
HAL Id: tel-01712041
https://pastel.hal.science/tel-01712041

Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object representation in local feature spaces :
application to real-time tracking and detection

Antoine Tran

To cite this version:
Antoine Tran. Object representation in local feature spaces : application to real-time tracking and
detection. Computer Vision and Pattern Recognition [cs.CV]. Université Paris Saclay (COmUE),
2017. English. �NNT : 2017SACLY010�. �tel-01712041�

https://pastel.hal.science/tel-01712041
https://hal.archives-ouvertes.fr

NNT : 2017SACLS010

THÈSE DE DOCTORAT

DE L’UNIVERSITÉ PARIS-SACLAY

PRÉPARÉE À L’ENSTA PARISTECH

Ecole doctorale n◦573

Ecole Doctorale Interfaces

Spécialité de doctorat: Informatique

par

M. ANTOINE TRAN

Représentation d’objets dans des espaces de caractéristiques locales

: application à la poursuite de cibles temps-réel et à la détection

Thèse présentée et soutenue à Palaiseau, le 25 octobre 2017.

Composition du Jury :

Mme. CATHERINE ACHARD, Maître de Conferences, Université Pierre-et-Marie-Curie, Présidente du
jury, Rapporteur

M. SERGE MIGUET, Professeur, Université Lumière Lyon 2, Rapporteur

M. STEPHANE HERBIN, Ingénieur, ONERA, Examinateur

Mme. MARIE-VÉRONIQUE SERFATY, Ingénieur, DGA, Examinatrice

M. ANTOINE MANZANERA, Enseignant-Chercheur, ENSTA ParisTech, Directeur de thèse

3

Acknowledgements
Il est maintenant temps de conclure la rédaction de ce manuscrit. Ayant

énormément apprécié ces nombreuses années à l’U2IS, c’est avec un cer-
tain plaisir que je rédige ces quelques lignes pour remercier les personnes
que j’ai cotoyé durant ces années.

La première personne à remercier est évidemment mon directeur de
thèse, Antoine Manzanera. Sa disponibilité, sa patience et sa gentillesse
en toutes circonstances, depuis l’entretien, fait malgré la neige gênant les
transports menant à l’ENSTA, jusqu’aux nombreuses lectures, relectures
de ce manuscrit de thèse en font un directeur de thèse exemplaire, avec
qui j’ai pris énormément plaisir à travailler, à discuter de sujets aussi bien
scientifiques que non scientifiques durant de nombreuses heures. Je tiens
aussi à le remercier pour la prolongation de contrat qui a permis finir cette
thèse dans de bonnes conditions. Cette thèse n’aurait pas vu le jour sans
la Direction Générale de l’Armement, qui a accepté de financer ma thèse
pendant 3 ans. Enfin, je remercie aussi toutes les personnes qui ont com-
posé mon jury de thèse : les rapporteurs, Mme. Catherine Achard et M.
Serge Miguet, ainsi que les examinateurs, Mme. Marie-Véronique Serfaty
et M. Stéphane Herbin.

La thèse est une épreuve difficile, composée de périodes compliquées
aussi bien scientifiques que morales. A ce niveau, la bonne ambiance du
laboratoire, et les différentes personnes avec qui j’ai pris plaisir à discuter
dans le couloir et devant un café ont fortement contribué à la réussite de
cette thèse. Je tiens donc à les remercier. Je commencerai par remercier
mes collègues de bureau : Daniela, qui peut maintenant occuper mon es-
pace avec des plantes, Louise, pour les longues discussions qu’on a pu
avoir sur des sujets divers et variés, les actions faites pour rendre la vie
du laboratoire plus agréable et l’aide et le soutien apportés durant la ré-
daction, malgré sa présence partielle au labo. Je remercie aussi Matthieu,
qui a bien laissé sa trace et nous a bien simplifié la vie en nous facilitant
l’accès à Internet. Une petite pensée aussi pour Fabio et Phuong, anciens
post-docs qui auront trouvé des postes dans des lieux plus ensoleillés que
Palaiseau.

Une grande partie des bons moments passés au labo sont liés aux
différents doctorants rencontrés durant ma thèse. Je pense notamment
aux réunions de doctorants co-organisés et co-animés avec Pauline, aux
jeux de plateau découverts avec Gennaro, aux thés du matin et pauses

4

de 16h avec Céline, aux intrusions et vols de post-it du bureau d’Adrien,
aux montages électroniques de Pierre-Henri qui ne cesseront jamais de
m’impressionner, à la présence de Clément M. y compris après son dé-
part, ainsi qu’à l’humour particulier de Clément P. (que je reverrai avec
plaisir dans la suite de mon parcours professionnel).

Je remercie aussi les post-docs qui ont fait part de leur sagesse, tout
au long de cette thèse : Adina, pour toute la patience accordée depuis son
arrivée, en m’écoutant m’énerver sur la rédaction et avec qui j’ai eu de
grandes et (très) longues conversations, François F., avec qui j’ai présenté
de nombreuses fois les travaux du laboratoire aux extérieurs, Julien, qui a
souvent pris le temps de partager sa vision de la thèse et de la recherche,
Olivier, le nouveau membre de l’équipe course à pied de l’U2IS, Taha et
sa bonne humeur, et Natalia, avec qui j’ai malheureusement pu constater
mes faiblesses en espagnol.

Enfin, je remercie aussi les permanents et ingénieurs de l’U2IS, en par-
ticulier Alexandre (avec qui j’espère pouvoir faire de nouvelles courses
dans le futur), Thibault (pour avoir réparé les charnières de mon PC),
François P. (pour avoir réparé l’alimentation de ce même PC) et Catherine,
pour m’avoir sauvé de toutes les démarches administratives.

De manière générale, je souhaite remercier l’ensemble des personnes
de l’U2IS, qui m’ont vu (et revu) dans les couloirs du laboratoire ou près
de la machine à café, qui ont rendu mon séjour très agréable.

5

Contents

Acknowledgements 3

1 Introduction 1
1.1 Scope of the thesis . 3
1.2 Contributions . 5
1.3 Outline of the thesis . 6

2 Object representation 9
2.1 Visual Features . 10

2.1.1 Color-Based features 11
2.1.1.1 Color space 12
2.1.1.2 Color Histogram 15
2.1.1.3 Higher Level of representation 18
2.1.1.4 Conclusion 21

2.1.2 Shape-Based Representation 22
2.1.2.1 Mathematical context 22
2.1.2.2 Sobel filter 22
2.1.2.3 Local Jet space 24
2.1.2.4 Higher level features 30
2.1.2.5 Conclusion 33

2.1.3 Conclusion of the section 33
2.2 Hough Transform . 34

2.2.1 History of the Hough Transform 35
2.2.2 General formulation 36

2.2.2.1 Variant of the Hough Transform 39
2.2.3 Generalized Hough Transform 40
2.2.4 Applications of Hough Transforms in computer

vision . 43
2.3 Conclusion . 44

3 Object Tracking 47
3.1 Definition . 50

3.1.1 Tracking conditions 53
3.1.2 Difficulties . 54
3.1.3 Conclusion . 55

3.2 Literature review . 56
3.2.1 State-of-the-art 58
3.2.2 Hough Transform for Object Tracking 64

3.3 Combining color histogram and Gradient for tracking . . . 67

6 Contents

3.3.1 Backprojection map 68
3.3.2 Combining GHT and Particle Filter 69
3.3.3 Transitional tracker 73
3.3.4 Final tracker . 77

3.3.4.1 Position estimation 79
3.3.4.2 Scale and orientation estimations 81
3.3.4.3 Updating model 82
3.3.4.4 Conclusion 83

3.4 Results . 84
3.4.1 Implementation details 84

3.4.1.1 Optimization 84
3.4.2 VOT datasets . 86

3.4.2.1 History of the VOT Challenge 86
3.4.2.2 Parameter details 88
3.4.2.3 VOT2014 92
3.4.2.4 VOT15 95
3.4.2.5 Analysis of results 98

3.5 Conclusion . 111

4 Object Detection 115
4.1 Literature review . 117

4.1.1 Object classification, detection, recognition 117
4.1.2 Hough detectors 119

4.2 Hough Forest . 120
4.2.1 Forest training 120

4.2.1.1 Generating training set 121
4.2.1.2 Training tree 122
4.2.1.3 Implementation details 125
4.2.1.4 Detection 125

4.2.2 Extensions of the Hough Forest 126
4.3 Our contributions . 128

4.3.1 Patch generation 128
4.3.2 Node training . 129

4.4 Experiments . 132
4.4.1 Evaluation method 132
4.4.2 UIUC Cars . 134
4.4.3 TUD Pedestrian 135

4.5 Conclusion . 140

5 Perspectives and Conclusion 143
5.1 Conclusion . 143
5.2 Perspectives . 144

5.2.1 Raspberry Pi 3 Implementation 145
5.2.1.1 Global perspectives 146

A Per sequence results on VOT2015 for different color spaces 149

Contents 7

B Per sequence results on VOT2015 for different derivatives scales155

Bibliography 159

9

List of Figures

1.1 Traditional chain of computer vision 1
1.2 Tracking process from ironman sequence 4
1.3 Pedestrian detection (TUD-Pedestrians dataset) 5

2.1 First frame from surfing sequence [KPL+] 11
2.2 Image of the first line splitted into RGB, HSV and Lab

color spaces (respectively second, third and fourth lines) . 16
2.3 Histogram taken from the first frame of bolt sequence [KPL+] 17
2.4 Two different flags with the same color distribution 17
2.5 Superpixel segmentation obtained from ball sequence [KPL+]

with 400 superpixels. 20
2.6 Color attribute of frame 0 of marching sequence 21
2.7 Sobel in x and y applied in frame from torus sequence

[KPL+] . 23
2.8 Magnitude and orientation from torus image. For a bet-

ter visualization, we displayed only orientation for pixels
with high gradient magnitude 23

2.9 Gradient magnitude at different scales 26
2.10 Junctions and blobs at different scales 27
2.11 Griffin norm computed at scales {1, 2, 4} 28
2.12 Corners detected in lego1 sequence 31
2.13 Fast keypoint schematic. The central point is detected as

a keypoint by the FAST algorithm: in the circle of cir-
cumference 16, there is one large contiguous set of pixels
brighter than the central point. 31

2.14 Summary of different presented features 34
2.15 Figure from Hough’s patent. Each point from lines of the

upper part generates one line in the lower part. Then, all
aligned points from the upper part generates a beam of
concurrent lines in the lower one 36

2.16 Parametrization of the blue line using Duda [DH72] pa-
rameter set (r, θ) . 37

2.17 Line Hough Transform on three points: A(1, 1), B =
(1.5, 0.5) and C = (2.5,−0.5) 38

2.18 Lines detection using Hough Transform 38
2.19 Circles detection . 38

10 List of Figures

2.20 Building the R-Table. On the left part, a contour image,
with a reference point r. For each pixel p from the contour,
the gradient orientation θp is computed, and contributes to
the R-Table in the entry R(θp), by the displacement −→pr . . 40

2.21 Generalized Hough Transform on the contour image (on
the left), and the Hough Transform on the right 41

2.22 GHT on a scene, with the squared sheep used as a model . 42

3.1 Different types of object representation 51
3.2 Diagram of a generic tracker. 52
3.3 Diagram of model-free tracker. 53
3.4 Some difficult frames from VOT2014 and VOT2015 datasets 56
3.5 Backprojection from bag sequence. 69
3.6 Backprojection obtained by Eq.3.11. 71
3.7 Diagram of tracker [TM15] 72
3.8 Impact of prediction map in the GHT 75
3.9 Surrounding area from sunshade. 75
3.10 Mapping of the blue and red areas using HR

t (Eq 3.16) . . 76
3.11 Some non consecutive frames from motocross sequence . . 77
3.12 Impact of Possegger’s formulation [PMB15] on the color-

based confidence map . 79
3.13 Diagram of position estimation (better in color) 81
3.14 Illustration of overlappping 87
3.15 Expected overlap for different values for µc and µg 90
3.16 Accuracy rank for different values for µc and µg 91
3.17 Robustness rank for different values for µc and µg 92
3.18 Expected overlap for different values of nc and ng 94
3.19 Accuracy rank for different values of nc and ng 95
3.20 Robustness rank for different values of nc and ng 96
3.21 Speed for different values of nc and ng 97
3.22 Frames from hand2 sequence 97
3.23 Frames from torus sequence 100
3.24 AR plot for trackers displayed on Tab. 3.5 102
3.25 AR plot for trackers displayed on Tab. 3.6 for VOT15 . . . 104
3.26 Frames from matrix sequence 104
3.27 Tracking from butterfly sequence 105
3.28 Tracking from iceskater2 sequence 105
3.29 Accuracy and failure for different versions of CHT 107
3.30 Frames from ball2, car1 and helicopter and their projec-

tion into channel a and b. 109
3.31 Frames 9 and 10 from bag, with their color attributes map-

ping. 110
3.32 Color attribute from fernando. 110
3.33 Gradient magnitude for σ ∈ {2, 4, 8} 111

4.1 Instances from pedestrian class 116
4.2 Patch sampling from images from UIUC dataset [AAR04]. 122

List of Figures 11

4.3 A binary tree of depth 3. 122
4.4 Patch set split into two disjoint parts 123
4.5 Failures and right detections 126
4.6 Junctions shown by circles for one landscape and two pedes-

trian images . 129
4.7 Generating Πa . 131
4.8 Generating superpatches 131
4.9 Examples of TP, FP and FN 133
4.10 Negative and positive images from UIUC-Cars 135
4.11 ROC curve on UIUC Cars multi-scale dataset 136
4.12 One training image from TUD-pedestrian with its associ-

ated segmentation map 136
4.13 GallHOG vs Sobel vs MSDerivatives 138
4.14 Worst and best curves in different cases 139
4.15 Average ROC curves, and covariance ellipses for different

threshold points . 139
4.16 MSDerivatives vs DerivativeS1 vs DerivativeS2 vs Sobel . 140

5.1 Raspberry Pi 3 Model B 145

13

List of Tables

1.1 Desired properties and limitations of our approach 4

2.1 Crosier’s classification, at a given scale σ 28

3.1 Robustness ranking for different couples (µg, µc) 93
3.2 Parameters set . 98
3.3 Baseline results for VOT2014 (ranks over 43 candidates).

CHT, CHTs and CHTf are our trackers. 99
3.4 Region noise results for VOT2014 100
3.5 Overall results for VOT2014 101
3.6 Overall results for VOT2015 (ranks go to 66) 103
3.7 Overlap and number of failure for different trackers in the

sequence sheep . 106
3.8 Number of failures per rank on Camera Motion an Illumi-

nation change . 106
3.9 Expected overlap for different forms of [TM17] 107
3.10 Results for color variant trackers 108
3.11 Expected overlap for geometrical variant trackers 108
3.12 Accuracy for geometrical variant trackers 108
3.13 Overlap of road for different values of σ 111

4.1 Parameters set proposed by Gall, and ours 134

A.1 Performances by varying color space (part 1) 151
A.2 Performances by varying color space (part 2) 153

B.1 Performances by varying derivative scale 157

1

Chapter 1

Introduction

Computer vision aims to understand, to interpret an image or a video like
(or even better than) a human being. Understanding or interpreting an
image, a video, can have many forms. It can consist in detecting a spe-
cific target in an image (object detection), following the trajectory of one
object (tracking), classifying one object instance with respect to different
categories (recognition) or, given a set of images, selecting those fulfilling
one specific condition (Content Based Image Retrieval). Those applica-
tions are now present in everyday life, such as in engine search or social
network systems, surveillance systems, mobile phones, etc.

FIGURE 1.1: Traditional chain of computer vision

Traditionally, a computer vision algorithm is subdivided into different
functions (see Fig. 1.1):

• Acquisition: given a scene to observe, a sensor (such as a camera)
is capturing the scene. This step is all the more important that a bad
acquisition (due for example to a low quality sensor) will spread er-
rors in the whole computer vision chain. Depending on the scene to
acquire, several constraints can appear. In medical or radar imaging,
captured image can be very noisy, or image resolution may not be
sufficient for the task. Acquiring the motion of fast objects (sport
videos typically) implies the use of a camera able to capture decent
images with very low exposure time. In all cases, the sensor is the
critical element of this step

2 Chapter 1. Introduction

• Pre-processing: after the acquisition, the quality of the capture may
not be sufficient for the task. In that case, a processing step is re-
quired to enhance the quality. This enhancement can take several
forms: denoising, deblurring...

• Analysis: after processing, the captured image (or the video) is not
ready yet for higher level interpretation: too much information is
included in processed data. Consequently, the analysis step consists
in reducing the information by extracting the features adapted to the
wanted task

• Understanding: from the data projected into a specific feature space,
the system performs the task it has been designed for. It requires an
algorithm usually designed for this task. This is usually the last step
of computer vision

Nowadays, this chain may no longer be relevant since, for many systems,
such as smart cameras or Vision Processing Unit (VPU), the different parts
may be too intimately combined to be distinguishable. In our work, we do
not step out the traditional chain, but aim to reduce the computational gap
between the two last steps by using unified representations and primitives
that are used all along the computer vision chain. More precisely, we study
two fundamental tasks in computer vision: object tracking and detection.
We want to propose a unique feature space and rely on one main algorithm
for these two tasks.

On the one hand, feature extraction is a popular task in computer vi-
sion, and we find in the literature many different features: keypoints, sta-
tistical features, wavelet, and more recently deep learning autoencoders.
In our case, we take the decision to use only low-level and local color and
shape features. More precisely, we aim work only with pixel colors and
their derivatives only.

On the other hand, the understanding step consists in using a specific
algorithm exploiting information represented in the designed feature space
to get a high-level information, a better understanding of the scene. This
high-level information can be the position of one specific target, recogniz-
ing some specific events, classifying objects.

We plan to study two different tasks: object detection and object track-
ing. Taken alone, both tasks lead to many applications in surveillance
(dangerous object detection, following the trajectory of a threat), in robotics

1.1. Scope of the thesis 3

(visual control) and other fields. Combined, they provide a higher-level of
understanding. For example, let us consider a camera filming a bifurca-
tion. By combining a tracker and a detector, we can determine how many
pedestrians start from one entry point, and leave another one. This exam-
ple suggests the main interest of our work. Indeed, autonomous systems
have to perform different tasks, while being constrained by the hardware.
By unifying the feature space and the algorithm, we reduce the memory
consumption. Our work also presents an interest in terms of computation
time. As low-level features are simpler than higher-level ones, they can be
more easily implemented on any kind of system, from low-cost or embed-
ded ones to computer clusters, and mobile phones or desktop machines.

1.1 Scope of the thesis

As mentioned previously, we aim to work with a unique feature space and
algorithm, and study benefits and limitations of these hypotheses on two
tasks: object tracking and object detection. In the framework of our thesis,
we will suppose that sequences and images studied will be acquired from
standard cameras (from phones or webcam). In this case, we discard some
problematic cases that can imply image preprocessing (such as denoising).

In terms of feature space, we will work on "natural" visual features,
including color and local geometry, as opposed to massive decomposition
features, like wavelet, filter banks or deep learning autoencoders features.
More precisely, all proposed algorithms will rely exclusively on pixel col-
ors, spatial derivatives, and spatial aggregation mechanisms based on his-
tograms and Hough transform. Usually, low-level features are used to
build more complex ones, with higher power of representation: color at-
tributes, keypoints, statistical features. However, those higher level fea-
tures are usually slower to compute, their high power of representation
might not be necessary for some tasks, and are not as flexible as low level
ones (for example, keypoints cannot be found everywhere, they are par-
ticular points in images). Inversely, pixels colors and derivatives can be
computed in the whole image and are adapted to parallel computation,
potentially leading to a very low computation time. As the main prob-
lem is their relatively weak power of representation, one tackled problem
will concern the possibility to propose effective tracker and detector based
only on pixel colors and derivatives.

4 Chapter 1. Introduction

FIGURE 1.2: Tracking process from ironman sequence

In terms of representation, one algorithm has a central role in our
work: the Generalized Hough Transform. Its original principle was to
build a codebook to represent one contour. This codebook, indexed by gra-
dient orientation, stores all relative positions of the contour points with re-
spect to the center. It serves to localize the contour in a tested image. The
Generalized Hough Transform has proven versatile, since many variations
of the algorithm have been proposed, with regard to the feature used to in-
dex the table, to the structure of the codebook and to the parameter space.
In terms of application, it has been adapted to many tasks, in particular ob-
ject tracking and detection. However, the Generalized Hough Transform
is not the most effective algorithm used for these tasks: Discriminative
Correlation Filter and Convolutional Neural Network are state-of-the-art
algorithms for tracking and detection respectively. Tab. 1.1 summarizes
all benefits all weaknesses of our two hypotheses.

Feature Algorithm
Advantages

• Fast to compute

• Good properties for
parallelization

• Low memory con-
sumption

• Versatile algorithm

Limitations Low power of representa-
tion

Not the most effective al-
gorithm

TABLE 1.1: Desired properties and limitations of our ap-
proach

Object tracking and detection present an interest for our thesis, due
to their distinct aims. In tracking, feature space is designed to estimate
target trajectory as accurate and robustly as possible. This target can have
any aspect (Fig. 1.2 shows one sequence found in one academic dataset
[ARS08]), and in some applications (visual control notably), time con-
sumption is critical. In detection, as feature space aims to describe a

1.2. Contributions 5

FIGURE 1.3: Pedestrian detection (TUD-Pedestrians
dataset)

class of object and cope with intra-class variation, using a machine learn-
ing classifier is a possible solution (illustration of pedestrian detection
Fig. 1.3). The object representation, trained with many samples, is usually
heavier compared to tracking, but time consumption is also less critical.
The two tasks then have different constraints in terms of representation
and of computation time. Studying benefits and limits of low-level fea-
tures in both cases will give us an overview of their benefits.

1.2 Contributions

Our work led to three publications in international conferences, one re-
lated to object detection, two related to object tracking:

• [TM16] Antoine Tran and Antoine Manzanera. “Fast growing Hough
forest as a stable model for object detection”. In: Image Process-

ing Theory Tools and Applications (IPTA), 2016 6th International

Conference on. IEEE. 2016, pp. 1-6

• [TM15] Antoine Tran and Antoine Manzanera. “A versatile object
tracking algorithm combining Particle Filter and Generalised Hough
Transform”. In: Image Processing Theory, Tools and Applications

(IPTA), 2015 International Conference on. IEEE. 2015, pp. 105-
110

• [TM17] Antoine Tran and Antoine Manzanera. “Mixing Hough and
Color Histogram Models for Accurate Real-Time Object Tracking”
In: International Conference on Computer Analysis of Images and

Patterns (to appear). 2017 pp. 105-110

6 Chapter 1. Introduction

[TM15] presents a tracker combining the Generalized Hough Trans-
form relying on gradient features, and a Particle Filter based on color his-
togram. In [TM17], while still keeping the Generalized Hough Transform
under the same form, we exploit color histogram to build a pixel confi-
dence map. [TM17] has proven competitive, we earned the right to be
co-author of the report dedicated to the Visual Object Tracking challenge
2017 1. Results, ranking, and implementation will be available in Novem-
ber, 2017. [TM16] deals with the Hough Forest algorithm [GL13], and
proposes two contributions: one related to the training set generation, the
second to the node training.

1.3 Outline of the thesis

This thesis will be divided into four parts.
Chapter. 2 will deal with object representations. Its first section will

be dedicated to color features, starting from definition of color space, end-
ing with color-based features. In the second section, we will deal with
shape-based features. The first task will be to define the notion of deriva-
tive on images. Then, from these derivatives, we will see how several
works have been proposed to build visual features directly computed from
gradient and Laplacian, and to build higher-level ones, such as keypoint
or HOG features. In these two parts, we will also present some classical
tasks computed with the different presented features. The Hough Trans-
form will then be formally defined in the third part. After an history of
the algorithm, that leads to the Generalized Hough Transform, and some
improvement of the original algorithm, we will illustrate the versatility of
the Hough Transform by showing how it was adapted for different appli-
cations.

In Chapter. 3, we will focus on object tracking. Since in computer vi-
sion, tracking (in general) is a very popular task, we will start by defining
the framework in which we are working on, and the difficulties related to
object tracking. Then, we will make a literature review of methods for
object tracking, by focusing on trackers related to ours and those that are
comparable, in terms of performances. We will also present recent works
on Hough-based trackers. In the third section, we will focus on the two
proposed trackers. After detailing [TM15], we will discuss some missing

1http://www.votchallenge.net/

http://www.votchallenge.net/

1.3. Outline of the thesis 7

elements of this tracker to propose a transitional one. This transitional
tracker was simplified, and finally led to [TM17], which combined accu-
racy, robustness and speed (one of the fastest in the literature). We will
end this chapter by presenting some experimental results. By first explain-
ing how we managed to reach a low execution time, we will continue by
parameters setting. Then, results on academic datasets will be shown, to-
gether with an analysis of obtained results and the impact of low-level
features.

Object detection will have the main role in Chapter. 4. As for the pre-
vious chapter, we will start by presenting the task of object detection. This
presentation will be followed by a literature review in object detection, by
in particular presenting state-of-the-art detectors and Hough-based ones.
Then, we will present our work, by starting from an explanation of the
Hough Forest algorithm [GL13], serving as a base for our detector, fol-
lowed by a review of different extensions of it. We will then focus on
[TM16], by detailing reasons that led us to propose such contributions.
Finally, details about experimental results will be provided.

Finally, Chapter. 5 will serve as a conclusion. It will be dedicated to
discussions and possible perspectives related to our work. We will notably
mention the development of an autonomous system combining tracker and
detector, by tackling all issues that should be solved, considering the state
of our work.

9

Chapter 2

Object representation

Contents
2.1 Visual Features . 10

2.1.1 Color-Based features 11

2.1.2 Shape-Based Representation 22

2.1.3 Conclusion of the section 33

2.2 Hough Transform 34

2.2.1 History of the Hough Transform 35

2.2.2 General formulation 36

2.2.3 Generalized Hough Transform 40

2.2.4 Applications of Hough Transforms in com-

puter vision 43

2.3 Conclusion . 44

This chapter presents the framework of our work. As mentioned in
the introduction, we set two limits to our work: one concerning the com-
plexity of the feature spaces, one concerning the method to exploit those
features for different tasks. Accordingly, this chapter will be divided into
two parts, reflecting the two hypotheses we set:

• First, we will present some visual features used in computer vision.
We will mainly focus on color-based and shape-based features (we
will denote them as visual features). The aim will not to be exhaus-
tive, but rather to see how, from very simple features (pixel color,
local geometry), higher visual features were designed for computer
vision tasks. All along this section, we will also present some clas-
sical computer vision tasks based on the presented features

• Second, we will deal will the Hough Transform. This algorithm,
very popular in computer vision, has a central role in our thesis.

10 Chapter 2. Object representation

After presenting the history of the algorithm, starting from a patent
presenting a device designed to track particles in bubble machines,
then a formalization in order to detect analytical shapes and some
enhancements of the original Hough Transform, we will present
the extension proposed by Ballard [Bal81], the Generalized Hough

Transform, used to detect any kind of shape. Finally, to show how
versatile the algorithm is, we will make a short review of literature
showing that the Hough Transform has been adapted for many ap-
plications

2.1 Visual Features

In this section, we will focus on visual features. The goal of our thesis is to
study potentials and limitations of low-level representations in computer
vision, for two fundamental tasks: object tracking and object detection.
The main benefit of low-level features is in terms of computation time:
fast to compute and easily parallelizable, they can be used for reactive
algorithms. However, due to the limit in their power of representation,
higher-level and more costly features have been designed, generally built
from low-level ones. We will then make a review of different visual fea-
tures found in the literature. Before that, we start by defining what, in our
point of view, a good feature is, in machine learning, then for two tasks in
computer vision.

In Machine Learning, extracting a feature from an object means creat-
ing a numerical vector supposed to represent it, to describe it. This process
is called model generation. Ideally, this feature vector should fulfill sev-
eral properties:

• Discriminative, to identify the observed object, and distinguish it
from other ones. Mathematically, given a feature space (the space
in which the vector is represented) and a good metric, the distance
between two vectors of two different objects should be high

• Characteristic and intrinsic to this object, to ensure that different
instances from the same object have approximately the same feature
vector. Moreover, for each observation (and for each environment
or context), the extracted feature vector should always be the same

2.1. Visual Features 11

• Repeatability, meaning that in noisy or degraded conditions, the ob-
tained feature vector of the same object should not change much

One hypothesis that can be added, but is not essential, concerns the quan-
tity of information stored in the feature vector. Ideally, this feature vector
should contain the minimal amount of information necessary to describe
an object. Evidently, extracted features should suit the wanted task. In ob-
ject detection, features should represent the class of object as precisely as
possible, while neglecting particularities of instances (for example, car’s
color in car detection). In object tracking, it is possible to represent the
target using features able to discriminate the target from the background
(for instance, tracking the surfer on Fig. 2.1 can be done using color, as
the background is mostly blue, while the surfer is dark). The first part of

FIGURE 2.1: First frame from surfing sequence [KPL+]

this section concerns visual features: we will then make a literature re-
view of visual features in this chapter, starting by color-based ones, and
ending with shape-based ones. In both cases, we will also mention some
works exploiting the different presented features to illustrates utility of
these features. We will also set the limit of our thesis in terms of level of
complexity of used features.

