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Abstract

Seismic waves are widely used for the characterisation of the subsurface as they can travel over
long distances and image structures of interest for the oil and gas industry. Signals recorded at
the surface during active seismic experiments are analysed to recover parameters governing
the wave propagation, such as the pressure wave velocity �eld. Several techniques aiming at
resolving this inverse problem rely on the assumption of a scale separation between rapidly
varying components of the velocity model, the re�ectivity model, and a smooth macro-model
controlling the kinematics of wave propagation. Migration algorithms have been developed
for the recovery of the re�ectivity model but they require a good estimate of the macro-
model to deliver accurate images. Analysis of re�ectivity images may in turn give indications
about the accuracy of the estimated macro-model: this is the principle of Migration Velocity
Analysis (MVA) techniques, based on the analysis of primary re�ection data. The formulation
of MVA considered here is based on extended re�ectivity images depending on an additional
parameter called subsurface-o�set, a spatial delay introduced during the construction of the
re�ectivity image. The velocity analysis is carried on panels called Common Image Gathers
(CIGs), function of depth and of the subsurface-o�set, an accurate macro-model corresponding
to energy focused at zero subsurface-o�set in CIGs. Using Di�erential Semblance Optimisation
(DSO), the inversion strategy consists of �nding the macro-model best focusing events in CIGs.
However the method is known to have di�culties in the presence of coherent noise such
as multiple re�ections, whose removal from recorded data remains a challenging problem.
Multiples falsely interpreted as primary re�ections result in spurious events in CIGs which do
not necessarily focus for the correct macro-model, misleading subsequent velocity analysis.
Even with only primary re�ections, CIGs are altered with migration artefacts, also not focused
for the correct macro-model, due to the limited extension of any seismic survey. Recent studies
suggest replacing standard migration, which consists of applying the adjoint of the modelling
operator to observed data, by inversion. These techniques have been shown to attenuate
migration artefacts, but inversion formulas do not necessarily exist for multiples.

In this thesis, I propose to use iterative migration to build CIGs free of migration and multiple
artefacts. This makes MVA a nested optimisation procedure: in the inner loop, the re�ectivity
should minimise data mis�t for a �xed value of the macro-model, while the defocused energy
in CIGs is minimised in the outer loop. The improvements but also instabilities brought by
this strategy are shown and analysed in the case of primaries only and then in the case of
�rst-order surface related multiples modelled with a second-order Born approximation. To limit
the additional computational cost of iterative migration, a preconditioner is de�ned to reduce
the number of inner iterations. The preconditioner is a newly developed pseudo-inverse of
the modelling operator, derived for primary re�ections only. An issue with iterative migration
is the apparition of low energy events at large values of h in CIGs. These events have little
impact on data mis�t but large in�uence on the subsequent velocity analysis and its stability.
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Abstract

This issue may be mitigated by regularising the inner problem. We also propose a more robust
solution applicable in the nested optimisation process, using a slightly modi�ed version of the
usual MVA objective function.

This methodology is developed and analysed on synthetic data sets obtained under the
constant density acoustic approximation, �rst with primary re�ections only, then with primary
re�ections and �rst-order surface multiples. Finally we consider a series of synthetic data sets
obtained with modi�cations of the modelling engine such as the introduction of variable density
or the replacement of second-order Born modelling by a free-surface condition, to test the
robustness of the approach.

The main contribution of this work is (1) the analysis of existing limitations related to
image-domain methods and (2) the propositions for a more robust scheme. Both traditional
(pure primary re�ections) and extended (incorporation of multiples) approaches bene�t from
these developments.
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Résumé

L’analyse de la propagation des ondes sismiques dans le sous-sol est une technique courante
pour la caractérisation de propriétés de la subsurface car ces ondes peuvent parcourir de grandes
distances et imager des structures d’intérêt pour l’industrie pétrolière. Dans la con�guration
classique, sources et récepteurs sont placés à la surface. Les signaux sismiques enregistrés par les
récepteurs sont analysés pour déterminer la valeur de paramètres qui gouvernent la propagation
des ondes dans le sous-sol. Le paramètre considéré dans cette étude est le champ de vitesse
de propagation des ondes P. De nombreuses stratégies de résolution de ce problème inverse
supposent une décomposition du modèle de vitesse en deux composantes : un « macro-modèle »
lisse qui explique la cinématique de propagation des ondes d’une part, et un modèle de ré�ectivité
représentant les variations rapides du modèle de vitesse responsables des ré�exions d’autre part.
Le modèle de ré�ectivité est classiquement obtenu par des algorithmes de migration. Ceux-ci
nécessitent une bonne connaissance du macro-modèle pour obtenir une image �dèle du sous-sol.
En revanche, l’analyse d’un modèle de ré�ectivité peut donner des indications sur la qualité du
macro-modèle de vitesse utilisé pendant l’étape de migration : c’est le principe des méthodes
dites d’analyse de vitesse par migration (MVA) qui exploitent l’information contenue dans les
ondes ré�échies primaires. Dans la variante de MVA considérée dans cette étude, le modèle
de ré�ectivité est paramétré par les coordonnées spatiales et un paramètre additionnel appelé
« o�set en profondeur », introduit dans la construction de l’image migrée pour capter toute
l’information contenue dans les données. L’analyse de vitesse est réalisée sur des panneaux de
cohérence appelés Common Image Gathers (CIGs), fonction de la profondeur et de l’o�set en
profondeur : le critère de qualité du macro-modèle de vitesse est la focalisation de l’énergie
à zéro o�set dans les CIGs. Suivant la méthode dite d’optimisation par semblance di�érentielle
(DSO), l’inversion consiste à trouver le modèle de vitesse qui focalise au mieux les évènements
dans les CIGs. Cette technique est sensible à la présence dans les données de bruit cohérent
comme les ré�exions multiples, dont l’atténuation dans les données demeure une étape délicate
de prétraitement des données. L’interprétation de ré�exions multiples en tant que primaires
se traduit par la présence d’artefacts dans les CIGs qui ne focalisent pas nécessairement pour
le bon macro-modèle de vitesse. Même dans le cas de primaires seuls, des artefacts dits « de
migration » apparaissent sur les CIGs en raison de l’extension �nie de sources et récepteurs
à la surface rencontrées lors d’acquisitions de données réelles. Ces artefacts contredisent le
critère de cohérence utilisé pour remettre à jour le macro-modèle et compromettent alors le
succès de l’inversion. Récemment plusieurs études ont suggéré de construire le modèle de
ré�ectivité par inversion des données observées en remplacement de l’étape de migration, qui
consiste mathématiquement à appliquer l’adjoint de l’opérateur de modélisation aux données.
Cette stratégie permet d’atténuer les artefacts de migration ; mais si de nombreuses formules
d’inversion existent pour les primaires, leur transposition aux ré�exions multiples n’est pas
nécessairement possible.
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Résumé

Dans cette étude, je propose d’atténuer les artefacts de migrations et ceux dus aux multiples
en construisant les CIGs par migration itérative des données. La MVA peut alors être vue comme
un problème d’optimisation imbriqué : dans la boucle interne, la ré�ectivité est obtenue en
minimisant la di�érence entre données observées et données calculées pour une valeur �xe du
macro-modèle, tandis que le macro-modèle est remis à jour dans la boucle externe pour minimiser
l’énergie défocalisée dans les CIGs. Les avantages mais aussi les instabilités de cette stratégie sont
illustrés et analysés d’abord dans le cas de primaires seuls, puis avec ajout des multiples de surface
du premier ordre, modélisés par l’approximation de Born du second-ordre. Pour réduire le coût
de calcul supplémentaire apporté par la migration itérative, un préconditionneur est introduit
pour limiter le nombre d’itérations nécessaires dans la boucle interne. Le préconditionneur
utilisé ici est une nouvelle proposition de pseudo-inverse de l’opérateur de modélisation des
ré�exions primaires. Il permet également d’accélérer la convergence de la migration itérative
dans le cas de multiples.

Une di�culté liée à la migration itérative est l’apparition d’évènements peu énergétiques
pour des grandes valeurs de l’o�set en profondeur. Ceux-ci ont une faible incidence sur la boucle
d’optimisation interne mais ont une in�uence néfaste sur l’analyse de vitesse et compromettent
sa stabilité. Cette di�culté est atténuée en ajoutant une régularisation sur le modèle de ré-
�ectivité. Je propose aussi une alternative plus robuste appliquée à la méthode d’optimisation
imbriquée, elle consiste en une modi�cation de la fonction coût habituelle de la MVA.

Cette stratégie est testée sur des jeux de données synthétiques obtenus sous l’approximation
acoustique à densité constante de l’équation des ondes, d’abord avec des ré�exions primaires
seules, puis avec des multiples de surface du premier ordre. En�n sa robustesse est évaluée
en l’appliquant à des données obtenues en modi�ant le code de modélisation des données
observées, en introduisant par exemple un modèle de densité variable ou en modélisant les
multiples avec une condition de surface libre.

Les principales contributions de cette étude sont (1) l’analyse des limitations actuelles des
méthodes d’inversion dé�nies dans le domaine image ; (2) des propositions de stratégies plus
robustes vis-à-vis de ces di�cultés, qui béné�cient à la fois au cas classique (ré�exions primaires
seules) et au cas étendu aux multiples de surface.
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Chapter 1. Introduction

Résumé du chapitre 1

Les méthodes d’imagerie sismique sont couramment employées par l’industrie pétrolière pour
caractériser les matériaux qui constituent le sous-sol. Elles mettent en œuvre une source sismique
active et un ensemble de récepteurs. Plusieurs géométries d’acquisition sont possibles. Dans
ce manuscrit, la source et les récepteurs sont supposés placés en surface et l’enregistrement
de données est répété pour plusieurs positions de la source en surface. Après prétraitement,
les données sont analysées pour déterminer la valeur des propriétés physiques du sous-sol qui
gouvernent la propagation des ondes ; il s’agit alors de résoudre un problème inverse.

Dans le cas le plus courant, on cherche à déterminer uniquement le champ de vitesse de
propagation des ondes P. Cela correspond à l’approximation acoustique à densité constante de
l’équation des ondes. La formulation la plus naturelle pour ce problème inverse est l’inversion
des formes d’ondes (Full Waveform Inversion, FWI). Elle consiste en la minimisation itérative
d’une fonction coût qui mesure l’écart entre les données observées et des données simulées en
résolvant l’équation des ondes avec l’estimation courante du modèle de vitesse. En raison du
coût numérique élevé de la simulation de données calculées, la minimisation de cette fonction
coût est réalisée par des méthodes d’optimisation locale utilisant le gradient de la fonction coût.
Une première di�culté est que la fonction coût de la FWI présente de nombreux minima locaux.
Un bon modèle de départ est alors nécessaire pour assurer que le processus d’optimisation
converge vers le minimum global. À défaut, la présence de basses fréquences dans les données
observées ou d’enregistrements à grands o�sets (distance source-récepteur) permet de dé�nir
des stratégies hiérarchiques limitant le risque de converger vers un minimum secondaire. Une
deuxième di�culté est la reconstruction des grandes longueurs d’onde du modèle de vitesse.
Dans la partie peu profonde du modèle, elles sont retrouvées grâce aux ondes plongeantes.
En revanche, seules les ondes ré�échies illuminent la partie plus profonde du modèle ; dans le
gradient de la fonction coût, ces ondes apportent des informations sur les variations rapides du
modèle de vitesse comme la position des interfaces mais ne remettent pas à jour les grandes
longueurs d’ondes du modèle.

Des stratégies alternatives ont été dé�nies pour contourner ces di�cultés. Elles supposent
que l’on peut décomposer le modèle de vitesse en une partie lisse, appelée « macro-modèle »
et responsable de la cinématique de propagation des ondes, et une partie hautes fréquences,
représentant les variations rapides du modèle de vitesse et appelée « ré�ectivité ». Ces deux
modèles sont déterminés séparément. Le modèle de ré�ectivité peut être retrouvé par des tech-
niques dites de « migration », dé�nies comme des algorithmes qui repositionnent les interfaces
dans le sous-sol à partir de l’information contenue dans les ondes ré�échies enregistrées dans
les données. Classiquement, une estimation du macro-modèle est utilisée pour simuler d’une
part la propagation dans le sous-sol de la source sismique émise en surface et d’autre part la
rétropropagtion des données enregistrées par les récepteurs. Ces deux champs d’onde coïncident
à la position des ré�ecteurs et l’image « migrée » est obtenue par corrélation croisée de ces
deux champs d’onde. Le modèle de ré�ectivité obtenu dépend alors fortement du macro-modèle
utilisé pour calculer la propagation des champs d’onde.

L’estimation du macro-modèle fait couramment appel aux méthodes de « tomographie ».
Elles sont dé�nies à l’aide de la théorie des rais qui fait l’hypothèse d’une approximation hautes
fréquences de l’équation des ondes : les évènements enregistrés dans les données sont alors
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caractérisés uniquement par le temps de trajet source-récepteur en laissant de côté l’amplitude et
la signature des signaux sismiques. Dé�nies dans le domaine temps, les méthodes de tomographie
minimisent l’écart entre des temps de trajet calculés avec une estimation du modèle de vitesse
et des temps de trajet pointés dans les données enregistrées. Elles sont couramment utilisées
dans l’industrie et de nombreuses évolutions ont été proposées telles les tomographies de pente
et la stéréotomographie.

L’autre famille de méthodes visant à estimer le macro-modèle est connue sous le nom d’« ana-
lyse de vitesse par migration » (Migration Velocity Analysis, MVA). Ces méthodes exploitent la
redondance d’information contenue dans les données sismiques. Ces techniques sont dé�nies
dans le domaine image et peuvent utiliser la théorie des rais ou considérer le champ d’onde dans
son ensemble. L’analyse se fait sur les ondes ré�échies primaires et repose sur l’approximation
de Born, qui dé�nit une relation linéaire entre données ré�échies et modèle de ré�ectivité.
Les di�érentes variantes de MVA peuvent être classées en deux catégories. Dans l’orientation
surface, le jeu de données est divisé en sous-ensembles indexés par un paramètre de redondance
tel que la position de la source en surface ou la distance entre source et récepteur. Une image de
ré�ectivité est obtenue par migration pour chaque sous-jeu de données : on obtient alors une
collection d’images représentant une même région de la subsurface. Si le bon modèle de vitesse
est utilisé au cours de l’étape de migration, ces images doivent être semblables. Si le modèle de
vitesse est erroné, les ré�ecteurs peuvent ne pas être positionnés à la même profondeur pour
chaque valeur du paramètre de redondance. Ce critère de cohérence permet la dé�nition d’une
fonction coût qui mesure la similarité entre les images. Le macro-modèle est déterminé par
minimisation de cette fonction coût. Dans l’orientation profondeur, étudiée dans cette thèse, un
délai spatial et/ou temporel est introduit pendant l’étape de migration lors de la corrélation des
champs source et récepteur. Dans cette étude je considérerai uniquement un délai spatial appelé
« o�set en profondeur » et supposé horizontal. Pour chaque valeur de l’o�set en profondeur,
une image de ré�ectivité est construite avec l’ensemble des données. On parle alors de modèle
(de ré�ectivité) « étendu ». L’introduction de ce degré de liberté supplémentaire permet de
compenser les erreurs du macro-modèle et conduit à un nouveau critère pour l’évaluation du
macro-modèle. Celui-ci est dé�ni sur des panneaux 2D, appelés Common Image Gathers (CIGs),
représentant le modèle de ré�ectivité fonction de la profondeur et de l’o�set en profondeur
pour une position latérale �xe. Avec le bon modèle de vitesse, l’énergie doit se focaliser autour
de la valeur nulle de l’o�set en profondeur, qui correspond au modèle de ré�ectivité qui a
un sens physique. La présence d’énergie à des valeurs non nulles de l’o�set en profondeur,
correspondant à des modèles de ré�ectivité non physiques, traduit la présence d’erreurs dans
le modèle de vitesse. J’utiliserai dans cette étude la stratégie d’« optimisation par semblance
di�érentielle » (DSO). Elle construit le macro-modèle de vitesse par minimisation d’une fonction
coût qui pénalise l’énergie défocalisée dans les CIGs. Il a été montré, au moins dans des cas
simples, que cette fonction est lisse et ne présente pas de minima secondaires dans une large
région autour du minimum global. Le macro-modèle peut alors être obtenu par minimisation de
cette fonction coût avec des méthodes d’optimisation locale. Le calcul du gradient associé est
une étape essentielle de l’inversion et fera l’objet d’une grande attention dans cette étude.

La formulation profondeur de la DSO est théoriquement attrayante mais peu d’applications
sur données réelles ont été publiées jusqu’ici. En plus du coût de calcul numérique de la méthode,
plusieurs di�cultés l’empêchent d’être plus largement adoptée. Tout d’abord, on constate en
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Chapter 1. Introduction

pratique l’apparition dans les CIGs d’artefacts liés à l’extension �nie de sources et de récepteurs
en surface. Ces artefacts ne focalisent pas pour le bon modèle de vitesse, qui ne constitue
alors plus un minimum de la fonction coût de la DSO. Une deuxième di�culté, connue sous
le nom d’« artefacts du gradient », est la présence de fortes oscillations dans le gradient de la
fonction coût aux troncatures du modèle de ré�ectivité et autour de la position des ré�ecteurs.
Ces oscillations ne sont pas nécessairement atténuées par un lissage du gradient. Pour s’en
a�ranchir, la méthode de « contraction horizontale » (Fei et Williamson, 2010 ; Shen et Symes,
2015) a été proposée, mais elle présente le désavantage de ne plus dé�nir la remise à jour du
modèle de vitesse en tant que gradient d’une fonction objective. Finalement, les méthodes de
MVA restent limitées à l’analyse de ré�exions primaires seules. Si un formalisme similaire a
récemment été dé�ni pour le cas des ondes transmises et des ondes plongeantes, les ré�exions
multiples sont toujours considérées comme du bruit cohérent. En e�et, interprétées comme des
primaires elles conduisent à de nouveaux artefacts dans les CIGs qui, de même que les artefacts
de migration, ne focalisent pas nécessairement pour le bon modèle de vitesse.

L’atténuation des ré�exions multiples dans les données observées a fait l’objet de nombreuses
recherches et demeure un problème ouvert. Plusieurs méthodes de prédiction des multiples
contenus dans un jeu de données ont été proposées, certaines supposant la connaissance d’un
modèle de vitesse. La méthode SRME (Surface Related Multiple Elimination, Verschuur et
Berkhout, 1997) est aujourd’hui parmi les plus populaires et ne requiert aucune connaissance
sur le sous-sol. En revanche, elle suppose une couverture dense de sources et récepteurs en
surface. Quelle que soit la méthode employée, la prédiction des multiples n’est en pratique
jamais parfaite et une étape de « soustraction adaptative » est nécessaire pour faire correspondre
au mieux la prédiction aux multiples présents dans les données. Le danger est alors d’atténuer
également l’information contenue dans des ré�exions primaires chevauchant des multiples.
Depuis quelques années, les multiples sont cependant abordés sous un autre angle : ils peuvent
être considérés non pas comme du bruit mais comme une source d’information supplémentaire,
notamment en raison de l’illumination di�érente du sous-sol qu’ils procurent. Des algorithmes
de migration prenant en compte les ré�exions multiples ont récemment été proposés. Ils utilisent
des procédures itératives telles qu’une migration au sens des moindres carrés. L’utilisation
de multiples pour la reconstruction du macro-modèle de vitesse a jusqu’à présent été moins
explorée.

Dans cette étude, je propose d’itérer l’étape de migration avant de remettre à jour le macro-
modèle. La migration itérative (chapitre 2) vise à déterminer un modèle de ré�ectivité étendu
minimisant une fonction coût qui mesure l’écart entre données observées et données calculées.
L’objectif est d’atténuer les artefacts de migration et ceux dus aux multiples qui apparaissent à la
première itération, équivalente à la migration classique. L’étude est restreinte au cas de multiples
de surface du premier ordre modélisés par une approximation de Born du second ordre. L’analyse
de vitesse par migration itérative ainsi dé�nie est un problème d’optimisation imbriqué à deux
niveaux et une méthode de calcul du gradient de la fonction coût externe doit être dé�nie. Deux
stratégies sont étudiées dans le chapitre 3. Dans un premier temps la méthode est testée dans le
cas de primaires seuls, puis étendue aux multiples. Dans le chapitre 4, elle est comparée, dans le
cas de primaires seuls, à une stratégie d’inversion « directe » où l’image migrée est obtenue par
application aux données inverse d’un pseudo-inverse de l’opérateur de modélisation dans le
domaine étendu. Une nouvelle formule d’inversion est proposée à cette occasion. De même que
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celles proposées par ten Kroode (2012) et Hou et Symes (2015, 2017), et contrairement au cas
étudié dans Lameloise et al. (2014), elle ne fait pas intervenir de quantités liées au rais, même
si les calculs intermédiaires reposent sur l’approximation hautes fréquences. Cette stratégie
atténue e�cacement les artefacts de migration et améliore la qualité de la remise à jour du macro-
modèle (section 4.2). Une légère modi�cation de la fonction coût de la DSO permet également de
fortement atténuer les oscillations résiduelles localisées au niveau des ré�ecteurs. Par ailleurs
l’introduction du pseudo-inverse comme préconditionneur de la migration itérative permet
d’en diminuer le coût numérique. Comparé à l’inversion directe, l’approche itérative produit
des résultats de ré�ectivité similaires. En revanche, le calcul du gradient de la boucle externe se
révèle instable : celui-ci est très sensible à de légères modi�cations du modèle de ré�ectivité
apparaissant entre deux itérations successives et ayant un faible impact sur la fonction objective
de la migration. Cette di�culté est illustrée dans le chapitre 3 et des régularisations stabilisant
le calcul du gradient sont étudiées dans les chapitres 3 et 5. Finalement la robustesse de cette
stratégie est testée dans le chapitre 6 sur des jeux de données synthétiques obtenus avec un
code de modélisation di�érent de celui utilisé pour l’inversion, par exemple avec une ondelette
de source di�érente ou un modèle de densité variable.
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Chapter 1. Introduction

In exploration geophysics, seismic imaging consists of characterising the subsurface model
parameters such as pressure and shear wave velocity or rock density with the analysis of
non-destructive measurements performed at the surface. Emitted seismic waves propagate in
all the directions in the subsurface and are distorted during propagation. In simple models, they
are re�ected and di�racted at interfaces characterised by rapid variations of physical properties
of the rocks. Sensors located at the surface record the waves reaching the surface after having
interacted with the subsurface and provide the data used by geophysicists. These time recordings
usually cannot be used directly for geological interpretation. Surface recordings have to be
converted into maps of the subsurface. This crucial step is formulated as the resolution of an
inverse problem aiming at �nding the value of physical parameters governing the propagation
of waves in the subsurface. The resolution of this inverse problem is a di�cult step and many
methods addressing it have been proposed. Among others issues, data may depend in a non-
linear way on the model parameters. This is the case for example when the model corresponds
to the large wavelengths of the velocity model or when seismic waves re�ect several times in
the subsurface. This thesis especially focuses on these two cases.

In this introduction, we �rst brie�y summarize the main steps of seismic imaging used
in exploration geophysics and then pay attention to the resolution of the inverse problem.
Finally we motivate our work and explain the current limitations of image-domain methods, in
particular how multiples can bias traditional imaging techniques. For that, we recap the physics
of multiple bouncing waves and explain why multiples may bring valuable information on the
subsurface instead of being removed in a pre-processing step.

1.1. From seismic acquisition to interpretation

Seismic experiments are in common use in the oil and gas industry for the subsurface imaging
and reservoir management of a reservoir. Seismic waves can travel over long distances and are
thus well suited to the study of the geologic structures involved in oil production, located at a
depth of a few kilometres in the subsurface. Seismic exploration uses active seismic experiments,
meaning the source at the origin of wave propagation is arti�cially triggered, contrary to passive
seismic considered in seismology for the study of natural earthquakes. We review the main
steps of active seismic experiments in this section. The reader is referred to Sheri� and Geldart
(2006) and Yilmaz (2001) for more details.

1.1.1. Seismic data acquisition

Seismic surveys can take place in land or marine environments. In the usual land acquisition,
the source is a vibrating truck and an array of receivers called geophones measures the motion
of particles. They are evenly placed at the surface along one or several lines (�gure 1.1a).
The experiment is run many times with di�erent source and receiver positions. Under the
approximation of single scattered energy, a point of the subsurface is in this way illuminated
through many di�erent angles. The presence of a drilled borehole can also provide a di�erent
acquisition geometry called Vertical Seismic Pro�ling (VSP) with sources at the surface and
receivers in the well (�gure 1.1b). In the case of cross-well acquisition, sources and receivers
are located in two di�erent wells. In marine acquisition, the source is an air-gun and receivers
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1.1. From seismic acquisition to interpretation

called hydrophones sensitive to the pressure are distributed along several streamers towed by a
speci�c vessel. Alternatively receivers can be located at the sea �oor in a display called Ocean
Bottom Cable (OBC) (�gure 1.1c).

(a) surface acquisition (taken from Danish Energy Agency).

(b) VSP acquisition. (c) OBC acquisition.

Figure 1.1. – Acquisition geometries for di�erent types of seismic surveys.

The data recorded by a receiver is a function of time and is usually called a trace. The
collection of traces recorded during an experiment is represented on a panel called shot gather
with the time on the vertical axis, and the distance between source and receiver (also called
o�set) on the horizontal axis (�gure 1.2).

A shot gather records the Earth’s response to the source excitation. Many events correspond-
ing to di�erent kinds of waves can be observed. We can distinguish between pressure waves
(P-waves), where particles move parallel to the wave propagation direction, and shear waves
(S-waves), where the particle motion is orthogonal to the wave propagation (Aki and Richards,
2002). Besides, energy travels as surface and body waves. Surface waves are more energetic
and provide information about the near-surface (Socco and Strobbia, 2004; Pérez Solano, 2013).
They are used in seismology but commonly considered as noise in seismic exploration which
uses body waves. The latter can be classi�ed according to their path in the subsurface:

• transmitted waves, such as direct and diving waves travel between the source and the
receiver without being re�ected;

• (primary-)re�ected and di�racted waves are generated at discontinuities of the Earth
with strong impedance contrast;

• refracted waves travel along these interfaces;
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Figure 1.2. – An example of a 2D seismic data recorded in marine acquisition (from Anandakrish-
nan et al., 1998).

• multiple re�ected waves are caused by strong re�ectors such as the sea surface or the
water bottom. Upgoing energy is sent back to the subsurface and can re�ect a few times
on the subsurface structures before being recorded.

1.1.2. Physical modelling

For the determination of the subsurface parameters, we �rst need to de�ne a physical law
representative for the wave propagation observed on data recordings. It is mathematically
formalised through a partial di�erential equation. The most general visco-elastic wave equation
involves the density, the attenuation of P and S waves and the 21 elastic coe�cient of the
sti�ness tensor relating the stress tensor to the strain tensor. Simpli�ed physics is usually
assumed. If the subsurface is considered isotropic, the sti�ness tensor reduces to the Lamé
parameters λ and µ. The simplest approximation is the isotropic acoustic case. The Earth is
assimilated to a �uid parametrised by the P-wave velocity VP and the density ρ. Then only
P-waves are considered and re�ected events are caused by rapid variations of the acoustic
impedance IP = ρVP. Note that the model parameters are function of the spatial coordinates:
even for the constant density acoustic case, a large number of parameters should be speci�ed
for solving the wave equation.

The simulation of wave propagation is usually performed with a �nite-di�erence resolution
of the wave-equation (Virieux, 1986; Levander, 1988; Operto et al., 2007), or with �nite element
schemes (see Virieux et al., 2011, for a review). Modelling can also rely on a high-frequency

8
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approximation such as ray theory (Červený, 2005). The result of the forward problem is synthetic
data calculated for all subsurface points, in particular at the receiver positions.

1.1.3. Preprocessing

Earth’s parameters cannot be directly inverted from seismic measurements. Usually, prepro-
cessing is needed before subsequent imaging steps. The �rst processing stage consists of
selecting the wave�eld in the data that will be used for the analysis and of attenuating the noise
inherent to every practical experiment (Yilmaz, 2001). Many seismic imaging procedures rely
on primary re�ection data only and consider other events like transmitted waves or multiples
as coherent noise. These should be removed from the data before further analysis. In particular,
the removal of coherent noise such as multiples has been an intense research topic (Verschuur,
2013) and will be reviewed in section 1.4.3.

However, with the improvement of seismic imaging algorithms and computation capabilities,
recent developments attempt to use all the information available in the data, like multiples or
transmitted events, and more generally the full wave�eld. In particular, the purpose of this
study is to investigate the use of multiple re�ections as signal rather than noise.

1.1.4. Definition of an objective function

The accuracy of model parameters used during modelling can be assessed by comparing observed
data and calculated data. For a quantitative estimation, a scalar objective or cost function is
de�ned on the space of admissible models. It is designed such that the best model is a global
minimiser or maximiser of the function. It can be de�ned directly in the data-domain, measuring
for example the di�erences between observed and calculated data in the least-squares sense
(Tarantola, 1984). Alternative formulations in the image domain detailed in section 1.3 rely on
focusing or coherency criteria de�ned on reconstructed images of the Earth (Al-Yahya, 1989;
Symes, 2008). A simple example of image-domain strategy will be given at the end of this
section.

The purpose of the inverse problem is to �nd a set of parameters minimising the objective
function. In practice, it is an ill-posed problem, meaning that several models can explain
perfectly the data (Tarantola, 2005), due to an imperfect illumination of the subsurface or to
coupling between parameters. This issue can be mitigated by adding a regularisation term to the
objective function, usually enforcing the smoothness of the recovered model, or its consistency
with a priori information about the subsurface (Asnaashari et al., 2013).

1.1.5. Solving the inverse problem

Optimisation strategy
The objective of the inverse problem is to determine a set of model parameters which minimise
the objective function through an optimisation procedure. The most general approach involves
global optimisation methods (Sen and Sto�a, 2013) which requires only the ability to compute the
value of the objective function. Examples of such methods are simulated annealing (Kirkpatrick
et al., 1983; Ingber, 1989), genetic algorithms (Holland, 1975) or particle swarm optimisation
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(Kennedy and Eberhart, 1995). The drawback of these strategies is their computational cost, as
numerous evaluation of the objective function are required.

Local optimisation methods (Nocedal and Wright, 2006) are a less expensive alternative. The
gradient of the objective function is used to iteratively update an initial guess of the model, such
that the value of the objective function decreases with iterations. Local optimisation requires the
ability of computing the gradient of the objective function with respect to the model parameters.
The adjoint-state method (Plessix, 2006; Chavent, 2009) provides a computationally e�cient
way of performing this derivation.

In practice the objective function is not necessarily convex because of the non-linear re-
lationship between data and model parameters: gradient-based method may converge to a
local minima. Therefore an other requirement for local optimisation is the knowledge of an
initial model su�ciently close to the true model. Inversion strategies considering �rst the
low-frequency content of the data and progressively incorporating higher-frequencies help
mitigating the non-linear behaviour of the objective function and relax the requirement of an
accurate initial model (Bunks et al., 1995). Strategies to de�ne convex objective functions will
be detailed in sections 1.2 and 1.3.

Multiparameter inversion
Most applications of inversion techniques consider a mono-parameter description of wave
propagation with the pressure-wave velocity VP. Moving to a multi-parameter inversion is
challenging (Operto et al., 2013). As pointed out before, due to limited acquisition with sources
and receivers at the surface, di�erent classes of parameters are coupled, meaning that they
have a similar impact on seismic data. This issue is known as cross-talk or trade-o� between
parameter. To overcome this di�culty, a suitable parametrisation is needed. In the acoustic
example, the parameter couples can be (VP,ρ) or (VP, IP) depending of the acquisition (Virieux
and Operto, 2009; Zhou et al., 2015; Zhou, 2016).

Scale separation
In the following we consider a monoparameter inversion with the P-wave velocity model, noted
c(x) from now on, as unknown. x = (x , y, z) or (x , z) denotes the spatial coordinates. The
resolution of the velocity model image that can be recovered is limited by the frequency band
of the data (typically 5 to 70 Hz) and the data acquisition setup. The model resolution is better
described with spatial frequencies. As illustrated by the well-known sketch of Claerbout (1985)
(�gure 1.3), two separate ranges of spatial frequencies of the model can be reconstructed from
seismic data (Jannane et al., 1989), leading to a scale separation of the velocity model (�gure 1.4):

• the smooth slowly-varying component of the model (�gure 1.4b), called the background
velocity model, or macro-model, controlling the kinematics of wave-propagation;

• rapid changes in the components of the model, responsible for the re�ections, referred to
as re�ectivity (�gure 1.4c). This part can be physically interpreted as the Earth discon-
tinuities.

Note that since the publication of Claerbout’s book, the frequency gap has been progressively
�lled by improvement of seismic source design allowing to record lower frequencies in the
data and the progress of imaging techniques allowing to recover a more detailed background
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Figure 1.3. – Spatial frequencies that can be resolved from seismic data (from Claerbout, 1985).

(a) Velocity model c(x). (b) Background model c0(x). (c) Model perturbation δc(x).

Figure 1.4. – Illustration of the usual scale separation for the Marmousi model (Brougois et al.,
1990). The complete velocity model c(x) is decomposed into a smooth background part c0(x)
and a perturbation δc(x) of the background model c0 (adapted from Billette, 1998).

velocity model (Nichols, 2012; Lambaré et al., 2014). However, the traditional scale separation
remains the theoretical basis of many seismic imaging methods.

The scale separation can be written explicitly

c(x) = c0(x) + δc(x), (1.1)

where c0 is the background velocity model and δc is the re�ectivity. If |δc| � |c0|, the re�ectivity
can be seen as a perturbation of the background velocity model. Under the Born approximation,
the relationship between primary re�ection data and model perturbation δc is linear. Data still
depend non-linearly on the background velocity model c0, though.

The large and short-scale structures of the velocity model can be inverted simultaneously
without scale separation, as in Full Waveform Inversion (FWI) presented in section 1.2.1. Altern-
atively, they can be recovered separately. Migration algorithms are designed to convert events
recorded in time into a re�ectivity map of the model perturbation δc function of depth. Under
the Born approximation, the determination of δc is a linear inverse problem. Performing this
conversion requires the prior knowledge of the background velocity model. The determination
of the long-scale structure of the velocity model is performed with tomographic approaches,
either in the data-domain (Bishop et al., 1985) or in the image-domain (Symes, 2008). Migration
and tomography strategies will be reviewed in sections 1.2.2, 1.2.3 and 1.3.
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1.1.6. Postprocessing

Finally the quantitative knowledge of physical properties provided by the inversion is used to
determine a model of the subsurface at the reservoir scale. Empirical relationship between VP
and VS may give indications about the presence of hydrocarbon (Tatham and Sto�a, 1976) and
the permeability and porosity of rock materials (Domenico, 1984). This information are used to
manage the oil production of the reservoir.

This thesis focuses on the resolution of the inverse problem in the isotropic acoustic approx-
imation of the wave equation. We study a method called Migration Velocity Analysis (MVA), an
image-domain technique aiming at recovering the background velocity model. The purpose
of the thesis is to investigate the possible inclusion of multiple re�ections in this approach,
which traditionally considers only primary re�ections. The principle and issues of MVA will be
detailed in section 1.3. We now review standard time-domain strategies for the resolution of
the inverse problem.

1.2. Time-domain methods for the resolution of the inverse
problem

We detail in this section time-domain methods addressing the resolution of the inverse problem
in the isotropic acoustic approximation of the wave equation, meaning that the unknown is the
pressure wave velocity �eld c(x). Image-domain methods will be described in section 1.3. We
�rst present the FWI strategy, which consider the full recorded traces to recover both the large
and short scales of c(x). Then alternative strategies relying on the scale separation assumption
(�gure 1.4) are detailed. We shall distinguish between methods dedicated to the recovery of
the short-scale structures δc(x) (section 1.2.2) and those aiming at retrieving the background
velocity model c0(x) (section 1.2.3).

1.2.1. Full Waveform Inversion

A data-fi�ing procedure
FWI (Virieux and Operto, 2009; Fichtner, 2011) is an iterative procedure considering the complete
recorded seismic traces. The associated objective function measures the least-squares mis�t
between recorded data and simulated data.

JFWI[c] =
1
2



Pcalc[c]− Pobs


2

2. (1.2)

All type of waves are included in the modelling of the data (direct, diving, re�ected, multiply
scattered waves). First introduced by Tarantola (1984), the method has gained in popularity
with the increase of computer power. In theory di�erent model parameters (velocity, density,
attenuation, anisotropy) can be resolved, requiring a modelling engine able to reproduce the
physics of wave-propagation as accurately as possible (Warner et al., 2012). However most
applications use the acoustic approximation of the wave-equation and are interested in retrieving
only the pressure-wave velocity model of the Earth because of the computational cost of elastic
modelling and of the challenges of multi-parameter estimation (Operto et al., 2013).
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1.2. Time-domain methods for the resolution of the inverse problem

Resolution analysis
As FWI tries to explain the complete data set, it should provide high-resolution images of the
subsurface, with both the long and short-scale structures of the velocity model. The contribution
of di�erent kinds of waves in the construction of the velocity model can be analysed with the
following relationship (Devaney, 1982; Miller et al., 1987),

k=
2ω
c0

cos
�θ

2

�
n, (1.3)

linking the spatial frequency vector or wavenumber k at point x to the di�raction angle θ
associated to a source-receiver pair, n being the normalisation of vector k (�gure 1.5). In the
shallow part of the subsurface, large di�raction angles obtained for diving waves allow to
recover the small wavenumbers, i.e. the large-scale structure of the velocity model. Because
of the limited surface o�set range, the deeper part of the subsurface is investigated mainly by
re�ected waves with a small di�raction angle, and only the high-frequency part of the velocity
model is recovered. In the deeper part of the subsurface, FWI thus behaves like a non-linear
least-squares migration algorithm (Mora, 1988, 1989). Methods extracting the information about
the long-scale structure contained in re�ected events will be presented in section 1.2.3.
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Figure 1.5. – Relationship between the wavenumbers ks and kr and the opening angle θ at the
image point x.

The cycle-skipping issue
It is known that the FWI objective function (1.2) su�ers from local minima because of the
non-linear relationship between model and data (Gauthier et al., 1986). This problem is called
cycle-skipping and imposes in theory the use of global optimisation procedures (Tognarelli et al.,
2015; Galuzzi et al., 2016). These methods are computationally expensive as they require many
evaluations of the objective function. Gradient-based methods are less expensive, but they need
a starting model close to the solution to avoid converging to a local minimum. More precisely
the phase mismatch between data computed with the initial and true model should be less than
half the shortest wavelength contained in the data.

To overcome this di�culty, a hierarchical strategy consists of inverting �rst the low-frequency
content of the data and then progressively incorporating higher frequencies, as the basin of
attraction of the mis�t function is inversely proportional to the central frequency of the data
(Bunks et al., 1995; Pratt et al., 1996; Sirgue and Pratt, 2004). The presence of large o�sets
recording in the surveys allows also to better constrain the background model with transmitted
waves (Shipp and Singh, 2002). This hierarchical strategy has been successfully applied on
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real data sets in marine (Sirgue et al., 2009; Vigh et al., 2009) and land (Plessix et al., 2010)
environments. In typical acquisition geometries, for a target at a few kilometres depth the
frequency content of the data should start around 1 Hz to avoid cycle skipping. If low-frequency
data or large o�sets are not available, other strategies have to be designed to avoid falling in a
local minimum.

Alternative techniques modify the de�nition of the objective function to enlarge the basin
of attraction around the correct velocity model. The usual `2-norm can be replaced by a more
convenient distance. Métivier et al. (2016) use an optimal transport distance to measure the
mis�t between seismograms; the basin of attraction of the objective function is extended at
the cost of a new optimisation problem dedicated to the calculation of the distance. Other
strategies transform the signals of both observed and calculated data to a more convenient
domain before subtraction. Shin and Cha (2008, 2009) have studied the use of the Laplace and
Laplace-Fourier domain to perform the inversion and showed that an accurate smooth model
could be built in these domains. In the Normalised Integration Method (Donno et al., 2013),
the transformation consists of integrating the square of the signals and can be interpreted as
a measure of the accumulation of energy along the trace. The objective function compares
monotone increasing signals and is more convex; however the processing of noise for this
method should be investigated. Other methods consider the envelope of seismic data (Wu et al.,
2014; Chi et al., 2014) to work on less oscillatory signals. All these transforms allow to mitigate
the cycle-skipping issue but produce velocity models with a lower resolution than conventional
FWI. However they can be considered as a �rst inversion step dedicated to the building of an
accurate starting model for FWI (Tejero et al., 2015), or for migration algorithms used to recover
the short-scale structure of the velocity model.

1.2.2. Linearised waveform inversion

The purpose of migration techniques is to recover a map of Earth discontinuities corresponding
to a perturbation of the velocity model. These methods are based on the classic scale separation
and assume the knowledge of an estimate of the macromodel. They were historically designed
for primary re�ections only. Extension to multiple re�ections will be presented in section 1.4.4.

The �rst migration techniques used geometrical construction (Bleistein et al., 2001). In a
simple geologic context, an event appearing at time t in a trace corresponding to a source
at position s and a receiver at position r is due to a di�racting point situated at a location x
such that the sum of traveltimes from s to x and from x to r is equal to t . All the subsurface
points satisfying this criterion de�ne an isochrone curve; in the case of an homogeneous
velocity model, it is an ellipse with focus points at s and r. Repeating the process for all sources
and all receivers, the summation of ellipses interferes constructively along the re�ectors and
destructively anywhere else (Bleistein et al., 2001).

Later the construction of a re�ectivity model was reformulated by considering the propagation
of complete wave�elds and Claerbout (1971) introduced the concept of Imaging Condition.
Interfaces are de�ned as the location where a downgoing incident wave�eld coincides in time
with an upgoing re�ected wave�eld. In the case of primary re�ections in surface acquisition,
the downgoing wave�eld is the source wave�eld and the upgoing wave�eld is the re�ected
wave�eld recorded by the receivers. This leads to a three-step procedure:
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1.2. Time-domain methods for the resolution of the inverse problem

• propagation of an estimation of the source wavelet to determine the source wave�eld
S(s,x, t) in the medium at all subsurface points and for all times;

• backpropagation of the data recorded at receiver positions at all subsurface points and
for all times to determine the receiver wave�eld R(s,x, t);

• application of an imaging condition to these wave�elds S and R to determine an image of
the subsurface. Many formulations exist for this imaging condition, the most commonly
used is the cross-correlation at zero-lag of the source and receiver wave�elds.

The procedure is repeated for each shot point, yielding as many migrated sections as shot
points in the survey. The obtained images can be stacked to increase the signal to noise ratio.
However, the similarities and discrepancies between these di�erent images can also be used as
information. This is the basic principle of MVA techniques presented in Section 1.3.

This migration algorithm has been recognised as the �rst iteration of the least-squares data-
�tting inverse problem (Lailly, 1983; Tarantola, 1984). Under the Born approximation, this
inverse problem is linearised. Assuming a �xed estimate of the background velocity model c0,
it consists of determining the model perturbation δc which best reproduces recorded data. The
associated scalar mis�t function is

J0[c0,δc] =
1
2



P[δc]− Pobs


2, (1.4)

where Pobs stands for recorded data and P[δc] represents the Born-modelling of data with the
model perturbation δc. As in the case of FWI (equation 1.2), this objective function measures
the mis�t between observed data and calculated data, except that here only the short-scale part
of the velocity model is updated, and the associated inverse problem is linear.

The migration procedure detailed above actually computes the gradient of the objective
function (1.4) in δc = 0,

∂ J0

∂ δc

�
c0,δc = 0

�
(x) =

2

c3
0(x)

∫

s

∫

t

∂ 2

∂ t2
S[c0](s,x, t)R[c0](s,x, t)dt ds, (1.5)

where S and R are the source and receiver wave�eld, whose values depend on the background
velocity c0(x). Note that the de�nition of the mis�t function (1.4) contains an implicit summation
over the sources. De�ning the re�ectivity as the gradient of this function produces a post-stack
image.

The migration operator is actually the adjoint of the Born modelling operator and provides
only a qualitative image of the subsurface: the position of the re�ectors is kinematically consist-
ent with the assumed velocity model and the recorded traveltimes. However the method does
not provide a correct estimation of their amplitude. To obtain a quantitative estimate of the
re�ectivity model, the minimisation problem presented above should be solved completely. This
true-amplitude migration can be achieved with an approximate inverse of the Hessian of the
objective function (Beylkin, 1985; Lambaré et al., 1992; Plessix and Mulder, 2004; Kiyashchenko
et al., 2007). Alternatively an iterative procedure using gradient-based methods can be de�ned
to minimise the mis�t function (Nemeth et al., 1999; Østmo et al., 2002). In chapter 2, an iterative
migration procedure will be presented in the context of second-order Born modelling.
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The result of the migration process depends strongly on the velocity model used to compute
the source and receiver wave�elds. With an incorrect velocity model, events may be positioned
at the wrong depth and may not be well focused. In the following section, time-domain methods
to construct the background velocity model are reviewed.

1.2.3. Tomographic methods: retrieving the large-scale structure of the
velocity model

Traveltime tomography
Traveltime tomography techniques are developed with the ray theory, based on the high-
frequency asymptotic approximation of the wave equation (Červený, 2005). Wave propagation
in the subsurface is described by rays with propagation laws similar to those used in optics. In
this formalism, the Green’s functions describing the wave propagation can be decomposed into
three terms, one accounting for the traveltime, one for the amplitude and one for the source
signature. In tomographic methods, events in the data are characterised by their traveltime only.
Their amplitude and the �nite-frequency nature of the data are not considered, contrary to
FWI. The objective function of the associated inverse problem measures the di�erence between
traveltimes picked on a selection of events in the data with traveltimes computed with an
estimation of the velocity model c:

JTT[c0] =
1
2
‖τ[c0]− τobs‖2. (1.6)

The velocity model is updated iteratively to minimise the traveltime di�erences. The method
requires a �rst processing stage to pick events, as well as a modelling engine relying on the
resolution of the Eikonal equation to compute traveltime maps corresponding to a velocity
model (Vidale, 1988; Podvin and Lecomte, 1991; Noble et al., 2014). Depending on the acquisition,
di�erent events can be picked.

The �rst arrivals are mostly used in seismology. They consists of direct and diving waves
and are easier to pick than re�ections. In active seismic experiments, they are well suited when
the acquisition geometry emphasises transmission e�ects, for example in surface acquisition
with large o�sets, cross-well acquisition or with buried receivers and sources at the surface
(Vi Nhu Ba, 2014). In the case of surface acquisition without large o�sets, the depth penetration
of these waves restricts the area where the background velocity can be recovered. Information
about the deeper part of the model is contained in re�ected waves.

Re�ected events can be picked as well. In this case the model is parametrised both by
a velocity model and a geometric description of the re�ectors. Re�ection tomography was
historically developed in the time domain (Bishop et al., 1985; Farra and Madariaga, 1988).
Each re�ection in the data is associated to a re�ector. An issue is that picking re�ected events
along a wide range of o�set is a di�cult task, especially with complex geology and noisy data
(Lailly and Sinoquet, 1996). To improve the signal to noise ratio, the data can be stacked if
the model is not too complex. Alternatively the analysis can be transposed to the migrated
domain (Stork, 1992), where interfaces are easier to pick. Re�ectors are picked on migrated
sections, then the corresponding migrated events are modelled (or demigrated) to be compared
to the observed traveltimes (Jacobs et al., 1992; Grau and Lailly, 1993). Note that with short-
o�sets only, there is an ambiguity between the velocity and the depth of re�ectors (Williamson,
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1990). Re�ection tomography is more generally known to be an ill-posed inverse problem
requiring external constraints. These constraints can be existing well data (Le Stun� and Grenier,
1998), or information about the subsurface provided by other imaging methods, gravimetric or
electromagnetic for example (Lines et al., 1988).

Other alternatives to the picking of continuous re�ected events are slope tomography methods,
and in particular stereotomography (Billette and Lambaré, 1998; Lambaré, 2008; Guillaume et al.,
2013). In addition to traveltimes, the slope of locally coherent events are picked on common shot
and common receiver panels. The inverted velocity model should then explain both traveltimes
and slopes of picked events. In this method there is no need to describe the model with a set of
continuous layer interfaces, only the dip of local events is needed. Then the density of picked
events is higher. As for traveltime tomography, local picking can be performed in the image
domain (Chauris et al., 2002). Then kinematic invariants such as traveltimes and slopes can be
recomputed in the time domain.

Traveltime tomography has become a standard in the oil and gas industry for velocity model
building since the late nineties (Woodward et al., 2008). Although recent publications have
focused mainly about FWI, progresses have been made to better constrain the inversion, include
structural information like sharp velocity contrasts and make the method more and more
automatic (Lambaré et al., 2014). Improvement of both the method and the recording devices
have increased the resolution of velocity model constructed by traveltime tomography (Nichols,
2012). We now review extension of traveltime tomography that go beyond the high-frequency
approximation.

Wave-Equation Traveltime Tomography
Wave-Equation Traveltime Tomography (WETT) is an extension of traveltime tomography
which takes into account the �nite-frequency nature of seismic data. Luo and Schuster (1991)
proposed to cross-correlate the traces of �rst-arrival events in observed and calculated data
instead of subtracting their traveltime. Then they minimise the time-lag maximising the cross-
correlation. van Leeuwen and Mulder (2010b) indicate that the traveltime error might not
coincide with the time-lag maximising the cross-correlation because of errors in the source
wavelet used for calculated data. They propose to increase the robustness of the approach with
an objective function penalising non-zero time-lag. Compared to FWI, WETT yields velocity
models with lower resolution but is less prone to cycle-skipping and can be used to build a
starting model for FWI (Wang et al., 2014). The resolution of the method can be increased by
replacing correlation by deconvolution (Luo and Sava, 2011). A related strategy is Adaptive
Waveform Inversion (AWI) (Warner and Guasch, 2014, 2015) in which the coe�cients of a
Wiener �lter applied to calculated data are determined at each iteration to match observed data.
The velocity model is then updated so that the coe�cients of the �lter amount to a simple zero
time lag, which corresponds to the case where calculated data perfectly reproduce observed
data.

Reflection Waveform Inversion
Re�ection Waveform Inversion (RWI) (Xu et al., 2012; Zhou et al., 2012; Brossier et al., 2015) is an
approach similar to FWI developed to extract information about the macromodel from re�ected
events. It is inspired by the Migration-Based Traveltime Tomography (MBTT) procedure
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(Chavent and Jacewitz, 1995; Plessix et al., 1995). It either assumes a scale separation between low
and high frequency content of the velocity model (Xu et al., 2012) or relies on a parametrisation
with both the velocity and the impedance to naturally facilitate the scale separation (Zhou,
2016). An initial estimate of the macromodel is used to construct a migrated section. Then
re�ected events are modelled from the migrated section and the background velocity model,
and compared to observed re�ections in an objective function similar to FWI. With this strategy,
transmission wavepaths are constructed between the re�ectors and the surface as well as
between the re�ectors and the receivers, allowing to recover the long-scale part of the velocity
model in areas of the subsurface not reached by diving waves. Zhou et al. (2015) and Alkhalifah
and Wu (2016b) proposed strategies to combine the information extracted from both FWI and
RWI about the macromodel.

An alternative strategy using the scale separation is the Di�erential Waveform Inversion
(DWI) approach (Chauris and Plessix, 2013). A migrated section is computed from one shot
gather and used to calculate synthetic data for the next shot. The di�erence with the corres-
ponding observed data is used as information about the errors contained in the macromodel.

Finally van Leeuwen and Mulder (2008a) propose to correlate traces of observed and simulated
data separated by a spatial shift and with a temporal lag in order to build coherency panels
function of the space and time shifts. The correct velocity model corresponds to focusing of
energy at zero spatial and temporal delay. The criteria assessing the quality of the velocity
model in this approach as well as in DWI are inspired by image-domain methods presented in
the next section.

1.3. Migration Velocity Analysis

We present in this section image-domain methods for the resolution of the inverse problem.
This is the class of methods which will be studied in the thesis.

The basic principle of image-domain methods is that seismic data are redundant. Using an
initial velocity model, a collection of migrated images can be created with di�erent subsets
of the data, for example one image for each shot gather (Al-Yahya, 1989). Migrating with the
correct velocity model should result in kinematically coherent images, meaning that re�ectors
in images produced with di�erent shot-point experiments should be positioned at the same
depth (Al-Yahya, 1989). Conversely, discrepancies between di�erent images of the same Earth
carry information about the errors in the estimated velocity model. The family of methods
using this principle is called Migration Velocity Analysis (MVA).

Historically MVA emerged as an extension of the usual Normal Move Out (NMO) correction
procedure. In this method the data are sorted into panels called Common Mid Point Gather,
function of the surface o�set and the time. With the assumption of horizontal structure of the
Earth, each trace represents the re�ection produced by the same subsurface point with di�erent
source-receiver spacings. Re�ections then appear as hyperbolas with a traveltime increasing
with o�set. The NMO correction consists of �nding the (1D-)velocity model that best explains
these hyperbolas. The better the velocity model, the better traces stack constructively after
correction. Although dipping events can be treated with the Dip Move Out correction, this
method is limited to the case of simple velocity model structures. It has been transposed to the
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image domain by Al-Yahya (1989) to handle more complex media.
Many di�erent MVA approaches have been proposed. They all analyse primary re�ections

and rely on the separation of scale and the Born approximation. We will review them using the
formalism introduced by Symes (2008). MVA methods can be described in four steps:

• migration of the data to an image-domain parameterised with an additional parameter
representing the redundancy of seismic data. For example in 2D, the migrated volume
δc(x , z, h) is parameterised by lateral position x , depth z, and the redundant parameter
h. Then the subsurface image and the data have the same dimension. The latter indeed
depends on the source horizontal coordinate, the receiver horizontal coordinate and time.
This is a key point of MVA strategies: even in an incorrect background velocity model, no
information is lost during migration of the data, in the sense that data can be re-modelled
in the same background velocity model using the migrated volume;

• de�nition of a coherency or focusing criterion. It depends on the choice of the redundant
parameter and states that the value of the re�ectivity along the additional parameter
carries the information about the velocity model. Note that stretching e�ects and limited
acquisition geometries are not necessarily taken into account in this principle. The
analysis is performed on panels called Common Image Gathers (CIGs) representing a
section of the re�ectivity volume as a function of depth and of the extra-parameter for a
�xed lateral position;

• de�nition of an objective function. Contrary to the data domain where observed data
provide a natural reference for assessing the quality of an estimated velocity model, there
is no obvious reference in the image domain. Instead, the objective function evaluates if
the focusing criterion is satis�ed. It is de�ned by the general expression

JMVA[c0] =
1
2



Aδc[c0](x , z, h)


2, (1.7)

where operator A is called annihilator, and is chosen such that JMVA is extremal for the
correct background velocity model. To allow minimisation with gradient-based methods,
the objective function should be smooth and free of local minima over a large range of
velocities. The partial derivative of the function with respect to the image, ATAδc, is
commonly called image residual.

• computation of the gradient of JMVA with respect to c0. This is usually done with the
adjoint-state method (Plessix, 2006) for e�ciency reasons. The background velocity model
is then updated using non-linear local optimisation methods (Nocedal and Wright, 2006).

In the following, we present two formulations of MVA: in the surface-oriented approach,
the redundant parameter is related to the acquisition, contrary to the depth-oriented approach
where it is introduced during the construction of the migrated image. Then we will focus on
the depth-oriented formulation. We de�ne the objective function in the image-domain and
detail the resolution of the associated inverse problem. The general di�culties and limitations
of the method, appearing even in the case of primary re�ections only, are presented. Finally we
illustrate the principle of MVA on a simple 1D case and show that the presence of multiples
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interpreted as primary leads to an incorrect background velocity update. This motivates the
need to deal with multiples in the MVA framework.

1.3.1. Surface-oriented MVA

A natural choice for the redundant parameter is the shot number or shot position (Symes and
Kern, 1994; Huang and Symes, 2015). The idea is that images obtained from several experiments
should be identical and independent of the position of the source. With this formulation, CIGs
represent the image of the subsurface obtained with di�erent subsets of the data. On these
CIGs, events should be horizontal for the correct velocity model. Several authors suggest using
the surface o�set (distance between source and receiver) instead of the shot number (Zhang
et al., 2010) as common o�set sections provide large illumination, although it is less natural for
wave-equation based modelling. An example of an image volume indexed by the surface o�set
is represented in �gure 1.6.

Figure 1.6. – Example of CIG with the surface o�set as redundant parameter (taken from
Chauris et al., 2002).

If the velocity model is incorrect, events in CIGs are not horizontal any more. In simple
models, they curve upward for a too slow velocity model and downward for a too low velocity
model. Then two strategies can be de�ned. In the case of the Semblance criterion (Chavent and
Jacewitz, 1995), the similarity between images produced with di�erent subsets of the data is
measured by stacking over the extension parameter and the objective function measures the
energy of the stack. For the correct velocity model, the images sums up constructively and the
energy of the stacked image is maximal. The objective function is free of local minima over a
large range of velocity but may exhibit oscillations away from the correct model (Chauris and
Noble, 2001).

With the Di�erential Semblance Optimisation (DSO) (Symes and Carazzone, 1991) strategy,
the objective function computes the derivative of the image with respect to the redundant

20



1.3. Migration Velocity Analysis

parameter to measure the �atness of events in CIGs (Chauris and Noble, 2001). It has been
shown, at least for simple 1D models, that the DSO functional has better convexity properties
than the one de�ned by the semblance principle (Stolk and Symes, 2003; van Leeuwen and
Mulder, 2010a). Note that the DSO functional was initially de�ned as a regularisation term for
FWI (Symes and Kern, 1994).

The estimation of the derivative is sensible to coherent noise and thus requires �ltering before
evaluation of the objective function (Chauris and Noble, 2001). The recognition of continuous
events across the o�set range might be tedious as well. Then Chauris et al. (2002) proposed
to pick the slope of locally coherent events in CIGs and common o�set sections to assess the
quality of the velocity model. They show that this strategy is an equivalent in the image domain
of the stereotomography procedure described before.

However as each individual image is obtained with only a subset of the data, kinematic
artefacts may appear when complex wavepaths are considered (Xu et al., 2001; Stolk and Symes,
2004; Zhang et al., 2010). In the depth-o�set extended model presented in the next paragraph,
each component of the migrated volume is constructed from the whole data set, the image is
thus better constrained and is less prone to the apparition of artefacts (Stolk and de Hoop, 2005).

1.3.2. Depth-oriented MVA

In the depth formulation of MVA, the redundant parameter is independent of the acquisition
and is introduced during the construction of the migrated image. The image domain is said to
be extended and the extension parameter can be a spatial (Rickett and Sava, 2002; Shen et al.,
2003) or temporal (Sava and Fomel, 2006; Yang and Sava, 2011) delay. Alternatively a scattering
angle can be considered (Sava and Fomel, 2003; Biondi and Symes, 2004). The spatial delay
(�gure 1.7) is commonly referred to as depth-o�set or subsurface-o�set. In 2D, the general
extended cross-correlation formula with the subsurface o�set h= (hx , hz) and the time-lag ∆t
(Sava and Vasconcelos, 2011) is

δc[c0](x,h,∆t) =
2

c3
0(x)

∫

s

∫

t

∂ 2

∂ t2
S[c0](s,x− h, t −∆t)R[c0](s,x+ h, t +∆t)dt ds. (1.8)

The section of this image at h = 0 and ∆t = 0 corresponds to the image of the physical
re�ectivity obtained with the classical migration formula (1.5) after summation over all sources
and receivers. The introduction of the delays compensates for errors contained in the velocity
model and allows to capture information that is not present in the usual migrated section.
Energy focusing at non-zero values of the extension parameter carries information about the
background velocity model. In the depth-extended domain, the coherency criterion used to
assess the quality of the velocity model is the focusing of energy at zero-space lag and zero
time-shift.

In practice, after computation of the source and receiver wave�elds, a correlation is performed
for each value of the subsurface-o�set and the time-lag. To keep the migrated image size and
the computational time within reasonable limits, the extension is usually made along a single
extension parameter only. The subsurface-o�set is usually chosen (Shen and Symes, 2008). In
the case of surface acquisition and horizontal structures, most of the information about the
velocity model is contained along the horizontal component of the depth-o�set. Therefore in the
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Figure 1.7. – De�nition of the subsurface-o�set spatial delay.

following, the subsurface-o�set will be considered horizontal only, h= (h, 0), as represented in
�gure 1.7.

