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Chapter 1
Introduction

Computer vision aims to understand, to interpret an image or a video like
(or even better than) a human being. Understanding or interpreting an
image, a video, can have many forms. It can consist in detecting a spe-
cific target in an image (object detection), following the trajectory of one
object (tracking), classifying one object instance with respect to different
categories (recognition) or, given a set of images, selecting those fulfilling
one specific condition (Content Based Image Retrieval). Those applica-
tions are now present in everyday life, such as in engine search or social

network systems, surveillance systems, mobile phones, etc.

Image Feature
Processing Extraction

FIGURE 1.1: Traditional chain of computer vision

Traditionally, a computer vision algorithm is subdivided into different

functions (see Fig. 1.1):

e Acquisition: given a scene to observe, a sensor (such as a camera)
is capturing the scene. This step is all the more important that a bad
acquisition (due for example to a low quality sensor) will spread er-
rors in the whole computer vision chain. Depending on the scene to
acquire, several constraints can appear. In medical or radar imaging,
captured image can be very noisy, or image resolution may not be
sufficient for the task. Acquiring the motion of fast objects (sport
videos typically) implies the use of a camera able to capture decent
images with very low exposure time. In all cases, the sensor is the

critical element of this step
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e Pre-processing: after the acquisition, the quality of the capture may
not be sufficient for the task. In that case, a processing step is re-
quired to enhance the quality. This enhancement can take several

forms: denoising, deblurring...

e Analysis: after processing, the captured image (or the video) is not
ready yet for higher level interpretation: too much information is
included in processed data. Consequently, the analysis step consists
in reducing the information by extracting the features adapted to the

wanted task

e Understanding: from the data projected into a specific feature space,
the system performs the task it has been designed for. It requires an
algorithm usually designed for this task. This is usually the last step

of computer vision

Nowadays, this chain may no longer be relevant since, for many systems,
such as smart cameras or Vision Processing Unit (VPU), the different parts
may be too intimately combined to be distinguishable. In our work, we do
not step out the traditional chain, but aim to reduce the computational gap
between the two last steps by using unified representations and primitives
that are used all along the computer vision chain. More precisely, we study
two fundamental tasks in computer vision: object tracking and detection.
We want to propose a unique feature space and rely on one main algorithm
for these two tasks.

On the one hand, feature extraction is a popular task in computer vi-
sion, and we find in the literature many different features: keypoints, sta-
tistical features, wavelet, and more recently deep learning autoencoders.
In our case, we take the decision to use only low-level and local color and
shape features. More precisely, we aim work only with pixel colors and
their derivatives only.

On the other hand, the understanding step consists in using a specific
algorithm exploiting information represented in the designed feature space
to get a high-level information, a better understanding of the scene. This
high-level information can be the position of one specific target, recogniz-
ing some specific events, classifying objects.

We plan to study two different tasks: object detection and object track-
ing. Taken alone, both tasks lead to many applications in surveillance

(dangerous object detection, following the trajectory of a threat), in robotics
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(visual control) and other fields. Combined, they provide a higher-level of
understanding. For example, let us consider a camera filming a bifurca-
tion. By combining a tracker and a detector, we can determine how many
pedestrians start from one entry point, and leave another one. This exam-
ple suggests the main interest of our work. Indeed, autonomous systems
have to perform different tasks, while being constrained by the hardware.
By unifying the feature space and the algorithm, we reduce the memory
consumption. Our work also presents an interest in terms of computation
time. As low-level features are simpler than higher-level ones, they can be
more easily implemented on any kind of system, from low-cost or embed-

ded ones to computer clusters, and mobile phones or desktop machines.

1.1 Scope of the thesis

As mentioned previously, we aim to work with a unique feature space and
algorithm, and study benefits and limitations of these hypotheses on two
tasks: object tracking and object detection. In the framework of our thesis,
we will suppose that sequences and images studied will be acquired from
standard cameras (from phones or webcam). In this case, we discard some
problematic cases that can imply image preprocessing (such as denoising).

In terms of feature space, we will work on "natural" visual features,
including color and local geometry, as opposed to massive decomposition
features, like wavelet, filter banks or deep learning autoencoders features.
More precisely, all proposed algorithms will rely exclusively on pixel col-
ors, spatial derivatives, and spatial aggregation mechanisms based on his-
tograms and Hough transform. Usually, low-level features are used to
build more complex ones, with higher power of representation: color at-
tributes, keypoints, statistical features. However, those higher level fea-
tures are usually slower to compute, their high power of representation
might not be necessary for some tasks, and are not as flexible as low level
ones (for example, keypoints cannot be found everywhere, they are par-
ticular points in images). Inversely, pixels colors and derivatives can be
computed in the whole image and are adapted to parallel computation,
potentially leading to a very low computation time. As the main prob-
lem is their relatively weak power of representation, one tackled problem
will concern the possibility to propose effective tracker and detector based

only on pixel colors and derivatives.
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FIGURE 1.2: Tracking process from ironman sequence

In terms of representation, one algorithm has a central role in our
work: the Generalized Hough Transform. Its original principle was to
build a codebook to represent one contour. This codebook, indexed by gra-
dient orientation, stores all relative positions of the contour points with re-
spect to the center. It serves to localize the contour in a tested image. The
Generalized Hough Transform has proven versatile, since many variations
of the algorithm have been proposed, with regard to the feature used to in-
dex the table, to the structure of the codebook and to the parameter space.
In terms of application, it has been adapted to many tasks, in particular ob-
ject tracking and detection. However, the Generalized Hough Transform
is not the most effective algorithm used for these tasks: Discriminative
Correlation Filter and Convolutional Neural Network are state-of-the-art
algorithms for tracking and detection respectively. Tab. 1.1 summarizes

all benefits all weaknesses of our two hypotheses.

Feature Algorithm
Advantages
e Fast to compute e Low memory con-
sumption

e Good properties for
parallelization e Versatile algorithm

Limitations | Low power of representa- | Not the most effective al-
tion gorithm

TABLE 1.1: Desired properties and limitations of our ap-
proach

Object tracking and detection present an interest for our thesis, due
to their distinct aims. In tracking, feature space is designed to estimate
target trajectory as accurate and robustly as possible. This target can have
any aspect (Fig. 1.2 shows one sequence found in one academic dataset
[ARSO08]), and in some applications (visual control notably), time con-

sumption is critical. In detection, as feature space aims to describe a
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FIGURE 1.3: Pedestrian detection (TUD-Pedestrians
dataset)

class of object and cope with intra-class variation, using a machine learn-
ing classifier is a possible solution (illustration of pedestrian detection
Fig. 1.3). The object representation, trained with many samples, is usually
heavier compared to tracking, but time consumption is also less critical.
The two tasks then have different constraints in terms of representation
and of computation time. Studying benefits and limits of low-level fea-

tures in both cases will give us an overview of their benefits.

1.2 Contributions

Our work led to three publications in international conferences, one re-

lated to object detection, two related to object tracking:

e [TM16] Antoine Tran and Antoine Manzanera. “Fast growing Hough
forest as a stable model for object detection”. In: Image Process-
ing Theory Tools and Applications (IPTA), 2016 6th International
Conference on. IEEE. 2016, pp. 1-6

e [TM15] Antoine Tran and Antoine Manzanera. “A versatile object
tracking algorithm combining Particle Filter and Generalised Hough
Transform”. In: Image Processing Theory, Tools and Applications
(IPTA), 2015 International Conference on. 1EEE. 2015, pp. 105-
110

e [TM17] Antoine Tran and Antoine Manzanera. “Mixing Hough and
Color Histogram Models for Accurate Real-Time Object Tracking”
In: International Conference on Computer Analysis of Images and

Patterns (to appear). 2017 pp. 105-110
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[TM15] presents a tracker combining the Generalized Hough Trans-
form relying on gradient features, and a Particle Filter based on color his-
togram. In [TM17], while still keeping the Generalized Hough Transform
under the same form, we exploit color histogram to build a pixel confi-
dence map. [TM17] has proven competitive, we earned the right to be
co-author of the report dedicated to the Visual Object Tracking challenge
2017 '. Results, ranking, and implementation will be available in Novem-
ber, 2017. [TM16] deals with the Hough Forest algorithm [GL13], and
proposes two contributions: one related to the training set generation, the

second to the node training.

1.3 QOutline of the thesis

This thesis will be divided into four parts.

Chapter. 2 will deal with object representations. Its first section will
be dedicated to color features, starting from definition of color space, end-
ing with color-based features. In the second section, we will deal with
shape-based features. The first task will be to define the notion of deriva-
tive on images. Then, from these derivatives, we will see how several
works have been proposed to build visual features directly computed from
gradient and Laplacian, and to build higher-level ones, such as keypoint
or HOG features. In these two parts, we will also present some classical
tasks computed with the different presented features. The Hough Trans-
form will then be formally defined in the third part. After an history of
the algorithm, that leads to the Generalized Hough Transform, and some
improvement of the original algorithm, we will illustrate the versatility of
the Hough Transform by showing how it was adapted for different appli-
cations.

In Chapter. 3, we will focus on object tracking. Since in computer vi-
sion, tracking (in general) is a very popular task, we will start by defining
the framework in which we are working on, and the difficulties related to
object tracking. Then, we will make a literature review of methods for
object tracking, by focusing on trackers related to ours and those that are
comparable, in terms of performances. We will also present recent works
on Hough-based trackers. In the third section, we will focus on the two

proposed trackers. After detailing [TM15], we will discuss some missing
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elements of this tracker to propose a transitional one. This transitional
tracker was simplified, and finally led to [TM17], which combined accu-
racy, robustness and speed (one of the fastest in the literature). We will
end this chapter by presenting some experimental results. By first explain-
ing how we managed to reach a low execution time, we will continue by
parameters setting. Then, results on academic datasets will be shown, to-
gether with an analysis of obtained results and the impact of low-level
features.

Object detection will have the main role in Chapter. 4. As for the pre-
vious chapter, we will start by presenting the task of object detection. This
presentation will be followed by a literature review in object detection, by
in particular presenting state-of-the-art detectors and Hough-based ones.
Then, we will present our work, by starting from an explanation of the
Hough Forest algorithm [GL13], serving as a base for our detector, fol-
lowed by a review of different extensions of it. We will then focus on
[TM16], by detailing reasons that led us to propose such contributions.
Finally, details about experimental results will be provided.

Finally, Chapter. 5 will serve as a conclusion. It will be dedicated to
discussions and possible perspectives related to our work. We will notably
mention the development of an autonomous system combining tracker and
detector, by tackling all issues that should be solved, considering the state

of our work.
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This chapter presents the framework of our work. As mentioned in
the introduction, we set two limits to our work: one concerning the com-
plexity of the feature spaces, one concerning the method to exploit those
features for different tasks. Accordingly, this chapter will be divided into

two parts, reflecting the two hypotheses we set:

e First, we will present some visual features used in computer vision.
We will mainly focus on color-based and shape-based features (we
will denote them as visual features). The aim will not to be exhaus-
tive, but rather to see how, from very simple features (pixel color,
local geometry), higher visual features were designed for computer
vision tasks. All along this section, we will also present some clas-

sical computer vision tasks based on the presented features

e Second, we will deal will the Hough Transform. This algorithm,

very popular in computer vision, has a central role in our thesis.
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After presenting the history of the algorithm, starting from a patent
presenting a device designed to track particles in bubble machines,
then a formalization in order to detect analytical shapes and some
enhancements of the original Hough Transform, we will present
the extension proposed by Ballard [Bal81], the Generalized Hough
Transform, used to detect any kind of shape. Finally, to show how
versatile the algorithm is, we will make a short review of literature
showing that the Hough Transform has been adapted for many ap-

plications

2.1 Visual Features

In this section, we will focus on visual features. The goal of our thesis is to
study potentials and limitations of low-level representations in computer
vision, for two fundamental tasks: object tracking and object detection.
The main benefit of low-level features is in terms of computation time:
fast to compute and easily parallelizable, they can be used for reactive
algorithms. However, due to the limit in their power of representation,
higher-level and more costly features have been designed, generally built
from low-level ones. We will then make a review of different visual fea-
tures found in the literature. Before that, we start by defining what, in our
point of view, a good feature is, in machine learning, then for two tasks in
computer vision.

In Machine Learning, extracting a feature from an object means creat-
ing a numerical vector supposed to represent it, to describe it. This process
is called model generation. Ideally, this feature vector should fulfill sev-

eral properties:

e Discriminative, to identify the observed object, and distinguish it
from other ones. Mathematically, given a feature space (the space
in which the vector is represented) and a good metric, the distance

between two vectors of two different objects should be high

e Characteristic and intrinsic to this object, to ensure that different
instances from the same object have approximately the same feature
vector. Moreover, for each observation (and for each environment

or context), the extracted feature vector should always be the same
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e Repeatability, meaning that in noisy or degraded conditions, the ob-

tained feature vector of the same object should not change much

One hypothesis that can be added, but is not essential, concerns the quan-
tity of information stored in the feature vector. Ideally, this feature vector
should contain the minimal amount of information necessary to describe
an object. Evidently, extracted features should suit the wanted task. In ob-
ject detection, features should represent the class of object as precisely as
possible, while neglecting particularities of instances (for example, car’s
color in car detection). In object tracking, it is possible to represent the
target using features able to discriminate the target from the background
(for instance, tracking the surfer on Fig. 2.1 can be done using color, as
the background is mostly blue, while the surfer is dark). The first part of

FIGURE 2.1: First frame from surfing sequence [KPL+]

this section concerns visual features: we will then make a literature re-
view of visual features in this chapter, starting by color-based ones, and
ending with shape-based ones. In both cases, we will also mention some
works exploiting the different presented features to illustrates utility of
these features. We will also set the limit of our thesis in terms of level of

complexity of used features.

2.1.1 Color-Based features

Color-based features are among the most popular visual features used in
computer vision. In the visual attention system proposed by Itti and Koch
[IKN+98], color is one early feature, among intensity and orientations,
used to generate saliency maps. Moreover, color is a visual feature pre-

senting a certain robustness to some traditional geometric transformations:
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in-plane rotations, scaling (robustness in terms of proportion of pixels),
and translations.

However, while color is usable to describe a specific instance of object
("This is a blue car"), it is not a generic visual feature used to describe a
class of object (All cars are not blue). Moreover, the perceived color of
an object can not be clearly defined. Indeed, depending on the source of
light, the perceived color can be different (lighting a green wall with a red
light will not make it appear green), and too much or not enough light will
drastically change the color. The color is also dependent on the sensitivity
of the image acquisition system. It means that, considering hypotheses
defining a good feature, color-based ones are not characteristic to the ob-
ject. Consequently, they are not suitable for tasks involving high-level
of semantic, and notably those requiring description of class of objects
(object classification or detection).

However, color-based features still have a very important place in
computer vision, as many researchers designed different color features,
and are involved in many tasks: in object tracking, the main interest of
color features is their ability to distinguish targets from the background
(except in color camouflage case). Moreover, several authors designed
some color-based high-level features, as a first step of object recognition.
Then, in this section, we will present some color-based features, from
very low-level (color space and histograms), to higher ones (superpixels

or color attributes).

2.1.1.1 Color space

In computer vision, the first level of color-based features is extracted from
the smallest element of an image: the pixel. Each pixel has a color. This
color is firstly encoded into a multi (usually 3) dimensional space, called
color space.

Different kinds of color space exist, but the most famous one is the
RGB color space. It comes from the Human Visual System, in which
colors are detected by three types of cones, each one sensitive to one
specific color: Red, Green and Blue. By mixing all these three colors,
in different proportions, it is possible to describe a large range of col-
ors. Indeed, in image processing, a pixel represented in the RGB model
is usually encoded by a triplet of 8-bit integers, meaning that there are

256 x 256 x 256 = 22* possible combinations. However, for computer
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vision tasks, one limit of this color space is the poverty of metrics to as-
sociate a visual perception of an object to the mathematical model (How
red is it?). For example, a totally pure red object with be encoded by
(255,0,0), while a pure white object will be encoded (255,255, 255).
Both have the same red intensity, but their colors are completely differ-
ent.

Finlayson [FHXO05] proposed a mathematical formula modeling illu-
mination change and shift. Given an acquired scene for which, at a pixel p,
it is initially observed a color (7, g;, b;), in case of illumination variation,

this same pixel will have values (7, go, b,) such that:

To a 0 0 T; C1
g% | =10 b 0 g | + 1 c 2.1)
b 0 0 ¢ b; 3

From this equation, Van de Sande [VDSGS10] proposed to model com-
mon illumination changes, such as light intensity change (due to shadows
for example), for which a = 0 = cand ¢; = ¢ = ¢3 = 0, or light in-
tensity shift, indicating that a scene is illuminated with another white light
source, and for whicha =b=c=0and ¢; = ¢y = cs.

Another popular color space is the HSV (and other similar color spaces
such as HSL or HSI) color space, proposed by Smith [Smi78]. H stands
for Hue, S for Saturation and V for Value. Given a color ¢ encoded in the
RGB space by (r, g, b), let us define M = mazx(r, g,b), m = min(r, g,b)
and C' = M — m. Then, to convert a RGB pixel to a HSV one, we use the

transformation:

)
Undefined if(M —m) =0

60 - &2 if M =r

o= (2.2)
60- %0 +120 ifM =g

60722 +240 if M =b

\

0 ifM=0
S = u . 2.3)
= otherwise
V=M 2.4)

In this representation, H € [0, 360] represents the perceived color: values
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close to 0 and to 360 corresponds to red, 120 to green, 240 to blue. Given
Eq. 2.1 and Eq. 2.2, we can notice that the Hue is invariant to light inten-
sity scale and shift. S € [0, 1] corresponds to the intensity of the color.
Visually, it means that the smaller the saturation is, the more the color will
be perceived as gray. We can also note that for S = 0, H is undefined,
which corresponds to r = g = b, i.e. a grey level. It means that, in this
color space, the grayscale is not properly defined. V' is the value, and is
also called brightness. Moreover, the smaller the saturation is, the more
unreliable the Hue value is.

Finally, the last color space we will mention is the Lab color space.
It belongs to the class of color-opponent space, and put in opposition the
red color with the green (channel a*), and the yellow with the blue (chan-
nel b*). The third channel, L*, is the luminance. According to Tkalcic in
[TT+03], in the 19*" century, Ewald Hering proposed the opponent col-
ors theory, by noticing that the perceptions of certain colors are interde-
pendent: the couple red-green, and yellow-blue. Later, still according to
[TT+03], researchers supposed that from a signal in RGB acquired by the
cones of eyes, the Human Visual System converts it into a signal com-
posed of three components, each one defining a color opposition: White-
Black, Red-Green and Yellow-Blue. These oppositions are the base for the
Lab color space. To move from the RGB space to the Lab, the first step
consists in using an intermediate one, XYZ, defined by the Commission

Internationale de I’Eclairage (CIE). This is done by a linear combination:

X R
Y | =M-| G (2.5)
A B

with M a 3 x 3 matrix. Each channel of XYZ color space is supposed
to represent a stimulus of the three types of cones of the Human Visual
System. Then, Lab is built from XYZ in order to set L as a luminance
channel, a is a channel putting in opposition the green (negative values)
with the red (positive values) and the b channel to oppose blue with yellow.

This part served to present different color spaces. The first one, the
RGB color space, is directly inspired by the human visual system, com-
posed by 3 types of cones (sensitive to red, blue and green respectively)
and a set of rods (sensitive to luminance). At a first glance, it does not

seem suitable for computer vision task: not robust to illumination change,
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and there is no direct link between the color space and the visual percep-
tion. However, it is still much used in computer vision, and especially in
object tracking (we refer to Section. 3.2 for details). We also described
the HSV color space. Closer to the visual perception, it quantifies three
notions linked to visual perception: the observed color, the intensity of
the color and the brightness. However, in this color space, grayscales are
not properly defined. Finally, the Lab one, modeling the signal sent by the
Human Visual System, is based on the opponent color theory: some col-
ors such as the green and the red, are not perceived at the same time. All
described color spaces are illustrated in Fig. 2.2. We will refer to Van de
Sande [VDSGS10] for a richer description of the different color spaces.
This presentation will be important for the rest of this document, espe-
cially for Section 3.4.2.5, in which we will evaluate impacts of different
color spaces on tracking context. In the rest of this section, we will ex-
plain how to create features usable for computer vision, and present some

tasks implying color features.

2.1.1.2 Color Histogram

Color histogram is a very low level color-based feature. Given ny the
number of bins and an image I, building the histogram of I (denoted Hr)
consists in, for each bin b, counting how many pixels from I is falling

inside the bin b. Formally, for each pixel p, by denoting I(p) the quantified

value of I(p), we have, for each bin b:

Hi(b) = > 6(1(p) — b) (2.6)

Fig. 2.3 shows a color histogram computed from a grayscale image.
For multi-channel images, the operation is generalized by considering
multi-dimensional bins.

The main advantage of using color histogram as a model for an ob-
ject is the very low memory consumption (one integer per bin), and the
low computation time: different methods, such as Look-Up Table (see
Section. 3) or integral images [Por(5], are possible to quickly evaluate an
image histogram. Another advantage is made by working with normalized
histogram (the sum of the values of all bins is equal to 1.0), and consid-
ering the resulting histogram as an empirical discrete probability distribu-

tion. In this condition, several metrics, based on statistics notably, exist in
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FIGURE 2.2: Image of the first line splitted into RGB,
HSYV and Lab color spaces (respectively second, third and
fourth lines)

order to compare two histograms. The Bhattacharyya coefficient [Bha43]
is one of the most popular metrics, and Swain [SB91] proposed a metric
called Histogram Intersection in order to classify objects, with a certain
robustness to occlusion and change of viewpoint. Given two normalized
histograms H; and H, with the same number of bins 7n;, the Bhattacharyya
coefficient B(H;, H2) and the Histogram Intersection [ (H,, Hy) are de-
fined by:

B(H, H) = Y VL) Bl @)
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(A) Grayscale (B) Grayscale
Image histogram

FIGURE 2.3: Histogram taken from the first frame of bolt
sequence [KPL+]

(L Ho) = 3 min (), Ha(i) 28)

However, the main weakness of image histograms is directly induced by
the used color space, and a non adapted color space may dramatically re-
duce the effectiveness of image histogram. Moreover, an histogram mod-
els an object globally, and while it indicates which colors are dominant
or not, it does not indicate where they appear. Fig. 2.4 illustrates one ex-
ample for which the Bhattacharyya coefficient will be 1.0, meaning that,
for this measure, the two flags are identical, while they are visually (and
semantically) different.

(A) French Flag (B) Rotated version of the French
flag

FIGURE 2.4: Two different flags with the same color dis-
tribution

This very low-level representation is, however, used for concrete appli-
cations: Comaniciu [CRMO03] proposed the popular Mean Shift algorithm

to track objects, using the classical RGB color space to create an object
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model using the RGB histogram, and then track the target over one se-
quence using an approximation of the Bhattacharyya coefficient. Bradski
extended the Mean shift, to propose CAMSHIFT [Bra98] for face track-
ing (tracking of face position, size and orientation) using HSV color space
(he supposed that people’s color hue is constant, contrary to color skin).
Bradski’s idea shows that, by selecting an adapted color space, some tasks
can perform better (details in Section 3). In both cases, the use of color
histogram, combined with light algorithms to exploit them, makes these
trackers run above real-time. In the framework of our thesis, we set the
limit of complexity of color-features at this level (even though, for detec-

tion purpose, we will even go lower, at the color pixel level).

2.1.1.3 Higher Level of representation

We saw on the previous part one very low level of color-based represen-
tation. In this section, we briefly mention some higher level color-based

features used in computer vision.

Statistical features
Normalized color histograms can be interpreted in a probabilistic point
of view: each bin represents the density of one color in the modeled im-
age. Naturally, it is then possible to use some statistical measures, such
as average, deviation, or moments. This higher level of representation has
some advantages: given Eq. 2.1, in case of light intensity shift, or change
(a = b = cin Eq. 2.1), the standard deviation is invariant.

Mindru [Min+04] generalized the notion of moments at order » = p+q

and degree d = a + b + ¢ for a three-channeled image:
MIT) =) a? -yt T2 (xyy) - I (2y) - IS (2,y)  (2.9)
x?y

and used them to generate feature vectors from images, composed of mo-
ment invariants. His work aimed to match objects in case of illumina-
tion and viewpoint changes (tested on synthetic and real images). The
method consists in generating several color moment invariants from mo-
ments computed by Eq. 2.9, and use them as basis of a vector space, on
which images of objects are projected. Then, using MANOVA [JW+02],

in the space of invariants, a subset optimizing a separation of different
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classes of objects is generated. This subset then serves as a classifier for

object matching.

Spatiogram

Color histogram lacks information about location of colors. Birchfield
[BROS5] proposed a model based on features called spatiogram for track-
ing context. His idea was to extend the histogram representation by con-
sidering for an image I, and for each bin b, not only the number of pixels
falling into b, but also the centroid and the covariance matrix of the spatial
position of pixels falling into b. This representation gives an idea of how
and where colors are spread. His representation also comes with a metric,
to compare spatiograms of two objects. Fig. 2.4 illustrates two images
with the same color histogram but different spatiograms (color centroids

are spread horizontally for the first flag, vertically for the second).

SLIC superpixels

Superpixels were originally designed [RMO3] for object detection. The
principle was to group some pixels according to several criteria: texture,
brightness, geometry. Each group of pixels, the superpixel, is then de-
scribed and then used to train a two-class classifier. Several superpixel
methods exist in the literature, and we refer to [Ach+12] for a cover-
age. We focus on one popular class of superpixels, proposed by Achanta
[Ach+10], exclusively based on color features and pixels positions. In the
paper, Achanta proposed a method to group pixels by, on the first hand,
describing all pixels in a 5D space: three from the Lab color space, and
the two pixels coordinates. On the second hand, he initializes superpix-
els’ seeds by drawing them using a regular grid. Then, each pixel is as-
sociated to one seed according to a Euclidean-based distance (in the 5D
space). SLIC superpixels have the advantage to require very low-level
operations: Lab color space and Euclidean distance computations. Fur-
thermore, in terms of usability, the only parameter to set is the number of
seeds. While the main application of SLIC superpixels is segmentation,
(and it has indeed been used for medical image segmentation), by describ-
ing each superpixels with multiple features, Achanta was able to perform

object recognition. Fig. 2.5 illustrates SLIC superpixels computation.

Color Attribute

One computer vision task relying on color features is CBIR, for Content
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(A) Input (B) Superpixels segmentation

FIGURE 2.5: Superpixel segmentation obtained from ball
sequence [KPL+] with 400 superpixels.

Based Image Retrieval. Given a set of images, and a query ("Get all im-
ages containing red objects" for example), the goal is to get a subset of
images matching the query. We focus on recent color-based feature de-
veloped by [VDW+09]. In his paper, Van de Weijer trains an algorithm to
classify pixels according to color names. His training set is composed of
annotated images (using the color of the object in the picture). Each im-
age is, firstly, pre-processed (background removal and gamma correction),
and then, represented into the Lab color space. Then, a color histogram
is built for each image, and all histograms are sent to a classifier, trained
to attribute a color label to each pixel. These models are called color at-
tribute, and were used for color CBIR. Fig. 2.6 illustrates one mapping
obtained using color attributes (with 11 colors). It has then been extended
to tracking, action recognition and object detection [Kha+13]. This color
feature, designed using annotated dataset, will be tested and evaluated for
tracking in Section. 3.4. It is interesting to note that, computationally
speaking, color attributes can be viewed as a low-level feature: the code
provided by Van de Weijer outputs a LUT, mapping RGB pixels to color
attributes. It is then as costly as moving from RGB to HSV color space
for example, and can be computed on every pixel. But, from a conceptual
point of view, we put color attributes on a higher level, as it is a result of a

classification task, performed using annotated datasets.

Limits of color based features

As mentioned at the beginning of this section, color can describe spe-
cific objects, but not generic ones. As a consequence, it can be used for
object tracking [CRMO3]; [BRO5] or for CBIR [VDW+09]. For tasks

involving class of objects, such as object classification, color features
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FIGURE 2.6: Color attribute of frame O of marching se-
quence

can not be directly used. In the literature, for this kind of task, we can
however find color features, but used as complementary representation.
We already mentioned Achanta’ superpixels [Ach+10] who used SLIC
for object recognition. We can also mention a representation method
[VDSGS10], whose first step consists in projecting an image into different
color spaces, then, for each channel, build a model of each image by us-
ing SIFT descriptors [Low99]. Two interesting points are important in this
work: first, recognition accuracy depends on the chosen color space, and
color spaces robust to intensity change or light color change are the most
effective. Second, extracting other kind of features (in this case, geomet-
rical features) from images projected into adapted color space increases
the performance (the SIFT applied on grayscale images is outperformed

by SIFT applied on different color spaces).

2.1.1.4 Conclusion

This section was dedicated on color-based features. To use color-based
features in computer vision, the first choice is the color space. Many color
spaces exist, but we describe three popular ones, that will be used and
compared in the rest of this thesis: RGB, HSV and Lab.

The next step is the feature generation. One early feature is the color
histogram. Easy to compute and lightweight, it is used in many tasks:
tracking [CRMO3], recognition [SB91], CBIR. From a statistical point of
view, color-histogram can be extended to higher-level measures: average,
variance... Birchfield [BRO5] proposed an extension of color histogram
for object tracking, by adding information about color location.

We also mentioned two other color-based features: the SLIC super-
pixels [Ach+10], originally designed for medical image segmentation,
and used with other features for object recognition, and color attributes
[VDW+09], for CBIR tasks. Even though color features are not directly
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usable for object detection or recognition, they can be used in combination
with other features for this task [Ach+10]; [Gal+11], or as a first level of
representation [VDSGS10].

2.1.2 Shape-Based Representation

Previously, we presented some color-based visual features. Complemen-
tary way to visually describe objects is shape-based description. Extract-
ing shape descriptors implies estimating geometrical quantities, such as
gradient. Then, in this section, we will start by explaining methods to ex-
tend the notion of derivatives to images, and, as in the previous section,

present some higher level geometrical features.

2.1.2.1 Mathematical context

The shape of an object is defined by its boundary, its form. In images, the
shape is perceptible by the variations of pixels intensity. Mathematically,
these variations can be measured by gradient, Hessian and other differen-
tial operators. In the next section, we will briefly present popular methods
to approximate spatial derivatives on images by using convolutions. Then,
in the next part, we will deal with blobs and junctions detection, based on
Lindeberg theory [Lin98], and finally, present some higher-level features:
sparse ones, such as keypoints and dense ones, such as the HOG [DT05]

features.

2.1.2.2 Sobel filter

One very popular approximation of the gradient operator is the Sobel op-

erator, defined by two kernels:

-1 0 +1
-2 0 +2 (2.10)
-1 0 +1

+1 +2 +1
0O 0 0 (2.11)
-1 -2 -1
which are convolved with the image to approximate the x- and y-derivatives.