2.1.1 Color-Based features

Color-based features are among the most popular visual features used in
computer vision. In the visual attention system proposed by Itti and Koch
[IKN+98], color is one early feature, among intensity and orientations,
used to generate saliency maps. Moreover, color is a visual feature pre-
senting a certain robustness to some traditional geometric transformations:

12 Chapter 2. Object representation

in-plane rotations, scaling (robustness in terms of proportion of pixels),
and translations.

However, while color is usable to describe a specific instance of object
("This is a blue car"), it is not a generic visual feature used to describe a
class of object (All cars are not blue). Moreover, the perceived color of
an object can not be clearly defined. Indeed, depending on the source of
light, the perceived color can be different (lighting a green wall with a red
light will not make it appear green), and too much or not enough light will
drastically change the color. The color is also dependent on the sensitivity
of the image acquisition system. It means that, considering hypotheses
defining a good feature, color-based ones are not characteristic to the ob-
ject. Consequently, they are not suitable for tasks involving high-level
of semantic, and notably those requiring description of class of objects
(object classification or detection).

However, color-based features still have a very important place in
computer vision, as many researchers designed different color features,
and are involved in many tasks: in object tracking, the main interest of
color features is their ability to distinguish targets from the background
(except in color camouflage case). Moreover, several authors designed
some color-based high-level features, as a first step of object recognition.
Then, in this section, we will present some color-based features, from
very low-level (color space and histograms), to higher ones (superpixels
or color attributes).

2.1.1.1 Color space

In computer vision, the first level of color-based features is extracted from
the smallest element of an image: the pixel. Each pixel has a color. This
color is firstly encoded into a multi (usually 3) dimensional space, called
color space.

Different kinds of color space exist, but the most famous one is the
RGB color space. It comes from the Human Visual System, in which
colors are detected by three types of cones, each one sensitive to one
specific color: Red, Green and Blue. By mixing all these three colors,
in different proportions, it is possible to describe a large range of col-
ors. Indeed, in image processing, a pixel represented in the RGB model
is usually encoded by a triplet of 8-bit integers, meaning that there are
256 × 256 × 256 = 224 possible combinations. However, for computer

2.1. Visual Features 13

vision tasks, one limit of this color space is the poverty of metrics to as-
sociate a visual perception of an object to the mathematical model (How
red is it?). For example, a totally pure red object with be encoded by
(255, 0, 0), while a pure white object will be encoded (255, 255, 255).
Both have the same red intensity, but their colors are completely differ-
ent.

Finlayson [FHX05] proposed a mathematical formula modeling illu-
mination change and shift. Given an acquired scene for which, at a pixel p,
it is initially observed a color (ri, gi, bi), in case of illumination variation,
this same pixel will have values (ro, go, bo) such that: ro

go

bo

 =

 a 0 0

0 b 0

0 0 c

 ·
 ri

gi

bi

+

 c1

c2

c3

 (2.1)

From this equation, Van de Sande [VDSGS10] proposed to model com-
mon illumination changes, such as light intensity change (due to shadows
for example), for which a = b = c and c1 = c2 = c3 = 0, or light in-
tensity shift, indicating that a scene is illuminated with another white light
source, and for which a = b = c = 0 and c1 = c2 = c3.

Another popular color space is the HSV (and other similar color spaces
such as HSL or HSI) color space, proposed by Smith [Smi78]. H stands
for Hue, S for Saturation and V for Value. Given a color c encoded in the
RGB space by (r, g, b), let us define M = max(r, g, b), m = min(r, g, b)

and C = M −m. Then, to convert a RGB pixel to a HSV one, we use the
transformation:

H =

Undefined if(M −m) = 0

60 · g−b
C

if M = r

60 · b−r
C

+ 120 if M = g

60 · r−g
C

+ 240 if M = b

(2.2)

S =

0 if M = 0

M−m
M

otherwise
(2.3)

V = M (2.4)

In this representation, H ∈ [0, 360] represents the perceived color: values

14 Chapter 2. Object representation

close to 0 and to 360 corresponds to red, 120 to green, 240 to blue. Given
Eq. 2.1 and Eq. 2.2, we can notice that the Hue is invariant to light inten-
sity scale and shift. S ∈ [0, 1] corresponds to the intensity of the color.
Visually, it means that the smaller the saturation is, the more the color will
be perceived as gray. We can also note that for S = 0, H is undefined,
which corresponds to r = g = b, i.e. a grey level. It means that, in this
color space, the grayscale is not properly defined. V is the value, and is
also called brightness. Moreover, the smaller the saturation is, the more
unreliable the Hue value is.

Finally, the last color space we will mention is the Lab color space.
It belongs to the class of color-opponent space, and put in opposition the
red color with the green (channel a∗), and the yellow with the blue (chan-
nel b∗). The third channel, L∗, is the luminance. According to Tkalcic in
[TT+03], in the 19th century, Ewald Hering proposed the opponent col-
ors theory, by noticing that the perceptions of certain colors are interde-
pendent: the couple red-green, and yellow-blue. Later, still according to
[TT+03], researchers supposed that from a signal in RGB acquired by the
cones of eyes, the Human Visual System converts it into a signal com-
posed of three components, each one defining a color opposition: White-
Black, Red-Green and Yellow-Blue. These oppositions are the base for the
Lab color space. To move from the RGB space to the Lab, the first step
consists in using an intermediate one, XYZ, defined by the Commission
Internationale de l’Éclairage (CIE). This is done by a linear combination: X

Y

Z

 = M ·

 R

G

B

 (2.5)

with M a 3 × 3 matrix. Each channel of XYZ color space is supposed
to represent a stimulus of the three types of cones of the Human Visual
System. Then, Lab is built from XYZ in order to set L as a luminance
channel, a is a channel putting in opposition the green (negative values)
with the red (positive values) and the b channel to oppose blue with yellow.

This part served to present different color spaces. The first one, the
RGB color space, is directly inspired by the human visual system, com-
posed by 3 types of cones (sensitive to red, blue and green respectively)
and a set of rods (sensitive to luminance). At a first glance, it does not
seem suitable for computer vision task: not robust to illumination change,

2.1. Visual Features 15

and there is no direct link between the color space and the visual percep-
tion. However, it is still much used in computer vision, and especially in
object tracking (we refer to Section. 3.2 for details). We also described
the HSV color space. Closer to the visual perception, it quantifies three
notions linked to visual perception: the observed color, the intensity of
the color and the brightness. However, in this color space, grayscales are
not properly defined. Finally, the Lab one, modeling the signal sent by the
Human Visual System, is based on the opponent color theory: some col-
ors such as the green and the red, are not perceived at the same time. All
described color spaces are illustrated in Fig. 2.2. We will refer to Van de
Sande [VDSGS10] for a richer description of the different color spaces.
This presentation will be important for the rest of this document, espe-
cially for Section 3.4.2.5, in which we will evaluate impacts of different
color spaces on tracking context. In the rest of this section, we will ex-
plain how to create features usable for computer vision, and present some
tasks implying color features.

2.1.1.2 Color Histogram

Color histogram is a very low level color-based feature. Given nb the
number of bins and an image I, building the histogram of I (denoted HI)
consists in, for each bin b, counting how many pixels from I is falling
inside the bin b. Formally, for each pixel p, by denoting Î(p) the quantified
value of I(p), we have, for each bin b:

HI(b) =
∑
p

δ(Î(p)− b) (2.6)

Fig. 2.3 shows a color histogram computed from a grayscale image.
For multi-channel images, the operation is generalized by considering
multi-dimensional bins.

The main advantage of using color histogram as a model for an ob-
ject is the very low memory consumption (one integer per bin), and the
low computation time: different methods, such as Look-Up Table (see
Section. 3) or integral images [Por05], are possible to quickly evaluate an
image histogram. Another advantage is made by working with normalized
histogram (the sum of the values of all bins is equal to 1.0), and consid-
ering the resulting histogram as an empirical discrete probability distribu-
tion. In this condition, several metrics, based on statistics notably, exist in

16 Chapter 2. Object representation

(A) Input

(B) R (C) G (D) B

(E) H (F) S (G) V

(H) L (I) a (J) b

FIGURE 2.2: Image of the first line splitted into RGB,
HSV and Lab color spaces (respectively second, third and

fourth lines)

order to compare two histograms. The Bhattacharyya coefficient [Bha43]
is one of the most popular metrics, and Swain [SB91] proposed a metric
called Histogram Intersection in order to classify objects, with a certain
robustness to occlusion and change of viewpoint. Given two normalized
histogramsH1 andH2 with the same number of bins nb, the Bhattacharyya
coefficient B(H1, H2) and the Histogram Intersection I(H1, H2) are de-
fined by:

B(H1, H2) =

nb∑
i=1

√
H1(i) ·H2(i) (2.7)

2.1. Visual Features 17

(A) Grayscale
Image

(B) Grayscale
histogram

FIGURE 2.3: Histogram taken from the first frame of bolt
sequence [KPL+]

I(H1, H2) =

nb∑
i=1

min(H1(i), H2(i)) (2.8)

However, the main weakness of image histograms is directly induced by
the used color space, and a non adapted color space may dramatically re-
duce the effectiveness of image histogram. Moreover, an histogram mod-
els an object globally, and while it indicates which colors are dominant
or not, it does not indicate where they appear. Fig. 2.4 illustrates one ex-
ample for which the Bhattacharyya coefficient will be 1.0, meaning that,
for this measure, the two flags are identical, while they are visually (and
semantically) different.

(A) French Flag (B) Rotated version of the French
flag

FIGURE 2.4: Two different flags with the same color dis-
tribution

This very low-level representation is, however, used for concrete appli-
cations: Comaniciu [CRM03] proposed the popular Mean Shift algorithm
to track objects, using the classical RGB color space to create an object

18 Chapter 2. Object representation

model using the RGB histogram, and then track the target over one se-
quence using an approximation of the Bhattacharyya coefficient. Bradski
extended the Mean shift, to propose CAMSHIFT [Bra98] for face track-
ing (tracking of face position, size and orientation) using HSV color space
(he supposed that people’s color hue is constant, contrary to color skin).
Bradski’s idea shows that, by selecting an adapted color space, some tasks
can perform better (details in Section 3). In both cases, the use of color
histogram, combined with light algorithms to exploit them, makes these
trackers run above real-time. In the framework of our thesis, we set the
limit of complexity of color-features at this level (even though, for detec-
tion purpose, we will even go lower, at the color pixel level).

2.1.1.3 Higher Level of representation

We saw on the previous part one very low level of color-based represen-
tation. In this section, we briefly mention some higher level color-based
features used in computer vision.

Statistical features
Normalized color histograms can be interpreted in a probabilistic point
of view: each bin represents the density of one color in the modeled im-
age. Naturally, it is then possible to use some statistical measures, such
as average, deviation, or moments. This higher level of representation has
some advantages: given Eq. 2.1, in case of light intensity shift, or change
(a = b = c in Eq. 2.1), the standard deviation is invariant.

Mindru [Min+04] generalized the notion of moments at order r = p+q

and degree d = a+ b+ c for a three-channeled image:

Md
r (I) =

∑
x,y

xp · yq · Iac1(x, y) · Ibc2(x, y) · Icc3(x, y) (2.9)

and used them to generate feature vectors from images, composed of mo-
ment invariants. His work aimed to match objects in case of illumina-
tion and viewpoint changes (tested on synthetic and real images). The
method consists in generating several color moment invariants from mo-
ments computed by Eq. 2.9, and use them as basis of a vector space, on
which images of objects are projected. Then, using MANOVA [JW+02],
in the space of invariants, a subset optimizing a separation of different

2.1. Visual Features 19

classes of objects is generated. This subset then serves as a classifier for
object matching.

Spatiogram
Color histogram lacks information about location of colors. Birchfield
[BR05] proposed a model based on features called spatiogram for track-
ing context. His idea was to extend the histogram representation by con-
sidering for an image I, and for each bin b, not only the number of pixels
falling into b, but also the centroid and the covariance matrix of the spatial
position of pixels falling into b. This representation gives an idea of how
and where colors are spread. His representation also comes with a metric,
to compare spatiograms of two objects. Fig. 2.4 illustrates two images
with the same color histogram but different spatiograms (color centroids
are spread horizontally for the first flag, vertically for the second).

SLIC superpixels
Superpixels were originally designed [RM03] for object detection. The
principle was to group some pixels according to several criteria: texture,
brightness, geometry. Each group of pixels, the superpixel, is then de-
scribed and then used to train a two-class classifier. Several superpixel
methods exist in the literature, and we refer to [Ach+12] for a cover-
age. We focus on one popular class of superpixels, proposed by Achanta
[Ach+10], exclusively based on color features and pixels positions. In the
paper, Achanta proposed a method to group pixels by, on the first hand,
describing all pixels in a 5D space: three from the Lab color space, and
the two pixels coordinates. On the second hand, he initializes superpix-
els’ seeds by drawing them using a regular grid. Then, each pixel is as-
sociated to one seed according to a Euclidean-based distance (in the 5D
space). SLIC superpixels have the advantage to require very low-level
operations: Lab color space and Euclidean distance computations. Fur-
thermore, in terms of usability, the only parameter to set is the number of
seeds. While the main application of SLIC superpixels is segmentation,
(and it has indeed been used for medical image segmentation), by describ-
ing each superpixels with multiple features, Achanta was able to perform
object recognition. Fig. 2.5 illustrates SLIC superpixels computation.

Color Attribute
One computer vision task relying on color features is CBIR, for Content

20 Chapter 2. Object representation

(A) Input (B) Superpixels segmentation

FIGURE 2.5: Superpixel segmentation obtained from ball
sequence [KPL+] with 400 superpixels.

Based Image Retrieval. Given a set of images, and a query ("Get all im-
ages containing red objects" for example), the goal is to get a subset of
images matching the query. We focus on recent color-based feature de-
veloped by [VDW+09]. In his paper, Van de Weijer trains an algorithm to
classify pixels according to color names. His training set is composed of
annotated images (using the color of the object in the picture). Each im-
age is, firstly, pre-processed (background removal and gamma correction),
and then, represented into the Lab color space. Then, a color histogram
is built for each image, and all histograms are sent to a classifier, trained
to attribute a color label to each pixel. These models are called color at-

tribute, and were used for color CBIR. Fig. 2.6 illustrates one mapping
obtained using color attributes (with 11 colors). It has then been extended
to tracking, action recognition and object detection [Kha+13]. This color
feature, designed using annotated dataset, will be tested and evaluated for
tracking in Section. 3.4. It is interesting to note that, computationally
speaking, color attributes can be viewed as a low-level feature: the code
provided by Van de Weijer outputs a LUT, mapping RGB pixels to color
attributes. It is then as costly as moving from RGB to HSV color space
for example, and can be computed on every pixel. But, from a conceptual
point of view, we put color attributes on a higher level, as it is a result of a
classification task, performed using annotated datasets.

Limits of color based features
As mentioned at the beginning of this section, color can describe spe-
cific objects, but not generic ones. As a consequence, it can be used for
object tracking [CRM03]; [BR05] or for CBIR [VDW+09]. For tasks
involving class of objects, such as object classification, color features

2.1. Visual Features 21

FIGURE 2.6: Color attribute of frame 0 of marching se-
quence

can not be directly used. In the literature, for this kind of task, we can
however find color features, but used as complementary representation.
We already mentioned Achanta’ superpixels [Ach+10] who used SLIC
for object recognition. We can also mention a representation method
[VDSGS10], whose first step consists in projecting an image into different
color spaces, then, for each channel, build a model of each image by us-
ing SIFT descriptors [Low99]. Two interesting points are important in this
work: first, recognition accuracy depends on the chosen color space, and
color spaces robust to intensity change or light color change are the most
effective. Second, extracting other kind of features (in this case, geomet-
rical features) from images projected into adapted color space increases
the performance (the SIFT applied on grayscale images is outperformed
by SIFT applied on different color spaces).

2.1.1.4 Conclusion

This section was dedicated on color-based features. To use color-based
features in computer vision, the first choice is the color space. Many color
spaces exist, but we describe three popular ones, that will be used and
compared in the rest of this thesis: RGB, HSV and Lab.

The next step is the feature generation. One early feature is the color
histogram. Easy to compute and lightweight, it is used in many tasks:
tracking [CRM03], recognition [SB91], CBIR. From a statistical point of
view, color-histogram can be extended to higher-level measures: average,
variance... Birchfield [BR05] proposed an extension of color histogram
for object tracking, by adding information about color location.

We also mentioned two other color-based features: the SLIC super-
pixels [Ach+10], originally designed for medical image segmentation,
and used with other features for object recognition, and color attributes
[VDW+09], for CBIR tasks. Even though color features are not directly

22 Chapter 2. Object representation

usable for object detection or recognition, they can be used in combination
with other features for this task [Ach+10]; [Gal+11], or as a first level of
representation [VDSGS10].

2.1.2 Shape-Based Representation

Previously, we presented some color-based visual features. Complemen-
tary way to visually describe objects is shape-based description. Extract-
ing shape descriptors implies estimating geometrical quantities, such as
gradient. Then, in this section, we will start by explaining methods to ex-
tend the notion of derivatives to images, and, as in the previous section,
present some higher level geometrical features.

2.1.2.1 Mathematical context

The shape of an object is defined by its boundary, its form. In images, the
shape is perceptible by the variations of pixels intensity. Mathematically,
these variations can be measured by gradient, Hessian and other differen-
tial operators. In the next section, we will briefly present popular methods
to approximate spatial derivatives on images by using convolutions. Then,
in the next part, we will deal with blobs and junctions detection, based on
Lindeberg theory [Lin98], and finally, present some higher-level features:
sparse ones, such as keypoints and dense ones, such as the HOG [DT05]
features.

2.1.2.2 Sobel filter

One very popular approximation of the gradient operator is the Sobel op-
erator, defined by two kernels:−1 0 +1

−2 0 +2

−1 0 +1

 (2.10)

+1 +2 +1

0 0 0

−1 −2 −1

 (2.11)

which are convolved with the image to approximate the x- and y-derivatives.
Fig. 2.7 illustrates Sobel filter applied to one image (blue stands for high

2.1. Visual Features 23

negative values, green for close to 0 values, red for high positive values).
The main interest is the very low computation cost (the two filters are lin-
early separable). However, the Sobel operator is not robust against high-
frequencies variation (noise for example).

(A) Input Image (B) Sobel in x-direction (C) Sobel in y-direction

FIGURE 2.7: Sobel in x and y applied in frame from torus
sequence [KPL+]

Using these operators, by denoting Ix and Iy the gradient of I in direc-
tion x and y respectively, gradient magnitude MI and orientation ΘI can
be directly computed:

MI =
√

(Ix)2 + (Iy)2 (2.12)

ΘI = arctan(
Iy
Ix

) (2.13)

Gradient magnitude and orientation are illustrated Fig. 2.8. These two
equations will be essential for our work on tracking, as our goal is to
propose a very light tracker based on low-level features. Gradient com-

(A) Input Image (B) Magnitude (C) Orientation

FIGURE 2.8: Magnitude and orientation from torus im-
age. For a better visualization, we displayed only orienta-

tion for pixels with high gradient magnitude

putation with only Sobel filter is used in many algorithms: as we will see
in Section 2.2.3, the Generalized Hough Transform, in its simplest form,
only requires gradient evaluation, and combined with HSV color space,

24 Chapter 2. Object representation

can be directly used for an efficient object tracking algorithm [DG13].
For pedestrian detection, Tuzel [TPM08] trained a detector by building
descriptors based on derivative features. Each region is described by first,
computing 8 features images:

[x y |Ix| |Iy|
√

I2x + I2y |I2xx| |I2yy| arctan(
|Iy|
|Ix|

)] (2.14)

and then computing the covariance matrix of these feature images (Ixx and
Iyy are second order derivatives in direction x and y respectively). These
features are then forming a Riemannian manifold serving as a space for
classification. The trained classifier is based on boosting, which consists
in training several weak classifiers (a weak classifier classifies correctly at
least 50% of the training set), that are merged to a strong classifier, for a
final classification.

Similarly, it is possible to define other differential operators with con-
volution operations: the 4-connected Laplacian operator has been much
used for edge detection, and can be defined with this kernel: 0 +1 0

+1 −4 +1

0 +1 0

 (2.15)

2.1.2.3 Local Jet space

In the last section, we presented the Sobel filter, to approximate the notion
of derivative in image processing. This section will be dedicated to a
formulation of derivative that we will use in our work.

Using distribution theories, it is possible to define a notion of gradient
and Hessian not directly with an image I, but with the convolved image
(I∗g), with g a function, called smoothing function, differentiable as many
times as necessary. Indeed, in this case, the derivative in the direction i,
denoted ∂•

∂i
, is then defined by (according to derivation in the distribution

space):
∂(I ∗ g)

∂i
= I ∗ ∂g

∂i
(2.16)

The Sobel operator represents a certain trade-off between approximation
of the gradient, and speed. However, as we will see in this part, the for-
mulation given by Eq. 2.16 can provide a richer representation.

2.1. Visual Features 25

Definition
In 1983, Witkin submitted a patent [Wit87] entitled "Scale-space filtering"
dealing with the detection of some important points in a signal, such as
maxima or discontinuities. The key point was based on Eq. 2.16, where g
is a function with two parameters: x, a spatial coordinate, and σ, a scale,
such that:

g(x, σ) =
1

σ ·
√

2 · π
· e−

x2

2·σ2 (2.17)

This scale term σ provides a method to adjust the "smoothing effect": the
higher σ is, the more ∂(I∗g)

∂i
(x) will be influenced by pixels around x.

For the rest of this thesis, let Iσxiyj be the Gaussian derivative of I at
order i at direction x and j at direction y, and with a scale σ. When the
derivative order is 0, we will omit the direction in the notation (Iσxiy0 = Iσxi)

This formulation was at the basis of the now called scale-space the-

ory. Koenderink [KVD90] proposed a family of receptive fields based on
Gaussian derivatives in different directions in order to detect edges.

Working in the space of derivatives at several orders, and with a scaling
function has interesting properties. For a given image I, the local jet space

at order n, and scales {σ1, σ2, . . . , σp}, is defined by the projection of I

into the space LJ(I) = {Iσxiyj}0≤(i+j)≤n, σ∈{σ1,σ2,...,σp}. This space has
interesting properties, and this level of representation is already sufficient
for some high-level tasks. The term local jet is due to two points:

1. In mathematics, a jet at order n is an operator taking as an input a
differentiable function f , and giving as an output the Taylor formula
at order n

2. The notion of locality is related to the scale σ of the smoothing
function

In the whole thesis, Iσxiyj will be computed by convolving I with the kernel
defined by:

Gσ
xi ·Gσ

yj (2.18)

where Gσ
xi (respectively Gσ

yj) is a square Gaussian matrix whose compo-
nent at direction x (respectively y is defined by the i-th derivative of the
Gaussian function of variance σ2, and size 2 · σ2 + 1. The kernel obtained
with Eq. 2.18 is then normalized in order to have a maximum at 1. Fig. 2.9
illustrates the impact of σ for gradient calculation.

26 Chapter 2. Object representation

(A) Input (B) σ = 1.0

(C) σ = 2.0 (D) σ = 4.0

FIGURE 2.9: Gradient magnitude at different scales

Visual features extraction
From the derivatives, it is possible to detect interest points, at different
scales, such as blobs and junctions. Lindeberg [Lin98] proposed a method
to evaluate the blob-ness B and the junction-ness J of a pixel p, at scale
σ:

B(I) = σ · det(Hσ(I)) (2.19)

J (I) = (Iσy)2 · Iσx2 − 2 · Iσx · Iσy · Iσxy + (Iσx)2 · Iσy2 (2.20)

with Hσ being the Hessian operator computed at the scale σ, det the de-
terminant operator. Fig. 2.10 illustrates location of highest junction-ness
and blob-ness values for one frame taken from singer2 sequence [Kri+15].
We computed both measures at different scales (1, 2, 4) and at each scale,
search for the 10 highest peaks. Highest peaks are in red, lowest in blue.
Crosses and circles sizes correspond to the scales.

2.1. Visual Features 27

FIGURE 2.10: Junctions and blobs at different scales

Another relevant measure in the 2D jet space was proposed by Griffin
Gσ [Gri06]:

Gσ(I)2 = σ2 · ((Iσx)2 + (Iσy)2)+

1

4
· σ4 · (Iσx2 + Iσy2)

2+

1

4
· σ4 · ((Iσx2 − Iσy2)

2 + 4 · (Iσxy)
2)

(2.21)

Fig. 2.11 illustrates Griffin norm computed at different scales (red stands
for high values). It is interesting to note that maxima are located at differ-
ent places, from one scale to another.

Crosier [CG10] classified pixels according to their 2nd order jet into
different class of structures: flat, slope, saddle point, local maxima or
ridge. To do that, given a scale σ, he first defines normalized derivatives at
every order (i, j): sIi, j,σ = σi+j · Iσxi,yj . He then computes different terms:

28 Chapter 2. Object representation

FIGURE 2.11: Griffin norm computed at scales {1, 2, 4}

• The zero-order term: ε · sI0, 0,σ (ε will be defined later)

• The gradient magnitude term: 2 ·
√

(sI1, 0,σ)
2

+ (sI0, 1,σ)
2

• The trace of the Hessian matrix: λ = sI2, 0,σ + sI0, 2,σ

• The residual term: γ =
√

(sI2, 0,σ − sI0, 2,σ)2 + 4 · (sIσ1, 1)
2

• And two final terms, linked to the eigenvalues of the Hessian matrix:
λ+γ√

2
and λ−γ√

2

and then classifies pixels, at this given scale, according to the highest value
from those indicated Tab. 2.1. ε is chosen to adjust the amount of "flat"
pixels we want to have. The sign is linked to the polarity of the pixel,
and working with absolute values and neglecting polarity is also possible.
Then, after describing each pixel from a texture image with this classifi-

Highest value Class
ε · sI0, 0,σ Flat

2 ·
√

(sI1, 0,σ)
2

+ (sI0, 1,σ)
2 Slope

+λ Local maxima
−λ Local minima
γ Saddle point
γ−λ√

2
Positive ridge

γ+λ√
2

Negative ridge

TABLE 2.1: Crosier’s classification, at a given scale σ

cation and by using different scales, Crosier built a global histogram from
this image and used it for texture classification.

2.1. Visual Features 29

Applications
In terms of application, this level of representation has already proven
usable in diverse applications: Manzanera [Man11]; [Man10], using many
scales at the same time, applied this generated representation for image
denoising, optical flow estimation, background subtraction.

For denoising case, Manzanera [Man11] adapted the NL-means de-
noising algorithm [BCM05]. In Buades paper, the denoising function
ML(p) is performed at pixel p, and its neighbourhood N(p) by:

ML(p) =
1

Z(p)

∑
x∈N(p)

I(x)ω(p, x) (2.22)

where ω is function of the difference of intensity between I(x) and I(p).
Manzanera [Man10] enhancement of the NL-means is to change the func-
tion ω, from one defined by the sum of squared differences between two
image patches centered on x and p respectively, to another using the dis-
tance between the projections of x and p in the local jet space.

In [Man11], Manzanera used the local jet space for two tasks:

• For optical flow estimation: given a sequence, at a frame t + 1,
the optical flow of a pixel p is estimated by looking for the nearest
neighbor of p̂, projection of p in the local jet space and then finding
the corresponding pixel in the image space

• For background subtraction: the algorithm is an adaptation of ViBe
background subtractor [BVD11]. The principle of ViBe algorithm
is to model the background by a sample P of pixel values projected
into a color space. Then, at the frame It, one pixel p is considered
as background if, in the selected color space, the sphere of radius R
(defined by the user) and centered in p contains a number of pixels
of P above a threshold (also to define). Manzanera’s background
subtractor relies on this principle, by substituting to the color space
the local jet space

We defined different formulations of differential operator in this section.
We can find in the literature different works using this level of shape-
features. Similarly, we aim to work exclusively on these features.

