · · · , b6 (the structure of the
matrices are presented in appendix A). The values of asu are obtained by discrete
dislocation dynamics (Kubin et al., 2008; Monnet, 2009), while no study is found
in the literature for estimating the values of bi (i = 1, 2, · · · , 6). It is presumed that
b1 = 0 and that bi = 0 for i 6= 1. The initial values of adimensional dislocation
densities rsini ( s = 1, 2, · · · , 12) are assumed to be the same. Recall that rs = b2ρs,
where ρs is the dislocation density and b is the norm of Burger’s vector of the
dislocation. b = 2.54 Å is considered for the FCC single crystal.

C11 C12 C44 τ0 n K µ Gc κ

199 GPa 136 GPa 105 GPa 88 MPa 15 1 MPa.s1/n 65.6 GPa 10.4 42.8
a1 a2 a3 a4 a5 a6 b1 bi (i 6= i) rsini

0.124 0.124 0.07 0.625 0.137 0.122 0 1 5.38× 10−11

Table 5.2: Material parameters for the unit cell simulations (see Han, 2012)

To study size effects, we change the side length L0 of the unit cell, while
fix the moduli Hχ = 5 × 104 MPa and A = 10 N. λc defined by Eq. (5.221) is
taken as the material length scale, though H is positive in the present case. λc is
obtained by performing uniaxial tensile simulation on one element with the same
parameters. A positive H can thus be estimated according to the evolution of τ s

with respect to γs of one slip system at the beginning of its activation. In this
way, λc is calculated to be λc = 0.4 mm.

5.5.2 Void growth

Evolution of the void volume fraction is first investigated. The current void
volume fraction is calculated by

f = 1− Vmesh

Vtot
, (5.238)
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where Vmesh is the volume of the mesh which can be evaluated by post-processing
calculation and Vtot is the total volume of the unit cell which follows Vtot =
(L0+U1)(L0+U2)w0. The increase in the void volume fraction is equal to ∆f = f−f0.
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Figure 5.15: (a) Variation of the normalized void volume and (b) overall stress–strain
curves for different sizes of the unit cell. f0 = 0.01.

The variation of ∆f/f0 with respect to the overall strain E11 = U1/L0 is shown
in fig. 5.15a for the initial void volume fraction f0 = 0.01. Note that the same
computation has been performed with the conventional single crystal plasticity.
Void evolution predicted by the conventional theory does not depend on the size of
unit cell. In general, two stages of void evolution are observed: in the first stage,
the void grows relatively slowly; in the second, void growth rate is accelerated.
The two stages are termed respectively void growth and void coalescence in the
literature. According to Koplik and Needleman, 1988, onset of the void coalescence
is characterized by the transition from biaxial to uniaxial straining associated to
the localization of the plastic flow in the intervoid ligament. Compared with the
results by the conventional theory, the simulations with the micromorphic theory
predict size dependent void evolution. Concerning the first stage of void evolution,
i.e., void growth, void growth rate decreases with decreasing normalized unit cell
size L0/λc. The void growth rate is significantly reduced for the very small unit
cell and an absence of void growth is predicted for L0/λc = 0.5. In addition,
the void evolution tends to converge to the result obtained by the conventional
theory when L0/λc is large enough.

The overall stress σ11 is plotted in fig. 5.15b as a function of the overall strain
E11. For the simulation with the conventional theory, a hardening regime followed
by a softening one is observed, which results from the competition between the
strain hardening of the matrix, the softening due to void growth and the softening
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due to void coalescence. The micromorphic theory predicts a higher stress level
as a result of the reduced void growth. The hardening regime is enhanced with
the decreasing unit cell size L0/λc. In particular, no softening regime exhibits for
the unit cell with L0/λc = 0.5, which is due to extremely low void growth rate. In
this case, the voided unit cell behaves like a void-free unit cell.
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Figure 5.16: (a) Variation of void volume fraction and (b) overall stress–strain curves
for different size of unit cell. f0 = 0.1.

Results for f0 = 0.1 are shown in fig. 5.16. Compared with the simulations for
f0 = 0.01, the evolution of ∆f/f0 does not exhibit an obvious transition to the
accelerated void growth stage. However, the transition from the uniaxial to biaxial
straining can be detected, i.e., the two stages (void growth and coalescence) exist for
f0 = 0.1. Size effect on void growth observed is similar to that for f0 = 0.01: void
growth rate is reduced for small L0/λc. However, the void growth for L0/λc = 0.5
cannot be neglected here, unlike in the case of f0 = 0.01. In addition, similar
size dependent overall stress–strain response is observed as that for f0 = 0.01. It
worth noticing that the unit cell with L0/λc = 0.5 does not show softening regime
even with a non-negligible void growth.

5.5.3 Void coalescence

The onset of void coalescence in the present study corresponds to a shift from biaxial
to uniaxial straining, which is in good agreement with Koplik and Needleman, 1988.
The onset is determined in the following way: calculate the ratio a0 = |U1|/|U2|
at the beginning of the biaxial straining, choose a critical value as ac = 0.1a0 and
find E11 for the onset as soon as a0 decreases to ac. The critical value of E11 for
the onset of coalescence thus determined is denoted by Ec

11.



5. Micromorphic single crystal plasticity model and its applications 175

Figure 5.17: Critical strain Ec11 for onset of coalescence as a function of normalized size
of unit cell. f0 = 0.01 and 0.1.

The onset of coalescence is indicated by a hollow square in figs. 5.15 and 5.16.
Compared with the result predicted by the conventional theory, the onset of
coalescence is delayed for small unit cell size with micromorphic theory. Ec

11 is
plotted as a function of L0/λc in fig. 5.17 for f0 = 0.01 and 0.1, in which the red
markers indicate Ec

11 predicted by the conventional theory. Since the coalescence is
not predicted for L0/λc = 0.5, Ec

11 does not exist and is not plotted in the figure.
Qualitatively similar results are shown for the two levels of f0. A rapid decrease
in Ec

11 is observed for L0/λc < 10. It tends to stabilize with increasing L0/λc and
converge to the value predicted by the conventional theory.

