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Abstract

With the increasing availability of large amounts of data, computational
complexity has become a keystone of many machine learning algorithms.
Stochastic optimization algorithms (e.g., stochastic gradient descent) and
distributed /decentralized methods have been widely studied over the last
decade and provide increased scalability for optimizing an empirical risk
that is separable in the data sample. Yet, in a wide range of statistical learn-
ing problems such as ranking, clustering or metric learning among others,
the risk is accurately estimated by U-statistics, i.e., functionals of the train-
ing data with low variance that take the form of averages over d-tuples.
This thesis is dedicated to extending methods developed for sample mean
empirical risk to U-statistics. We first tackle the problem of sampling for
the empirical risk minimization problem. We show that empirical risks can
be replaced by drastically computationally simpler Monte-Carlo estimates
based on O(n) terms only, usually referred to as incomplete U-statistics,
without damaging the learning rate. We establish uniform deviation re-
sults describing the error made when approximating a U-process by its in-
complete version under appropriate complexity assumptions. Numerical
examples are displayed in order to provide strong empirical evidence that
such approach largely surpasses more naive subsampling techniques. We
then focus on the decentralized estimation topic, where the data sample is
distributed over a connected network. We introduce new synchronous and
asynchronous randomized gossip algorithms which simultaneously propa-
gate data across the network and maintain local estimates of the U-statistic
of interest. We establish convergence rate bounds of O(1/t) and O(logt/t)
for the synchronous and asynchronous cases respectively, where ¢ is the
number of iterations, with explicit data and network dependent terms. Be-
yond favorable comparisons in terms of rate analysis, numerical experi-
ments provide empirical evidence the proposed algorithms surpasses the
previously introduced approach. Finally, we deal with the decentralized
optimization of functions that depend on pairs of observations. Similarly
to the estimation case, we introduce a method based on concurrent local
updates and data propagation. Our gossip methods are based on dual av-
eraging and aims at solving such problems both in synchronous and asyn-
chronous setting. The proposed framework is flexible enough to deal with
constrained and regularized variants of the optimization problem. Our the-
oretical analysis reveals that the proposed algorithms preserve the conver-
gence rate of centralized dual averaging up to an additive bias term. Our
simulations illustrate the practical interest of our approach on AUC maxi-
mization and metric learning problems.






Résumé de la these

L'explosion récente des volumes de données disponibles a fait
de la complexité algorithmique un élément central des méthodes
d’apprentissage automatique. Les algorithmes d’optimisation stochastique,
comme la descente de gradient stochastique, ainsi que les méthodes distri-
buées et décentralisées ont été largement développés durant les dix der-
nieres années. Ces méthodes ont permis de faciliter le passage a 1’échelle
pour optimiser des risques empiriques dont la formulation est séparable
en les observations associées. Pourtant, dans de nombreux problémes
d’apprentissage statistique, allant de I’'ordonnancement au partitionnement
en passant par l'apprentissage de métrique, I'estimation précise du risque
s’effectue a 1'aide de U-statistiques, des fonctions des données prenant la
forme de moyennes sur des d-uplets. Cette thése vise a étendre aux U-
statistiques des méthodes développées spécifiquement pour un risque sous
forme de moyenne empirique. Nous nous intéressons tout d’abord au pro-
bléme de I'échantillonage pour la minimisation du risque empirique. Nous
montrons que le risque peut étre remplacé par un estimateur de Monte-
Carlo, intitulé U-statistique incompléte, basé sur seulement O(n) termes et
permettant de conserver un taux d’apprentissage du méme ordre. Nous
établissons des bornes sur l'erreur d’approximation du U-processus par
sa version incomplete sous certaines hypotheses de complexité. Les simu-
lations numériques mettent en évidence I'avantage d’'une telle technique
d’échantillonnage sur une approche plus naive. Nous portons par la suite
notre attention sur l'estimation décentralisée, ot les observations sont dé-
sormais distribuées sur un réseau connexe. Nous élaborons des algorithmes
dits gossip, dans des cadres synchrones et asynchrones, qui diffusent les ob-
servations tout en maintenant des estimateurs locaux de la U-statistique a
estimer. Nous démontrons que ces algorithmes convergent a des vitesses de
O(1/t) et O(logt/t), respectivement pour les versions synchrones et asyn-
crhones, avec des dépendances explicites en les données et la topologie du
réseau. Les simulations numériques confirment la supériorité de ces mé-
thodes sur 1’état de I'art. Enfin, nous traitons de 1'optimisation décentrali-
sée de fonctions dépendant de paires d’observations. De méme que pour
I'estimation, nos méthodes sont basées sur la concomitance de la propaga-
tion des observations et 'optimisation local du risque. Ces algorithmes sont
fondés sur la méthode du dual averaging et peuvent étre formulées dans des
cadres aussi bien synchrones qu’asynchrones. Notre analyse théorique sou-
ligne que ces méthodes conservent une vitesse de convergence du méme
ordre que dans le cas centralisé, & un terme de biais pres. Les expériences
numériques confirment l'intérét pratique de notre approche sur des pro-
blemes tels que 1'apprentissage de métrique ou la maximisation de l'aire
sous la courbe ROC.






Contents

Abstract
Résumé de la theése

1 Résumé en francais

=y
e
=%

<

1.1 FEchantillonnage de U-statistiques . . . . . . . . .. ......
1.1.1 Les U-statistiques incompletes . . . . ... ... ...

1.1.2 Expériences numériques . . . . .. ... .. ......

1.2 Lesprotocolesgossip . . . ... ... .. ... ... ....
121 Contexte . . . ... ... ... .. ... .. ...

122 Modéletemporel . . ... ........ ... .. ...

123 Laplaciendungraphe . . ... .............

1.3 Estimation décentralisée d'une U-statistique . .. ... ...
1.3.1 Lesalgorithmes GOSTA . . ... ... .........
Cassynchrone. . . .. ..................
Casasynchrone . . ... ... ..............

132 Expériences . .. ... ... ... ... .. ... ...

1.4 Optimisation décentralisée pour des fonctions de paires . . .
141 Définition du probléme . . ... ... ... ......

1.4.2  Dual averaging gossip pour les fonctions de paires . . .
Cassynchrone. . . .. ..................
Casasynchrone . . . ... ... .............

14.3 Expériences numériques . . . . . . ... ... .....

15 Conclusion . . .. ... ... L

Introduction
2.1 U-statisticssampling . . ... ... ...............
211 Incomplete U-statistics . . . ... ... ... ......
2.1.2 Application to Stochastic Gradient Descent . . . . . .
2.1.3 Numerical Experiments . . .. ... ..........
22 Gossipprotocols. . . . ... L L o
221 Background . .............. .. ... ...
222 Clockmodelling . ....................
223 GraphlLlaplacian . . ...................
2.3 Decentralized estimation of U-statistics . . . ... ... ...
231 GOSTA Algorithms . . . . .. ... ... oL
Synchronous Setting . . . . ... ............
Asynchronous Setting . . . ... ... .........
232 Experiments . ... ....................
2.4 Decentralized optimization for pairwise functions . . . . . .
241 Problem Statement . . . ... ....... .. .....
242 Pairwise gossip dual averaging . . . . ... ... ...
Synchronous setting . . . ... .............
Asynchronous Setting . . .. ... ...........

XN HEDNN M



viii

243 Numerical experiments . . .. ... .......... 43

25 Conclusion . . . ... ... L 44
Scaling-up Empirical Risk Minimization: Optimization of incom-

plete U-statistics 45

31 Imtroduction . ... ...... ... ... . ... ..o ... 46

3.2 Background and Preliminaries . . ............... 48

3.2.1 U-Statistics/Processes: Definitions and Properties . . 48

3.22 Motivating Examples. . . . .. ............. 49

Clustering . . .. ......... .. .......... 49

MetricLearning . . . . . ... ... ... ... .. 50

Multipartite Ranking . . . ... .. .. ... ... ... 51

3.2.3 Empirical Minimization of U-Statistics . . . . . . . .. 52

3.3 Empirical Minimization of Incomplete U-Statistics . . . . . . 55

3.3.1 Uniform Approximation of Generalized U-Statistics . 55

3.3.2 Model Selection Based on Incomplete U-Statistics . . 59

3.3.3 Fast Rates for ERM of Incomplete U-Statistics . . .. 60

3.34 Alternative Sampling Schemes . . . ... ... .... 62

3.4 Application to Stochastic Gradient Descent . . . . ... ... 65

3.5 Numerical Experiments . ... .. ... ............ 68

35.1 MetricLearning . . . . ... ............... 68

One-Time Sampling . ... ... ............ 69

Stochastic Gradient Descent . . . . .. ... ...... 70

3.5.2 Model Selection in Clustering . . . . .. ... ... .. 71

36 Conclusion . . .. ...... ... . ... . o .. 73

37 Proofs. ... ... ... 74

3.7.1 Proof of Proposition2 . .. ............... 74

3.72 Proof of Theorem11 . . ... ... ... ........ 75

373 ProofofCorollary1. ... ... ... .......... 76

3.74 Proof of Theorem12 . . ... ... ... ........ 77

3.75 Proof of Theorem13 . . ... ... ... ........ 78

3.7.6 Proof of Theorem14 . ... .. ... .......... 79

3.7.7 Proof of Proposition4 . .. ............... 80

Extending Gossip Algorithms to Estimation of U-statistics 83

41 Introduction . . ... ...... ... . ... . oL 84

42 Background ... ........... . .. . . 0L, 86

421 Definitions and Notations . . . . .. ... ... .... 86

422 Problem Statement . . . ... ... ..... ... ... 86

43 RelatedWork . .. ...... ... .. .. ... L. 88

43.1 Sample meanestimation . ... ............. 88

432 U-statisticsestimation . .. ... ... ......... 88

44 GOSTA Algorithms . . ... ... ... .. ....... 91

441 SynchronousSetting . ... ............... 91

442 AsynchronousSetting . . ... ............. 97

45 Experiments . .. ... ... ... . .0 o oL 101

451 Comparisonto U2-GOSSIP. . . . .. ... ....... 101

AUCmeasure . . . ... .. ... .. ... 101

Within-cluster point scatter . . . ... ... ... ... 102

45.2 Comparison to Baseline Methods . . . . ... ..... 103

4.6 Conclusion . . . . . . . . . i e 105



iX

47 Proofs. .. ... . .. 106
471 PreliminaryResults. . . .. ... ............ 106
4.7.2 Convergence Proofs for GOSTA . . . . ... ... ... 108

Proof of Theorem 18 (Asynchronous Setting) . . . . . 108
473 U2-gossip Algorithm . . . ... ... ... ... ... 114
5 Gossip Dual Averaging for Decentralized Optimization of Pair-

wise Functions 117

51 Introduction .. ........ ... .. ... .. . ... 118

5.2 Notations and problem statement . . . . ... ... ... ... 120
521 Definitions and Notation . . ... ... ........ 120
522 Problem Statement . . . . ... ... ... ... ... 120

5.3 Centralized Dual Averaging . . . . . ... ... ........ 122
53.1 DeterministicSetting . . . .. ... ........... 122
53.2 Stochastic Dual Averaging . . . . . ... ........ 125
53.3 Ergodic dual averaging . ................ 126

Problemsetting . . . . ... ............ ... 127
Convergence analysis . . .. .............. 128

54 Decentralized Dual Averaging . . . . ... ........... 132

5.5 Pairwise Gossip Dual Averaging . . ... ........... 136
5.5.1 SynchronousSetting . .. ... ............. 136
5.5.2 Asynchronous Setting . . .. .............. 140

5.6 Extension to Multiple PointsperNode . . . . ... ... ... 142

5.7 Numerical Simulations . . . ... ................ 144

58 Conclusion . . .. ... ... .. o oo 150

59 Proofs. . ... .. ... 151
591 Ergodic dual averaging . . ............... 151

Error after mixing (Lemma 12) . ... ... ... ... 151

Consecutive iterates bound (Lemma 13) . . . . .. .. 151

Gap with noisy objectives (Lemma 14) . . . . . . . .. 153

59.2 Synchronous Pairwise Gossip Dual Averaging . . . . 153

59.3 Asynchronous Pairwise Dual Averaging . ... ... 158
Conclusion 167

Bibliography 171






List of Figures

1.1

1.2

1.3
1.4

1.5

1.6

1.7

2.1

2.2

23

24

2.5

2.6

2.7

Risque de test pour l'estimateur complet (bleu) et incomplet

Descente de gradient stochastique sur MNIST pour dif-
férentes tailles de minibatch. . . ... ... .. ... .....
Exemplesderéseaux. . . . .. ........ ... . ... ...
Evolution de I'erreur relative moyenne (ligne continue) et de
son écart-type (surface pleine) en fonction des itérations pour
U2-GOssIP (rouge) et GOSTA-SYNC (bleu) sur le jeu de don-
nées SVMguide3 (ligne supérieure) et le jeu de données Wine
Quality (ligne inférieure). . . ... ... ............
Temps pour atteindre 20% d’erreur. . . . . . .. ... ... ..
Erreur relative (ligne continue) et écart-type associé (zone
pleine) des versions synchrone (bleu) et asynchrone (rouge)
deGOSTA. . . ... ... .
Maximisationde ’AUC. . . . ... ... ... .. .. .....

Test risk with respect to the sample size p when using com-
plete (blue) or incomplete (red) U-statistics. Solid lines rep-
resent means and dashed ones represent standard deviation.
The green dotted line represents the performance of the true
risk minimizer.. . . . . ... ... L. L
SGD results on the MNIST data set for various mini-batch
size. Bold and thin lines respectively shows the means and
standard deviationsover 50runs. . . . . ... ... ... ...
Networkexamples . . ... .......... .. .. ... ...
Evolution of the average relative error (solid line) and its
standard deviation (filled area) with the number of itera-
tions for U2-GOSSIP (red) and GOSTA-SYNC (blue) on the
SVMguide3 dataset (top row) and the Wine Quality dataset
(bottomrow). . . . . . . ...
20% error reaching time. . . . . ... ... ... .. ... ...
Relative error (solid line) and its standard deviation (filled
area) of synchronous (blue) and asynchronous (red) versions
of GOSTA. . . . . ...
AUC maximization. . . . . .. .. ... ... ... ...,

xi

14
15

15
21

29

29
37



Xii

3.1

3.2

3.3

34

3.5

3.6

4.1
4.2

4.3

44
4.5

[lustration of the difference between an incomplete U-
statistic and a complete U-statistic based on a subsample. For
simplicity, we focus on the case K’ = 1 and d; = 2. In this sim-
plistic example, a sample of n = 7 observations is considered.
To construct a complete U-statistic of reduced complexity, we
first sample a set of m = 4 observations and then form all
possible pairs from this subsample, i.e. B =m(m —1)/2 =6
pairs in total. In contrast, an incomplete U-statistic with the
same number of terms is obtained by sampling B pairs di-
rectly from the set A of all possible pairs based on the original
statistical population. . . . . ... ... .. ... . L.
[lustration of different sampling schemes for approximating
a U-statistic. For simplicity, consider again the case K = 1
and d; = 2. Here n = 7 and the expected number of terms
is B = 6. Sampling with or without replacement results in
exactly B terms, with possible repetitions when sampling
with replacement, e.g. (z¢,27) in this example. In contrast,
Bernoulli sampling with 7; = B/|A| results in B terms only
in expectation, with individual realizations that may exhibit
more or fewerterms. . ... ... ... ... L.
Test risk with respect to the sample size p of the ERM when
the risk is approximated using complete (blue) or incomplete
(red) U-statistics. Solid lines represent means and dashed
ones represent standard deviation. For the synthetic data set,
the green dotted line represent the performance of the true
risk minimizer.. . . ... ... Lo oo Lo oL
Average training time (in seconds) with respect to the sample

SGD results on the MNIST data set for various mini-batch
size m. Solid and thin lines respectively shows the means and
standard deviationsover50runs. . . . ... ... ...
Clustering model selection results on the forest cover type
data set. Figure 3.6a shows the risk (complete and incomplete
with B = 5,000 terms) for the first 20 partitions, while Fig-
ure 3.6b shows the penalized risk forc=1.1. . ... ... ..

Comparison of original network and “phantom network”.

Evolution of the average relative error (solid line) and its
standard deviation (filled area) with the number of itera-
tions for U2-GOsSIP (red) and Algorithm 5 (blue) on the
SVMGUIDE3 dataset (top row) and the WINE QUALITY
dataset (bottomrow). . . . . . . . ...
Panel (a) shows the average number of iterations needed to
reach an relative error below 0.2, for several network sizes
n € [50,1599]. Panel (b) compares the relative error (solid
line) and its standard deviation (filled area) of synchronous
(blue) and asynchronous (red) versions of GOSTA. . . . . . .
Comparison to the gossip-flooding baseline. . .. ... ...
Comparison to the master-node baseline. One unit of data
corresponds to one observation coordinate. . . .. ... ...

56

62

69

69

70

72

92

102

102
103

104



5.1

5.2

5.3
5.4

55

xiii

AUC maximization. Solid lines are averages and filled area

are standard deviations. . . . ... ... ... ... ...... 147
AUC maximization: comparison between our algorithm and
anunbiased version. . . ... .. ... ... ... ... 148
Metric learning experiments. . . . ... .. ... ....... 149
Metric learning: comparison between our algorithm and an
unbiased version . . . . ... ... e 149

Metric learning experiments on a real dataset. . . ... ... 149






List of Tables

3.1 Rate bound for the empirical minimizer of several empirical
risk criteria versus the number of terms involved in the com-
putation of the criterion. For a computational budget of O(n)
terms, the rate bound for the incomplete U-statistic criterion
is of the same order as that of the complete U-statistic, which
is a huge improvement over a complete U-statistic based on
asubsample. . . . ... Lo oo

41 Valueof 3,,—1/|€| for eachnetwork. . . . . . ... ... ....

5.1 Spectral gap values 1 — \§ for each network. . .. ......

XV






xvii

List of Symbols

General syntax

X
X

X
X

Set.

Vector.

Matrix.

Random variable.
Definition, e.g., z := 2.

Probability and statistics

I llrv

Sample size.

Feature space dimension.

Feature space (X C R9).

Probability measures.

Expectation with respect to probability measure 1 '
Empirical estimator.

True I'iSk, i.e., R(@) = ]E(va) []1{0(X)¢Y}]-

Empirical risk, ie., R,(0) = (1/n)> " Lio(x,)+v;}, for a
given sample (X, Y;)1<i<n-

Big O.

Probabilistic big O.

Indicator function of event A, i.e., 1 4 = 1if A is true, 0 oth-

erwise.
Total variation norm.

Linear algebra

[X]ij
-l

- 1lp

-1

XT

L,

M(t: s)

®

Sets
Al
A,
(k]

Networks
G =([n],€)
AY

Coefficient at row 7 and column j of matrix X.

fo-norm.

{p-norm.

Spectral norm.

Transpose of matrix X, i.e., [MT}U = [M];s.

Identity matrix of size n.

Product M(t)...M(s + 1) for 0 < s < t and a sequence
(M(7))r>0, with convention M(t : t) = I,.

Kronecker product.

Cardinal of finite set A.
Simplex in R", i.e., A, = {{ € RY, ||£]|1 = 1}
Set of integers from 1 to k, i.e., [k] = {1,...,k}.

Undirected graph with n nodes and set of edges £ C [n] x[n].
Adjacency matrix of graph G, i.e., [Ag]ij =1if (i,j) € £,0
otherwise 2.

1. The probability measure will be ommited when clear from context.
2. The G exponent will be ommited when clear from context.



xviii

LY Laplacian matrix of graph G, i.e., LY = DY — A93,

DY Degree matrix of graph g, i.e., DY is diagonal and [DY);; =
{7 € [n], (4,5) € E}]°.

Miscellaneous

Ly Lipschitz constant of function f *.

Vf Gradient of function f.

[+ Hinge loss, i.e., [z]+ = max(0,1 — z).

3. The G exponent will be ommited when clear from context.
4. The f index will be ommited when clear from context.



Chapter 1

Résumé en francais



2 Chapter 1. Résumé en francais

1.1 Echantillonnage de U-statistiques

En classification et en régression, les estimateurs du risque empirique
sont des moyennes statistiques sur un échantillon, c’est-a-dire de la forme

1 n
Rn 0;X1,...,Xn = — So;Xi, (11)
( )= 6

ol (X;)i<i<n est 1’échantillon d’observations. La théorie de minimisa-
tion du risque empirique (ou ERM pour Empirical Risk Minimization) ft
a l'origine développée dans ce contexte et est une fondation de nom-
breuses méthodes d’apprentissage automatique, incluant 'optimisation
stochastique et distribuée. Dans ce travail, nous portons notre attention
sur des risques empiriques impliquant des U-statistiques. Pour d > 0,
une U-statistique d’ordre d est une statistique impliquant des d-uplets de
I’échantillon d’observations, c’est-a-dire

Un(Hg):(i) > He(Xi,...,Xi,),

d) 1<i1<...<ig<n

ol Hy est une fonction symétrique mesurable de d éléments. Quand d = 1,
nous retrouvons la moyenne décrite précédemment. Pour d = 2, la U-
statistique est une moyenne sur toutes les paires possibles. Cette formu-
lation est utilisée dans un vaste panel de problemes d’apprentissage au-
tomatique ; par exemple, en apprentissage de métrique, pour un échantil-
lon (X;)i<i<n € (RP)™ donné et pour les étiquettes associées (Y;)i<i<n €
{—1,+1}", le but est de trouver la distance minimisant le risque suivant :

-
Rn(6; X1, .., Xn) = m Z [YiY;(b — (Xi — Xj)  0(X; — X))l
1<i<j<n

qui est évidemmment une U-statistique de degré 2. D’autres exemples in-
cluent le clustering, I’ordonnancement ou I’apprentissage sur des graphes.

1.1.1 Les U-statistiques incompletes

La plupart des probléemes d’apprentissage statistique peuvent étre for-
mulé de maniére équivalente comme la recherche d’un certain parametre
0" dans une classe © minimisant un risque R(0) = E,[s(8; X )], pour une
certaine distribution v. Cette distribution est souvent inconnue en pratique
et le paradigme de 'ERM suggere de remplacer le risque par sa contrepar-
tie empirique, comme définie dans (2.1). La théorie de 'ERM repose essen-
tiellement sur 1’étude des déviations maximales entre ces moyennes em-
piriques et leurs espérances, sous des hypotheses adéquates de complexité
sur l'essemble des parametres candidats.

Lorsque le risque empirique est formulé comme une U-statistique, il
est possible de montrer que dans le cadre asymptotique usuel, le taux
d’apprentissage est de 'ordre de Op(y/logn/n). Cependant, bien que ces
statistiques possédent d’intéressantes propriétés comme une variance ré-
duite, elles requieérent un budget de calcul souvent prohibitif pour étre op-
timisées ou méme estimées : le nombre de termes a moyenner est de ’ordre
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de (1)) pour une U-statistique de degré d. Afin de remédier a ce probleme,
le concept de U-statistique incompléte (it introduit dans la contribution de
BLOM, 1976.

L'idée derriere les U-statistiques incompletes est d’estimer la U-
statistique complete en effectuant un échantillonnage avec remplacement
sur I’ensemble des d-uplets d'indices. Pour B > 0, une U-statistique incom-
plete d’ordre d basée sur B termes est de la forme :

~ 1
UB(HQ) = E Z H@(XI17"'aXId)a (12)
(11,...7[d)EDB

ou Dp est un ensemble de taille B construit en échantillonnant avec rem-
placement dans I'ensemble A := {(i1,...,iq4), 1 < i1 < ... <ig <n}.

Nous étudions ici la précision avec laquelle un U-processus, c’est-a-dire
une collection de U-statistiques, peut étre estimé par une appproche Monte-
Carlo (que nous appellerons U-processus incomplet dans cette these) impli-
quant beaucoup moins de termes, pourvu que 'on ait un certain contrdle
sur la complexité des noyaux en jeu.

En pratique, B devrait évidemment étre bien plus petit que (1)) de
maniere a résoudre le probleme computationnel précédent. Il est a noter
que la distribution d'une U-statistique complete construite a partir d'un
sous-échantillon de taille réduite n’ et tiré uniformément est différente de
celle d'une U-statistique incomplete basée sur B = (Z/), bien qu’elles im-
pliquent toutes les deux le méme nombre de termes a moyenner.

En tant qu’estimateur du risque R, la statistique (2.2) est également non
biaisée, autrement dit E[U(Hg)] = R(6). Cependant, sa variance est na-
turellement plus grande que celle de la U-statistique complete U,,(Hp). Plus
spécifiquement, sa variance peut étre écrite

Var(UB(Hg)) = <1 — ;) Var(Un(Hg)) + %Var(H@(Xl, SN Xd)) (13)

Ainsi, la différence de variance disparait a une vitesse en 1/5 et une ques-
tion naturelle est de savoir si cette variance ne détériore pas excessivement
les vitesses d’apprentissage. Nous proposons le résultat suivant, basé sur la
VC dimension de H.

Theorem 1. (MAXIMAL DEVIATION) Soit H := {Hg, 8 € O} une collection de
noyaux symétriques bornés tels que

My = sup  |Hg(z)| < +o0. (1.4)
(Hg,x)EHXX

On suppose également que H est une classe de fonctions de VC dimension finie
V' < +o0. Alors, les propositions suivantes sont vérifiées :
(i) Pour tout ¢ € (0, 1), avec probabilité au moins 1—0, on a : pour tout B > 1
et pour tout n € N¥,

7 Viog(1 + [A]) + log(2/6
sup UB<H9>—Un<He>\SMHX\/2 & |B> 8(2/9)
HoeH
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(ii) Pour tout 6 € (0,1), avec probabilité au moins 1 — 6, on a : Vn € N¥,
VB >1,

. 2V log(1 + N) \/ log(2/6)
Hg) — R(8)| <2/ ——o -2 —
Mo 50, Ug(He) — R( )‘ < \/ N + N

N \/2v1og(1 + |A;) + log(4/9)

where N = |n/d].

La premiére proposition du Théoréme 6 permet de controler les écarts
entre la U-statistique et sa contrepartie incomplete, de maniere uniforme
sur la classe #. Quand le nombre de termes B augmente, cet écart diminue
aune vitesse O(1/+v/B). La deuxiéme proposition du Théoréme 6 donne une
déviation maximale en fonction de R(6). Il est a noter en particulier que,
dans le contexte asymptotique précédemment spécifié, log(|A|) = O(logn)
lorsque n — +o00. De plus, il est possible d’obtenir une borne sur 'exces de
risque des noyaux minimisant la version incompléete du risque empirique
basé sur B termes et montrer que lorsqu’un U-statistique incomplete con-
tient seulement B = O(n) termes, la vitesse d’apprentissage du minimiseur
correspondant est du méme ordre que celle du minimiseur du risque com-
plet, dont le calcul nécessite le moyennage de O(n¢) termes. En comparai-
son, la minimisation d"une U-statistique complete impliquant O(n) termes,
obtenue en sous-échantillonant n’ = O(n'/?) observations de maniere uni-
forme, meéne a une vitesse d’apprentissage en O(+/log(n)/nl/), ce qui est
bien plus lent.

Ces résultats montrent qu’il est préférable, en termes de vitesse
d’apprentissage, d’estimer le risque avec la version incompleéte lorsque
I’opportunité se présente.

1.1.2 Expériences numériques

Nous avons effectué des expériences numériques sur le probleme de
I'apprentissage de métrique (voir Section 3.2.2). Comme dans une grande
partie de la littérature sur I'apprentissage de métrique, nous avons restreint
notre attention a la famille de pseudo-distances Dy : R? x RY — R définie

par
DO(X> X/) = (X - X,)TO(X - X/)a

ot O € S¢, et S¢ est le cone des matrices d x d symétriques semi-définies
positives.

Pour un échantillon d’observations {(x;,:)}", ot x; € R? et y; €
{1,...,C},soit y;; = 1 siy; = y; et 0 sinon pour toute paire d’observations.
Pour un seuil donné b > 0, nous définissons le risque empirique comme
suit :

> [wii(b— Do(xi,x;))], (15)

1<i<j<n

ol [u]+ = max(0, 1 — u) est la fonction de perte dite hinge loss. Notre but est
de trouver le minimiseur du risque empirique parmi notre famille de dis-
tances. Dans nos expériences, nous avons utilisé deux jeux de données : un
jeu de données synthétiques générées selon un mélange de 10 gaussiennes
dans R et le jeu de données MNIST — voir Section 3.5 pour des détails sur
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FIGURE 1.1: Risque de test pour 1'estimateur complet (bleu)
et incomplet (rouge).
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FIGURE 1.2: Descente de gradient stochastique sur MNIST
pour différentes tailles de mini batch.

les jeux de données. Ces jeux de données contiennent respectivement 50000
et 60000 observations, calculer le risque empirique complet pour seulement
un candidat & demanderait donc de moyenner 10° paires. Nous avons ef-
fectué deux types d’expériences. Tout d’abord, nous sous-échantillonons
les données avant d’apprendre et nous évaluons la performance du min-
imiseur sur le sous-échantillon. Ensuite, nous utilisons la descente de gra-
dient stochastique pour trouver le minimiseur du risque empirique sur
I’échantillon original, en utilisant des sous-échantillons & chaque itération
pour estimer le gradient. Nous utilisons p indices tirés aléatoirement pour
I'estimateur complet et p(p — 1)/2 paires pour l'estimateur incomplet, de
telle maniere que les deux estimateurs requierent le méme nombre de ter-
mes a moyenner. Pour chaque stratégie, nous utilisons une méthode de
descente de gradient projeté afin de minimiser (2.8), en utilisant plusieurs
valeurs de p et en moyennant les résultats sur 50 essais aléatoires. Etant
donné que le jeu de test est grand, nous évaluons le risque de test sur
100 000 paires tirées aléatoirement.

La figure 1.1a montre le risque de test du minimiseur du risque em-
pirique en fonction de la taille de 1’échantillon p pour les deux esti-
mateurs sur le jeu de données synthétiques. Comme prédit par notre
analyse théorique, la stratégie incomplete fournit des performances bien
supérieures en moyenne. Par exemple, elle s’approche a 5% d’erreur du
vrai minimiseur empirique pour seulement p = 50, alors que la stratégie
compléte a besoin de p > 80 pour atteindre ce taux d’erreur. Les mémes
conclusions peuvent étre tirées du jeu de données MNIST, comme le mon-
tre la Figure 2?.

Nous nous tournons désormais vers un nouveau type de contrainte :
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comme mentionné précédemment, les méthodes distribuées et décentral-
isées sont requises dans un nombre croissant d’applications. Dans de tels
contexts, le risque empirique lui méme n’est pas calculable — ou1 a un coup
prohibitif — rendant nécessaire 1’adaptation des méthodes usuelles a de
telles contraintes.

1.2 Les protocoles gossip

Les méthodes que nous présentons pour estimer et optimiser des
risques empiriques basés sur des U-statistiques reposent sur les proto-
coles gossip. De tels algorithmes sont parfaitement adaptés a notre con-
texte car ils reposent uniquement sur des communications pair-a-pair :
chaque agent échange de I'information avec un voisin a la fois. Ainsi, avant
de présenter nos méthodes décentralisées, nous décrivons brievement les
bases des méthodes gossip et fournissons des détails supplémentaires a pro-
pos de deux notions essentielles : les modeles temporels et le laplacian d'un
graphe.

1.2.1 Contexte

Les algorithmes gossip ont été développés pour résoudre une large
gamme de problemes d’apprentissage automatique, de 1’aggrégation de
données sur un réseau de capteur (HEDETNIEMI, HEDETNIEMI, and LI-
ESTMAN, 1988; DIMAKIS, SARWATE, and WAINWRIGHT, 2008; KAR and
MOURA, 2009) a l'optimisation décentralisée multi-agent (NEDIC, 2011;
DUCHI, AGARWAL, and WAINWRIGHT, 2012; TSIANOS, LAWLOR, and RAB-
BAT, 2015). Bien que ces méthodes soient concues pour s’attaquer a des
problémes tres variés, elles partagent généralement un socle commun de
contraintes :

(i) iln’y a pas de nceud central assurant une synchronisation temporelle
ou une aggrégation globale des données du réseau

(ii) les capacités de calcul et de stockage de chaque nceud est partic-
ulierement limitée

(iii) la communication d’agent a agent est cotiteuse.

Dans certaines méthodes gossip, seules les contraintes (ii) et (iii) sont consid-
érées, menant a des méthodes distribuées dites synchrones ou partiellement
asynchrones (KARP et al., 2000; KEMPE, DOBRA, and GEHRKE, 2003; RAM,
NEDIC, and VEERAVALLI, 2010). D’autres méthodes satisfont les trois con-
traintes et produisent des algorithmes dits decentralisés et complétement
asynchrones (BOYD et al., 2006; NEDIC, 2011; LEE and NEDIC, 2015).

Exemple 1 (voitures connectées) Considérons des voitures connectées
circulant dans une ville. Ces voitures peuvent contenir de précieuses
informations sur le trafic alentour, des données météorologiques ou
sur le comportement du conducteur. Cependant, le volume impor-
tant du flux de données peut rendre difficile voire impossible une
centralisation continue des informations sur un serveur central, afin
d’appliquer des méthodes d’apprentissage automatique. Ainsi, une
possibilité est de tirer avantage du fait que les voitures sont mobiles
dans la ville afin d’exiger qu’elles effectuent des calculs locaux peu
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coliteux en utilisant les données contenues localement et qu’elles
échangent leurs résultats avec d’autres voitures des qu’elles sont as-
sez proches ou ont fini leurs calculs locaux. Une modele adapté a ce
schéma de communication est un graphe géométrique. Un graphe
G = ([n],€) est dit géométrique de rayon r pour une distance d si
pour toute paire de nceuds {4, 5} € [n]?, € contient 'arréte (4, 7) si et
seulement si d(7, j) < r. L’asynchronie globale du réseau et les incer-
titudes de communications sont ensuite naturellement modélisées
par des protocoles gossip completement asynchrones. Remarquons
que dans ce cas particulier, le graphe sous-jacent utilisé pour mod-
éliser les capacités de communication du réseau est dynamique : il
faudrait considérer une famille (G () ):>o plutdt qu'un unique graphe
G. Heureusement, les méthodes que nous considérons peuvent aisé-
ment étre étendues a de tels contextes.

Exemple 2 (téléphones mobiles) Dans le contexte d’applications pour
des téléphones mobiles, chaque nceud du réseau est un téléphone
et une communication est effectuée dés qu’un message est envoyé.
Il est possible d'utiliser les messages des utilisateurs pour effectuer
de la recommandation ou de la modélisation de topic par exemple.
Toutefois, regrouper de telles informations sur un unique serveur
central peut se révéler problématique pour différentes raisons : pro-
tection de la vie privée, volume de données potentiellement énorme,
etc. De plus, méme si les besoin computationnels des calculs lo-
caux sont raisonnables par rapport aux capacités des téléphones
actuels, I’établissement répété de communications peut avoir un im-
pact non négligeable sur la batterie, rendant particulierement adap-
tée l'utilisation de protocoles gossip pour envoyer les résultats des
calculs locaux en méme temps que des messages.

L'idée générale derriere les algorithmes gossip est d’alterner deux étapes
: des mises a jours locales (par exemple une descente de gradient) et des
étapes de communication (par exemple une moyenne). Dans le cas de
I'estimation, les étapes de communication consistent généralement en le
moyennage des estimateurs des nceuds concernés. Par exemple, dans BOYD
et al., 2006, un nceud moyenne son estimateur des qu’il établit une com-
munication avec un de ses voisins. Il existe également quelques exceptions
: dans PELCKMANS and SUYKENS, 2009, la mise a jour locale rajoute un
élément a l'estimateur de la U-statistique et 1’'étape de communication est
un échange d’observations. En optimisation gossip, les étapes de commu-
nication sont principalement des moyennages et les mises a jour locales
correspondent a une étape d’un algorithme — centralisé — d’optimisation
(descente de gradient, dual averaging, etc.).

1.2.2 Modele temporel

Nous avions mentionné précédemment que, selon les contraintes con-
sidérées, les algorithmes gossip peuvent s’appliquer dans un contexte syn-
chrone ou asynchrone. Dans le cas synchrone, nous considérons que les
noeuds ont accés a une horloge commune. De cette maniere, ils peuvent
tous effectuer une mise a jour locale a chaque pas de temps. Ce modéle n’est
pas toujours réaliste en pratique, mais permet d’analyser plus simplement
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la convergence d’un algorithme car chaque nceud contribue de maniere
équivalente a la convergence vers l'objectif global. C’est pourquoi, dans
cette these, nous utilisons 'analyse synchrone pour fournir des vitesses
de convergence détaillées et comme tremplin pour 1’analyse complétement
asynchrone.

Dans un contexte completement asynchrone, les nceuds n’ont pas acces
a une horloge commune ; chaque nceud possede sa propre horloge locale.
Une maniere répandue de modéliser les horloges locales est de considérer
des horloges indépendantes et identiquement distribuées, rythmées par un
processus de Poisson de parametre 1. Ainsi, un modele équivalent est con-
stitué par une horloge globale rythmée par un processus de Poisson de
parameétre n et un tirage aléatoire d’arréte a chaque itération (comme dans
le cas synchrone). Cependant, a une itération données, 1’étape de mise a jour
locale ne fait plus intervenir que la paire de nceuds actifs. Ainsi, les nceuds
doivent conserver un estimateur de l'itération en cours pour assurer une
convergence. L'estimateur du nombre d’itérations que nous utilisons dans
nos méthodes est défini comme suit. Soit G = ([n],€) un graphe non ori-
enté. Pour k € [n], on note p; la probabilité que le nceud & soit tiré a une
itération de l'algorithme. Si les arrétes sont tirées de maniere uniformément
aléatoire, alors p, = 2dj/|£|, out dj, représente le degré du noeud £ dans le
graphe G. Par simplicité, nous nous concentrons uniquement sur ce cas,
mais notre analyse peut facilement étre étendue a un contexte plus général.
On définit (0x(t))s>1 pour tout ¢t > 1 comme suit :

1 if node k is picked at iteration ¢
Ok (t) = . :
0 otherwise

On remarque immédiatement que les variables (dx(t)):~0 sont indépen-
dantes et identiquement distribuées suivant une loi de Bernouilli de
parametre py. Soit (mg(t)) > 0 défini pour tout ¢ > 0 par :

ma(t) = = 3" dils).
s=1

Puisque les (05 (t)):>0 sont des variables aléatoires de Bernouilli, m(t) est
un estimateur sans biais du temps ¢. Ainsi, en effectuant ’hypotheése que les
neceuds connaissent leurs degrés respectifs ainsi que le nombre total d’arréte
dans le réseau, les estimateurs du nombre d’itérations sont non biaisés.

Le lecteur peut se référer a BOYD et al., 2006 pour plus de détails sur les
modeles temporels synchrones et asynchrones.

1.2.3 Laplacien d’un graphe

Dans des contextes distribués et décentralisés, la dépendance d'une
méthode envers la topologie du réseau est étroitement liée aux valeurs
propres dune matrix appelée le laplacian du graphe CHUNG, 1997. Soit
G = ([n],€) un graphe non orienté et soit AY sa matrice d’adjacence,
autrement dit pour tout couple (i,j) € [n]?, [AY];; = 1 si et seulement si
(i,7) € £. Le laplacien du graphe LY est défini comme suit :

Lg:Dg—Ag,
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ot DY est la matrix des degrées, c’est-a-dire DY = diag(A91,,). Le laplacien
d’un graphe possede plusieurs propriétés intéressantes comme la positivité
et la symétrie, mais la plus remarquable d’entre elles est qu’il correspond (a
une renormalisation pres) a la matrice de transition d"une marche aléatoire
sur le graphe G. Sa plus petite valeur propre non nulle, aussi appelée le trou
spectral, caractérise la capacité du graphe a diffuser de I'information. En ef-
fet, il est possible de mettre en relation le laplacien avec ’analyse markovi-
enne usuelle pour montrer que si le réseau est connecté et non bipartie, alors
la marche aléatoire est respectivement irréductible et apériodique, assurant
sa convergence vers une distribution uniforme a une vitesse géométrique,
dans la raison est lié au trou spectral.

Afin d’illustrer nos propos, considérons la méthode d’estimation gossip
décrite dans BOYD et al., 2006. Dans ce scénario, la borne d’erreur apres ¢
itérations est de la forme A5, ot Ay := 1 — 3,_1/|€| et B,_1 est le trou spec-
tral. Un autre exemple est la version distribuée du dual averaging présentée
dans AGARWAL, WAINWRIGHT, and DUCHI, 2010. Leur borne supérieure

sur l'erreur est égale a
& T
1—Xa) Vt

ot ¢ et ¢ ne dépendent que du conditionnement du probleme
d’optimisation considéré.

Nous nous tournons désormais vers 'estimation décentralisée des U-
statistiques a la fois dans le cas synchrone et asynchrone.

1.3 Estimation décentralisée d’une U-statistique

L’estimation décentralisée possede de nombreuses applications dans les
réseaux de capteurs ou pair-a-pair, ainsi que pour extraire de I'information
depuis des graphes de données volumineux tels que des documents web
interconnectés ou des médias sociaux en ligne. Les algorithmes opérants
sur de tels réseaux doivent souvent obéir a des contraintes strictes : les
neceuds formant le réseau ne peuvent se reposer sur une entité centrale pour
la communication et la synchronisation, n’ont pas de connaissances détail-
lées sur la topologie du réseau et ont des ressources limitées (mémoire,
énergie, puissance computationnelle). Les algorithmes gossip (TSITSIKLIS,
1984; SHAH, 2009; DIMAKIS et al., 2010), ot chaque nceud n’échange de
I'information qu’avec un de ses voisins a la fois, se sont montrés de parfaits
candidats pour ce probleme.