30 Chapter 2. Object representation

2.1.2.4 Higher level features

From the lowest level geometrical feature based on gradient and Hessian,
it is possible to extract some higher geometrical features. These features
are diverse, and in this part, we will briefly present two different families
of features.

Keypoints
The first type is the keypoint-based features. We will present two levels of
features: the keypoint detection, and a higher one, the keypoint descriptor.

Given an image I, extracting a keypoint means localizing it. This key-
point is usually a point where shape is particular, such as corners. In
computer vision, one of the early keypoint detectors is the corner detector
of Harris [HS88], which requires only the first derivative operator. In-
deed, after evaluating derivatives at direction x and y, for all pixels p0 ∈ I,
Harris defines a neighborhood N(p0), and generates a matrix M(p0) such
that:

M(p0) =
∑

p∈N(p0)

(
I2x(p) Ix(p) · Iy(p)

Ix(p) · Iy(p) I2y(p)

)
(2.23)

Then, Harris uses a measure of interest of a pixel p0: R(p0) = det(M(p0))−
k · tr(M(p0))

2, where det is the determinant operator, tr the trace oper-
ator, k a constant. Then, a threshold operation, combined with a non-
maxima suppression is used to extract keypoints. One main interest of
Harris keypoint is its robustness to orientation and scaling change. How-
ever, weakness of keypoint-based features is the sparsity of the descriptor:
in case of few detected keypoints, object description may not be repre-
sentative. Even though the threshold operator allows to adjust the number
of detected keypoints, those having low interest value may not be reli-
able. Fig. 2.12 illustrates Harris corner detector. This detector can be time
consuming for critical cases.

Rosten [RD06] proposed a very fast method to detect corners, based
on a geometry of a corner. His first idea consists in detecting keypoints
from an image, by considering that p is a keypoint if, given a circle of
center p and circumference 16 pixels, there exists a contiguous set of n
pixels brighter or darker than p. This idea is close to the visual perception
of corner: an area composed of two regions of different intensities, whose
frontiers form an acute angle. This method, called FAST algorithm, illus-
trated Fig. 2.13, and with optimization detailed in [RD06], is used to train

2.1. Visual Features 31

FIGURE 2.12: Corners detected in lego1 sequence

a decision tree classifier as a corner detector.

FIGURE 2.13: Fast keypoint schematic.
The central point is detected as a keypoint by the FAST
algorithm: in the circle of circumference 16, there is one
large contiguous set of pixels brighter than the central

point.

Corner detection, combined with an optical flow estimator such as
Lucas-Kanade method [LK+81], allows to estimate some geometrical trans-
formation of objects: by modeling this object with a set of keypoints and
estimate their inter-frame trajectories, geometrical transformation can be
estimated. For object tracking context, some effective trackers [KMM10]
also relies on keypoint-based representation and Lucas-Kanade method
(this will be detailed further, at Section. 3).

Harris method only localize keypoints. Another popular keypoint-
based feature was proposed by Lowe [Low99] in the now-called SIFT
keypoints. Lowe starts by building a multi-scale space, by convolving an

32 Chapter 2. Object representation

image I with Gaussian at different scales, and computing the difference
between two convolved images at adjacent scales. Then, the localiza-
tion step done by searching local maxima, and a first level of description
(localization, scale and orientation) is applied to the detected keypoints.
The second contribution of [Low99] is the SIFT descriptor: each detected
keypoint is represented by histograms of gradient orientation from areas
surrounding it. SIFT keypoint is a very popular keypoint-detector and
descriptor (more than 12 000 citations) and led to different alternatives:
SURF [Bay+08], FREAK [AOV12] are among popular keypoints. In
terms of application, SIFT has proven to be a versatile feature: originally
designed as an object recognition algorithm, it has proven to be effective
in tracking context [MP13] and detection [LLS08].

Histogram of Oriented Gradient (HOG)
The last shape-based feature that we would like to present, and that we
will use for detection task is the HOG (for Histograms of Oriented Gradi-
ents) features [DT05], originally used for Human Detection, and provid-
ing a dense level of representation. The principle consists in subdividing
an image into multiple (rectangular or circular) cells. In each cell, a gra-
dient orientation histogram is computed, each pixel’s contribution being
proportional to its gradient magnitude. To be robust to local illumina-
tion variation, gradients are normalized: several cells are grouped into
blocks, in which gradient magnitude are normalized. Finally, the con-
catenation of all these histograms is the so-called HOG descriptor. For
human detection, Dalal trains a SVM classifier as a detector. [DT05] not
only presents the descriptors and results, but also provides a full study a
HOG features: shape of cells (rectangles or circles), number of bins, use
or not of signed orientations, methods to normalize the gradient magni-
tude... When proposed by Dalal and Triggs for human detection [DT05],
HOG features proved to be competitive, as it outperformed state-of-the-art
methods. Others detectors are also based on HOG features, and notably
[Gal+11] that we will detail further in Section. 4. In tracking context,
we can mention [Dan+14a] who proposed an accurate correlation-based
tracker using HOG features.

2.1. Visual Features 33

2.1.2.5 Conclusion

In this part, we focused on shape-based features. All shape-based features
are based on differentials. We started to define the Sobel filter to compute
gradient. Then, the formulation defined by Eq. 2.16 leads to scale-space
theory [Lin98], essential for our work. We will exploit this for tracking
and detection context. We also presented some higher level features ex-
tracted from low-level shape features. The first class was the keypoint fea-
tures: Harris corner detector [HS88], SIFT [Low99] and FAST [RD06].
Another feature we mentioned, and that will be used in Section. 4 was
the HOG feature [DT05]. Unlike keypoint-based ones, they can provide a
dense description of images (available at each pixel).

2.1.3 Conclusion of the section

We made a review of visual-based features, including color-based and
shape-based ones. In both cases, the first step was to explain how to rep-
resent the visual feature: choosing the color space on the one hand, com-
puting derivative on the second hand. Then, we detailed some low-level
features built from them, color histogram and gradient orientation. We
aim to work exclusively on color histograms and derivatives in the whole
thesis. From these low-level features, we also mentioned some high-level
features, directly derived from low-level ones: statistics or SLIC super-
pixels for the color part, keypoints or HOG for shape-based part. For our
work, we are willing to work on local low-level features: color pixels for
the color part (aggregated for color histogram in tracking context), scaled
derivatives for the other. Fast to compute but with lower power of repre-
sentation than higher features, we aim to study their benefits and limits in
tracking and detection contexts.

Other classes of features exist, such as texture-based features, LBP,
or filter-banks features, such as wavelet-based (for example Haar features
[Haa10]). We also choose not to deal with temporal features, such as
motion-based one, only usable in videos. More recently, using deep learn-
ing autoencoders, several pre-trained features are available to the commu-
nity: MatConvnet [VL15], AlexNet [KSH12]. Even though these features
have outranked most of the traditional features in several tasks (especially
in image recognition, and see Section. 3.2 for tracking case), until recently,
they did not prove efficient in terms of speed (due to their time consump-
tion, most of them require GPUs), and are not as flexible as low-level

34 Chapter 2. Object representation

features. Fig. 2.14 shows all mentioned features in this part. In dashed
line, the framework we are working on.

FIGURE 2.14: Summary of different presented features

The next section will be fully dedicated to the Hough Transform, the
main spatial aggregation mechanism of our work.

2.2 Hough Transform

In this section, we will focus on methods to exploit visual features, in
order to extract information. Many algorithms have been designed in or-
der to do this. Most of the time, these algorithms are task-dependent and
can come from diverse areas: statistics [IB98]; [CRM03], Machine Learn-
ing [Gal+11]; [LLS08], signal processing [Dan+14b]... In our work, we
choose to focus on one algorithm: the Hough Transform [Hou62].

This algorithm was originally proposed by Hough in a patent for track-
ing particles in bubble machines. From the formalization made by Duda
[DH72], followed by the generalization of Ballard [Bal81] to nowadays,

2.2. Hough Transform 35

this algorithm became one of the most famous in computer vision. The
Hough Transform has been adapted to many tasks. This section will be
organized that way:

• First, we will focus on the history of the Hough Transform

• Second, we will formally define it, and present an overview of dif-
ferent Hough Transforms

• Third, we will define the Generalized Hough Transform (GHT), that
has a central role in our work

• Fourth, to insist on the versatility of the Hough Transform, we will
present some real-life applications performed using the HT

2.2.1 History of the Hough Transform

Considering its importance in our work, we now present the history of the
HT [Hou62].

Historically, Paul V. C. Hough submitted a patent [Hou62] on the de-
tection of lines in pictures. It was especially designed to track trajectories
of particles in bubble chambers. While the main part of the patent is ded-
icated to the description of the whole electronic system, with its different
components, the main idea of the now-called Hough Transform is present
(see Fig. 2.15). Indeed, for a given line (102, 104, 106 in Fig. 2.15), all
points (in the image space) from these lines can be transformed into a spe-
cific line (lower image of Fig. 2.15) in the parameter space (the now called
Hough space). Then, for a set of colinear points, all the lines obtained by
this particular transformation are intersecting at a particular point, charac-
terizing the line linking all points. Even though no mathematical model
was designed, the idea to make one image element (in this case, a point)
vote into a parameter space (one line in the lower part of Fig 2.15) was
present. Then, according to Hart [Har09], Rosenfeld [Ros69] was the
first to propose a mathematical form to this transformation. Given a point
(x0, y0), the transformation associates this point to the line:

y = y0 · x+ x0 (2.24)

Every couple (x, y) verifying this equation is a couple of parameters of
one line passing through (x0, y0) in the image space. Reciprocally, for
a set of aligned points (xi, yi) in the image space, all lines obtained by

36 Chapter 2. Object representation

FIGURE 2.15: Figure from Hough’s patent. Each point
from lines of the upper part generates one line in the lower
part. Then, all aligned points from the upper part gener-

ates a beam of concurrent lines in the lower one

this transformation will intersect at a certain point of the parameter space,
defining line’s parameters to detect. However, for lines parallel to the x-
axis (all the yi are equals), this formulation does not work (all the lines
obtained by transformation are parallel), and Rosenfeld suggests to swap
xi and yi to solve this issue.

2.2.2 General formulation

A decade later, Duda and Hart [DH72] finally gave the formulation which
is still in use today. For lines detection, they choose a polar parametriza-
tion (r, θ) (see Fig. 2.16): r is the length of the vector

−→
OP , with P being

the orthogonal projection of the origin O to the line, and θ (θ ∈ [0, π[), the
angle formed by the x-axis with

−→
OP , and so, a line (r, θ) is defined by the

set of pixels (x, y) such that:

r = x · cos θ + y · sin θ (2.25)

With this transform, a single point is then transformed into a sinusoid
curve. Detecting lines consists then in detecting couples (r, θ) in Hough

2.2. Hough Transform 37

O
x

y

P

θ
r

FIGURE 2.16: Parametrization of the blue line using
Duda [DH72] parameter set (r, θ)

space where many sinusoids pass (see Fig. 2.17). This principle is im-
portant for the Hough Transform: the more there are sinusoids passing
through (r0, θ0), the more likely there is a line of parameters (r0, θ0).
Thanks to this property, the Hough Transform is partially robust to oc-
clusion and noise. In practice, the principle is to define a threshold value
τ such that, each couple (r, θ) which has accumulated more than τ votes
(or for which more than τ sinusoids are intersecting) corresponds to a line.
Moreover, thanks to the hypothesis θ ∈ [0, π[, one line is uniquely defined
by the couple (r, θ). And, unlike Rosenfeld parameter space, this one is
suitable for every kind of lines, even those parallel to the x-axis.

In their article, Duda and Hart [DH72] also showed how to detect other
parametric curves, such as circles. The principle is similar to the line
detection: given a circle defined by its center (xc, yc) and its radius r, then
with equation:

(x− xc)2 + (y − yc)2 = r2 (2.26)

The Hough Transform can detect circles by considering a set of pixels,
and make each pixel vote in the 3D parameter space (xc, yc, r). Illustra-
tions of the line and circle Hough Transforms can be seen in Fig. 2.18
and Fig. 2.19. More generally, given a shape defined by an equation, the
Hough Transform is able to detect this shape by taking an image, binarize
it (with an edge detector for example), and make all positive pixels vote
into the multidimensional parameter space.

The main drawback of the HT is the time and memory consumption.
The higher the dimension is, the greater the computation time and the
memory consumption are. For example, let us consider the case of circle
detection in an image of resolution 500 × 500. Let us also suppose that
the Hough space is defined by three parameters: the abscissa and ordinate

38 Chapter 2. Object representation

O
x

y

•A

•B

•C

(A) Points

O
θ

r

(B) Hough Transform

O
x

y

•A

•B

•C

(C) Line linking A, B and C

FIGURE 2.17: Line Hough Transform on three points:
A(1, 1), B = (1.5, 0.5) and C = (2.5,−0.5)

(A) Input Image (B) Edges (Canny-Deriche
filter [Der87])

(C) Strongest lines obtained
by Hough Transform

FIGURE 2.18: Lines detection using Hough Transform

(A) Input Image (B) Edges (Canny-Deriche
filter [Der87])

(C) Strongest circles ob-
tained by Hough Transform

FIGURE 2.19: Circles detection

of the center and the circle radius. We can suppose that the circle center
is inside the image, and the circle radius can vary from 1 to 500 pixels.
In this case, the Hough space has a size of about 125 Mo. If we focus
on computation time: each voting pixel p will vote, at each radius r, for
a circle of center p, and radius r. Moreover, after the vote process, the
peak detection will take place in the whole Hough space. Both opera-
tions are computationally expensive for circle detection, and this problem
is even more critical for more complex shapes (ellipses for example). One

2.2. Hough Transform 39

solution can be to quantize the Hough space to reduce the memory foot-
print and to accelerate the Hough voting. However, the accuracy of the
estimation is impacted.

2.2.2.1 Variant of the Hough Transform

Hough Transform is a very popular algorithm in computer vision, and
many surveys [IK88]; [MC15] provide a summary of its different vari-
ants. In this section, we will present some Hough-based algorithms, and
explain their advantages and disadvantages compared to the original ver-
sion [DH72]. However, due to its important role in our work, we will
develop the Generalized Hough Transform [Bal81] only in the next sec-
tion.

The first enhancement we will detail is the Probabilistic Hough Trans-
form [KEB91]. The improvement is done in terms of computation time:
while the original one makes vote all N extracted elements (pixels con-
tour), the Probabilistic Hough Transform randomly draws n voting ele-
ments (with n << N). The aim of the method is to find a trade-off
between speed and accuracy of the shape detection: the lower n is, the
faster the algorithm it is, but lesser its accuracy is. This method has two
weaknesses: noisy elements among the N ones (inducing wrong votes)
and short lines detection (low probability to draw elements from it).

The second variant of the Hough Transform we would like to mention
is the Randomized Hough Transform [XO09]; [XOK90]. For line detec-
tion, it relies on the principle that one unique line passes through a couple
of points. The principle is then to make a "many-to-one" vote (opposed
by the "one-to-many" vote of the Hough Transform, where one pixel votes
for a set of parameters), by randomly drawing two elements, and make the
formed couple vote for one unique couple of parameters. In this condition,
the Hough space can then be modelled by a simple codebook indexed
by the two parameters (r, θ), compared to the original Hough Transform,
which contains the whole Hough Transform map. Then, by storing only
couples (r, θ) that received a vote, the memory consumed by the Random-
ized Hough Transform is lower than the original one. Detecting lines then
consists in selecting entries of the list with an accumulation value above a
certain threshold.

Both HT variants are less robust against noise than the original HT.
Kiryati [KKA00] compared these two variations by considering synthetic

40 Chapter 2. Object representation

images of p points along a line, and n noisy points. With these images,
the first goal was to estimate efficiency of the two algorithms, and second,
to estimate the robustness to noise (by increasing n). It has been shown
experimentally that for the same accuracy, the Randomized Hough Trans-
form is faster than the Probabilistic one. However, for very noisy images,
its accuracy is much lower.

These two algorithms are popular variants of the Hough Transform.
The list is not exhaustive, and we will refer to [MC15] for a coverage. In
the next section, we will focus on the Generalized Hough Transform, the
algorithm that will be the core of our thesis.

2.2.3 Generalized Hough Transform

In 1981, Ballard proposed the Generalized Hough Transform [Bal81], de-
signed to build a model of any kind of shapes (in particular those that can
not be modeled by a parametric equation), and then detect them in a query
image.

First, it requires to create the R-Table denoted R, used to represent
the object. Given an image I and an object O, let C be the contour of O
(generated by edge detection algorithm for example), and r a reference
point (for example the object center). For all pixels p ∈ C, let θp be the
(quantized) orientation of its gradient. Then, we store in R(θp) the vector
~u = −→pr:

R(θp) = {~u|∃p ∈ C : Θ(p) = θp, ~u = −→pr} (2.27)

with Θ the orientation map. Fig. 2.20 illustrates the construction of the
R-Table.

FIGURE 2.20: Building the R-Table. On the left part, a
contour image, with a reference point r. For each pixel p
from the contour, the gradient orientation θp is computed,
and contributes to the R-Table in the entry R(θp), by the

displacement −→pr

2.2. Hough Transform 41

Second, for shape detection (the Generalized Hough Transform itself),
given an image test T and its contour map C, the aim is to build an ac-
cumulation map HT. For all pixels x, HT(x) is equal to the number of
pixels p ∈ C which have voted for x:

HT(x) = |{p ∈ C|∃~u ∈ R(θp), x = p+ ~u}| (2.28)

with |C| the cardinality of the set C. Then, a peak detection in HT pro-
vides possible instances of the object O, or more precisely, possible lo-
cations of the reference point r. One simple solution of peak localization
can be a simple argmax operation:

ppeak = argmax
p

(HT(p)) (2.29)

Fig. 2.21 illustrates the GHT for a synthetic example, with the shape
shown Fig. 2.20. From the contour image on the left, the GHT is com-
puted and image on the right is obtained: the bigger and the redder the
peak is, the more likely it is to find the shape center. Fig. 2.22 illustrates
a GHT resulting from a R-Table built using the sheep inside the blue rect-
angle. The GHT is shown on the right, and the red peak corresponds to
the prototype sheep. The GHT can be seen as an extension of the Hough

FIGURE 2.21: Generalized Hough Transform on the con-
tour image (on the left), and the Hough Transform on the

right

Transform in the sense that, given an image, it extracts some elements,
makes them vote into a parametric space (the accumulation map HT),
and then detects the presence of the shape with a peak analysis. The dif-
ference with the standard Hough Transform is the presence of the R-Table,
modeling any shape.

This R-Table embodies the versatility of the GHT (see Section. 2.2.4),
by providing the possibility to consider higher level features. If we want

42 Chapter 2. Object representation

to stay in the domain of shape-based features and exclusively on deriva-
tive levels, [Tsa97] proposed to project the pixel contour of the shape not
only in the gradient orientation space, but in the 3D space composed by
gradient orientation, a concavity measure and the radius of the curvature.
The GHT is then processed in two times: first to estimate the target orien-
tation, then to estimate object centroid. In tracking and detection context,
we will see how the GHT can be extended with even higher level features.

FIGURE 2.22: GHT on a scene, with the squared sheep
used as a model

The GHT presents a certain robustness to partial occlusion or small de-
formations: considering that the Hough Transform in an image I is equal
to the sum of the partial Hough Transforms of n disjoint subsets Ii, the
GHT computed to detect a shape in occlusion of small deformation case
can be identified to the GHT realized on I excluding some of its subsets.
Regarding the parameter space, the more there are parameters, the higher
the memory footprint is, and the higher the time consumption is. For ex-
ample, Ballard proposed, to handle scale and rotation variation, not only
to vote in the spatial space, but also for different scales and orientations.
In this case, if we define as d the size of HT, s the number of scales and
o the number of orientations, the multi-scale and multi-orientation GHT
requires a memory footprint of d · s · o, and each pixel will also vote s · o
more times.

Conceptually, the Generalized Hough Transform consists in using a
codebook (the index of the R-Table) to model and detect any kind of
shape. As we will see in the two next chapters, this codebook, can be

2.2. Hough Transform 43

composed of different features: orientation for the original GHT, key-
points features, color-based ones, and can also have diverse forms: arrays,
decision trees. This is a major element of the versatility of the GHT. To
corroborate this, in the final part of the section, we will present different
tasks involving the Hough Transform.

2.2.4 Applications of Hough Transforms in computer vi-
sion

Hough Transform is one of the most famous algorithms in computer vi-
sion: Duda’s paper [DH72] was cited more than 5 500 times, while Bal-
lard’s one [Bal81] was cited more than 4 400 times. From a line detection,
it has firstly been extended to any shape modeled by an equation, and then
generalized to any kind of shape. Currently, Hough Transform has been
applied for different tasks, in different areas. In this section, we will see
some applications of the Hough Transform. For tracking and detection
cases, we will refer to Section. 3 and Section. 4 respectively.

• Hough Transform have been designed for line detection. This task,
can be used for many applications: lane detection [Sat+10], robot
navigation [FLW95]...

• In biometry, Hough Transform can be used for different modalities:
iris localization [TBA02] or segmentation [Tia+04], or in finger-
print matching [PFJ13], where is was used to align two fingerprints:
the minutiae are extracted and described using a specific descriptor
[CFM10], the Hough Transform is then applied by extracting pairs
of minutiae (one for each fingerprint), and make them vote for a
geometrical transformation that matches them

• For medical imaging, Hough Transform can be used to detect differ-
ent organs, obtained from diverse sensors. For ventricle myocardum
localization, [MSN12] applied the circle Hough Transform at every
layer of image from a 3D cardiogram. Arterial diameter estimation
is also done using circle Hough Transform on ultrasound images
[Gol+06]. The Generalized Hough Transform has also been used
for 3D segmentation of the heart, from Computer Tomography im-
ages [Eca+08]. The novelty proposed in [Eca+08] was to integrate
several reference shapes in one unique R-Table

44 Chapter 2. Object representation

• Hough Transform has been used in action recognition [Gal+11]. As
Gall’s Hough Forest was used for action recogntion, and due to the
importance of this algorithm in object detection, details will be pro-
vided in Section. 4

These tasks show that the HT is used for many real-life applications. As
we planned to work on different computer vision tasks, the Generalized
Hough Transform is a relevant algorithm to study. Hough Transform in
tracking and detection context will be presented in chapters dedicated to
these tasks, where we will position our works in Hough-based trackers
and detectors.

2.3 Conclusion

This chapter was divided into two parts:

• First, we presented some visual features. We defined visual fea-
tures as those that can be used to describe an image. We considered
two families of visual features: color-based ones, and shape-based
ones. In both cases, we defined low-level features (color histograms
and scaled derivatives), to which we aim to limit our representa-
tion. Those features are fast to compute, and easy to parallelize.
Moreover, they serve as a base for features with higher power of
representation (color statistics, color attributes, superpixels, HOG,
keypoints). We also presented some computer vision tasks that can
be done with these features

• Second, we focused on one popular algorithm in computer vision:
the Hough Transform. Originally presented in a patent to track par-
ticles in bubble chambers, it was formalized by Duda and Hart, then
generalized by Ballard to detect any kind of shapes. After present-
ing some advantages and limits of the (Generalized) Hough Trans-
form, we made a literature review to show how people tried to cor-
rect its weaknesses and how versatile it is, in terms of applications
and adaptivity to different feature spaces

This chapter served to define the framework of the thesis: working only
with color pixels and derivatives for the feature space, and using the Gen-
eralized Hough Transform as a spatial pooling mechanism.

2.3. Conclusion 45

In the two next chapters, we will focus on our works on object track-
ing and detection. The aim will be to see how far we can go with the
constraints we set, and to analyze the benefits and limitations of our ap-
proach.

47

Chapter 3

Object Tracking

Contents
3.1 Definition . 50

3.1.1 Tracking conditions 53

3.1.2 Difficulties 54

3.1.3 Conclusion 55

3.2 Literature review 56

3.2.1 State-of-the-art 58

3.2.2 Hough Transform for Object Tracking 64

3.3 Combining color histogram and Gradient for track-
ing . 67

3.3.1 Backprojection map 68

3.3.2 Combining GHT and Particle Filter 69

3.3.3 Transitional tracker 73

3.3.4 Final tracker 77

3.4 Results . 84

3.4.1 Implementation details 84

3.4.2 VOT datasets 86

3.5 Conclusion . 111

The first studied computer vision task is object tracking. We chose this
task for several reasons:

• Basically, object tracking consists in following the target object, in
any kind of background. To do so, modelling the target can be done
in different ways: by using features to describe it accurately, or us-
ing features to discriminate the target from the background

48 Chapter 3. Object Tracking

• The target’s aspect can dramatically change over the sequence, and
the context can complicate the task (camouflage or occlusion issues
for example). The chosen feature space and the tracking algorithm
have then to be flexible, to cope with these changes

• In some applications (Human Computer Interaction for example),
the time consumption is a critical issue. In this condition, reactive
trackers are important, and then, we consider that tracking is an
interesting field of study, as it has to combine accuracy and speed

Those reasons make us believe that designed features should have a certain
power of representation, be able to separate the object target from the
background and be able to cope with object or context changes. Ideally,
they should also be fast to compute and exploit.

The tracking task is one very old issue in computer vision, and has
not been solved yet: academic datasets [KPL+]; [Kri+15]; [WLY13] are
regularly proposed in order to test and evaluate algorithms.

Many applications rely on an accurate (and sometimes reactive) sys-
tem of tracking:

• Surveillance: the aim can be to follow the trajectory of one poten-
tial threat. One example can be the task to track one person into
a crowd of people. Occlusion, similar shapes (other humans) are
some possible present difficulties in the scene

• Medical imaging: Tracking can be used to study the variation of
shape of some organs. The problem is complicated, as, compared to
sequences taken in urban scenes from a classic camera, images are
usually noisy, and pixel resolution may not be sufficient for accurate
tracking

• Augmented reality: the principle is to follow the position of some
detected shapes or patterns, and then add some virtual objects in the
scene. The problem is all the more difficult that given the point of
view, the shape can be distorted

• Human-Computer Interaction: some applications can require ges-
ture recognition, for which following diverse parts of the body over
the time is an important task that should be done accurately. More-
over, real-time constraints are critical issues in this case

Chapter 3. Object Tracking 49

In this chapter, we will explore the field of object tracking, and detail
our contribution in this area. The aim of our work will be to propose an
accurate and robust tracker only based on gradient (used for the GHT) and
color histogram (used for a simple foreground/background segmentation).
By using these low-level features, we aim to propose a very fast tracker
(above real-time), but still accurate and robust, given the constraints in
terms of feature space and algorithms. We are working on the most generic
conditions as possible: static or dynamic background and camera, one
unique rigid or deformable target object (without abrupt motion change).
We will then divide this chapter into four parts:

1. Object tracking is a very rich and complex problem. Then, in the
first section, after defining the task, we will detail some properties
to classify the task, and then, some traditional difficulties of object
tracking. The aim will be to define the category of trackers we will
work on

2. The second section will be a literature review. First, we will deal
with different surveys, to understand their method for classifying
trackers. Second, we will present some algorithms, from very pop-
ular trackers, to state-of-the-art ones, and to finish, a review of fast
trackers. Third, we will end by detailing some modern Hough-based
trackers

3. We will present our work, starting from our initial tracker [TM15],
explaining its weaknesses, and how we solved them to propose our
final tracker. The objective of our work was to propose a light, but
effective tracker, built from very low-level features (gradient and
color histogram exclusively). The final proposed tracker [TM17]
will serve as a base for studies of the impact of used features

4. As our tracker has proven to be competitive on academic datasets
[KPL+]; [Kri+15], we will dedicate a section to experiments and
evaluation. The first part of the section will deal with implementa-
tion details (optimization, chosen parameters). Then, we will detail
results obtained on modern datasets. We will also see the impacts of
the limits we have set for our work (use of only low-level features)
and study the impacts of different features

50 Chapter 3. Object Tracking

3.1 Definition

The first step is to define the problem. Basically, as suggested by [YJS06],
object tracking consists in estimating the trajectory of a target object O
during a sequence (It)t>0. In physics, the trajectory represents all posi-
tions taken by an object over the time. We think that this definition is
limited, and we prefer using a more general definition proposed by Co-
maniciu in [CRM03], by considering that object tracking consists in esti-
mating the state of an object (the target) over a sequence of images. This
"state" may have several meanings, according to [YJS06]:

• The object’s position. In this case, the object is represented by a ref-
erence point (such as its center). At this level of representation, the
only possible movement that can be estimated are translations in x-
and y- directions. Tracking a car (supposed not deformable) moving
in a straight line with a camera placed orthogonally to the road is a
suitable example of position only tracking. A pedestrian represented
by its centroid, and filmed from a camera placed orthogonally to his
movement, is also a case of position tracking

• Its position, size and orientation. In this case, the target is repre-
sented by a simple geometrical shape (slanted ellipse or rectangle),
and the aim of tracking is then to estimate object’s translation, ori-
entation and scaling (movement that can be identified to translation
along the z-axis). This method of representation is more suitable
to track deformable objects, or objects whose size and orientation
are changing over the time. Tracking the same car as before with a
camera fixed anywhere is an example of application. This level of
representation is one of the most used in recent academic datasets
([KPL+]; [Kri+15]; [Sme+14]), and we will adopt it

• Its contour, defining the target boundaries. Region inside the con-
tour is then called silhouette. This representation is much more
flexible than the previous one, and can distinguish movements from
some elements of the target (arm movement of a pedestrian for ex-
ample). It requires a pixel-level accuracy, and possibly a higher
computation time (for example, due to the use of a segmentation al-
gorithm). Tracking pedestrian is a possible application of tracking
by silhouette

3.1. Definition 51

(A) Input (B) Point-based representation

(C) Bounding-box based representation (D) Silhouette representation (obtained us-
ing GrabCut [RKB04])

FIGURE 3.1: Different types of object representation

Fig. 3.1 illustrates these three different types of representation. Their
common point is that the target is represented by one unique element
(point, shape, or silhouette). However, there are other kinds of repre-
sentation, modelling the object as the combination of different parts (for
example, a human body can be described by the combination of its head,
torso, arms and legs). We will refer to [YJS06] for a more detailed de-
scription.