CIGs then represent the migrated section at �xed lateral position and depend on the depth z
and on the subsurface-o�set h. Energy focuses around zero-o�set for the correct background
velocity model and spreads over non-zero o�set in an inaccurate model. Events have a downward
(upward) curvature for a too low (too high) velocity model (Mulder, 2014) (see �gure 1.9a for an
example). Note that this is the opposite for the surface-o�set case.

The Semblance and DSO strategies used in surface-oriented MVA have equivalences in the
depth-oriented approach. The Semblance principle consists of maximising the energy around
zero-o�set. Note that maximising the energy of the image at h= 0 corresponds to the surface-
oriented Semblance criterion. In the depth-oriented DSO formulation, the objective function
should penalise defocused energy. This is the strategy used in this study.

1.3.3. Choice of a misfit function and inversion of the velocity model

Usually, the objective function of DSO is constructed by multiplying the image by the value of
the subsurface o�set (Shen and Symes, 2008; Mulder, 2008):

JDSO[c0] =
1
2



hδc[c0](x, h)


2. (1.9)

This is the de�nition used in this study. Alternatively, a mixed formulation involving both
the semblance and the di�erential semblance can also be formulated (Shen and Symes, 2008;
Mulder, 2014)

J[c0] =
1
2



hδc[c0](x, h)


2 − α

2



δ(h)δc[c0](x, h)


2. (1.10)

with a positive scalar coe�cient α to be determined. This formulation allows to use the total
information contained in the migrated image, as the energy at zero-o�set discarded by the
DSO term is used by the semblance term. In this formulation, away from the minimum, the
optimisation is driven by the DSO term while the robustness of the semblance close to the
solution is used in the last iterations.

The MVA objective function is non-linear and minimisation is performed with local optimisa-
tion schemes. The calculation of the gradient is the main computational e�ort of the method. It
is therefore performed with the adjoint-state method (Lameloise et al., 2014; Yang and Sava,
2015). As will be explained in the following of this section, this gradient is not always smooth
although we want to update the background part of the velocity model. Therefore a smoothing
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1.3. Migration Velocity Analysis

is commonly applied to the gradient, at least in the �rst iterations (Lameloise and Chauris, 2016).
In theory the inversion should account for the Hessian of the MVA objective function, but its
computation is not a�ordable in practice. So far only an estimation of its diagonal computed as
the product of the Hessian matrix with a unit vector has been used (Liu et al., 2014b; Shen and
Symes, 2015).

1.3.4. Limitations of MVA

Despite an attractive formulation, not so many applications on real data have been published
(Chauris and Noble, 2001; Mulder and ten Kroode, 2002; Alkhalifah, 2005; Shen and Symes, 2008;
Mulder, 2014; Weibull et al., 2012a,b; Lameloise, 2015). We review some of the di�culties of
MVA which prevent its use in realistic industrial contexts.

Computational cost
To limit the computational cost and memory requirements of the method, the extension of the
model is made only along the horizontal component of the subsurface-o�set, and its vertical
component as well as the time-lag parameter are not considered. Even in this simpli�ed setting,
MVA remains computationally expensive. This is the main limitation for the extension of MVA
techniques to 3D-applications, where two extra dimensions are in principle added to the model
space to match the data size.

A migration step should be performed at each iteration on the background velocity model,
involving the calculation of the source and receiver wave�elds and their cross-correlation. This
cross-correlation should be performed for each value of the extension parameter. To reduce the
computation time necessary for cross-correlation, Yang and Sava (2015) propose to compute
CIGs only at a selection of image points instead of the whole image. van Leeuwen et al. (2015)
propose to construct CIGs with only a random choice of traces.

A related issue is the maximum value of the subsurface-o�set hmax that should be considered.
In practice it is chosen empirically, depending on the maximum value of the surface o�set
and the depth of the re�ectors. If a too low value is chosen, some information may be lost
during migration. If it is too high, the cross-correlations for the large values of h increase
the computational cost without adding any information. As the background velocity model
improves with iterations, energy should be more and more focused in CIGs and the value of hmax
could decrease. Using this idea, Fu and Symes (2015) propose a multiscale/multigrid strategy
starting with low frequency data and a coarse sampling of the subsurface-o�set axis. At each
iteration the data mis�t is computed in two cases, �rst considering all the subsurface-o�sets
until hmax, second using only half of the subsurface-o�sets range. This criteria is used to update
the value of hmax at each iteration. In parallel, the sampling of the subsurface o�set-range is
increased as higher frequency are included in the data.

Note that if this techniques may decrease the computational cost of cross-correlation, the
cost due to propagation remains expensive, especially on �ne grids.

Although computational e�ciency is an important aspect of the method, this issue will not
be speci�cally addressed in the study, CIGs being calculated with a �xed range and sampling of
the extension axis.
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Accuracy of migrated images
The re�ectivity model used in MVA techniques is the result of a classic migration algorithm.
As already mentioned, this image is the �rst gradient of the objective function minimising the
mis�t between observed and calculated data and is produced using the adjoint of the Born
modelling operator. Several authors suggest that this is not a su�ciently accurate solution
of the minimisation problem. Yang et al. (2013) report that under complex structures like salt
dome, uneven illumination results in defocused energy even for the correct velocity model. As
a remedy, they propose to incorporate illumination as a weight in the MVA objective function,
such that defocusing due to poor illumination does not in�uence the velocity update.

Even for very simple models, CIGs are perturbed with migration artefacts (�gure 1.8a) related
to the limited source and receiver coverage of the acquisition setting (Mulder, 2014). These

(a) Common Image Gathers.

(b) Gradient of the MVA objective function.

Figure 1.8. – (a) CIGs and (b) associated gradients of the MVA objective function computed
with classical migration for a too low (left), correct (middle), and too high (right) initial
velocity model with a single horizontal re�ector. Blue, white and red colours correspond to
negative, null and positive values, respectively (from Lameloise et al., 2014). Homogeneous
update above the re�ector would be expected in a tomographic approach.

artefacts always have an upward curvature, independently of the velocity used during migration
and do not focus for the correct velocity. As a result, the MVA objective function is not minimal
for the correct velocity model but for a model with slightly higher values (Lameloise et al., 2014)
and its gradient does not provide a satisfactory update (�gure 1.8b).

As these events are steeper than the ones associated to the true re�ector, Weibull and Arntsen
(2011) and Chauris et al. (2015) propose to apply a z-derivative to the CIGs to attenuate migration
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1.3. Migration Velocity Analysis

artefacts. Alternatively, Mulder (2014) suggests the application of tapers to smooth the truncation
in source and receiver coverage. A more sophisticated approach consists of replacing the classic
migration by a quantitative migration (Lameloise and Chauris, 2014; Hou and Symes, 2015).
Lameloise et al. (2014) extend the ray+Born inversion approach of Lambaré et al. (1992) to the
extended model and de�ne migration weights such that the Hessian of the migration objective
function is almost diagonal. In practice the weights allow to compensate for uneven illumination
in the CIGs. Migration artefacts are correctly attenuated (�gure 1.9a) and the gradient of the
objective function improved (�gure 1.9b). However, this approach is limited to the use of ray

(a) Common Image Gathers.

(b) Gradient of the MVA objective function.

Figure 1.9. – Same as �gure 1.8 with a quantitative (ray-based) migration instead of a classical
(adjoint) migration (from Lameloise et al., 2014).

theory in the computation of the CIGs. In this thesis, it will be extended to wave-equation based
operators (Hou and Symes, 2015, 2017). We will show that this strategy involves the application
of a z-derivative to the migrated image, similar to what was proposed by Weibull and Arntsen
(2011) and Chauris et al. (2015), thus giving a formal justi�cation to their strategy.

Gradient artefacts
A well-known issue pointed out by Fei and Williamson (2010), Vyas and Tang (2010) and Chauris
and Lameloise (2014) is the presence of strong oscillations in the gradient of the MVA objective
function with respect to the background velocity (�gure 1.10a). They are known as “gradient
artefacts”. They occur at discontinuities in the re�ectivity model and along the re�ectors and
prevent the MVA gradient to be used as a velocity update without a prior smoothing stage.

Fei and Williamson (2010) propose to add a phase shift of 90° to the image residual with
the application of a h-derivative before the computation of the gradient of the MVA objective
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(a) Without horizontal contraction. (b) With horizontal contraction.

Figure 1.10. – (a) Illustration of the “gradient artefacts” on a homogeneous model with a
single horizontal re�ector. Oscillations appear at the truncation of the re�ectivity. (b) The
“horizontal contraction” approach allows to remove these spurious oscillations (from Fei and
Williamson, 2010).

function. This trick greatly improves the quality of the velocity update (�gure 1.10b) but is not
fully understood. Shen and Symes (2015) recognise in this modi�cation a warping technique: the
derivative with respect to h applied to the image residual can be seen as a contraction of CIGs
in the h direction, this contracted CIGs having their energy more focused at zero subsurface-
o�set. Therefore Shen and Symes (2015) rename this technique “horizontal contraction”. A
disadvantage of this method is that the modi�ed velocity update is not the gradient of an
objective function any more. Moreover such a technique does not properly work in the case of
low velocity anomalies (Shen and Symes, 2015).

Stability of the MVA gradient
Another numerical di�culty in the computation of the MVA gradient has been recently pointed
out (Huang, 2016). To obtain an accurate re�ectivity model free of migration artefacts, one
could treat migration as an inverse problem and carry on the minimisation of the associated
objective function (1.4) iteratively. The resulting re�ectivity model is used as input of the
MVA objective function (1.9). This nested optimisation strategy (see also �gure 1.22) will be
extensively analysed in this thesis.

As recently observed by Huang (2016), an issue with this approach is the apparent instability
of the gradient of the MVA objective obtained after each inner iteration on the re�ectivity: “the
theoretical relation between the error in solving the inner problem and the error in the gradient
computation has not been established. The reason is that the small `2 error in the data mis�t
does not imply a small error in the WEMVA operator.” (Huang, 2016, p. 100).

We illustrate this issue with a numerical result (�gure 1.11) extracted from chapter 3. The
model considered here is similar to those shown in �gures 1.8 to 1.10. A single horizontal
re�ector is located in a homogeneous background velocity model and the MVA gradient is
computed in a too low homogeneous medium. Thus we expect a homogeneous negative gradient
above the re�ector position (�gure 1.11b). A good solution of the inner problem is found after 5
iterations. The subsequent re�ectivity models provide very similar data mis�t (�gure 1.11a).
However using these successive re�ectivity models as input to the MVA objective function leads
to very di�erent MVA gradients (�gure 1.11c), whose similarity to the expected velocity update
decreases exponentially with the number of iterations (�gure 1.11d). This issue will be further
illustrated in chapters 3 and 4 and possible solutions will be proposed in chapters 3 and 5.
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(c) Actual MVA gradient computed after 7, 8, 9, 10 and 11 iterations on the re�ectivity δc.
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Figure 1.11. – Iterative resolution of the migration inverse problem and computation of the
associated MVA gradient, showing the sensitivity of the gradient to minor changes in the
re�ectivity model.
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Sensitivity to noise

We now illustrate the sensitivity of the MVA gradient to noise in observed data (�gure 1.12). We
use an example similar to the one of the preceding paragraph. We �rst compute the re�ectivity
model and the associated MVA gradient with noise-free observed data. The method used to
obtained these images will be detailed in chapter 4. The MVA gradient is homogeneous and
negative above the re�ector. Increasing the noise on observed data leads to an increased noise
level in the re�ectivity image, but the re�ector is still clearly distinguishable. The migration
operator is linear in the noise nevel, and so is the impact on the re�ectivity image (�gure 1.12b).
On the contrary, the background velocity update is more altered by noise in observed data:
artefacts with an incorrect sign appear and the gradient is not homogeneous any more. It di�ers
from the reference model with a polynomial behaviour (here, a power 1.13 as illustrated in
�gure 1.12b) when the noise level increases, so this is not as extreme as the instability shown in
�gure 1.11.

Beyond primary reflected waves

All the theoretical aspects of the method are developed for primary re�ections. However, the
background velocity updates could bene�t from the inclusion of other events with di�erent
illumination in the MVA procedure.

Recently, the extension to transmitted events has been investigated (Shen and Symes, 2013;
Chauris et al., 2013; Lameloise et al., 2015; Lameloise and Chauris, 2016). Lameloise and Chauris
(2016) de�ne image functions for transmitted events, equivalent to the extended migrated
sections for re�ected waves. They are constructed with the same extended cross-correlation
imaging condition, except that the full recorded wave�eld including re�ected and transmitted
waves is backpropagated. The corresponding CIGs are sensitive to the velocity and exhibit the
same focusing behaviour: energy is focused at zero subsurface-o�set for the correct velocity
model and spreads over non-zero o�sets otherwise. The conventional MVA objective function
penalising defocused energy can be used and the corresponding velocity updates are smooth
and do not su�er from the “gradient artefacts” observed for re�ected waves.

Multiple re�ections are still an issue for MVA. If they are not removed from the data, they
mislead the velocity analysis as the methodology developed for primary re�ection does not
explain the kinematics of multiple re�ections. Compared to the primary it may be mistaken for,
a multiple travels in the upper part of the model. With the hypothesis of increasing velocity
with depth, multiples then tend to favour lower apparent velocities. Hence they need to be
removed from the data in a preprocessing stage or in the migrated sections with a muting in
the f − k domain (Mulder and ten Kroode, 2002; Li and Symes, 2007), for example. However
the removal of multiple re�ection is challenging and residual multiple energy may survive
these �ltering processes. As a remedy, Mulder and van Leeuwen (2008) introduce a bias in
the MVA objective function to favour higher velocities, thus compensating for multiples. This
formulation relies on the assumption that multiples favour lower velocity, which does not hold
for models where the velocity does not increase with depth.
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(a) Observed data (left), re�ectivity section at h= 0 (middle) and MVA gradient (right) recovered with
an increasing level of noise (from top to bottom). Blue, white and red colours correspond to negative,
null and positive values, respectively.
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Figure 1.12. – In�uence of noise in observed data in the re�ectivity model recovered by
migration and on the associated MVA gradient.
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1.3.5. Illustration of the principle and di�iculties of MVA on a simple
example

To conclude this part, we illustrate in this paragraph the basic principle of MVA and some issues
due to the presence of multiples. For the sake of simplicity, we consider a pure 1D example
(�gure 1.13). Although it may not be representative for the complexity of a 2D acquisition,
it shares many properties with the 2D and 3D cases that will be considered in the following
chapters. This 1D example will be used again in chapters 4 and 5.

The input is re�ected observed data (�gure 1.13b) pre-computed in an exact homogeneous
velocity model with a single re�ector located at 400 m depth. MVA techniques aim at recovering
the background velocity model. Here we start with an initial too low homogeneous background
velocity, such that we expect the method to provide a positive update. The method is decomposed
in two steps. First observed data are converted into a re�ectivity image function of the subsurface
by migration. This image (e) is obtained as the zero-lag cross-correlation of two wave�elds (c)
and (d) computed by propagating the source wavelet (a) emitted at z = 0 and by backpropagating
observed data (b) recorded at z = 0. As the initial velocity model is too low, the re�ector is
located above its true position.

The so-called “image residual” (g) (which can be seen as an equivalent of the more natural
data residual in data-domain methods) is obtained by multiplying the re�ectivity image by
|z − zex|2, square of the distance to the true re�ector depth. Hence the norm of the image
residual ‖(z − zex)δc‖2 is minimum when the re�ector is located at its correct position. The
objective of MVA is to �nd a background velocity model minimising the norm of the image
residual. Note that this 1D case is somehow arti�cial as it requires the prior knowledge of the
exact re�ector position, which is an unknown in practice. Moreover, the approach is valid only
for a single re�ector. The 2D approach detailed at the beginning of this section is more general
and does not require prior knowledge of the subsurface, but its principle is very similar.

The derivation of the velocity updates involves computing two new wave�elds obtained as the
interaction of the source (c) and receiver wave�elds (d) with the image residual (g) (Lameloise
et al., 2014; Yang and Sava, 2015). The summation of the zero-lag cross-correlations of these new
wave�elds with the source and receiver wave�elds gives the opposite of the velocity update
((h) and (k)). We obtain a constant value above the re�ector altered with unwanted oscillations
around the re�ector which can not be easily attenuated by smoothing. This is one of the issues
of MVA which has been discussed in section 1.3.4.

Finally, we repeat the same experiment with observed data containing both the primary
re�ection and a surface multiple (�gure 1.14) to illustrate the potential issues caused by multiples.
Hence, the multiple is treated as a primary and is migrated to twice the depth of the primary
in the image domain (�gures 1.14e and 1.14g). As a consequence, the image residual would
not be minimal for the correct velocity. There are two di�erences with the preceding case
on the velocity update (�gures 1.14h and 1.14k): it has a non-zero value below the re�ector,
where no information can be recovered in theory, and the sign of the update is incorrect. This
phenomena will be observed in the 2D case as well in chapter 4 and illustrates the need for a
proper inclusion of multiples in MVA, as well as in other inversion strategies.
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Figure 1.13. – Principle of MVA in a simple 1D case. The left column describes the migration
process. The source wave�eld (c) is constructed by propagating the source (a) in the medium.
Data observed at the surface (b) are backpropagated to construct the receiver wave�eld (d).
Correlation of the source and receiver wave�eld produces the model perturbation image (e).
Energy away from the position of the true re�ector (400 m) is penalised by an annihilator (f)
to produce a modi�ed migrated image (g) called “image residual”. The latter is used to
construct scattered and backscattered wave�elds ((j) and (i), respectively). The (opposite of
the) velocity update is made of two contributions ((h) and (k)), obtained by correlating (c)
and (i) on one side, and (d) and (j) on the other side.
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Figure 1.14. – Same as �gure 1.13, but with a surface multiple in observed data.
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Conclusion
The objective of the thesis is to investigate the inclusion of multiple re�ections in the usual
depth-oriented MVA. A strategy is developed, �rst in the case of primaries only, to make the
method more robust against migration artefacts and spurious oscillations in the gradient. The
method is then extended to the case of multiples.

To further motivate the inclusion of multiple re�ection in MVA, we explain in the next section
why their removal is challenging and what bene�ts they may bring to imaging procedures. In
particular we report on recent extensions of migration techniques to multiples, which may help
to de�ne a MVA procedure handling multiples.

1.4. Multiple reflections

1.4.1. Physics of multiples

As de�ned by Verschuur (2013), primaries are waves that undergo only one upward re�ection,
whereas multiple re�ections are characterised by at least one downward re�ection. Because of
spherical divergence and of the loss of energy occurring at each re�ection, multiples e�ectively
visible in the data are associated to strong re�ectors. This is typically the case in marine
acquisition where the interface between the air and the sea acts as a mirror. The water bottom is
also a strong re�ector. An other example is the chalk layer in the North Sea located between high-
velocity layers, creating two high impedance contrasts which are strong multiples generators
(Reinier et al., 2012).

A �rst classi�cation of multiples refers to the location where the shallowest downward re�ec-
tion occurs. If it is the surface, the multiples are called surface-related multiples (�gure 1.15a).
Note that the upgoing multiple re�ection can be re�ected at the surface again, leading to
higher-order surface multiples (�gure 1.15b). In the following, a �rst-order surface-multiple
refers to the multiple event undergoing a single downward re�ection at the surface, and a
second-order surface-multiple as the corresponding event for two downward re�ections, etc.
When the shallowest downward re�ection occurs at an interface between two layers in the
subsurface, the term internal multiple is used (�gure 1.15c). Similarly, several order of internal
multiples can be de�ned.

In the case of marine acquisition, the reverberations occurring in the water column are called
water-layer multiples (�gure 1.15d). Multiples undergoing at least one re�ection below the water
bottom and a reverberation in the water-layer are referred to as peg-leg multiples (�gure 1.15e).
In practical marine acquisition, both source and receivers are located a few meters below the
sea surface. Then one part of the energy emitted by the source goes directly to the subsurface,
while an other part re�ects at the sea surface, leading to a surface multiple called source ghost.
The same phenomenon occurs at the receiver side and is called receiver ghost. These kinds of
multiples are also observed in the case of OBC acquisition (�gure 1.15f). Naturally more complex
paths in the subsurface which do not �t in the previous categories are possible (�gure 1.15g).

One can also distinguish between long-period and short-period multiples. Long-period mul-
tiples (�gure 1.16a) appear in the data record as separate events from their relative primaries.
Visually the same succession of events is repeated at regular intervals of time (�gure 1.17). This
is the case with water-layer reverberations recorded in a deep-water environment. Oppositely,
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(a) First-order surface multiple (b) Second-order surface multiple

(c) Internal multiples (d) Water-layer multiple

(e) Peg-leg multiple (f) Receiver ghost in OBC acquisition

(g) A more complex multiple

Figure 1.15. – Di�erent kinds of multiple re�ections (similar to Verschuur, 2013, pp. 8-9). The
black point and the white triangle represent source and receiver positions, respectively.
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short-period multiples (�gure 1.16b) are produced by reverberation within small layers such as
chalk. These reverberations overlap with one another and with the original primary, resulting
in a single event with a di�erent wavelet signature in the recorded data.

(a) Long-period multiple (b) Short-period multiple

Figure 1.16. – Long-period and short-period multiples (see also Verschuur, 2013, p. 10).

Figure 1.17. – (a) A real marine data set containing both primaries and multiples is decomposed
into (b) primaries only and (c) multiples only (from Trad et al., 2003).

Many imaging procedures designed for primary re�ections require multiples to be removed
from data. On the contrary, some methods presented in section 1.4.4 include them as comple-
mentary information. In any case, one needs the ability to model multiple re�ections. Standard
multiple modelling techniques are now reviewed.

1.4.2. Modelling of multiples

Surface-related multiples can be included in modelling by replacing the usual absorbing bound-
ary condition at the surface by a free-surface. Alternatively, multiples can be predicted using
primary re�ections. First-order surface related-multiples can indeed be considered as the
(primary-)response of the Earth to an areal source made of the primary re�ections reaching
the surface. Then �rst-order multiples can be obtained by re-injecting the primaries into a
primaries modelling code. If the model of the �rst layer is known (for example the water layer
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in marine acquisition), multiples can be predicted by adding a �ctive roundtrip to the data
through this layer with wave�eld extrapolation (Wiggins, 1988, 1999). Then primaries are
transformed in �rst-order multiples, �rst-order multiples in second-order multiples, and so on.
The surface re�ection coe�cient should be taken into account (the coe�cient −1 is the simplest
approximation).

A data-driven alternative requiring no model of the subsurface is possible. In this approach,
a �rst-order surface-multiple is obtained by autoconvolution of the primary re�ection. The
prediction is exact except for the source wavelet which is present twice in the multiple due
to the autocorrelation. A shape correction has then to be applied. Similarly the second-order
surface-multiple can be obtained by convolution of the primary with the �rst-order multiple,
and so on. In the 1D case and with a Dirac source, the total response including all order of
surface-multiples can be described as an in�nite series:

d(t) = ÒP0(t) + ÒP0(t) ∗ ÒP0(t) + ÒP0(t) ∗ ÒP0(t) ∗ ÒP0(t) + · · · (1.11)

where ∗ represent the convolution product and ÒP0(t) the primary impulsive response of the
Earth. For the 2D and 3D case, a summation over the re�ection point at the surface has to be
added. More generally, the multiples contained in a data set can be generated by convolving the
total data set with the impulse primary response (Verschuur et al., 1992; Weglein et al., 1997;
Dragoset et al., 2010)

M(xs,xr , t) =
∑
xk

ÒP0(xk,xr , t) ∗ d(xs,xk, t), (1.12)

where xk is the re�ection point at the surface.
The interaction of internal multiples with the subsurface can be described by the Lippmann

series (Lippmann, 1956; ten Kroode, 2002), originally used in quantum mechanics. The Born
approximation used to model primaries is actually the �rst-order approximation of the series.
Alternatively the Bremmer series can be considered (Bremmer, 1951; de Hoop, 1996). Berkhout
(2014a) describes a Full Wave�eld Modelling (FWMod) strategy which takes as input a re�ectivity
model and one-way propagation operators from one depth-level to the following based on the
velocity model. The modelling is performed recursively: in the �rst roundtrip, the downgoing
wave�eld emitted by the source and the primary re�ections are computed. The latter interact
with the re�ectivity model to generate both internal and surface �rst-order multiples in the
second roundtrip. The process is repeated for higher-order multiples and stopped when their
amplitude is too weak.

1.4.3. Removal of multiples

Multiples are sometimes easy to recognise in the data, for example long-period multiple appear
as a repetition of the primaries pattern. The dip of primaries and multiples events arriving at the
same time in the data can also be inconsistent. In more complicated cases, multiples may easily
be mistaken for primaries. Moreover, usual migration algorithms are designed to account for
primary re�ections only. Hence multiples falsely interpreted as primaries can lead to spurious
events in the �nal migrated image and incorrect interpretation of the geology (�gure 1.18).
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1.4. Multiple re�ections

Figure 1.18. – Synthetic example of classic migration performed on data contaminated with
multiples. WBM is a spurious events caused by a Water Bottom Multiple while M refers to
surface related multiples repeating the bottom structure of the salt dome (from Sava and
Guitton, 2005).

Numerous strategies to remove multiple re�ections from seismic data have been designed.
We review brie�y the main families here and explain why multiple attenuation remains a
challenging issue. The reader is referred to Verschuur (2013) for an extensive review.

Radon transform
The �rst family of multiple removal takes advantage of the fact that a multiple and a primary
arriving at the same time in the data have not “seen” the same velocities in the Earth. With
the hypothesis of a velocity increasing with depth, a multiple travels in shallower and slower
layers of the subsurface. Then primaries and multiples do not exhibit the same move-out on
Common Mid Point (CMP) gathers. Using a NMO-correction with the correct velocity, primaries
are �attened but multiples are not. A strategy using these move-out discrepancies transform
the CMP gathers to a space where primaries and multiples are easily separable. Multiples are
muted and the inverse transform is performed to output CMP gathers without primaries. The
double Fourier transform mapping CMP gathers to the f -k domain (Ryu, 1982) is an example
of such a transformation, but the most popular choice is the parabolic (Hampson, 1986; Kabir
and Marfurt, 1999) or hyperbolic (Foster and Mosher, 1992) Radon transform. The method
assumes that primaries and multiples in CMP gathers (with or without NMO-correction) can be
described by di�erent parabolic or hyperbolic functions. Then in the Radon domain, they should
appear as focused events. After muting of the multiples, the primaries are reconstructed with
the inverse Radon transform. In practice, artefacts appear in the Radon domain and primaries
and multiples are not well separated, leading to inaccurate multiple attenuation. A remedy
consists of rede�ning this strategy as an inversion aiming at �nding the model in the Radon
domain that best �ts the original data after inverse Radon transform. A sparsity constraint in
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the Radon domain is added to ensure primaries and multiples are easily separable (Sacchi and
Ulrych, 1995; Trad et al., 2003). However the method still has di�culties in case of complex
geology when primaries and multiples do not exhibit enough move-out di�erence or when they
cannot be described by parabolic or hyperbolic functions. To better account for the propagation
e�ect in complex media, the same analysis can be transposed to the image-domain where the
move-out discrepancies are analysed in CIGs function of the surface o�set (Duquet and Marfurt,
1999) or the scattering angle (Sava and Guitton, 2005). The velocity model is assumed to be
relatively accurate, so that primaries are �at in the angle-domain CIGs, contrary to multiples.
Multiples are then easily recognisable and a similar strategy using the Radon transform is used
to discriminate between �at and curved events. As in the data-domain the possible overlap
of primaries and multiples at zero-angle may harm the attenuation of multiples. The main
hypothesis in this approach is the knowledge of a reliable velocity model.

Adaptive subtraction
The second family of multiple removal techniques is a two-step procedure. First the data set
is used to compute a prediction of the multiples following one of the method presented in
section 1.4.2. Then the prediction is subtracted from the data to yield the primary estimation.

This second step is di�cult because the prediction of multiples is in practice never perfect.
In wave�eld extrapolation methods, inaccurate prediction may be caused by an incorrect model
of the layer in which the multiple re�ection is simulated. Multiples predicted by convolution of
the data with the primary response contain the source wavelet twice. Moreover, predictions
based on a 2D-model assumption do not take into account the 3D-propagation e�ects. Therefore
there may be inaccuracies in the phase, amplitude, and wavelet of predicted events (Abma
et al., 2005) and simple subtraction of the prediction to the original data does not yield a good
estimation of the primaries. The prediction has to be accommodated to the recorded multiples in
a process called adaptive subtraction, which consists of applying a �lter to the multiples before
subtraction. The �lter is determined by minimising the energy of the di�erences between the
original data and the �ltered multiples in a least-squares sense. If primaries and multiples are
overlapping in the data domain, minimising the energy can result in distortion of the primaries
and/or residual multiple in the �nal result (Nekut and Verschuur, 1998). Alternatives consider
replacing the least-squares criterion by the `1-norm (Guitton and Verschuur, 2004), among
other possibilities (Batany et al., 2016). The subtraction can also be performed in a domain
where primaries and multiples are less likely to interfere such as the curvelet domain, Radon
domain, or frequency domain (Sacchi and Ulrych, 1995; Donno et al., 2010; Batany, 2016).

A very-well known strategy based on multiple prediction and adaptive subtraction is the
Surface-Related Multiple Elimination (SRME) method (Verschuur et al., 1992). It is based on the
observation that a surface-multiple can be decomposed in several primary re�ections connected
by a re�ection point at the surface. If the source and receiver coverage of the acquisition is
dense enough, these primaries are contained in the data and can be used to predict the multiples.
SRME is implemented as an iterative method aiming at improving an initial estimation of
the primaries (Berkhout and Verschuur, 1997). This estimation is convolved with the data to
produce a prediction of the multiples. Then an adaptive subtraction is performed to remove the
estimated multiples from the total data, yielding an improved estimation of the primaries. The
�rst estimate of the primaries can be the output of another multiple elimination technique or
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simply the complete data. This process converges very fast in practice and only a few iterations
are needed (Berkhout and Verschuur, 1997). One major advantage of this method is that it is
fully data-driven and requires no model of the subsurface. Conversely, the limitations of the
method are related to the data acquisition. A requirement is that all the primaries composing the
multiples should be recorded in the data. This may not be the case in typical marine acquisition,
where the �rst o�sets near the source are missing for practical reasons. This represents also
an issue for the extension to 3D marine acquisition where the direction perpendicular to the
streamers is sampled with only a few lines. In practice, these limitations require a method to
reconstruct the missing primaries, for example by interpolation of the data (Kabir and Verschuur,
1995).

Estimation of Primaries by Sparse Inversion (EPSI) (van Groenestijn and Verschuur, 2009)
addresses the issue of inaccurate multiple prediction issue by recasting the prediction and
the adaptive subtraction into a single inversion procedure. An objective function compares
observed data to predicted primaries and predicted multiples. The corresponding iterative
process should update the estimation of the primaries as well as the source wavelet. EPSI
provides enhancements compared to SRME but is computationally more expensive.

Note that SRME is designed to deal with surface-related multiples only. A direct adaptation
to internal multiples would consist of wave�eld extrapolation to calculate the data that would
be recorded at �ctive sources and receivers located on the boundary generating the internal
multiples. The process should be repeated for each layer and has the disadvantage of requiring
an accurate velocity model to process the wave�eld extrapolation. Jakubowicz (1998) proposes
an alternative formulation in which the redatuming uses the primary re�ections contained in
the data, discarding the need for a subsurface model. Alternatively an inverse scattering series
can be used to predict all internal multiples in a fully data-driven manner (Weglein et al., 1997;
ten Kroode, 2002)

1.4.4. Using multiples as valuable information

A lot of e�ort has been put to develop multiple removal techniques because migration and
velocity analysis techniques were designed for primary re�ections only. However in the last
decade, a di�erent approach considering multiples as signal rather than noise has gained
popularity. Multiples have travelled at least twice through the subsurface and therefore contain
a lot of valuable information that may not be present in primary re�ections. For example
they may travel in area of the subsurface not illuminated by primaries like beneath salt domes
(�gure 1.19). Moreover a surface multiple may originate from a virtual source not present
in the survey, for example when short-o�sets are missing in the acquisition, thus providing
illumination with smaller angle re�ections, di�erent wavenumbers for imaging and better
vertical resolution than primaries (�gure 1.20). In particular the cross line of a 3D marine
acquisition is coarsely sampled and the so-called acquisition footprint is still visible in the data.
Long et al. (2013) show that this artefacts can be mitigated with the use of multiple re�ections.
A correct use of multiple re�ections could then possibly relax the need of dense source and
receiver coverage at the surface. The sensitivity of multiples to the velocity model has been
studied by some authors to detect small velocity changes in time-lapse experiments (Snieder,
2002; Verschuur and Staal, 2014).
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Figure 1.19. – Example of conventional migration using primaries only (top) and using primar-
ies and multiples (bottom) on the Sigsbee2B synthetic data set. Note the extended illumination
provided by multiples below the salt dome in the areas marked with the white ellipses (from
Liu et al., 2011).
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s r0 r1 r2 · · · rn

Figure 1.20. – Illumination of a �at re�ector by primary re�ections (blue, solid) and �rst-order
surface-related multiples (red, dotted). Multiples allow a wider coverage of the re�ector with
smaller scattering angles.

1.4.5. Imaging with multiples

A simple way of using multiple re�ections consists of transforming them into pseudo-primaries
which can be imaged with classic migration algorithms. The transform can be achieved with
seismic interferometry (Schuster et al., 2004), which states that the response recorded at a point B
to a �ctive source located in A can be obtained by cross-correlating the passive measurements
made in A and B. When A and B are two receivers located at the surface, the cross-correlation
of the traces recorded in A and B results in the primary re�ection linking the two points (Sheng,
2001; Shan, 2003; Schuster et al., 2004; Jiang et al., 2005, 2007). Alternatively Berkhout and
Verschuur (2003, 2006) deconvolve the data with an estimation of the primaries (obtained with
SRME for example) to transform �rst-order surface multiple into pseudo-primaries, second-order
surface multiple into pseudo-�rst-order surface multiple, and so on... Then a new application
of the SRME method isolates the pseudo-primaries from higher-order multiples and a classic
migration algorithm can be applied.

Conversely the usual migration algorithms can be adapted to multiple re�ections. A �rst
attempt was made by Reiter et al. (1991) who used Kirchho� migration to separately image
primary re�ections as well as ghost re�ection against the surface in OBC data. Their approach
assumes that multiples and primaries are separated in time in the data and is thus restricted
to deep-water acquisition. More recently this constraint was released by the development
of sensors able to separate up and downgoing energy, thus discriminating between upgoing
primaries and downgoing receiver ghosts (Muijs et al., 2007; Whitmore et al., 2010).

The usual imaging condition for primary re�ection can be transposed to multiple re�ections.
It still consists of correlating a source and a receiver wave�eld, except that the source wave�eld
is the forward propagation of the entire data set and the receiver wave�eld the backward
propagation of the same data set without primary re�ections (Berkhout and Verschuur, 1994;
Guitton, 2002; Liu et al., 2014a). Compared to the usual primary imaging condition, the source
wave�eld does not originate at a single point but is an areal shot with virtual sources located at
every receiver position. An advantage of this method is that there is no need to estimate the
shape of the source wavelet as the new pseudo-source is directly the data recording. With this
methodology, two images can be constructed, one from the migration of primaries, and one
from the migration of multiples.

However, a correct separation of the primaries and the multiples is required and the �nal
image is contaminated with cross-talk artefacts (�gure 1.21). These spurious events are caused
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by downgoing energy interfering with an unrelated upgoing energy, for example a primary
with a second-order surface multiple. To avoid these artefacts, each order of multiple should be
isolated to produce a separate migrated image.

Figure 1.21. – Example of cross-talk artefacts. The exact velocity model is displayed on the
left panel. The right panel shows the image reconstructed from the migration of multiple
re�ections. C and D correspond to the true re�ectors. All other events including A and B are
cross-talk artefacts (from Liu et al., 2011).

As a remedy to the cross-talk artefacts, the use of the deconvolution imaging condition instead
of the cross-correlation has been studied (Muijs et al., 2007; Whitmore et al., 2010), however this
method has limited success in complex media (Poole et al., 2010; Tu et al., 2013). More recent
studies use a least-squares inversion approach based on �tting the data reconstructed with
the estimated re�ectivity model and observed data (Brown and Guitton, 2005; Verschuur and
Berkhout, 2011; Wong et al., 2014; Zhang and Schuster, 2014; Tu and Herrmann, 2015). When
modelling data with re�ectivity image contaminated with cross-talk artefact, extra-re�ections
will appear in synthetic data. These will be back-projected in the re�ectivity update to attenuate
the cross-talk artefacts.

If internal multiples are properly modelled, they can be included in the inversion procedure.
This is the approach of the Full Wave�eld Migration (FWM) technique (Berkhout, 2012, 2014b;
Soni and Verschuur, 2014) where the modelling is performed with the Full Wave�eld Modelling
procedure presented in section 1.4.2. The amplitude di�erences between modelled and observed
data is converted into re�ectivity update.

More recently, new imaging techniques have been derived from the resolution of the Marchenko
equation (Wapenaar et al., 2014). As in reverse-time migration, Marchenko imaging consists of
correlating a downgoing and an upgoing wave�eld at each point of the subsurface. However in
reverse-time migration, the downgoing wave�eld is approximated by direct propagation in a
non-re�ective media of the source wavelet to the image point, and the upgoing wave�eld is
obtained in the same way by backpropagation of the residuals. In Marchenko imaging, all the
internal multiples re�ections encountered by the source and receiver wave�eld are accounted
for, so that the wave�elds correlated at each subsurface location correctly include internal mul-
tiples (Behura et al., 2014). As a consequence, Marchenko imaging does not generate cross-talk.
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These wave�elds are obtained from surface recordings and an estimation of the direct arrival
recorded at each subsurface location by iteratively solving the Marchenko equation (Rose, 2002;
Wapenaar et al., 2011). Note that a velocity model is needed for the direct arrival estimation.
Singh et al. (2015) extend this procedure to use simultaneously primaries, internal multiples
and surface multiples.

1.5. Motivations and thesis outline

1.5.1. Motivations: towards a more robust MVA and extension to multiple
reflections

Real seismic data contain both primaries and multiple re�ections. Much e�ort has been devoted
to the removal of multiple re�ections to provide migration algorithms with data containing
only single-scattered events. As a consequence, Migration Velocity Analysis techniques have
been designed for single-scattered events only. Recent developments showed that transmitted
waves could be incorporated in MVA (Shen, 2013; Lameloise and Chauris, 2016). Extending
MVA to multiple re�ections would have two advantages. First this would remove the di�cult
pre-processing stage of multiple attenuation, second the information contained in multiple
re�ections may be used to update the background velocity model in areas not illuminated by
primaries.

So far multiples have been considered as noise in MVA techniques (Mulder and ten Kroode,
2002; Li and Symes, 2007), and only a few proposals have been made to include them as valuable
signal. van Leeuwen and Mulder (2008b) study the behaviour of multiples in the data-domain
correlation methodology proposed in van Leeuwen and Mulder (2008a). They propose to update
alternatively the re�ectivity and the velocity model to both maximise the correlation in the data
domain and minimise the mis�t between observed and calculated data. Another strategy in the
data domain is Joint Migration Inversion (JMI) (Staal and Verschuur, 2012; Berkhout, 2014c; Staal,
2015). It is an extension of the Full Wave�eld Migration technique presented in section 1.4.4
which includes internal and surface multiples in the usual data mis�t objective function. The
amplitude of data residuals is used to update the re�ectivity model and the phase is used to update
the velocity model. Both models are updated simultaneously at each iteration. Note that this
approach does not use an extended-re�ectivity. To our knowledge, only two proposals have been
made to include multiples in usual image-domain methods. Nasyrov et al. (2008, 2009) propose
an original strategy in which primaries and �rst-order surface-related multiples are migrated
separately. They consider an objective function measuring the similarity of the two images, so
that the discrepancies between the image obtained with primaries and the image obtained with
multiples are used to update the velocity model. Alternatively, the sensitivity of the Marchenko
imaging procedure to the background velocity has been very recently investigated by Díaz et al.
(2016) who compute extended re�ectivity images in subsurface-o�set and angle domain with
internal and surface multiples. The dependence of the Marchenko wave�elds to the background
velocity is not as explicit as in the case of RTM, thus a method for the derivation of a velocity
update should still be investigated.

Even in the case of primaries only, MVA still faces di�culties as discussed in section 1.3.
Therefore before introducing multiples, a robust method to deal with primary re�ection has to
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be determined. Lameloise et al. (2014) have shown that the issue of migration artefacts can be
mitigated by introducing weights in the migration procedure. As a consequence, the gradient of
the DSO objective-function is greatly improved. However their approach rely on ray theory and
does not extend easily to multiple re�ections. The extension to wave-equation based operators
presented in chapter 4 is inspired from ideas by ten Kroode (2012) and Hou and Symes (2015)
who have developed a pseudo-inverse of the extended Born modelling operator. In chapter 4,
we propose a slightly modi�ed version and more importantly a coupling with velocity analysis
(Hou and Symes, 2016b).

In this study I �rst investigate a modi�cation of the standard MVA procedure consisting of
performing the migration step iteratively to determine a better solution of the migration inverse
problem than the one provided by standard migration. The method is not limited to ray theory
and can handle multiple re�ections. The analysis is restricted to �rst-order surface-related
multiples modelled with a second-order Born approximation. An extended re�ectivity section
is constructed to minimise the data mis�t between calculated and observed data including
both primaries and �rst-order surface-multiples. At the convergence, the iterative procedure is
expected to yield CIGs free of migration and cross-talk artefacts, thus allowing to use standard
MVA, here subsurface-o�set DSO.

This results in a nested optimisation procedure (�gure 1.22). In the inner loop, the extended-
re�ectivity is determined as a minimisation of the data mis�t, while in the outer loop the
velocity model is updated to minimise defocused energy in the optimal re�ectivity. There are
two main di�erences with the JMI approach. First here an extended-re�ectivity is considered.
This allows to capture all the information contained in the data residual, even in the case of an
inaccurate initial velocity model. Second the update of the velocity is based on defocusing in
the extended-domain and not on data-mis�t. Besides, the JMI approach aims at recovering both
the re�ectivity and the velocity which are updated simultaneously at each iteration whereas
here a nested optimisation approach is studied, whose main objective is the determination of a
correct background velocity model.

In the synthetic examples, we will �rst test our method on primaries only data, and then
on data containing both primaries and �rst-order surface multiples. We will focus on the �rst
gradient of the outer loop. The objective is that the result obtained with primaries and multiples
in observed data should be close to the one that would be obtained with observed data free of
multiples, meaning that multiples are correctly interpreted by the iterative migration algorithm
and do not hinder the velocity analysis procedure. To reach this objective, a number of essential
elements have to be developed, successively detailed in chapters 2 to 5. Some of them are also
useful for a stable MVA in the case of primaries only: in particular, we pay attention at the
issue pointed out by Huang (2016) regarding the stability of the MVA gradient computed with a
�xed background velocity model and successive values of the re�ectivity model. Each chapter
concludes with a limitation, justifying further developments. The �nal formulation is obtained
in chapter 5.

1.5.2. Thesis outline

The thesis is organised as follows:
• Chapter 2 is dedicated to the iterative migration procedure, corresponding to the inner
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inner loop
iterative migration
chapters 2 & 4

Initial c0

δc = 0 Update c0

Model P[c0,δc] Update δc

Evaluate J0[c0,δc] Compute
∂ J0

∂ δc
[c0,δc]

Stopping criterion
for J0 satis�ed? Compute

∂ J1

∂ c0

[c0]

Evaluate J1[c0]

Stopping criterion
for J1 satis�ed?

Return c0

chapters 3, 4 & 5

chapter 6

Figure 1.22. – Sketch showing the algorithm of MVA with iterative migration. In the inner loop,
we optimise the re�ectivity δc for a given c0 in order to minimise the objective function J0
measuring the data mis�t ‖P[c0,δc]−Pobs‖. In the outer loop, we update the velocity model
to minimise the objective function J1 measuring defocused energy in the CIGs of δc.

loop of �gure 1.22. The modelling of multiples with a second-order Born approximation
is introduced and compared to a �nite di�erence modelling with a free-surface condition.
An e�cient derivation of the gradient of the migration objective function using the adjoint
state method is presented. We show that even in the presence of multiples, iterative
migration yields clean CIGs free of migration and cross-talk artefacts and therefore
improve the properties of the associated MVA objective function.

• In chapter 3, two methods for computing an approximate gradient of the MVA objective
function after iterative migration are investigated. In the �rst case, we compute an exact
gradient of an approximate objective function. In a second approach, we suppose that
iterative migration has converged and compute the approximate gradient of the ideal MVA
objective function. This method is preferred as it has a simpler implementation. It consists
of solving a so-called “adjoint problem”, which is a linear system very similar to iterative
migration. We highlight the importance of introducing regularisation during migration
to obtain coherent velocity updates. We discuss also here instabilities observed in the
gradient and a �rst possibility to attenuate them. The second possibility is developed in
chapter 5. The approach remains expensive, as two iterative schemes have to be solved.
Chapter 4 aims at obtaining a faster convergence.
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• In chapter 4, an approximate inverse of the extended-Born modelling operator is presented.
This direct inversion formula is designed for primary re�ections only and is free of ray
quantities. It is a variant to the method introduced by Hou and Symes (2015). The new
aspect is the coupling with MVA. The weights are introduced as a preconditioner to
accelerate the resolution of iterative migration and of the adjoint problem, even in the
presence of multiples. In the primary-only case, we compare the results of direct and
iterative inversions: we show that although they provide very close re�ectivity images,
the associated gradients are not similar. We also underline the di�culty to solve the
adjoint problem compared to iterative migration (Huang, 2016). This justi�es additional
developments discussed in chapter 5.

• In chapter 5, the behaviour of iterative migration velocity analysis is studied on a pure
1D primary-only case to better understand the issues presented in chapter 4. A major
advantage of the 1D analysis is the possibility to have explicit operators and to run a large
number of iterations. We propose a simple modi�cation of the MVA objective function
consisting of applying a “�lter” to the �nal CIGs before penalising defocused energy.
The �lter is function of the background velocity model. In the primaries only case, this
modi�ed approach improves the convergence of the adjoint problem and yields gradients
close to those obtained after direct inversion, both in 1D and 2D. In the case of multiples,
we show that introducing classical regularisation on the migration during the migration
step is still essential.

• In chapter 6, the approach is applied on 2D synthetic data sets. The robustness of the
method is discussed with observed data computed with a di�erent modelling engine from
the one used for the inversion, for example with the introduction of a variable density, or
when a di�erent source wavelet is used for inversion and for observed data.

• In chapter 7, the main conclusions of the thesis are summarised and we discuss remaining
issues in the perspective of real data applications.

1.5.3. Realisations and contributions

Starting from an existing �nite-di�erence acoustic forward propagation code, I have built
an iterative migration Fortran90 code computing extended CIGs by iterative minimisation
of the data mis�t with non-linear optimisation techniques. I implemented the two methods
for the computation of the background velocity update presented in chapter 3, as well as the
inversion formula described in Chauris and Cocher (2017) used here as a preconditioner. The
implementation of adjoint operators has been veri�ed with the dot-product test (Claerbout, 2014,
p. 28) and gradient derived with the adjoint-state method (Plessix, 2006) have been compared
with �nite-di�erence computations.

My main contributions are

• the construction of CIGs in the subsurface-o�set domain with consistent inclusion of
�rst-order surface-related multiples;
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• the extensive study of the construction of the gradient of the MVA objective function
after iterative migration, as detailed in chapters 3 and 5;

• the comparison of direct and iterative inversion schemes for the construction of back-
ground velocity updates and the proposition to �lter �nal CIGs in the iterative case to
stabilise the method.

These developments allow a better understanding of the behaviour of MVA after direct or
iterative inversions. We have proposed strategies for a more robust scheme, applicable in the
case of surface-related multiples but also of primaries only.

Part of the results have been presented in

• E. Cocher and H. Chauris, 2014. Iterative Migration to Remove the Imprint of Multiples
on the Re�ectivity. SEG/KOC Workshop: Seismic multiples – Are they signal or noise?,
Kuwait City, Kuwait;

• E. Cocher, H. Chauris and C.-A. Lameloise, 2015. Imaging with Surface-Related Multiples
in the Subsurface-O�set Domain. 77th EAGE Conference & Exhibition, We N101 11;

• H. Chauris and E. Cocher, 2014. Iterative Migration for Velocity Analysis in the Presence
of Surface-Related Multiples. Workshop on using multiples as signal for imaging, 2014
SEG Annual Meeting;

• H. Chauris, C.-A. Lameloise and E. Cocher, 2015. Inversion Velocity Analysis - The
Importance of Regularisation. 77th EAGE Conference & Exhibition, WS05–A02;

• C.-A. Lameloise, H. Chauris and E. Cocher, 2015. Automatic Migration Velocity Ana-
lysis Applied to Direct Waves in a Crosswell Con�guration. 77th EAGE Conference &
Exhibition, We P1 05;

or submitted to publication,

• H. Chauris and E. Cocher, 2017. From Migration to Inversion Velocity Analysis. Geophys-
ics, 82(3), S207–S223;

• E. Cocher, H. Chauris and R.-É. Plessix, 2017a. Seismic Iterative Migration Velocity
Analysis: Two Strategies to Update the Velocity Model. Computational Geoscience.
Submitted (minor revisions);

• E. Cocher, H. Chauris and R.-É. Plessix, 2017b. Towards a Stable Iterative Migration
Velocity Analysis Scheme. Geophysical Journal International. In preparation.
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Résumé du chapitre 2

Ce chapitre décrit l’algorithme de migration itérative et l’illustre sur un exemple simple dans le
cas de primaires seuls, puis dans le cas de primaires et de multiples de surface du premier ordre.
La migration itérative fait l’hypothèse d’une séparation d’échelle du modèle de vitesse en un
macro-modèle lisse et en un modèle de ré�ectivité hautes fréquences. Pour une valeur �xée du
macro-modèle, il s’agit alors de déterminer un modèle de ré�ectivité qui minimise une fonction
objective mesurant l’écart entre données observées et données recalculées. Cette fonction coût
comprend également un terme de régularisation mesurant la norme `2 de la ré�ectivité. Le
macro-modèle est �xe au cours de l’optimisation et peut être erroné. A�n d’évaluer la qualité
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du macro-modèle utilisé, le modèle de ré�ectivité est étendu par l’introduction de l’o�set en
profondeur horizontal comme paramètre additionnel. Les erreurs dans le macro-modèle se
traduisent par la présence d’énergie pour des valeurs non nulles de l’o�set en profondeur dans
le modèle de ré�ectivité �nal. Cette information sera utilisée au chapitre 3 pour remettre à jour
le macro-modèle.

Dans le cas de primaires seuls, les données calculées sont modélisées sous l’approximation
de Born et dépendent linéairement du modèle de ré�ectivité. Dans le cas où les multiples de
surface du premier ordre sont également considérés, l’approximation de Born du second ordre
est utilisée et la relation entre données et ré�ectivité n’est plus linéaire. Cette modélisation est
comparée à une modélisation par di�érences �nies sans approximation de Born et avec une
condition de surface libre utilisant la méthode d’image pour modéliser les multiples de surface.
L’approximation de Born est satisfaisante pour de faibles contrastes de vitesse. En présence de
plus forts contrastes, l’amplitude d’évènements correspondants à de grands angles de ré�exions
est surestimée. Cela peut consister une limitation de cette approche en vue d’applications à des
données réelles. Finalement une modélisation e�cace des primaires et des multiples dans le cas
d’un modèle de ré�ectivité étendu avec l’o�set en profondeur est introduit. Pour les multiples,
j’ai choisi la solution la plus générale avec l’introduction un o�set en profondeur à chaque point
de ré�exion.

La minimisation de la fonction coût associée à la migration itérative est réalisée avec des
méthodes d’optimisation locale (Nocedal et Wright, 2006) utilisant le gradient de la fonction coût
pour remettre à jour le modèle de ré�ectivité. Le calcul du gradient, obtenu par la méthode de
l’état adjoint (Plessix, 2006), est détaillé. Dans le cas linéaire de primaires seuls, la minimisation
de la fonction objective est équivalente à la résolution d’un problème linéaire. Dans les exemples
numériques, ce système est résolu itérativement avec l’algorithme du gradient conjugué linéaire.
Lorsque des multiples sont considérés, des techniques d’optimisation non linéaire doivent être
employées, ici le gradient conjugué non linéaire utilisant la formule de Polak-Ribière et la
recherche linéaire de Moré et Thuente (1994).

La migration itérative est illustrée dans le cas simple d’un unique ré�ecteur horizontal et
d’un macro-modèle homogène. Dans un premier temps, les données observées (synthétiques)
et calculées ne contiennent que des ré�exions primaires. Un macro-modèle homogène mais
plus lent que le modèle exact, est utilisé. À la première itération, les artefacts de migration
décrits par Mulder (2014) et Lameloise et al. (2014) apparaissent dans les CIGs et le minimum de
la fonction coût évaluée pour des macro-modèles homogènes n’est pas atteint pour la bonne
valeur de vitesse. En poursuivant les itérations, les artefacts de migration sont progressivement
atténués et le minimum décalé vers la bonne valeur de modèle de vitesse. Le test est répété dans
le cas où les multiples de surface du premier ordre sont ajoutés aux données observées. À la
première itération, les multiples interprétés comme des primaires conduisent à de nouveaux
artefacts dans les CIGs à une profondeur double de la position du vrai ré�ecteur. À l’itération
suivante, ces artefacts génèrent dans les données calculées de nouveaux évènements (primaires
et multiples) absents des données observées, qui conduisent à leur tour à une remise à jour
du modèle de ré�ectivité. Ainsi les artefacts dus aux multiples, tout comme les artefacts de
migration sont progressivement atténués.
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2.1. Introduction

This chapter introduces an iterative migration scheme (Nemeth et al., 1999; Østmo et al., 2002)
with a speci�c focus on surface-related multiples. A scale separation between a smooth back-
ground velocity model and a rapidly-varying re�ectivity model is assumed. The purpose of
migration is to determine a re�ectivity model which allows to faithfully reproduce observed
data, assuming a �xed initial background velocity model. The latter may be inaccurate, therefore
the re�ectivity model space is extended with an additional parameter, the subsurface o�set. A
re�ectivity model explaining observed data can then be obtained even in an incorrect velocity
model. Here we want to determine a re�ectivity model able to explain correctly both primaries
and �rst-order surface multiples. The evaluation of the quality of the background velocity
model (MVA part) is investigated in chapter 3.

Migration is formulated here as an inverse problem which consists of minimising an objective
function measuring the mis�t between observed and simulated data. This corresponds to the
inner loop of the scheme described in �gure 1.22. In the forward problem, data corresponding
to a re�ectivity model are modelled with a second-order Born approximation: primaries are
linear in the re�ectivity, but multiples are not. The inverse problem is solved iteratively with
a gradient-based method, the re�ectivity model being updated with the gradient of the least-
squares objective function.

Starting from a zero model, the �rst gradient does not provide a reliable solution to the
inverse problem. First, multiples incorrectly interpreted as primaries result in spurious events
in the re�ectivity model which do not correspond to a physical re�ector. Second, even in the
case of primaries only, migration artefacts appear on Common Image Gathers (CIGs), de�ned
as panels displaying the re�ectivity along the depth and the subsurface-o�set for �xed lateral
positions (Lameloise et al., 2014; Mulder, 2014). CIGs are later used to evaluate the quality of
the background velocity model. Migration artefacts are thus an issue for the update of the
background velocity model. We show that iterative migration allows to attenuate both migration
artefacts and spurious events caused by cross-talk.

We begin by describing the forward problem consisting of modelling primaries and �rst-order
surface-related multiples with a second-order Born-approximation. The results are compared
with a classical �nite-di�erence modelling with a free-surface condition to investigate the
ability of the Born approximation to deal with high velocity contrasts, which generate strong
multiples. We then show how the modelling is performed in the extended-domain with the
horizontal subsurface-o�set as extension parameter. The inverse problem associated to iterative
migration and the corresponding objective function are presented. It is solved with non-linear
gradient-based optimisation techniques and an e�cient way of computing the gradient of the
objective function is introduced. Finally, we show simple synthetic examples. First we consider
primary re�ections only to show the in�uence of migration artefacts (migration smiles) in CIGs
on the shape of the MVA objective function. We show how iterative migration can mitigate the
problems caused by migration artefacts. The same tests are run with surface multiples and the
attenuation of cross-talk artefacts as well as migration artefacts with iterations is illustrated.
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2.2. Notations

We consider a surface acquisition and a 2D Earth model where a subsurface point is noted
x= (x , z). We de�ne

• the model spaceM of physical model parametrised by x. For example the background
velocity model c0(x);

• the extended model space E of variables function of the subsurface point x and the
subsurface o�set considered strictly horizontal h = (h, 0), for example the extended
re�ectivity ξ(x, h);

• the observed data space Dobs parametrised by the source horizontal coordinate s, the
receiver horizontal coordinate r and the angular frequency ω (or time t) in the frequency
domain formulation. Observed data are noted Pobs(s, r,ω). Although we use the time
domain for the implementation, equations will be written in the frequency domain in the
following to simplify calculations;

• the data space D . We note P[c0,ξ](s,x,ω) the wave�eld calculated with the estimated
re�ectivity model ξ. Contrary to Pobs, P is known everywhere in the subsurface. We
de�ne the operator M : D 7→ Dobs which, applied to a simulated wave�eld P[c0,ξ](s,x,ω),
selects its values at receivers’ locations. Hence MP can be compared to Pobs during iterative
migration.

Table 2.1 summarises the notations used for the di�erent spaces and their size. For more details
on the choice of the data and model spaces, the reader is referred to Blazek et al. (2013) and
Symes (2014). Note that with the introduction of the subsurface o�set, the extended model E
and the observed data space Dobs have the same dimension, which allows to alternate between
these two spaces without losing information.

space notation size

model space M nz × nx

extended model space E nz × nx × nh

observed data space Dobs nt × ns × nr

data space D nt × ns × nz × nx

Table 2.1. – Data and model spaces involved in this study and size of their elements. nz , nx
and nh are the number of grid points considered in the extended model space. nt is the
number of time samples. ns and nr are the number of sources and receivers considered in
the acquisition. In the data space, nx can be restricted to a zone around the shot gather
including at least all the receivers.

The inner product of two vectors ξ and χ of E is noted

〈ξ |χ〉E =
∫

x

∫

h
ξ(x, h)χ(x, h)dh dx, (2.1)
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and the associated norm is ‖ξ‖E =
p〈ξ |ξ〉E . Similarly we de�ne the inner-product 〈 · | · 〉D and

the norm ‖ · ‖D in the data space. The norm of the data residuals R, de�ned as the di�erence
between observed data and the value of simulated data at receivers’ positions,

R[c0,ξ](s, r,ω) =
�
MP[c0,ξ]

�
(s, r,ω)− Pobs(s, r,ω), (2.2)

is given by

‖R‖Dobs
=

√√√∫

s

∫

r

∫

ω

��R(s, r,ω)
��2 dωdr ds. (2.3)

Finally we call F∗ and F−1 the adjoint and inverse operators of an operator F.

2.3. Modelling under the second-order Born approximation

We detail in this section how primaries and multiples are modelled with a second-order Born
approximation in the extended domain. We �rst review the usual Born approximation for
primary re�ections in the non-extended case.

2.3.1. First-order Born approximation

In the constant-density acoustic approximation, wave�eld propagation obeys the following
wave-equation

(iω)2

c(x)2
P(s,x,ω)−∆P(s,x,ω) = Ω(ω)δ(x− s), (2.4)

for a source located at s= (s, 0) with a wavelet Ω(ω). The velocity model is noted c(x).
The Born approximation is a linearisation of this wave-equation and relies on the scale

separation presented in the introduction. We write

c(x) = c0(x) + δc(x), (2.5)

where c0 and δc stands for the background velocity model and the model perturbation respect-
ively. Accordingly we separate the data P into P = P0+δP. P0 corresponds to the data modelled
in the smooth background c0 and δP is the perturbation caused by the model perturbation δc.