De tels algorithmes ont été significativement utilisés dans le contexte
de moyennage décentralisé sur des réseaux, ou I'objectif est de calculer la
moyenne de n réels (X' = R):

I=— = —x 1,. (1.6)
n 4 n
i=1
Un des plus anciens travaux sur ce probléme général provient de TSITSIK-
LIS, 1984, mais des algorithmes plus efficaces ont récemment été proposés,
par exemple dans KEMPE, DOBRA, and GEHRKE, 2003; BOYD et al., 2006.
Nous nous penchons ici plus particulierement sur la méthode introduite
dans BOYD et al., 2006, qui constitue un algorithme gossip permettant de
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calculer la moyenne empirique (2.9) dans un contexte ot les noeuds sont
activés de maniére asynchrone et moyennent simplement leur estimateur
avec celui d'un voisin tiré aléatoirement. Les probabilités de communica-
tion sont données par une matrice stochastique P, ot1 [P];; est la probabilité
qu'un nceud ¢ choisisse le voisin j pour établir une communication. Comme
expliqué dans la Section 2.2.3, les estimateurs locaux convergent vers (2.9) a
une vitesse géométrique, dont la raison dépend du trou spectral du réseau.
De telles méthodes peuvent étre étendues pour calculer d’autres fonctions
comme le maximum ou le minimum, ou également des sommes de la
forme Y " | f(x;) pour une fonction f : X — R donnée (comme fait par
exemple dans les travaux de MOSK-AOYAMA and SHAH, 2008). Certains
travaux se sont également penchés sur le développement d’algorithmes
gossip plus rapides dans le cas de réseaux mal connectés, en supposant
sur les nceuds connaissent (partiellement) leur emplacement géographique
(DIMAKIS, SARWATE, and WAINWRIGHT, 2008; LI, DAI, and ZHANG, 2010).
Plus récemment, LOIZOU and RICHTARIK, 2016 a développé une nouvelle
perspective sur 1’analyse des algorithmes gossip en utilisant des Randomized
Block Kaczmarz et en étudiant I'optimisation duale. Pour des éléments plus
détaillés sur la littérature sur les algorithmes gossip, le lecteur peut se référer
a SHAH, 2009; DIMAKIS et al., 2010.

Nous nous penchons ici sur un probleme d’optimisation décentralisée,
ot la quantité d’intérét est une U-statistique d’ordre 2. C’est-a-dire que nous
souhaitons estimer une quantité de la forme suivante :

O, (h) = % 3 b x;), (17)

3,j=1

o h : X x X — R est une fonction symétriuge et (xx)i<r<n € X" sont
des observations dans un espace X. Cette formulation s’écarte quelque
peu de la définition usuelle des U-statistiques car les termes diagonaux
sont inclus ; cela simplifie notre analyse tout en incluant également le cas
h(x,x) = 0. Nous supposons que les observations sont réparties sur un
réseau G = ([n], ) et que chaque nceud i € [n] du réseau contient exacte-
ment une observation x;.

Les algorithmes gossip existants ne peuvent étre utilisés pour calculer ef-
ticacement (2.10) car I’objectif dépend maintenant de paires d’observations.
Pour autant que nous sachions, ce probleme a seulement été traité dans
PELCKMANS and SUYKENS, 2009. Leur méthode, appelée U2-GOSSIP, con-
verge a une vitesse O(1/t) mais présente plusieurs inconvénients. Tout
d’abord, chaque nceud doit conserver deux observations auxiliaires et
deux paires de nceuds doivent échanger leurs observations a chaque itéra-
tion. Pour des problémes en grande dimension (grand d), cela mene
a des charges de communication et de mémoire significatives. Ensuite,
l'algorithme ne présente pas de fonctionnement asynchrone car chaque
neceud doit mettre & jour son estimateur a chaque itération. En conséquence,
les nceuds doivent avoir acces a une horloge globale, ce qui est souvent
peu réaliste en pratique. Dans la prochaine section, nous présentons de
nouveaux algorithmes, synchrones et asynchrones, offrant une vitesse de
convergence améliorée ainsi que des cofits de stockage et communication
réduits a chaque itération.
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Algorithm 1 GOSTA-sync: un algorithme gossip synchrone pour calculer
une U-statistique

Require: Chaque nceud & possede une observation xj,
1: Chaque nceud £ initialise son observation auxiliaire y; = x, et son estimateur
R = 0
2: fort=1,2,...do
3 forp=1,...,ndo
4 Fixer z, < 51z, + +h(xp, yp)
5:  end for
6:  Tirer (i, j) selon une loi uniforme sur £
7 Fixer Ziy Zj %(ZZ + Zj)
8:  Echanger les observations auxiliaires des nceuds i et j: y; ¢ y;
9: end for

1.3.1 Les algorithmes GOSTA

La méthode proposée repose sur l'observation que la U-statistique

a estimer peut étre réécrite U,(h) = (1/ n) Y i, hi, ou h; =
(1/m) 3275, h(xi,%;), et nous noterons par la suite h = (A1, ..., h,)". Notre

objectif reformulé ainsi est désormais similaire au probleme habituel de
la moyenne décentralisée (2.9), une différence notable étant que chaque
valeur locale h; est elle-méme une moyenne dépendant de l'intégralité de
I’échantillon des observations. Par conséquence, nos méthodes vont com-
biner deux étapes a chaque itération : une étape de propagation des don-
nées afin que chaque nceud i puisse estimer h;, et une étape de moyennage
pour s’assurer de la convergence vers la valeur souhaitée U, (h).

Cas synchrone

Dans le cas synchrone, nous supposons que les nceuds ont acces a une
horloge commune. De cette maniere, ils mettent & jour leurs estimateurs a
chaque pas de temps. Nous insistons sur le fait que les nceuds n’ont pas
besoin de connaitre la topologie détaillée du réseau car ils n’interagissent
qu’avec leur voisins direct sur le graphe. On note z(t) 1'estimateur (lo-
cal) de U, (h) au nceud k et a I'itération ¢. Afin de propager les données au
travers du réseau, chaque nceud k détient une observation auxiliaire yy, ini-
tialisée a x;,. Notre algorithme, dénommé GOSTA pour gossip U-statistique,
procéde comme suit. A chaque itération, chaque nceud % met a jour son es-
timateur local en effectuant une moyenne glissante de 2 () et de h(xy, y&)-
Ensuite, une arréte du réseau est tiré uniformément parmi I’ensemble des
arrétes, et la paire de nceuds correspondants moyenne ses estimateurs et
échange les observations auxiliaires. Ainsi, les observations suivent des
marches aléatoires (bien que couplées) sur le graphe associé au réseau. La
procédure compléte est décrite dans 1" Algorithme 5.

Nous établissons la vitesse de convergence de cette algorithme dans le
théoreme suivant.

Theorem 2. Soient G = ([n],€) un graphe connexe et non bipartie,
(X1,...,%p,) € R"*%un échantillon d’observations et (z(t)) la suite d’estimateurs
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générés par I’ Algorithme 5. Pour tout k € [n], on a:

~

lim E[zk(t)]:% S hixi,x;) = Onlh).

t——+o0
1<i,j<n

De plus, pour tout t > 0,

)

L) - Taiya]| < 1 A

~ct

2 _
+ ( + ect) HH —h1!
ct

ot pour tout 1 < 4,5 < n, [H;; = h(xi,x;), ¢ = c(G) := PBn-1/|E|, et Bn—1 est
la deuxieme plus petite valeur propre du laplacien du graphe LY.

Le Théoreme 7 montre que les estimateurs locaux générés par
I’Algorithme 5 convergent vers U,(h) a une vitesse O(1/t). De plus, les
constantes révelent la dépendance de la vitesse de convergence a I'instance
du probleme. En effet, les deux normes constituent des termes dépendants
des données et quantifient la difficulté du probleme d’estimation au travers
d’une mesure de dispersion. D’autre part, ¢(G) est un terme dépendant du
réseau puisque [3,_1 est la deuxiéme plus petite valeur propre du laplacien
du graphe LY, aussi appelée le trou spectral de G. Par conséquent, nous at-
tendons des graphes mieux connectés une convergence plus rapide ; cela
sera mis en évidence dans les applications numériques.

Afin d’estimer U, (h), U2-GOSSIP (PELCKMANS and SUYKENS, 2009)
n’utilise pas de moyennage. A la place, chaque nceud k stocke deux ob-
servations auxiliaires y](gl) et y,&z) qui sont toutes les deux initialisées a xj.
A chaque itération, chaque nceud k € [n] met a jour son estimateur local
en effectuant une moyenne glissante entre z, et h(ylil), y,(f)). Ensuite, deux
arrétes sont tirées aléatoirement : les nceuds associés a la premiere (respec-
tivement seconde) arréte échangent leurs premiéres (respectivement secon-
des) observations auxiliaires. En appliquant notre analyse de convergence
a U2-GOssIP, nous obtenons la vitesse de convergence suivante :

LV ( 2 (A !
(1.8)

1—\2

+

|Blz(t)] - Ou(h)1,

HH—HQ

— ot \1-)

ott 1 — A = 2¢(G). ’avantage de propager deux observations dans U2-
GOSSIP est observable dans le terme 1/(1 — A?). Cependant, I’absence de
moyennage méne a un facteur supplémentaire en \/n. Intuitivement, ce
terme provient du fait que les noeuds ne bénéficient pas des autres esti-
mateurs du réseau. En pratique, ) est proche de 1 pour des réseaux de taille
raisonnable (par exemple, A = 1—2/n pour le graphe complet), et les termes
au carré n’apportent qu'un gain négligeable. Ainsi, le facteur \/n domine
dans (2.11) et nous nous attendons a ce que U2-GOSSIP converge plus lente-
ment que GOSTA, ce qui est confirmé par les résultats numériques.

Cas asynchrone

Nous retirons désormais 1’hypothese sur ’horloge commune. En util-
isant les estimateurs du nombre d’itérations décrits dans la Section 2.2.2,
nous pouvons désormais établir une version asynchrone de GOSTA, comme
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Algorithm 2 GOSTA-ASYNC: un algorithme gossip asynchrone pour cal-
culer une U-statistique

Require: Chaque nceud £ détient une observation xy, et pi, = 2d;,/|€|
1: Chaque noeud k initialise y; = xj, 2z, = 0etmy =0
2: fort=1,2,...do
3:  Tirer (i, ) selon une loi uniforme sur £

4:  Fixer m; <— m; + 1/p; et mj < m; + 1/p;

5 Fixer z;, zj < (2 + zj)

6:  Fixer z; + (1 — piini)zi + ﬁh(xi,yi)

7:  Fixer z; + (1 — pj}nj )z + ﬁh(xj,yj)

8

9:

: Echanger les observations auxiliaires entre les noeuds i et j: y; <> y;
end for

établi dans 1’Algorithme 6. Remarquons que l'étape de mise a jour locale
differe légerement de celle du cas synchrone : cela est dti au fait que chaque
neeud doit contribuer de maniere équivalente a la statistique a estimer.
Ainsi, les nceuds qui sont moins souvent activés doivent mettre un plus
gros poids sur leur contribution.

Afin de montrer que les estimateurs locaux convergent vers Un(h), nous
utilisons un modele similaire au cas synchrone. La dépendance temporelle
de la matrice de transition est plus complexe ; il en va de méme pour la
borne supérieure.

Theorem 3. Soit G = ([n], £) un graphe connexe et non bipartie, (x1,...,X,) €
R4 yn échantillon d’observations et (z(t)) la suite d’estimateurs générée par
I"Algorithme 6. Pour tout k € [n], on a:

lim E[zx(t)] = % Z h(xi,x;) = Uy (h).

t—+o0
1<i,j<n
De plus, il existe une constante ¢/ (G) > 0 telle que, pour tout t > 1,

logt

<92

|z - a1 .

1.3.2 Expériences

Nous présentons dans cette section deux applications sur des jeux de
données réels. La premiere application concerne 1’estimation de la disper-
sion intra-cellule (CLEMENCON, 2011) qui mesure la qualité d'une partition
P de l'espace X a partir de la distance moyenne entre points d"une méme
cellule C € P. Cette dispersion est de la forme (2.10) avec

hP(XaX,) = ”X - X/” ’ Z ]l{(x,x’)GCQ}' (19)
ceP

Nous étudions également la mesure de I’AUC (HANLEY and MCNEIL,
1982). Pour un échantillon d’observations (x1, 1), ..., (Xn, n) données sur
X x {—1,+1}, ’AUC d’un classifieur linéaire § € R¢~! est donnée par :

iienL =Ll L) 0T Vs 0 (0T m
AUC(6) = Lisiys PAGO w2260 w110

4 (Zlgign 1{&:1}) (Zlgz’gn ]1{51':*1})
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FIGURE 1.4: Evolution de l'erreur relative moyenne (ligne
continue) et de son écart-type (surface pleine) en fonc-
tion des itérations pour U2-GOSSIP (rouge) et GOSTA-SYNC
(bleu) sur le jeu de données SVMguide3 (ligne supérieure)

et le jeu de données Wine Quality (ligne inférieure).

Ce score correspond a la probabilité d'un classifieur d’ordonner une paire
d’observation dans le bon ordre.

Nous effectuons nos simulations sur trois types de réseaux, décrits ci-
dessous.

o Graphe complet : Cela correspond au cas ou tous les nceuds sont
connectés les uns aux autres. Cette situation est idéale dans notre cadre
d’application, puisque toutes les paires de nceuds peuvent communiquer
directement.

o Grille bidimensionnelle : Ici, les nceuds sont placés sur une grille en deux
dimensions et chaque noeud est connecté a ses quatre voisins sur la grille.
Ce réseau offre une structure de graphe réguliere ainsi quune communica-
tion isotrope. Cependant, son diametre (1/n) est plutot élevé, en particulier
par rapport aux réseaux invariants d’échelle.

e Watts-Strogatz : Cette technique de génération aléatoire de graphe est
présentée dans WATTS and STROGATZ, 1998 et permet de créer des réseaux
avec des propriétés de communication variables. Dans notre cas, nous ajus-
tons les parametres afin d’obtenir un compromis (en termes de connectiv-
ité) entre le graphe complete et la grille bidimensionnelle.

La Figure 2.3 présente des exemples de tels réseaux.
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FIGURE 1.6: Erreur relative (ligne continue) et écart-type as-
socié (zone pleine) des versions synchrone (bleu) et asyn-
chrone (rouge) de GOSTA.

Mesure de 'AUC Nous utilisons le jeu de données de classification bi-
naire SMVGUIDE3, contenant n = 1260 points en d = 23 dimensions
et nous fixons 6 a la différence entre les moyennes des classes. La ligne
supérieure de la Figure 2.4 montre I'évolution de l'erreur relative et de
I’écart-type (entre les noeuds) associé en fonction des itérations, pour les
deux méthodes sur chaque type de réseau. En moyenne, GOSTA-SYNC offre
de meilleures performances que U2-GOSSIP sur chaque réseau. La variance
des estimateurs entre les noeuds est également plus faible grace au moyen-
nage. Il est également intéressant de noter que 'écart de performance entre
les deux algorithmes se creuse énormément au départ, ce qui peut possi-
blement étre expliqué par le fait que le terme exponentiel dans la borne de
convergence de GOSTA-SYNC n’est significatif que lors des premiéres itéra-
tions.

Inertie intra-cellule Nous utilisons le jeu de données Wine Quality, con-
tenant n = 1599 points en d = 12 dimensions, avec un total de K = 11
classes.? Nous nous concentrons sur la partition 7 dont les cellules sont
les classes associées aux centroides. Les résultats sont représentés sur la

1. Ce jeu de données est accessible a l'adresse suivante http://mldata.org/
repository/data/viewslug/svmguide3/

2. Cejeude données est disponible a I'adresse suivante ht tps: //archive.ics.uci.
edu/ml/datasets/Wine


http://mldata.org/repository/data/viewslug/svmguide3/
http://mldata.org/repository/data/viewslug/svmguide3/
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Wine
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ligne inférieure de la Figure 2.4. Comme dans le cas de I’AUC, GOSTA-
SYNC offre de meilleures performances sur tous les types de réseaux, que
ce soit en termes d’erreur ou en termes de variance. La Figure 2.5, montre
le temps moyen nécessaire pour atteindre une erreur relative de 0.2 sur un
graph complet, avec un nombre de noeuds variant de n = 50 a n = 1599.
Comme prédit par notre analyse, 1'écart de performance se creuse en faveur
de GOSTA lorsque la taille du graphe augmente. Finalement, nous com-
parons les performances de GOSTA-SYNC et GOSTA-ASYNC (Algorithme 6)
sur la Figure 2.6. Malgré la vitesse de convergence théorique légerement
détériorée pour GOSTA-ASYNC, les deux algorithmes montrent des perfor-
mances similaires en pratique.

Nous nous tournons désormais vers le cas ot les objectifs mentionnés
précédemment doivent étre minimisés, toujours dans un contexte décen-
tralisé.

1.4 Optimisation décentralisée pour des fonctions de
paires

L'optimisation décentralisée est particulierement bien adaptée pour
s’attaquer aux défis posés par I'avancée du Big Data et de 1'Internet des
objets. Par exemple, dans 'apprentissage automatique a grande échelle,
l'objectif est de minimiser une fonction de perte sur un immense jeu de
données distribué sur plusieurs machines dans une ferme de calculs ou
une plateforme de cloud-computing. D’autres applications proviennent des
réseaux avec ou sans fils, o1 les agents locaux doivent se coordonner afin
de minimiser une fonction objectif commune. Les stratégies usuelles pour
résoudre de tels problemes d’optimisation reposent sur les algorithmes gos-
sip, comme dans le cas de I'estimation. Ces algorithmes ont retenu beau-
coup d’attention grace a leur simplicité ainsi que leur abilité a opérer sur
des réseaux pair-a-pair ot1 une coordination centralisée peut se révéler trop
coliteuse ou méme tout simplement impossible.

Un des problemes centraux de l'optimisation décentralisée est la
recherche d’un vecteur de parametres § minimisant un risque empirique
prenant la forme d’"une moyenne de fonctions convexes (1/n) >~ | f(0;x;),
ot chaque donnée x; n'est connu que de l'agent i. Un large panel
d’algorithmes gossip ont été proposé pour résoudre ce probléme : certains
sont basés sur la descente de gradient (NEDIC and OZDAGLAR, 2009; JoO-
HANSSON, RABI, and JOHANSSON, 2010; RAM, NEDIC, and VEERAVALLI,
2010; BIANCHI and JAKUBOWICZ, 2013), d’autres sur la méthode ADMM
(WEI and OZDAGLAR, 2012; WEI and OZDAGLAR, 2013; IUTZELER et al.,
2013) ou encore le dual averaging (DUCHI, AGARWAL, and WAINWRIGHT,
2012; YUAN et al., 2012; LEE, NEDIC, and RAGINSKY, 2015; TSIANOS,
LAWLOR, and RABBAT, 2015). Dans ces méthodes, chaque agent cherche a
minimiser son objectif partiel en effectuant des mises a jours locales (par ex-
emple des descentes de gradient) tout en échangeant de I'information avec
ses voisins pour s’assurer d"une convergence vers un consensus.
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Dans ce travail, nous nous penchons sur le probléeme plus complexe de
la minimisation d"une moyenne de fonctions de paires des observations :

min % S FO:%,x)). (1.11)

1<i,j<n

Pour ce faire, nous utilisons une approche similaire au cas de 'estimation,
en combinant des calculs locaux avec une propagation des données sur le
réseau. Des observations auxiliaires nous permettrons de calculer des esti-
mateurs — biaisés — des gradients.

1.4.1 Définition du probléme

Soit X un espace de parametres, d > 0 et soit f : R x X x X — R
une fonction convexe et différentiable par rapport a sa premiere variable.
Nous supposons que pour toute paire de parametres (x,x’) € X2, il existe
une constante Ly > 0 telle que f(- ;x,x’) est L¢-Lipschitz (par rapport a la
norme euclidienne || - ||). Soit ¢ : R? — RT une fonction convexe (poten-
tiellement non réguliere) telle que, par soucis de simplicité, 1/(0) = 0. Pour
un échantillon d’observations donné (xi, ... ,x,) € X", notre objectif est de
résoudre le probléme d’optimisation suivant :

1
in 3 Z F(8:%:,%;) +(6). (1.12)
Dans une application d’apprentissage automatique, le Probleme (2.15) est
typiquement un probleme de minimisation de risque empirique (pénalisé)
et 6 correspond aux parametres du modele a apprendre. Dans un tel con-
texte, la fonction f(0;x;,x;) est une fonction de perte par paire, mesurant
la performance du modele 8 sur la paire d’observations (x;,x;), tandis
que (0) représente un terme de régularisation, pénalisant la complex-
ité du modeéle 8. Ce terme de régularisation peut prendre une variété de
formes : fonction indicatrice sur un ensemble convexe fermé (contraintes
d’optimisation), norme || - ||; afin d’assurer la parcimonie du modele, etc.

De nombreux problémes d’intérét peuvent étre formulé comme le Prob-
leme (2.15). Par exemple, il est possible d’effectuer la maximisation men-
tionnée précédemment de 'AUC en utilisant une perte logistique (par
soucis de régularité)

f(0:5xi,%x5) = Lp~0,y log (1 + exp((x; — Xi)TO)) )

et un terme de régularisation (6) peut étre fixé a la norme ¢y de 6
(ou la norme /¢; si un modele parcimonieux est préférable). D’autres ex-
emples courants d’application du Probleme (2.15) peuvent étre trouvés
dans l'apprentissage de métrique ou similarité (BELLET, HABRARD, and
SEBBAN, 2015), I'ordonnancement (CLEMENCON, LUGOSI, and VAYATIS,
2008), l'inférence supervisée de graphe (BIAU and BLEAKLEY, 2006) et
I'apprentissage de noyaux multiples (KUMAR et al., 2012).

Par soucis de clarté dans les notations, nous noterons f; la fonction par-
tielle associée a 4, ainsi f; := (1/n) 37, f(:;xi,%x;5) et f = (1/n) 37, fi- Le
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Probléme (5.3) peut alors étre reformulé comme suit :

min R, (0) = f(0) + (). (1.13)
feRr?
Remarquons que la fonction f est L g-Lipschitz, puisque toutes les fonctions
partielles f; le sont également.

1.4.2 Dual averaging gossip pour les fonctions de paires

Dans nos méthodes, nous utilisons l'algorithme du dual averaging pour
les mises a jour locales. L'algorithme du dual averaging (NESTEROV, 2009)
construit une suite (6(t));~o dans l'espace dit primal X ainsi qu'une suite
(z(t))e>0 de variables duales qui collectent les sommes des gradients apercus
jusqu’a l'itération t. A chaque pas de temps t, la variable duale z est mise a
jour comme suit :

2(t +1) = z(t) + V(O(1)).

La variable primale est elle générée a partir de la régle suivante :

M H2
0t+1 =m(z(t+1 = ar mln{—z 0+“ }7
( ) t( ( )) BgERd 2)(t>

pour une suite de pas (y(t));>0 donnée. Ce choix est guidé par le fait que
la structure des mises a jour rend l’analyse du cas distribué bien plus aisée
que pour la descente de gradient stochastique, dés que le probléme est con-
traint ou régularisé. Cela est di au fait que 1'algorithme du dual averaging
maintient une simple somme de gradients, tandis que 1’opérateur de pro-
jection (non linéaire) est appliqué séparemment — voir Section 5.3 pour des
détails au sujet du dual averaging.

Notre travail est fondé sur 1’analyse présentée dans DUCHI, AGARWAL,
and WAINWRIGHT, 2012, ott une version distribuée du dual averaging est
proposée. Leur objectif est d’optimiser une moyenne de fonctions univar-
iées f(- ;x;), dans laquelle chaque noeud calcule un estimateur non biaisé
de V f(- ;x;) qui sera ensuite moyenné sur le réseau. Cependant, dans notre
contexte, un nceud ne peut fournir un estimateur sans biais de V (- ; x;, x;),
méme en utilisant une propagation des observations similaires a GOSTA ;
nous utiliserons plutét les observations auxiliaires pour fournir des estima-
teurs biaisés des gradients. En nous basant sur le fait que la contribution de
ce biais décroit exponentiellement vite en fonction du nombre d’itérations,
nous montrons que la convergence du dual averaging est préservée. Nous
présentons et analysons tout d’abord notre algorithme dans le cas syn-
chrone et nous tournons par la suite vers le cas plus pointilleux de I’analyse
asynchrone.

Cas synchrone

N

Dans le cas synchrone, chaque noeud a accés a une horloge glob-
ale. Ainsi, chaque nceud effectue une mise a jour locale (une étape du
dual averaging) a chaque itération. L'étape de communication combine un
moyennage des variables duales des nceuds sélectionnés et un échange

d’observations auxiliaires similaire a GOSTA. La procédure est détaillée
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Algorithm 3 Dual averaging gossip pour des fonctions de paires dans le cas
synchrone.

Require: Pas (vy(t))>1 > 0.
1: Chaque nceud i initialise y; = x;,z; = 6, = 6; = 0.
2: fort=1,...,T do
3:  Tirer (¢, j) suivant une loi uniforme sur £
Fixer z;,2; + 2324
Echanger les observations auxiliaires : y; <+ y;
fork=1,...,ndo
Mettre a jour zy, < zx + Vo f(0r; Xk, Yi)
Calculer 8y, < m(zg)
Moyenner 6, + (1— 1) 6;, + 10,
10:  end for
11: end for
12: return Chaque nceud k possede 0, pourk=1,...,n

0 XN DT

dans 1’Algorithme 7, et le théoréme suivant établit une borne de sa vitesse
de convergence.

Theorem 4. Soit G = ([n], &) un graphe connexe et non bipartie et soit 8™ €
arg mingcga Ry, (6). Soit (y(t))s>1 une suite positive décroissante. Pour tout i €
[n] et tout t > 0, soit z;(t) € R et 0;(t) € R? générés selon I’ Algorithme 7. Alors,
pour touti € [n]etT > 1,0na:

ET[Rn(éZ) — Rn(e*)] <™y (T) + CQ(T) + Cg(T),

oit
1 I2 T-1
CiT) = —— 67| + -2 :
)= sy 10+ 5 30
3L2 T-1
CZ(T)_T(l_i/)\—Q) v(t),
e =1
Cs(T) = T D Ed(w(t) - 67) e)],
=1

ot 1 — Xy = Bp_1/|E] > 0 et B,—1 est la seconde plus petite valeur propre du
laplacien LY du graphe G.

La vitesse de convergence est divisée en trois parties : C1(T) est un
terme dépendant des données, qui correspond a la vitesse de convergence
de la version centralisée du dual averaging, tandis que C2(T") est un terme
dépendant du réseau, lié au trou spectral 3,,_1 du graphe G. C3(T") dépend
du biais des estimateurs des gradients € qui devrait vraisemblablement
décroitre rapidement : le schéma de propagation est une marche aléatoire,
ainsi la distribution des observations tend vers une uniforme a une vitesse
exponentielle. Comme dans le cas de I’estimation, le trou spectral du réseau
G est essentiel pour établir une borne sur I’erreur de notre méthode.

La borne supérieure énoncée dans le Théoreme 9 n’assure pas la con-
vergence de notre algorithme : le terme de biais, bien que borné, ne
présente, sous cette forme, aucune garantie de convergence vers 0. En éten-
dant I'analyse ergodique de la mirror descent de DUCHI et al., 2012, nous
étudions dans cette these le cas du dual averaging avec des gradients biaisés
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Algorithm 4 Dual averaging gossip pour des fonctions de paires dans le cas
asynchrone.

Require: Pas ((t))i>0 > 0, probabilités (pi)rein)-
1: Chaque nceud 7 initialise y; = x;,2; = 60; =6; =0, m; = 0.
2: fort=1,...,Tdo

3:  Tirer (¢, j) suivant une loi uniforme sur £
4: Echanger les observations auxiliaires : y; < y;
5. fork e {i,j} do
6: Fixer z;, + zite;
7: Mettre a jour zj < pikv.gf(Ok;xk,yk)
8: Incrémenter my, < my + i
9: Calculer 0, « 7, (z1)
10: Moyenner 0 (1 — mim) 0,
11:  end for
12: end for

13: return Chaque nceud k possede 6y,

afin de prouver la convergence de notre méthode, avec peu d’impact sur la
vitesse en comparaison avec le cas non biaisé.

Cas asynchrone

En utilisant 1’estimateur du nombre d’itérations défini dans la Sec-
tion ??, nous pouvons maintenant adapter 1’Algorithme 7. Comme pour le
probléme de l'estimation, les mises a jours doivent étre pondérées en fonc-
tion des probabilités de réveil des nceuds. Le résultat suivant est analogue
au Théoréme 9 dans le cas asynchrone.

Theorem 5. Soit G = ([n], £) un graphe connexe et non bipartite. Soit (y(t))¢>1
une suite définie par y(t) = c¢/t'/>* pour des constantes ¢ > O et a € (0,1/2).
Pour i € [n], soient (d;(t))e1, (8i(t))e=1, (€i(t))i=1, (2i(t))e=1 et (0i(t))e=1 des
suites générées tel qu’indiqué dans I"Algorithme 8. Alors, il existe une constante
C < +oo telle que, pour 0* € argming cga Ry (0'), 7 € [n]et T >0,

Ru(0i(T)) — Ry(6*) <Cmax(T /2, 7071/2)
T

o S El(w(t) - 09)Te),

t=2

Dans le cas asynchrone, aucune vitesse de convergence n’était connue,
méme pour 'algorithme du dual averaging distribué de DUCHI, AGARWAL,
and WAINWRIGHT (2012), qui traite le probleme plus simple de la min-
imisation de fonctions univariées. Les arguments utilisés pour établir le
Théoréme 10 peuvent étre adaptés pour obtenir une vitesse de convergence
(sans terme de biais) pour une version asynchrone de leur algorithme.

1.4.3 Expériences numériques

Pour étudier I'influence de la topologie du réseau, nous effectuons nos
simulations sur trois types de réseaux différents : le graphe complet, le
graphe cyclique et un graphe de Watts-Strogatz.
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(A) Synchrone. (B) Asynchrone. (€) Terme de biais (asyn-
chrone).

FIGURE 1.7: Maximisation de ’AUC.

Nous avons initialisé chaque 6; a 0 et pour chaque réseau, nous avons
lancé 50 fois les Algorithmes 7 et 8 avecy(t) = 1/+/t.° La Figure 2.7a mon-
tre I’évolution de la fonction objectif et de 1’écart-type associé (entre les
noeuds) avec le nombre d’itérations dans le cas synchrone. Comme attendu,
la vitesse de convergence moyenne est bien plus élevée sur le graphe com-
plet et le graphe de Watts-Strogatz que sur le graphe cyclique. L'écart-type
diminue également lorsque la connectivité du réseau augmente.

La Figure 2.7b montre les résultats pour le cas asynchrone. La vitesse de
convergence est plus faible que dans le cas synchrone du point de vue du
nombre d’itérations (environ 5 fois). Il est a noter cependant qu'un nombre
bien plus faible d’étapes de dual averaging ont été effectuées : par exemple,
sur le graphe de Watts-Strogatz, 210 000 calculs de gradients (partiels) sont
nécessaires dans le cas synchrone pour atteindre 10% de précision, contre
seulement 25 000 dans le cas asynchrone. De plus, 1’écart-type des itérés est
bien plus faible dans le cas asynchrone. Cela est dti a 1’équilibre entre com-
munication et optimisation (une étape d’optimisation pour chaque variable
duale moyennée), la o1 I'optimisation prévaut largemnent dans le cas syn-
chrone.

Les bons résultats de convergence en pratique de notre méthode vient
du fait que le terme de biais €(t) " w(t) disparait rapidement. La Figure 2.7c
montre qu’il converge (en moyenne) vers 0 pour tous les réseaux. De plus,
son ordre de grandeur est négligeable comparé a la fonction objectif.

1.5 Conclusion

Nous avons développé des garanties théoriques pour différents sché-
mas d’échantillonnage pour des minimisations de risque empirique basées
sur des U-statistiques, ainsi que de solides résultats numériques. Nous
avons aussi développé des méthodes pour estimer et optimiser des fonc-
tions de paires d'une maniére gossip, de nouveau avec des garanties
théoriques et de solides résultats numériques.

3. Méme si cette suite ne rempli pas les hypotheses du Théoreme 24 pour le cas asyn-
chrone, la vitesse de convergence est acceptable en pratique.
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The computational complexity of machine learning algorithms has be-
come critical as such methods are required to handle exploding volumes of
data, both in terms of sample size and feature space dimension, making the
empirical risk estimation or optimization a challenge. Stochastic optimiza-
tion algorithms, such as stochastic gradient descent, have significantly im-
proved the speed of convergence — even the feasibility — of many machine
learning problems. In such methods, one can use a small subsample of ob-
servations at each step while limiting the deterioration of the convergence
rate in comparison to deterministic methods. Similarly, the downtrend in
the improvements of processors computational capabilities has stimulated
the development of distributed and parallelized algorithms. They offer effi-
cient alternatives for minimizing an empirical risk involving a huge amount
of observations and can usually be extended to decentralized constraints,
where the data distribution is not controlled by a central master node.

However, in a wide variety of machine learning problems (e.g., clus-
tering, image recognition, ranking, learning on graphs), natural estimates
of the risk are not basic sample means but take the form of averages of d-
tuples, usually referred to as U-statistics in Probability and Statistics, see
LEE, 1990a. In CLEMENCON, LUGOSI, and VAYATIS, 2005 for instance, rank-
ing is viewed as pairwise classification and the empirical ranking error
of any given prediction rule is a U-statistic of order 2, just like the within
cluster point scatter in cluster analysis (see CLEMENCON, 2014) or empirical
performance measures in metric learning (refer to CAO, GUO, and YING,
2012 for instance). Because empirical functionals are computed by averag-
ing over tuples of sampling observations, they exhibit a complex depen-
dence structure, which is the price to pay for low variance estimates. While
the Empirical Risk Minimization (ERM) theory based on minimization of
U-statistics is now consolidated (see CLEMENCON, LUGOSI, and VAYATIS,
2008), this approach generally leads to significant computational difficulties
that are not sufficiently well documented in the machine learning literature.
In many concrete cases, the mere computation of the risk involves a sum-
mation over an extremely high number of tuples and runs out of time or
memory on most machines.

The goal of this work is to provide an analysis on several machine learn-
ing problems involving U-statistics. We first study the influence of the sam-
pling schemes of a U-statistic for optimizing an empirical risk. Then, we
present new and efficient methods for estimating a U-statistic in a decen-
tralized setting. Finally, we investigate the decentralized optimization of
convex functions that are separable in the pairs of obersvations.

2.1 U-statistics sampling

In classification and regression, empirical risk estimates are sample
mean statistics, i.e., of the form
1 n
Rp(0: X1, Xn) = — > 5(6; X)), @1

=1

where (X;)i<i<p is the observation sample. The theory of ERM has been
originally developed in this context and is at the root of many machine
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learning techniques, including stochastic and distributed optimization. We
focus on empirical risk formulations involving U-statistics. For d > 0, a U-
statistic of order d is a statistic involving d-uplet of the observation sample,

that is
1

Un(Hg):(—n) > He(Xiy,...,Xi),

d) 1<ir<...<ig<n

where Hy is a symmetric and mesurable function of d elements. When d =
1, we recover the sample mean described above. For d = 2, the U-statistic
is an average over all possible pairs. This formulation is used in a wide
variety of machine learning problems; for instance, in the metric learning
problem, for a given data sample (X;)i<i<, € (RP)" and the associated
labels (Y;)i<i<n € {—1,+1}", one aims at finding the distance minimizing
the following risk:

R (60; X1,..., Xn) = m Z [YiY(b— (Xi — Xj)TO(Xi - X))+
1<i<j<n

which is obviously a U-statistic of degree 2. Other examples include clus-
tering, ranking or learning on graphs.

2.1.1 Incomplete U-statistics

Most statistical learning problems can be formulated as finding a certain
parameter 6* in a class © which minimizes a true risk R(0) = E,[s(6; X)],
for a given distribution v. This distribution is often unavailable in practice,
so the ERM paradigm in statistical learning suggests to replace the true risk
by the empirical risk, as defined in (2.1). The ERM theory essentially re-
lies on the study of maximal deviations between these empirical averages
and their expectations, under adequate complexity assumptions on the set
of prediction rule candidates, relevant tools being mainly concentration in-
equalities for empirical processes.

When the empirical risk estimate is formulated as a U-statistic, one can
show that in the usual asymptotic framework, the statistical learning rate
is of order Op(y/logn/n). However, while yielding interesting properties
such as reduced variance, such statistic requires largely superior process-
ing capabilities to be computed or optimized, since the number of terms
to be averaged is of order (Z), where d is the order of the U-statistic. As
a remedy to this computational issue, the concept of incomplete U-statistic
has been introduced in the seminal contribution of BLOM, 1976. The idea
behind incomplete U-statistics is to estimate the full U-statistic by perform-
ing a sampling with replacement over the (1}) sets of d-tuples of indices. Let
B > 0, an incomplete U-statistic of order d based on B terms is of the form:

Up(Hg) = % S He(Xn,...,X1,), 22)
(I1,--,13)€Dp
where Dgp is a set of cardinality B built by sampling with replacement in
the set A := {(il,...,id),l <ip <... <id§n}.
For this purpose, we investigate to which extent a U-process, that is a
collection of U-statistics, can be accurately approximated by a Monte-Carlo

version (which shall be referred to as an incomplete U-process throughout
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this thesis) involving much less terms, provided it is indexed by a class of
kernels of controlled complexity. In practice, B should obviously be chosen
much smaller than (}) in order to overcome the computational issue afore-
mentioned. Note that the distribution of a complete U-statistic built from a
subsample of reduced size n’ drawn uniformly at random is quite different
from that of an incomplete U-statistic based on B = (:‘l/) terms sampled
with replacement in A, although they involve the summation of the same
number of terms.

As an estimator of R, the statistic (2.2) is still unbiased, i.e. E[Ug(Hg)] =
R(6). However, its variance is naturally larger than that of the complete
U-statistic Uy, (Hp). Precisely, its variance can be written

Var(Up(Hg)) = (1 - ;) Var(U, (Hyg)) + %Var(Hg(Xl, o X9). (23)

Therefore, the difference vanishes at a rate 1/B and a natural follow-up
is to check that this additional variance does not damage excessively the
learning rates. We propose the following result, based on the VC dimension
of H.

Theorem 6. (MAXIMAL DEVIATION) Let H := {Hg, @ € O} be a collection of
bounded symmetric kernels such that

My = sup  |Hg(z)| < +o0. (2.4)
(Hg,x)EHXX

Suppose also that H is a Vapnik-Chervonenkis major class of functions with finite
VC dimension V' < +oc0. Then, the following assertions hold true:
(i) Forall § € (0,1), with probability at least 1 — §, we have: for all B > 1
and for all n € N¥,

LV log(1+ [A]) + log(2/0)

sup ‘ﬁB(HO) - Un(HO)‘ < My x \/ 5

HgeH

(ii) For all 6 € (0,1), with probability at least 1 — 6, we have: ¥Vn € N¥,

VB > 1,
~ 2Vlog(l+ N log(2/6
sup U (Ho) — R(6) sz\/g](v )+¢gﬁv/ )
H HogeH
\/ Viog(1 + |A]) + log(4/6)
+4/2 5 ,

where N = |n/d].

The first assertion of Theorem 6 provides a control of the deviations
between the U-statistic and its incomplete counterpart uniformly over the
class H. As the number of terms B increases, this deviation decreases at
a rate of O(1/v/B). The second assertion of Theorem 6 gives a maximal
deviation result with respect to R(0). Observe in particular that, with the
asymptotic settings previously specified, log(|A|) = O(logn) as n — +oc.
In addition one may straightforwardly deduce a bound on the excess risk
of kernels minimizing the incomplete version of the empirical risk based on
B terms and show that when an incomplete U-statistic contains B = O(n)
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terms only, the learning rate for the corresponding minimizer is of the same
order as that of the minimizer of the complete risk, whose computation
requires to average |A| = O(n?) terms. Minimizing such incomplete U-
statistics thus yields a significant gain in terms of computational cost while
fully preserving the learning rate. In contrast, the minimization of a com-
plete U-statistic involving O(n) terms, obtained by drawing subsamples of
sizes n’ = O(n'/%) uniformly at random, leads to a rate of convergence of
O(y/log(n)/nt/®), which is much slower.

These results ensure that it is preferable — in terms of learning rate — to
estimate the risk with the incomplete version of the U-statistic when given
the opportunity.

2.1.2 Application to Stochastic Gradient Descent

We now tackle the problem of finding an empirical minimizer; we inves-
tigate the benefits of computing incomplete U-statistics in iterative schemes
for statistical learning over subsampled complete U-statistics. In particular,
we analyze Stochastic Gradient Descent (SGD), as it is used in a wide range
of machine learning methods, such as SVM, DEEP NEURAL NETWORKS or
SOFT K-MEANS.

Let 8 be some parameter space and H : X4 x © — R be a loss function
which is convex and differentiable in its last argument. For all 8 € ©, we
aim at minimizing

R(0) =E[Ho(X1,...,Xq)]
As previously mentioned, since the real risk is often unavailable, we will
aim at minimizing the empirical risk associated to a sample (X1,...,X,):

1
Ro(0;X1,.... Xp) = 7x > He(Xiy,...,Xi,).

@)
d) 1<iip<...<ig<n

In the SGD scheme, we use the following update rule:
011 =0 —n:9(0), (2.5)

where §(0) is an unbiased estimate of R, (8; X1, ..., X,) and the step size
ne > 01is such that 37 n, = +00 and 7% n? < +oc.

A natural approach consists in replacing the true gradient by a complete
U-statistic constructed from subsamples of reduced sizes n’ < n drawn
uniformly at random, leading to the following gradient estimate:

—_

Gw(@)=—= > VeH(Xi,...,Xiy; 0), (2.6)
(d) (31,...y8q)EN’

where A’ is the set of all d-tuples 1 < i; < ... < ig < n related to a subset
of n’ indexes in [n]. This is the naive approach described in the previous
section.

We propose an alternative strategy involving a gradient estimate in the
form of an incomplete U-statistic:

~ 1
93(0) = E E V@H(X]l, ceey X[d; 0), (27)
(I1, ..., 14)€Dp
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where Dgp is built by sampling with replacement in the set A.

It is well-known that the variance of the gradient estimate nega-
tively impacts on the convergence of SGD. Recent works have focused
on variance-reduction strategies for SGD when the risk estimates are ba-
sic sample means (see for instance LE ROUX, SCHMIDT, and BACH, 2012;
JOHNSON and ZHANG, 2013). Therefore, in order to quantify the efficiency
of a sampling scheme, we look at the variance associated to the gradient
estimate; this leads to the following result.

Proposition 1. Let B = (Z’) for n’ < n. In the asymptotic framework, we have:

Varlg(0) = 0 ;) Varlga(®)] =0 (1)> .