This unique element used for target representation (or combination of
object’s parts) implies the notion of object, that distinguishes our prob-
lem from other kinds of tracking. Let us consider the case of optical flow,
i.e. the task of estimating the apparent motion of pixels in a video from a
dynamic scene. It can be considered as point tracking. However, one im-
portant missing part is the notion of object: in a dynamic scene, one given
pixel is not moving independently from other pixels, it usually belongs to
a set of pixels that globally have the same trajectory.

Generally, object tracking algorithm is composed of three steps. The
first one is computed only at the beginning, offline, while the two others

52 Chapter 3. Object Tracking

form the tracking itself and are processed alternatively, until the end of the
sequence:

• Initialization step. The aim is to build a model of the target to track.
It can be done offline, by considering a training set, which can be
generated either by different images of the target, or by considering
the first frame of the sequence (in this case, it is composed of one
unique image). In the second case, the target can be selected by
different methods: manually (bounding box selection) or automati-
cally (motion detection, background subtraction or object detection)

• Tracking step. Given an object model and an image It, the goal is
to estimate the state of the target object O

• Updating step. This step is not essential to define object tracking,
but is present in most modern trackers. The goal is to provide the
tracker the ability to cope with different tracking issues (see Sec-
tion. 3.1.2), by updating the model, adapting it to context changes
over the sequence. This step is tricky as a tracking failure implies a
wrong update, causing errors in next frames

FIGURE 3.2: Diagram of a generic tracker.

Even with the definition of tracking proposed by Comaniciu [CRM03],
and by the description of the chain of object tracking (illustrated Fig. 3.2),
we can still subdivide the task into different categories. In the next part,
we will deal with different hypotheses that can provide us a method to
categorize the object tracking task.

3.1. Definition 53

FIGURE 3.3: Diagram of model-free tracker.

3.1.1 Tracking conditions

Tracking is a very rich problem, and each tracker is usually designed for
specific conditions. In this section, we present some conditions for which
object tracker can be designed. The goal is not to be exhaustive, but rather
to define the conditions in which we will work:

• Single or multi-camera. The problem of multiple camera tracking is
more complex than the single camera one, and requires more com-
plex algorithms: multi-view model, method to transfer the model
from one camera to the other. However, it is potentially more robust
to occlusion than the single camera tracking (better coverage of the
scene)

• Single or multiple targets. Multiple targets can mean tracking dif-
ferent classes of objects (each one manually selected for instance).
This case is an extension of single object tracking, but with differ-
ent instances. We prefer defining multiple target tracking as the task
of tracking different instances of one class of object (pedestrian, or
car) in a given sequence. This kind of problem requires an offline
learning of this class, and is close to the object detection task. In
both cases, we have to consider new challenges, like target crossing

• Genericity. Ability to track any kind of object. Opposed to object-
specific tracker (such as pedestrian trackers), for which object track-
ing is very close to object detection, because, in this case, the use of
training set can improve tracker’s performance

54 Chapter 3. Object Tracking

• Model-free. This hypothesis means that the model initialization is
done only with the first frame of the sequence, for which the tar-
get state is given. Fig. 3.3 illustrates the execution of model-free
trackers

• Short-term vs long-term tracking: following Kalal’s definition [KMM12],
long-term tracking tackles the problem of following an object on a
long video, and has to indicate the presence or not of the object on
the filmed scene. The problem is complicated, as, when the target
reappears, its appearance can change. Usually, a long-term tracking
combines tracking and detection routines

• Speed of the object: recently Rozumnyi [Roz+16] formalized the
notion of fast moving object in tracking case by considering that,
an object is moving fast when, in the exposure time interval, this
object is moving at a distance greater than its size. Difficulties are
then related to visual target shape (blurred aspect) or impossibility
to use prediction models designed for "slow" targets

This list of hypotheses is non-exhaustive. However, these different
properties set the context in which we will propose our tracker in Sec-
tion. 3.3. Indeed, trackers we will present are designed to track single
arbitrary and "slow" target, with a single camera. They will also be model-
free, and designed for short-term tracking.

3.1.2 Difficulties

In this part, we will focus on difficulties and constraints inherent to ob-
ject tracking, to understand why the problem is not solved yet. These
difficulties are independent of the application context (especially those
linked to the computation time), and to tracker properties mentioned in
Section. 3.1.1. They can cause drift in tracking. Among these constraints,
we can cite:

• Object geometrical transformation, such as scaling (translation over
the z-axis) or rotation (in the image plane or not). For bounding-box
object representation, these issues imply that the bounding box ori-
entation and size may change (with possible aspect-ratio changes)

3.1. Definition 55

• Object deformation, or aspect change. It is notably true for non-
rigid objects (pedestrian for example). In our case (bounding-box
representation), aspect-ratio may not be constant

• Illumination change, which can create reflections in objects, appear-
ance (or disappearance) of cast shadows. Shape-based trackers are
robust to illumination change (up to a certain level), unlike color-
based trackers

• Partial or complete occlusion. A partial occlusion can be caused
by the background, or by the object itself (consider for example
a walking human). In this case, modeling the target with several
elements is a better choice than with one unique. For total occlusion
case, the problem can be decomposed into two sub-problems: the
loss of the target and its recovery. This case is then close to long-
term tracking problem

• Motion change of the camera. While for static camera, we can pro-
vide a background subtraction function to reinforce the tracker, for
moving camera, the problem is more difficult, as every element of
the scene is moving

• Complexity of the background. Moving objects in the scene, ob-
ject visually similar to the target (camouflage), presence of several
objects are among the problems caused by a complex background

• Length of the video. The longer the video is, the higher the risk of
drift and failure is. In studied benchmarks, most sequences are very
short (less than 1000 frames)

Fig. 3.4 illustrates some common difficulties in tracking context.

3.1.3 Conclusion

In this section, we aimed to introduce object tracking and set the context of
our work. We saw that even though the definition is clear, different kinds
of tracking context exist, depending on the method of representation, the
different possible properties, and the context they are applied to.

The next section will be an overview of the literature. At this point, as
our work on tracking will be to track bounding box represented target over
the time, for the rest of this chapter, let us define notations that we will use

56 Chapter 3. Object Tracking

(A) Camouflage (B) Occlusion

(C) Camera motion (D) Illumination change

FIGURE 3.4: Some difficult frames from VOT2014 and
VOT2015 datasets

for tracking context. Given a sequence (It)t≥0, the aim of the tracker will
be to estimate, at the frame t, the object bounding boxBt = {ct, wt, ht, θt}
such that:

• ct is the bounding box center

• wt its width

• ht its height

• θt its orientation

For any image I and any set of pixels B , let I B be the sub-image of
I restricted to B. For commodity, we will also denote {ct, wt, ht} =

{ct, wt, ht, 0}.

3.2 Literature review

In this section, we focus on object tracking as an algorithm, by starting
with a literature review, presenting some state-of-the-art algorithms (in
terms of accuracy and speed). The aim is not to propose a full coverage

3.2. Literature review 57

of the tracking problem, but rather to propose a summary of how trackers
can be classified, to understand in which category our work resides.

As mentioned before, object tracking is a very popular task in com-
puter vision (according to the VOT committee [Kri+15], in major confer-
ences in computer vision (ICCV, ECCV, CVPR...), each year, about 40

papers deal with object tracking), and many algorithms exist in the lit-
erature. Yilmaz [YJS06] proposed a method to classify object trackers,
inspired by his classification of object representation:

• Point-based trackers, in which objects to track are represented by
a sparse set of points. At each frame, the motion of these points
are evaluated (optical flow estimation). This class of tracker is suit-
able for objects with complex shapes or largely textured object(with
many keypoints to detect)

• Kernel-based trackers, deriving directly from the second level of
representation defined in Section. 3.1 (geometrical shape). The track-
ing problem is then similar to estimating of the motion of the tar-
get (translation essentially, but it can also include scale and orien-
tation estimation) represented by a shape (bounding box, ellipse).
One popular type of kernel-based tracker is based on the cross-
correlation between a template modeling the object target and some
areas of a tested image. Our trackers belong to this category

• Silhouette-based trackers: deriving from the third class of represen-
tation defined previously. It suits complex objects (star shaped ob-
jects for example), or when it is necessary to have an accurate level
of description. Silhouette tracking can be used for applications such
as human gesture recognition, requiring to track different parts of
humans body, and send results to a classifier. Yilmaz distinguishes
two classes of silhouette-based trackers: one based on the object’
shape, the second based on the contour tracking

All these categories also include subcategories (Yilmaz for example con-
siders two classes of Kernel-based trackers, one based on template, an-
other based on multiview models). One interest of this classification is
the domain of use of each class of tracker: according to the application,
developers should prefer one type of tracker to the others.

This classification served as a reference for Cannons’ survey [Can08].
However, one difference between the two surveys is the first class of

58 Chapter 3. Object Tracking

tracker: Cannons extends point-based trackers to discrete-feature based
trackers (including for example trackers based on group of edges).

Yang [Yan+11] proposed a review of object tracking by considering
an algorithmic point of view. Indeed, he supposed that a tracker needs a
feature descriptor step to effectively track a target, and choosing the right
feature for the right context is necessary. Then, this chosen feature is
used to train an online learning algorithm, used to cope with object’s (and
sometimes context’s) appearance change (updating the model), and for the
decision (state estimation).

In the two next sections, we will propose an overview of different
different trackers from the literature. Then, we will present some Hough-
based trackers.

3.2.1 State-of-the-art

All trackers presented in this section belong to the same category as ours:
model-free trackers without recovery function, and aiming to track ob-
ject represented by geometrical shape. We will elaborate on Hough-based
trackers in the next part.

The first tracker we will mention, due to its relation with our work
[TM15], is the Particle Filter, proposed by Isard and Blake [IB98] in track-
ing context. It is a method coming from statistics, and used to estimate
some parameters of a dynamical system, by using a set of observations.
Isard and Blake’s CONDENSATION algorithm [IB98] is composed of
three steps:

1. Observation: each particle, defining a hypothetical parameter set, is
associated to a weight, related to a confidence value (measured by
an observation). Then, given the set of particles and their measure
of confidence, target’s state is estimated by an average operator

2. Resampling: To ensure a certain quality of particle set (for example
few particles with low weight and a set of particles covering a cer-
tain area in the parameter space), a resampling step can be useful,
by discarding some particles and adding others

3. Propagation: given a dynamical model, all particles are spread within
the parameter space. A simple propagation model can be applied by
this equation:

Xt = At ·Xt−1 +Bt (3.1)

3.2. Literature review 59

with Xt−1 a vector representing one particle at t− 1 (of size ns× 1,
ns being the dimension of the state space), Xt the same particle at
t, At a matrix of size ns×ns modelling a dynamical model, and Bt

a ns × 1 vector modelling a noise

Particle filter is flexible in terms of feature spaces: Isard and Blake mod-
eled object target using edge features, by modeling them with Bézier
curves [Béz66], while Nummiaro [NKMVG03] modeled it using color
histogram (confidence measure is related to Bhattacharyya coefficient Eq. 2.7).
Pérez [Pér+02] also exploits color-based Particle Filter for tracking con-
text, by exploiting a richer model of representation: the target is no longer
represented by one image, but by a set of sub images, obtained by parti-
tioning. We can also cite [Bre+09] who realize a multi-pedestrian tracker
based on particle filter and a detector. Its dynamical model during the
propagation step is computed according to pedestrian position and mo-
tion. [Dub15] proposed a coverage of tracking problem, addressed with
Particle Filter.

The second tracker we mention in this thesis is the Mean shift tracker.
Originally, Fukunaga [FH75] designed it for maxima search in density
function. Comaniciu popularized it in image processing by showing its
versatility and applying it for image filtering and segmentation [CM02].
However, we will put our interest in his adaptation for tracking context
[CRM03]. Indeed, this algorithm has proven to combine accuracy and
speed (Comaniciu mentioned that it can run at 150 fps in its optimized
version, on a 1.0 GHz computer), and is still inspiring some modern track-
ers (especially [VNM13] that is one of the fastest algorithms in [Kri+15]).
The algorithm is based on two concepts: the target model and localization.
In its original form, the Mean shift does not include updating process.
First, the target model is built at the frame 0, and using the first object
center c0. The object is modelled by an ellipsoidal shape S0. Comaniciu
also considered one feature space: even though his algorithm is presented
using color space, it is usable with other feature space (such as shape or
texture). At the first frame, the target is modelled using a weighted his-
togram. To do so, he defines a kernel function k, and a bandwidth h.
These two parameters are chosen to set high weights to pixels close to ob-
ject’s center (more prone to belong to the target), and used to build object

60 Chapter 3. Object Tracking

histogram HO = HI S0
:

HO(b) = C ·
∑
p

k(
||p− c||

h

2

)δ(I(p)− b) (3.2)

with C a normalizing term (to set the sum of the histogram to 1.0). Eq. 2.6
is a particular case of this equation, with k a function equal to 1.0 in I B0

and 0 outside. Then, at the frame t, the goal is to estimate the shape St
with the same dimension and orientation as S0. The problem is then to
estimate object center, and Comaniciu considers that this center ct is ob-
tained by localizing the shape Sx centred in x for which the Bhattacharyya
coefficient B of HO with HIt Sx

is optimal:

ct = argmax
x

(B(HO, HIt Sx
)) (3.3)

While it is possible to solve Eq. 3.3 with brute force search, Comaniciu
makes the supposition that ct is close to ct−1 ("slow" tracker hypothesis).
The Taylor expansion can then be computed for Bhattacharyya coefficient
Eq. 2.7 for potential centers close to ct−1. From this Taylor expansion, and
considering [CM02], the Mean shift vector is defined by:

ms(x) =

∑
p p · ωp · k′(

||x−p||2
h

)∑
p ·ωp · k′(

||x−p||2
h

)
(3.4)

where:

ωp =

√
HO(p)

HIt Bx
(p)

(3.5)

At a frame t, given x0 = ct−1, the algorithm calculates the series (xn)

such as xn+1 = ms(xn). (xn) is supposed to converge to ct (Even though
the convergence in the general case, with any kernel function k, has not
been proved yet [Gha15]). Intuitively, ct serves as an attracting point, and
Eq. 3.4 will shift the center candidate to high weight areas. Comaniciu
also presents methods to optimize the algorithm (in particular case, Eq. 3.4
is not computed directly, but with a certain approximation) and to improve
the accuracy or scale adaptation. Mean shift tracker has many advantages:
its simple implementation, its versatility (in terms of application, and in
terms of ability to take as an input different feature spaces), and its speed.
Many trackers exploit these assets, to propose extended version of the
Mean shift. We mention Bradski’s CAMSHIFT [Bra98] designed for face

3.2. Literature review 61

tracking, who supposed that skin color projected into the Hue space is in-
variant, and then used this color channel for his tracker. He also estimates
face pose (size and orientation estimation) by using statistical moments.
We can also mention Birchfield [BR05] who applied Mean shift using
spatiograms (see Section 2.1.1 for details about spatiograms) by using a
more complex metric than Bhattacharyya coefficient, based not only on
color histogram, but also on color centroids and standard deviations). If
we focus on state-of-the-art trackers, Vojir’s extension leads to high speed
tracker (more than 100 fps) with decent accuracy and robustness. Vojir’s
enhances the mean shift in two ways:

• For scale estimation, he uses a formulation aiming to maximize the
ratio between the Bhattacharyya coefficient of the model with the
target candidate and the Bhattacharyya coefficient of the model his-
togram with the background

• He also improves scale estimation by computing a backward track-
ing (tracking from t to t − 1) and study the consistency of the esti-
mated scale

Regarding to state-of-the-art trackers, we can use Visual Object Tracking
annual challenges [Kri+13]; [KPL+]; [Kri+15] as a reference. Details
linked to evaluation criteria will be provided in Section. 3.4. However,
at this point, the ranked participants of these challenges provide current
tendencies in object tracking.

For the first VOT challenge [Kri+13], the winner proposed a tracker
derivating from STRUCK [HST11], which belongs to the family of dis-
criminative trackers (the winning tracker paper is not available). To do so,
Hare uses a SVM [CV95], which is trained online for tracking context.
All its (positive and negative) samples are represented into a Haar feature
space.

Danelljan’s DSST [Dan+14a] was ranked first in the second edition
of the VOT challenge [KPL+]. It belongs to the class of correlation-based
trackers, providing accuracy and decent speed. It was inspired by Bolme’s
tracker [Bol+10], MOSSE. The principle of correlation-based trackers is
to train a filter f , by first considering an image I0, a ground truth GT0 and
generating a set (I0,i)1≥1 of sub-images from I0, associating each image to
an output image Oi (Gaussian peak localized at target center). These im-
ages I0,i are defined by a bounding box GT0,i, such that GT0,i is obtained

62 Chapter 3. Object Tracking

by randomly perturbing parameters of GT0, and I0,i = I0 GT0,i . Then, the
correlation filter f is trained by optimizing:

minf (
∑
i

||I0,i ∗ f −Oi||) (3.6)

This equation, computationally costly, can be accelerated in the Fourier
space, as the convolution operation in image space is equivalent to a point-
wise product in Fourier space. Then, Eq. 3.6 leads to:

minf̂ (
∑
i

|| ˆI0,i · f̂ ∗ − Ôi||) (3.7)

where •̂ is the Discrete Fourier Transform operator, and •∗ the transpose-
conjugate operator. Bolme also considered filter updating. Danelljan’s
extension [Dan+14a] is a more accurate tracker using ideas from his pre-
vious work [Dan+14b] in which he designed correlation filters for mul-
tiple features. In [Dan+14a] case, PCA-HOG [Fel+10] is used. Another
improvement is on the scale estimation, for which Danelljan designs 3D
filters (the third dimension being the scale). VOT2016 winner [Dan+16]
belongs to this family of tracker, and its formulation provides to the tracker
a way to integrate feature maps at different resolutions. STAPLE [Ber+16]
is a tracker with a structure close to ours (combining complementary and
independent color-based and shape features trackers) and running above
real-time speed. Its shape tracker is based on correlation filter, using HOG
features [DT05], while its color-based tracker is based on color histogram.
Due to their similarities, we will provide a detailed comparison of this
method and our work in Section. 3.4.1.

Recently, Deep Learning trackers were proposed, and were well ranked
in the VOT challenge [NH16]; [NBH16]. One early tracker using Con-
volutional Neural Networks was proposed by Fan [Fan+10], for human
tracking (an offline process consisted in training the networks using video
containing human heads, to make them learn some spatial and temporal
features). DeepTrack [LLP16] is a generic tracker using CNN, without
offline training. MDNet [NH16] is a CNN-based tracker which won the
challenge VOT2015 [Kri+15]. Its offline training consists in learning net-
works divided into different domains. Then, some information indepen-
dent of the domains is extracted, to build features for the network. Then,
during the tracking step, a bounding box regression technique [Fel+10]
is computed to estimate object state, followed by an updating process.

3.2. Literature review 63

The main weakness of CNNs-based trackers is the high computation time
(those previously cited run at less than 5 fps on a GPU). However, recently,
Held [HTS16] proposed GOTURN, a CNN-based tracker able to track at
100 fps. To do so, the network is trained offline in order to detect motion
and appearance change. At runtime, the absence of online training, com-
bined with a network running feed-forwardly allows the tracker to run at
165 fps with a high-end GPU, but only at 3 fps on a CPU. Moreover, for
objects absent in the training set, the tracker suffers from a little loss of
performance.

In any case, tendencies in object tracking are to propose trackers with
high time consumption operations (correlation filters, classifiers, CNNs)
and complex features (HOG). However, we still find some accurate and
light trackers, such as Possegger’s [PMB15], using only color histogram.
Some details will be provided in Section 3.3, but one key element of this
algorithm is to reduce influences of distractors around object’s position to
avoid drifting.

Now, in terms of fast trackers, we already mentioned Vojir’s adapta-
tion of Mean shift [VNM13] as one of the fastest trackers from all the
VOT challenges. He also uses color histogram as a model. Matas [MV11]
proposed a real-time tracker, based on a point tracker called MedianFlow
[KMM10]. The principle is to model the target at the frame t by a set of
points (xit) and track them using optical flow estimation [Shi+94]. Each
point xit that moves to a point xit+1 at frame t + 1 is supposed reliable if
this point xit+1 moves to a point close to xit from frame t + 1 to frame t
(backward tracking). By discarding 50% of the unreliable points (xit+1)

and computing the bounding box of the remaining set, Kalal [KMM10]
managed to propose a high-speed tracker. Matas [MV11] improvement
concerns two steps: the point sampling was originally done using a reg-
ular grid, while Matas proposed to subdivide images into different regu-
lar cells, and then draw one point per subdivision. The second improve-
ment is for the point tracking failure estimation: Matas adds a measure
of consistency, and a Markovian model. Another state-of-the-art real-time
tracker was proposed by Henriques [Hen+15], who made an extension
of his work [Hen+12]. The method relies on a discriminative classifier,
which is trained by sampled patches. The novelty of his work is the fact
that these patches are sampled using translation and scaling. In that way,
due to the redundancy of information, the trained classifier can be formally
written with circulant matrix that have nice properties in Fourier domain,

64 Chapter 3. Object Tracking

which allows the classification to be done quickly.
In this section, we made an overview of different methods of tracking.

After presenting an overview of Particle Filter based trackers, we pre-
sented the Mean shift [CRM03], a tracker serving as a base for a very effi-
cient tracker [VNM13]. In terms of state-of-the-art trackers, current meth-
ods are based on correlation filters. More recently, CNNs-based trackers
were developed, and achieved high accuracy. We then finished by citing
some real-time trackers. In the next part of this chapter, due to the impor-
tance of the GHT on our work, we will focus on Hough-based trackers.

3.2.2 Hough Transform for Object Tracking

Even though Hough Transform [Hou62] and its generalization [Bal81]
have been designed to detect shapes, several authors adapted them for
object tracking.

Intuitively, directly applying the Generalized Hough Transform (GHT)
presents a certain interest. Indeed, in case of translations parallel to the
image plane, a maxima search in the Hough Space is usually sufficient to
estimate the target location: all pixels are translating identically, and so
the target peak is moving at the same speed and direction. Furthermore,
considering that the original GHT only requires gradient computation, it
is robust to illumination change.

However, in tracking context, pure translation in the image plane is
very rare in real cases. Moreover, when object motion is too fast, tar-
get shape is blurred, resulting to a wrong position estimation of the GHT
(loss of structure). If we follow Ballard’s suggestion, by voting in ns dif-
ferent scales and no different orientations, then the memory consumption
is multiplied by ns · no. The lack of method to update target’s model (the
R-Table) is also a flaw for the original GHT in tracking context (as it was
designed for shape detection, and not for tracking).

For these reasons, the simple Generalized Hough Transform is not us-
able as is for object tracking. However, the principle of considering a set
of elements from an image (pixels, patches...), and making them vote for
a set of parameters, definitely makes sense for tracking context.

Sato [SA04], for instance, combined Hough Transform and temporal
windowing to track pedestrian, filmed in lateral-view. He starts by bina-
rizing all images of a given sequence (It) with a background subtraction
method. Then, he extracts some standing objects corresponding to regions

3.2. Literature review 65

intersecting an area around the horizon line (depending on the height of
the camera), and with a height below a threshold. These standing objects
correspond to potential pedestrians. This hypothesis is restrictive, as it is
designed to detect pedestrian walking at the same altitude, and those who
walk on another plane can not be tracked. Finally, the Hough Transform is
applied by considering that a pixel from these standing objects follows a
certain trajectory (supposed to be a straight line), at a certain speed (sup-
posed constant). A blob representing a pedestrian is then extracted by
considering that all pixels from the same pedestrian follow the same tra-
jectory at a constant speed. Sato also extended his tracker to recognition
of simple interactions between humans, such as one person following an-
other one, one person stopping in front of a second one, etc. However,
this tracker is very limited: experimental conditions are very restrictive
and can not be adapted to a more general context (camera motion, pedes-
trian walking at different planes).

Recently, Hua in [HAS15] proposed a tracker also adapting Hough
Transform. His tracker has proven accurate on VOT2015 dataset [Kri+15].
First, Hua detects potential candidates (represented by bounding-boxes)
using a HOG-based [DT05] detector. Second, he applies a Hough Trans-
form to estimate the geometrical transformation of the target. After esti-
mating the optical flow, each pair of points votes for a geometrical trans-
formation, giving a first score of detection confidence. Third, two scores,
one based on object edges and the second on motion, are generated, and
the three computed scores are used to estimate the new state (bounding
box). However, this tracker is very slow, far from the real-time criterion
(less than 7 fps). Moreover, the Hough Transform is only used in order to
validate or reject potential states.

If we deal with the Generalized Hough Transform, several GHT-based
trackers have also been proposed. Pixeltrack [DG13] is a very-fast tracker
(more than 100 fps) proposed recently, very close to the GHT. Its high-
speed is mainly due to very low-level operations, and to a fully optimized
code.1 At each frame t, the first step consists in computing a GHT to
estimate a potential object center xh. Unlike Ballard’s method [Bal81],
Duffner indexes his R-Table not only with gradient orientation, but also
with HSV color values. Then, he proceeds to an operation called back-

projection, that we will detail in Section 3.3. Duffner proceeds to a fast

1http://u0016403263.user.hosting-agency.de/research_
pixeltrack.html

http://u0016403263.user.hosting-agency.de/research_pixeltrack.html
http://u0016403263.user.hosting-agency.de/research_pixeltrack.html

66 Chapter 3. Object Tracking

segmentation using color models of the background and the foreground,
and computes the centroid of this map xs to get a second potential center.
Finally, the target center is estimated as the weighted average of xh and
xs. The weight of these two candidates depends on a confidence measure
of the Hough Transform. Finally, the update process is done by consid-
ering a segmentation map, computed from the color segmentation and the
backprojection map. This algorithm served as a reference for our work, as
it presents a certain trade-off between accuracy and speed.

Maresca [MP13] also proposed a tracker using the GHT, with a higher
level of representation than gradient features, based on keypoints features
(notably SIFT [Low99] or ORB [Rub+11]). The R-Table is replaced by
a codebook (built using positive and negative samples), and correspon-
dences are found using a k-nearest neighbor (K-NN) algorithm. At a given
frame t, all detected keypoints are put into a K-NN algorithm to search for
correspondences (this training is done during the tracker initialization and
the updating process). Then, after some filtering operations (in order to
discard some bad keypoints, such as those close to a negative samples) in
the feature space, the GHT is realized by making detected keypoints vote
for a position. Finally, a scale estimation is computed. MATRIOSKA
is a decently accurate and robust tracker (it was among the first half of
the competing trackers in VOT2014 [KPL+]), and using a keypoint-based
representation has certain advantages (robust to illumination change, point
of view change...); its speed is far lower than that of PixelTrack (about
15 fps), due to higher level-operations (detection and description of key-
points, k-NN). However, by combining MATRIOSKA with BDF [MP14],
which is a variant of the Flock of Trackers [VM14], Maresca managed to
propose a high-speed tracker.

Godec [GRB13] proposed a tracker based on the Hough Forest frame-
work proposed by Gall [Gal+11] (a more detailed description of the Hough
Forest is available in Section. 4). Like Maresca, the R-Table is based on
a machine learning classifier: the Random Ferns. Godec however uses a
patch-based representation (each patch is described using Lab color space,
first and second derivatives and HOG features [DT05]) to train his deci-
sion forest. At each frame It, each patch goes through all decision trees
(the ferns), and then votes for different positions, according to the leaves.
Then, to estimate the size and updating the model, Godec first proceeds to
a backprojection operation, and then to a GrabCut segmentation [RKB04].