5.5.4 Discussion

Size dependent overall behavior and void growth have been predicted by the
micromorphic theory for voided single crystals. Qualitatively similar results have
been shown for the unit cell with f0 = 0.01 and f0 = 0.1: unit cells of smaller size
exhibit reduced void growth rate compared with larger ones; this results in higher
hardening rate at the beginning of plastic regime and delays onset of void coalescence.

The impeded void growth in unit cells of small size is associated with the fact
that the plastic deformation field is diffused in the micromorphic theory. The
cumulative slip γcum is shown in section 5.5.4 for the unit cells with f0 = 0.1 and
different values of L0/λc at the overall strain E11 = 0.1. The conventional theory
predicts the significant localization of γcum at four zones at the void, i.e., A, B,
C, D shown in section 5.5.4. It is worth noticing that the maximum local γcum
reaches 2.18 with the overall strain E11 = 0.1. By the micromorphic theory, the γcum
field is diffused especially for the four zones and becomes more and more diffuse
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Figure 5.18: Void shape at E11 = 0.1 ((a)–(d)) and E11 = 0.4 ((e)–(h)) for different
unit cell size: (a,e) L/λc = 0.5, (b,f) L/λc = 5, (c,g) L/λc = 25 and (d,h) conventional
model. f0 = 0.1. The field of γcum is shown.

as L0/λc decreases from 25 to 0.5. As a result, void growth is slowed down and
void coalescence is delayed. The diffused field of γcum also influences the evolution
of void shape, as shown in section 5.5.4 for the unit cells of different sizes with
f0 = 0.1 at the overall strain E11 = 0.4. The void is shown to be ellipsoid for the
small unit cell with L0/λc = 0.5. In this case, since the void coalescence does not
occur, the void is well elongated along the X–axis but the deformation of the void
along the Y –axis is restricted. The void is also ellipsoid for L0/λc = 5 at E11 = 0.4
(before the onset of void coalescence for this case). Compared with L0/λc = 0.5,
the void is more deformed along the Y –axis because of a less diffuse field of γcum
in the region around the void. For the large unit cell with L0/λc = 25, the lateral
deformation of the void is significant at E11 = 0.4 as a result of void coalescence.
The conventional theory predicts a similar void shape as the micromorphic theory
with L0/λc = 25, except that a sharp point shows. This is related to the highly
localized plastic strain in the lateral regions.
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Figure 5.19: γcum at the void for f0 = 0.1. E11 = 0.05.

In addition, γcum at the void surface is investigated and plotted in fig. 5.19 as a
function of the angle θ (cf. the definition of θ in fig. 5.14) at E11 = 0.05 (before
significant void shape change). Angular sectors are observed as those by Borg and
Kysar, 2007; Niordson and Kysar, 2014 and some similarities can be observed for
different unit cell sizes. The distribution of γcum is shown to be smoother at the
void surface for unit cells of smaller size than that of larger ones. This is directly
related to the reduced void growth for unit cells of small size.

5.6 Conclusions

A micromorphic single crystal plasticity at finite deformation is derived by a
thermodynamic approach in the present work. The model involves a single additional
DOF, i.e., the microslip γχ. Two types of constitutive formulation are proposed
without and with free energy potential depending on the microslip gradient variable
K ] defined in the intermediate configuration. In the formulation involving K ], a
gradient induced back-stress is found for each slip system. To the author’s knowledge,
the kinematic hardening is introduced for the first time in the enhanced single
crystal plasticity model based on a single additional DOF. The formulation without
back-stress in the constitutive equations is implemented in the FE code Zset.

The model is then applied to study analytically and numerically strain
localization in single crystals. In shear banding with single slip, the width of
shear band predicted analytically by the model is found to be proportional to

√
A
|H|

with the higher order modulus A and the strain softening modulus H, when a large
value is adopted for the penalty parameter Hχ. FE simulations are performed for
analyzing the influence of A and Hχ on the width of shear band. A good agreement
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is observed between the analytical and numerical results. In simulations for studying
strain localization in a crystal under tension, different strain localization modes are
predicted by the conventional and the micromorphic model. Smooth stress-strain
curves are obtained by the micromorphic model with fine meshes and a mesh
convergence is found for the micromorphic model.

The model is then used to investigate growth of a cylindrical void in FCC single
crystals by FE simulations. The void growth rate is found to be size dependent:
smaller voids grow slower than bigger ones. The size effect on void growth is more
pronounced for single crystals with 1% initial porosity than those with 10% initial
porosity. In addition, the simulations also predict that onset of void coalescence
is delayed for smaller voids. These results are related to a more diffuse field
of plastic slip for single crystal with smaller voids. Moreover, a higher strain
hardening rate is observed for crystals with bigger voids. The size effect on the
overall strain hardening is more obvious for crystals with 10% initial porosity
than those with 1% initial porosity.

The model will be coupled with the porous single crystal model presented in
section 4.1 in a future work, resulting in a non-local model for single crystals.
The coupled model can be applied, in the future, to simulate ductile fracture in
single crystals and polycrystals.
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Conclusions

In the present work, void growth and coalescence in single crystals have been
investigated. These two mechanisms are involved in the ductile fracture of stainless
steels. These steels are used as structural materials in the internal structure of
the core of nuclear power plants. Ductility and fracture toughness are known
to be strongly affected by irradiation in PWR environment. It has been shown
that intragranular voids exist in irradiated austenitic stainless steels. The voids
potentially have different origins and various sizes, at the nano and micro scale.
This work aims to assess the mechanical behavior of voided single crystals.