" (4

With Proposition 1, we show that the convergence rate of Var[gp(0)] is
faster than that of Var[g,/(0)]. Thus the expected improvement in objective
function at each SGD step is larger when using a gradient estimate in the
form of (2.7) instead of (2.6), although both strategies require to average
over the same number of terms. This is confirmed by the experimental re-
sults reported in the next section.

2.1.3 Numerical Experiments

We performed numerical experiments on the metric learning problem
(see Section 3.2.2). As done in much of the metric learning literature, we
restrict our attention to the family of pseudo-distance functions Dg : R? x
R? — R, defined as

Dg(x,x") = (x — x’)TG(x - x),

where 6 € S, and S? is the cone of d x d symmetric positive-semidefinite
(PSD) matrices.

Given a training sample {(x;,y;)}"; wherex; € R¢and y; € {1,...,C},
let y;; = 1if y; = y; and 0 otherwise for any pair of samples. Given a
threshold b > 0, we define the empirical risk as follows:

2

R,(0) = nn—1)

Z [ylj(b - DB(Xia Xj))h_ ) (28)

1<i<j<n

where [u]+ = max(0,1 — u) is the hinge loss. Our goal is the find the em-
pirical risk minimizer among our family of distance functions In our ex-
periments, we used two data sets: a synthetic data set generated from a
mixture of 10 gaussians in R%Y and the MNIST data set — see Section 3.5 for
details about datasets. These datasets contain respectively 50000 and 60000
training samples, so computing the full empirical risk for only one candi-
date @ would require an averaging of 10° pairs. We conduct two types of
experiment. First, we subsample the data before learning and evaluate the
performance of the ERM on the subsample. Then, we use Stochastic Gra-
dient Descent to find the ERM on the original sample, using subsamples
at each iteration to estimate the gradient. We use p indices picked at ran-
dom for the complete sampling scheme and p(p — 1)/2 pairs for the incom-
plete one, so every scheme requires the computation of the same amount
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(A) Synthetic dataset. (B) MNIST data set.

FIGURE 2.1: Test risk with respect to the sample size p when

using complete (blue) or incomplete (red) U-statistics. Solid

lines represent means and dashed ones represent standard

deviation. The green dotted line represents the performance
of the true risk minimizer.
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FIGURE 2.2: SGD results on the MNIST data set for various
mini-batch size. Bold and thin lines respectively shows the
means and standard deviations over 50 runs.

of terms. For each strategy, we use a projected gradient descent method in
order to minimize (2.8), using several values of p and averaging the results
over 50 random trials. As the testing sets are large, we evaluate the test risk
on 100,000 randomly picked pairs.

Figure 2.1a shows the test risk of the ERM with respect to the sample
size p for both sampling strategies on the synthetic data set. As predicted
by our theoretical analysis, the incomplete U-statistic strategy achieves a
significantly smaller risk on average. For instance, it gets within 5% error
of the true risk minimizer for p = 50, while the complete U-statistic needs
p > 80 to reach the same performance. The same conclusions hold for the
MNIST data set, as can be seen in Figure 2.1b.

Figure 2.2 shows the comparison in SGD scheme for three mini-batch
sizes, where we plot the evolution of the test risk with respect to the it-
eration number. For all mini-batch sizes, SGD-Incomplete achieves signif-
icantly better test risk than SGD-Complete. The best learning rate is often
larger for SGD-Incomplete than for SGD-Complete: this confirms that gra-
dient estimates from the former strategy are generally more reliable. This
is further supported by the fact that even though larger learning rates in-
crease the variance of SGD, in these two cases SGD-Complete and SGD-
Incomplete have similar variance. SGD-Incomplete again performs signifi-
cantly better on average and also has smaller variance. Lastly, as one should
expect, the gap between SGD-Complete and SGD-Incomplete reduces as
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the size of the mini-batch increases; note however that in practical imple-
mentations, the relatively small mini-batch sizes are generally those which
achieve the best error/time trade-off.

We now turn to a new type of constraint: as previously mentioned, dis-
tributed and decentralized methods are required in an increasing number
of applications. In such settings, the empirical risk itself is not computable
— or at a prohibitive cost — so usual methods have to be adapted in order
to stay efficient.

2.2 Gossip protocols

Our methods for estimating and optimizing U-statistic-based empirical
risks rely on gossip protocols. Such algorithms are tailored to this setting as
they only rely on simple peer-to-peer communication: each agent only ex-
changes information with one neighbor at a time. Thus, before introducing
our decentralized methods, we briefly review the basics of gossip methods
and provide additional details about two key notions: clock modelling and
graph Laplacian.

2.21 Background

Gossip algorithms have been developped for solving a large variety
of machine learning problems, from data aggregation over sensor net-
works (HEDETNIEMI, HEDETNIEMI, and LIESTMAN, 1988; DIMAKIS, SAR-
WATE, and WAINWRIGHT, 2008; KAR and MOURA, 2009) to decentralized
multi-agent optimization (NEDIC, 2011; DUCHI, AGARWAL, and WAIN-
WRIGHT, 2012; TSIANOS, LAWLOR, and RABBAT, 2015). Despite being de-
signed for operating on diverse problems, gossip algorithms usually share
the same core constraints. Namely, one aims at estimating or optimizing
some function depending on data samples that are partitioned over a con-
nected network under at least one of the following constraints:

(i) there is no central node ensuring time-synchrony or global data ag-
gregation among the network,

(ii) the computation and storage capabilities of each node are strongly
limited,

(iii) agent-to-agent communication is expensive.

In some gossip methods, only constraints (ii) and (iii) are considered, lead-
ing to synchronous or partially asynchronous distributed algorithms (KARP
et al., 2000; KEMPE, DOBRA, and GEHRKE, 2003; RAM, NEDIC, and VEER-
AVALLI, 2010), while other methods satisfy all three constraints, that is fully
asynchronous decentralized algorithms (BOYD et al., 2006; NEDIC, 2011;
LEE and NEDIC, 2015).

Example 1 (connected cars) Let us consider connected vehicles being
driven in a city. These cars may hold valuable information such as
surrounding traffic, weather data or driver behavior. However, due
to the data stream volume, it may be hard or unreliable to continu-
ously centralize information on a global server in order to perform
machine learning techniques. Therefore, one could take advantage
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from the cars being driven around the city to require them to per-
form — cheap — local computations using data they hold and to
exchange calculation results with other cars whenever they are close
enough and have finished their local computations. One convenient
way to model this communication scheme is to use a geometric
graph. A geometric graph G = ([n],€) of radius » > 0 is an undi-
rected graph such that given a distance d over the nodes attributes
space, for any pair of nodes (i,7) € V2, we have (i,j) € € if and
only if d(i,j) < r. Global network asynchrony and uncertainty of
communications are then naturally modelled by fully asynchronous
gossip protocols. Note that in this case, the underlying graph used
for modelling the communication capability of the network is dy-
namic: one should consider a sequence (G(t)):>o rather than just one
graph G. Hopefully, the methods we consider can be easily extended
to such settings.

Example 2 (mobile phones) In the mobile phones applications context,
each node of the network is a mobile phone and a communication
occurs when one phone sends a message to another. One may ex-
ploit users” messages to perform clustering or topic modelling to
name a few examples. Nevertheless, gathering such data on a central
server can also be delicate for various reasons: privacy, potentially
huge data volume, etc. Moreover, while local computations can be
handled by nowadays mobile phones, the impact of repeated com-
munication establishment on the phone battery can be a serious bot-
tleneck, hence the suitability of a gossip-type protocol sending local
calculation results alongside messages.

The general idea behind gossip algorithms is to alternate two steps: (op-
tional) local updates (e.g., a gradient descent step) and communication steps
(e.g., averaging). In the estimation case, communication steps often consist
in averaging the estimates of the selected nodes. For instance, in BOYD et
al., 2006, a node averages its estimate whenever it establishes communica-
tion with another node. There exist some exceptions: in PELCKMANS and
SUYKENS, 2009, the local update adds an element to the U-statistic estimate
while the communication step is an observation swap. In gossip optimiza-
tion, communications steps are again mostly averaging steps while local
updates corresponds to one step of a — centralized — optimization algo-
rithm (e.g., gradient descent, dual averaging).

2.2.2 Clock modelling

We mentioned earlier that, depending on the set of constraints consid-
ered, gossip algorithms can perform in synchronous or asynchronous set-
ting. In the synchronous setting, we consider that the nodes have access to
a global clock. That way, they can all perform local updates at each time
instance. This is not always a realistic assumption, but it allows for eas-
ier analysis and implementation, since learning rate is uniform over the
network and every node contributes equivalently to the global objective.
Therefore, in this work, synchronous analysis will be used for both provid-
ing detailed convergence rate and serving as a stepping stone toward fully
asynchronous analysis.
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In a fully asynchronous setting, nodes do not have access to a global
clock; instead, each node has a local clock. One common way to model lo-
cal clocks is to consider i.i.d. clocks ticking at a rate 1 Poisson process, so
one can use an equivalent model with a global clock ticking at a rate n Pois-
son process and a random edge draw at each iteration, as in synchronous
setting. However, at a given iteration, the local update step now only in-
volves the selected pair of nodes. Therefore, the nodes need to maintain an
estimate of the current iteration number to ensure convergence. The time
estimate we use in our methods is defined as follows. Let G = ([n], £) be an
undirected graph. For k € [n], let p; denote the probability for the node %
to be picked at any iteration. If the edges are picked uniformly at random,
then one has p, = 2d;/|E|, where dy, is the degree of node k. For simplicity,
we focus only on this case, although our analysis holds in a more general
setting. Let us define (0 (t)):>1 such that forany ¢t > 1,

{1 if node k is picked at iteration ¢
Ok(t) = . :
0 otherwise
One can immediately see that (J(t)):>0 are i.i.d. random variables follow-

ing a Bernouilli distribution with parameter p;. Let us define (my(t)) > 0
such that for ¢ > 0:

1 t
my(t) = o Z Ok (s).
s=1

Since (0(t))¢>0 are Bernoulli random variables, my(¢) is an unbiased esti-
mate of the time ¢. Therefore, given that every node knows its degree and the
total number of edges in the network, the iteration estimates are unbiased.

One may refer to BOYD et al., 2006 for more details about synchronous
and asynchronous time models.

2.2.3 Graph Laplacian

In distributed and decentralized setting, the network dependency of a
method is tightly bound to the eigenvalues of a matrix called the graph
Laplacian CHUNG, 1997. Let G = ([n], £) be an undirected graph and let AY
be its adjacency matrix, that is for any (i, j) € [n]%, [AY];; = 1 if and only if
(i,7) € E. The graph Laplacian LY is defined as follows:

Lg:Dg—Ag,

where DY is the degree matrix, i.e., DY = diag(A91,,). The graph Laplacian
holds several interesting properties such as symmetry and positiveness, but
the more remarkable one is that, up to a renormalization, it corresponds to
the transition matrix of a random walk over §. Its smallest non-zero eigen-
value, also called spectral gap, characterizes the diffusion capability of a net-
work. Indeed, one can link the Laplacian to the standard markovian anal-
ysis and show that if the network is connected and non-bipartite then the
random walk is respectively irreducible and aperiodic, ensuring its con-
vergence towards a uniform at a geometric rate whose ratio is tied to the
spectral gap.
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As an illustration, one can consider the gossip sample mean estimation
described in BOYD et al., 2006. In this case, the error bound after ¢ itera-
tions is of the form A\, where Ay := 1 — 3,,_1/|€| and 3, is the spectral
gap. Another example lies in the distributed dual averaging of AGARWAL,
WAINWRIGHT, and DUCH]I, 2010. Their error upper-bound is equal to

c el
1—X2) Vt

with ¢ and ¢ only depending on the conditioning of the optimization prob-
lem.

We now turn to decentralized estimation of U-statistics for both syn-
chronous and asynchronous settings.

2.3 Decentralized estimation of U-statistics

Decentralized estimation have many applications in sensor and peer-to-
peer networks as well as for extracting knowledge from massive informa-
tion graphs such as interlinked Web documents and on-line social media.
Algorithms running on such networks must often operate under tight con-
straints: the nodes forming the network cannot rely on a centralized entity
for communication and synchronization, may not be aware of the global
network topology and/or have limited resources (computational power,
memory, energy). Gossip algorithms (TSITSIKLIS, 1984; SHAH, 2009; DI1-
MAKIS et al., 2010), where each node exchanges information with at most
one of its neighbors at a time, have emerged as a simple yet powerful tech-
nique for distributed computation in such settings.

Such algorithms have been extensively studied in the context of decen-
tralized averaging in networks, where the goal is to compute the average of
n real numbers (X = R):

Kl
Il

1
Z:L‘i = —len. (2.9)
n

One of the earliest work on this canonical problem is due to TSITSIKLIS,
1984, but more efficient algorithms have recently been proposed, see for in-
stance KEMPE, DOBRA, and GEHRKE, 2003; BOYD et al., 2006. Of particular
interest to us is the work of BOYD et al., 2006, which introduces a random-
ized gossip algorithm for computing the empirical mean (2.9) in a context
where nodes wake up asynchronously and simply average their local esti-
mate with that of a randomly chosen neighbor. The communication prob-
abilities are given by a stochastic matrix P, where [P];; is the probability
that a node i selects neighbor j at a given iteration. As explained in Sec-
tion 2.2.3, the local estimates converge to (2.9) at a geometric rate, with a
ratio depending on the spectral gap of the network. Such algorithms can
be extended to compute other functions such as maxima and minima, or
sums of the form ) ;" , f(x;) for some function f : X — R (as done for
instance in MOSK-AOYAMA and SHAH, 2008). Some works have also gone
into developing faster gossip algorithms for poorly connected networks,
assuming that nodes know their (partial) geographic location (DIMAKIS,
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Algorithm 5 GOSTA-sync: a synchronous gossip algorithm for computing
a U-statistic

Require: Each node & holds observation xj,
1: Eachnode k initializes its auxiliary observation y; = x;, and its estimate z;, = 0

fort=1,2,...do
: forp=1,...,ndo

2:
3
4: Set z, + =1z, + Th(xp, yp)
5.  end for

6.

7

8

9:

Draw (i, j) uniformly at random from &
Set Ziy %5 <— %(Zq + Zj)
:  Swap auxiliary observations of nodes 7 and j: y; <> y;
end for

SARWATE, and WAINWRIGHT, 2008; LI, DAI, and ZHANG, 2010). More re-
cently, LOI1ZOU and RICHTARIK, 2016 developed a new perspective on gos-
sip algorithms analysis, using Randomized Block Kaczmarz and studying
optimization duality. For a detailed account of the literature on gossip algo-
rithms, we refer the reader to SHAH, 2009; DIMAKIS et al., 2010.

Here, we tackle the problems of decentralized estimation, where the
quantity of interest is a U-statistic of order 2. That is, we are interested in
estimating the quantity:

Onn(h) = % 3 hxix;), (2.10)

,5=1

where b : X x X — R is some symmetric function and (xj)1<x<n, € A"
are observations in some feature space X' . We assume the observations
are distributed over a network G = ([n],€) and each node i € [n] of this
network contains exactly one observation x;.

Existing gossip algorithms cannot be used to efficiently compute (2.10)
as it depends on pairs of observations. To the best of our knowledge, this
problem has only been investigated in PELCKMANS and SUYKENS, 2009.
Their algorithm, coined U2-GOssSIP, achieves O(1/t) convergence rate but
has several drawbacks. First, each node must store two auxiliary obser-
vations, and two pairs of nodes must exchange an observation at each it-
eration. For high-dimensional problems (large d), this leads to a signifi-
cant memory and communication load. Second, the algorithm is not asyn-
chronous as every node must update its estimate at each iteration. Conse-
quently, nodes must have access to a global clock, which is often unrealistic
in practice. In the next section, we introduce new synchronous and asyn-
chronous algorithms with faster convergence as well as smaller memory
and communication cost per iteration.

2.3.1 GOSTA Algorithms

We base the proposed method on the observation that the U-statistic can
be rewritten Uy, (h) = (1/n) 371, hi, with h; = (1/n) 3%, h(xi,%;), and we

1. This formulation deviates from the usual U-statistic definition since diagonal terms
are included. This will however simplify the analysis while including the particular case
where h(x,x) = 0.
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write h = (hy,...,h,)". The goal is thus similar to the usual distributed
averaging problem (2.9), with the key difference that each local value h;
is itself an average depending on the entire data sample. Consequently, our
algorithms will combine two steps at each iteration: a data propagation step
to allow each node i to estimate h;, and an averaging step to ensure conver-
gence to the desired value U, (h).

Synchronous Setting

In the synchronous setting, we assume that the nodes have access to a
global clock so that they can all update their estimate at each time instance.
We stress that the nodes need not to be aware of the global network topol-
ogy as they will only interact with their direct neighbors in the graph.

Let us denote by z(t) the (local) estimate of U, (h) by node k at iteration
t. In order to propagate data across the network, each node k£ maintains an
auxiliary observation yy, initialized to xj. Our algorithm, coined GOSTA for
gossip U-statistic, goes as follows. At each iteration, each node k updates its
local estimate by taking the running average of z;,(t) and h(xy, yx). Then, an
edge of the network is drawn uniformly at random, and the corresponding
pair of nodes average their local estimates and swap their auxiliary obser-
vations. The observations are thus each performing a random walk (albeit
coupled) on the network graph. The full procedure is described in Algo-
rithm 5.

We state the convergence rate of this algorithm in the next theorem.

Theorem 7. Let G = ([n]|,€) be a connected and non-bipartite graph,
(X1,...,%,) € R™9 q data sample and (z(t)) the sequence of estimates gener-
ated by Algorithm 5. For all k € [n], we have:

lim E[zx(t)] = % Z h(xi,%x;) = Un(h).

t—4o00 —
1<i,j<n

Moreover, for any t > 0,

Elz(t)] — Up(h)1,|| < i Un(h)1,
ct

+ <2 + e“ft> HH —h1]||,
ct

where for any 1 < 4,5 < n, [H];; = h(x;,%;), ¢ = ¢(G) = Bn-1/|E|, and Brn_1

is the second smallest eigenvalue of the graph Laplacian LY.

Theorem 7 shows that the local estimates generated by Algorithm 5
converge to U, (h) at a rate O(1/t). Furthermore, the constants reveal
the rate dependency on the particular problem instance. Indeed, the two
norm terms are data-dependent and quantify the difficulty of the estimation
problem itself through a dispersion measure. In contrast, ¢(G) is network-
dependent since (,,—1 is the second smallest eigenvalue of the graph Lapla-
cian LY, i.e., the spectral gap of G. Therefore, we expect graph with better
connectivity to converge faster; this will be evidenced in the numerical ex-
periments.

To estimate U, (h), U2-GOSSIP (PELCKMANS and SUYKENS, 2009) does
not use averaging. Instead, each node k requires two auxiliary observations

y,(fl) and y,(f) which are both initialized to x;. At each iteration, each node
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Algorithm 6 GOSTA-ASYNC: an asynchronous gossip algorithm for com-
puting a U-statistic

Require: Each node & holds observation x;, and p, = 2d;/|€]
1: Each node k initializes y = x, 2z = 0and my = 0
2: fort=1,2,...do
3:  Draw (¢, j) uniformly at random from &
Set m; < m; + 1/p; and m; <~ m; 4+ 1/p;
Set z;, zj 1(zl + z;)
Set z; «+ (1 — premp )z + —h(xl,yz)
Set z; (1 — - }n )z + ﬁh(xyyj)
Swap auxiliary observations of nodes i and JiYi &Y
9: end for

k € [n] updates its local estimate by taking the running average of z;, and
h(y, (1) , yl,(C )). Then, two random edges are selected: the nodes connected by
the flrst (resp. second) edge swap their first (resp. second) auxiliary obser-

vations. Applying our convergence analysis to U2-GOSSIP, we obtain the
following refined rate:
1 —
_ HH ~h1! ) ,
_ X2

(2.11)

< Vn (2~ B - 0u(n)1,
r\1-x

where 1 — A = 2¢(G). The advantage of propagating two observations in
U2-GOSSIP is seen in the 1/(1 — \?) term, however the absence of averaging
leads to an overall \/n factor. Intuitively, this is because nodes do not benefit
from each other’s estimate. In practice, \ is close to 1 for reasonably-sized
networks (for instance, A = 1 — 2/n for the complete graph), so the square
term does not provide much gain and the \/n factor dominates in (2.11). We
thus expect U2-GOSSIP to converge slower than GOSTA, which is confirmed
by the numerical results.

Asynchronous Setting

We now remove the global clock assumption. Using the time estimate
described in Section 2.2.2, we can now give an asynchronous version of
GOSTA, as stated in Algorithm 6. Note that the update step slightly differs
from the synchronous setting: this is due to the fact that each node needs to
contribute equivalently in the statistic estimate. Therefore, nodes activated
less often must have a bigger weight on their contributions.

To show that local estimates converge to Un(h), we use a similar model
as in the synchronous setting. The time dependency of the transition matrix
is more complex ; so is the upper bound.

Theorem 8. Let G = ([n],€) be a connected and non bipartite Qraph,
(X1,...,%,) € R q data sample and (z(t)) the sequence of estimates gener-
ated by Algorithm 6. For all k € [n], we have:

lim E[z(t) Z h(xi, %;) = Un(h).

t——+o00
1<7, J<n
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FIGURE 2.3: Network examples

Moreover, there exists a constant ¢/(G) > 0 such that, forany t > 1,

logt
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2.3.2 Experiments

We present two applications on real datasets. The first one is the within-
cluster point scatter (CLEMENCON, 2011), which measures the clustering
quality of a partition P of X as the average distance between points in each
cell C € P. It is of the form (2.10) with

hp(x,x) =[x =%/ Y Lypexnece)- (2.12)
CceP

We also study the AUC measure (HANLEY and MCNEIL, 1982). For a given
sample (x1,41),...,(xn, ly) on X x {—1,+1}, the AUC measure of a linear
classifier 8 € R%~! is given by:

. . 1—&5]1 (0T 2 )>—0-(07 .
AUC(6) = Zigij<nl ad CXAESESTC ol (2.13)

4 (Zlgign ]1{&:1}) (Zlgign ]1{&_:_1})

This score is the probability for a classifier to rank a positive observation
higher than a negative one.

We perform our simulations on the three types of network described
below.

e Complete graph: This is the case where all nodes are connected to each
other. It is the ideal situation in our framework, since any pair of nodes can
communicate directly.

o Two-dimensional grid: Here, nodes are located on a 2D grid, and each
node is connected to its four neighbors on the grid. This network offers a
regular graph with isotropic communication, but its diameter (y/n) is quite
high, especially in comparison to usual scale-free networks.

o Watts-Strogatz: This random network generation technique is intro-
duced in WATTS and STROGATZ, 1998 and allows us to create networks
with various communication properties. Here, we tune parameters in or-
der to achieve a connectivity compromise between the complete graph and
the two-dimensional grid.

One may refer to Figure 2.3 for examples of such networks.
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AUC measure We use the SMVGUIDE3 binary classification dataset
which contains n = 1260 points in d = 23 dimensions? and we set § to
the difference between the class means. The top row of Figure 2.4 shows
the evolution over time of the average relative error and the associated stan-
dard deviation across nodes for both algorithms on each type of network. On
average, GOSTA-SYNC outperforms U2-GOSSIP on every network. The vari-
ance of the estimates across nodes is also lower due to the averaging step.
Interestingly, the performance gap between the two algorithms is greatly
increasing early on, presumably because the exponential term in the con-
vergence bound of GOSTA-SYNC is significant in the first steps.

2. This dataset is available at ht tp: //mldata.org/repository/data/viewslug/
svmguide3/
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FIGURE 2.6: Relative error (solid line) and its standard devi-
ation (filled area) of synchronous (blue) and asynchronous
(red) versions of GOSTA.

Within-cluster point scatter We use the Wine Quality dataset which con-
tains n = 1599 points in d = 12 dimensions, with a total of K = 11 classes. ’
We focus on the partition P associated to class centroids . The results are
shown in the bottom row of Figure 2.4. As in the case of AUC, GOSTA-
SYNC achieves better perfomance on all types of networks, both in terms of
average error and variance. In Figure 2.5, we show the average time needed
to reach a 0.2 relative error on a complete graph ranging from n = 50 to
n = 1599. As predicted by our analysis, the performance gap widens in fa-
vor of GOSTA as the size of the graph increases. Finally, we compare the per-
formance of GOSTA-SYNC and GOSTA-ASYNC (Algorithm 6) in Figure 2.6.
Despite the slightly worse theoretical convergence rate for GOSTA-ASYNC,
both algorithms have comparable performance in practice.

We now turn to the case where previously mentioned objectives need to
be minimized, while still in a decentralized setting.

2.4 Decentralized optimization for pairwise functions

Decentralized optimization is particularly well suited to address the
challenges posed by the advent of big data and the “Internet of Things”.
For instance, in large-scale machine learning, one aims at finding a model
that minimizes a loss function over a massive dataset distributed across sev-
eral machines in a commodity cluster or cloud computing platform. Other
prominent applications come from wired and wireless networks, where lo-
cal agents must coordinate in order to minimize a global objective function.
Common strategies to solve such optimization problems rely on gossip algo-
rithms, as for decentralized estimation. These algorithms have attracted a lot
of interest due to their simplicity and their ability to operate in peer-to-peer
networks where centralized coordination may be prohibitively expensive
or even unavailable.

One of the flagship problems in decentralized optimization is to find a
parameter vector € which minimizes an empirical risk expressed as average
of convex functions (1/n) >, f(0;x;), where the data x; is only known to
agent i. Various gossip algorithms based on (sub)gradient descent (NEDIC

3. This dataset is available at https://archive.ics.uci.edu/ml/datasets/
Wine
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and OZDAGLAR, 2009; JOHANSSON, RABI, and JOHANSSON, 2010; RAM,
NEDIC, and VEERAVALLI, 2010; BIANCHI and JAKUBOWICZ, 2013), ADMM
(WEI and OZDAGLAR, 2012; WEI and OZDAGLAR, 2013; I[UTZELER et al.,
2013) and dual averaging (DUCHI, AGARWAL, and WAINWRIGHT, 2012;
YUAN et al., 2012; LEE, NEDIC, and RAGINSKY, 2015; TSIANOS, LAWLOR,
and RABBAT, 2015) have been proposed to solve this problem, possibly in-
cluding constrained and regularized terms. In these methods, each agent
seeks to minimize its local function by applying local updates (e.g., gradient
steps) while exchanging information with neighbors to ensure convergence
to the consensus value.

Here, we tackle the more challenging problem of minimizing an average
of pairwise functions of the agents’ data:

mein% Z f(0;%;,%;). (2.14)

1<i,j<n

To do so, we use an approach similar to the estimation case, combining local
computations and data propagation over the network. Auxiliary observa-
tions will allow us to compute — biased — gradient estimates.

2.4.1 Problem Statement

Let X be some parameter space, d > O and let f : R x X x X — R
a differentiable and convex function with respect to the first variable. We
assume that for any (x,x’) € X2, there exists Ly > 0 such that f(- ;x,x’) is
L -Lipschitz (with respect to the Euclidean norm | - ||). Let ¢ : R — R* be
a convex function (possibly non-smooth) such that, for simplicity, ¢/(0) = 0.
Given a data sample (x1,...,x,) € X", we aim at solving the following
optimization problem:

.1
min — 1<%:<n £(8:%i,%;) + ¥(6). (2.15)
In a typical machine learning scenario, Problem (2.15) is a (regularized) em-
pirical risk minimization problem and 6 corresponds to the model param-
eters to be learned. In such a context, the function f(0;x;,x;) is a pairwise
loss measuring the performance of the model € on the data pair (x;,x;),
while ¢(0) represents a regularization term penalizing the complexity of 6.
Common examples of regularization terms include indicator functions of
a closed convex set to model explicit convex constraints, or norms enforc-
ing specific properties such as sparsity (a canonical example being the || - ||;
norm).
Many interesting problems can be cast as Problem (2.15). For instance,
one can perform the aforementioned AUC maximization using the logistic
loss

168 x5,%;) = Lyt s,y Tog (1 + expl(x; = x:)76) ) .

and the regularization term 1(6) can be set to be the /;-norm of 8 (or
the /;-norm when a sparse model is desirable). Other popular instances
of Problem (2.15) include metric/similarity learning (BELLET, HABRARD,
and SEBBAN, 2015), ranking (CLEMENCON, LUGOSI, and VAYATIS, 2008),
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supervised graph inference (BIAU and BLEAKLEY, 2006) and multiple ker-
nel learning (KUMAR et al., 2012).

For notational convenience, we denote by f; the partial function associ-
ated to 4, that is f; := (1/n) > 7, f(:;xi,%x;) and f = (1/n) 371, f;. Prob-
lem (5.3) can then be reformulated as follows:

min R, (0) = f(0) + ¢(0). (2.16)
feRd

Note that the function f is L-Lipschitz, since all the f; are L ¢-Lipschitz.

2.4.2 Pairwise gossip dual averaging

In our methods, we use the dual averaging algorithm for local updates.
The dual averaging algorithm (NESTEROV, 2009) maintains a sequence of
primal iterates (6(t)):~0, and a sequence (z(t));>o of dual variables which
collects the sum of (sub-)gradients seen up to time ¢. At each step ¢t > 0, the
dual variable z is updated as follows:

z(t+1) = 2(t) + VS (0(1))

and the primal variable is generated with the following rule:

: o]
Ot+1)=m(z(t+1)) :=ar mm{—zTB—i—H },
E+1) =m{ali+1) Oge]Rd 27()

for some step size sequence (y(t)):>o. This choice is guided by the fact that
the structure of the updates makes dual averaging much easier to analyze in
the distributed setting than stochastic gradient descent when the problem
is constrained or regularized. This is because dual averaging maintains a
simple sum of sub-gradients, while the (non-linear) projection operator is
applied separately — see Section 5.3 for details about dual averaging.

Our work builds upon the analysis introduced in DUCHI, AGARWAL,
and WAINWRIGHT, 2012, where a distributed version of the dual averaging
algorithm is proposed. It aims at optimizing an average of univariate func-
tions f(- ; x;) in which each node i computes unbiased estimates of V f(- ; x;)
that are iteratively averaged over the network. However, in our setting we
cannot compute unbiased estimates of V f(-;x;,x;), even when using our
gossip data propagation step, as in GOSTA; instead, we use the auxiliary
observation to compute biased estimates. By relying on the key observation
that the bias contribution decreases exponentially fast with the number of
iterations, we show that the convergence of dual averaging is preserved.
We first present and analyze our algorithm in the synchronous setting, then
turn to the more intricate analysis of the asynchronous setting.

Synchronous setting

In the synchronous setting, every node has access to a global clock, so
every node will perform a local update (a dual averaging step) at each itera-
tion. The communication step combines an averaging of the selected nodes’
dual variables and an observation swap similar to GOSTA. The procedure
is detailed in Algorithm 7, and the following theorem establishes its con-
vergence rate.
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Algorithm 7 Gossip dual averaging for pairwise function in synchronous
setting

Require: Step size (v(¢))¢>1 > 0. B
1: Each node i initializes y; = x;,2; = 0; = 0; =
2: fort=1,...,Tdo

3:  Draw (¢, j) uniformly at random from &
4: Set Z;,Zj < HTZJ
5:  Swap auxiliary observations: y; < y;
6: fork=1,...,ndo
7: Update zj, < zj + Veof(0r; Xk, yk)
8: Compute 0y, « 7¢(z)
9: Average 0, «+ (1—1) 0, + 16,
10:  end for
11: end for

12: return Eachnode khas 0, fork=1,...,n

Theorem 9. Let G = ([n],&) be a connected and non-bipartite graph, and let
0" € argmingcga Ry (0). Let (7(t))i>1 be a non-increasing and non-negative
sequence. For any i € [n] and any t > 0, let z;(t) € R? and 6;(t) € R? be
generated according to Algorithm 7. Then for any i € [n] and T' > 1, we have:

Er[R(8:) — Rn(8%)] < C1(T) + Co(T) + C3(T),

where
Ci(T) 2T1(T I+ 2L?j_117
Co(T) = T( 3L2\/E j;lv
_ % Z E/[(w(t) — ") Te(®))

and 1 — X = Bp—1/|E| > 0 and f,—1 is the second smallest eigenvalue of the
graph Laplacian LY.

The rate of convergence is divided into three parts: C; (T') is a data depen-
dent term which corresponds to the rate of convergence of the centralized
dual averaging, while C5(T') is a network dependent term depending on the
spectral gap f3,,—1 of G. C3(T") depends on the bias of the gradient estimates
€ which we expect to vanish quickly: the propagation scheme is a random
walk, so the auxiliary observations distribution tends towards a uniform at
an exponential rate. As in the estimation case, the spectral gap of the net-
work G is key for establishing the error bound of our algorithm.

The upper-bound established in Theorem 9 does not ensure the conver-
gence of our method: the bias term, although bounded, is not guaranteed to
vanish without further analysis. Extending the ergodic analysis of the mir-
ror descent provided in DUCHI et al., 2012, we studied the dual averaging
with biased gradient estimates to prove the convergence of this algorithm,
with little impact in comparison to the unbiased case.

Asynchronous Setting
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Algorithm 8 Gossip dual averaging for pairwise function in asynchronous
setting

Require: Step size (y(t)):>0 > 0, probabilities (py)re(n)-
1: Each node i initializes y; = x;,2z; = 0; = 0; =0, m; = 0.
2: fort=1,...,T do

3:  Draw (¢, j) uniformly at random from E
4:  Swap auxiliary observations: y; <> y;
5. fork e {i,j} do
6: Set zy « Zt%
7: Update Z) — iV@f(@k; Xk,}’k)
8 Increment my, + my + pik
9: Compute 0y, < mp, (z1)
10: Average 0 (1 - mipk) 0,
11:  end for
12: end for

13: return Each node k has 6,

Using the time estimator of Section 2.2.2, we can now adapt Algorithm 7
to the fully asynchronous case, as shown in Algorithm 8. Similarly to the
estimation case, the updates need to be weighted according to the activa-
tion probabilities.The following result is the analogous of Theorem 9 for the
asynchronous setting.

Theorem 10. Let G = ([n],&) be a connected and non bipartite graph. Let
(v(t))¢>1 be defined as y(t) = c/t*/*>T for some constant ¢ > 0 and o € (0,1/2).
Fori € [n], let (d;(t)):>1, (8i(t))e=1, (€i(t))i=1, (2i(t))i=1 and (65(t))i=1 be gen-
erated as described in Algorithm 8. Then, there exists some constant C < +o00
such that, for 0 € argming cga R,(0'), i € [n]and T > 0,

Ry (8:(T)) = Ra(67) <Cmax(T~/2,7071/2)

1

T
+ = Ei(w(t) - 6%) Te()].
t=2

=l

In the asynchronous setting, no convergence rate was known even for
the distributed dual averaging algorithm of DUCHI, AGARWAL, and WAIN-
WRIGHT (2012), which deals with the simpler problem of minimizing uni-
variate functions. The arguments used to derive Theorem 10 can be adapted
to derive a convergence rate (without the bias term) for an asynchronous
version of their algorithm.

2.4.3 Numerical experiments

To study the influence of the network topology, we perform our simula-
tions on three types of network : complete graph, Watts-Strogatz graph and
cycle graph.

We initialized each 6; to 0 and for each network, we ran 50 times Al-
gorithms 7 and 8 with y(t) = 1/+/t.* Figure 2.7a shows the evolution of
the objective function and the associated standard deviation (across nodes)
with the number of iterations in the synchronous setting. As expected, the

4. Even if this scaling sequence does not fulfill the hypothesis of Theorem 24 for the
asynchronous setting, the convergence rate is acceptable in practice.
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FIGURE 2.7: AUC maximization.

average convergence rate on the complete and the Watts-Strogatz networks
is much better than on the poorly connected cycle network. The standard
deviation of the node estimates also decreases with the connectivity of the
network.

The results for the asynchronous setting are shown in Figure 2.7b. As
expected, the convergence rate is slower in terms of number of iterations
(roughly 5 times) than in the synchronous setting. Note however that much
fewer dual averaging steps are performed: for instance, on the network
generated with Watts-Strogatz method, reaching a 0.1 loss requires 210, 000
(partial) gradient computations in the synchronous setting and only 25, 000
in the asynchronous setting. Moreover, the standard deviation of the esti-
mates is much lower than in the synchronous setting. This is because com-
munication and local optimization are better balanced in the asynchronous
setting (one optimization step for each gradient accumulator averaged)
than in the synchronous setting (n optimization steps for 2 gradient accu-
mulators averaged).

The good practical convergence of our algorithm comes from the fact
that the bias term &(t) " w(t) vanishes quite fast. Figure 2.7c shows that its
average value quickly converges to 0 on all networks. Moreover, its order
of magnitude is negligible compared to the objective function.

2.5 Conclusion

We provided theoretical guarantees for different sampling schemes for
U-statistic-based ERM, as well as strong numerical results. We also pro-
vided methods for estimating and optimizing pairwise functions in a gossip
setting, again with both theoretical guarantees and experimental results.
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3.1 Introduction

In classification/regression, empirical risk estimates are sample mean
statistics and the theory of Empirical Risk Minimization (ERM) has been
originally developed in this context, see DEVROYE, GYORFI, and LUGOSI,
1996. The ERM theory essentially relies on the study of maximal deviations
between these empirical averages and their expectations, under adequate
complexity assumptions on the set of prediction rule candidates. The rele-
vant tools are mainly concentration inequalities for empirical processes, see
LEDOUX and TALAGRAND, 1991 for instance.

In a wide variety of problems that received a good deal of attention in
the machine learning literature and ranging from clustering to image recog-
nition through ranking or learning on graphs, natural estimates of the risk
are not basic sample means but take the form of averages of d-tuples, usu-
ally referred to as U-statistics in Probability and Statistics, see LEE, 1990a. In
CLEMENCON, LUGoOsI, and VAYATIS, 2005 for instance, ranking is viewed
as pairwise classification and the empirical ranking error of any given pre-
diction rule is a U-statistic of order 2, just like the within cluster point scat-
ter in cluster analysis (see CLEMENCON, 2014) or empirical performance
measures in metric learning, refer to CAO, GUO, and YING, 2012 for in-
stance. Because empirical functionals are computed by averaging over tu-
ples of sampling observations, they exhibit a complex dependence struc-
ture, which appears as the price to be paid for low variance estimates.
Linearization techniques (see HOEFFDING, 1948) are the main ingredient in
studying the behavior of empirical risk minimizers in this setting, allowing
to establish probabilistic upper bounds for the maximal deviation of collec-
tion of centered U-statistics under appropriate conditions by reducing the
analysis to that of standard empirical processes. However, while the ERM
theory based on minimization of U-statistics is now consolidated (see CLE-
MENCON, LUGOSI, and VAYATIS, 2008), putting this approach in practice
generally leads to significant computational difficulties that are not suffi-
ciently well documented in the machine learning literature. In many con-
crete cases, the mere computation of the risk involves a summation over an
extremely high number of tuples and runs out of time or memory on most
machines.

Whereas the availability of massive information in the Big Data era,
which machine learning procedures could theoretically now rely on, has
motivated the recent development of parallelized / distributed approaches in
order to scale-up certain statistical learning algorithms, see BEKKERMAN,
BILENKO, and LANGFORD, 2011 or BIANCHI et al., 2013 and the references
therein, the present paper proposes to use sampling techniques as a remedy
to the apparent intractability of learning from data sets of explosive size, in
order to break the current computational barriers. More precisely, it is the
major goal of this article to study how a simplistic sampling technique (i.e.
drawing with replacement) applied to risk estimation, as originally pro-
posed by BLOM, 1976 in the context of asymptotic pointwise estimation,
may efficiently remedy this issue without damaging too much the “reduced
variance” property of the estimates, while preserving the learning rates (in-
cluding certain "fast-rate" situations). For this purpose, we investigate to
which extent a U-process, that is a collection of U-statistics, can be accu-
rately approximated by a Monte-Carlo version (which shall be referred to
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as an incomplete U-process throughout the paper) involving much less terms,
provided it is indexed by a class of kernels of controlled complexity (in
a sense that will be explained later). A maximal deviation inequality con-
necting the accuracy of the approximation to the number of terms involved
in the approximant is thus established. This result is the key to the analy-
sis of the statistical performance of minimizers of risk estimates when they
are in the form of an incomplete U-statistic. In particular, this allows us to
show the advantage of using this specific sampling technique, compared
to more naive approaches with exactly the same computational cost, con-
sisting for instance in first drawing a subsample and then computing a risk
estimate of the form of a (complete) U-statistic based on it. We also show
how to incorporate this sampling strategy into iterative statistical learning
techniques based on stochastic gradient descent (SGD), see BOTTOU, 1998.
The variant of the SGD method we propose involves the computation of
an incomplete U-statistic to estimate the gradient at each step. For the esti-
mator thus produced, rate bounds describing its statistical performance are
established under mild assumptions. Beyond theoretical results, we present
illustrative numerical experiments on metric learning and clustering with
synthetic and real-world data that support the relevance of our approach.

The rest of the chapter is organized as follows. In Section 3.2, we recall
basic definitions and concepts pertaining to the theory of U-statistics and
U-processes and present important examples in machine learning where
natural estimates of the performance/risk measure are U-statistics. We then
review the existing results for the empirical minimization of complete U-
statistics. In Section 3.3, we recall the notion of incomplete U-statistic and
we derive maximal deviation inequalities describing the error made when
approximating a U-statistic by its incomplete counterpart uniformly over a
class of kernels that fulfills appropriate complexity assumptions. This result
is next applied to derive (possibly fast) learning rates for minimizers of the
incomplete version of the empirical risk and to model selection. Extensions
to incomplete U-statistics built by means of other sampling schemes than
sampling with replacement are also investigated. In Section 3.4, estimation
by means of incomplete U-statistics is applied to stochastic gradient descent
for iterative ERM. Section 3.5 presents some numerical experiments. Finally,
Section 3.6 collects some concluding remarks. Technical details are deferred
to the Appendix.
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3.2 Background and Preliminaries

As a first go, we briefly recall some key notions of the theory of U-
statistics (Section 3.2.1) and provide several examples of statistical learning
problems for which natural estimates of the performance/risk measure are
in the form of U-statistics (Section 3.2.2). Finally, we review and extend the
existing rate bound analysis for the empirical minimization of (complete)
generalized U-statistics (Section 3.2.3). Here and throughout, N* denotes
the set of all strictly positive integers, R the set of nonnegative real num-
bers.