Fig. 2.7 illustrates Sobel filter applied to one image (blue stands for high
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negative values, green for close to 0 values, red for high positive values).
The main interest is the very low computation cost (the two filters are lin-
early separable). However, the Sobel operator is not robust against high-

frequencies variation (noise for example).
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(A) Input Image (B) Sobel in x-direction (C) Sobel in y-direction

FIGURE 2.7: Sobelin x and y applied in frame from forus
sequence [KPL+]

Using these operators, by denoting I, and I,, the gradient of I in direc-
tion 2 and y respectively, gradient magnitude M and orientation ! can

be directly computed:

M' = /(1,)% + (I,)? (2.12)

I
e! = arctan(I—y) (2.13)

X

Gradient magnitude and orientation are illustrated Fig. 2.8. These two
equations will be essential for our work on tracking, as our goal is to

propose a very light tracker based on low-level features. Gradient com-

J ) = \ Y \‘ | o M |
(A) Input Image (B) Magnitude (C) Orientation
FIGURE 2.8: Magnitude and orientation from forus im-

age. For a better visualization, we displayed only orienta-
tion for pixels with high gradient magnitude

putation with only Sobel filter is used in many algorithms: as we will see
in Section 2.2.3, the Generalized Hough Transform, in its simplest form,

only requires gradient evaluation, and combined with HSV color space,
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can be directly used for an efficient object tracking algorithm [DG13].
For pedestrian detection, Tuzel [TPMOS] trained a detector by building
descriptors based on derivative features. Each region is described by first,

computing 8 features images:

I
[z y L] L] R+ |IZ| [T, arctan(:l—y:)] (2.14)

and then computing the covariance matrix of these feature images (I, and
I, are second order derivatives in direction x and y respectively). These
features are then forming a Riemannian manifold serving as a space for
classification. The trained classifier is based on boosting, which consists
in training several weak classifiers (a weak classifier classifies correctly at
least 50% of the training set), that are merged to a strong classifier, for a
final classification.

Similarly, it is possible to define other differential operators with con-
volution operations: the 4-connected Laplacian operator has been much

used for edge detection, and can be defined with this kernel:

0 +1 0
+1 -4 +1 (2.15)
0 +1 0

2.1.2.3 Local Jet space

In the last section, we presented the Sobel filter, to approximate the notion
of derivative in image processing. This section will be dedicated to a
formulation of derivative that we will use in our work.

Using distribution theories, it is possible to define a notion of gradient
and Hessian not directly with an image I, but with the convolved image
(Ixg), with g a function, called smoothing function, differentiable as many
times as necessary. Indeed, in this case, the derivative in the direction 7,
denoted %, is then defined by (according to derivation in the distribution
space):

W =1Ix % (2.16)
The Sobel operator represents a certain trade-off between approximation
of the gradient, and speed. However, as we will see in this part, the for-

mulation given by Eq. 2.16 can provide a richer representation.
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Definition

In 1983, Witkin submitted a patent [Wit87] entitled "Scale-space filtering"
dealing with the detection of some important points in a signal, such as
maxima or discontinuities. The key point was based on Eq. 2.16, where ¢
is a function with two parameters: z, a spatial coordinate, and o, a scale,

such that:
1 22

g(fL’,O’) = U—\/ﬂ - e 202 (217)

This scale term o provides a method to adjust the "smoothing effect": the
higher o is, the more %(z) will be influenced by pixels around z.

For the rest of this thesis, let Igiyj be the Gaussian derivative of I at

order ¢ at direction z and j at direction y, and with a scale . When the
derivative order is 0, we will omit the direction in the notation (IgiyO =17)
This formulation was at the basis of the now called scale-space the-
ory. Koenderink [KVD90] proposed a family of receptive fields based on
Gaussian derivatives in different directions in order to detect edges.
Working in the space of derivatives at several orders, and with a scaling
function has interesting properties. For a given image I, the local jet space
at order n, and scales {01, 0,...,0,}, is defined by the projection of I
into the space LJ(I) = {Igiyj}og(iﬂ)gmUe{gwg,m,,,p}. This space has
interesting properties, and this level of representation is already sufficient

for some high-level tasks. The term local jet is due to two points:

1. In mathematics, a jet at order n is an operator taking as an input a
differentiable function f, and giving as an output the Taylor formula

at order n

2. The notion of locality is related to the scale o of the smoothing

function

In the whole thesis, I7; ; will be computed by convolving I with the kernel
defined by:
Goi - Gy (2.18)

where G7; (respectively GZ]-) is a square Gaussian matrix whose compo-
nent at direction x (respectively y is defined by the i-th derivative of the
Gaussian function of variance o2, and size 2 - 0 + 1. The kernel obtained
with Eq. 2.18 is then normalized in order to have a maximum at 1. Fig. 2.9

illustrates the impact of ¢ for gradient calculation.
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(c)o=20 (D)o =4.0

FIGURE 2.9: Gradient magnitude at different scales

Visual features extraction
From the derivatives, it is possible to detect interest points, at different
scales, such as blobs and junctions. Lindeberg [L.in98] proposed a method
to evaluate the blob-ness B and the junction-ness [J of a pixel p, at scale
o:

B(I) = o - det(H7(I)) (2.19)

JI) =17 1% —2-15 - 15 - 15, + (I9)* - I} (2.20)

2
with H being the Hessian operator computed at the scale o, det the de-
terminant operator. Fig. 2.10 illustrates location of highest junction-ness
and blob-ness values for one frame taken from singer2 sequence [Kri+15].
We computed both measures at different scales (1, 2, 4) and at each scale,
search for the 10 highest peaks. Highest peaks are in red, lowest in blue.

Crosses and circles sizes correspond to the scales.
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FIGURE 2.10: Junctions and blobs at different scales

Another relevant measure in the 2D jet space was proposed by Griffin
G, [Gri06]:

Go(D)? = o ((17)" + (I)")+

ot (I +15:)%+ (2.21)

= s

ot (10, —1%)° +4-(12,)%)

Fig. 2.11 illustrates Griffin norm computed at different scales (red stands
for high values). It is interesting to note that maxima are located at differ-
ent places, from one scale to another.

Crosier [CG10] classified pixels according to their 2"¢ order jet into
different class of structures: flat, slope, saddle point, local maxima or
ridge. To do that, given a scale o, he first defines normalized derivatives at

every order (,7): s} ;, = 0" - I7, ;- He then computes different terms:
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FIGURE 2.11: Griffin norm computed at scales {1,2,4}

The zero-order term: € - 36,070 (e will be defined later)

The gradient magnitude term: 2 - \/(3{,07(,)2 + (36?170)2

The trace of the Hessian matrix: A = s o+ s{ 5,

2

The residual term: v = \/(35070 — 80,20)7 4 (shy )

And two final terms, linked to the eigenvalues of the Hessian matrix:

Ay A—y
7 and 7

and then classifies pixels, at this given scale, according to the highest value
from those indicated Tab. 2.1. € is chosen to adjust the amount of "flat"
pixels we want to have. The sign is linked to the polarity of the pixel,
and working with absolute values and neglecting polarity is also possible.

Then, after describing each pixel from a texture image with this classifi-

Highest value Class
€ 5(1)70,0 Flat
2:/(sh00)" + (sh,1,)° | Slope

+A Local maxima

=A Local minima

Y Saddle point

7;\/5\ Positive ridge

% Negative ridge

TABLE 2.1: Crosier’s classification, at a given scale o

cation and by using different scales, Crosier built a global histogram from

this image and used it for texture classification.
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Applications
In terms of application, this level of representation has already proven
usable in diverse applications: Manzanera [Manl1]; [Man10], using many
scales at the same time, applied this generated representation for image
denoising, optical flow estimation, background subtraction.

For denoising case, Manzanera [Manl1] adapted the NL-means de-
noising algorithm [BCMOS5]. In Buades paper, the denoising function
ML(p) is performed at pixel p, and its neighbourhood N (p) by:

ML (p) =% > I@)w(p,») (2.22)

zE€N (p)

where w is function of the difference of intensity between I(x) and I(p).
Manzanera [Man10] enhancement of the NL-means is to change the func-
tion w, from one defined by the sum of squared differences between two
image patches centered on x and p respectively, to another using the dis-
tance between the projections of x and p in the local jet space.

In [Manl1], Manzanera used the local jet space for two tasks:

e For optical flow estimation: given a sequence, at a frame ¢ + 1,
the optical flow of a pixel p is estimated by looking for the nearest
neighbor of p, projection of p in the local jet space and then finding

the corresponding pixel in the image space

e For background subtraction: the algorithm is an adaptation of ViBe
background subtractor [BVD11]. The principle of ViBe algorithm
is to model the background by a sample P of pixel values projected
into a color space. Then, at the frame I;, one pixel p is considered
as background if, in the selected color space, the sphere of radius R
(defined by the user) and centered in p contains a number of pixels
of P above a threshold (also to define). Manzanera’s background
subtractor relies on this principle, by substituting to the color space

the local jet space

We defined different formulations of differential operator in this section.
We can find in the literature different works using this level of shape-

features. Similarly, we aim to work exclusively on these features.
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2.1.2.4 Higher level features

From the lowest level geometrical feature based on gradient and Hessian,
it is possible to extract some higher geometrical features. These features
are diverse, and in this part, we will briefly present two different families

of features.

Keypoints
The first type is the keypoint-based features. We will present two levels of
features: the keypoint detection, and a higher one, the keypoint descriptor.
Given an image I, extracting a keypoint means localizing it. This key-
point is usually a point where shape is particular, such as corners. In
computer vision, one of the early keypoint detectors is the corner detector
of Harris [HS88], which requires only the first derivative operator. In-
deed, after evaluating derivatives at direction x and y, for all pixels py € I,

Harris defines a neighborhood N (py), and generates a matrix M(py) such

that:
M= 3 ( (Ii(m Ix<p>-1y<p>> 223

pEN (po) p) ' Iy(p> IZ(p)

Then, Harris uses a measure of interest of a pixel po: R(pg) = det(M (po))—
k - tr(M(po))?, where det is the determinant operator, tr the trace oper-
ator, k a constant. Then, a threshold operation, combined with a non-
maxima suppression is used to extract keypoints. One main interest of
Harris keypoint is its robustness to orientation and scaling change. How-
ever, weakness of keypoint-based features is the sparsity of the descriptor:
in case of few detected keypoints, object description may not be repre-
sentative. Even though the threshold operator allows to adjust the number
of detected keypoints, those having low interest value may not be reli-
able. Fig. 2.12 illustrates Harris corner detector. This detector can be time
consuming for critical cases.

Rosten [RD06] proposed a very fast method to detect corners, based
on a geometry of a corner. His first idea consists in detecting keypoints
from an image, by considering that p is a keypoint if, given a circle of
center p and circumference 16 pixels, there exists a contiguous set of n
pixels brighter or darker than p. This idea is close to the visual perception
of corner: an area composed of two regions of different intensities, whose
frontiers form an acute angle. This method, called FAST algorithm, illus-

trated Fig. 2.13, and with optimization detailed in [RDO06], is used to train
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FIGURE 2.12: Corners detected in legol sequence

a decision tree classifier as a corner detector.

FIGURE 2.13: Fast keypoint schematic.
The central point is detected as a keypoint by the FAST
algorithm: in the circle of circumference 16, there is one
large contiguous set of pixels brighter than the central
point.

Corner detection, combined with an optical flow estimator such as
Lucas-Kanade method [LK+81], allows to estimate some geometrical trans-
formation of objects: by modeling this object with a set of keypoints and
estimate their inter-frame trajectories, geometrical transformation can be
estimated. For object tracking context, some effective trackers [KMM10]
also relies on keypoint-based representation and Lucas-Kanade method
(this will be detailed further, at Section. 3).

Harris method only localize keypoints. Another popular keypoint-
based feature was proposed by Lowe [Low99] in the now-called SIFT

keypoints. Lowe starts by building a multi-scale space, by convolving an
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image I with Gaussian at different scales, and computing the difference
between two convolved images at adjacent scales. Then, the localiza-
tion step done by searching local maxima, and a first level of description
(localization, scale and orientation) is applied to the detected keypoints.
The second contribution of [Low99] is the SIFT descriptor: each detected
keypoint is represented by histograms of gradient orientation from areas
surrounding it. SIFT keypoint is a very popular keypoint-detector and
descriptor (more than 12000 citations) and led to different alternatives:
SURF [Bay+08], FREAK [AOV12] are among popular keypoints. In
terms of application, SIFT has proven to be a versatile feature: originally
designed as an object recognition algorithm, it has proven to be effective
in tracking context [MP13] and detection [LLSO8].

Histogram of Oriented Gradient (HOG)

The last shape-based feature that we would like to present, and that we
will use for detection task is the HOG (for Histograms of Oriented Gradi-
ents) features [DTO05], originally used for Human Detection, and provid-
ing a dense level of representation. The principle consists in subdividing
an image into multiple (rectangular or circular) cells. In each cell, a gra-
dient orientation histogram is computed, each pixel’s contribution being
proportional to its gradient magnitude. To be robust to local illumina-
tion variation, gradients are normalized: several cells are grouped into
blocks, in which gradient magnitude are normalized. Finally, the con-
catenation of all these histograms is the so-called HOG descriptor. For
human detection, Dalal trains a SVM classifier as a detector. [DT05] not
only presents the descriptors and results, but also provides a full study a
HOG features: shape of cells (rectangles or circles), number of bins, use
or not of signed orientations, methods to normalize the gradient magni-
tude... When proposed by Dalal and Triggs for human detection [DTO05],
HOG features proved to be competitive, as it outperformed state-of-the-art
methods. Others detectors are also based on HOG features, and notably
[Gal+11] that we will detail further in Section. 4. In tracking context,
we can mention [Dan+14a] who proposed an accurate correlation-based

tracker using HOG features.
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2.1.2.5 Conclusion

In this part, we focused on shape-based features. All shape-based features
are based on differentials. We started to define the Sobel filter to compute
gradient. Then, the formulation defined by Eq. 2.16 leads to scale-space
theory [Lin98], essential for our work. We will exploit this for tracking
and detection context. We also presented some higher level features ex-
tracted from low-level shape features. The first class was the keypoint fea-
tures: Harris corner detector [HS88], SIFT [Low99] and FAST [RDO06].
Another feature we mentioned, and that will be used in Section. 4 was
the HOG feature [DTO05]. Unlike keypoint-based ones, they can provide a

dense description of images (available at each pixel).

2.1.3 Conclusion of the section

We made a review of visual-based features, including color-based and
shape-based ones. In both cases, the first step was to explain how to rep-
resent the visual feature: choosing the color space on the one hand, com-
puting derivative on the second hand. Then, we detailed some low-level
features built from them, color histogram and gradient orientation. We
aim to work exclusively on color histograms and derivatives in the whole
thesis. From these low-level features, we also mentioned some high-level
features, directly derived from low-level ones: statistics or SLIC super-
pixels for the color part, keypoints or HOG for shape-based part. For our
work, we are willing to work on local low-level features: color pixels for
the color part (aggregated for color histogram in tracking context), scaled
derivatives for the other. Fast to compute but with lower power of repre-
sentation than higher features, we aim to study their benefits and limits in
tracking and detection contexts.

Other classes of features exist, such as texture-based features, LBP,
or filter-banks features, such as wavelet-based (for example Haar features
[HaalO]). We also choose not to deal with temporal features, such as
motion-based one, only usable in videos. More recently, using deep learn-
ing autoencoders, several pre-trained features are available to the commu-
nity: MatConvnet [VL15], AlexNet [KSH12]. Even though these features
have outranked most of the traditional features in several tasks (especially
in image recognition, and see Section. 3.2 for tracking case), until recently,
they did not prove efficient in terms of speed (due to their time consump-

tion, most of them require GPUs), and are not as flexible as low-level
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features. Fig. 2.14 shows all mentioned features in this part. In dashed

line, the framework we are working on.

Image
Visual features Other features
Color features ~ Shape features _ Filter banks
- Color pixels - Spatial - Wavelets

(RGB, HSV, scaled - Temporal features

Lab) derivatives i Deep |earn|ng
X trained features
histogram features

1
1
1
1
1
: _, Color - Geometrical
1
1
1

Higher-level features

- Statistical - Keypoints
features at features
higher order (Harris, FAST,
- Spatiograms = SIFT...)

- Color - HOG
attributes

- SLIC

Superpixels

FIGURE 2.14: Summary of different presented features

The next section will be fully dedicated to the Hough Transform, the

main spatial aggregation mechanism of our work.

2.2 Hough Transform

In this section, we will focus on methods to exploit visual features, in
order to extract information. Many algorithms have been designed in or-
der to do this. Most of the time, these algorithms are task-dependent and
can come from diverse areas: statistics [[B98]; [CRMO03], Machine Learn-
ing [Gal+11]; [LLS08], signal processing [Dan+14b]... In our work, we
choose to focus on one algorithm: the Hough Transform [Hou62].

This algorithm was originally proposed by Hough in a patent for track-
ing particles in bubble machines. From the formalization made by Duda
[DH72], followed by the generalization of Ballard [Bal81] to nowadays,
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this algorithm became one of the most famous in computer vision. The
Hough Transform has been adapted to many tasks. This section will be

organized that way:

e First, we will focus on the history of the Hough Transform

e Second, we will formally define it, and present an overview of dif-

ferent Hough Transforms

e Third, we will define the Generalized Hough Transform (GHT), that

has a central role in our work

e Fourth, to insist on the versatility of the Hough Transform, we will

present some real-life applications performed using the HT

2.2.1 History of the Hough Transform

Considering its importance in our work, we now present the history of the
HT [Hou62].

Historically, Paul V. C. Hough submitted a patent [Hou62] on the de-
tection of lines in pictures. It was especially designed to track trajectories
of particles in bubble chambers. While the main part of the patent is ded-
icated to the description of the whole electronic system, with its different
components, the main idea of the now-called Hough Transform is present
(see Fig. 2.15). Indeed, for a given line (102, 104, 106 in Fig. 2.15), all
points (in the image space) from these lines can be transformed into a spe-
cific line (lower image of Fig. 2.15) in the parameter space (the now called
Hough space). Then, for a set of colinear points, all the lines obtained by
this particular transformation are intersecting at a particular point, charac-
terizing the line linking all points. Even though no mathematical model
was designed, the idea to make one image element (in this case, a point)
vote into a parameter space (one line in the lower part of Fig 2.15) was
present. Then, according to Hart [Har09], Rosenfeld [Ros69] was the
first to propose a mathematical form to this transformation. Given a point

(20, Yo), the transformation associates this point to the line:
Y=Y X+ g (2.24)

Every couple (x,y) verifying this equation is a couple of parameters of
one line passing through (x¢, o) in the image space. Reciprocally, for

a set of aligned points (z;,y;) in the image space, all lines obtained by
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FIGURE 2.15: Figure from Hough’s patent. Each point

from lines of the upper part generates one line in the lower

part. Then, all aligned points from the upper part gener-
ates a beam of concurrent lines in the lower one

this transformation will intersect at a certain point of the parameter space,
defining line’s parameters to detect. However, for lines parallel to the x-
axis (all the y; are equals), this formulation does not work (all the lines
obtained by transformation are parallel), and Rosenfeld suggests to swap

x; and y; to solve this issue.

2.2.2 General formulation

A decade later, Duda and Hart [DH72] finally gave the formulation which
is still in use today. For lines detection, they choose a polar parametriza-
tion (7, 0) (see Fig. 2.16): r is the length of the vector O?, with P being
the orthogonal projection of the origin O to the line, and 0 (6 € [0, 7[), the
angle formed by the x-axis with O?, and so, a line (r, #) is defined by the
set of pixels (x,y) such that:

r=x-cos +y-sinf (2.25)

With this transform, a single point is then transformed into a sinusoid

curve. Detecting lines consists then in detecting couples (7, #) in Hough
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FIGURE 2.16: Parametrization of the blue line using
Duda [DH72] parameter set (r, 0)

space where many sinusoids pass (see Fig. 2.17). This principle is im-
portant for the Hough Transform: the more there are sinusoids passing
through (ro, 6y), the more likely there is a line of parameters (rg,6p).
Thanks to this property, the Hough Transform is partially robust to oc-
clusion and noise. In practice, the principle is to define a threshold value
7 such that, each couple (r, ) which has accumulated more than 7 votes
(or for which more than 7 sinusoids are intersecting) corresponds to a line.
Moreover, thanks to the hypothesis 6 € [0, 7[, one line is uniquely defined
by the couple (r,6). And, unlike Rosenfeld parameter space, this one is
suitable for every kind of lines, even those parallel to the x-axis.

In their article, Duda and Hart [DH72] also showed how to detect other
parametric curves, such as circles. The principle is similar to the line
detection: given a circle defined by its center (z., y.) and its radius 7, then
with equation:

(x—ae)’ + (y — ) =17 (2.26)

The Hough Transform can detect circles by considering a set of pixels,
and make each pixel vote in the 3D parameter space (., y.,r). Illustra-
tions of the line and circle Hough Transforms can be seen in Fig. 2.18
and Fig. 2.19. More generally, given a shape defined by an equation, the
Hough Transform is able to detect this shape by taking an image, binarize
it (with an edge detector for example), and make all positive pixels vote
into the multidimensional parameter space.

The main drawback of the HT is the time and memory consumption.
The higher the dimension is, the greater the computation time and the
memory consumption are. For example, let us consider the case of circle
detection in an image of resolution 500 x 500. Let us also suppose that

the Hough space is defined by three parameters: the abscissa and ordinate
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(A) Points (B) Hough Transform (¢) Line linking A, B and C'

FIGURE 2.17: Line Hough Transform on three points:
A(1,1), B = (1.5,0.5) and C = (2.5,—0.5)

filter [Der87]) by Hough Transform

FIGURE 2.18: Lines detection using Hough Transform

(A) Input Image (B) Edges (Canny-Deriche (C) Strongest circles ob-
filter [Der87]) tained by Hough Transform

FIGURE 2.19: Circles detection

of the center and the circle radius. We can suppose that the circle center
is inside the image, and the circle radius can vary from 1 to 500 pixels.
In this case, the Hough space has a size of about 125 Mo. If we focus
on computation time: each voting pixel p will vote, at each radius r, for
a circle of center p, and radius . Moreover, after the vote process, the
peak detection will take place in the whole Hough space. Both opera-
tions are computationally expensive for circle detection, and this problem

is even more critical for more complex shapes (ellipses for example). One
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solution can be to quantize the Hough space to reduce the memory foot-
print and to accelerate the Hough voting. However, the accuracy of the

estimation is impacted.

2.2.2.1 Variant of the Hough Transform

Hough Transform is a very popular algorithm in computer vision, and
many surveys [[K88]; [MCI15] provide a summary of its different vari-
ants. In this section, we will present some Hough-based algorithms, and
explain their advantages and disadvantages compared to the original ver-
sion [DH72]. However, due to its important role in our work, we will
develop the Generalized Hough Transform [Bal81] only in the next sec-
tion.

The first enhancement we will detail is the Probabilistic Hough Trans-
form [KEB91]. The improvement is done in terms of computation time:
while the original one makes vote all N extracted elements (pixels con-
tour), the Probabilistic Hough Transform randomly draws n voting ele-
ments (with n << N). The aim of the method is to find a trade-off
between speed and accuracy of the shape detection: the lower n is, the
faster the algorithm it is, but lesser its accuracy is. This method has two
weaknesses: noisy elements among the N ones (inducing wrong votes)
and short lines detection (low probability to draw elements from it).

The second variant of the Hough Transform we would like to mention
is the Randomized Hough Transform [XO09]; [XOK90]. For line detec-
tion, it relies on the principle that one unique line passes through a couple
of points. The principle is then to make a "many-to-one" vote (opposed
by the "one-to-many" vote of the Hough Transform, where one pixel votes
for a set of parameters), by randomly drawing two elements, and make the
formed couple vote for one unique couple of parameters. In this condition,
the Hough space can then be modelled by a simple codebook indexed
by the two parameters (r, #), compared to the original Hough Transform,
which contains the whole Hough Transform map. Then, by storing only
couples (r, #) that received a vote, the memory consumed by the Random-
ized Hough Transform is lower than the original one. Detecting lines then
consists in selecting entries of the list with an accumulation value above a
certain threshold.

Both HT variants are less robust against noise than the original HT.

Kiryati [KKAOO] compared these two variations by considering synthetic
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images of p points along a line, and n noisy points. With these images,
the first goal was to estimate efficiency of the two algorithms, and second,
to estimate the robustness to noise (by increasing n). It has been shown
experimentally that for the same accuracy, the Randomized Hough Trans-
form is faster than the Probabilistic one. However, for very noisy images,
its accuracy is much lower.

These two algorithms are popular variants of the Hough Transform.
The list is not exhaustive, and we will refer to [MC15] for a coverage. In
the next section, we will focus on the Generalized Hough Transform, the

algorithm that will be the core of our thesis.

2.2.3 Generalized Hough Transform

In 1981, Ballard proposed the Generalized Hough Transform [Bal81], de-
signed to build a model of any kind of shapes (in particular those that can
not be modeled by a parametric equation), and then detect them in a query
image.

First, it requires to create the R-Table denoted R, used to represent
the object. Given an image I and an object O, let C' be the contour of O
(generated by edge detection algorithm for example), and r a reference
point (for example the object center). For all pixels p € C, let 0, be the
(quantized) orientation of its gradient. Then, we store in R(6,) the vector
i = pf:

R(6,) = {il|3p € C : O(p) = b,, i = pF'} (2.27)

with © the orientation map. Fig. 2.20 illustrates the construction of the
R-Table.

4 R-Table

R(6p)

FIGURE 2.20: Building the R-Table. On the left part, a

contour image, with a reference point r. For each pixel p

from the contour, the gradient orientation 6, is computed,

and contributes to the R-Table in the entry R(6,), by the
displacement 17
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Second, for shape detection (the Generalized Hough Transform itself),
given an image test T and its contour map C, the aim is to build an ac-
cumulation map HT. For all pixels x, HT(x) is equal to the number of

pixels p € C' which have voted for z:
HT(z) = |{p € C|3i € R(6,),x = p + @} (2.28)

with |C| the cardinality of the set C'. Then, a peak detection in HT pro-
vides possible instances of the object O, or more precisely, possible lo-
cations of the reference point 7. One simple solution of peak localization

can be a simple argmax operation:

Ppear = argmax(HT(p)) (2.29)
p

Fig. 2.21 illustrates the GHT for a synthetic example, with the shape
shown Fig. 2.20. From the contour image on the left, the GHT is com-
puted and image on the right is obtained: the bigger and the redder the
peak is, the more likely it is to find the shape center. Fig. 2.22 illustrates
a GHT resulting from a R-Table built using the sheep inside the blue rect-
angle. The GHT is shown on the right, and the red peak corresponds to
the prototype sheep. The GHT can be seen as an extension of the Hough

//L'_\J

/s 7
4 -
4 / o

FIGURE 2.21: Generalized Hough Transform on the con-
tour image (on the left), and the Hough Transform on the
right

Transform in the sense that, given an image, it extracts some elements,
makes them vote into a parametric space (the accumulation map HT),
and then detects the presence of the shape with a peak analysis. The dif-
ference with the standard Hough Transform is the presence of the R-Table,
modeling any shape.

This R-Table embodies the versatility of the GHT (see Section. 2.2.4),

by providing the possibility to consider higher level features. If we want
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to stay in the domain of shape-based features and exclusively on deriva-
tive levels, [Tsa97] proposed to project the pixel contour of the shape not
only in the gradient orientation space, but in the 3D space composed by
gradient orientation, a concavity measure and the radius of the curvature.
The GHT is then processed in two times: first to estimate the target orien-
tation, then to estimate object centroid. In tracking and detection context,

we will see how the GHT can be extended with even higher level features.

FIGURE 2.22: GHT on a scene, with the squared sheep
used as a model

The GHT presents a certain robustness to partial occlusion or small de-
formations: considering that the Hough Transform in an image I is equal
to the sum of the partial Hough Transforms of n disjoint subsets 1;, the
GHT computed to detect a shape in occlusion of small deformation case
can be identified to the GHT realized on I excluding some of its subsets.
Regarding the parameter space, the more there are parameters, the higher
the memory footprint is, and the higher the time consumption is. For ex-
ample, Ballard proposed, to handle scale and rotation variation, not only
to vote in the spatial space, but also for different scales and orientations.
In this case, if we define as d the size of HT, s the number of scales and
o the number of orientations, the multi-scale and multi-orientation GHT
requires a memory footprint of d - s - 0, and each pixel will also vote s - 0
more times.

Conceptually, the Generalized Hough Transform consists in using a
codebook (the index of the R-Table) to model and detect any kind of

shape. As we will see in the two next chapters, this codebook, can be



2.2. Hough Transform 43

composed of different features: orientation for the original GHT, key-
points features, color-based ones, and can also have diverse forms: arrays,
decision trees. This is a major element of the versatility of the GHT. To
corroborate this, in the final part of the section, we will present different

tasks involving the Hough Transform.

2.2.4 Applications of Hough Transforms in computer vi-
sion

Hough Transform is one of the most famous algorithms in computer vi-
sion: Duda’s paper [DH72] was cited more than 5500 times, while Bal-
lard’s one [Bal81] was cited more than 4 400 times. From a line detection,
it has firstly been extended to any shape modeled by an equation, and then
generalized to any kind of shape. Currently, Hough Transform has been
applied for different tasks, in different areas. In this section, we will see
some applications of the Hough Transform. For tracking and detection

cases, we will refer to Section. 3 and Section. 4 respectively.

e Hough Transform have been designed for line detection. This task,
can be used for many applications: lane detection [Sat+10], robot
navigation [FLWO95]...

e In biometry, Hough Transform can be used for different modalities:
iris localization [TBAO2] or segmentation [Tia+04], or in finger-
print matching [PFJ13], where is was used to align two fingerprints:
the minutiae are extracted and described using a specific descriptor
[CEM10], the Hough Transform is then applied by extracting pairs
of minutiae (one for each fingerprint), and make them vote for a

geometrical transformation that matches them

e For medical imaging, Hough Transform can be used to detect differ-
ent organs, obtained from diverse sensors. For ventricle myocardum
localization, [MSN12] applied the circle Hough Transform at every
layer of image from a 3D cardiogram. Arterial diameter estimation
is also done using circle Hough Transform on ultrasound images
[Gol+06]. The Generalized Hough Transform has also been used
for 3D segmentation of the heart, from Computer Tomography im-
ages [Eca+08]. The novelty proposed in [Eca+08] was to integrate

several reference shapes in one unique R-Table
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e Hough Transform has been used in action recognition [Gal+11]. As
Gall’s Hough Forest was used for action recogntion, and due to the
importance of this algorithm in object detection, details will be pro-

vided in Section. 4

These tasks show that the HT is used for many real-life applications. As
we planned to work on different computer vision tasks, the Generalized
Hough Transform is a relevant algorithm to study. Hough Transform in
tracking and detection context will be presented in chapters dedicated to
these tasks, where we will position our works in Hough-based trackers

and detectors.

2.3 Conclusion

This chapter was divided into two parts:

e First, we presented some visual features. We defined visual fea-
tures as those that can be used to describe an image. We considered
two families of visual features: color-based ones, and shape-based
ones. In both cases, we defined low-level features (color histograms
and scaled derivatives), to which we aim to limit our representa-
tion. Those features are fast to compute, and easy to parallelize.
Moreover, they serve as a base for features with higher power of
representation (color statistics, color attributes, superpixels, HOG,
keypoints). We also presented some computer vision tasks that can

be done with these features

e Second, we focused on one popular algorithm in computer vision:
the Hough Transform. Originally presented in a patent to track par-
ticles in bubble chambers, it was formalized by Duda and Hart, then
generalized by Ballard to detect any kind of shapes. After present-
ing some advantages and limits of the (Generalized) Hough Trans-
form, we made a literature review to show how people tried to cor-
rect its weaknesses and how versatile it is, in terms of applications

and adaptivity to different feature spaces

This chapter served to define the framework of the thesis: working only
with color pixels and derivatives for the feature space, and using the Gen-

eralized Hough Transform as a spatial pooling mechanism.
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In the two next chapters, we will focus on our works on object track-
ing and detection. The aim will be to see how far we can go with the
constraints we set, and to analyze the benefits and limitations of our ap-

proach.