We suppose that the model perturbation is small with respect to the background velocity
model, that is δc� c0. Neglecting second-order term δPδc, P0 and δP are solution of

�L0P0(s,x,ω) = Ω(ω)δ(x− s),
L0δP(s,x,ω) = (iω)2ξ(x)P0(s,x,ω),

(2.6a)
(2.6b)

where we have de�ned

• the wave operator L0 as

L0 =
(iω)2

c2
0(x)

−∆. (2.7)

Note that L0 is de�ned with the smooth background velocity c0(x);
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• the re�ectivity ξ(x) as

ξ(x) = 2δc(x)
c3
0(x)

. (2.8)

The coe�cient 2/c3
0(x) is included in the de�nition of ξ(x) to further simplify calculations,

although the physical re�ectivity property is described by the dimensionless quantity
ξ(x) = δc(x)/(2c0(x)). Note that the re�ectivity de�ned in equation (2.8) is not extended
yet. The case of the extended model will be presented in section 2.3.4.

The data perturbation δP corresponds to the re�ected wave due to the re�ectivity ξ. In all the
following, it will be noted P1.

The solutions of equation (2.6) involve Green’s functions G0 de�ned as the solution of the
wave-equation with an impulsive source

L0G0(s,x,ω) = δ(x− s). (2.9)

Then one can verify that




P0(s,x,ω) = G0(s,x,ω)Ω(ω),

P1(s,x,ω) = Ω(ω)
∫

y
(iω)2G0(s,y,ω)ξ(y)G0(y,x,ω)dy,

(2.10a)

(2.10b)

are solutions of equations (2.6a) and (2.6b), respectively.

2.3.2. Reflection at the free surface

To consider �rst-order surface-related multiples, we need to model the re�ection of upgoing
primaries at the surface. The latter is known to act as a mirror and a �rst guess is to model
multiples by applying the primary modelling work�ow to a new areal source made of primaries
recorded at the surface multiplied by a constant coe�cient R= −1. Numerical comparison with
a �nite di�erences modelling and a free-surface condition suggests that an additional coe�cient
2iω/c0 should be applied as well. We explain the physical meaning of this coe�cient on a pure
1D case in appendix A and assume that it is valid in the general 2D case, too.

In the following, we note P2 the wave�eld resulting from the re�ection of the primaries P1 at
the surface. The associated wave-equation is

L0P2(s,x,ω) =MsP1(s,x,ω), (2.11)

where operator Ms : D 7→ D is de�ned by

MsP1(s,x,ω) = (−1)δ(x− xsurf)
2iω

c0(x)
P1(s,x,ω), (2.12)

and includes the additional re�ection coe�cient discussed in appendix A.
We test the accuracy of this approximation, in particular at non-zero o�set, with the fol-

lowing numerical example. We consider a Ricker with a maximum frequency of 40 Hz as the

54



2.3. Modelling under the second-order Born approximation

source wavelet (�gure 2.1). The source and the receivers are buried in the subsurface assumed
homogeneous with a velocity of 3000 m/s (�gure 2.2a). We �rst simulate the propagation of
the source with a classical second-order accurate space and time �nite-di�erence scheme. Ab-
sorbing boundary conditions with Perfectly Matched Layer (PML) (Bérenger, 1994; Komatitsch
and Martin, 2007) are implemented on each edge of the model except on the surface where a
free-surface condition is implemented with the method of images (Levander, 1988; Robertsson,
1996) (�gure 2.2c, left). Then we use the same code with PMLs on each edge of the model
to solve equations (2.10a) and (2.11) (�gure 2.2c, middle). The di�erence between the two
results increases with o�set (�gure 2.2c, right). The amplitudes accuracy decays with o�sets
(�gure 2.2b) as the re�ection coe�cient (−1) at the surface is set independent of the incident
angle, but more importantly the traveltime remains accurate. Thus equation (2.11) stands as a
good approximation to model the surface re�ection.
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Figure 2.1. – The Ricker wavelet with maximum frequency of 40 Hz.

2.3.3. Second-order Born approximation

First-order surface multiples P3 are modelled with the same equation as primary re�ections P1
(equation 2.10b), except that the incident wave�eld is P2 instead of P0. Then, given a background
velocity model c0(x) and a (non-extended) re�ectivity model ξ(x), data modelling is performed
by solving four wave-equations





L0P0(s,x,ω) = Ω(ω)δ(x− s),
L0P1(s,x,ω) = (iω)2ξ(x)P0(s,x,ω),
L0P2(s,x,ω) =MsP1(s,x,ω)
L0P3(s,x,ω) = (iω)2ξ(x)P2(s,x,ω),

(2.13a)
(2.13b)
(2.13c)
(2.13d)

where Ms is de�ned in equation (2.12).

Comparison with a finite-di�erence modelling and a free-surface condition
We have tested the validity of the Born approximation with respect to the free surface. In theory,
the Born approximation is valid for small velocity contrasts. We want to study its behaviour
in the case of high contrasts which may cause strong multiples. We compare data modelling
with the second-order Born approximation described by equations (2.13) with a �nite-di�erence
modelling and a free-surface condition on four examples. We consider a background velocity of
1500 m/s and two values for the velocity perturbation: 1600 m/s and 2500 m/s, corresponding
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(c) Data recorded at receiver positions when the modelling is performed with �nite di�erences (left) and
with the Born approximation (centre). The right panel display their di�erence. The same colour scale
is used for the three plots.

Figure 2.2. – Accuracy of the second-order Born approximation with respect to the free-surface
re�ection.
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2.3. Modelling under the second-order Born approximation

to a limited (100/(1500+ 1600) = 0.03) and a larger (1000/(1500+ 1600) = 0.25) velocity
contrast. For each value, we consider two cases

• a horizontal re�ective layer with homogeneous velocity below the interface located at
z0 = 200 m (�gures 2.3 and 2.4). In this case, the background velocity model used for
second-order Born modelling is obtained by smoothing the exact slowness model σ(x)
de�ned as σ(x) = 1/c0(x) and the velocity perturbation is calculated as ;

• a horizontal “di�ractive interface”, with a velocity perturbation localised at depth z0 and
a homogeneous velocity (1500 m/s) below and above the interface (�gures 2.5 and 2.6).

The source and the receivers are located near the surface. Ghosts at the source and the receiv-
ers sides are created by the free-surface in the �nite-di�erence simulation. This is accounted
for in the Born modelling by a time shift in the source wavelet and in the computed data





Ωghost(t) = Ω(t)−Ω
�

t + 2
zs

c0

�
,

Pghost(s, r, t) = P(t)− P
�

t + 2
zr

c0

�
.

(2.14a)

(2.14b)

Once more, this approximation is valid for vertical wave propagation only.
Both in the re�ection and di�raction cases, multiples are accurately modelled when the

velocity contrast is small. In the di�raction case, the kinematics of multiples is respected even
with a high velocity contrast, although the amplitudes are overestimated (�gure 2.6). In the
re�ection case with a higher velocity contrast , the Born approximation does not model the
kinematics of primaries as accurately, and it is worse in the case of multiples (�gure 2.4). This
is due to the propagation in a smooth model that modi�es the velocities compared to the
propagation in a blocky velocity model. Note however that the time shift between the two data
sets is very similar at zero and far o�set. Besides, there is not a unique choice for the de�nition
of the smooth model. It is obtained in these examples by smoothing the blocky slowness model,
but other de�nitions may lead to better results, at least at zero o�set. In practice, there is no need
to smooth an exact model: the MVA strategy aims actually at determining both a background
velocity model and a re�ectivity model allowing to reproduce observed data with a second-order
Born approximation.

Eventually, we note that re�ection multiples (�gures 2.3 and 2.4) appear as a scaled version
of the primaries with an opposite wavelet, contrary to di�raction multiples (�gures 2.5 and 2.6)
which have a di�erent wavelet from the primaries.

Non-linearity of multiples with respect to the reflectivity model
Finally, we illustrate the linear dependence of primaries and non-linear dependence of multiples
to the re�ectivity model in the second-order Born approximation with a simple example (�g-
ure 2.7). We consider two di�erent re�ectivity models ξA and ξB consisting of a single re�ector
located at 200 m depth for model A and 300 m for model B. A single shot is �red from the
middle point in the surface. The source wavelet is a Ricker with a maximum frequency of 40 Hz
(�gure 2.1). We compute the response recorded by receivers at the surface, respectively P1[ξA]
and P1[ξB] (�gure 2.7, �rst and second columns). Then we compare the response obtained
with the linear combination of models ξC = ξA + 2ξB (�gure 2.7, third column) with the linear
combination of the individual data sets P1[ξA] + 2P1[ξB] (�gure 2.7, fourth column). In the

57



Chapter 2. Iterative migration

−400 −200 0 200 400

0

0.2

0.4

0.6

surface o�set (m)

tim
e

(s)

�nite di�erences

−400 −200 0 200 400
surface o�set (m)

Born

−400 −200 0 200 400
surface o�set (m)

di�erence

(a) Data recorded at receiver positions when the modelling is performed with �nite di�erences (left)
and with a free-surface condition and a second-order Born approximation (centre). The right panel
display their di�erence. The same colour scale is used for the three plots.
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Figure 2.3. – Comparison of �nite-di�erences modelling and free-surface modelling with a
second-order Born approximation in the re�ective case.
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Figure 2.5. – Comparison of �nite-di�erences modelling and free-surface modelling with a
second-order Born approximation in the di�ractive case.
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case of primaries only (�gure 2.7, middle row) these data sets are similar, which con�rms the
linear relationship between velocity perturbation and primary re�ections obtained under the
�rst-order Born-approximation. In the case of multiples two remaining events are visible, the
multiple which re�ects twice on the deeper re�ector and the one which re�ects once at each
re�ector. As expected, the relationship between data and model perturbation is thus non linear
under the second-order Born approximation.
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Figure 2.7. – Illustration of the linearity of primaries and non-linearity of multiples to the model
perturbation. Two re�ectivity models ξA and ξB and their combination ξC are considered
(top row). Data are modelled in the case of primary re�ections only (middle row) and in the
case of primaries and �rst-order surface multiples (bottom row). The most right column
shows the di�erence between data modelled in ξC and the combination of the data sets
computed with ξA and ξB.
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2.3. Modelling under the second-order Born approximation

2.3.4. Introduction of the horizontal subsurface o�set

We now extend the second-order Born modelling procedure to the extended domain. The space
of physical modelsM is extended with the subsurface o�set h, considered strictly horizontal
h= (h, 0). The extended re�ectivity ξ(x, h) now depends on this extra parameter and lives in
E , and is de�ned as

ξ(x, h) =
2δc(x, h)

c3
0(x)

. (2.15)

The modelling of primary re�ections now includes a spatial delay at depth as illustrated on
�gure 2.8. Equation (2.10b) de�ning P1 is then transformed into

P1(s,x,ω) = (iω)2Ω(ω)
∫

y

∫

h
G0(s,y− h,ω)ξ(y, h)G0(y+ h,x,ω)dh dy, (2.16)

with a new integral over h. In the case of �rst-order surface-related multiples, several de�nitions
are possible (�gure 2.9). We consider the case where a spatial delay is introduced at each
re�ection point (�gure 2.9a), as it is a more general case and leads to similar formulations for
the de�nition of P1 and P3. The modelling of �rst-order surface-related multiples now reads

P3(s,x,ω) = (iω)2
∫

z

∫

k
G0(m,z− k,ω)ξ(z, k)

G0(z+ k,x,ω)dk dz

∫

m∈∂Ω
(−1)

2iω
c0(m)

P1(s, m,ω)dm, (2.17)

where m is a point located at the surface ∂Ω. As before, the coe�cient 2iω/c0(x) is introduced
to properly simulate the re�ection at the free-surface.

s

y− h y+ h

x

y

2h

Figure 2.8. – Modelling of
primary re�ections with the
horizontal subsurface-o�set
h de�ned as a spatial delay
at depth.
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Figure 2.9. – Two possible schemes for the modelling of
�rst-order surface-related multiples with the horizontal
subsurface-o�set. A spatial delay is introduced either at
each subsurface point (a) or at a single image point (b).

The implementation of equations (2.16) and (2.17) in their current formulation is not straight-
forward. Applying the wave-operator L0 to this formula allows to derive a more convenient
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modelling scheme:




L0P0(s,x,ω) = KP0
(s,x,ω) = Ω(ω)δ(x− s),

L0P1(s,x,ω) = KP1
(s,x,ω) =

∫

h
(iω)2P0(s,x− 2h,ω)ξ(x− h, h)dh,

L0P2(s,x,ω) = KP2
(s,x,ω) =MsP1(s,x,ω)

L0P3(s,x,ω) = KP3
(s,x,ω) =

∫

h
(iω)2P2(s,x− 2h,ω)ξ(x− h, h)dh,

(2.18a)

(2.18b)

(2.18c)

(2.18d)

which involves the usual wave equation with modi�ed source terms KP1
and KP3

that include
the integral over the subsurface o�set. Thus the introduction of the subsurface o�set does not
change the wave-equation to be solved, but only the source terms KP1

and KP3
. Note that there

is no additional loop over h, except in the source terms. The number of wave-equations to be
solved remains the same.

To simplify further expressions, we introduce the vector S ∈ D which is zero everywhere in
space except at the location of the seismic source: S(s,x,ω) = Ω(ω)δ(x− s). We also de�ne the
bilinear operator K−[u,χ] : D ×E 7→ D for a vector u of D and a vector χ of E as

K−[u,χ](s,x,ω) =
∫

h
(iω)2u(s,x− 2h,ω)χ(x− h, h)dh. (2.19)

This allows the modelling scheme to be written in a more compact way, which will be used in
following calculations, 




L0P0(s,x,ω) = S(s,x,ω),
L0P1(s,x,ω) = K−[P0,ξ](s,x,ω),
L0P2(s,x,ω) =MsP1(s,x,ω),
L0P3(s,x,ω) = K−[P2,ξ](s,x,ω).

(2.20a)
(2.20b)
(2.20c)
(2.20d)

We have described how to solve the forward problem of the inner inverse problem. We
now introduce the corresponding objective function and the resolution of the inverse problem,
consisting of determining ξ from observed data for a given background velocity model c0(x).

2.4. Optimisation strategy

Iterative migration is an inverse problem posed in the extended domain E . This is the inverse
problem we consider in this chapter. It is solved as an unconstrained optimisation problem. In
this section we present the objective function to be minimised and the optimisation strategy
which will be used in numerical examples. We eventually explain how the gradient of the
objective function is computed.

2.4.1. Definition of an objective function for iterative migration

The objective function J0 of iterative migration reads

J0[c0,ξ] = JMigr[c0,ξ] + aφφ[ξ]. (2.21)
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Iterative migration aims at determining an extended re�ectivity model ξ minimising J0. The es-
timated background velocity c0, which might be inaccurate, is kept �xed during the minimisation
of J0. The objective function J0 is made of two contributions,

• the �rst term evaluates the mis�t between data computed with the re�ectivity model ξ
and observed data. It is expressed as

JMigr[c0,ξ] = 1
2



M
�
P1[c0,ξ] + P3[c0,ξ]

�− Pobs


2
Dobs

(2.22)

The projection operator M : D 7→ Dobs selects the value of the wave�elds P1 and P3 at the
position of receivers before comparison with observed data;

• the second term is a regularisation function whose weight is controlled by the scalar
aφ . In this chapter, we will consider simple regularisation functions such as the `2 norm
φ[ξ] = 1

2‖ξ‖2E , but other terms may easily be introduced.

2.4.2. Linear case of primaries only

In the numerical example section, we begin by applying iterative migration in a simple case
without multiples. The �rst-order Born modelling can be represented by a linear operator
F : E 7→ Dobs. To simplify the following equations, we assume that the projection operator M is
included in the de�nition of F. With the `2 norm as regularisation, the objective function (2.21)
now reads

J0[c0,ξ] = 1
2



F[c0]ξ− Pobs


2
Dobs
+ aφφ[ξ]. (2.23)

Its minimisation is equivalent to the resolution of the linear system
�
FTF+ aφ I

�
ξ = FTPobs, (2.24)

which is obtained by zeroing the gradient of the objective function (2.23). An e�cient method to
solve this system is the linear conjugate gradient algorithm (Nocedal and Wright, 2006, p. 112).
Note that in practice an F and FT will not be expliclty computed and an equivalent formulation
will be used (section 2.5.1).

2.4.3. Non-linear optimisation in the non-linear case of multiple reflections

With multiples, the modelling operator is not linear any more and non-linear optimisation
techniques have to be used. With gradient-based methods, the re�ectivity model at iteration
(n+ 1) is updated from the re�ectivity model at iteration (n) following

ξ(n+1) = ξ(n) +α(n)d(n), (2.25)

where d ∈ E is called descent direction and the positive scalar α is called step size or step length
determined by a procedure called linesearch. The process is initialised with ξ(1) = 0 and ξ is
updated until a convergence criterion is satis�ed, for example when the value of the objective
function or the norm of its gradient goes below a given threshold. In the numeric examples
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shown at the end of this chapter, we set a maximum number of iterations N, so that the �nal
result is ξ(N+1). d and α are determined such that the value of J0 decreases at each iteration,
that is J0(ξ(n+1))< J0(ξ(n)).

The most simple choice for the descent direction is given by the opposite of the gradient of
the objective function, that is d(n) = −g(n), with g(n) the gradient of J0 computed at ξ(n),

g(n) =
∂ J0

∂ ξ
[c0,ξ(n)], (2.26)

but alternative strategies providing faster convergence exist. The optimal strategy is a trade-o�
between the number of iteration needed to reach a satisfactory minimisation of the objective
function and the numerical cost for determining d and α. We brie�y review standard non-linear
optimisation strategies in appendix B. The reader is referred to Nocedal and Wright (2006) for
an extensive review.

In all the following numerical examples, we use the linesearch procedure of Moré and
Thuente (1994), which ensures that the strong Wolfe conditions (see section B.2 and �gure B.1)
are satis�ed. The procedure requires the evaluation of the value and the gradient of the objective
function at successive trial points ξ(n) +αid

(n), until a satisfactory value for αi is found. This
may be expensive if numerous step size have to be tested. However we observed in practice
that this optimal value α(n)opt is usually found in two or three trial steps. Besides as we set
ξ(n+1) = ξ(n) +α(n)optd

(n), the linesearch procedure already provides the value of J0(ξ(n+1)) and
g(n+1) at the next iteration. So the additional cost of a linesearch procedure satisfying the strong
Wolfe conditions remains a�ordable.

We use the non-linear conjugate-gradient technique to determine the descent direction,

d(n) = −g(n) + β(n)d(n−1), (2.27)
where the scalar β is given by the formula Polak-Ribière formula

β(n) =



g(n)

�� g(n) − g(n−1)
�
E


g(n−1)
�� g(n−1)

�
E

(2.28)

A step length satisfying the strong Wolfe conditions ensures that d is e�ectively a descent
direction (Nocedal and Wright, 2006, p. 122).

2.5. Derivatives of J0

One of the key ingredients of local optimisation methods is the gradient of the objective function.
Its computation is the most computationally expensive step of the optimisation procedure and
we present here an e�cient way of deriving the gradient of J0 based on the adjoint state method.
We illustrate on an example the di�erent contributions of the gradient to the re�ectivity update.
Eventually, the shape of the Hessian matrix is studied on a simple 1D-case.

2.5.1. Computation of the gradient of J0

In the objective function de�ned in equation (2.21), the contribution to the gradient due to the
regularisation is straightforward. When the regularisation term is de�ned as the `2-norm of ξ,
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we have

φ[ξ] = 1
2
‖ξ‖2E ; (2.29)

∂ φ
∂ ξ
[ξ] = ξ. (2.30)

In this section, we focus on the gradient of JMigr. It can be expressed as

∂ JMigr

∂ ξ
=

�
∂ P1

∂ ξ
[c0,ξ(n)] +

∂ P3

∂ ξ
(c0,ξ(n))

�T

MT
�
M(P1[c0,ξ(n)] + P3[c0,ξ(n)])− Pobs

�
. (2.31)

The quantities ∂ P1/∂ ξ and ∂ P3/∂ ξ are called Fréchet derivatives and correspond to the partial
derivatives of speci�c data with respect to model parameters. Their computation is expensive,
and we prefer to use a more e�cient gradient computation method, the adjoint state method
(Plessix, 2006). This method will directly compute the product of the Fréchet derivatives with
the residuals rather than explicitly deriving the two terms.

An augmented functional called Lagrangian is de�ned with constraints added to the objective
function. Each state variable P0, P1, P2 and P3 is associated to an adjoint variable λ0, λ1, λ2 and
λ3. The λ i are vectors of D and are used as Lagrange multipliers of the state equations (2.20)

JMigr(ξ(n), P0, P1, P2, P3,λ0,λ1,λ2,λ3) = JMigr(ξ)−


λ0

��L0P0 − S
�
D

− 
λ1

��L0P1 − K−[P0,ξ]
�
D

− 
λ2

��L0P2 −MsP1

�
D

− 
λ3

��L0P3 − K−[P2,ξ]
�
D ,

(2.32)

where we have dropped the dependencies to (s,x,ω) for simplicity. The derivative of the
Lagrangian with respect to ξ can be written

dJMigr

dξ
=
∂ JMigr

∂ ξ
+

3∑
i=0

∂ Pi

∂ ξ
∂ JMigr

∂ Pi
+

3∑
i=0

∂ λ i

∂ ξ
∂ JMigr

∂ λ i
, (2.33)

where the overlined variable JMigr refers to the extended Lagrangian (2.32). We decide to
set the derivatives ∂ JMigr/∂ λ i to zero, which ensures that the Pi are solutions of the state
equations (2.20). Similarly we set the derivatives ∂ JMigr/∂ Pi to zero. This way, the computation
of the Fréchet derivatives is not required and we obtain the adjoint equations de�ning the adjoint
variables λ i 




L ∗0 λ3 =MT
�
M(P1 + P3)− Pobs

�

L ∗0 λ2 = K+[λ3,ξ]
L ∗0 λ1 =MT

�
M(P1 + P3)− Pobs

�
+M∗s λ2

L ∗0 λ0 = K+[λ1,ξ],

(2.34a)
(2.34b)
(2.34c)
(2.34d)

where operator K+[u,χ] : D ×E 7→ D is de�ned for u ∈ D and χ ∈ E by

K+[u,χ](s,x,ω) =
∫

h
(iω)2u(s,x+ 2h,ω)χ(x+ h, h)dh, (2.35)
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and can is an adjoint operator of K− (equation 2.19):
¬
u
���K−[v,χ]

¶
D =

¬
K+[u,χ]

��� v
¶
D (2.36)

for (u, v) ∈ D and χ ∈ E .
Eventually the gradient is given by the partial derivative of the Lagrangian with respect to ξ:

∂ JMigr

∂ ξ
=

dJMigr

dξ
=
∂ JMigr

∂ ξ
= Q[P0,λ1] +Q[P2,λ3] (2.37)

where operator Q[u, v] : D ×D 7→ E is an extended cross-correlation de�ned for (u, v) ∈ D by

Q[u, v](x, h) =

∫

s

∫

ω
(iω)2u∗(s,x− h,ω)v(s,x+ h,ω)dωds. (2.38)

It is related to K− and K+ by
¬
Q[u, v]

���χ
¶
E =

¬
K−[u,χ]

��� v
¶
D =

¬
u
���K+[v,χ]

¶
D . (2.39)

The adjoint variables are solutions of equations similar to the state variables. They involve
the adjoint of the wave operator, corresponding to a back-propagation in the time domain. Note
that the computation of λ0 is not necessary and the computation of the gradient is less then
twice as costly as the computation of the value of the objective function (table 2.2).

primaries only primaries and multiples

evaluate J0 2 (P0, P1) 4 (P0, P1, P2, P3)

evaluate J0 and ∂ J0
∂ ξ 3 (P0, P1,λ1) 7 (P0, P1, P2, P3,λ3,λ2,λ1)

Table 2.2. – Number of wave-equations to be solved to evaluate the value and the gradient of
the objective function at a point ξ ∈ E . The number indicated here should be multiplied by
the number of sources position considered in the acquisition.

We now explain the physical meaning of the di�erent parts of the gradient.

2.5.2. Interpretation of the gradient

Noting that the source terms of the equations de�ning λ1 and λ3 (equations 2.34a and 2.34c)
have a common term, we can split the adjoint variable λ1 into two contributions

λ1 = λ3 + λ4, (2.40)

with λ4 solution of
L ∗0 λ4 =M∗s λ2. (2.41)
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so that the gradient of JMigr has three contributions

∂ JMigr

∂ ξ
= Q[P0,λ3]︸ ︷︷ ︸

g1

+Q[P0,λ4]︸ ︷︷ ︸
g2

+Q[P2,λ3]︸ ︷︷ ︸
g3

. (2.42)

To illustrate the contributions of each term to the gradient, we consider a simple example.
A single horizontal re�ector is located at 600 m in a homogeneous velocity model (3000 m/s)
(�gure 2.10a). In the trial re�ectivity ξt , a re�ector is located at depth 400 m (�gure 2.10b). The
modelling of both observed data (�gure 2.10c) and calculated data is performed with the correct
velocity model. Four events are visible in the residuals (�gure 2.10d) de�ned as the di�erence
between data calculated with the trial re�ectivity and observed data. Each part of the gradient
convert each event to the model space.

• the �rst contribution (�gure 2.11a) noted g1 in equation (2.42) interprets the four events
in the residuals as primaries, resulting in four events in the gradient. Among them, only
one corresponds to the true re�ector located at 600 m depth. The three other events are
cross-talk artefacts.

• the second and third contributions (�gures 2.11b and 2.11c) look very similar. They both
interpret the four events in the residuals as multiples. The second term g2 images a
multiple on the source side, while the third term g3 images a multiple on the receiver side.
They can be understood as follows: among the two re�ections de�ning the multiples, one
is produced by the trial re�ectivity ξt (�gure 2.10b) and the gradient tries to position the
second re�ector which allows to reconstruct the events in the data. In our example, the
interpretation of the two primaries as multiples results in two other cross-talk artefacts.
Finally the interpretation of multiples as multiples leads to two other events, but none of
them is positioned at the depth of the re�ector, because they are deduced from assumption
that a �rst re�ection occurred in ξt which is an incorrect model.

This example actually considers an extreme case, where the second and third part of the
gradient do not bring any useful information and only mislead the re�ectivity update. In practice,
the inversion starts at ξ = 0, where only the �rst part of the gradient is non-zero. It results
in two kinds of events: cross-talk artefacts and re�ectors whose positions are kinematically
consistent with the primaries in the data. The latter allow a correct interpretation of multiples
at following iterations by the second and third term in the gradient.

We have presented optimisation strategies for iterative migration and an e�cient way to
compute the gradient of the associated objective function. We now present applications on a
simple synthetic example.

2.6. Synthetic examples

2.6.1. Primaries only in a homogeneous medium

In the �rst example, we consider a 450 m depth and 1620 m large model discretised along
a 6 m × 6 m grid. The re�ector is 300 m deep and the exact background velocity model is
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Figure 2.10. – Model constructed to interpret the three parts of the gradients of J0 as de�ned in
equation (2.42). (a) Exact re�ectivity model ξe; (c) Corresponding observed data Pobs; (b) Trial
re�ectivity model ξt ; (d) Residuals (P[ξt]− Pobs). Pe and Me are the primary and multiple
corresponding to the true re�ector, Pt and Mt the primary and multiple corresponding to
the trial re�ectivity.
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Figure 2.11. – Section at h = 0 m of the three contributions of the gradient (equation 2.42)
computed at the point ξt as de�ned in �gure 2.10. (a) g1 = Q[P0,λ3] is the interpretation of
the events in the residuals as primary re�ections; (b) g2 = Q[P0,λ4] and (c) g3 = Q[P2,λ3]
are the interpretation of the same events as multiple re�ections. The labels indicate the
corresponding events in the data residual (�gure 2.10d).
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3000 m/s. A shot is �red every 24 m and the maximum surface o�set is ±540 m. Then a single
re�ected event is visible on observed data (�gure 2.12a). For the optimisation process, we use the
`2-norm as regularisation function and the linear conjugate-gradient algorithm. 10 iterations
are performed in a too slow background velocity model (2500 m/s) (�gure 2.13).

Two sections of the extended re�ectivity volume are shown: one at h= 0m corresponding to
the physical re�ectivity (�gure 2.13, left), and a CIG extracted at x = 810m (�gure 2.13, middle).
The most right panel displays the same CIG multiplied by the absolute value of the subsurface
o�set |h|, the actual input of the MVA objective function. After one iteration, two main events are
visible with opposite curvatures, indicated by the dashed lines for the �rst iteration (�gure 2.13,
top). Because of the too low velocity, the re�ector is shifted toward the surface in the zero-o�set
section and spreads over non-zero o�sets with a downward curve, as predicted by the theory
(Mulder, 2014). The event curved upward above the re�ector is a migration artefact due to the
limited extension of sources and receivers in the acquisition. It is especially visible in the panels
where |h|ξ(n) is displayed (�gure 2.13, right). The data reconstructed with this re�ectivity model
does not match observed data (�gures 2.12b and 2.12c), as only one iteration is performed.

The residuals are greatly reduced with iterations (�gure 2.14) and the �nal re�ectivity model
obtained after 10 iterations perfectly explains observed data (�gures 2.12h and 2.12i). Two
improvements are visible on the �nal re�ectivity image �gure 2.13. Deconvolution of the wavelet
source results in a more localised re�ector, but the main e�ect of iterations is the attenuation of
migration artefacts and the strengthening of the event corresponding to the true re�ector.

We run the same experiment for the correct velocity model (3000 m/s) and for a too high
velocity model (3500 m/s). This test is similar to those presented in Lameloise et al. (2014) and
Hou and Symes (2016b). The CIGs obtained after a single iteration are all a�ected by migration
artefacts with an upward curvature (�gure 2.15, top), although in the case of a too high migration
velocity, these artefacts look similar to the event corresponding to the true re�ector and are not
distinguishable. After 10 iterations all CIGs look cleaner, and defocusing of energy is only due
to errors in the velocity model.

As a result, attenuation of migration artefacts in the CIGs improves the properties of the
MVA objective function J1. To illustrate this, we plot in �gure 2.16 the value of J1 calculated
after several iterations of migration performed in homogeneous velocity models ranging from
2500 m/s to 3500 m/s every 100 m/s. To ease the comparison, we have plotted a normalised
version of J1:

eJ1[c0] =



 |h|ξ(N+1)[c0]


2
E

ξ(N+10)[c0]



2
E

. (2.43)

As already analysed by Lameloise et al. (2014), after one iteration the minimum of eJ1 is not at the
true velocity (3000 m/s) because of migration artefacts not focusing to zero-subsurface o�set for
the correct velocity. The minimum is reached for a too low velocity model as migration artefacts
always have an upward curvature. The position of the minimum is a compromise between the
defocusing of migration artefacts (they move away from the h = 0 axis as far as the velocity
increases) and the defocusing of the event corresponding to the true re�ector (decreasing when
the velocity approaches the true velocity). As migration artefacts are attenuated when iterating,
the minimum is progressively shifted to the true velocity.
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Figure 2.12. – Observed data obtained for a source at the middle point of the model (left).
Corresponding calculated data (middle) and residuals (right) obtained after 1, 2, 5 and
10 iterations (from top to bottom), corresponding to the re�ectivity models presented in
�gure 2.13.
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Figure 2.13. – Results of migration after 1, 2, 5 and 10 iterations (from top to bottom) when
using a too slow velocity model (2500 m/s). We show a section at h = 0 (left), a CIG at
x = 1350m (middle), and the same CIG multiplied by |h| (right). Blue, grey and red represent
negative, null and positive values respectively. Each image is represented with its own colour
scale. The two main events visible in the CIG at the �rst iteration are indicated by dashed
lines: the downward curved event corresponds to the re�ector, while the upward curved
one is caused by the limited acquisition aperture.
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2.6.2. Primaries and multiples in a homogeneous medium

We now run the same example with �rst-order surface-related multiples. There are now two
events in observed data (�gure 2.17a). At the �rst iteration, both are interpreted as primary
re�ections, resulting in two events (�gures 2.18a to 2.18c). The shallower one is the correct
interpretation of the primary re�ection and is similar to the primary-only case of the previous
example. The misinterpretation of the surface multiple as a primary results in a cross-talk
artefacts at twice the depth of the true event. As a consequence, reconstructed data do not
match observed data. Iterations e�ciently reduce the mis�t (�gures 2.17f, 2.17g and 2.19) and
the �nal re�ectivity section is free of migration artefacts and looks similar to the one obtained
with primaries only (�gure 2.18).

We also repeat the test of computing CIGs in three homogeneous velocity models (too low,
correct and too high) (�gure 2.20). After one iteration, all CIGs are altered with cross-talk
artefacts (�gure 2.20, top). Iterating allows to attenuate these artefacts and to obtain CIGs
similar to those obtained in the previous example (�gures 2.15 and 2.20, bottom). Note that in
the special case of homogeneous background velocity models, cross-talk artefacts exhibit the
same focusing behaviour as the true events, hence we do not present the equivalent of �gure 2.16
in the multiple case. In chapter 4, we run a similar test in the case where velocity increases
with depth and we show that cross-talk artefacts due to multiples favour lower velocities (see
section 4.4.2 and �gures 4.24b and 4.27 for more details).

2.7. Conclusion

We have described in this chapter the iterative migration scheme used to determine a model
perturbation explaining observed data containing both primaries and �rst-order surface-related
multiples. Data modelling is performed with a second-order Born approximation. Compared
to a �nite-di�erence acoustic propagation with a free surface condition, this approximation
is accurate, provided that the velocity contrasts in the models are not too large (less than
1000 m/s), otherwise the kinematics of multiples is not correctly reproduced.

We have described an e�cient way of computing the gradient of the migration objective
function based on the adjoint state method. Synthetic examples show that a re�ectivity section
correctly explaining the data can be retrieved after a few iterations, even in an incorrect velocity
model thanks to the extension of the model space with the subsurface o�set. At the �rst
iteration, migration artefacts due to the limited acquisition geometry appear on CIGs and the
MVA objective function is not minimum for the correct velocity. Moreover spurious cross-talk
events appear since multiple re�ections are interpreted as primary events. Iterating allows
attenuating both migration and cross-talk artefacts. As a consequence the minimum of the MVA
objective function is at the correct velocity. It should also improve the shape of its gradient
which de�nes a velocity updates. The derivation of this gradient and its analysis is detailed in
the next chapter.

75



Chapter 2. Iterative migration

(a)

−400 0 400

0

0.1

0.2

0.3

0.4

surface o�set (m)

tim
e

(s)

observed data Pobs

(b)
calculated data P[ξ(n+1)]

(c)

1
ite

ra
tio

n

data residuals P[ξ(n+1)]− Pobs

(d)

0.1

0.2

0.3

0.4

tim
e

(s)

(e)

5
ite

ra
tio

ns

(f)

−400 0 400

0

0.1

0.2

0.3

0.4

surface o�set (m)

tim
e

(s)

(g)

−400 0 400

20
ite

ra
tio

ns

surface o�set (m)

Figure 2.17. – Observed data obtained for a source at the middle point of the model (left). Cor-
responding calculated data (middle) and residuals (right) obtained after 1, 5 and 20 iterations
(from top to bottom), corresponding to the re�ectivity models presented in �gure 2.18.
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Figure 2.18. – Re�ectivity model obtained after 1, 5 and 20 iterations (from top to bottom) in
a too slow background velocity model cinitial = 2500m/s.
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Figure 2.19. – Value of the objective function J0 and norm of its gradient corresponding to the
iterative migration results presented in �gure 2.18.
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Chapter 3. Iterative Migration Velocity Analysis

Résumé du chapitre 3

Ce chapitre s’intéresse à la remise à jour des grandes longueurs d’onde du modèle de vitesse de
propagation des ondes P, ou « macro-modèle », par la méthode d’optimisation par semblance
di�érentielle (DSO). La qualité du modèle de vitesse est évaluée sur le modèle de ré�ectivité
étendu obtenu par l’algorithme de migration itérative présenté au chapitre 2. La fonction coût
de la DSO pénalise l’énergie défocalisée dans ce modèle de ré�ectivité, et son gradient dé�nit
une remise à jour pour le macro-modèle. La construction du macro-modèle par minimisation de
cette fonction sera illustrée dans le chapitre 6. Dans ce chapitre, je m’intéresse exclusivement
au calcul du premier gradient.

L’algorithme d’analyse de vitesse par migration itérative étudié dans cette thèse se présente
sous la forme d’un problème d’optimisation à deux niveaux (�gure 1.22) (Colson et al., 2007).
Dans la boucle interne, le modèle de ré�ectivité est remis à jour pour une valeur �xe du
macro-modèle. Dans la boucle externe, le macro-modèle est remis à jour en pénalisant l’énergie
défocalisée dans le modèle de ré�ectivité solution du problème interne. Idéalement la fonction
coût externe devrait être dé�nie avec la solution optimale du problème interne. En pratique
un nombre limité d’itérations est e�ectué dans la boucle interne, notamment pour limiter le
coût numérique de la méthode. Ainsi une approximation de la fonction coût idéale et une
approximation de son gradient sont utilisées en pratique. Il a été montré par Huang (2016) que
le calcul de ce gradient était instable en pratique : de faibles di�érences entre deux modèles
de ré�ectivité successifs, obtenus après un certain nombre d’itérations dans la boucle interne,
ont un faible impact sur la valeur de la fonction coût interne, mais une grande in�uence sur la
fonction coût externe et sur son gradient.

A�n d’illustrer et de mieux comprendre ce problème, je compare dans ce chapitre deux
stratégies pour calculer une valeur approchée du gradient de la fonction coût externe vis-à-vis
du macro-modèle. Toutes deux utilisent la méthode de l’état adjoint (Plessix, 2006). La méthode A
évalue le gradient exact de la fonction coût approchée en tenant compte de la dépendance de
chaque itération (interne) vis-à-vis du macro-modèle. Dans la méthode B, on suppose que le
problème interne, appelé aussi problème direct, est résolu jusqu’à convergence, et on écrit les
équations donnant le gradient exact de la fonction coût « idéale » dé�nie avec cette solution
optimale. Il faut alors résoudre un problème adjoint, linéaire même lorsque des multiples sont
considérés, et le calcul du gradient fait intervenir les solutions optimales des problèmes direct
et adjoint. En pratique, les calculs sont faits à partir des solutions approchées des problèmes
direct et adjoint, si bien que la remise à jour du macro-modèle dans la méthode B est aussi un
gradient approché.

Les deux méthodes sont testées dans le cas de primaires seuls sur un cas simple où un unique
ré�ecteur horizontal est positionné dans un macro-modèle homogène. Le macro-modèle initial
est homogène et trop lent, si bien que l’on s’attend à obtenir un gradient homogène et négatif au-
dessus du ré�ecteur et nul en dessous. Les résultats obtenus en pratique illustrent l’importance
déterminante du poids donnée à la régularisation dans la boucle interne. Avec une valeur
satisfaisante de ce poids, les deux méthodes convergent après quelques itérations vers le même
gradient, homogène et d’un signe cohérent avec la valeur du macro-modèle initial. En revanche
si le poids de la régularisation est trop faible, les gradients données par les deux méthodes sont
di�érents et ne convergent pas vers une valeur stable. Des oscillations subverticales apparaissent,
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en particulier pour le gradient calculé avec la méthode A. Une analyse détaillée de cet exemple
permet de mieux comprendre l’origine de ces instabilités : si la fonction coût associée à la
migration itérative semble converger rapidement, la valeur de la fonction coût externe calculé
pour les modèles de ré�ectivité successifs ne se stabilise pas et augmente graduellement. Des
évènements sont progressivement créés aux grandes valeurs de l’o�set en profondeur, dans
le noyau de l’opérateur de modélisation mais avec une in�uence déterminante sur la fonction
coût externe. Donner un poids su�sant à la régularisation contraint mieux la ré�ectivité aux
grands o�sets en profondeur et stabilise le calcul du gradient qui fournit alors une remise à jour
cohérente du macro-modèle. En revanche un poids trop fort empêche une atténuation correcte
des artefacts de migration ; de plus de fortes oscillations dans le gradient sont observées en
pratique autour du ré�ecteur.

Ainsi l’atténuation des artefacts de migration au cours de la migration itérative conduit à
des remises à jour du macro-modèle cohérentes, pourvu qu’une régularisation adéquate soit
implémentée. Par la suite, seule la méthode B, plus simple à implémenter et moins sensible
à l’apparition d’artefacts, sera considérée. En revanche, la migration itérative et la résolution
du problème adjoint sont coûteuses numériquement et le choix d’un poids adéquat pour la
régularisation reste di�cile. Celui-ci peut être obtenu en traçant des courbes de Pareto, mais
pour un coût de calcul prohibitif. Des solutions à ces di�cultés sont proposées dans les chapitres
suivants.

Finalement j’étudie le même exemple dans le cas de des ré�exions multiples. Après une
itération de migration itérative, les artefacts dus aux multiples dans le modèle de ré�ectivité
conduisent à des valeurs non nulles du gradient en dessous du ré�ecteur. En itérant l’étape de
migration, les artefacts dus aux multiples sont atténués et on obtient un gradient similaire à celui
obtenu dans le cas de primaires seuls, pourvu qu’un poids adéquat soit donné à la régularisation.
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Chapter 3. Iterative Migration Velocity Analysis

3.1. Introduction

The aim of seismic imaging is the recovery of model’s parameter such as the pressure wave
velocity, allowing to numerically reproduce surface measurements. Determining the velocity
model by minimising the least-squares mis�t between observed data and calculated data may lead
to an inaccurate estimation because the full waveform objective function has many local minima.
The alternative method studied here consists of decomposing the velocity model into a smooth
background model controlling the kinematics of wave propagation and a high-wavenumber
part representing the re�ectivity of the subsurface. Then for a given background velocity
model, primary re�ections are assumed to depend linearly on the re�ectivity and multiple
re�ections quadratically. We have detailed in the preceding chapter the iterative determination
of an extended re�ectivity model free of cross-talk and migration artefacts minimising data
mis�t. The extension of the model allows to use the redundancy of observed data and to
capture information about possible inaccuracies in the estimated background velocity model.
Iterative migration corresponds to the inner loop of the nested optimisation strategy illustrated
in �gure 1.22. In this chapter, we are interested in the update of the background velocity model
in the outer loop minimising defocused energy in the �nal re�ectivity.

In this chapter we do not loop over the macro-model but only consider the derivation of the
�rst update. Ideally, this update should be the exact gradient of the MVA objective function
which measures defocused energy in a re�ectivity model de�ned as the optimal solution of the
migration inverse problem. This is not achievable in practice as we perform a limited number
of iterations to determine the �nal re�ectivity, as described in chapter 2.

The purpose of this chapter is the determination of an e�cient way to compute an approximate
gradient of the ideal MVA objective function. We would like the method to be robust against the
gradient instability issue presented in section 1.3 (Huang, 2016). This issue will be illustrated in
this chapter: we describe two di�erent strategies to compute approximations of the ideal MVA
gradient and show that they do not provide similar results. Furthermore, small di�erences on the
re�ectivity model appearing by further iterating in the inner loop result in large modi�cations to
the gradient. We underline in this chapter the importance of a su�ciently strong regularisation
coe�cient to mitigate this e�ect. An alternative solution will be introduced in chapter 5.

In this chapter, we describe and compare two approximations of the ideal gradient. Both
derivations use the adjoint-state method. In the �rst approach, we compute the exact gradient of
an approximation of the ideal MVA objective function by di�erentiating all the iterations leading
to the �nal re�ectivity model. In the second approach, we assume that iterative migration has
reached convergence and compute an approximate gradient of the ideal objective function. This
optimality criterion is used to derive the equations of the second approach. These two methods
are compared in terms of implementation and stability of the gradient computed for successive
values of ξ.

In the �rst part of the chapter, the two methods are presented and compared on their com-
putational merits. Then we present results of both methods on a simple synthetic example,
�rst in the linear case of primary re�ections only, modelled under the �rst-order Born linear
approximation. Then the same example is run with �rst-order surface-related multiples using
a second-order quadratic Born approximation. These examples illustrate the importance of
regularising the migration objective function.
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3.2. Computing the gradient of J1

3.2. Computing the gradient of J1

We investigate the computation of two di�erent approximations of the gradient with respect to
the background velocity model c0 of the ideal MVA objective function

J∞1 [c0] =
1
2



Aξ∞[c0]


2
E , (3.1)

where ξ∞ obeys the �rst order optimality condition of J0[c0,ξ],

∂ J0

∂ ξ
[c0,ξ∞] = 0. (3.2)

Operator A : E 7→ E is called annihilator. For more detail on the meaning of this operator, we
refer to section 1.3. In the numerical applications, the annihilator will consist of a multiplication
by the absolute value of the subsurface o�set: Aξ(x, h) = |h|ξ(x, h). The subsurface o�set is the
extra parameter on which the focusing criterion is tested. For a correct model, ξ(x, h) should be
null for h 6= 0. The annihilator penalises defocused energy arising in an incorrect background
velocity model. We keep the notation A in this chapter for the sake of generality.

In the following, we �rst compute the exact gradient of an approximation J(N)1 of J∞1 obtained
when N iterations are performed to solve the migration problem. We call this approach method A.
In the second approach, called method B, we assume that iterative migration reaches convergence
after N iterations and use the optimality criterion (3.2) to determine an approximate gradient of
J∞1 .

3.2.1. Method A: Exact gradient of an approximate objective function

In method A, we compute the exact gradient of the following approximation of J∞1 , de�ned as

J(N)1 [c0] =
1
2



Aξ(N+1)[c0]


2
E (3.3)

where ξ(N+1) is obtained after N iterations of gradient-based minimisation of the migration
objective function (equation 2.21) described in the preceding chapter.

A general way of performing this computation is the use of automatic di�erentiation al-
gorithms (Bell and Burke, 2008). Here we employ the adjoint state method (Plessix, 2006) to
obtain an explicit expression allowing the analysis of each contribution to the total gradient.
To keep simple expressions, we consider the case where iterative migration is performed with
steepest descent and a linesearch procedure fα. Then the state equations for the computations
are given by

ξ(1) = 0 (3.4a)

∀n ∈ [1, N]





g(n) =
∂ J0

∂ ξ
�
c0,ξ(n)

�

d(n) = −g(n)

α(n) = fα
�
ξ(n), d(n)

�

ξ(n+1) = ξ(n) +α(n)d(n),

(3.4b)

(3.4c)
(3.4d)
(3.4e)
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Chapter 3. Iterative Migration Velocity Analysis

where g(n) is the gradient of the objective function, d(n) is the descent direction and α(n) the
step length at iteration n. We associate an adjoint variable to each equation of the iterative
process (equations 3.4b to 3.4e). These Lagrange multipliers can be interpreted as constraints
on the state equations. The associated Lagrangian reads:

JA
1 = J(N)1 [c0]−

N∑
n=1



η(n)

��ξ(n+1) − ξ(n) −α(n)d(n)
�
E

−
N∑

n=1

β(n)
�
α(n) − fα(ξ(n), d(n))

�

−
N∑

n=1



δ(n)

�� d(n) + g(n)
�
E

−
N∑

n=1

¬
γ(n)

��� g(n) − ∂ J0

∂ ξ
�
c0,ξ(n)

�¶
E

(3.5)

where the scalars β(n) and the vectors of E η(n), δ(n) and γ(n) are the adjoint variables associated
to the state variables α(n), ξ(n), d(n) and γ(n) respectively . Similar to section 2.5.1 for the
derivation of the gradient of J0, the value of the adjoint variables is obtained by zeroing the
derivatives of the Lagrangian with respect to the state variables,

η(N) = ATAξ(N+1) (3.6a)

∀n ∈ [N,1]





β(n) =


η(n)

�� d(n)�E
δ(n) = α(n)η(n) + β(n)

∂ fα
∂ d

�
ξ(n), d(n)

�

γ(n) = −δ(n)

η(n−1) = η(n) +
∂ 2J0

∂ ξ2
(c0,ξ(n))γ(n) + β(n)

∂ fα
∂ ξ

�
ξ(n), d(n)

�
.

(3.6b)

(3.6c)

(3.6d)

(3.6e)

The gradient of J1 with respect to c0 then equals to

G(N)A =
N∑

n=1

�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ(n)

��
γ(n) +

N∑
n=1

β(n)
∂ fα
∂ c0

�
ξ(n), d(n)

�
. (3.7)

Thus method A is an iterative process initiated at iteration N with the adjoint source term
η(N) = ATAξ(N+1) named image residual. Then, equations (3.6b) to (3.6e) have to be solved
from n = N to n = 1. Method A requires the ability of computing the product of second-
order derivatives of J0 with the successive values of γ . An e�cient technique to perform this
calculation will be presented in section 3.2.3. Note that the linesearch function may depend on
c0, hence the second term in the gradient. If we consider a descent method with a �xed step,
that is α(n) = α0, we have β(n) = 0.
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3.2. Computing the gradient of J1

3.2.2. Method B: approximate gradient of the ideal objective function

In method B, we derive a simpler expression with the assumption that iterative migration is
performed until convergence (Chauris et al., 2015). That is, we suppose that the �nal re�ectivity
section obeys the optimality condition (3.2) and we consider the ideal MVA objective func-
tion (3.1), built with ξ∞ instead of ξ(N+1). The gradient can again be evaluated via the adjoint
state method. The associated Lagrangian is

JB
1 [c0,ξ∞,σ] = J∞1 [c0]−

¬
σ
��� ∂ J0

∂ ξ
[c0,ξ∞]

¶
E . (3.8)

with σ the adjoint state that satis�es;
�
∂ 2J0

∂ ξ2
[c0,ξ∞]

�
σ = ATAξ∞. (3.9)

The ideal solution σ∞ of this linear problem is the deconvolved version of the image residual
ATAξ∞. The gradient of J1 with respect to c0 then reads

G∞B = −
�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ∞

��
σ∞. (3.10)

This is the optimal gradient obtained when both equations (3.2) and (3.9) are veri�ed. In practice
we approximate ξ∞ by ξ(N+1) and we solve iteratively the linear system

�
∂ 2J0

∂ ξ2
[c0,ξ(N+1)]

�
σ = ATAξ(N+1) (3.11)

with M iterations. This leads to the approximate gradient of J1

G(N,M)
B = −

�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
σ(N+1,M+1). (3.12)

Even if the migration process is non-linear, the adjoint equation (3.9) is a linear problem of
the type Hσ = θ where H is the Hessian of J0 and θ is the image residual. If the convergence
assumption is satis�ed, the residuals are small and the Hessian operator is positive semi-de�nite.
Hence equation (3.9) is easily solved with a linear conjugate-gradient algorithm. Compared
to method A, the adjoint equations of method B are solved independently of the optimisation
strategy used for iterative migration. The adjoint problem may actually be solved with a
di�erent number of iterations, as the velocity update only involves the last value of ξ(n) and
σ(m) regardless of how they are computed. Figures 3.1 and 3.2 illustrate how adjoint variables
are computed in both methods and how they are combined with state variables to compute the
velocity update.

We detail the advantages of both methods regarding implementation and memory require-
ments in section 3.2.5. First we elaborate on the computation of second-order derivatives of
J0.
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ξ(1) ξ(2) · · · ξ(N) ξ(N+1)

γ(1) γ(2) · · · γ(N)

�
∂ 2J0

∂ ξ∂ c0

�
ξ(1)

��
γ(1)

�
∂ 2J0

∂ ξ∂ c0

�
ξ(2)

��
γ(2) · · ·

�
∂ 2J0

∂ ξ∂ c0

�
ξ(N)

��
γ(N)+ + + +

N∑
n=1

∂ fα
∂ c0

(ξ(n), d(n)) = G(N)A

A
T A

Figure 3.1. – Sketch of method A. Thin black arrows show the order of computation of the
variables. Thick grey arrows show how they are combined to compute the velocity update

ξ(1) ξ(2) · · · ξ(N) ξ(N+1)

σ(N+1,1) σ(N+1,2) · · · σ(N+1,M) σ(N+1,M+1)

−
�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
σ(N+1,M+1) = G(N,M)

B

AT A

Figure 3.2. – Same as �gure 3.1 for method B. Note that the numbers N and M of iterations
performed to solve the direct and adjoint problems are not necessarily the same.

86



3.2. Computing the gradient of J1

3.2.3. Computation of the second-order derivatives of J0

Both methods involve the second-order derivatives of J0. In method A, the product of ∂ 2J0/∂ ξ2

and ∂ 2J0/∂ ξ∂ c0 with the adjoint variable γ is required N times. In method B, the resolution of
the adjoint system (equation 3.11) with the linear conjugate gradient requires M products of the
Hessian ∂ 2J0/∂ ξ2 with a vector of E and the �nal computation of the gradient (equation 3.12)
requires a single product of ∂ 2J0/∂ ξ∂ c0 with the �nal value σ(N,M). The contribution of the
regularisation is straightforward, hence we focus on the second derivatives of JMigr. Following
Métivier et al. (2013), an e�cient procedure to compute their product with a vector of E is
de�ned with a second-order adjoint-state technique.

We consider a new scalar function Γ and a vector χ of E

Γ
�
c0,ξ,χ

�
=
­∂ JMigr

∂ ξ
[c0,ξ]

����χ
·
E

(3.13)

such that the gradients of Γ with respect to ξ and c0 equal the desired matrix-vector products





∂ Γ
∂ ξ
=
�∂ 2JMigr

∂ ξ2
[c0,ξ]

�
χ,

∂ Γ
∂ c0

=
�∂ 2JMigr

∂ ξ∂ c0
(c0,ξ)

�
χ.

(3.14a)

(3.14b)

We now apply the classic adjoint-state method to compute the gradients of Γ. We de�ne a
Lagrangian with the adjoint variables µi and νi associated to the state variables Pi and λ i ,
respectively. The state equations are given by equations (2.20) and (2.34). The Lagrangian reads

Γ[c0,ξ,χ, Pi ,λ i ,µi ,νi] =


Q[P0,λ1] +Q[P2,λ3]

��χ�E
− 
µ0

��L0P0 − S
�
D

− 
µ1

��L0P1 − K−[P0,ξ]
�
D

− 
µ2

��L0P2 −MsP1

�
D

− 
µ3

��L0P3 − K−[P2,ξ]
�
D

− 
ν3

��L ∗0 λ3 −MT
�
M(P1 + P3)− Pobs

��
D

− 
ν2

��L ∗0 λ2 − K+[λ3,ξ]
�
D

− 
ν1

��L ∗0 λ1 −MT
�
M(P1 + P3)− Pobs

�−M∗s λ2

�
D .

(3.15)
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We derive Γ with respect to the state variables Pi and λ i to �nd the adjoint equations:




L0ν1 = K−[P0,χ]
L0ν2 =Msν1

L0ν3 = K−[P2,χ] + K−[ν2,ξ]
L ∗0 µ3 =MTM(ν1 + ν3)

L ∗0 µ2 = K+[µ3,ξ] + K+[λ3,χ]
L ∗0 µ1 =MTM(ν1 + ν3) +M∗s µ2

L ∗0 µ0 = K+[µ1,ξ] + K+[λ1,χ]

(3.16a)
(3.16b)
(3.16c)
(3.16d)
(3.16e)
(3.16f)
(3.16g)

The desired matrix-vector products are obtained by derivating Γ with respect to ξ and c0

∂ Γ
∂ ξ
[c0,ξ,χ] =

�∂ 2JMigr

∂ ξ2
[c0,ξ]

�
χ = Q[P0,µ1] +Q[P2,µ3] +Q[λ3,ν2] (3.17)

∂ Γ
∂ c0

[c0,ξ,χ] =
�∂ 2JMigr

∂ ξ∂ c0
[c0,ξ]

�
χ =

3∑
i=0

C[Pi ,µi] +
3∑

i=1

C[λ i ,νi], (3.18)

where we de�ned the classical normalised cross-correlation operator C[u, v] : D ×D 7→M for
two vectors (u, v) of D as

C[u, v](x) =
2

c3
0(x)

∫

s

∫

ω
(iω)2u(s,x,ω)v(s,x,ω)dωds (3.19)

Note that both products can be computed simultaneously. Their calculations are twice as
expensive as the computation of the gradient ∂ JMigr/∂ ξ (table 3.1). Note that if we calculate
only ∂ 2J0/∂ ξ2, some direct and adjoint variables are not needed, leading to less computations.
In particular, in the case of primaries only, this operator does not depend on ξ and is computed
in the same way as the gradient of J0.

3.2.4. Stability of the gradient

Ideally the MVA objective function should be evaluated at ξ∞ and its gradient G∞ used to
update the background velocity model. In practice we perform a limite number of iterations
and use G(N)A or G(N,M)

B . One may want to estimate the decrease in convergence speed made by
considering approximate gradients for the minimisation of J∞1 (Friedlander and Schmidt, 2012)
and bound the error de�ned as the di�erence between the macro-model recovered after a few
outer iterations c f

0 and the exact macro-model c∗0. Ideally it should be bound by the error made in
the resolution of the inner problem by performing only N iterations. This analysis is not trivial
as the gradient is not linear in ξ (∂ J1/∂ c0 = [∂ ξ/∂ c0]

TATAξ). Some simple results can be
stated, though. We have shown in chapter 2 that after an insu�cient number of inner-iterations,
the approximate objective function of method A is not minimum for the correct macro-model
on one hand, and the gradient obtained with method B is very unlikely to lead to an accurate
macro-model estimation on the other hand. An other issue is that the null space of the MVA
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primaries only primaries and multiples

J0[c0,ξ] 2 4
∂ J0

∂ ξ
[c0,ξ] 3 7

�
∂ 2J0

∂ ξ2
[c0,ξ]

�
χ 3 11

�
∂ 2J0

∂ ξ∂ c0
[c0,ξ]

�
χ 6 14

Table 3.1. – Number of wave-equations to be solved to evaluate the value, the gradient of the
objective function at a point ξ, and the product of its Hessian with a vector χ. The number
indicated here should be multiplied by the number of source positions considered in the
acquisition.

objective function J1 is not empty, meaning that di�erent background velocity models can lead
to relatively well-focused energy in CIGs. As an illustration, we present in �gure 3.3 some
results of iterations on the background velocity models. These results and the approach used
to obtain them will be detailed in chapters 4 and 6. We display the exact macro-model used to
compute observed data and two results obtained after twenty iterations on the macro-model
starting with two di�erent initial guesses. These three di�erent macro-models result in CIGs
with very similar focusing property. They di�er in particular on the edges of the model where
the acquisition setting does not constrain the model well. Larger surface-o�set may better
constrain these areas. This illustrates the practical di�culty to bound the error between the
exact background model and the one recovered after several outer iterations.

Instead, we propose here to study the stability of the MVA gradient computed for a �xed
background velocity model c0 and successive values of the re�ectivity model computed during
iterative migration (Huang, 2016). Ideally we would like to be able to bound the error between
the ideal gradient G∞ and its approximations G(N)A and G(N,M)

B by the error on the re�ectivity
model ξ(N+1)−ξ∞. We begin by presenting three preliminary results for which we do not have
formal proofs, but which allow to bound the error in the gradient by the error in the resolution
of the inner problem. Then we use the numerical results presented in section 3.3.1 to determine
if these hypotheses are reasonable.