3.2.1 U-Statistics/Processes: Definitions and Properties

For clarity, we recall the definition of generalized U-statistics. An ex-
cellent account of properties and asymptotic theory of U-statistics can be
found in LEE, 1990a.

Definition 1. (GENERALIZED U-STATISTIC) Let K > 1 and (d;, ..., dk) €
N*K| Let X1, gy = (ka), e X,(LIZ)), 1 < k < K, be K independent

samples of sizes n; > dj and composed of i.i.d. random variables taking
their values in some measurable space A}, with distribution Fj,(dx) respec-
tively. Let H : X™ x - x X I%K — R be a measurable function, square inte-
grable with respect to the probability distribution y = FE" @ - .- Ff?dK.

Assume in addition (without loss of generality) that H(x("), ..., x(8)) is
symmetric within each block of arguments x(*) (valued in X,fk), 1<k<K.
The generalized (or K-sample) U-statistic of degrees (di, ..., dx) with

kernel H, is then defined as

Un(H) = B > .. ZH Wox@LxE), @

Hk 1 dk I

where the symbol }; refers to summation over all (”’;) subsets X( ) =

(X.(k) R X.(d)) related to a set Ij; of d, indexes 1 < iy < ... < ig, g ny
k

11 ) )
andn = (ng, ..., ng).

The above definition generalizes standard sample mean statistics, which
correspond to the case K = 1 = d;. More generally when K =1, U,(H) is
an average over all di-tuples of observations, while K > 2 corresponds to
the multi-sample situation with a dj-tuple for each sample k € {1,...,K}.
A U-process is defined as a collection of U-statistics indexed by a set H of
kernels. This concept generalizes the notion of empirical process.

Many statistics used for pointwise estimation or hypothesis testing are
actually generalized U-statistics (e.g. the sample variance, the Gini mean
difference, the Wilcoxon Mann-Whitney statistic, Kendall tau). Their pop-
ularity mainly arises from their “reduced variance” property: the statistic
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Un(H) has minimum variance among all unbiased estimators of the pa-
rameter

WH) = E [H(X§”, o X xO Xéf))] (3.2)
_ / / HED, L xENdu0, <)
xWext  JxFexx
= E[Un(H)].

Classically, the limit properties of these statistics (law of large numbers,
central limit theorem, efc.) are investigated in an asymptotic framework
stipulating that, as the size of the full pooled sample

nd:efn1+...+nK (3.3)

tends to infinity, we have:
ng/n— X\, >0fork=1, ..., K. (3.4)

Asymptotic results and deviation/moment inequalities for K-sample U-
statistics can be classically established by means of specific representations
of this class of functionals, see (3.15) and (3.26) introduced in later sections.
Significant progress in the analysis of U-statistics and U-processes has then
recently been achieved by means of decoupling theory, see PENA and GINE,
1999. For completeness, we point out that the asymptotic behavior of (mul-
tisample) U-statistics has been investigated under weaker integrability as-
sumptions than that stipulated in Definition 1, see LEE, 1990a.

3.2.2 Motivating Examples

In this section, we review important supervised and unsupervised sta-
tistical learning problems where the empirical performance/risk measure
is of the form of a generalized U-statistics. They shall serve as running ex-
amples throughout the paper.

Clustering

Clustering refers to the unsupervised learning task that consists in par-
titioning a set of data points Xy, ..., X, in a feature space X into a finite
collection of subgroups depending on their similarity (in a sense that must
be specified): roughly, data points in the same subgroup should be more
similar to each other than to those lying in other subgroups. One may refer
to Chapter 14 in FRIEDMAN, HASTIE, and TIBSHIRANI, 2009 for an account
of state-of-the-art clustering techniques. Formally, let A/ > 2 be the number
of desired clusters and consider a symmetric function D : X x X — Ry
such that D(z, z) = 0 for any z € X. D measures the dissimilarity between
pairs of observations (z,2) € X?: the larger D(x, 2’), the less similar x and
2'. For instance, if ¥ C R%, D could take the form D(x,2') = ¥(||lz — 2'||,),
where ¢ > 1, ||all, = (X%, |ai|9)/4 for all a € R and ¥ : Ry — R, is
any borelian nondecreasing function such that ¥(0) = 0. In this context, the
goal of clustering methods is to find a partition P of the feature space X
in a class II of partition candidates that minimizes the following empirical
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clustering risk:

n = — D(X;, X;) - Pp(X;, X;), .

Wa(P)= oy 2. D(Xi X)) ®p(Xi X;) (35)
1<i<j<n

where @p(z,2') = Y ocplf(z,2') € C?*}. Assuming that the data

X1, ..., X, areii.d. realizations of a generic random variable X drawn

from an unknown probability distribution F'(dz) on X, the quantity W, (P),
also known as the intra-cluster similarity or within cluster point scatter, is a one
sample U-statistic of degree two (K = 1 and d; = 2) with kernel given by:

V(z,2') € X%, Hp(z,2') = D(z,2') - &p(z,2'), (3.6)

according to Definition 1 provided that the following condition holds:
// D?(x,x) - ®p(z, ') F(dx)F(dz') < +oo.
(z,2")eX?

The expectation of the empirical clustering risk W, (P) is given by

where X’ is an independent copy of the r.v. X, and is named the clustering
risk of the partition P. The statistical analysis of the clustering performance
of minimizers P, of the empirical risk (3.5) over a class II of appropriate
complexity can be found in CLEMENCON, 2014. Based on the theory of U-
processes, it is shown in particular how to establish rate bounds for the
excess of clustering risk of any empirical minimizer, W (P, ) — infper W (P)
namely, under appropriate complexity assumptions on the cells forming
the partition candidates.

Metric Learning

Many problems in machine learning, data mining and pattern recogni-
tion (such as the clustering problem described above) rely on a metric to
measure the distance between data points. Choosing an appropriate met-
ric for the problem at hand is crucial to the performance of these methods.
Motivated by a variety of applications ranging from computer vision to in-
formation retrieval through bioinformatics, metric learning aims at adapt-
ing the metric to the data and has attracted a lot of interest in recent years
(see for instance BELLET, HABRARD, and SEBBAN, 2013, for an account of
metric learning and its applications). As an illustration, we consider the
metric learning problem for supervised classification. In this setting, we ob-
serve independent copies (X1,Y1), ..., (Xp,Y,) of arandom couple (X,Y),
where the r.v. X takes values in some feature space X and Y in a finite set
of labels, ¥ = {1, ..., C} with C > 2 say. Consider a set D of distance
measures D : X x X — R. Roughly speaking, the goal of metric learning
in this context is to find a metric under which pairs of points with the same
label are close to each other and those with different labels are far away. The
risk of a metric D can be expressed as:

R(D)=E[¢((1-DX,X')-2{Yy =Y'} —1))], (3.8)
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where ¢(u) is a convex loss function upper bounding the indicator function
I{w > 0}, such as the hinge loss ¢(u) = max(0, 1 — u). The natural empirical
estimator of this risk is

RuD) = —Es 30 (D0 X)) = 1)+ QHY, = Y} - 1), (39)

1<z<]<n

which is a one sample U-statistic of degree two with kernel given by:

Hp ((z,y), (',y)) = ¢ (D(x,2") = 1) - CQ{y = ¢/} = 1)) . (3.10)

The convergence to (3.8) of a minimizer of (3.9) has been studied in the
frameworks of algorithmic stability (JIN, WANG, and ZHOU, 2009), algorith-
mic robustness (BELLET and HABRARD, 2015) and based on the theory of U-
processes under appropriate regularization (CAO, GUO, and YING, 2012).

Multipartite Ranking

Given objects described by a random vector of attributes/features X €
X and the (temporarily hidden) ordinal labels Y € {1, ..., K} assigned to
it, the goal of multipartite ranking is to rank them in the same order as that
induced by the labels, on the basis of a training set of labeled examples.
This statistical learning problem finds many applications in a wide range
of fields (e.g. medicine, finance, search engines, e-commerce). Rankings are
generally defined by means of a scoring function s : X — R, transporting
the natural order on the real line onto the feature space and the gold stan-
dard for evaluating the ranking performance of s(x) is the ROC manifold,
or its usual summary the VUS criterion (VUS standing for Volume Under
the ROC Surface), see CLEMENCON and ROBBIANO, 2014 and the references
therein. In CLEMENCON, ROBBIANO, and VAYATIS, 2013, optimal scoring
functions have been characterized as those that are optimal for all bipartite
subproblems. In other words, they are increasing transforms of the likeli-
hood ratio dF}y1/dF}, where Fj, denotes the class-conditional distribution
for the k-th class. When the set of optimal scoring functions is non-empty,
the authors also showed that it corresponds to the functions which maxi-
mize the volume under the ROC surface

VUS(s) =P{s(X1) <...<s(Xg)Y1=1, ..., Yk = K}.
iid.

Given K independent samples (Xl(k), . ,Xék)) Fy(dz) for1 < k < K,
the empirical counterpart of the VUS can be written in the following way:

VUS(s) Z Z Is(xM) <. <s(x5)) @1
:1 ki1=1 ig=1
The empirical VUS (3.11) is a K-sample U-statistic of degree (1, ..., 1)
with kernel given by:

Hy(x1, ..., zx) =s(z1) < ... <s(zk)}. (3.12)
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3.2.3 Empirical Minimization of U-Statistics

As illustrated by the examples above, many learning problems can be
formulated as finding a certain rule g in a class G in order to minimize a
risk of the same form as (3.2), u(Hy), with kernel H = H,. Based on K > 1
independent i.i.d. samples

x®

Wy =X X)) with1 <k < K,

the ERM paradigm in statistical learning suggests to replace the risk by the
U-statistic estimation U, (H,) in the minimization problem. The study of
the performance of minimizers g, of the empirical estimate U,(H,) over
the class G of rule candidates naturally leads to analyze the fluctuations of
the U-process

{Un(H,y) — u(Hy) = g € G}. (3.13)
Given the bound
(ty,) ~ int p(H,) < 2sup |Un(H,) ~ p(H,)] (3.14)
geg

a probabilistic control of the maximal deviation sup,cg [Un(Hy) — p1(Hy)l|
naturally provides statistical guarantees for the generalization ability of the
empirical minimizer g,,. As shown at length in the case X = 1 and d; = 2
in CLEMENCON, LuGosI, and VAYATIS, 2008 and in CLEMENCON, 2014 for
specific problems, this can be achieved under adequate complexity assump-
tions of the class Hg = {H, : g € G}. These results rely on the Hoeffding’s
representation of U-statistics, which we recall now for clarity in the general
multisample U-statistics setting. Denote by &,, the symmetric group of or-
der m for any m > 1 and by o(i) the i-th coordinate of any permutation
o € 6, for 1 <i < m.Let |z] be the integer part of any real number z and
set

N =min{|ni/d1], ..., |nk/dk]}.
Observe that the K-sample U-statistic (3.1) can be expressed as
U 1 (K)
n(H) = S Y v (xl o x80) 615)
Hk 1nk5 01€6n1 UKGGnK
where
1 1 (K) K
Vi (X{ xW L xE X}l}))
1 1 1 K K
_ N[H()q L x® L xI X5K>)
1 1 K K
+H (thll, XS xS ng;)
+...
(1) (1) (K) (K)
+H (XN s o X o0 X naesns -0 X ) |

This representation, sometimes referred to as the first Hoeffding’s decompo-
sition (see HOEFFDING, 1948), allows to reduce a first order analysis to the
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case of sums of i.i.d. random variables. The following result extends Corol-
lary 3 in CLEMENCON, LUGOSI, and VAYATIS, 2008 to the multisample situ-
ation.

Proposition 2. Let # be a collection of bounded symmetric kernels on [[1—_, Xg’“

such that .
My sup  |H(2)| < +oo. (3.16)
(Hx)eEHXX

Suppose also that ‘H is a Vapnik-Chervonenkis major class of functions with finite
VC dimension V' < +o0. Forall § € (0, 1), we have with probability at least 1 —9,

2V'log(1+ N) log(1/0)
;g%!Un(H)—u(H)! SMH{2\/ i +\/ N } (3.17)

where N = min {|n1/d1|, ..., |ng/di|}.

Observe that, in the usual asymptotic framework (3.4), the bound (3.17)
shows that the learning rate is, as expected, of order Op(+/logn/n), where
n denotes the size of the pooled sample.

Remark 1. (UNIFORM BOUNDEDNESS) We point out that condition (3.16)
is clearly satisfied for the class of kernels considered in the multipartite
ranking situation, whatever the class of scoring functions considered. In
the case of the clustering example, it is fulfilled as soon as the essential
supremum of D(X,X’) - ®p(X, X’) is uniformly bounded over P € TI,
whereas in the metric learning example, it is satisfied when the essential
supremum of the r.v. ¢((D(X,X’) — 1) - 2I{Y = Y’} — 1)) is uniformly
bounded over D € D. We underline that this simplifying condition can be
easily relaxed and replaced by appropriate tail assumptions for the vari-
ables H(X fl), ce XC(III:)), H € H, combining the arguments of the subse-
quent analysis with the classical “truncation trick” originally introduced in
FUK and NAGAEV, 1971.

Remark 2. (COMPLEXITY ASSUMPTIONS) Following in the footsteps of
CLEMENCON, LUGOSI, and VAYATIS, 2008 which considered 1-sample U-
statistics of degree 2, define the Rademacher average

N
1 (1) (1) (K) (K)
= sup — H(X CoxWo o x X )
Ry EE%N ;ez (I-1)d1+1 ldy (I-1)dg+1 ldx
(3.18)
where €, ..., ey are independent Rademacher random variables (random

symmetric sign variables), independent from the Xi(k)’s. As can be seen by

simply examining the proof of Proposition 2 (Section 3.7.1), a control of the
maximal deviations similar to (3.17) relying on this particular complexity
measure can be obtained: the first term on the right hand side is then re-
placed by the expectation of the Rademacher average E[R ], up to a con-
stant multiplicative factor. This expected value can be bounded by standard
metric entropy techniques and in the case where H is a VC major class of
functions of dimension V, we have:

2V 1og(N + 1)

E[RN] < My N
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See Section 3.7.1 for further details.
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3.3 Empirical Minimization of Incomplete U-
Statistics

We have seen in the last section that empirical minimization of U-
statistics leads to a learning rate of Op(\/logn/n). However, the compu-
tational cost required to find the empirical minimizer in practice is gener-
ally prohibitive, as the number of terms to be summed up to compute the
U-statistic (3.1) is equal to:

(i) ()

In the usual asymptotic framework (3.4), it is of order O(n®+-+dx) as
n — +oo. It is the major purpose of this section to show that, in the mini-
mization problem, the U-statistic U, (H,) can be replaced by a Monte-Carlo
estimation, referred to as an incomplete U-statistic, whose computation re-
quires to average much less terms, without damaging the learning rate (Sec-
tion 3.3.1). We further extend these results to model selection (Section 3.3.2),
fast rates situations (Section 3.3.3) and alternative sampling strategies (Sec-
tion 3.3.4).

3.3.1 Uniform Approximation of Generalized U-Statistics

As a remedy to the computational issue mentioned above, the concept
of incomplete generalized U-statistic has been introduced in the seminal con-
tribution of BLOM, 1976. The calculation of such a functional involves a
summation over low cardinality subsets of the (Z:) di-tuples of indices,
1 < k < K, solely. In the simplest formulation, the subsets of indices are
obtained by sampling independently with replacement, leading to the follow-

ing definition.

Definition 2. (INCOMPLETE GENERALIZED U-STATISTIC) Let B > 1. The
incomplete version of the U-statistic (3.1) based on B terms is defined by:

U (H) = S Y, x) :% S H(X)), (319)

I:(Ilw--’IK)EDB 1€Dp

& =

where Dp is a set of cardinality B built by sampling with replacement in
the set

. . (K (K (k (k
A ((zgl),...,zgl)),...,(zg )7""21(11())) : 1§z§)<...<zék)§nk
1<k<K ’

and X = (X%), ce ng))forallfz (I, ..., Ix) € A.

We stress that the distribution of a complete U-statistic built from sub-
samples of reduced sizes n) drawn uniformly at random is quite different
from that of an incomplete U-statistic based on B = Hle (Z;Ij) terms sam-
pled with replacement in A, although they involve the summation of the
same number of terms, as depicted by Fig. 3.1.
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Sample of n=7 Subsample of Set of
observations m = 4 observations B = 6 pairs

Naive sampling
(complete U-statistic)

(X1,X3)  (X2,X3)
(X1,X3) (Xe,X7)
(X4,Xg) (X3,X4)

Pair sampling
(incomplete U-statistic)

Set of
B = 6 pairs

FIGURE 3.1: Illustration of the difference between an in-
complete U-statistic and a complete U-statistic based on a
subsample. For simplicity, we focus on the case K = 1 and
dy = 2. In this simplistic example, a sample of n = 7 obser-
vations is considered. To construct a complete U-statistic of
reduced complexity, we first sample a set of m = 4 observa-
tions and then form all possible pairs from this subsample,
i.e. B =m(m—1)/2 = 6 pairs in total. In contrast, an incom-
plete U-statistic with the same number of terms is obtained
by sampling B pairs directly from the set A of all possible
pairs based on the original statistical population.

In practice, B should be chosen much smaller than the cardinality of A,
namely |A| =[]/, (Z:), in order to overcome the computational issue pre-
viously mentioned. We emphasize the fact that the cost related to the com-
putation of the value taken by the kernel H at a given point (:c%), ce xgj))
depending on the form of H is not considered here: the focus is on the num-
ber of terms involved in the summation solely. As an estimator of ;1(H), the
statistic (3.19) is still unbiased, i.e. E[Up(H)] = n(H), but its variance is
naturally larger than that of the complete U-statistic U,,(H). Precisely, writ-
ing the variance of the r.v. Up(H) as the expectation of its conditional vari-
ance given (Xy)rea plus the variance of its conditional expectation given
(X1)1en, we obtain

Var(Up(H)) = <1 - 113> Var(Un(H))+%Var(H(Xf1), o X5, (3.20)

One may easily check that Var(Ug(H)) > Var(Uy(H)), and the differ-
ence vanishes as B increases. Refer to LEE, 1990a for further details (see p.
193 therein). Incidentally, we underline that the empirical variance of (3.19)
is not easy to compute either since it involves summing approximately |A|
terms and bootstrap techniques should be used for this purpose, as pro-
posed in BERTAIL and TRESSOU, 2006. The asymptotic properties of incom-
plete U-statistics have been investigated in several articles, see JANSON,
1984; BROWN and KILDEA, 1978; ENQVIST, 1978. The angle embraced in the
present paper is of very different nature: the key idea we promote here is to
use incomplete versions of collections of U-statistics in learning problems
such as that described in Section 3.2.2. The result stated below shows that
this approach solves the numerical problem, while not damaging the learn-
ing rates under appropriate complexity assumptions on the collection H
of (symmetric) kernels H considered, the complexity being described here
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in terms of VC dimension for simplicity. In particular, it reveals that con-
centration results established for U-processes (i.e. collections of U-statistics)
such as Proposition 2 may extend to their incomplete versions, as shown by
the following theorem.

Theorem 11. (MAXIMAL DEVIATION) Let ‘H be a collection of bounded sym-
metric kernels on T[4, X,f’“ that fulfills the assumptions of Proposition 2. Then,
the following assertions hold true.
(i) Forall § € (0,1), with probability at least 1 — &, we have: for all B > 1
and foralln = (nq1,...,ng) € N*K

Al) +1og(2/9)
B

~ log(1
sup (T (H) — Un(H)| < My x \/2V gl +]
HeH

(ii) For all 6 € (0,1), with probability at least 1 — &, we have: Yn € N*K,
VB > 1,

s ﬁB(H)_Iu(H))§2\/2V10g](\}+]\f)+\/logg\2[/5)

H HeH
\/ V log(1 + |A|) + log(4/0)
+4/2 5 ,

where N = min{|ny/d1 |, ..., |nk/dK]}.

Remark 3. (COMPLEXITY ASSUMPTIONS CONTINUED) We point out that a
bound of the same order as that stated above can be obtained under stan-
dard metric entropy conditions by means of classical chaining arguments,
or under the assumption that the Rademacher average defined by

B
> e {Z@(I)H(Xﬂ}‘ (3.21)

b=1 IeA

~ 1
Rp = sup =
Hen B

has an expectation of the order O(1/v/B). The quantity (,(I) indicates
whether the subset of indexes I has been picked at the b-th draw ({,(I) =
+1) or not ((4(I) = 0), see the calculation at the end of Appendix 3.7.3.
Equipped with this notation, notice that the (’s are i.i.d. multinomial ran-
dom variables such that } ;.\ (;(/) = +1. This assumption can be easily
shown to be fulfilled in the case where #H is a VC major class of finite VC
dimension (see the proof of Theorem 11 in Appendix 3.7.2). Notice however
that although the variables } ;.\ (,(/)H (X ), 1 < b < B, are conditionally
iid.given (X7)sea, they are not independent and the quantity (3.21) cannot
be related to complexity measures of the type (3.18) mentioned in Remark
2.

Remark 4. We also underline that, whereas the supremum
supgey |Un(H) — p(H)| can be proved to be of order Op(l/n) un-
der adequate complexity assumptions in the specific situation where
{Un(H) : H € H} is a collection of degenerate U-statistics (see subsection
3.3.3), bound (i) in Theorem 11 cannot be improved in the degenerate case.
Observe indeed that, conditioned upon the observations X l(k), the devia-
tions of the approximation (3.19) from its mean are of order Op(1/v/B), as
a basic average of B ii.d. terms.
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From the theorem stated above, one may straightforwardly deduce a
bound on the excess risk of kernels Hp minimizing the incomplete version
of the empirical risk based on B terms, i.e. such that

Ug (ﬁB) = min Up(H). (3.22)

Corollary 1. Let H be a collection of symmetric kernels on [ [, X,f’“ that satisfies

the conditions stipulated in Proposition 2. Let § > 0. For any minimizer Hp of the
statistical estimate of the risk (3.19), the following assertions hold true
(i) We have with probability at least 1 — §: Vn € N*X vB > 1,

u(Hp) - Jof pu(H) < 2Myx

{2\/2V10g(1—|—N)+\/log(2/5)+\/2V10g(1+|A|)+log(4/5)}.

N N B

(ii) We have: Yn € N*K VB > 1,

~ 2V'1og(1 + N)
E[;é% UB(H)_M(H)H < My (2 e

\/2(log2 + Vlog(1 + \A)))
+ .
B

The first assertion of Theorem 11 provides a control of the deviations be-
tween the U-statistic (3.1) and its incomplete counterpart (3.19) uniformly
over the class H. As the number of terms B increases, this deviation de-
creases at a rate of O(1/v/B). The second assertion of Theorem 11 gives
a maximal deviation result with respect to p(H). Observe in particular
that, with the asymptotic settings previously specified, N = O(n) and
log(|A]) = O(logn) as n — +o0. The bounds stated above thus show that,
for anumber B = B,, of terms tending to infinity at a rate O(n) as n — +oo,
the maximal deviation sup ¢y \Ug(H) — p(H)|is asymptotically of the or-
der Op((log(n)/n)'/?), just like sup g cq, |[Un(H) — u(H)|, see bound (3.17) in
Proposition 2. In short, when considering an incomplete U-statistic (3.19)
with B = O(n) terms only, the learning rate for the corresponding min-
imizer is of the same order as that of the minimizer of the complete risk
(3.1), whose computation requires to average |A| = O(né*+4K) terms.
Minimizing such incomplete U-statistics thus yields a significant gain in
terms of computational cost while fully preserving the learning rate. In
contrast, as implied by Proposition 2, the minimization of a complete U-
statistic involving O(n) terms, obtained by drawing subsamples of sizes
nj, = O(n!/(h+-+dx)) yniformly at random, leads to a rate of convergence
of O(y/log(n)/nl/(d1+.+dx)), which is much slower except in the trivial
case where K = 1 and d; = 1. These striking results are summarized in
Table 3.1.

The important practical consequence of the above is that when n is too
large for the complete risk (3.1) to be used, one should instead use the in-
complete risk (3.19) (setting the number of terms B as large as the compu-
tational budget allows).
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Empirical risk criterion Nb of terms  Rate bound

Complete  U-statistic O(n®+-+dx)  Op(y/log(n)/n)

Complete  U-statistic —
based on subsamples O(n) Op (\/ log(n)/né+-+ K>

Incomplete U-statistic
(our result)

O(n) Op(+/log(n)/n)

TABLE 3.1: Rate bound for the empirical minimizer of sev-
eral empirical risk criteria versus the number of terms in-
volved in the computation of the criterion. For a computa-
tional budget of O(n) terms, the rate bound for the incom-
plete U-statistic criterion is of the same order as that of the
complete U-statistic, which is a huge improvement over a
complete U-statistic based on a subsample.

3.3.2 Model Selection Based on Incomplete U-Statistics

Automatic selection of the model complexity is a crucial issue in ma-
chine learning: it includes the number of clusters in cluster analysis (see
CLEMENCON, 2014) or the choice of the number of possible values taken by
a piecewise constant scoring function in multipartite ranking for instance
(cf. CLEMENCON and VAYATIS, 2009). In the present situation, this boils
down to choosing the adequate level of complexity of the class of kernels
H, measured through its (supposedly finite) VC dimension for simplicity,
in order to minimize the (theoretical) risk of the empirical minimizer. It
is the purpose of this subsection to show that the incomplete U-statistic
(3.19) can be used to define a penalization method to select a prediction
rule with nearly minimal risk, avoiding procedures based on data split-
ting/resampling and extending the celebrated structural risk minimization
principle, see VAPNIK, 1999. Let H be the collection of all symmetric ker-
nels on Hle X,f’“ and set u* = infyey p(H). Let Hi,Ha, ... be a sequence
of uniformly bounded major subclasses of H, of increasing complexity (VC
dimension). For any m > 1, let V;,, denote the VC dimension of the class H,,
and set My, = Sup g z)en,, xx [H(2)| < +00. We suppose that there exists
M < +oo such that sup,,,~; My,, < M.Given 1 < B < |A|and m > 1, the
complexity penalized empirical risk of a solution Ug,,, of the ERM problem
(3.22) with H = H,,, is

Up(Hp,m) + pen(B, m), (3.23)

where the quantity pen(B, m) is a distribution free penalty given by:

pen(B,m) =2My,, <\/2Vm 10%1 N, \/2(10g2 + Vmgog(l + IA\))>

(B+n)logm

+2M =

(3.24)

As shown in Assertion (ii) of Corollary 1, the quantity above is an upper
bound for the expected maximal deviation E[supy ey, |[Up(H)—p(H)|] and
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is thus a natural penalty candidate to compensate the overfitting within
class H,,. We thus propose to select

mp = arg min {ﬁB(ﬁBm) + pen(B, m)} . (3.25)

m>1

As revealed by the theorem below, choosing B = O(n), the prediction rule
H i based on a penalized criterion involving the summation of O(n) terms
solely, achieves a nearly optimal trade-off between the bias and the distri-
bution free upper bound (3.24) on the variance term.

Theorem 12. (ORACLE INEQUALITY) Suppose that Theorem 11’s assumptions
are fulfilled for all m > 1 and that sup,;, >, My, < M < +oo. Then, we have:
vne N*E VB e {1, ..., |A]},

27(B + n) .

T k>1 | HEHm B

W(Hpm) — p* < inf { inf p(H) - p* + Pen(B,m)} +M

We point out that the argument used to obtain the above result can be

straightforwardly extended to other (possibly data-dependent) complexity
penalties (¢f. MASSART, 2006), see the proof in Appendix 3.7.4.

3.3.3 Fast Rates for ERM of Incomplete U-Statistics

In CLEMENCON, LUGOSI, and VAYATIS, 2008, it has been proved that,
under certain “low-noise” conditions, the minimum variance property of
the U-statistics used to estimate the ranking risk (corresponding to the situ-
ation K = 1 and d; = 2) leads to learning rates faster than Op(1//n). These
results rely on the Hajek projection, a linearization technique originally intro-
duced in HOEFFDING, 1948 for the case of one sample U-statistics and next
extended to the analysis of a much larger class of functionals in HAJEK,
1968. It consists in writing U, (H ) as the sum of the orthogonal projection

K ng

Un(H) =Y S B |Un(H) | XP| = (n = D), (3.26)
k=1 1=1

which is itself a sum of K independent basic sample means based on i.i.d.
r.v.’s (of the order Op(1/+/n) each, after recentering), plus a possible negli-
gible term. This representation was used for instance by GRAMS and SER-
FLING, 1973 to refine the CLT in the multisample U-statistics framework. It
should be noticed that the quantity Un(H) cannot be considered as a statis-
tic in general, since the conditional expectations involved in the summation
are unknown in practice.

Although incomplete U-statistics do not share the minimum variance
property (see Section 3.3.1), we will show that the same fast rate bounds for
the excess risk as those reached by ERM of U-statistics (corresponding to
the summation of O(n?) pairs of observations) can be attained by empirical
ranking risk minimizers, when estimating the ranking risk by incomplete
U-statistics involving the summation of o(n?) terms solely.

For clarity (and comparison purpose), we first recall the statistical learn-
ing framework considered in CLEMENCON, LUGOS], and VAYATIS, 2008. Let
(X,Y) be a pair of random variables defined on the same probability space,
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where Y is a real-valued label and X models some input information taking
its values in a measurable space X hopefully useful to predict Y. Denoting
by (X’,Y”) an independent copy of the pair (X, Y). The goal pursued here
is to learn how to rank the input observations X and X', by means of an
antisymmetric ranking rule r : X? — {—1, +1} (i.e. r(z,2') = —r(2'z) for
any (z,z') € X?), so as to minimize the ranking risk

L(r)=P{(Y = Y') - r(X,X') < 0}, (3.27)

The minimizer of the ranking risk is the ranking rule r*(X, X’) = 2I{P{Y >
Y| (X, X))} >P{Y <Y'|(X,X')} —1 (see Proposition 1 in CLEMENCON,
LuGosI, and VAYATIS, 2008). The natural empirical counterpart of (3.27)
based on a sample of independent copies (X1,Y7), ..., (Xn,Y,) of the
pair (X,Y) is the 1-sample U-statistic U, (H,) of degree two with kernel
Hy((2,y), (2,y) = {(y — ) - r(z,2") < 0} for all (z,y) and (2, y)) in
X x R given by:

Ln(r) = Up(H;) = n(f_l) Y KV - Y)) (X, X;) <0} (328)
1<J

Equipped with these notations, a statistical version of the excess risk A(r) =
L(r)— L(r*) is a U-statistic A, () with kernel ¢, = H, — H,~. The key “noise-
condition”, which allows to exploit the Hoeffding /Hajek decomposition of
A, (r), is stated below.

Assumption 1. There exist constants ¢ > 0 and « € [0, 1] such that:
Vr € R, Var(h,(X,Y)) <cA(r)®,

where we set h,(z,y) = E[¢.((z,v), (X', Y")].

Recall incidentally that very general sufficient conditions guaranteeing
that this assumption holds true have been exhibited, see Section 5 in CLE-
MENCON, LUGOSsI, and VAYATIS, 2008 (notice that the condition is void for
a = 0). Since our goal is to explain the main ideas rather than achieving
a high level of generality, we consider a very simple setting, stipulating
that the cardinality of the class of ranking rule candidates R under study
is finite, |[R| = M < 400, and that the optimal rule 7* belongs to R. The
following proposition is a simplified version of the fast rate result proved
in CLEMENCON, LUGOSI, and VAYATIS, 2008 for the empirical minimizer
Ty = argmin,cp Ly (7).

Proposition 3. (CLEMENCON, LUGOS]I, and VAYATIS, 2008, COROLLARY 6)
Suppose that Assumption 1 is fulfilled. Then, there exists a universal constant
C > 0 such that for all 6 € (0, 1), we have: ¥Yn > 2,

L(7) — L(r*) < C <1°g(M/5)> o (3.29)

n

Consider now the minimizer 7p of the incomplete U-statistic risk esti-
mate

B
Up(H,) = =3 ex((1, )Y — Y) - 7(Xi, X;) < 0} (3.30)
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(X1,%2) (X6, %7)
Sample of n=7 (X1,X3) (Xg,X7)
observations (X4,Xg) (X3,X4)

Sampling with
replacement

(Xa,X6)  (x1,X5)
(X1,X7) (X2,X7)
(X3,X4) (X3,Xs)

Sampling without
replacement

(X2,%3) (X1,%7)
(X2,Xg)  (X3,Xe)
(Xs,X7)

Bernoulli
Sampling

FIGURE 3.2: llustration of different sampling schemes for
approximating a U-statistic. For simplicity, consider again
the case K = 1 and d; = 2. Here n = 7 and the expected
number of terms is B = 6. Sampling with or without re-
placement results in exactly B terms, with possible repeti-
tions when sampling with replacement, e.g. (x¢, z7) in this
example. In contrast, Bernoulli sampling with 7; = B/|A]
results in B terms only in expectation, with individual real-
izations that may exhibit more or fewer terms.

over R, where ¢((7,7)) indicates whether the pair (7, j) has been picked
at the k-th draw (e;((¢,7)) = 1 in this case, which occurs with probability
1/(5)) or not (then, we set €((i, j)) = 0). Observe that 75 also minimizes

the empirical estimate of the excess risk A g(r) = U (qr) over R.

Theorem 13. Let o € [0, 1] and suppose that Assumption 1 is fulfilled. If we set
B = O(n?/ (=), there exists some constant C' < +oc such that, forall § € (0,1),
we have with probability at least 1 — 6: Vn > 2,

n

L) — L) SC(W)%

As soon as o < 1, this result shows that the same fast rate of conver-
gence as that reached by 7, can be attained by the ranking rule 75, which
minimizes an empirical version of the ranking risk involving the summa-
tion of O(n?(2~)) terms solely. For comparison purpose, minimization of
the criterion (3.27) computed with a number of terms of the same order
leads to a rate bound of order Op(n!/(=®)?),

Finally, we point out that fast rates for the clustering problem have been
also investigated in CLEMENCON, 2014, see Section 5.2 therein. The present
analysis can be extended to the clustering framework by means of the same
arguments.

3.3.4 Alternative Sampling Schemes

Sampling with replacement is not the sole way of approximating gen-
eralized U-statistics with a controlled computational cost. As proposed in
JANSON, 1984, other sampling schemes can be considered, Bernoulli sam-
pling or sampling without replacement in particular (see Figure 3.2 for an il-
lustration). We now explain how the results of this paper can be extended to
these situations. The population of interest is the set A and a survey sample of
(possibly random) size b < n is any subset s of cardinality b = b(s) less than
|A| in the power set P(A). Here, a general survey scheme without replacement
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is any conditional probability distribution R on the set of all possible sam-
ples s € P(A) given (X1)rea. Forany I € A, the first order inclusion probabil-
ity mr(R) = Pr{I € S}, is the probability that the unit / belongs to a random
sample S drawn from distribution R. We set w(R) = (77(R))rea. The sec-
ond order inclusion probabilities are denoted by 77 ;(R) = Pr{(I, J) € S?}
for any I # J in A. When no confusion is possible, we omit to mention
the dependence in R when writing the first/second order probabilities of
inclusion. The information related to the observed sample S C A is fully
enclosed in the random vector A = (A(I));ep, where A(I) = I{I € S} for
all I € A. The 1-d marginal distributions of the sampling scheme A,, are
the Bernoulli distributions with parameters 77, I € A, and the covariance
matrix of the r.v. Ay, is given by I' = {7y ; — w7} I with the convention
w1 = my for all I € A. Observe that, equipped with the notations above,
S e AD) = b(S).

One of the simplest survey plans is the Poisson scheme (without re-
placement), for which the A(I)’s are independent Bernoulli random vari-
ables with parameters 77, I € A, in (0, 1). The first order inclusion proba-
bilities fully characterize such a plan. Observe in addition that the size b(S)
of a sample generated this way is random with expectation B = E[b(S5) |
(X1)rea] = > ea 71- The situation where the 7;’s are all equal corresponds
to the Bernoulli sampling scheme: VI € A, 7; = B/|A|. The Poisson survey
scheme plays a crucial role in sampling theory, inso far as a wide range of
survey schemes can be viewed as conditional Poisson schemes, see HAJEK,
1964. For instance, one may refer to COCHRAN, 1977 or DEVILLE, 1987 for
accounts of survey sampling techniques.

Following in the footsteps of the seminal contribution of HORVITZ and
THOMPSON, 1951, an estimate of (3.1) based on a sample drawn from a
survey scheme R with first order inclusion probabilities (77)reca is given

by:

Upr(H (3.31)
!AI

T
IeA I

with the convention that 0/0 = 0. Notice that it is an unbiased estimate of
(3.1): )
ElUnr(H) | (X1)1ea] = Un(H).

In the case where the sample size is deterministic, its conditional variance
is given by:

2
Var(Upr(H) | (X1)rea) = %Z > (1.0 — mimy).

(H(XI)  H(X,)
I£]

Uy T

We point out that the computation of (3.31) involves summing over a pos-
sibly random number of terms, equal to B = E[b(S)] = > ;. 77 in average
and whose variance is equal to Var(b(S5)) = > jep mr(L—mr)+3 2 {7 —
Ty}

Here, we are interested in the situation where the A(I)’s are indepen-
dent from (X7)7ea, and either a sample of size B < |A| fixed in advance is
chosen uniformly at random among the (lAl) possible choices (this survey
scheme is sometimes referred to as rejective sampling with equal first order
inclusion probabilities), or else it is picked by means of a Bernoulli sampling
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with parameter B/|A|. Observe that, in both cases, we have 7; = B/|A| for
all I € A. The following theorem shows that in both cases, similar results as
those obtained for sampling with replacement can be derived for minimizers
of the Horvitz-Thompson risk estimate (3.31).

Theorem 14. Let ‘H be a collection of bounded symmetric kernels on Hle X,f’“
that fulfills the assumptions involved in Proposition 2. Let B € {1, ..., |A|}.
Suppose that, for any H € H, Uy7(H) is the incomplete U-statistic based on ei-
ther a Bernoulli sampling scheme with parameter B/|A| or else a sampling without
replacement scheme of size B. For all 6 € (0, 1), we have with probability at least
1-8vneNE vBe{l, ..., |Al},

§2/\/IH\/log;@(l ;IAI)V/CS)
2log(2(1 + |A)Y /6) My
+ 35 :

sup |Upr(H) — Un(H)|
HeH

in the case of the Bernoulli sampling design, and

sup \UHT(H) — Un(H)\ < \@MH\/log(Q(l +B‘A’)V/5),
HeH

in the case of the sampling without replacement design.

We highlight the fact that, from a computational perspective, sampling
with replacement is undoubtedly much more advantageous than Bernoulli
sampling or sampling without replacement. Indeed, although its expected
value is equal to B, the size of a Bernoulli sample is stochastic and the re-
lated sampling algorithm requires a loop through the elements I of A and
the practical implementation of sampling without replacement is generally
based on multiple iterations of sampling with replacement, see TILLE, 2006.
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3.4 Application to Stochastic Gradient Descent

The theoretical analysis carried out in the preceding sections focused on
the properties of empirical risk minimizers but ignored the issue of find-
ing such a minimizer. In this section, we show that the sampling technique
introduced in Section 3.3 also provides practical means of scaling up itera-
tive statistical learning techniques. Indeed, large-scale training of many ma-
chine learning models, such as SVM, DEEP NEURAL NETWORKS or SOFT
K-MEANS among others, is based on stochastic gradient descent (SGD in
abbreviated form), see BOTTOU, 1998. When the risk is of the form (3.2), we
now investigate the benefit of using, at each iterative step, a gradient esti-
mate of the form of an incomplete U-statistic, instead of an estimate of the
form of a complete U-statistic with exactly the same number of terms based
on subsamples drawn uniformly at random.

Let © C R? with ¢ > 1 be some parameter space and H : [[;, &, dk X
© — Rbe aloss function which is convex and differentiable in its last argu—

ment. Let (ka), e XG(IIZ)), 1 <k < K, be K independent random vectors
with distribution F}’ % (dx) on Xg’“ respectively such that the random vec-
tor H(Xfl), ce XC(&), cee XfK), ce Xc(l?; 6) is square integrable for
any € ©. Forall § € ©, set
L(6) = BIHXGY, o X)X XG0: 6)) = (A s 6)
and consider the risk minimization problem mingcg L(6). Based on K in-
dependent i.i.d. samples ka)7 ce XT(L’Z) with 1 < k£ < K, the empirical
def

version of the risk function is § € © s Ly(0) = Un(H(+; 0)). Here and
throughout, we denote by Vy the gradient operator w.r.t. 6.

Gradient descent Many practical machine learning algorithms use vari-
ants of the standard gradient descent method, following the iterations:

Ori1 = 0r — 0 VoLn(6y), (3.32)

with an arbitrary initial value 6y € © and a learning rate (step size) 7; > 0
such that 3,7 n; = +oo and Y"1 n? < +oc.
Here we place ourselves in a large-scale setting, where the sample sizes

ni, ..., nk of the training data sets are so large that computing the gradi-
ent of Ly,
Gn(0) = S Z VeHXE: XP X e) (3.33)

Hkl(k) N

at each iteration (3.32) is computationally too expensive. Instead, Stochastic
Gradient Descent uses an unbiased estimate g(6) of the gradient (3.33) that
is cheap to compute. A natural approach consists in replacing (3.33) by a
complete U-statistic constructed from subsamples of reduced sizes nj <<
ny drawn uniformly at random, leading to the following gradient estimate:

— 3. ZVH Wox®xre, (339

~n’(0) -
! Hk 1(dk n
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where the symbol }_; refers to summation over all (Zfz) subsets Xg’z) =

(Xi(lk), e Xi(f:) related to a set Ij, of dj, indexes 1 < i1 < ... < iq, < nj,
and n’ = (nf, ..., ny).

We propose an alternative strategy based on the sampling scheme de-
scribed in Section 3.3, i.e. a gradient estimate in the form of an incomplete
U-statistic:

mO) == S verxY, . x{;), (3.35)
B 1 K
(It, ... Ix)€Dp
where Dp is built by sampling with replacement in the set A.