Chapter 3

Object Tracking

47

Contents

3.1 Definition . . . ... ... .. 000 0o o oo 50
3.1.1 Tracking conditions. . . . . . ... ... ... 53
3.1.2 Difficulties . ... ... ... ... ...... 54
3.1.3 Conclusion . . .. ............... 55

3.2 Literaturereview . .........c0000eo.. 56
3.2.1 State-of-the-art . . . .. ... ... ... ... 58
3.2.2 Hough Transform for Object Tracking . . . . . 64

3.3 Combining color histogram and Gradient for track-
11 67
3.3.1 Backprojectionmap . .. ........... 68
3.3.2 Combining GHT and Particle Filter . . . . . . 69
3.3.3 Transitional tracker . . . . . .. ... ... .. 73
334  Finaltracker ... ... ............ 77

34 Results .. ... ..t 84
3.4.1 Implementation details . . . . ... ... ... 84
342 VOTdatasets . . ... ... .......... 86

35 Conclusion . .......... .00 111

The first studied computer vision task is object tracking. We chose this

task for several reasons:

e Basically, object tracking consists in following the target object, in

any kind of background. To do so, modelling the target can be done

in different ways: by using features to describe it accurately, or us-

ing features to discriminate the target from the background
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e The target’s aspect can dramatically change over the sequence, and
the context can complicate the task (camouflage or occlusion issues
for example). The chosen feature space and the tracking algorithm

have then to be flexible, to cope with these changes

e In some applications (Human Computer Interaction for example),
the time consumption is a critical issue. In this condition, reactive
trackers are important, and then, we consider that tracking is an

interesting field of study, as it has to combine accuracy and speed

Those reasons make us believe that designed features should have a certain
power of representation, be able to separate the object target from the
background and be able to cope with object or context changes. Ideally,
they should also be fast to compute and exploit.

The tracking task is one very old issue in computer vision, and has
not been solved yet: academic datasets [KPL+]; [Kri+15]; [WLY13] are
regularly proposed in order to test and evaluate algorithms.

Many applications rely on an accurate (and sometimes reactive) sys-

tem of tracking:

e Surveillance: the aim can be to follow the trajectory of one poten-
tial threat. One example can be the task to track one person into
a crowd of people. Occlusion, similar shapes (other humans) are

some possible present difficulties in the scene

e Medical imaging: Tracking can be used to study the variation of
shape of some organs. The problem is complicated, as, compared to
sequences taken in urban scenes from a classic camera, images are
usually noisy, and pixel resolution may not be sufficient for accurate

tracking

e Augmented reality: the principle is to follow the position of some
detected shapes or patterns, and then add some virtual objects in the
scene. The problem is all the more difficult that given the point of

view, the shape can be distorted

e Human-Computer Interaction: some applications can require ges-
ture recognition, for which following diverse parts of the body over
the time is an important task that should be done accurately. More-

over, real-time constraints are critical issues in this case
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In this chapter, we will explore the field of object tracking, and detail
our contribution in this area. The aim of our work will be to propose an
accurate and robust tracker only based on gradient (used for the GHT) and
color histogram (used for a simple foreground/background segmentation).
By using these low-level features, we aim to propose a very fast tracker
(above real-time), but still accurate and robust, given the constraints in
terms of feature space and algorithms. We are working on the most generic
conditions as possible: static or dynamic background and camera, one
unique rigid or deformable target object (without abrupt motion change).

We will then divide this chapter into four parts:

1. Object tracking is a very rich and complex problem. Then, in the
first section, after defining the task, we will detail some properties
to classify the task, and then, some traditional difficulties of object
tracking. The aim will be to define the category of trackers we will

work on

2. The second section will be a literature review. First, we will deal
with different surveys, to understand their method for classifying
trackers. Second, we will present some algorithms, from very pop-
ular trackers, to state-of-the-art ones, and to finish, a review of fast
trackers. Third, we will end by detailing some modern Hough-based

trackers

3. We will present our work, starting from our initial tracker [TM15],
explaining its weaknesses, and how we solved them to propose our
final tracker. The objective of our work was to propose a light, but
effective tracker, built from very low-level features (gradient and
color histogram exclusively). The final proposed tracker [TM17]

will serve as a base for studies of the impact of used features

4. As our tracker has proven to be competitive on academic datasets
[KPL+]; [Kri+15], we will dedicate a section to experiments and
evaluation. The first part of the section will deal with implementa-
tion details (optimization, chosen parameters). Then, we will detail
results obtained on modern datasets. We will also see the impacts of
the limits we have set for our work (use of only low-level features)

and study the impacts of different features
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3.1 Definition

The first step is to define the problem. Basically, as suggested by [YJS06],
object tracking consists in estimating the trajectory of a target object O
during a sequence (I;);~¢. In physics, the trajectory represents all posi-
tions taken by an object over the time. We think that this definition is
limited, and we prefer using a more general definition proposed by Co-
maniciu in [CRMO3], by considering that object tracking consists in esti-
mating the state of an object (the target) over a sequence of images. This

"state" may have several meanings, according to [YJS06]:

e The object’s position. In this case, the object is represented by a ref-
erence point (such as its center). At this level of representation, the
only possible movement that can be estimated are translations in x-
and y- directions. Tracking a car (supposed not deformable) moving
in a straight line with a camera placed orthogonally to the road is a
suitable example of position only tracking. A pedestrian represented
by its centroid, and filmed from a camera placed orthogonally to his

movement, is also a case of position tracking

e [ts position, size and orientation. In this case, the target is repre-
sented by a simple geometrical shape (slanted ellipse or rectangle),
and the aim of tracking is then to estimate object’s translation, ori-
entation and scaling (movement that can be identified to translation
along the z-axis). This method of representation is more suitable
to track deformable objects, or objects whose size and orientation
are changing over the time. Tracking the same car as before with a
camera fixed anywhere is an example of application. This level of
representation is one of the most used in recent academic datasets
([KPL+]; [Kri+15]; [Sme+14]), and we will adopt it

e [ts contour, defining the target boundaries. Region inside the con-
tour is then called silhouette. This representation is much more
flexible than the previous one, and can distinguish movements from
some elements of the target (arm movement of a pedestrian for ex-
ample). It requires a pixel-level accuracy, and possibly a higher
computation time (for example, due to the use of a segmentation al-
gorithm). Tracking pedestrian is a possible application of tracking

by silhouette
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(A) Input (B) Point-based representation

(C) Bounding-box based representation (D) Silhouette representation (obtained us-
ing GrabCut [RKB04])

FIGURE 3.1: Different types of object representation

Fig. 3.1 illustrates these three different types of representation. Their
common point is that the target is represented by one unique element
(point, shape, or silhouette). However, there are other kinds of repre-
sentation, modelling the object as the combination of different parts (for
example, a human body can be described by the combination of its head,
torso, arms and legs). We will refer to [YJS06] for a more detailed de-
scription.

This unique element used for target representation (or combination of
object’s parts) implies the notion of object, that distinguishes our prob-
lem from other kinds of tracking. Let us consider the case of optical flow,
i.e. the task of estimating the apparent motion of pixels in a video from a
dynamic scene. It can be considered as point tracking. However, one im-
portant missing part is the notion of object: in a dynamic scene, one given
pixel is not moving independently from other pixels, it usually belongs to
a set of pixels that globally have the same trajectory.

Generally, object tracking algorithm is composed of three steps. The

first one is computed only at the beginning, offline, while the two others
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form the tracking itself and are processed alternatively, until the end of the

sequence:

e Initialization step. The aim is to build a model of the target to track.
It can be done offline, by considering a training set, which can be
generated either by different images of the target, or by considering
the first frame of the sequence (in this case, it is composed of one
unique image). In the second case, the target can be selected by
different methods: manually (bounding box selection) or automati-

cally (motion detection, background subtraction or object detection)

e Tracking step. Given an object model and an image I;, the goal is

to estimate the state of the target object O

e Updating step. This step is not essential to define object tracking,
but is present in most modern trackers. The goal is to provide the
tracker the ability to cope with different tracking issues (see Sec-
tion. 3.1.2), by updating the model, adapting it to context changes
over the sequence. This step is tricky as a tracking failure implies a

wrong update, causing errors in next frames

FIGURE 3.2: Diagram of a generic tracker.

Even with the definition of tracking proposed by Comaniciu [CRMO3],
and by the description of the chain of object tracking (illustrated Fig. 3.2),
we can still subdivide the task into different categories. In the next part,
we will deal with different hypotheses that can provide us a method to

categorize the object tracking task.
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FIGURE 3.3: Diagram of model-free tracker.

3.1.1 Tracking conditions

Tracking is a very rich problem, and each tracker is usually designed for
specific conditions. In this section, we present some conditions for which
object tracker can be designed. The goal is not to be exhaustive, but rather

to define the conditions in which we will work:

e Single or multi-camera. The problem of multiple camera tracking is
more complex than the single camera one, and requires more com-
plex algorithms: multi-view model, method to transfer the model
from one camera to the other. However, it is potentially more robust
to occlusion than the single camera tracking (better coverage of the

scene)

e Single or multiple targets. Multiple targets can mean tracking dif-
ferent classes of objects (each one manually selected for instance).
This case is an extension of single object tracking, but with differ-
ent instances. We prefer defining multiple target tracking as the task
of tracking different instances of one class of object (pedestrian, or
car) in a given sequence. This kind of problem requires an offline
learning of this class, and is close to the object detection task. In

both cases, we have to consider new challenges, like target crossing

e Genericity. Ability to track any kind of object. Opposed to object-
specific tracker (such as pedestrian trackers), for which object track-
ing is very close to object detection, because, in this case, the use of

training set can improve tracker’s performance
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e Model-free. This hypothesis means that the model initialization is
done only with the first frame of the sequence, for which the tar-
get state is given. Fig. 3.3 illustrates the execution of model-free

trackers

e Short-term vs long-term tracking: following Kalal’s definition [KMM12],

long-term tracking tackles the problem of following an object on a
long video, and has to indicate the presence or not of the object on
the filmed scene. The problem is complicated, as, when the target
reappears, its appearance can change. Usually, a long-term tracking

combines tracking and detection routines

e Speed of the object: recently Rozumnyi [Roz+16] formalized the
notion of fast moving object in tracking case by considering that,
an object is moving fast when, in the exposure time interval, this
object is moving at a distance greater than its size. Difficulties are
then related to visual target shape (blurred aspect) or impossibility

to use prediction models designed for "slow" targets

This list of hypotheses is non-exhaustive. However, these different
properties set the context in which we will propose our tracker in Sec-
tion. 3.3. Indeed, trackers we will present are designed to track single
arbitrary and "slow" target, with a single camera. They will also be model-

free, and designed for short-term tracking.

3.1.2 Difficulties

In this part, we will focus on difficulties and constraints inherent to ob-
ject tracking, to understand why the problem is not solved yet. These
difficulties are independent of the application context (especially those
linked to the computation time), and to tracker properties mentioned in
Section. 3.1.1. They can cause drift in tracking. Among these constraints,

we can cite:

e Object geometrical transformation, such as scaling (translation over
the z-axis) or rotation (in the image plane or not). For bounding-box
object representation, these issues imply that the bounding box ori-

entation and size may change (with possible aspect-ratio changes)
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e Object deformation, or aspect change. It is notably true for non-
rigid objects (pedestrian for example). In our case (bounding-box

representation), aspect-ratio may not be constant

e [llumination change, which can create reflections in objects, appear-
ance (or disappearance) of cast shadows. Shape-based trackers are
robust to illumination change (up to a certain level), unlike color-

based trackers

e Partial or complete occlusion. A partial occlusion can be caused
by the background, or by the object itself (consider for example
a walking human). In this case, modeling the target with several
elements is a better choice than with one unique. For total occlusion
case, the problem can be decomposed into two sub-problems: the
loss of the target and its recovery. This case is then close to long-

term tracking problem

e Motion change of the camera. While for static camera, we can pro-
vide a background subtraction function to reinforce the tracker, for
moving camera, the problem is more difficult, as every element of

the scene is moving

e Complexity of the background. Moving objects in the scene, ob-
ject visually similar to the target (camouflage), presence of several

objects are among the problems caused by a complex background

e Length of the video. The longer the video is, the higher the risk of
drift and failure is. In studied benchmarks, most sequences are very
short (less than 1000 frames)

Fig. 3.4 illustrates some common difficulties in tracking context.

3.1.3 Conclusion

In this section, we aimed to introduce object tracking and set the context of
our work. We saw that even though the definition is clear, different kinds
of tracking context exist, depending on the method of representation, the
different possible properties, and the context they are applied to.

The next section will be an overview of the literature. At this point, as
our work on tracking will be to track bounding box represented target over

the time, for the rest of this chapter, let us define notations that we will use
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(A) Camouflage (B) Occlusion

(c) Camera motion (D) Illumination change

FIGURE 3.4: Some difficult frames from VOT2014 and
VOT2015 datasets

for tracking context. Given a sequence (I;);>¢, the aim of the tracker will
be to estimate, at the frame ¢, the object bounding box B; = {¢;, wy, hy, 0, }
such that:

e ¢, is the bounding box center
e w, its width

e |y its height

e 0, its orientation

For any image I and any set of pixels B , let I|p be the sub-image of
I restricted to B. For commodity, we will also denote {c;,wy, hy} =
{Cta W, ht7 0}

3.2 Literature review

In this section, we focus on object tracking as an algorithm, by starting
with a literature review, presenting some state-of-the-art algorithms (in

terms of accuracy and speed). The aim is not to propose a full coverage
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of the tracking problem, but rather to propose a summary of how trackers
can be classified, to understand in which category our work resides.

As mentioned before, object tracking is a very popular task in com-
puter vision (according to the VOT committee [Kri+15], in major confer-
ences in computer vision (ICCV, ECCV, CVPR...), each year, about 40
papers deal with object tracking), and many algorithms exist in the lit-
erature. Yilmaz [YJS06] proposed a method to classify object trackers,
inspired by his classification of object representation:

e Point-based trackers, in which objects to track are represented by
a sparse set of points. At each frame, the motion of these points
are evaluated (optical flow estimation). This class of tracker is suit-
able for objects with complex shapes or largely textured object(with

many keypoints to detect)

e Kernel-based trackers, deriving directly from the second level of
representation defined in Section. 3.1 (geometrical shape). The track-
ing problem is then similar to estimating of the motion of the tar-
get (translation essentially, but it can also include scale and orien-
tation estimation) represented by a shape (bounding box, ellipse).
One popular type of kernel-based tracker is based on the cross-
correlation between a template modeling the object target and some

areas of a tested image. Our trackers belong to this category

e Silhouette-based trackers: deriving from the third class of represen-
tation defined previously. It suits complex objects (star shaped ob-
jects for example), or when it is necessary to have an accurate level
of description. Silhouette tracking can be used for applications such
as human gesture recognition, requiring to track different parts of
humans body, and send results to a classifier. Yilmaz distinguishes
two classes of silhouette-based trackers: one based on the object’

shape, the second based on the contour tracking

All these categories also include subcategories (Yilmaz for example con-
siders two classes of Kernel-based trackers, one based on template, an-
other based on multiview models). One interest of this classification is
the domain of use of each class of tracker: according to the application,
developers should prefer one type of tracker to the others.

This classification served as a reference for Cannons’ survey [Can08].

However, one difference between the two surveys is the first class of
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tracker: Cannons extends point-based trackers to discrete-feature based
trackers (including for example trackers based on group of edges).

Yang [Yan+11] proposed a review of object tracking by considering
an algorithmic point of view. Indeed, he supposed that a tracker needs a
feature descriptor step to effectively track a target, and choosing the right
feature for the right context is necessary. Then, this chosen feature is
used to train an online learning algorithm, used to cope with object’s (and
sometimes context’s) appearance change (updating the model), and for the
decision (state estimation).

In the two next sections, we will propose an overview of different
different trackers from the literature. Then, we will present some Hough-

based trackers.

3.2.1 State-of-the-art

All trackers presented in this section belong to the same category as ours:
model-free trackers without recovery function, and aiming to track ob-
ject represented by geometrical shape. We will elaborate on Hough-based
trackers in the next part.

The first tracker we will mention, due to its relation with our work
[TM15], is the Particle Filter, proposed by Isard and Blake [IB98] in track-
ing context. It is a method coming from statistics, and used to estimate
some parameters of a dynamical system, by using a set of observations.
Isard and Blake’s CONDENSATION algorithm [IB98] is composed of

three steps:

1. Observation: each particle, defining a hypothetical parameter set, is
associated to a weight, related to a confidence value (measured by
an observation). Then, given the set of particles and their measure

of confidence, target’s state is estimated by an average operator

2. Resampling: To ensure a certain quality of particle set (for example
few particles with low weight and a set of particles covering a cer-
tain area in the parameter space), a resampling step can be useful,

by discarding some particles and adding others

3. Propagation: given a dynamical model, all particles are spread within
the parameter space. A simple propagation model can be applied by
this equation:

Xi=A- Xy 1+ B (3.1
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with X;_; a vector representing one particle at t — 1 (of size ns X 1,
n, being the dimension of the state space), X; the same particle at
t, A; a matrix of size ng X n, modelling a dynamical model, and B,

an, X 1 vector modelling a noise

Particle filter is flexible in terms of feature spaces: Isard and Blake mod-
eled object target using edge features, by modeling them with Bézier
curves [Béz66], while Nummiaro [NKMVGO03] modeled it using color
histogram (confidence measure is related to Bhattacharyya coefficient Eq. 2.7).
Pérez [Pér+02] also exploits color-based Particle Filter for tracking con-
text, by exploiting a richer model of representation: the target is no longer
represented by one image, but by a set of sub images, obtained by parti-
tioning. We can also cite [Bre+09] who realize a multi-pedestrian tracker
based on particle filter and a detector. Its dynamical model during the
propagation step is computed according to pedestrian position and mo-
tion. [Dubl5] proposed a coverage of tracking problem, addressed with
Particle Filter.

The second tracker we mention in this thesis is the Mean shift tracker.
Originally, Fukunaga [FH75] designed it for maxima search in density
function. Comaniciu popularized it in image processing by showing its
versatility and applying it for image filtering and segmentation [CMO2].
However, we will put our interest in his adaptation for tracking context
[CRMO3]. Indeed, this algorithm has proven to combine accuracy and
speed (Comaniciu mentioned that it can run at 150 fps in its optimized
version, on a 1.0 GHz computer), and is still inspiring some modern track-
ers (especially [VINM13] that is one of the fastest algorithms in [Kri+15]).
The algorithm is based on two concepts: the target model and localization.
In its original form, the Mean shift does not include updating process.
First, the target model is built at the frame 0, and using the first object
center ¢y. The object is modelled by an ellipsoidal shape Sy. Comaniciu
also considered one feature space: even though his algorithm is presented
using color space, it is usable with other feature space (such as shape or
texture). At the first frame, the target is modelled using a weighted his-
togram. To do so, he defines a kernel function k, and a bandwidth A.
These two parameters are chosen to set high weights to pixels close to ob-

ject’s center (more prone to belong to the target), and used to build object
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histogram Ho = Hy,
_ lp — cl|” B
Ho(b) = C+ Y k(*——)(I(p) =) (3.2)
p

with C' a normalizing term (to set the sum of the histogram to 1.0). Eq. 2.6
is a particular case of this equation, with & a function equal to 1.0 in I |,
and 0 outside. Then, at the frame ¢, the goal is to estimate the shape S;
with the same dimension and orientation as Sy. The problem is then to
estimate object center, and Comaniciu considers that this center c; is ob-
tained by localizing the shape S, centred in = for which the Bhattacharyya

coefficient B of Hp with Hy, | is optimal:

C = arginax(B(H@, Hy, s ) (3.3)
While it is possible to solve Eq. 3.3 with brute force search, Comaniciu
makes the supposition that ¢, is close to ¢;—1 ("slow" tracker hypothesis).
The Taylor expansion can then be computed for Bhattacharyya coefficient
Eq. 2.7 for potential centers close to ¢;_;. From this Taylor expansion, and
considering [CM02], the Mean shift vector is defined by:

_ pr Wy - k’(@)

ms(z) — 5 (3.4)
Zp -wp-k’(H th )
where:
Ho(p)
= —= 3.5
“r H]t\Bx(p) ( )

At a frame ¢, given o = ¢;_1, the algorithm calculates the series (x,,)
such as z,,,1 = ms(z,). (x,) is supposed to converge to ¢; (Even though
the convergence in the general case, with any kernel function £, has not
been proved yet [Ghal5]). Intuitively, ¢; serves as an attracting point, and
Eq. 3.4 will shift the center candidate to high weight areas. Comaniciu
also presents methods to optimize the algorithm (in particular case, Eq. 3.4
is not computed directly, but with a certain approximation) and to improve
the accuracy or scale adaptation. Mean shift tracker has many advantages:
its simple implementation, its versatility (in terms of application, and in
terms of ability to take as an input different feature spaces), and its speed.
Many trackers exploit these assets, to propose extended version of the
Mean shift. We mention Bradski’s CAMSHIFT [Bra98] designed for face
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tracking, who supposed that skin color projected into the Hue space is in-
variant, and then used this color channel for his tracker. He also estimates
face pose (size and orientation estimation) by using statistical moments.
We can also mention Birchfield [BR0O5] who applied Mean shift using
spatiograms (see Section 2.1.1 for details about spatiograms) by using a
more complex metric than Bhattacharyya coefficient, based not only on
color histogram, but also on color centroids and standard deviations). If
we focus on state-of-the-art trackers, Vojir’s extension leads to high speed
tracker (more than 100 fps) with decent accuracy and robustness. Vojir’s

enhances the mean shift in two ways:

e For scale estimation, he uses a formulation aiming to maximize the
ratio between the Bhattacharyya coefficient of the model with the
target candidate and the Bhattacharyya coefficient of the model his-

togram with the background

e He also improves scale estimation by computing a backward track-
ing (tracking from ¢ to t — 1) and study the consistency of the esti-

mated scale

Regarding to state-of-the-art trackers, we can use Visual Object Tracking
annual challenges [Kri+13]; [KPL+]; [Kri+15] as a reference. Details
linked to evaluation criteria will be provided in Section. 3.4. However,
at this point, the ranked participants of these challenges provide current
tendencies in object tracking.

For the first VOT challenge [Kri+13], the winner proposed a tracker
derivating from STRUCK [HST11], which belongs to the family of dis-
criminative trackers (the winning tracker paper is not available). To do so,
Hare uses a SVM [CV95], which is trained online for tracking context.
All its (positive and negative) samples are represented into a Haar feature
space.

Danelljan’s DSST [Dan+14a] was ranked first in the second edition
of the VOT challenge [KPL+]. It belongs to the class of correlation-based
trackers, providing accuracy and decent speed. It was inspired by Bolme’s
tracker [Bol+10], MOSSE. The principle of correlation-based trackers is
to train a filter f, by first considering an image I, a ground truth G'7; and
generating a set (I ;)1>1 of sub-images from I, associating each image to
an output image O; (Gaussian peak localized at target center). These im-

ages /j; are defined by a bounding box GTj ;, such that G'I; ; is obtained
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by randomly perturbing parameters of G1g, and Iy; = Iy|gr,,- Then, the

correlation filter f is trained by optimizing:
ming (Y ||To; * f — Oill) (3.6)

This equation, computationally costly, can be accelerated in the Fourier
space, as the convolution operation in image space is equivalent to a point-

wise product in Fourier space. Then, Eq. 3.6 leads to:
min (31T - f* = Ol 67

where e is the Discrete Fourier Transform operator, and e* the transpose-
conjugate operator. Bolme also considered filter updating. Danelljan’s
extension [Dan+14a] is a more accurate tracker using ideas from his pre-
vious work [Dan+14b] in which he designed correlation filters for mul-
tiple features. In [Dan+14a] case, PCA-HOG [Fel+10] is used. Another
improvement is on the scale estimation, for which Danelljan designs 3D
filters (the third dimension being the scale). VOT2016 winner [Dan+16]
belongs to this family of tracker, and its formulation provides to the tracker
a way to integrate feature maps at different resolutions. STAPLE [Ber+16]
is a tracker with a structure close to ours (combining complementary and
independent color-based and shape features trackers) and running above
real-time speed. Its shape tracker is based on correlation filter, using HOG
features [DT05], while its color-based tracker is based on color histogram.
Due to their similarities, we will provide a detailed comparison of this
method and our work in Section. 3.4.1.

Recently, Deep Learning trackers were proposed, and were well ranked
in the VOT challenge [NH16]; [NBH16]. One early tracker using Con-
volutional Neural Networks was proposed by Fan [Fan+10], for human
tracking (an offline process consisted in training the networks using video
containing human heads, to make them learn some spatial and temporal
features). DeepTrack [LLP16] is a generic tracker using CNN, without
offline training. MDNet [NH16] is a CNN-based tracker which won the
challenge VOT2015 [Kri+15]. Its offline training consists in learning net-
works divided into different domains. Then, some information indepen-
dent of the domains is extracted, to build features for the network. Then,
during the tracking step, a bounding box regression technique [Fel+10]

is computed to estimate object state, followed by an updating process.
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The main weakness of CNNs-based trackers is the high computation time
(those previously cited run at less than 5 fps on a GPU). However, recently,
Held [HTS16] proposed GOTURN, a CNN-based tracker able to track at
100 fps. To do so, the network is trained offline in order to detect motion
and appearance change. At runtime, the absence of online training, com-
bined with a network running feed-forwardly allows the tracker to run at
165 fps with a high-end GPU, but only at 3 fps on a CPU. Moreover, for
objects absent in the training set, the tracker suffers from a little loss of
performance.

In any case, tendencies in object tracking are to propose trackers with
high time consumption operations (correlation filters, classifiers, CNNs)
and complex features (HOG). However, we still find some accurate and
light trackers, such as Possegger’s [PMB15], using only color histogram.
Some details will be provided in Section 3.3, but one key element of this
algorithm is to reduce influences of distractors around object’s position to
avoid drifting.

Now, in terms of fast trackers, we already mentioned Vojir’s adapta-
tion of Mean shift [VNM13] as one of the fastest trackers from all the
VOT challenges. He also uses color histogram as a model. Matas [MV11]
proposed a real-time tracker, based on a point tracker called MedianFlow
[KMM10]. The principle is to model the target at the frame ¢ by a set of
points () and track them using optical flow estimation [Shi+94]. Each
point x} that moves to a point x,, at frame ¢ + 1 is supposed reliable if
this point z},, moves to a point close to z} from frame ¢ + 1 to frame ¢
(backward tracking). By discarding 50% of the unreliable points (), ;)
and computing the bounding box of the remaining set, Kalal [KMM10]
managed to propose a high-speed tracker. Matas [MV11] improvement
concerns two steps: the point sampling was originally done using a reg-
ular grid, while Matas proposed to subdivide images into different regu-
lar cells, and then draw one point per subdivision. The second improve-
ment is for the point tracking failure estimation: Matas adds a measure
of consistency, and a Markovian model. Another state-of-the-art real-time
tracker was proposed by Henriques [Hen+15], who made an extension
of his work [Hen+12]. The method relies on a discriminative classifier,
which is trained by sampled patches. The novelty of his work is the fact
that these patches are sampled using translation and scaling. In that way,
due to the redundancy of information, the trained classifier can be formally

written with circulant matrix that have nice properties in Fourier domain,
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which allows the classification to be done quickly.

In this section, we made an overview of different methods of tracking.
After presenting an overview of Particle Filter based trackers, we pre-
sented the Mean shift [CRMO03], a tracker serving as a base for a very effi-
cient tracker [VNM13]. In terms of state-of-the-art trackers, current meth-
ods are based on correlation filters. More recently, CNNs-based trackers
were developed, and achieved high accuracy. We then finished by citing
some real-time trackers. In the next part of this chapter, due to the impor-

tance of the GHT on our work, we will focus on Hough-based trackers.

3.2.2 Hough Transform for Object Tracking

Even though Hough Transform [Hou62] and its generalization [Bal81]
have been designed to detect shapes, several authors adapted them for
object tracking.

Intuitively, directly applying the Generalized Hough Transform (GHT)
presents a certain interest. Indeed, in case of translations parallel to the
image plane, a maxima search in the Hough Space is usually sufficient to
estimate the target location: all pixels are translating identically, and so
the target peak is moving at the same speed and direction. Furthermore,
considering that the original GHT only requires gradient computation, it
is robust to illumination change.

However, in tracking context, pure translation in the image plane is
very rare in real cases. Moreover, when object motion is too fast, tar-
get shape is blurred, resulting to a wrong position estimation of the GHT
(loss of structure). If we follow Ballard’s suggestion, by voting in n, dif-
ferent scales and n,, different orientations, then the memory consumption
is multiplied by n, - n,. The lack of method to update target’s model (the
R-Table) is also a flaw for the original GHT in tracking context (as it was
designed for shape detection, and not for tracking).

For these reasons, the simple Generalized Hough Transform is not us-
able as is for object tracking. However, the principle of considering a set
of elements from an image (pixels, patches...), and making them vote for
a set of parameters, definitely makes sense for tracking context.

Sato [SA04], for instance, combined Hough Transform and temporal
windowing to track pedestrian, filmed in lateral-view. He starts by bina-
rizing all images of a given sequence (I;) with a background subtraction

method. Then, he extracts some standing objects corresponding to regions
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intersecting an area around the horizon line (depending on the height of
the camera), and with a height below a threshold. These standing objects
correspond to potential pedestrians. This hypothesis is restrictive, as it is
designed to detect pedestrian walking at the same altitude, and those who
walk on another plane can not be tracked. Finally, the Hough Transform is
applied by considering that a pixel from these standing objects follows a
certain trajectory (supposed to be a straight line), at a certain speed (sup-
posed constant). A blob representing a pedestrian is then extracted by
considering that all pixels from the same pedestrian follow the same tra-
jectory at a constant speed. Sato also extended his tracker to recognition
of simple interactions between humans, such as one person following an-
other one, one person stopping in front of a second one, etc. However,
this tracker is very limited: experimental conditions are very restrictive
and can not be adapted to a more general context (camera motion, pedes-
trian walking at different planes).

Recently, Hua in [HAS15] proposed a tracker also adapting Hough
Transform. His tracker has proven accurate on VOT2015 dataset [Kri+15].
First, Hua detects potential candidates (represented by bounding-boxes)
using a HOG-based [DTO5] detector. Second, he applies a Hough Trans-
form to estimate the geometrical transformation of the target. After esti-
mating the optical flow, each pair of points votes for a geometrical trans-
formation, giving a first score of detection confidence. Third, two scores,
one based on object edges and the second on motion, are generated, and
the three computed scores are used to estimate the new state (bounding
box). However, this tracker is very slow, far from the real-time criterion
(Iess than 7 fps). Moreover, the Hough Transform is only used in order to
validate or reject potential states.