89



Chapter 3. Iterative Migration Velocity Analysis

0 500 1000 1500 2000

0

200

400

600

de
pt

h
(m

)

background velocity model

−150 0 150

0

200

400

600

x = 500 m

−150 0 150

0

200

400

600

x = 1500 m

−150 0 150

0

200

400

600

exact
macro-model

x = 2000 m

0 500 1000 1500 2000

0

200

400

600

de
pt

h
(m

)

−150 0 150

0

200

400

600

−150 0 150

0

200

400

600

−150 0 150

0

200

400

600

�nal
macro-model

starting with a
homogeneous
initial model

0 500 1000 1500 2000

0

200

400

600

x-position (m)

de
pt

h
(m

)

2000 2200 2400 2600
velocity (m/s)

−150 0 150

0

200

400

600

h (m)
−150 0 150

0

200

400

600

h (m)
−150 0 150

0

200

400

600

�nal
macro-model

starting with a
inhomogeneous

initial model

h (m)

20
00

22
00

24
00

26
00

0

200

400

600

velocity (m/s)

de
pt

h
(m

)

20
00

22
00

24
00

26
00

velocity (m/s)

20
00

22
00

24
00

26
00

velocity (m/s)

Figure 3.3. – Results of inversion (left, 2nd and 3rd row) obtained with observed data modelled
in the exact model shown on the �rst row (left). These results are presented in more details
in chapter 6. For each background velocity model, three CIGs are displayed at the lateral
positions 500 m, 1500 m and 2000 m as well as three traces of the velocity models at the
same locations. The red curve corresponds to the exact model. The blue and green curves
correspond to the �nal models displayed in the 2nd and 3rd row, respectively. These results
are obtained with two di�erent initial models (dashed curves), a homogeneous macro-model
and a model with values increasing with depth.
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Lipschitz conditions
The stability of the MVA gradient across inner-iterations is based on the following Lipschitz
conditions,






∂

∂ c0

�
ξ∞ − ξ(N+1)

�




E×M

≤ Ξ


ξ∞ − ξ(N+1)




E , (3.20a)






∂ 2J0

∂ ξ∂ c0

�
c0,ξ∞

�− ∂
2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

�




E×M

≤ Ξ1



ξ∞ − ξ(N+1)



E , (3.20b)






∂ 2J0

∂ ξ2

�
c0,ξ∞

�− ∂
2J0

∂ ξ2

�
c0,ξ(N+1)

�




E×E
≤ Ξ2



ξ∞ − ξ(N+1)



E , (3.20c)

where Ξ, Ξ1 and Ξ2 are three positive constants.
We make two simplifying hypotheses, �rst a linear modelling F : E 7→ Dobs of the data

P[c0,ξ] = F[c0]ξ, so that the derivatives of J0 read

∂ J0

∂ ξ
[c0,ξ] = Hξ− b, (3.21a)

∂ 2J0

∂ ξ2
[c0,ξ] = H, (3.21b)

with b = FTPobs and the Hessian H = FTF+ aφ I. Second, we use a steepest descent direction
and a constant step size α, then

Hξ(N+1) = (I−CN)b, (3.22)

with the operator C= I−αH supposed to ensure convergence to ξ∞, which satis�es

Hξ∞ = b. (3.23)

Then

∂

∂ c0

(ξ(N+1) − ξ∞) = − ∂
∂ c0

�
H−1CN b

�
(3.24a)

= −
�
∂ H−1

∂ c0

CN b+NH−1 ∂ C
∂ c0

CN−1 b+H−1CN ∂ b
∂ c0

�
(3.24b)

The convergence of this expression is determined by operator CN and so is the convergence of
the migration process (equation 3.22), which indicates that the Lipschitz condition (3.20a) may
be acceptable.

In the linear case the Hessian H = ∂ 2J0/∂ ξ2[c0,ξ] is independent of ξ, so that condi-
tion (3.20c) is trivial. Eventually we use equation (3.21a) to write

∂ 2J0

∂ ξ∂ c0
[c0,ξ(N+1)]− ∂

2J0

∂ ξ∂ c0
[c0,ξ∞] = ∂ H

∂ c0

(ξ(N+1) − ξ∞) +H
∂

∂ c0

(ξ(N+1) − ξ∞), (3.25)

which guarantees condition (3.20b) provided the �rst Lipschitz condition (3.20a) is veri�ed.
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Stability of method A
In method A we consider the exact gradient of J(N)1 , then the error can be expressed as

∆G(N)A = G(N)A −G∞ =
�
∂

∂ c0

ξ(N+1)
�T

ATAξ(N+1) −
�
∂

∂ c0

ξ∞
�T

ATAξ∞. (3.26)

We write ξ∞ = ξ∞ − ξ(N+1) + ξ(N+1), so that

∆G(N)A =
�
∂

∂ c0

ξ(N+1)
�T

ATA
�
ξ(N+1) − ξ∞

�−
�
∂

∂ c0

�
ξ∞ − ξ(N+1)

��T

ATAξ∞. (3.27)

Using the Lipschitz condition (3.20a), it leads to


∆G(N)A




M ≤ kA



ξ(N+1) − ξ∞



E , (3.28)

with kA a scalar constant. Hence, the stability of method A relies only on the hypothesis
formulated in equation (3.20a).

Stability of method B
For method B, the optimal gradient is given by (3.10). In practice we use an approximate gradient:
equation (3.2) is solved in N iterations to �nd ξ(N+1) and equation (3.11) is solved in M iterations
to �nd σ(N+1,M+1). The error associated to these approximations reads

∆G(N,M)
B = G(N,M)

B −G∞ =
�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ∞

��
σ(∞,∞)−

�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
σ(N+1,M+1). (3.29)

Similarly to the previous case, we want to bound the error ∆G(N,M)
B by the errors made in the

resolution of the direct and adjoint problems, that is:


∆G(N,M)

B




M ≤ kξ



ξ(N+1) − ξ∞



E + kσ



σ(N+1,M+1) − σ(N+1,∞)


E , (3.30)

with kξ and kσ two constants. Therefore we decompose σ(N+1,M+1) into

σ(N+1,M+1) = σ(N+1,M+1) − σ(N+1,∞) + σ(N+1,∞) − σ(∞,∞) + σ(∞,∞), (3.31)

so that the error is the sum of three contributions

∆G(N,M)
B =

�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ∞

�− ∂
2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
σ(∞,∞)

− ∂
2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
σ(N+1,M+1) − σ(N+1,∞)�

− ∂
2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
σ(N+1,∞) − σ(∞,∞)�.

(3.32)

Using equation (3.20b), the �rst contribution in equation (3.32) may be bounded by ‖ξ∞ −
ξ(N+1)‖. The second contribution can be bounded by the error in the resolution of the adjoint
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problem ‖σ(N+1,M+1)−σ(N+1,∞)‖. For the third term, we use the fact that σ(N+1,∞) and σ(∞,∞)

are the exact solutions of problems (3.11) and (3.9) respectively, so that
�
∂ 2J0

∂ ξ2

�
c0,ξ(N+1)

��
σ(N+1,∞) −

�
∂ 2J0

∂ ξ2

�
c0,ξ∞

��
σ(∞,∞) = ATA

�
ξ(N+1) − ξ∞

�
. (3.33)

We write again σ(N+1,∞) = σ(N+1,∞) − σ(∞,∞) + σ(∞,∞) to obtain
�
∂ 2J0

∂ ξ2

�
c0,ξ(N+1)

���
σ(N+1,∞) − σ(∞,∞)�=

�
∂ 2J0

∂ ξ2

�
c0,ξ∞

�− ∂
2J0

∂ ξ2

�
c0,ξ(N+1)

��
σ(∞,∞)

+ATA
�
ξ(N+1) − ξ∞

�
.

(3.34)
Using equations (3.20c) and (3.34), we can bound the third contribution in equation (3.32) by
the error ‖ξ∞ − ξ(N+1)‖. In the linear case, equation (3.20c) is automatically veri�ed and the
validity of equation (3.20b) is implied by equation (3.20a), as observed above. We conclude that
for both methods A and B, the validitity of equation (3.20a) is essential to the stability of the
MVA gradient across inner-iterations. The numerical examples of section 3.3.1 will help us to
determine under which conditions this hypothesis is veri�ed.

3.2.5. Comparison in terms of implementation

Methods A and B di�er regarding implementation of the adjoint equations. In method A, the
adjoint equations depend on the optimisation method chosen for iterative migration, whereas
in method B, the adjoint variables are solution of a linear system solved independently of
the calculation made for the migration. Method B is thus easier to implement. In addition,
the adjoint equations of method A (equations 3.6) involve the values of the state variables
of migration ξ(n), g(n), and d(n) at each iteration. Hence method A requires storage of 3N
E -vectors. An alternative is to recompute their value when required during the computation
of the adjoint variables. But they are needed in the reverse order to the one in which they
are computed: we need �rst ξ(N), then ξ(N−1), etc. Recomputation is then very expensive. In
comparison, the adjoint variables in method B are computed independently of the successive
values of the state variables. Only the last value of ξ(n) is needed to initiate the resolution, then
we only store the variables needed to use the conjugate-gradient algorithm.

In both methods the main computational step is the product of the Hessian with a E -vector.
We have presented in section 3.2.3 an e�cient way to perform this calculation based on second-
order adjoint-state approach (Métivier et al., 2013). Note that the wave�elds Pi and λ i involved
in the matrix-vector products have already been computed during the migration step, so that
storing them would save a lot of computation time. However, these 4D arrays (nt ×nz×nx ×ns)
are too big to be stored and recomputation is necessary. We cannot process data source by
source as for example the calculation of ξ implies a summation over all sources.

In method A, computing the derivative of the optimal step length with respect to the velocity
model and the state variables adds extra computation of J0 derivatives, especially in the non-
linear case where the optimal step α(n) is the result of a sophisticated procedure involving
several trial steps; the formulas for this derivatives may not be straightforward as well. Hence,
method A is roughly 1.5 times more expensive in computation time.
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3.3. Synthetic examples

3.3.1. Examples with primaries only

We consider the linear case of primary re�ections only and a model similar to the one studied
in the numerical application of section 2.6. The model is 360 m deep and 2700 m large. The
exact and initial macro-models are homogeneous (3000 m/s and 2500 m/s, respectively). A
single horizontal re�ector is located at 300 m depth. Sources are located at each grid point
between x = 540 m and x = 2160m. Receivers are located at each grid point within ±540 m
around the source. As we are dealing with a very simple model, the `2-norm is chosen as
regularisation function. In case of a more complex geology with dipping re�ectors for example,
we may need a regularisation term function of depth to account for the poorer illumination of
deeper structures. The importance of this regularisation term for the velocity update will be
discussed later (section 3.3.2). After 10 iterations of linear conjugate gradient with optimal step
length, both the value of J0 and J1 reached convergence (�gures 3.4a and 3.4c) and the gradient
of J0 is close to zero (�gure 3.4b).
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Figure 3.4. – (a) Value and (b) norm of the gradient of the objective function J0 for ten iterations
of conjugate gradients with su�cient regularisation. (c) Norm of penalised CIGs. All plots
are normalised by their maximum value. Note that c0(x) is �xed.

The gradient of J1 is computed with both methods after each iteration (�gure 3.5). For method
B, we choose in this example to use the same number of iterations to solve equations (3.2)
and (3.11). The convergence speed of the resolution of the adjoint problem will be studied
in more details and compared to the one of the direct problem in chapters 4 and 5 with the
introduction of preconditioning. Here we set M = N for simplicity. At the �rst iteration,
positive values appear above 150 m depth for both methods. They are related to migration
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artefacts appearing in CIGs after a single iteration (�gure 3.6). With iterations these artefacts
are progressively attenuated. After 10 iterations, the gradients obtained with both methods
are similar and have the expected constant negative value. The central part is homogeneous,
while the e�ect of the acquisition geometry alters the edges of the gradient. Note also that the
imprint of the re�ector is still visible on the �nal velocity update (around z = 250m).

Both methods converge with approximately the same speed, although the gradient obtained
after 5 iterations for method B is already very close to the �nal result.
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Figure 3.5. – Gradients of J1 obtained with method A (left) and method B (right) after (from
top to bottom) 1, 2, 5 and 10 iterations of iterative migration with su�cient regularisation.
Blue, grey and red represent negative, null and positive values respectively. Each velocity
update is plotted with its own colour scale.

3.3.2. Importance of regularisation

To illustrate the importance of the regularisation term in the migration objective function, we
run the same example with a 50 times smaller value of aφ . The corresponding gradients of J1
(�gure 3.7) have shapes similar to the previous case (�gure 3.5) for the �rst iterations but after
10 iterations they are altered with sub-vertical spurious oscillations, emphasised on �gure 3.7
with dashed lines for method A. Moreover the gradients obtained for both methods do not look
similar, although the value of J0 seems to reach convergence (�gure 3.8a).

Actually, the norm of the penalised CIGs still increases steadily after 10 iterations (�gure 3.8c).
This norm is not used in the inner loop iterative process, but we expect it to converge to a
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Figure 3.6. – Results of migration after 1, 2, 5 and 10 iterations (from top to bottom) when
using a too slow velocity model (2500 m/s). We show a section at h = 0 (left), a CIG
at x = 1350 m (middle), and the same CIG multiplied by |h| (right). Blue, grey and red
represent negative, null and positive values respectively. Each image is represented with
its own colour scale. The two main events are indicated by dashed lines: the downward
curved event corresponds to the re�ector, while the upward curved one is caused by the
limited acquisition aperture. This �gure is very similar to �gure 2.13, except that a di�erent
acquisition has been used here.
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Figure 3.7. – Same as �gure 3.5 with a smaller regularisation weight aφ .
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Figure 3.8. – Same as �gure 3.4 with a smaller regularisation weight aφ .
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stable value as does ξ. This result is not satisfactory and indicates that residual energy at large
values of h in the CIGs (�gure 3.9, right) has a weak impact on the objective function J0, but
is ampli�ed by the multiplication by h and deeply in�uences the value of J1 and the velocity
update. A su�ciently strong regularisation term allows to better constrain the re�ectivity model
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Figure 3.9. – Same as �gure 3.6 with a smaller regularisation weight aφ .

at large values of h and ensures the convergence of the value of the MVA objective function
with iterations, as illustrated by the former example. Finally, we would like to put these results
in perspective with the theoretical study of the gradient stability led in section 3.2.4. We have
shown that the stability of the gradient obtained with both methods in the linear case was
ensured by the validity of the Lipschitz condition (3.20a). The results shown in �gures 3.5
and 3.7 suggest that equation (3.20a) is not valid unless su�cient regularisation is introduced
during iterative migration. This observation is complementary to the observations of Huang
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(2016), that no theoretical relation between the error on the gradient and the error in the inner
iterations can be found. More precisely, referring to section 1.3, �gure 1.11d suggests that the
error increases exponentially.

We now identify the terms in the calculation of the gradient with method A that are responsible
for the sub-vertical spurious oscillations. We use an example with smaller dimensions but with
the same re�ectivity and velocity value. Here, after 8 iterations of migration with steepest
descent and optimal step size, we obtain with method A the gradient presented in �gure 3.10a,
which is altered with the same kind of artefacts. We control the correct computation of the
gradient by also deriving the gradient with a �nite di�erence approach, requiring only to
evaluate the objective function. As this is very expensive (proportional to the number of model
parameters), we restrict the computation to a single line at depth z = 96m and obtain a similar
result (�gure 3.10b). These spurious oscillations are already visible in the adjoint variables (see
for example γ(8) in �gure 3.11a) and come from small oscillations located above the re�ector in
the �nal migrated image, especially at large o�sets. Their energy in ξ(N+1) is weak compared
to the re�ector, but they are strengthened in the computation of successive adjoint variables
by two mechanisms. The �rst is the iterative application of the Hessian ∂ 2JMigr/∂ ξ2[c0,ξ(n)]
in the construction of the adjoint variables. In the linear case, it does not depend on ξ(n) and
its application to a vector χ of E is a sequence of a data modelling step using χ followed by a
migration of this data back to the E -space. Both steps involve two Green’s functions from the
source and the receiver position to a point of the subsurface. In a smooth model, the asymptotic
amplitude term of the Green’s function decays with the square-root of the distance, therefore
the Hessian has a dynamic e�ect of strengthening the shallow events and attenuating deeper
ones. As the background velocity used for modelling and migration is the same, the diagonal
term of the Hessian has no kinematic e�ect and the position of events is thus not modi�ed. We
show the e�ect of the Hessian applied to the adjoint variable γ(8) (�gure 3.11a), which contains
both horizontal events (emphasised with blue dashed lines) and vertical events (red dashed lines)
with the same shape as the artefacts of the velocity update. By nature, these artefacts are always
above the interfaces and thus are ampli�ed after application of the Hessian (�gure 3.11b), while
the deeper horizontal events are attenuated. The regularisation term mitigates the attenuation
of deeper events and prevents the apparition of artefacts.

The second origin of artefacts comes from the linesearch contributions ∂ fα/∂ ξ(ξ(n), d(n))
and ∂ fα/∂ d (ξ(n), d(n)) (�gure 3.12a) to the construction of adjoint variables in method A
(equation 3.6). They depend on the corresponding gradient of migration ∂ J0/∂ ξ[c0,ξ(n)],
which has non-negligible energy above the re�ector in the last iterations (�gure 3.12b). The
contributions of the linesearch also involve a sequence of modelling and migration steps applied
to this gradient, hence, similarly to the application of the Hessian, the spurious events above
the re�ector are strengthened.

3.3.3. Example with multiples

To investigate the ability of iterative migration velocity analysis to handle multiple re�ections,
we run the same example with �rst-order surface-related multiples added to observed and
calculated data. To take cross-talk events into account, the model is extended to 600 m depth.
Two events are present in observed data: the primary re�ection and its associated surface

99



Chapter 3. Iterative Migration Velocity Analysis

(a)
0

100

200

300

de
pt
h
(m

)

0 500 1000 1500
−1

0

1 (b)

x-position (m)

Figure 3.10. – (a) Gradient of J1 computed using method A after 8 iterations. (b) Section of
this image at z = 96m (red, solid) compared to the gradient obtained with �nite di�erences
(blue, dashed). Both are normalised with the same constant.
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Figure 3.11. – Illustration of the e�ect of mi-
gration/demigration on γ(8). (a) Value of
variable γ at iteration 8 (section at h = 0).
(b) result of the application of the Hessian
on this image (section at h= 0).

(a)
0

100

200

300

de
pt
h
(m

)

(b)

0 500 1000 1500

0

100

200

300

x-position (m)

de
pt
h
(m

)

Figure 3.12. – (a) Contribution of the line
search ∂ fα

∂ d (ξ
(8), d(8)) to the equation of δ(8).

(b) Gradient of J0 at the end of the iterations
g(8) = ∂ J0

∂ ξ [c0,ξ(8)] (section at h= 0).
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multiple, recorded at approximately twice the time of the primary. To ensure the multiple event
has enough in�uence, the residuals between observed data and calculated data are multiplied
by the recording time t in the de�nition of J0. The data weight is taken into account in the
derivation of the gradient of J1 with respect to the background model.
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Figure 3.13. – Results of migration after 1 (top) and 15 (bottom) iterations of conjugate gradient
when we consider primaries and �rst-order surface-related multiples. Section at h= 0 (left),
CIG at x = 1350m (middle), and the same CIG penalised by |h| (right). Two event are visible:
the true re�ector (TR) and the multiple imprint caused by cross-talk (MI)

In the �rst iteration, starting from ξ = 0, both events in observed data are interpreted as
primary re�ections. The primary re�ection produces the same event as in the primaries-only
case, while the multiple event adds an imprint at twice the depth of the true re�ector. This
artefact creates a new primary in the modelled data at the next iteration, which in turn will
produce an update with a negative sign in the new re�ectivity update. This way cross-talk
artefacts are progressively attenuated.

We now compute the gradient of the MVA objective function after one and �fteen iterations of
migration. Compared to the primary only case, a more complex linesearch procedure fα is used
during migration. Thus the derivation of the associated contributions to the exact gradient in
method A become much more complex too. Moreover, method B seems less sensitive to vertical
spurious oscillations illustrated in �gure 3.7. Therefore we use method B for the computation
of the gradient in this multiple example �gure 3.14. At the �rst iteration, the cross-talk artefact
adds non-physical energy below the true re�ector. After 15 iterations of migration, this artefact
is largely attenuated and the gradient looks similar to the one obtained in the case where only
primaries were considered.
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Figure 3.14. – Velocity updates obtained with method B after 1 (top) and 15 (bottom) iterative
migration of data containing both primaries and �rst-order surface-related multiples. They
correspond to the migrated images of �gure 3.13. Blue, grey and red represent negative, null
and positive values respectively. Each velocity update is plotted with its own colour scale.
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3.4. Conclusion

Choice of the regularisation coe�icient
Similar to the case of primaries only, a su�ciently strong regularisation coe�cient is required to
avoid the apparition of spurious vertical oscillations. However if too much weight is given to the
regularisation term, the attenuation of cross-talk artefacts is not as e�cient and their imprint
is still visible both on the �nal re�ectivity model and the MVA gradient. As an illustration,
we compute the gradient obtained with method B and 15 iterations of iterative migration in
three cases corresponding to three values of the regularisation coe�cient (�gure 3.15). The
choice of the regularisation is thus a trade-o� between the smoothness of the gradient and the
attenuation of artefacts and should in principle be the result of a Pareto curve analysis (Hansen,
1999). However such an analysis is quite expensive, and aφ is chosen empirically in practice.
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Figure 3.15. – Re�ectivity sections at h= 0m (left) and velocity updates (right) obtained for
three increasing (from top to bottom) values of the regularisation parameter aφ =1×10−3,
2×10−3 and 3×10−3. In this example, positive and negative values correspond to black and
white colours, respectively.

3.4. Conclusion

Re�ectivity images produced after a single step of migration are perturbed with migration
artefacts and cross-talk imprint of multiples. Minimising the migration mis�t function iteratively
attenuates these undesirable e�ects and improves the properties of the MVA objective function.
In this chapter, we have introduced two approximations of the gradient of the ideal MVA
objective function measuring defocused energy in a re�ectivity model de�ned as the optimal
solution of the migration inverse problem. In the �rst case, we compute the exact gradient of an
approximate objective function de�ned with the re�ectivity model obtained after N iterations.
In the second one, we derive a simpler expression by assuming that the iterative process
converged and compute an approximate gradient of the ideal objective function. Provided that
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su�cient regularisation is applied, both methods yield consistent velocity updates, but the
method assuming convergence is much easier to implement and requires less computational
e�ort and memory. We have provided a numerical example showing the instabilities of the
gradient in a nested optimisation problem (Huang, 2016) and have analysed some reasons for
them. Regularisation is essential to produce a coherent velocity update; the `2-norm is a simple
but e�cient choice.

Beyond the stability issues, the disadvantage of this iterative MVA process is its high com-
putational cost: two problems have to be iteratively resolved to determine the gradient of the
outer objective function updating the background velocity model. In chapter 4, the derivation of
a preconditioner to accelerate the resolution of the direct and adjoint problems is investigated.
The other di�culty is the empirical choice of the regularisation weight as a trade o� between the
smoothness of the gradient and the attenuation of migration artefacts. In particular the fact that
J1 does not converge to a stable value in the inner iterations with small regularisation contrary
to J0 (see �gure 3.8) is not satisfactory. This issue will be addressed and further analysed in
chapter 5.
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Résumé du chapitre 4

Ce chapitre décrit l’introduction d’un préconditionneur dans l’algorithme de migration itérative.
L’objectif est d’accélérer la convergence de la migration itérative et de limiter le nombre d’itéra-
tions dans la boucle interne. Le préconditionneur utilisé ici est un pseudo-inverse de l’opérateur
de modélisation de Born dans le domaine étendu, dé�ni dans le cas de primaires seuls. Cet
opérateur de modélisation est linéaire et noté F. Le pseudo-inverse est noté F† et est dé�ni
uniquement dans le cas de primaires seuls. L’obtention des CIGs par inversion « directe » à
l’aide de cet opérateur est une alternative économique à la migration itérative pour l’atténuation
des artefacts de migration. La fonction coût de DSO associée à l’inversion directe et son gradient
sont étudiés et comparés à la stratégie itérative sur un exemple simple.

Le pseudo-inverse est présenté dans la section 4.2 qui est une transcription d’un article publié
dans la revue Geophysics (Chauris et Cocher, 2017). La formule présentée ici est inspirée de
celle proposée par Hou et Symes (2015). Dans les deux cas, le pseudo-inverse est dé�ni au sens
asymptotique : la formule d’inversion est obtenue en exprimant l’opérateur de modélisation à
l’aide de la théorie des rais, puis en dé�nissant des poids tels que FF† soit proche de l’identité.
Ces poids peuvent être interprétés à l’aide de la théorie des rais, mais la formule �nale ne fait
pas intervenir de quantités liées au rais. La formulation du pseudo-inverse est proche de celle
de l’adjoint de l’opérateur de modélisation utilisé dans le cas de la migration classique. Des
poids sont incorporés dans la formule de l’adjoint pour prendre en compte la décroissance
géométrique et l’illumination inhomogène du sous-sol. En pratique les trois modi�cations
essentielles apportées à l’implémentation de l’opérateur adjoint sont : (1) l’application aux
termes sources des équations dé�nissant les champs sources et récepteurs de dérivées par
rapport à la profondeur des sources et récepteurs ; (2) l’utilisation d’une version déconvoluée de
l’ondelette de source pour la construction du champ source ; (3) l’application d’une intégration
temporelle d’ordre un à la place d’une dérivée seconde avant corrélation des champs sources
et récepteurs, et l’application d’une dérivée verticale dans le domaine image au résultat de la
corrélation de ces deux champs.

Les CIGs calculés en appliquant le pseudo-inverse aux données observées ne présentent
pas d’artefacts de migration. De plus, le gradient de la fonction coût de DSO associée est plus
homogène que celui obtenu dans le cas de la migration classique avec l’opérateur adjoint.
En�n une légère modi�cation de la fonction coût de DSO consistant en une multiplication de
la ré�ectivité par une puissance spéci�que du macro-modèle permet d’atténuer les artefacts
du gradient localisés à la position des ré�ecteurs. Ainsi remplacer l’opérateur adjoint par un
pseudo-inverse pour le calcul des CIGs a des e�ets béné�ques sur l’analyse de vitesse pour un
coût numérique semblable. En e�et le temps de calcul supplémentaire demandé par l’application
des poids listés ci-dessus est négligeable devant le coût de la propagation des champs d’onde. La
stratégie d’inversion « directe » est donc une alternative e�cace à la migration itérative dans
le cas de primaires seuls et d’une acquisition dense, mais elle n’est pas aisément transposable
au cas de multiples, où il faudrait dé�nir un nouveau pseudo-inverse dont l’existence n’est pas
garantie.

La section 4.3 détaille l’introduction du pseudo-inverse comme préconditionneur dans la
migration itérative et dans la résolution du problème adjoint (cas de la méthode B dé�nie
au chapitre 3). Le préconditionnement peut être vu comme un changement de variable et ne
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demande que peu de modi�cations de l’implémentation. La section 4.4 illustre sur un exemple
simple l’accélération de la convergence de la migration itérative, dans le cas de primaires seuls,
mais aussi dans le cas de multiples, bien que le pseudo-inverse utilisé comme préconditionneur
ne soit dé�ni que pour les ré�exions primaires. Le préconditionnement est aussi testé dans le
cas de primaires seuls pour le problème adjoint. S’il permet également une résolution accélérée,
celle-ci demeure plus lente que pour le problème direct, même avec régularisation. Par ailleurs
le gradient calculé dans le cas itératif avec la méthode B ne converge pas vers une valeur
stable similaire au gradient obtenu par l’inversion « directe ». En particulier, introduire une
puissance spéci�que du macro-modèle dans la dé�nition de la fonction coût de la DSO ne permet
pas d’atténuer les oscillations résiduelles localisées au niveau du ré�ecteur dans le gradient,
contrairement au cas de l’inversion directe. Ces di�cultés sont analysées dans le chapitre 5.
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4.1. Introduction

We propose in this chapter a modi�cation of the iterative migration process described in
chapter 2. It consists of introducing a preconditioner in the minimisation of the migration
objective function. Preconditioning can be interpreted as a change of variables allowing faster
convergence. The preconditioner considered here is an approximate inverse of the extended
Born modelling operator, de�ned for primary re�ections only. Its formulation is close to the
usual adjoint’s one, the di�erence being the introduction of migration weights compensating for
uneven illumination of the subsurface and for geometrical spreading. Preconditioning should
result in faster attenuation of migration artefacts in CIGs. We investigate if this is also the case
in the presence of multiples.

The derivation of the approximate inverse operator is presented in section 4.2, which is the
transcription of an article published in Geophysics (Chauris and Cocher, 2017). Only primary
re�ections are considered. The inverse operator considered here is close to the one presented in
Hou and Symes (2015). Both derivations determine an approximate inverse F† of the extended
Born modelling operator F such that their composition FF† is close to the identity operator.
However Chauris and Cocher (2017) use a linearisation of the phase of FF† whereas Hou
and Symes (2015) directly apply the stationary phase approximation, leading to di�erent �nal
formulations for F†.

In terms of implementation, the formula of Chauris and Cocher (2017) is close to the standard
migration algorithm, with three main modi�cations: (1) vertical derivative with respect to
source and receiver positions are applied to the source term in the equations de�ning the source
and receiver wave�elds; (2) the source wave�eld is constructed with the deconvolved version
of the source wavelet; (3) a �rst-order integration in time is applied before cross-correlation
instead of a second-order derivative and a vertical derivative is applied to the result of the
cross-correlation. These modi�cations amount to applying the following weights, respectively:
(1) cosines of take-o� angles at the sources and receivers positions; (2) deconvolution of the
source wavelet; (3) cosines of the half-opening angle at the image point. A larger weight is given
to small scattering angles and short surface o�sets. The approach shares similarity with the
quantitative extended migration presented in Lameloise et al. (2014). However no ray quantities
are required in the �nal expression, which makes this strategy amenable to wave-equation
based MVA techniques.

This direct inversion formula is actually an alternative to iterative migration for the case of
primaries. CIGs obtained with the inverse formula are free of migration artefacts and a new MVA
objective function can be constructed with these CIGs. The derivation of the associated gradient
is performed with the adjoint-state technique. Numerical examples show that it is smooth
and homogeneous above the re�ector. Moreover, a simple modi�cation of the MVA objective
function allows to remove the oscillations around the re�ector described in section 3.3.1. The
inversion strategy is then an alternative to the horizontal contraction (Fei and Williamson, 2010;
Shen and Symes, 2015). The advantage of the direct inversion approach is that the velocity
update is the gradient of an objective function, contrary to the horizontal contraction technique.

Inversion is an e�cient alternative to iterative migration in the case of primaries. Computing
the re�ectivity image and the associated background velocity update with inversion is as costly
as with standard migration. Iterative migration is much more expensive but keeps the ability
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of dealing with more complex cases such as multiples for which an inverse formula does not
necessarily exists. In the second part of this chapter, we introduce migration weights in the
iterative migration algorithm described in chapter 2 to improve its convergence rate. A strategy
to properly include them in the optimisation process has to be de�ned. The inversion formula
of Hou and Symes (2015) can be written as the composition of a weighting operator in the data
space, the usual adjoint and a weighting operator in the model space. The iterative extension is
thus natural and consists of changing the de�nition of the norms in the data and extended-model
space (Hou and Symes, 2016a). The inversion formula used here cannot be decomposed in this
way. Instead, we choose to use the approximate inverse operator as a right preconditioner.
In terms of implementation, this amounts to a change of variables in the de�nition of the
objective function of migration. Although the inverse formula does not take multiple re�ections
into account, it is expected to accelerate the convergence of iterative migration in the case of
multiples as well as in the case of primaries only.

In the case of primaries only, direct and iterative inversions are expected to provide similar
results for the re�ectivity image, but not necessarily similar MVA gradients. We compare the
corresponding background velocity updates obtained with both methods in the case of primaries
only. Note that using method B presented in the preceding chapter, preconditioning does not
change the way the gradient is computed, it only provides a more e�cient way to �nd solutions
to the direct and adjoint problems.

4.2. Definition of migration weights (Chauris and Cocher, 2017)

This section is a transcription of the following article published in Geophysics,

H. Chauris and E. Cocher, 2017. From Migration to Inversion Velocity Ana-
lysis. Geophysics, 82(3), S207–S223.

4.2.1. Abstract

Migration Velocity Analysis is a technique de�ned in the image domain to determine the
background velocity model controlling the kinematics of wave propagation. In the presence of
discontinuous interfaces, the velocity gradient used to iteratively update the velocity model
exhibits spurious oscillations. For more stable results, we propose to replace the migration
part by an inversion scheme. By de�nition, migration is the adjoint of the Born modelling
operator, whereas inversion is its asymptotic inverse. We propose new expressions in 1D and
2D cases, based on two-way wave-equation operators. The objective function measures the
quality of images obtained by inversion in the extended domain depending on the subsurface
o�set. In terms of implementation, the new approach is very similar to classical migration
velocity analysis. A 1D analysis shows that oscillatory terms around the interface positions
can be removed by multiplying the inversion result with the velocity at a speci�c power before
evaluating the objective function. Several 2D synthetic data sets are discussed through the
computation of the gradient needed to update the model parameters. Even for discontinuous
re�ectivity models, the new approach provides results without arti�cial oscillations. The model
update corresponds to a gradient of an existing objective function, which was not the case for
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the horizontal contraction approach proposed as an alternative to deal with gradient artefacts. It
also correctly handles low velocity anomalies, contrary to the horizontal contraction approach.
Inversion Velocity Analysis o�ers new perspectives for the applicability of image domain
velocity analysis.

4.2.2. Introduction

Migration Velocity Analysis (MVA) is a technique to determine the Earth’s properties from
seismic surface measurements. It is based on the assumption that the model parameters can be
split into a background model containing the large scale structure of the model and a model
perturbation characterising the details. The background model controls the kinematics of wave
propagation. Under the Born approximation, the re�ected data linearly depend on the model
perturbations supposed to be small compared to the background model. In a given model, the
re�ectivity part is obtained through migration de�ned as the crosscorrelation between the
incident wave�eld and the back-propagated residual wave�elds (Claerbout, 1971). Migration is
by de�nition the adjoint of the Born modelling operator and maps the data residuals to some
model perturbations in the image domain. Once data have been migrated, the quality of the
background model is evaluated by measuring the focusing of such images. Except for semblance
measurements in the stacking power approach, the traditional principle consists of splitting
the data into subsets, such as common shot or common o�set gathers and to migrate them
independently in the same background model (Symes, 2008). If all images are consistent, then
the model is said to be optimal for migration. Moveout residuals observed in Common Image
Gathers (CIGs) indicate that the background model is not su�cient and should be updated. The
�nal image indeed should not depend on the acquisition geometry, at least the part correctly
illuminated. Di�erential Semblance Optimisation (DSO) is a way to evaluate the quality of the
model used for migration (Symes and Carazzone, 1991; Symes, 2008). For surface-oriented shot
or o�set, residual energy is computed by comparing adjacent images. Such a measure is known
to have a convex behaviour, at least for simple models.

More recently, an extension has been proposed. Instead of splitting the input data into
di�erent subsets, the full data set is migrated but a spatial or temporal shift is introduced in the
imaging condition (Faye and Jeannot, 1986; de Bruin et al., 1990; Sava and Fomel, 2006; Symes,
2008). For a spatial shift, typically horizontal, we refer to the subsurface o�set. We only consider
this approach here. With the additional subsurface o�set, the image domain becomes extended
(Symes, 2008). The main reason for this approach is the following: the dimension of the model
space should be the same as the dimension of the data space (table 4.1). The investigated model
is correct if energy focuses around the zero subsurface o�set. As the model and data spaces
have the same dimension, it is potentially possible to reconstruct the observed data from the
re�ectivity, even in an inaccurate model (Symes, 2008).

MVA in the extended domain still faces a number of challenges (Lameloise et al., 2014;
Lameloise, 2015). (1) Due to limited acquisition, migration smiles are visible in CIGs. They
always have an upward curvature (Mulder, 2014; Li et al., 2016). For simple models, a downward
(upward) curvature indicates a too low (high) velocity. Due to the presence of migration smiles,
the optimal velocity is underestimated; in that model, there is a compromise between downward
residuals and upward artefacts. (2) The objective function may also exhibit spurious oscillations
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Dimension Data domain Space domain Extended domain
1D t z z
2D (s, r, t) (x , z) (x , z, h)
3D (sx , sy , rx , ry , t) (x , y, z) (x , y, z, hx , hy)

Table 4.1. – Dimensions of the data and space domains, with (s, r) being the source and receiver
coordinates, t the time, (x , y, z) the spatial coordinates, and h the subsurface o�set.

leading to local minima (Lameloise et al., 2014). (3) As revealed by Vyas and Tang (2010) and
Fei and Williamson (2010), the gradient of the DSO objective function with respect to the
background model contains unwanted oscillations around the re�ector positions, especially
when the re�ectivity is discontinuous. It means that MVA does not fully behave in a tomographic
algorithm for which we would expect a homogeneous update at least for simple models (Sava
and Biondi, 2004; Symes, 2008; Alkhalifah and Wu, 2016a). The straightforward solution is to
spatially smooth the gradient, but in practice, a discontinuous re�ectivity has an impact on
a much larger zone than the zone containing the discontinuities. Moreover, the artefacts can
have the same sign, especially around continuous interfaces: a smoothing approach would not
destroy them. As a partial solution, Fei and Williamson (2010) have introduced a modi�cation
in the computation of the gradient such that spurious oscillations are removed. This spectacular
e�ect is not fully understood yet. It is however now clear that the modi�ed expression is not
the gradient of an objective function (Shen and Symes, 2015). The main objective of this paper
is to discuss possible alternatives to overcome the artefacts. Another limitation of DSO is its
sensitivity to coherent noise, such as linear noise or multiples (Chauris and Noble, 2001; Mulder
and ten Kroode, 2002). In practice, the input data set for MVA should only contain re�ected
data. Finally, operational CPU cost and memory requirement are real di�culties for the 3D
implementation (Duveneck, 2013; van Leeuwen et al., 2015). The main reason is the increased
size of the model space, in principle up to the size of the data space (table 4.1).

In practice, only few applications on real data have been published. Among others, we can
cite Symes and Carazzone (1991), Chauris and Noble (2001), Mulder and ten Kroode (2002),
Alkhalifah (2005), Shen and Symes (2008), Weibull and Arntsen (2013) and Mulder (2014).
Recently, approaches have been proposed to overcome some of the di�culties encountered
by MVA. In particular, MVA can potentially be extended to transmitted waves (Chauris et al.,
2013; Shen, 2013; Biondi and Almomin, 2014; Lameloise et al., 2015; Lameloise and Chauris,
2016). By considering higher orders in the Born approximation, it is also possible to take into
account multiples (Staal and Verschuur, 2012; Cocher et al., 2015). In these approaches, spurious
oscillations related to truncated interfaces are not addressed.

To deal with this issue, we propose here to replace migration by inversion (ten Kroode, 2012;
Hou and Symes, 2015). Migration is the adjoint of the Born modelling operator. It is de�ned as
the �rst gradient of the least-squares mis�t between modelled and observed data. An alternative
is to fully solve the quadratic minimisation. The �rst attempts coupled to velocity analysis
were obtained by iteratively determining the model perturbation (Liu et al., 2014b; Chauris and
Lameloise, 2014; Cocher et al., 2015). The shape of the objective function appears to be modi�ed
and more quadratic; some artefacts in the gradient were also attenuated. This motivates further
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investigations on iterative MVA. The main drawback with the iterative approach is the CPU-cost,
proportional to the number of iterations. If we suppose that iterative migration has converged,
the implementation simpli�es but it is still very expensive (Cocher et al., 2017a), except if
iterative migration can be accelerated with suitable preconditioners (Plessix, 2009). We propose
here to investigate Inversion Velocity Analysis (IVA) by coupling inversion to velocity analysis
(Liu et al., 2014b; Chauris et al., 2015).

Inversion is a direct approach as an alternative to the iterative migration. It is remarkable
that such an inversion formula exists (ten Kroode, 2012; Hou and Symes, 2015). The derivation
is performed under the high frequency approximation and depends on the absence of multiple
ray paths. It appears that the result is accurate, even in the presence of triplicated wave�elds,
as the normal operator is elliptic, i.e. asymptotically invertible, whether caustics are present
or not (Stolk et al., 2009; ten Kroode, 2012). The strongest limitation is the absence of turning
waves, as the sub-surface o�set has only a horizontal component (Biondi and Symes, 2004). The
�nal formula only consists of a combination of wave-equation based operators without ray
quantities.

The main di�erences between inversion and adjoint versions are additional derivative op-
erators applied to the Green’s functions or observed data at the source and receiver positions
and to the re�ectivity image. These operators compensate for geometrical spreading and for
uneven illumination. For that, a change of variable is needed between the surface coordinates
and the subsurface coordinates. It is thus essential to work in the extended image domain where
precisely the model size equals the data size. The main objective of this work is to replace the
adjoint result by the inverted result in MVA and to study the bene�t of this modi�cation. We
�rst review the derivation of the Born inversion formula in 2D. It is not exactly the same as
the one proposed by Hou and Symes (2015). We provide the equivalent result in 1D. Then we
explain how to compute the gradient of the new IVA objective function with respect to the
background velocity model. With the 1D formulation, it is possible to analyse the impact of
inversion on the shape of the gradient. We propose a slightly modi�ed inversion (multiplication
of the inversion result by the velocity at a speci�c power) such that, at least in 1D, the gradient
does not contain spurious oscillations. We then apply the same strategy in 2D, with applications
on a series of synthetic data, in particular with discontinuous re�ectivity functions for which
artefacts have been observed (Vyas and Tang, 2010; Fei and Williamson, 2010). We focus on the
shape of the gradient as it is the main ingredient to update the background model.

4.2.3. Migration versus Inversion

In Migration Velocity Analysis, the model m(x) = m0(x)+ξ(x) is split into two parts, where m0
denotes the background model containing the large scale component of the velocity structure
and where ξ is a model perturbation providing the detailed part of the model (Wu and Alkhali-
fah, 2015). m0 controls the kinematics of wave propagation, whereas ξ generates re�ections
and di�ractions. As a choice, we consider m0 being the squared slowness model. The two
components (m0,ξ) are inverted in a nested loop approach: in a given model m0, the inner
loop updates ξ in a migration process, typically starting from ξ = 0. The �nal ξ depends on m0.
The outer loop updates m0 according to some focusing criteria. Under the Born approximation,
the modelled data d linearly depends on ξ, the model perturbation, supposed to be small in
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front of m0. The �rst objective function to determine the optimal ξ parameter is de�ned as the
least-squares di�erences between observed data dobs and computed data d in ξ

J0(ξ) =
1
2
‖d(ξ)− dobs‖2. (4.1)

Both observed and modelled data are evaluated at source s, receiver r and time t or alternat-
ively angular frequency ω. We de�ne the Born operatorB0 in the extended domain (Symes,
2008). With the choice of the squared slowness model, it reads

B0(ξ)(s, r,ω) = −(iω)2Ω(ω)
∫

dxdhG0(s,x− h,ω)ξ(x,h)G0(x+ h, r,ω), (4.2)

where Ω is the input source wavelet, typically a Ricker function. The two Green’s function
G0 satisfy the wave equation, here the constant density acoustic wave equation in the model
m0. The associated source term is a Dirac distribution in space and time. Extended domain
means that the model perturbation ξ depends on the spatial coordinates x= (x , z) in 2D and
on an extra parameter, here a spatial horizontal shift h = (h, 0) in 2D (Sava and Fomel, 2006;
Symes, 2008; Sava and Vasconcelos, 2011). Compared to classical Born modelling, an extra loop
on h allows to consider non-physical models in the sense that the two Green’s functions are
evaluated at two distinct positions x− h and x+ h.

The �rst strategy to determine ξ consists of de�ning it as the �rst gradient of J0 with respect
to ξ and for ξ = 0. This is the classical migration approach, here formulated in the extended
domain, yielding

(Bmigdobs)(x,h) = −
∫

dsdrdω(iω)2Ω∗(ω)G∗0(s,x− h,ω)dobs(s, r,ω)G∗0(x+ h, r,ω). (4.3)

This adjoint formulation implies the complex conjugate version G∗0 of the Green’s functions
and an integration over the acquisition parameters (s, r,ω). The second strategy consists of
minimising J0 and to de�ne ξ through the inverse operatorBinv (ten Kroode, 2012; Hou and
Symes, 2015). Two aspects are essential in the derivation of such operator: �rst, the extended
domain plays a crucial role as the size of the data domain is the same as the size of the model
domain. During the derivation, a change of variables is applied. The second element is the micro-
local analysis, meaning that Binv is the inverse of B0 under high frequency approximation
and some additional approximations, mainly that there is no triplicated wave�eld. The inverse
operator should compensate for geometrical spreading and uneven illumination. A general
form inspired from (Hou and Symes, 2015) is

Binv(δd)(x,h) = k(x,h)Dp

∫
dsdrdω(iω)ν eΩ(ω)Dsz

G∗0(s,x− h,ω)δd(s, r,ω)

Drz
G∗0(x+ h, r,ω), (4.4)

where Dp is the partial derivative with respect to variable p. For example, Dsz
indicates the

vertical derivative with respect to the source position. The values of p in Dp, ν in (iω)ν and
k(x,h) in front of the integral need to be speci�ed such that the composition of the two operators
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Binv · B0 = I , where I is the identity operator. Let Fξ be the integrand of the product of the
two operators. It is linear in ξ and satis�es

(Binv · B0)ξ(y) =
∫

dy′F (y,y′)ξ(y′), (4.5)

with y= (x,h). Binv is indeed an inverse if F (y,y′) = δ(y− y′). After derivations reported in
appendix 4.2.10, the �nal expression for the 2D case reads

(Binvδd)(x,h) = 32
p

m0−m0+

Dp

�∫ eΩ(ω)
iω
Dsz

G∗0(s,x− h,ω)δd(s, r,ω)Drz
G∗0(x+ h, r,ω)dsdrdω

�
, (4.6)

with
Dp =

1
2

�√√m0+

m0−
+ 1

�
Dz +

1
2

�√√m0−
m0+

− 1
�
Dhz , (4.7)

where eΩ is the inverse of Ω, m0+ = m0(x− h), m0− = m0(x+ h). Dz is the vertical derivative
at the image point, whereas Dhz is the derivative with respect to the vertical subsurface o�set.
It is important to note that the �nal expression does not contain ray quantities. In an invariant
model, m0− = m0+ = m0 and Dp = Dz . This result is not exactly the same as the one published
in Hou and Symes (2015), as explained in the Discussion section. The main di�erences between
the adjoint and inverse versions are the following: (1) instead of a second derivative of the
seismic source, a �rst-order integration in time has to be applied to the inverse of the source
function; (2) a normalisation factor 32

pm0−m0+ has to be applied on the re�ectivity to retrieve
absolute amplitudes; (3) the vertical derivatives with respect to the source and receiver positions
are applied to the Green’s function. The main dynamic e�ect is a multiplication by the cosine
weight at the source and receiver positions; (4) similarly, for laterally invariant model, an
additional vertical derivative has to be applied at the image points. It acts as if the kernel would
be multiplied by cosθ cosϕ, where θ and ϕ are the half-opening and dip angles at the image
point, measured from the normal to the dip and the horizontal, respectively (see �gure C.1
p. 265 for the de�nition of these angles). Such weights emphasise short o�sets, small dips and
vertical rays at source and receiver positions. Only wave-equation based operators are present
in the de�nition of the inverse operatorBinv.

Following the same strategy, we propose equivalent and new expressions for the 1D case.
This case will be useful in the next section to analyse the shape of the gradients with respect to
m0.

(B0ξ)(ω) = −(iω)2Ω(ω)
∫

z
G2

0(z,ω)ξ(z)dz, (4.8a)

(Bmigδd)(z) = −
∫

ω
(iω)2Ω∗(ω)G2∗

0 (z,ω)δd(ω)dω, (4.8b)

(Binvδd)(z) = 16m(z)Dz

�∫

ω

eΩ(ω)
(iω)

[Dsz
G∗0]

2(z,ω)δd(ω)dω
�

. (4.8c)
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In 1D, there is no need to extend the model. We consider a single source and a single receiver,
both at the surface. The source and receiver Green’s functions are the same. We recognise
the similar terms. The main di�erence with the 2D case is the factor 16m(z) in front of the
vertical derivative in equation (4.8c). In the case of a homogeneous model m0 and an original
re�ectivity function de�ned as Reδ(z − ze), for a single re�ector at depth ze, the expressions
can be further simpli�ed using analytic formulations for the Green’s functions, yielding in 1D

ξmig(z) = Re

�
v0

2

�2� ve

2

�2

gmig

�
2
�

ze

ve
− z

v0

��
, (4.9a)

ξinv(z) = 2
Re

v0

�
ve

v0

�2

ginv

�
2
�

ze

ve
− z

v0

��
, (4.9b)

where gmig(t) and ginv(t) are obtained by crosscorrelating the seismic wavelet with itself or
with its inverse, namely gmig(t) = Ω(t)⊗Ω(t) and ginv(t) = Ω(t)⊗ eΩ(t). The homogeneous
velocities values are ve and v0, respectively in the exact and tested cases. In 1D homogeneous
models, the adjoint and inverse expressions are very similar. For the inverse case, a deconvolution
is applied; the same time shift appears in the two expressions. A di�erent normalisation term
appears. Note that there is no geometrical spreading and no need to compensate for uneven
illumination.

We now have the expressions in 1D and 2D for the adjoint and inverse approaches. We
introduce them in a velocity analysis approach.

4.2.4. MVA versus IVA

Two nested loops are de�ned in image domain velocity analysis. The inner loop determines
the re�ectivity model ξmig or ξinv through the J0 objective function (equation 4.1). The second
objective function for the outer loop indicates how focused the energy is in the extended domain.
For the adjoint and inverse formulation, we de�ne

Jα
mig(m0) =

1
2



mα
0 |h|ξmig



2, (4.10a)

Jβ
inv(m0) =

1
2



mβ
0|h|ξinv



2. (4.10b)

The multiplication by the annihilator |h| aims at evaluating how energy is concentrated
around h = 0 (Sava and Fomel, 2006). For the correct model m0, energy is expected to be
localised in the physical domain. Extra terms mα

0 and mβ
0 have been introduced inside the `2

norm. In the classical formulation, α = β = 0. They should be interpreted as an additional
weight for more �exibility in the shape of the gradient of Jα

mig and Jβ
inv with respect to m0. As

explained later, the additional term in the gradient for α or β if not equal to zero is localised
around the re�ectivity: this will be used to attenuate oscillations in the �nal gradient. We use
the adjoint state technique (Plessix, 2006) as an e�cient tool for the gradient derivation. More
details are provided in appendix 4.2.11. The adjoint state technique can be seen as a minimisation
process under constraints. Instead of only considering m0 as unknown, we enlarge the model
space by incorporating other variables. We add Lagrangian constrains to force the wave�eld to
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satisfy the wave equation. For an e�cient implementation, we de�ne the following variables S0,
R0, µs, µr and λ (appendix 4.2.11): S0 and R0 are the forward and backward wave�elds, whereas
µs and µr are their adjoint variables, respectively. The �nal gradient for α= 0 and β= 0 reads

∂ J0
mig

∂m0

= −
∫
(iω)2S0(s,x,ω)µ∗s (s,x,ω)dsdω−

∫
(iω)2R0(s,x,ω)µ∗r(s,x,ω)dsdω, (4.11a)

∂ J0
inv

∂m0

= −
∫
(iω)2S0(s,x,ω)µ∗s (s,x,ω)dsdω−

∫
(iω)2R0(s,x,ω)µ∗r(s,x,ω)dsdω

+

∫
λ(x,h)

∂ Dp

∂m0

ξ0(x,h)dh,
(4.11b)

with ξinv(x,h) = Dpξ0(x,h). Dp is de�ned in equation (4.7). In laterally invariant models, Dp
does not depend on m0. The adjoint variable λ0 = a2ξmig in the adjoint case and λ0(x,h) =
D∗pa2Dpξ0 in the inversion case (appendix 4.2.11). µs and µr are solution of the wave equation
for a source term excited by the product of λ0 by the back-propagated or forward wave�elds
(�gure 4.1). In the gradient expression (equations 4.11a and 4.11b), S0 and µs contribute in a
tomographic mode as they correlate from any interface to the surface. The same holds for R0
and µr .

Figure 4.1. – Schematic view of the wave�elds (left: from the source, right: from the receiver)
contributing to the gradient in the presence of a single re�ector at depth z0. Both S and µs
and R and µr correlate between the surface and depth z0.

For non zero α and β values, the gradient expressions are simply obtained as a combination
of the gradient for α or β= 0 and a positive term located around the position of the re�ectors

∂ Jα
mig

∂m0

(x) = m2α
0 (x)

∂ J0
mig

∂m0

(x) + 2αm2α−1
0 (x)

∫
dh |h|2ξ2

mig(x,h), (4.12a)

∂ Jβ
inv

∂m0

(x) = m2β
0 (x)

∂ J0
inv

∂m0

(x) + 2βm2β−1
0 (x)

∫
dh |h|2ξ2

inv(x,h). (4.12b)

We have seen that the gradient of the second objective function can thus be e�ciently derived
with the adjoint state technique. The adjoint approach contains 3 terms whereas the inverse
4 contributions. The two strategies have very similar implementation and the inverse is not
really more di�cult. In the next section, we analyse the di�erent contributions to understand
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if they act in a tomographic mode and/or they have an oscillating contribution around the
re�ector position. This leads to the determination of an optimal β value. Then we present 2D
applications with the same β.

4.2.5. Analysis of the gradient in 1D

The 1D case is a particular case. Instead of de�ning a spatial shift h introduced in the imaging
condition, we propose to de�ne the annihilator as z − ze, where ze is the exact depth of the
re�ector. This is only valid for a single re�ector. However, the expressions are similar to the
ones in 2D and help us understand the structure of the gradient. For homogeneous exact ve and
initial v0 models, the expressions for the 1D adjoint and inverse gradients are

Gα
mig(z) =−

R2
ev4

e

28v2α−5
0

∫
(y − ze)

2 gmig

�
2
�

ze

ve
− y

v0

��
g ′mig

�
2
�

ze

ve
− z + y + |z − y|

2v0

��
dy

+α
R2

ev4
e

26v2α−4.5
0

(z − ze)
2 g2

mig

�
2
�

ze

ve
− z

v0

��
(4.13)

Gβ
inv(z) =

4R2
e

v2β+1
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ve

v0

�4
∫
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2
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ze

ve
− y

v0

��
g ′inv

�
2
�

ze

ve
− z + y + |z − y|
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��
dy

+ 2
�
β+ 2
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e
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0
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ve
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(4.14)

+
4R2

e

v2β
0

�
ve

v0

�4
∫
(y − ze)ginv

�
2
�

ze

ve
− y

v0

��
ginv

�
2
�

ze

ve
− z + y + |z − y|

2v0

��
dy .

The �rst term in Gα
mig has a non zero contribution above the position of the re�ector after

migration, while the second term is positive and localised around the re�ector.

Figure 4.2. – Left: re�ectivity sections ξmig (blue) and ξinv (red) for h = 0. Right: observed
(blue) and computed data after inversion and modelling (red).

We use a classical �nite-di�erence modelling tool to solve the constant density acoustic wave
equation. Perfectly Matched Layers (PMLs) are implemented to deal with model boundaries,
with no free-surface condition. The re�ectivity model consists of a single interface at 500 m
depth. After migration and inversion using the exact model v0 = ve = 3000 m/s, the re�ector
is localised around the correct depth (�gure 4.2, left). The deconvolution aspect in the inversion
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Figure 4.3. – Gradients for the migration approach. The blue, red and black curves (almost
superimposed) are respectively computed with the adjoint, �nite-di�erence and analytic
approaches. In all cases, α = 0 Left: v0 = 2500 m/s and ve = 3000 m/s. Right: same for
v0 = 3000 m/s and ve = 2500 m/s.

Figure 4.4. – Same as for Figure 4.3, but here for the inversion approach (top: β= 0 and middle:
β= −3/2). Bottom: decomposition of the gradient Ginv (dashed line) for β= −3/2 into the
three contributions G1

inv (blue), G2
inv (red) and G3

inv (black).
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approach makes the signal more localised in space. From ξinv, the modelled data nicely matches
with the observed data (�gure 4.2, right). Both phase and amplitude are correctly retrieved.

For the gradient, we compare three approaches: (1) the inverse approach obtained with
the adjoint state method (equation 4.11b), (2) a �nite-di�erence approach and (3) the analytic
expression valid in homogeneous background models (equation 4.14). The �nite-di�erence
approach consists of evaluating the gradient by computing Jβ

inv for slightly perturbed models
around the reference model. This is a much more expensive approach than the one provided
by the adjoint state method but this is a�ordable in 1D. We �rst consider β = 0. The three
approaches give very similar results for the migration approach (�gure 4.3), both if the initial
model has a too low and too high value (2500 or 3000 m/s for a correct velocity at 3000 m/s
or 2500 m/s, respectively). The gradient is homogeneous above the re�ector, while oscillations
are present around the re�ector. In this case, the amplitudes of these oscillations are larger than
the homogeneous part. We conclude that the DSO gradient in 1D has a tomographic mode
together with a migration mode around the re�ectivity. The additional contribution requires in
practice to smooth the gradient before updating the model.

The same results hold for the inversion approach, still for β = 0 (�gure 4.4, top). It is
interesting to note that the oscillations around the re�ectivity are always positive, even if the
initial model is lower or larger than the exact model. The three approaches (adjoint, �nite-
di�erence and analytic) are also consistent. The α and β values introduced in the objective
function o�er additional possibilities. Appendix 4.2.12 indicates that there is an optimal β =
−3/2 value for which the gradient becomes much smoother (�gure 4.4, middle). An alternative
would be to optimise the shape of the gradient as in Wu and Alkhalifah (2015). To further
analyse this, we �rst display the three contributions to the gradient in 1D (�gure 4.4, bottom).
The red curve is always positive by de�nition as it contains only squared terms (second term in
equation 4.12b). It appears that the oscillations in the �rst term are in phase, with an opposite
sign, to the second contribution (blue line). The third contribution is smooth (black line), leading
as a �nal result to a smooth gradient (dashed line).

This e�ect is con�rmed by analysing more carefully the expression of the gradient in homo-
geneous models (equation 4.14). The integration over y is performed from 0 to the maximum
depth zmax. We split this integration between 0 to z and then between z to zmax. We then
integrate by parts. For β= −3/2, the oscillating contributions are exactly opposite. More details
are provided in appendix 4.2.12. The same analysis with the gradient associated to migration
does not lead to a smooth gradient. We conclude that in 1D, the gradient related to inversion
can have a smooth behaviour for a particular normalisation (β= −3/2). We now investigate if
these conclusions can be extended to 2D.

4.2.6. 2D applications

We study the shape of the gradient of Jα
mig and Jβ

inv with respect to the background model and
for α= 0, β= 0 and β= −3/2. We investigate �ve 2D synthetic cases. The �rst one contains a
single horizontal re�ector to study (1) how the inversion impacts the shape of the gradient, and
(2) if β = −3/2 is still a good candidate as in the 1D case. Then, we deal with discontinuous
re�ectivity sections, �rst considering a single di�raction point and then interfaces with abrupt
truncations. They are typical cases for which the classical gradient exhibits spurious oscillations
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(Fei and Williamson, 2010; Vyas and Tang, 2010). The fourth case contains a complex rough
interface between two homogeneous structures. Here, the observed data are not modelled under
the Born approximation. A pre-processing is needed to remove the direct arrival. Finally, the
last case contains a low velocity anomaly in which the horizontal contraction solution does not
provide a proper solution as explained in Shen and Symes (2015). In this example, we perform
non-linear iterations to update the velocity model; in other cases, we display the �rst velocity
update. In all cases, the data are generated with a �nite-di�erence time domain constant density
acoustic code under the Born approximation (Noble, 1992). Even if the velocity model is not
invariant, we simplify Dp to Dz .

Single horizontal interface
In the �rst model, we consider a single horizontal interface at depth z = 240m in the exact
model corresponding to a homogeneous model ve = 3000 m/s. Sources and receivers are located
at the surface, with a maximum o�set of ±600 m. The maximum frequency content of the data
is 40 Hz.

Figure 4.5. – Re�ectivity sections ξmig (a) and ξinv (b) for h = 0 and for ve = 3000 m/s and
v0 = 2500 m/s, in the case of a single horizontal interface, and associated CIGs at position
x = 1800m for the migration (c) and inverse (d) cases.

The classical migrated section in a homogeneous model at v0 = 2500 m/s exhibits a �at
interface around z = 290m and low frequency variations above it (�gure 4.5a). This can be
understood by looking at the CIGs (�gure 4.5c). For this speci�c depth interface and maximum
surface o�sets, migration smiles are present o� the zero-subsurface o�set. The shape of such
events are predicted by Mulder (2014). With the application of the inverse instead of the adjoint,
events are more localised due to the deconvolution in the inverse formula, but more importantly
migration smiles are removed: defocused energy corresponds to an incorrect velocity model
(�gures 4.5b and 4.5d).