For this purpose, FE unit cell simulations have been performed to investigate
void growth and coalescence in FCC single crystals at finite strains. Effects of
irradiation have been considered through a physically based crystal plasticity model
which takes into account dislocations and irradiation-induced defects (Frank loops).
Effects of crystal orientation and stress triaxiality have been investigated in a first
step and some conclusions are drawn as follows:

• Void growth rate increases with stress triaxiality, which is consistent with the
results for von Mises materials in the literature.

• Void growth rate exhibits a crystal orientation dependence, and voids grow at
a higher rate with the [111] orientation than the other orientations considered
in this work.

• Crystal orientation effect on void growth is more pronounced at lower stress
triaxiality (T = 1).

179
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• Critical void volume fraction for onset of void coalescence exhibits a crystal
orientation dependence.

• Critical void volume fraction for onset of void coalescence is almost insensitive
to stress triaxiality for a given crystal orientation (at least for the range of
stress triaxialities considered T = 1 to 3).

The results are in good agreement with the results for BCC crystals in the literature.
Note that those results hold for unirradiated crystals as well as for irradiated crystals.
However, compared with unirradiated cases, it has been found that:

• voids grow at a higher rate in the irradiated single crystal;
• the onset of void coalescence occurs at a smaller value of the overall strain

and at a smaller value of the void volume fraction in the irradiated crystals.
These results are consistent with experimental observations showing that fracture
toughness decreases rapidly with dose, especially in the range of 0–10 dpa. Besides,
more significant plastic strain localization in the region near the void is predicted
in the irradiated crystal, correlated with the faster void growth and earlier onset
of void coalescence. In addition, brittle-like overall behavior is predicted at high
level of stress triaxiality, i.e. T = 3, in the voided irradiated crystal, while a
large amount of plastic deformation is reached in the vicinity of the void. The
enhanced plastic strain localization predicted for irradiated single crystals is in
good agreement with the observations of Neustroev and Garner (2009) in AISI
321 stainless steels irradiated in BOR-60.

An elastoviscoplastic model at finite strains has been proposed for porous single
crystals with a future objective to assess fracture toughness of polycrystalline
materials. The model incorporates heuristically the influence of hardening behavior
of single crystal matrix and is able to describe void growth up to coalescence.
The assessment based on unit cell simulations has shown that the porous single
crystal model satisfactorily describes the hierarchy of porous single crystal responses
with respect to crystal orientation and void volume fraction. However, the model
cannot predict the quasi-incompressible behaviour observed for strongly asymmetric
orientations, e.g., [1̄25], with small initial void volume fraction at low stress triaxiality.
In fact, the [1̄25] orientation corresponds to single slip orientation for a void-free
FCC single crystal. For this type of orientation with small initial void volume
fraction at low stress triaxiality, the void does not induce significant plastic slip
heterogeneity in the single crystal matrix. As a result, the voided single crystal
behaves like a void-free single crystal and exhibits a nearly single slip pattern with
quasi-incompressible overall behaviour. No void growth is predicted by the unit cell
simulation in this case. In contrast, the porous single crystal model predicts a weak
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void growth for this case, due to the term 2q1fi cosh
{
q2
√

3
20
Mm

τ∗s

}
in Eq. (4.1), which

is strictly positive even in the case of single slip and, by virtue of normality rule,
induces void growth. Furthermore, the model underestimates the strain hardening
for strongly asymmetric orientations with small initial void volume fraction at
high stress triaxiality and with large f0 at all levels of stress triaxiality considered.
In fact, as the stress triaxiality and the initial void volume fraction increase, the
plastic slip heterogeneity introduced by the void becomes significant. The porous
single crystal deviates significantly from single slip and much more slip systems
are activated around the void. As a result, in the unit cell simulation, the strain
hardening rate is increased and the void growth is accelerated. As the porous
single crystal model only considers a single slip situation for strongly asymmetric
orientations, it underestimates the strain hardening and the void growth.

The model has then been applied to simulate the SENT test on a single crystal
specimen of 316 stainless steels. The experimental results used in the present work
were obtained in another work. The simulations predict that the slip systems of
three slip planes are activated, which is in good agreement with the experimental
observation. The prediction of a strong strain localization in the region near
the notch tip is also in good agreement with the experimental result. However,
compared with the experiment, the simulation predicts a force–notch-opening-
displacement relation showing a higher yield stress and a lower strain hardening
rate. Note that this work is not finished yet. In order to better simulate the
test, the following works will be considered:

• Decrease the initial value of dislocation densities and investigate its influences
on strain hardening rate;

• Introduce inclusions of ferrite by some particles with higher yield stress than
the matrix in the FE mesh and study their influences on strain hardening
rate;

• Investigate influences of boundary conditions prescribed in the simulations on
the results.

With the objective to study size effects on void growth and coalescence, a
micromorphic single crystal plasticity model at finite strains has been presented
in the last part of the work. Two formulations have been proposed, one of which
involves the free energy potential depending on the microslip gradient in the
intermediate configuration and incorporates a size-dependent back-stress for each
plastic slip system. The model has been applied to strain localization in single
crystals with single slip. A material length has been found to be proportional
to
√

A
|H| with the higher order modulus A and the strain softening modulus H,
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when a large value is adopted for the penalty parameter Hχ. Moreover, unit cell
simulations have been performed to study size dependent void growth. Some
important conclusions are drawn as follows:

• Smaller voids grow slower than bigger ones.
• Size effect on void growth is more pronounced for single crystals with 1%

initial porosity than those with 10% initial porosity.
• Onset of void coalescence is delayed for smaller voids.
• A more diffuse field of plastic slip is predicted for single crystal with smaller

voids.
• A higher strain hardening rate is observed for crystals with larger voids.
• Size effect on the overall strain hardening is more obvious for crystals with

10% initial porosity than those with 1% initial porosity.
Compared with existing models in the literature, the following advantages of
the model are found:

• It is computationally more efficient;
• It regularizes slip shear and kinks bands.