If we deal with the Generalized Hough Transform, several GHT-based
trackers have also been proposed. Pixeltrack [DG13] is a very-fast tracker
(more than 100 fps) proposed recently, very close to the GHT. Its high-
speed is mainly due to very low-level operations, and to a fully optimized
code.! At each frame ¢, the first step consists in computing a GHT to
estimate a potential object center z;,. Unlike Ballard’s method [Bal81],
Duffner indexes his R-Table not only with gradient orientation, but also
with HSV color values. Then, he proceeds to an operation called back-

projection, that we will detail in Section 3.3. Duffner proceeds to a fast

"http://u0016403263.user.hosting-agency.de/research_
pixeltrack.html
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segmentation using color models of the background and the foreground,
and computes the centroid of this map z, to get a second potential center.
Finally, the target center is estimated as the weighted average of z; and
xs. The weight of these two candidates depends on a confidence measure
of the Hough Transform. Finally, the update process is done by consid-
ering a segmentation map, computed from the color segmentation and the
backprojection map. This algorithm served as a reference for our work, as
it presents a certain trade-off between accuracy and speed.

Maresca [MP13] also proposed a tracker using the GHT, with a higher
level of representation than gradient features, based on keypoints features
(notably SIFT [Low99] or ORB [Rub+11]). The R-Table is replaced by
a codebook (built using positive and negative samples), and correspon-
dences are found using a k-nearest neighbor (K-NN) algorithm. At a given
frame ¢, all detected keypoints are put into a K-NN algorithm to search for
correspondences (this training is done during the tracker initialization and
the updating process). Then, after some filtering operations (in order to
discard some bad keypoints, such as those close to a negative samples) in
the feature space, the GHT is realized by making detected keypoints vote
for a position. Finally, a scale estimation is computed. MATRIOSKA
is a decently accurate and robust tracker (it was among the first half of
the competing trackers in VOT2014 [KPL+]), and using a keypoint-based
representation has certain advantages (robust to illumination change, point
of view change...); its speed is far lower than that of PixelTrack (about
15 fps), due to higher level-operations (detection and description of key-
points, k-NN). However, by combining MATRIOSKA with BDF [MP14],
which is a variant of the Flock of Trackers [VM14], Maresca managed to
propose a high-speed tracker.

Godec [GRB13] proposed a tracker based on the Hough Forest frame-
work proposed by Gall [Gal+11] (a more detailed description of the Hough
Forest is available in Section. 4). Like Maresca, the R-Table is based on
a machine learning classifier: the Random Ferns. Godec however uses a
patch-based representation (each patch is described using Lab color space,
first and second derivatives and HOG features [DTO05]) to train his deci-
sion forest. At each frame I,, each patch goes through all decision trees
(the ferns), and then votes for different positions, according to the leaves.
Then, to estimate the size and updating the model, Godec first proceeds to

a backprojection operation, and then to a GrabCut segmentation [RKBO04].
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In terms of performance, the Hough Fern tracker is among the least ac-
curate ones in [KPL+], and due to heavy computation operation (HOG
evaluation and GrabCut segmentation), is also very slow.

In this part, we highlighted the limitations of the (Generalized) Hough
Transform for object tracking. However, as many researchers proposed
different trackers to compensate these weaknesses, we made a short re-
view of recent Hough-based trackers. These proposed trackers can be
very accurate and robust [HAS15] or very fast [DG13], and enhanced the

Hough Transform at different levels:

e Some researchers applied the (Generalized) Hough Transform using
a higher level of representation than the original method: Godec
[GRB13] used HOG features, [MP13] used keypoints, [SA04] and
[HAS15] used temporal features. Those works show that the Hough
Transform is able to support high-level features, and even temporal

ones

e Others used Machine Learning method to improve the voting pro-
cess [MP13]; [GRB13]. Both papers changed the R-Table to a more
complex data structure: a codebook indexed by keypoint descriptors
for [MP13], random ferns for [GRB13]

e Others proposed to combine the Generalized Hough Transform with
another model [DG13]

It turns out that the Hough Transform is a framework that can be im-
proved at different levels for tracking purpose. In the next sections, we
will present our methods, together with experiments realized on academic

datasets.

3.3 Combining color histogram and Gradient

for tracking

In this section, we will present our work in object tracking. This section
will be mainly inspired by [TM15] and [TM17]. However, we plan not to
make a raw copy of these two papers, and prefer studying these trackers
and see their advantages and weaknesses.

This section will be divided into four parts:
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1. First, we will present the backprojection operation, common to all

approaches

2. Second, we will present [TM15], which combines the GHT and an
adaptation of the Particle Filter

3. Third, we will present the weaknesses of the previous tracker, and

explain how we partially solved them

4. Fourth, we will present [TM17], detailing how simple routines can

lead to an effective tracker (see Section. 3.4)

The common point of these three trackers is the exclusive use of gradient
features to compute the Generalized Hough Transform, combined with
color histogram. The problem will be then to combine these two bases
to propose a decent tracker. In terms of performances, results and evalu-
ation on academic datasets and computation time will be detailed in Sec-
tion. 3.4.

3.3.1 Backprojection map

Backprojection map is one common point to the two trackers we proposed.
In object detection, Razavi [RGVG10] uses this operation in many ways,
and we will detail them more precisely in Section. 4. In this section, we
will only present its use in tracking context. This operation, as used by
Godec [GRB13] and Duffner [DG13], is used to determine the support
of pixels which have voted for best object location. Formally, given a R-
Table R, the Hough Transform HT from an image I, the backprojection
associated to the location x, denoted BP,, is a map null for every pixel p,

except those which have voted for z:

HT ifdi e RO,),p+1u=
BP,(p) = ¢ () T RG pra= g
0 otherwise

Duffner and Godec used this binary backprojection as a confidence map
by selecting = such as x = max,(HT,) (see Fig. 3.5). The formulation
Eq. 3.8 differs from those we will use in our works. However, both for-
mulations are based on the same idea, that if one pixel has voted for the

peak, it is more prone to belong to the tracked target.
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(A) Input (B) Hough Transform (C) Backprojection

FIGURE 3.5: Backprojection from bag sequence.

3.3.2 Combining GHT and Particle Filter

We present [TM15] in this part. This tracker combines the GHT, and
an adaptation of the Particle Filter [IB98]. We aimed to use these two
algorithms in their simplest form.

The first step is the model initialization. As our tracker belongs to
model-free ones, it requires only the first frame I and the first bounding
box By. The R-Table R is initialized using all pixels inside B, whose gra-
dient magnitude is above a threshold €;,. It is used as a shape model for
tracking. Unlike the original GHT, the R-Table does not store displace-
ments exclusively, but couples (, wz), where wg is a weight associated to
a displacement « (defined as in the original GHT). On the other hand, for
the particle filter, let us define H;— the initial normalized color histogram
of Iy|p, as a color model. Let N,, = 500 be the fixed number of particles
used in the whole sequence. At each frame ¢, one particle is defined by
its hypothetical state B = {c!,w}, hi} (orientation is set to 0.0), and its
weight wi.

Then, for tracking step, the GHT and the particle Filter are computed
independently. On the one hand, as mentioned in Section. 3.2, the Particle

Filter is divided into three steps, and in our case, computed that way:

e Observation: at each frame ¢, each particle 7 represents a potential
state. Its weight is updated by computing the Bhattacharyya coef-
ficient B between H; (normalized color histogram model at frame
t) and H!, color histogram of I;|p:. Then, the particle weight is
equal t0 w! = exp(—=A- (1.0 — B(H,, H))?), where A = 50.0.
This weight measure is inspired by Pérez [Pér+02] adaptation of

Particle Filter in tracking context
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e Resampling: the aim of the resampling step is to preserve a trade-
off between coverage of the state space and proportion of particles
with high weights. Arulampalam proposed different methods to re-
sample the particle set [Aru+02]. However, as we aim to propose
a simple algorithm, the particle set is at each frame fully regener-
ated using a multivariate Gaussian Process. For each particle, ¢! is
sampled from a 2D Gaussian random process centered in ¢;_1 (pre-
vious estimated state), and with variances (c - wi_;,c - hi_;), with
c=3 2\/1m The denominator 2 - 2 - v/2 - In 2 is linked to the full
width at half maximum (FWHM) coefficient of a Gaussian of stan-
dard deviation o: FWHM =2-2-+/2-1n2- 0. We choose these

variance value to ensure that most particle centers are close to ¢;_1.

For the scale parameters, (w!, hi) are drawn using a 2D Gaussian
centered in (wi_,,h! ;) and of variances (§ - w! |, 3 - hi_,), with
B = 0.05.

e Propagation: as the resampling process regenerates all particles,
there is no propagation step in our tracker. So, given Eq. 3.1, at
each frame, we simply have A; = Id, (the identity matrix of size

4) at each frame, and B; the null vector

Let us then define OP the observation map, such that:

Wi ifdi,cdi=1x
OP(z) = 3.9
0  otherwise

As the particle filter is based on estimating the density of probability at
different states (i.e. different particles), OP can be seen as a sparse repre-
sentation of the probability to find the target, at different states.

On the other hand, the GHT is computed normally, with n, orienta-
tions to index the R-Table R, except that, contrary to Eq. 2.28, each pixel

votes according to each displacements u, with a weight wg:

HT(p)=>_ >  wz-dlpg+ ) (3.10)

4 (€ ,wg)€R(9q)

where 0, is the quantized gradient orientation of p. From the GHT, we

compute a backprojection map different from Eq. 3.8:

BP(p) = max HT(p + @) (3.11)
GER(0)
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This backprojection is softer than Duffner’s and Godec’s formulations
Eq. 3.8. Indeed, they backproject the peak, while in our case, all vot-
ing pixels are strictly positive in BP. However, in both cases, the aim of
the backprojection map is the same: the higher the value of one pixel of
the backprojection, the more probably it belongs to the target. Fig. 3.6

illustrates this soft backprojection.

FIGURE 3.6: Backprojection obtained by Eq.3.11.

Then, for state estimation, we need to combine the two outputs BP
and OP. One problem is that OP is a sparse representation of a proba-
bility map, and then needs to be made denser. Fitting it with a probability
function, such as a Generalized Gaussian, is possible, but, for efficiency
reasons, we preferred some lighter (but less accurate) methods. Indeed,
we choose to make the map denser by using a morphological dilatation,
with an elliptic structuring element SE of size (=, ht‘%l ). Let us denote
dse(OP) the obtained map.

Np3 Ny
Finally, let us define the fusion map B, such that:

B = BP - 535(OP) (3.12)

B is then normalized to [0, 1], and thresholded.

This map serves for both state estimation and updating model steps.
For the state estimation, we just consider B; as the bounding box of all
positive pixels of B. In that way, the whole state is estimated in one
step, avoiding us some more consuming operations (GHT computed with
several scales for example). For the updating step, let us denote z. = 0.90
a color updating coefficient, H? the color histogram of I;|,. Then, we

define H;, the model color histogram by:
Hy= . Hy+(1—p.) - HP (3.13)

To update the R-Table, we consider r the centroid of B|p,, and an updating

rate /i, (11y = pc). Then, for all pixels p in B; for which M(p) > €y, (i.e
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gradient magnitude above a threshold), we update R(6,) as follows:
e if @ = pf is not in R(6,), we add an entry (@, wz = M(p))

e otherwise, we update wy as follows:

o Mg wi t (1 —py) - B(p) - M(p)

5 (3.14)

Wiz
The aim is to reinforce the weights of displacements already present in
the R-Table: if some pixels have correctly voted previously, we suppose
that they are more prone to belong to the object. We then sort all displace-
ments, in each entry R(6,), according to their weights, and keep only the

N, = 50 strongest displacements. If we compare our tracker with other

Generalized Hou

Particle Fllter

FIGURE 3.7: Diagram of tracker [TM15]

Hough-based ones, PixelTrack [DG13] is the closest one to ours. The
differences between the two trackers can be detailed as follows:

e Our Hough-part tracker is closer to the original method [Bal81].
Indeed, our R-Table is indexed only by gradient orientation, while
Duffner indexes it by using both gradient orientation and HSV pix-
els colors. Our aim was to consider the color and the shape parts
as independently as possible, by exploiting them with different al-
gorithms: the Particle Filter and the GHT respectively. Duffner’s
solution has the advantage to allow the R-Table to integrate more
information, while maintaining the simplicity of the R-Table. How-
ever, Duffner’s R-Table is more sensitive to noise, as entries are

dependent on Hue and saturation values.
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e Duffner proceeds to a segmentation using pixel colors, and requires
a model for the foreground and the background (under the form
of color histograms). His segmentation also requires a Bayesian
model. In our case, we only use a model color histogram, combined

with a particle filter

e Duffner’s position estimation is computed from two outputs: one
obtained by the GHT, one by computing the centroid of the color
segmentation map. In our case, we are estimating the whole state
(bounding box’s center, size and orientation), by estimating the bound-

ing box of the binarized fusion map B,

However, the two approaches are very close in terms of feature space (low-
level features in both cases), the important role of the GHT, and a step to
quickly compute a segmentation map in order to update target’s models.
In this section, we presented the first version of our tracker, combining
GHT and color histogram features. The aim was to maintain the use of
low-level features, and to propose a very light tracker. Indeed, we kept
important steps of tracking (model initialization and update, and tracking
itself), but we discarded some usable information (target motion or other
dynamical model). Finally, the presented tracker has several flaws, that

we now discuss, together with some solutions.

3.3.3 Transitional tracker

The aim of the previous tracker was to propose a very simple algorithm,
and so we discarded some classical elements used in tracking. We have
fulfilled our goal to work on low-level features, as our tracker is exclu-
sively based on gradient and color features. However, some important
elements for tracking are missing.

The lack of a "real" prediction model (ours is just defined by the way
to draw particles) is very important since the presented tracker is mainly
based on the GHT, and some abrupt transformations can imply a failure
of the GHT (The third picture from Fig. 3.8 illustrates it).

The second issue concerns the computation of the fusion map B (see
Eq. 3.12), used for scale estimation. Before the threshold operation, for a
pixel p, B(p) is strictly positive when both BP(p) and dsg(OP(p)) are
strictly positive (product). It means that a pixel with a positive value in
B must have voted in the GHT process (BP;(p) > 0), and be spatially
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close to one particle ((osg(OP;))(p) > 0). Fulfilling these conditions
can be hard (it depends on the size of the particle set, the number of dis-
placements stored in the R-Table and on the target size) and the quantity
of pixels with positive values in B is decreasing over the time, leading to
a wrong size estimation. Moreover, for model update, with the previous
method, only positive pixels in BP can participate to the R-Table update.

We addressed these two issues as follows:

e For the prediction model, given B;_;, the previous estimated state,
we define a normalized isotropic Gaussian map PR,_; centered in
¢i—1, and of standard deviation o - min(w;_1, hy_1), with g = 0.70.
PR, _; represents a prediction of the position, given the last esti-
mated one, as high values in this map are for pixels close to ¢;_;.
This prediction model is fast to compute, and has been used in
the literature [PMB15]. It is also possible to use a richer predic-
tion model, by considering the motion of the target, as Breitenstein
[Bre+09] proposed. Fig. 3.8 illustrates the usefulness of a predic-
tion map, on a cropped frame from ball sequence. On the first line,
one cropped frame is displayed, the red circle corresponds to the
peak of the GHT (image below), while the blue one corresponds
to the peak obtained from the per-pixel product between the GHT
and the prediction map (on the right). Then, by defining the map
PHT, = HT, - PR,_,, the position of the target is determined by:

¢, = argmax fpur, () (3.15)

where fpg, is the integral of PHT), in the rectangle centered on
x, and of size (0.30 - w;_1,0.30 - hy_1). The goal of Eq. 3.15 is to
add some robustness with regard to deformations to the GHT, by
considering that a pixel voting correctly does no longer have to vote
accurately for a peak, but for a pixel close to this peak. Compared to
Eq. 2.29, the method modeled by Eq. 3.15 is more robust to scaling

and small deformations.

e For the scale estimation issue, we replace the dilated sparse obser-
vation map dgg(OP) by a dense observation color map. After es-
timating m;, the maxima of HT,, we define a surrounding area S
as a rectangle of size (5 - wy_1,0 - hy—1) (8 > 1), and excluding
the rectangle {m;, w;_1, h,_1}. Fig. 3.9 illustrates one surrounding

area. The blue part corresponds to .S, the red one to the bounding
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(B) Prediction map

(c) GHT (D) Product of GHT and prediction
map

FIGURE 3.8: Impact of prediction map in the GHT

box (my, w1, hy_1). Let us define H** the normalized histogram

FIGURE 3.9: Surrounding area from sunshade.

of 1(S;). Then, for each bin i, we define a ratio histogram H/® such

that: )
Ht— 1 (Z)

Hpe(i)

and then build the map of the quantized color image of I; using

HE(i) = min(

,1.0) (3.16)
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HE. This formulation differs from our approach in [TM15]. In-
deed, while our previous work was based on Bhattacharyya coef-
ficient (Eq. 2.7), this one aims to measure how likely one color
belongs to the target or to the background: the more one color is
present in the target and rare in the background, the higher H}* is.
However, for color as much present in the foreground as in the back-
ground, Eq 3.16 will be close to 1.0. Let us call C; = HE(I;(p))
the obtained map. Fig. 3.10 illustrates an area from one frame of the
sphere sequence mapped using a RGB histogram of size 8 x 8 x 8.
Blue corresponds to low values, red to high ones. The red area cor-

responds to the foreground, the blue one to the background. Finally,

FIGURE 3.10: Mapping of the blue and red areas using
H} (Eq3.16)

B, is obtained by taking the bounding box of:

{pI(B(p) > e5) A (Ci(p) > ec)} (3.17)

where ¢g and ¢¢ are two thresholds. Like [TM15], scale estimation

is still dependent on the realization of two conditions. But, as C;
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FIGURE 3.11: Some non consecutive frames from mo-
tocross sequence

is denser than OP,, the cardinality of the set of pixels defined by
Eq. 3.17 if higher than previously. For the updating process, we also
changed the method, by considering that a pixel p € B; belongs to

the target if:
BP,(p) + C:(p)
2

with €744 = 0.45. This condition, less restrictive than before, leads

> €fgd (318)

to a higher quantity of pixels used for the R-Table update. Fig. 3.11

illustrates a correct tracking for one moving target

One last weakness of [TM15] concerns the use of the particle filter: as
we choose to be as simple as possible (for speed purpose), the resampling
and propagation steps are used in their simplest form (full resampling ac-
cording to a 2D Gaussian for the first, dynamical model defined with the
Identity Matrix for the second) which does not let us take benefits from the
particle filter (coping with dynamical model with the propagation, remov-
ing wrong hypothetical states and keep correct ones with the resampling).

This tracker performs better than [TM15], and is able to track accu-
rately in more sequences (see Fig. 3.11). However, it only partially solves

problems of the previous one, and still has several flaws.

3.3.4 Final tracker

The tracker presented previously provides decent results, but still suffers

from flaws:

e The color-part has a secondary role compared to the GHT: the back-
ground histogram H 2 is built according to m;, the maxima of HT;.
Conceptually, this issue is severe, as the role of the color model is
only to refine the state estimation. For our work, as we aim to study
interests of low-level features, we prefer having a more balanced

role of the two models
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e Estimating the object dimension by the method proposed in the

previous section has a tendency to diverge: with cluttered back-
grounds, the condition defined by Eq. 3.17 may be fulfilled by back-
ground pixels, and even an isolated background pixel is sufficient to

wrongly estimate object size.

From [TM15] to enhancements proposed in Section. 3.3.3, for scale
estimation, we did not simplify the scale estimation (Eq. 3.17), which
is still based on a conjunction of two conditions. With high thresh-
olds, very few pixels are fulfilling these two conditions, and then,

the scale has a tendency to dramatically decrease

For state estimation, we are using Eq. 3.17, which requires two
thresholds. For model update, based on Eq. 3.18, we define an-
other threshold €;,4. The two sets of pixels validating respectively
Eq. 3.17 and Eq. 3.18 are different. Moreover, these two equations
require three parameters to define, complexifying the optimization
of the algorithm

Eq. 3.15 is used to estimate object position. Even though this op-
eration can be quickly computed by integral image, it is still more
costly than a simple argmax operation, and is dependent of the size
of the window. We are then loosing some flexibility compared to

[TM15] as we add one parameter

All these reasons led us to improve the tracker. In this section, we propose

some corrections to get an effective tracker [TM17], that will be used for

the whole experiments presented in Section. 3.4. For reading ease, all

numerical values of the parameters will not be presented in this part. We

also decided to split details into 3 parts:

1.

We will explain modifications made for position estimation. At this

level, the tracker is already giving interesting results

. We will explain how to generate a segmentation map, used for scale

and orientation updating

. Details about model update will be provided
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3.3.4.1 Position estimation

First, to remove the dependency of the color part to the GHT, we define
the surrounding area S; as the rectangle {¢; 1, a - wy_1, - hy_1}, exclud-
ing Ry = {¢i—1,wi—1, he—1} (o will be the surrounding area coefficient).
By centering the surrounding area at c¢;_; instead of m; (Hough peak), the
foreground/background areas are no longer dependent of the GHT. The
second modification concerns Eq. 3.16, used to classify a pixel as fore-

ground or not. For all pixels p € (S; U R;), we follow Possegger’s for-

mulation [PMB15] by defining a new measure of confidence FgI =L HE)
such that, by denoting ¢} the quantified color of I,(p):
Hi—1(q;) ;
Fo 1 (gh) = Ay P € SV Bi) (3.19)
0 otherwise

Compared to Eq. 3.16, there is no risk of division by O for pixels inside
(S;UR;) (denominator always strictly positive). By extension, Fg{t’l’Hka) (¢) <
1.0. Moreover, for colors such as H; (i) = H/*(i), while Eq. 3.16 will
give 1.0, Eq. 3.19 will give 0.5, reducing impact of colors as much present
in the foreground as in the background. If we reconsider the example from
sphere sequence, Fig. 3.12 illustrates improvements induced by Eq. 3.19:
pixels from the shadow now appear in green, while before, it appeared in

red. This formulation comes from a Bayesian formulation of the likeli-

(A) Quantized image (B) Using Eq. 3.16 (¢) Using Eq. 3.19
FIGURE 3.12: Impact of Possegger’s formulation

[PMB15] on the color-based confidence map

hood, and we refer to [PMB15] for a detailed explanation. From this new

function, we can now define the method to estimate the object center at ¢,
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given H,_; and B;_;. Let us define S.; such that:

(Hy_1,HPF)

2pen; Fo ® .
SC,t(Bz) = wi—1-ht—1 l‘f.flj € (Bt—l U St)

0 otherwise

(3.20)

where B, = {z,w;_1,h;_1}.

Second, the GHT is computed as in [TM15] (Eq. 3.10, each displace-
ment casts a vote given by its weight). However, we are blurring the ob-
tained Hough Transform (with a 3 x 3 Gaussian Kernel), and denote by
GB(HT,) the output. This operation, lighter than computing fpyT in
Eq. 3.15, serves to add robustness to scaling and deformations.

Finally, for position estimation, we add a prediction model PR, de-
fined as previously. Thus, to estimate object’s center, we consider M; =
GB(HT,) - S.; - PRy, and estimate ¢; by:

. argmax, (M;(z)) if max, M(x) # 0 (3.21)

Ci—1 + Ci_aci_] otherwise

The second case of the equation is important as, if, for all z, M,;(x) = 0,
we can not determine an object center, and then, decide to estimate it based
on pure prediction, given the two last estimated states. At this point, the
tracker, combined with the updating process detailed further, is already

giving decent results, (details Section. 3.4). Compared to the literature:

e Compared to Duffner’s PixelTrack [DG13], who also proceeds to
a light color segmentation, we merge the outputs of the two track-
ers earlier: Duffner computes one partial object’s center from each
tracker (GHT’s peak and centroid of the color confidence map), then
estimate object’s center with a linear combination of the two. In
our case, we merge the two center confidence maps (GB(HT,) and
Sc.t), then estimate object center according to Eq. 3.21. The weight
of each partial center is also dependent on the amplitude of the peak
of the GHT. Moreover, Duffner’ segmentation process requires fore-
ground and background stored models and use a Bayesian formula-
tion, while ours only need object’s color histogram (the background

one is computed at each frame)

e Bertinetto’s STAPLE [Ber+16] proceeds in a way similar to ours:

after estimating two confidence maps (one from a correlation-filer,
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the second from color histogram), he merges the two maps with a
linear combination. In that way, he has to consider difference of
amplitude between the two confidence maps, while in our case, the
issue is related to disjoint supports of HT; and S.; (solved by the
second case of Eq. 3.21)

.

FIGURE 3.13: Diagram of position estimation (better in
color)

The diagram of Fig. 3.13 illustrates all steps for position estimation. All
three entries (in blue) serving as an input for the product function can be

computed in parallel.

3.3.4.2 Scale and orientation estimations

Previously, we explained modifications made in order to estimate object’s
position. Now, we explain how to estimate both scale and orientation. The
aim of this step is to build a confidence map, that will serve for tracking
and also for updating task.

To do that, we will consider two confidence maps (one for each fea-
ture). The first one, from the color model, is the map FEOHt’l’H’?Ck) defined
by Eq. 3.19. The second one, coming from the GHT, is another version of

the backprojection map BP;:

- > M, (p + 7)
 (Rw)ER®,)

with |R(6,)| the cardinality of R(6,,).

Then, by denoting BF; = 0.5 (BP; + Fg{t’l’H?Ck)), and, inspired by
Possegger’s works [PMB15], we define the set of pixels that belongs to
the object as OP, = {p|BF(p) > egr} U{ct, B-wi—1, 5 hi—1,0,—1}, the
rectangle {c;, 5 - w;_1, 3 - hy_1,0;_1} being a safe foreground area (based
on the assumption that all pixels close to ¢; are more prone to belong to the

object), and (3 the safe foreground area coefficient. After that, we compute
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a connected component analysis within O P;, to get all pixels connected to
c;—1, and discard isolated ones, as they can lead to a scale overestima-
tion. Finally, the last step is the estimation of the oriented bounding box
E’t = {¢é, wy, izt, ét} of all these connected pixels (rotating caliper algo-
rithm implementation from OpenCV).

Given the last estimated state B;_1, if each estimated state component
(except ¢;_1) is too far from the last estimated one, we do not change it.

Otherwise, we update it smoothly:
Xp=1—p) Xpo+p- X, (3.23)

with X € {w, h, 0}.

This version differs from [TM17], which only proceeds to a scale esti-
mation (estimation to 4 parameters instead of 2). To do so, after estimating
Et (in this case, we are working with bounding boxes without orientation),
we calculate relative area variation between B;_; and Bt. If area variation

is above € 4, we do not update scales. Otherwise:
Xt — )\t . thl (324)

with X € {w,h} and \; = min(1 + A4, max(1 — A4, %)), and A\ 4

the max area variation. The remaining step is the model update.

3.3.4.3 Updating model

For the updating process, we use the merged confidence map BF, as a
support for updating. We follow our previous work [TM15] by smoothly
updating the color histogram, still using Eq. 3.13. For the R-Table, we
apply a more sophisticated updating process than in [TM15]. Indeed, the
first step is to weaken weights of all displacements already present in the
R-Table R:

V8 e{0,1,...,n.—1},V(t,w) € R(#),w + (1 —py)-w  (3.25)

Then, we add new displacements, or update already existing ones in a
similar way as Section. 3.3.2. However, for new displacements, the new
weight is equal to u, - BF. For already existing ones, we increment their

weights using the same weight 1, - BF;. The weight remains then inside



3.3. Combining color histogram and Gradient for tracking 83

[0, 1]. In that way, compared to Eq. 3.14 which requires gradient magni-
tude, we no longer have to consider the dynamic of the gradient magni-
tude. The interest of combining the weakening mechanism (Eq. 3.25) and
the weight increases is that the role of the first one is to reduce influence
of all displacements, in particular those from the background, whereas the

second step compensates the weakening.

3.3.4.4 Conclusion

We presented three different trackers combining a shape-based model and
a color-based one. First, we described a tracker combining the GHT, ex-
ploited in its simplest form, which is common to all three methods, and
a Particle Filter, applied in a very simple form and based on color his-
togram. The two main issues of this tracker was the lack of real prediction
model and the dependence of the Particle Filter toward the GHT. Sec-
ond, we discarded the Particle Filter part to use only a color histogram
as a feature to classify pixels as background or foreground, and add a 2D
Gaussian acting as a simple prediction model. Third, in Section. 3.3.4, in-
spired by Possegger’s background/foreground discrimination, we changed
the formula to establish the color confidence map, providing a better seg-
mentation (see Fig. 3.12). We also removed the dependency of the color
model to the GHT, by making it dependent on the last estimated state.
Then, the two methods, combined with a prediction model, are merged
(with a pixel-wise multiplication) to produce a map, that can be already
used for tracking. Finally, we extract two confidence maps (one for each
feature), serving as a base for the complete state estimation.

These three proposed trackers have two common points: one unique
algorithm exploiting gradient features (the GHT), and the exclusive use
of local and low-level features (gradient and color histogram). Compared
to Hough-based trackers presented in Section. 3.2.2, the GHT is used in
its simplest form: computed by gradient orientation (as opposed to key-
point features for example) and a codebook in the form of a simple array
indexed by gradient orientation (compared to random ferns structures).
In every cases, our GHT is identical to the original GHT [Bal81], and is
used without extensions provided to cope with scale or orientation changes
(votes in a 4D parameters space).

In the final section, we will validate the last proposed tracker by test-

ing and evaluating it on academic datasets. We tested only [TM17]. In
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terms of performances, neither of the two others trackers is competitive:
the lack of prediction model is critical for [TM15], while scale overesti-
mation of the transitional tracker leads to low accuracy. In terms of speed,
we can suppose that the transitional tracker and [TM17] have similar per-
formance. However, for [TM15], the particle filter part can be very costly,
compared to the computation of Eq. 3.19, as it requires histogram and
Bhattacharyya coefficient computations. Even though these two opera-
tions can be optimized, with a high number of particles, they are more

computationally expensive than Eq. 3.19.

3.4 Results

We present experiments made with our tracker described in Section. 3.3.4
on academic datasets [Kri+13]; [KPL+]; [Kri+15]. Before that, as our
tracker is running above real-time, we consider necessary to detail our
implementation. Then, we focus on some experiments. Academic datasets
first serve as a support for parameters tuning. Then, we study the influence

of changing the feature spaces.

3.4.1 Implementation details
3.4.1.1 Optimization

All our work has been implemented in C++, using OpenCV 2.4.9 . Our
final tracker was tested on a laptop machine, equipped with an Intel Core
17-4700HQ, at 2.40 GHz, and coded for a single thread processing.

It terms of implementation, pixel access is done using image pointers.
For optimization purpose, at frame ¢ + 1, given B, = {zF, yf*, wl hl}
the rectangle enclosing B; and parallel to x- and y- axes, the tracking
process is done in an area defined by (c;,y - wf, v - hf*) (y = V2 is the
search window coefficient). The aim is to reduce the search window to a
rectangle of area 2 - w; - h; which contains B; (for any orientation of ;).

We compute gradient by using a 5 x 5 discrete Gaussian kernel, with
o = 1. For histogram computation, we use a LookUp Table (LUT)
LUT.,. Given a defined size of histogram n., and the range of one octet
({0,1,...,255}), we define the width of one bin J, = %, and then create

’http://opencv.org/
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LUT, such that:

Vi € [0,255], LUT,(i) = Léi ] (3.26)
with | e | the floor operator. This operation is computed offline. Computa-
tion histogram for LUT is faster than the naive implementation, as all the
division operations are done offline (during the LUT construction), while
online, computation only requires to access elements.