The associated gradient is not homogeneous above the interface for the migration case
(�gure 4.6a) due to the contribution of migration smiles. As their curvature is always towards
the surface, a positive (red) contribution is added to the gradient. Note that the gradients are
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Figure 4.6. – Gradients for the migration (a) and inversion (b and c) approaches, for β= 0 (b)
and β= −3/2 (c).
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computed with respect to the squared slowness: we thus expect only negative (blue) values
above the interface. This is partly the case for the inversion gradient and β= 0 (�gure 4.6b), but
the impact of the re�ectivity around z = 200m is visible and adds a positive (red) contribution
to the gradient. This e�ect was already observed in the 1D case (�gure 4.4). A closer look shows
that the gradient has also a negative contribution below the interface: this could appear to be
strange, but can be explained as follows: energy is visible in CIGs for depths below z = 200 m
and non-zero subsurface o�sets as the velocity model is too slow (�gure 4.5d). The contribution
of the gradient below that depth is due to the third term in equation (4.11b). This was not
visible in 1D for which there is no need to rely on an extended model. With the introduction of
β= −3/2, oscillations around the interface and the smooth update below disappear. As for the
1D case, the second term in equation (4.12b) cancels unwanted oscillations for β= −3/2, even
if there is no formal proof in 2D.

Figure 4.7. – Same as for �gure 4.5, but here with ve = 2500 m/s and v0 = 3000m/s.

When the velocity v0 is higher than the exact velocity ve, the same conclusions hold (�gures 4.7
and 4.8). CIGs could appear to be cleaner in the migration case but energy due to an incorrect
model is partly superimposed with migration smiles (�gure 4.7a): the associated gradient indeed
oscillates with positive and negative values above the interface (�gure 4.7c). With the inversion
approach, CIGs and gradients are cleaner (�gures 4.7d and 4.8c). For β = 0, the gradient has
a positive (red) contribution around the re�ector as in 1D and as for the previous case. For
β= −3/2, the gradient is homogeneous above the interface. Note that in �gures 4.6c and 4.8c,
edge e�ects for x = 0 and x = 3500m, are visible with lower energy due to limited acquisition.

We conclude from this �rst test that the inversion scheme with β= −3/2 provides a smooth
gradient as in a tomographic mode, at least for continuous interfaces.

Di�raction model
The extreme discontinuous case is a model with a single di�raction, here embedded in a
homogeneous model ve = 3000 m/s. The maximum surface o�set is ±600m. The exact
di�raction anomaly is at (x , z) = (1800m, 240m). For a too slow velocity model v0 = 2500m/s,
energy for h= 0 follows a di�raction curve, but energy is visible above it in the migration case
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Figure 4.8. – Same as for Figure 4.6, but here with ve = 2500 m/s and v0 = 3000m/s.
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(�gure 4.9a).

Figure 4.9. – Single di�raction case, with the migration (left) and inversion (right) approaches.
Top: re�ectivity section, middle: velocity gradient, bottom: smoothed version of the velocity
gradient.

Both for migration and inversion, the gradient is oscillating (�gures 4.9c and 4.9d). We
propose to smooth it as a regularisation before iterating over the background model. The
Gaussian smoothing �lter is expressed as

gσ(r0) =
1p
2πσ

e−
r2
0

2σ2 , (4.15)

where r0 is the distance. The smoothing parameter is chosen as σ = λdata/2, with λdata being
the mean wavelength of the data. Only negative values are obtained for the inversion case, but
not for the migration case (�gures 4.9e and 4.9f).

Discontinuous interfaces
The third example consists of 4 truncated interfaces inspired from Shen and Symes (2015). The
maximum surface o�set and frequency content of the data are the same as for the di�raction
case. The smoothing parameter σ equals the half-wavelength. Once more, the migrated
re�ectivity contains energy above the interface positions, leading to oscillatory gradients,
especially around the termination of interfaces (�gures 4.10a, 4.10c and 4.10e). Inversion results
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are much sharper (�gure 4.10b). The gradient is negative (blue) everywhere, even without
smoothing (�gures 4.10d and 4.10f). Note that the re�ectivity sections (�gure 4.10) can be
reconstructed from the di�raction case (�gure 4.9) as there is a linear relationship between ξmig
and the exact re�ectivity. This is not true for the gradient as it is not linear in ξmig. The same
remark holds for the inversion case: �gure 4.10f cannot be reconstructed as a linear combination
of gradients associated to a single di�raction point as in �gure 4.9f.

Figure 4.10. – Multi-layer case, with the migration (left) and inversion (right) approaches.
Top: re�ectivity section, middle: velocity gradient, bottom: smooth version of the velocity
gradient.

Rough interface
In the next example, the model is extracted from the BP salt dome model (Billette and Brandsberg-
Dahl, 2005). Here the velocity above the rough interface is set to 3000m/s and below to
3800 m/s (�gure 4.11a). As before, the observed data is computed with a �nite-di�erence
modelling code, but here without relying on the Born approximation. Absorbing boundaries
are implemented via Perfect Matched Layers (Bérenger, 1994; Komatitsch and Martin, 2007),
including for the top interface. As a pre-processing, the direct arrival is removed. The maximum
surface o�set is ±600 m and the maximum frequency content of the data is 40 Hz.

We compare the result obtained with the migration and inverse approaches. For the migration
case obtained for v0 = 2500m/s, the interface is globally too shallow but also defocused and
contains low frequency energy above the interface. As for the simple case (�gure 4.6a), the
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Figure 4.11. – Exact velocity model (a), migrated section in v0 = 2500m/s and for h= 0 m (b)
and associated gradient (c).
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Figure 4.12. – Inversion results for h= 0m (a) and associated gradient for β= −3/2, before
(b) and after smoothing with (c) σ = λdata/2 and (d) σ = λdata.
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gradient is mainly positive at very shallow depths and then becomes negative as expected (�g-
ure 4.11c). With the inversion approach, the re�ectivity is sharper (�gure 4.12a) and the gradient
has a mean negative (blue) value (�gure 4.12b). After smoothing with σ = λdata/2, the gradient
is mainly negative, except in the left part where some oscillations are visible (�gure 4.12c). A
stronger smoothing with σ = λdata would remove the positive values (�gure 4.12d).

Figure 4.13. – Observed (a) and computed shot gather at s = 1750m, after inversion and
modelling in the incorrect model v0 = 2500 m/s (b) and di�erences at the same scale (c).

It is interesting to compare the observed data and the data after inversion and modelling
(�gure 4.13). For the derivation of the gradient, we used β = −3/2 to remove the imprint of
the interfaces in the gradient. Here we use β = 0 to check the quality of inversion. The �rst
events correspond to re�ections, whereas later events are associated to di�ractions. Events
are correctly retrieved. The largest residuals are visible at large o�sets. Traces extracted
for o�sets −300 m, 0 m and +300 m show that both phases and amplitudes are correctly
retrieved, meaning that inversion provides indeed an inverse, even in an incorrect model, here
a homogeneous model at v0 = 2500 m/s (�gure 4.14). Note that the way to generate the data
(without Born approximation) is not the same as the one used to de�ne the modelling (with
Born approximation). We would expect small di�erences at least in the case of small velocity
contrasts: it seems to be robust as the velocity contrast is here +800m/s.

Low velocity anomaly
Finally, we investigate the case of a velocity model containing a low velocity zone of −500 m/s
(�gure 4.15a), leading to triplicated wave�elds. A similar example is discussed in Shen and
Symes (2015) as this is a model for which the horizontal contraction (Fei and Williamson, 2010)
does not provide a correct answer (Shen and Symes, 2015).

After migration in v0 = 3000m/s, the re�ectivity gathers show de�ected energy, supposed
to be horizontal in the exact model (�gure 4.15b). The associated gradient is expected to display
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Figure 4.14. – Traces extracted from �gure 4.13, for surface o�set −300 (a), 0 (b) and +300 m
(c). The blue colour corresponds to the observed shot and the red to the shot after inversion
and modelling in the incorrect model v0 = 2500m/s.

a red (positive) anomaly. This is not the case (�gure 4.15c). The zones in the dotted ellipses
are positive (red) due to migration smiles in the CIGs. The structure of the central part (solid
ellipse), with a negative (light blue) value below and between positive values, is similar to the
one presented in Shen and Symes (2015), �gure 2c in their paper. As explained in Shen and
Symes (2015), the horizontal contraction in the case of triplicated wave�elds does not provide a
proper solution. With the inversion approach, the re�ectivity section is similar (�gure 4.16a)
but the gradient displays vertical stripes (�gure 4.16b). This is only the �rst step in model
building. After 10 iterations with a non-linear conjugate gradient, the inverted background
model contains a main velocity anomaly (�gure 4.16c). The colorbar scale is the same as the
one �gure 4.15a. As the model only contains three re�ectors, the shape of the anomaly is not
perfectly constrained, but is localised around the correct position (dotted circle). Finally, the
re�ectivity in the inverted model displays relatively horizontal shapes. The focusing is largely
improved after updating the background velocity model as indicated by the CIGs (�gure 4.17).

We conclude from these di�erent investigations that the inversion formulas proposed for
the 1D and 2D cases (equations 4.6 and 4.8c) are indeed inverse and not adjoint, as the data
after inversion followed by modelling are nicely retrieved, even in an incorrect velocity model.
The combination of inversion and velocity analysis provides a gradient that does not su�er
from artefacts as described by (Fei and Williamson, 2010; Vyas and Tang, 2010). We propose
to incorporate mβ

0 in the de�nition of the second objective function to assess the quality of
focusing in CIGs. With β= −3/2, the imprint of re�ector is not visible in the gradient. Finally,
the gradient may be smoothed with a characteristic length proportional to the wavelength of
the data. In the last example, triplicated wave�elds are visible. Even if the derivation of the
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Figure 4.15. – Exact velocity model (a), migrated section in v0 = 3000m/s and for h= 0 m (b)
and associated gradient (c). The colorbar ranges from 2500 (blue) to 3000 m/s (red).
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Figure 4.16. – Inversion section in v0 = 3000m/s and for h= 0 m (a), �rst gradient (b), �nal
inverted model after 10 iterations (c), and associated inverted re�ectivity (d). The colorbar
ranges from 2500 (blue) to 3000 m/s (red).
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Figure 4.17. – CIGs for x = 1750 m computed in (a) the initial homogeneous model and (b) the
�nal model (�gure 4.16c).

inverse formula depends on absence of multiple ray paths, the �nal result may incorporate
them as indicated by Stolk et al. (2009), ten Kroode (2012) and Hou and Symes (2015).

4.2.7. Discussion

The inversion formula 4.6 is not the same as the one provided by Hou and Symes (2015). In
the derivation proposed here, we have supposed that the main contribution in equation (4.5) is
obtained when y′ is close to y (Beylkin, 1985): we thus linearised the phase of the F operator,
whereas Hou and Symes (2015) directly applied the stationary phase approximation. More
importantly, the main advantage of their formulation is that they express the inverse operator
as a combination of a model preconditioner Wmodel, the classical adjoint operator and a data-
domain preconditioner Wdata. Such an expression allows to easily adapt the iterative conjugate
gradient by simply modifying the norms in the data and model domains (Hou and Symes, 2016a).
In our case, the inversion formula (equation 4.6) cannot be recast as a combination of di�erent
preconditioners, but the vertical source derivatives are applied to the Green’s function and not
to the observed data. Note that the integration over sources is performed along the horizontal
component of the source position and not the vertical one.

In the case of laterally invariant model, the inversion expressions simplify in the two ap-
proaches. In Hou and Symes (2015), the Wmodel operator is obtained through two Lapacians
in the (x , z) and (h, z) domains L =q−∇2

x ,z

Ç
−∇2

h,z (equation 30 in Hou and Symes, 2015).
In our approach, only a vertical derivative Dz is needed. The number of time integration also
di�ers. Hou and Symes (2015) considered a linearisation of the velocity model, whereas we
used a squared slowness perturbation. The weighting factor di�erence 2/v3

0 appears twice in
the modelling and inverse operators. It means that the di�erences between Hou and Symes
(2015) and the approach proposed here is a factorR

R = 2
v0

ωkzÆ
k2

z + k2
x

q
k2

z + k2
h

' 2
v0

ω
kz

, (4.16)
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where (kz , kx , kh) are the wavenumbers associated to (z, x , h). The second equality is only valid
for small kx and kh values. OperatorR is adimensional and it is similar to a quantity arising
in two-way re�ection travel time. For the optimal β, a multiplication by m−3/2

0 in front of the
re�ectivity function in equation (4.6) modi�es the 32m0 factor to 32m0 ·m−3/2

0 = 32v0. In 1D,
it would lead to 16v0.

In terms of implementation, Hou and Symes (2015) need to apply the Wdata operator to the
data residuals. The derivative with respect to the vertical component of the source and receiver
can be obtained with the free surface (ten Kroode, 2012; Hou and Symes, 2015). TheL operator
can be obtained with two 2D Fourier transform, in (x , z) and (h, z) domains. In our approach, the
implementation is very similar to the classical adjoint implementation. The vertical derivatives
at the source and at the receiver positions are applied to the Green’s functions and can be
obtained by introducing a dipole instead of point sources. For the computation of the gradient
with respect to the model perturbation, only two extra variables ξ and λ are needed, compared
to classical MVA. ξ and λ are function of ξ0 and λ0 (appendix-4.2.11).

For the numerical illustrations, we assume that the background model was laterally invariant.
In that case, the Dp operator (equation 4.7) simpli�es to a vertical derivative Dz . The study
of the correct operator is beyond the scope of this article. It would imply the derivative with
respect to hz , taken at hz = 0. More research is needed to know how to compute such quantity,
as CIGs depend on hx and are computed for hz = 0 only.

The additional weights introduced in the inversion formula are mainly cosines of take-
o� angles at the source and receiver positions, and cosine of opening and dip angles at the
image point. The main e�ects are visible for shallow depths and large o�set contributions.
As illustrated in �gures 4.5 and 4.7, the migration smiles are largely attenuated. Weibull and
Arntsen (2013) proposed to introduce a vertical derivative Dz to improve the robustness of MVA.
Here, we give a justi�cation for the introduction of this weight that is explicitly de�ned in the
inversion formula. It is interesting to note that the same derivative in z also appears in the
inverse one-way Born formula (Joncour et al., 2011). Here, we rely on two-way wave-equation
operators. The vertical derivative is a high-pass �lter, attenuating the most dipping events in
CIGs, especially vertical events associated to lower wavenumbers. An important aspect is the
introduction of the determinant (equation 4.23) due to a change of variables between the surface
acquisition variables and the subsurface image variables. An alternative is to compensate for
uneven illumination through ad-hoc weights usually derived in simple models (Wu and Chen,
2006; Yang et al., 2013; Tang et al., 2013). The inversion formula provides an automatic and
correct strategy.

Instead of considering inversion, one could solve the least-squares functional in an iterative
manner (equation 4.1). The computational cost is proportional to the number of iterations.
However, it may have a number of advantages. When the data do not linearly depend on the
re�ectivity, as in the case of surface multiples, inverse formula does not necessarily exist. For
the derivation of the gradient with respect to the background model, one would need to take
into account the iterations to derive the optimal re�ectivity ξ. An alternative is to suppose that
the convergence has been reached, leading to a simple linear problem to be solved (Cocher
et al., 2017a). More investigations are needed to further compare MVA with iterative or direct
inversion of the re�ectivity.
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Finally, the gradients only provide the �rst iteration needed to update the background
velocity model. For a complete minimisation, the estimation of the Hessian of the second
objective function is essential (equation 4.10b). A �rst possibility is to estimate the Hessian in a
homogeneous model. An interesting alternative is proposed by Shen and Symes (2015) for the
estimation of the diagonal term. The derivation was in the case of the horizontal contraction.
More research, beyond the scope of this article, is needed to determine an equivalent approach
when inversion is coupled to velocity analysis.

4.2.8. Conclusions

We have replaced migration with the inverse of the modelling operator in image domain velocity
analysis. This is an automatic way to compensate for uneven illumination and to remove
migration smiles especially visible for shallow depth and large o�sets. As a consequence, the
gradient associated to the quality of focusing has a smoother behaviour in simple models and
does not su�er from oscillations even in models with truncated re�ectivities. Compared to
an alternative solution based on horizontal contraction, the velocity update is the gradient of
an objective function. To remove the imprint of the re�ectivity, we have proposed to use the
inverse of the modelling operator multiplied by the velocity at a speci�c power determined
in 1D and applicable in 2D. The next step consists of applying non-linear iterations to fully
determine the velocity model.
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4.2.10. Inversion (appendix-A)

We develop the main steps to derive the inversion formula (equation 4.6). Under the high
frequency approximation, the Green’s function in the frequency domain is given by

G0(s,x,ω) = K(ω)A(s,x)eiωT(s,x), (4.17)

where T and A are the travel times and geometrical amplitudes solutions of the Eikonal and
transport equations. In 1D, K(ω) = 1/iω and in 2D, K(ω) = 1/

p
iω, introducing an integration

or half-integration in the time domain. Let de�ne kx = iω∇T(s,x− h) + iω∇T(r,x+ h). The
F operator obtained as a combination of the forward and inverse operators in equation (4.5)
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reads

F (y,y′) = k(x,h)

∫
dk (iω)2+ν+β

����
∂ (s, r,ω)
∂ (k)

����A2(s,x− h)A2(r,x+ h)

eik·(y′−y)m1/2
0s m1/2

0r cosβs cosβr , (4.18)

where y= (x,h) is the vector in the extended space, and k= (kx,kh) the associated wavenumber
vector. m0s and m0r are model values at the source and receiver positions, whereas βs and βr
are take-o�set angles for the source and receiver positions. To obtain equation (4.18), we have
�rst used the following approximations

Dsz
G0(s,x,ω)' (iω) cosβsm

1/2
0s G0(s,x,ω) (4.19)

Drz
G0(r,x,ω)' (iω) cosβr m1/2

0r G0(r,x,ω) (4.20)

DzG0(s,x− h,ω)G0(r,x+ h,ω)' (iω)(+m1/2
0− cosθs +m1/2

0+ cosθr)G0(s,x− h,ω)
G0(r,x+ h,ω)

(4.21)

DhzG0(s,x− h,ω)G0(r,x+ h,ω)' (iω)(−m1/2
0− cosθs +m1/2

0+ cosθr)G0(s,x− h,ω)
G0(r,x+ h,ω),

(4.22)

where θs and θr are the angles at the image points x− h and x+ h associated to the source and
receiver positions. The model values m0− and m0+ are also evaluated at x− h and x+ h. Then
we apply a change of variable from (s, r,ω) to k and replace the Green’s functions by their high
frequency approximation. The squared amplitudes are due to the application of the forward
and inverse operators.

The remaining quantities to be evaluated are the determinant and the amplitude terms.
Here we use the fact that the kernel eik(̇y−y′) is oscillating and that the amplitude terms have a
smoother behaviour (ten Kroode, 2012): we thus evaluate the amplitudes only at y. The 3× 3
determinant in 2D can easily be obtained as ks and kr have explicit expressions, yielding

����
∂ (k)
∂ (s, r,ω)

����= −(iω)2m1/2
0+ m1/2

0−

����
∂ θs

∂ s

����
����
∂ θr

∂ r

����

�������

cosθs cosθr m1/2
0− sinθs +m1/2

0+ sinθr

− sinθs − sinθr m1/2
0− cosθs +m1/2

0+ cosθr

− cosθs cosθr −m1/2
0− sinθs +m1/2

0+ sinθr

�������
,

= 2(iω)2m1/2
0+ m1/2

0−

����
∂ θs

∂ s

����
����
∂ θr

∂ r

����
�

m1/2
0+ cosθs +m1/2

0− cosθr

�
. (4.23)

The determinant expression contains terms evaluated at x− h and x+ h, and partial derivatives
of the angles θs and θr at the image positions x− h and x+ h, with respect to the source
and receiver positions. Note that the determinant also has the term m1/2

0+ cosθs +m1/2
0− cosθr .

The application of Dz and Dhz on the Green’s function provides m1/2
0− cosθs +m1/2

0+ cosθr and
m1/2

0− cosθs−m1/2
0+ cosθr (equations 4.21 and 4.22): in other words, the model value m1/2

0− in front
of cosθs is estimated at x− h and not at x+ h as it should be in the determinant expression.
The same holds for the receiver side. The new term Dp is de�ned as a linear combination of Dz

and Dhz (equation 4.7) to fully remove m1/2
0+ cosθs +m1/2

0− cosθr in equation (4.23). Finally, the
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expressions for the amplitudes are given in Zhang et al. (2005), ten Kroode (2012) and Hou and
Symes (2015).

A2(s,x− h) =
1

8π2

1

m1/2
0s cosβs

����
∂ θs

∂ s

����, (4.24a)

A2(r,x+ h) =
1

8π2

1

m1/2
0r cosβr

����
∂ θr

∂ r

����. (4.24b)

Once more, it is remarkable that the two derivative terms |∂ θs/∂ s| and |∂ θr/∂ r| cancel out
in the F expression. The cosβs and cosβr terms are also removed in equation (4.18): this was
the reason why vertical derivatives at the source and receiver positions were introduced in
equation (4.4).

4.2.11. Gradient derivation for the inversion case (appendix-B)

We explain how to compute the gradient of the objective function J0
inv with respect to the model

m0 (equation 4.11b). The expression for β di�erent from zero is simply given in equation (4.12b).
With the Lagrangian formalism, the principle consists of extending the objective function and
of introducing the state equations are constrains (Plessix, 2006). The strategy is the same for
the classical DSO approach.

eJ = 1
2
‖aξ‖2 − 
λ(x,h)

��ξ(x,h)−Dpξ0(x,h)
�

−
­
λ0(x,h)

����ξ0(x,h)−
∫

dsdωS∗0(s,x− h,ω)R0(s,x+ h,ω)
·

− 
µs(s,x,ω)
��L0S0 − Ss(s,x,ω)

�

− 
µr(s,x,ω)
��L ∗0 R0 −Rs(s,x,ω)

�
,

(4.25)

where J now depends on (m,λ,ξ,λ0,ξ0,µs, S0,µr , R0). The �rst part in equation (4.25) is the
original objective function. The other parts are respectively the de�nition of the re�ectivity
variables ξ and ξ0, and of the forward S0 and backward R0 wave�elds, solutions of the wave
equation with source terms Ss and Rs. The associate adjoint variables are λ, λ0, µs and µr . The
total gradient reads

dJ
dm0

=
∂ J
∂m0

+
∂ λ
∂m0

∂ J
∂ λ
+
∂ ξ
∂m0

∂ J
∂ ξ
+
∂ λ0

∂m0

∂ J
∂ λ0

+
∂ ξ0

∂m0

∂ J
∂ ξ0

+
∂ µs

∂m0

∂ J
∂ µs

+
∂ S0

∂m0

∂ J
∂ S0

+
∂ µr

∂m0

∂ J
∂ µr

+
∂ R0

∂m0

∂ J
∂ R0

.
(4.26)

In order the avoid to compute the Fréchet derivatives (derivatives of λ, ξ, λ0, ξ0, µs, S0, µr
and R0 with respect to m0), we set as a choice and as a de�nition for the adjoint variables λ, λ0,
µs and µr , the derivative of J with respect to λ, ξ, λ0, ξ0, µs, S0, µr and R0 to zero, leading to
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eight equations

λ= a2ξ, (4.27a)
ξ(x,h) = Dpξ0(x,h), (4.27b)

ξ0(x,h) =

∫
S∗0(s,x− h,ω)R0(s,x+ h,ω)dsdω, (4.27c)

L ∗0 R0 = Rs(s,x,ω), (4.27d)
L0S0 = Ss(s,x,ω). (4.27e)

λ0(x,h) = D∗pλ= D∗pa2Dpξ0, (4.27f)

= −322m2a2D2
z ξ0 for laterally invariant models, (4.27g)

= a2ξ0 for the adjoint version, (4.27h)

L ∗0 µs =

∫
λ0(x+ h,h)R0(s,x+ 2h,ω)dh, (4.27i)

L0µr =

∫
λ0(x− h,h)S0(s,x− 2h,ω)dh. (4.27j)

equations (4.27a) to (4.27e) are solved in the reverse order. ξ0 is obtained by crosscorrelating
the forward wave�eld S0 with the back-propagated residual wave�eld R0. Then, ξ is obtained
by simply applying the di�erential Dp operator onto ξ0. For the λ0 variable, the adjoint of
Dp should be applied to λ. In a laterally invariant model, m0+ = m0− = m0. As a(h) does not
depend on x, λ0 is obtained by applying the second derivative in z (equation 4.27g). As for
Ss and Rs, µs and µr are solution of the same wave equation, but for di�erent source terms
for which the modi�ed re�ectivity λ0 is activated by R0 or S0 (equations 4.27i and 4.27j). For
the �nal expression of the gradient, both L0 and Dp depend on m0, leading to three terms
(equation 4.11b).

4.2.12. Optimal β parameter (appendix-C)

In the 1D case, we demonstrate that oscillatory terms in equation (4.14) cancel out. The strategy
consists (1) of splitting the integrals over y from 0 to zmax into two parts, and (2) of integrating
by part. According to equation (4.14), Gβ

inv consists of three terms G1, G2 and G3, namely

G1(z) =
γ
v0

∫ zmax

0

dy (y − ze)
2 g ′inv(p[y])ginv(q[z, y]), (4.28a)

G2(z) =
γ
2
(β+ 2)(z − ze)

2 g2
inv(p[z]), (4.28b)

G3(z) = γ
∫ zmax

0

dy (y − ze)ginv(p[y])ginv(q[z, y]), (4.28c)
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with γ , p(y) and q(z, y) given by

γ =
4R2

e

v2β
0

�
ve

v0

�2

, (4.29a)

p = 2
�

ze

ve
− y

v0

�
, (4.29b)

q = 2
�

ze

ve
− z + y + |z − y|

2v0

�
. (4.29c)

Note that q(z, y) = p(z) if z ≥ y , and p(y) otherwise. We consider G1 and �rst split the
integrals between 0 to z and between z to zmax

G1(z) =
γ
v0

∫ z

0

(y − ze)
2 g ′inv(p[y])ginv(q[z, y])dy

+
γ
v0

∫ zmax

z
(y − ze)

2 ginv(p[y])g
′
inv(q[z, y])dy ,

(4.30a)

=
γ
v0

ginv(p[z])

∫ z

0

(y − ze)
2 g ′inv(p[y])dy

+
γ
v0

∫ zmax

z
(y − ze)

2 ginv(p[y])g
′
inv(p[y])dy .

(4.30b)

We have simpli�ed q(z, y) depending if z ≥ y or not. The �rst part of equation (4.30b) is
integrated by parts, yielding

− γ
2

ginv(p[z])
�
(y − ze)

2 ginv(p[y])
�z

0
+ γ ginv(p[z])

∫ z

0

(y − ze)ginv(p[y])dy

=− γ
2
(z − ze)

2 g2
inv(p[z]) + γ

∫ z

0

dy (y − ze)ginv(p[y])ginv(q[z, y])dy ,
(4.31)

In a similar way, we integrate the second part of equation (4.30b)

− γ
4

�
(y − ze)

2 g2
inv(p[y]))

�zmax

z
+

γ
2

∫ zmax

z
(y − ze)g

2
inv(p[y])dy

=
γ
4
(z − ze)

2 g2
inv(p[z]) +

γ
2

∫ zmax

z
(y − ze)ginv(p[y])ginv(q[z, y])dy .

(4.32)

The integration by parts introduced a multiplication by −v0/2. We have supposed that

ginv(p[0]) = ginv(p[zmax]) = 0.
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This is reasonable if zmax if large enough. We combined the two parts and get

G1(z) =−
γ
4
(z − ze)

2 g2
inv(p[z])

+ γ
∫ z

0

(y − ze)ginv(p[y])ginv(q[z, y])dy

+
γ
2

∫ zmax

z
(y − ze)ginv(p[y])ginv(q[z, y])dy .

(4.33)

The total gradient reads

Gβ
inv(z) =G1(z) +G2(z) +G3(z), (4.34)

=
γ
2

�
β+ 3

2

�
G2(z)

+ 2γ
∫ z

0

(y − ze)ginv(p[y])ginv(q[z, y])dy

+
3γ
2

∫ zmax

z
(y − ze)ginv(p[y])ginv(q[z, y])dy .

(4.35)

For β = −3/2, the �rst oscillatory term is zero. By analogy with the horizontal contraction
approach, the remaining terms have a smooth behaviour: for an objective function J1 =
1/2‖hξ(x, h)‖2, the adjoint source wave�eld is ∂ J1/ξ = h2ξ. Modi�ed versions have been
proposed such as sign(h)h2∂ ξ/∂ h and h∂ ξ/∂ h (Fei and Williamson, 2010; Shen and Symes,
2015). They are not associated any more to a gradient of an objective function, but usually lead
to smooth gradients, except for example in the case of a low anomaly velocity (Shen and Symes,
2015). The equivalent in 1D would be (z− ze)∂ ξ/∂ z. This is exactly the term we �nd in Gβ

inv(z)
when β= −3/2 (equation 4.35). As a conclusion, we do not prove that Gβ

inv(z) is smooth, but
has a similar behaviour as the terms in the horizontal contraction (Shen and Symes, 2015), while
being a gradient of a speci�c objective function.

This concludes the manuscript submitted to Geophysics.

4.3. Introduction of migration weights in the iterative
migration process

In section 4.2, we have introduced an approximate inverse F† of the extended Born-modelling
operator F. Applying this pseudo-inverse to observed data produces CIGs free of migration
artefacts, leading to homogeneous gradients of the associated MVA objective function. In
this section we explain how F† can be introduced in the iterative migration process. This
modi�cation is expected to accelerate the convergence speed of iterative migration, but not
necessarily to stabilise the MVA gradient of the nested optimisation process.

The weighted iterative scheme de�ned here is di�erent from the one proposed by Hou and
Symes (2016a). Their strategy is based on the approximate inverse formula of Hou and Symes
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(2015), which can be expressed as a modi�cation of the usual adjoint with two weighting
operators:

F† =WmodFTWdata. (4.36a)

Then Hou and Symes (2016a) propose a modi�ed iterative scheme using the standard linear
conjugate gradient algorithm with new de�nitions for the norms in the extended model and
data spaces,

〈ξ |χ〉Wmod
= 〈ξ |Wmodχ〉E , (4.36b)

〈u | v〉Wdata
= 〈u |Wdatav〉Dobs

, (4.36c)

with the requirement that Wmod and Wdata are positive de�nite operators.
The inversion formula derived in section 4.2 cannot be decomposed in this way, so another

strategy has to be de�ned. Here we propose to use the approximate inverse F† as a right
preconditioner. Note that the use of an amplitude-preserving migration operator as a precondi-
tioner has already been studied in other contexts. Sevink and Herman (1996) use it for iterative
migration, but do not consider an extended model space. Métivier et al. (2015) use the Beylkin
migration operator as a left preconditioner in FWI and show that it allows to accelerate the
recovery of the short-scale structure of the velocity model.

In the following, we detail a preconditioned iterative scheme based on the inverse de�ned
in section 4.2, �rst in the general non-linear case, then in the linear-case, corresponding to
primaries modelled with the �rst-order Born approximation.

4.3.1. Preconditioned iterative migration: non-linear case

In the general non-linear case, the migration objective function J0 : E 7→ R is de�ned as (the
implicit dependence of J0 and P on c0 is omitted in this section and in section 4.3.2 for the sake
of clarity),

J0[ξ] =
1
2



MP[ξ]− Pobs


2
Dobs
+ φ[ξ], (4.37)

where operator M : D 7→ Dobs selects the value of calculated data at receiver positions. Pre-
conditioning may be seen as a change of variables. Let us de�ne a new variable bξ ∈ Dobs such
as

ξ = F†bξ, (4.38)

where F† is the pseudo-inverse of the extended Born modelling operator F, as de�ned in
section 4.2. Replacing ξ by F†bξ in equation (4.37) leads to a new objective function ÒJ0 : Dobs 7→ R,

ÒJ0

�bξ
�
=

1
2




MP
�
F†bξ

�
− Pobs





2

Dobs

+ φ
�
F†bξ

�
, (4.39)

with 



ÒJ0

�bξ
�
= J0[ξ],

∂ ÒJ0

∂ bξ
�bξ
�
= (F†)T

∂ J0

∂ ξ
[ξ]

(4.40a)

(4.40b)
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4.3. Introduction of migration weights in the iterative migration process

The preconditioned iterative migration scheme now consists of �nding the value of bξ in the
data space minimising ÒJ0. The corresponding value in the image space is a minimiser of J0 and
can be computed as ξ = F†bξ. The inclusion of the preconditioner in the minimisation algorithm
is easy. The algorithm is initiated with ξ(1) = 0 in E , so that the initial value in Dobs is bξ(1) = 0.
Then at each iteration, two steps are added to the classic algorithm, so that the value of bξ(n+1)

is updated from bξ(n) in four steps:
(i) given bξ(n) ∈ Dobs, compute the corresponding value ξ(n) ∈ E according to ξ(n) = F†bξ(n);

(ii) compute the value and gradient of the original objective function: J0[ξ(n)] and g(n) =
∂ J0/∂ ξ[ξ(n)] ∈ E ;

(iii) using equations (4.40b) and (4.40b), go back to the Dobs-space to determine the value of
the new objective function ÒJ0, and its gradient bg(n) ∈ Dobs with respect to bξ;

(iv) determine a descent direction bd(n) ∈ Dobs and a step length α(n) ∈ R to update bξ,
bξ(n+1) = bξ(n) +α(n)bd(n), (4.41)

and go back to step (i).
This optimisation algorithm is the same as the one described in chapter 2, except that it is
performed in the observed data space instead of the extended model space. Only two additional
calculations are needed: one to go fromDobs to E (step (i)) where the usual gradient is computed,
and one to go back to Dobs (step (iii)). This operation requires the ability to compute the adjoint
(F†)T of the approximate inverse F†. The calculation of this operator is detailed in appendix C.
It can be interpreted as a weighted modelling favouring small re�ection angles. Note that if
the algorithm was initiated with a non-zero value ξ(1), we would need to compute the inverse
(F†)−1 of F† to compute the corresponding value in the Dobs-space. Starting with ξ(1) = 0, this
operator does not need to be computed.

The main computational cost remains the computation of the usual gradient in E (resolution
of seven wave-equations, as described in table 2.2). With preconditioning, four additional
wave-equations have to be solved (table 4.2), two for the application of F† to bξ(n) and two for
the application of (F†)T to ∂ J0/∂ ξ[ξ(n)] (appendix C).

F† Dobs 7→ E 2

(F†)T E 7→ Dobs 2

(F†)TF† E 7→ E 3

Table 4.2. – Number of wave-equations to be solved to compute the inverse map F†, its adjoint
(F†)T and the composition of the two operators. The number indicated here should be
multiplied by the number of source positions considered in the acquisition.

In the non-linear case of multiples, the e�ciency of the preconditioned strategy will be
demonstrated on a numerical example (section 4.4.2). We now consider the special linear case of
primaries only, where we explain theoretically why we expect the choice of F† as preconditioner
to accelerate the convergence.
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Chapter 4. Weighted Iterative Migration Velocity Analysis

4.3.2. Preconditioned iterative migration: linear case

We now consider the linear case, where the modelling is described by the linear extended Born
modelling operator F : E 7→ Dobs and the regularisation is the `2-norm. In this speci�c case, the
implementation simpli�es and the bene�ts of the preconditioner are easier to understand.

The classic (equation 4.37) and preconditioned (equation 4.39) versions of the objective
function read 




J0[ξ] =
1
2



Fξ− Pobs


2
Dobs
+ aφ

1
2



ξ


2
E ,

ÒJ0

�bξ
�
=

1
2



FF†bξ− Pobs


2
Dobs
+ aφ

1
2



F†bξ


2
E .

(4.42a)

(4.42b)

Deriving these expressions with respect to ξ and bξ respectively lead to two linear systems
( �

FTF+ aφ I
�
ξ = FTPobs,

(F†)T
�
FTF+ aφ I

�
F†bξ = (F†)TFTPobs.

(4.43a)

(4.43b)

The linear system (equation 4.43b) can be solved with a classic conjugate-gradient (CG) algorithm
(Nocedal and Wright, 2006, p. 112). Note that this system is de�ned in the Dobs-space, contrary
to the classic linear system (equation 4.43a).

As F† is a pseudo inverse of F, the operator (F†)TFTFF† = (FF†)T(FF†) should be close to
the identity operator. Then, provided that the regularisation weight aφ is relatively small, the
resolution of this new linear system should be much faster and should require less iterations.

In practice, the resolution of the preconditioned system (4.43b) with the classic CG-algorithm
is equivalent to the resolution of the usual system (4.43a) with the preconditioned CG-algorithm
(Nocedal and Wright, 2006, p. 119) and the preconditioner F†(F†)T : E 7→ E . This has the
advantage of fewer modi�cations in the implementation, in particular the resolution is still
performed in the E -space. Compared to the usual CG-algorithm, the additional computational
cost is the product at each iteration of F†(F†)T with a vector of E , requiring three additional
wave-equations to be solved (table 4.2).

4.3.3. Preconditioned resolution of the linear adjoint problem

We now consider the computation of the gradient of the MVA objective function studied in
chapter 3. Using method A, introducing the preconditioner would change the equations to
be solved and would add new contributions to the total gradient, as F† and (F†)T depend on
c0. In the following, we consider only method B where the �nal re�ectivity is de�ned as the
exact solution of the linear system ∂ J0

∂ ξ (ξ
∞) = 0. Then introducing the preconditioner does not

change the computation of the gradient, but only allows to �nd an approximate solution of this
linear system in a reduced number of iterations.

Moreover, the preconditioner can also be used to accelerate the resolution of the adjoint
system, which is a linear problem

�
∂ 2J0

∂ ξ2

�
c0,ξ(N+1)

��
η = ATAξ(N+1), (4.44)
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where the adjoint variable is noted η from now on. In the linear case, this system is very similar
to the direct problem (equation 4.43a),

�
FTF+ aφ I

�
η = ATAξ(N+1). (4.45)

Then the preconditioned CG-algorithm with F†(F†)T as preconditioner can be used to solve
the adjoint problem, both in the linear and non-linear cases. In the linear case at least, the
preconditioner should in theory accelerate the resolution of the adjoint problem. This will be
tested in section 4.4.3.

In summary, preconditioning does not change the computation of the gradient of the MVA
objective function with method B (equation 3.12). The calculation only uses the last iterates
ξ(N+1) and η(N+1,M+1) of the direct and adjoint problems. Preconditioning only provides a more
e�cient way to �nd a solution to these problems in fewer iterations.

4.4. Synthetic examples

In this section, the behaviour of preconditioned iterative migration is illustrated on simple
examples similar to the ones presented in chapters 2 and 3.

We �rst consider the case of primary re�ections only. Note that in this case, iterative migra-
tion is not necessarily required as direct inversion (section 4.2) already provides a satisfactory
re�ectivity image. The primary-only case is studied here to test the e�ciency of the precon-
ditioner to accelerate the convergence of iterative migration. Then we consider a case with
�rst-order surface-related multiples to determine if the preconditioner also improves the conver-
gence rate of migration although it has not been designed for multiples. Finally, we investigate
the e�ciency of the preconditioner for the resolution of the adjoint problem with primaries only.
We also compare the background velocity updates obtained with direct and iterative inversions.

4.4.1. Preconditioned iterative migration with primaries only

In this �rst example, we consider primary re�ections only and a simple model with a single
re�ector located at 300 m depth in a homogeneous velocity model (3000 m/s).

First iterate of the preconditioned iterative scheme
We �rst compare the results obtained with the inverse formula derived in section 4.2 to the
results of a single iteration of preconditioned iterative migration. The corresponding re�ectivity
images are de�ned as F†Pobs and F†(F†)TFTPobs = F†(FF†)TPobs, respectively. Note that the
approximate inverse has been designed such that (FF†) is close to the identity operator in the
observed data space. Then we expect its transpose (FF†)T to be close to identity as well, and
thus the �rst iterate should be close to the result of direct inversion.

Before looking at the re�ectivity images, we compare the result of application of the operators
(FF†) and (FF†)T to observed data in a too low, correct and too high velocity model (�gure 4.18).
All results are expected to be very close to observed data. In practice, both operators correctly
reproduce input data and residuals are mainly located at large surface o�sets. However the
transposed version (FF†)T yields low-frequency artefacts before the primary event, especially
for a too high velocity model. These artefacts might have undesirable e�ects on CIGs.
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We now consider the application of the approximate inverse to three data sets: (1) observed
data, (2) result of application of (FF†) to observed data and (3) result of application of (FF†)T

to observed data (�gure 4.19). The �rst case corresponds to direct inversion and the third one
to the �rst iterate of preconditioned iterative migration, while the second case is considered
only for comparison. The CIGs obtained in the second case are closer to the result of direct
inversion than the �rst iterate of the preconditioned scheme. In particular the low frequency
artefacts observed on reconstructed data result in low frequency energy above the re�ector
in the case of a too high-velocity. This e�ect is less visible for a correct and a too low initial
velocity. Nonetheless, these CIGs show much improvement compared to the adjoint FTPobs,
�rst iterate of the non-preconditioned scheme. In particular, migration artefacts are greatly
attenuated.

Eventually we plot the value of the normalised MVA objective function obtained in homo-
geneous background velocity models after one iteration with and without preconditioning,
and the one obtained after direct inversion (�gure 4.20). With the inverse, the function is
perfectly centred at the correct velocity model. Because of residual energy above the re�ector,
the minimum after one preconditioned iteration is not at the correct velocity model, but it is
still more satisfactory than in the case of a single iteration without preconditioning.

This suggests that a single iteration of preconditioned iterative migration is not as e�cient
as direct inversion, and that additional iterations are required. This is actually not an issue as
the preconditioned iterative scheme is not meant to be used in this primary-only case but in the
more complex case of multiples for which iterations are required anyway to attenuate cross-talk
artefacts.

Results a�er a few iterations
We now perform ten preconditioned iterations on the same model (�gure 4.21). The main e�ects
of iterations on CIGs are additional deconvolution, strengthening of energy at large values
of h (in the case of an incorrect velocity model) and attenuation of residual energy above the
re�ector. We plot the value of the objective function across iterations obtained with and without
preconditioning (�gure 4.22). We consider the data mis�t, as well as the norm of the residuals
associated with the linear system (4.43a):



�FTF+ aφ I
�
ξ− FTPobs



, which is actually the value
of the gradient of J0 with respect to ξ. As expected, the preconditioned strategy is faster at
the �rst iteration, but both versions reach the same level of data mis�t after a few iterations.
As in Hou and Symes (2015), we consider a third possibility: iterative migration is performed
without preconditioning but with the approximate inverse as initial guess F†Pobs. In this case
very few progress is made at the �rst iteration because the approximate inverse is already a very
good solution to the minimisation problem. Note that we cannot consider the preconditioned
iterative minimisation with the approximate inverse as initial value because this would require
the ability to compute (F†)−1.

Eventually we compute the value of the normalised MVA objective function for several homo-
geneous background velocity models (�gure 4.23) after several iterations of the preconditioned
scheme. We saw that the minimum of the function does not correspond to the correct value of
c0 after a single iteration (�gure 4.20). This is progressively corrected and after �ve iterations,
the objective function of MVA is stable and minimum for the correct velocity.

In summary, we have shown that a single iteration of preconditioned iterative migration
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Figure 4.18. – Result of the application of (FF†) (�rst column) and (FF†)T (third column)
to observed data Pobs. The corresponding residuals are plotted in the second and fourth
column, respectively. All plots share the same colour scale. Observed data are computed in a
homogeneous velocity model (cex

0 = 3000 m/s) with a single �at re�ector. The velocity model
used to compute F and F† is too low (top, c0 = 2500m/s), correct (middle, c0 = 3000m/s),
and too high (bottom, c0 = 3500m/s). The last two columns show traces extracted at
positions indicated by dashed lines on the fourth column.
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Figure 4.19. – Common Images Gathers obtained in a too low (2500 m/s, top), correct
(3000 m/s, middle), and too high (3500 m/s center) background velocity model. CIGs
are computed by of application of the pseudo-inverse F† to observed data (1st column), to
observed data premultiplied by (FF†) (2nd column) and to observed data premultiplied by
(FF†)T (3rd column). We also consider the application of the adjoint operator FT to observed
data (4th column). The CIGs of the �rst and third columns correspond to the results obtained
by direct inversion as in section 4.2, and to the �rst iterate of the preconditioned iterative
scheme described in section 4.3, respectively. The CIGs of the second and fourth columns
are displayed for comparison.
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Figure 4.20. – Value of the normalised objective function of MVA obtained in homogeneous
velocity models for the approximate inverse and after one iteration with and without pre-
conditioning. The correct velocity is 3000 m/s. The oscillation in the dashed blue curve is
due to low frequency energy appearing above the re�ector in CIGs especially for too high
velocities (third column in �gure 4.19).
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Figure 4.21. – CIGs obtained after one (top) and ten (bottom) iterations of preconditioned
iterative migration in a too low (2500 m/s, left), correct (3000 m/s, centre) and too high
(3500 m/s, right) velocity model.
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Figure 4.22. – Results of iterative migration in a too slow velocity model (2500 m/s) with
primaries only. We plot the relative data mis�t (left) and the relative normal residual
associated with the linear system (4.43a). Red and blue curves correspond to the case of a
zero initial guess (ξ(1) = 0) with classical and preconditioned iterative migration, respectively.
The green curve corresponds to non-preconditioned migration initiated with the approximate
inverse ξ(1) = F†Pobs. The dashed line corresponds to the value obtained for the approximate
inverse F†Pobs.
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Figure 4.23. – Value of the MVA objective function obtained in homogeneous background velo-
city models after several iterations with preconditioning. The correct velocity is 3000 m/s.

148



4.4. Synthetic examples

yields slightly degraded results compared to direct inversion because (FF†)T is close but not
equal to the identity. Its application to observed data yield small low-frequency artefacts.
However the CIGs obtain after a single iteration with the preconditioner is free of migration
artefacts, contrary to the non-preconditioned case. Besides the preconditioner also improves
the convergence rate of iterative migration.

4.4.2. Preconditioned iterative migration with multiples

We now discuss an example with �rst-order surface-related multiples. We consider an exact
model with a background velocity increasing with depth, from 2000 m/s at the surface to
3000 m/s at 1000 m depth (�gure 4.24a). The model is 2D but laterally invariant. The re�ectivity
model consists of a single re�ector located at 475 m depth. Contrary to the case of homogeneous
models considered in the preceding chapters, we expect events in CIGs corresponding to
primaries and multiples (interpreted as primaries) to have di�erent focusing behaviour. In
particular, cross-talk artefacts should not be focused for the correct velocity model and should
favour too low velocities.

We consider several initial velocity models linearly increasing with depth. All start at
the correct velocity at the surface (2000 m/s), but the velocity at 1000 m depth ranges from
2200 m/s to 3300 m/s (�gure 4.24a). We �rst compute CIGs by applying the approximate
inverse formula to observed data (�gure 4.24c) and plot the corresponding MVA objective
function (�gure 4.24b). As observed data are computed with the Born approximation, primaries
and multiples are available separately and we also plot the value of the objective function
obtained for observed data containing primaries only or multiples only with the same range
of initial velocity models (�gure 4.24a). In the case of primaries only, the objective function is
minimum for the correct velocity, similarly to the results of section 4.4.1. Cross-talk artefacts
linked to multiples focus for a too low velocity model (�gure 4.24c, 3rd column) and curve
upward for the correct velocity model (�gure 4.24c, 4th column). As a consequence, the minimum
of the MVA objective function considering both primaries and multiples is not obtained for the
correct velocity model.

We now perform ten iteration of iterative migration without and with preconditioning using
the highest initial velocity model considered in �gure 4.24. As in the primaries-only example,
we also consider the case of iterative migration without preconditioning starting with the
approximate inverse F†Pobs as initial guess. To help removing residual energy at large o�set,
we add regularisation with the Huber norm (Guitton and Symes, 2003). In the �rst iterations,
the migration objective function decreases faster with preconditioning and with the strategy
initialised with the approximate inverse (�gure 4.26), but the data mis�t is similar for the three
cases after a few iterations. The �nal CIGs obtained with the three strategies are very similar
(�gure 4.25), but the best attenuation of cross-talk artefacts is obtained in the preconditioned
case. This is the optimisation strategy used in the following of the study.

Another practical advantage of the preconditioned strategy is related with the determination
of an optimal step length. A general issue of linesearch techniques is the choice of an initial
guess α0 initiating the algorithm. Using the preconditioner, the linesearch strategy of Moré and
Thuente (1994) returns step lengths in the interval [0.1, 1] at each iteration. Hence α0 = 1 is
always a good initial guess. Besides we can even directly set α = 1 for the �rst iteration and
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(a) Exact background velocity model (red, solid) and
some of the initial models considered (black,
dashed). The re�ectivity model consists of a
single re�ector localised at z = 475 m.

2200 2400 2600 2800 3000 3200

0

1

velocity (m/s) at z = 1000m



|h|F†Pobs


2
E

F†Pobs


2
E

Pobs = primaries and multiples
Pobs = primaries only
Pobs = multiples only

(b) Normalised MVA objective function. Each func-
tion has been mapped linearly to the interval
[0, 1]. The correct model corresponds to a velo-
city of 3000 m/s at 1000 m depth.

0

250

500

750

1000

1250

de
pt
h
(m

)

2200 m/s 2400 m/s 2600 m/s 3000 m/s 3300 m/s

−150 0 150

0

250

500

750

1000

1250

h (m)

de
pt
h
(m

)

−150 0 150
h (m)

−150 0 150
h (m)

−150 0 150
h (m)

−150 0 150
h (m)

(c) Central CIGs ξinv = F†Pobs obtained for di�erent background velocity models (top) and application
of the annihilator to these CIGs Aξinv/‖ξinv‖E (bottom). The plots of the bottom row have the same
colour scale.

Figure 4.24. – Result of application of the approximate inverse F† to observed data containing
both primaries and �rst-order surface-related multiples with several initial background
velocity model increasing with depth.
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save the computational cost of a linesearch. The �rst gradient is very close to the approximate
inverse, hence setting α= 1 yield a re�ectivity model ξ(2) very well explaining primaries, so
that residuals are mostly due to multiples.

Finally we consider the same range of initial velocity models as in �gure 4.24b and we compute
the value of the MVA objective function obtained after several iterations of preconditioned
iterative migration (�gure 4.27). After a single iteration, we obtain a result similar to the direct
inversion case with a minimum obtained for a too low velocity model. With iterations cross-talk
artefacts are attenuated and the minimum is progressively shifted to the correct velocity model.

4.4.3. Preconditioned resolution of the adjoint problem and associated
gradient

Eventually we consider the computation of the gradient of J1 with method B as described
in section 3.2.2. We go back to the primaries-only example of section 4.4.1 and test if the
preconditioner accelerates the convergence rate of the adjoint problem. We will show that the
results are not fully satisfactory; hence we defer to chapter 5 the numerical applications in the
case of multiples (section 5.3.2).

We assume that the direct problem has been solved in seven iterations, meaning that the �nal
re�ectivity is ξ(8). The adjoint problem then consists of �nding the solution η ∈ E of

Hη = b, (4.46)

where H is the Hessian matrix of J0, which is independent of ξ in the linear case, and b = ATAξ(8)
is the image residual. A is the annihilator consisting of a multiplication by the subsurface o�set
and a power of the background velocity model,

[Aξ](x, h) = cβ
0(x)|h|ξ(x, h). (4.47)

We choose β= 3/2, the value resulting in smooth gradients free of artefacts around the re�ector
in the case of direct inversion (section 4.2). The adjoint problem is solved with ten iterations of
the conjugate gradient algorithm with and without preconditioner. We compare the convergence
rate obtained with both strategies. Contrary to the direct problem, there is no norm in the
observed data-space Dobs associated with the resolution of equation (4.46) which can be used as
a convergence criteria. Here the conjugate gradient algorithm actually minimises

φ[η] = 1
2
〈η |Hη〉E − 〈b |η〉E . (4.48)

A di�culty with this objective function is that we do not know the value obtained for the ideal
solution of the linear problem. Therefore we will also look at the relative normal residuals of
the linear system (4.46), de�ned as

JNormal Res.[ξ] =
‖Hξ− b‖E
‖b‖E

, (4.49)

which can be interpreted as the normalised norm of the gradient of φ (equation 4.48). Note
that contrary to φ , there is no guarantee that the value of the normal residual decreases at each
iteration.
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Figure 4.25. – CIGs obtained after ten it-
erations of migration without (left) and
with (centre) preconditioning starting with
ξ(1) = 0, and ten iterations of migra-
tion without preconditioning starting with
ξ(1) = F†Pobs (right).
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Figure 4.27. – Normalised MVA objective
function obtained after several iterations
of preconditioned iterative migration. Each
function has been mapped linearly to the in-
terval [0,1]. The correct model correspond
to a velocity of 3000 m/s at 1000 m depth.
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4.4. Synthetic examples

Small regularisation
We �rst consider a case with small regularisation, as in section 4.4.1. Using the same right-hand
side term b, that is the same value for ξ(8), we solve the adjoint problem in ten iterations,
without and with preconditioning (�gure 4.28). We obtain a much lower convergence rate than
for the direct problem, even with the preconditioner. The normal residual associated with the
last value η(8,11) is just a little lower than for the initial value η(8,1). At the last iteration, the
adjoint variable η(8,11) is very oscillating (�gure 4.29), and residuals of the linear system are
located mainly near the surface, that is away from the re�ector position. This is related to the
observations made in chapter 3: weak energy at large values of h, which does not bear relevant
kinematic information, has large in�uence on the resolution of the adjoint problem. Besides,
note that the zero value at h= 0 in b is not recovered in Hη(8,11).
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0

iterations

CG objective function
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Relative Normal Residual

without preconditioning
with preconditioning

Figure 4.28. – Convergence of the adjoint problem in the case of small regularisation.

An undesirable consequence of the slow resolution of the adjoint problem is that the value of
the associated gradient G(7,M) does not converge to a stable �nal value (�gures 4.30 and 4.31). The
sign of the gradient may even change across iterations (for example G(7,4) in the preconditioned
case). Without preconditioning, the gradients exhibit vertical spurious oscillations very similar
to those observed in the preceding chapter. When the adjoint problem is solved with the
preconditioner we do not observe these artefacts. However the �nal value is quite di�erent from
the one obtained after direct inversion, which is much smoother and homogeneous (�gure 4.32).
More investigation is needed to understand these results (chapter 5). In the following we
examine if a stronger regularisation helps to overcome these di�culties.

Stronger regularisation
As in chapter 3, we consider increasing the value of the regularisation coe�cient aφ . The
convergence of the adjoint problem is improved but still much slower than for the direct
problem (�gure 4.33). The preconditioner does not clearly improve the convergence rate. This
can be explained by the fact that the operator (F†)T(FTF + aφ I)F† is theoretically close to
the identity only if the regularisation weight is not too high. The �nal value η(8,11) is still
very oscillating (�gure 4.34). Although the residuals of the linear system are weaker in the
preconditioned case, the zero value at h = 0 in b is not recovered in Hη(8) and there are still
strong residuals away from the re�ector.

With stronger regularisation, the spurious oscillations appearing when no preconditioning is
applied (�gure 4.30) are greatly attenuated (�gure 4.35), as already noticed in chapter 3. With
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Figure 4.29. – Residuals related to the linear adjoint problem (4.46) after ten iterations. We
show the central CIG of the adjoint variable η (1st column) obtained after ten iterations
without preconditioning (top) and with preconditioning (bottom). Then we compare Hη
(2nd column) with the right-hand side of the adjoint problem (3rd column) and compare this
two vectors. On each line, the three most right plots share the same colour scale.

the preconditioner, the gradients are smoother and more homogeneous (�gures 4.35 and 4.36),
but do not converge to a stable solution. Besides they are still quite di�erent from the gradient
obtained by direct inversion (�gure 4.37). In particular there are still residual oscillations around
the re�ector position.

As a conclusion, we note that although direct inversion and iterative migration yield very
similar re�ectivity images, the associated gradients are quite di�erent. In particular, the use of
the preconditioner does not relax the need for strong regularisation to obtain smooth velocity
updates. An other issue associated with the iterative case is the di�cult resolution of the
adjoint problem, and the instability of the associated gradient. Further investigation is needed
to understand this unwanted behaviour and design a more robust strategy. This is the purpose
of chapter 5.

4.5. Conclusion

In this chapter, we have introduced an approximate inverse of the extended Born modelling
operator. It is similar to the one proposed by Hou and Symes (2015), the main di�erence being
that the derivation presented here uses a linearisation of the phase of FF†. The implementation
of the approximate inverse resembles the adjoint’s one with a similar computational cost. A
direct inversion strategy consisting of applying this operator to observed data yields CIGs
free of migration artefacts. Introducing a speci�c power of the background velocity update in
the associated MVA objective function results in a smooth and homogeneous gradient free of
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Figure 4.30. – Gradients obtained, in the case of small regularisation, after seven iteration of
preconditioned iterative migration for the successive values of the adjoint variable (from top
to bottom). The left and right columns correspond to the resolution of the adjoint problem
without and with preconditioner, respectively. The gradient is not really stable from one
iteration to another.

155



Chapter 4. Weighted Iterative Migration Velocity Analysis

0 100 200 300 400 500 600

0

depth (m)

without preconditioner

0 100 200 300 400 500 600

0

depth (m)

with preconditioner

M = 1 M = 3 M = 5 M = 7 M = 9
M = 2 M = 4 M = 6 M = 8 M = 10

Figure 4.31. – Central trace (x = 810 m) of the gradients shown in �gure 4.30. The value of
the gradient above the re�ector oscillates from one iteration to another.
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Figure 4.32. – Gradients obtained by direct inversion (top), and after iterative inversion (middle
without preconditioning and bottom with preconditioning) with small regularisation (N = 7
and M = 10, corresponding to the bottom row of �gure 4.31). The right column shows a
trace extracted at the middle position (corresponding to the dashed orange lines in �gure 4.31
for the iterative cases).
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Figure 4.33. – Convergence of the adjoint problem in the case of stronger regularisation.
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Figure 4.34. – Same as �gure 4.29 in the case of stronger regularisation.

oscillations around the re�ector.
The approximate inverse operator has been designed for primaries only. Iterative migration

is not required any more in this case, at least for regularly sampled input data, but is still needed
to handle multiple re�ections. The approximate inverse has been introduced as a preconditioner
to accelerate the resolution of both the direct and adjoint problems. Numerical examples show
that the preconditioner allows a faster convergence of the direct problem. Despite the similarity
between the direct and adjoint problems, the convergence rate of the latter is much slower,
even with the preconditioner. As a consequence the gradient obtained for successive values
of the adjoint problem is not stable and is quite di�erent from the one obtained after direct
inversion. Larger regularisation improves the smoothness of the gradient, but this is not a fully
satisfactory solution as the adjoint problem still converges much slower than the direct problem.
Besides, the preconditioner is not helpful when strong regularisation is applied.

These results may appear somehow surprising as direct inversion and iterative migration
provide very similar re�ectivity images. If we refer to chapter 3, the reason is that additional
deconvolution in the case of iterative migration results in small oscillations in the �nal re�ectivity
away from the re�ector. These di�erences allow to further reduce the data mis�t but have large
in�uence on the MVA objective function and its gradient, leading to very di�erent background
velocity updates.

To better understand these issues and to improve the stability of the gradient computation in
the iterative case, we conduct in the next chapter a pure 1D-analysis similar to the one presented
in section 4.2.5 and propose a slightly modi�ed MVA objective function leading to a more stable
procedure.
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Figure 4.35. – Same as �gure 4.28, but with a stronger regularisation.
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Figure 4.36. – Central trace (x = 810m) of the gradients shown in �gure 4.35.
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Figure 4.37. – Same as �gure 4.37 with stronger regularisation.

159





Chapter 5.