Outlook

Some shortcomings of the elastoviscoplastic model for porous single crystals have
been shown in this work. In future works, efforts can be devoted to improve the
model, especially accounting for the quasi-incompressible behavior of porous single
crystals loaded along single slip orientations. In addition, the elastoviscoplastic
model for porous single crystals can also be enhanced using the micromorphic
approach for incorporating plastic size effects.

Furthermore, in order to assess fracture toughness of polycrystalline materials,
the elastoviscoplastic model for porous single crystals can be applied to simulations
such as:

• a polycrystalline aggregate with a Voronoi-type mesh in 3D;
• a polycrystalline tensile specimen without or with a notch;
• a compact tension (CT) test of a polycrystalline materials.

These simulations allow to evaluate effects of post-irradiation hardening/softening
behavior on fracture toughness of polycrystalline stainless steels. Eventually, the
model can be applied to

• the prediction of fracture of irradiated internal structure components of nuclear
power plants.
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For the micromorphic crystal plasticity model, further works are needed for
better understanding the model, including:

• Implementing the alternative formulation and comparing the two formulations;
• Comparing different free energy potentials and understanding differences

between various regularization operators.
In order to perform unit cell simulations with the micromorphic model for

any asymmetric crystal orientations, more numerical tools need to be developed,
including:

• Periodic finite element for the micromorphic model;
• Numerical method for imposing constant stress triaxiality with periodic

boundary conditions.
In addition, large scale simulations of experiments on polycrystalline specimen,

such as SENT tests, CT tests, etc., can be performed for evaluating void size
effects on fracture toughness.

In future work, localization of plasticity in channels of deformation which is a
specific mode of deformation of irradiated FCC materials and its interaction with
voids growth and coalescence, which was not considered in the present study,
has to be evaluated.
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A
Form of the asu and bsu matrices

In FCC single crystals, the matrices asu and bsu (s, u = 1, 2, · · · , 12) have respectively
12 × 12 = 144 coefficients. For symmetry reasons, the number of coefficients
is reduced to six, i.e., ai and bi with i = 1, 2, · · · , 6 Franciosi, 1985. asu is
constructed as follows:

[asu] =

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

a1 a2 a2 a4 a5 a5 a3 a5 a6 a3 a6 a5
a1 a2 a5 a3 a6 a5 a4 a5 a6 a3 a5

a1 a5 a6 a3 a6 a5 a3 a5 a5 a4
a1 a2 a2 a3 a6 a5 a3 a5 a6

a1 a2 a6 a3 a5 a5 a4 a5
a1 a5 a5 a4 a6 a5 a3

a1 a2 a2 a4 a5 a5
a1 a2 a5 a3 a6Symmetric

a1 a5 a6 a3
a1 a2 a2

a1 a2
a1



A2
A3
A6
B2
B4
B5
C1
C3
C5
D1
D4
D6

.

(A.1)
In the matrix, a1 corresponds to self hardening, a2 to coplanar interaction, a3 to
Hirth locks, a4 to collinear interaction, a5 to glissile junctions and a6 to Lomer
locks. The matrix bsu has the same structure as asu and is not presented here
for the sake of brevity.
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B
Method used for imposing constant stress

triaxiality

A special truss element has been developed for imposing constant macroscopic
Cauchy stress triaxiality under periodic boundary conditions at finite strains.

This element is aligned with the main loading direction, i.e., x1-axis. It has only
one degree of freedom {F̂11− 1} for the node at the far end of the element and nine
degrees of freedom {F ij, i, j = 1, 2, 3} for the node at the near end of the element.
It is connected to the unit cell in such a way that the nine degrees of freedom
{F ij, i, j = 1, 2, 3} of the node at the near end correspond to the nine components
of the macroscopic deformation gradient of the unit cell, i.e., F ij = F ij, i, j = 1, 2, 3.
Consequently, F ij will be used instead of F ij in the following development for the
nine degrees of freedom of the node at the near end of the element.

The element acts as a spring in the main loading direction as follows

Ŝ11 = K(F̂11 − F 11), (B.1)

with Ŝ11 the first component of the first Piola-Kirchhoff stress tensor and K

the element stiffness.
With the macroscopic Cauchy stress σ∼ taking the form of Eq. (3.32), the stress

triaxiality T imposed over the unit cell follows Eq. (3.34).
Using Eq. (3.30), the corresponding macroscopic first Piola-Kirchhoff stress

tensor S∼ can be written as

S∼ = Jσ∼ .F∼
−T = Jσ11η

∼
F∼
−T
, (B.2)
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188 B. Method used for imposing constant stress triaxiality

If η
∼
and F∼ are re-written in the matrix form, one has

[Sij] = σ11

 F22F 33 − F 23F 32 F 23F 31 − F 21F 33 F 21F 32 − F 22F 31
η2(F 13F 32 − F 12F 33) η2(F 11F 33 − F 13F 31) η2(F 31F 12 − F 11F 32)
η3(F 12F 23 − F 13F 22) η3(F 13F 21 − F 11F 23) η3(F 11F 22 − F 12F 21)

 .
(B.3)

Because of the connection between the unit cell and the truss element at the near
end of the element, one can use the equations (B.1) and (B.3) and obtain

Ŝ11 = S11. (B.4)

Thus, one can get

σ11 = K(F̂11 − F 11)
F 22F 33 − F 23F 32

. (B.5)

As a result, the macroscopic first Piola-Kirchhoff stress applied over the unit cell
via the truss element is equal to

[Sij] = K(F̂11 − F 11)
F 22F 33 − F 23F 32

 F 22F 33 − F 23F 32 F 23F 31 − F 21F 33 F 21F 32 − F 22F 31
η2(F 13F 32 − F 12F 33) η2(F 11F 33 − F 13F 31) η2(F 31F 12 − F 11F 32)
η3(F 12F 23 − F 13F 22) η3(F 13F 21 − F 11F 23) η3(F 11F 22 − F 12F 21)