To compute S.;, defined by Eq. 3.20, we compute integral images
[Lew95]. Given an image [ of size (w, h), its integral image Z(I) is de-
fined by:

V(z,y) e {1,...,wyx{1,...,h}, Z(I)(x,y) = > 1(i, )

(4,5)€[0,2—1] x[0,y—1]

(3.27)
In that case, given a rectangle R = {co, wo, ho} (With co = (¢, o)), the
sum of all pixels values of I|z can be computed with 4 array accesses and

three additions:

Z I(p) = Z(I)(wo + wo, yo + ho) + Z(I) (w0, yo)—
PER (3.28)

Z(T) (o + wo, Yo) — Z(1) (w0, Yo + ho)

Even though we aim to estimate object’s orientation too, we evaluate .S, ;
with bounding boxes parallel to = and y axes, to leverage integral images.

One last algorithmic optimization concerns the R-Table update. To
discard weak displacements, we first sort them according to their weights.
Then, when we need to update the weight of an already existing displace-
ment, at each gradient orientation, we sort displacements according to
their ascending abscissas. Finally, to find the existence of a displacement,
given the index € and the displacement U = (x,y) to be inserted into
R(6), as soon as in R(#) we find a displacement with an abscissa greater
than , we are sure that @/ does not exist in R(0) yet.

Otherwise, we did not proceed to other algorithmic optimization: in
Figure. 3.13, the three boxes Generalized Hough Transform, Equation
2 and 2D Gaussian are done independently (and then, with 3 for loop),
while these three loops can merge into one unique, potentially provid-
ing us a faster algorithm (in single thread implementation only, in multi-
thread, these loops can be computed in parallel). The computation of the

prediction map PR, has been done exactly, while it can be computed (with
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a certain approximation) using a LUT. This method is all the more criti-
cal that for some sequences involving big objects, this operation is very
costly.

Finally, our tracker has been optimized without approximation, or loss
of accuracy. However, at this point, it has proven to be fast (above real-
time), accurate and robust. In the following of this section, we will present

the evaluation.

3.4.2 VOT datasets
3.4.2.1 History of the VOT Challenge

We present the VOT challenge in this section, and the main criterion used
to test end evaluate trackers. This will be important not only for results on
the dataset, but also for an understanding of the parameter tuning detailed
in Section. 3.4.2.2.

Since 2013 [Kri+13], the VOT committee proposes annually a video
dataset to test and compare trackers. They also propose the TraX toolkit
[Cehl7] as a standard to run and evaluate trackers. For our experiments,
we use a deprecated version of the toolkit, giving the same results as the
recent one, but less flexible.

Each video is annotated by the ground truth, and each frame is anno-

tated according to its specific difficulties:

e Occlusion (Occ)

[lumination change (I11)

Motion change (Mot)

Size change (Siz)

Camera motion (Cam)
e Empty (no difficulty; Emp)
Then, to evaluate trackers, the committee considers three criteria:

e Accuracy, based on overlap measure O: at a frame ¢, given the
ground truth bounding box G'T; and an estimated bounding box B,
the overlap measure, O(GT;, B;) is given by:

GT,N By

O(GTy, By) = GT,UB, (3.29)
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Fig. 3.14 illustrates the overlapping measure: the blue rectangle is

FIGURE 3.14: Illustration of overlappping

the ground truth, the red one the estimated one. This measure is

valued between 0 and 1

e Robustness to failure. A failure happens when overlap measure is
equal to 0. In order to limit the penalty caused by the failure, each
time a tracker fails, it is reinitialized 5 frames later. Accuracy mea-

sures are made only 10 frames after the failure

e Speed. In VOT2013 [Kri+13], speed was given in frame per sec-
ond (with hardware characteristics). In VOT2014 [KPL+], a nor-
malized speed was introduced. Before testing one tracker on the
whole dataset, the toolkit measures the time ¢s necessary to com-
pute a maximum (morphological dilation) filter of size 30 x 30 on
a grayscale image of size 600 x 600. Then, the normalized speed,
called Equivalent Filter Operation (EFO), is given by f—;, where t; is
the time to run the tracker on the whole dataset.

Each tracker is ranked in terms of accuracy and robustness. Two rankings
are available. For the first one, the pooled rank, all sequences are concate-
nated, and average accuracy and robustness are computed for all frames.
Trackers are then ranked according to average overlap (accuracy rank) and
number of failure (robustness rank). For the second, the weighted rank,
partial ranks are computed by ranking according to difficulties (for each
difficulty, ranking is done in terms of accuracy and robustness too), and
final ranking is done by averaging ranks. To remove dataset bias, the aver-

age is done by weighting all partial ranks: very frequent difficulties have
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lower weights. In both cases, the AR rank is plotted (giving the so-called
AR plot), with the average rank in abscissa and the robustness rank in or-
dinate. Statistics methods are also used to differentiate (or not) the rank
of trackers by estimating whether their difference in accuracy or robust-
ness is statistically significant (or not) (see [Kri+16a] for details). Since
VOT2014 [KPL+], the minimal requirement to be coauthor in the com-
petition report is to outperform the reference tracker NCC [BHO1] in the
challenge.

In VOT2015, the committee proposes a more interpretable criterion
called expected overlap. It serves to rank competitors with one unique
score, compared to the AR rank in VOT2014. Given a sequence s, a
beginning frame index ¢;(s) and an ending frame index t.(s), the average

overlap of the sequence ¢(s) is equal to:

1 te(s)

¢(s) = 105 —t(5) > O(GT;, By) (3.30)
c N t=t(s)

And then, the expected overlap is equal to the average of the average
overlap of all sequences. Even though this score has been proposed for
VOT15, the version of the used toolkit also provides this result for VOT14.

The evaluation process from VOT challenge serves for the next sec-

tion, in which we will detail parameters setting.

3.4.2.2 Parameter details

Selecting the best parameter set of an algorithm is a complicated task. In
tracking context, estimating performances of one tracker and comparing it
to another tracker is not a trivial task [Kri+16a]; [VLK16]. Moreover, our
algorithm requires several parameters to set, and optimizing the whole set
is a complex task.

Then, we distinguished only 4 parameters that can highly impact per-
formances of the tracker: the size of the color histogram 7., the number
of index for the R-Table n,, and the two updating rates (. and j,. The
number of displacements in the R-Table N, also has an important role,
but secondary compared to n,. Moreover, its optimal value is more re-
lated to the object size (the bigger it is, the higher N, should be) than n,
which is more related to the object shape. Then, we select the VOT2015
dataset [Kri+15] and the associated method of evaluation as a dataset of

reference for tuning. Now, in terms of criterion to optimize, we can use
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either the expected overlap or the AR-plot (weighted ranking, less biased).
Even though the first one seems the most important one (as it serves to es-
tablish the global ranking on VOT2015) and choosing this criterion would
simplify the task, we do not want to restrict to this, as accuracy and robust-
ness can be more important depending on the task. As we aim to propose
a reactive algorithm, time consumption is also a criterion we would like to
optimize. Optimization has been done with the position tracker only (by
discarding Section. 3.3.4.2) as using the whole algorithm would make the
optimization task much more complex (more parameters to tune).

In that condition, the optimization problem consists in optimizing a
function of N x N x [0, 1] x [0, 1] (the two integers correspond to n. and
ng) to R*. Mathematically, to solve this optimization problem, we need to
define a cost function to minimize. Then, we can proceed to a grid search
in order to find a solution close to the optimal one, but the time necessary
to test all combinations can be tremendous: if the grid is composed of
6 possible parameter values per parameter, there are 6* = 1296 possible
combinations, leading to a huge number of tests to execute. In our case,
testing our tracker on VOT2015 takes 30 minutes. So, testing all 1296
combinations will take 648 hours (about 27 days). Then, we proceed by
setting n. = 12 and n, = 16, and then, searching for couples (/i, /i)
using a grid search. We tested different couples (n.,n,) and chose this
one as it already gave correct performances (see [TM17]). Then, after
choosing the best couple, we will deal will optimization of (n.,n,) by re-
iterating the same process, with (., 1,) fixed, and (n., n,) varying. Both
parameters (., f,) are selected among {0,0.2,0.4,0.6,0.8,1.0}, giving
36 tests to compute.

We show average overlap for all tests Fig. 3.15. Red points corre-
spond to results obtained experimentally, while other points are obtained
with bilinear interpolation. One first remark we have is that for null up-
date rate of the R-Table (11, = 0), expected overlap is very low, for any
value of y1.. The maximal relative variation between the lowest (0.1894 for
g = pte = 0.0) and the highest expected overlap (0.2668 for p, = 0.08
and p. = 0.06) is equal to 29%. Otherwise, for 1, > 0, and any value /.,
expected overlap is close to the computed maximum. The relative varia-
tion is lower: with (p,, i) = (0.04,0.00), expected overlap is equal to
0.2358, and relative difference is then equal to 10%. We can already dis-
card all couples with p, = 0. Fig. 3.16 and Fig. 3.17 illustrate accuracy
and robustness ranks respectively (the smaller, the better). Fig. 3.16 shows
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FIGURE 3.15: Expected overlap for different values for
jic and fig

that all trackers have similar ranking (no significant difference): this cri-
terion will not serve to differentiate parameters set. On the other hand,
we can notice that Fig. 3.17 and Fig. 3.15 have inverted trends (and the
range of ranking is much more dynamic too): the smaller the rank is, the
higher the expected overlap is. Tab. 3.1 shows robustness ranking accord-
ing to different difficulties. We can find that for p. = 0, trackers perform
badly in camera motion, empty and size change cases. Globally, as most
trackers have strong ranks for illumination change, we can say that this
difficulty is not relevant for our algorithm. For motion change, 11, = 0.02
performs very badly. Surprisingly, we can notice that p, = 0.04 gives
poor results for Occlusion issues. Finally, p, > 0.06 gives globally good
results in robustness. The last criterion is the computation time. As it is
independent of update rates, we will not consider it for now.

Finally, if we want to select the best couple of results, two choices are

possible:

e VOT15 [Kri+15] ranking is based on expected overlap. In this case,
the best combination is (f14, ft.) = (0.08,0.06)

e The best ranking in terms of AR ranking is for (1, i) = (0.10,0.02).
However, this combination leads to a low expected overlap com-
pared to the best overlap found (0.2668 against 0.2453). The sec-
ond best options are (0.06,0.06) and (0.08,0.02), which are close



3.4. Results 91

01

0.09

0.08

0.07

0.06
< 0.05
0.04
0.03
0.02

0.01

0 0.02 0.04 0.06 0.08 0
Hg

FIGURE 3.16: Accuracy rank for different values for .
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to our first option. The first one gives expected overlap close to the
maximum (0.2613), while the second is middle ranked (0.2518)

For the rest of the tests, we will choose (144, 1) = (0.08,0.06) as the best
combination.

Now, we need to tune the two parameters n. and n,. As for the two
update rates, we proceed to a grid search by considering all combinations
in {8,12,16} x {8,12,16}. Expected overlap is displayed Fig. 3.18, also
obtained with bilinear interpolation (only computed for integers values)
showing no significant difference. As previously, accuracy rank does not
vary much (9 trackers all ranked between the rank 1 and 2), and the same
thing for the robustness (between 1 and 4). This suggests that the impact
of both parameters we want to tune is limited, compared to (14, /i.). Speed
is important in this case, and results are shown Fig. 3.21 (in fps). In terms
of speed, all trackers are in the same order of magnitude, between 126.52
and 130.78 fps.

Finally, if we want to select the best couple, the couple (n.,n,) =
(12,16) is the best ranked and the one with the highest expected overlap.
We will then select this couple for experiments. This couple is the one we
set at the beginning to initialize our optimization process. For our initial-
ization (n.,n,) = (12, 16), the couple (114, 1) = (0.08,0.06) is the one
optimizing results for VOT2015. Tab. 3.2 summarizes all parameters and
chosen values. Parameters in bold are those that we optimize. We note

that these values may not be the best ones for other datasets, due to the
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diversity of videos. Parameters shown in Tab. 3.2 are used in both VOT14
and VOT15. Until the end of the chapter, we will denote as CHT the po-
sition tracker only, CHTs the tracker estimating the position and the scale
(aspect-ratio fixed), and CHTY the full one. As VOT2014 and VOT2015
proposed oriented bounding box ground truth, CHT and CHTs will be ini-
tialized with the smallest rectangle parallel to x- and y- axes enclosing
the initial ground truth. The two next sections will be dedicated to results
on VOT2014 and 2015 datasets, to position our work with regard to the

state-of-the-art. Finally, we will propose an analysis of our algorithm.

3.4.2.3 VOT2014

VOT2014 [KPL+] is composed of 25 sequences taken from several datasets
[Kri+13]; [WLY 13]; [Sme+14]. Objects are manually annotated by slanted
bounding boxes, unlike [Kri+13]. For each tracker, experiments are done

in two ways:

e A tracker is initialized by the first frame only (model-free hypothe-
sis) using the ground truth. The tracker then runs through the whole

sequence. This experiment is called baseline experiment

e To evaluate the sensitivity to initialization, the second experiment
consists in testing the tracker initialized by a disturbed bounding

box (shift in position, size and orientation), according to a uniform
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(g, tic) Cam. | Emp. | Ill. | Mot. | Occ. | Siz.

(0.00,0.00) | 29.00 | 33.00 | 26.00 | 31.00

(0.00,0.02) | 29.00 | 33.00 | 10.00 | 31.00 25.00
(0.00,0.04) | 36.00 | 29.00 | 2.00 | 31.00 | 1.00 | 35.00
(0.00,0.06) | 21.00 | 29.00 | 2.00 | 31.00 | 1.00 | 29.00
(0.00,0.08) | 28.00 | 20.00 | 2.00 | 31.00 | 1.00 | 25.00
(0.00,0.10) | 29.00 | 27.00 | 2.00 | 34.00 | 1.00 | 35.00
(0.02,0.00) | 16.00 | 6.00 15.00 | 1.00 | 2.00
(0.02,0.02) | 2.00 | 3.00 | 13.00 | 5.00 | 3.00 | 1.00
(0.02,0.04) | 2.00 | 1.00 5.00 | 3.00 | 12.00
(0.02,0.06) | 7.00 | 1.00 15.00 2.00
(0.02,0.08) | 2.00 | 1.00 | 2.00 | 13.00 | 3.00 | 2.00
(0.02,0.10) | 6.00 | 1.00 16.00 2.00
(0.04,0.00) | 28.00 | 6.00 | 2.00 | 15.00 | 1.00 | 2.00
(0.04,0.02) | 2.00 | 1.00 | 26.00 | 1.00 | 30.00 | 1.00
(0.04,0.04) | 2.00 | 1.00 1.00 | 27.00 | 2.00
(0.04,0.06) 1.00 | 2.00 | 1.00 | 31.00 | 2.00
(0.04,0.08) | 2.00 | 1.00 1.00 | 28.00 | 2.00
(0.04,0.10) | 16.00 | 1.00 24.00 | 2.00
(0.06, 0.00) 2.00 | 1.00 | 1.00 | 2.00
(0.06,0.02) | 6.00 | 1.00 3.00 | 2.00
(0.06,0.04) | 6.00 | 1.00 | 2.00 | 1.00 | 3.00 | 1.00
(0.06,0.06) 1.00 | 2.00 | 1.00 | 1.00 | 1.00
(0.06,0.08) 1.00 | 2.00 | 1.00 | 3.00 | 1.00
(0.06,0.10) | 6.00 | 1.00 2.00 | 3.00 | 2.00
(0.08,0.00) | 2.00 | 3.00 | 2.00 | 1.00 | 1.00 | 1.00
(0.08,0.02) | 2.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00
(0.08,0.04) | 1.00 | 6.00 | 1.00 | 1.00 | 1.00 | 2.00
(0.08,0.06) | 2.00 | 1.00 | 2.00 3.00 | 1.00
(0.08,0.08) 1.00 | 2.00 | 5.00 | 1.00 | 2.00
(0.08,0.10) 3.00 | 2.00 | 5.00 | 1.00 | 2.00
(0.10,0.00) | 1.00 | 9.00 1.00 | 1.00 | 1.00
(0.10,0.02) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
(0.10,0.04) | 1.00 | 20.00 | 1.00 | 1.00 | 1.00 | 1.00
(0.10,0.06) | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00
(0.10,0.08) 6.00 | 2.00 | 5.00 | 18.00 | 2.00
(0.10,0.10) | 2.00 | 9.00 | 2.00 3.00 | 1.00

TABLE 3.1: Robustness ranking for different couples
(11gs e)

random law of range equal to 10% of the original value, while orien-
tation is perturbed with a uniform random process in [—0.1 rad, 0.1 rad].

This experiment is called region noise experiment. To reduce bias,
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each sequence is computed 15 times, with different initial distur-

bance. Results are obtained by averaging the 15 measures

We compute evaluation and ranking for the whole set of competitors (the
VOT committee provides results from 40 trackers). In VOT2014, trackers
are ranked according to the AR rank, and in the AR plot, best trackers are
on the upper-right part of the figure. However, we will only display results
for some of them: DSST [Dan+14a], VOT2014’s winner based on corre-
lation filter, Hough-based trackers [DG13]; [GRB13]; [MP13] and real-
time trackers [DG13]; [MP13]; [MP14]; [VM14]; [Lew95]; [Hen+15].
Tab. 3.3, 3.4, 3.5 and Fig. 3.24 summarize results for baseline, region noise
and overall cases respectively. Overall results are obtained by averaging
baseline and region noise results. Globally, the trends obtained for the
baseline and the noisy tests are the same. We note that, in terms of rank-
ing and overlap, CHT, CHTs and CHTTf have similar performances. All
the trackers we proposed are however in the top 10 in the overall ranking
in terms of accuracy and robustness (for both weighted mean and pooled
mean). In terms of speed, our trackers are the fastest ones in EFO, out-
ranking FoT [VM14]. In the category of real-time trackers, our method
is only beaten by KCF [Hen+15], which is 6 times slower (in EFO). FoT
[VM14] has similar performances in accuracy, robustness and expected
overlap. If we compare our tracker with Hough-based ones, MatFlow is
slightly more accurate and robust than our method, but is slower. Other-

wise, all Hough-based methods are less effective and slower. Our tracker
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main weakness is in terms of expected overlap, with 0.2944 for the best
one (CHTT), which places it only in the first half of the VOT2014 com-
petitors. Fig. 3.23 illustrates one correct tracking, while Fig. 3.22 shows a
failure (due to fast motion of the target).

In terms of accuracy, our tracker behaves globally well: for each se-
quences, our tracker (in all forms) performs correctly and is correctly
ranked (at least first half for all sequences). There are still some exception,
such as polarbear (rank 32 among 40 trackers) and ball (rank 26), which
may be caused by scale change. In terms of robustness, scale change issue
is also a flaw of our tracker: for fish2, handl and hand?2 sequences, our

tracker performs badly (ranks 31, 31 and 29 respectively).

3.4.24 VOTI1S

VOT2015 [Kri+15] 1s composed of 60 sequences also taken from diverse
datasets. Region noise experiments have been discarded, leaving only the
baseline experiment.

Results are summarized Tab. 3.6. As for VOT2014, we use all re-
sults provided by the VOT committee (62 trackers), but we only show
results for some trackers: MDNET [NH16], VOT2015’s winner, real-
time trackers [VNM13]; [MP14]; [VM14]; [MV11] and Hough-based
trackers [HAS15]; [GRB13]. We also choose to show results of DSST
[Dan+14a], previous winner, DAT [PMBI15], Possegger’s tracker based
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on color histogram exclusively, and STAPLE [Ber+16], for which results
are available on author’s webpage * (without speed results). Baseline cor-
responds to a virtual tracker obtained by averaging performances of state-
of-the-art trackers published in ICCV, ECCV, CVPR, ICML and BMVC
in 2014/2015.

As for VOT2014 [KPL+], our tracker is one of the fastest among all
challengers (one of the few above 100 EFO). In terms of weighted rank-
ing, it is very close to the best real-time tracker ASMS, Vojir’s extension
of Mean shift [VNM13]. We get 10% better in terms of expected overlap,
but ASMS is better ranked in terms of accuracy and robustness. Other-
wise, both are at the same level in terms of speed (EFO close to 110). We
perform better than FoT which has similar expected overlap in VOT2014.
Consequently, we can say that in the category of real-time tracker, ours is
on par with the best competitors. If we look at the complete ranking, our
tracker is still well ranked in weighted mean ranking (13*" for the CHT
and CHTs in both accuracy and robustness, top 20 and CHTY). In the
pooled ranking, we are still in the first third in accuracy and robustness,
except for CHTT in robustness (first half). Compared to similar trackers,
Staple [Ber+16] is better ranked than our tracker: it may be due to the
fact that its shape-based tracker is a more complex algorithm than ours
(correlation filter based on HOG features), but is slower (according to the

author, it reaches 80 fps on a 4.0 GHz on a desktop machine). Against

3http://www.robots.ox.ac.uk/~luca/staple.html
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FIGURE 3.22: Frames from hand2 sequence

DAT [PMB15], CHT and CHTs are better ranked in weighted mean and
pooled rankings. However, substituting the distractor model of Posseg-
ger’s by a GHT improves the expected overlap (8% higher for the lowest
case). Otherwise, as for VOT2014, even though our tracker is well ranked
in accuracy and robustness (see Fig. 3.25 for AR plot for only compared
trackers), in terms of expected overlap, our tracker is only in the first half
of the ranking.

Fig. 3.26 and Fig. 3.27 illustrate correct tracking even with high illu-
mination change and object shape change. We also show Fig. 3.28 a case
of correct tracking from the position tracker only, but due to no orientation
estimation, obtained overlap is weak.

Regarding to per-sequence results, in terms of accuracy, our tracker (in
all forms) is correctly ranked, and weak accuracy are, in most cases, due
to scale change (as see for tunnel, book or octopus). Concerning robust-
ness, scale change is still a weakness for our tracker. Otherwise, against
sequences with high motion changes or deformations(basketball, book,

gymnastics3 or iceskater), our tracker performs very badly (below rank



98 Chapter 3. Object Tracking

| Parameter | Notation | Value |

Global parameters

Surrounding area coefficient @ 2.0

Safe foreground area coefficient B 0.20

Search window area coefficient ¥ V2
Color parameters

Number of bins per channel Ne 12

Updating rate fhe 0.06

Ratio for background area calculation Thek 2
GHT parameters

Number of index of the R-Table Ng 16

Updating rate Ly 0.08

Number of couples per entry Ny 200

Gradient magnitude threshold €g 70

State updating parameters
Area variation threshold €A 0.05
Max area variation Aa 0.05

TABLE 3.2: Parameters set
50 in robustness for all these sequences).

3.4.2.5 Analysis of results

Previously, we show results on academic datasets demonstrating that our
tracker is at the level of the state-of-the-art. In this section, we will analyze
more precisely the results, using the tools provided in the VOT toolkit.

One first remark concerns the performances of CHT, CHTs and CHTY.
Surprisingly, the three of them have similar results for all the criteria. One
reason may be the fact that parameters for scale and orientation are very
restrictive, and do not tolerate high variations. Less tolerant values could
create drift, leading to worse results. One solution may be to optimize
all parameters related to scale and orientation estimations, to evaluate the
relevance of the related methods. This remark leads us to test our tracker
with different features using the position tracker only.

Another remark concerns the evaluation criteria. Given one sequence,
trackers are evaluated in terms of speed, accuracy and robustness. The
first criterion can be computed, and trackers can be ranked easily. But ac-
curacy and robustness are correlated: let us consider performances in the
sequence sheep, obtained by trackers with different methods to compute
the gradient (Sobel, gradient at scales {1,2,4,8}). Results are summa-
rized Tab. 3.7. If we look at results in terms of accuracy, we obtain the
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Tracker Weighted Pooled Expected
mean rank rank

Acc. | Rob. | Acc. | Rob. | overlap

bdf [MP14] 10.67 | 7.33 9

DSST [Dan+14a] 1.83 | 4.33 1 3 0.3897
FoT [VM14] 7 1783 | 6 23 0.3037
KCF [Hen+15] 20 | 4.67 1 5 0.3840
NCC 8.0 34 6 41 0.1574
Matflow [MP13]; [MP14] 8.67 | 3.17 6 4 0.3311
Matrioska [MP13] 9.83 | 1233 | 6 9 0.2864
PTp [DG13] 26.17 | 11.17 | 32 9 0.2447

TABLE 3.3: Baseline results for VOT2014 (ranks over 43
candidates). CHT, CHTs and CHTT are our trackers.

highest results with CHT with a scale of 8. However, this good result
can be due to the failure (the two trackers that fail are failing at the same
frame) which leads to high accuracy afterwards (due to the re-initialization
of the bounding box). Even with the fact that accuracy is not counted for
10 frames after a failure, the re-initilization can provide a certain advan-
tage. Moreover, if the failure happened at different frames, or if different
trackers fail a different number of times, comparing those trackers turns
harder, as the re-initialization would greatly modify the accuracy. There-
fore, we will only compare results of trackers when involved trackers are
not failing at all, or are failing at the same frame.

Regarding to the biases of VOT datasets, the committee proposed the
weighted mean rank to reinforce impact of rare difficulties. If we detail
[llumination change and Camera Motion change, between the best and
the worst ranked, number of failures are shown Tab. 3.8. We can see that
in Illumination change, couples of failures can lead to high difference in
accuracy (5 failure means a loss of 25 places) while in Camera Motion
Change (very frequent in VOT15), it needs 45 failures to move from the
first position to the last. This is more visible when we generate results
from Tab. 3.6, as the most robust in terms of illumination never fails and
the worst fails 17 times (for a ranking of 60 competitors), while in Camera
Motion, the gap between the best and the worst is equal to 20 failures to
261. This suggests that a failure in illumination change has more impact

in terms of ranking than one in camera motion.
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Tracker Weighted Pooled Expected
mean rank rank

Acc. | Rob. | Acc. | Rob. | overlap

bdf [MP14] 7.83 | 7.33 8

DSST [Dan+14a] 1.33 3.5 1 4 0.3490
FoT [VM14] 7.83 12017 9 28 0.2681
KCF [Hen+15] 1.17 | 3.50 1 6 0.3443
NCC 11 | 3733 | 8 41 0.1549
Matflow [MP13]; [MP14] 5.67 | 4.50 7 6 0.2930
Matrioska [MP13] 8.67 | 13.67 | 8 23 0.2479
PTp [DGI13] 21.17 | 8.37 15 7 0.2592

TABLE 3.4: Region noise results for VOT2014

FIGURE 3.23: Frames from forus sequence

Using a code profiler, we managed to determine which functions are
the most costly in our algorithm. The parameter that most impacts the
computation time is the object size (which impacts the size of the search
window). In most cases, the two most costly operations are the backpro-
jection (Eq. 3.22), that can take 10% of the consumed time, and the GHT.
For the backprojection, it is mainly due to the iterative pixel access. For
the GHT, it is due to the gradient computation. This computation is made
using OpenCV functions, based on floating point operations, more costly
than integer functions. One remark we made previously, in Fig. 3.13,
concerned the possibility to parallelize the computation of GB(HT,), S,

and PR;. As the GHT is more expensive than the two other operations
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Tracker Accuracy | Robustness | Expected Speed
overlap EFO fps

bdf [MP14]

DSST 1.58 3.92 0.3693 5.80 13.07
[Dan+14a]

FoT [VM14] 7.42 19.00 0.2859 | 114.64 | 306.52
KCF 1.58 4.08 0.3641 2423 | 63.42
[Hen+15]

NCC 9.50 35.67 0.1561 3.95 7.80
Matflow 7.17 3.83 0.3120 19.08 | 40.94
[MP13];

[MP14]

Matrioska 9.25 13.00 0.2671 10.20 | 21.88
[MP13]

PTp [DG13] 23.67 9.92 0.2519 49.89 | 127.87

TABLE 3.5: Overall results for VOT2014

(at least 2 times), using three threads to compute them may not be the best
solution. However, as computing S.; and PR, takes approximately the
same time, compute them sequentially in one thread, and computing the
GHT in another thread may be a better solution.

The first experiment we made concerns relative performances of the
two parts of the tracker (Hough-part and color-part), by testing each part
of the tracker on VOT2015. Expected overlap shown Tab. 3.9 already
indicates that isolated, Color and Hough do not perform well. Fig 3.29
shows results in terms of accuracy and number of failures according to
different difficulties. Results are close to what we expected, as the color
tracker only is the tracker with the weakest overlap score in case of illu-
mination changes (and is also close to the Hough tracker only in terms of
failure). Globally, the GHT alone does not produce a robust tracker (for
all difficulties).

We also studied the impact of different color spaces. We chose the
RGB color space as a reference (still with the position tracker only), and

compared it with the three following color spaces:

e No color. Since usually, R, G and B channels are correlated on
cameras, it is relevant to test performances of our tracker using only

the grayscale channel
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FIGURE 3.24: AR plot for trackers displayed on Tab. 3.5

e HSV color space, for which we only work on Hue-histogram. In

this case, histograms are computed by discarding weak values of
saturation (below 10). This tracker will be denoted HSV

Lab color space, for which we work on ab-histogram (denoted ab)
and lab-histograms (lab). For ab case, we will discard pixels with
Luminance below 50 in histogram computation. We tested the ab
color space to see how important the luminance channel was, and to

see relevance of opponent color theory in object tracking

Color attributes proposed by [VDW+09], already mentioned in Sec-
tion. 2.1.1 and used for Content-based Image Retrieval. In the code
proposed by Van de Weijer *, RGB pixels are quantized into a 32 x
32x 32 space. Then, a function from {0, 1,...,31}3t0{0,1,...,n}
is created (Van de Weijer proposed two functions, one with 11 col-
ors, another one with 50). The start space is the quantified RGB
color space, and the end space represents attribute colors. The built
histogram then represents the distribution of color attributes. We
performed the test with p. = 0.06 (as for other color spaces) and
with p. = 0.02. Trackers will be denoted "Attnumcolor (u.)" (Att50

‘http://cat.uab.es/~joost/software.html
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Tracker Weighted Pooled Exp. Speed
mean rank rank overlap
Acc. | Rob. | Acc. | Rob. EFO fps

Staple 1.00 | 4.33 1 5 0.3450

[Ber+16]

ASMS 7.50 | 10.50 | 2 13 | 0.2353 | 115.09 | 142.26
[VNM13]

Baseline 4.67 | 16.00 | 2 20 | 0.2353 1.01 2.32
bdf 29.50 | 31.83 | 27 44 | 0.2054 | 200.24 | 78.43
[MP14]

DAT 13.67 | 17.33 6 20 | 0.2428 | 9.82 14.87
[PMB15]

DSST 4.00 | 23.67 1 36 | 0.2707 | 3.29 4.47
[Dan+14a]

FoT 19.67 | 45.67 | 16 53 | 0.1934 | 143.62 | 177.53
[VM14]

HT 20.00 | 28.00 | 13 44 1 0.2045 | 091 0.56
[GRB13]

Matflow 22.17 | 27.50 | 23 44 1 0.2098 | 81.34 | 31.86
[MP13];

[MP14]

MDNET 1.00 | 1.33 1 1 0.3789 | 0.87 0.97
[NH16]

NCC 8.33 | 64.83 2 66 | 0.1359 | 172.85 | 105.25
[Lew95]

sPST 1.67 | 4.50 1 5 0.3134 1.03 1.16
[HAS15]

TABLE 3.6: Overall results for VOT2015 (ranks go to
66)

(e = 0.02) will represent the color attribute with 50 colors and
e = 0.02)

We are using the same parameter set as Tab. 3.2: grayscale and Hue his-
togram are composed of 12 bins, and the ab-histogram is sized to 12 x 12
bins. First, in terms of accuracy, as for parameters optimization, all track-
ers have similar performances. The difference is made in terms of ro-
bustness (see Tab. 3.10 for details). Second, we can note the weakness
of the tracker ab. Indeed, it performs very badly in terms of overlap and
accuracy for most sequences and more particularly on glove, ball2 or carl

(results were obtained using report_article function from the VOT-toolkit,
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FIGURE 3.25: AR plot for trackers displayed on Tab. 3.6
for VOT15

FIGURE 3.26: Frames from matrix sequence

providing accuracy and robustness for each sequence, and available in Ap-
pendix. A). In Tab. 3.10, we can see that in terms of robustness, it performs
very badly compared to other trackers, excepted the two Att50. This is
true for all difficulties. It is mainly because for these particular sequences,
the ab color space does not provide a sufficient power of discrimination to
separate object pixels from the background: for ball2, the problem is that
black and white are not different from blue in ab space, resulting in non
observable object. For carl and glove, the issue is related to the blueish
aspect of the target and the surrounding background. On the contrary, ab
is performing very well, and even better than all other algorithms, for the
helicopter sequence. This is due to obvious separability of the helicopter
(red) and background (green grass and blue sky) colors. Fig. 3.30 illus-
trates these cases.
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FIGURE 3.28: Tracking from iceskater2 sequence

If we add the Luminance channel, results are getting much better, and
closer to those from RGB channel. However, due to the low score of ab
(highlighting the low power of discrimination of the ab color space), we
can expect that the lab color space leads to slightly worse results than
RGB. For HSV based tracker, performances are slightly lower than the
reference (CHT). The size of the histogram (12 bins against 12%) may be
the cause of the slight drop of accuracy, but, the color model is 122 lighter
(in terms of memory consumption) than for the original tracker. The last
remarks concern Van de Weijer color attributes [VDW+09]. In all cases
(number of color, value of 1..), performances are low. Weaknesses are due

to two reasons:

e The instability of color measure over the time. From one frame
to another, pixel color attributes can drastically change, while the
variation is smoother in traditional color spaces. Fig. 3.31 illustrates
fast variation of color attributes of the target (the plastic bag) whose
pixels are moving from the attribute *white’ to the attribute blue’.