Regularised Migration Velocity Analysis

Contents

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2. Analysis on a pure 1D case . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2.1. Presentation of the 1D case . . . . . . . . . . . . . . . . . . . . . . . . 164
5.2.2. Direct inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.2.3. Iterative inversion: expression of the gradient . . . . . . . . . . . . . 171
5.2.4. Convergence speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.2.5. Shape of the gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2.6. In�uence of regularisation . . . . . . . . . . . . . . . . . . . . . . . . 180
5.2.7. New approach: application of a �lter on the �nal re�ectivity . . . . 180

5.3. 2D-Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3.1. Primaries only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3.2. Primaries and Multiples . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3.3. Alternative strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Résumé du chapitre 5

Ce chapitre présente la formulation �nale retenue pour l’analyse de vitesse parmigration itérative.
Il débute par une analyse dans un cas purement 1D des gradients de la DSO obtenus par inversion
directe (section 4.2) et par la stratégie itérative (suivant la méthode B dé�nie au chapitre 3).
Dans le cas purement 1D, l’acquisition ne comprend qu’une seule source et qu’un seul récepteur,
et le modèle de ré�ectivité n’est paramétré que par la profondeur, sans paramètre additionnel
équivalent de l’o�set en profondeur considéré dans le cas 2D. La formulation de la DSO en 1D
n’est valable que dans le cas d’un unique ré�ecteur : la qualité du modèle de vitesse est évaluée
en pénalisant l’énergie éloignée de la position exacte du ré�ecteur dans le vrai modèle. Ainsi
cet analogue 1D est arti�ciel et ne peut pas reproduire toute la complexité d’une acquisition 2D
et du modèle étendu avec l’o�set en profondeur. En revanche il présente des caractéristiques
similaires au cas 2D concernant l’instabilité du gradient par la méthode itérative pour un coût
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de calcul bien moindre. En outre, il permet une représentation des opérateurs de modélisation
et de migration sous forme de matrices.

Comme dans le cas 2D, les instabilités dans le calcul du gradient sont liées à l’apparition
d’énergie loin du ré�ecteur et non porteuse d’information cinématique, mais qui in�uence
grandement la fonction coût de la DSO. Pour stabiliser ce calcul, je propose de faire porter la
régularisation non pas sur la boucle interne comme étudié au chapitre 3, mais sur la boucle
externe. La régularisation prend ici la forme d’un opérateur appliqué au résultat de la migration
itérative avant pénalisation par l’annihilateur. Cet opérateur peut être interprété comme un
�ltre atténuant l’énergie non porteuse d’information cinématique dans le modèle de ré�ectivité.
Il est dé�ni ici par F†F, composition du pseudo-inverse avec l’opérateur de modélisation. Il est
important de noter que F† est construit de telle sorte que FF† soit proche de l’opérateur identité
dans le domaine des données. En revanche F†F est di�érent de l’identité dans le domaine image,
en particulier il atténue les évènements dans les CIGs qui perturbent l’analyse de vitesse.

L’e�et de cette régularisation est illustré dans les cas 1D et 2D. Il est possible de montrer
qu’appliquer l’opérateur F†F au résultat de la migration itérative produit, dans le cas de primaires
seuls, un modèle de ré�ectivité étendu proche du résultat obtenu par application directe du
pseudo-inverse aux données observées. Le calcul du gradient de la fonction coût externe est
aussi beaucoup plus stable, sans condition particulière sur le poids donné à la régularisation
dans la boucle interne, et le résultat également proche de celui obtenu dans le cas de l’inversion
« directe ». L’opérateur F†F étant fonction du macro-modèle, des termes additionnels doivent être
calculés pour obtenir le gradient. Cependant la résolution du problème adjoint étant accélérée
par l’introduction de cet opérateur, le coût numérique total de la méthode est diminué avec
l’ajout de la régularisation.

Dans le cas de multiples, la régularisation sur la boucle externe stabilise aussi le calcul du
gradient, mais la régularisation sur la boucle interne demeure essentielle. Finalement, une
stratégie alternative est étudiée dans le cas des multiples. Elle ne consiste à calculer qu’une seule
contribution du gradient total de la boucle externe ; la remise à jour ainsi obtenue est dénommée
« gradient tronqué » dans la suite du manuscrit. En particulier la résolution du problème adjoint
n’est plus nécessaire, ce qui réduit grandement le coût de calcul de la remise à jour du macro-
modèle. Physiquement, cette simpli�cation signi�e que la migration itérative est utilisée pour
obtenir un modèle de ré�ectivité dans le domaine étendu sans artefacts de migration et sans
artefacts dus aux multiples. Ce modèle de ré�ectivité est utilisé pour régénérer un nouveau
jeu de données constitué de ré�exions primaires uniquement, cinématiquement cohérentes
avec celles enregistrées dans les données observées. Finalement la stratégie d’inversion directe
décrite dans la section 4.2 est appliquée à ce nouveau jeu de données.
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5.1. Introduction

In this chapter, we analyse on a simple 1D case the behaviour of iterative migration velocity
analysis. The advantage of this simple setting is the possibility to explicitly build modelling
and migration operator and to run a large number of iterations. First we summarise the results
obtained in 2D in the preceding chapters.

• In chapter 2, iterative migration has been introduced and we have shown that migra-
tion artefacts as well as cross-talk artefacts appearing on CIGs at the �rst iteration are
progressively attenuated (�gure 2.15);

• In chapter 3, we compared two methods yielding an approximate gradient of the MVA
objective function after iterative migration. In the �rst approach, we derived the exact
gradient of an approximation of the ideal objective function. In the second one, we
compute an approximate gradient of this ideal objective function. The second approach
has a simpler implementation. The gradient is obtained in two steps. First an adjoint
variable in the extended model space has to be computed as the solution of a linear
problem, even in the presence of multiples. Then the gradient is computed using the last
iterate of the direct and adjoint problems. Numerical evidence show that regularisation
has to be introduced in iterative migration to ensure the smoothness of the gradient
(�gures 3.5 and 3.7) and to prevent the apparition of spurious oscillations;

• In chapter 4, we have introduced an approximate inverse of the extended Born modelling
operator. It is derived under the high frequency approximation, but involves wave-
equations operators only. For data containing primaries only, the application of this
pseudo-inverse to observed data yields CIGs free of migration artefacts. The gradient
of the associated MVA objective function is smooth and free of oscillations around the
re�ectors, provided that a speci�c power of the background velocity is introduced in the
annihilator. We showed how this approximate inverse can be used as a preconditioner
to speed up the resolution of iterative migration (�gure 4.22), needed in the presence of
multiples.

However several di�culties remain, investigated in this chapter:

• If the modelling is linear, the direct and adjoint problems are very similar. They consist
of the same system with two di�erent source terms,

Hξ = a for the direct problem, (5.1a)
Hη = b for the adjoint problem, (5.1b)

where H is the Hessian matrix of the migration objective function. However the resolution
of the adjoint problem requires in practice more iterations than the direct problem. Using
the approximate inverse operator as a preconditioner, a single iteration already provides a
very good solution for the direct problem, but this is not the case for the adjoint problem
(�gure 4.28);
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• Although direct and iterative inversion result in very similar re�ectivity images, they lead
to quite di�erent background velocity updates (�gure 4.32). In the iterative case, the gradi-
ent still has oscillations around the re�ector and modifying the MVA objective function
with a power of the background velocity does not allow to remove these oscillations.

In order to gain a better understanding of these issues and to propose solutions addressing
them, we study here a 1D-case de�ned in the same fashion as in section 4.2. Although the 1D-
case cannot reproduce all the features of 2D subsurface-o�set extended migration, its reduced
dimensionality allows to explicitly build and display modelling and inverse operators as matrices,
and to considerably reduce computation time, so that performing tens or hundreds of iterations
for solving both the direct and adjoint problems is a�ordable. For example, it becomes possible
to study the distribution of eigenvalues of the normal operator.

In this analysis we consider only the linear case of primaries. We have shown that direct
inversion works already well in this case; the objective here is to understand why the iterative
case is unstable and to propose a robust solution to this issue. At the end of the chapter, we
discuss on a 2D numerical example how the conclusions can be extended to the case of multiples.
We begin by presenting the 1D MVA approach. After a brief review of direct inversion with the
approximate inverse operator, we detail the computation of the gradient in the case of iterative
migration. A simple numerical example illustrates that the 1D and 2D cases have a similar
behaviour. Eventually we propose a modi�cation of the iterative MVA procedure to alleviate
the di�culties listed above.

In the second part of the chapter, this new strategy is applied on 2D examples, �rst on
primaries only, then on an example with primaries and �rst-order surface multiples. The
objective is to determine if the new approach de�ned in 1D exhibits the same bene�ts in the 2D
case.

5.2. Analysis on a pure 1D case

5.2.1. Presentation of the 1D case

We consider a pure 1D case, similar to the one studied in section 4.2.5, with a single source
and a single receiver located at the same position. In 2D, an extended-model space E is de�ned
by adding an extension parameter to the model spaceM . This is not necessary in 1D as the
model spaceM and the observed data space Dobs already have the same dimension, meaning
that vectors of E =M are parametrised only by depth z. However we keep distinct notations
E andM for consistency with the 2D case. In the following, the re�ectivity is de�ned as a
perturbation of the background velocity model1,

ξ(z) = δc(z)
2c0(z)

, (5.2)

and the re�ectivity model consists of a single re�ector located at zex with a re�ection coe�cient
Rex,

ξ(z) = Rexδ(z − zex). (5.3)
1another de�nition for the re�ectivity (e.g. ξ(z) = 2δc(z)/c3

0(z), as in equation 2.8) would modify the gradient
expressions, but not the conclusions.
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The annihilator A : E 7→ E is diagonal and de�ned as a multiplication by the distance to the
exact re�ector position,

[Aξ](z) = a(z)ξ(z) = |z − zex|ξ(z), (5.4)

where zex is the exact depth of the re�ector. Note that this 1D-MVA approach is valid for
re�ectivity models with a single re�ector only, but has a similar structure as the classical 2D
DSO formulation. Then the MVA objective function is de�ned in the general form as

J1[c0] =
1
2



ACξ[c0]


2
E , (5.5)

where the diagonal operator C : E 7→ E consists of a multiplication by cβ
0 . As for the 2D case,

using a speci�c value for β may allow to remove unwanted oscillations in the gradient of J1
(section 4.2).

Here we consider the case where ξ is de�ned as the result of iterative minimisation of

J0[c0,ξ] = 1
2



P[c0,ξ]− Pobs


2
Dobs
+ aφφ[ξ]

=
1
2



F[c0]ξ− Pobs


2
Dobs
+ aφφ[ξ],

(5.6)

for a �xed background velocity model c0, with F : E 7→ Dobs the Born modelling operator and
φ : E 7→ R the regularisation function.

The source wavelet and its approximate inverse are noted Ω and eΩ respectively. In the
numerical example, Ω is a Ricker with maximal frequency 40 Hz (�gure 5.1). The exact and the
initial velocity model are homogeneous (cexact

0 = 3000m/s and c0 = 2500m/s). The re�ectivity
consists of a single re�ector located at zex = 400m with Rex = 0.2. To be consistent with the
2D-implementation, we introduce a taper TE (z) (�gure 5.2) in the E -space by considering that J0
is function of (T · ξ) instead of ξ. The taper will not be indicated in the following equations for
the sake of clarity, but is taken into account in the implementation, including for the gradient
expressions.

With the assumption of single scattering, data depend linearly on the re�ectivity model and,
for a �xed velocity model c0, we can explicitly construct the (rectangular) matrices (�gure 5.3)
corresponding to the following operators

• F : E 7→ Dobs: modelling of primary re�ections;
• FT : Dobs 7→ E : migration of observed data;
• F† : Dobs 7→ E : approximate inverse of F, de�ned in section 4.2;
• (F†)T : E 7→ Dobs: adjoint of F†, which can be seen as a modi�ed modelling operator.

Given ξ ∈ E and P ∈ Dobs, these operators can be expressed with Green’s functions, as in
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Figure 5.1. – Source wavelet Ω and its approx-
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equations (4.8) in chapter 4, leading to





�
Fξ
�
(ω) = 4

c2
0(z)

∫

z
(iω)2Ω(ω)G2

0(s, z,ω)ξ(z)dz,

�
FTP

�
(z) =

4

c2
0(z)

∫

ω
(iω)2Ω∗(ω)G∗20 (s, z,ω)P(ω)dω,

�
F†P

�
(z) = −4

∂

∂ z

∫

ω

1
(iω)

eΩ∗(ω)
�
∂

∂ zs
G∗0(s, z,ω)

�2

P(ω)dω,

�
(F†)Tξ

�
(ω) = 4

∫

z

1
(iω)∗

eΩ(ω)
�
∂

∂ zs
G0(s, z,ω)

�2 ∂

∂ z
ξ(z)dz.

(5.7a)

(5.7b)

(5.7c)

(5.7d)

In essence, the adjoint and inverse expressions are very similar, except that Ω(ω) is replaced by
eΩ(ω) with a �rst-order integration in time, and that two vertical derivatives are applied at the
image point z and at the surface. The same observation holds for the forward modelling and
the adjoint of the inverse operator.

In a homogeneous velocity model c0, the 1D Green’s function reads

G0(s, z,ω) =
c0

2iω
e−iωτ(s,z), (5.8)

where τ(s, z) is the traveltime between the source s and the subsurface point z. The geometrical
spreading is constant in 1D. Then we can easily derive explicit expressions for the four linear
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5.2. Analysis on a pure 1D case

operators 



�
Fξ
�
(ω) =

∫

z
Ω(ω)e−2iωτ(s,z)ξ(z)dz,

�
FTP

�
(z) =

∫

ω
Ω∗(ω)e2iωτ(s,z)P(ω)dω,

�
F†P

�
(z) =

2
c0

∫

ω

eΩ∗(ω)e2iωτ(s,z)P(ω)dω,

�
(F†)Tξ

�
(ω) = 2

c0

∫

z

eΩ(ω)e−2iωτ(s,z)ξ(z)dz.

(5.9a)

(5.9b)

(5.9c)

(5.9d)

Compared to the adjoint FT, the approximate inverse F† introduces two modi�cations: deconvo-
lution of the source wavelet (eΩ instead of Ω) and correction of the amplitudes by a coe�cient
2/c0. In 1D there is no need to correct for geometrical spreading nor for uneven illumination.
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(a) Linear modelling F : E 7→ Dobs.

0 200 400 600

−0.2

0

0.2

0.4

depth (m)

tim
e
(s)

(b) Adjoint of inverse operator (F†)T : E 7→ Dobs.
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(d) Approximate inverse operator F† : Dobs 7→ E .

Figure 5.3. – Matrix representation of the four linear operators de�ned in equations (5.9) in the
initial velocity model c0 = 2500m/s. The matrices have zero values for z ≤ 100 m because
of the taper introduced in the E -space (�gure 5.2).
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5.2.2. Direct inversion

Before analysing the iterative case, we brie�y review the results obtained with direct inversion.
Here the re�ectivity is de�ned as the result of the application of the adjoint FT or inverse
operator F† to observed data Pobs:

¨
ξmig = FTPobs,
ξinv = F†Pobs.

(5.10a)
(5.10b)

We can control the accuracy of the approximate inverse F† by applying the modelling operator
F to ξinv (�gure 5.4). Recomputed data perfectly match observed data, which is not the case with
the adjoint ξmig. This indicates that F† is an accurate right inverse of F (FF† ' I). As already
mentioned in chapter 4, F† is however not a left inverse of F (F†F 6= I) because the null space of
the modelling operator F is not empty. It means that several di�erent re�ectivity models can
lead to similar data set. For example, applying F†F to a spike re�ectivity (as the red curve in
Figure 5.4, left) would yield a smooth re�ectivity model. The non triviality of the null space of F
is important for the behaviour of the iterative case studied in sections 5.2.3 and 5.2.4.
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time (s)

Pobs

FFTPobs

FF†Pobs

Figure 5.4. – Exact re�ectivity model and result of the application of the adjoint FT and F†

to observed data (left). Observed data and data modelled from the adjoint and inverse
re�ectivity section (right).

We now derive analytic expressions for the gradient of the MVA objective function obtained
when the re�ectivity is de�ned as FTPobs or F†Pobs. The objective is to reproduce the results
obtained with the procedure described in section 4.2.11 where wave-equations were solved with
a �nite di�erence propagation code. To compute the background velocity update, we construct
the following Lagrangians with the adjoint variables ηmig and ηinv in E .





J1[c0] =
1
2



ACξmig



2
E −



ηmig

��ξmig − FTPobs
�
E ,

J1[c0] =
1
2



ACξinv



2
E −



ηinv

��ξinv − F†Pobs
�
E .

(5.11a)

(5.11b)

The adjoint variables ηmig/inv are obtained by deriving the Lagrangians with respect to the state
variables ξmig/inv, ¨

ηmig = CTATACξmig,
ηinv = CTATACξinv,

(5.12a)
(5.12b)
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and �nally the gradient of J1 with respect to c0 is given by




Gmig(y) =
�
β− 2

�
c2β−1
0 (y)a2(y)ξ2

mig(y) +

∫

z
Qmig(y, z)ηmig(z)dz,

Ginv(y) = βc2β−1
0 (y)a2(y)ξ2

inv(y) +

∫

z
Qinv(y, z)ηinv(z)dz,

(5.13a)

(5.13b)

where the matrices Qmig : E 7→M and Qinv : E 7→M are de�ned as

Qmig(y, z) =
∂
�
FTPobs

�
(z)

∂ c0(y)
, (5.14a)

Qinv(y, z) =
∂
�
F†Pobs

�
(z)

∂ c0(y)
. (5.14b)

The term βc2β−1
0 a2ξ2 in Gmig and Ginv originates from operator C. Note that there is an additional

term −2c2β−1
0 a2ξ2 in Gmig due to the coe�cient 4/c2

0 in the de�nition of the adjoint operator
(equation 5.7b).

After derivations reported in appendix D, we obtain the following expressions for Qmig and
Qinv,

Qmig(y, z) =
16

c3
0(y)c

2
0(z)

∫

ω
(iω)4Ω∗(ω)G∗0(s, z,ω)G∗0(s, y,ω)G∗0(y, z,ω)dω (5.15a)

= − 2

c2
0

∫

ω
(iω)Ω∗(ω)e(iω)

�
τ(s,z)+τ(s,y)+τ(y,z)

�
Pobs(ω)dω, (5.15b)

Qinv(y, z) =





32

c2
0(s)c

3
0(y)c0(z)

∫

ω
(iω)4eΩ∗(ω)G∗0(s, z)G∗0(s, y)G∗0(y, z)dω if y < z,

0 if y ≥ z,
(5.15c)

=




− 4

c3
0

∫

ω
(iω)eΩ∗(ω)e(iω)

�
τ(s,z)+τ(s,y)+τ(y,z)

�
Pobs(ω)dω if y < z,

0 if y ≥ z,
(5.15d)

where we have omitted the dependence of the Green’s function to ω in equation (5.15c).
In the same way as FT and F†, Qmig and Qinv di�er by a coe�cient 2/c0 and by the source

wavelet (Ω and eΩ, respectively). However an additional di�erence is that Qinv is upper triangular,
contrary to Qmig (�gure 5.5). This may be surprising as the high-frequency expressions for the
adjoint (5.9b) and pseudo-inverse (5.9c) are very similar. Actually the derivation of Qmig and
Qinv starts from equations (5.7b) and (5.7c), which do not use asymptotic approximations. As
explained in appendix D, the zero entries below the diagonal of Qinv are due to the derivative
with respect to z in equation (5.7c). This illustrates that the high-frequency approximation of the
gradient is not the gradient of the high-frequency approximation. The high-frequency approxim-
ation of the gradients Gmig and Ginv (equations (5.13)) derived here is di�erent from the gradient
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Chapter 5. Regularised Migration Velocity Analysis

that would be computed from the high-frequency approximation of the re�ectivity images
(equations 5.9b and 5.9c): in the �rst case, we replace the Green’s function by their expression
after having deriving the gradient expression. In the second case, we would use the adjoint-state
technique with equations (5.9) as state equations instead of equations (5.7). As equations (5.9b)
and (5.9c) are very similar, this approach would lead to similar expressions for operators Qmig
and Qinv, without the distinction between the case y < z and z > y (equation 5.15c), and Qinv
(�gure 5.5b) would not be upper triangular any more.
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(a) Operator Qmig : E 7→M .
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(b) Operator Qinv : E 7→M .

Figure 5.5. – Matrix representation of the operators Qmig and Qinv de�ned in equations (5.14a)
and (5.14b).

Compared to the adjoint case, the fact that Qinv is zero below the main diagonal changes the
shape of the gradient around the re�ector depth. In section 4.2, it has been shown that a speci�c
power2 of β allows to obtain a smooth gradient in the case of the inverse (�gure 5.6). Numerical
tests (not shown here) indicate that this modi�cation of the MVA objective function does not
allow to remove oscillations in the case of the adjoint.
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depth (m)
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ξinv = F†Pobs
ηmig = CTATACξmig
ηinv = CTATACξinv
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Ginv

Figure 5.6. – Computation of the gradient of J1 with respect to c0 (right panel), comparing the
case where the �nal re�ectivity is taken equal to ξmig = FTPobs and ξinv = F†Pobs. For this
example, we took β= −1/2.

2The optimal value is β= −1/2 if ξ is de�ned as a velocity perturbation ξ = δc/(2c0) and β= 3/2 if ξ is de�ned
as a squared slowness perturbation ξ = 2δc/c3

0 .
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5.2. Analysis on a pure 1D case

We have derived expression for the MVA gradients for the adjoint and pseudo-inverse
operators. In the following section, we analyse the gradient in the iterative case.

5.2.3. Iterative inversion: expression of the gradient

Instead of using the approximate inverse F†, we determine the optimal re�ectivity section by
minimising iteratively the objective function (5.6). In the case of linear modelling (primaries
only) and `2 regularisation, the minimisation of this objective function is equivalent to the
resolution of the linear system

�
FTF+ aφ I

�
ξ = FTPobs, (5.16)

which involves the normal operator FTF : E 7→ E .
Note that iterative migration is an expensive technique for the case of primaries only as the

approximate inverse already provides a good minimiser of J0. However iterative migration may
deal with more complex cases like multiples, for which an inverse formula does not necessarily
exist. Here we want to study the shape of the gradient of J1 after iterative migration and restrict
to this linear case for simplicity.

Computation of the gradient of J1

Following method B de�ned in chapter 3, we assume that the iterative migration process has
reached convergence, meaning that the �nal re�ectivity ξ∞ is de�ned as

�
FTF+ aφ I

�
ξ∞ = FTPobs. (5.17)

To compute the gradient of J1, we de�ne the following Lagrangian with equation (5.17) as
constraint and the adjoint state η ∈ E

J1[c0,ξ∞,η] = 1
2



ACξ∞


2
E −

¬
η
��� �FTF+ aφ I

�
ξ∞ − FTPobs

¶
E . (5.18)

Deriving this expression with respect to ξ∞ leads to the following adjoint equation,
�
FTF+ aφ I

�
η = CTATACξ∞. (5.19)

ξ∞ and η are solutions of the same linear problem for two di�erent source terms. However
the resolution of the adjoint problem is more di�cult and requires more iterations as observed
in section 4.4.3. Our interpretation of this di�erent behaviour is that the source term FTPobs is
in the image of the normal operator FTF, whereas there is no guarantee that the source term
CTATACξ∞ is in the image of FTF, meaning that a solution to equation (5.19) is less likely to be
found, or at least more di�cult. This point will be further illustrated in sections 5.2.4 and 5.2.7.

Assuming equation (5.19) is solved perfectly, the ideal gradient is made of three contributions

G∞(x) =
β
c0

�
ACξ∞

�2
(x) +

∂

∂ c0(x)

�
〈η∞ |FTPobs〉E

�
+

∂

∂ c0(x)

�
〈η∞ |FTFξ∞〉E

�
. (5.20)
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The �rst term is due the power of c0 that has been introduced in the de�nition of J1. The second
is due to the inner product 〈η |FTPobs〉 and has already been analysed in section 5.2.2. Finally
we compute the third contribution due to the normal operator,

∂

∂ c0(x)

�

η
��FTFξ

�
E

�
=

∂

∂ c0(x)

∫

z

∫

ω

∫

y
η(z)FT(z,ω)F(ω, y)ξ(y)dy dωdz (5.21a)

=

∫

z

∫

ω

∫

y

�
η(z)∂ FT(z,ω)

∂ c0(x)
F(ω, y)ξ(y) + η(z)FT(z,ω)

∂ F(ω, y)
∂ c0(x)

ξ(y)
�

dy dωdz (5.21b)

=

∫

z

∫

ω

∫

y

�
η(z)∂ FT(z,ω)

∂ c0(x)
F(ω, y)ξ(y) + ξ(y)

∂ FT(ω, y)
∂ c0(x)

F(ω, z)η(z)
�

dy dωdz (5.21c)

=

∫

z
Q1(x , z)η(z)dz +

∫

y
Q2(x , y)ξ(y)dy − 2

c0

�
FTFξ

�
(x)η(x)− 2

c0

�
FTFη

�
(x)ξ(x), (5.21d)

with Q1 and Q2 two matrices similar to Qmig (equation 5.14a):

Q1(x , z) =
∂
�
FTP1

�
(z)

∂ c0(x)
and Q2(x , z) =

∂
�
FTP2

�
(z)

∂ c0(x)
, (5.22)

with calculated data P1 = Fξ and P2 = Fη.
In practice, the direct and adjoint problems are solved in a �nite number of iterations (N

and M iterations, respectively), leading to approximate solutions ξ(N+1) and η(N+1,M+1) and an
approximate gradient G(N+1,M+1) made of seven contributions,





G(N,M)
1 (x) = −

∫

y
Q(N+1)

1 (x , y)η(N+1,M+1)(y)dy

G(N,M)
2 (x) = −

∫

z
Q(N+1,M+1)

2 (x , z)ξ(N+1)(z)dz

G(N,M)
3 (x) =

∫

y
Qmig(x , y)η(N+1,M+1)(y)dy

G(N,M)
4 (x) = − 2

c0

�
FTPobs

�
(x)η(N+1,M+1)(x)

G(N,M)
5 (x) =

2
c0

�
FTFξ(N+1)

�
(x)η(N+1,M+1)(x)

G(N,M)
6 (x) =

2
c0

ξ(N+1)(x)
�
FTFη(N+1,M+1)

�
(x)

G(N)β (x) = βc2β−1
0 (x)a2(x)(ξ(N+1))2(x).

(5.23a)

(5.23b)

(5.23c)

(5.23d)

(5.23e)

(5.23f)

(5.23g)

If the direct (equation 5.17) and adjoint (equation 5.19) system are correctly solved, meaning
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that �nal residuals are small, than for a small regularisation,




P(N+1) ' Pobs,

Q(N+1)
1 ' Qmig,

FTFξ(N+1) ' FTPobs,
FTFη(N+1,M+1) ' CTATACξ(N+1),

(5.24a)

(5.24b)
(5.24c)
(5.24d)

and most of the contributions in equation (5.23) cancel out,




G1 +G3 ' 0,
G4 +G5 ' 0,
G6 +Gβ ' 0 if β= −2.

(5.25a)
(5.25b)
(5.25c)

The only remaining contribution is G2. We expect that it is similar to the gradient obtained
with direct inversion. We shall see on a numerical example that this is not the case for reasons
explained after.

Preconditioning
To accelerate the resolution of the direct (equation 5.17) and adjoint (equation 5.19) problem, we
use a preconditioner based on the approximate inverse F†. We brie�y review how the modi�ed
preconditioned problem is de�ned.

The original linear problem can be written in a compact way as

Hξ = b, (5.26)

with the Hessian H= FTF+ aφ I and the vector b ∈ E de�ned as b = FTPobs for the direct
problem and b = CTATACξ∞ for the adjoint problem. This problem is solved with the linear
conjugate gradient algorithm, which actually minimises the scalar objective function

ψ(ξ) = 1
2
ξTHξ− ξT b. (5.27)

We introduce the preconditioner F† in this system with the following change of variables

ξ = F†bξ (5.28)

with the new variable bξ ∈ Dobs. Replacing in equation (5.27) leads to

bψ
�bξ
�
=

1
2
bξT(F†)THF†bξ−bξT(F†)T b, (5.29)

which corresponds to the linear system

(F†)THF†bξ = (F†)T b, (5.30)

where (F†)THF† ' (F†)TFTFF† = (FF†)T(FF†) if the regularisation weight aφ is not too strong.
As F† has been designed to be an approximate inverse of F (FF†d ' d), this operator is expected
to be close to the identity (note however that F†Fξ is not necessary close to ξ).
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We recall that preconditioning does not change the way the gradient of J1 is computed. It
only provides a more e�cient way to compute the solutions ξ(N+1) and η(N+1,M+1) of the direct
and adjoint problems (equations 5.17 and 5.19).

Before comparing the gradients obtained by the direct (equation 5.23) and the iterative
approach (equation 5.13b), we study the convergence rate of the direct and adjoint problems.

5.2.4. Convergence speed

We now consider the same example as in section 5.2.2 with a single re�ector located at 400 m
depth and a too low initial velocity. In this �rst example we solve iteratively both the direct and
adjoint problems with a weak regularisation weight aφ to compare the behaviour of the 1D and
2D cases. In this section, we focus on the convergence speed observed in the resolution of these
problems.

We perform six iterations of iterative migration, both without and with preconditioning
(�gure 5.7). The regularisation function is the `2-norm and the regularisation weight aφ is
supposed to be small. Similarly to the 2D case, preconditioning signi�cantly accelerates the
convergence. After one iteration, the data mis�t has been reduced to 0.5 % of its initial value,
compared to 13 % for the classical case without preconditioning. Additional iterations only
result in further deconvolution of the source wavelet.
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(a) Relative data mis�t ‖Fξ(n) − Pobs‖2
Dobs
/‖Pobs‖2

Dobs
(left) and relative normal residual

‖Hξ(n) − b‖E/‖b‖E (right) across iterations.
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(b) Re�ectivity model obtained after one and six iterations, without preconditioning (left),
and with preconditioning (right).

Figure 5.7. – Results of six iterations of iterative migration with and without preconditioning.

The same comparison is performed for the adjoint problem (�gure 5.8). We use N =M = 100
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5.2. Analysis on a pure 1D case

iterations for both problems to obtain solutions ξ and η as accurate as possible. In this case,
preconditioning does not really speed up convergence. The objective function associated with
the linear conjugate gradient algorithm (equation 5.27, �gure 5.8a, left) decreases slowly in the
�rst iterations, and the normal residual (�gure 5.8a, right), which is actually the norm of the
gradient of the objective function, is not even monotonous. The �nal solution η(101,101) is very
oscillating (�gure 5.8b, left), similar to the observations made in the 2D case (�gure 4.29). We
may have expected to obtain a �nal value localised around 320 m, corresponding to the main
peak in the �nal re�ectivity. However it is a relatively accurate solution to the adjoint problem
as Hη(101,101) is close to the right-hand side term.
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−0.001
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iterations

CG objective function

1 20 40 60 80 100
0

5

10

iterations

Relative Normal Residual

without preconditioning
with preconditioning

(a) Norm minimised by the conjugate gradient algorithm (left, (equation 5.27) and relative
normal residual (right) across iterations. The fact that preconditioning does not
accelerate convergence (left) is not satisfactory. The approach proposed in section 5.2.7
will provide a more favourable behaviour.
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Hη(101,101) with preconditionnig
CTATACξ(101)

(b) Adjoint variables obtained after 100 iterations (left). Application of the Hessian
matrix H to this result and comparison with the right-hand side term of the adjoint
problem (right).

Figure 5.8. – Results of 100 iterations for the adjoint problem. The direct problem has been
solved with 100 iterations too. A small `2-regularisation is applied.

To understand the di�erent behaviour of the direct and adjoint problems, we compute numer-
ically the SVD decomposition of the matrices FTF and (F†)TFTFF† (�gures 5.9a and 5.9b). To
fairly compare the properties of the direct and adjoint problems, we consider normalised versions
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of their right-hand side terms (�gure 5.9c) and compute their projection on the eigenvectors of
the matrices considered in the direct and adjoint problems (�gure 5.9d).

The convergence of the conjugate-gradient algorithm accelerates greatly when the eigen-
values are clustered (Nocedal and Wright, 2006, p. 118). In our case, the eigenvalues of the
preconditioned system are more concentrated around 1 than the original one. This illustrates
that FF† and (F†)TFT are close to identity operators and is consistent with the observed improved
convergence for the direct problem. Note that many eigenvalues are zero due to oversampling
of the depth and time axes.

The di�erent behaviour observed for the adjoint problem comes from the right-hand side
term. For the direct problem in the preconditioned case, most of the energy of the projection is
concentrated on eigenvectors associated with an eigenvalue close to 1, hence a single iteration
provides a good solution to the direct problem. In the case of the adjoint problem, the projection
of the right-hand side term spreads over a wider range of eigenvectors than for the direct
problem, even with preconditioning. More importantly, non-negligible contributions come from
eigenvectors associated with small eigenvalues, which explains that more iterations are required
to solve the adjoint problem. These small eigenvalues are not all due to the oversampling of the
time and depth axis, and using a coarser grid would not solve this issue.

Contrary to the direct problem, the right-hand side term of the adjoint problem cannot be
expressed as the application of FT to a vector of Dobs. In section 5.2.7, we propose a modi�cation
of J1 such that both problem have similar right-hand side terms with a more favourable projection
on the eigenvectors of FTF and (F†)TFTFF†. We �rst discuss the shape of the MVA gradient and
the role of regularisation.

5.2.5. Shape of the gradient

We compute the gradient with the values of ξ and η obtained after resolution of the direct and
adjoint problems in 100 iterations each with preconditioning. This ensures that both problems
are nearly perfectly solved (�gure 5.10). As a consequence, most of the contributions of the
gradient cancel with one another as in equations (5.25) (�gure 5.11). However the remaining
contribution G2 has a strong negative peak at the re�ector position and is strongly oscillating,
even below the re�ector.

The gradient obtained after iterative inversion is quite di�erent from the one obtained after
direct inversion. Contrary to iterative migration, the operator F† provides only an asymptotic
inverse, as a consequence the �nal re�ectivity ξ(101) and the inverse ξinv are not exactly similar,
although they both result in very small relative data residuals (0.002 % and 0.25 %, respectively).
The iterative result is more oscillating away from the re�ector position. These oscillations
allow to further reduce the data mis�t, but do not carry useful kinematic information, which is
contained in the main peak localised at the re�ector position. After application of the annihilator,
these oscillations are strengthened with respect to the main peak. Small perturbations of the
re�ectivity model in the null space of F away from the re�ector leads to small modi�cations on
the value of J0, but have a large in�uence on the gradient of J1 and may mislead the velocity
analysis. This is emphasised in this 1D case with the multiplication by z − zex, but the same
conclusion holds in 2D. In the following, we investigate two ways of attenuating this undesirable
e�ect, �rst by regularisation on ξ of the direct problem (section 5.2.6), then by introducing a
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Chapter 5. Regularised Migration Velocity Analysis

�lter in the de�nition of the MVA objective function (section 5.2.7).

5.2.6. Influence of regularisation

We consider regularisation of iterative migration as a �rst remedy to the apparition of oscillations
away from the re�ector position. In the case of the `2 norm, we may increase the value of the
regularisation weight aφ . This would yield a re�ectivity image with energy more localised,
but at the expense of a poorer data mis�t. Consequently, the contributions G1 +G3, G4 +G5
and G6 +Gβ would not be negligible with respect to G2 any more. Instead we consider using
the Huber norm (Guitton and Symes, 2003), an intermediate between `1 and `2 norms, for the
de�nition of the regularisation function φ ,

φ[ξ] =
∫

z
hub

�
ξ(z)

�
dz, (5.31a)

with hub(x) de�ned for any real number x as

hub(x) =





x2

2s
if |x |< s,

|x | − s
2

if |x | ≥ s.
(5.31b)

The value for the threshold s needs to be de�ned. In the following application we choose s = 0.01
(dimensionless quantity to be compared to the re�ection coe�cient de�ned as ξ = δc/2c0) to
distinguish the main peak from the spurious oscillations. Note that the direct problem is not
linear any more as the derivative of φ with respect to ξ cannot be written as a matrix-vector
product. However the adjoint problem remains linear with a modi�ed regularisation matrix,

�
FTF+ aφHφ[ξ∞]

�
η = CTATACξ∞, with Hφ[ξ] =

∂ 2φ
∂ ξ2
[ξ]. (5.32)

The matrix Hφ is diagonal, with 1/s on the diagonal where ξ∞ is below the threshold s and
zeros elsewhere.

We test the e�ect of the Huber norm on the same example, with 10 iterations used to solve
both the direct and adjoint problems. The �nal re�ectivity image is sparser, but the data mis�t
remains very low (�gure 5.12). The new right-hand side term has a more favourable projection
on the eigenvectors of the linear system (�gure 5.13), consequently the convergence of the
adjoint problem is easier and the preconditioner does bring some acceleration, as it does for the
direct problem. The �nal gradient (�gure 5.14) is slightly less oscillating than the one obtained
in the previous case but is still a�ected by a strong artefact at the re�ector position. Besides,
the determination of aφ and s is a tedious task. A Pareto analysis (Hansen, 1999) could indicate
possible values as a compromise between data mis�t and smoothness of the gradient. As this
approach is relatively expensive, the value of aφ and s are in practice determined empirically.

5.2.7. New approach: application of a filter on the final reflectivity

As an alternative to regularisation, we consider applying a �lter K : E 7→ E to the result of
iterative migration ξ∞ before measuring defocused energy. The main objective is to remove
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Figure 5.12. – Same as �gure 5.10 with the Huber norm as regularisation, and after 10 iterations
for both the direct and adjoint problems.
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Figure 5.13. – Normal residual across iterations for the adjoint problem (left). Eigenvalue
distribution of (F†)T(H+Hφ)F† and projection on its eigenvectors of the right-hand side
term of the adjoint problem in the preconditioned case.
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Figure 5.14. – Same as �gure 5.11 with the Huber norm as regularisation, and after 10 iterations
for both the direct and adjoint problems.

undesired energy in the re�ectivity before evaluating the quality of ξ with respect to c0. This
leads to the following objective function

J1[c0] =
1
2



ACKξ∞[c0]


2
E . (5.33)

In the following we consider two �lters K. The second one depend on c0, leading to additional
terms in the velocity update. The gradient of the modi�ed objective function is similar to the
regular one. For simplicity, we note ζ = Kξ∞ and build the following Lagrangian with the
adjoint variables γ and η associated to ζ and ξ∞, respectively.

J1[c0,ξ, ζ,γ,η] = 1
2



ACζ


2
E −



γ
�� ζ− Kξ∞

�
E

− 
η
�� (FTF+ aφ I)ξ∞ − FTPobs

�
E

(5.34)

Deriving this expression with respect to the state variables ζ and ξ∞ leads to the following
adjoint equations,

¨
γ = CTATACζ,�

FTF+ aφ I
�
η = KTγ = KTCTATACKξ∞.

(5.35a)
(5.35b)
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5.2. Analysis on a pure 1D case

The adjoint variable η is solution of a problem similar to equation (5.19), except that KT is added
twice in the right-hand side term. The gradient eventually reads

∂ J1

∂ c0(x)
=βc2β−1

0 ζ2(x)− ∂

∂ c0(x)

�

η∞

��FTFξ∞
�
E

�
+

∂

∂ c0(x)

�

η∞

��FTPobs
�
E

�

+
∂

∂ c0(x)

�

γ
��Kξ∞

�
E

�
.

(5.36)

The three �rst terms are similar to the previous case, except that K is now involved in the
computation of ζ and η. If K depends on c0, the fourth contribution is non-zero and should be
computed.

Frequency filter independent of c0

We �rst consider a �lter K which does not depend on c0, so that the only di�erence with the
usual procedure is the modi�ed right-hand side term of the adjoint problem. The �lter is
designed to remove the low and high-frequencies components of ξ(N+1) which do not bear
relevant kinematic information. In this case, K can be seen as a taper in the wavenumber domain
or as a convolution in the depth domain.

We perform 10 iterations without regularisation. The �lter is empirically determined such that
ζ is close to the result of the adjoint FTPobs in order to attenuate the spurious oscillations away
from the re�ector (�gure 5.15). The new right-hand side term has a projection on eigenvectors
similar to the one obtained for the direct problem, and the convergence of the adjoint problem
is almost as fast as for the direct problem (�gure 5.16). Ten iterations are su�cient to obtain
good solutions to both the direct and adjoint problems (�gure 5.17). The �nal gradient is free
of oscillations above and below the re�ector, but is still oscillating around the re�ector depth
(�gure 5.18). So this is not yet a fully satisfactory solution. Moreover, in cases more complex
than the homogeneous model considered here, the value of K should depend on the spatial
positions and on the velocity values. In the next section, we propose a �lter that ful�ls these
requirements.

Using F†F as a filter on the final reflectivity
We now de�ne a new �lter using the approximate inverse F†,

K = F†F. (5.37)

It consists �rst of applying the modelling operator to the result of iterative migration, yielding
new data which should be very close to observed data. Then applying the inverse operator
should produce a new re�ectivity image close to the inverse F†Pobs, and the objective function
should be close to the one studied in section 5.2.2. Note that F† has been designed such that FF†

is close to the identity (F†F is not necessarily identity, though). The �lter considered here should
be close to the identity as well, but only for a speci�c range of spatial frequencies. We would
like the remaining frequency components to be attenuated. The source term of the adjoint
problem now reads KTγ = FT(F†)Tγ and therefore lives in the image of operator FT, as does the
source term of the direct problem.

With this new de�nition, K now depends on c0 and we compute the additional contributions
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Figure 5.15. – Result (purple) of the application of a �lter K to the �nal re�ectivity ξ(11) (red)
in the depth (top left) and wavenumber (top right) domain. We display the result of the
application of the adjoint (blue) and inverse (green) operator for reference. The bottom row
displays the same comparison after application of the annihilator A.
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Figure 5.16. – Same as �gure 5.13 without regularisation and with the introduction of a �lter K
in the MVA objective function.
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Figure 5.17. – Same as �gure 5.12 without regularisation and with the introduction of a �lter K
in the MVA objective function.
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Figure 5.18. – Same as �gure 5.14 without regularisation and with the introduction of a �lter K
in the MVA objective function.

to the gradient (equation 5.36), noted G7, G8 and G9,

∂

∂ c0(x)

�

γ
��F†Fξ

�
E

�
(5.38a)

=

∫

z

∫

ω

∫

y

�
γ(z)∂ F†(z,ω)

∂ c0(x)
F(ω, y)ξ(y) + γ(z)F†(z,ω)

∂ F(ω, y)
∂ c0(x)

ξ(y)
�

dy dωdz (5.38b)

=

∫

z

∫

ω

∫

y

�
γ(z)∂ F†(z,ω)

∂ c0(x)
F(ω, y)ξ(y) + ξ(y)

∂ FT(y,ω)
∂ c0(x)

(F†)T(ω, z)γ(z)
�

dy dωdz (5.38c)

=

∫

z
Q7(x , z)γ(z)

︸ ︷︷ ︸
G7(x)

+

∫

y
Q8(x , y)ξ(y)

︸ ︷︷ ︸
G8(x)

− 2
c0

γ(x)
�
FT(F†)Tξ

�
(x)

︸ ︷︷ ︸
G9(x)

, (5.38d)

where Q7 and Q8 are matrices similar to Qinv and Qmig, respectively (equations 5.14a and 5.14b),

Q7(x , z) =
∂
�
F†P7

�
(z)

∂ c0(x)
and Q8(x , z) =

∂
�
FTP8

�
(z)

∂ c0(x)
, (5.39)

with calculated data P7 = Fξ and P8 = (F†)Tγ .
As in section 5.2.3, we now consider that the direct problem is solved in N iterations and the

adjoint problem is solved in M iterations. Then the total gradient can be expressed as the sum
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of the following ten contributions,




G(N,M)
1 (x) = −

∫

y
Q(N+1)

1 (x , y)η(N+1,M+1)(y)dy

G(N,M)
2 (x) = −

∫

z
Q(N+1,M+1)

2 (x , z)ξ(N+1)(z)dz

G(N,M)
3 (x) =

∫

y
Qmig(x , y)η(N+1,M+1)(y)dy

G(N,M)
4 (x) = − 2

c0

�
FTPobs

�
(x)η(N+1,M+1)(x)

G(N,M)
5 (x) =

2
c0

�
FTFξ(N+1)

�
(x)η(N+1,M+1)(x)

G(N,M)
6 (x) =

2
c0

ξ(N+1)(x)
�
FTFη(N+1,M+1)

�
(x)

G(N)7 (x) =

∫

z
Q(N+1)

7 (x , z)
�
CTATACKξ(N+1)

�
(z)dz

G(N)8 (x) =

∫

y
Q(N+1)

8 (x , y)ξ(N+1)(y)dz

G(N)9 (x) = −
2
c0

�
CTATACKξ(N+1)

�
(x)
�
KTξ(N+1)

�
(x)

G(N)β (x) = βc2β−1
0

�
ACKξ(N+1)

�2
(x),

(5.40a)

(5.40b)

(5.40c)

(5.40d)

(5.40e)

(5.40f)

(5.40g)

(5.40h)

(5.40i)

(5.40j)

with P(N+1)
7 = Fξ(N+1) and P(N+1)

8 = (F†)TCTACKξ(N+1). Assuming that both problems are
perfectly solved, that the regularisation weight is small and that K is close to the identity, eight
contributions cancel out, 




G1 +G3 ' 0,
G4 +G5 ' 0,
G2 +G8 ' 0,
G6 +G9 ' 0,

(5.41a)
(5.41b)
(5.41c)
(5.41d)

and the two remaining contributions G7 and Gβ are close to the two contributions of the direct
inversion gradient (equation 5.13b).

Still using the same numerical example, we solve the direct and adjoint problems in 10
iterations with very small regularisation. Applying the �lter yields a re�ectivity section close to
the direct inverse ξinv (�gure 5.19). The convergence of the adjoint problem is not as good as
with the previous “hand-made” �lter, but is still better than in the reference case (�gure 5.20),
and 10 iterations already provide a good solution (�gure 5.21). Eventually we obtain a gradient
which is very close to the one obtained after direct inversion (�gure 5.22). Some unwanted
oscillations are still visible. They are progressively attenuated if more iterations are performed
both on the direct and adjoint problems (�gure 5.23). Contrary to the preceding examples,
applying a gaussian blur to the gradient obtained after 10 iterations would yield a velocity

187



Chapter 5. Regularised Migration Velocity Analysis

update free of anomaly at the re�ector position, which is preferable to additional iterations in
the perspective of more expensive 2D applications.
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Figure 5.19. – Same as �gure 5.15 for the �lter K = F†F. The curves corresponding to ξinv and
Kξ(11) are almost superimposed.

1 2 3 4 5 6 7 8 9 10 11

0

0.25

0.5

0.75

1

iterations

without preconditioning
with preconditioning

10 20 30 40

0

0.5

1

1.5

eigenvalue number

eigenvalues distribution
projection on eigenvectors

Figure 5.20. – Same as �gure 5.16 for the �lter K = F†F.

Finally, we investigate the stability of the gradient with respect to the number of iterations
used to solve both the direct and adjoint problems. We compute the gradient obtained after
each iteration on ξ(n) with and without the �lter K = F†F. We also study the in�uence of the
preconditioner on the stability of the gradient computation. For the sake of simplicity, we
consider that the same number of iterations is performed to solve the adjoint problem (M = N).
We plot the mean value of the gradient obtained between z =0 m to 250 m, that is above the
re�ector (�gure 5.24). Without �lter and without preconditioner, the value of the gradient is
quite chaotic and its sign may change from an iteration to the next one. This is consistent with
observations made by Huang (2016). Here we provide a numerical example where the sensitivity
is so large that it depends on the precise number of iterations. The results are slightly better
in the preconditioned case but still very oscillating. We obtain a much more stable behaviour
when the �lter is introduced in the objective function, the mean value being constant after
30 iterations.
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Figure 5.21. – Same as �gure 5.17 for the �lter K = F†F.
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Figure 5.22. – Same as �gure 5.18 for the �lter K = F†F.
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Figure 5.23. – Same as �gure 5.22 except that 100 iterations (instead of 10) are performed to
solve both the direct and adjoint problems.
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Figure 5.24. – Mean value of the gradient between z =0 m to 250 m (above the re�ector
where it is supposed to be constant with depth) obtained without and with the �lter K =
F†F after performing N =1 to 100 iterations of iterative migration. The adjoint problem
is solved with the same number of iterations as the direct problem (M = N). Small `2
regularisation is applied. For each case we plot the result obtained without (left) and with
(right) preconditioner introduced in the resolution of both direct and adjoint problems. Each
plot is normalised individually by the mean value obtained between iterations 50 to 100.
The expected mean value is negative as this is the case of the blue curves. Locally the sign
of the gradient is incorrect (positive values, red curves).
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In summary, the introduction of the �lter K = F†F in the de�nition of the MVA objective
function is essential to improve the stability of the gradient obtained after iterative migration
and provides background velocity updates similar to those obtained after direct inversion,
while keeping the possibility to perform iterations. We now want to test the applicability and
e�ciency of this new approach in the 2D case.

5.3. 2D-Examples

In this section, we apply the new approach consisting of introducing a �lter in the objective
function of MVA:

J1(c0) =
1
2



A[c0]K[c0]ξ(N+1)[c0]


2
E . (5.42)

We will consider only the �lter K = F†F based on the approximate inverse F†. From now on, the
re�ectivity is de�ned as a squared slowness perturbation (ξ = 2δc/c3

0 ). In equation (5.42), the
annihilator consists of a multiplication by |h| and also includes a multiplication by a power of
the background velocity model cβ

0 , with β= 3/2.
In section 5.3.1, we consider primaries only and an example similar to the one of chapter 4.

The objective is to determine if the introduction of the �lter K has the same bene�ts as in the
pure 1D case. We compare the results obtained with and without �ltering �nal CIGs and expect
the �lter to improve the convergence rate of the adjoint problem and to yield gradients similar
to those obtained after direct inversion.

Then we move on to an example with primaries and �rst-order surface-related multiples
(section 5.3.2). This case was not considered in the 1D-analysis of the preceding section. We
want to determine if the new approach extend to the case of multiples and yield coherent
velocity updates.

5.3.1. Primaries only

We �rst consider an example with primaries only similar to the one presented in section 4.4.3, to
compare two approaches, without and with the �lter K = F†F. A single �at re�ector is located
at 300 m depth in a too low homogeneous velocity model (2500 m/s). The exact background
velocity model is homogeneous too (3000 m/s). The model is 1620 m large and 450 m deep
and is discretised on a 6m× 6 m grid. Sources are located at each point of the surface with
receiver also at every grid point within a maximum surface o�set of ±540 m.

We perform seven iterations to solve the direct problem with preconditioning and small `2
regularisation, leading to ξ(8). After application of K = F†F to this �nal re�ectivity, we obtain
a CIG very close to the one obtained by direct inversion (�gure 5.25). In particular, spurious
oscillations located above and below the re�ector have been greatly attenuated. In ξ(8), we
observe around z = 350m spurious events with an opposite curvature from the main event. We
do not have a formal explanation for these events which may not be due to edge e�ects as PML
and tapers are implemented on each edge of the model. Note that they are greatly attenuated
by the �lter.

We now consider the adjoint problem. With the �lter, the right-hand side term reads
KTATAKξ(8) instead of ATAξ(8). As in 1D, this new vector can be expressed as FTQ, result
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Figure 5.25. – Central CIG (top) obtained after sever iteration of preconditioned iterative
migration (left). After application of F†F, we obtain a CIG (middle) very close to the result of
direct inversion (right). The bottom row display the same CIGs multiplied by the absolute
value of the subsurface o�set. The same colour scale is used in each row.

of application of the adjoint to a data set Q = (F†)TATAKξ(8) ∈ Dobs. As a consequence it is
similar to the right-hand side term of the direct problem F†Pobs with an event curved upward
looking like usual migration artefacts in addition to the downward event corresponding to the
true re�ector (�gure 5.26, third column). The adjoint problem is solved in 10 iterations, with and
without preconditioning for comparison. With the application of the �lter, the adjoint problem
is easier to solve and converge much faster, contrary to the original case (�gure 5.27). Moreover,
the preconditioner accelerates the convergence rate, which is also satisfactory. Note however
that the convergence rate is still slower than for the direct problem. The last iterates η(8,11) in
the two cases are both very oscillating (�gure 5.26, �rst column), but in the new approach, the
residuals of the linear system are much smaller (�gure 5.26, fourth column).

We now consider the sequence of gradients of J1 with respect to c0 associated to the successive
values of adjoint variables obtained without and with the �lter when the adjoint problem is
solved with preconditioning. With the �lter, this sequence converges to a stable gradient and
the �nal value is reached after �ve iterations (�gures 5.28 and 5.29). Moreover, the �nal gradient
exhibit small oscillations, but is very close to the one obtained by direct inversion (�gure 5.30).
This result is very similar to the one obtained in 1D (�gure 5.22).

As in the 1D case, the gradient can be decomposed into several parts. But contrary to the 1D
case where we identi�ed ten contributions (equation 5.40), the re�ectivity has been de�ned here
as a square slowness perturbation ξ = 2δc/c3

0 . With this parametrisation, the contributions G4,
G5, G6 and G9 in equation (5.40) are zero. The remaining contributions are G7 +Gβ, G2 +G8

and G1 +G3 (�gure 5.31, right column, top, middle and bottom plots respectively). As ξ(8) and
η(8,11) are good solutions of the direct and adjoint problems respectively, the second and third
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Figure 5.26. – Central CIG of the last iterate η(8,11) obtained in the resolution of the adjoint
problem (1st column) and application of the Hessian H to η(8,11) (2nd column). We also
display the right-hand side term b(8) of the linear system (3rd column) and the corresponding
residual (4th column). We consider the case where no �lter is introduced in the MVA
objective function (top, similar to �gure 4.29), and the case with a �lter K = F†F based on
the approximate inverse (bottom). The three most right plots of each line share the same
colour scale.

contributions are small with respect to the �rst one. The latter originates from the operator F† in
the �lter and has a physical meaning. It is the gradient that would be obtained by applying the
direct inversion strategy to primary data re-computed with �rst-order Born modelling from the
�nal re�ectivity Fξ(8). As this data set is very close to observed data, this contribution is very
close to the gradient obtained with the direct inversion approach (�gure 5.30, top). Although
this contribution is not the gradient of an objective function, we discuss in section 5.3.3 an
alternative strategy using it as background velocity update.

Finally we comment on the edge e�ects visible on the left and right side of the gradient
(�gure 5.32, bottom left). Their extension (x =0 m to 550 m and x =1000 m to 1620 m) is
approximately equal to the value of the maximum surface o�set (540 m, here). Note that in
the re�ectivity section, the inhomogeneous part only is half of the maximum surface o�set
(�gure 5.32, top left). If we keep the same value for the maximum surface o�set and extend
the model laterally, the homogeneous central part is extended, but not the part altered by edge
e�ects (�gure 5.32, right). Therefore, in this example as well as in the following, we focus on the
smoothness and coherency of the gradient in the central part. The attenuation of these artefacts
is not speci�cally addressed in this thesis. We observe that tapers on source and on receivers
positions, properly included in the gradient computation, help mitigating this undesirable e�ect.
This issue deserves nonetheless further investigation.

194



5.3. 2D-Examples

1 2 3 4 5 6 7 8 9 10 11

0

−3 · 10−16

−6 · 10−16

−9 · 10−16

CG objective function

1 2 3 4 5 6 7 8 9 10 11

0
0.5

1
1.5

2
2.5

without �lter

Relative Normal Residual

1 2 3 4 5 6 7 8 9 10 11

−3 · 10−15

−2 · 10−15

−1 · 10−15

0

iterations
1 2 3 4 5 6 7 8 9 10 11

0

0.25

0.5

0.75

1

with �lter

iterations
without preconditioning

with preconditioning

Figure 5.27. – Convergence rate of the adjoint problem without (top) and with (bottom)
application of the �lter F†F. The left column shows the decrease of the norm associated with
the linear conjugate gradient algorithm, the right column shows the norm of residuals of the
linear system.

In summary, the introduction of the �lter has a similar e�ect in the pure 1D and the 2D
cases. It improves the convergence rate of the adjoint problem and the associated gradient is
close to the result obtained after direct inversion. Also, the introduction of the �lter relax the
requirement of su�ciently strong regularisation illustrated in the examples of chapters 3 and 4
where no �lter was considered.

5.3.2. Primaries and Multiples

We want to test this new approach on a case with �rst-order surface-related multiples. We
consider an example similar to the one studied in section 4.4.2. The exact model is laterally
invariant with a single re�ector located at 300 m depth and a background velocity model
increasing with depth (�gure 5.33), leading to two events in observed data (�gure 5.34). The
initial background velocity model is also increasing with depth, with the correct velocity at the
surface but with a too low gradient. In all the following examples, we add a multiplication by z
in the de�nition of the annihilator to emphasise the impact of multiples. This weight is taken
into account in the derivation of the gradient.

For reference, we �rst apply the direct inversion strategy. If we remove multiples from
observed data, we obtain a single event in CIGs, with a downward curve and the gradient is
negative and homogeneous above the re�ector, which is consistent with the too low initial
velocity model (�gure 5.35a). With both primaries and multiples in observed data, a new
event corresponding to the multiple interpreted as a primary appears around 600 m depth
(�gure 5.35b). The actual multiple travelled twice in the exact model between the surface and
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Figure 5.28. – Gradient G(7,M) obtained with ξ(8) and with the successive adjoint variables
η(8,M+1) without (left) and with (right) application of the �lter K = F†F. The left column is
close to the right column of �gure 4.30 where a very similar model was considered.
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Figure 5.30. – Gradient obtained after direct inversion (top), and after iterative inversion
without (middle) and with (bottom) �lter. For the iterative case, seven and ten iterations are
performed to solve the direct and adjoint problems respectively. The right column displays a
section of the gradient at the middle position x = 810m. The blue dashed line is the gradient
obtained after direct inversion (top) and is displayed for comparison. The middle row is
close to the bottom row of �gure 4.32 where a very similar model was considered.
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of equations (5.40), the �rst is due to the approximate inverse (G7 + Gβ, top), the second
should be zero if both direct and adjoint problems are perfectly solved (G2+G7, middle) and
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Figure 5.32. – Section of the re�ectivity ξ(8) at h = 0 m (top) and gradient G(7,10) (bottom)
obtained with xmax = 1620m (left, same gradient as �gure 5.30 bottom left), and with
xmax = 2430 m. Extending the model laterally for a similar value of the maximum surface
o�set results in a larger homogeneous central part, the edge e�ects remaining similar.

198



5.3. 2D-Examples

2000 2200 2400 2600

0

200

400

600

velocity (m/s)

de
pt
h
(m

)

c0 exact
c0 initial
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Figure 5.34. – Observed data obtained for a
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surface in the exact model of �gure 5.33.

the exact re�ector position. It is interpreted as a primary travelling in the initial velocity model
between the surface and a depth roughly twice the one of the exact re�ector. Hence, this
“imaginary” primary has “seen” a higher velocity than the true multiple. As a consequence, part
of the energy of the cross-talk artefact is defocused with an upward curvature and the gradient
has positive contribution above the re�ector
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Figure 5.35. – Gradient and CIGs obtained in the initial model shown in �gure 5.33, after
direct inversion with observed data containing (a) primaries only or (b) both primaries and
multiples.

We now consider iterative inversion with the �lter F†F introduced in the de�nition of the
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MVA objective function (equation 5.42). First, we study the case of observed data containing
only the primary re�ection (�gure 5.36). We obtain a gradient very similar to the case of direct
inversion (�gure 5.35a), which indicates that the new approach works well in non-homogeneous
models as well.
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Figure 5.36. – Gradient and CIGs obtained in the initial model shown in �gure 5.33, after iterat-
ive inversion with observed data containing primaries only. The direct and adjoint problems
are solved in N = 7 and M = 10 iterations respectively, and with small `2 regularisation.