 ,
(B.6)

such that constant macroscopic Cauchy stress triaxiality T is imposed as Eq. (3.34).
Finally, the boundary value problem, considered in unit cell simulations with

prescribed stress triaxiality and periodic boundary conditions, is to search the
periodic fluctuation vector v when imposing F̂11 such that

• the balance of momentum:

divσ∼ = 0 , ∀x ∈ Ωtot (B.7)

• and the boundary conditions:

– Periodicity:
u = F∼ .x + v , ∀x ∈ Ωtot (B.8)

– Rotation restriction:

F 12 = F 21, F 23 = F 32, F 31 = F 13 (B.9)

– Rigid translation restriction

u (X n) = 0 , X n is the coordinates of a chosen node of the unit cell
(B.10)
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– Loading via the truss element

S11 = K(F̂11 − F 11) (B.11)

– Constant macroscopic Cauchy stress triaxiality

σ12 = σ23 = σ31 = 0 and σ22 = η2σ11, σ33 = η3σ11 (B.12)

are fulfilled.



C
Implicit integration of the constitutive

equations

Input variables vI :

vI := {F∼ , γχ, K } (C.1)

Output variables vO:

vO := {S∼ , S, M } (C.2)

Variables to integrated vint:

vint := {E∼ , γ
s, rs, γcum} (C.3)

Equations to be integrated

Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .

( 12∑
s=1

γ̇sN∼
s

)
(C.4)

γ̇s = Φ (|τ s| − (τ sc − S)) sign (τ s) =
〈
|τ s| − (τ sc − S)

K

〉n
sign (τ s) (C.5)

ṙsD = |γ̇s|


√
bsuruD

κ
−Gcr

s
D

 (C.6)

γ̇cum =
12∑
s=1
|γ̇s| (C.7)
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with

τ s = M∼ : N∼
s (C.8)

M∼ = C∼
e.Π∼

e (C.9)
C∼
e = E∼

T .E∼ (C.10)
Π∼
e = Λ

≈
: E∼

e
GL

(C.11)

E∼
e
GL

= 1
2 (C∼

e − 1) (C.12)
(C.13)

and

τ sc = τ0 + µ

√√√√ 12∑
s=1

asuruD (C.14)

and

S = Hχ(γχ − γcum) (C.15)
M = AK (C.16)

Residual equations Rint

RE∼ = ∆E∼ −∆F∼ .F∼
−1.E∼ +E∼ .

( 12∑
s=1

∆γsN∼
s

)
(C.17)

Rγs = ∆γs − Φ (|τ s| − (τ sc − S)) sign (τ s) ∆t (C.18)

RrsD
= ∆rsD − |∆γs|


√
bsuruD

κ
−Gcr

s
D

 (C.19)

Rγcum = ∆γcum −
12∑
s=1
|∆γs| (C.20)

Jacobian matrix
∂Rint

∂vint
The Jacobian matrix is organized as follows

∂RE∼
∂∆E∼

∂RE∼
∂∆γp

∂RE∼
∂∆rqD

∂RE∼
∂∆γcum

∂Rγs

∂∆E∼

∂Rγs

∂∆γp
∂Rγs

∂∆rqD
∂Rγs

∂∆γcum
∂RrsD

∂∆E∼

∂RrsD

∂∆γp
∂RrsD

∂∆rqD
∂RrsD

∂∆γcum
∂Rγcum

∂∆E∼

∂Rγcum

∂∆γp
∂Rγcum

∂∆rqD
∂Rγcum

∂∆γcum


(C.21)
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• Derivatives of RE∼

RE∼ = ∆E∼ −∆F∼ .F∼
−1.E∼ +E∼ .

( 12∑
s=1

∆γsN∼
s
)

(C.22)

X
∂RE∼
∂∆E∼

∂RE∼
∂∆E∼

= 1
≈
− (∆F∼ .F∼

−1)⊗1
≈

+ 1
≈
⊗(

12∑
s=1

∆γsN∼
s)T (C.23)

X
∂RE∼
∂∆γp

∂RE∼
∂∆γp = E∼ .N∼

p (C.24)

X
∂RE∼
∂∆rqD

∂RE∼
∂∆rqD

= 0 (C.25)

X
∂RE∼

∂∆γcum
∂RE∼

∂∆γcum
= 0 (C.26)

• Derivatives of Rγs

Rγs = ∆γs − Φ (|τ s| − (τ sc − S)) sign (τ s) ∆t (C.27)

X
∂Rγs

∂∆E∼
∂Rγs

∂∆E∼
= − ∂Φ

∂τ s
∂τ s

∂M∼
: ∂M∼
∂C∼

e : ∂C∼
e

∂E∼
: ∂E∼
∂∆E∼

sign (τ s) ∆t (C.28)

with
∂Φ
∂τ s

= ∂Φ
∂|τ s|

∂|τ s|
∂τ s

= n

K

〈
|τ s| − (τ sc − S)

K

〉n−1

sign (τ s) = Φ′sign (τ s)

(C.29)
∂τ s

∂M∼
= N∼

s (C.30)

∂M∼
∂C∼

e =
∂
[
C∼
e.
(
Λ
≈

: 1
2(C∼

e − 1)
)]

∂C∼
e = (1∼⊗Π∼

eT ) + 1
2(C∼

e⊗1∼) : Λ
≈

(C.31)

∂C∼
e

∂E∼
= 1∼⊗E∼

T +E∼
T⊗1∼ (C.32)

∂E∼
∂∆E∼

= 1
≈

(C.33)
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Finally,

∂Rγs

∂∆E∼
= −∆tΦ′N∼

s :
[
(1∼⊗Π∼

e) + 1
2(C∼

e⊗1∼) : Λ
≈

]
: (1∼⊗E∼

T +E∼
T⊗1∼)