It is noticeable for Att50, when we compare . = 0.06 which gives
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| | Overlap | Failure |

CHTSobel 0.49 0

CHT 0.53 0
CHTscale2 0.52 0
CHTscale4 0.47 1
CHTscale8 0.55 1

TABLE 3.7: Overlap and number of failure for different
trackers in the sequence sheep

| Rank | Cam | Il |
1 50 - 54 1-4
Last | 98 (rank 36) | 9 (rank 26)

TABLE 3.8: Number of failures per rank on Camera Mo-
tion an Illumination change

an overlap of 0.1999, while y. = 0.02 (meaning weaker update of
the color histogram) gives 0.2116. In the code provided by Van de
Weijer, two implementations are available: one mapping directly a
RGB bin to a color label, and one giving the probability that this bin
leads to each attribute. This second implementation may be tested

in the future

e The lack of color to describe the target. Fig. 3.32 illustrates one case
where the target color (the left cat) is similar to the background.
This remark holds for HSV space too. However, in this case, as
the Hue histogram is more stable than color attribute histogram, the
loss of performance is less dramatic. Interestingly, Att50 performs
very badly in terms of robustness. This remark should be a topic for
further discussions. In terms of difficulties, its main weaknesses is

Camera motion

The first series of tests concerned the impact of visual color features.
Surprisingly, the RGB color space gives the best results. Other ones suffer
from different weaknesses: the Hue space in HSV suffers from the lack
of dynamic of the color space (even though impact of this flaw is limited,
with respect to the final expected overlap), Lab suffers from the weak
power of discrimination of ab color space, and color attributes are unstable
over the time. We can now move to the second series of tests.

These tests concern the geometry features. CHT still serves as a refer-

ence, and can be identified to a Gaussian derivative computed at scale 1.
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| Tracker | Expected Overlap |
CHT 0.2668
CHTs 0.2664
Full 0.2613
Color 0.2126
Hough 0.1854
TABLE 3.9: Expected overlap for different forms of
[TM17]
O Position Scale Full Color ¢} Hough
el camera moton A
tabel empty [~ 9\:
label ilum change - ;‘?’ g
Iabel motion change - Q'/ ¢
’ Overall overlap '
el camera moton — —%
tabel empty [~ C(:// ¢
abel o change |- e R TN
label moion change - = 29 %
S | B A o
label size change L S S

Failures

FIGURE 3.29: Accuracy and failure for different versions
of CHT

We compare it to gradient computed with Sobel filter (with kernel of size
3 x 3) and gradient computed with Gaussian derivative formulation, with
oin{2,4, 8} (Fig. 3.33 illustrates gradient magnitude at those scales), and
with kernel sizes equal to 2 - 0% + 1. Complete results per sequences are
available in Appendix. B. However, in our case, the goal is to see impact
of different scales for derivative computation.

Again, all trackers have the same accuracy rank (except Sobel, which
is ranked 1.83), and differences are in robustness. The largest scaled
tracker give relatively weak results compared to other scales, but still gives
satisfactory results (given the expected overlap, it performs as well as the
extension of the Mean Shift [VNMI13], and as well as DAT [PMB15]).
The bad rank obtained in terms of robustness to Illumination change (12
failures, while others fails at max 7 times) induced the bad rank in ro-
bustness in the weighted mean. If we study particular sequences, one

clear weakness is also the size of the target: objects smaller than gradient
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Tracker Weighted Pooled Expected
mean rank rank overlap
Acc. | Rob. | Acc. | Rob.
CHT 1.0 | 1.17 | 1.0 | 1.0 0.2668
ab 20 | 733 | 1.0 | 9.0 0.1752
Grayscale 1.0 | 1.83 | 1.0 | 9.0 0.2166
HSV 1.0 | 1.33 | 1.0 | 3.00 | 0.2281
lab 1.0 | 1.67 | 1.0 | 2.0 0.2519
Attll (. =0.06) | 1.0 | 233 | 1.0 | 3.0 0.2085
Att50 (u. =0.06) | 1.0 | 533 | 1.0 | 7.00 | 0.1999
Attll (. =0.02) | 1.0 | 267 | 1.0 | 3.0 0.2069
Att50 (u. =0.02) | 1.17 | 533 | 1.0 | 7.0 0.2116

TABLE 3.10: Results for color variant trackers

Expected overlap
Scale 4 0.2732
Scale 2 0.2713
CHT
Scale 8 0.2389
Sobel 0.2262
TABLE 3.11: Expected overlap for geometrical variant
trackers
Weighted mean Pooled Speed
Tracker | A-Rank | R-Rank | A-Rank | R-Rank | EFO fps
Position 1.00 1.17 1.00 1.00 115.90 | 124.07
Sobel 1.83 1.33 1.00 2.00 90.54 | 96.83
Scale 2 1.00 1.00 1.00 86.38 | 92.48
Scale 4 1.00 1.17 1.00 1.00 61.94 | 66.31
Scale 8 1.00 2.50 1.00 52.28 | 55.97

TABLE 3.12: Accuracy for geometrical variant trackers
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FIGURE 3.30: Frames from ball2, carl and helicopter
and their projection into channel a and b.

scale are not correctly represented. We can for example consider ball2, in
which Scale 8 leads to an average overlap of 0.02, while others manage
to reach more than 0.70, or handballl, for which it fails 6 times, twice
more than in other cases. Another question concerns the possibility to
use a characteristic size to track a target. The idea would be to smooth
all non relevant details to keep only the sufficient information to track the
target. The existence of such best scale (and of a method to estimate it),
may improve tracker’s performances (neglecting the object size change).
So, if o,y is the characteristic scale to compute the gradient, then o,
should be a maximum for at least the overlap criterion. However, if we
consider the sequence road, where the target keeps its initial size (dif-
ficulties of this sequence are mainly occlusion and camera motion), the
most accurate tracker is obtained with the largest scale (8), even though
it is the only one to fail (2 failures) (Tab. 3.13 shows overlap results, and
shows that the overlap in function of the scale does not have the wanted
monotony, as ¢ = 2 is a local maxima). This is all the more surprising
that the target is small (width of 30 pixels), and we can expect that low
scales are more adapted. Intermediate scales (2 and 4) are at the same
order of magnitude in terms of robustness. In terms of expected over-
lap, they are more effective than the tracker with scale 1. In the whole
VOT2015 ranking (with results provided by the committee and by Sta-
ple’s author [Ber+16]), the tracker with a scale of 4 would be ranked 23
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FIGURE 3.31: Frames 9 and 10 from bag, with their color
attributes mapping.

FIGURE 3.32: Color attribute from fernando.

in terms of expected overlap (among 63 competitors), two positions above
DSST (VOT2014 winner). In terms of speed, larger scales are slower than
lower ones (computation cost of derivatives made by Gaussian kernels of
larger sizes, using OpenCV implementation). However, in all cases, speed
is still satisfactory (more than 50 fps). Rather than searching for an opti-
mal scale per sequence, one solution to improve the accuracy, and that we
can test at short-term, should be to use a multi-scale GHT.

Finally, the last remark concerns the use of Sobel filters, whose main
interest was the computation time. However, considering the results (in
terms of speed, accuracy and robustness), replacing the Sobel filter by a

Gaussian derivative for tracking is a right decision.
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FIGURE 3.33: Gradient magnitude for o € {2, 4,8}

Overlap
Position 0.61
oc=2 0.65
c=14 0.60
o=28 0.68

TABLE 3.13: Overlap of road for different values of o

3.5 Conclusion

We presented our work in object tracking. From the preliminary works
[TM15], which combines GHT and Particle Filter, to the final tracker
[TM17], which is still based on GHT, but for which the Particle Fil-
ter was replaced by a simple color histogram used to build a pixel con-
fidence map, we managed to propose algorithms based on pixel color
and gradient exclusively. In both cases, the GHT is applied in its origi-
nal form [Bal81], unlike trackers from the literature which rely on more
complex GHT (based on more complex features or codebooks) The last
proposed tracker was tested on academic datasets VOT14 and VOT15
[KPL+]; [Kri+15], and gives decent results in terms of accuracy and ro-
bustness (top 10 in accuracy and robustness for VOT 14, top 20 for VOT15).
In terms of speed, our non-fully optimized tracker can run at more than
100 fps on a laptop machine at 2.4 GHz, without explicit multi-threading.
This tracker is then one of the fastest from the state-of-the-art, and is
still competitive on modern datasets. Compared to other Hough-based
trackers, only Hua [HAS15] proposed a better tracker, but with a much
higher computation time. Otherwise, Matflow [MP13]; [MP14] is a bet-
ter ranked Hough-based tracker in VOT2014. However, [TM17] performs
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better in VOT15. Pixeltrack [DG13] is the fastest Hough-based tracker
on VOT2014, and is very similar to our tracker. However, we managed
to outperform their results in terms of accuracy, robustness, overlap and
speed.

We achieved our goal to work on light and low-level features (pixel
colors and derivatives) and simple implementation of the GHT. Results
are very satisfactory on academic datasets. We also optimized a subset
of the parameter set. As we succeed to separate the color-based tracker
from the shape-based one, our tracker also served as a base to determine
impact of different features. We tested impact of changing color space
(HSYV, lab, color attributes [VDW-+09]) and different scales of gradient
computation. From these different tests, we concluded that the RGB color
space, in spite of limitations mentioned in Chapter. 2, presented the best
performances in terms of accuracy, robustness and overlap. In terms of
gradient computation, high scales produce relatively weak results. The
best results are obtained with intermediate scales (¢ = 2 or o = 4).

Now, in terms of perspectives, we have highlighted some limitations

and propose possible enhancements of our work:

o As mentioned before, the scale and orientation estimation is not sat-
isfactory: results are not better than position tracker only. With the
current method, the solution should be to optimize all the parameter
related to scale and orientation. Another solution would be to com-
pute more complex operations, such as segmentation, or by setting
dynamically the value of egy, (threshold value used to determine
which pixels in BF; belong to the target). If the confidence map
BF; is reliable, the first choice can be a good solution as, in the lit-
erature, several segmentation algorithms can do the task effectively,
at the cost of an increased computation time. The second choice
may involve a function to estimate tracking confidence to adjust
epr, according to the confidence. It should be faster to compute,

but less reliable than a segmentation

e The parameter tuning is not complete: we optimized only 4 param-
eters that we considered critical. As mentioned earlier, parameters
related to scale and orientation estimation can also be optimized in

our full tracker

e In terms of feature space, our tracker can perform differently, ac-

cording to the scale and the color space used. One possible way
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for improvement is selecting the "correct" color space, knowing the
sequence. We can for example cite Collins [CLLO5] who selects
the color space optimizing a measure of discrimination based on
likelihood. By considering an optimal tracker, which has, for each
sequence, the results from the tracker with the right color space, we
can see how good Collins” method can predict this optimal color
space. Concerning scale, we already mentioned the idea to define
the optimal scale, knowing the sequence. We can also think about
using the Hough Transform at multiple scales for derivative compu-

tation

e Our algorithm is light and fast. From a practical point of view, it
can serve as a base for many enhancements: detection of failure
(and recovery), model updating with y. and i, varying over the
time. While the first enhancement can be done by combining the
tracker with a detector (in that case, we are close to object specific
and multi-target tracking), the second one can imply a measure of
confidence, which can be related to the first point (scale and orienta-
tion estimation) In that sense, we can expect to improve our tracker

by diverse extensions

Even though the VOT committee provides us different methods to com-
pare and to rank different trackers, the task is still complicated as their two
main criteria (accuracy and robustness) are correlated, and comparing the
raw performances in accuracy can not be done independently to robust-
ness. To have a better view of performances, we can still test our tracker
on different datasets: VOT2016 [Kri+16b], OTB [WLY 13], Temple-Color
[LBL15]... We can also test [TM17] on the VOT-TIR dataset, with se-
quences taken with thermal infrared sensors. All of them propose different
sequences (or in VOT2016 case, different annotations), different methods
of evaluations, and can lead to further analyses of our tracker. If we want
to remain on actual tested datasets, results were obtained with parameters
tuned according to the weighted mean rank. As the VOT committee also
proposes another ranking, the pooled one, making the same study with
this other ranking may be interesting. Pooled ranking also has another
interest: as trackers are ranked according to sequences and not by diffi-
culties, we can study performances sequence per sequence, and no longer

according to difficulties.
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To conclude this part, combining the original GHT with a foreground
background discrimination model based on RGB-histogram leads to a
very fast tracker, with decent accuracy and robustness. It means that,
for tracking, this level of representation is sufficient to discriminate ob-
jects from background. From a systemic point of view, this tracker is very
light, fast and accurate, then suitable for low-power systems. In the next
chapter, we focus on object detection. Feature spaces are designed in or-
der to describe classes of object in the most generic way possible. The
interest will then be to see how far we can go, using basically the same

representation as we used for tracking.
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Object Detection
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Introduction

The second task we will present is object detection. It consists in defining
a class of object (human face, car, pedestrian), and localize instances of

this class in test images. Object detection can be used in many areas:

e For statistics application. For example, counting cars moving on

roads, counting passengers going through a door or a corridor

e For surveillance: detecting people entering secured areas
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e In biometrics, a face recognition system may require a step of face
detection, in order to analyze it. We can mention iris as a biometric

modality, which also requires eyes detection

e In photography: detecting faces to adjust the focus of the camera,

or detecting smiles

Object tracking (presented in the Chapter. 3) and object detection are very
different tasks. Indeed, in terms of features, those used for detection have
to describe the class of object as precisely as possible, coping with intra-
class variation. Fig. 4.1 illustrates different instances of the class "pedes-
trian": shape, color, size aspect are all different from one instance to an-
other. For tracking, the feature space can be chosen in order to discrimi-
nate target from background (such as [TM17]), and to be resilient to object
deformation or context change.

To cope with intra-class variation, detectors have to learn visual as-
pects of many objects. Machine Learning methods are then adapted for
this task.

FIGURE 4.1: Instances from pedestrian class

In the framework of our thesis, exploring limits of low-level features
in object detection is interesting. In accordance with the central role of
the Hough Transform in our thesis, we will base our work on the Hough
Forest proposed by Gall [GL13]. Our positioning with regard to Hough-
based detectors will be presented in this chapter, which is organized that

way:
e First, we will make a short review of literature

e Second, we will present Hough Forest algorithm [GL13], some im-
plementation details provided by Gall, and then a review of Hough

Forest-based detectors
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e Third, we will present our works [TM16]. As we planned to reduce
the dimension of the feature space, we need to compensate with

additional information.

e Fourth, we will present results on academic datasets

4.1 Literature review

In this section, we present popular works on object detection. In the first
part, we present different algorithms. Then, we will focus on object de-
tectors based on Hough Transform.

Formally, object detection is close to a 2-class classification task, which
consists in, given an image, determine if it belongs to the learned class
(foreground) or not (background). One difference is that detection also
implies a localization task meaning that, the aim is also to estimate in-
stance’s state (position and scale for example). Moving from classification
to detection can be done with a sliding-window approach, by dividing the
image into several sub-images (of different sizes, at different positions)
and compute a classifier on them.

Object detection is also one special case of object recognition, which
combines localization and image classification (multi-class classification
task). Consequently, we will enlarge our review to object recognition and

to object classification.

4.1.1 Object classification, detection, recognition

Object detectors rely on machine learning classifiers. There are many
types of classifier, and we will not propose a full coverage of the problem.
We will rather present some popular classifiers, and then finish with state-
of-the-art works.

Viola and Jones proposed a very popular face detector [VJO1]. Their
contributions rely on three important elements. First, their feature space
is generated using Haar wavelets, and is quickly obtained using integral
images. Second, by using AdaBoost [FS95], they obtain a classifier rely-
ing on a small number of dimensions in terms of feature space. Third, the
cascade architecture of their classifier, with weak and fast classifiers at the
top and strong and slow at the bottom, allows to quickly discard a large
proportion of false alarms. This contribution is important, since Viola and

Jones were among the first to propose a real-time detector.
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Another popular classifier, originally designed for pedestrian detec-
tion was proposed by Dalal and Triggs [DTO5]. The important part of
the contribution is the HOG features, already presented Section. 2.1.2.4,
and present in many algorithms (including Hough Forest [Gal+11]). This
contribution is all the more important that, by using a simple SVM for
detection, Dalal demonstrates that designing high-level regional features
provided good results for detection.

In the category of tree decision-based detectors, Moosmann [MNJ0§]
proposed an algorithm for object classification, structurally closed to Hough
Forest. Moosmann uses random forests, also composed of binary trees.
However, his works only deals with image classification. We will detail
similarities and differences in Section. 4.2.

In the category of state-of-the-art detectors, Convolutional Neural Net-
works are now the reference in terms of accuracy. Deep Learning became
popular in object classification, when researchers, notably Krizhevsky
[KSH12] managed to beat the state-of-the-art on classification in Ima-
geNet dataset [Den+09] using CNNs to train the network AlexNet, out-
ranking previous methods based on Bag of Words [Csu+04], and reach-
ing performances in image classification close to the human [Rus+14].
AlexNet was followed by different CNNs such as Overfeat [Ser+13], VGG
[SZ14]... Girshick [Gir+14] managed to beat state-of-the-art detectors on
Pascal VOC datasets [Eve+07]; [Eve+10] by proposing R-CNN. From an
image, Girshick extracts many search windows. Each candidate window
is then tested using CNNs to determine if the image belongs to one class
(Pascal VOC contains several classes). Girshick also considers two CNNs:
one for classification, using ImageNet for training [Den+09], one for lo-
calization (using a subset of Pascal VOC for training). Many works based
on R-CNN aimed to enhance training and detection speed [Ren+15]; [Red+16],
or to enhance accuracy [ZD14] (for this category, [HBS14] proposed a
survey of different contributions).

Before Deep Learning methods, Deformable Part Model (DPM) [Fel+10]
was the reference in object detection. We already mentioned this pa-
per in Chapter. 3 as Danelljan [Dan+14a] used PCA-HOG as a feature
space (combination of HOG features, computed with 9 orientations and 4
normalization factors, and PCA to reduce the dimension of descriptors).
DPM relies on the filtering operation, computed at different scales. One

object is described by a main filter, and by different parts, each part itself
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modeled by its own filter, by an offset vector (defined by the relative po-
sition of this part with regard to object’s center), and by a vector defining
a deformation cost. Detecting an object is then realized by searching the
area having high response on all defined filters. For object detection task,
a latent SVM is then trained.

4.1.2 Hough detectors

In this section, we focus on detectors using Hough Transform. Compared
to the original GHT [Bal81], the main principle consists in replacing the
R-Table by a codebook. The limit of the R-Table is that all lists of dis-
placements are only indexed by gradient orientation. This limit has al-
ready been considered in tracking case, as Godec [GRB13] replaced it
by random Ferns. In detection task, the problem is more critical as we
do not consider single object in detection, but classes of object. In that
case, higher level features, with higher power of representation, have been
designed for detection: HOG [DTO05], keypoints [LLow99].

Leibe’s Implicit Shape Model (ISM) [LLS08] is one of the first ob-
ject detector exploiting the GHT, and extending the notion of R-Table
to a codebook indexed by higher-level features than gradient orientation.
Leibe represents each image from the training set with a set of keypoints
(by testing different types of keypoints, and among them, SIFT [Low99]).
Each keypoint is also associated to a displacement from the keypoint to a
reference point. Then, Leibe regroups all similar features using clustering
method. By clustering the keypoints set, Leibe generates a codebook, tak-
ing the role of the R-Table in the original GHT. In detection mode, given
an image, keypoints are extracted, passed through the trained codebook,
and vote according to the resulting entry. Then, after localizing object (by
maxima search), Leibe also proceeds to a backprojection of maxima, to
accurately segment detected object.

The Max-Margin Hough Transform [MMO9] proposed by Maji ex-
tends the training step by applying a step of weight training, to maximize
weight of positive images. For the detection step, after its Max-Margin
Hough Transform, Maji also uses another classifier to validate the detec-
tion.

By grouping images from training set in different latent classes, Razavi
[Raz+12] proposed the Latent Hough Transform. The problem tackled
by Razavi is then to solve an optimization problem in order to get the
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optimal latent matrix, representing the method to group images from the
training set. This approach has also been used by Tejani [Tej+14], who
combines Hough Forest [Gal+11] and latent variables formulation to 3D
object detection.

In Chapter 3, we mentioned the backprojection operation. In ob-
ject detection case, this operation is very helpful, as shown by Razavi
[RGVGI10]. The key is to consider one detected instance (obtained by lo-
cal maxima search), and to backproject this detection to get the support of
votes (i.e. the set of elements which have voted for this instance). Com-
pared to the backprojection mentioned in the tracking section, used by
Duffner [DG13] and Godec [GRB13], Razavi’s backprojection is softer,
as he backprojects the peak and its surrounding too: leading to a non-
binary backprojection map (compared to Eq. 3.8). This backprojection

can be used in many ways:

e To estimate the bounding box

e To measure the similarity between detected instance and training

objects

e To measure the similarity between two detected instances

Another important variation of the Hough Transform in object detec-
tion context is the Hough Forest, proposed by Gall [GL13]. Due to its
importance for our work, we will make a full presentation of this algo-

rithm in the next section.

4.2 Hough Forest

In this section, we present Hough Forest, as proposed by Gall [GL13].
This algorithm, based on Random Forest [Ho95]; [Bre(01], is very close to
one object recognition algorithm proposed by Moosmann [MNJ08]. Our

explanation will be divided in two parts:

1. Forest training

2. Object detection

4.2.1 Forest training

In this part, we explain the forest training. Our explanation is made in

three steps: first, how to generate training set, given input images. Second,
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how to train forests. Third, some implementation details provided by Gall
[GL13] are presented. All explanations are done for the training of one
unique tree. The training of the whole forest basically consists in repeating

the process N times.

4.2.1.1 Generating training set

Training a detector (and more generally, a classifier) requires the gener-
ation of training set. In detection case, given one class of object (car,
human, animal...), the principle consists in considering positive images
(image from this class) and sometimes negative ones, and to project them
into a feature space. For example, Viola and Jones’ face detector [VJO1]
relies on Haar wavelet features to produce a very fast face detector. Leibe
trains its classifier using a sparse representation, based on keypoint fea-
tures [LLSO8].

Hough Forest algorithm is similar to Moosmann’s method [MNJOS]:
both consider positive and negative images, and from each image of these
two classes, extract patches, randomly chosen. All patches have the same

size w X h, and are projected into a multi-dimensional feature space:

e The 3 channels from Lab color spaces

e Absolute value of first derivatives |5°| and |g—;|

9%e
0%z

. . 2
e Absolute values of two second order derivatives : |5+| and |gT;

e HOG features [DTOS5] generating 9 components: one for each bin

those computed features results to 16 dimensions feature space. Morpho-
logical erosion and dilation are then computed on each feature, leading
to a 32D feature space. The aim of these operations is to add robustness
toward noise and small deformations. Moosmann, in his case, tested dif-
ferent feature spaces: based on color (HSL color space), Haar wavelet or
grayscale SIFT descriptors.

We will denote, for each (z,y) € {0,1,...,w—1} x{0,1,...,h—1}
and ¢ € {0, N; — 1}, by 7.(x,y) the value of the patch 7, at coordinate
(x,y) and for the feature c. Positive patches are additionally described by
their relative position with respect to object’s center. Fig. 4.2 illustrates
patch sampling from two images of UIUC Cars training set [AARO4].
Blue patches are negative, red ones positive. For this whole chapter, we
will denote as P+ and P~ the positive and negative patch sets used to train
the detector. Let us also define P = PT U P~
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FIGURE 4.2: Patch sampling from images from UIUC
dataset [AARO4].

4.2.1.2 Training tree

Now that the training set for one tree has been generated, we now move to
the training of the Hough tree. Let us first provide useful notations. Each
Hough Tree 7" is a binary tree. Let dy be its maximal depth. 7' is then
composed by at most N = 297 — 1 nodes. These nodes are divided into
two types, the leaves (terminal nodes) and the non-leaves. All nodes are
stored in a table, and each node is indexed by i € {0,1,..., Np — 1}. We
can then code a tree as a list 7 = {7'(0), T(1),...,T(Nr — 1)}. Given a
non-leaf node of index j, its two child nodes are indexed by (2 - j + k),
with £ = 1 for the left child node, and £ = 2 for the right one. Fig. 4.3
illustrates an example tree of depth 3. Green circles symbolize nodes, blue

squares leaves.

Depth

| ]
0 1

@ :

. v

FIGURE 4.3: A binary tree of depth 3.

For a training set P, each non-leaf node j is trained by considering a
subset P(j) of P in order to split it into two disjoint sets P(2 - j + 1) and
P(2-j+ 2), used to train the two nodes 7'(2-j+ 1) and T'(2- j + 2). We
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FIGURE 4.4: Patch set split into two disjoint parts

also have P(0) = P. The split process is done by a binary test, designed
according to an optimization procedure that will be detailed further. This
binary test is a function taking as an input a patch 7 € P(j) and using 6

parameters:
e two couples of coordinates p; = (x;,y;) and p, = (z,, y,)
e One channel ¢
e One threshold value 7

and defined by the quantity:

Q(ﬂ-) = 7Tc(xla yl) - 7Tc(aj’ra yr) +T (41)

The threshold value 7 is then chosen randomly in:

[ mll'l (ﬂ-c(xl; yl) - 7Tc(xm yr))a ma,x <7TC<.T1, yl) — 7Tc(xra yT))] (42)
TE€P(J) TE€P(J)

Let us denote as () = {p;, p,, ¢, T} a binary test defined by Eq. 4.1. Given
any patch set Py, it can be splitted into two disjoint subsets Pég and P():

P, = {7 € PolQ(m) > 0} 4.3)

Py = {7 € PglQ(m) <0} (4.4)

Fig. 4.4 illustrates the splitting process. Then, a binary test () can be

evaluated, in terms of quality, by these two criteria:
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e One criterion related to Shannon’s entropy of the labels {+, —}:
U(Q) = Pyl - H(Pg) + [Pyl - H(Pg) (4.5)

_ _ 7] P*] -1 P71
where H(P) = =57 lo ( Bl > — & log< 7 )
and |S| denotes the cardinality of the patch set S. According to
this criterion, the optimal split is done when positive and negative

patches set are perfectly separated in the two subsets

e One criterion based on standard deviation of the offset vectors of

positive patches:

= > D (de—dipy)e )’ (4.6)

te{l,r} WE(Pt

with d(%)+ the average displacement computed from all positive
patches displacements. The aim of this criterion is to split the pos-
itive part P according to their spatial position with regard to their
center, and gathering positives patches localized in the same area
with regard to the reference point, thus concentrating the votes casted
at one leaf. We can imagine for example, patches taken at the head
of pedestrian, gathered in the same subset (as all of them are located

above the reference point, which is usually located at the torso level)

Both criteria are used to train non-leaf node. Indeed, at each non-leaf
node 7, Gall randomly selects one of these two criteria, and then draws
Ng binary tests. He then conserves the test Qipt optimizing the selected

criterion:
Qlpt = argcrgnin Up(Q) 4.7

with b € {e, d}. Moosmann only considers one criterion, based on entropy
and mutual information. Otherwise, his binary test is similar to Gall’s one,
with the difference that Moosman does not compare the difference of two
values to one threshold, but directly compares the value of one pixel, in
one feature, with one threshold value.

Then, after dividing the patch set P(j) by using Q? ;. P(2-j + 1) and
P(2-j+2) are trained in a similar way, if they are non-leaf node. In case
of a leaf node (when the depth reaches the maximum depth, or when there
are not enough positive patches), all displacements from positive patches

are stored, and the leaf is associated to a weight w; = |f|’;,((j)f‘ which is the



4.2. Hough Forest 125

proportion of positive patches in P(j). If we look at Moosmann’s paper,
each leaf also contains one SVM, classifying all patches according to their

class (he is working on multi-class classification).

4.2.1.3 Implementation details

In the previous section, we explained how the Hough Forest can be ba-
sically trained. However, in Gall’s work [GL13], several complementary
details are used to enhance the detection. We present them in this section.

The first operation consists in normalizing positive image size. The
positive training set is composed of different instances of the same class,
at different sizes. One solution suggested by Gall was to resize all images
in order to make them have the same height, by ensuring that the average
value of the largest dimension of all positive images equals 100 pixels.

The second modification is done in order to add some variability within
the forest, and enhance the classification of the most difficult examples.
One first set of trees from the forest is trained by using the whole patch
set. Then, this partial set is tested in the whole dataset, in order to extract
positive images with the lowest peak, and negative ones with the highest
peak. The aim is to get the subset of the most difficult positive and neg-
ative images. This subset is then used to train a second subset of trees of
the forest. Finally, a third set is generated the same way.

Third, Gall defines two criteria to determine if a node is a leaf:
e If node’s depth is equal to dr

e If there are not enough positive patches as input for node training
(Pt < Ny, With ni, = 15)

4.2.1.4 Detection

In the last section, we explain the detection of instances of object once the
forest is trained.