We now consider the full data set with the primary re�ection and the �rst-order surface
multiple and use preconditioned non-linear optimisation as in section 4.4.2. The linear adjoint
problem reads in the general case

�
∂ 2J0

∂ ξ2

�
c0,ξ(N+1)

��
η = ATKTKATξ(N+1), (5.43)

the di�erence with the linear case being that the Hessian matrix depends on the �nal value of ξ.
This operator reads

∂ 2J0

∂ ξ2
=
∂ 2P3

∂ ξ2
(P1 + P3 − Pobs) +

�
∂ P1

∂ ξ

�T�∂ P1

∂ ξ

�
+ 2

�
∂ P1

∂ ξ

�T�∂ P3

∂ ξ

�
+
�
∂ P3

∂ ξ

�T�∂ P3

∂ ξ

�

+ aφ
∂ 2φ
∂ ξ2

,
(5.44)

where we have omitted the dependency to ξ(N+1) and operator M for readability. Because of
the �rst term in this expression, the Hessian may not be positive de�nite in case of too strong
residuals. This is an issue as the conjugate gradient algorithm is designed for positive de�nite
matrix only. This problem should not appear if iterative migration has converged, meaning that
residuals are small, or if enough regularisation is added. An additional safeguard consists of
exiting the algorithm as soon as a negative curvature is encountered (Métivier et al., 2013).

Using small `2 regularisation and ten iterations to solve the adjoint problem, we �rst compare
the gradient obtained after 1 and 10 iterations of migration (�gures 5.37a and 5.37b). In the
�rst case, residuals are still strong and a negative curvature has been encountered at the 10th
iteration. Therefore the �nal gradient is actually G(10,9). Because of the cross-talk artefact in the
CIG, the gradient is non-zero below the re�ector. After ten iterations, the artefact is weaker and
is further attenuated by the application of the �lter. However, the gradient is not homogeneous
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and exhibits strong oscillations around the re�ector. To obtain a more satisfactory result, we
�rst increase the number of iterations for the resolution of the direct and adjoint problems
(30 and 20, respectively), but the gradient is still far from being homogeneous (�gure 5.37c).
We notice that even after several iterations and application of the �lter, the annihilator still
strengthen residual energy at large values of h below the re�ector (�gure 5.37c, 4th column).
This suggests that these areas may not be well constrained. As a remedy, we add a Huber norm
to the migration objective function J0 with a bigger weight on these parts of the CIGs:

φ[ξ] =
∫

x

∫

h
hub

�
h · z · ξ(x, h)

�
dh dx, (5.45)

and we use again 10 iterations to solve the direct and adjoint problems (�gure 5.37d). Although
the �nal CIGs look very similar to the one obtained in the previous case, this modi�cation
greatly improves the gradient, which is homogeneous with the correct sign above the re�ector
and very weak below.

As in the 1D case, we decompose the gradient into three parts (�gure 5.38). The �rst one
(�gure 5.38, 1st column) is due to the operator F† in the de�nition of J1 (equation 5.42). As
already mentioned in the linear case, this is the gradient that would be obtained by applying
the direct inversion approach to observed primaries re-computed from the �nal re�ectivity free
of cross-talk artefacts. As a consequence this contribution is very similar to the one obtained
by applying direct inversion to primary only (�gure 5.35a), provided that the �nal re�ectivity
correctly explains observed data. The second contribution (�gure 5.38, 2nd column) is directly
related to data residuals, and its share in the �nal gradient decreases as far as the number of
iterations increases (�gures 5.38a to 5.38c). With regularisation, the �nal data residuals may be
degraded, and this contribution may be not negligible any more (although it is still quite small
in the example of �gure 5.38d). Eventually we notice that the third part (�gure 5.38, 3rd column)
is relatively strong in the four cases and does not necessarily add a coherent contribution to the
gradient. Contrary to the linear case, it does not vanish when the direct and adjoint problems
are perfectly solved.

We conclude from this example that the new strategy consisting of adding a �lter in the
de�nition of the MVA objective function is also e�cient in the case of data containing �rst-order
surface multiples. The �lter attenuates unwanted energy at large values of h as in the primaries
only case and helps attenuating residual energy of cross-talk artefacts. Note however that
contrary to the primaries only case, regularisation remains essential to iterative migration for a
proper attenuation of cross-talk artefacts and consistent background velocity updates.

5.3.3. Alternative strategy

Both in the primaries only case and in the presence of multiples, we have isolated a contribution
to the total gradient due to the operator F† in the �lter K and showed that it is very close to
the result of direct inversion applied on primaries only (�gure 5.31, top right and �gure 5.38,
1st column). We propose as an alternative strategy to use this contribution only to update the
background model. In this new approach, the MVA objective function to be minimised still
reads

J1[c0] =
1
2



A[c0]F
†[c0]F[c0]ξ(N+1)[c0]



2
E . (5.46)
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Figure 5.37. – Gradient and CIGs obtained after iterative inversion with observed data contain-
ing both primaries and multiples. Di�erent optimisation strategies are considered, regarding
regularisation and the number N and M of iterations used to solve the direct and adjoint
problems:

(a) small `2 regularisation, N = 1, M = 9;
(b) small `2 regularisation, N = 10, M = 10;
(c) small `2 regularisation, N = 30, M = 20;
(d) stronger Huber regularisation, N = 10, M = 10.
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Figure 5.38. – Decomposition of the gradients of �gure 5.37 into three parts, similar to the one
presented in �gure 5.31 in the case of primaries only. The �rst contribution (left) can be
interpreted as the gradient that would be obtained by applying the direct inversion strategy
to recalculated primaries remodelled with the last re�ectivity image of the iterative migration
processing. The second contribution (middle) is directly related to data residuals and should
be zero if iterative migration has converged. The remaining contributions (right) are di�cult
to interpret and are not necessarily zero if convergence is reached for both the direct and
adjoint problems.
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We brie�y rederive an expression for the total gradient of the objective function (5.46) with
respect to c0 and identify the contribution which is considered in the new strategy. We de�ne
the following Lagrangian,

J1 =
1
2



Aζ


2
E −



γ
�� ζ− F†Pcalc

�
E −



Q
��Pcalc − Fξ(N+1)

�
D −

­
η
����
∂ J0

∂ ξ
�
c0,ξ(N+1)

�·
E

(5.47)

The value of the adjoint variables γ , Q and η are obtained by zeroing the partial derivatives of
the Lagrangian (5.47) with respect to the state variables ζ, Pcalc and ξ(N+1),





γ = ATAζ(N+1),
Q = (F†)Tγ ,

�
∂ 2J0

∂ ξ2

�
c0,ξ(N+1)

��
η = FTQ,

(5.48a)
(5.48b)

(5.48c)

and the total gradient of the objective function (5.46) with respect to c0 is obtained as the partial
derivative of the Lagrangian (5.47) with respect to c0,

∂ J1

∂ c0

=

“truncated gradient”︷ ︸︸ ︷
∂

∂ c0

�

Aζ


2
E

2

�
+
∂

∂ c0

�

γ
��F†Pcalc

�
E

�
+
∂

∂ c0

�

Q
��Fξ(N+1)

�
D

�

+
�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
η. (5.49)

In the new approach, the background velocity update is de�ned as the sum of the �rst two
contributions in (5.49), the two remaining contributions being dropped. Therefore this strategy
will be referred to as “truncated gradient” in chapter 6.

We now explain the meaning of this new approach. We apply iterative migration to a data
set containing both primaries and �rst-order surface multiples to derive an extended re�ectivity
free of cross-talk artefacts. This extended image is used to re-compute primary re�ections
under the �rst-order Born approximation. The value of this wave�eld at receiver positions is
kinematically consistent with the primaries contained in the original observed data set and
de�nes a new data set contains primaries only. The velocity analysis is performed on this data
set as if it were observed data, using the direct inversion strategy presented in section 4.2.

The background velocity update used in the “truncated gradient” strategy is not the gradient
of an objective function, but this de�nition has several advantages. First, it requires less compu-
tational e�ort as there is no need to solve the adjoint problem (5.48c) any more. Moreover the
need to add proper regularisation and the di�cult choice of parameters of the regularisation
function is relaxed. Finally note that re-modelled primaries can be computed for source positions
not present in the original acquisition, for example in the case of an irregular or incomplete
acquisition. In the latter case, multiples may provide extra illumination to reconstruct a more
detailed re�ectivity model and compute primary re�ections not recorded in the original acquisi-
tion. Also, the new strategy allows to provide the direct inversion strategy with data acquired
with dense source and receiver coverage, which is one of the hypotheses made in the derivation
of the approximate inverse F†.
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5.4. Conclusion

5.4. Conclusion

We have studied the behaviour of iterative migration velocity analysis on a simple 1D case
and observed the same properties as in the 2D case. Oscillations coming from the source
deconvolution away from the re�ector are ampli�ed by the annihilator, leading to a very
oscillating image residual. As a consequence, the resolution of the adjoint problem is slow and
the background velocity update oscillating.

We have proposed two modi�cations of the original procedure to alleviate these issues. First
we have shown that adding a Huber norm to the migration objective function improves the
properties of the adjoint problem and the associated gradient. A disadvantage of this solution
is that two parameters have to be chosen empirically. Then, we have proposed to introduce
a �lter in the MVA objective function, so that spurious oscillations away from the re�ector
are attenuated. We showed that a �lter based on the approximate inverse F† yields a gradient
very similar to the one obtained after direct inversion. With this new objective function, the
right-hand side terms of both the direct and adjoint problems can be expressed FTQ, and the
adjoint problem converges much faster. As the �lter depends on c0, additional terms have to
be computed, as costly as two iterations of migration. However, the �lter allows to solve the
adjoint problem in a reduced number of iterations, so the �lter actually reduces the computational
expense of the method.

An application to a simple example suggests that this new approach works well in 2D as well.
Compared to the examples of chapter 4, the adjoint problem converge faster (�gure 5.27), as
well as the associated sequence of gradients (�gure 5.27). In this primary-only case, the need
for su�ciently strong regularisation is also relaxed. However, regularisation remains essential
in the case of multiples to obtain coherent velocity updates.

In the case of multiples, we have proposed an alternative strategy consisting of using the
�nal result of iterative migration to generate a new data set made of primaries only. The direct
inversion approach (section 4.2) is then applied on this new data set. Although the background
velocity update de�ned with this strategy is not the gradient of an objective function any more,
this technique considerably reduces the computational expense of the method, and relaxes the
di�cult requirement to �nd suitable regularisation parameters. Furthermore it may allow to
regenerate reconstructed data with an acquisition di�erent from observed data. For example,
source positions missing in initial observed data can be added in the new data set and provide
the dense source and receiver coverage assumed in the derivation of the approximate inverse.
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Chapter 6. Application to synthetic data sets

Résumé du chapitre 6

L’objectif de ce chapitre est de tester la robustesse de l’approche dé�nie au chapitre 5 lorsque le
code de modélisation utilisé pour générer les données observées est di�érent de celui utilisé
lors de l’inversion. Dans l’optique d’applications sur données réelles (absentes de cette étude), il
s’agit d’aller au-delà de la situation de « crime inverse » des tests numériques réalisés dans les
chapitres précédents.

Dans la première partie de ce chapitre, je considère quatre modi�cations du code de modé-
lisation des données observées, tout en gardant le même code de modélisation pour réaliser
l’inversion, et j’étudie l’in�uence de ces modi�cations sur les gradients calculés avec l’inversion
directe et itérative, avec et sans multiples :

A – absence de basses fréquences dans l’ondelette de source ;

B – modi�cation de la forme de l’ondelette de source ;

C – modélisation dans un modèle de vitesse lisse mais avec un modèle de densité variable
dont les discontinuités sont responsables de ré�exions primaires et multiples, modélisées
avec une approximation de Born du second ordre ;

D – modélisation des données avec densité et vitesse variables par di�érences �nies sans
approximation de Born et avec une condition de surface libre pour la modélisation de
multiples de surface.

L’absence de basses fréquences dans l’ondelette de source a une in�uence négligeable sur le
calcul du gradient (test A). En revanche, l’estimation de la forme de l’ondelette de source est
essentielle pour la migration itérative dans le cas des multiples (en revanche, cela ne pose pas
de di�cultés dans le cas de primaires seuls) : si elle est trop éloignée de celle utilisée pour
générer les données observées, la migration itérative ne parvient pas à construire un modèle de
ré�ectivité expliquant à la fois les ondes ré�échies primaires et multiples (test B). L’utilisation de
perturbations du modèle de densité au lieu de perturbations du modèle de vitesse pour générer
les données observées (test C) n’a�ecte pas la cohérence des gradients. La di�érence principale
est l’estimation de l’amplitude d’évènements correspondant à des grands angles de ré�exions :
elle se traduit dans le gradient par un poids di�érent donné aux contributions des ré�ecteurs peu
profonds. En�n l’utilisation d’une surface libre pour la modélisation des multiples de surface
(test D) reste une di�culté, en particulier la présence de « ghosts » aux positions des sources
et des récepteurs. Ils sont ici pris en compte dans la modélisation des données calculées en
utilisant une dérivée seconde de l’ondelette de source, mais cette approximation n’est valide
que pour des angles d’incidence nuls à la surface et la migration itérative peine à trouver un
modèle de ré�ectivité expliquant correctement à la fois les primaires et les multiples.

Dans la deuxième partie du chapitre, des données synthétiques sont modélisées à partir d’un
modèle par blocs (vitesse et densité variables) comprenant une anomalie lente de vitesse pour
réaliser une inversion du modèle de vitesse. Les données observées sont modélisées avec des
versions lissées de ces modèles et l’approximation de Born du second ordre (perturbations de
vitesse et de densité). Lors de l’inversion, le modèle de densité est supposé constant. En pratique
un lissage du gradient par un noyau gaussien est appliqué avant remise à jour du macro-modèle
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de vitesse. Dans un premier temps, seules les ré�exions primaires sont considérées et la stratégie
d’inversion directe est utilisée. Après quinze itérations, l’anomalie de vitesse est retrouvée, les
CIGs sont aussi bien focalisés que dans le modèle exact, et la fonction coût atteint un niveau
proche, légèrement inférieur, à celui obtenu dans le modèle exact. Dans un deuxième temps, les
ré�exions multiples sont ajoutées aux données observées et l’inversion est relancée à partir du
même macro-modèle initial, les CIGs étant toujours calculés avec la stratégie d’inversion directe.
Comparé au premier cas, de nouveaux évènements, non focalisés pour le bon modèle de vitesse,
apparaissent dans les CIGs. Ainsi, au cours de l’inversion, la valeur de la fonction coût associée
à l’analyse de vitesse atteint des valeurs bien plus faibles que celle obtenue dans le modèle
exact. Le modèle de vitesse �nal est di�érent de celui obtenu dans le cas de primaires seuls et ne
fait pas apparaître clairement l’anomalie de vitesse. Le modèle retrouvé réalise un compromis
entre la focalisation dans les CIGs des évènements correspondant aux vrais ré�ecteurs et la
focalisation des artefacts dus aux multiples. Finalement un troisième cas est traité : la remise
à jour du modèle de vitesse est calculée par la méthode du « gradient tronqué » après cinq
itérations de migration itérative. La migration itérative permet d’atténuer les artefacts dus aux
multiples et le modèle �nal retrouvé est proche de celui obtenu dans le cas de primaires seuls
avec l’inversion directe. Cela indique que les multiples ont été correctement interprétés au cours
de l’inversion.

La dernière partie du chapitre est consacré au cas d’un trou d’acquisition, avec des sources
manquantes au milieu du modèle. Les ré�exions multiples peuvent potentiellement apporter une
information complémentaire dans la partie centrale du modèle, non illuminée par les ré�exions
primaires. Le modèle de vitesse exact est latéralement invariant et un modèle homogène est
utilisé comme modèle initial pour calculer le premier gradient (le macro-modèle n’est pas remis
à jour dans cet exemple). On constate une absence d’énergie dans la partie centrale du modèle de
ré�ectivité obtenue par inversion directe dans le cas où les données observées ne comprennent
que des ré�exions primaires. Il en va de même pour le gradient associé. Il est intéressant de
remarquer que, même en ne considérant que les ré�exions primaires, la migration itérative
permet de combler une partie du trou d’acquisition dans l’image de ré�ectivité et dans la remise
à jour du macro-modèle. En revanche l’introduction des ré�exions multiples (à la fois dans les
données observées et dans les données calculées) ne permet pas de combler d’avantage le trou
d’acquisition, même après vingt itérations sur le modèle de ré�ectivité.
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6.1. Introduction

The aim of the thesis was to provide a more robust MVA procedure based on iterative migration,
able to deal with multiple re�ections. In chapters 2 to 5, we have progressively built a strategy,
whose �nal formulation can be summarised in four steps:

• preconditioned iterative migration to determine the re�ectivity section ξ(N+1) best explain-
ing observed data. The preconditioner is a pseudo-inverse F† of the extended modelling
operator F. It has been derived for the case of primaries only (chapter 4) and is similar to
the one proposed by Hou and Symes (2015);

• application of the �lter K = F†F to ξ(N+1) to remove unwanted energy at large values of
h that does not have any meaning in terms of wave propagation kinematics. The �ltered
re�ectivity ζ = Kξ(N+1) is used as input of the usual MVA objective function

J1[c0] =
1
2



Aζ[c0]


2
E ; (6.1)

• computation of the image residual KTATAζ and resolution of a linear adjoint problem
(even in the case of multiples) for the adjoint variable η

�
∂ 2J0

∂ ξ2

�
c0,ξ(N+1)

��
η = KTATAKξ(N+1); (6.2)

• computation of the approximate gradient G(N,M), using the last iterate ξ(N+1) and the last
iterate η(N+1,M+1), as

G(N,M) =
�
∂ 2J0

∂ ξ∂ c0

�
c0,ξ(N+1)

��
η(N+1,M+1). (6.3)

We have also introduced in section 5.3.3 an alternative strategy for the derivation of a
background velocity update after iterative migration. It consists of using the extended re�ectivity
image resulting from iterative migration to recompute primary re�ection data. Then the macro-
model update is obtained with the direct inversion strategy applied to this new data set free of
multiples, as if it was observed data. The background velocity update obtained with this method
is only one of the contribution to the gradient of the objective function (6.1) with respect to
c0, and is therefore referred to as “truncated gradient” in this chapter. The advantage of this
strategy is that there is no need to solve the adjoint problem any more, so that the computational
expense of the method is considerably reduced. Furthermore the direct inversion strategy has
been shown to provide smooth consistent gradients in a wide variety of cases (section 4.2.6).
Therefore we expect the truncated gradient to bene�t of its favourable behaviour also in the
case of multiples.

Currently the iterative migration strategy has been applied only on observed data modelled
with a second-order Born approximation, that is with the same modelling tool as the one used in
inversion. This is referred to as the “inverse crime” (Wirgin, 2004) in inverse problems literature.

210



6.1. Introduction

The purpose of this chapter is �rst to evaluate the robustness of the approach when synthetic
observed data are obtained with a di�erent modelling code. This may allow us to determine
possible limitations of our approach in the perspective of real data applications (not considered
in this thesis). The second objective is to go beyond the computation of the �rst gradient and
run several non-linear iterations to update the background model. Finally we examine the
ability of our MVA strategy to bene�t from the additional information contained in �rst-order
surface-related multiples.

In the �rst part of this chapter (section 6.2), we run four tests, named A, B, C and D, summarised
in table 6.1. In tests A and B, we model observed data with the constant density acoustic wave-
equation and a modi�ed source wavelet, the Ricker wavelet still being used for inversion. In
tests C and D, observed data are modelled with a variable density acoustic propagation code, �rst
under the Born approximation, then with a full �nite-di�erence modelling and a free-surface
condition. For each test, we compute six background velocity updates using di�erent strategies
(the letters in the list below correspond to the labels of sub�gures in section 6.2):

(a) direct inversion on primary re�ection data only;
(b) direct inversion on data containing both primaries and �rst-order surface-related mul-

tiples;
(c) iterative inversion on primary re�ection data only;
(d) iterative inversion on data containing both primaries and �rst-order surface-related

multiples;
(e) smoothed version of the gradient obtained in (c) after application of a gaussian blur;
(f) “truncated gradient” obtained in the case of primaries, as described above;
(g) same as (e) in the case of multiples (i.e. smoothed version of (d));
(h) same as (f) in the case of multiples.

The result of direct inversion (a) on primaries only is used as reference. The case (b) is considered
to assess how multiples misinterpreted as primaries alter the result of (a). Then we compare the
result of iterative inversion on multiples (d) with (a) to assess the robustness of our approach.
To determine if potential failures of iterative inversion in the presence of multiples are due
to multiples or to the iterative strategy, we also compute the gradient obtained by iterative
inversion in the case of primaries only (c). Smoothing is commonly applied before updating the
velocity model, therefore we show a smoothed version ((e) and (g)) of the gradient obtained
after iterative inversion (d).

The same exact (in principle unknown) velocity model is used for tests A, B and C. Those tests
are compared to a reference case where the same code is used for the modelling of observations
and for inversion. The model is 1800 m large and 700 m deep, laterally invariant and discretised
on a 4.8 m×4.8m grid. The background velocity model is increasing with depth from 2000 m/s
at the surface to approximately 2700 m/s at 700 m depth (�gure 6.1, left). The initial velocity
model is similar to the exact model except that velocities are underestimated (from 2000 m/s at
the surface to 2400 m/s at the maximum depth). Sources are located every 6 grid points at the
surface with receivers at each grid point on the surface within ±700m around the source. The
model used in test D is di�erent and will be presented in section 6.2.5.

For all tests A, B, C and D, we de�ne an annihilator similar to the one used at the end of
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test section �gures source wavelet modelling tool for observed data
ref. 6.2.1 6.3 and 6.4 Ricker wavelet 2nd-order Born approximation

A 6.2.2 6.6 and 6.7
Ricker wavelet
without low
frequencies

2nd-order Born approximation

B 6.2.3 6.9 and 6.11 time derivative of
Ricker wavelet 2nd-order Born approximation

C 6.2.4 6.16 and 6.19 Ricker wavelet
2nd-order Born approximation
density perturbation instead of

velocity perturbation

D 6.2.5 6.23 and 6.24 Ricker wavelet �nite di�erence and free-surface
condition with variable density

Table 6.1. – Series of tests performed in chapter 6. The coloured cells correspond to the
modi�cation introduced in the modelling code for observed data compared to the modelling
code used during inversion.

chapter 5,
Aξ(z, x , h) = |h| · z · cβ

0(z, x)ξ(z, x , h). (6.4)

It consists of a multiplication by the absolute value of the subsurface o�set to penalise defocused
energy as well as a power β= −3/2 of the background velocity model which has been shown
in chapter 4 to attenuate spurious oscillations appearing in the MVA gradient around re�ectors’
positions. To emphasise the in�uence of deeper re�ectors which may be hidden by cross-talk
artefacts, we add a multiplication by the depth z in the de�nition of the annihilator.

In the second part of this chapter (section 6.3), a blocky velocity model and a variable density
model both with lateral variations are de�ned to generate observed data under a second-order
Born approximation. We run several outer iterations on the background velocity model and
compare the results obtained by direct inversion on primary re�ection data only and the
“truncated gradient” strategy applied on data containing both primaries and �rst-order surface
multiples.

Finally we study in section section 6.4 an example with an incomplete acquisition where
multiples may bring additional information compared to primaries. We want to test the ability
of iterative MVA to use this information.

6.2. Robustness of Iterative Migration Velocity Analysis

This section presents and discusses results obtained when a di�erent modelling tool is used for
the modelling of synthetic observed data and for inversion. In tests A, B, and C (sections 6.2.2
to 6.2.4), re�ections are due to a dense model perturbation (velocity model perturbation or
density model perturbation). Before presenting the results of these tests, we show the velocity
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updates obtained in the reference case where the same modelling tool is used to compute
observed data and calculated data.

6.2.1. Reference case

In the reference case, the re�ectivity model is laterally invariant with rapidly varying values
between 100 m and 500 m depth, and zero values above and below (�gure 6.1, right). Using a
Ricker wavelet with maximum frequency 40 Hz, we obtain observed data with several events
overlapping with one another (�gure 6.2). The �rst gradient of the MVA objective function is
expected to be negative above z = 500 m and zero below.
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Figure 6.2. – Observed data computed in the
model of �gure 6.1 under the �rst-order
Born approximation (left) and a second-
order Born approximation (right).

We �rst compute the gradients obtained after direct inversion. In the primaries only case, all
events in CIGs have a downward curvature (�gure 6.3a). As expected, the gradient is negative
above the deeper re�ector and zero below. When direct inversion is applied to both primaries
and �rst-order surface multiples, additional cross-talk artefacts appear above and below the
deeper re�ector with an upward curvature (�gure 6.3b). As a consequence positive values
appear on the gradient below the deeper re�ector as well as strong edge e�ects.

In the case of primaries only, the combination of iterative migration and �ltering with F†F
leads to CIGs very similar to those obtained by direct inversion (�gure 6.3c). The associated
gradient has small non-zero values below the re�ector but is quite close to the result shown in
�gure 6.3a. Finally in the case of multiples, iterative migration succeeds in removing cross-talks
artefacts resulting in �ltered CIGs very similar to the previous case (�gure 6.3d). The associated
gradient has a consistent negative value above the deeper re�ector and spurious positive values
below are attenuated compared to �gure 6.3b. These results are satisfactory, and smoothing the
gradients yields consistent background velocity updates for subsequent inversion (�gures 6.4e
and 6.4g). Note also that the “truncated gradients” (�gures 6.4e and 6.4g) are very similar to the
gradient of �gure 6.3a.
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Figure 6.3. – Gradient and CIGs obtained with the model of �gure 6.1 with di�erent inversion
strategies with and without multiples:

(a) direct inversion on primaries only;
(b) direct inversion on primaries and multiples;
(c) iterative migration on primaries only (N = 7 and M = 10);
(d) iterative migration on primaries and multiples (N = 10 and M = 8).
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Figure 6.4. – Velocity updates obtained by smoothing the total gradient obtained after iterative
inversion (left) and by keeping only the contribution due to the pseudo-inverse (right), in
the case of primaries (top), and with both primaries and multiples (bottom).

In summary we obtain results very similar to the case of a single re�ector studied in sec-
tion 5.3.2. However, the gradients presented here are less homogeneous. This can be interpreted
as a superposition of the contributions due to the di�erent events in the CIGs, although the
gradient obtained with all the events in the CIGs is not formally a linear combination of the
gradient obtained from CIGs containing single events. We also observe strong edge e�ects for
all gradients. As already mentioned in chapter 5 (see also �gure 5.32), we are mainly interested
in the central part of the gradient. With a larger model and the same acquisition parameters, the
edge e�ects would remain similar while the central part would be extended. In these examples
we have considered relatively small models to limit the computational cost. We now begin the
series of tests summarised in table 6.1 and focus on the central part of the gradients.

6.2.2. Test A – Sensibility to the lack of low frequencies in observed data

In this �rst test, we use two di�erent source wavelets for observations and inversion. Low
frequencies up to 5 Hz are removed from the Ricker wavelet for observations (�gure 6.5). The
original Ricker wavelet is used during inversion.

In the eight cases (�gures 6.6 and 6.7), we obtain results very similar to the reference case
(�gures 6.3 and 6.4). The main di�erence lies in the shape of events in CIGs modi�ed in a similar
way as the source wavelet is, but this has almost no in�uence on the shape of the gradient. We
conclude that the behaviour of the MVA techniques analysed in the preceding chapters with the
standard Ricker wavelet should not be altered by the lack of low-frequencies inherent to real
data acquisition. This is a di�erent behaviour than for FWI (Sirgue and Pratt, 2004; Virieux and
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Figure 6.5. – Source wavelet used to generate observed data in test A. It is obtained by setting
to zero low frequencies in the original Ricker.

Operto, 2009). To our knowledge, the importance of source wavelet estimation has not been
studied in the MVA literature yet.

6.2.3. Test B – Sensibility to inaccuracies of source estimation

In test B, observed data are generated with the same re�ectivity model as in the reference,
but with a di�erent source wavelet, de�ned as the derivative of the original Ricker wavelet
(�gure 6.8). Inversion is still performed with the standard Ricker.

The result of direct inversion is very similar to the reference case when applied to primaries
only (�gures 6.3a and 6.9a). However multiples have a larger in�uence than in the reference
case (�gures 6.3b and 6.9b): cross-talk artefacts in CIGs have larger amplitudes compared to
events due to primaries and the associated positive values in the gradient spread over a larger
area. This may be related to the stretching of events in CIGs, decreasing with depth (�gure 6.10),
so that deeper events have lower frequencies. Applying a time derivative to the source wavelet
in observed data changes the frequency content of CIGs, and strengthens deeper events. Note
that this is only a partial explanation as the approximate inverse should correct for the stretch.

Iterative inversion on primaries only results in CIGs very similar to the direct inversion
case. The gradient is however altered by positive values around 100 m depth, which are not
attenuated by smoothing (�gure 6.11e). Note that the “truncated gradient” (�gure 6.11f) is
remarkably close to the result of direct inversion (�gure 6.9a). In the case of multiples, iterative
migration fails to explain both primaries and multiples correctly (�gures 6.12 and 6.13). Some
multiple re�ections are still misinterpreted as primaries after ten iterations (�gure 6.12, bottom
row, between 0.45 s and 0.6 s). Actually, the errors in the shape of the source are converted into
a di�erent re�ector shape compared to the reference case. Primaries and multiples interact once
and twice with re�ectors respectively, hence changing the shape of the re�ector can compensate
for the source wavelet in the case of primaries, but this result in a wrong phase for predicted
multiples. At the �rst iteration, the re�ectivity is optimised for primary re�ection, then little
improvement is made in the following iterations for both primaries and multiples (�gure 6.13,
bottom). This results in poor �nal data residuals and cross-talk artefacts not being attenuated in
the �nal CIGs (�gure 6.9d). This has unwanted consequences on the convergence of the adjoint
problem (�gure 6.14, green curve), which may not be positive de�nite in the case of multiples as
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Figure 6.6. – Same as �gure 6.3 when observed data are generated with the source wavelet
shown in �gure 6.5 (test A).
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Figure 6.7. – Same as �gure 6.4 for the gradients presented in �gure 6.6 (test A).
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Figure 6.8. – Source wavelet used to generate observed data in test B, obtained as the time
derivative of the original Ricker wavelet.
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Figure 6.9. – Same as �gure 6.3 when observed data are generated with the source wavelet
shown in �gure 6.8 (test B).

Figure 6.10. – Stretching factor c0/ cosθ, with
θ the half opening angle at the image point,
obtained for di�erent depths and the max-
imum surface o�set value hsurface = 700 m
in the initial velocity model of �gure 6.1. 0 200 400 600
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discussed in section 5.3.2. A negative curvature is encountered after eight iterations and we stop
the conjugate gradient iterations. Although the norm of the objective function associated with
the CG-algorithm still decreases, the relative normal residuals increases from iteration 5, which
is not satisfactory. A larger regularisation weight may mitigate this issue, but at the expense of
a possible higher �nal data mis�t. The gradient computed after eight iterations of resolution of
the adjoint problem looks consistent (�gure 6.9d) but its value and signs are actually not stable
from one iteration to another. Note however that the “truncated gradient” (�gure 6.11h) which
does not depend on the number of adjoint iterations, shows much improvement compared to
�gure 6.9b and therefore stands as a reliable alternative.
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Figure 6.11. – Same as �gure 6.4 for the gradients presented in �gure 6.9 (test B).

This test indicates that the estimation of the source wavelet is a key point for the accuracy of
iterative migration. A poor estimate prevents the attenuation of cross-talk artefacts and leads
to inconsistent background velocity updates.

6.2.4. Test C – Density perturbation

We now consider a new exact model for the modelling of observed data. The exact (and initial)
background velocity model are the same as those used in the reference case (�gure 6.1, left) but
here with a zero velocity perturbation. Instead we assume that re�ections originate only from a
variable density model ρ(x), modifying the wave-equation (2.4) into

(iω)2

c2
P− ρ∇ ·

�
1
ρ
∇P
�
= Ω(ω)δ(x− s). (6.5)

For this test, we will decompose the density model ρ(x) into ρ(x) = ρ0(x) + δρ(x) and model
data under a second-order Born approximation. Similar to the velocity perturbation case
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Figure 6.12. – Observed data (containing both
primaries and multiples) and calculated data
obtained after ten iterations of iterative
migration in the reference case (top, �g-
ure 6.3d), and in test B (bottom, �gure 6.9d).
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Figure 6.14. – Norm associated with the conjugate gradient algorithm (top) and relative normal
residuals (bottom) obtained across iterations for the resolution of the adjoint problem in the
reference case as well as in the tests A, B, C and D both in the case of primaries only (left),
and in the case of primaries and multiples (right). The �ve case shown here correspond
to di�erent linear systems and cannot be directly compared. Note that the relative normal
residuals are actually the norm of the gradient of the CG-objective and may not decrease
from one iteration to the following.
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(section 2.3.1), we decompose P into P = P0 + δP and obtain

(iω)2

c2
(P0 + δP)− (ρ0 + δρ)∇ ·

�
1

ρ0 + δρ
∇(P0 + δP)

�
= Ω(ω)δ(x− s), (6.6)

(iω)2

c2
(P0 + δP)− (ρ0 + δρ)∇ ·

��
1
ρ0
− δρ

ρ2
0

�
∇(P0 + δP)

�
= Ω(ω)δ(x− s), (6.7)

leading to

(iω)2

c2
δP− ρ0∇ ·

�
1
ρ0
∇δP

�
= −ρ0∇

�δρ
ρ2

0

�
· ∇P0 + δρ∇

�
1
ρ0

�
· ∇P0, (6.8)

Assuming a homogeneous background density model ρ0(x) = ρ0, this expression simpli�es into

(iω)2

c2
δP−∆δP = − 1

ρ0
∇δρ · ∇P0 (6.9)

In test C, we set ρ0 = 1, and we consider a laterally invariant density perturbation with the
same shape as the velocity perturbation de�ned in the reference case (�gure 6.1, right). The
magnitude of the perturbation is determined such that the amplitude of re�ection data at zero
surface o�set is the same as in the reference case (�gure 6.15). Moving from a velocity to a
density perturbation does not change the kinematics of primary and multiples re�ections. The
main di�erence is that amplitudes are lower for wide opening angles, corresponding to large
surface o�sets of early primary re�ections due to the shallower re�ectors (�gure 6.15, right).
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Figure 6.15. – Observed data obtained with a perturbation of the velocity model (1st column)
and with a perturbation of the density model (2nd column). Both plots use the same colour
scale. Traces extracted at the position indicated by the dashed lines are shown on the two
most right panels.

This di�erence of amplitudes has a direct impact on CIGs obtained by direct inversion. Com-
pared to the reference case (�gure 6.3a), the shallower re�ectors have much lower amplitudes
at large value of the subsurface-o�set, so that only the defocusing of the deeper re�ectors is
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interpreted in the velocity analysis (�gure 6.16a). The gradient looks more homogeneous but this
is due only to the attenuation of shallower re�ectors. The same e�ect appears when multiples
are added to observed data. Due to smaller opening angles than primaries, their amplitudes in
observed data remain similar to the reference case. As a consequence they have higher in�uence
on velocity analysis: the amplitude of positive energy below the deeper re�ector is relatively
stronger than the above negative values due to primaries (�gure 6.16b).
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Figure 6.16. – Same as �gure 6.3 when observed data are generated with a density perturbation
instead of a velocity perturbation (test C).

After iterative migration and �ltering, we obtain CIGs very similar to the result shown in
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6.2. Robustness of Iterative Migration Velocity Analysis

�gure 6.16a, both in the case of primaries only and in the case of primaries and multiples
(�gures 6.16c and 6.16d). The �nal re�ectivity correctly explains both primaries and multiples
(�gure 6.17) although re�ections are modelled with a velocity perturbation for the determination
of the optimal model perturbation. Compared to the reference case (�gures 6.12 and 6.13, top),
the �nal mis�t is slightly higher for multiples (�gure 6.18), but this does not prevent cross-talk
artefacts from being attenuated. The associated gradients are very close to the one obtained in
�gure 6.16a, especially after smoothing (�gures 6.19e and 6.19g). Again, the truncated gradients
(�gures 6.19f and 6.19h) are remarkably close to the velocity update obtained in the direct
inversion case, meaning that the re�ectivity image obtained after iterative migration allows to
faithfully reproduce the kinematics of primary re�ections.
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Figure 6.17. – Observed data and calculated
data obtained after ten iterations of iterative
migration for two values of the surface o�-
set, h= 0m (top) and h= 417.6m (bottom)
(test C).
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Figure 6.18. – Migration objective function
(red) obtained when observed data are mod-
elled with a density model perturbation
instead of a velocity model perturbation
(test C).

We conclude from test C that our approach correctly extracts the kinematic information
contained in re�ections originating from density perturbations. Iterative migration succeeds
in �nding a velocity perturbation model explaining correctly both primaries and multiples
re�ections. The amplitude di�erence, especially for wide opening angles, between re�ections
originating from density and velocity perturbation is compensated by a modi�cation of the
value of the re�ectivity model at large values of h. The MVA gradient is still consistent, the
di�erence being that a smaller weight is given in the background velocity update to re�ections
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Figure 6.19. – Same as �gure 6.4 for the gradients presented in �gure 6.16 (test C).

originating from shallow re�ectors.

6.2.5. Test D – Observed data modelled without the Born approximation

Finally we test the ability of our approach to deal with observed data modelled without the
Born approximation. We use an exact velocity model di�erent from tests A, B and C but with
the same dimensions and we keep the same acquisition parameters. The velocity increases
with depth, similar to the previous case, but instead of a dense re�ectivity, we add two layers
with homogeneous velocity (2600 m/s) between 200 m and 400 m depth and 550 m and 600 m
depth; the density model is variable with interfaces located at the same positions as the velocity
discontinuities (�gure 6.20, red curves). Both models are laterally invariant and the velocity
perturbations are not proportional to the density perturbations.

Observed data are modelled with a �nite-di�erence variable density acoustic propagation
code. In the case of primaries only, PMLs are implemented on each edge of the model while
a free-surface condition is used to model multiples (�gure 6.21, 1st column). The main e�ect
compared to second-order Born approximation are the following:

• an angle dependent re�ectivity coe�cient at the free surface;
• ghost e�ects at the source and receiver positions;
• all orders of multiples are modelled, as well as internal multiples.

For comparison, we smooth the velocity and density models and de�ne associated velocity
and density perturbations (�gure 6.20, blue curves) to model data under a second-order Born
approximation (�gure 6.21, 2nd column). To take ghosts e�ects into account, we use a scaled
second-order time derivative of the Ricker wavelet in the case of multiples (�gure 6.22).
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Figure 6.20. – Exact discontinuous velocity and density 1D pro�les used to model observed
data (red, �rst and third columns). The blue curves correspond to smoothed velocity and
density models, and associated velocity and density perturbations used to model data with
second-order Born approximation. The dashed green line is the initial velocity model used
to compute the gradient (test D).

In the primaries only example, both data sets are very similar. Amplitudes are overestimated
by the Born approximation, but with consistent kinematics and a similar amplitude ratio at
zero and large o�sets (�gure 6.21, top row). In the case of multiples, the kinematics is not as
well reproduced by the Born approximation as in the previous case, but remains consistent.
However the amplitudes are overestimated with much larger discrepancies at large o�sets than
at zero o�sets. The origin of these errors is the use of a second-order time derivative to model
ghost re�ections, valid at zero-o�set only.

We now compute the background velocity updates using the observed data sets obtained
without the Born approximation (�gure 6.21, 1st column). For calculated data, the density model
is assumed homogeneous and the initial velocity model is increasing with depth (�gure 6.20,
dashed green curve). Direct inversion on primaries data yields CIGs with downward curved
events only, which is consistent with the initial too low velocity model (�gure 6.23a). The
central part of the associated gradient is smooth and homogeneous with negative values as
expected. In the multiple case, we use the modi�ed source wavelet introduced in the preceding
paragraph to model ghost re�ections for the inversion (�gure 6.22). Cross-talk artefacts with an
upward curvature are superimposed on the events related to primaries, resulting in spurious
positive values in the gradient (�gure 6.23b).

Iterative inversion in the primaries only case yields CIGs similar to direct inversion (�g-
ure 6.23c). The gradient is negative but exhibits oscillations around re�ector positions, which
can be nonetheless attenuated by smoothing (�gure 6.24e). Again, the “truncated gradient”
(�gure 6.24f) is very close to the result shown in �gure 6.23a. This contrasts with the mixed
results obtained with multiples. Cross-talk artefacts are still visible on CIGs (�gure 6.23d),
although �nal data residuals are very small (�gures 6.25 and 6.26). Our interpretation of this
apparent contradiction is that the �nal re�ectivity contains events with downward curvature
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Figure 6.21. – Observed data computed with a �nite-di�erence modelling code and a free-
surface condition in the multiple case (left column, corresponding to the red 1D pro�les
of �gure 6.20). We compare this data set with data modelled under the second-order Born
approximation (2nd column, corresponding to the blue 1D pro�les of �gure 6.20) (test D).
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Figure 6.22. – Ricker source wavelet with maximum frequency of 40 Hz used to model observed
data with a �nite di�erence scheme (black). A second-order time derivative of this wavelet
is used to take source and receiver ghost e�ects into account when modelling data under the
second-order Born approximation (test D).
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corresponding to the true re�ectors which correctly explain primary re�ections. However the
amplitudes of multiples modelled from these re�ectors do not match those in observed data,
because of the inaccuracy of both the second-order Born approximation and the modelling
of ghosts used here. The di�erence is explained by residual cross-talk artefacts, which are
nonetheless smaller than in �gure 6.23b. As a consequence, spurious positive values are still
visible in the gradient (�gure 6.23d). They are not attenuated after smoothing (�gure 6.24g).
Note also that the convergence of the adjoint problem is slower than in the previous cases
(�gure 6.14, orange curve). As in the previous example, we observe that the truncated gradient
provides more consistent velocity updates and seems more insensitive to residual cross-talk
artefacts in CIGs (�gure 6.24h).

We conclude from test D that iterative migration has di�culty in presence of a free-surface,
because source and receiver ghosts are not properly modelled. We used a second-order time
derivative of the source wavelet to account for this e�ect, but this approximation is valid for
zero re�ection angles only. A better modelling tool should be investigated to deal with this issue.
As for the preceding examples, the best result is obtained here with the “truncated gradient”
approach.

6.3. Iterations on the background velocity model

We now consider a 2D model with lateral variations and iterate on the background velocity
model. The model is 2500 m large and is made of three 1D velocity pro�les similar to the
previous example with two sub-vertical faults and a low-velocity layer between 400 m and
550 m depth in the central part of the model (�gure 6.27, top). We also consider a variable
density model with interfaces located at the same positions as in the velocity model, but with
di�erent contrast values.

We have seen in the preceding section that free-surface remains an issue as we cannot model
properly ghost re�ections at wide angles. Therefore we consider here a simpler case and model
observed data under a second-order Born approximation. For that purpose we use smoothed
versions of the velocity and density models (�gure 6.27, bottom). From now on, “exact velocity
model” refers to this smoothed version. Although the forward modelling code for observations
and inversion both use the second-order Born approximation, we are not in the position of an
“inverse crime”. Observed data are indeed modelled with variable density and both velocity and
density perturbations, the density perturbations being stronger. For inversion, we assume a
constant density model (ρ0 = 1) and only model re�ections due to velocity perturbations.

Starting with an homogeneous (2000 m/s) background velocity model as initial guess, the
inversion aims at minimising the following MVA objective function

J1[c0] =



h · z · cβ
0 · ξ[c0](z, x , h)



2
E

z · cβ

0 · ξ[c0](z, x , h)


2
E

. (6.10)

To prevent convergence towards background velocity models minimising the energy in CIGs
instead of minimising only defocused energy, we consider an objective function normalised by
the energy of the re�ectivity image without multiplication by h (Chauris and Noble, 2001). As
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Figure 6.23. – Same as �gure 6.3 when observed data are generated with a �nite-di�erence
modelling code without Born approximation (test D).
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Figure 6.24. – Same as �gure 6.4 for the gradients presented in �gure 6.23 (test D).
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Figure 6.27. – Exact velocity and density model (top), and their respective smoothed versions
(bottom) used to generate observed data with a second-order Born approximation.

the shallower interface is a strong re�ector, a multiplication by z is introduced in the annihilator,
so that deeper re�ectors have enough in�uence on the velocity model reconstruction. Besides,
as velocities are underestimated in the initial velocity model, re�ectors are migrated to shallower
depths, and should be shifted toward deeper positions across iterations, which con�icts with the
z-multiplication in CIGs. Therefore a multiplication by z is also introduced in the normalisation
term of the objective function (6.10).

We �rst use the direct inversion strategy on primaries only and perform 20 iterations of non-
linear conjugate gradient with the Polak-Ribière formula (�gures 6.28 and 6.29). To accelerate
the convergence, we assume that the velocity in the �rst layer is known and set to zero the
gradient below 100 m depth. We also introduce a preconditioner consisting of a multiplication
by the depth zα with α= 1 in the applications. Finally we smooth the resulting velocity update
with a gaussian blur, with a stronger smoothing in the x-direction (σx = 140m and σz = 90 m).
These values are progressively decreased every four iterations to recover more detailed structure
in the last iterations, as shown in table 6.2.

iterations σz σx

1 to 4 σz0 = 90 m σx0 = 140m

5 to 8 0.75 · σz0 0.75 · σx0

9 to 12 0.5 · σz0 0.5 · σx0

13 to 20 0.25 · σz0 0.25 · σx0

Table 6.2. – Parameters of the gaussian blur used to smooth the gradient at each iteration on
the background velocity model.

The most energetic event in the initial CIGs is the continuous interface located at 2000 m
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Figure 6.28. – Result of iterations on the background velocity model with the direct inver-
sion strategy on data containing primaries only. The colour bar ranges from 1950 m/s to
2750 m/s and is similar to the one used in the left column of �gure 6.27.
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Figure 6.29. – Re�ectivity image obtained by direct inversion in the background velocity
models shown in �gure 6.28. The bottom row displays the results obtained in the exact
velocity model. The same colour scale is used for all sections at h = 0 (left column). All
CIGs are also plotted with the same colour scale, which has been truncated for a better
representation of deeper re�ectors.
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depth (�gure 6.29, top row). The associated defocused energy drives the �rst velocity updates and
the shallower velocity contrast is recovered after a couple of iterations (�gure 6.28). Subsequent
iterations address the focusing of events related to the low velocity anomaly at larger depths,
progressively appearing between iterations 5 and 15. After 9 iterations, the value of the objective
function has decreased to the value obtained in the exact model (�gure 6.30, left). Smaller values
are reached by further attenuating defocused energy but this does not necessarily result in more
relevant information on the background velocity model. In particular, velocity updates after
iteration 15 are mostly located around the faults to the detriment of the low velocity layers on
the left and right sides of the faults (around z = 400m and z = 500 m, respectively) which are
not recovered in the �nal model. Finally note that CIGs are well focused after 5 iterations and
similar to those obtained in the exact model (�gure 6.29, 4th and bottom row). Few modi�cations
are visible in subsequent iterations compared to the evolution of the background velocity model.
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Figure 6.30. – Value of the MVA objective function (6.10) across iterations (blue, solid). The
dashed black line represents the value obtained in the exact background velocity model.
Three di�erent inversions strategies are shown: direct inversion on primaries only (left,
corresponding to �gure 6.28), direct inversion on primaries and multiples (centre, corres-
ponding to �gure 6.31), and iterative inversion on primaries and multiples with application
of the �lter F†F and the “truncated gradient” as background velocity update (right, �nal
result shown in �gure 6.33b, bottom right).

The same example is run with �rst-order surface multiples in observed data with identical
smoothing parameters (�gures 6.31 and 6.32). We use direct inversion for the de�nition of the
extended image to evaluate the impact of multiples on the reconstruction of the velocity model.
As already discussed in section 4.4.2, the associated MVA objective function is not minimal for
the correct velocity model due to the presence of multiples. Here, a smaller value is reached
after a single iteration (�gure 6.30, middle), indicating that inversion converges to a compromise
model which should focus both cross-talks artefacts and events corresponding to true re�ectors.
The velocity models obtained in the �rst iterations have a shape similar to the primaries only
case (�gures 6.28 and 6.31), but after a few iterations, events with an upward curvature (around
z = 400m depth at iteration 5 for example, fourth row in �gure 6.32) misguide background
velocity updates and prevent a proper focusing of the event corresponding to the shallowest
interface. Consequently, the value of the velocity at this interface is not correctly recovered,
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and neither is the low velocity anomaly.
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Figure 6.31. – Same as �gure 6.28 with both primaries and �rst-order surface multiple in
observed data.
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Figure 6.32. – Same as �gure 6.29 in the case of multiples for the background velocity models
of �gure 6.31.

Finally we replace direct inversion by iterative migration, still with both primaries and �rst-
order surface multiples in observed data. We perform 5 inner iterations on the re�ectivity
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model for each outer iteration and compute a background velocity update with the “truncated
gradient” strategy: primaries are remodelled from the �nal re�ectivity model and the direct
inversion strategy applied to this new data set to obtain a background velocity update. We begin
by comparing the re�ectivity sections obtained in the initial-velocity model (�gure 6.33a). The
cross-talk artefacts appearing after direct inversion the complete data set (around z = 400m)
due to the multiple re�ecting twice at the shallower interface are greatly attenuated after �ve
iterations. Although the gradient obtained with direct inversion on primaries and multiples
is quite similar to the primaries only case, we obtain a much closer velocity update with the
“truncated strategy” (�gure 6.33b, left column). Note that the largest values in the gradient
are due to the faults, but consistent homogeneous updates are obtained on the left and right
sides of the fault. The objective function decreases at the same pace as in the primary only
case, and reaches a slightly lower value than the one obtained in the correct velocity model.
Finally, the background velocity model recovered after �fteen iterations is very similar to the
result of inversion obtained in the primaries only case (�gure 6.33b, right column), showing
that multiples have been correctly included in the process.

We conclude from this example that the truncated gradient approach, consisting of applying
the direct inversion to primaries only recomputed from the �nal result of iterative migration,
is an e�cient strategy to deal with surface-related multiples, which otherwise prevent the
inversion to converge to a reliable background velocity model. The inversion should in theory
also be performed with the complete gradient, but this is more computationally expensive as
the adjoint problem has to be solved and as more inner iterations are needed in practice to
obtain consistent gradients. The truncated gradient is not formally the gradient of an objective
function but e�ciently deals with multiples at a reasonable computational cost.

6.4. Incomplete acquisition

Finally we consider an example with an incomplete acquisition to test the ability of our strategy
to bene�t from the additional information contained in multiples. For this example, only the
�rst MVA gradient is computed (we do not loop over the background velocity model). We
consider a 700 m deep and 3750 m large model, discretised on a 4.8× 4.8m grid, with sources
every six grid points from x = 0 m to x = 1500m and from x = 2250 m to x = 3750 m
(�gure 6.34). Receivers are located at each grid point at the surface within ±700 m around each
source. Unlike sources, receivers are not removed from the central part of the model. Iterative
migration is performed with this acquisition setting. After 20 iterations, data are re-computed
for sources located every four grid points, including the central part. Using the truncated
gradient strategy, velocity analysis is performed on this new data set with the direct inversion
strategy (section 4.2).

We want to compare this background velocity update with the result obtained using the
direct inversion strategy on the original data set. We consider a pure 1D velocity and density
model (�gure 6.34) built by extending the central part of the exact model shown in �gure 6.27.
Hence the di�erence between the results of direct and iterative inversion are not due to 2D
e�ects. The initial background velocity model is homogeneous (2000 m/s), so that we expect a
negative gradient.
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Figure 6.33. – Results of 20 iterations on the background velocity model using the iterative
migration strategy with observed data containing both primaries and �rst-order surface
multiples, and comparison with the results obtained with direct inversion. In the iterative
case, the “truncated gradient” strategy is used to compute the background velocity update.
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Figure 6.34. – Laterally invariant velocity model considered in section 6.4. It is constructed by
extending the central part of the 2D velocity model shown in �gure 6.27. The horizontal
black arrows indicate sources lateral position. There are no sources between x = 1500 m
and x = 2250 m/s.

With this acquisition setting, no zero-o�set trace is recorded in the central part of the model.
The width of the acquisition hole (750 m) is only a little larger than the maximum surface
o�set (700 m). However tapers are applied to smooth the discontinuity in source and receivers
positions and to attenuate edge e�ects. Hence sources located near the acquisition hole have
little in�uence and the area not illuminated by primaries and direct inversion is not negligible
(�gure 6.35, top). Consequently there is no update of the background velocity in the central
part of the model using the direct inversion strategy.
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Figure 6.35. – Section at h= 0 of the re�ectivity model (left) and MVA gradient (right) obtained
in a homogeneous background velocity model (2000 m/s) with three di�erent strategies:
direct inversion on primaries only (top), and truncated gradient computed after 20 iterations
on J0 with primaries only in both observed and calculated data (middle), and with primaries
and multiples in both observed and calculated data (bottom). In the iterative case, the
re�ectivity section displayed here is the result of application of the �lter F†F to the �nal
re�ectivity model computed by iterative migration.
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6.5. Conclusion

Twenty iterations are performed on the re�ectivity section in the primary only case, as well
as in the case of �rst-order surface multiples (�gures 6.35 and 6.36). In the primary only case,
iterative migration provides a re�ectivity model with a smaller hole in the central part of the
model compared to direct inversion (�gure 6.35, middle). The area with non-zero background
velocity update is also reduced. In the case of multiples, we obtain a very similar re�ectivity
image (�gure 6.35, bottom). Although the multiples illuminate the central part of the model,
we do not succeed in recovering a continuous re�ector. Some cross-talk artefact are even still
visible (around z = 400m and x = 1600m for example). As a consequence the MVA gradient
does not exhibit improvement compared to the primary only case and there is even a stronger
artefact with a wrong sign around x = 1600 m and x = 2200m. A better result might be
obtained by performing much more iterations, but the associated computational cost would not
be a�ordable.
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Figure 6.36. – Relative data mis�t across iterations when performing iterative migration
in a homogeneous velocity model (2000 m/s) with primary only (left, corresponding to
�gure 6.35, middle) and primaries and �rst-order surface multiples (left, corresponding to
�gure 6.35, right).

We conclude from this example, that iterative migration allows to extract more information
on the edges of the model compared to direct inversion, even in the case of primaries only.
However, the additional information contained in �rst-order surface multiples is di�cult to
recover as it is located on the edges of the acquisition where strong edge e�ects alter the gradient.
Also the tapers applied to the sources and receivers on the edges of the acquisition reduce the
weight given to multiples containing additional information.

6.5. Conclusion

In this chapter, we have tested the behaviour of iterative velocity analysis in the case of direct
inversion and iterative migration when observed data are computed with a forward modelling
code di�erent from the one used during inversion. We have shown that our approach is robust
against the lack of low frequencies in observed data and to mild errors in amplitude predictions.
However, a reliable estimation of the source wavelet is required for iterative migration to obtain
extended re�ectivity images able to explain both primaries and surface-related multiples. In
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the perspective of real data applications, we have shown that ghost re�ections are an issue and
that they should be properly modelled or removed. Finally we have compared the background
velocity update obtained as the complete gradient of J1 with an alternative strategy introduced
in chapter 5 and referred to as truncated gradient in this chapter. It consists of applying the
direct inversion strategy to primary re�ection data re-computed from the result of iterative
migration. We have shown that this approach yields consistent background velocity updates
and is more robust than the complete gradient computation with also a lower computational
cost.

Then this strategy has been applied on a 2D synthetic example consisting of a model with
lateral velocity and density variations, observed data being modelled under a second-order Born
approximation with both velocity and density perturbations. After �fteen iterations on the
background velocity model, we obtained a result similar to the one obtained with the direct
inversion strategy and observed data containing only primary re�ections. This example shows
the e�ciency of our approach applied to data containing both primaries and �rst-order surface
multiples and yielding results similar to those obtained without multiples in observed data.

Finally, we have shown on an example with an incomplete acquisition that iterative migration
allows to recover additional information about the re�ectivity model and the associated back-
ground velocity update. However, it has not succeed in extracting the information contained
in �rst-order surface multiples. Further investigation is needed to achieve better results, in
particular by extending the method to higher-order multiples.
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Résumé du chapitre 7

Je me suis intéressé dans cette thèse à la détermination des grandes longueurs d’onde du modèle
de vitesse de propagation des ondes P par les méthodes d’analyse de vitesse par migration. J’ai
en particulier étudié l’orientation profondeur de l’optimisation par semblance di�érentielle
(DSO). La qualité d’un macro-modèle de vitesse est estimée en analysant la répartition d’énergie
dans un modèle de ré�ectivité, « étendu » avec l’o�set en profondeur, obtenu par migration des
données observées.

J’ai montré que remplacer l’étape de migration classique par une migration à amplitude
préservée, ou inversion, pour le calcul des CIGs a une in�uence déterminante sur le succès de
la méthode. En particulier l’inversion permet de s’a�ranchir des artefacts de migration qui ne
satisfont pas le critère cinématique de la DSO. J’ai introduit et comparé dans ce manuscrit deux
stratégies : une inversion « directe » où le modèle de ré�ectivité est obtenu par application d’un
pseudo-inverse aux données observées et une stratégie itérative où le modèle de ré�ectivité est
dé�ni en tant que solution d’un nouveau problème inverse. Avec une légère modi�cation de
la fonction coût de la DSO, la stratégie utilisant l’inversion directe produit des remises à jour
du macro-modèle cohérentes et lisses, et les « artefacts du gradient » sont fortement atténués.
En revanche elle n’est dé�nie que pour le cas de ré�exions primaires. Pour pouvoir considérer
également des ré�exions multiples dans la DSO, j’ai étudié le cas où le modèle de ré�ectivité
est déterminé par migration itérative, d’abord dans le cas de primaires seuls où il peut être
comparé à la stratégie utilisant l’inversion directe. J’ai montré sur des exemples numériques
que la migration itérative atténue e�cacement les artefacts de migration et fournit des modèles
de ré�ectivité proches de ceux obtenus par inversion directe. Par ailleurs, la convergence de la
migration itérative peut être accélérée en utilisant un préconditionneur construit à partir du
pseudo-inverse. La principale di�culté du cas itératif est l’instabilité du calcul de la remise à
jour du macro-modèle, qui est dé�nie comme le gradient de la boucle externe d’un problème
d’optimisation à deux niveaux. En pratique, cette instabilité signi�e que de faibles di�érences
entre deux modèles de ré�ectivité peuvent conduire à de grandes di�érences sur le gradient.
Elle est liée à l’apparition, au cours de la migration itérative, d’évènements aux grandes valeurs
de l’o�set en profondeur du modèle de ré�ectivité. Cette énergie, non porteuse d’information
cinématique, est ampli�ée par l’application de l’annihilateur et perturbe la migration itérative.
L’instabilité du calcul du gradient peut être atténuée en régularisant la boucle interne. La
di�culté est alors de déterminer le poids donné à la régularisation : ce choix est délicat, coûteux
numériquement, et doit a priori être renouvelé à chaque remise à jour du macro-modèle. J’ai
étudié au chapitre 5 une autre régularisation, portant sur la boucle externe et qui consiste à
appliquer au résultat de la migration itérative un opérateur atténuant l’énergie non porteuse
d’information cinématique et responsable des instabilités. Cette approche ne requiert pas de
régularisation spéci�que de la boucle interne et fournit des remises à jour du macro-modèle
similaires à celles données par l’approche directe.

J’ai étudié l’extension de l’approche itérative aux cas des ré�exions multiples de surface du
premier ordre, modélisées ici avec une approximation de Born du second ordre. La migration
itérative devient alors un problème d’optimisation non linéaire. J’ai illustré sur des exemples
numériques l’atténuation au cours des itérations des artefacts dans les CIGs causés par l’inter-
prétation des multiples comme ré�exions primaires. Dans le cas de multiples, la régularisation
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de la boucle interne demeure essentielle pour obtenir des remises à jour du macro-modèle satis-
faisantes, même avec la régularisation sur la boucle externe introduite dans le cas des primaires.
Pour avoir un schéma plus �exible et moins coûteux numériquement, j’ai �nalement proposé
une stratégie alternative où le modèle de ré�ectivité étendu obtenu par migration itérative est
utilisé pour générer un nouveau jeu de données ne comprenant que des ré�exions primaires,
cohérents cinématiquement avec ceux contenus dans les données observées. La remise à jour du
macro-modèle est alors obtenue en appliquant la stratégie d’inversion directe à ce nouveau jeu
de données. Cette remise à jour n’est pas le gradient d’une fonction objective mais elle demeure
cohérente et robuste d’une part et moins coûteuse numériquement que le calcul du gradient
complet d’autre part.