(C.34)
with

Φ′ = n

K

〈
|τ s| − (τ sc − S)

K

〉n−1

(C.35)

X
∂Rγs

∂∆γp

∂Rγs

∂∆γp = δsp (C.36)

X
∂Rγs

∂∆rqD
∂Rγs

∂∆rqD
= − ∂Φ

∂τ sc

∂τ sc
∂rqD

∂rqD
∂∆rqD

sign (τ s) ∆t (C.37)

with

∂Φ
∂τ sc

= = −Φ′ = − n
K

〈
|τ s| − (τ sc − S)

K

〉n−1

(C.38)

∂τ sc
∂rqD

= 1
2µ

( 12∑
u=1

asuruD

)− 1
2

asq (C.39)

∂rqD
∂∆rqD

= 1 (C.40)

Finally

∂Rγs

∂∆rqD
= 1

2sign (τ s) ∆tΦ′µasq
( 12∑
u=1

asuruD

)− 1
2

(C.41)

X
∂Rγs

∂∆γcum
∂Rγs

∂∆γcum
= −∂Φ

∂S

∂S

∂γcum

∂γcum
∂∆γcum

sign (τ s) ∆t (C.42)

with

∂Φ
∂S

= Φ′ = n

K

〈
|τ s| − (τ sc − S)

K

〉n−1

(C.43)

∂S

∂γcum
= −Hχ (C.44)

∂γcum
∂∆γcum

= 1 (C.45)
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Finally
∂Rγs

∂∆γcum
= sign (τ s) ∆tHχΦ′ (C.46)

• Derivatives of RrsD

RrsD
= ∆rsD − |∆γs|


√
bsuruD

κ
−Gcr

s
D

 (C.47)

X
∂RrsD

∂∆E∼
∂RrsD

∂∆E∼
= 0 (C.48)

X
∂RrsD

∂∆γp
∂RrsD

∂∆γp = −sign (∆γs) δsp


√
bsuruD

κ
−Gcr

s
D

 (C.49)

X
∂RrsD

∂∆rqD

∂RrsD

∂∆rqD
= δsq − |∆γs|

1
2

(√
bsuruD

)− 1
2
bsq

κ
−Gcδsq

 (C.50)

X
∂RrsD

∂∆γcum
∂RrsD

∂∆γcum
= 0 (C.51)

• Derivatives of Rγcum

Rγcum = ∆γcum −
12∑
s=1
|∆γs| (C.52)

X
∂Rγcum

∂∆E∼
∂Rγcum

∂∆E∼
= 0 (C.53)

X
∂Rγcum

∂∆γp
∂Rγcum

∂∆γp = −sign (∆γp) (C.54)

X
∂Rγcum

∂∆rqD
∂Rγcum

∂∆rqD
= 0 (C.55)
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X
∂Rγcum

∂∆γcum
∂Rγcum

∂∆γcum
= 1 (C.56)



D
Details on the consistent tangent matrix

The matrix ∂∆vO
∂∆vI

is written as

∂∆vO
∂∆vI

=


∂∆S∼
∂∆F∼

∂∆S∼
∂∆γχ

∂∆S∼
∂∆K

∂∆S
∂∆F∼

∂∆S
∂∆γχ

∂∆S
∂∆K

∂∆M
∂∆F∼

∂∆M
∂∆γχ

∂∆M
∂∆K

 (D.1)

The matrix ∂R

∂∆vI
is organized as

∂R

∂∆vI
=



∂RE∼
∂∆F∼

∂RE∼
∂∆γχ

∂RE∼
∂∆K

∂Rγs

∂∆F∼
∂Rγs

∂∆γχ
∂Rγs

∂∆K
∂Rrs

∂∆F∼
∂Rrs

∂∆γχ
∂Rrs

∂∆K
∂Rγcum

∂∆F∼
∂Rγcum

∂∆γχ
∂Rγcum

∂∆K


(D.2)

Each block of the matrix ∂R

∂∆vI
is calculated respectively in the following.

• Derivatives of RE∼

RE∼ = ∆E∼ −∆F∼ .F∼
−1.E∼ +E∼ .

( 12∑
s=1

∆γsN∼
s
)

(D.3)
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X
∂RE∼
∂∆F∼

∂RE∼
∂∆F∼

= −∂(∆F∼ .F∼
−1.E∼ )

∂∆F∼
(D.4)

= −1∼⊗
(
F∼
−1.E∼

)T
− (∆F∼⊗E∼

T ) : ∂F∼
−1

∂F∼
: ∂F∼
∂∆F∼

(D.5)

= −1∼⊗
(
E∼
T .F∼

−T
)T
− (∆F∼⊗E∼

T ) : (−F∼
−1⊗F∼

−T ) : 1
≈

(D.6)

= −1∼⊗
(
E∼
T .F∼

−T
)

+ (∆F∼⊗E∼
T ) : (F∼

−1⊗F∼
−T ) (D.7)

Finally,

∂RE∼
∂∆F∼

= −1∼⊗
(
E∼
T .F∼

−T
)

+ (∆F∼⊗E∼
T ) : (F∼

−1⊗F∼
−T ) (D.8)

X
∂RE∼
∂∆γχ

∂RE∼
∂∆γχ

= 0 (D.9)

X
∂RE∼
∂∆K

∂RE∼
∂∆K = 0 (D.10)

• Derivatives of Rγs

Rγs = ∆γs − Φ (|τ s| − (τ sc − S)) sign (τ s) ∆t (D.11)

X
∂Rγs

∂∆F∼
∂Rγs

∂∆F∼
= 0 (D.12)

X
∂Rγs

∂∆γχ

∂Rγs

∂∆γχ
= −∂Φ

∂S

∂S

∂γχ

∂γχ
∂∆γχ

sign (τ s) ∆t (D.13)