It is well-known that the variance of the gradient estimate negatively
impacts on the convergence of SGD. Consider for instance the case where
the loss function H is (1/)-smooth in its last argument, i.e., V61, 62 € ©:

1
IVoH (5 01) = VoH (-5 62)]| < ;\Iel — 0a].

Then one can show that if g is the gradient estimate:

ElLn(0r1)] = E[Ln(0 —13(6)))]

2
0 (0] — 1| E[Ga (6:)]]1% + %Ewwt)uﬂ

&

< E|

< E

2
a6 = (1= 31 ) BlIGn(6017] + 5 Var(g(60)]
In other words, the smaller the variance of the gradient estimate, the larger
the expected reduction in objective value. Some recent work has focused
on variance-reduction strategies for SGD when the risk estimates are ba-
sic sample means (see for instance LE ROUX, SCHMIDT, and BACH, 2012;
JOHNSON and ZHANG, 2013).

In our setting where the risk estimates are of the form of a U-statistic,
we are interested in comparing the variance of g,/ (#) and gp(f) when
B = HkK:1 (Z;Z) so that their computation requires to average over the same
number of terms and thus have similar computational cost. ! Our result is
summarized in the following proposition.

Proposition 4. Let B = [[1_, (Z;’:) forn) < ng, k=1, ..., K.In the asymp-
totic framework (3.4), we have:

1

K
> k1 M,

1
Var[gy (6)] _o< > Var[gp(0)] = O | =——— |,
g 9" I, ()

asn’ =nj +...+nf — +oc.

Proposition 4 shows that the convergence rate of Var[gp(0)] is faster
than that of Var[g, (6)] except when K = 1 and d; = 1. Thus the expected
improvement in objective function at each SGD step is larger when using

1. Note that sampling B sets from A to obtain (3.35) is potentially more efficient than
sampling nj, points from Xs1,...,n,y foreach k = 1,..., K and then forming all combina-
tions to obtain (3.34).
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a gradient estimate in the form of (3.35) instead of (3.34), although both
strategies require to average over the same number of terms. This is also
supported by the experimental results reported in the next section.

In PAPA, CLEMENCON, and BELLET, 2015, this analysis is further devel-
oped and a bound on the mean excess risk is explicited. They show that for
a class ‘H of VC dimension V' < 400 such that

Mg = sup HxD, ... x5 0)| < 400,
0€6,(x(1),... x () e[ T, X+

and for a sequence (6;):>¢ generated by incomplete stochastic gradient al-
gorithm with step size 7, o t™% and 1/2 < 8 < 1, the following bound
holds:

L(8) ~ L) < o + My | 2L (3.36)
where C' > 0 is a constant depending on the problem conditioning. With
a similar reasoning to Propostion 4, one can show that the corresponding
bound for a complete U-statistic estimator from a subsample is greatly in-

/
creased, as the factor B = Hszl (Z:) turns into Zle nj. when considered

complete statistic. This furthermore evidences the interest of the incomplete
sampling scheme for estimating gradients.
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3.5 Numerical Experiments

We show the benefits of the sampling approach promoted in this paper
on two applications: metric learning for classification, and model selection
in clustering.

3.5.1 Metric Learning

In this section, we focus on the metric learning problem (see Sec-
tion 3.2.2). As done in much of the metric learning literature, we restrict our
attention to the family of pseudo-distance functions Dps : R? x R? — R,
defined as

Dy, ') = (& — /)M (x — z')7,

where M € S, and S? is the cone of d x d symmetric positive-semidefinite
(PSD) matrices.

Given a training sample {(x;,y;)}?_, where x; € R¢and y; € {1,...,C},
let y;; = 1if y; = y; and 0 otherwise for any pair of samples. Given a
threshold b > 0, we define the empirical risk as follows:

Rn(Dy) = > [lyi(b— Du(mixy))],,  (3.37)

1<i<j<n

n(n—1)

where [u]; = max(0,1 — u) is the hinge loss. This risk estimate is convex
and was used for instance by JIN, WANG, and ZHOU (2009) and CA0O, GUO,
and YING (2012). Our goal is the find the empirical risk minimizer among
our family of distance functions, i.e.:

M = argmin R, (Dpr). (3.38)
Mesd

In our experiments, we use the following two data sets:

— Synthetic data set: some synthetic data that we generated for illus-
tration. X is a mixture of 10 gaussians in R*? — each one correspond-
ing to a class — such that all gaussian means are contained in an sub-
space of dimension 15 and their shared covariance matrix is pro-
portional to identity with a variance factor such that some overlap is
observed. That is, the solution to the metric learning problem should
be proportional to the linear projection over the subspace containing
the gaussians means. Training and testing sets contain respectively
50,000 and 10,000 observations.

— MNIST data set: a handwritten digit classification data set which
has 10 classes and consists of 60,000 training images and 10,000 test
images. ? This data set has been used extensively to benchmark met-
ric learning (WEINBERGER and SAUL, 2009). As done by previous
authors, we reduce the dimension from 784 to 164 using PCA so as
to retain 95% of the variance, and normalize each sample to unit
norm.

Note that for both datasets, merely computing the empirical risk (3.37) for
a given M involves averaging over more than 10° pairs.

2. http://yann.lecun.com/exdb/mnist/
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(A) Synthetic dataset. (B) MNIST data set.

FIGURE 3.3: Test risk with respect to the sample size p of the

ERM when the risk is approximated using complete (blue)

or incomplete (red) U-statistics. Solid lines represent means

and dashed ones represent standard deviation. For the syn-

thetic data set, the green dotted line represent the perfor-
mance of the true risk minimizer.
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FIGURE 3.4: Average training time (in seconds) with respect
to the sample size p.

We conduct two types of experiment. In Section 3.5.1, we subsample
the data before learning and evaluate the performance of the ERM on the
subsample. In Section 3.5.1, we use Stochastic Gradient Descent to find the

ERM on the original sample, using subsamples at each iteration to estimate
the gradient.

One-Time Sampling

We compare two sampling schemes to approximate the empirical risk:
— Complete U-statistic: p indices are uniformly picked at random in
{1,...,n}. The empirical risk is approximated using any possible
pair formed by the p indices, that is @ pairs.
— Incomplete U-statistic: the empirical risk is approximated using
221 pairs picked uniformly at random in {1, ..., n}%
For each strategy, we use a projected gradient descent method in order
to solve (3.38), using several values of p and averaging the results over 50
random trials. As the testing sets are large, we evaluate the test risk on
100,000 randomly picked pairs.
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FIGURE 3.5: SGD results on the MNIST data set for various
mini-batch size m. Solid and thin lines respectively shows
the means and standard deviations over 50 runs.

Figure 3.3a shows the test risk of the ERM with respect to the sample
size p for both sampling strategies on the synthetic data set. As predicted
by our theoretical analysis, the incomplete U-statistic strategy achieves a
significantly smaller risk on average. For instance, it gets within 5% error
of the true risk minimizer for p = 50, while the complete U-statistic needs
p > 80 to reach the same performance. This represents twice more compu-
tational time, as shown in Figure 3.4a (as expected, the runtime increases
roughly quadratically with p). The incomplete U-statistic strategy also has
the advantage of having a much smaller variance between the runs, which
makes it more reliable. The same conclusions hold for the MNIST data set,
as can be seen in Figure 3.3b and Figure 3.4b.

Stochastic Gradient Descent

In this section, we focus on solving the ERM problem (3.38) using
Stochastic Gradient Descent and compare two approaches (analyzed in Sec-
tion 3.4) to construct a mini-batch at each iteration. The first strategy, SGD-
Complete, is to randomly draw (with replacement) a subsample and use
the complete U-statistic associated with the subsample as the gradient es-
timate. The second strategy, SGD-Incomplete (the one we promote in this
paper), consists in sampling an incomplete U-statistic with the same num-
ber of terms as in SGD-Complete.

For this experiment, we use the MNIST data set. We set the threshold in
(3.37) to b = 2 and the learning rate of SGD at iteration ¢ to 7, = 1/(not)
where 79 € {1,2.5,5,10,25,50}. To reduce computational cost, we only
project our solution onto the PSD cone at the end of the algorithm, follow-
ing the “one projection” principle used by CHECHIK et al. (2010). We try
several values m for the mini-batch size, namely m € {10, 28, 55, 105, 253}. 3
For each mini-batch size, we run SGD for 10,000 iterations and select the
learning rate parameter 7 that achieves the minimum risk on 100,000 pairs
randomly sampled from the training set. We then estimate the generaliza-
tion risk using 100,000 pairs randomly sampled from the test set.

For all mini-batch sizes, SGD-Incomplete achieves significantly better
test risk than SGD-Complete. Detailed results are shown in Figure 3.5 for
three mini-batch sizes, where we plot the evolution of the test risk with

3. For each m, we can construct a complete U-statistic from n’ samples with n'(n’ —
1)/2 = m terms.
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respect to the iteration number. * We make several comments. First, notice
that the best learning rate is often larger for SGD-Incomplete than for SGD-
Complete (m = 10 and m = 253). This confirms that gradient estimates
from the former strategy are generally more reliable. This is further sup-
ported by the fact that even though larger learning rates increase the vari-
ance of SGD, in these two cases SGD-Complete and SGD-Incomplete have
similar variance. On the other hand, for m = 55 the learning rate is the
same for both strategies. SGD-Incomplete again performs significantly bet-
ter on average and also has smaller variance. Lastly, as one should expect,
the gap between SGD-Complete and SGD-Incomplete reduces as the size of
the mini-batch increases. Note however that in practical implementations,
the relatively small mini-batch sizes (in the order of a few tens or hundreds)
are generally those which achieve the best error/time trade-off.

3.5.2 Model Selection in Clustering

In this section, we are interested in the clustering problem described
in Section 3.2.2. Specifically, let X3, ..., X, € R< be the set of points to
be clustered. Let the clustering risk associated with a partition P into M
groups Cy, . ..,Cys be:

M
’Wn@):n(il)z Y DX, X5) {(X;, X;) €Cr}. (3.39)

m=11<i<j<n

In this experiment, given a set of candidate partitions, we want to perform
model selection by picking the partition which minimizes the risk (3.39)
plus some term penalizing the complexity of the partition. When the num-
ber of points n is large, the complete risk is very expensive to compute.
Our strategy is to replace it with an incomplete approximation with much
fewer terms. Like in the approach theoretically investigated in Section 3.3.2,
the goal pursued is to show that using the incomplete approximation as
goodness-of-fit measure in a comlexity penalized criterion instead of the
complete version does not damage the selection, while reducing the compu-
tational cost (notice incidentally that the complexity penalty used in this ex-
ample is not of the same type as the structural VC dimension-based penalty
considered in Theorem 12).

The experimental setup is as follows. We used the forest cover type data
set,” which is popular to benchmark clustering algorithms (see for instance
KANUNGO et al., 2004). To be able to evaluate the complete risk, we work
with n = 5,000 points subsampled at random from the entire data set of
581,012 points in dimension 54. We then generated a hierarchical cluster-
ing of these points using agglomerative clustering with Ward'’s criterion
(WARD, 1963) as implemented in the scikit-learn Python library (PE-
DREGOSA et al., 2011). This defines n partitions Py, ..., P, where P, con-
sists of m clusters (P; corresponds to a single cluster containing all points,
while in P,, each point has its own cluster).

4. We point out that the figures look the same if we plot the runtime instead of the itera-
tion number. Indeed, the time spent on computing the gradients (which is the same for both
variants) largely dominates the time spent on the random draws.

5. https://archive.ics.uci.edu/ml/datasets/Covertype
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FIGURE 3.6: Clustering model selection results on the for-
est cover type data set. Figure 3.6a shows the risk (complete
and incomplete with B = 5,000 terms) for the first 20 parti-
tions, while Figure 3.6b shows the penalized risk for ¢ = 1.1.

For each partition size, we first compare the value of the complete risk
(3.39) with n(n — 1) = 24,995, 000 terms with that of an incomplete version
with only B = n = 5,000 pairs drawn at random. As shown in Figure 3.6a,
the incomplete U-statistic is a very accurate approximation of the complete
one, despite consisting of 5000 times less terms. It will thus lead to similar
results in model selection. To illustrate, we use a simple penalty term of
the form pen(P,,) = c - log(m) where c is a scaling constant. Figure 3.6b
shows that both selection criteria choose the same model Pg. Performing
this model selection over P1, . . ., P took about 66 seconds for the complete
U-statistic, compared to only 0.1 seconds for the incomplete version. ©

Finally, we generated 100 incomplete U-statistics with different random
seeds ; all of them correctly identified Ps as the best model. Using B =
5,000 pairs is thus sufficient to obtain reliable results with an incomplete
U-statistic for this data set. In contrast, the complete U-statistics based on a
subsample (leading to the same number of pairs) selected the correct model
in only 57% of cases.

6. The n x n distance matrix was precomputed before running the agglomerative cluster-
ing algorithm. The associated runtime is thus not taken into account in these timing results.
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3.6 Conclusion

In a wide variety of statistical learning problems, U-statistics are natu-
ral estimates of the risk measure one seeks to optimize. As the sizes of the
samples increase, the computation of such functionals involves summing a
rapidly exploding number of terms and becomes numerically unfeasible. In
this paper, we argue that for such problems, Empirical Risk Minimization can
be implemented using statistical counterparts of the risk based on much
less terms (picked randomly by means of sampling with replacement), re-
ferred to as incomplete U-statistics. Using a novel deviation inequality, we
have shown that this approximation scheme does not deteriorate the learn-
ing rates, even preserving fast rates in certain situations where they are
proved to occur. Furthermore, we have extended these results to U-statistics
based on different sampling schemes (Bernoulli sampling, sampling with-
out replacement) and shown how such functionals can be used for the pur-
pose of model selection and for implementing ERM iterative procedures
based on stochastic gradient descent. Beyond theoretical rate bounds, the
efficiency of the approach we promote is illustrated by several numerical
experiments.

In the next chapter, we focus on decentralized estimation of a U-statistic.
In decentralized setting, the U-statistic itself is not directly computable —
or at a prohibitive cost — so usual methods have to be adapted in order to
keep an acceptable convergence rate.
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3.7 Proofs

3.7.1 Proof of Proposition 2
Set N = min{|n1/di],...,|nk/dk]} and let

Vi (X0, X, x (L x()
_ 4 (1) (1) ) ")
= (Y x L x xi)
(1) 1 K) (K
FH (X0 Xi o X0 X))
T
+H(X(N_1)d1+1a ceey XNd1’ ceey X(N—l)dK+1’ ey XNdK)}7

forany H € H.Recall that the K-sample U-statistic Uy (H ) can be expressed
as

nyl---ng!
1 K 01€6n1,...,0K€6nK

Un(H)= — 3 Vi (X500 X090 0), (340)
where &,,, denotes the symmetric group of order m for any m > 1. This
representation as an average of sums of NV independent terms is known as
the (first) Hoeffding’s decomposition, see HOEFFDING, 1948. Then, using
Jensen’s inequality in particular, one may easily show that, for any nonde-
creasing convex function ¢ : Ry — R, we have:

E [qp <Sup \Un(H)N <E [@/; <sup VH(Xfl),...,X,(fIf))D] . (341)

HeH HeH

where we set H = H — p(H) for all H € H. Now, using standard sym-
metrization and randomization arguments (see GINE and ZINN, 1984 for
instance) and (3.41), we obtain that

E [w (sup \Un(H)D] <E[6 (2Ry)], (3.42)
HeH
where
I v (1) (1) (K) (K)
1 1 K K
Ry = sup > al (X(l_l)d1+1, XX deK),
en V1
is a Rademacher average based on the Rademacher chaos €1, ..., ey (inde-

pendent random symmetric sign variables), independent from the X l.(k)’s.
We now apply the bounded difference inequality (see MCDIARMID, 1989)
to the functional Ry, seen as a function of the ii.d. random variables
(q,X((ll_)l)le, e X X((ff)l)dKH, o X), 1 < 1< N: chang-
ing any of these random variables change the value of Ry by at most
My /N. One thus obtains from (3.42) with ¢(z) = exp(Az), where A > 0
is a parameter which shall be chosen later, that:

(3.43)

M3
4N '

E [exp ()\ ;1;% \Un(H)|>} <exp <2)\E[RN] +
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Applying Chernoff’s method, one then gets:

_ M2\
PJ sup |Un(H)| >np <exp [ =M+ 2XE[Ry] + —2— ) . (3.44)
HeH AN

Using the bound (see Eq. (6) in BOUCHERON, BOUSQUET, and LUGOsI, 2005
for instance)
2Vlog(1+ N)

N

and taking A = 2N (n — 2E[Ry])/M3, in (3.44), one finally establishes the
desired result.

E[RN] < My

3.7.2 Proof of Theorem 11

For convenience, we introduce the random sequence ( =
((Ck(I))ren)1<k<pB, where (i (1) is equal to 1 if the tuple I = (11, ..., Ik)
has been selected at the k-th draw and to 0 otherwise: the (;’s are i.i.d. ran-
dom vectors and, forall (k,I) € {1, ..., B}xA, ther.v.(;(]) has a Bernoulli
distribution with parameter 1/|A|. We also set X; = (Xg), e Xg:)) for
any I in A. Equipped with these notations, observe first that one may write:
VB >1,Vne N,

B
. 1
Up(H) — Un(H) = 3 3" 24(H),
k=1
where Zi.(H) = 3 ;4 (G(1) —1/|A|)H(X) forany (k,I) € {1, ..., B} xA.
It follows from the independence between the X;’s and the ((/)’s that, for
all H € H, conditioned upon the X;’s, the variables Z;(H), ..., Zp(H)

are independent, centered and almost-surely bounded by 2M+4; (notice that
> rea k() = 1for all k > 1). By virtue of Sauer’s lemma, since H is a VC
major class with finite VC dimension V, we have, for fixed X;’s:

{(H(X1))rea : H e H} < (1+[A)Y.
Hence, conditioned upon the X;’s, using the union bound and next Hoeffd-

ing’s inequality applied to the independent sequence Z(H), ..., Zg(H),
for all n > 0, we obtain that:

P(;lé% ﬁB(H)—Un(H)‘ > | (XI)IEA>

<¢( 52 a

2(1 + ]A|)Ve_B"2/ (2013),

> | XI)IeA>

Taking the expectation, this proves the first assertion of the theorem. Notice
that this can be formulated: for any ¢ € (0,1), we have with probability at
least 1 — ¢:

sup ﬁB(H)—Un(H)‘ < My, x \/ZVlog(1+|Ag)+log(2/5).

HeH
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Turning to the second part of the theorem, it straightforwardly results
from the first part combined with Proposition 2.

3.7.3 Proof of Corollary 1

Assertion (i) is a direct application of Assertion (ii) in Theorem 11 com-
bined with the bound p(Hp) — infgey p(H) < 2supyey [Up(H) — p(H)|.

Turning next to Assertion (i), observe that by triangle inequality we
have:

E| sup |ﬁB<H>—u<H>} SE[sup |ﬁB<H>—Un<H>|] (3.45)
HeHm, HeH,

| sup (W) — pta)].
HeHm
The same argument as that used in Theorem 11 (with ¢(u) = u for any
u > 0) yields a bound for the second term on the right hand side of Eq.
(3.45):
2Vlog(l+ N
B | sup [Un (1) — ()| < 200 2N
HeH N

The first term can be controlled by means of the following lemma, whose
proof can be found for instance in LUGOSI (2002, Lemmas 1.2 and 1.3).

Lemma 1. The following assertions hold true.
(i) Hoeffding’s lemma. Let Z be an integrable r.v. with mean zero such
that a < Z < b almost-surely. Then, we have: Vs > 0

Elexp(sZ)] < exp (s*(b— a)?/8)..

(ii)) Let M > 1and Z, ..., Zy be real valued random variables. Sup-
pose that there exists o > 0 such that Vs € R: E[exp(sZ;)] < es°o*/2
foralli € {1, ..., M}. Then, we have:

E [ max |Zl]] < o+/2log(2M). (3.47)

1<i<M
Assertion (i) shows that, since — My, < Zi,(H) < My, almost surely,

B

E [exp(szzk(H)) \ (XI)IEA] < eaBM
k=1

With o = MyvBand M = |[{H(X;): H € H}| < (1+]A])V, conditioning
upon (X7)ren, this result yields:

B
1 2(log2 + Vlog(1+ |A
BZZk(H)‘ | (XI)IGA] < M?—L\/ ( 5 A+ 1AD)
k=1
(3.48)
Integrating next over (X;)7ep and combining the resulting bound with
(3.45) and (3.46) leads to the inequality stated in (7).

E

sup
HeH

A bound for the expected value. For completeness, we point out that
the expected value of supyy [(1/B) Zszl Zi,(H)| can also be bounded by
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means of classical symmetrization and randomization devices. Consider-
ing a "ghost" i.i.d. sample ¢, ..., (j independent from ((X;)ea,(), dis-
tributed as ¢, Jensen’s inequality yields:

1 B
S
B
=E | sup {E %ZZH(Xa (G(1) = ¢(D)) |<XI>16A] H
HeH k=1 I€A
1 & )
<E Zg){ B};IGAH(XI) (Ce(I) — ¢ (D)) ]

Introducing next independent Rademacher variables ¢;, ..., e, indepen-
dent from ((X71)ren, ¢,¢’"), we have:

5| [ S X0 (60) - GO o]

HeRH T2 120 Ten

B
1
=E |sup E kaH(XI) (Ck(I) - CIQ(I))‘ ’ (XI)IeA]
HEH |2 1 Tea
1 B
< 2E | sup Zesz (X1)Ce(I (XI)IGA] .
HeH |23 21 Iea
We thus obtained:
1& 1 &
E |sup |= Zi(H)|| <2E |sup |= €L H(X7)C(I)]]| .
[HEHB; ) [HEHB; IeA Xoadd)

3.7.4 Proof of Theorem 12
We start with proving the intermediary result, stated below.
Lemma 2. Under the assumptions stipulated in Theorem 12, we have: Vm >

1,Ve >0,

IP{ sup |u(H) — ﬁB(H)\ > a+e} < exp (—3262/ (2(B+n)/\/12 m))-

HeHm
where
2V log(14+ N 2(log 2 mlog(1 4+ |A
QZQMMWV os(1 + >+¢ (o8 + Vi log(1+ r>>)'

Proof. This is a direct application of the bounded difference inequality (see
MCDIARMID, 1989) applied to the quantity supy ¢4, [1(H) —Up(H)|, which
is viewed here as a function of the (B + n) independent random variables
(Xfl), X,g;), €1, ..., €p) (jumps being bounded by 2Mf/B), combined
with Assertion (ii) of Corollary 1. O
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Let m > 1 and decompose the expected excess of risk of the rule picked
by means of the complexity regularized incomplete U-statistic criterion as
follows:

E [u(fpz) - 17| =E [0(Hp.2) - Unl(Hp,z) ~ pen(B, )]
+E ngfl {ﬁB(ﬁB,j) -|—pen(B,j)} - Min] ,

where we set i, = infgey, w(H). In order to bound the first term on the
right hand side of the equation above, observe that we have: Ve > 0,

L j

~
=
=
5
3
|
ﬁ?
5
&)
|
ae)
®
=4
&
2
\%
o)}

< P{ sup [u() ~ U ()|~ pen(B, j) > }

2
—B? (B+n)logy
< R — At =
< exp( 3B+ )M <6+2M o2

B2¢? B2¢?
< S 2 < S
—e"p< 2<B+n>M2>Z”j —2eXp( 2<B+n>M2>’

Jj=1

using successively the union bound and Lemma 2. Integrating over
[0, +00), we obtain that:

27(B + n)

= (3.49)

E[u(flp ) — Up(Hp ) — pen(B,m)| < M
Considering now the second term, notice that
E L'u;fl {ﬁB(ﬁBJ) + pen(B, j)} - M;’fn] <E [ﬁB(fIB,m) +pen(B,m) — m*n}
< pen(B,m).
Combining the bounds, we obtain that: Vm > 1,

2n(B + n)

E [u(ﬁam)} < py, +pen(B,m) + M 5

The oracle inequality is thus proved.

3.7.5 Proof of Theorem 13

We start with proving the following intermediary result, based on the
U-statistic version of the Bernstein exponential inequality.
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Lemma 3. Suppose that the assumptions of Theorem 13 are fulfilled. Then,
forall 6 € (0,1), we have with probability larger than 1 —0: Vr € R, Vn > 2,

0< Au(r) — A(r) + \/ 2ch(r) log(#R/5) | AoB#R/S)

n

Proof. The proof is a straightforward application of Theorem A on p. 201 in
SERFLING, 1980, combined with the union bound and Assumption 1. ]

The same argument as that used to prove Assertion (i) in Theorem 11
(namely, freezing the X;’s, applying Hoeffding inequality and the union
bound) shows that, for all 6 € (0, 1), we have with probability at least 1 — ¢:

Vr € R,
~ M +log(M/é
0 S UB(QT) - Un(QT) =+ \/B%(/)

foralln > 2and B > 1 (observe that My < 1 in this case). Now, combining
this bound with the previous one and using the union bound, one gets that,
forall § € (0,1), we have with probability larger than 1 — §: Vr € R, Vn > 2,
VB >1,

0 < Tala)—Ar)+ \/QCA(r)a1Zg(2M/5)+4log(32nM/5)+ M + loi(QM/é)'

Observing that, Ug(gz,) < 0 by definition, we thus have with probability
atleast 1 — o:

AFg) < \/ch(?B)a:Log(zM/é)+410g(32nM/5)+ \/M+10§2M/6)

Choosing finally B = O(n?/(2=®)), the desired result is obtained by solving
the inequality above for A(7p).

3.7.6 Proof of Theorem 14

As shown by the following lemma, which is a slight modification of
Lemma 1 in JANSON, 1984, the deviation between the incomplete U-statistic
and its complete version is of order Op)(1/v/B) for both sampling schemes.

Lemma 4. Suppose that the assumptions of 14 are fulfilled. Then, we have:
VH € H,
E[(Tar(H) - Un(H))* | (X1)1en] < 2M3/B.

Proof. Observe first that, in both cases (sampling without replacement and
Bernoulli sampling), we have: VI # J in A,

[ )]s el (a0 ) (- )]
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Hence, as (A(I))ea and (X)rea are independent by assumption, we have:

BzE[(UHT(H) - Un(H))2 | (XI)IEA}

(IGA( “) e ) X”“A]

L (CLN)
*M”I;E[(A n-) (20 -]
< 2BMj,.

=K

O]

Consider first the case of Bernoulli sampling. By virtue of Bernstein in-
equality applied to the independent variables (A(/) — B/|A|)H (X[) condi-
tioned upon (Xj);cp, we have: VH € H, Vt > 0,

"

Hence, combining this bound and the union bound, we obtain that: V¢ > 0,

+2

>t (XI>IEA} < e ABMEFRMyL/3

> (A(I) — B/IA)H(X1)

IeA

Bt?

F { sup |Uprr (H) = Ungan| >t | <XI>IGA} <21+ [A])Ve G,
HeH

Solving

Bt?
0= 21+ A" exp <_4M2 + QMHt/3>
H

yields the desired bound.

Consider next the case of the sampling without replacement scheme.
Using the exponential inequality tailored to this situation proved in SER-
FLING, 1974 (see Corollary 1.1 therein), we obtain: VH € H, Vt > 0,

1 Bt?
— < - .
]P’{B >t‘(X])[EA}_2€Xp( 2M%>

The proof can be then ended using the union bound, just like above.

> (A(I) — B/IA)H(X)

IeA

3.7.7 Proof of Proposition 4

For simplicity, we focus on one sample U-statistics of degree two (K =
1, d; = 2) since the argument easily extends to the general case. Let U,,(H)
be a non-degenerate U-statistic of degree two:

Un(H) = n—l ZH Ti, Tj).
z<j
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In order to express the variance of U,(H) based on its second Hoeffd-
ing decomposition (see Section 3.2.1), we first introduce more notations:
V(z,2') € A2,
def
Hy(z) 2 E[H(z, X)] - u(H)

and

Hy(z,2') e H(z,2') — p(H) — Hy(z) — Hi(2").

Equipped with these notations, the (orthogonal) Hoeffding /Hajek decom-
position of Uy, (H ) can be written as

Un(H) = M(H) + 2Tn(H) + Wn(H)v

involving centered and decorrelated random variables given by

T.(H) = " M),
W(H) = n(n2_1) 3" Hala, ).

Recall that the U-statistic W, (H) is said to be degenerate, since
E[H2(z,X)] = 0 for all z € X). Based on this representation and setting
0? = Var[H;(X)] and 02 = Var[H>(X, X')], the variance of U, (H) is given
by

2 2

Var[U, (H)| = (3.50)

n  nn-1)
As already pointed out in Section 3.3.1, the variance of the incomplete U-
statistic built by sampling with replacement is

Var[Ug(H)] = Var[U,(H)] + é <1 - n(n2_1)> Var[H (X, X")]

1 2
Varlt (1) + 5 (1 gy ) (2o 4B G5

Take B = n/(n' — 1) for n’ < n. It follows from (3.50) and (3.51) that in
the asymptotic framework (3.4), the quantities Var[U,,/(H)] and Var[Up(H )]
are of the order O(1/n’) and O(1/n'?) respectively asn’ — +oo. Hence these
convergence rates hold for g,/ (6) and g () respectively.
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4.1 Introduction

Decentralized computation and estimation have many applications in
sensor and peer-to-peer networks as well as for extracting knowledge from
massive information graphs such as interlinked Web documents and on-
line social media. Algorithms running on such networks must often oper-
ate under tight constraints: the nodes forming the network cannot rely on
a centralized entity for communication and synchronization, without being
aware of the global network topology and/or have limited resources (com-
putational power, memory, energy). Gossip algorithms TSITSIKLIS, 1984;
SHAH, 2009; DIMAKIS et al., 2010, where each node exchanges information
with at most one of its neighbors at a time, have emerged as a simple yet
powerful technique for distributed computation in such settings. Given a
data observation on each node, gossip algorithms can be used to compute
averages or sums of functions of the data that are separable across observa-
tions (see for example KEMPE, DOBRA, and GEHRKE, 2003; BOYD et al., 2006;
MOSK-AOYAMA and SHAH, 2008; KOWALCZYK and VLASSIS, 2004; KARP
et al., 2000 and references therein). Unfortunately, these algorithms cannot
be used to efficiently compute quantities that take the form of an average
over pairs of observations, also known as U-statistics LEE, 1990b. Among clas-
sical U-statistics used in machine learning and data mining, one can men-
tion, among others: the sample variance, the Area Under the Curve (AUC)
of a classifier on distributed data, the Gini mean difference, the Kendall tau
rank correlation coefficient, the within-cluster point scatter and several sta-
tistical hypothesis test statistics such as Wilcoxon Mann-Whitney MANN
and WHITNEY, 1947.

In this chapter, we propose randomized synchronous and asynchronous
gossip algorithms to efficiently compute a U-statistic, in which each node
maintains a local estimate of the quantity of interest throughout the exe-
cution of the algorithm. Our methods rely on two types of iterative infor-
mation exchange in the network: propagation of local observations across
the network, and averaging of local estimates. We show that the local esti-
mates generated by our approach converge in expectation to the value of
the U-statistic at rates of O(1/t) and O(logt/t) for the synchronous and
asynchronous versions respectively, where ¢ is the number of iterations.
These convergence bounds feature data-dependent terms that reflect the
hardness of the estimation problem, and network-dependent terms related
to the spectral gap of the network graph CHUNG, 1997, showing that our
algorithms are faster on well-connected networks. The proofs rely on an
original reformulation of the problem using “phantom nodes”, i.e., on ad-
ditional nodes that account for data propagation in the network. Our results
largely improve upon those presented in PELCKMANS and SUYKENS, 2009:
in particular, we achieve faster convergence together with lower memory
and communication costs. Experiments conducted on AUC and within-
cluster point scatter estimation using real data confirm the superiority of
our approach.

The rest of this chapter is organized as follows. Section 4.2 introduces
the problem of interest as well as relevant notation. Section 4.3 provides a
brief review of the related work in gossip algorithms. We then describe our
approach along with the convergence analysis in Section 4.4, both in syn-
chronous and asynchronous settings. Section 4.5 presents numerical results.
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Finally, concluding remarks are presented in Section 4.6.
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4.2 Background

4.2.1 Definitions and Notations

For any integer p > 0, we denote by [p| the set {1,...,p} and by |C|
the cardinality of any finite set C. We represent a network of size n > 0
as an undirected graph G = ([n],£), where [n] is the set of vertices and
& C [n] x [n] the set of edges. We denote by AY the adjacency matrix related
to the graph G, that is for all (4, 5) € [n]?, [AY];; = 1 if and only if (4,) € .
For any node i € [n], we denote its degree by d; = |{j : (i,7) € £}|. We
denote by LY the graph Laplacian of G, defined by LY = DY — AY where
DY = diag(dy, ..., dy) is the matrix of degrees. When it is clear from context,
we will drop the G exponent. A graph G = ([n], £) is said to be connected if
forall (i, j) € [n]? there exists a path connecting i and j; it is bipartite if there
exist S, 7 C [n]suchthat SUT =[n],SNT =0and £ C (SxT)U(T xS).

A matrix M € R™ " is nonnegative (resp. positive) if and only if for
all (i,5) € [n)% [M];; > 0, (resp. [M];; > 0). We write M > 0 (resp.
M > 0) when this holds. The transpose of M is denoted by M". A ma-
trix P € R™*" is stochastic if and only if P > 0 and P1,, = 1,, where
1, = (1,...,1)T € R"™ The matrix P € R™ " is bi-stochastic if and only
if P and P are stochastic. We denote by I,, the identity matrix in R"*",
(e1,...,ey) the standard basis in R", 1 xy the indicator function of an event
X and || - || the usual ¢ norm.

4.2.2 Problem Statement

Let X be an input space and (xy,...,x,) € X" a sample of n > 2 points
in that space. We assume X’ C R? for some d > 0 throughout the paper, but
our results straightforwardly extend to the more general setting. We denote
as X = (X1,...,%,) ! the design matrix. Let h : X x X — R be a measurable
function, symmetric in its two arguments and with h(x,x) = 0, Vx € X.
We consider the problem of estimating the following quantity, known as a
degree two U-statistic LEE, 1990b:

Un(h) = % > h(xi,x;). (4.1)
ij=1

Notice that this is slightly abusive insofar as one generally defines the U-
statistic as the unbiased estimator of the parameter E[h (X, X7)], differing
from (4.1) by a factor of n/(n — 1) (and their difference is of order Op(n=3/?)
provided that i (X1, X») is square integrable). When clear from context, we
will use the notation U,,. We define H € R™*" such that, for any 1 <k,l <mn,

H]x := h(xg, %) (4.2)

Finally, we define h = H1,,/n the vector of partial sums.

In this chapter, we will illustrate the interest of U-statistics on two appli-
cations, among many others. The first one is the within-cluster point scatter
CLEMENCON, 2011, which measures the clustering quality of a partition P
of X as the average distance between points in each cell C € P. It is of the
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form (4.1) with

hp(x, %) =[x =X/ - ) Lypexnece)- (4.3)
ceP

This criterion measures the average distance between points of each
cell. Since the goal of clustering is to group close points together, the
lower the within-cluster point scatter, the better the partition. We also
study the AUC measure HANLEY and MCNEIL, 1982. For a given sample
(x1,01)y .-, (Xp, €n) on X x {—1,+1}, the AUC measure of a linear classifier
6 € R is given by:

Z (1-— Eiﬁj)ﬂ{gi(eTxi)>—€j(9TX:‘)}

AUC(g) = 120I=n . (4.4)
4> L=y | | D L=
1<i<n 1<i<n

This score is the probability for a classifier to rank a positive observation
higher than a negative one.

We focus here on the decentralized setting, where the data sample is par-
titioned across a set of nodes in a network. We are interested in estimating
(4.1) efficiently using a gossip algorithm.
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4.3 Related Work

4.3.1 Sample mean estimation

Gossip algorithms have been extensively studied in the context of de-
centralized averaging in networks, where the goal is to compute the aver-
age of n real vectors (X = R%):

I R 1T
=Y %=X, 4.5
) nz‘—1X n (*9)

One of the earliest work on this canonical problem is due to TSITSIKLIS,
1984, but more efficient algorithms have recently been proposed, see for in-
stance KEMPE, DOBRA, and GEHRKE, 2003; BOYD et al., 2006. Of particular
interest to us is the work of BOYD et al., 2006, which introduces a random-
ized gossip algorithm for computing the empirical mean (4.5) in a context
where nodes wake up asynchronously and simply average their local esti-
mate with that of a randomly chosen neighbor. The communication proba-
bilities are given by a stochastic matrix P, where [P];; is the probability that
anode i selects neighbor j at a given iteration. As long as the network graph
is connected and non-bipartite, the local estimates converge to (4.5) at a rate
O(e™") where the constant ¢ can be tied to the spectral gap of the network
graph CHUNG, 1997, showing faster convergence for well-connected net-
works. ! Such algorithms can be extended to compute other functions such
as maxima and minima, or sums of the form > | g(x;) for some function
g : X — R (as done for instance in MOSK-AOYAMA and SHAH, 2008). Some
work has also gone into developing faster gossip algorithms for poorly con-
nected networks, assuming that nodes know their (partial) geographic lo-
cation DIMAKIS, SARWATE, and WAINWRIGHT, 2008; L1, DAI, and ZHANG,
2010. For a detailed account of the literature on gossip algorithms, we refer
the reader to SHAH, 2009; DIMAKIS et al., 2010.

4.3.2 U-statistics estimation

Existing gossip algorithms for estimating sample mean cannot be ex-
tended to efficiently compute (4.1) as it depends on pairs of observations.
To the best of our knowledge, this problem has only been investigated in
PELCKMANS and SUYKENS, 2009. In this paper, the authors tackle two dis-
tinct problems. First, their algorithm U1-GOssSIP, described in Algorithm 9,
allows each node i € [n] to estimate the partial U-statistic:

5 (i 1 &
Ul .= - > h(xi x;). (4.6)
j=1

The spirit of the algorithm is a bit different from the standard gossip case.
For each node k € [n], an estimator zj(t) is initialized to zero and an auxil-
iary observation yy(t) is initialized to xj. At each iteration ¢, an edge (i, j)
is picked uniformly at random over £ ? and the corresponding nodes swap

1. For the sake of completeness, we provide an analysis of this algorithm in the last
section of this chapter.

2. This accounts for modelling the uncertainty in communication capabilities over the
network. See Appendix for details on clock modelling.
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Algorithm 9 U1-GOsSIP algorithm for computing (4.6)

Require: Each node £ holds observation xy,
1: Each node initializes its auxiliary observation y;, + xj,

: Each node initializes its estimator z < 0
: fort=1,2,...do

Draw (4, j) uniformly at random from &

Nodes i and j swap their auxiliary observations: y; <+ y;

fork=1,...,ndo

2k < %Zk + %h(xk,yk)

end for
end for
return Each node & has z;

D A T

—_
<

their auxiliary observations:

{Yi(t) = y;(t=1),
yi(t) = yi(t—1).

Then, every node updates its estimator using its pair of observations:

2 (t) = -l

2t~ 1) + h(xi yu(t), Vb € [n].

This method can be shown to converge at a O(1/t) rate, as stated by the
theorem below.

Theorem 15. Let us assume that G = ([n], ) is connected and non bipartite.
Then, for z(t) = (21(t), ..., 2,(t)) " defined in Algorithm 9, we have that for all
k € [n]:

1 ¢ -

' S — k)
t£+mooE[zk(t)] = lz; h(xg,x;) = Uy

Moreover, for any t > 0 and any k € [n],

- 1

El(0)] - U] < = [Hex,

267171

where ¢ = e >0 and f3,,—1 is the second smallest eigenvalue of L.
Proof. See Section 4.7. O

PELCKMANS and SUYKENS, 2009 also tackles the complete U-statistic
estimation. Their algorithm, coined U2-GOSSIP, also achieves O(1/t) con-
vergence rate. Each node stores two auxiliary observations that are propa-
gated using independent random walks. These two auxiliary observations
will then be used for estimating the U-statistic — see Algorithm 10 for de-
tails.

The following theorem states an explicit upper bound on the expected
estimate error.
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Algorithm 10 U2-GOsSIP PELCKMANS and SUYKENS, 2009

Require: Each node & holds observation xy,

1: Each node initializes y,(gl) — X, y,(f) — Xy, 2 0

2: fort=1,2,...do

3: forp=1,...,ndo

2 e+ vy

end for
Draw (i, j) uniformly at random from £
Nodes i and j swap their first auxiliary observations: ygl) “ y§.1)
Draw (k,[) uniformly at random from &

9:  Nodes k and [ swap their second auxiliary observations: y,(f) > yl(2)

10: end for
11: return Each node k has z,

Theorem 16. Let us assume that G is connected and non bipartite. Then, for
z(t) = (z1(t), - .., 2n(t)) defined in Algorithm 10, we have that for all k € [n]:

Jim E[zk(t)]:% S hixix) = U,

t—+o00
1<i,j<n

Moreover, for any t > 0,

N 1 1= - 1 =

H]E[z(t)] U1 < \éﬁ ( : Hh — U1+ = - HH —h1)l ) ,
C C

where ¢ = %, c =4c <1 _ 8 |"g‘|1) and [3y,—1 is the second smallest eigenvalue
of the graph Laplacian L.
Proof. See Section 4.7. O

The O(1/t) convergence rate is satisfying in the sense that it matches
the partial estimation rate. This algorithm however has several draw-
backs. First, each node must store two auxiliary observations, and two
pairs of nodes must exchange an observation at each iteration. For high-
dimensional problems (large d), this leads to a significant memory and com-
munication load. Second, the algorithm is not asynchronous as every node
must update its estimate at each iteration. Consequently, nodes must have
access to a global clock, which is often unrealistic in practice.

In the next section, we introduce new synchronous and asynchronous
algorithms with faster convergence as well as smaller memory and com-
munication cost per iteration.
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Algorithm 11 GOSTA-SYNC: a synchronous gossip algorithm for comput-
ing a U-statistic

Require: Each node & holds observation xj,
1: Eachnode k initializes its auxiliary observation y; = x;, and its estimate z;, = 0

: fort=1,2,...do
forp=1,...,
Set z, + =

2

3 do
4

5. end for

6.

7

Zp + %H(XIWYP)

Draw (4, j) uniformly at random from &
: Setzi,zj %%(214*2])
8:  Swap auxiliary observations of nodes i and j: y; <> y;
9: end for
10: return Each node & has z;

4.4 GOSTA Algorithms

In this section, we introduce gossip algorithms for computing (4.1). Our

approach is based on the observation that U, = n~! P Unl), with UV
defined in (4.6).The goal is thus similar to the usual dlstrlbuted averag-

ing problem (4.5), with the key difference that each local value U\ is itself
an average depending on the entire data sample. Consequently, our algo-
rithms will combine two steps at each iteration: a data propagation step to
allow each node i to estimate U, and an averaging step to ensure conver-
gence to the desired value U,,. We first present the algorithm and its analysis
for the (simpler) synchronous setting in Section 4.4.1, before introducing an

asynchronous version (Section 4.4.2).