3.3. Combining color histogram and Gradient for tracking 67

In terms of performance, the Hough Fern tracker is among the least ac-
curate ones in [KPL+], and due to heavy computation operation (HOG
evaluation and GrabCut segmentation), is also very slow.

In this part, we highlighted the limitations of the (Generalized) Hough
Transform for object tracking. However, as many researchers proposed
different trackers to compensate these weaknesses, we made a short re-
view of recent Hough-based trackers. These proposed trackers can be
very accurate and robust [HAS15] or very fast [DG13], and enhanced the
Hough Transform at different levels:

• Some researchers applied the (Generalized) Hough Transform using
a higher level of representation than the original method: Godec
[GRB13] used HOG features, [MP13] used keypoints, [SA04] and
[HAS15] used temporal features. Those works show that the Hough
Transform is able to support high-level features, and even temporal
ones

• Others used Machine Learning method to improve the voting pro-
cess [MP13]; [GRB13]. Both papers changed the R-Table to a more
complex data structure: a codebook indexed by keypoint descriptors
for [MP13], random ferns for [GRB13]

• Others proposed to combine the Generalized Hough Transform with
another model [DG13]

It turns out that the Hough Transform is a framework that can be im-
proved at different levels for tracking purpose. In the next sections, we
will present our methods, together with experiments realized on academic
datasets.

3.3 Combining color histogram and Gradient
for tracking

In this section, we will present our work in object tracking. This section
will be mainly inspired by [TM15] and [TM17]. However, we plan not to
make a raw copy of these two papers, and prefer studying these trackers
and see their advantages and weaknesses.

This section will be divided into four parts:

68 Chapter 3. Object Tracking

1. First, we will present the backprojection operation, common to all
approaches

2. Second, we will present [TM15], which combines the GHT and an
adaptation of the Particle Filter

3. Third, we will present the weaknesses of the previous tracker, and
explain how we partially solved them

4. Fourth, we will present [TM17], detailing how simple routines can
lead to an effective tracker (see Section. 3.4)

The common point of these three trackers is the exclusive use of gradient
features to compute the Generalized Hough Transform, combined with
color histogram. The problem will be then to combine these two bases
to propose a decent tracker. In terms of performances, results and evalu-
ation on academic datasets and computation time will be detailed in Sec-
tion. 3.4.

3.3.1 Backprojection map

Backprojection map is one common point to the two trackers we proposed.
In object detection, Razavi [RGVG10] uses this operation in many ways,
and we will detail them more precisely in Section. 4. In this section, we
will only present its use in tracking context. This operation, as used by
Godec [GRB13] and Duffner [DG13], is used to determine the support
of pixels which have voted for best object location. Formally, given a R-
Table R, the Hough Transform HT from an image I, the backprojection
associated to the location x, denoted BPx, is a map null for every pixel p,
except those which have voted for x:

BPx(p) =

HT(x) if ∃~u ∈ R(θp), p+ ~u = x

0 otherwise
(3.8)

Duffner and Godec used this binary backprojection as a confidence map
by selecting x such as x = maxp(HTp) (see Fig. 3.5). The formulation
Eq. 3.8 differs from those we will use in our works. However, both for-
mulations are based on the same idea, that if one pixel has voted for the
peak, it is more prone to belong to the tracked target.

3.3. Combining color histogram and Gradient for tracking 69

(A) Input (B) Hough Transform (C) Backprojection

FIGURE 3.5: Backprojection from bag sequence.

3.3.2 Combining GHT and Particle Filter

We present [TM15] in this part. This tracker combines the GHT, and
an adaptation of the Particle Filter [IB98]. We aimed to use these two
algorithms in their simplest form.

The first step is the model initialization. As our tracker belongs to
model-free ones, it requires only the first frame I0 and the first bounding
box B0. The R-Table R is initialized using all pixels inside B0 whose gra-
dient magnitude is above a threshold εM . It is used as a shape model for
tracking. Unlike the original GHT, the R-Table does not store displace-
ments exclusively, but couples (~u, ω~u), where ω~u is a weight associated to
a displacement ~u (defined as in the original GHT). On the other hand, for
the particle filter, let us define Ht=0 the initial normalized color histogram
of I0 B0

as a color model. Let Np = 500 be the fixed number of particles
used in the whole sequence. At each frame t, one particle is defined by
its hypothetical state Bi

t = {cit, wit, hit} (orientation is set to 0.0), and its
weight ωit.

Then, for tracking step, the GHT and the particle Filter are computed
independently. On the one hand, as mentioned in Section. 3.2, the Particle
Filter is divided into three steps, and in our case, computed that way:

• Observation: at each frame t, each particle i represents a potential
state. Its weight is updated by computing the Bhattacharyya coef-
ficient B between Ht (normalized color histogram model at frame
t) and H i

t , color histogram of It Bit . Then, the particle weight is
equal to ωit = exp (−λ · (1.0−B(Ht, H

i
t))

2
), where λ = 50.0.

This weight measure is inspired by Pérez [Pér+02] adaptation of
Particle Filter in tracking context

70 Chapter 3. Object Tracking

• Resampling: the aim of the resampling step is to preserve a trade-
off between coverage of the state space and proportion of particles
with high weights. Arulampalam proposed different methods to re-
sample the particle set [Aru+02]. However, as we aim to propose
a simple algorithm, the particle set is at each frame fully regener-
ated using a multivariate Gaussian Process. For each particle, cit is
sampled from a 2D Gaussian random process centered in ct−1 (pre-
vious estimated state), and with variances (c · wit−1, c · hit−1), with
c = 1

2·2·
√
2·ln 2

. The denominator 2 · 2 ·
√

2 · ln 2 is linked to the full
width at half maximum (FWHM) coefficient of a Gaussian of stan-
dard deviation σ: FWHM = 2 · 2 ·

√
2 · ln 2 · σ. We choose these

variance value to ensure that most particle centers are close to ct−1.
For the scale parameters, (wit, h

i
t) are drawn using a 2D Gaussian

centered in (wit−1, h
i
t−1) and of variances (β · wit−1, β · hit−1), with

β = 0.05.

• Propagation: as the resampling process regenerates all particles,
there is no propagation step in our tracker. So, given Eq. 3.1, at
each frame, we simply have At = Id4 (the identity matrix of size
4) at each frame, and Bt the null vector

Let us then define OP the observation map, such that:

OP(x) =

ωit if ∃i , cit = x

0 otherwise
(3.9)

As the particle filter is based on estimating the density of probability at
different states (i.e. different particles), OP can be seen as a sparse repre-
sentation of the probability to find the target, at different states.

On the other hand, the GHT is computed normally, with ng orienta-
tions to index the R-Table R, except that, contrary to Eq. 2.28, each pixel
votes according to each displacements ~u, with a weight ω~u:

HT(p) =
∑
q

∑
(−→u ,ω~u)∈R(θq)

ω~u · δ(p, q +−→u) (3.10)

where θp is the quantized gradient orientation of p. From the GHT, we
compute a backprojection map different from Eq. 3.8:

BP(p) = max
~u∈R(θp)

HT(p+ ~u) (3.11)

3.3. Combining color histogram and Gradient for tracking 71

This backprojection is softer than Duffner’s and Godec’s formulations
Eq. 3.8. Indeed, they backproject the peak, while in our case, all vot-
ing pixels are strictly positive in BP. However, in both cases, the aim of
the backprojection map is the same: the higher the value of one pixel of
the backprojection, the more probably it belongs to the target. Fig. 3.6
illustrates this soft backprojection.

FIGURE 3.6: Backprojection obtained by Eq.3.11.

Then, for state estimation, we need to combine the two outputs BP

and OP. One problem is that OP is a sparse representation of a proba-
bility map, and then needs to be made denser. Fitting it with a probability
function, such as a Generalized Gaussian, is possible, but, for efficiency
reasons, we preferred some lighter (but less accurate) methods. Indeed,
we choose to make the map denser by using a morphological dilatation,
with an elliptic structuring element SE of size (wt−1

Np
1
3
, ht−1

Np
1
3

). Let us denote

δSE(OP) the obtained map.
Finally, let us define the fusion map B, such that:

B = BP · δSE(OP) (3.12)

B is then normalized to [0, 1], and thresholded.
This map serves for both state estimation and updating model steps.

For the state estimation, we just consider Bt as the bounding box of all
positive pixels of B. In that way, the whole state is estimated in one
step, avoiding us some more consuming operations (GHT computed with
several scales for example). For the updating step, let us denote µc = 0.90

a color updating coefficient, HB
t the color histogram of It Bt . Then, we

define Ht, the model color histogram by:

Ht = µc ·Ht−1 + (1− µc) ·HB
t (3.13)

To update the R-Table, we consider r the centroid of B Bt , and an updating
rate µg (µg = µc). Then, for all pixels p in Bt for which M(p) > εM , (i.e

72 Chapter 3. Object Tracking

gradient magnitude above a threshold), we update R(θp) as follows:

• if ~u = −→pr is not in R(θp), we add an entry (~u, ω~u = M(p))

• otherwise, we update ω~u as follows:

ω~u ←
µg · ω~u + (1− µg) ·B(p) ·M(p)

2
(3.14)

The aim is to reinforce the weights of displacements already present in
the R-Table: if some pixels have correctly voted previously, we suppose
that they are more prone to belong to the object. We then sort all displace-
ments, in each entry R(θp), according to their weights, and keep only the
Ng = 50 strongest displacements. If we compare our tracker with other

FIGURE 3.7: Diagram of tracker [TM15]

Hough-based ones, PixelTrack [DG13] is the closest one to ours. The
differences between the two trackers can be detailed as follows:

• Our Hough-part tracker is closer to the original method [Bal81].
Indeed, our R-Table is indexed only by gradient orientation, while
Duffner indexes it by using both gradient orientation and HSV pix-
els colors. Our aim was to consider the color and the shape parts
as independently as possible, by exploiting them with different al-
gorithms: the Particle Filter and the GHT respectively. Duffner’s
solution has the advantage to allow the R-Table to integrate more
information, while maintaining the simplicity of the R-Table. How-
ever, Duffner’s R-Table is more sensitive to noise, as entries are
dependent on Hue and saturation values.

3.3. Combining color histogram and Gradient for tracking 73

• Duffner proceeds to a segmentation using pixel colors, and requires
a model for the foreground and the background (under the form
of color histograms). His segmentation also requires a Bayesian
model. In our case, we only use a model color histogram, combined
with a particle filter

• Duffner’s position estimation is computed from two outputs: one
obtained by the GHT, one by computing the centroid of the color
segmentation map. In our case, we are estimating the whole state
(bounding box’s center, size and orientation), by estimating the bound-
ing box of the binarized fusion map Bt

However, the two approaches are very close in terms of feature space (low-
level features in both cases), the important role of the GHT, and a step to
quickly compute a segmentation map in order to update target’s models.

In this section, we presented the first version of our tracker, combining
GHT and color histogram features. The aim was to maintain the use of
low-level features, and to propose a very light tracker. Indeed, we kept
important steps of tracking (model initialization and update, and tracking
itself), but we discarded some usable information (target motion or other
dynamical model). Finally, the presented tracker has several flaws, that
we now discuss, together with some solutions.

3.3.3 Transitional tracker

The aim of the previous tracker was to propose a very simple algorithm,
and so we discarded some classical elements used in tracking. We have
fulfilled our goal to work on low-level features, as our tracker is exclu-
sively based on gradient and color features. However, some important
elements for tracking are missing.

The lack of a "real" prediction model (ours is just defined by the way
to draw particles) is very important since the presented tracker is mainly
based on the GHT, and some abrupt transformations can imply a failure
of the GHT (The third picture from Fig. 3.8 illustrates it).

The second issue concerns the computation of the fusion map B (see
Eq. 3.12), used for scale estimation. Before the threshold operation, for a
pixel p, B(p) is strictly positive when both BP(p) and δSE(OP(p)) are
strictly positive (product). It means that a pixel with a positive value in
B must have voted in the GHT process (BPt(p) > 0), and be spatially

74 Chapter 3. Object Tracking

close to one particle ((δSE(OPt))(p) > 0). Fulfilling these conditions
can be hard (it depends on the size of the particle set, the number of dis-
placements stored in the R-Table and on the target size) and the quantity
of pixels with positive values in B is decreasing over the time, leading to
a wrong size estimation. Moreover, for model update, with the previous
method, only positive pixels in BP can participate to the R-Table update.

We addressed these two issues as follows:

• For the prediction model, given Bt−1, the previous estimated state,
we define a normalized isotropic Gaussian map PRt−1 centered in
ct−1, and of standard deviation σ0 ·min(wt−1, ht−1), with σ0 = 0.70.
PRt−1 represents a prediction of the position, given the last esti-
mated one, as high values in this map are for pixels close to ct−1.
This prediction model is fast to compute, and has been used in
the literature [PMB15]. It is also possible to use a richer predic-
tion model, by considering the motion of the target, as Breitenstein
[Bre+09] proposed. Fig. 3.8 illustrates the usefulness of a predic-
tion map, on a cropped frame from ball sequence. On the first line,
one cropped frame is displayed, the red circle corresponds to the
peak of the GHT (image below), while the blue one corresponds
to the peak obtained from the per-pixel product between the GHT
and the prediction map (on the right). Then, by defining the map
PHTt = HTt ·PRt−1, the position of the target is determined by:

ct = argmax
x

fPHTt(x) (3.15)

where fPHTt is the integral of PHTt in the rectangle centered on
x, and of size (0.30 · wt−1, 0.30 · ht−1). The goal of Eq. 3.15 is to
add some robustness with regard to deformations to the GHT, by
considering that a pixel voting correctly does no longer have to vote
accurately for a peak, but for a pixel close to this peak. Compared to
Eq. 2.29, the method modeled by Eq. 3.15 is more robust to scaling
and small deformations.

• For the scale estimation issue, we replace the dilated sparse obser-
vation map δSE(OP) by a dense observation color map. After es-
timating mt, the maxima of HTt, we define a surrounding area St
as a rectangle of size (β · wt−1, β · ht−1) (β > 1), and excluding
the rectangle {mt, wt−1, ht−1}. Fig. 3.9 illustrates one surrounding
area. The blue part corresponds to St, the red one to the bounding

3.3. Combining color histogram and Gradient for tracking 75

(A) Cropped frame (B) Prediction map

(C) GHT (D) Product of GHT and prediction
map

FIGURE 3.8: Impact of prediction map in the GHT

box (mt, wt−1, ht−1). Let us define Hbck
t the normalized histogram

FIGURE 3.9: Surrounding area from sunshade.

of I(St). Then, for each bin i, we define a ratio histogram HR
t such

that:
HR
t (i) = min(

Ht−1(i)

Hbck
t (i)

, 1.0) (3.16)

and then build the map of the quantized color image of It using

76 Chapter 3. Object Tracking

HR
t . This formulation differs from our approach in [TM15]. In-

deed, while our previous work was based on Bhattacharyya coef-
ficient (Eq. 2.7), this one aims to measure how likely one color
belongs to the target or to the background: the more one color is
present in the target and rare in the background, the higher HR

t is.
However, for color as much present in the foreground as in the back-
ground, Eq 3.16 will be close to 1.0. Let us call Ct = HR

t (It(p))

the obtained map. Fig. 3.10 illustrates an area from one frame of the
sphere sequence mapped using a RGB histogram of size 8× 8× 8.
Blue corresponds to low values, red to high ones. The red area cor-
responds to the foreground, the blue one to the background. Finally,

FIGURE 3.10: Mapping of the blue and red areas using
HR
t (Eq 3.16)

Bt is obtained by taking the bounding box of:

{p|(B(p) > εB) ∧ (Ct(p) > εC)} (3.17)

where εB and εC are two thresholds. Like [TM15], scale estimation
is still dependent on the realization of two conditions. But, as Ct

3.3. Combining color histogram and Gradient for tracking 77

FIGURE 3.11: Some non consecutive frames from mo-
tocross sequence

is denser than OPt, the cardinality of the set of pixels defined by
Eq. 3.17 if higher than previously. For the updating process, we also
changed the method, by considering that a pixel p ∈ Bt belongs to
the target if:

BPt(p) + Ct(p)

2
> εfgd (3.18)

with εfgd = 0.45. This condition, less restrictive than before, leads
to a higher quantity of pixels used for the R-Table update. Fig. 3.11
illustrates a correct tracking for one moving target

One last weakness of [TM15] concerns the use of the particle filter: as
we choose to be as simple as possible (for speed purpose), the resampling
and propagation steps are used in their simplest form (full resampling ac-
cording to a 2D Gaussian for the first, dynamical model defined with the
Identity Matrix for the second) which does not let us take benefits from the
particle filter (coping with dynamical model with the propagation, remov-
ing wrong hypothetical states and keep correct ones with the resampling).

This tracker performs better than [TM15], and is able to track accu-
rately in more sequences (see Fig. 3.11). However, it only partially solves
problems of the previous one, and still has several flaws.

3.3.4 Final tracker

The tracker presented previously provides decent results, but still suffers
from flaws:

• The color-part has a secondary role compared to the GHT: the back-
ground histogram HR

t is built according to mt, the maxima of HTt.
Conceptually, this issue is severe, as the role of the color model is
only to refine the state estimation. For our work, as we aim to study
interests of low-level features, we prefer having a more balanced
role of the two models

78 Chapter 3. Object Tracking

• Estimating the object dimension by the method proposed in the
previous section has a tendency to diverge: with cluttered back-
grounds, the condition defined by Eq. 3.17 may be fulfilled by back-
ground pixels, and even an isolated background pixel is sufficient to
wrongly estimate object size.

From [TM15] to enhancements proposed in Section. 3.3.3, for scale
estimation, we did not simplify the scale estimation (Eq. 3.17), which
is still based on a conjunction of two conditions. With high thresh-
olds, very few pixels are fulfilling these two conditions, and then,
the scale has a tendency to dramatically decrease

• For state estimation, we are using Eq. 3.17, which requires two
thresholds. For model update, based on Eq. 3.18, we define an-
other threshold εfgd. The two sets of pixels validating respectively
Eq. 3.17 and Eq. 3.18 are different. Moreover, these two equations
require three parameters to define, complexifying the optimization
of the algorithm

• Eq. 3.15 is used to estimate object position. Even though this op-
eration can be quickly computed by integral image, it is still more
costly than a simple argmax operation, and is dependent of the size
of the window. We are then loosing some flexibility compared to
[TM15] as we add one parameter

All these reasons led us to improve the tracker. In this section, we propose
some corrections to get an effective tracker [TM17], that will be used for
the whole experiments presented in Section. 3.4. For reading ease, all
numerical values of the parameters will not be presented in this part. We
also decided to split details into 3 parts:

1. We will explain modifications made for position estimation. At this
level, the tracker is already giving interesting results

2. We will explain how to generate a segmentation map, used for scale
and orientation updating

3. Details about model update will be provided

3.3. Combining color histogram and Gradient for tracking 79

3.3.4.1 Position estimation

First, to remove the dependency of the color part to the GHT, we define
the surrounding area St as the rectangle {ct−1, α · wt−1, α · ht−1}, exclud-
ing Rt = {ct−1, wt−1, ht−1} (α will be the surrounding area coefficient).
By centering the surrounding area at ct−1 instead of mt (Hough peak), the
foreground/background areas are no longer dependent of the GHT. The
second modification concerns Eq. 3.16, used to classify a pixel as fore-
ground or not. For all pixels p ∈ (St ∪ Rt), we follow Possegger’s for-
mulation [PMB15] by defining a new measure of confidence F

(Ht−1,Hbck
t)

O

such that, by denoting qpt the quantified color of It(p):

F
(Ht−1,Hbck

t)
O (qpt) =

Ht−1(q

p
t)

Ht−1(q
p
t)+H

bck
t (qpt)

if p ∈ (St ∪Bt−1)

0 otherwise
(3.19)

Compared to Eq. 3.16, there is no risk of division by 0 for pixels inside
(St∪Rt) (denominator always strictly positive). By extension, F(Ht−1,Hbck

t)
O (qpt) ≤

1.0. Moreover, for colors such as Ht−1(i) = Hbck
t (i), while Eq. 3.16 will

give 1.0, Eq. 3.19 will give 0.5, reducing impact of colors as much present
in the foreground as in the background. If we reconsider the example from
sphere sequence, Fig. 3.12 illustrates improvements induced by Eq. 3.19:
pixels from the shadow now appear in green, while before, it appeared in
red. This formulation comes from a Bayesian formulation of the likeli-

(A) Quantized image (B) Using Eq. 3.16 (C) Using Eq. 3.19

FIGURE 3.12: Impact of Possegger’s formulation
[PMB15] on the color-based confidence map

hood, and we refer to [PMB15] for a detailed explanation. From this new
function, we can now define the method to estimate the object center at t,

80 Chapter 3. Object Tracking

given Ht−1 and Bt−1. Let us define Sc,t such that:

Sc,t(Bx) =

∑
p∈Bx F

(Ht−1,H
bck
t)

O (p)

wt−1·ht−1
if x ∈ (Bt−1 ∪ St)

0 otherwise
(3.20)

where Bx = {x,wt−1, ht−1}.
Second, the GHT is computed as in [TM15] (Eq. 3.10, each displace-

ment casts a vote given by its weight). However, we are blurring the ob-
tained Hough Transform (with a 3 × 3 Gaussian Kernel), and denote by
GB(HTt) the output. This operation, lighter than computing fPHT in
Eq. 3.15, serves to add robustness to scaling and deformations.

Finally, for position estimation, we add a prediction model PRt de-
fined as previously. Thus, to estimate object’s center, we consider Mt =

GB(HTt) · Sc,t ·PRt, and estimate ct by:

ct =

argmaxx(Mt(x)) if maxx Mt(x) 6= 0

ct−1 +−−−−−→ct−2ct−1 otherwise
(3.21)

The second case of the equation is important as, if, for all x, Mt(x) = 0,
we can not determine an object center, and then, decide to estimate it based
on pure prediction, given the two last estimated states. At this point, the
tracker, combined with the updating process detailed further, is already
giving decent results, (details Section. 3.4). Compared to the literature:

• Compared to Duffner’s PixelTrack [DG13], who also proceeds to
a light color segmentation, we merge the outputs of the two track-
ers earlier: Duffner computes one partial object’s center from each
tracker (GHT’s peak and centroid of the color confidence map), then
estimate object’s center with a linear combination of the two. In
our case, we merge the two center confidence maps (GB(HTt) and
Sc,t), then estimate object center according to Eq. 3.21. The weight
of each partial center is also dependent on the amplitude of the peak
of the GHT. Moreover, Duffner’ segmentation process requires fore-
ground and background stored models and use a Bayesian formula-
tion, while ours only need object’s color histogram (the background
one is computed at each frame)

• Bertinetto’s STAPLE [Ber+16] proceeds in a way similar to ours:
after estimating two confidence maps (one from a correlation-filer,

3.3. Combining color histogram and Gradient for tracking 81

the second from color histogram), he merges the two maps with a
linear combination. In that way, he has to consider difference of
amplitude between the two confidence maps, while in our case, the
issue is related to disjoint supports of HTt and Sc,t (solved by the
second case of Eq. 3.21)

FIGURE 3.13: Diagram of position estimation (better in
color)

The diagram of Fig. 3.13 illustrates all steps for position estimation. All
three entries (in blue) serving as an input for the product function can be
computed in parallel.

3.3.4.2 Scale and orientation estimations

Previously, we explained modifications made in order to estimate object’s
position. Now, we explain how to estimate both scale and orientation. The
aim of this step is to build a confidence map, that will serve for tracking
and also for updating task.

To do that, we will consider two confidence maps (one for each fea-
ture). The first one, from the color model, is the map F

(Ht−1,Hbck
t)

O defined
by Eq. 3.19. The second one, coming from the GHT, is another version of
the backprojection map BPt:

BPt(p) =

∑
(−→u ,ω)∈R(θp)

Mt(p+−→u)

|R(θp)|
(3.22)

with |R(θp)| the cardinality of R(θp).
Then, by denoting BFt = 0.5 · (BPt + F

(Ht−1,Hbck
t)

O), and, inspired by
Possegger’s works [PMB15], we define the set of pixels that belongs to
the object as OPt = {p|BFt(p) > εBF}∪{ct, β ·wt−1, β ·ht−1, θt−1}, the
rectangle {ct, β · wt−1, β · ht−1, θt−1} being a safe foreground area (based
on the assumption that all pixels close to ct are more prone to belong to the
object), and β the safe foreground area coefficient. After that, we compute

82 Chapter 3. Object Tracking

a connected component analysis within OPt, to get all pixels connected to
ct−1, and discard isolated ones, as they can lead to a scale overestima-
tion. Finally, the last step is the estimation of the oriented bounding box
B̂t = {ĉt, ŵt, ĥt, θ̂t} of all these connected pixels (rotating caliper algo-
rithm implementation from OpenCV).

Given the last estimated state Bt−1, if each estimated state component
(except ct−1) is too far from the last estimated one, we do not change it.
Otherwise, we update it smoothly:

Xt = (1− µ) ·Xt−1 + µ · X̂t (3.23)

with X ∈ {w, h, θ}.
This version differs from [TM17], which only proceeds to a scale esti-

mation (estimation to 4 parameters instead of 2). To do so, after estimating
B̂t (in this case, we are working with bounding boxes without orientation),
we calculate relative area variation between Bt−1 and B̂t. If area variation
is above εA, we do not update scales. Otherwise:

Xt = λt ·Xt−1 (3.24)

with X ∈ {w, h} and λt = min(1 + λA,max(1 − λA, A(B̂t)A(Bt−1)
)), and λA

the max area variation. The remaining step is the model update.

3.3.4.3 Updating model

For the updating process, we use the merged confidence map BFt as a
support for updating. We follow our previous work [TM15] by smoothly
updating the color histogram, still using Eq. 3.13. For the R-Table, we
apply a more sophisticated updating process than in [TM15]. Indeed, the
first step is to weaken weights of all displacements already present in the
R-Table R:

∀θ ∈ {0, 1, . . . , nc − 1},∀(~u, ω) ∈ R(θ), ω ← (1− µg) · ω (3.25)

Then, we add new displacements, or update already existing ones in a
similar way as Section. 3.3.2. However, for new displacements, the new
weight is equal to µg ·BFt. For already existing ones, we increment their
weights using the same weight µg ·BFt. The weight remains then inside

3.3. Combining color histogram and Gradient for tracking 83

[0, 1]. In that way, compared to Eq. 3.14 which requires gradient magni-
tude, we no longer have to consider the dynamic of the gradient magni-
tude. The interest of combining the weakening mechanism (Eq. 3.25) and
the weight increases is that the role of the first one is to reduce influence
of all displacements, in particular those from the background, whereas the
second step compensates the weakening.

3.3.4.4 Conclusion

We presented three different trackers combining a shape-based model and
a color-based one. First, we described a tracker combining the GHT, ex-
ploited in its simplest form, which is common to all three methods, and
a Particle Filter, applied in a very simple form and based on color his-
togram. The two main issues of this tracker was the lack of real prediction
model and the dependence of the Particle Filter toward the GHT. Sec-
ond, we discarded the Particle Filter part to use only a color histogram
as a feature to classify pixels as background or foreground, and add a 2D
Gaussian acting as a simple prediction model. Third, in Section. 3.3.4, in-
spired by Possegger’s background/foreground discrimination, we changed
the formula to establish the color confidence map, providing a better seg-
mentation (see Fig. 3.12). We also removed the dependency of the color
model to the GHT, by making it dependent on the last estimated state.
Then, the two methods, combined with a prediction model, are merged
(with a pixel-wise multiplication) to produce a map, that can be already
used for tracking. Finally, we extract two confidence maps (one for each
feature), serving as a base for the complete state estimation.

These three proposed trackers have two common points: one unique
algorithm exploiting gradient features (the GHT), and the exclusive use
of local and low-level features (gradient and color histogram). Compared
to Hough-based trackers presented in Section. 3.2.2, the GHT is used in
its simplest form: computed by gradient orientation (as opposed to key-
point features for example) and a codebook in the form of a simple array
indexed by gradient orientation (compared to random ferns structures).
In every cases, our GHT is identical to the original GHT [Bal81], and is
used without extensions provided to cope with scale or orientation changes
(votes in a 4D parameters space).