= −Φ′Hχsign (τ s) ∆t (D.14)

Finally,
∂Rγs

∂∆γχ
= −Φ′Hχsign (τ s) ∆t (D.15)
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X
∂Rγs

∂∆K
∂Rγs

∂∆K = 0 (D.16)

• Derivatives of RrsD

RrsD
= ∆rsD − |∆γs|


√
bsuruD

κ
−Gcr

s
D

 (D.17)

X
∂Rrs

∂∆F∼
∂Rrs

∂∆F∼
= 0 (D.18)

X
∂Rrs

∂∆γχ
∂Rrs

∂∆γχ
= 0 (D.19)

X
∂Rrs

∂∆K
∂Rrs

∂∆K = 0 (D.20)

• Derivatives of Rγcum

Rγcum = ∆γcum −
12∑
s=1
|∆γs| (D.21)

X
∂Rγcum

∂∆F∼
∂Rγcum

∂∆F∼
= 0 (D.22)

X
∂Rγcum

∂∆γχ
∂Rγcum

∂∆γχ
= 0 (D.23)

X
∂Rγcum

∂∆K
∂Rγcum

∂∆K = 0 (D.24)
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The matrix ∂vO
∂vI

is organized as

∂vO
∂vI

=



∂S∼
∂F∼

∂S∼
∂γχ

∂S∼
∂K

∂S

∂F∼

∂S

∂γχ

∂S

∂K
∂M

∂F∼

∂M

∂γχ

∂M

∂K


(D.25)

The blocks are calculated in the following

• Derivatives of S∼

S∼ = J

Je
E∼ .

Λ
≈

2 (E∼
T .E∼ − 1∼)

 .E∼ T .F∼ −T (D.26)

X
∂S∼
∂F∼

∂S∼
∂F∼

= (σ∼ .F∼
−T )⊗ ∂J

∂F∼
+ J

∂σ∼ .F∼
−T

∂F∼
−T : ∂F∼

−T

∂F∼
(D.27)

= J(σ∼ .F∼
−T )⊗ F∼

−T + J(σ∼⊗1∼) : (−F∼
−T⊗F∼

−1) (D.28)

Finally,

∂S∼
∂F∼

= J(σ∼ .F∼
−T )⊗ F∼

−T + J(σ∼⊗1∼) : (−F∼
−T⊗F∼

−1) (D.29)

X
∂S∼
∂γχ

∂S∼
∂γχ

= 0 (D.30)

X
∂S∼
∂K

∂S∼
∂K

= 0 (D.31)

• Derivatives of S
S = Hχ(γχ − γcum) (D.32)

X
∂S

∂F∼
∂S

∂F∼
= 0 (D.33)
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X
∂S

∂γχ

∂S

∂γχ
= Hχ (D.34)

X
∂S

∂K

∂S

∂K
= 0 (D.35)

• Derivatives of M

M = AK (D.36)

X
∂M

∂F∼

∂M

∂F∼
= 0 (D.37)

X
∂M

∂γχ

∂M

∂γχ
= 0 (D.38)

X
∂M

∂K

∂M

∂K
= A (D.39)

The matrix ∂vO
∂vint

is organized as

∂vO
∂vint

=



∂S∼
∂E∼

∂S∼
∂γs

∂S∼
∂rs

∂S∼
∂γcum

∂S

∂E∼

∂S

∂γs
∂S

∂rs
∂S

∂γcum
∂M

∂E∼

∂M

∂γs
∂M

∂rs
∂M

∂γcum


(D.40)

The blocks are calculated in the following.

• Derivatives of S∼

S∼ = Jσ∼ .F∼
−T = J

Je
E∼ .

Λ
≈

2 (E∼
T .E∼ − 1∼)

 .E∼ T .F∼ −T (D.41)
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X
∂S∼
∂E∼

∂S∼
∂E∼

= ∂S∼
∂σ∼

: ∂σ∼
∂E∼

(D.42)

∂S∼
∂σ∼

= J1∼⊗F∼
−1 (D.43)

∂σ∼
∂E∼

= − 1
Je

(E∼ .Π∼
e.E∼

T )⊗E∼
−T + 1

Je
1∼⊗(Π∼

e.E∼
T )T

+ 1
Je

(E∼⊗E∼ ) : ∂Π∼
e

∂E∼
+ 1
Je

[(E∼ .Π∼
e)⊗1∼] : (1∼⊗1∼) (D.44)

∂Π∼
e

∂E∼
= ∂Π∼

e

∂E∼
e
G
L

:
∂E∼

e
G
L

∂E∼
(D.45)

∂Π∼
e

∂E∼
e
G
L

= Λ
≈

(D.46)

∂E∼
e
G
L

∂E∼
= 1

2(1∼⊗E∼
T +E∼
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Figure E.1: Simple glide test on one volume element.

For showing the convergence improvement by the algorithm, simulations of simple
shearing on one element are carried out by imposing displacement on all the nodes the
element. Only one slip system is defined as shown in fig. E.1. We drop the subscript
s of γs and refer to γ as the plastic slip. A linear hardening law is considered:

τc = τ0 +Hγ, (E.1)

with H > 0. As only one slip system is defined, γcum = γ. Simulations with the
micromorphic theory are compared with those with the conventional single crystal
plasticity theory. For the problem considered, the plastic slip field is homogeneous.
As a result, the result predicted by the micromorphic model should be in agreement
with that by the conventional model.

Small time steps are prescribed for passing the elastic-plastic transition and
then large time steps of the same length are prescribed for steady plastic regime. A
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critical time step in the plastic regime over which convergence cannot be reached
is looked for.

Case 1: Hχ = 0 and A = 0

Hχ = 0 and A = 0 are first considered with γχ = 0 imposed on the nodes. As
result, the micromorphic model is reduced to the conventional model. Notice that,
since all the degrees of freedom are imposed, no iteration is needed for integrating
the FE equations. Hence, the consistent tangent matrix is not involved in the
solution process.