4.4.1 Synchronous Setting

In the synchronous setting, we assume that the nodes have access to a
global clock so that they can all update their estimate at each time instance.
We stress that the nodes need not to be aware of the global network topol-
ogy as they will only interact with their direct neighbors in the graph.

Let us denote by z(t) the (local) estimate of Un by node £ at iteration
t. In order to propagate data across the network, each node k£ maintains an
auxiliary observation yy, initialized to xj. Our algorithm, coined GOSTA,
goes as follows. At each iteration, each node k updates its local estimate by
taking the running average of z;(t) and h(xy,yx). Then, an edge of the net-
work is drawn uniformly at random, and the corresponding pair of nodes
average their local estimates and swap their auxiliary observations. The ob-
servations are thus each performing a random walk (albeit coupled) on the
network graph. The full procedure is described in Algorithm 5.

In order to prove the convergence of Algorithm 5, we consider an
equivalent reformulation of the problem which allows us to model the
data propagation and the averaging steps separately. Specifically, for each
k € [n], we define a phantom G, = (Vk, &) of the original network G, with

Vi = {vl( 1<i<n}and & = {( , ](k));(i,j) € &}. We then create a
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(A) Original graph G. (B) New graph G.

FIGURE 4.1: Comparison of original network and “phan-
tom network”.

new graph G = (V, ) where each node k € [n] is connected to its counter-

(k)

part v, € Vi

The construction of G is illustrated in Figure 4.1. In this new graph, the
nodes 1,...,n from the original network will respectively hold the esti-
mates z1(t), ..., zn(t) as described above. The role of each Gy is to simulate
the data propagation in the original graph G. For 1 < k,l <n, vl(k) € V¥ ini-
tially holds the value h(xy,x;). At each iteration, we draw a random edge

) and v swap their value for all k£ € [n]. To update

i J
its estimate, each node k will use the current value at v,gk).

We can now represent the system state at iteration ¢ by a vector s(t) =
(s1(t)T,s2(t)T)T € R*"° . The first n coefficients, s, (t), are associated with
nodes in [n] and correspond to the estimate vector z(t) = (21(t), ..., za(t)) .
The last n? coefficients, so(t), are associated with nodes in (Vj)1<x<, and
represent the data propagation in the network. Their initial value is set to
s2(0) = (eJH,...,e,H)" so that for any (k,l) € [n]?, node vl(k) initially
stores the value h(xg, x;).

(] U (g Vi)
= EU(U &) U{(k o)k € [n]}

Oy <t

(4,7) of G and nodes v

Remark 5. The “phantom network” G is of size O(n?), but we stress the
fact that it is used solely as a tool for the convergence analysis: Algorithm 5
operates on the original graph G.

The transition matrix of this system accounts for three events: the av-
eraging step (the action of G on itself), the data propagation (the action of Gy,
on itself for all k& € [n]) and the estimate update (the action of G5, on node k
for all k& € [n]). At a given step ¢t > 0, we are interested in characterizing
the transition matrix M(t) such that E[s(t + 1)] = M(¢)E[s(t)]. For the sake
of clarity, we write M(¢) as an upper block-triangular (n + n?) x (n + n?)
matrix:

M(t) = <M5<t) ng» : (4.7)
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with M (t) € R™", My(t) € R™*" and Ms(t) € R"*"*. The bottom left
part is necessarily 0, because G does not influence any Gj. The upper left
M} (t) block corresponds to the averaging step; therefore, for any ¢ > 0, we

have: . .
t—
Mi(t)=— = > (I.—s(ei—ej)(ei—e;)' ).
t & 4 2
=
Using the definition of a graph Laplacian, one has:
1 1 - L
(i.5)e€

Furthermore, Mj(t) is a block diagonal matrix corresponding to the obser-
vations being propagated, and is defined as follows:

e/ 0 0

110 :
M2<t):¥ , ,

0 0 e

Since t-Mj(t) does not depend on ¢, we define B := Mj(1),so forany ¢ > 1,
Mo;(t) = B/t. Finally, M3(t) represents the estimate update for each node k
and can be written for any ¢ > 1 as follows:

M;(t) = (; > (In — (ei —e;)(e; — ej)T)) @I, = (In - |28L|) ® I,

(i,5)€€

where ® is the Kronecker product. Since M3(¢) does not depend on ¢, we
define C := M3(1).

We can now describe the expected state evolution. At iteration ¢ = 1,
one has:

)] = MOEBO)] = M0 = (3 0] (,0) = (oo )
(4.9)

Using recursion, we can write:

E[s(t)] = M(t : 0)s(0)

((1/t) Y (T — L/ISI)”BC“S2(0)>
C's,(0) ‘

Therefore, in order to prove the convergence of Algorithm 5, one needs to
show that

t
. 1 t—s s—1 ]
lim n Sgl(In —L/|E])"°BC* 's2(0) = Up1,.

We state this precisely in the next theorem.

Theorem 17. Let G = ([n],€) be a connected and non-bipartite graph,
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(X1,...,%,) € R q data sample and (z(t)) the sequence of estimates gener-
ated by Algorithm 5. For all k € [n], we have:

lim E[zk(t)] = % Z h(Xi,Xj) = Un (4.10)

t—4o00 —
1<i,j<n

Moreover, for any t > 0,

~ 1 11— o
|E20)] - ]| < = B - T
C

+ <2 n ect> HH “nT[,
ct

where ¢ = ¢(G) = Pn—1/|E| and S_1 is the second smallest eigenvalue of the

graph Laplacian L.

In order to prove this theorem, our main goal is to characterize the be-
havior of s;(t), as it corresponds to the estimates z(t). As for the standard
gossip averaging, our proof relies on the study of eigenvalues and eigen-
vectors of the transition matrix M(¢). This can be done using the following
lemma.

Lemma 5. Let G = ([n], £) be a connected and non bipartite graph. Then for
any a > 1,
2/871—1
alg|”
where 3,1 is the second smallest eigenvalue of the graph Laplacian L and

A1 (@), Aa(«) are respectively the largest and the second largest eigenvalues
of the following symmetric matrix

1= /\1(0&) > )\2(0[) =1-

2L
I, — ——.
alé|

Proof. See Section 4.7.1

We are now ready to show the results of Theorem 17.

Proof of Theorem 17. For av > 1, let us define D, := diag(Ai(«), ..., A\n(@))
where (\;(a))1<i<p are the eigenvalues — sorted in decreasing order — of
I, — 2L/(«|&]). For any t > 1, My(t) is a real-valued, symmetric matrix,
therefore there exists an orthogonal matrix P € R"*" such that

t—1 L t—1
Nu@):t(L,—Mﬂ>::tP[bPT, (4.11)

and each column p; of P is an eigenvector of M (¢), associated to the eigen-
value \;(2). Similarly, using the fact that C = (I,, — 2L/|£|) ® I,,, one can

write
C=P,D,P/,



4.4. GOSTA Algorithms 95

where Py = P ® I,. The expected value of s;(¢) can then be rewritten:

t

E[s; ()] = %Z <In — |I(;|> B BC* !s,(0) (4.12)

s=1

t
1
-_P <Z DQSPTBP1D§1> P/ s5(0).

¢ s=1

Our objective is to extract the value U,, from the expression (4.12) by sepa-
rating A; (1) and A\;(2) from other eigenvalues. Let Q = (p1,0,...,0) be the
part of P associated to \1(2) and let R = P — Q be its counterpart. We can
decompose E[s;(t)] as follows

E[s1(t)] = L1(t) + La(t) + La(t) + La(t),

where:
Li(t) % 2% PQt*SPIBPlQl s2(0),
Ly(t) = ?Z?  PR! SPTBPlQlPll s%( ),
Ly(t) = X', PQ"*P'BPiR; 'P{sy(0),
Lit) = 1Y PR'"*P'BPR;" 1P1 s2(0),

and Q1 = Q®I,, Ry = R®L,. We will now show that for any ¢ > 0, L1(¢)
is actually U,,. We have:

1
PQP' = ;1,11;.

Similarly, we have:
1
PlQlPI = (PQPT) ® I, = *(1711;5) @ In.
n

Finally, we can write:

Li(t) = PQP 'BP;Q,P] s5(0)

1
= —51.1,B ((1n1;[) ® In) $5(0)

1
- ﬁlnlz(lz ® I,,)s2(0)
1
= ﬁ1n1;2sQ(0)
=U,1,.

Let us now focus on the other terms. For ¢ > 0, we have:

ILa(8)]| < PRt_SPTBPlQlPlTsz(O)H

©
Il
-

| =
M“

PR~ SPTB< (1.1)) ® 1, ) (O)H

©
Il
—

Il Il
~ | = S
- 10~

PR/ P’ (:Ll,f ® In> sQ(O)H :

©
Il
—



96 Chapter 4. Extending Gossip Algorithms to Estimation of U -statistics

One has:

H <:L17I ® In> s2(0)

Therefore, we obtain:

2 —
= |[h*.

2 n 2
1 1
=> (12He7;> :HHln
=1 n n

¢
1 _
Lo(t)] < = HPRt_SPThH .
LECTEFDY
By definition, for any t > s > 0, PR!~*P 1, = 0. Therefore, one has:

t
1 _
L) < ) HPRt—SPThH
s=1

t
1 e
< D)~ IR = OaLl
s=1
1 1 —
<> —— |h-U,l,|,

since 1, h = U,. Similarly, one has:

1

HLS(t)H < - m

&+ | =

using PR1P"1,; = 0. Let us now focus on the final term in the decompo-
sition:

t
1
IOIEEDS HPRt_SPTBPlR‘TPlTSQ(O)H
s=1

t
1 t—sp T spT 1 T
< tszl PR!“*P'BP,R;P <S2(0)—n1nsQ(0)
t
1 _
< - A2(2) 75 A2(1)° | | H — 11, .
_t(;( 2(2)) 2())|| ol

Lemma 5 indicates that A\2(2) > A2(1), so
Ly(t) < (A2(2))|H - h1, .

Using Lemma 5 and above inequalities, one can finally write:

1) = Ot < L2l + ITa(l] + [La(0)]
< SR = Outal + (2 4 et ) H —R1)|
= ¢ nin ot n il
with ¢ = 1 — A\y(2), which concludes the proof. O

Theorem 7 shows that the local estimates generated by Algorithm 5 con-
verge to U, at a rate O(1/t). Furthermore, the constants reveal the rate de-
pendency on the particular problem instance. Indeed, the two norm terms
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are data-dependent and quantify the difficulty of the estimation problem it-
self through a dispersion measure. In contrast, ¢(G) is a network-dependent
term since 1 — \2(2) = S,—1/|€|, where 3,,_1 is the second smallest eigen-
value of the graph Laplacian L. The value 3,1 is also known as the spectral
gap of G and graphs with a larger spectral gap typically have better connec-
tivity CHUNG, 1997. This will be illustrated in Section 4.5.

Comparison to U2-GOSSIP. To estimate Un, U2-G0ossIP — introduced in
PELCKMANS and SUYKENS, 2009 — does not use averaging. Instead, each

node £ requires two auxiliary observations y,(:) and y,(f) which are both
initialized to xj, as details in Section 4.3. U2-GOSSIP has several draw-
backs compared to GOSTA: it requires initiating communication between
two pairs of nodes at each iteration, and the amount of communication and
memory required is higher (especially when data is high-dimensional). Fur-
thermore, applying our convergence analysis to U2-GOSSIP, we obtain the
following refined rate:

L Vn ( 2 1
(4.13)

1—\2

|ELz(6) - Tatn

+ HH—HlZ

t\1-2\

where 1 — X := 2¢(G). The advantage of propagating two observations in
U2-GOSSIP is seen in the 1/(1 — A2) term, however the absence of averaging
leads to an overall y/n factor. Intuitively, this is because nodes do not benefit
from each other’s estimates. In practice, \ is close to 1 for reasonably-sized
networks (for instance, A = 1 — 2/n for the complete graph), so the square
term does not provide much gain and the \/n factor dominates in (4.13). We
thus expect U2-GOSSIP to converge slower than GOSTA, which is confirmed
by the numerical results presented in Section 4.5.

4.4.2 Asynchronous Setting

In practical settings, nodes may not have access to a global clock to syn-
chronize the updates. In this section, we remove the global clock assump-
tion and propose a fully asynchronous algorithm where each node has a
local clock, ticking at a rate 1 Poisson process. Yet, local clocks are i.i.d. so
one can use an equivalent model with a global clock ticking at a rate n Pois-
son process and a random edge draw at each iteration, as in synchronous
setting (one may refer to BOYD et al., 2006 for more details on clock mod-
eling). However, at a given iteration, the estimate update step now only
involves the selected pair of nodes. Therefore, the nodes need to maintain
an estimate of the current iteration number to ensure convergence to an
unbiased estimate of U,(H). Hence for all k € [n], let p € [0, 1] denote
the probability of node £ being picked at any iteration. With our assump-
tion that nodes activate with a uniform distribution over &, p, = 2d;/|&|.
Moreover, the number of times a node % has been selected at a given itera-
tion ¢ > 0 follows a binomial distribution with parameters ¢ and p;,. Let us
define my(t) such that my(0) = 0 and for ¢t > 0:

mg(t—1) + ﬁ if k is picked at iteration t,

414
my(t —1) otherwise. @14

mi(t) = {
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Algorithm 12 GOSTA-ASYNC: an asynchronous gossip algorithm for com-
puting a U-statistic

Require: Each node & holds observation x;, and wy, = 2dy/|€|
1: Each node k initializes y = x, 2z = 0and my = 0
2: fort=1,2,...do
3:  Draw (¢, j) uniformly at random from &

4 Setmi<—mi+1/wiandmj<—mj—|—1/wj
5:  Setz;,zj ¢ 3 (zl + z;)
6:  Setz < (1 — ——)z + wlm h(x:,¥i)
70 Setz; + (1— ﬁ)z] + ﬁh(xjv}’j)
8:  Swap auxiliary observations of nodes i and j: y; <> y;
9: end for
10: return z = (21, ..., 2,)

For any k£ € [n] and any ¢t > 0, one has E[my(t)] = t x pp x 1/p = t.
Therefore, given that every node knows its degree and the total number of
edges in the network, the iteration estimates are unbiased. We can now give
an asynchronous version of GOSTA, as stated in Algorithm 12.

To show that local estimates converge to Un, we use a similar model as
in the synchronous setting. The time dependency of the transition matrix is
more complex ; so is the upper bound.

Theorem 18. Let G = ([n], £) be a connected and non bipartite graph, X € R"*4
a design matrix and (z(t)) the sequence of estimates generated by Algorithm 12.
For all k € [n], we have:

lim E[z(t) Z h(x;,%;) =U,.

t—+o00
1<z,]<n
Moreover, there exists a constant ¢/(G) > 0 such that, for any t > 1,

logt

HE[z(t)] <d(G) —|H].

Sketch of proof. Since updates are weighted differently, the expected asyn-
chronous transition matrix is different from the synchronous one. More
specifically, the propagation part M3(t) is unaltered but M, (t) and My (t)
must but analyzed more carefully. Now, only the selected nodes update
their estimators from their associated phantom graph. Therefore, we have:

1 T
ﬂ{le(i,j)}ml(t)mel 0 0
M, (t) = 1 > E 0
€] (i, 0
i,j)€E
0 0

1
1 {ne(i,j)} M (t)pn M
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Since for any i € [n], m;(t) is an unbiased estimator of ¢, this can be rewritten
as follows:

e/ 0 0
110

My(t) = -
0 0 el

_B

==

Similarly for M; (¢):
L 1 _
M, () :In—m—ﬂ(ln—kD 'A).

Using this transition matrix, we can now write the expected values of the
vector s(t) defined previously. For any ¢ > 0, one has:

¢

Efs(t)] = E {sl(t)] B ; (My(t)...Mi(s+1)) 303_152(0)
CtSQ(O)
As in the synchronous setting, our proof rely on the eigenvalues of M (¢).
However, the analysis is harder in the asynchronous case, the second largest
eigenvalue of M (t) now depending on t. A quick analysis of M; (t) shows
that the largest eigenvalue can be greater than (1 — 1) for iterates t < t,,
where ¢, is the expected number of iterations needed for every node to have
been picked at least once.

For ¢t > t., one can use the matrix of eigenvectors P defined in 4.11 and
write M ()P = PK(t), for K(¢) defined as follows:

_ 1 1 €l oTr-1p )
K(t)_<1—t)1n—|g|<n—2tP D P)dlag(ﬁn,...,ﬁl).

Let Pi = (¢1,0,...,0). The matrix K(t) can be rewritten as follows:

1 1
K(t) = (1 — t) Q-+, U+R()
where Q, U and R(t) are defined by:

Q = diag(1,0,...,0),
U = %PID*lpdiag(ﬁn,...,ﬁl),
R(t) = K({t)—(1-1)Q—1U forallt > 0.

Using the fact that 3, = 0, one can show that U has the form
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Since My (t)1, = (1 — })1,, we can also show that, for ¢ > 0, R(t)e; = 0
and elTR(t) = 0; recursively, we obtain, for ¢ > s > 0:

t—1
M1<t : S) = Ml(t> . ..M1(3+1) =P (iQ =+ %UZR(T’ : S) + R(t : 3)) ]?T7

r=Ss

where we use the convention R(t : t) = I,,. Let us now write the expected
value of the estimates:

Efsi(t) = 3 Mt s)%cs—lsQ(O)
s=1

t

t
B B
= Myt s);PlQlPlTSQ(O) +) My (¢ s);PlR‘{_lPlTSQ(O)
s=1 s=1

t = ¢
h B _
= ZMl(t : 8)§ + ZMl(t : s);PlRi 1plsy(0).
s=1 s=1

Splitting the sum at ¢. and then using a similar analysis to Theorem 18, one
obtains several terms that are in O(logt/t), which concludes the proof —
see Section 4.7 for a detailed proof. O

Remark 6. Our methods can be extended to the situation where nodes con-
tain multiple observations: when drawn, a node will pick a random auxil-
iary observation to swap. Similar convergence results are achieved by split-
ting each node into a set of nodes, each containing only one observation
and new edges weighted judiciously.



4.5. Experiments 101

Dataset Complete graph  Watts-Strogatz  2d-grid graph
Wine Quality (n = 1599) 6.26- 1074 2.72-107° 3.66- 107
SVMguide3 (n = 1260) 7.94-1074 5.49-107° 6.03-107°

TABLE 4.1: Value of 5,,_1/|€| for each network.

4.5 Experiments

4.5.1 Comparison to U2-GOSSIP

In this section, we present two applications on real datasets: the decen-
tralized estimation of the Area Under the ROC Curve (AUC) and of the
within-cluster point scatter. We compare the performance of our algorithms
to that of U2-GOsSSIP. We perform our simulations on the three types of
network described below (corresponding values of 3,,—1/|£| are shown in
Table 4.1).

Complete graph: This is the case where all nodes are connected to each
other. It is the ideal situation in our framework, since any pair of
nodes can communicate directly. For a complete graph G of size n >
0, Bn-1/|E| = 1/n, see BOLLOBAS, 1998, Ch.9 or CHUNG, 1997, Ch.1
for details.

Two-dimensional grid: Here, nodes are located on a 2d grid, and each
node is connected to its four neighbors on the grid. This network
offers a regular graph with isotropic communication, but its diam-
eter (y/n) is quite high, especially in comparison to usual scale-free
networks.

Watts-Strogatz: This random network generation technique is intro-
duced in WATTS and STROGATZ, 1998 and allows us to create net-
works with various communication properties. It relies on two pa-
rameters: the average degree of the network k and a rewiring proba-
bility p. In expectation, the higher the rewiring probability, the better
the connectivity of the network. Here, we use £ = 5 and p = 0.3 to
achieve a connectivity compromise between the complete graph and
the two-dimensional grid.

AUC measure

We first focus on the AUC measure of a linear classifier 6 as defined
in (4.4). We use the SMVGUIDE3 binary classification dataset which con-
tains n = 1260 points in d = 23 dimensions.® We set ¢ to the difference
between the class means. For each generated network, we perform 50 runs
of GOSTA-SYNC (Algorithm 5) and U2-GOssIP. The top row of Figure 4.2
shows the evolution over time of the average relative error and the asso-
ciated standard deviation across nodes for both algorithms on each type of
network. On average, GOSTA-SYNC outperforms U2-GOSSIP on every net-
work. The variance of the estimates across nodes is also lower due to the

3. This dataset is available at http://mldata.org/repository/data/viewslug/
svmguide3/
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FIGURE 4.2: Evolution of the average relative error (solid
line) and its standard deviation (filled area) with the num-
ber of iterations for U2-GOSSIP (red) and Algorithm 5 (blue)
on the SVMGUIDE3 dataset (top row) and the WINE QUAL-
ITY dataset (bottom row).
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FIGURE 4.3: Panel (a) shows the average number of itera-

tions needed to reach an relative error below 0.2, for several

network sizes n € [50,1599]. Panel (b) compares the rela-

tive error (solid line) and its standard deviation (filled area)

of synchronous (blue) and asynchronous (red) versions of
GOSTA.

averaging step. Interestingly, the performance gap between the two algo-
rithms is greatly increasing early on, presumably because the exponential
term in the convergence bound of GOSTA-SYNC is significant in the first
steps.

Within-cluster point scatter

We then turn to the within-cluster point scatter defined in (4.3). We use
the Wine Quality dataset which contains n = 1599 points in d = 12 di-
mensions, with a total of K = 11 classes.* We focus on the partition P
associated to class centroids and run the aforementioned methods 50 times.

4. This dataset is available at https://archive.ics.uci.edu/ml/datasets/
Wine
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FIGURE 4.4: Comparison to the gossip-flooding baseline.

The results are shown in the bottom row of Figure 4.2. As in the case of
AUC, GOSTA-SYNC achieves better perfomance on all types of networks,
both in terms of average error and variance. In Figure 4.3a, we show the av-
erage time needed to reach a 0.2 relative error on a complete graph ranging
from n = 50 to n = 1599. As predicted by our analysis, the performance
gap widens in favor of GOSTA as the size of the graph increases. Finally,
we compare the performance of GOSTA-SYNC and GOSTA-ASYNC (Algo-
rithm 12) in Figure 4.3b. Despite the slightly worse theoretical convergence
rate for GOSTA-ASYNC, both algorithms have comparable performance in
practice.

4.5.2 Comparison to Baseline Methods

In this section, we use the within-cluster point scatter problem studied
in Section 4.5.1 to compare our algorithms to two — more naive — baseline
methods, described below.

Gossip-flooding baseline. This baseline uses the same communication
scheme than GOSTA-ASYNC (Algorithm 12) to flood observations across
the network, but we assume that each node has enough memory to store
all the observations it receives. At each iteration, each selected node picks a
random observation among those it currently holds and send it to the other
(tagged with the node which initially possessed it, to avoid storing dupli-
cates). The local estimates are computed using the subset of observations
available at each node (the averaging step is removed).

Figure 4.4 shows the evolution over time of the average relative error
and the associated standard deviation across nodes for this baseline and
GOSTA-ASYNC on the networks introduced in Section 4.5. On average,
GOSTA-ASYNC slightly outperforms gossip-flooding, and this difference
gets larger as the network connectivity decreases. The variance of the es-
timates across nodes is also lower for GOSTA-ASYNC. This confirms the in-
terest of averaging the estimates, and shows that assuming large memory at
each node is not necessary to achieve good performance. Finally, note that
updating the local estimate of a node is computationally much cheaper in
GOSTA-ASYNC (only one function evaluation) than in gossip-flooding (as
many function evaluations as there are observations on the node).

Master-node baseline. This baseline has access to a master node M
which is connected to every other node in the network. Initially, at ¢ = 0,
each node i € [n] sends its observation x; to M. Then, at each iteration
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FIGURE 4.5: Comparison to the master-node baseline. One
unit of data corresponds to one observation coordinate.

t € [n], M sends observation x; to every node of the network. As in gossip-
flooding, the estimates are computed using the subset of observations avail-
able at each node. The performance of this baseline does not depend on
the original network, since communication goes through the master-node
M. This allows us to compare our approach to the ideal scenario of a star
network, where a central node can efficiently broadcast information to the
entire network.

For a fair comparison with GOSTA-ASYNC, we evaluate the methods
with respect to the communication cost instead of the number of iterations.
Figure 4.5 shows the evolution of the average relative error for this base-
line and GOSTA-ASYNC. We can see that the Master-node baseline performs
better early on, but GOSTA-ASYNC quickly catches up (the better the con-
nectivity, the sooner). This shows that our data propagation and averaging
mechanisms compensate well for the lack of central node.
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4.6 Conclusion

We have introduced new synchronous and asynchronous randomized
gossip algorithms to compute statistics that depend on pairs of observa-
tions (U-statistics). We have proved the convergence rate in both settings,
and numerical experiments confirm the practical interest of the proposed
algorithms. In future work, we plan to investigate whether adaptive com-
munication schemes (such as those of DIMAKIS, SARWATE, and WAIN-
WRIGHT, 2008; L1, DAI, and ZHANG, 2010) can be used to speed-up our
algorithms.

We will use our contribution as a building block for decentralized op-
timization of U-statistics, extending for instance the approaches of DUCHI,
AGARWAL, and WAINWRIGHT, 2012; NEDIC and OZDAGLAR, 2009. There-
fore, we will now focus on the optimization of objectives that are separable
in pairs of observations. Again, our work will tackle the decentralized set-
ting, since the centralized setting has been studied in Chapter 3
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4.7 Proofs

4.7.1 Preliminary Results

Here, we state preliminary results on the matrices W, (G) that will be
useful for deriving convergence proofs and compare the algorithms.

First, we characterize the eigenvalues of W, (G) in terms of those of the
graph Laplacian.

Lemma 6. Let G = ([n],£) be an undirected graph and let (3;)1<i<, be the
eigenvalues of LY, sorted in decreasing order. For any o > 1, we denote as
(Ai(@))1<i<n the eigenvalues of W, (G), sorted in decreasing order. Then,
forany 1 <i<mn,

2Bn—i+1
Aila) =1— . 4.15
(@) =1- 22 @.15)
Proof. Let o > 1. The matrix W, (G) can be rewritten as follow:
1 1 -
Wa(9) = E Z L, - &(ez‘ —ej)(e; —ej) (4.16)
(i,9)€eE
1 . 2 o
=1, - o] > (ei—ej)(ei—e) =T, mL . (417)
(i,9)€E

Let ¢; € R" be an eigenvector of LY corresponding to an eigenvalue 3;, then
we have:

(- 219) e (12 5)
W@ = (1= ) o= (1 g )

Thus, ¢; is also an eigenvector of W, (G) for the eigenvalue 1 — ﬁ B; and
the result holds. ]

The following lemmata provide essential properties on W, (G) eigen-
values.

Lemma7. Letn > 0 and let G = ([n], £) be an undirected graph. If G is con-
nected and non-bipartite, then for any a > 1, W (G) is primitive, i.e., there
exists k > 0 such that W, (G)¥ > 0.

Proof. Leta > 1.Forevery (i,5) € £, I,—1(e;—e;)(e;—e;) isnonnegative.
Therefore W (G) is also nonnegative. For any 1 < k < I < n, by definition
of W, (G), one has the following equivalence:

([Ag]kl >0) < ((Wa(G)u >0).

By hypothesis, G is connected. Therefore, for any pair of nodes (k,1) € V2
there exists an integer sj; > 0 such that [(AY)%] > 0 s0o W4(G) is irre-
ducible. Also, G is non bipartite so similar reasoning can be used to show
that W, (G) is aperiodic.

By the Lattice Theorem (see BREMAUD, 1999, Th. 4.3, p.75), for any 1 <
k,l < n there exists an integer my,; such that, for any m > my;:

[(Wa(9)"], > 0.



4.7. Proofs 107

Finally, we can define /m = sup;, ; my; and observe that W, (G)™ > 0. O

Lemma 8. Let G = ([n], £) be a connected and non bipartite graph. Then for
any a > 1,
1= )\1(04) > /\Q(Ct),

where A\ (a) and A2(a) are respectively the largest and the second largest
eigenvalue of W, (G).

Proof. Let o > 1. The matrix W, (G) is bistochastic, so A\j(«) = 1. By
Lemma 7, W, (G) is primitive. Therefore, by the Perron-Frobenius Theo-
rem (see BREMAUD, 1999, Th. 1.1, p.197), we can conclude that A\;(a) >
)\2(04). O
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4.7.2 Convergence Proofs for GOSTA
Proof of Theorem 18 (Asynchronous Setting)

For ¢t > 0, let us denote as M(t) the expected transition matrix at itera-
tion ¢. With the notation introduced in the synchronous setting, it yields

(Ms(t) Mé(t)> _

The propagation step is unaltered w.r.t. the synchronous case, thus the bot-
tom right block is unmodified. On the other hand, both the transmission
step and the averaging step differ: only the selected nodes update their es-
timators from their associated phantom graph. Therefore, we have:

1 T
Lcupymomer 0 .
(i.5)€€ : § i

1 T
1 {ne(i,j)} M (t)Pn €n

For any k € [n] and t > 0, my(t) is an unbiased estimator of t. Moreover,
Z(i’j)eE ]l{ke(z' j)} = 2d},. Therefore, we can write:

%e? 0o --- 0 e, 0 -+ 0
1 0 : 110 " : B
Hery .0 A o | !
0 e 0 %ez 0 -~ 0 e
Similarly for M; (t):

M, (t) = Wy (G) — 21‘,\18] ( Z <¥e¢(ei +ej) + ;ej(ei + ej)T> .

i.j)EE pi J
Using the definition of (py)xe[n) yields:

M (t) = Wa(G) — o

5 (It (DY) 'AY).

We can now write the expected value of the state vector s(¢) similarly to the
synchronous setting:

t -
E[s(t)] = E |:Sl(t):| _ Z (My(t)...Mj(s+1)) ;C I5(0)

Ct52(0>

s=1

s2(t)
As in the synchronous setting, our proof rely on the eigenvalues of M(%).

Proof. Fort > 0, we have:

1 1 1
M, (t) = W3 (G) — 5 (I, +D'A) =W, (G) - Lo+ 2—tD_1L.
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Since My ()1, = (1 — 1)1,, we have ||[M;(¢)|| > 1 — 1. Let us denote
Sp(L) = {8 € R3¢ € R",Lp = Bo}. Let B € Sp(L) and ¢ € R" a
corresponding eigenvector. One can write:
1 1 _1
M;(t)p = ( W2 (G) — EIn + 2—tDL ®

_(1- 8 Dy bpo
“(g )

(- )

The above matrix is diagonal, therefore we can write:

1 &
Mool < ma (1- 7 - £ (1= ELY ) o

(13- (- 2))

where

is the minimum probability of a node being picked at any iteration. Thus,
we can see that if 5 > 0, one has

Mool < (1- ) ol

if t < t. = p!. Consequently, if ¢ > t. then ||[Mi(¢)|| = 1 — 1/t. Here, ¢,
represents the minimum number of iteration needed for every node to have
been picked at least once, in expectation.

Let (B1,...,0n) € Rand P = (¢1,...,¢,) € R"™™ be respectively the
eigenvalues and eigenvectors of LY (sorted in decreasing order), such that
P is the same matrix than the one introduced in Section 4.4.1. We have:

1 1

M, (t)P = PK(t) = P <<1 - t) I, — i ( n— EPTD‘1P> DL> ,

where Dy, = diag(By,...,51). Let Py = (¢1,0,...,0). The matrix K(t) can
be rewritten as follows:

_ (1 1L _ 1 €Tt (1 1
K(t)_(l t>In |g|<n ~P'D P)DL_(I t>Q+tU+R(t),

where Q, U and R(t) are defined by:

Q = diag(1,0,...,0),
U = iP/D'PDy,
R(t) = K({t)—(1-1)Q—1U forallt > 0.
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Using the fact that 5, = 0, one can show that U has the form

Since Ml(t)ln = (1 - 1)1, we can also show that, for ¢ > 0, R(t)e; = 0
and e] R(t) = 0. Let t > 0. We can write:

M (¢ + 1)M; (2)
=PK(t + 1)K(t )PT
=P (t+1Q + H—IU +R(t+ 1)) <t_tlQ + %U + R(t)) P’

=P <Z1Q - mU(I" +R(t)) + R(t + 1)R(t)> P’

Recursively, we obtain, for ¢t > s > 0:

t—1
Mi(t:s)=Mj(t)...My(s+1) = ( Q+ UZRT s)+R(t: s)) P,

r=s8

where we use the convention R(t —1:t—1) =1,.
Let us now write the expected value of the estimates:

ZMlt S Cs 1 ()
_ZMlt s) CQCPTSQ +ZM1t s) PRS P l's5(0)

:ZMl(t 5) +ZM1t s) PRS 1P 's5(0).

The first term can be rewritten as:

H

ZMlt S*
S

b

P ZRT5+R(t s)|PT=
P

I
Mw

S
1

w
Il

QPTh+ ZPUZRr sPT—+ZPRt s)PT

r=s

@L\H
”M“

t

1n+1ZPUZRT SPT—-FZPRt s)

n(h)1, + Ly (t) + Lo(t).

& q>
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The second term of the expected estimates can be rewritten as:

t
B _
> Mu(t: s)PcR; 1P 's,(0)
s=1
t—1

t
=>'P (iQ + g ;R(r :s) +R(t: s)> PTgPCRi_lP:sz(O)

s=1
Lg(t) + L4(t) + L5(t).

Now, we need to upper bound ||L;(t)|| for 1 <1 < 5. One has:

t t—1 —
1 +h
a0l = | ; L PUS R P TS

1< —1 . (H— An(h)ln)
g — P . P
¢ ; U;R(T‘ s) -
t t—1 h-U (W1 )
1 ( (1,
<z P cs)PT
= t; UT:SR(T s) ;
—1
U] (=1 L
< 2 2 2 RGeSl (B = On(h) 1]
s=1 r=s

The norm of U can be developed:

1
ol < 5 [ID | IDel = £

IElp”

Moreover, for 2 < 7 < n, one has:

1 n—u n—u —
IR(t)ei]| = H(l_t) o Pnoitig, 4 Proiviprpg,

€] 2
_Z‘+1 P;D_ld)i

1 /Bn—i—l—l ﬂn
<<<1‘t>‘ € >”ei”+’ 2
1 Br—i+1 1
§<(1t> €] (1pt)>”ei”'

For t > 0, let us define ug(¢) by:

wo-(o-1) - (-2).

We then have, for any ¢ > 0, ||R(?)|| < pr(t). Thus,

ol < 5 (Ziiuﬁ(r : s>> AN

h—U,(h)1,
S

t
pR(t:s) =
S Z ?”h - Un(h)ln”
s=1
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A reasoning similar to the synchronous setting can be applied to L3(t):

1

- ————|[H-h1}|.

Ls(®)] = —

S

! B
> PQP'—P.R; 'P/h
S
s=1

Regarding L,(t), one can write:

Z(UZRT s> —P.R:P[s5(0)
< o 32 (Smtr ) 0att) -

where \2(«) is defined in Section 4.7.1. Similarly, one has:

1
L _
[ La(t) =

L)) < B - B 32 R oy,
s=1

Now, fort > s > 1, one only need to find appropriate rates on the quantities
"1
Z ;,UR
s=1

and

t i1
Z % Z pr(r :s)

s=1 r=s

to conclude. Here, for ¢t > 1, ugr(t) can be rewritten as follow:

pR(t) = (tf) Xa(1) (14 (1= xe(1)5).

1 . . .
%5 — L If ¢ < 1, one cas use a reasoning similar to the syn-

chronous setting and conclude. However, c is often greater than 1. In this

case, one has:
t—1 c
< | — - .
() < () 2att) (14)

Fort > s > 0, the product pugr (¢ : s) can then be bounded as follows:

MR(t:s)giAQ() <1+t_1> (1+§).

Using the definition of ¢, it is clear that, for ¢ > ¢, one has:

with ¢ =

Az(1)( ) <L

t—1
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t

pr(t:5) < 5 3 dal1)

We can use this result to upper bound ' _, ur(t : s)/s with a geometric
t

series:
c
1+ ..(1 7)
( +t—1> +s
s=1 s=1
t

t—
! S ) (142 -
t 2 t.

s=t.+1

o(1)E <1+t_1> .. (1+§)

+ (1+ c)tee= (1 Ae)t=te),

®w |

IN

<

&+ | =

where A\, := Aqo(1) (1 + i) Therefore, we have that S, ur(t : s)/s =

O(1/t). Let us now focus on the second bound. For ¢t > t,and 1 < s < ¢,
one has:

t oL t—1
1
— <
2 2 im(ris) Z Zum s +Z S
s=1 r=s s= 1 r=t.+1
=
S VR WS
s=te+1  r=s
te te te =1 yrs
) S R S S M
s=1 r=s s=1r=t.+1 r
I
DD D
s=t.+1 r=s r
te 4 =1y b sl
T T —tc e - T
Ste) M@ (L+0 AT Y +ZSZAC
r=1 r=t.+1 s=1 r=0
"1
<t.(1 —tA e log(1 — A -
> c( +C) Og( )\CZIS
A e 1
< te(1+ o)t + = log(t + 1).
(I+¢) +1_)\C+1_)\C og(t+1)
Thus, >/ _ Ay SMR(T s) = O(logt).
Using these results and the previous expressions of L (¢), ..., L5 (), one

can conclude that, for t > 1, ||E[z(t)] — Un(h)1,| = O(logt/t). O
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4.7.3 U2-gossip Algorithm

U2-gossip PELCKMANS and SUYKENS, 2009 is an alternative approach
for computing U-statistics. In this algorithm, each node stores two auxiliary
observations that are propagated using independent random walks. These
two auxiliary observations will be used for estimating the U-statistic — see
Algorithm 10 for details. This algorithm has an O(1/t) convergence rate, as
stated in Theorem 16.

Let k € [n]. At iteration ¢t = 1, the auxiliary observations have not been
swapped yet, so the expected estimator E[z;(1)] is simply updated as fol-
low:

E[2x(1)] = E[2,(0)] + e/ Hey.

Then, at the end of the iteration, some auxiliary observations are randomly
swapped. Therefore, one has:

Blan(2)] = SEL(D] + 5 (Wi (G)e] ) HW: (G) e,

where W, (G) is defined in Section 4.7.1. Using recursion, we can write, for
any t > 0 and any k € [n]:

t—1
Elz(t)] = Y _ef W1 (G)°HW1 (G)’ e (4.18)
s=0

Proof of Theorem 16. Let k € [n| and t > 0. Using the expression of E[zj ()]
established in (4.18), one has:

t t
1 S S 1 S S
E(t)] = - > el W1(G)"HW, (G) ey, = - > e/ P DiPHPD;P ¢,
s=0 s=0

where P is the eigenvectors matrix introduced in Section 4.4.1 and D; =
diag(A1(1),..., A(1)). Similarly to previous proofs, we split D; = Q; + R4
where Q; = diag(1,0,...,0) and R; = diag(0, A2(1),...,An(1)). Now, we
can write E[z,(t)] = Li(t) + La(t) + Ls(t) + La(t) with Ly(t), La(t), Ls(t)
and L4(t) defined as follows:

Lit) = 1Y  e/PTQ;PHPQ;P ¢,
Ly(t) = 13 e/PTR{PHPQ;P e,
Ly(t) = 1> e/PTQ{PHPR;P e,
Ly(t) 13 e/PTR{PHPR;P "¢,

The first term can be rewritten:

1
Li(t) = e, PTQIPHPQP e, = — 1] H1, = Uy,(h).
n
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Then, one has:

t
1
Lo(t)] < 7 3 e PRIPTHPQP ey
s=0

IN

IPR{P 'h|
s=0

IN

A~

since A2(1) < 1. Similarly, we have |L3(¢)| < 1 - 13(21()1) |h — U, (h)1,]. The
final term L4(t) can be bounded as follow:

s=0
1 i T
_ = ( PR:P' ( —1,h )PQlPTek’
t s=0
1 =T
<23 e [H-1,h|
L s=0
1 —T
- H-1,h H
—t 1 2 H "

With above relations, the expected difference can be bounded as follow:

Elz(0)] = Un(h)] < 1La(t)] + |Ls(6)] + | La(t)
S o
T o H
Finally, we can conclude:
|z @) —0n) | < v ma [Blz(0)] - Outh)
—\éﬁ 1-1(1) [~ O,
+tn'1—(xl2( ) [ - nT]
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5.1 Introduction

The increasing popularity of large-scale and fully decentralized com-
putational architectures, fueled for instance by the advent of the “Internet
of Things”, motivates the development of efficient optimization algorithms
adapted to this setting. An important application is machine learning in
wired and wireless networks of agents (sensors, connected objects, mobile
phones, etc.), where the agents seek to minimize a global learning objec-
tive which depends of the data collected locally by each agent. In such
networks, it is typically impossible to efficiently centralize data or to glob-
ally aggregate intermediate results: agents can only communicate with their
immediate neighbors (e.g., agents within a small distance), often in a com-
pletely asynchronous fashion. Standard distributed optimization and ma-
chine learning algorithms (implemented for instance using MapReduce or
Spark) require a coordinator node and/or to maintain synchrony, and are
thus unsuitable for use in decentralized networks.

In contrast, gossip algorithms (TSITSIKLIS, 1984; BOYD et al., 2006; KEMPE,
DOBRA, and GEHRKE, 2003; SHAH, 2009) are tailored to this setting because
they only rely on simple peer-to-peer communication: each agent only ex-
changes information with one neighbor at a time. Various gossip algorithms
have been proposed to solve the flagship problem of decentralized opti-
mization, namely to find a parameter vector  which minimizes an average
of convex functions:

1 n
min gf(e;x», (5.1)

where the data x; is only known to agent i. The most popular algorithms
are based on (sub)gradient descent (JOHANSSON, RABI, and JOHANS-
SON, 2010; NEDIC and OZDAGLAR, 2009; RAM, NEDIC, and VEERAVALLI,
2010; BIANCHI and JAKUBOWICZ, 2013), ADMM (WEI and OZDAGLAR,
2012; WEI and OZDAGLAR, 2013; IUTZELER et al., 2013) or dual averag-
ing (DUCHI, AGARWAL, and WAINWRIGHT, 2012; YUAN et al., 2012; LEE,
NEDIC, and RAGINSKY, 2015; TSIANOS, LAWLOR, and RABBAT, 2015), some
of which can also accommodate constraints or regularization on 6. The
main idea underlying these methods is that each agent seeks to minimize
its local function by applying local updates (e.g., gradient steps) while ex-
changing information with neighbors to ensure a global convergence to the
consensus value.