Given a test image I, all patches 7 are densely extracted. Gall also
studied impact of drawing patches using a regular grid [GL13]. For each
tree, each patch goes through the tree until it reaches a leaf node 7. Then it
votes according to all displacements stored in the leaf, each vote having a

1

weight equal to Ok Finally, a detection map (the Hough Transform) is

provided, and output can be obtained by maxima search, or by Mean shift
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[CRMO3]. To cope with scale changes, it is possible to rescale I to differ-
ent sizes, and perform maxima search in scale-space dimension. Fig. 4.5

illustrates some good and bad detections. Gall proposed to accelerate the

FIGURE 4.5: Failures and right detections

detection by making vote only patches that belong to leaves where the

proportion of positive patches is above 0.5.

4.2.2 Extensions of the Hough Forest

Many contributions aimed to enhance the original Hough Forest. In this
section, we propose a literature review of these different works.

Gall in [GRVG12] proposed an extension of his Hough Forest, to esti-
mate the size of the detected instances, and to deal with multi-class detec-
tion (or object recognition). To estimate the size of the detected instance,
Gall uses the backprojection operation [RGVG10]; [LLS08], by search-
ing for patches which have voted for the peak. Then, by thresholding the
backprojection map, he is able to estimate the size. Gall also uses this
backprojection map to determine a similarity between detected instance
and images from the training set. Then, to deal with multi-class detection,
instead of using several forests, Gall prefers using one forest containing
several classes. To do that, for each class, Gall proposes a measure of sim-
ilarity between classes, based on the quantity of patches from one class
present in each leaf, and on the proportion of patches from other classes
in the same leaf.

In [Gal+11], Gall proposed to extend Hough Forest to tracking and ac-
tion recognition. For tracking, the Hough Forest is trained offline, before
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the tracking process. To cope with shape change, weights of displace-
ments are updated using backprojection. For action recognition, more
details are available in [YGVG10]. Hough Forest are built using training
sequences, and by using 3D patches (associated to label related to a spe-
cific action and to a 3D displacement vector) as training set. Each patch is
described using the grayscale color space, x, y and time derivatives, and
optical flow. Then, for recognition, 3D patches are going through all trees,
and vote for an action, and a spatio-temporal center.

Wohlhart [Woh+12] proposed a method to enhance the Hough Forest
by considering a method to validate or reject possible locations x of in-
stances. To do that, he defines an activation value for the displacement d to
the location x. This activation value corresponds to the quantity of votes
casted by any patch which has voted at the direction d for z: the higher it
is, the more d has contributed to x (in Wohlhart’s work, a patch located at
y does not cast only one vote at y + d, but casts a vote to the neighborhood
of y + d, followed by a Gaussian filtering of this vote). The higher the
activation value is, the more it has contributed to the vote for . With this
formulation, the value of the Hough Transform at x corresponds to the
sum of the activation values for = of all displacements vectors stored in
the whole Hough Forest. This formulation allows him to validate or reject
potential instances.

Murai [Mur+15] proposes a training enhancement, as he plans to mod-
ify weight of patches according to their appearances by reducing weights
of positive patches that are too similar to negative ones. The aim of his
work is to increase the influence of patches that are very different from
those found on negative images.

Recently, Ciolini [Cio+15] presented a work that aims to accelerate
detection, and make it runs on low-power systems. His forest is smaller
than Gall’s one (5 trees against 15) by adding to the training set of the
tree ¢, some false positive obtained from the forest {0,1,...,¢t — 1}. At
each leaf, Ciolini also clusters all positive patches according to their rel-
ative displacements, in order to reduce the quantity of voting pixels. In
detection step, instead of using all patches, he subsamples them. Finally,

he also computes a faster approximation of the HOG features.
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4.3 Our contributions

In this section, we present our work on Hough Forest. Our purpose is to
investigate the potentialities of low-level features (color and differentials
at different orders) for object representation. Unfortunately, moving from
the full feature space proposed by Gall (HOG + derivatives + lab color
space) to reduced one (derivatives + lab color space) reduces performances
(loss of power of representation). However, removing HOG features also
improves the speed. So, in terms of applications, we consider relevant to
search for methods to enhance accuracy in small feature space.

All contributions presented are taken from [TM16]. As in the previous
section, we will provide a more detailed explanation of our work. This

section will be divided that way:
e First, we explain how we worked on training set generation
e Second, we explain how we chose to enhance the node training

As for the last Chapter, we will not mention parameters values in this

section, but in the next Section. 4.4.

4.3.1 Patch generation

As told in Section. 4.2.1.1, Gall [Gal+11] draws patches from positive and
negative images to generate the training set. Those patches are randomly
drawn, following a uniform process. Like Moosmann [MNJ08], we think
that drawing patch randomly, without prior information, can lead to many
non useful patches (without visual structure). While he proposed a method
based on adaptive saliency maps, in our case, we choose to draw a certain
proportion of patches randomly (still using a uniform process), while the
other proportion (o) is drawn using a mathematical measure, taken from
[Lin98], called junctionness (Eq. 2.20), already mentioned in Chapter. 2:
JI) =I)" I —2-17 - 1y - 17, + (I)* - I (4.8)

y2

It is computed at different scales (057 ), and at each scale, the same number
n7 of patches is drawn.

These multi-scaled junction maps are computed before the forest train-
ing, and patches are obtained by using a maxima search. Each time a patch

is drawn, a maxima suppression is computed around the patch center, and
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this suppression is maintained during the whole training. The aim is to
avoid using the same object part to train different trees, and keeping a
certain variety of patches in the training set. Fig. 4.6 shows examples of
strong junctions, the radius corresponding to the scale, and the color to
the absolute value of junction-ness (the red corresponding to the highest
values). The aim of this step is not only to draw patches with structure (in
that case, a saliency map based on gradient may be sufficient), but to get
structures potentially representative of the target (as we can see in Fig. 4.6,
head and foot have high junctionness values). We also choose to keep a
certain proportion of patches drawn randomly in order to keep a variabil-
ity on the training set. Other measures can also be tested, such as blob
measure [Lin98] or keypoints, but we consider that studying the impact of
junction measure is sufficient. Indeed, at short-term, the purpose is not to
find the best measure to draw patches, but rather to see if drawing a certain

quantity of patches in a deterministic way can provide some benefits.

FIGURE 4.6: Junctions shown by circles for one land-
scape and two pedestrian images

4.3.2 Node training

The second contribution from [TM16] concerns nodes training. Each node
is trained by generating N binary tests, and retaining the best one (ac-
cording to Eq. 4.5 or Eq. 4.6). Each potential binary test is generated using
6 random uniform processes (4 for coordinates of the left and right mem-
bers of Eq. 4.1, 1 for the channel, 1 for the threshold). As for training set
generation, we aim to add some prior information in the way to draw each
parameter, by considering the input used to train a non-leaf node. With
the parameter set given by Gall, based on patch size of 16 x 16 pixels

and 32D feature spaces, generating a binary test Q = {p;, p,, ¢, 7} leads
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to choose a binary test among the 32 x 162% = 2097 152 possible binary
tests, without considering the threshold 7. From this remark, we aim to
construct probability laws to draw each parameter of the binary test, using
the patch set taken as in input, to reduce the quantity of generated binary
tests (and then to reduce the training time).

Let us consider a node to train, indexed by 7, and let us also define
Py = P(i) the patch set serving as a training input. Let us also consider
a disjoint subdivision of P into two patch set 738 and 735 (Both symbols
[] and M will be instanciated later, according to the criterion to optimize,
entropy vs. spatial deviation).

The first step consists in generating global patches (that will be called
superpatches) summarizing all information stored about Pg and Pg.

For any patch 7, let 7 be the patch obtained by binarizing 7 using
Otsu’s threshold [Ots75], at each channel. The aim of 7 is to provide
contrast invariance, by basically indicating, for each feature, which part
of the patch belongs to a high or a low level. Then, for a € {{J, B}:

[ = Z 7 (4.9)

TePT

For a given label a, I1* can be interpreted as a probability map indicating,
for each feature, which pixel is more likely to be a "upper"” (resp. "lower")
pixel for all patches from P¢,. Fig. 4.7 illustrates construction of TI (the
patch set on the left represented by the green rectangle corresponds to
P7.). However, directly using the normalized II* as probability density,
may turn the process too deterministic, because the dynamics of II* can
be very high. We choose instead to drastically quantize the density by
using the binary superpatch I, resulting from the threshold operation of
1% by 0 and valued in {—1,+1}.

Finally, for a binary test (), and a prior partition PS and P®, we define

the two superpatches HZQ and IT, as follows:

1 - 1 -
=1+ -1+ +-(1 - 1™ 4.10
@ =1+ 51 +1) + o ) (4.10)
I —1+1(1+ﬁ')+1(1—ﬁﬂ) (4.11)
Q@ 2 2 '

HZQ and 117, are superpatches valued in {1, 2, 3}, whose purpose is twofold:

e For a given feature channel, normalized HlQ (resp. I13)) is used as a
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Splitted patch set
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FIGURE 4.7: Generating 11¢

probability map to draw the left (resp. right) pixel member p' (resp.
p") used in Eq. 4.1.

e To select the most relevant feature channel, the (normalized) sum of
the standard deviations of HlQ and II, is used as a probability map
to draw the feature channel.

Split pos/neg
parts

LC (pos + neg)

Split pos/neg
parts

FIGURE 4.8: Generating superpatches

Fig. 4.8 schematizes the construction of one superpatches (LC stands for
Linear Combination, and represents Eq. 4.10 and Eq. 4.11). Finally, the
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parameters {p', p", ¢} are drawn according to the probability map defined
before.
Now the missing step consists in determining the two subsets Pg and

P®. depending on the criterion to minimize:

e When the entropy criterion is chosen, {{J, @} = {—,+}, mean-
ing that we are simply using the labels from negative and positive

example patches of P

e With the spatial deviation criterion, considering the Eq. 4.6 to min-
imize, we apply a k-means (with & = 2) clustering of the patch set
P5 with respect to the displacement vector d,.. Indeed, the k-means
algorithm is obviously a better way to minimize the spatial devia-
tion criterion than Gall’s random method. In this case, PCD2 and Pg

are the two sets resulting of the 2-means of Pa

One element we did not studied was the selection of the threshold 7.

4.4 Experiments

In this section, we present some results obtained from academic datasets.
In particular, we will work on two datasets: UIUC-cars [AARO4] and
TUD-Pedestrians [ARS08]. Before detailing characteristics of these two

datasets, we will first present the usual protocol to evaluate detectors.

4.4.1 Evaluation method

In this section, we present methods of evaluation, used in the two datasets.
As for tracking, let us use the formulation B = {c,w, h} to define a rect-
angle of center ¢, and dimension w X h. Following Gall’s method to resize
all objects, let (w,.f, h,or) be the characteristic size of the class.

Given an image I, considering GT; an annotated instance of the class
to detect (represented by its bounding box), GT; is considered detected if
the detector gives as an output a bounding box B such as O(GT;, B) >
0.5, with O the overlap measure already defined in Section. 3.4 (Eq. 3.29).

From this notion, four types of detection can occur:
e True Positive (TP): an instance rightfully detected

e False Negative (FN): a non detected instance
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e False Positive (FP): a detected instance for a background area

e True Negative (TN): an instance of the background class rightfully
non-detected

These four measures can be used to evaluate detectors. However, these
criteria are not normalized. Moreover, in detection context, the notion of
True Negative is not relevant: every background area classified as a back-
ground is a True Negative. Fig. 4.9 illustrates TP (in blue), FP (in red)
and FN (the pedestrian on the left) in one frame from TUD-pedestrians

[ARSO8]. The ROC curve space, more suitable as it contains more in-

FIGURE 4.9: Examples of TP, FP and FN

formation, is preferred. It is defined by two measures valued in [0, 1]2,

coming from those defined above:

e Precision defined by PR = %

e Recall, defined by RC' = L

TP+FN

ROC curves are generated by considering the trained detector and a pa-
rameter ¢, and by plotting the curve (1 — PR(t), RC(t)). We can ex-
tract relevant informations from ROC curves, such as the equal-error rate
(EER), defined by a F'PR = T'P R. Another usual measure of the quality
of the detector is the area under the curve (AUC).

For Hough Forest case, to generate those ROC curves, we first com-
pute the total number of 7P, F'P and F'N from the whole dataset, at a



134 Chapter 4. Object Detection

fixed parameter £. This parameter ¢ is a threshold between 0 and 1. For
one image I, Hough Forest is computed at different scales (c;), leading
to a family of Hough Transform HT;(I). In Gall’s original work, Hough
Transform is also computed at different aspect-ratios. But, in our case,
as we plan to study impact of our work on the Hough Forest, and not en-
hance performances of the tracker, we will only work with one aspect ra-
tio. Those Hough Transforms are then normalized by max,(HT;(I)(p)),
to have all values of the Hough Transform lower than 1.0. Then, local-
ization at a threshold ¢ consists in locating all parameters (p, o) such that
HT,(p) > t. To avoid multiple counts of the same instance, we proceed
to a maxima suppression, by setting, forall o and allz € (0-p, 0wy, 0
hrer)in HT,), HT,(x) = 0. Finally, given an annotated ground truth GT'
and a potential detected instance R = (0 - p, 0 - Wyer, 0 - hyes), GT is
detected if O(GT, R) > 0.50, with O the overlap measure defined in the
previous chapter (see Eq. 3.29). In our case, we also consider that there
are at max 5 instances per image.

The protocol described above is used in all our experiments. How-
ever, some minor details (in terms of parameters) will be specifically used
for the different datasets. Parameters used for our tests are summarized
Tab. 4.1.

| Parameter | Gall | Ours |
Training parameters
Forest size 15 9
Depth max of each tree 15 15
Number of positive patches 25000 | 25000
Number of negative patches 25000 | 25000
Number of Potential tests per node 20000 | 500
Minimum number of positive patches 20 20
Proportion of patches drawn deterministically 0.30
Detection parameters
Spatial smoothing kernel size 3 3
Scale smoothing kernel size 0.05

TABLE 4.1: Parameters set proposed by Gall, and ours

4.4.2 UIUC Cars

The first dataset we worked on is the UIUC-Cars dataset [AARO4]. The

aim is to train a car (viewed from the side) detector. The training set is
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composed of 550 positive images showing cars at approximately the same
size (100 x 40 pixels), and 500 negative images. Fig. 4.10 illustrates im-

ages from the training set. To test the detector, two datasets are available:

FIGURE 4.10: Negative and positive images from UIUC-
Cars

e One composed of 170 images containing 210 cars, all with the same

size as in the training set
e One composed of 108 images containing 138 cars at different sizes

In all cases, images are in grayscale. Some cars suffer from low illumina-
tion or occlusion.

Gall tested his algorithm with a reduced feature space, by discarding
color ones and HOG ones. After some tests, this dataset has revealed to
be too simple to study impacts of our contributions: we just show the
ROC curve Fig. 4.11. We tested only three situations: detection with only
the first order derivative (FirstDer), detection with first and second deriva-
tives (SecondDer), detection with first and second derivatives and 10%
of patches drawn using the junction-ness measure (SecondDer + Jun).

Dashed line corresponds to the EER curve.

4.4.3 TUD Pedestrian

The second dataset we worked on is the TUD Pedestrians dataset [ARSO8].
Both training and testing sets are composed of colored images. All pedes-
trians are viewed laterally. The training set is composed of 400 images
(originally 210 before updating) representing a pedestrian walking in an
urban area. Each image is associated to a segmentation map, delimiting
the foreground to the background (see Fig. 4.12). The test set is com-
posed of 250 images, showing pedestrians at different sizes, and walking
on different planes orthogonal to the camera.

In Gall’s computation, it was decided to extend the training set by us-
ing images from the INRIA-Person dataset [DT05]. The problem tackled
by Gall was the lack of background environment in the TUD-Pedestrians
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FIGURE 4.11: ROC curve on UIUC Cars multi-scale
dataset

FIGURE 4.12: One training image from TUD-pedestrian
with its associated segmentation map

dataset. For all tests (even the original Hough Forest), we used our own
implementation. However, we took Gall’s implementation of HOG fea-
tures '. To deal with multiple sizes, each tested image is resized to differ-
ent scales {0.3,0.4,0.5,0.6} before any detection.

We tested many hypotheses:

e Original Hough Forest [GL13] with our set of parameters Tab. 4.1,
denoted GallHOG

e Original Hough Forest without HOG features (color and derivatives

only) . The gradient will be computed using Sobel filter (Sobel)

'https://pages.iai.uni-bonn.de/gall_juergen/projects/
houghforest/houghforest.html


https://pages.iai.uni-bonn.de/gall_juergen/projects/houghforest/houghforest.html
https://pages.iai.uni-bonn.de/gall_juergen/projects/houghforest/houghforest.html
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e Hough Forest without HOG features, but with derivatives computed

at different scales (1 and 2) (Derivatives1 and Derivatives2)

e Hough Forest without HOG features, with multi-scale derivatives
(scales 1 + 2) (MSDerivatives)

e Hough Forest without HOG features, with multi-scale derivatives
and our first contribution (30% of patches drawn using junction-

ness measure, computed at scales {1, 2}) (MSDerivatives + Jun)

e Hough Forest without HOG features, with multi-scale derivatives

and second contribution (node enhancement) (MSDerivatives + SP)

e Hough Forest without HOG features, with multi-scale derivatives

and the two contributions (MSDerivatives + Both)

In all cases, we still apply the min and max (erosion/dilation) operations.

GallHOG serves as a reference. Fig. 4.13 represents ROC curves of
GallHOG (in blue), Sobel (in red) and MSDerivatives (in orange). All
curves are obtained by computing all types of forest using parameters de-
tailed in Tab. 4.1. For each hypothesis, 10 forests are trained, and re-
sults displayed Fig. 4.13 are the average ROC curves of all hypotheses.
This average is done by averaging precision and recall obtained for each
threshold values. The comparison Gall/Sobel (blue vs. red) demonstrates
the usefulness of HOG features, and also relevance of our work: Sobel
alone is less accurate than Gall. Indeed, in terms of EER, Gall’s EER is
equal to 85%, while Sobel gives 74%. However, in terms of training and
detection time, Sobel is much faster: 30 minutes to train the whole forest
(against 1 hour for Gall), and detection made on the whole test set (250
images) takes 15 minutes for Sobel (3 seconds per image), 22 minutes
for Gall (4 seconds par image). Moreover, in terms of memory consump-
tion, we move from a 16 x 16 x 32 pixels to represent a patch for Gall,
to 16 x 16 x 14 for Sobel, saving more than 50% of the memory. Now,
comparing Gall and MSDerivatives (blue against orange), MSDerivatives
is slightly below Gall in terms of AUC, but is still better than Sobel. EER
is also close to Gall’s EER (81%). The training time is reduced by 2 (30
minutes) while detection time is reduced by one third (about 15 minutes
for 250 images, so 3 seconds per image). In terms of area under the curve,
GallHOG clearly performs better than MSDerivatives. If we consider the
point from the ROC curve obtained with a threshold of 1 (the detector only
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detects the highest peak from the multi-scale Hough Transform), the one
obtaind from GallHOG is better than the one from MSDerivatives: 98%
against 92%. In terms of application, if both detectors are configured to
detect only one pedestrian, GallHOG will perform fairly better. Globally,
those results demonstrate interest of multiscale derivatives as an alterna-
tive to HOG features.

Recall

FIGURE 4.13: GallHOG vs Sobel vs MSDerivatives

The main contribution of [TM16] concerns the stability of the detec-
tor. To test this, as indicated Tab. 4.1, we reduced the forest size (15 trees
vs 9) and the number of potential nodes generated (20000 vs 500). In
these conditions, we can first notice how close we are to the average ROC
curve obtained with Gall in its original paper [GL13], with the parameter
set proposed by Gall (second column of Tab. 4.1). In both cases, EER is
86.5%. However, with the small number of potential nodes, performances
will widely vary. Then, as we want to study the stability of detector’s per-
formances with respect to the characteristics, we run 10 rounds of training
and test in the dataset. We obtain two results. First, Fig. 4.14 was obtained
by considering four hypotheses: MSDerivatives, MSDerivatives + Jun,
MSDerivatives + SP and MSDerivatives + Both, and plotting the worst
and the best curves in the three cases (in terms of area under the curve).
As we can see, using a saliency map to draw a certain number of patches
(30% in our case) significantly improves the stability (results in red), com-
pared to the min and max curves of MSDerivatives (in blue). Adding the
superpatch contribution increases the gap between those (green curves),
and seems to reduce the role of the saliency map (as MSDerivatives +

Both and MSDerivatives + SP produce similar min max curves). In the
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three cases (Jun, SP and Both), results are still slightly more stable than
the original method.

Recall

10 12 14 16 18 20 22 24 26 28 30
100 - Precision

FIGURE 4.14: Worst and best curves in different cases

The second results we get are shown Fig. 4.15. We took the same
set of results as Fig. 4.14, but instead of looking for the best and worst
curves, at each threshold value used to compute all curves, we compute
the covariance matrix, and represent it by an ellipse (slanted according
to eigen vectors and with size proportional to eigen values). All curves
are obtained by averaging all the 10 ROC curves obtained at each series.
In this case, superpatch impact is more relevant, as ellipses are globally
smaller than those originally obtained (it is important to note that the dy-
namic of ordinate axis is higher than abscissa, and projection on this axis

shows that the simple MSDerivatives in blue is less stable).

Recall

L
16 18 20 22 24 26 28 30
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FIGURE 4.15: Average ROC curves, and covariance el-
lipses for different threshold points
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One last study concerns the impact of spatial derivatives. We saw
Fig. 4.13 that the detector is performing much better moving from So-
bel based to multi-scale derivatives. But, what is happening when we are
still working with one space derivative? In that case, we compared three
hypotheses: MSDerivatives (scales 1 and 2), DerivativeS1 and Deriva-
tiveS2. As the patch size is equal to 16, it is not relevant to work on
larger scales. Average ROC curves (obtained from 10 realizations) are
displayed Fig. 4.16. It is interesting to note that moving from Sobel based
to Gaussian derivatives leads to a better detector. The second remark is
that DerivativeS2 and MSDerivatives are very similar. In that way, and as
DerivativeS2 is lighter to compute and train, we may prefer exploiting this
feature space.

—e—MSDerivatives ||
—o—DerivativeS1
DerivativeS2
—+—Sobel

- - -EER

Recall

14 16 18 20 22 24 26 28
100 - Precision

FIGURE 4.16: MSDerivatives vs DerivativeS1 vs Deriva-
tiveS2 vs Sobel

4.5 Conclusion

This section, dedicated to object detection, was aimed to determine impact
of discarding HOG features from the original Hough Forest [GL13], to
work only with (multiscale) derivative features. Results on Section. 4.4.3
showed that the obtained detector was slightly less accurate than [GL13],
but still gives decent results, with smaller computation time and memory
footprint. However, we are still below real-time.

Our results in object detection are then not fully satisfactory. Further-
more, our experiments were done on relatively outdated datasets The next
objective will be to test it on harder datasets, such as those proposed by

Gall (INRIA persons [DTO05] involving human with different poses, or
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Weizmann horses [SBCO08] requiring votes in the aspect ratio parameter).
At longer term, the objective will be to apply the detecor on multi-class
detection, and test it on related datasets (Pascal VOC challenges notably
[Eve+07]; [Eve+10]).

In terms of contributions, [TM16] does not show major improvements
in terms of accuracy. However, some interesting elements can be stud-
ied. In the patch drawing, using a geometrical measure (junction-ness) to
draw some patches leads to a more stable ROC curves. The next ques-
tion would be naturally to test other saliency measures (such as blob-ness
[Lin98]) and maybe keypoints. Concerning the superpatch approach, the
final detector is slightly more stable (see Fig. 4.15), but results are still rel-
atively limited. It may be due to the fact that superpatches are only valued
in {1, 2,3}, and are built from binary patches: leading to a non significant
impact in terms of precision or stability. Our aim was to limit impacts
of strong peaks. However, it seems that it limits advantages of our ap-
proach. One solution may be to increase the dynamic of the superpatches.
Another remark concerns Eq. 4.1: superpatches approached was aimed to
draw all parameters except 7 by a specific probability law. However, this
last parameter 7 can degrade the quality of the binary test, as it is chosen
randomly according to a uniform law on Eq. 4.2. In that way, especially
when the range defined by Eq. 4.2 is large, the weak probability to draw
a relevant value for 7 can lead to a useless binary test, even though other
parameters are drawn correctly. We will then study methods to improve
the choice of 7 in the future.

If we want to combine our contribution with other Hough Forest ex-
tensions (see Section. 4.2.2), Wolhart’s work [Woh+12] may be combined
with the junction-ness measure. Indeed, on the one hand, his notion of ac-
tivation value depends on the positive patch’s displacement, and is higher
when the displacement has well contributed to a vote. On the second hand,
the junction-ness measure is able to draw patches in some relevant areas
(such as pedestrian’s foot). If we suppose those patches’s displacements
very similar (most of the time, people’s feet are at the lower part of the
body), we can suppose that naturally, those displacements will have high
activation values in Wohlhart’s definition. In that way, combining [TM 16]
and [Woh+12] may improve results. Similarly, we can also think about
combining the junction-ness measure (or other geometrical measure) to
works of Murai [Mur+15], as he aims to increase the weight of positive

patches visually different from negative patches.



142 Chapter 4. Object Detection

Regarding perspectives related to other extensions, we can refer to
[Gal+11] to extend Hough Forest with derivatives features for other ap-
plications. For tracking context, our work on tracking [TM15]; [TM17]
showed that it is still possible to exploit the GHT in its simplest form
for accurate tracking. For action recognition, the question is interesting,
as temporal features (time derivatives and optical flow for instance) seem
essential for recognition. This question should be tackled in the future.
Similarly, works of Razawi about backprojection map [RGVG10] should
also be studied in the future.

The next and final chapter of the thesis will open the perspectives of

our works on tracking and detection.
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Chapter 5
Perspectives and Conclusion

This chapter closes the thesis. It will be divided into two parts. In the first
part, after recalling the aim of our work, we will summarize all contribu-
tions presented in this thesis. We already dealt with perspectives related
to object tracking and detection independently. The second section will
be dedicated to further discussions on the possible implementation of our
algorithms in a low-cost system, and the related perspectives in terms of

autonomous systems.

5.1 Conclusion

We aimed to study benefits and limits of using exclusively pixel colors
and scaled derivatives, spatially pooled by the Hough Transform, for two
applications: object tracking and object detection.

The first Chapter was dedicated to image representation. A review of
color-based and shape-features, detailing how, from low-level features,
higher level ones have been developed: color attributes [VDW+09] or
HOG [DTO05] notably. Due to the importance of the Hough Transform,
we dedicated the second part of the chapter to it, recalling its history, pre-
senting its numerous variants, and notably the Generalized Hough Trans-
form. We have emphasized its versatility, by mentioning its use in many
applications.

Our work on object tracking was presented in the second chapter.
Given different types of tracking, we started by setting our framework
and explaining challenges related to tracking. Then, after a literature re-
view presenting state-of-the-art, real-time and Hough based trackers, we
presented our contributions, starting from a tracker combining the original
GHT with a Particle Filter [TM15] and ending with a tracker substituting
to the Particle Filter a simple color histogram [TM17]. The last tracker has
proven effective and has been tested and evaluated on VOT14 and VOT15
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datasets. The second dataset has been used for further studies of [TM17]:
parameters tuning and feature space studies. This tracker was sent to the
VOT committee, for an active participation on the VOT17 challenge. It
has been accepted, and final ranking will be announced in October during
the VOT2017 workshop.

Object detection is the subject of the third Chapter. After formalizing
the problem, we presented some state-of-the-art and Hough-based detec-
tors. Then, as our contribution is strongly related to the Hough Forest
[GL13], we presented Gall’s work and Hough Forest extensions. Then,
we detailed our contributions, aiming to improve the stability of the detec-
tor. Finally, a section dedicated to experiments presented results on UITUC
Cars dataset and TUD pedestrians. Experiments showed that reducing the
feature space originally proposed by Gall (by discarding HOG features
and keeping only derivatives and pixel colors) presents a real interest.

Regarding our working hypotheses, in tracking, the outcome is satis-
factory: we got a fast but effective tracker relying on local features, with
light functions (color histograms, and GHT used in its purest form), which
has proven competitive (good results on VOT14 and 15, participation to
VOT17). Concerning detection, results are more mitigated: outcome from
[TM16] is somewhat disappointing, but we have shown that scaled deriva-
tives can compensate the lack of HOG features. However, results obtained
from [TM16] are not as satisfactory as we hoped.

One concrete application of our work is the implementation on an au-
tonomous system. The final section of the thesis deals with discussions
on the implementation of our work on a low-cost system. We will also
consider our work in a global point of view, to give possible perspectives

made by combining the Hough-based tracker and detector.

5.2 Perspectives

This section will be divided into two parts:

o First, we will mention implementation of the studied tracker and de-
tector on Raspberry Pi 3. The interest is to provide a better under-
standing of what is necessary to implement an autonomous system

based on our work

e Second, we will take a global point of view, and explain how to

combine the tracker and the detector for higher level vision tasks
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Perspectives presented in this chapter are at middle to long-term, com-
pared to those presented on chapters dedicated to tracking (Section. 3) or

detection (Section. 4).

5.2.1 Raspberry Pi 3 Implementation

The Raspberry Pi is a single-board computer originally designed for edu-
cational purpose. Different enhancements in terms of hardware led to the
Raspberry Pi 3 (equipped with an ARM processor), which is now used for
different purposes (digital media player, robotics, home automation...). A

picture of the computer is available Fig. 5.1 (photo taken from '). Given

FCC 1D 2MBCB-RP13Z
1C: 20053-RP132

FIGURE 5.1: Raspberry Pi 3 Model B

its size (credit card format), its low cost and the availability of RGB and
thermal camera, we used it as a support to study behavior of our work, and
more generally, to study computer vision algorithms on low cost systems.

The tracker has been implemented under its two forms: the "position
tracker only" and the "position + scale" versions. From a sequence di-
rectly acquired by the camera (webcam or Raspberry Pi specific camera),
the user can select one or several objects to track. The first aim of the
test was to measure the speed of the tracker on low-cost system. The test
was successful, since, except for big objects, tracking can be done at real-
time (more than 20 fps), even in multiple targets mode (at most 5 targets).
One weakness found in VOT15 was the relative inability of the "position
+ scale" tracker to correctly estimate the target scale. Testing our tracker
on live sequence confirm this issue. We are able to test our tracker in di-
verse situations (environment, context) that we can control (illumination),

by selecting any kind of target. Due to the size of the computer, we can

'https://en.wikipedia.org/wiki/Raspberry_Pi
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consider embedding the Raspberry Pi on a small vehicle, to experiment
some specific camera motion. From an academic point of view, in con-
trast with evaluation on public datasets, which always present some bias
(type of objects, difficulties related to chosen sequences), the interest is
the possibility to test and evaluate our tracker on any setup.

The Hough Forest detector has also been implemented on Raspberry
P1i, but only in its original version (with HOG features). We used forests
trained on TUD Pedestrians. In this condition, with the Raspberry camera,
we are able to run the detector at about 10 fps, by rescaling the image, and
computing the Hough Transform in only one scale. The detector is then
able to detect people measuring 1.80m at about 3m from the camera. This
limitation can be compensated with some explicit multi-threading (each
thread computing the Hough Transform at a different scale). This solution,
however, adds a constraint in terms of hardware (multi-core processor).
We did not test the detector with derivatives features only. This version
should be faster, but since moving from Derivatives + HOG to Derivatives
only reduces the detection time of about 33%, real-time should not be

achieved anyway.