Figure E.2: Comparison: conventional model and strain gradient model with Hχ = 0
and A = 0

The results obtained by the two models are in good agreement as shown in fig. E.2
for the evolution of γ. The same convergence is observed for the two calculations.

Case 2: Hχ = 105 and A = 10 with the analytical Jacobian matrix

The value of A does not influence the result in this case, since the slip field is
homogeneous. Hχ = 105 which is large enough to ensure γχ = γ. As in the
previous case, we want to imposing all the degrees of freedom in the simulation
with the micromorphic model, i.e., {ui, γχ}, and to exclude influence of consistent
tangent matrix on the convergence. However, γχ is a priori unknown. To this
end, the evolution of γ in the simulation with the conventional model is used to
prescribe γχ in the micromorphic model.

As shown in fig. E.3, very small time steps are needed for the simulation with
the micromorphic model, while the calculation with the conventional model can
even converge with larger time step than that in fig. E.3. Possible explanations are:
1) the Jacobian matrix for integration of the constitutive equations is not correctly
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Figure E.3: Comparison: conventional model and strain gradient model with Hχ = 105

and A = 10

derived or implemented in the code; 2) the convergence of the integration of the
power law is not good, because a large value of Hχ is chosen.

To make sure that the problem is not caused by possible errors in the analytical
Jacobian matrix, a perturbation method is used for calculating it.

Case 3: Hχ = 105 and A = 10 with the numerical Jacobian matrix

Figure E.4: Comparison: conventional model and micromorphic model with Hχ = 105

and A = 10 using perturbation method

As can been seen in fig. E.4, the critical time step for the micromorphic model is
the same as that obtain with the analytical Jacobian matrix. Thus, the convergence
problem is not due to the implementation of the analytical Jacobian matrix.
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(a) (b)

Figure E.5: Comparison: conventional model and micromorphic model with Hχ = 105

and A = 10 with improved algorithm

Case 4: Hχ = 105 and A = 10 with the improved algorithm

With the improved algorithm for the power law, the time step for the micromorphic
model is highly increased (see fig. E.5a with the same time step in a small range
of deformation). We try to find the critical time step over which the simulation
does not converge for the two models, as shown in fig. E.5b. Even though the
convergence for the micromorphic model is improved, it cannot be as good as
that for the conventional theory.
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Résumé

L’irradiation peut modifier les propriétés mé-
caniques des aciers inoxydables austéni-
tiques. Une diminution de la ténacité à
la rupture des aciers en fonction de la
dose est observée. La rupture ductile
due à la croissance et la coalescence des
cavités est toujours un mécanisme dom-
inant dans les aciers irradiés jusqu’à 10
dpa. Des cavités peuvent être créées de
manière différente: nucléées à partir des
inclusions ou des précipités d’irradiation, ou
créées directement par irradiation. Cette
thèse a pour objectif d’étudier la rupture
ductile des aciers irradiés due à la crois-
sance et la coalescence des cavités in-
tragranulaires. Basées sur la plasticité
cristalline, des simulations en éléments fi-
nis sont effectuées sur les cellules uni-
taires pour étudier l’effet de l’orientation
cristallographique et de la triaxialité de
contraintes sur la croissance et la coales-
cence des cavités. L’effet de l’écrouissage
post-irradiation sur la croissance et la co-
alescence des cavités est étudié avec un
modèle de la plasticité cristalline prenant
compte des défauts d’irradiation. En
outre, un modèle élasto-visco-plastique en
grandes transformations est proposé pour
décrire la croissance des cavités dans le
monocristal. Le modèle est appliqué à
la simulation de l’endommagement ductile
dans le monocristal et le polycristal. Des
cavités peuvent avoir des tailles différentes
et la taille peut avoir une influence sur la té-
nacité à la rupture des aciers. Afin d’étudier
cet effet, un modèle micromorphe de plas-
ticité cristalline est proposé et appliqué à
la simulation de la croissance et la coales-
cence des cavités intragranulaires de dif-
férentes tailles ainsi qu’aux phénomènes de
localisation dans les monocristaux.

Mots Clés

rupture ductile, acier CFC, irradiation, cav-
ités intragranulaires, plasticité cristalline,
plasticité à gradient

Abstract

Irradiation causes drastic modifications of
mechanical properties of austenitic stain-
less steels and a decrease in the frac-
ture toughness with irradiation has been
observed. Ductile fracture due to void
growth and coalescence remains one dom-
inant fracture mechanism for doses in the
range of 0–10 dpa. Voids may have dif-
ferent origins: nucleated at inclusions or
irradiation-induced precipitates during me-
chanical loading, or produced directly by
irradiation. The present work is to investi-
gate ductile fracture of irradiated steels due
to growth and coalescence of intragranu-
laire voids. Based on continuum crystal
plasticity theory, FE simulations are per-
formed on unit cells for studying effects of
lattice orientation and stress triaxiality on
void growth and coalescence. The influ-
ence of post-irradiation hardening/softening
on void growth and coalescence is evalu-
ated with a physically based crystal plas-
ticity model. Besides, an elastoviscoplas-
tic model at finite strains is proposed to
describe void growth up to coalescence in
single crystals, and is assessed based unit
cell simulations. The model is then applied
to simulate ductile damage in single crys-
tals and polycrystals. As voids in irradiated
steels may have different origins, they may
have different sizes, which potentially have
an influence on ductile fracture process and
fracture toughness of irradiated steels. In
order to assess the size effect, a micromor-
phic crystal plasticity model is proposed and
applied to simulate growth and coalescence
of intragranular voids of different sizes.

Keywords

ductile fracture, FCC steels, irradiation, in-
tragranular voids, crystal plasticity, strain
gradient plasticity
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