In the final section, we will validate the last proposed tracker by test-
ing and evaluating it on academic datasets. We tested only [TM17]. In

84 Chapter 3. Object Tracking

terms of performances, neither of the two others trackers is competitive:
the lack of prediction model is critical for [TM15], while scale overesti-
mation of the transitional tracker leads to low accuracy. In terms of speed,
we can suppose that the transitional tracker and [TM17] have similar per-
formance. However, for [TM15], the particle filter part can be very costly,
compared to the computation of Eq. 3.19, as it requires histogram and
Bhattacharyya coefficient computations. Even though these two opera-
tions can be optimized, with a high number of particles, they are more
computationally expensive than Eq. 3.19.

3.4 Results

We present experiments made with our tracker described in Section. 3.3.4
on academic datasets [Kri+13]; [KPL+]; [Kri+15]. Before that, as our
tracker is running above real-time, we consider necessary to detail our
implementation. Then, we focus on some experiments. Academic datasets
first serve as a support for parameters tuning. Then, we study the influence
of changing the feature spaces.

3.4.1 Implementation details

3.4.1.1 Optimization

All our work has been implemented in C++, using OpenCV 2.4.9 2. Our
final tracker was tested on a laptop machine, equipped with an Intel Core
i7-4700HQ, at 2.40 GHz, and coded for a single thread processing.

It terms of implementation, pixel access is done using image pointers.
For optimization purpose, at frame t + 1, given Rt = {xRt , yRt , wRt , hRt }
the rectangle enclosing Bt and parallel to x- and y- axes, the tracking
process is done in an area defined by (ct, γ · wRt , γ · hRt) (γ =

√
2 is the

search window coefficient). The aim is to reduce the search window to a
rectangle of area 2 · wt · ht which contains Bt (for any orientation of Bt).

We compute gradient by using a 5 × 5 discrete Gaussian kernel, with
σ = 1. For histogram computation, we use a LookUp Table (LUT)
LUTc. Given a defined size of histogram nc, and the range of one octet
({0, 1, . . . , 255}), we define the width of one bin δc = 256

nc
, and then create

2http://opencv.org/

http://opencv.org/

3.4. Results 85

LUTc such that:

∀i ∈ [0, 255], LUTc(i) = b i
δc
c (3.26)

with b•c the floor operator. This operation is computed offline. Computa-
tion histogram for LUT is faster than the naive implementation, as all the
division operations are done offline (during the LUT construction), while
online, computation only requires to access elements.

To compute Sc,t, defined by Eq. 3.20, we compute integral images
[Lew95]. Given an image I of size (w, h), its integral image I(I) is de-
fined by:

∀(x, y) ∈ {1, . . . , w} × {1, . . . , h}, I(I)(x, y) =
∑

(i,j)∈[0,x−1]×[0,y−1]

I(i, j)

(3.27)
In that case, given a rectangle R = {c0, w0, h0} (with c0 = (x0, y0)), the
sum of all pixels values of I R can be computed with 4 array accesses and
three additions:∑

p∈R

I(p) = I(I)(x0 + w0, y0 + h0) + I(I)(x0, y0)−

I(I)(x0 + w0, y0)− I(I)(x0, y0 + h0)

(3.28)

Even though we aim to estimate object’s orientation too, we evaluate Sc,t
with bounding boxes parallel to x and y axes, to leverage integral images.

One last algorithmic optimization concerns the R-Table update. To
discard weak displacements, we first sort them according to their weights.
Then, when we need to update the weight of an already existing displace-
ment, at each gradient orientation, we sort displacements according to
their ascending abscissas. Finally, to find the existence of a displacement,
given the index θ and the displacement −→u = (x, y) to be inserted into
R(θ), as soon as in R(θ) we find a displacement with an abscissa greater
than x, we are sure that −→u does not exist in R(θ) yet.

Otherwise, we did not proceed to other algorithmic optimization: in
Figure. 3.13, the three boxes Generalized Hough Transform, Equation

2 and 2D Gaussian are done independently (and then, with 3 for loop),
while these three loops can merge into one unique, potentially provid-
ing us a faster algorithm (in single thread implementation only, in multi-
thread, these loops can be computed in parallel). The computation of the
prediction map PRt has been done exactly, while it can be computed (with

86 Chapter 3. Object Tracking

a certain approximation) using a LUT. This method is all the more criti-
cal that for some sequences involving big objects, this operation is very
costly.

Finally, our tracker has been optimized without approximation, or loss
of accuracy. However, at this point, it has proven to be fast (above real-
time), accurate and robust. In the following of this section, we will present
the evaluation.

3.4.2 VOT datasets

3.4.2.1 History of the VOT Challenge

We present the VOT challenge in this section, and the main criterion used
to test end evaluate trackers. This will be important not only for results on
the dataset, but also for an understanding of the parameter tuning detailed
in Section. 3.4.2.2.

Since 2013 [Kri+13], the VOT committee proposes annually a video
dataset to test and compare trackers. They also propose the TraX toolkit
[Čeh17] as a standard to run and evaluate trackers. For our experiments,
we use a deprecated version of the toolkit, giving the same results as the
recent one, but less flexible.

Each video is annotated by the ground truth, and each frame is anno-
tated according to its specific difficulties:

• Occlusion (Occ)

• Illumination change (Ill)

• Motion change (Mot)

• Size change (Siz)

• Camera motion (Cam)

• Empty (no difficulty; Emp)

Then, to evaluate trackers, the committee considers three criteria:

• Accuracy, based on overlap measure O: at a frame t, given the
ground truth bounding box GTt and an estimated bounding box Bt,
the overlap measure, O(GTt, Bt) is given by:

O(GTt, Bt) =
GTt ∩Bt

GTt ∪Bt

(3.29)

3.4. Results 87

Fig. 3.14 illustrates the overlapping measure: the blue rectangle is

FIGURE 3.14: Illustration of overlappping

the ground truth, the red one the estimated one. This measure is
valued between 0 and 1

• Robustness to failure. A failure happens when overlap measure is
equal to 0. In order to limit the penalty caused by the failure, each
time a tracker fails, it is reinitialized 5 frames later. Accuracy mea-
sures are made only 10 frames after the failure

• Speed. In VOT2013 [Kri+13], speed was given in frame per sec-
ond (with hardware characteristics). In VOT2014 [KPL+], a nor-
malized speed was introduced. Before testing one tracker on the
whole dataset, the toolkit measures the time tδ necessary to com-
pute a maximum (morphological dilation) filter of size 30 × 30 on
a grayscale image of size 600 × 600. Then, the normalized speed,
called Equivalent Filter Operation (EFO), is given by tt

tδ
, where tt is

the time to run the tracker on the whole dataset.

Each tracker is ranked in terms of accuracy and robustness. Two rankings
are available. For the first one, the pooled rank, all sequences are concate-
nated, and average accuracy and robustness are computed for all frames.
Trackers are then ranked according to average overlap (accuracy rank) and
number of failure (robustness rank). For the second, the weighted rank,
partial ranks are computed by ranking according to difficulties (for each
difficulty, ranking is done in terms of accuracy and robustness too), and
final ranking is done by averaging ranks. To remove dataset bias, the aver-
age is done by weighting all partial ranks: very frequent difficulties have

88 Chapter 3. Object Tracking

lower weights. In both cases, the AR rank is plotted (giving the so-called
AR plot), with the average rank in abscissa and the robustness rank in or-
dinate. Statistics methods are also used to differentiate (or not) the rank
of trackers by estimating whether their difference in accuracy or robust-
ness is statistically significant (or not) (see [Kri+16a] for details). Since
VOT2014 [KPL+], the minimal requirement to be coauthor in the com-
petition report is to outperform the reference tracker NCC [BH01] in the
challenge.

In VOT2015, the committee proposes a more interpretable criterion
called expected overlap. It serves to rank competitors with one unique
score, compared to the AR rank in VOT2014. Given a sequence s, a
beginning frame index ti(s) and an ending frame index te(s), the average
overlap of the sequence φ(s) is equal to:

φ(s) =
1

te(s)− ti(s)

te(s)∑
t=ti(s)

O(GTt, Bt) (3.30)

And then, the expected overlap is equal to the average of the average
overlap of all sequences. Even though this score has been proposed for
VOT15, the version of the used toolkit also provides this result for VOT14.

The evaluation process from VOT challenge serves for the next sec-
tion, in which we will detail parameters setting.

3.4.2.2 Parameter details

Selecting the best parameter set of an algorithm is a complicated task. In
tracking context, estimating performances of one tracker and comparing it
to another tracker is not a trivial task [Kri+16a]; [vLK16]. Moreover, our
algorithm requires several parameters to set, and optimizing the whole set
is a complex task.

Then, we distinguished only 4 parameters that can highly impact per-
formances of the tracker: the size of the color histogram nc, the number
of index for the R-Table ng, and the two updating rates µc and µg. The
number of displacements in the R-Table Ng also has an important role,
but secondary compared to ng. Moreover, its optimal value is more re-
lated to the object size (the bigger it is, the higher Ng should be) than ng,
which is more related to the object shape. Then, we select the VOT2015
dataset [Kri+15] and the associated method of evaluation as a dataset of
reference for tuning. Now, in terms of criterion to optimize, we can use

3.4. Results 89

either the expected overlap or the AR-plot (weighted ranking, less biased).
Even though the first one seems the most important one (as it serves to es-
tablish the global ranking on VOT2015) and choosing this criterion would
simplify the task, we do not want to restrict to this, as accuracy and robust-
ness can be more important depending on the task. As we aim to propose
a reactive algorithm, time consumption is also a criterion we would like to
optimize. Optimization has been done with the position tracker only (by
discarding Section. 3.3.4.2) as using the whole algorithm would make the
optimization task much more complex (more parameters to tune).

In that condition, the optimization problem consists in optimizing a
function of N× N× [0, 1]× [0, 1] (the two integers correspond to nc and
ng) to R4. Mathematically, to solve this optimization problem, we need to
define a cost function to minimize. Then, we can proceed to a grid search
in order to find a solution close to the optimal one, but the time necessary
to test all combinations can be tremendous: if the grid is composed of
6 possible parameter values per parameter, there are 64 = 1296 possible
combinations, leading to a huge number of tests to execute. In our case,
testing our tracker on VOT2015 takes 30 minutes. So, testing all 1296

combinations will take 648 hours (about 27 days). Then, we proceed by
setting nc = 12 and ng = 16, and then, searching for couples (µc, µo)

using a grid search. We tested different couples (nc, ng) and chose this
one as it already gave correct performances (see [TM17]). Then, after
choosing the best couple, we will deal will optimization of (nc, ng) by re-
iterating the same process, with (µc, µg) fixed, and (nc, ng) varying. Both
parameters (µc, µg) are selected among {0, 0.2, 0.4, 0.6, 0.8, 1.0}, giving
36 tests to compute.

We show average overlap for all tests Fig. 3.15. Red points corre-
spond to results obtained experimentally, while other points are obtained
with bilinear interpolation. One first remark we have is that for null up-
date rate of the R-Table (µg = 0), expected overlap is very low, for any
value of µc. The maximal relative variation between the lowest (0.1894 for
µg = µc = 0.0) and the highest expected overlap (0.2668 for µg = 0.08

and µc = 0.06) is equal to 29%. Otherwise, for µg > 0, and any value µc,
expected overlap is close to the computed maximum. The relative varia-
tion is lower: with (µg, µc) = (0.04, 0.00), expected overlap is equal to
0.2358, and relative difference is then equal to 10%. We can already dis-
card all couples with µg = 0. Fig. 3.16 and Fig. 3.17 illustrate accuracy
and robustness ranks respectively (the smaller, the better). Fig. 3.16 shows

90 Chapter 3. Object Tracking

FIGURE 3.15: Expected overlap for different values for
µc and µg

that all trackers have similar ranking (no significant difference): this cri-
terion will not serve to differentiate parameters set. On the other hand,
we can notice that Fig. 3.17 and Fig. 3.15 have inverted trends (and the
range of ranking is much more dynamic too): the smaller the rank is, the
higher the expected overlap is. Tab. 3.1 shows robustness ranking accord-
ing to different difficulties. We can find that for µc = 0, trackers perform
badly in camera motion, empty and size change cases. Globally, as most
trackers have strong ranks for illumination change, we can say that this
difficulty is not relevant for our algorithm. For motion change, µg = 0.02

performs very badly. Surprisingly, we can notice that µg = 0.04 gives
poor results for Occlusion issues. Finally, µg > 0.06 gives globally good
results in robustness. The last criterion is the computation time. As it is
independent of update rates, we will not consider it for now.

Finally, if we want to select the best couple of results, two choices are
possible:

• VOT15 [Kri+15] ranking is based on expected overlap. In this case,
the best combination is (µg, µc) = (0.08, 0.06)

• The best ranking in terms of AR ranking is for (µg, µc) = (0.10, 0.02).
However, this combination leads to a low expected overlap com-
pared to the best overlap found (0.2668 against 0.2453). The sec-
ond best options are (0.06, 0.06) and (0.08, 0.02), which are close

3.4. Results 91

FIGURE 3.16: Accuracy rank for different values for µc
and µg

to our first option. The first one gives expected overlap close to the
maximum (0.2613), while the second is middle ranked (0.2518)

For the rest of the tests, we will choose (µg, µc) = (0.08, 0.06) as the best
combination.

Now, we need to tune the two parameters nc and ng. As for the two
update rates, we proceed to a grid search by considering all combinations
in {8, 12, 16} × {8, 12, 16}. Expected overlap is displayed Fig. 3.18, also
obtained with bilinear interpolation (only computed for integers values)
showing no significant difference. As previously, accuracy rank does not
vary much (9 trackers all ranked between the rank 1 and 2), and the same
thing for the robustness (between 1 and 4). This suggests that the impact
of both parameters we want to tune is limited, compared to (µg, µc). Speed
is important in this case, and results are shown Fig. 3.21 (in fps). In terms
of speed, all trackers are in the same order of magnitude, between 126.52

and 130.78 fps.
Finally, if we want to select the best couple, the couple (nc, ng) =

(12, 16) is the best ranked and the one with the highest expected overlap.
We will then select this couple for experiments. This couple is the one we
set at the beginning to initialize our optimization process. For our initial-
ization (nc, ng) = (12, 16), the couple (µg, µc) = (0.08, 0.06) is the one
optimizing results for VOT2015. Tab. 3.2 summarizes all parameters and
chosen values. Parameters in bold are those that we optimize. We note
that these values may not be the best ones for other datasets, due to the

92 Chapter 3. Object Tracking

FIGURE 3.17: Robustness rank for different values for
µc and µg

diversity of videos. Parameters shown in Tab. 3.2 are used in both VOT14
and VOT15. Until the end of the chapter, we will denote as CHT the po-
sition tracker only, CHTs the tracker estimating the position and the scale
(aspect-ratio fixed), and CHTf the full one. As VOT2014 and VOT2015
proposed oriented bounding box ground truth, CHT and CHTs will be ini-
tialized with the smallest rectangle parallel to x- and y- axes enclosing
the initial ground truth. The two next sections will be dedicated to results
on VOT2014 and 2015 datasets, to position our work with regard to the
state-of-the-art. Finally, we will propose an analysis of our algorithm.

3.4.2.3 VOT2014

VOT2014 [KPL+] is composed of 25 sequences taken from several datasets
[Kri+13]; [WLY13]; [Sme+14]. Objects are manually annotated by slanted
bounding boxes, unlike [Kri+13]. For each tracker, experiments are done
in two ways:

• A tracker is initialized by the first frame only (model-free hypothe-
sis) using the ground truth. The tracker then runs through the whole
sequence. This experiment is called baseline experiment

• To evaluate the sensitivity to initialization, the second experiment
consists in testing the tracker initialized by a disturbed bounding
box (shift in position, size and orientation), according to a uniform

3.4. Results 93

(µg, µc) Cam. Emp. Ill. Mot. Occ. Siz.
(0.00, 0.00) 29.00 33.00 26.00 31.00 13.00 7.00
(0.00, 0.02) 29.00 33.00 10.00 31.00 13.00 25.00
(0.00, 0.04) 36.00 29.00 2.00 31.00 1.00 35.00
(0.00, 0.06) 21.00 29.00 2.00 31.00 1.00 29.00
(0.00, 0.08) 28.00 20.00 2.00 31.00 1.00 25.00
(0.00, 0.10) 29.00 27.00 2.00 34.00 1.00 35.00
(0.02, 0.00) 16.00 6.00 3.00 15.00 1.00 2.00
(0.02, 0.02) 2.00 3.00 13.00 5.00 3.00 1.00
(0.02, 0.04) 2.00 1.00 3.00 5.00 3.00 12.00
(0.02, 0.06) 7.00 1.00 3.00 15.00 13.00 2.00
(0.02, 0.08) 2.00 1.00 2.00 13.00 3.00 2.00
(0.02, 0.10) 6.00 1.00 3.00 16.00 13.00 2.00
(0.04, 0.00) 28.00 6.00 2.00 15.00 1.00 2.00
(0.04, 0.02) 2.00 1.00 26.00 1.00 30.00 1.00
(0.04, 0.04) 2.00 1.00 3.00 1.00 27.00 2.00
(0.04, 0.06) 3.00 1.00 2.00 1.00 31.00 2.00
(0.04, 0.08) 2.00 1.00 3.00 1.00 28.00 2.00
(0.04, 0.10) 16.00 1.00 3.00 4.00 24.00 2.00
(0.06, 0.00) 3.00 4.00 2.00 1.00 1.00 2.00
(0.06, 0.02) 6.00 1.00 3.00 4.00 3.00 2.00
(0.06, 0.04) 6.00 1.00 2.00 1.00 3.00 1.00
(0.06, 0.06) 3.00 1.00 2.00 1.00 1.00 1.00
(0.06, 0.08) 3.00 1.00 2.00 1.00 3.00 1.00
(0.06, 0.10) 6.00 1.00 3.00 2.00 3.00 2.00
(0.08, 0.00) 2.00 3.00 2.00 1.00 1.00 1.00
(0.08, 0.02) 2.00 1.00 2.00 2.00 1.00 1.00
(0.08, 0.04) 1.00 6.00 1.00 1.00 1.00 2.00
(0.08, 0.06) 2.00 1.00 2.00 4.00 3.00 1.00
(0.08, 0.08) 3.00 1.00 2.00 5.00 1.00 2.00
(0.08, 0.10) 3.00 3.00 2.00 5.00 1.00 2.00
(0.10, 0.00) 1.00 9.00 3.00 1.00 1.00 1.00
(0.10, 0.02) 1.00 1.00 1.00 1.00 1.00 1.00
(0.10, 0.04) 1.00 20.00 1.00 1.00 1.00 1.00
(0.10, 0.06) 1.00 1.00 1.00 2.00 1.00 1.00
(0.10, 0.08) 3.00 6.00 2.00 5.00 18.00 2.00
(0.10, 0.10) 2.00 9.00 2.00 4.00 3.00 1.00

TABLE 3.1: Robustness ranking for different couples
(µg, µc)

random law of range equal to 10% of the original value, while orien-
tation is perturbed with a uniform random process in [−0.1 rad,+0.1 rad].
This experiment is called region noise experiment. To reduce bias,

94 Chapter 3. Object Tracking

FIGURE 3.18: Expected overlap for different values of
nc and ng

each sequence is computed 15 times, with different initial distur-
bance. Results are obtained by averaging the 15 measures

We compute evaluation and ranking for the whole set of competitors (the
VOT committee provides results from 40 trackers). In VOT2014, trackers
are ranked according to the AR rank, and in the AR plot, best trackers are
on the upper-right part of the figure. However, we will only display results
for some of them: DSST [Dan+14a], VOT2014’s winner based on corre-
lation filter, Hough-based trackers [DG13]; [GRB13]; [MP13] and real-
time trackers [DG13]; [MP13]; [MP14]; [VM14]; [Lew95]; [Hen+15].
Tab. 3.3, 3.4, 3.5 and Fig. 3.24 summarize results for baseline, region noise
and overall cases respectively. Overall results are obtained by averaging
baseline and region noise results. Globally, the trends obtained for the
baseline and the noisy tests are the same. We note that, in terms of rank-
ing and overlap, CHT, CHTs and CHTf have similar performances. All
the trackers we proposed are however in the top 10 in the overall ranking
in terms of accuracy and robustness (for both weighted mean and pooled
mean). In terms of speed, our trackers are the fastest ones in EFO, out-
ranking FoT [VM14]. In the category of real-time trackers, our method
is only beaten by KCF [Hen+15], which is 6 times slower (in EFO). FoT
[VM14] has similar performances in accuracy, robustness and expected
overlap. If we compare our tracker with Hough-based ones, MatFlow is
slightly more accurate and robust than our method, but is slower. Other-
wise, all Hough-based methods are less effective and slower. Our tracker

3.4. Results 95

FIGURE 3.19: Accuracy rank for different values of nc
and ng

main weakness is in terms of expected overlap, with 0.2944 for the best
one (CHTf), which places it only in the first half of the VOT2014 com-
petitors. Fig. 3.23 illustrates one correct tracking, while Fig. 3.22 shows a
failure (due to fast motion of the target).

In terms of accuracy, our tracker behaves globally well: for each se-
quences, our tracker (in all forms) performs correctly and is correctly
ranked (at least first half for all sequences). There are still some exception,
such as polarbear (rank 32 among 40 trackers) and ball (rank 26), which
may be caused by scale change. In terms of robustness, scale change issue
is also a flaw of our tracker: for fish2, hand1 and hand2 sequences, our
tracker performs badly (ranks 31, 31 and 29 respectively).

3.4.2.4 VOT15

VOT2015 [Kri+15] is composed of 60 sequences also taken from diverse
datasets. Region noise experiments have been discarded, leaving only the
baseline experiment.

Results are summarized Tab. 3.6. As for VOT2014, we use all re-
sults provided by the VOT committee (62 trackers), but we only show
results for some trackers: MDNET [NH16], VOT2015’s winner, real-
time trackers [VNM13]; [MP14]; [VM14]; [MV11] and Hough-based
trackers [HAS15]; [GRB13]. We also choose to show results of DSST
[Dan+14a], previous winner, DAT [PMB15], Possegger’s tracker based

96 Chapter 3. Object Tracking

FIGURE 3.20: Robustness rank for different values of nc
and ng

on color histogram exclusively, and STAPLE [Ber+16], for which results
are available on author’s webpage 3 (without speed results). Baseline cor-
responds to a virtual tracker obtained by averaging performances of state-
of-the-art trackers published in ICCV, ECCV, CVPR, ICML and BMVC
in 2014/2015.

As for VOT2014 [KPL+], our tracker is one of the fastest among all
challengers (one of the few above 100 EFO). In terms of weighted rank-
ing, it is very close to the best real-time tracker ASMS, Vojir’s extension
of Mean shift [VNM13]. We get 10% better in terms of expected overlap,
but ASMS is better ranked in terms of accuracy and robustness. Other-
wise, both are at the same level in terms of speed (EFO close to 110). We
perform better than FoT which has similar expected overlap in VOT2014.
Consequently, we can say that in the category of real-time tracker, ours is
on par with the best competitors. If we look at the complete ranking, our
tracker is still well ranked in weighted mean ranking (13th for the CHT
and CHTs in both accuracy and robustness, top 20 and CHTf). In the
pooled ranking, we are still in the first third in accuracy and robustness,
except for CHTf in robustness (first half). Compared to similar trackers,
Staple [Ber+16] is better ranked than our tracker: it may be due to the
fact that its shape-based tracker is a more complex algorithm than ours
(correlation filter based on HOG features), but is slower (according to the
author, it reaches 80 fps on a 4.0 GHz on a desktop machine). Against

3http://www.robots.ox.ac.uk/~luca/staple.html

http://www.robots.ox.ac.uk/~luca/staple.html

3.4. Results 97

FIGURE 3.21: Speed for different values of nc and ng

FIGURE 3.22: Frames from hand2 sequence

DAT [PMB15], CHT and CHTs are better ranked in weighted mean and
pooled rankings. However, substituting the distractor model of Posseg-
ger’s by a GHT improves the expected overlap (8% higher for the lowest
case). Otherwise, as for VOT2014, even though our tracker is well ranked
in accuracy and robustness (see Fig. 3.25 for AR plot for only compared
trackers), in terms of expected overlap, our tracker is only in the first half
of the ranking.

Fig. 3.26 and Fig. 3.27 illustrate correct tracking even with high illu-
mination change and object shape change. We also show Fig. 3.28 a case
of correct tracking from the position tracker only, but due to no orientation
estimation, obtained overlap is weak.

Regarding to per-sequence results, in terms of accuracy, our tracker (in
all forms) is correctly ranked, and weak accuracy are, in most cases, due
to scale change (as see for tunnel, book or octopus). Concerning robust-
ness, scale change is still a weakness for our tracker. Otherwise, against
sequences with high motion changes or deformations(basketball, book,
gymnastics3 or iceskater), our tracker performs very badly (below rank

98 Chapter 3. Object Tracking

Parameter Notation Value
Global parameters

Surrounding area coefficient α 2.0
Safe foreground area coefficient β 0.20
Search window area coefficient γ

√
2

Color parameters
Number of bins per channel nc 12
Updating rate µc 0.06
Ratio for background area calculation rbck 2

GHT parameters
Number of index of the R-Table ng 16
Updating rate µg 0.08
Number of couples per entry Nd 200
Gradient magnitude threshold εg 70

State updating parameters
Area variation threshold εA 0.05
Max area variation λA 0.05

TABLE 3.2: Parameters set

50 in robustness for all these sequences).

3.4.2.5 Analysis of results

Previously, we show results on academic datasets demonstrating that our
tracker is at the level of the state-of-the-art. In this section, we will analyze
more precisely the results, using the tools provided in the VOT toolkit.

One first remark concerns the performances of CHT, CHTs and CHTf.
Surprisingly, the three of them have similar results for all the criteria. One
reason may be the fact that parameters for scale and orientation are very
restrictive, and do not tolerate high variations. Less tolerant values could
create drift, leading to worse results. One solution may be to optimize
all parameters related to scale and orientation estimations, to evaluate the
relevance of the related methods. This remark leads us to test our tracker
with different features using the position tracker only.

Another remark concerns the evaluation criteria. Given one sequence,
trackers are evaluated in terms of speed, accuracy and robustness. The
first criterion can be computed, and trackers can be ranked easily. But ac-
curacy and robustness are correlated: let us consider performances in the
sequence sheep, obtained by trackers with different methods to compute
the gradient (Sobel, gradient at scales {1, 2, 4, 8}). Results are summa-
rized Tab. 3.7. If we look at results in terms of accuracy, we obtain the

3.4. Results 99

Tracker Weighted Pooled Expected
mean rank rank

Acc. Rob. Acc. Rob. overlap
CHT 10.50 8.67 6 9 0.2963
CHTs 10.50 8.83 6 9 0.2891
CHTf 10.0 4.33 10 5 0.3014
bdf [MP14] 10.67 7.33 10 9 0.3148
DSST [Dan+14a] 1.83 4.33 1 3 0.3897
FoT [VM14] 7 17.83 6 23 0.3037
KCF [Hen+15] 2.0 4.67 1 5 0.3840
NCC 8.0 34 6 41 0.1574
Matflow [MP13]; [MP14] 8.67 3.17 6 4 0.3311
Matrioska [MP13] 9.83 12.33 6 9 0.2864
PTp [DG13] 26.17 11.17 32 9 0.2447

TABLE 3.3: Baseline results for VOT2014 (ranks over 43
candidates). CHT, CHTs and CHTf are our trackers.

highest results with CHT with a scale of 8. However, this good result
can be due to the failure (the two trackers that fail are failing at the same
frame) which leads to high accuracy afterwards (due to the re-initialization
of the bounding box). Even with the fact that accuracy is not counted for
10 frames after a failure, the re-initilization can provide a certain advan-
tage. Moreover, if the failure happened at different frames, or if different
trackers fail a different number of times, comparing those trackers turns
harder, as the re-initialization would greatly modify the accuracy. There-
fore, we will only compare results of trackers when involved trackers are
not failing at all, or are failing at the same frame.

Regarding to the biases of VOT datasets, the committee proposed the
weighted mean rank to reinforce impact of rare difficulties. If we detail
Illumination change and Camera Motion change, between the best and
the worst ranked, number of failures are shown Tab. 3.8. We can see that
in Illumination change, couples of failures can lead to high difference in
accuracy (5 failure means a loss of 25 places) while in Camera Motion
Change (very frequent in VOT15), it needs 45 failures to move from the
first position to the last. This is more visible when we generate results
from Tab. 3.6, as the most robust in terms of illumination never fails and
the worst fails 17 times (for a ranking of 60 competitors), while in Camera
Motion, the gap between the best and the worst is equal to 20 failures to
261. This suggests that a failure in illumination change has more impact
in terms of ranking than one in camera motion.