In this chapter, we tackle the problem of minimizing an average of pair-
wise functions of the agents’ data:

min % S F(O5x%;). (5.2)

1<i,j<n

This problem finds numerous applications in statistics and machine learn-
ing, e.g., Area Under the ROC Curve (AUC) maximization (ZHAO et al,,
2011), distance or similarity learning (BELLET, HABRARD, and SEBBAN,
2015), ranking (CLEMENCON, LUGOSI, and VAYATIS, 2008), supervised
graph inference (BIAU and BLEAKLEY, 2006) and multiple kernel learning
(KUMAR et al., 2012), to name a few. As a motivating example, consider a
mobile phone application which locally collects information about its users.
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The provider could be interested in learning pairwise similarity functions
between users in order to group them into clusters or to recommend them
content without having to centralize data on a server or to synchronize
phones.

The main difficulty in Problem (5.2) comes from the fact that each term
of the sum depends on two agents 7 and j, making the local update schemes
of previous approaches impossible to apply unless data is exchanged be-
tween nodes. Although gossip algorithms have recently been introduced
to evaluate such pairwise functions for a fixed 6 (see PELCKMANS and
SUYKENS, 2009 and Chapter 4 in this thesis), to the best of our knowledge,
efficiently finding the optimal solution @ in a decentralized way remains an
open challenge. Our contributions towards this objective are as follows. We
propose new gossip algorithms based on dual averaging (NESTEROV, 2009;
X1A0, 2010) to efficiently solve Problem (5.2) and its constrained or regu-
larized variants. Central to our methods is a light data propagation scheme
which allows the nodes to compute biased estimates of the gradients of func-
tions in (5.2). We then propose a theoretical analysis of our algorithms both
in synchronous and asynchronous settings establishing their convergence
under an additional hypothesis that the bias term decreases fast enough
over the iterations (and we have observed such a fast decrease in all our ex-
periments). Finally, we present some numerical simulations on Area Under
the ROC Curve (AUC) maximization and metric learning problems. These
experiments illustrate the practical performance of the proposed algorithms
and the influence of network topology, and show that in practice the influ-
ence of the bias term is negligible as it decreases very fast with the number
of iterations.

The chapter is organized as follows. Section 5.2 formally introduces the
problem of interest. Section 5.3 then introduces the dual averaging algo-
rithm — which is at the root of our method — and provides a theoretical
analysis of this method. Section 5.4 presents the decentralized dual averag-
ing method for solving Problem (5.1). Section 5.5 introduces the proposed
gossip algorithms and their convergence analysis. Section 5.6 extends our
results to multiple observations per node. Section 5.7 displays our numeri-
cal simulations. Finally, concluding remarks are collected in Section 5.8.
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5.2 Notations and problem statement

5.2.1 Definitions and Notation

For any integer p > 0, we denote by [p| the set {1,...,p} and by |C|
the cardinality of any finite set C. We denote an undirected graph by G =
([n], €), where [n] is the set of vertices and £ C [n] x [n] is the set of edges.
We denote by AY the adjacency matrix related to the graph G, that is for
all (4,5) € [n)? [AY];; = 1 if and only if (,j) € £. For any node i € [n],
we denote its degree by d; = |{j : (i,7) € £}|. We denote by LY the graph
Laplacian of G, defined by LY = DY — AY9 where DY = diag(ds,...,d,)
is the matrix of degrees. When it is clear from context, we will drop the G
exponent. A graph G = ([n], £) is said to be connected if for all (i, j) € [n)?
there exists a path connecting i and j; it is bipartite if there exist S, 7 C [n]
suchthat SUT =[n],SNT =0and £ C (S x T)U(T x S).

The transpose of a matrix M € R™*" is denoted by M'". A matrix P €
R™*" is termed stochastic whenever P > 0 and P1,, = 1,,, where 1,, =
(1,...,1)T € R", and bi-stochastic whenever both P and P " are stochastic.
We denote by I,, the identity matrix in R"*", by (e, ..., e,) the canonical
basis of R", by 1y} the indicator function of any event A" and by || - ||
the usual f5-norm. For 8 € R% and ¢ : R? — R, we denote by Vg(0) the
gradient of g at 8. Finally, given a collection of vectors uy, . .., u,, we denote
by u = (1/n) ) ", u; its empirical mean.

5.2.2 Problem Statement

We represent a network of n agents as an undirected graph G = ([n], &),
where eachnode i € [n] corresponds to an agent and (7, j) € € if nodes i and
J can exchange information directly (i.e., they are neighbors). For ease of
exposition, we assume that each node ¢ € [n] holds a single data point x; €
X. Though restrictive in practice, this assumption can easily be relaxed, but
it would lead to more technical details to handle the storage size, without
changing the overall analysis (see Section 5.6 for details).

Givend > 0,let f : R x X x X — R a differentiable and convex function
with respect to the first variable. We assume that for any (x,x’) € X2, there
exists Ly > 0 such that f(-;x,x’) is Ls-Lipschitz (with respect to the /o-
norm). Let 1 : RY — Rt be a non-negative, convex, possibly non-smooth,
function such that, for simplicity, 1/(0) = 0. We aim at solving the following
optimization problem:

1

min -~ 1%:9 £ (6%, %5) + (6). (5.3)
In a typical machine learning scenario, Problem (5.3) is a (regularized) em-
pirical risk minimization problem and 6 corresponds to the model parame-
ters to be learned. The quantity f(;x;,x;) is a pairwise loss measuring the
performance of the model 6 on the data pair (x;,x;), while (8) represents
a regularization term penalizing the complexity of 8. Common examples
of regularization terms include indicator functions of a closed convex set
to model explicit convex constraints, or norms enforcing specific properties
such as sparsity (a canonical example being the /;-norm).
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Many machine learning problems can be cast as Problem (5.3).
For instance, in AUC maximization (ZHAO et al., 2011), binary labels
(01,...,4,) € {—1,1}" are assigned to the data points and we want to learn
a (linear) scoring rule x — x " 8 which hopefully gives larger scores to pos-
itive data points than to negative ones. One may use the logistic loss

F(6:%1,%7) = Lig,0, 1o (1+ exp((x; — x:)76))

and the regularization term (@) can be the square f;-norm of 6 (or the
¢1-norm when a sparse model is desired). Other popular instances of Prob-
lem (5.3) include metric learning (BELLET, HABRARD, and SEBBAN, 2015),
ranking (CLEMENCON, LUGOSI, and VAYATIS, 2008), supervised graph in-
ference (BIAU and BLEAKLEY, 2006) and multiple kernel learning (KUMAR
etal., 2012).

For notational convenience, we denote by f; the partial sum function
(1/n) 35— f(5%i,x5) for i € [n] and by f = (1/n)>iL, fi. Problem (5.3)
can then be recast as:

min R, (0) = f(0) + ¢(0). (5.4)
HcRd
Note that the function f is L-Lipschitz, since all the f; are L ¢-Lipschitz.
Throughout the chapter, we assume that the function f is differentiable,
but we expect all our results to hold even when f is non-smooth, for in-
stance in /1-regression problems or when using the hinge loss. In this case,
one simply needs to replace gradients by subgradients in our algorithms,
and a similar analysis could be performed.
We now study the dual averaging method and some of its extensions in
the centralized case, as several results will be needed for the analysis of the
decentralized setting.
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5.3 Centralized Dual Averaging

5.3.1 Deterministic Setting

In this section, we review the dual averaging optimization algorithm
(NESTEROV, 2009; X1A0, 2010) to solve Problem (5.3) in the centralized set-
ting (where all data lie on the same machine). This method is at the root of
our gossip algorithms, for reasons that will be made clear in Section 5.5. To
explain the main idea behind dual averaging, let us first consider the itera-
tions of Stochastic Gradient Descent (SGD), assuming ¢ = 0 for simplicity:

0(t +1) = 0(t) — (1)),

where E[g(t)|0(t)] = Vf(0(t)), and (y(t))i>0 is a non-negative and non-
increasing step size sequence. This update rule can be rewritten equiva-
lently as follows:

O(t+1)= areg gdin {f(e(t)) +(0—0(t)"g(t)+

16 — G(t)IIQ}
27(t) ’

meaning that @(¢ + 1) is the minimizer of some quadratic approximation of
f around 6(t). Recursively and assuming that (0) = 0, one can obtain:

O(t+ 1) = argmin {OT (Z ’y(s)g(S)) + wg”} . (5.5)

OcRd s=0

For SGD to converge to an optimal solution, the step size sequence must
satisfy (t) M Oand > ;2 v(t) = co. As noticed by NESTEROV (2009), an

undesirable consequence is that new gradient estimates are given smaller
weights than old ones in (5.5). Dual averaging aims at integrating all gradi-
ent estimates with the same weight.

Let (y(t))¢>0 be a positive and non-increasing step size sequence. The
dual averaging algorithm maintains a sequence of primal iterates (6(t)):>o,
and a sequence (z(t)):>0 of dual variables which collects the sum of the
unbiased gradient estimates seen up to time ¢. We initialize to (1) = z(0) =
0. At each step ¢ > 0, we compute an unbiased estimate g(¢) of Vf(0(t)).
The most common choice is to take g(t) = V f(0;xy,,x,,) where I; and J;
are drawn uniformly at random from [n]. We then set z(t + 1) = z(t) + g(¢)
and generate the next iterate with the following rule:

O(t+1) =) (a(t+1)),

2
7 (z) == aregegtin {—ZTH + gfx(ut) + t¢(0)} :

This particular formulation was introduced in (X1AO, 2009; X1A0, 2010),
extending the method introduced by NESTEROV, 2009 in the specific case
of indicator functions. In this work, we borrow the notation from XIAO,

2010. When it is clear from the context, we will drop the dependence in 1)

and simply write m(z) = W;p (z).
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Note that () is related to the proximal operator of a function ¢ : RY —
R defined by

prox,(x) = arg min {HZ_QXW + qb(x)} :

z€R4

Indeed, one can write:

7t(2) = ProxXyy(py (V(t)2) .

For many functions v of practical interest, 7;(-) has a closed form solution.
For instance, when ¢ = || - ||?, m¢(+) corresponds to a simple scaling, and
when ¢ = || - ||1 it is a soft-thresholding operator. If ¢ is the indicator func-
tion of a closed convex set C, then 7(-) is the projection operator onto C.

The dual averaging method is summarized in Algorithm 13. In order to
perform a theoretical analysis of this algorithm, we introduce the following
function. Let us define, for ¢t > 0

2
Vi(z) := max {ZT9 - L'?(Ht) - t¢(0)} .

Remark that with the assumption that ¢(0) = 0, then V;(0) = 0. Strong
convexity in @ of the objective function, ensures that the solution of the
optimization problem is unique. The following lemma links the function V;
and the algorithm update and is a simple application of the results from
(X1A0, 2009, Lemma 10):

Lemma 9. For any z ¢ R<, one has:
mi(z) = VVi(2), (5.6)
and the following statements hold true: for any z;,z2 € R?
I7e(z1) = mi(z2) || < 7(8)]|21 — 22, (5.7)

and for any g,z € R,

Ve +8) < Vila) + 8T VVila) + 1 g 68)

Moreover, adapting (X1A0, 2009, Lemma 11) we can state:

Lemma 10. For any ¢ > 1 and any non-increasing sequence (y(t)):>1, we
have

Vi(=z(t+1)) +¢(0(t+1)) < Via (—z(t +1)). (5.9)

We also need a last technical result that we will use several times in the
following;:

Lemma 11. Let 0(t) = m(Y.'Z} g(s)), and let (y(t));>1 be a non-increasing
and non-negative sequence sequence (with the convention v(0) = 0), then
for any 6 € R%:
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Algorithm 13 Centralized dual averaging

Require: Step size (y(¢))¢>1 > 0.
Initialization 8 = 0,0 = 0, z = 0.
fort=1,...,T do
Update z < z + V f(0)
Update 0 < 7,(z)
Update 6 + (1 —1)0 + 16
end for
return 6

—_

N

Ol

M=

T 1 T
> e (8(t) - 8) + T > (w(6(1) ~

t=1 t=1 t=1
||6’||2
2T(T)

Proof. Using the definition of V7, one can get the following upper bound:

+

(5.10)

T
> (870 +w(60)) =a(T + )70+ Ty(6)

t=1
2 2
=z(T+1)"0+Ty(0) + 2‘&% - 2”;)(%
1612
< 27 (T) + Vp(—z(T + 1)). (5.11)

Then one can check that with (5.8) and Lemma 10 that, forany 1 <¢ < T*

Vi(=2(t +1)) + 9(8(t +1)) < Vioi(—z(t + 1))

From the last display, the following holds:

&(1)T0() + H(O( 1 1)) < Vier (—2(t) — Vi(—z(t + 1)) + 2Dy

2
Summing the former for ¢t = 1,...,T yields
- ~ (- 1)
> g®)70(t) + (0t + 1)) < Vo(—20) — Vr(—zr) + Y 5 [EAl

t=1 t=1

Remark that V5(0) = 0 and ¥(0(1)) — (0(T + 1)) = —(6(T + 1)) < 0, so
the previous display can be reduced to:

T
S g(t)T0(t) + v(6(1)) + Vir(— Z OIP.  (12)

Combining with (5.11), the lemma holds true. O
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Bounding the error of the dual averaging is provided in the next theo-
rem, where we remind that R, = f + ¥:

Theorem 19 (Dual averaging). Let (v(t))i>1 be a non increasing sequence.
Let (z(t))i>1, (0(2))i>1, (0(t))>1 and (g(t))i>1 be generated according to Al-
gorithm 13. Assume that the function f is Lg-Lipschitz and let 6* € R? be a
minimizer of Ry, i.e., 0* € argming cga Ry, (0"). Then for any T > 2, one has:

R(0(1) - Ro(0) < AL i, TZ (5.13)
" T 2Ty(T) 2T & '
Moreover, if one knows D > 0 such that ||0*|| < D, then for the choice (t) =
Lf?/%, one has:
_ .. _\2DL;
Rn(0(T)) — Rn(67) < T
Proof. Let T > 2. Using the convexity of f and 1), we can get:
~ 1 & ~
Rn(0(T)) = Ru(67) < 7> F(6(t) — (67) +v(8) — 1:(6)
t=1
1 d T * 1 *
<58 (0() 6 + = > (6(8(1) —1(67))
t=1 t=1
oLy 2 _lIeI?
=T O+ 57507

where the second inequality holds since g(t) = V f(6(t)), and the third
one is from an application of Lemma 11 with the choice 8 = 6*. We can
conclude the proof provided that ||g(¢)|| < Ly, which is true whenever f is
L ¢-Lipschitz. O

5.3.2 Stochastic Dual Averaging

Similarly to sub-gradient descent algorithms, one can adapt dual av-
eraging algorithm to a stochastic setting; this was studied extensively by
XIAO (2009). Instead of updating the dual variable z(¢) with the (full) gra-
dient of f at 8(t), one now only requires the expected value of the update to
be the gradient, that is:

z(t+1) = 2(t) + (),

with E[g(t)|0(t)] = V f(0(t)). As in the gradient descent case, convergence
results still hold in expectation, as stated in Theorem 20.

Theorem 20 (Stochastic dual averaging). Let (y(t))t>1 be a non increasing se-
quence. Let (z(t))i>1, (0(t))i>1 and (g(t)):>1 be generated according to stochas-
tic dual averaging rules. Assume that the function f is L-Lipschitz and that
0* € argming cga Ry, (0'), then for any T > 2, one has:

; . H0*||2 LN
Er|R(8(T)) - Ra(6%)] < T " 2 Z (5.14)
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T.
then for v(t) =

where Er is the expectation over all possible sequence (g(t)):
Moreover, if one knows that D > 0 such that ||6*|| <

D :
e one has:

<t<
D,

V2DL;

VT
Proof. One only has to prove that the convexity inequality in Lemma 11
holds in expectation. The rest of the proof can be directly adapted from

Theorem 19.
Let T' > 2; using the convexity of f, one obtains:

T
Er(f(6(T)) — f(67)] < %ZETU(@@)) - f(67)].

t=1

Forany 0 < ¢t < T,E[0(t)|g(0),...,g(t — 1)] = 6(t). Therefore, we have:

Er[f(6(t)) — f(67)] = Er1[f(0(2)) — f(07)].

The vector E;[g(t)|6(t)] is the gradient of f at 8(¢), we can then use f con-
vexity to write:

E1[£(0(1) — (6] < B [(60() — 0%) TEils(0)001)].

Using properties of conditional expectation, we obtain:

B [(00) — %) TEdle()16(0)]] = B [E(6() — 0%) (1)]6(1)]
—E[(0(1) - 0") Tg(0))

Finally, we can write:
T
E2[f(B(T) — 1(6°)] < 1 S E(6() — 6 a(0)
t=1

T
=00 - e*fg(t)] .61y
t=1

Therefore, the convexity inequality holds in expectation and one can adapt
the proof of Theorem 19 to conclude. O

5.3.3 Ergodic dual averaging

The previous analysis is sufficient for providing convergence rate of a
decentralized optimization when the objective is separable in the observa-
tions. For pairwise objectives however, an additional look at the dual av-
eraging is needed. Indeed, one key insight to the method we describe later
on is that biased estimates of gradients are computed in opposition to un-
biased estimates of the stochastic dual averaging. However, estimate bias
decreases exponentially fast, so it should not penalize heavily the conver-
gence rate. We thus study the bias influence using an ergodic analysis.
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Problem setting

We define F' : X x A,, as follows:

F{ XxA, — R
' (0,8) — >l &ifi(6)

where A,, is the simplex in R", i.e.,

An ={€ € RY, [|€]lr =1}

Our goal is to solve the following optimization problem:

, L\ 1¢
min f(0) = F (0, n) = Z; £:(8). (5.16)
Throughout this section, we make the assumption that there exists D > 0,
such that if & € X then ||0]| < D. Using the dual averaging approach,
one aims at finding an algorithm for solving problem (5.16) with “noisy”
information, in a way to be defined later. In the dual averaging method
with true gradient information, variables are updated as follows:

z(t+1) = z(t)+VF(O)
{9(75+1) = m(z(t+1)) : (5.17)

As mentioned previously, we focus here on a noisy setting, similar to er-
godic mirror descent introduced in DUCHI et al., 2012. Let (§(t));>0 be a
sequence of — non necessarily independent — random variables over A,,.
For ¢t > 0, we denote as P(t) the distribution of £(¢) and we assume that
there exists P> such that lim;_, 1 || P(t) — P*°||7y = 0 and

Ep [F(€)] = f. (5.18)

We make the additional assumption that one may not access the true value
of VoF'(.,1,/n). Instead, at iteration ¢, one can only compute an estimate
VoF (.,€(t)). The iterative process described in (5.17) can then be reformu-

lated:
{Z(Hl) = z(t) + Vo IF'(0(1),&(1))
0t+1) = m(z(t+1))

We aim at finding a condition on the random process (£(t)):>o for this
method to converge to the solution of the original problem (5.16). For this
purpose we introduce, for any ¢ > 0, the mixing time of the distribution
P(t) towards its limit P>°:

(5.19)

7(t,-) : e —inf {s > 0, ||P(t + s|t) — P™||rv < €}, (5.20)

where || - ||y is the total variation distance between two distributions and
P(t + s|t) is the distribution of £(¢ + s) conditioned on the natural filtration

Fi:=0(&(1),...,&(t)).
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Convergence analysis

The convergence analysis of such a setting relies on one key observation,
described in DUCHI et al., 2012: for any 0 < 7 < T and any 8™ € X, the
regret can be decomposed as follows

T
> (6%)) =

t=1

D (f(8(1) = f(67) + F(O(t),&(t + 7)) — F(6",£(t + 7)) (5.21)

+ ) (F(O(),&(t+7)) — F(O(t +7),£(t + 7)) (5.22)
t=1

+ Z F(0".£(t))) (5.23)
t= T+1

+ Z £(6%)). (5.24)
t=T— T+1

The term (5.21) represents the difference between evaluating error on
the true function and on a noisy function after 7 steps of mixing. Next, the
term (5.22) corresponds to the gap between noisy objectives of 7 consecu-
tive iterates. Term (5.23) matches the usual optimization error obtained in a
noiseless setting. Finally, the last term (5.24) is a residual term and will be
negligible when 7" goes to infinity. This decomposition is particularly help-
ful for convergence analysis. Indeed, the structure of dependence between
0 and £ can be very complex and one could struggle to adapt standard op-
timization analysis to this setting. In each of the four terms of the regret
reformulation, we focus on variations of either 8 or £ but never both simul-
taneously, thus removing some dependence issues.

Following the reasoning of DUCHI et al., 2012, we will provide a bound
on each term of the decomposition — some bounds actually being expected
bounds (see Section 5.9 for detailed proofs).

Lemma 12 (Error after mixing). Let € be a F;-mesurable variable. Then for
any 0" € X and any 7 > 0, one has:

E[f(8)—f(0°)+F(0,&(t+7))—F (6", &(t+7))|Fi] < 2LD||P(t+7[t)—P>|rv.
(5.25)

Lemma 13 (Consecutive iterates bound). Let (6(t)):>0 be generated accord-
ing to (5.19). Then, for any ¢ > 0:

10t +1) — 6(t)] < 3L; (1 n %11) (CE+1)-T(@), (526

where for ¢t > 0, I'(t) = ty(¢). In addition, if v(¢)  t* for some o € (—1,0),
then for any ¢ > 0:

166+ 1) - 001 <32; (14 527 ) (@ + VIO < 6L, (527
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When o = 1/2, the bound is equivalent to 3L ;v(¢) when ¢ goes to in-
finity. This is quite similar to the L ¢v(t) bound of other first order methods
(gradient descent, mirror descent, efc.).

Lemma 13 provides a bound over the distance of two consecutive iter-
ates. We now use this result to control term (5.22) in the regret decomposi-
tion.

Lemma 14 (Gap with noisy objectives). Let 7 > 0. If (8(t));>0 is generated
according to (5.19), then for any ¢ > 0:

F(O(t),&(t+7))—F(O(t+7),&(t+7)) < 3L (1 + %1+1> (C(t+7)—T(t)).
(5.28)
Moreover, if () o t* for some « € (—1,0), one has:
F(O(t),&(t+7)) — F(O(t+7),&(t+7)) <3L%r (1 + 2t+1) (1+a)y(t)
< 6L*7y(t). (5.29)

Finally, we bound the term (5.23), corresponding to the optimization
regret. This bound is a quite straightforward adpatation from the regular
dual averaging algorithm bound in NESTEROV, 2009.

Lemma 15 (Optimization error). For any 6 € X, one has:
T T

*112 2
> FO(0).60) - FE"60) < ) + 5 30 90, (530
t=7+1 t=7+1

Proof. For any § € A, F(-,£) is convex. Therefore, one has for any 8* € A

T T
D F(6(1),£()-F (0%, £(t) < > VeF(0(t),£(t)T(0(t)—0%). (5.31)
t=7+1 t=7+1

One can then conclude using the definition of (6(t));>0 and the proof of
dual averaging convergence in a standard setting — see NESTEROV, 2009,
Theorem 1 for instance. ]

From now on, we assume that there exists « € (—1,0) such that~(¢) « «.
This allows for easier convergence analysis but a more general analysis can
still be performed using the bound provided in Lemma 14. We can now
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apply previous results to the expected regret; for any 7 > 0, one has:

t T—1
STEF0(1) ~ £(0%)] <2LD Y ([Pt 4 7lt) — Py 532)
t=1 —
T—1
+ 3L2 Z (1 + 2751—1) (I+a)y(t) (5.33)
10| d . -
+27(T)+2t§17() (5.34)
T
+ Y El(f(6) ~ () (5.35)
t=T—-7+1

We made the assumption § < D, so f(0(t)) — f(6*) < 2LD, and one has
the following bound:

t T—1
D E[(f(0(t) — £(6))] S2LD Y " ||P(t + 7]t) — P®||7v (5.36)
t=1 t=1
|0*|r2 -
+6L2 Z + — Z y(t) + TLD.
t=7+1

Let us assume that the mixing times are uniform, that is for any € > 0, there
exists 7(¢) such that:
Vit >0, 7(t,e) < 7(e). (5.37)

Thus, deriving the bound (5.36), one has for any ¢ > 0:

t

T *

S E[(£(8(t)— £(6%)] < 2LD(Te+17(c)) + L21+12 1S 0+ H9 ||2
t=1 P

(538)

and we can write the following theorem.

Theorem 21 (Ergodic dual averaging). Let (0(t)):>0 be generated according
to (5.19) and let 0* € X be a minimizer of the optimization problem (5.16). We
make the following assumptions:

1. There exists v € (—1,0) such that (t) o< t*.

2. There exists D > 0 such that for any 6 € X, ||0|| < D.

3. Forany e > 0, there exists 7(¢) such that for any t > 0, 7(t,€) < 7(e).
Then, for any € > 0:

7(€ 2 T ®(12

E[(f(O(T))}—f(e*)]gzLD<e as )>+2LT (1+127(0) Y0 zggy)
t=1

(5.39)

where O(T) = (1/T) Zthl 0(t) is the iterates average at time T.

Note that if one is able to compute VF(-,1,,/n) at every iteration, then
7(e) = 0 for any € > 0 and one can recover the dual averaging convergence
rate when e — 0in (5.39). This upper-bound evidences the need to compare
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the mixing time to the optimization rate: if 7(¢) < +/T then similar bounds
are preserved.
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Algorithm 14 Distributed dual averaging algorithm in standard setting.

Require: Step size (y(¢))¢>1 > 0, weight matrix W.
1: Each node 7 initializes 8;(0) = 0, z;(0) = 0.
2: fort=0,...,7T—1do
3:  Update Z(t+1) = WZ(t)+G(t), where G(t) = [V f1(01(1)), ..., V n(0r(1))]

fori=1,...,ndo
Update Ol(t + 1) = ’/Tt(Zi(t + 1))
end for
end for

return (0;(T))1<i<n

5.4 Decentralized Dual Averaging

We now focus on a decentralized setting, where each node i € [n] holds
one observation x; for simplicity. Section 5.6 provides more detailed analy-
sis of the multiple observations per node setting.

The distributed dual averaging algorithm for solving (5.1) was first
introduced by AGARWAL, WAINWRIGHT, and DUCH]I, 2010 and consists
in the following: each node ¢ € [n] stores its own primal and dual se-
quences (0;(t),zi(t))1<i<n. We denote as Z(t) the matrix of dual variables
Z(t) = (z1(t),...,2,(t)) . At iteration t + 1, a node i will perform the fol-
lowing update:

zi(t+1) = gi(t)+ E?:l Wiij(t) (5.40)
0;(t+1) = m(zi(t+1)), '
where W is a doubly stochastic matrix such that
(i,§) € £ = W,; = 0. (5.41)

Update (5.40) only differs in the dual update: gradients are now added to an
average of neighbors dual variables. Let us point out that the dual update
can be reformulated as follows:

Z(t+ 1) = G(t) + WZ(1), (5.42)

where G(t) = (g1(t),...,gn(t)) . This is detailed in Algorithm 14. In order
to prove the convergence of this algorithm, we need to introduce two quan-
tities. First, for ¢ > 0, let us denote z(t) := (1/n) > ., z;(t) the average of
all dual variables at iteration ¢. One can see from (5.42) that z is updated as
follows:

z(t+1) =z(t) + g(t), (5.43)

where g := (1/n) >, gi(t). This is very similar to the standard setting;
however in this case, g(t) is not necessarily a gradient of f since every g;(t)
can be a gradient taken at different points. Also, we define w(t) := m(z(t)),
the primal variable associated to z(t).

With this introduced notation, one can establish the convergence of the
distributed dual averaging method:
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Theorem 22. Let (y(t))s>1 be a non increasing and non-negative sequence. For
i € [n], let (gi(t))i>1, (zi(t))i>1 and (0;(t))s>1 be generated according to Algo-
rithm 14. Assume that the function f is L-Lipschitz. Then for any i € [n| and
T > 2, one has:

- . 1 12 T
B[R (0:(T))) = Ra(6") < 5 1671 + }Z; (- 1)

z(t) — z; 2
(t—1) <2Lf|]2(t)—zi(t)\|+H (’;)(t_l())” )

h'ﬂ\

T
Z
=2
T n
i 2ot~ 13 (I2:0) ~ 20 + 1) — 2,01
7j=1

where 0" € arg ming cpa Ry,(0").

Proof. Let T > 2 and ¢ € [n]. Since f and v are convex, one has

T
Ra(BA(T)) ~ Ra(6%) < 72>~ (Ra(8:(1)) — Ra(67)).

Now remark that g;(t) is a gradient of f; at ;(¢) but here we would need a
gradient of f. However, by definition of f, one has for any ¢ € [T7]:

£(6i(t)) Z Fi(8i(t)) — f;(6%).

Now, one can use subgradient inequality by inserting 6;(t) into the equa-
tion:

CSCEIGO:0)] - £5(6%) = - SCEL60:(1) — (65()
=1 j=1

+E[£;(6;(1))] — £3(67)
;ZEmth)) - 50,0

%Z 0) (1)

Using that both f and ;1 () are Lipschitz, the first term in the right hand
side above can be bounded as follows

LS R 6:00)] - £5(6) < ZEHZZ ) =20
j=1

IN
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which leads to:

3

The term in (5.44) needs to be altered again in order to use the same reason-
ing than in the centralized setting. We write

1 T
=D g(t)

t=1 j=1
T n
:%ZZ(W (1) +w(t) 6 g1
t=1 j=1
1 T Jn - 1 T T
= DY (6,00 —w®) &) + = Y () - 67) &l
t=1 j=1 t=1
Ly T n ~ 1 < o T
< =D () 20+ 5 D (w(t) - 67) &),
t=1 j=1 t=1

(5.45)

since ||g;(t)|| < Ly forany ¢t > 2and any j € [n]. Now we can use Lemma 11
with @ = 0%, g = g, 0(t) = w(t) to write:

. Ao N o B CA

> (wlt) = 67) () + 3 (w(wlt) ~9(0%) < 3 3000+ gy
which can be reformulated as follows:

T T
(w(t) - 0%) "&(t)+ D (L (6:(1)) — v (6"))
t=2 t=2
12 T-1 *[12 T
<Y A0 ”‘9 ! M blwl(t)).

t=1 t=2

Now, one only needs to provide an upper bound on the sum of differences
Zthg (1(0i(t)) — ¢ (w(t))) to conclude. By definition, for ¢ > 2:

0,(t) = argmax {Z-TH - ﬂ
’ 9cRd ‘ 2y(t-1)

- (= u)}.
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so one has for any 8’ € R¢:

i(0)T(0:(t) — 0 |1O']|* — [|6:(1)]”

V(0:(1) = t—1 20— —1) T V(o).
Therefore, one has in particular for 8’ = w(t)
zi(t) (0:(t) —w(t)  llw(®)|* — 116:(t)]
v(6:(1) < o T Ue)
_ (8:(0) =1t = Dzi(t) " (w(t) = 0:(1)) | [lw(t) — 0:(1)]1
B (=1t —1) 2(t = 1)y(t - 1)
+ (@)

Using that 7 is y()-Lipschitz, one can write:

[z (2 10:(t)]|
i—1 T G—D-1

Jw(t) = 8,()]
20t — Dt — 1)

) Jwt) — 0:(0)]) +

+1h(w(t))
Z; _ — zZ(t) — z; 2
<2v(t—1) Ht _(?H 12 (t) — zi(t)]| + v(t 1)2”(75(?1) (®)]]
+P(w(t))

Using the fact that ||g;(t)|| < Ly forany j € [n] and any ¢ > 1, one can easily
see that ||z;(¢)|| < (t — 1) L. Finally, we obtain:

= (1)) — b(w(r)
t=2
; 7(t) — z:(1)112
< %Zv(t —1) <2Lf||2(t) — ()] + W) |

t=2

and the result holds. O
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Algorithm 15 Gossip dual averaging for pairwise function in synchronous
setting

Require: Step size (v(¢))¢>1 > 0. B
1: Each node i initializes y; = x;,z; = 0; = 0; = 0.
2: fort=1,...,Tdo

3:  Draw (¢, j) uniformly at random from &
4: Set Z;,Zj < HTZJ
5:  Swap auxiliary observations: y; < y;
6: fork=1,...,ndo
7: Update Zl — Zj —|—Vef(0k;xk,yk)
8: Compute 0y, < m.(z)
9: Average 0, «+ (1—1) 0, + 16,
10:  end for
11: end for

12: return Each node k has 6,

5.5 Pairwise Gossip Dual Averaging

We now turn to our main goal, namely to develop efficient gossip algo-
rithms for solving Problem (5.3) in the decentralized setting. The methods
we propose rely on dual averaging (see Section 5.3). This choice is guided
by the fact that the structure of the updates makes dual averaging much
easier to analyze in the distributed setting than sub-gradient descent when
the problem is constrained or regularized. This is because dual averaging
maintains a simple sum of sub-gradients, while the (non-linear) smoothing
operator 7 is applied separately.

Our work builds upon the analysis of DUCHI, AGARWAL, and WAIN-
WRIGHT (2012), who proposed a distributed dual averaging algorithm to
optimize an average of univariate functions f(-; x;). In their algorithm, each
node i computes unbiased estimates of its local function V f(-;x;) that are
iteratively averaged over the network — see Section 5.4 for details. Un-
fortunately, in our setting, the node i cannot compute unbiased estimates
of Vfi(-) = V(1/n) > %, f(+;xi,x;): the latter depends on all data points
while each node ¢ € [n] only holds x;. To go around this problem, we rely
on a gossip data propagation step similar to the one introduced in Chap-
ter 4 so that the nodes are able to compute biased estimates of V f;(-) while
keeping the communication and memory overhead to a small level for each
node.

We present and analyze our algorithm in the synchronous setting in Sec-
tion 5.5.1. We then turn to the more intricate analysis of the asynchronous
setting in Section 5.5.2.

5.5.1 Synchronous Setting

In the synchronous setting, we assume that each node has access to a
global clock such that every node can update simultaneously at each tick of
the clock. Although not very realistic, this setting allows for simpler anal-
ysis. We assume that the scaling sequence (y(t)):>0 is the same for every
node. At any time, each node i has the following quantities in its local
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memory register: a variable z; (the gradient accumulator), its original ob-
servation x;, and an auxiliary observation y;, which is initialized at x; but
will change throughout the algorithm as a result of data propagation.

The algorithm goes as follows. At each iteration, an edge (7, j) € £ of the
graph is drawn uniformly at random. Then, nodes i and j average their gra-
dient accumulators z; and z;, and swap their auxiliary observations y; and
y;. Finally, every node of the network performs a dual averaging step, us-
ing their original observation and their current auxiliary one to estimate the
partial gradient. The procedure is detailed in Algorithm 15, and the follow-
ing proposition adapts the convergence rate of centralized dual averaging
under the hypothesis that the contribution of the bias term decreases fast
enough over the iterations.

Proposition 5. Let G = ([n],€) be a connected and non-bipartite graph, and
let 0" € arg ming.pa Ry, (0). Let ((t))e>1 be a non-increasing and non-negative
sequence. For any i € [n] and any t > 0, let z;(t) € R? and 6;(t) € R? be
generated according to Algorithm 15. Then for any i € [n] and T > 1, we have:

ET[Rn(él) — Rn(e*)] <y (T) + CQ(T) + Cg(T),

where
( 1 2 ? <
32 Il
CQ(T) = Tl(l_}:/)\—z) ; V(t)a
= B
= 7 Y Ed(w(t) - 07) e,
t=1

and 1 — Xg = B,—1/|E| > 0 and B,—1 is the second smallest eigenvalue of the
graph Laplacian L.

Sketch of proof. First notice that at a given (outer) iteration ¢+ 1, z is updated
as follows:

zZ(t+1) Z di(t) (5.46)

where for k € [n], di(t) = Vo f(0r(t); Xk, yr(t + 1)) is a biased estimate of
V fi(0r(t)). Let €x(t) = di(t) — gr(t) be the bias, so gi(t) is an unbiased
gradient estimate: E[gy,(¢)|0x(t)] = V f(0x(1)).

Let us define w(t) = m;(2(¢)). Using convexity of R,, the gradient’s def-
inition and the fact that the functions f and 7; are both L ;-Lipschitz, we
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obtain: for 7' > 2 and i € [n],

T n
= 7%]: D=1 E [”Zi(t) - Zj(t)\l} (5.47)
t=2 j=1
T n
* #f > =1 E [”Z(t) - Zj(t)ll} (5.48)
t=2 j=1
T
+ % ;Et[(w(t) —6%)Tg(t)). (5.49)

Using Lemma 16 (see Section 5.9), the terms (5.47)-(5.48) can be bounded
by C2(T). The term (5.49) requires a specific analysis because the updates
are performed using biased estimates. We decompose it as follows:

T T
S Efwlt) - 0)TE0] = 5 DB - 69T @() - e(t)
t=2 t=2
T
< > 5 (@t —6nTdm] (6550
+% ;Et [(w(t) - e*)Te(t)} .

The term (5.50) can be bounded by C(T") (see X1IAO, 2010, Lemma 9). We
refer the reader to the Section 5.9 for the detailed proof. O

The rate of convergence in Proposition 5 is divided into three parts:
C1(T) is a data dependent term which corresponds to the rate of convergence
of the centralized dual averaging, while C5(T") and C3(T") are network depen-
dent terms since 1 — \y = ,—1/|€|, where 3,,_ is the second smallest eigen-
value of the graph Laplacian L, also known as the spectral gap of G. The
convergence rate of our algorithm thus improves when the spectral gap is
large, which is typically the case for well-connected graphs (CHUNG, 1997).
Note that C2(T") corresponds to the network dependence for the distributed
dual averaging algorithm of DUCHI, AGARWAL, and WAINWRIGHT (2012)
while the term C5(7") comes from the bias of our partial gradient estimates.
In practice, C3(T") vanishes quickly and has a small impact on the rate of
convergence, as shown in Section 5.7.

Theorem 23 (Pairwise ergodic dual averaging). Let G = ([n],&) be a con-
nected and non-bipartite graph, and let 0* € argmingcra Ry, (0). Let (y(t))¢>1 be
a non-increasing and non-negative sequence. For any i € [n] and any t > 0, let
zi(t) € R%and 0,(t) € R? be generated according to Algorithm 15. We make the
following assumptions:

1. There exists v € (—1,0) such that v(t) oc t*.
2. There exists D such that forall @ € X, ||0]| < D.
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Then, for any e > 0:

; L UV
E[(Rn(0:(T))] — Rn(6%)] <= (1 + 127(c )Z’y o)
T(e)
+2LD< T
3L2
+ T =) & (1),

where for any € > 0,

(1050 ~ log(c(9))
o) = ( og(@(G)) ’1>’

with ¢(G) > 1and ¢(G) € (0,1) only depending on the graph connectivity.
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Algorithm 16 Gossip dual averaging for pairwise function in asynchronous
setting

Require: Step size (y(t)):>0 > 0, probabilities (px)xen)-
1: Each node i initializes y; = x;,z;, = 0, = 0, =0, m; = 0.
2: fort=1,...,Tdo

3:  Draw (¢, j) uniformly at random from E
4:  Swap auxiliary observations: y; < y;
5. fork e {i,j} do
6: Set zj, + “3%
7 Update z;, < pikVQf(Ok.;xk,yk)
8: Increment my, < my, + i
9: Compute 0y, < 7, (21)
10: Average 0, «— (1 — mljpk) 0,
11:  end for
12: end for

13: return Each node k has 0,

5.5.2 Asynchronous Setting

For any variant of gradient descent over a network with a decreasing
step size, there is a need for a common time scale to perform the suitable
decrease. In the synchronous setting, this time scale information can be
shared easily among nodes by assuming the availability of a global clock.
This is convenient for theoretical considerations, but is unrealistic in prac-
tical (asynchronous) scenarios. In this section, we place ourselves in a fully
asynchronous setting where each node has a local clock, ticking at a Poisson
rate of 1, independently from the others. This is equivalent to a global clock
ticking at a rate n Poisson process which wakes up an edge of the network
uniformly at random (see BOYD et al., 2006, for details on clock modeling).

With this in mind, Algorithm 15 needs to be adapted to this setting.
First, one cannot perform a full dual averaging update over the network
since only two nodes wake up at each iteration. Also, as mentioned earlier,
each node needs to maintain an estimate of the current iteration number in
order for the scaling factor ~y to be consistent across the network. For k € [n],
let p;, denote the probability for the node k to be picked at any iteration. If
the edges are picked uniformly at random, then one has p;, = 2d;/|€|. For
simplicity, we focus only on this case, although our analysis holds in a more
general setting.

Let us define an activation variable (0x()):>1 such that for any ¢ > 1,

1 if node k is picked at iteration ¢,
Ok (t) = ,
0 otherwise.

One can immediately see that (0x(t));>1 are ii.d. random variables,
Bernoulli distributed with parameter py. Let us define (my(t)) > 0 such
that my(0) = 0 and for t > 0, my(t + 1) = my(t) + %L Since (8(£))11
are Bernoulli random variables, my(t) is an unbiased estimate of the time ¢.

Using this estimator, we can now adapt Algorithm 15 to the fully asyn-
chronous case, as shown in Algorithm 16. The update step slightly differs
from the synchronous case: the partial gradient has a weight 1/p, instead
of 1 so that all partial functions asymptotically count in equal way in every
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gradient accumulator. In contrast, uniform weights would penalize partial
gradients from low degree nodes since the probability of being drawn is
proportional to the degree. This weighting scheme is essential to ensure the
convergence to the global solution. The model averaging step also needs to
be altered: in absence of any global clock, the weight 1 /¢ cannot be used and
is replaced by 1/(mypy), where my,py, corresponds to the average number of
times that node £ has been selected so far.

The following result is the analogous of Proposition 5 for the asyn-
chronous setting.