5.2.1.1 Global perspectives

Previously, we used both tracker and detector implementations on Rasp-
berry Pi 3 to elaborate perspectives of the two algorithms taken separately.
This section is dedicated to mutual benefits. Indeed, as both algorithms are
using derivatives features (gradient only for [TM16] and scaled derivatives
for [TM17]) and are unified by the Generalized Hough Transform (in its
purest form for one, and with a Random Forest replacing the R-Table for
the second), combining the two algorithms for diverse purposes is natural.

Using the tracker as a base, and the Hough Forest as a support can lead
to object-specific tracker, when pre-trained (pedestrian tracker for exam-
ple). Inspired by [GRB13], a more interesting task can be to train the Ran-
dom Forest (or the Random Fern in Godec’s case) online to move from our
current short-term tracker, without recovery function, to long-term track-
ing, like TLD [KMM12]. In full occlusion case (pedestrian walking be-
hind a pillar for example), our current tracker will fail, and the necessity to
compute the foreground/background color model could be very time con-

suming for recovering the target. Using the GHT alone on the whole scene
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until recovery can be a solution (with a threshold on the peak for the recov-
ery), but may not be effective (since the GHT alone does not perform well
on VOT2015). In that case, a Hough Forest, trained online may give better
results. The forest training can be similar to Godec’s method [GRB13]:
all binary tests can be generated offline, while the forest is trained online,
and updated every frame: at each frame, positive and negative patches are
drawn according to target state, and are going through all (already) gener-
ated trees to build the set of displacements stored in all leaves. As we are
only computing derivatives both in tracking and detection and the tracker
is very light, we should be able to do online training while remaining real-
time. The real difficult problem would be to propose a method to switch
from one algorithm to the other. More precisely, we have to estimate fail-
ure case for tracking (using a combination of Bhattacharyyaa coefficient
and variation measure of the Hough peak), and validate recovery for the
detector (Hough peak only for instance).

Conversely, with a detector as a base and a tracker (or several instances
of the tracker) as a support, we can address object counting . A detector,
combined with a simple prediction model or a labeling, can do it. Indeed,
a detector alone may count and recount the same instance. However, cur-
rently, our detector is still relatively heavy in terms of computation time. A
more effective solution involving a tracker should be to create an instance
of tracking for each new target detected by the detector. Then, by not per-
forming detection on the areas of tracked targets, recounting issues can
be avoided. Moreover, reducing the detection search area limits the time
consumed by the detector, which should be the heaviest function of the
system. An involved problem is the robustness to noise of the tracker: in
Chapter. 4, a correct detection is considered for overlap measure (Eq. 3.29)
above 0.50. In this case, the tracker can be badly initialized. Even though
results on VOT14 showed a certain robustness to noise (see Tab. 3.4), dis-
turbed initialization as tested in VOT14 may be very moderate compared
to those involved by a poor detection.

In any case, these two perspectives have an interest in terms of appli-
cations for autonomous systems. Benefits are related to low computation
time, due to a unique and light feature space (color + spatial derivatives
only) and a low memory footprint (Generalized Hough Transform as a
main algorithm, tracker model consuming less than 50 ko), making the
hypothetical autonomous system usable on embedded or low-cost condi-

tions. However, in terms of accuracy, we need to realize further studies.
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One major limit concerns the scale estimation in both cases. In tracking
case, our implemented solution is not satisfactory [TM17]. In detection
case, multiple scales (and multiple ratios) Hough Transform may give
decent results, but is very slow. One solution to further investigate are
the backprojection maps, since Razavi [RGVG10] and Gall [GRVG12]
demonstrated that this operation can be used for different purposes (multi-

view detection, bounding box estimation...).
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Appendix A

Per sequence results on
VOT2015 for different color

spaces
[TM17] ab lab Grayscale
Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
bag 0.33 | 0.00 | 0.31 | 0.00 | 0.28 | 0.00 | 0.28 | 0.00
balll 0.76 | 2.00 | 0.35 | 7.00 | 0.70 | 6.00 | 0.70 | 6.00
ball2 0.73 | 3.00 | 0.00 | 3.00 | 0.70 | 3.00 | 0.70 | 3.00

basketball || 0.52 | 0.00 | 0.34 | 9.00 | 0.52 | 3.00 | 0.52 | 3.00

birdsl 045 | 7.00 | 0.43 | 5.00 | 0.48 | 3.00 | 0.48 | 3.00

birds2 0.55 | 0.00 | 0.28 | 2.00 | 0.37 | 2.00 | 0.37 | 2.00

blanket 048 | 0.00 | 0.53 | 1.00 | 0.65 | 1.00 | 0.65 | 1.00

bmx 0.21 | 0.00 | 0.10 | 0.00 | 0.18 | 0.00 | 0.18 | 0.00
bolt1 0.48 | 0.00 | 0.52 | 0.00 | 0.46 | 0.00 | 0.46 | 0.00
bolt2 0.53 | 0.00 | 0.55 | 1.00 | 0.50 | 0.00 | 0.50 | 0.00
book 0.16 | 9.00 | 0.11 | 5.00 | 0.18 | 8.00 | 0.18 | 8.00
butterfly 044 | 1.00 | 042 | 1.00 | 041 | 1.00 | 0.41 | 1.00
carl 0.67 | 3.00 | 0.06 | 65.00 | 0.65 | 2.00 | 0.65 | 2.00
car2 0.76 | 0.00 | 0.78 | 0.00 | 0.79 | 0.00 | 0.79 | 0.00

crossing 0.50 | 1.00 | 0.48 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00

dinosaur 041 | 1.00 | 0.27 | 5.00 | 0.36 | 4.00 | 0.36 | 4.00

fernando 0.37 | 1.00 | 0.41 | 3.00 | 0.39 | 2.00 | 0.39 | 2.00

fish1 0.35 | 400 | 0.19 | 8.00 | 0.37 | 5.00 | 0.37 | 5.00
fish2 0.22 | 800 | 0.19 | 9.00 | 0.22 | 8.00 | 0.22 | 8.00
fish3 0.44 | 0.00 | 022 | 7.00 | 0.46 | 2.00 | 0.46 | 2.00

fish4 0.28 | 0.00 | 0.32 | 2.00 | 0.35 | 2.00 | 0.35 | 2.00
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[TM17] ab lab Grayscale

Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
girl 0.63 | 1.00 | 0.52 | 7.00 | 0.47 | 2.00 | 0.47 | 2.00
glove 0.45 | 3.00 | 0.10 | 9.00 | 0.43 | 2.00 | 0.43 | 2.00
godfather 0.51 | 0.00 | 047 | 0.00 | 0.48 | 0.00 | 0.48 | 0.00
graduate 0.34 | 500 | 0.38 | 6.00 | 0.42 | 5.00 | 0.42 | 5.00
gymnasticsl || 0.42 | 8.00 | 0.38 | 7.00 | 0.40 | 9.00 | 0.40 | 9.00
gymnastics2 || 0.58 | 2.00 | 0.61 | 6.00 | 0.65 | 6.00 | 0.65 | 6.00
gymnastics3 || 0.31 | 4.00 | 0.19 | 4.00 | 0.31 | 4.00 | 0.31 | 4.00
gymnastics4 || 0.42 | 3.00 | 0.35 | 4.00 | 0.32 | 5.00 | 0.32 | 5.00
hand 0.36 | 9.00 | 0.29 | 9.00 | 0.30 | 9.00 | 0.30 | 9.00
handballl 0.53 | 400 | 0.23 | 8.00 | 043 | 7.00 | 0.43 | 7.00
handball2 || 0.42 | 3.00 | 0.17 | 22.00 | 0.38 | 7.00 | 0.38 | 7.00
helicopter || 0.37 | 0.00 | 0.50 | 2.00 | 0.43 | 2.00 | 0.43 | 2.00
iceskaterl 0.38 | 2.00 | 0.33 | 5.00 | 0.37 | 3.00 | 0.37 | 3.00
iceskater2 || 0.52 | 3.00 | 0.34 | 6.00 | 0.37 | 6.00 | 0.37 | 6.00
leaves 0.05 | 6.00 | 0.17 | 6.00 | 0.15 | 6.00 | 0.15 | 6.00
marching 0.73 | 0.00 | 0.75 | 0.00 | 0.76 | 0.00 | 0.76 | 0.00
matrix 0.60 | 4.00 | 048 | 4.00 | 0.53 | 5.00 | 0.53 | 5.00
motocrossl || 0.46 | 1.00 | 0.34 | 3.00 | 0.31 | 3.00 | 0.31 | 3.00
motocross2 || 0.57 | 0.00 | 0.49 | 1.00 | 0.38 | 0.00 | 0.38 | 0.00
nature 0.46 | 4.00 | 0.27 | 5.00 | 0.32 | 5.00 | 0.32 | 5.00
octopus 0.26 | 1.00 | 0.25 | 2.00 | 0.28 | 0.00 | 0.28 | 0.00
pedestrianl || 0.49 | 9.00 | 0.48 | 10.00 | 0.59 | 9.00 | 0.59 | 9.00
pedestrian2 || 0.51 | 1.00 | 0.34 | 1.00 | 0.34 | 1.00 | 0.34 | 1.00
rabbit 0.19 | 5.00 | 0.27 | 4.00 | 0.24 | 6.00 | 0.24 | 6.00
racing 0.37 | 0.00 | 0.35 | 0.00 | 0.36 | 0.00 | 0.36 | 0.00
road 0.65 | 0.00 | 0.64 | 0.00 | 0.65 | 0.00 | 0.65 | 0.00
shaking 0.62 | 1.00 | 0.58 | 8.00 | 0.51 | 1.00 | 0.51 | 1.00
sheep 0.52 | 0.00 | 0.50 | 0.00 | 0.51 | 0.00 | 0.51 | 0.00
singerl 0.36 | 0.00 | 0.36 | 0.00 | 0.36 | 0.00 | 0.36 | 0.00
singer2 0.59 | 1.00 | 0.47 | 3.00 | 0.55 | 4.00 | 0.55 | 4.00
singer3 0.16 | 1.00 | 0.14 | 1.00 | 0.15 | 1.00 | 0.15 | 1.00
soccerl 0.34 | 3.00 | 0.54 | 6.00 | 0.45 | 2.00 | 0.45 | 2.00
soccer2 0.63 | 10.00 | 0.07 | 13.00 | 0.71 | 10.00 | 0.71 | 10.00
soldier 042 | 1.00 | 0.24 | 2.00 | 0.34 | 1.00 | 0.34 | 1.00
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[TM17] ab lab Grayscale

Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.

sphere 0.68 | 1.00 | 035 | 1.00 | 0.67 | 1.00 | 0.67 | 1.00

tiger 0.67 | 2.00 | 0.58 | 3.00 | 0.60 | 3.00 | 0.60 | 3.00

traffic 0.68 | 1.00 | 0.68 | 0.00 | 0.68 | 0.00 | 0.68 | 0.00

tunnel 0.36 | 0.00 | 0.51 | 2.00 | 0.39 | 0.00 | 0.39 | 0.00

wiper 0.73 | 1.00 | 0.73 | 1.00 | 0.72 | 2.00 | 0.72 | 2.00

Average 048 | 2.13 | 039 | 6.58 | 045 | 3.02 | 0.45 | 3.02

TABLE A.l: Performances by varying color space (part

1y

[TM17] HSV Attll Att50
Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
bag 0.33 | 0.00 | 0.28 | 0.00 | 0.26 | 0.00 | 0.37 | 0.00
balll 0.76 | 2.00 | 0.70 | 6.00 | 0.73 | 3.00 | 0.57 | 5.00
ball2 0.73 | 3.00 | 0.70 | 3.00 | 0.00 | 4.00 | 0.73 | 3.00

basketball || 0.52 | 0.00 | 0.52 | 3.00 | 0.57 | 0.00 | 0.52 | 6.00

birdsl 045 | 7.00 | 0.48 | 3.00 | 0.45 | 5.00 | 0.40 | 10.00

birds2 0.55 | 0.00 | 0.37 | 2.00 | 0.37 | 1.00 | 0.33 | 1.00

blanket 048 | 0.00 | 0.65 | 1.00 | 0.46 | 0.00 | 0.50 | 1.00

bmx 0.21 | 0.00 | 0.18 | 0.00 | 0.21 | 0.00 | 0.15 | 0.00
bolt1 048 | 0.00 | 046 | 0.00 | 0.49 | 0.00 | 0.49 | 0.00
bolt2 0.53 | 0.00 | 0.50 | 0.00 | 0.52 | 1.00 | 0.58 | 1.00
book 0.16 | 9.00 | 0.18 | 8.00 | 0.19 | 6.00 | 0.24 | 9.00
butterfly 044 | 1.00 | 041 | 1.00 | 0.49 | 2.00 | 0.40 | 2.00
carl 0.67 | 3.00 | 0.65 | 2.00 | 0.54 | 9.00 | 0.70 | 17.00
car2 0.76 | 0.00 | 0.79 | 0.00 | 0.77 | 0.00 | 0.75 | 0.00

crossing 0.50 | 1.00 | 0.50 | 1.00 | 0.48 | 1.00 | 0.49 | 1.00

dinosaur 041 | 1.00 | 036 | 4.00 | 0.40 | 4.00 | 0.36 | 3.00

fernando 0.37 | 1.00 | 0.39 | 2.00 | 0.22 | 2.00 | 0.38 | 4.00

fish1 0.35 | 400 | 037 | 5.00 | 0.40 | 4.00 | 0.36 | 6.00
fish2 0.22 | 8.00 | 0.22 | 8.00 | 0.27 | 6.00 | 0.23 | 8.00
fish3 044 | 0.00 | 046 | 2.00 | 042 | 1.00 | 0.44 | 1.00
fish4 0.28 | 0.00 | 035 | 2.00 | 0.34 | 2.00 | 0.34 | 1.00
girl 0.63 | 1.00 | 0.47 | 2.00 | 0.55 | 2.00 | 0.55 | 5.00

glove 045 | 3.00 | 043 | 2.00 | 0.31 | 1.00 | 0.46 | 3.00
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[TM17] HSV Attl1 Att50
Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
godfather 0.51 | 0.00 | 048 | 0.00 | 0.32 | 2.00 | 0.44 | 0.00
graduate 0.34 | 500 | 042 | 5.00 | 042 | 6.00 | 0.38 | 8.00
gymnasticsl || 0.42 | 8.00 | 0.40 | 9.00 | 0.29 | 7.00 | 0.46 | 12.00
gymnastics2 | 0.58 | 2.00 | 0.65 | 6.00 | 0.55 | 5.00 | 0.67 | 6.00
gymnastics3 || 0.31 | 4.00 | 0.31 | 4.00 | 0.30 | 4.00 | 0.31 | 4.00
gymnastics4 || 0.42 | 3.00 | 0.32 | 5.00 | 0.36 | 3.00 | 0.26 | 5.00
hand 0.36 | 9.00 | 0.30 | 9.00 | 0.41 | 7.00 | 0.33 | 8.00
handballl 0.53 | 400 | 043 | 7.00 | 0.39 | 4.00 | 0.41 | 5.00
handball2 || 042 | 3.00 | 0.38 | 7.00 | 0.37 | 9.00 | 0.42 | 11.00
helicopter || 0.37 | 0.00 | 0.43 | 2.00 | 0.36 | 0.00 | 0.37 | 0.00
iceskaterl || 0.38 | 2.00 | 0.37 | 3.00 | 0.28 | 7.00 | 0.31 | 9.00
iceskater2 || 0.52 | 3.00 | 0.37 | 6.00 | 0.36 | 11.00 | 0.37 | 11.00
leaves 0.05 | 6.00 | 0.15 | 6.00 | 0.12 | 5.00 | 0.00 | 7.00
marching 0.73 | 0.00 | 0.76 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00
matrix 0.60 | 4.00 | 0.53 | 5.00 | 0.59 | 3.00 | 0.57 | 5.00
motocrossl || 0.46 | 1.00 | 0.31 | 3.00 | 0.41 | 4.00 | 0.31 | 3.00
motocross2 || 0.57 | 0.00 | 0.38 | 0.00 | 0.23 | 1.00 | 0.51 | 0.00
nature 046 | 400 | 0.32 | 5.00 | 042 | 4.00 | 0.38 | 5.00
octopus 0.26 | 1.00 | 0.28 | 0.00 | 0.26 | 0.00 | 0.25 | 0.00
pedestrianl || 0.49 | 9.00 | 0.59 | 9.00 | 0.51 | 10.00 | 0.49 | 10.00
pedestrian2 || 0.51 | 1.00 | 0.34 | 1.00 | 0.34 | 1.00 | 0.56 | 1.00
rabbit 0.19 | 5.00 | 0.24 | 6.00 | 0.41 | 6.00 | 0.18 | 7.00
racing 0.37 | 0.00 | 0.36 | 0.00 | 0.35 | 0.00 | 0.36 | 0.00
road 0.65 | 0.00 | 0.65 | 0.00 | 0.62 | 0.00 | 0.50 | 0.00
shaking 0.62 | 1.00 | 0.51 | 1.00 | 0.53 | 1.00 | 0.29 | 3.00
sheep 0.52 | 0.00 | 0.51 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00
singerl 0.36 | 0.00 | 0.36 | 0.00 | 0.36 | 0.00 | 0.36 | 0.00
singer2 0.59 | 1.00 | 0.55 | 4.00 | 0.62 | 2.00 | 0.60 | 2.00
singer3 0.16 | 1.00 | 0.15 | 1.00 | 0.14 | 1.00 | 0.15 | 1.00
soccerl 0.34 | 3.00 | 045 | 2.00 | 0.38 | 3.00 | 0.43 | 3.00
soccer2 0.63 | 10.00 | 0.71 | 10.00 | 0.79 | 10.00 | 0.74 | 11.00
soldier 042 | 1.00 | 0.34 | 1.00 | 0.41 | 1.00 | 0.40 | 2.00
sphere 0.68 | 1.00 | 0.67 | 1.00 | 0.30 | 5.00 | 0.68 | 1.00
tiger 0.67 | 2.00 | 0.60 | 3.00 | 0.62 | 4.00 | 0.64 | 2.00
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[TM17] HSV Attl1 Att50
Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
traffic 0.68 | 1.00 | 0.68 | 0.00 | 0.68 | 0.00 | 0.69 | 1.00
tunnel 0.36 | 0.00 | 0.39 | 0.00 | 0.38 | 0.00 | 0.39 | 0.00
wiper 0.73 | 1.00 | 0.72 | 2.00 | 0.57 | 2.00 | 0.36 | 2.00
Average 048 | 2.13 | 045 | 3.02 | 043 | 3.22 | 044 | 448
TABLE A.2:

Performances by varying color space (part
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Appendix B

Per sequence results on
VOT2015 for different

derivatives scales

[TM17] o= oc=14 o=
Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
bag 0.33 | 0.00 | 0.36 | 0.00 | 0.32 | 0.00 | 0.32 | 0.00
balll 0.76 | 2.00 | 0.80 | 2.00 | 0.80 | 1.00 | 0.68 | 2.00
ball2 0.73 | 3.00 | 0.85 | 3.00 | 0.71 | 3.00 | 0.03 | 4.00

basketball || 0.52 | 0.00 | 0.52 | 2.00 | 0.46 | 3.00 | 0.48 | 3.00

birdsl 045 | 7.00 | 037 | 12.00 | 0.42 | 9.00 | 0.47 | 3.00

birds2 0.55 | 0.00 | 0.57 | 0.00 | 0.46 | 0.00 | 0.55 | 0.00

blanket 048 | 0.00 | 0.52 | 0.00 | 0.38 | 0.00 | 0.43 | 0.00

bmx 0.21 | 0.00 | 0.17 | 1.00 | 0.16 | 1.00 | 0.15 | 0.00
boltl 048 | 0.00 | 0.54 | 1.00 | 0.60 | 1.00 | 0.47 | 2.00
bolt2 0.53 | 0.00 | 0.65 | 0.00 | 0.64 | 0.00 | 0.62 | 1.00
book 0.16 | 9.00 | 0.14 | 5.00 | 0.20 | 8.00 | 0.13 | 8.00
butterfly 044 | 1.00 | 052 | 1.00 | 045 | 1.00 | 0.26 | 1.00
carl 0.67 | 3.00 | 0.61 | 1.00 | 0.60 | 0.00 | 0.72 | 1.00
car2 0.76 | 0.00 | 0.80 | 0.00 | 0.72 | 0.00 | 0.49 | 1.00

crossing 0.50 | 1.00 | 0.50 | 1.00 | 0.49 | 1.00 | 0.50 | 1.00

dinosaur 041 | 1.00 | 0.34 | 0.00 | 0.44 | 2.00 | 0.39 | 2.00

fernando 0.37 | 1.00 | 0.43 | 2.00 | 0.35 | 2.00 | 0.40 | 2.00

fish1 0.35 | 400 | 036 | 2.00 | 045 | 3.00 | 0.36 | 4.00
fish2 0.22 | 8.00 | 0.25 | 3.00 | 0.26 | 5.00 | 0.28 | 6.00
fish3 0.44 | 0.00 | 0.54 | 1.00 | 042 | 1.00 | 0.49 | 0.00
fish4 028 | 0.00 | 0.42 | 1.00 | 0.42 | 2.00 | 0.31 | 1.00

girl 0.63 | 1.00 | 0.61 | 1.00 | 0.68 | 1.00 | 0.62 | 2.00




1 ?é)pendix B. Per sequence results on VOT2015 for different derivatives

scales
[TM17] o=2 o= o=

Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
glove 045 | 3.00 | 045 | 3.00 | 0.48 | 3.00 | 0.54 | 3.00
godfather 0.51 | 0.00 | 0.40 | 1.00 | 0.44 | 1.00 | 0.50 | 2.00
graduate 0.34 | 500 | 0.39 | 7.00 | 0.39 | 6.00 | 0.45 | 12.00
gymnasticsl || 0.42 | 8.00 | 0.34 | 6.00 | 0.50 | 6.00 | 0.42 | 5.00
gymnastics2 || 0.58 | 2.00 | 0.62 | 3.00 | 0.59 | 3.00 | 0.56 | 5.00
gymnastics3 || 0.31 | 4.00 | 0.28 | 3.00 | 0.32 | 4.00 | 0.29 | 3.00
gymnastics4 || 0.42 | 3.00 | 0.33 | 3.00 | 0.41 | 3.00 | 0.41 | 0.00
hand 0.36 | 9.00 | 0.52 | 5.00 | 0.47 | 8.00 | 0.33 | 10.00
handballl 0.53 | 4.00 | 047 | 3.00 | 0.61 | 2.00 | 0.47 | 7.00
handball2 || 042 | 3.00 | 0.41 | 3.00 | 0.36 | 2.00 | 0.50 | 5.00
helicopter || 0.37 | 0.00 | 0.42 | 2.00 | 0.37 | 0.00 | 0.37 | 0.00
iceskaterl 0.38 | 2.00 | 0.38 | 3.00 | 0.37 | 4.00 | 0.32 | 5.00
iceskater2 || 0.52 | 3.00 | 0.45 | 3.00 | 0.47 | 3.00 | 0.48 | 2.00
leaves 0.05 | 6.00 | 0.03 | 6.00 | 0.13 | 5.00 | 0.37 | 5.00
marching 0.73 | 0.00 | 0.74 | 0.00 | 0.73 | 0.00 | 0.74 | 0.00
matrix 0.60 | 4.00 | 0.50 | 4.00 | 0.55 | 3.00 | 0.44 | 3.00
motocrossl || 0.46 | 1.00 | 0.38 | 3.00 | 0.24 | 3.00 | 0.33 | 3.00
motocross2 || 0.57 | 0.00 | 0.55 | 0.00 | 0.52 | 0.00 | 0.31 | 0.00
nature 0.46 | 400 | 048 | 4.00 | 048 | 4.00 | 0.40 | 6.00
octopus 0.26 | 1.00 | 0.34 | 1.00 | 0.31 | 0.00 | 0.33 | 1.00
pedestrianl || 0.49 | 9.00 | 0.58 | 7.00 | 0.64 | 8.00 | 0.54 | 6.00
pedestrian2 || 0.51 | 1.00 | 0.30 | 0.00 | 0.31 | 0.00 | 0.31 | 1.00
rabbit 0.19 | 5.00 | 0.37 | 5.00 | 0.39 | 4.00 | 0.27 | 5.00
racing 0.37 | 0.00 | 0.38 | 0.00 | 0.42 | 0.00 | 0.37 | 0.00
road 0.65 | 0.00 | 0.64 | 0.00 | 0.60 | 0.00 | 0.68 | 0.00
shaking 0.62 | 1.00 | 0.51 | 0.00 | 0.66 | 1.00 | 0.57 | 0.00
sheep 0.52 | 0.00 | 0.52 | 0.00 | 0.49 | 1.00 | 0.53 | 1.00
singerl 0.36 | 0.00 | 0.36 | 0.00 | 0.36 | 0.00 | 0.34 | 0.00
singer2 0.59 | 1.00 | 0.58 | 1.00 | 0.67 | 1.00 | 0.64 | 1.00
singer3 0.16 | 1.00 | 0.14 | 1.00 | 0.32 | 1.00 | 0.33 | 2.00
soccerl 0.34 | 3.00 | 048 | 3.00 | 0.49 | 3.00 | 0.41 | 2.00
soccer?2 0.63 | 10.00 | 0.86 | 13.00 | 0.88 | 13.00 | 0.71 | 12.00
soldier 042 | 1.00 | 046 | 1.00 | 0.43 | 1.00 | 0.37 | 1.00
sphere 0.68 | 1.00 | 0.53 | 1.00 | 0.56 | 2.00 | 0.57 | 0.00




Appendix B. Per sequence results on VOT2015 for different derivativieg

scales
[TM17] o=2 oc=4 o=

Sequence Ove. | Fail. | Ove. | Fail. | Ove. | Fail. | Ove. | Fail.
tiger 0.67 | 2.00 | 0.69 | 1.00 | 0.57 | 1.00 | 0.75 | 1.00
traffic 0.68 | 1.00 | 0.68 | 0.00 | 0.61 | 1.00 | 0.55 | 1.00
tunnel 0.36 | 0.00 | 0.37 | 0.00 | 0.37 | 0.00 | 0.59 | 1.00
wiper 0.73 | 1.00 | 0.74 | 1.00 | 0.70 | 1.00 | 0.59 | 1.00
Average 048 | 2.13 | 048 | 2.17 | 048 | 2.21 | 047 | 2.68

TABLE B.1: Performances by varying derivative scale
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Résumé : La représentation visuelle est un probléme fon-
damental en vision par ordinateur. Le but est de réduire
I’information au strict nécessaire pour une tache désirée.
Plusieurs types de représentation existent, comme les carac-
téristiques de couleur (histogrammes, attributs de couleurs...),
de forme (dérivées, points d’intérét...) ou d’autres, comme les

bancs de filtres, . . N
Les caractéristiques bas-niveau (locales) sont rapides a cal-

culer. Elles ont un pouvoir de représentation limité, mais leur
généricité présente un intérét pour des systemes autonomes
et multi-tdches, puisque les caractéristiques haut-niveau dé-

coulent d’elles. . o )
Le but de cette these est de construire puis d’étudier I’'impact

de représentations fondées seulement sur des caractéristiques
locales de bas-niveau (couleurs, dérivées spatiales) pour deux
taches : la poursuite d’objets génériques, nécessitant des car-
actéristiques robustes aux variations d’aspect de 1’objet et
du contexte au cours du temps; la détection d’objets, ou
la représentation doit décrire une classe d’objets en tenant
compte des variations intra-classe. Plutét que de constru-
ire des descripteurs d’objets globaux dédiés, nous nous ap-
puyons entierement sur les caractéristiques locales et sur des
mécanismes statistiques flexibles visant a estimer leur distri-
bution (histogrammes) et leurs co-occurrences (Transformée
de Hough Généralisée).

La Transformée de Hough Généralisée (THG), créée pour la
détection de formes quelconques, consiste a créer une struc-
ture de données représentant un objet, une classe... Cette

structure, d’abord indexée par I’orientation du gradient, a été
étendue a d’autres caractéristiques. Travaillant sur des car-
actéristiques locales, nous voulons rester proche de la THG
originale.

En poursuite d’objets, aprés avoir présenté nos premiers
travaux, combinant la THG avec un filtre particulaire (util-
isant un histogramme de couleurs), nous présentons un algo-
rithme plus 1éger et rapide (100fps), plus précis et robuste.
Nous présentons une évaluation qualitative et étudierons
I’impact des caractéristiques utilisées (espace de couleur, for-
mulation des dérivées partielles...).

En détection, nous avons utilisé 1’algorithme de Gall appelé
foréts de Hough. Notre but est de réduire 1’espace de car-
actéristiques utilisé par Gall, en supprimant celles de type
HOG, pour ne garder que les dérivées partielles et les carac-
téristiques de couleur. Pour compenser cette réduction, nous
avons amélioré deux étapes de I’entrainement : le support des
descripteurs locaux (patchs) est partiellement produit selon
une mesure géométrique, et I’entrainement des nceuds se fait
en générant une carte de probabilité spécifique prenant en
compte les patchs utilisés pour cette étape. Avec I’espace de
caractéristiques réduit, le détecteur n’est pas plus précis. Avec
les mémes caractéristiques que Gall, sur une méme durée
d’entralnement, nos travaux ont permis d’avoir des résultats
identiques, mais avec une variance plus faible et donc une
meilleure répétabilité.

Title : Object representation in local feature spaces: application to real-time tracking and detection
Keywords : Computer Vision, Object tracking, Object detection, Feature spaces, Hough Transform

Abstract : Visual representation is a fundamental problem in
computer vision. The aim is to reduce the information to the
strict necessary for a query task. Many types of representa-
tion exist, like color features (histograms, color attributes...),
shape ones (derivatives, keypoints...) or filterbanks.

Low-level (and local) features are fast to compute. Their
power of representation are limited, but their genericity have
an interest for autonomous or multi-task systems, as higher

level ones derivate from them.
We aim to build, then study impact of low-level and lo-

cal feature spaces (color and derivatives only) for two tasks:
generic object tracking, requiring features robust to object
and environment’s aspect changes over the time; object de-
tection, for which the representation should describe object
class and cope with intra-class variations. Then, rather than
using global object descriptors, we use entirely local fea-

tures and statisticals mecanisms to estimate their distribution
(histograms) and their co-occurrences (Generalized Hough

Transform).
The Generalized Hough Transform (GHT), created for detec-
tion of any shape, consists in building a codebook, originally

indexed by gradient orientation, then to diverse features, mod-
eling an object, a class. As we work on local features, we aim
to remain close to the original GHT.

In tracking, after presenting preliminary works combining
the GHT with a particle filter (using color histograms), we
present a lighter and fast (100 fps) tracker, more accurate and
robust. We present a qualitative evaluation and study the im-
pact of used features (color space, spatial derivative formula-
tion).

In detection, we used Gall’s Hough Forest. We aim to reduce
Gall’s feature space and discard HOG features, to keep only
derivatives and color ones. To compensate the reduction, we
enhanced two steps: the support of local descriptors (patches)
are partially chosen using a geometrical measure, and node
training is done by using a specific probability map based on
patches used at this step. With reduced feature space, the de-
tector is less accurate than with Gall’s feature space, but for
the same training time, our works lead to identical results, but
with higher stability and then better repeatability.
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