100 Chapter 3. Object Tracking

Tracker Weighted Pooled Expected
mean rank rank

Acc. Rob. Acc. Rob. overlap
CHT 8.33 5.17 8 7 0.2730
CHTs 8 5.33 8 6 0.2781
CHTf 9.17 4.00 8 6 0.2875
bdf [MP14] 7.83 7.33 8 7 0.3047
DSST [Dan+14a] 1.33 3.5 1 4 0.3490
FoT [VM14] 7.83 20.17 9 28 0.2681
KCF [Hen+15] 1.17 3.50 1 6 0.3443
NCC 11 37.33 8 41 0.1549
Matflow [MP13]; [MP14] 5.67 4.50 7 6 0.2930
Matrioska [MP13] 8.67 13.67 8 23 0.2479
PTp [DG13] 21.17 8.37 15 7 0.2592

TABLE 3.4: Region noise results for VOT2014

FIGURE 3.23: Frames from torus sequence

Using a code profiler, we managed to determine which functions are
the most costly in our algorithm. The parameter that most impacts the
computation time is the object size (which impacts the size of the search
window). In most cases, the two most costly operations are the backpro-
jection (Eq. 3.22), that can take 10% of the consumed time, and the GHT.
For the backprojection, it is mainly due to the iterative pixel access. For
the GHT, it is due to the gradient computation. This computation is made
using OpenCV functions, based on floating point operations, more costly
than integer functions. One remark we made previously, in Fig. 3.13,
concerned the possibility to parallelize the computation of GB(HTt), Sc,t

and PRt. As the GHT is more expensive than the two other operations

3.4. Results 101

Tracker Accuracy Robustness Expected Speed
overlap EFO fps

CHT 9.42 6.92 0.2846 115.16 141.29
CHTs 9.25 7.08 0.2836 146.83 180.15
CHTf 9.58 4.17 0.2944 144.82 177.69
bdf [MP14] 9.25 7.33 0.3097 46.82 100.45
DSST
[Dan+14a]

1.58 3.92 0.3693 5.80 13.07

FoT [VM14] 7.42 19.00 0.2859 114.64 306.52
KCF
[Hen+15]

1.58 4.08 0.3641 24.23 63.42

NCC 9.50 35.67 0.1561 3.95 7.80
Matflow
[MP13];
[MP14]

7.17 3.83 0.3120 19.08 40.94

Matrioska
[MP13]

9.25 13.00 0.2671 10.20 21.88

PTp [DG13] 23.67 9.92 0.2519 49.89 127.87

TABLE 3.5: Overall results for VOT2014

(at least 2 times), using three threads to compute them may not be the best
solution. However, as computing Sc,t and PRt takes approximately the
same time, compute them sequentially in one thread, and computing the
GHT in another thread may be a better solution.

The first experiment we made concerns relative performances of the
two parts of the tracker (Hough-part and color-part), by testing each part
of the tracker on VOT2015. Expected overlap shown Tab. 3.9 already
indicates that isolated, Color and Hough do not perform well. Fig 3.29
shows results in terms of accuracy and number of failures according to
different difficulties. Results are close to what we expected, as the color
tracker only is the tracker with the weakest overlap score in case of illu-
mination changes (and is also close to the Hough tracker only in terms of
failure). Globally, the GHT alone does not produce a robust tracker (for
all difficulties).

We also studied the impact of different color spaces. We chose the
RGB color space as a reference (still with the position tracker only), and
compared it with the three following color spaces:

• No color. Since usually, R, G and B channels are correlated on
cameras, it is relevant to test performances of our tracker using only
the grayscale channel

102 Chapter 3. Object Tracking

FIGURE 3.24: AR plot for trackers displayed on Tab. 3.5

• HSV color space, for which we only work on Hue-histogram. In
this case, histograms are computed by discarding weak values of
saturation (below 10). This tracker will be denoted HSV

• Lab color space, for which we work on ab-histogram (denoted ab)
and lab-histograms (lab). For ab case, we will discard pixels with
Luminance below 50 in histogram computation. We tested the ab
color space to see how important the luminance channel was, and to
see relevance of opponent color theory in object tracking

• Color attributes proposed by [VDW+09], already mentioned in Sec-
tion. 2.1.1 and used for Content-based Image Retrieval. In the code
proposed by Van de Weijer 4, RGB pixels are quantized into a 32×
32×32 space. Then, a function from {0, 1, . . . , 31}3 to {0, 1, . . . , n}
is created (Van de Weijer proposed two functions, one with 11 col-
ors, another one with 50). The start space is the quantified RGB
color space, and the end space represents attribute colors. The built
histogram then represents the distribution of color attributes. We
performed the test with µc = 0.06 (as for other color spaces) and
with µc = 0.02. Trackers will be denoted "Attnumcolor (µc)" (Att50

4http://cat.uab.es/~joost/software.html

http://cat.uab.es/~joost/software.html

3.4. Results 103

Tracker Weighted Pooled Exp. Speed
mean rank rank overlap

Acc. Rob. Acc. Rob. EFO fps
CHT 12.83 13.50 8 20 0.2668 115.90 124.07
CHTs 13.00 13.17 10 17 0.2664 118.25 126.59
CHTf 12.00 19.17 5 28 0.2613 114.82 122.93
Staple
[Ber+16]

1.00 4.33 1 5 0.3450

ASMS
[VNM13]

7.50 10.50 2 13 0.2353 115.09 142.26

Baseline 4.67 16.00 2 20 0.2353 1.01 2.32
bdf
[MP14]

29.50 31.83 27 44 0.2054 200.24 78.43

DAT
[PMB15]

13.67 17.33 6 20 0.2428 9.82 14.87

DSST
[Dan+14a]

4.00 23.67 1 36 0.2707 3.29 4.47

FoT
[VM14]

19.67 45.67 16 53 0.1934 143.62 177.53

HT
[GRB13]

20.00 28.00 13 44 0.2045 0.91 0.56

Matflow
[MP13];
[MP14]

22.17 27.50 23 44 0.2098 81.34 31.86

MDNET
[NH16]

1.00 1.33 1 1 0.3789 0.87 0.97

NCC
[Lew95]

8.33 64.83 2 66 0.1359 172.85 105.25

sPST
[HAS15]

1.67 4.50 1 5 0.3134 1.03 1.16

TABLE 3.6: Overall results for VOT2015 (ranks go to
66)

(µc = 0.02) will represent the color attribute with 50 colors and
µc = 0.02)

We are using the same parameter set as Tab. 3.2: grayscale and Hue his-
togram are composed of 12 bins, and the ab-histogram is sized to 12× 12

bins. First, in terms of accuracy, as for parameters optimization, all track-
ers have similar performances. The difference is made in terms of ro-
bustness (see Tab. 3.10 for details). Second, we can note the weakness
of the tracker ab. Indeed, it performs very badly in terms of overlap and
accuracy for most sequences and more particularly on glove, ball2 or car1

(results were obtained using report_article function from the VOT-toolkit,

104 Chapter 3. Object Tracking

FIGURE 3.25: AR plot for trackers displayed on Tab. 3.6
for VOT15

FIGURE 3.26: Frames from matrix sequence

providing accuracy and robustness for each sequence, and available in Ap-
pendix. A). In Tab. 3.10, we can see that in terms of robustness, it performs
very badly compared to other trackers, excepted the two Att50. This is
true for all difficulties. It is mainly because for these particular sequences,
the ab color space does not provide a sufficient power of discrimination to
separate object pixels from the background: for ball2, the problem is that
black and white are not different from blue in ab space, resulting in non
observable object. For car1 and glove, the issue is related to the blueish
aspect of the target and the surrounding background. On the contrary, ab
is performing very well, and even better than all other algorithms, for the
helicopter sequence. This is due to obvious separability of the helicopter
(red) and background (green grass and blue sky) colors. Fig. 3.30 illus-
trates these cases.

3.4. Results 105

FIGURE 3.27: Tracking from butterfly sequence

FIGURE 3.28: Tracking from iceskater2 sequence

If we add the Luminance channel, results are getting much better, and
closer to those from RGB channel. However, due to the low score of ab
(highlighting the low power of discrimination of the ab color space), we
can expect that the lab color space leads to slightly worse results than
RGB. For HSV based tracker, performances are slightly lower than the
reference (CHT). The size of the histogram (12 bins against 123) may be
the cause of the slight drop of accuracy, but, the color model is 122 lighter
(in terms of memory consumption) than for the original tracker. The last
remarks concern Van de Weijer color attributes [VDW+09]. In all cases
(number of color, value of µc), performances are low. Weaknesses are due
to two reasons:

• The instability of color measure over the time. From one frame
to another, pixel color attributes can drastically change, while the
variation is smoother in traditional color spaces. Fig. 3.31 illustrates
fast variation of color attributes of the target (the plastic bag) whose
pixels are moving from the attribute ’white’ to the attribute ’blue’.
It is noticeable for Att50, when we compare µc = 0.06 which gives

106 Chapter 3. Object Tracking

Overlap Failure
CHTSobel 0.49 0

CHT 0.53 0
CHTscale2 0.52 0
CHTscale4 0.47 1
CHTscale8 0.55 1

TABLE 3.7: Overlap and number of failure for different
trackers in the sequence sheep

Rank Cam Ill
1 50 - 54 1 - 4

Last 98 (rank 36) 9 (rank 26)

TABLE 3.8: Number of failures per rank on Camera Mo-
tion an Illumination change

an overlap of 0.1999, while µc = 0.02 (meaning weaker update of
the color histogram) gives 0.2116. In the code provided by Van de
Weijer, two implementations are available: one mapping directly a
RGB bin to a color label, and one giving the probability that this bin
leads to each attribute. This second implementation may be tested
in the future

• The lack of color to describe the target. Fig. 3.32 illustrates one case
where the target color (the left cat) is similar to the background.
This remark holds for HSV space too. However, in this case, as
the Hue histogram is more stable than color attribute histogram, the
loss of performance is less dramatic. Interestingly, Att50 performs
very badly in terms of robustness. This remark should be a topic for
further discussions. In terms of difficulties, its main weaknesses is
Camera motion

The first series of tests concerned the impact of visual color features.
Surprisingly, the RGB color space gives the best results. Other ones suffer
from different weaknesses: the Hue space in HSV suffers from the lack
of dynamic of the color space (even though impact of this flaw is limited,
with respect to the final expected overlap), Lab suffers from the weak
power of discrimination of ab color space, and color attributes are unstable
over the time. We can now move to the second series of tests.

These tests concern the geometry features. CHT still serves as a refer-
ence, and can be identified to a Gaussian derivative computed at scale 1.

3.4. Results 107

Tracker Expected Overlap
CHT 0.2668
CHTs 0.2664
Full 0.2613

Color 0.2126
Hough 0.1854

TABLE 3.9: Expected overlap for different forms of
[TM17]

FIGURE 3.29: Accuracy and failure for different versions
of CHT

We compare it to gradient computed with Sobel filter (with kernel of size
3× 3) and gradient computed with Gaussian derivative formulation, with
σ in {2, 4, 8} (Fig. 3.33 illustrates gradient magnitude at those scales), and
with kernel sizes equal to 2 · σ2 + 1. Complete results per sequences are
available in Appendix. B. However, in our case, the goal is to see impact
of different scales for derivative computation.

Again, all trackers have the same accuracy rank (except Sobel, which
is ranked 1.83), and differences are in robustness. The largest scaled
tracker give relatively weak results compared to other scales, but still gives
satisfactory results (given the expected overlap, it performs as well as the
extension of the Mean Shift [VNM13], and as well as DAT [PMB15]).
The bad rank obtained in terms of robustness to Illumination change (12
failures, while others fails at max 7 times) induced the bad rank in ro-
bustness in the weighted mean. If we study particular sequences, one
clear weakness is also the size of the target: objects smaller than gradient

108 Chapter 3. Object Tracking

Tracker Weighted Pooled Expected
mean rank rank overlap

Acc. Rob. Acc. Rob.
CHT 1.0 1.17 1.0 1.0 0.2668

ab 2.0 7.33 1.0 9.0 0.1752
Grayscale 1.0 1.83 1.0 9.0 0.2166

HSV 1.0 1.33 1.0 3.00 0.2281
lab 1.0 1.67 1.0 2.0 0.2519

Att11 (µc = 0.06) 1.0 2.33 1.0 3.0 0.2085
Att50 (µc = 0.06) 1.0 5.33 1.0 7.00 0.1999
Att11 (µc = 0.02) 1.0 2.67 1.0 3.0 0.2069
Att50 (µc = 0.02) 1.17 5.33 1.0 7.0 0.2116

TABLE 3.10: Results for color variant trackers

Expected overlap
Scale 4 0.2732
Scale 2 0.2713
CHT 0.2668

Scale 8 0.2389
Sobel 0.2262

TABLE 3.11: Expected overlap for geometrical variant
trackers

Weighted mean Pooled Speed
Tracker A-Rank R-Rank A-Rank R-Rank EFO fps
Position 1.00 1.17 1.00 1.00 115.90 124.07

Sobel 1.83 1.33 1.00 2.00 90.54 96.83
Scale 2 1.00 1.50 1.00 1.00 86.38 92.48
Scale 4 1.00 1.17 1.00 1.00 61.94 66.31
Scale 8 1.00 2.50 1.00 4.00 52.28 55.97

TABLE 3.12: Accuracy for geometrical variant trackers

3.4. Results 109

FIGURE 3.30: Frames from ball2, car1 and helicopter
and their projection into channel a and b.

scale are not correctly represented. We can for example consider ball2, in
which Scale 8 leads to an average overlap of 0.02, while others manage
to reach more than 0.70, or handball1, for which it fails 6 times, twice
more than in other cases. Another question concerns the possibility to
use a characteristic size to track a target. The idea would be to smooth
all non relevant details to keep only the sufficient information to track the
target. The existence of such best scale (and of a method to estimate it),
may improve tracker’s performances (neglecting the object size change).
So, if σopt is the characteristic scale to compute the gradient, then σopt

should be a maximum for at least the overlap criterion. However, if we
consider the sequence road, where the target keeps its initial size (dif-
ficulties of this sequence are mainly occlusion and camera motion), the
most accurate tracker is obtained with the largest scale (8), even though
it is the only one to fail (2 failures) (Tab. 3.13 shows overlap results, and
shows that the overlap in function of the scale does not have the wanted
monotony, as σ = 2 is a local maxima). This is all the more surprising
that the target is small (width of 30 pixels), and we can expect that low
scales are more adapted. Intermediate scales (2 and 4) are at the same
order of magnitude in terms of robustness. In terms of expected over-
lap, they are more effective than the tracker with scale 1. In the whole
VOT2015 ranking (with results provided by the committee and by Sta-
ple’s author [Ber+16]), the tracker with a scale of 4 would be ranked 23

110 Chapter 3. Object Tracking

FIGURE 3.31: Frames 9 and 10 from bag, with their color
attributes mapping.

FIGURE 3.32: Color attribute from fernando.

in terms of expected overlap (among 63 competitors), two positions above
DSST (VOT2014 winner). In terms of speed, larger scales are slower than
lower ones (computation cost of derivatives made by Gaussian kernels of
larger sizes, using OpenCV implementation). However, in all cases, speed
is still satisfactory (more than 50 fps). Rather than searching for an opti-
mal scale per sequence, one solution to improve the accuracy, and that we
can test at short-term, should be to use a multi-scale GHT.

Finally, the last remark concerns the use of Sobel filters, whose main
interest was the computation time. However, considering the results (in
terms of speed, accuracy and robustness), replacing the Sobel filter by a
Gaussian derivative for tracking is a right decision.

3.5. Conclusion 111

FIGURE 3.33: Gradient magnitude for σ ∈ {2, 4, 8}

Overlap
Position 0.61
σ = 2 0.65
σ = 4 0.60
σ = 8 0.68

TABLE 3.13: Overlap of road for different values of σ

3.5 Conclusion

We presented our work in object tracking. From the preliminary works
[TM15], which combines GHT and Particle Filter, to the final tracker
[TM17], which is still based on GHT, but for which the Particle Fil-
ter was replaced by a simple color histogram used to build a pixel con-
fidence map, we managed to propose algorithms based on pixel color
and gradient exclusively. In both cases, the GHT is applied in its origi-
nal form [Bal81], unlike trackers from the literature which rely on more
complex GHT (based on more complex features or codebooks) The last
proposed tracker was tested on academic datasets VOT14 and VOT15
[KPL+]; [Kri+15], and gives decent results in terms of accuracy and ro-
bustness (top 10 in accuracy and robustness for VOT14, top 20 for VOT15).
In terms of speed, our non-fully optimized tracker can run at more than
100 fps on a laptop machine at 2.4 GHz, without explicit multi-threading.
This tracker is then one of the fastest from the state-of-the-art, and is
still competitive on modern datasets. Compared to other Hough-based
trackers, only Hua [HAS15] proposed a better tracker, but with a much
higher computation time. Otherwise, Matflow [MP13]; [MP14] is a bet-
ter ranked Hough-based tracker in VOT2014. However, [TM17] performs

112 Chapter 3. Object Tracking

better in VOT15. Pixeltrack [DG13] is the fastest Hough-based tracker
on VOT2014, and is very similar to our tracker. However, we managed
to outperform their results in terms of accuracy, robustness, overlap and
speed.

We achieved our goal to work on light and low-level features (pixel
colors and derivatives) and simple implementation of the GHT. Results
are very satisfactory on academic datasets. We also optimized a subset
of the parameter set. As we succeed to separate the color-based tracker
from the shape-based one, our tracker also served as a base to determine
impact of different features. We tested impact of changing color space
(HSV, lab, color attributes [VDW+09]) and different scales of gradient
computation. From these different tests, we concluded that the RGB color
space, in spite of limitations mentioned in Chapter. 2, presented the best
performances in terms of accuracy, robustness and overlap. In terms of
gradient computation, high scales produce relatively weak results. The
best results are obtained with intermediate scales (σ = 2 or σ = 4).

Now, in terms of perspectives, we have highlighted some limitations
and propose possible enhancements of our work:

• As mentioned before, the scale and orientation estimation is not sat-
isfactory: results are not better than position tracker only. With the
current method, the solution should be to optimize all the parameter
related to scale and orientation. Another solution would be to com-
pute more complex operations, such as segmentation, or by setting
dynamically the value of εBFt (threshold value used to determine
which pixels in BFt belong to the target). If the confidence map
BFt is reliable, the first choice can be a good solution as, in the lit-
erature, several segmentation algorithms can do the task effectively,
at the cost of an increased computation time. The second choice
may involve a function to estimate tracking confidence to adjust
εBFt according to the confidence. It should be faster to compute,
but less reliable than a segmentation

• The parameter tuning is not complete: we optimized only 4 param-
eters that we considered critical. As mentioned earlier, parameters
related to scale and orientation estimation can also be optimized in
our full tracker

• In terms of feature space, our tracker can perform differently, ac-
cording to the scale and the color space used. One possible way

3.5. Conclusion 113

for improvement is selecting the "correct" color space, knowing the
sequence. We can for example cite Collins [CLL05] who selects
the color space optimizing a measure of discrimination based on
likelihood. By considering an optimal tracker, which has, for each
sequence, the results from the tracker with the right color space, we
can see how good Collins’ method can predict this optimal color
space. Concerning scale, we already mentioned the idea to define
the optimal scale, knowing the sequence. We can also think about
using the Hough Transform at multiple scales for derivative compu-
tation

• Our algorithm is light and fast. From a practical point of view, it
can serve as a base for many enhancements: detection of failure
(and recovery), model updating with µc and µg varying over the
time. While the first enhancement can be done by combining the
tracker with a detector (in that case, we are close to object specific
and multi-target tracking), the second one can imply a measure of
confidence, which can be related to the first point (scale and orienta-
tion estimation) In that sense, we can expect to improve our tracker
by diverse extensions

Even though the VOT committee provides us different methods to com-
pare and to rank different trackers, the task is still complicated as their two
main criteria (accuracy and robustness) are correlated, and comparing the
raw performances in accuracy can not be done independently to robust-
ness. To have a better view of performances, we can still test our tracker
on different datasets: VOT2016 [Kri+16b], OTB [WLY13], Temple-Color
[LBL15]... We can also test [TM17] on the VOT-TIR dataset, with se-
quences taken with thermal infrared sensors. All of them propose different
sequences (or in VOT2016 case, different annotations), different methods
of evaluations, and can lead to further analyses of our tracker. If we want
to remain on actual tested datasets, results were obtained with parameters
tuned according to the weighted mean rank. As the VOT committee also
proposes another ranking, the pooled one, making the same study with
this other ranking may be interesting. Pooled ranking also has another
interest: as trackers are ranked according to sequences and not by diffi-
culties, we can study performances sequence per sequence, and no longer
according to difficulties.

114 Chapter 3. Object Tracking

To conclude this part, combining the original GHT with a foreground
background discrimination model based on RGB-histogram leads to a
very fast tracker, with decent accuracy and robustness. It means that,
for tracking, this level of representation is sufficient to discriminate ob-
jects from background. From a systemic point of view, this tracker is very
light, fast and accurate, then suitable for low-power systems. In the next
chapter, we focus on object detection. Feature spaces are designed in or-
der to describe classes of object in the most generic way possible. The
interest will then be to see how far we can go, using basically the same
representation as we used for tracking.

115

Chapter 4

Object Detection

Contents
4.1 Literature review 117

4.1.1 Object classification, detection, recognition . . 117

4.1.2 Hough detectors 119

4.2 Hough Forest . 120

4.2.1 Forest training 120

4.2.2 Extensions of the Hough Forest 126

4.3 Our contributions 128

4.3.1 Patch generation 128

4.3.2 Node training 129

4.4 Experiments . 132

4.4.1 Evaluation method 132

4.4.2 UIUC Cars 134

4.4.3 TUD Pedestrian 135

4.5 Conclusion . 140

Introduction

The second task we will present is object detection. It consists in defining
a class of object (human face, car, pedestrian), and localize instances of
this class in test images. Object detection can be used in many areas:

• For statistics application. For example, counting cars moving on
roads, counting passengers going through a door or a corridor

• For surveillance: detecting people entering secured areas

116 Chapter 4. Object Detection

• In biometrics, a face recognition system may require a step of face
detection, in order to analyze it. We can mention iris as a biometric
modality, which also requires eyes detection

• In photography: detecting faces to adjust the focus of the camera,
or detecting smiles

Object tracking (presented in the Chapter. 3) and object detection are very
different tasks. Indeed, in terms of features, those used for detection have
to describe the class of object as precisely as possible, coping with intra-
class variation. Fig. 4.1 illustrates different instances of the class "pedes-
trian": shape, color, size aspect are all different from one instance to an-
other. For tracking, the feature space can be chosen in order to discrimi-
nate target from background (such as [TM17]), and to be resilient to object
deformation or context change.

To cope with intra-class variation, detectors have to learn visual as-
pects of many objects. Machine Learning methods are then adapted for
this task.

FIGURE 4.1: Instances from pedestrian class

In the framework of our thesis, exploring limits of low-level features
in object detection is interesting. In accordance with the central role of
the Hough Transform in our thesis, we will base our work on the Hough
Forest proposed by Gall [GL13]. Our positioning with regard to Hough-
based detectors will be presented in this chapter, which is organized that
way:

• First, we will make a short review of literature

• Second, we will present Hough Forest algorithm [GL13], some im-
plementation details provided by Gall, and then a review of Hough
Forest-based detectors

4.1. Literature review 117

• Third, we will present our works [TM16]. As we planned to reduce
the dimension of the feature space, we need to compensate with
additional information.

• Fourth, we will present results on academic datasets

4.1 Literature review

In this section, we present popular works on object detection. In the first
part, we present different algorithms. Then, we will focus on object de-
tectors based on Hough Transform.

Formally, object detection is close to a 2-class classification task, which
consists in, given an image, determine if it belongs to the learned class
(foreground) or not (background). One difference is that detection also
implies a localization task meaning that, the aim is also to estimate in-
stance’s state (position and scale for example). Moving from classification
to detection can be done with a sliding-window approach, by dividing the
image into several sub-images (of different sizes, at different positions)
and compute a classifier on them.

Object detection is also one special case of object recognition, which
combines localization and image classification (multi-class classification
task). Consequently, we will enlarge our review to object recognition and
to object classification.

4.1.1 Object classification, detection, recognition

Object detectors rely on machine learning classifiers. There are many
types of classifier, and we will not propose a full coverage of the problem.
We will rather present some popular classifiers, and then finish with state-
of-the-art works.

Viola and Jones proposed a very popular face detector [VJ01]. Their
contributions rely on three important elements. First, their feature space
is generated using Haar wavelets, and is quickly obtained using integral
images. Second, by using AdaBoost [FS95], they obtain a classifier rely-
ing on a small number of dimensions in terms of feature space. Third, the
cascade architecture of their classifier, with weak and fast classifiers at the
top and strong and slow at the bottom, allows to quickly discard a large
proportion of false alarms. This contribution is important, since Viola and
Jones were among the first to propose a real-time detector.

118 Chapter 4. Object Detection

Another popular classifier, originally designed for pedestrian detec-
tion was proposed by Dalal and Triggs [DT05]. The important part of
the contribution is the HOG features, already presented Section. 2.1.2.4,
and present in many algorithms (including Hough Forest [Gal+11]). This
contribution is all the more important that, by using a simple SVM for
detection, Dalal demonstrates that designing high-level regional features
provided good results for detection.

In the category of tree decision-based detectors, Moosmann [MNJ08]
proposed an algorithm for object classification, structurally closed to Hough
Forest. Moosmann uses random forests, also composed of binary trees.
However, his works only deals with image classification. We will detail
similarities and differences in Section. 4.2.

In the category of state-of-the-art detectors, Convolutional Neural Net-
works are now the reference in terms of accuracy. Deep Learning became
popular in object classification, when researchers, notably Krizhevsky
[KSH12] managed to beat the state-of-the-art on classification in Ima-
geNet dataset [Den+09] using CNNs to train the network AlexNet, out-
ranking previous methods based on Bag of Words [Csu+04], and reach-
ing performances in image classification close to the human [Rus+14].
AlexNet was followed by different CNNs such as Overfeat [Ser+13], VGG
[SZ14]... Girshick [Gir+14] managed to beat state-of-the-art detectors on
Pascal VOC datasets [Eve+07]; [Eve+10] by proposing R-CNN. From an
image, Girshick extracts many search windows. Each candidate window
is then tested using CNNs to determine if the image belongs to one class
(Pascal VOC contains several classes). Girshick also considers two CNNs:
one for classification, using ImageNet for training [Den+09], one for lo-
calization (using a subset of Pascal VOC for training). Many works based
on R-CNN aimed to enhance training and detection speed [Ren+15]; [Red+16],
or to enhance accuracy [ZD14] (for this category, [HBS14] proposed a
survey of different contributions).

Before Deep Learning methods, Deformable Part Model (DPM) [Fel+10]
was the reference in object detection. We already mentioned this pa-
per in Chapter. 3 as Danelljan [Dan+14a] used PCA-HOG as a feature
space (combination of HOG features, computed with 9 orientations and 4

normalization factors, and PCA to reduce the dimension of descriptors).
DPM relies on the filtering operation, computed at different scales. One
object is described by a main filter, and by different parts, each part itself

4.1. Literature review 119

modeled by its own filter, by an offset vector (defined by the relative po-
sition of this part with regard to object’s center), and by a vector defining
a deformation cost. Detecting an object is then realized by searching the
area having high response on all defined filters. For object detection task,
a latent SVM is then trained.

4.1.2 Hough detectors

In this section, we focus on detectors using Hough Transform. Compared
to the original GHT [Bal81], the main principle consists in replacing the
R-Table by a codebook. The limit of the R-Table is that all lists of dis-
placements are only indexed by gradient orientation. This limit has al-
ready been considered in tracking case, as Godec [GRB13] replaced it
by random Ferns. In detection task, the problem is more critical as we
do not consider single object in detection, but classes of object. In that
case, higher level features, with higher power of representation, have been
designed for detection: HOG [DT05], keypoints [Low99].

Leibe’s Implicit Shape Model (ISM) [LLS08] is one of the first ob-
ject detector exploiting the GHT, and extending the notion of R-Table
to a codebook indexed by higher-level features than gradient orientation.
Leibe represents each image from the training set with a set of keypoints
(by testing different types of keypoints, and among them, SIFT [Low99]).
Each keypoint is also associated to a displacement from the keypoint to a
reference point. Then, Leibe regroups all similar features using clustering
method. By clustering the keypoints set, Leibe generates a codebook, tak-
ing the role of the R-Table in the original GHT. In detection mode, given
an image, keypoints are extracted, passed through the trained codebook,
and vote according to the resulting entry. Then, after localizing object (by
maxima search), Leibe also proceeds to a backprojection of maxima, to
accurately segment detected object.