Theorem 24. Let G = ([n],€) be a connected and non bipartite graph. Let
(v(t))¢>1 be defined as v(t) = c/t*/*>T for some constant ¢ > 0 and o € (0,1/2).
Fori € [n], let (d;(t)):>1, (8i(t))e=1, (€i(t))i=1, (2i(t))i=1 and (85(t))i=1 be gen-
erated as described in Algorithm 16. Then, there exists some constant C' < 400
such that, for 0 € argming cga R,(0'), 1 € [n]and T > 0,

Ry (05(T)) — R, (0*) <C max(T~/2, 7271/2)

1 a *\ T —
= > Erl(w(t) — 07)Te(t)).

The proof is given in the supplementary material.

In the asynchronous setting, no convergence rate was known even for
the distributed dual averaging algorithm of DUCHI, AGARWAL, and WAIN-
WRIGHT (2012), which deals with the simpler problem of minimizing uni-
variate functions. The arguments used to derive Theorem 24 can be adapted
to derive a convergence rate (without the bias term) for an asynchronous
version of their algorithm.

Remark 7. We have focused on the setting where all pairs of observations
are involved in the objective. In practice, the objective may depend only
on a subset of all pairs. To efficiently apply our algorithm to this case, one
should take advantage of the potential structure of the subset of interest:
for instance, one could attach some additional concise information to each
observation so that a node can easily identify whether a pair contributes
to the objective, and if not set the loss to be zero. This is essentially the
case in the AUC optimization problem studied in Section 5.7, where pairs
of similarly labeled observations do not contribute to the objective. If the
subset of pairs cannot be expressed in such a compact form, then one would
need to provide each node with an index list of active pairs, which could be
memory-intensive when n is large.
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5.6 Extension to Multiple Points per Node

For ease of presentation, we have assumed throughout the paper that
each node 7 holds a single data point x;. In this section, we discuss simple
extensions of our results to the case where each node holds the same num-
ber of points k > 2. First, it is easy to see that our results still hold if nodes
swap their entire set of £ points (essentially viewing the set of k points as a
single one). However, depending on the network bandwidth, this solution
may be undesirable.

We thus propose another strategy where only two data points are ex-
changed at each iteration, as in the algorithms proposed in the main text.
The idea is to view each “physical” node i € [n] as a set of k “virtual” nodes,
each holding a single observation. These £ nodes are all connected to each
other as well as to the neighbors of i in the initial graph G and their virtual
nodes. Formally, this new graph G® = ([n]®,£%) is given by G x K, the
tensor product between G and the k-node complete graph Kj. It is easy to
see that |V®| = kn and |E®| = k?|€|. We can then run our algorithms on
G® (each physical node i € [n] simulating the behavior of its correspond-
ing k virtual nodes) and the convergence results hold, replacing 1 — \§ by
1- )\g® in the bounds. The following result gives the relationship between
these two quantities.

Proposition 6. Let G = ([n], ) be a connected, non-bipartite and non-complete
graph. Let k > 2 and let G be the tensor product graph of G and Ky. Let 1 — X =

B9 ,/IEl and 1 — )\g® = Bgf_l/]é’@L where B,—1 and Bgf_l are the second
smallest eigenvalues of LI and L9 respectively. We have that

1)y

1-2§° = -

Proof. Denoting the Kronecker product by ®, we can write:

A% = 1,17 @ AY,
®

DY = kI, ® DY.

Recall that LY = DY — A9 and L9° = D9° — A9" . Let (¢,8) € R x R
be an eigenpair of L9%, ie., (Dg® — Ag®)¢ = B¢ and ¢ # 0. Let us write
¢ = [¢)1T e qka]T where ¢, ..., ¢, € R". Exploiting the structure of . Ch
and Dg®, we have:

k
kDY, —> A9, =B, forallic{l,... k}. (5.51)

j=1
Summing up (5.51) overalli € {1,...,k} gives

k

k
DY) ¢ - A7) &=
=1

=1

™

k
Z ¢z’7
i=1

which shows that if (¢, §) is an eigenpair of L9° with Zle ¢; # 0, then
(32| @i, B/k) is an eigenpair of LY. In the case where Y% ¢, = 0, then
there exists an index j € {1,...,k} such that ¢; = —3_, .. ¢; # 0. Hence
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(5.51) gives

Dig, = 2o,
which shows that (¢;, 3/k) is an eigenpair of LY. Observe that 8 = kd; for
somei € {1,...,n}.

We have thus shown that any eigenvalue 89 of L9 is either of the
form Bg® = kB9, where 89 is an eigenvalue of LY, or of the form ﬁg® = kd;
forsomei € {1,...,n}.

Since LY” is a Laplacian matrix, its smallest eigenvalue is 0. Let ﬁg,?_l
be the second smallest eigenvalue of LY°. Note that G® is not a complete
graph since G is not complete. Therefore, ﬁgf_l is bounded above by the
vertex connectivity of G¥ (FIEDLER, 1973), which is itself trivially bounded
above by the minimum degree df,, = min;e [D9%];; of G®. This implies
that Bg,;@_l = kpBY ., and hence

n—1s

g®
17)\g®_ knfl_kﬁgfl_]‘_)\g

Colesl o kBl K

O

Proposition 6 shows that the network-dependent term in our conver-
gence bounds is only affected by a factor k. Furthermore, note that itera-
tions involving two virtual nodes corresponding to the same physical node
will not require actual network communication, which somewhat attenu-
ates this effect in practice.
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Dataset Complete graph  Watts-Strogatz  Cycle graph
Breast Cancer (n = 699) 1.43-1073 8.71-107° 5.78-1078
Synthetic (n = 1000) 1.00- 1073 6.23-107° 1.97-1078

TABLE 5.1: Spectral gap values 1 — \§ for each network.

5.7 Numerical Simulations

In this section, we present numerical experiments on two popular ma-
chine learning problems involving pairwise functions: Area Under the ROC
Curve (AUC) maximization and metric learning. Our results show that our
algorithms converge and that the bias term vanishes very quickly with the
number of iterations.

To study the influence of the network topology, we perform our simula-
tions on three types of network (see Table 5.1 for the corresponding spectral
gap values):

— Complete graph: All nodes are connected to each other. It is the ideal
situation in our framework, since any pair of nodes can communi-
cate directly. In this setting, the bias of gradient estimates should be
very small, as one has for any k € [n] and any ¢ > 1, E;[dy(t)[0k(t)] =
1/(n = 1) >y sy Vo (Ok(t); xu, y'). For a network size n, the com-
plete graph achieves the highest spectral gap: 1 — \Y = 1/n, see
BOLLOBAS (1998, Ch.9) or CHUNG (1997, Ch.1) for details.

— Cycle graph: This is the worst case in terms of connectivity: each node
only has two neighbors. This network has a spectral gap of order
1/n3, and gives a lower bound in terms of convergence rate.

— Watts-Strogatz: This random network generation technique (WATTS
and STROGATZ, 1998) relies on two parameters: the average degree
of the network k£ and a rewiring probability p. In expectation, the
higher the rewiring probability, the better the connectivity of the net-
work. Here, we use £ = 5 and p = 0.3 to achieve a compromise be-
tween the connectivities of the complete graph and the cycle graph.

AUC Maximization We first present an application of our algorithms to
AUC maximization on a real dataset. Given a set of data points x1,...,x, €
R with associated binary labels ¢1,...,¢, € {—1,1}, the goal is to learn a
linear scoring rule x — x'6 parameterized by 0 € R? which maximizes:

AUC(0) = Zlgi,jgn]l{gi>£j}]l{x7?0>x}0}.

2<ijen o0}

It corresponds to the probability that the scoring rule associated with @ out-
puts a higher score on a positively labeled sample than on a negatively
labeled one. This formulation leads to a non-smooth optimization problem;
therefore, one typically minimizes a convex surrogate such as the logistic
loss:

Bu(0) = — " Ly log (1+exp((x; —x,)0))

1<i,j<n
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We do not apply any regularization (i.e., ¢ = 0), and use the Breast Cancer
Wisconsin dataset, ! which consists of n = 699 points in d = 11 dimensions.

We initialize each 6; to 0 and for each network, we run 50 times Algo-
rithms 15 and 16 with v(t) = 1/+/t.? Figure 5.1a shows the evolution of
the objective function and the associated standard deviation (across nodes)
with the number of iterations in the synchronous setting. As expected, the
average convergence rate on the complete and the Watts-Strogatz networks
is much better than on the poorly connected cycle network. The standard
deviation of the node estimates also decreases with the connectivity of the
network.

The results for the asynchronous setting are shown in Figure 5.1b. As
expected, the convergence rate is slower in terms of number of iterations
(roughly 5 times) than in the synchronous setting. Note however that much
fewer dual averaging steps are performed in this case: for instance, on the
Watts-Strogatz network, reaching a 0.1 loss requires 210, 000 (partial) gradi-
ent computations in the synchronous setting and only 25,000 in the asyn-
chronous setting. Moreover, the standard deviation of the estimates is much
lower than in the synchronous setting. This is because communication and
local optimization are better balanced in the asynchronous setting (one op-
timization step for each gradient accumulator averaged) than in the syn-
chronous setting (n optimization steps for 2 gradient accumulators aver-
aged).

The good practical convergence of our algorithm comes from the fact
that the bias term €(¢) "w(t) vanishes quite fast. Figure 5.1c shows that its
average value quickly converges to 0 on all networks. Moreover, its order
of magnitude is negligible compared to the objective function. In order to
fully estimate the impact of this bias term on the performance, we also
compare our algorithm to the ideal but unrealistic situation where each
node is given an unbiased estimate of its partial gradient: instead of adding
V£(0i(t);xi,yi(t)) to z;(t), anode i will add V f(0;(t); x;,x;) where j € [n]
is picked uniformly at random. As shown in Figure 5.2, the performance of
both methods are very similar on well-connected networks.

Metric Learning We now turn to a metric learning application. We con-
sider the family of Mahalanobis distances Dg(x;, %;) = (x; — ;) | 0(x; —%;)
parameterized by 8 € S¢, where S is the cone of d x d positive semi-
definite real-valued matrices. Given a set of data points x1,...,x, € R
with associated labels /1, ..., ¢, € {—1,1}, the goal is to find 6 € Si which
minimizes the following criterion (JIN, WANG, and ZHOU, 2009):

Ru(0) = — > [tit;(b— Do(xi,x;))], +¥(6),

1<ij<n

where [u] = max(0,1—u),b > 0,and 1)(0) = 0o if 8 ¢ S¢ and 0 otherwise.
We use a synthetic dataset of n = 1,000 points generated as follows: each
point is drawn from a mixture of 10 Gaussians in R%’ (each corresponding
to a class) with all Gaussian means contained in a 5d subspace and their

1. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+ (Original)

2. Even if this scaling sequence does not fulfill the hypothesis of Theorem 24 for the
asynchronous setting, the convergence rate is acceptable in practice.


https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

Chapter 5. Gossip Dual Averaging for Decentralized Optimization of

146 .. .
Pairwise Functions

shared covariance matrix proportional to the identity with a variance factor
such that some overlap is observed.

Figure 5.3a shows the evolution of the objective function and its stan-
dard deviation for the asynchronous setting. As in the case of AUC maxi-
mization, the algorithm converges much faster on the well-connected net-
works than on the cycle network. Again, we can see in Figure 5.3b that the
bias vanishes very quickly with the number of iterations.

We also compare the logistic loss associated to our algorithm’s iterates
to the loss associated to the following baseline: instead of adding the bi-
ased estimate V f(0;(t);x;,yi(t)) to its dual variable z;(¢), a node i € [n]
receives a vector drawn uniformly at random from the set of gradients
{Vf(0i(t);xi,x1),...,Vf(0:(t); xi,x,,)}. The bias introduced by the ran-
dom walk procedure is already shown to be very small in comparison to
the objective function on Figure 5.3b. Here, Figure 5.4 evidences the fact
that this small bias has close to no influence on the optimization process for
well-connected networks.

Finally, we focus on decentralized metric learning on the Breast Cancer
Wisconsin Dataset. Figure 5.5a shows the evolution of the metric learning
criterion with the number of iterations, averaged over 50 runs. As in pre-
vious experiments, there is almost no difference between the convergence
rate of the Watts-Strogatz network and the complete network. Moreover,
the bias term is again largely negligible when compared to the metric learn-
ing criterion, as shown on Figure 5.5b.
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5.8 Conclusion

In this work, we have introduced new synchronous and asynchronous
gossip algorithms to optimize functions depending on pairs of data points
distributed over a network. The proposed methods are based on dual aver-
aging and can readily accommodate various popular regularization terms.
We provided an analysis showing that they behave similarly to the central-
ized dual averaging algorithm, with additional terms reflecting the network
connectivity and the gradient bias. Finally, we proposed some numerical
experiments on AUC maximization and metric learning which illustrate
the performance of the proposed algorithms, as well as the influence of net-
work topology. A challenging line of future research consists in designing
and analyzing novel adaptive gossip schemes, where the communication
scheme is dynamic and depends on the network connectivity properties
and on the local information carried by each node.
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5.9 Proofs

This section is organized as follows. First, we establish proofs in Sec-
tion 5.9.1 for each lemma involved in the ergodic dual averaging analysis.
Then, we perform the analysis of the pairwise decentralized dual averaging
in the synchronous case. Finally, we tackle the proof of convergence in the
fully asynchronous setting.

5.9.1 Ergodic dual averaging
Error after mixing (Lemma 12)

Proof. Let 0 be a F;-mesurable variable, 8 € X and 7 > 0. By definition of
P(t+ 7|t) and P*°, the LHS in (5.25) can be rewritten as follows:

/ (F(6,€)—F(6".€))dP™(£) - / (F(6.€)— F(6".€))dP(t+]t)(€)
geA, EcA,

Both expectations in (5.52) only differ from the probability measures in-
volved; the above quantity can thus be bounded by:

|, (FO.6) - F@".€)1aP() ~ aP(t + ln(6)

Using the fact that for any £ € A,,, F(-,§) is Ly-Lipschitz, one has, for any
0,0" € X:

[F(6,€) — F(67,&)| < Ly||0 — 07| < LD,
the last inequality deriving from the definition of D. Then the result holds
using the definition of the total variation norm. O

Consecutive iterates bound (Lemma 13)

Proof. Let (z(t), 0(t))+>0 be generated according to (5.19) for some positive,
non-increasing sequence (7(t))¢>o. For any ¢t > 0, we aim at bounding ||6(¢t+
1) — 0(t)||. Let s(t) € 0v(0(t)) and s(t + 1) € 9y (0(t + 1)). The respective
optimality conditions on #(¢) and 8(t+ 1) lead to the following inequalities:

)= Ts(0) (001 +1)-0(1) < 0

+1)s(t+1)) (8(t) —6(t+1)) < 0
(5.52)

Then, using convexity of ¢ and the property of the subgradient leads to:

{ sE+DTO@+D=0(0) = VO 1) -v(On) oo
S(OT(O() ~0(1+1)) > B(B(1)) — w(O(t + 1)) '

Summing both inequalities in (5.52) and using (5.53), one obtains:

) (6t +1) - 6(t))
+1)) —(0(t))). (5.54)

(v(t)z(t) — (¢
(YE+Dz(t+1) —6(t+1) —T(¢

10(t + 1) — B(t)[I* <(v(t + Dzt + 1) — v(t)a(

t
+(T(E+ 1)~ T(0) (w6
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The optimality of 8(¢ + 1) ensures the following relation:

z(t+1) 001>
—(O(+ 1) 2 6() =5 — gy

—¥(6(1)).

We can reformulate this last inequality in order to provide an upper bound

on (O(t + 1)) — ¥ (6(t)):

z(t+1) |0t +1)|?
6t +1)" t+1  20(t+1)

z(t+1)  O(t)—0(t+1)
t+1 21 (¢ + 1) )
0(t+1)
I't+1)
<||6(t + 1) — 8(2)]| <|ngtj11)| Lt gI‘(t J(rt;)r 1)||)
o+ i
rt+1) "’

Y(O(t+1)) —9(8(t) <(B(t+1) — 6(t))" <

+(Ot+1)—0(t)"

+0(t+1) —6(1)]

where the last inequality is derived from Cauchy-Schwarz relation. Since
Tt 18 v(t+1)-Lipschitz and 711 (0) = 0, one has [|0(t+1)|| < y(t+1)|z(t+
1)||. Moreover, by definition of z(t 4+ 1) and since all f; are L-Lipschitz, one
has ||z(t 4+ 1)|| < (¢t + 1)L. These two last results lead the following bound:

18(t) — 8t + 1)
w(t+1)

(Ot +1)) —(6(t) <2L[|0( +1) —6(1)]| +

Now, we can use this bound in inequality (5.54):

(1 L T(t+1) -T()

2Tt + 1) ) 16(2 +1) = B(t)|| < IIy(t + La(t + 1) = y(1)z (1))

+2(I'(t+1)—T(¢))L.
The first term in the RHS can be simply bounded as follows:

[yt + Dzt + 1) = v()z@0)[] < v(t+1)||z(t + 1) — z(D)]]
+ (vt +1) =)=zl
< (T(t+1)-T(t)L.

Since I'(t + 1) and I'(¢) are both positive, one has:

T(t+1)—T() T(t+1)+T()

1= M(t+1)  2T(t+1) =0
which finally leads to:
16(t + 1) — 6(t)]| <BL(T(t +1) - F(t))m
<3L(I'(t+1) —TI(t)) < - %L) (5.55)

We make the additional assumption that y(¢) o< t* for some o € (—1,0).
This is not a particularly restrictive assumption since the dual averaging
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algorithm imposes that:
1. limy, o () = 0, hence a < 0.
2. limy_y00 ty(t) = 400, hence o + 1 > 0.
With this assumption and Taylor-Lagrange formula yields:

Fit+1)—T#) < (a+ 1)(1),

and the final result holds. O

Gap with noisy objectives (Lemma 14)

Proof. Let 7, > 0. One has:
FO(t),&t+7)) — F(O(t+7),&(t+7)) < L||6) —6(t+7)|

71
<L) [0(t+s)—0(t+s+1).
~ (5.56)

Using Lemma 13, one has forany 0 < s <7 — 1:

10(t+s) —O(t+s+1)|| <3L (1 + ) (C(t+s+1)—T(t+s))

2(t+s5)+1
<3L <1 + %il) (D(t+s+1)=T(t+s)).
(5.57)

Summing over s leads to:

T7—1
D 6t +s) —0(t+s+1)[| <3L (1 + 2t1+1> (T(t+7)-T(@1), (5.58)
s=0

and (5.28) holds.

We now make the assumption that y(¢) « t*, with a € (—1,0). As de-
noted in the proof of Lemma 13, one has:

Lt+7)—T() <7(14 a)y(t), (5.59)

so (5.29) also holds. O

5.9.2 Synchronous Pairwise Gossip Dual Averaging

In this section, we focus on the synchronous setting. First, we establish
a result on the expected dispersion of the dual variables over the network.
We then use this result to detail the rate of the decentralized dual averaging,
both for separable and pairwise objectives. Finally, we use the ergodic dual
averaging to provide an explicit rate of convergence.
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In DUCHI, AGARWAL, and WAINWRIGHT, 2012, the following conver-
gence rate for distributed dual averaging is established:

2 T
E[Ra(6:(T))] ~ Ru(67) < T(T o°|I° + 7{2 (t—1)
=2

T n
1{; t—ljz:<||zz =2 (0)]| + l12(t) - 2 (1))

The first part is an optimization term, which is exactly the same as in
the centralized setting. Then, the second part is a network-dependent term
which depends on the global variation of the dual variables; the following
lemma provides an explicit dependence between this term and the topology
of the network.

Lemma16. Let W(G) =1,,— |5| ” and let (G(t))t>1 and (Z(t))¢>1 respectively
be the gradients and the gradients cummulative sum of the distributed dual
averaging algorithm. If G is connected and non bipartite, then one has for

t>1:
1 _ L
~ D Elzi(t) ~ 2] < — =,
i=1 1—1/A

where \J is the second largest eigenvalue of W(G).

Proof. For t > 1, let W(t) be the random matrix such that if (i,j) € £ is
picked at ¢, then

W) =T, (e —e)ei—e;) .

As denoted in DUCHI, AGARWAL, and WAINWRIGHT, 2012, the update rule
for Z can be expressed as follows:

Z(t+1) = G(t) + W(H)Z(1),

for any ¢ > 1, reminding that G(0) = 0, Z(1) = 0. Therefore, one can obtain
recursively

Z t):iW(t:s)G s
s=0

where W(t : s) = W(t)...W(s + 1), with the convention W (t : t) = L,.
For any ¢ > 1, let W/(t) be defined as follows:

1,1

1,1)

One can notice that for any 0 < s <t, W/(t : 5) = W(t : s) — == and

write:

Z(t) — 1,z(t) = > W(t:5)G(s).
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We now take the expected value of the Frobenius norm:
E[|z0) - 1207, | < Z_;E W (t: $)G(s)ll
< z B w60
- ZZ VE [80(s) TW/(t 2 5)TW/(t 2 5)g)(s)],

i=1 s=0

where g(!)(s) is the i-th column of matrix G(s). Conditioning over F; ;
leads to:

E[g®(s)TW/(t: s) "Wt : s)g@(s)} < \E [g<i>(s)wa(t 1 s)g@(s)] :
and \{ is the second largest eigenvalue of W(G) := E[W(1)] = I, — L/|€]

(see Section 4.7.1 for details about W (G)). Using the fact that for any s > 0,
IG(s)||3 < nL%, one has:

El|z0) - 120)7| | <va O()\g) <1\—/Mng'

Finally, using the bounds between ¢ and ¢>-norms yields:

Ly

fZEsz @)l < 1nIEHZ(t)—1ni(t)TH < —=
Y

F

O]

With this bound on the dual variables, one can reformulate the conver-
gence rate as stated below.

Corollary 2. Let G = ([n],&) be a connected and non bipartite graph. Let
(7(t))e>1 be a non-increasing and non-negative sequence. For i € [n], let
(8i(£))t>1, (zi(t))i>1 and (0;(t))+>1 be generated according to the distributed dual
averaging algorithm. For % € arg ming cga R,,(0'), i € [n] and T > 2, one has:

5 oo 1 > LS
E[Rn(gz(T))] - Rn(a ) SQT’)/(T) ﬁ tZ:; 7
T-1

_|_

I+
3L%
A

where \§ < 1 is the second largest eigenvalue of W (G).

We now focus on gossip dual averaging for pairwise functions, as
shown in Algorithm 15. The key observation is that, at each iteration,
the descent direction is stochastic but also a biased estimate of the gradi-
ent. That is, instead of updating a dual variable z;(¢) with g;(¢) such that
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Elgi(t)|0:(t)] = Vfi(0i(t)), we perform some update d;(t), and we de-
note by €;(t) the quantity such that E[d;(t) — €;(t)|6;(t)] = E[g:(t)|60:(t)] =
V £i(0i(t)). We will now prove Proposition 5, which allows to upper-bound
the error with an additional bias-dependent term.

Proof. We can apply the same arguments as in the proofs of centralized and
distributed dual averaging, so for ' > 0 and i € [n]:

Er [Ra(0,(1)] ~ R (67) %Zw—l ) E[lz(t) - 0]
t= ]:1
T n
niTZw—l ) Iat) — (1)
7j=1
1 T
+T2Et 0%) "g(t)]
T n
< 22N -1 ) — 70|
t=2 =1
1 & ]
+ o S El(w(t) - 69 ()
t=2

The first term can be bound using Lemma 16. The second term however can
no longer be bound using Lemma 11, since the updates are performed with
d;(t) and not g;(t) = d;(t) — €;(t). With the definition of d;(¢), the former
yields:

T 1 T

= Edwlt) - 07)TE ()] = 1 D Eil(w(r) — 69T (@d(r) — ()]

t=2 t=2

Now Lemma 11 can be applied to the first term in the right hand side and
the result holds. ]

We now focus on the proof of 23. This results is based both on Proposi-
tion 5 and ergodic dual averaging presented in Section 5.3.3.

Proof. Throughout this proof, we assume ¢ = 0 for simplicity; similar re-
sults can however be obtained in the case ) # 0. Let ¢ € [n] and T" > 1.
Using a reasoning similar to Theorem 22, one has:

T
Ru(@(T) ~ R0) < 5SS Lp0)l(t) - 2,0
t=1 1
L
toz SO (£(0;(1) — £;(67))
t=1 j=1
T n
< 2SS s lt) — (1)
t=1 j=1
T n

F TS (55(6,0) - £(6)).

t=1 j=1
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The first term in the right hand side can be bounded using Lemma 16, so
we only need to handle the last term. To do so, we adapt the proof of con-
vergence for the ergodic dual averaging to the partial objectives. For j € [n],
let us define F; : R? x A,, — R such that for any (6, &) € R? x A,

Fi(0,6) =Y &uf(0:x),%).
k=1

In addition, for ¢ > 1, we define §;(¢) € {0,1}" N A, such that for k € [n],
3 j(t)Tek = 1 if and only if y;(t) = xj. Deriving the decomposition of the
ergodic dual averaging proof yields:

T
> (£(05() — £;(67)) =
t=1
T—1
D (f5(0;(1) = £5(07) + Fy(0;(t), &;(t + 7)) — Fj(67,&;(t +7)))
- (5.60)
T—7
+ ) (F(0;(1),&5(t+7)) — Fi(0;(t +7),&;(t + 7)) (5.61)
>
+ ) (F5(05(1),€,(t) — Fi(67,¢,(1))) (5.62)
t=7+1
T
+ > (£i(8,(1) — £;(67)). (5.63)
t=T—-7+1

Bounding the term (5.60) requires the knowledge of the total variation dis-
tance between the random walk associated to j after 7 algorithm steps and
the uniform. CHUNG, 1997, Theorem 1.18 states that such norm for one ran-
dom walk is upper-bounded as follows:

€109
P(t t) — P < : )
1P+ 7t = Py < o2 2200

where )Y is such that

P PR
mMaXye(n] di
However, in this case, the random walk associated to the j-th auxiliary ob-
servation will not necessarily be propagated 7 times during 7 algorithm
steps. Since we are interested in expected bound, we bound the expected
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total variation norm as follows:

E||Pj(t+ 7|t) — Pxoll7v < - P gfd-(r)—s 7’5‘(;\5)8
J T ollITV = prd p— J - 2minke[n] dp

‘g| - T s T—s/1YG\s
< E (1 — p.s
2mingey) dy, K] Pi (1=py)"(A3)

s=0
€] 56\7
=————((1 —p; iA
2mingep,) d (( Pj) +p; 2)

<¢(G)-<(9),

where

(g) = 51!

2 minge ) di

and
/ = 1-— A
c(9) ?é?ﬁ{( Pk) + Pk 2}
The term (5.61) provides an upper-bound similar to the centralized ergodic
case, as it only depends on the Lipschitz constant L; and the step size se-
quence. When averaging over all j € [n], the term (5.62) can be upper-
bounded as follows:

n T
% DY (Fi(05(0), &)~ F5(6%,€;(1))

j=1lt=7+1
n T
<IN ST (E0,(0),65(0) — F(w(®).£1))
j=1lt=7+1
T
+ (w(t) - 67)7d()
L
<ZES N AWl - a0
j=1t=7+1
T —
+) (w(t) —6%)'d(1),
t=1

which can then be bounded similarly to Proposition 5. Finally, the last
term (5.63) is bounded by 27LD, as in the centralized case. O

5.9.3 Asynchronous Pairwise Dual Averaging

In this section, we focus on a fully asynchronous setting where each
node has a local clock. We assume for simplicity that each node has a clock
ticking at a Poisson rate equals to 1, so it is equivalent to a global clock tick-
ing at a Poisson rate of n, and then drawing an edge uniformly at random
(see BOYD et al., 2006 for more details). Under this assumption, we can state
a method detailed in Algorithm 16.

The main difficulty in the asynchronous setting is that each node i has
to use a time estimate m; instead of the global clock reference (that is no
longer available in such a context). Even if the time estimate is unbiased,
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its variance puts an additional error term in the convergence rate. How-
ever, for an iteration 7" large enough, one can bound these estimates as stated
bellow.

Lemma 17. There exists 77 > 0 such that for any ¢ > T3, any k € [n] and
any g > 0,
t =t — 2T <y (t) <t + 12T =T as.

Proof. Let k € [n]. For t > 1, let us define ¢;(t) such that é;(t) = 1if k
is picked at iteration ¢ and d;(t) = 0 otherwise. Then one has my(t) =
(1/pk) 3°F_, 0x(t). Since (81 (t));>1 is a Bernoulli process of parameter 1/py,
by the law of iterative logarithms DUDLEY, 2010, (NEDIC, 2011, Lemma 3)
one has with probability 1 and for any ¢ > 0

t)—1
L e~

i 0,
t——+o00 t§+q

and the result holds. O

Theorem 25. Let G be a connected and non bipartite graph. Let (y(t)):>1 be de-
fined as () = c/t'/** for some constant ¢ > 0 and o € (0,1/2). Fori € [n], let
(di(t))tZI/ (gi(t))tzl, (fi(t))tZI/ (Zi(t))tZI and (ei(t))tzl be generated as stated
previously. For * € arg ming cga R,,(0"), i € [n] and T > 0, one has for some C::

T
Ry (05(T)) — Ry (0*) < C max (T2, T%71/?) + % > Eife(t) w(t)] .
t=1

Proof. In the asynchronous case, for i € [n] and t > 1, one has

mmzaﬂzw%m.

=1 Pi

Then, using the convexity of R,,, one has:

Er[Rn(6i(T)] — Rn(07) < Er

T 2o F0i0)

— R, (67).
— Pi

(5.64)

By Lemma 17, one has for ¢ > 0

T .
B[R, (0:(T)] — Ra(0%) < Ti_ S Er [‘5@;) Rn(Bi(t))] — R (6").
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Similarly to the synchronous case, one can write

n

Er [5;(;) f(ai(t))] -y %ET [6;(;)

©:0)]

= >k | Mg 6i) - 160500
+ % > Er [(%p(;)fjwj(t))] :

In order to use the gradient inequality, we need to introduce 0;(t) f;(0;(t))
instead of d;(t) f;(0(t)). For j € [n], one has:

e [0 < e (504
2

Let N; =7 g;(t)andlet1 <t < ... < tn; < T be such that 6;(t;) = 1
for k € [N;]. One can write

i K p ?)fj(t‘)j(t))] (5.65)
Z:Z ((Zl ift)) - 1) fjwj(tk))]

+ %ET (:Z; (W)) ]
)

650

1
- _E
-7

N;—1 tk+1 1
1 4 1
2
fj( ) n Lf]ET )
pngT‘ pzpy

We need to study the behavior of §; and §; in the first term of the right hand
side. One can check that

sz_l ZIW ~ L) est))
pi p; ) TINVE

k=1 t=ty
Nj—1 thp1—1 5:(t) 1
=Ep Z E Z — |, Tt T [i(05(tk)) | -

k=1 t=ty, Pi

Er
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0;(t) will not have the same dependency in ¢, whether i and j are connected
or not. Let us first assume that (i, j) € £. Then,

15 (t0)]tx] = B (9)85(6) = 1] = -

Also, for t;, < t < ti41, we get:

E[0:(t)|tx] = E[0:(t)|0;(t) = 0] = pi —2/€]

Finally, if (¢, j) € £, we obtain

tp+1—1
5:(t) <1 i —2/IE 1
E| titins | = (= + (bpay — by — DPEZEACT) 2
|:ttk ;i +1] 7 (ter1 ) =0 )

Before using this relation in the full expectation, let us denote that since
tk+1 — ti is independent from ¢, one can write

1 pi —2/I€]\ 1
(dj+(tk+1 te — 1) = p; pi\tk

]E _
(L <1—pj> pi—2/\5|> 1
d; Dj 1-p; ) pi

We can now use this relation in the full expectation

e (% - 29) £i0,00)

Di by

Nj—1 tep1—1 5:(t) 1
=Erp Z E|E Z »; tev1 — k| |tk | — o fi(0;(tk))
k=1 t=tp, /

=0. (5.66)
Similarly if (i, j) ¢ £, one has

E[0;(tk)|te] = E[0;(2)[0;(t) = 1] = 0,
and for t; <t < tp41,

BIS(0)lt] = EG(1)10,() = 0] = -

so the result of Equation (5.66) holds in this case. We have just shown that
for every j € [n], we can use d0;(t)f;(0,(t))/p; instead of 6;(t) f;(0;(t))/pi -
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Combining (5.64) and (5.65) yields:

T n
B (R0~ Ral®) <7 35 B [0 0,0) 50,00
=2 j=1
(5.67)
e S [0 (0, g0
t=2 j=1
TS ZET Do) - vie))| G
fg() o LiFrby(ty, — 1)
T T PiD; '

Let us focus on the second term of the right hand side. For ¢ > 2, one can
write

n;ET[pj< 05(0) - £(6°)] < ZET[% ) 0500 - )
LS [2Wgi)7 0,0 - wi0)]

(5.69)

l - 6j(t) T w *

P (0wl - )]

(5.70)

Here we control the term from (5.70) using w(t) := 7, (1) (Z(t))

(w(t) - )| = Ex {(iz

=Er [g(t)T(W(t) - 0*)} ’

1¢ 9;(t)
n;ET[ D; g](t)

and the reasoning of the synchronous case can be applied to obtain

2 T
f WL
ZZE [ ) ) - ] =2 =D+ o
1 T
+ = ZEt
ltZQT
3 (w(8°) ~ Erlbw(t)]).
t=2
(5.71)

Let us regroup the term from (5.71) and (5.68) together:
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1 [
— 2 | we0) ~ dlw(t)]
1 ZT 5i(t)
+ T t=2 b [( pi 1)1!1(40@))]
1 & 8i(t)

where we have used for the last term the same arguments as in (5.66) to
state - ZtT:Q Er [(% - 1)@&((»(7&))} = 0. Then, one can use the fact that m;
is v(t)-Lipschitz to write:

1

T -
piT- > Er [QLf’Y(mi(t —)|z() -z (1) + y(mi(t = D)||z(t) =z @[]
=2

2(mi(t — 1))

Provided that y(t) < C/+/t for some constant C, then using Lemma 17 we
can bound this term by C’/ V/T. Let us now control the term in (5.69):

% S Er [6;(?) g;(t)" (8;(t) — w(t))]

J

J=1

<=L "Er[||0;(t) — w(B)]l] (5.72)

n

<L S (16,0 - 850 + 16;(0) — w (0]

j=1
L < ~ -
<2 L3 B [ymy (e = 1)25(0) — 2(0)] + 185(0) — w(O)]]
J j=1
where 0,(t) = T, (1—1)(—2(t)). We can apply Lemma 18 with the choice
01 =0;(t), 02 = w(t), t1 = my(t), ta = m;(t) and z = 7(t):
leo(t) — 8;(2)l]

|
s G LA )02
1§ 2 A28 )

We use Lemma 17 with the choice ¢ = «/2, so we can bound for ¢ large
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enough the former expression by a term of order ||z (t) |||y (m;(t)) —y(m;(t))].
Note also that ||z(t)|| < Lymaxy—1,_,mg(t), so for ¢t large enough we ob-
tain:

lo(t) = 8;(D)]| < Lpty(t) =7 (t")]:

With the additional constraint that the step size is of the form ~(t) =
Ct=1/279 the term ||w(t) — 0;(t)]| is bounded by C"t=%/2 for t large enough,
. n 5
and so is (1/n) 325, Er | 2%g;(6)7(6,(t) — w(1))]
To control the term in (5.67) we use that f; is L ¢-Lipschitz

|£5(8:(1)) — f5(0; ()] <Ly|0:(t) — 6;(t)]|
<Ls([|6:(t) — w ()] + [[w(t) — 8;()]))-

and we use now the same control as for (5.72), hence the result.
O

Lemma 18. Let v : Ry — R, be a non-increasing positive function and let
z € R% For any t1,t, > 0, one has

102 — 61| <|[z]||7(t2) — v(t1)]
1l (5 + max 18, TN ) (£ 4 1) ) = et

t

where

2
0, = 7, (z) :=arg max {ZTO _ leI7 _ t1¢(0)}

OcRd 27(t1)
02 = mi(z) i=angmax {70 - 161 120(6)}
T emd 27(t2) .

Proof. Using the optimality property of the minimizers, for any s, € 9 (01)
(resp. s2 € 09(62)):

(v(t1)z — t1y(t1)s1 — 61) ' (B2 — 671) <
(Y(t2)z — tay(ta)sa — 02) T (81 — 02) <

Re-arranging the terms, and using properties of sub-gradients yields:

162 — 61]|° <(y(t2) — v(t1))z" (82 — 61) + (t17(t1)s1 — tay(t2)s2) ' (B2 — 61)
(5.73)

<(v(t2) —7(t1))z" (82 — 01) + (t17(t1) — tay(t2)) (1(02) — ¥(61))

Also, using the definition of 6, and 6, one has:

[6(61) — (81)] < [12]]161 — 2] (2 +max<3g3, %;)) (7} ; j) |

(5.74)

With relations (5.73) and (5.74) we bound the distance between 6; and 02
as follows:
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182 — 01| <llz[[|v(t2) —v(t1)]

3 () () ) (L1
] (5 4 max 18, T ) (54 1) () - e (o)

O
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Conclusion

In a wide variety of statistical learning problems, U-statistics are natu-
ral estimates of the risk measure one seeks to optimize. As the sizes of the
samples increase, the computation of such functionals involves summing
a rapidly exploding number of terms and becomes numerically unfeasible.
In this work, we tackled several problems that were only explored in the
case of a sample mean empirical risk. First, we provided theoretical guar-
antees for different sampling schemes for U-statistic-based ERM, showing
that sampling according to the incomplete U-statistic scheme can preserve
the learning rate while involving far fewer terms than the naive complete
U-statistic from a subsample. Furthermore, we have extended these results
to U-statistics based on different sampling schemes (Bernoulli sampling,
sampling without replacement) and shown how such functionals can be
used for the purpose of model selection and for implementing ERM iter-
ative procedures based on stochastic gradient descent. Beyond theoretical
rate bounds, the efficiency of the approach we promote is illustrated by sev-
eral numerical experiments. Then, we tackled problem of the decentralized
estimation. We introduced a new gossip algorithm for both synchronous
and fully asynchronous setting for estimating U-statistics. We have shown
that the expected convergence rate outperforms the state of the art and nu-
merical experiments confirmed the practical interest of the proposed algo-
rithm. Finally, we introduced synchronous and asynchronous algorithms
for optimizing convex objectives depending on pairs of observations. The
proposed methods are based on dual averaging and can readily accommo-
date various popular regularization terms. We provided an analysis show-
ing that they behave similarly to the centralized dual averaging algorithm,
with additional terms reflecting the network connectivity and the gradient
bias. The numerical experiments on AUC maximization and metric learn-
ing illustrated the performance of the proposed algorithms, as well as the
influence of network topology.

In future work, one could investigate the possibility of adaptive com-
munication schemes, in order to speed-up to convergence for both decen-
tralized estimation and optimization. One could also extend asynchronous
decentralized algorithms to the case where nodes do not know their rela-
tive degree, estimating it on the run and using an ergodic analysis to show
the convergence.
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Adaptation des méthodes d’apprentissage aux U-statistiques
Igor COLIN

RESUME : Lexplosion récente des volumes de données disponibles a fait de la complexité algorithmique un élé-
ment central des méthodes d’apprentissage automatique. Les algorithmes d’optimisation stochastique ainsi que les
méthodes distribuées et décentralisées ont été largement développés durant les dix derniéres années. Ces méthodes
ont permis de faciliter le passage a I'échelle pour optimiser des risques empiriques dont la formulation est séparable en
les observations associées. Pourtant, dans de nombreux problémes d’apprentissage statistique, I'estimation précise du
risque s’effectue a I'aide de U-statistiques, des fonctions des données prenant la forme de moyennes sur des d-uplets.
Nous nous intéressons tout d’abord au probléme de I'échantillonage pour la minimisation du risque empirique. Nous
montrons que le risque peut étre remplacé par un estimateur de Monte-Carlo, intitulé U-statistique incompléte, basé
sur seulement O(n) termes et permettant de conserver un taux d’apprentissage du méme ordre. Nous établissons
des bornes sur I'erreur d’approximation du U-processus et les simulations numériques mettent en évidence I'avantage
d’une telle technique d’échantillonnage. Nous portons par la suite notre attention sur I'estimation décentralisée, ou les
observations sont désormais distribuées sur un réseau connexe. Nous élaborons des algorithmes dits gossip, dans
des cadres synchrones et asynchrones, qui diffusent les observations tout en maintenant des estimateurs locaux de
la U-statistique a estimer. Nous démontrons la convergence de ces algorithmes avec des dépendances explicites en
les données et la topologie du réseau. Enfin, nous traitons de I'optimisation décentralisée de fonctions dépendant de
paires d’'observations. De méme que pour I'estimation, nos méthodes sont basées sur la concomitance de la propaga-
tion des observations et I'optimisation local du risque. Notre analyse théorique souligne que ces méthodes conservent
une vitesse de convergence du méme ordre que dans le cas centralisé. Les expériences numériques confirment I'intérét
pratique de notre approche.

MOTS-CLEFS : U-statistique, gossip, optimisation décentralisée, graphe

ABSTRACT : With the increasing availability of large amounts of data, computational complexity has
become a keystone of many machine learning algorithms. Stochastic optimization algorithms and distribu-
ted/decentralized methods have been widely studied over the last decade and provide increased scalability
for optimizing an empirical risk that is separable in the data sample. Yet, in a wide range of statistical learning
problems, the risk is accurately estimated by U-statistics, i.e., functionals of the training data with low va-
riance that take the form of averages over d-tuples. We first tackle the problem of sampling for the empirical
risk minimization problem. We show that empirical risks can be replaced by drastically computationally sim-
pler Monte-Carlo estimates based on O(n) terms only, usually referred to as incomplete U-statistics, without
damaging the learning rate. We establish uniform deviation results and numerical examples show that such
approach surpasses more naive subsampling techniques. We then focus on the decentralized estimation
topic, where the data sample is distributed over a connected network. We introduce new synchronous and
asynchronous randomized gossip algorithms which simultaneously propagate data across the network and
maintain local estimates of the U-statistic of interest. We establish convergence rate bounds with explicit
data and network dependent terms. Finally, we deal with the decentralized optimization of functions that de-
pend on pairs of observations. Similarly to the estimation case, we introduce a method based on concurrent
local updates and data propagation. Our theoretical analysis reveals that the proposed algorithms preserve
the convergence rate of centralized dual averaging up to an additive bias term. Our simulations illustrate the
practical interest of our approach.

KEY-WORDS : U-statistic, gossip, decentralized optimization, graph
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