Dans cette étude, l’introduction des multiples dans la stratégie de DSO a été faite dans
l’optique de s’a�ranchir des artefacts liés aux multiples, sans réellement chercher à exploiter
l’information supplémentaire qu’ils contiennent. Cela demanderait probablement de considérer
tous les ordres de multiples de surface ainsi que les multiples internes. Des approximations
de Born d’ordres plus élevés ne constituent probablement pas une solution satisfaisante. En
particulier j’ai illustré les di�cultés de cette approche lorsque les e�ets de surface libre sont
introduits dans la modélisation des données observées. Dans l’optique d’une prise en compte
de tous les ordres de multiples et des multiples internes, la construction de CIGs fonction de
l’o�set en profondeur avec les méthodes d’imagerie de Marchenko a été étudié par Díaz et al.
(2016) et Díaz (2016). Cette approche semble prometteuse, mais il reste à dé�nir une stratégie
e�cace pour le calcul de la remise à jour du macro-modèle.

En vue de possibles applications à des données réelles, j’ai testé dans le chapitre 6 la robustesse
de la DSO dé�nie avec la migration itérative sur des jeux de données obtenus avec une physique
di�érente de celle utilisée pour l’inversion. J’ai en particulier illustré la sensibilité de la migration
itérative vis-à-vis de l’estimation de l’ondelette de source dans le cas de multiples. Il serait
intéressant de chercher à introduire d’avantage de physique dans la méthodologie de la DSO.
Par exemple, une méthodologie uni�ée prenant en compte simultanément les ondes ré�échies
(primaires et multiples) et les ondes transmises suivant la stratégie de (Lameloise et Chauris,
2016) reste à dé�nir. Par ailleurs, la méthodologie conduisant à la formule d’inversion de
perturbations du modèle de vitesse, proposée dans la section 4.2, pourrait être appliquée au cas
où les ré�exions sont causées par des perturbations du modèle de densité. Plus généralement, la
physique de propagation des ondes utilisée pourrait également prendre en compte une densité
variable ainsi que les e�ets de propagation élastique, d’atténuation et d’anisotropie.

En�n la stratégie d’optimisation utilisée pour l’inversion du macro-modèle n’a pas été étudiée
en détail dans cette étude. Huang et Symes (2015) utilisent la méthode de projection des variables
(VPM) et une fonction objective di�érente où le terme de DSO est assimilé à une régularisation
de la fonction coût comparant données observées et données calculées. Par ailleurs, l’exploitation
de l’information contenue dans le Hessien de la fonction coût de DSO n’a été que peu explorée
dans la littérature, en particulier en raison du coût numérique élevé de son évaluation complète.
C’est pourtant un aspect essentiel dans la remise à jour du macro-modèle. Le coût de calcul
de la DSO et la taille mémoire qu’elle demande restent par ailleurs le principal obstacle à son
extension au cas 3D.
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Chapter 7. Conclusions and Perspectives

7.1. Conclusions

In this thesis, I have investigated a Migration Velocity Analysis (MVA) technique for the res-
olution of the seismic inverse problem under the constant-density acoustic wave-equation
approximation. This technique is de�ned in the image domain and relies on the Born approx-
imation and a separation of scales of the velocity model into a rapidly varying re�ectivity
model and a smooth macro-model. It aims at assessing the quality of an estimated background
velocity model using the redundancy of seismic data. In the depth-oriented formulation, phys-
ical re�ectivity images parametrised by spatial coordinates are extended with an additional
variable h called subsurface-o�set. After migration of seismic data to this extended domain,
inaccuracies in the initial macro-model result in defocused energy at non-zero values of h.
Using the Di�erential Semblance Optimisation (DSO) strategy, the macro-model is iteratively
corrected by minimising an objective function penalising defocused energy in Common Image
Gathers (CIGs) until the extended re�ectivity model becomes physical.

In this thesis, I have addressed the issue of spurious events appearing in CIGs which prevent
the adoption of MVA techniques as standard seismic data processing tools. These artefacts are
due to limited extension of acquisition geometries on one hand (Lameloise et al., 2014; Mulder,
2014), and to multiple re�ections misinterpreted as primary events on the other hand (Mulder
and ten Kroode, 2002; Li and Symes, 2007), and do not properly focus for the correct velocity
model. As a consequence, the MVA objective function is not minimum for the correct velocity
model and its gradient does not provide a consistent background velocity update. Here I have
investigated the use of inversion instead of migration to deal with both issues and obtain CIGs
free of artefacts as well as consistent MVA gradients.

7.1.1. Inversion Velocity Analysis

The original formulation of MVA assumes primary re�ection data only, and de�nes a re�ectivity
image by application of the adjoint of the extended Born modelling operator to observed
data. In the context of high-frequency approximation of the wave-equation, Lameloise et al.
(2014) introduced an extended quantitative migration compensating for uneven illumination
and geometrical spreading. Combined with the horizontal contraction technique (Fei and
Williamson, 2010; Shen and Symes, 2015), this approach yields CIGs free of migration artefacts
and smooth gradients. However ray theory is limited in the presence of complex geology, for
which wave-equation based approaches are more appropriate. In this study, an approximate
inverse using only wave-equation operators has been presented (section 4.2), with a formulation
similar to other proposals (Hou and Symes, 2015, 2017). All these formulas are actually inverse
operators in an asymptotic sense. Their derivation rely on ray theory and high-frequency
approximations, but their �nal expressions are free of ray quantities. This strategy results
in improved background velocity updates compared to standard migration. Moreover the
introduction of a power of the background velocity in the annihilator has been shown to remove
oscillations located around the re�ector position from the MVA gradient (section 4.2) yielding
results similar to the horizontal contraction approach (Fei and Williamson, 2010; Shen and
Symes, 2015). However the macro-model update derived with inversion is the gradient of an
objective function, contrary to the case of horizontal contraction. Eventually, note that the
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advantage of this strategy is the recovery of true-amplitude images and CIGs free of migration
artefacts.

As inversion formulas proposed so far are designed for primary re�ections only, I have studied
in this thesis iterative migration as a replacement for direct inversion. The �nal formulation has
been constructed progressively in chapters 2 to 5. The analysis has been performed in the case
of primaries only, using the result of direct inversion as a reference, and then applied to the case
of multiples. I also studied an equivalent 1D MVA problem in sections 4.2.5 and 5.2 which may
not be representative for all the features of 2D subsurface-oriented DSO, but is a useful analysis
tool as it exhibits a behaviour very similar to the 2D case with a much lower computational
cost. The main conclusions of each chapter are summarised in table 7.1. I underline here the
key aspects of the method.

In iterative MVA, the extended re�ectivity image is not obtained via an inverse formula
but as the solution of an inverse problem. For a given background velocity model, the model
perturbation best explaining observed data in a least-squares sense is determined through an
optimisation procedure. If calculated data are computed under the �rst-order Born approx-
imation (primaries only), the associated inverse problem is linear and can be solved with a
standard conjugate gradient algorithm. I have shown that this technique e�ciently attenuates
migration artefacts in CIGs and yields results similar to direct inversion in the primary-only
case. Compared to the result of direct inversion, we obtain after several iterations of migration
a re�ectivity image with a better deconvolution of the source wavelet, but this has little impact
on the �nal data mis�t.

The derivation of the gradient of the outer objective function has been analysed in chapter 3.
An approximate value of this gradient is computed using the �nal result of two iterative problems:
iterative migration on one hand, and a linear adjoint problem, similar to the direct problem but
with a di�erent source term on the other hand. One would expect the gradient to converge to a
stable value at the same pace as iterative migration. Besides, as direct and iterative inversion
provide similar re�ectivity images, we may presume that the associated background velocity
updates would be similar. However, numerical examples in chapters 3 to 5 have shown that
this is not the case in practice. The value of the re�ectivity for large h has been shown to
have little impact on data residuals but a major in�uence on the velocity analysis, after being
ampli�ed by the annihilator. Similar observations have been made by Huang (2016). This issue
has been identi�ed by comparing the value of both objective function J0 and J1 across inner
iterations. The �rst one reaches convergence after a few iterations, while the second does
not stabilise because of small modi�cation at large values of h (�gure 3.8). Another practical
di�culty is the slow convergence speed of the adjoint problem. As a consequence, the value
of the gradient obtained with successive values of the adjoint variable is not stable. This is
an undesirable behaviour as we would like the gradient to converge to a stable value after a
given number of iterations performed for the resolution of both problems. I have shown that
su�cient regularisation on the re�ectivity model helps mitigating these issues, but this solution
is not fully satisfactory. In particular, the determination of regularisation parameters remains a
tedious task and we still observe residual oscillations around re�ector positions not present
in the gradient obtained by direct inversion. For a more stable procedure, I have proposed to
modify the usual MVA objective function by applying a “�lter” depending on the background
velocity model to CIGs before measuring defocused energy. This �lter does not change the shape
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main realisations and conclusions limitations
ch

ap
te

r2
• an extended re�ectivity model is de�ned by

iterative migration to minimise the mis�t
between observed data and calculated data

• migration and cross-talk artefacts are
greatly attenuated with iterations, improv-
ing the shape of the MVA cost function;

• a strategy should be de�ned for the
coupling with velocity analysis;

ch
ap

te
r3

• two methods for the computation of the
MVA gradient after iterative migration are
compared;

• the selected method assumes that iterative
migration reaches convergence. An adjoint
variable is determined as the solution of a
linear problem and the gradient is computed
from the last iterates of the direct and ad-
joint problem;

• iterative MVA is computationally
expensive as two iterative systems
have to be resolved for the gradient
computation;

• su�ciently strong regularisation is
needed to obtain gradients free
of spurious oscillations and stable
across inner-iterations;

ch
ap

te
r4

• an approximate inverse of the extended
Born modelling operator is de�ned for
primaries only, leading to a new IVA
strategy;

• introducing this approximate inverse as a
preconditioner greatly accelerates the con-
vergence speed of the direct problem;

• the adjoint problem converges much
slower than the direct problem and
the associated sequence of MVA
gradients are not stable;

• the MVA gradients obtained after
direct and iterative migration are
quite di�erent despite the similarity
of the associated re�ectivity images;

ch
ap

te
r5

• iterative MVA is analysed on a pure 1D case.
It exhibits a behaviour similar to the 2D case;

• a �lter F†F is introduced in the de�nition
of the MVA objective function to attenuate
unwanted energy at large values of h;

• with this modi�ed MVA objective function,
the adjoint problem converges much faster
and the associated sequence of gradients
is more stable with a shape similar to the
gradient of direct inversion;

• the robustness of the approach re-
garding non-Born data should be
investigated (beyond the inverse
crime);

ch
ap

te
r6

• the direct and iterative inversion strategy
are applied to a series of synthetic data
computed with a modelling engine di�er-
ent from the one used during inversion;

• direct inversion in the primaries only case is
robust to inaccuracies of the source wavelet
and to amplitude errors;

• direct and iterative inversion strategies are
robust with respect to density perturbations;

• in the multiple case, iterative migra-
tion fails to explain both primaries
and multiples correctly if the shape
of the source wavelet is inaccurately
estimated;

• application to real data.

Table 7.1. – Summary of the main conclusions of each chapter.

248



7.1. Conclusions

of defocused events in CIGs but attenuates spurious oscillations responsible for the instabilities
described above. I have shown that this �lter changes the source term of the adjoint problem
which is now easier to solve. The value of the gradient is stable with iterations and similar to
the one obtained by direct inversion. The additional cost represented by the application of the
�lter is largely compensated by the improved convergence of the adjoint problem, allowing to
reduce the number of iterations.

7.1.2. Multiple reflections

I have studied the extension of this iterative procedure to the case of �rst-order surface-related
multiples. It consists of using a second-order Born approximation for forward modelling in
the inner inverse problem. This changes the gradient formula in both the inner and outer
minimisation problem. Iterative migration is not a linear inverse problem any more. Regarding
the computation of MVA gradient, the adjoint problem is still linear but may not be positive-
de�nite if �nal data residuals are not small enough.

I have shown that cross-talk artefacts due to multiples are attenuated across iterations,
leading to MVA gradients consistent with the primary-only case. However the computation
of the migration objective function and of its derivatives is much more expensive compared
to the linear case (table 3.1). Moreover iterative migration becomes a non-linear optimisation
procedure. To reduce the computational expense of the method, we have proposed to use the
approximate inverse as a preconditioner, which greatly improves the convergence of the direct
and adjoint problem, even in the case of multiples. Finally we have proposed an alternative
strategy where iterative migration is used to retrieve an extended re�ectivity image free of
cross-talk artefacts, allowing to re-compute primary re�ections and to apply the direct inversion
procedure which has been shown to be robust and computationally e�cient. Although the
background velocity update de�ned by this strategy is not the gradient of an objective function,
the procedure is lees computationally expensive as the iterative resolution of the adjoint problem
is not necessary. Furthermore, we can reconstruct data for source positions missing in the
original acquisition. Hence eventual additional information in the re�ectivity image due to extra-
information contained in multiples may be incorporated in the re-computation of primaries.

In this study, multiples have been introduced with the objective of retrieving gradients similar
to those obtained with multiple-free data. The models and acquisition settings used in the
examples were not speci�cally designed to use the additional information contained in multiples.
We have shown that iterative migration succeeds in removing the imprint of multiples on the
re�ectivity, leading to gradients similar to those obtained in the case of primaries only. However,
the example of section 6.4 shows that extracting additional information from multiples is a
much more complex task, especially when considering only �rst-order surface-related multiples.
The areas investigated by this kind of multiples is actually small and located on the edges
of the acquisition where edge e�ects alter MVA gradient obtained in the primaries only case.
Extending MVA techniques to all order of multiples and internal multiples may provide more
favourable examples with wider illumination of the subsurface (see next section).
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7.2. Perspectives

7.2.1. Using all orders of multiples

Extending MVA to all orders of multiples could be performed with the approach investigated by
Díaz (2016), based on the resolution of the Marchenko equation. Using observed data and Green’s
function G0(s,x,ω) computed in an estimated macro-model c0(x), the iterative resolution of
the Marchenko equations allows to retrieve the complete Green’s functions G(s,x,ω) including
all multiple re�ections. This step is discussed in Wapenaar et al. (2014) for the case of internal
multiples and extended to surface multiples by Singh et al. (2015). The accuracy of the macro-
model can then be evaluated in two di�erent ways. First, one possibility is to decompose the
complete Green’s function into a downgoing G− and an upgoing wave�eld G+ to construct
extended CIGs with a deconvolution imaging condition and measure defocused energy in a
standard way (Díaz et al., 2016). An alternative consists of directly estimating the velocity model
as G is reconstructed everywhere within the subsurface and is solution of the wave-equation

(iω)2

c2(x)
G(s,x,ω)−∆G(s,x,ω) = δ(x − s), (7.1)

the value of the velocity model c(x) can be recovered from the knowledge of the complete
Green’s function following

c2(x) =



(iω)2G

��G�

∆G

��G� . (7.2)

This model can be decomposed into c(x) = c0(x) + δc(x). For the determination of G(s,x,ω),
one needs to provide a smooth background model. If the kinematics is not correct, a standard
MVA procedure can be de�ned using the values of Pobs and c0(x). Both the strategy of Díaz (2016)
and our approach rely on an iterative procedure depending on the value of the macro-model
c0(x). In Díaz (2016) the purpose is to retrieve the complete Green’s function G, whereas here
the unknown of the iterative process is an extended re�ectivity model best explaining observed
data. In both cases, the di�culty is to compute the velocity update due to the dependence of
the iterative process to the macro-model c0(x). Here we derive a strategy using the adjoint-
state method and the assumption that the output of the iterative migration is de�ned as the
minimiser of a cost function. Further investigations are required to de�ne a similar strategy in
the case of Díaz (2016). It is possible that a regularisation term (equivalent of the �lter K) has
to be introduced with Marchenko-based MVA process. Note that the major advantage of the
Marchenko approach is that both internal and surface multiples are consistently integrated in
the imaging procedure, yielding CIGs free of cross-talk artefacts (Díaz, 2016).

7.2.2. Introducing more physics in MVA techniques

In section 4.2, an inversion formula allowing to retrieve an extended velocity perturbation
explaining observed data has been presented. This formula was tested in section 6.2.4 on re�ec-
tion data originating from a density perturbation and modelled under the Born approximation.
Alternatively, one could also derive an inversion formula for density perturbation data, using a
strategy similar to the one used in section 4.2. The di�erence is that here, gradients of Green’s
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function are involved instead of a their product with a second-order time derivative, which
requires the derivation of new weighting operators di�erent from the original inverse formula.
This may enable an other inversion strategy for multi-component observed data. Using the
surface recording of both horizontal and vertical displacements, one could try to invert for a
velocity or a density perturbation, or for a velocity and impedance perturbation, as these two
parameters exhibit less coupling (Zhou et al., 2015).

In this study we have used an explicit scale separation between a smooth background velocity
model and a model perturbation. Following a strategy proposed by (Zhou, 2016) in the framework
of Full Waveform Inversion (FWI), one could also investigate a more natural scale separation,
using velocity and variable density to parametrise the model, the velocity model controlling
the kinematics of wave propagation and density accounting for the re�ective property of the
subsurface instead of the velocity model perturbation.

In the constant-density acoustic approximation, Lameloise and Chauris (2016) show how
transmitted waves can be included in MVA techniques by constructing extended images in a
very similar manner to the usual procedure for re�ections. They propose a strategy in which
these two kind of events are used successively. Transmitted waves are used in a �rst step to
update the shallow part of the velocity model; then primary re�ections are inverted to reach
the deeper part of the model. In our approach, primaries and multiples are naturally inverted
together. Inverting re�ection and transmission data simultaneously could potentially better
constrain the inversion. As pointed out by Lameloise (2015), an issue is that transmitted events
are more energetic than re�ections, requiring to introduce weights to balance the amplitudes of
both kinds of events. Moreover, CIGs constructed with transmitted events do not have the same
physical interpretation as CIGs built with re�ection data; in particular they are not linked to a
speci�c interface. Hence, the inclusion of re�ection and transmitted data in a uni�ed framework
needs further investigation.

7.2.3. Importance of the Hessian for iterations over the velocity model

A more thorough study should be led on the choice of optimisation strategies for the external
loop aiming at determining the background velocity model. In particular the e�ect of the
Hessian of the objective function should be better taken into account. The gradients obtained
by direct inversion in the case of primaries (section 4.2) are remarkably smooth, but their
shape, and in particular the importance of side e�ect vary greatly with the number of surface
and subsurface-o�sets, and the re�ectors’ depth. We may expect a proper introduction of
the Hessian to attenuate these variations. Most applications on synthetic and real data “only”
use the l-BFGS strategy to take second-order e�ects in to account. An interesting strategy is
proposed by Liu et al. (2014b) and Shen and Symes (2015) who compute an estimate of the
diagonal of the Hessian matrix as the result of its application to a unit vector. An extension
is the Truncated Newton strategy, already studied in the framework of FWI (Métivier et al.,
2013, 2014). Contrary to the l-BFGS algorithm, these techniques require an e�cient way of
computing the product of the Hessian of the objective function with a vector of theM space.
One could use a second-order adjoint-state technique similar to the one presented in Métivier
et al. (2013, 2014) and in section 3.2.3. An example of derivation of the matrix-vector product is
presented in appendix E in the case of direct inversion. Note however that this approach is quite
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expensive. Moreover the positive-de�nitiveness of the Hessian matrix should be investigated.

7.2.4. Inversion strategy

We have considered here a nested optimisation procedure with two separate objective functions,
the inner inverse problem solving for the re�ectivity for a given macro-model, and the outer
objective function solving for the macro-model. Another possibility is to use a single objective
function (Fleury and Perrone, 2012; Huang and Symes, 2015),

J2[c0,ξ] = 1
2



F[c0]ξ− Pobs


2
Dobs
+

λ
2



Aξ


2
E , (7.3)

where the �rst term is related to data mis�t and the second measures defocused energy in CIGs.
Note that the DSO strategy was originally introduced as a regularisation for the FWI objective
function (Symes and Kern, 1994).

An e�cient procedure for the minimisation of this objective function is the Variable Projection
Method (VPM) (van Leeuwen and Mulder, 2009; Rickett, 2013; Huang and Symes, 2015). It
consists of inverting �rst for the re�ectivity ξ (following ξ = F†[c0]Pobs in the direct inversion
case) and to replace in the de�nition of the objective function. The �rst step is similar to what
have been proposed in this study, the second is di�erent because we considered in this thesis
only the second term in equation (7.3) for the derivation of a velocity model.

A di�culty remains the choice of the weight λ. Furthermore, in the case of iterative migration
with multiples, the expression replacing ξ in equation (7.3) should properly take cross-talk
e�ects into account, otherwise the second term of the objective function may mislead the
background velocity update.

7.2.5. Extension to 3D

In 3D, the observed data space has �ve dimensions (sx , sy , rx , ry , t), requiring two extension
parameters for the model space, for example horizontal subsurface o�sets hx and hy (table 4.1).
A new inversion formula taking into account these new dimensions should be de�ned with a
strategy similar to the 2D case (section 4.2). The major issue of the extension is its computational
cost, which disquali�es the iterative determination of an extended re�ectivity image with a
large number of iterations. Preconditioning as proposed in this thesis or in Hou and Symes
(2016a) is an essential element for the extension to 3D. In addition to 3D wave�eld propagation,
a cross-correlation should be performed for each couple (hx , hy). New strategies such as
those mentioned in section 1.3.4 should be further investigated for a more a�ordable extension
of MVA to 3D. Another di�culty is that 3D acquisition do not provide dense source and
receiver coverage in all directions, which may have undesirable e�ects on re�ectivity image
and associated gradients.

7.2.6. Application to real data

As a prelude to real data applications, we have applied in chapter 6 the proposed MVA strategy
to observed data computed with a forward modelling code di�erent from the one used during
inversion. We showed that an incorrect estimation of the source wavelet was an issue for the
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iterative case in the presence of multiples, but that direct inversion was insensitive to this
kind of imperfection. More importantly, ghosts e�ects due to the free-surface were shown to
be an issue for iterative migration as they modify the amplitude and phase of re�ection data,
especially at wide angles. Ghost should be removed from observed data or properly included in
the forward modelling to cope with this issue.

More generally, propagation e�ects that are not accounted for in the forward propagation
step may lead to inconsistent CIGs and velocity updates. For example the impact of attenuation
and elastic e�ects on the amplitude may be an issue for regular MVA strategies. Converted
waves are also not predicted under the Born approximation.

Finally the irregularity of the acquisition geometry should be taken care of. Direct inversion
formulas are indeed derived with the assumption of dense source and receiver coverage. Iterative
migration may be an interesting alternative in this case as it deals more e�ectively with irregular
acquisition (Nemeth et al., 1999).
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Appendix A.

Modelling of free-surface reflection under
the Born approximation

In this appendix related to section 2.3.2, we justify on a 1D case the expression for the operator
Ms de�ned in equation (2.12) accounting for the re�ection at the free-surface. Intuitively, we
would like to use the Born formula and de�ne a source term made of primaries recorded at the
surface multiplied by a constant re�ection coe�cient R= (−1), as the free surface is known to
act as a mirror (Schuster, 2007). Numerical comparison with a �nite-di�erence modelling with a
free-surface condition suggests that an additional coe�cient and a time derivative 2iω/c0 have
to be applied as well. The purpose of this appendix is to explain the reason for this additional
term. Actually, the origin of the re�ection at the free surface can be described by a constant
velocity perturbation above the surface with value (−1). However, in practice, the model
considered for simulation does not extend above the free surface and we consider a re�ectivity
localised at the surface. This requires a modi�cation of the Born formula.

Let us consider a pure 1D case with a single source and a single receiver both buried and
localised at depth zs. The surface is at a depth z0 < zs. In the asymptotic approximation, the 1D
Green’s function reads

G0(zs, z,ω) =
c0(z)
2iω

e−iωτ(zs ,z), (A.1)

where τ(s, z) is the traveltime between the source and the depth z the surface. First we consider
a constant re�ectivity model above the surface ξ(z) = R ·H(z0 − z) where H stands for the
Heaviside function. Using equation (2.10), the upgoing incident wave reads

Pup(zs, z,ω) =
c0(z)
2iω

e−iωτ(zs ,z)Ω(ω), (A.2)

and the downgoing re�ected wave recorded at the source position reads

Pdown(zs, zr = zs,ω) = RΩ(ω)
∫ −∞

z=z0

e2iωτ(zs ,z) dz. (A.3)

We linearise the value of the traveltime around the surface,

τ(zs, z)≈ τ0 +
1

c0(z)
(zs − z0), (A.4)

where τ0 = τ(zs, z0). This leads to

Pdown(zs, zr = zs,ω) = R
c0(z)
2iω

e−2iωτ0Ω. (A.5)
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The downgoing wave�eld has the same shape as the upgoing wave�eld, except for the mul-
tiplication by the re�ection coe�cient R = (−1). The surface acts as a mirror on a upgoing
wave�elds.

In practice we consider a re�ectivity localised at z0: ξ(z) = R · δ(z − z0). Following the same
steps, this leads to

Pdown(zs, zr = zs,ω) = Re−2iωτ0Ω(ω). (A.6)

Compared to, equation (A.5), a coe�cient c0
2iω is missing in the result. To model the surface

re�ection properly, the source term of the Born modelling equation (2.10b) has to be multiplied
by c0

2iω .
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Non-linear local optimisation

In this appendix, we review standard non-linear optimisation methods. For an extensive
review, the reader is referred to Nocedal and Wright (2006). Non-linear optimisation is needed
in chapter 2 to determine a re�ectivity model minimising the data mis�t when multiples are
included in the calculation of reconstructed data. The objective function of DSO is also minimised
with non-linear optimisation to determine a background velocity model minimising defocused
energy in CIGs.

B.1. General form of the algorithm

Without loss of generality, we use in this appendix the notations of iterative migration, that is
we want to �nd a vector ξ ∈ E minimising a scalar objective function J0(ξ). With gradient-based
methods, the re�ectivity model at iteration (n+ 1) is updated from the re�ectivity model at
iteration (n) following

ξ(n+1) = ξ(n) +α(n)d(n). (B.1)

where d ∈ E is called descent direction and the positive scalar α is called step size. The process
is initialised with an initial guess ξ(1) = ξini, and is stopped when a termination criterion is
satis�ed, for example when the value of the objective function or the norm of its gradient goes
below a given threshold. In the numeric examples shown in this thesis, a maximum number of
iterations N is set, so that the �nal result is ξ(N+1).

In local optimisation methods, the value of the objective function should decrease at each
iteration, that is J0(ξ(n+1))< J0(ξ(n)). Then d and α have to verify some conditions:

• to ensure that there exists a step length α allowing the decrease of J0, d should be a
descent direction, meaning that it should verify



d(n)

�� g(n)
�
E ≤ 0, (B.2)

where g is the gradient of J0,

g(n) =
∂ J0

∂ ξ
(ξ(n)). (B.3)

The most obvious choice for d is the opposite of the gradient. Alternative strategies
providing faster convergence are presented in section B.3.
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• If condition (B.2) is veri�ed, very small values of α ensure that the value of J0 at iteration
(n+ 1) is smaller than its value at iteration (n). However to avoid performing numerous
small steps, we would like to �nd a value for α(n) close to the exact minimiser of J0 along
ξ(n) +α(n)d(n). An optimal α value α(n) would lead to



d(n)

�� g(n+1)
�
E = 0. (B.4)

Determining a good value for α(n) is actually a one-dimensional optimisation problem.
We elaborate on linesearch strategies addressing this problem in the next section.

B.2. Linesearch

The linesearch procedure aims at �nding the minimum of J0 along the direction ξ(n) +α(n)d(n).
In practice a scalar objective function ψ : R 7→ R is de�ned for �xed values of ξ(n) and d(n) as

ψ(α) = J0

�
ξ(n) +αd(n)

�
, (B.5a)

and its gradient reads

ψ′(α) =
­

d(n)
����
∂ J0

∂ ξ
�
ξ(n) +αd(n)

�·
E

. (B.5b)

For linear problems, ψ is quadratic and the exact minimiser can easily be determined. For
non-linear problems, the shape of ψ is more complex and there is not necessarily an analytic
formula for the minimiser of ψ. Then an inexact linesearch procedure is used to determine a
“good” minimiser of ψ. The objective is to �nd a value for α ensuring the following conditions
called Wolfe conditions (�gure B.1):

• su�cient decrease condition (also called Armijo condition)

ψ(α)≤ ψ(0) + c1αψ′(0), (B.6a)

The scalar coe�cient c1 is positive, hence small values always satisfy this condition.

• curvature condition
ψ′(α)≥ c2ψ′(0), (B.6b)

with c2 a positive scalar coe�cient. This condition excludes too small values of α which
satisfy the �rst conditions. In the case of the strong Wolfe conditions, a more restrictive
curvature condition is chosen

��ψ′(α)
��≤ c2

��ψ′(0)
��. (B.6c)

The two positive coe�cients c1 and c2 should verify 0< c1 < c2 < 1 to ensure that there
exists a step length satisfying both conditions.
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ψ(0) + c1ψ′(0)α
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(a) Su�cient decrease condition
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(b) Strong curvature condition
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(c) Strong Wolfe conditions = (a) ∩ (b)

Figure B.1. – The strong Wolfe conditions for a relatively complex scalar function ψ (blue, solid):
(a) su�cient decrease (or Armijo) condition; (b) strong curvature condition; (c) combination
of the su�cient decrease condition and the strong curvature condition. The coloured areas
show the range of acceptable step length values.

The values of the coe�cient c1 and c2 and the choice of the regular or strong curvature
conditions depend on the descent direction strategy (detailed in the next section. For non-linear
conjugate gradients methods, the strong Wolfe conditions are required and recommended
parameters are c1 = 1×10−4 and c2 = 0.1. For quasi-Newton methods, the regular curvature
condition is su�cient with c2 = 0.9 (Nocedal and Wright, 2006).

Algorithms ensuring the strong Wolfe conditions are relatively expensive because the value
and the gradient of the objective function should be calculated at each trial step size. Therefore
the choice of successive trial steps should be e�cient. E�cient strategies usually consist of
two steps. First an interval containing an acceptable step size is determined. Then this interval
is reduced iteratively until an acceptable step size is found. For our implementation, we have
chosen the strategy of Moré and Thuente (1994) as recommended by Nocedal and Wright (2006,
p. 162), using polynomial interpolations to compute the successive step size.
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B.3. Descent direction

We review classic strategies used to determine a descent direction.

Steepest Descent
The steepest descent is the simplest strategy. The descent direction is simply the opposite of
the gradient:

d(n) = −g(n). (B.7)

It obviously satis�es the descent condition (B.2). It is a natural choice because it is the direction
providing the maximum decrease of J0 in the neighbourhood of ξ(n). However other strategies
provide faster decrease of the objective function.

Non-linear conjugate-gradient
The conjugate-gradient algorithm originally designed for linear problems can be extended to
non-linear optimisation. The descent direction is based on the steepest descent but an additional
term takes into account the value of the gradient obtained in the previous iterations,

d(n) = −g(n) + β(n)d(n−1). (B.8)

Many formulas have been proposed for the de�nition of β (Hager and Zhang, 2006). The most
popular are

β(n)FR =



g(n)

�� g(n)
�
E


g(n−1)
�� g(n−1)

�
E

(Fletcher and Reeves, 1964) (B.9a)

and

β(n)PR =



g(n)

�� g(n) − g(n−1)
�
E


g(n−1)
�� g(n−1)

�
E

(Polak and Ribiere, 1969). (B.9b)

The Fletcher-Reeves formula is actually the one implemented in the linear version of the
algorithm. In the linear case, successive gradients are orthogonal and the Polak-Ribière formula
is equivalent to the Fletcher-Reeves one.

The descent condition (B.2) reads


d(n)

�� g(n)
�
E = −



g(n)


2
E + β(n)



d(n−1)

�� g(n)
�
E . (B.10)

Then an exact linesearch automatically ensures that d(n) is a descent direction (equation B.4).
More generally a step length ensuring the strong Wolfe conditions is su�cient (Nocedal and
Wright, 2006, p. 122). The Polak-Ribière formula is the one providing the faster convergence in
most cases (Nocedal and Wright, 2006, p. 131). It is the one used in this study.

Newton method
Newton strategies are based on a second-order Taylor expansion of the objective function

J0(ξ(n) +α(n)d(n)) = J0(ξ(n)) +α(n)


d(n)

�� g(n)
�
E +

1
2

�
α(n)

�2

d(n)

��H(n)d(n)�E , (B.11)

260



B.3. Descent direction

where we have noted H the Hessian matrix of J0,

H(n)(ξ(n)) =
∂ 2J0

∂ ξ2
(ξ(n)). (B.12)

Deriving equation (B.11) with respect to d(n) leads to the Newton equation

H(n)d(n) = −g(n). (B.13)

The Newton direction d(n) is the solution of this equation, which reads, provided that the
Hessian matrix is invertible

d(n) = −�H(n)�−1
g(n). (B.14)

The descent condition equation (B.2) reads

〈d(n) | g(n)〉E = −
¬

g(n)
��� �H(n)�−1

g(n)
¶
, (B.15)

therefore if H is positive de�nite, the Newton direction is a descent direction. If it is not positive
de�nite, it may not be invertible and may not de�ne a descent direction.

�asi-Newton methods
The use of a Newton descent requires the computation of the Hessian matrix and its inversion,
which are both computer expensive procedures. Quasi-Newton methods are designed to alleviate
this di�culty. They use an approximation of the inverse of the Hessian B(n) ≈ �H(n)�−1, and
the quasi-Newton direction reads

d(n) = −B(n)g(n). (B.16)

The steepest descent can actually be interpreted as a quasi-Newton method with the Hessian
approximated with the identity operator. A popular choice for the de�nition of B uses the
BFGS formula (named after Broyden, Fletcher, Goldfarb and Shanno) (Nocedal and Wright, 2006,
p. 136). Starting with the identity, the approximation of H−1 is improved iteratively at each
iteration

B(n+1) =
�
I− ρ(n)s(n) y(n)T

�
H(n)

�
I− ρ(n) y(n)s(n)T

�
+ ρ(n)s(n)s(n)T, (B.17)

with ρ(k) = 1
〈y(n) | s(n)〉E . A di�culty is that the huge matrix B(n) has to be kept in memory. This

di�culty can be overcome with the limited-memory BFGS (l-BFGS) technique (Nocedal, 1980),
which computes the value of B(n) from the values of ξ(n) and g(n) at the m preceding iterations
(where m typically ranges between 3 and 20). With this method, there is no need to compute
nor to store H(n).

An alternative strategy called the truncated Newton method (Nocedal and Wright, 2006,
p. 168) aims at resolving the linear system (B.13) iteratively with the classical linear conjugate
gradient algorithm. The method needs only an e�cient way of computing the application of
the Hessian to a vector of E (matrix-vector product) and there is no storage requirements. See
Métivier et al. (2013, 2014) for applications of the truncated Newton method in the framework
of Full Waveform Inversion.
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Computation of the adjoint of the
approximate inverse of the extended Born
modelling operator

In section 4.2, we have proposed a formula for an approximate inverse of the extended Born
modelling operator F : E 7→ Dobs. In section 4.3, this approximate inverse, noted F† : Dobs 7→ E ,
is used as a preconditioner to improve the convergence rate of the iterative migration process.
The derivation involves the adjoint of the approximate inverse, noted here (F†)T : E 7→ Dobs. In
this appendix, we derive an expression for (F†)T, using the adjoint-state technique. We begin
by reviewing the implementation of the approximate inverse F†.

C.1. Equations for the forward map

The application of the approximate inverse F† to a vector P of Dobs produces a vector ξinv of E .
The implementation is very similar to the case of the adjoint FT described in section 2.5.1. It
consists of computing modi�ed source and receiver wave�elds, noted here P0 and λ1 respectively,
by analogy with the notations of section 2.5.1. The application of the approximate inverse to P
is obtained by solving the following equations,





L0P0 = S,
L ∗0 λ1 =WrP,

ξ0 = Q[P0,λ1],
ξinv =Wmodξ0,

(C.1a)
(C.1b)
(C.1c)
(C.1d)

where we de�ned

• the modi�ed extended cross-correlation operator Q[u, v] : D × D 7→ E , de�ned for
(u, v) ∈ D as

�
Q[u, v]

�
(x, h) =

∫

s

∫

ω

1
(iω)

u∗(s,x− h,ω)v(s,x+ h,ω)dωds. (C.2)

It is similar to the usual operator Q[u, v] (equation 2.38), except that a �rst order integra-
tion replaces the second order derivative;
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• the weighting operator Wmod : E 7→ E , which consists of a derivative with respect to z
and a multiplication by a power α of c0,

�
Wmodξ(x, h)

�
(x, h) = − k

cα
0 (x)

∂

∂ z

�
ξ(x, h)

�
, (C.3)

If ξ is de�ned as a velocity perturbation ξ = δc/(2c0), then k = 8 and α = 0; if ξ is
de�ned as a squared slowness perturbation ξ = 2δc/c3

0 , then k = 32 and α= 2.
The vertical derivative in this weight can be interpreted under the high-frequency ap-
proximation as a multiplication by the cosine of the half-opening angle and the cosine of
the dip angle at the image point (�gure C.1),

iω
c0(x)

cosθ cosφ ; (C.4)

• the weighting operator Wr : Dobs 7→ D , which in practice constructs a dipole source term
around the depth zr of the receivers. Its practical implementation is

�
WrP(s, r,ω)

��
s,x= (x , z),ω

�
=





− 1
2∆z

P(s, r,ω) if z = zr − 1,

+
1

2∆z
P(s, r,ω) if z = zr + 1,

0 elsewhere,

(C.5)

with ∆z the size of a grid point in the z direction and zr the position of the receivers. It
can be interpreted as a multiplication by the cosine of the take-o� angle at the receiver
position (�gure C.1),

iω
c0(r)

cosβr ; (C.6)

• Finally, S is a modi�ed source term, which involves a deconvolved version eΩ of the source
wavelet Ω and an other weighting operator Ws de�ned in the same way as Wr for the
source depth zs

S=Ws

�
δ(x− s)eΩ�. (C.7)

Ws can be interpreted as a multiplication by the cosine of the take-o� angle at the source
position (�gure C.1),

iω
c0(s)

cosβs. (C.8)

C.2. Equations for the adjoint map

We want to compute the adjoint (F†)T of the operator F†. It is applied to a vector χ of E and
computes a vector Q = (F†)Tχ in Dobs. We use the adjoint-state method and de�ne a scalar
objective function

Γ(χ, P) = 〈χ |F†P〉E , (C.9)
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s r
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βs βr
θ

φ

Figure C.1. – Angles involved in the interpretation of the weights de�ning the inverse oper-
ator F†.

such that
∂ Γ
∂ P
(χ, P) = (F†)Tχ. (C.10)

The state equations are given by equations (C.1). We note ξinv = F†P and de�ne the Lagrangian
with the adjoint states η, η0, µ0 and ν1,

Γ = 〈χ |ξinv〉E − 〈η |ξinv −Wmodξ0〉E
− 〈η0 |ξ0 −Q[P0,λ1]〉E
− 〈µ0 |L0P0 − S〉D
− 〈ν1 |L ∗0 λ1 −WrP〉D

(C.11)

Deriving the Lagrangian with respect to the state variables (ξinv,ξ0, P0,λ1) gives the adjoint
equations





η = χ,
η0 =W∗modη,

L ∗0 µ0 = K+[λ1,η0],
L ∗0 ν1 = K−[P0,η0],

(C.12a)
(C.12b)
(C.12c)
(C.12d)

and the derivatives of Γ with respect to P gives the application of (F†)T to χ,

(F†)Tχ = ∂ Γ
∂ P
=W∗r ν1. (C.13)

These equations involve the adjoint of the weighting operators de�ned in the previous section,

• the operators K−[P,ξ] and K+[P,ξ] : D ×E 7→ D , de�ned for P ∈ D and ξ ∈ E as

K−[P,ξ](s,x,ω) =
∫

h

1
(iω)

P(s,x− 2h,ω)ξ(x− h, h)dh, (C.14a)

K+[P,ξ](s,x,ω) =
∫

h

1
(iω)

P(s,x+ 2h,ω)ξ(x+ h, h)dh. (C.14b)
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Note that the integration operator is causal in equation (C.14a) and anti-causal in equa-
tion (C.14b) (Claerbout, 2014). They are similar to operators K− and K+ de�ned in
equations (2.19) and (2.35), except that the time integration replaces the second order
time derivative;

• the adjoint W∗mod : E 7→ E of Wmod, de�ned as

�
W∗modξ(x, h)

�
(x, h) = k

∂

∂ z

�
1

cα
0 (x)

ξ(x, h)
�

, (C.15)

• and the adjoint W∗r : D 7→ Dobs of Wr, de�ned as

�
W∗r P(s,x,ω)

�
(s, r,ω) = 1

2∆z

�
P(s, (x , zr + 1),ω)− P(s, (x , zr − 1),ω)

�
. (C.16)

Note that only the value of ν1 is required and µ0 does not need to be computed. If we remove
the weighting operators, that is Wmod = IE , W∗r =M, K− = K− and eΩ= Ω, then equations (C.12)
are equivalent to the usual �rst-order extended Born modelling. It means that in terms of
implementation, (F†)T and F have the same structure.
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Analytic expression for the MVA gradient
a�er direct inversion in 1D

This appendix is related to section 5.2.2 and details the derivation of the analytic expression of
the background velocity update obtained after direct inversion in the 1D case (equations 5.13b,
5.15c and 5.15d) (we do not detail the case of the adjoint (equations 5.13a, 5.15a and 5.15b),
which is very similar). The purpose is to obtain an analytic expression providing results similar
to those obtained with the adjoint-state method and wave-equations operators (section 4.2.10).
Note that the derivation does not assume a homogeneous background velocity model.

We recall the expression of the objective function,

Jinv
1 [c0] =

1
2

∫

z
a2(z)c2β

0 (z)ξ
2
inv(z)dz, (D.1)

where ξinv is obtained by application of the approximate inverse F† to observed data (equa-
tion 5.7c),

ξinv(z) =
�
F†Pobs

�
(z) = −4

∂

∂ z

∫

ω

1
(iω)∗

eΩ∗(ω)
�
∂

∂ zs
G∗0(s, z,ω)

�2

P(ω)dω, (D.2)

In section 5.2.2, we have derived the following expression for the gradient Ginv of Jinv
1 with

respect to c0,

Ginv(y) = βc2β−1
0 (y)a2(y)ξ2

inv(y) +

∫

z
Qinv(y, z)ηinv(z)dz (D.3)

where ηinv is obtained as the partial derivative of J1 with respect to ξinv,

ηinv(z) = c2β
0 (z)a

2(z)ξinv(z), (D.4)

and Qinv : E 7→M is de�ned as

Qinv(y, z) =
∂
�
F†Pobs

�
(z)

∂ c0(y)
. (D.5)

The purpose of this appendix is the derivation of the expression of Qinv given in equation (5.15c).
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Appendix D. Analytic expression for the MVA gradient after direct inversion in 1D

D.1. Derivation of Qinv

The derivation starts from equation (D.2), hence we need an expression for the derivatives of
the Green’s function G0(s, z,ω) with respect to s and z, and with respect to the value of c0 at
depth y . These expressions are given by,





∂ G0(s, z,ω)
∂ c0(y)

=
2(iω)2

c3
0(y)

G0(s, y,ω)G0(y, z,ω),

∂ G0(s, z,ω)
∂ zs

= − (iω)
c0(s)

G0(s, z,ω),

∂ G0(s, z,ω)
∂ z

=
(iω)
c0(z)

G0(s, z,ω).

(D.6a)

(D.6b)

(D.6c)

The derivative with respect to c0(y) (D.6a) is given by the �rst-order Born approximation,
reviewed in section 2.3.1: the perturbation δG0(s, z,ω) of a reference Green’s function G0(s, z,ω)
due to a perturbation δc of the reference background velocity model c0 obeys (equation 2.6b)

�
(iω)2

c2
0

−∆
�
δG0(s, z,ω) = 2δc(z)

c3
0(z)

(iω)2G0(s, z,ω), (D.7)

and δG0(s, z,ω) can be expressed as (equation 2.10b),

δG0(s, z,ω) =
∫

x
(iω)2G0(s, x ,ω)2δc(x)

c3
0(x)

G0(y, z,ω)dx . (D.8)

Equation (D.6a) is obtained as the derivative of this expression with respect to δc.
We now detail the important steps in the derivation of Qinv. Starting from the expression of

F†Pobs given in equation (D.2), we compute the following quantity,
∂

∂ c0(y)

�

ηinv

��F†Pobs
�
E

�
(D.9a)

=− ∂

∂ c0(y)

§
4
­
∂

∂ z
ηinv

����
∫

ω

1
iω
eΩ∗(ω)

�
∂

∂ zs
G∗0(s, z,ω)

�2

Pobs(ω)dω
·
E

ª
, (D.9b)

where we have explicitly separated the term ∂ ηinv/∂ z as is done in the calculation with the
adjoint-state method (equation 4.27g). Then, using equation (D.6b),

=− 4
­
∂

∂ z
ηinv

����
∂

∂ c0(y)

∫

ω

(iω)
c2
0(s)

eΩ∗(ω)�G∗0(s, z,ω)
�2

Pobs(ω)dω
·
E

(D.9c)

=16
­
ηinv

����
∂

∂ z

∫

ω

(iω)3

c2
0(s)c

3
0(y)

eΩ∗(ω)G∗0(s, z,ω)G∗0(s, y,ω)G∗0(y, z,ω)Pobs(ω)dω
·
E

, (D.9d)

where we have used equation (D.6a). Eventually we need to compute the derivative with respect
to z of the product of Green’s functions inside the integral, whose value depends on the relative
position of y and z,

∂

∂ z

�
G∗0(s, z,ω)G∗0(y, z,ω)

�
=

�
2iω/c0(z) if y ≤ z,
0 if y ≥ z,

(D.10)
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leading to the expression given in equation (5.15c),

Qinv(y, z) =





32

c2
0(s)c

3
0(y)c0(z)

∫

ω
(iω)4eΩ∗(ω)G∗0(s, z)G∗0(s, y)G∗0(y, z)dω if y < z,

0 if y ≥ z,
(D.11)

where the dependence of the Green’s function to ω have been omitted.

D.2. High-frequency expression

For the numerical applications in section 5.2, we have assumed an homogeneous background
velocity model (c0(z) = c0) and replaced the value of the Green’s function G0 in equations (D.2)
and (D.11) by its asymptotic expression in a 1D homogeneous medium (c0(z) = c0),

G0(s, z,ω) =
c0

2iω
e−iωτ(s,z). (D.12)

leading to the expressions given in equations (5.9c) and (5.15d)

ξinv(z) =
2
c0

∫

ω

eΩ∗(ω)e2iωτ(s,z)P(ω)dω, (D.13)

Qinv(y, z) =




− 4

c3
0

∫

ω
(iω)eΩ∗(ω)e(iω)

�
τ(s,z)+τ(s,y)+τ(y,z)

�
Pobs(ω)dω if y < z,

0 otherwise.
(D.14)

We check the validity of equation (D.11) on a numerical example by comparing the gradient
obtained with this expression with the gradient obtained by �nite di�erences and slightly
perturbed model (�gure D.1). The latter consists of computing the value of J1 (equation D.1)
for velocity models with small velocity perturbations at position y c(y) = c0(y)± δc0. The
computation is repeated for each depth y . Note that in this approach, ξinv is not obtained through
the asymptotic expression (D.13), but by solving wave-equations as described in appendix C.1.

It is actually important to note that equation (D.14) has been obtained by replacing the
value of the Green’s functions by their high-frequency approximation (equation D.12) after
the calculation of the derivative with respect to c0. One would obtain a di�erent expression by
applying the derivative with respect to c0 to a high-frequency approximation of F†Pobs such as
equation (D.13). In particular, operator Qinv would not be upper triangular any more.

To illustrate this point, we consider the derivative of the Green’s function G(s, z,ω) with
respect to c0(y). Applying the derivative �rst leads to equation (D.6a) and then replacing the
Green’s function gives

∂ G0(s, z,ω)
∂ c0(y)

=
2
c0

e−(iω)(τ(s,y)+τ(y,z)). (D.15)

On the other hand, computing the derivative of the high-frequency approximation (D.6a) with
respect to c0(y) leads to

∂ G0(s, z,ω)
∂ c0(y)

=





2
c0

e−(iω)(τ(s,y)+τ(y,z)) if y < z,

0 if y ≥ z,
(D.16)
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0 100 200 300 400 500 600

0

depth (m)

ξinv = F†Pobs

0 100 200 300 400 500 600

0

depth (m)

∂ J1/∂ c0

wave-equation operators
wave-equation operators (�nite di�erences)
analytic expression

Figure D.1. – Comparison of the re�ectivity (left) and background velocity update (right)
obtained with the analytic expressions (equations D.13 and D.14) (green dashed line) with the
results obtained by solving wave-equations with a �nite di�erences code (red) as described
in section 4.2.11. A third value for the gradient (blue) is obtained by computing the value
of ξinv with wave-equations propagation for slightly perturbed velocity model. For this
example, we took β= 3/2 and use the same re�ectivity and background velocity model as in
section 5.2, that is homogeneous exact and initial velocity models (3000 m/s and 2500 m/s)
and an exact re�ectivity model made of a single re�ector at 400 m depth.

as the derivative of the traveltime τ(s, z) with respect to c0(y) reads

∂ τ(s, z)
∂ c0(y)

=




− 1

c2
0(y)

if y < z

0 if y ≥ z.
(D.17)

The main di�erence is that the high-frequency approximation of the Green’s function between
s and z is insensitive to a perturbation below z, whereas the general Green’s function may
be a�ected by a perturbation of the velocity model below z as a di�racting point for example
(�gure D.2, right).

s

y

z

s

y

z

Figure D.2. – Perturbation of the Green’s function G0(s, z,ω) giving the response in z to a
source in s, when the perturbation is located above z (left) and below z (right).
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Appendix E.

Product of the Hessian of the MVA objective
function with a vector of theM -space

In this appendix we consider the case of non-linear iterations on the background velocity model
c0 to determine a minimum of the MVA objective function J1[c0]. In the following calculations,
we consider only the case of direct inversion of primary re�ections, the re�ectivity image ξ
being de�ned by the application of operator F† to observed data Pobs. We keep a very general
notation for the expression of J1,

J1[c0] = fJ1
[c0,ξ] with ξ = F†Pobs, (E.1)

so that further expressions are applicable to the standard de�nition J1[c0] = ‖Aξ‖2E , to a
normalised version J1[c0] = ‖Aξ‖2E/‖ξ‖2E and to similar versions with the introduction of a
power of the background velocity model cβ

0 as proposed in section 4.2.
In Newton optimisation methods (appendix B.3), the descent direction d ∈M is de�ned as

the solution of the following linear system, called Newton equation,
�
∂ 2J1

∂ c2
0

�
c(n)0

��
d = −∂ J1

∂ c0

�
c(n)0

�
, (E.2)

where c(n)0 is the value of the background velocity model at the nth non-linear iteration. Most
application of MVA do not solve this equation and use a quasi-Newton such as l-BFGS. In Liu
et al. (2014b) and Shen and Symes (2015), d is de�ned as the opposite of the gradient element-
wise divided by the product of the Hessian with the unit vector of theM -space. One could
also use the truncated-Newton method, already studied in the framework of Full Waveform
Inversion by Métivier et al. (2013). It consists of iteratively solving equation (E.2) with the
linear conjugate-gradient algorithm, without explicitly computing the full Hessian matrix. Then
several products of the Hessian matrix with a vector V ∈M are required. An e�cient procedure
to compute this product should then be de�ned.

We propose here a method based on the adjoint-state method (Plessix, 2006), very similar to
the one used by Métivier et al. (2013) for FWI and to the method presented in section 3.2.3 to
compute the Hessian-vector product in the case of the migration objective function c0. Given a
vector V ofM , we de�ne the scalar objective function Γ[c0, V] as

Γ[c0, V] =
­
∂ J1

∂ c0

����V
·
M

, (E.3)
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such that the derivative of Γ with respect to c0 gives the desired matrix-vector product,

∂ Γ
∂ c0

[c0, V] =
�
∂ 2J1

∂ c2
0

[c0]
�
V. (E.4)

Noting G the gradient of J1 with respect to c0, we de�ne the Lagrangian by de�ning constraints
on the state equations solved to determine the gradient with the adjoint variables γ ∈ M ,
(Ξ0,Ξ, E, E0) ∈ E and (Π0, L1,N1,M0) ∈ D ,

Γ =


G
��V�M −

­
γ
����G−

∂ fJ1

∂ c0

[c0,ξ]−C[µ0, P0]−C[ν1,λ1]− fmod[c0,η,ξ0]
·
M

− 
Π0

��L0P0 − S
�
D

− 
L1

��L ∗0 λ1 −WrM
TPobs

�
D

− 
Ξ0

��ξ0 −Q[P0,λ1]
�
D

− 
Ξ
��ξ−Wmodξ0

�
E

−
­

E

����η −
∂ fJ1

∂ ξ
[c0,ξ]

·
E

− 
E0

��η0 −W∗modη
�
E

− 
N1

��L0ν1 − K−[P0,η0]
�
D

− 
M0

��L ∗0 µ0 − K+[λ1,η0]
�
D ,

(E.5)

where C, Q, K−, K+, Wmod, W∗mod, Wr and S are de�ned in equations (3.19), (C.2), (C.3), (C.5),
(C.7), (C.14a), (C.14b) and (C.15), and fmod : (M ×E ×E ) 7→M is de�ned as

fmod[c0,η,ξ0](x) = kαcα−1
0 (x)

∫

h
η(x, h)

∂ ξ0

∂ z
(x, h)dh, (E.6)

with the value of k and α de�ned in equation (C.3). Deriving the Lagrangian with respect to the
state variable µ0, ν1, η0, η, ξ, ξ0, λ1, P0 yields the following sets of adjoint equations





L0M0 = B[P0, V]

L ∗0 N1 = B[λ1, V]

E0 = Q[P0,N1] +Q[M0,λ1]

E=WmodE0 +
�
∂ fmod

∂ η
[c0,η,ξ0]

�
V

(E.7a)
(E.7b)
(E.7c)

(E.7d)





Ξ=
�∂ 2 fJ1

∂ ξ2
[c0,ξ]

�
E+

� ∂ 2 fJ1

∂ c0∂ ξ
[c0,ξ]

�
V

Ξ0 =W∗modE0 +
�
∂ fmod

∂ ξ0

[c0,η,ξ0]
�
V

L0L1 = B[ν1, V] + K−[P0,Ξ0] + K−[M0,η0]

L ∗0 Π0 = B[µ0, V] + K+[λ1,Ξ0] + K+[N1,η0],

(E.8a)

(E.8b)

(E.8c)
(E.8d)
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where operator B : D ×M 7→ D is de�ned for u ∈ D and V ∈M as

B[u, V](s,x,ω) = 2(iω)2 V(x)
c3
0(x)

u(s,x,ω). (E.9)

Eventually the desired matrix-vector product is obtained as the gradient of Γ with respect to c0
and reads

�
∂ 2J1

∂ c2
0

[c0]
�
V =
∂ Γ
∂ c0

=C[Π0, P0] +C[L1,λ1] +C[N1,ν1] +C[M0,µ0]

− 3V
c0

�
C[µ0, P0] +C[ν1,λ1]

�

+
�∂ 2 fJ1

∂ c2
0

[c0,ξ]
�
V+

�
∂ fmod

∂ c0

[c0,η,ξ0]
�
V+

� ∂ 2 fJ1

∂ ξ∂ c0
[c0,ξ]

�
E.

(E.10)

We have divided the adjoint equations into two sets. In the �rst group of equation, a vector
E ∈ E is determined through computations very similar to those used to determine ξ. The second
set of equations looks like the one used to determine the gradient ∂ J1/∂ c0. Although only four
“new” wave�elds have to be computed (Π0, L1,M0,N1), the approach is quite expensive because
4D wave�elds arrays are too large to be kept in memory and need to be recomputed, �rst to
determine the value of E, then to compute the remaining contributions of the matrix-vector
product.

compute ξ = F†Pobs and evaluate J1[c0] 2 P0, λ1

given ξ, compute
∂ J1

∂ c0

[c0] 4 P0, λ1, ν1, µ0

given ξ and
∂ J1

∂ c0

[c0], compute
�
∂ J1

∂ c0

[c0]
�
V 12 2

�
P0,λ1,M0, N1

�
, ν1, µ0, L1, Π0

Table E.1. – Number of wave-equations to be solved to compute the value of the MVA objective
function in the direct inversion case, its gradient and the product of its Hessian with a
vector of V ∈M . The number indicated here should be multiplied by the number of source
positions considered in the acquisition.
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Résumé

Les expériences de sismique active sont
couramment utilisées pour estimer la valeur
d’un modèle de vitesse de propagation des
ondes P dans le sous-sol. Les méthodes
dites d’« analyse de vitesse par migration »
ont pour but la détermination d’un macro-
modèle de vitesse, lisse, et responsable de
la cinématique de propagation des ondes.
Dans une première étape de « migration »,
une image de réflectivité est obtenue à par-
tir des données enregistrées en utilisant
une première estimation du macro-modèle.
Cette image dépend d’un paramètre addi-
tionnel permettant dans un second temps
d’estimer la qualité du macro-modèle puis
de l’améliorer. Les images de réflectivité ob-
tenues par les techniques de migration clas-
siques sont cependant contaminées par des
artefacts, altérant la qualité de la remise à
jour du macro-modèle. En particulier, elles
ne prennent pas en compte les réflexions
multiples, habituellement retirées des don-
nées avant traitement. Cette étape reste ce-
pendant délicate et on se prive alors de
l’information supplémentaire contenue dans
les multiples.
Nous proposons dans cette étude une stra-
tégie d’optimisation imbriquée en itérant
l’étape de migration avant de remettre à jour
le macro-modèle. La migration itérative pro-
duit des images de réflectivité satisfaisantes
pour l’analyse de vitesse et s’étend natu-
rellement aux réflexions multiples. Un désa-
vantage de la méthode est son coût de cal-
cul. Un pseudo-inverse de l’opérateur de
modélisation est alors utilisé comme précon-
ditionneur pour limiter le nombre d’itérations
dans la boucle interne. Une autre difficulté
est l’instabilité de la remise à jour du modèle
de vitesse calculée pour des modèles de
réflectivité successifs proches les uns des
autres. Une nouvelle approche plus robuste
est proposée, valide aussi dans le cas de
multiples. Son efficacité est testée sur des
jeux de données synthétiques 2D.

Abstract

Active seismic experiments are commonly
used to recover a model of the P-wave
propagation velocity in the subsurface. “Mi-
gration Velocity Analysis” techniques aim
at deriving a smooth background velocity
model controlling the kinematics of wave
propagation. First, a reflectivity image is ob-
tained by “migration” of observed data us-
ing a first estimate of the background velo-
city. This image depends on an additional
“subsurface-offset” parameter allowing to as-
sess the quality of the background velocity
model with a focusing criterion and to cor-
rect it. However classical migration tech-
niques do not provide a sufficiently accurate
reflectivity image, leading to inconsistent ve-
locity updates. In particular they do not take
into account multiple reflections, usually re-
garded as noise and removed from the data
before processing. Multiple removal is how-
ever a difficult step, and additional informa-
tion contained in multiples is discarded.
In this thesis, we propose to determine the
reflectivity model by iterative migration be-
fore subsequent velocity analysis, leading to
a nested optimisation procedure. Iterative
migration yields accurate reflectivity image
and extends naturally to the case of mul-
tiples. One of its disadvantages is the as-
sociated increased computational cost. To
limit the number of iterations in the inner
loop, a preconditioner based on a pseudo-
inverse of the modelling operator is intro-
duced. Another difficulty is the instability of
the velocity update obtained with very close
successive reflectivity models. We propose
a modified approach, valid in the presence
of multiples, and discussed through applica-
tions on 2D synthetic data sets.

Mots Clés

imagerie sismique • analyse de vitesse par
migration • réflexions multiples • migration
itérative • problèmes inverses

Keywords

seismic imaging • migration velocity
analysis • multiple reflections • iterative
migration • inverse problems
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