The Max-Margin Hough Transform [MM09] proposed by Maji ex-
tends the training step by applying a step of weight training, to maximize
weight of positive images. For the detection step, after its Max-Margin
Hough Transform, Maji also uses another classifier to validate the detec-
tion.

By grouping images from training set in different latent classes, Razavi
[Raz+12] proposed the Latent Hough Transform. The problem tackled
by Razavi is then to solve an optimization problem in order to get the

120 Chapter 4. Object Detection

optimal latent matrix, representing the method to group images from the
training set. This approach has also been used by Tejani [Tej+14], who
combines Hough Forest [Gal+11] and latent variables formulation to 3D
object detection.

In Chapter 3, we mentioned the backprojection operation. In ob-
ject detection case, this operation is very helpful, as shown by Razavi
[RGVG10]. The key is to consider one detected instance (obtained by lo-
cal maxima search), and to backproject this detection to get the support of
votes (i.e. the set of elements which have voted for this instance). Com-
pared to the backprojection mentioned in the tracking section, used by
Duffner [DG13] and Godec [GRB13], Razavi’s backprojection is softer,
as he backprojects the peak and its surrounding too: leading to a non-
binary backprojection map (compared to Eq. 3.8). This backprojection
can be used in many ways:

• To estimate the bounding box

• To measure the similarity between detected instance and training
objects

• To measure the similarity between two detected instances

Another important variation of the Hough Transform in object detec-
tion context is the Hough Forest, proposed by Gall [GL13]. Due to its
importance for our work, we will make a full presentation of this algo-
rithm in the next section.

4.2 Hough Forest

In this section, we present Hough Forest, as proposed by Gall [GL13].
This algorithm, based on Random Forest [Ho95]; [Bre01], is very close to
one object recognition algorithm proposed by Moosmann [MNJ08]. Our
explanation will be divided in two parts:

1. Forest training

2. Object detection

4.2.1 Forest training

In this part, we explain the forest training. Our explanation is made in
three steps: first, how to generate training set, given input images. Second,

4.2. Hough Forest 121

how to train forests. Third, some implementation details provided by Gall
[GL13] are presented. All explanations are done for the training of one
unique tree. The training of the whole forest basically consists in repeating
the process N times.

4.2.1.1 Generating training set

Training a detector (and more generally, a classifier) requires the gener-
ation of training set. In detection case, given one class of object (car,
human, animal...), the principle consists in considering positive images
(image from this class) and sometimes negative ones, and to project them
into a feature space. For example, Viola and Jones’ face detector [VJ01]
relies on Haar wavelet features to produce a very fast face detector. Leibe
trains its classifier using a sparse representation, based on keypoint fea-
tures [LLS08].

Hough Forest algorithm is similar to Moosmann’s method [MNJ08]:
both consider positive and negative images, and from each image of these
two classes, extract patches, randomly chosen. All patches have the same
size w × h, and are projected into a multi-dimensional feature space:

• The 3 channels from Lab color spaces

• Absolute value of first derivatives | ∂•
∂x
| and |∂•

∂y
|

• Absolute values of two second order derivatives : | ∂2•
∂2x
| and |∂2•

∂2y
|

• HOG features [DT05] generating 9 components: one for each bin

those computed features results to 16 dimensions feature space. Morpho-
logical erosion and dilation are then computed on each feature, leading
to a 32D feature space. The aim of these operations is to add robustness
toward noise and small deformations. Moosmann, in his case, tested dif-
ferent feature spaces: based on color (HSL color space), Haar wavelet or
grayscale SIFT descriptors.

We will denote, for each (x, y) ∈ {0, 1, . . . , w−1}×{0, 1, . . . , h−1}
and c ∈ {0, Nd − 1}, by πc(x, y) the value of the patch π, at coordinate
(x, y) and for the feature c. Positive patches are additionally described by
their relative position with respect to object’s center. Fig. 4.2 illustrates
patch sampling from two images of UIUC Cars training set [AAR04].
Blue patches are negative, red ones positive. For this whole chapter, we
will denote asP+ andP− the positive and negative patch sets used to train
the detector. Let us also define P = P+ ∪ P−.

122 Chapter 4. Object Detection

FIGURE 4.2: Patch sampling from images from UIUC
dataset [AAR04].

4.2.1.2 Training tree

Now that the training set for one tree has been generated, we now move to
the training of the Hough tree. Let us first provide useful notations. Each
Hough Tree T is a binary tree. Let dT be its maximal depth. T is then
composed by at most NT = 2dT − 1 nodes. These nodes are divided into
two types, the leaves (terminal nodes) and the non-leaves. All nodes are
stored in a table, and each node is indexed by i ∈ {0, 1, . . . , NT − 1}. We
can then code a tree as a list T = {T (0), T (1), . . . , T (NT − 1)}. Given a
non-leaf node of index j, its two child nodes are indexed by (2 · j + k),
with k = 1 for the left child node, and k = 2 for the right one. Fig. 4.3
illustrates an example tree of depth 3. Green circles symbolize nodes, blue
squares leaves.

FIGURE 4.3: A binary tree of depth 3.

For a training set P , each non-leaf node j is trained by considering a
subset P(j) of P in order to split it into two disjoint sets P(2 · j + 1) and
P(2 · j + 2), used to train the two nodes T (2 · j + 1) and T (2 · j + 2). We

4.2. Hough Forest 123

FIGURE 4.4: Patch set split into two disjoint parts

also have P(0) = P . The split process is done by a binary test, designed
according to an optimization procedure that will be detailed further. This
binary test is a function taking as an input a patch π ∈ P(j) and using 6

parameters:

• two couples of coordinates pl = (xl, yl) and pr = (xr, yr)

• One channel c

• One threshold value τ

and defined by the quantity:

Q(π) = πc(xl, yl)− πc(xr, yr) + τ (4.1)

The threshold value τ is then chosen randomly in:

[min
π∈P(j)

(πc(xl, yl)− πc(xr, yr)), max
π∈P(j)

(πc(xl, yl)− πc(xr, yr))] (4.2)

Let us denote as Q = {pl, pr, c, τ} a binary test defined by Eq. 4.1. Given
any patch set PQ, it can be splitted into two disjoint subsets P lQ and PrQ:

P lQ = {π ∈ PQ|Q(π) > 0} (4.3)

PrQ = {π ∈ PQ|Q(π) ≤ 0} (4.4)

Fig. 4.4 illustrates the splitting process. Then, a binary test Q can be
evaluated, in terms of quality, by these two criteria:

124 Chapter 4. Object Detection

• One criterion related to Shannon’s entropy of the labels {+,−}:

Ue(Q) = |P lQ| ·H(P lQ) + |PrQ| ·H(PrQ) (4.5)

where H(P) = − |P
+|
|P| log

(
|P+|
|P|

)
− |P

−|
|P| log

(
|P−|
|P|

)
,

and |S| denotes the cardinality of the patch set S. According to
this criterion, the optimal split is done when positive and negative
patches set are perfectly separated in the two subsets

• One criterion based on standard deviation of the offset vectors of
positive patches:

Ud(Q) =
∑
t∈{l,r}

∑
π∈(PtQ)+

(dπ − d(PtQ)+)2 (4.6)

with d(PtQ)+ the average displacement computed from all positive
patches displacements. The aim of this criterion is to split the pos-
itive part PQ according to their spatial position with regard to their
center, and gathering positives patches localized in the same area
with regard to the reference point, thus concentrating the votes casted
at one leaf. We can imagine for example, patches taken at the head
of pedestrian, gathered in the same subset (as all of them are located
above the reference point, which is usually located at the torso level)

Both criteria are used to train non-leaf node. Indeed, at each non-leaf
node j, Gall randomly selects one of these two criteria, and then draws
NQ binary tests. He then conserves the test Qj

opt optimizing the selected
criterion:

Qj
opt = argmin

Q
Ub(Q) (4.7)

with b ∈ {e, d}. Moosmann only considers one criterion, based on entropy
and mutual information. Otherwise, his binary test is similar to Gall’s one,
with the difference that Moosman does not compare the difference of two
values to one threshold, but directly compares the value of one pixel, in
one feature, with one threshold value.

Then, after dividing the patch set P(j) by using Qj
opt, P(2 · j + 1) and

P(2 · j + 2) are trained in a similar way, if they are non-leaf node. In case
of a leaf node (when the depth reaches the maximum depth, or when there
are not enough positive patches), all displacements from positive patches
are stored, and the leaf is associated to a weight ωj = |P+(j)|

|P(j)| , which is the

4.2. Hough Forest 125

proportion of positive patches in P(j). If we look at Moosmann’s paper,
each leaf also contains one SVM, classifying all patches according to their
class (he is working on multi-class classification).

4.2.1.3 Implementation details

In the previous section, we explained how the Hough Forest can be ba-
sically trained. However, in Gall’s work [GL13], several complementary
details are used to enhance the detection. We present them in this section.

The first operation consists in normalizing positive image size. The
positive training set is composed of different instances of the same class,
at different sizes. One solution suggested by Gall was to resize all images
in order to make them have the same height, by ensuring that the average
value of the largest dimension of all positive images equals 100 pixels.

The second modification is done in order to add some variability within
the forest, and enhance the classification of the most difficult examples.
One first set of trees from the forest is trained by using the whole patch
set. Then, this partial set is tested in the whole dataset, in order to extract
positive images with the lowest peak, and negative ones with the highest
peak. The aim is to get the subset of the most difficult positive and neg-
ative images. This subset is then used to train a second subset of trees of
the forest. Finally, a third set is generated the same way.

Third, Gall defines two criteria to determine if a node is a leaf:

• If node’s depth is equal to dT

• If there are not enough positive patches as input for node training
(P+ < nmin with nmin = 15)

4.2.1.4 Detection

In the last section, we explain the detection of instances of object once the
forest is trained.

Given a test image I, all patches π are densely extracted. Gall also
studied impact of drawing patches using a regular grid [GL13]. For each
tree, each patch goes through the tree until it reaches a leaf node i. Then it
votes according to all displacements stored in the leaf, each vote having a
weight equal to 1

|P(i)| . Finally, a detection map (the Hough Transform) is
provided, and output can be obtained by maxima search, or by Mean shift

126 Chapter 4. Object Detection

[CRM03]. To cope with scale changes, it is possible to rescale I to differ-
ent sizes, and perform maxima search in scale-space dimension. Fig. 4.5
illustrates some good and bad detections. Gall proposed to accelerate the

FIGURE 4.5: Failures and right detections

detection by making vote only patches that belong to leaves where the
proportion of positive patches is above 0.5.

4.2.2 Extensions of the Hough Forest

Many contributions aimed to enhance the original Hough Forest. In this
section, we propose a literature review of these different works.

Gall in [GRVG12] proposed an extension of his Hough Forest, to esti-
mate the size of the detected instances, and to deal with multi-class detec-
tion (or object recognition). To estimate the size of the detected instance,
Gall uses the backprojection operation [RGVG10]; [LLS08], by search-
ing for patches which have voted for the peak. Then, by thresholding the
backprojection map, he is able to estimate the size. Gall also uses this
backprojection map to determine a similarity between detected instance
and images from the training set. Then, to deal with multi-class detection,
instead of using several forests, Gall prefers using one forest containing
several classes. To do that, for each class, Gall proposes a measure of sim-
ilarity between classes, based on the quantity of patches from one class
present in each leaf, and on the proportion of patches from other classes
in the same leaf.

In [Gal+11], Gall proposed to extend Hough Forest to tracking and ac-
tion recognition. For tracking, the Hough Forest is trained offline, before

4.2. Hough Forest 127

the tracking process. To cope with shape change, weights of displace-
ments are updated using backprojection. For action recognition, more
details are available in [YGVG10]. Hough Forest are built using training
sequences, and by using 3D patches (associated to label related to a spe-
cific action and to a 3D displacement vector) as training set. Each patch is
described using the grayscale color space, x, y and time derivatives, and
optical flow. Then, for recognition, 3D patches are going through all trees,
and vote for an action, and a spatio-temporal center.

Wohlhart [Woh+12] proposed a method to enhance the Hough Forest
by considering a method to validate or reject possible locations x of in-
stances. To do that, he defines an activation value for the displacement d to
the location x. This activation value corresponds to the quantity of votes
casted by any patch which has voted at the direction d for x: the higher it
is, the more d has contributed to x (in Wohlhart’s work, a patch located at
y does not cast only one vote at y+d, but casts a vote to the neighborhood
of y + d, followed by a Gaussian filtering of this vote). The higher the
activation value is, the more it has contributed to the vote for x. With this
formulation, the value of the Hough Transform at x corresponds to the
sum of the activation values for x of all displacements vectors stored in
the whole Hough Forest. This formulation allows him to validate or reject
potential instances.

Murai [Mur+15] proposes a training enhancement, as he plans to mod-
ify weight of patches according to their appearances by reducing weights
of positive patches that are too similar to negative ones. The aim of his
work is to increase the influence of patches that are very different from
those found on negative images.

Recently, Ciolini [Cio+15] presented a work that aims to accelerate
detection, and make it runs on low-power systems. His forest is smaller
than Gall’s one (5 trees against 15) by adding to the training set of the
tree t, some false positive obtained from the forest {0, 1, . . . , t − 1}. At
each leaf, Ciolini also clusters all positive patches according to their rel-
ative displacements, in order to reduce the quantity of voting pixels. In
detection step, instead of using all patches, he subsamples them. Finally,
he also computes a faster approximation of the HOG features.

128 Chapter 4. Object Detection

4.3 Our contributions

In this section, we present our work on Hough Forest. Our purpose is to
investigate the potentialities of low-level features (color and differentials
at different orders) for object representation. Unfortunately, moving from
the full feature space proposed by Gall (HOG + derivatives + lab color
space) to reduced one (derivatives + lab color space) reduces performances
(loss of power of representation). However, removing HOG features also
improves the speed. So, in terms of applications, we consider relevant to
search for methods to enhance accuracy in small feature space.

All contributions presented are taken from [TM16]. As in the previous
section, we will provide a more detailed explanation of our work. This
section will be divided that way:

• First, we explain how we worked on training set generation

• Second, we explain how we chose to enhance the node training

As for the last Chapter, we will not mention parameters values in this
section, but in the next Section. 4.4.

4.3.1 Patch generation

As told in Section. 4.2.1.1, Gall [Gal+11] draws patches from positive and
negative images to generate the training set. Those patches are randomly
drawn, following a uniform process. Like Moosmann [MNJ08], we think
that drawing patch randomly, without prior information, can lead to many
non useful patches (without visual structure). While he proposed a method
based on adaptive saliency maps, in our case, we choose to draw a certain
proportion of patches randomly (still using a uniform process), while the
other proportion (αJ) is drawn using a mathematical measure, taken from
[Lin98], called junctionness (Eq. 2.20), already mentioned in Chapter. 2:

J (I) = (Iσy)2 · Iσx2 − 2 · Iσx · Iσy · Iσxy + (Iσx)2 · Iσy2 (4.8)

It is computed at different scales (σJi), and at each scale, the same number
nJ of patches is drawn.

These multi-scaled junction maps are computed before the forest train-
ing, and patches are obtained by using a maxima search. Each time a patch
is drawn, a maxima suppression is computed around the patch center, and

4.3. Our contributions 129

this suppression is maintained during the whole training. The aim is to
avoid using the same object part to train different trees, and keeping a
certain variety of patches in the training set. Fig. 4.6 shows examples of
strong junctions, the radius corresponding to the scale, and the color to
the absolute value of junction-ness (the red corresponding to the highest
values). The aim of this step is not only to draw patches with structure (in
that case, a saliency map based on gradient may be sufficient), but to get
structures potentially representative of the target (as we can see in Fig. 4.6,
head and foot have high junctionness values). We also choose to keep a
certain proportion of patches drawn randomly in order to keep a variabil-
ity on the training set. Other measures can also be tested, such as blob
measure [Lin98] or keypoints, but we consider that studying the impact of
junction measure is sufficient. Indeed, at short-term, the purpose is not to
find the best measure to draw patches, but rather to see if drawing a certain
quantity of patches in a deterministic way can provide some benefits.

FIGURE 4.6: Junctions shown by circles for one land-
scape and two pedestrian images

4.3.2 Node training

The second contribution from [TM16] concerns nodes training. Each node
is trained by generating NQ binary tests, and retaining the best one (ac-
cording to Eq. 4.5 or Eq. 4.6). Each potential binary test is generated using
6 random uniform processes (4 for coordinates of the left and right mem-
bers of Eq. 4.1, 1 for the channel, 1 for the threshold). As for training set
generation, we aim to add some prior information in the way to draw each
parameter, by considering the input used to train a non-leaf node. With
the parameter set given by Gall, based on patch size of 16 × 16 pixels
and 32D feature spaces, generating a binary test Q = {pl, pr, c, τ} leads

130 Chapter 4. Object Detection

to choose a binary test among the 32 × 1622 = 2 097 152 possible binary
tests, without considering the threshold τ . From this remark, we aim to
construct probability laws to draw each parameter of the binary test, using
the patch set taken as in input, to reduce the quantity of generated binary
tests (and then to reduce the training time).

Let us consider a node to train, indexed by i, and let us also define
PQ = P(i) the patch set serving as a training input. Let us also consider
a disjoint subdivision of PQ into two patch set P�

Q and P�
Q (Both symbols

� and � will be instanciated later, according to the criterion to optimize,
entropy vs. spatial deviation).

The first step consists in generating global patches (that will be called
superpatches) summarizing all information stored about P�

Q and P�
Q .

For any patch π, let π̂ be the patch obtained by binarizing π using
Otsu’s threshold [Ots75], at each channel. The aim of π̂ is to provide
contrast invariance, by basically indicating, for each feature, which part
of the patch belongs to a high or a low level. Then, for a ∈ {�,�}:

Πa =
∑
π∈PaT

π̂ (4.9)

For a given label a, Πa can be interpreted as a probability map indicating,
for each feature, which pixel is more likely to be a "upper" (resp. "lower")
pixel for all patches from PaQ. Fig. 4.7 illustrates construction of Πa (the
patch set on the left represented by the green rectangle corresponds to
PaT). However, directly using the normalized Πa as probability density,
may turn the process too deterministic, because the dynamics of Πa can
be very high. We choose instead to drastically quantize the density by
using the binary superpatch Π̂a, resulting from the threshold operation of
Πa by 0 and valued in {−1,+1}.

Finally, for a binary test Q, and a prior partition P�
Q and P�

Q, we define
the two superpatches Πl

Q and Πr
Q as follows:

Πl
Q = 1 +

1

2
(1 + Π̂�) +

1

2
(1− Π̂�) (4.10)

Πr
Q = 1 +

1

2
(1 + Π̂�) +

1

2
(1− Π̂�) (4.11)

Πl
Q and Πr

Q are superpatches valued in {1, 2, 3}, whose purpose is twofold:

• For a given feature channel, normalized Πl
Q (resp. Πr

Q) is used as a

4.3. Our contributions 131

FIGURE 4.7: Generating Πa

probability map to draw the left (resp. right) pixel member pl (resp.
pr) used in Eq. 4.1.

• To select the most relevant feature channel, the (normalized) sum of
the standard deviations of Πl

Q and Πr
Q is used as a probability map

to draw the feature channel.

FIGURE 4.8: Generating superpatches

Fig. 4.8 schematizes the construction of one superpatches (LC stands for
Linear Combination, and represents Eq. 4.10 and Eq. 4.11). Finally, the

132 Chapter 4. Object Detection

parameters {pl, pr, c} are drawn according to the probability map defined
before.

Now the missing step consists in determining the two subsets P�
Q and

P�
Q, depending on the criterion to minimize:

• When the entropy criterion is chosen, {�,�} = {−,+}, mean-
ing that we are simply using the labels from negative and positive
example patches of PQ

• With the spatial deviation criterion, considering the Eq. 4.6 to min-
imize, we apply a k-means (with k = 2) clustering of the patch set
P+
Q with respect to the displacement vector dπ. Indeed, the k-means

algorithm is obviously a better way to minimize the spatial devia-
tion criterion than Gall’s random method. In this case, P�

Q and P�
Q

are the two sets resulting of the 2-means of P+
Q

One element we did not studied was the selection of the threshold τ .

4.4 Experiments

In this section, we present some results obtained from academic datasets.
In particular, we will work on two datasets: UIUC-cars [AAR04] and
TUD-Pedestrians [ARS08]. Before detailing characteristics of these two
datasets, we will first present the usual protocol to evaluate detectors.

4.4.1 Evaluation method

In this section, we present methods of evaluation, used in the two datasets.
As for tracking, let us use the formulation B = {c, w, h} to define a rect-
angle of center c, and dimension w×h. Following Gall’s method to resize
all objects, let (wref , href) be the characteristic size of the class.

Given an image I, considering GTi an annotated instance of the class
to detect (represented by its bounding box), GTi is considered detected if
the detector gives as an output a bounding box B such as O(GTi, B) ≥
0.5, withO the overlap measure already defined in Section. 3.4 (Eq. 3.29).
From this notion, four types of detection can occur:

• True Positive (TP): an instance rightfully detected

• False Negative (FN): a non detected instance

4.4. Experiments 133

• False Positive (FP): a detected instance for a background area

• True Negative (TN): an instance of the background class rightfully
non-detected

These four measures can be used to evaluate detectors. However, these
criteria are not normalized. Moreover, in detection context, the notion of
True Negative is not relevant: every background area classified as a back-
ground is a True Negative. Fig. 4.9 illustrates TP (in blue), FP (in red)
and FN (the pedestrian on the left) in one frame from TUD-pedestrians
[ARS08]. The ROC curve space, more suitable as it contains more in-

FIGURE 4.9: Examples of TP, FP and FN

formation, is preferred. It is defined by two measures valued in [0, 1]2,
coming from those defined above:

• Precision defined by PR = TP
TP+FP

• Recall, defined by RC = TP
TP+FN

ROC curves are generated by considering the trained detector and a pa-
rameter t, and by plotting the curve (1 − PR(t), RC(t)). We can ex-
tract relevant informations from ROC curves, such as the equal-error rate
(EER), defined by a FPR = TPR. Another usual measure of the quality
of the detector is the area under the curve (AUC).

For Hough Forest case, to generate those ROC curves, we first com-
pute the total number of TP , FP and FN from the whole dataset, at a

134 Chapter 4. Object Detection

fixed parameter t. This parameter t is a threshold between 0 and 1. For
one image I, Hough Forest is computed at different scales (σi), leading
to a family of Hough Transform HTi(I). In Gall’s original work, Hough
Transform is also computed at different aspect-ratios. But, in our case,
as we plan to study impact of our work on the Hough Forest, and not en-
hance performances of the tracker, we will only work with one aspect ra-
tio. Those Hough Transforms are then normalized by maxp(HTi(I)(p)),
to have all values of the Hough Transform lower than 1.0. Then, local-
ization at a threshold t consists in locating all parameters (p, σ) such that
HTσ(p) > t. To avoid multiple counts of the same instance, we proceed
to a maxima suppression, by setting, for all σ and all x ∈ (σ ·p, σ ·wref , σ ·
href) in HTσ), HTσ(x) = 0. Finally, given an annotated ground truth GT
and a potential detected instance R = (σ · p, σ · wref , σ · href), GT is
detected if O(GT,R) > 0.50, with O the overlap measure defined in the
previous chapter (see Eq. 3.29). In our case, we also consider that there
are at max 5 instances per image.

The protocol described above is used in all our experiments. How-
ever, some minor details (in terms of parameters) will be specifically used
for the different datasets. Parameters used for our tests are summarized
Tab. 4.1.

Parameter Gall Ours
Training parameters

Forest size 15 9
Depth max of each tree 15 15

Number of positive patches 25000 25000
Number of negative patches 25000 25000

Number of Potential tests per node 20000 500
Minimum number of positive patches 20 20

Proportion of patches drawn deterministically 0.30
Detection parameters

Spatial smoothing kernel size 3 3
Scale smoothing kernel size 0.05

TABLE 4.1: Parameters set proposed by Gall, and ours

4.4.2 UIUC Cars

The first dataset we worked on is the UIUC-Cars dataset [AAR04]. The
aim is to train a car (viewed from the side) detector. The training set is

4.4. Experiments 135

composed of 550 positive images showing cars at approximately the same
size (100 × 40 pixels), and 500 negative images. Fig. 4.10 illustrates im-
ages from the training set. To test the detector, two datasets are available:

FIGURE 4.10: Negative and positive images from UIUC-
Cars

• One composed of 170 images containing 210 cars, all with the same
size as in the training set

• One composed of 108 images containing 138 cars at different sizes

In all cases, images are in grayscale. Some cars suffer from low illumina-
tion or occlusion.

Gall tested his algorithm with a reduced feature space, by discarding
color ones and HOG ones. After some tests, this dataset has revealed to
be too simple to study impacts of our contributions: we just show the
ROC curve Fig. 4.11. We tested only three situations: detection with only
the first order derivative (FirstDer), detection with first and second deriva-
tives (SecondDer), detection with first and second derivatives and 10%

of patches drawn using the junction-ness measure (SecondDer + Jun).
Dashed line corresponds to the EER curve.

4.4.3 TUD Pedestrian

The second dataset we worked on is the TUD Pedestrians dataset [ARS08].
Both training and testing sets are composed of colored images. All pedes-
trians are viewed laterally. The training set is composed of 400 images
(originally 210 before updating) representing a pedestrian walking in an
urban area. Each image is associated to a segmentation map, delimiting
the foreground to the background (see Fig. 4.12). The test set is com-
posed of 250 images, showing pedestrians at different sizes, and walking
on different planes orthogonal to the camera.

In Gall’s computation, it was decided to extend the training set by us-
ing images from the INRIA-Person dataset [DT05]. The problem tackled
by Gall was the lack of background environment in the TUD-Pedestrians

136 Chapter 4. Object Detection

FIGURE 4.11: ROC curve on UIUC Cars multi-scale
dataset

FIGURE 4.12: One training image from TUD-pedestrian
with its associated segmentation map

dataset. For all tests (even the original Hough Forest), we used our own
implementation. However, we took Gall’s implementation of HOG fea-
tures 1. To deal with multiple sizes, each tested image is resized to differ-
ent scales {0.3, 0.4, 0.5, 0.6} before any detection.

We tested many hypotheses:

• Original Hough Forest [GL13] with our set of parameters Tab. 4.1,
denoted GallHOG

• Original Hough Forest without HOG features (color and derivatives
only) . The gradient will be computed using Sobel filter (Sobel)

1https://pages.iai.uni-bonn.de/gall_juergen/projects/
houghforest/houghforest.html

https://pages.iai.uni-bonn.de/gall_juergen/projects/houghforest/houghforest.html
https://pages.iai.uni-bonn.de/gall_juergen/projects/houghforest/houghforest.html

4.4. Experiments 137

• Hough Forest without HOG features, but with derivatives computed
at different scales (1 and 2) (Derivatives1 and Derivatives2)

• Hough Forest without HOG features, with multi-scale derivatives
(scales 1 + 2) (MSDerivatives)

• Hough Forest without HOG features, with multi-scale derivatives
and our first contribution (30% of patches drawn using junction-
ness measure, computed at scales {1, 2}) (MSDerivatives + Jun)

• Hough Forest without HOG features, with multi-scale derivatives
and second contribution (node enhancement) (MSDerivatives + SP)

• Hough Forest without HOG features, with multi-scale derivatives
and the two contributions (MSDerivatives + Both)

In all cases, we still apply the min and max (erosion/dilation) operations.
GallHOG serves as a reference. Fig. 4.13 represents ROC curves of

GallHOG (in blue), Sobel (in red) and MSDerivatives (in orange). All
curves are obtained by computing all types of forest using parameters de-
tailed in Tab. 4.1. For each hypothesis, 10 forests are trained, and re-
sults displayed Fig. 4.13 are the average ROC curves of all hypotheses.
This average is done by averaging precision and recall obtained for each
threshold values. The comparison Gall/Sobel (blue vs. red) demonstrates
the usefulness of HOG features, and also relevance of our work: Sobel
alone is less accurate than Gall. Indeed, in terms of EER, Gall’s EER is
equal to 85%, while Sobel gives 74%. However, in terms of training and
detection time, Sobel is much faster: 30 minutes to train the whole forest
(against 1 hour for Gall), and detection made on the whole test set (250
images) takes 15 minutes for Sobel (3 seconds per image), 22 minutes
for Gall (4 seconds par image). Moreover, in terms of memory consump-
tion, we move from a 16 × 16 × 32 pixels to represent a patch for Gall,
to 16 × 16 × 14 for Sobel, saving more than 50% of the memory. Now,
comparing Gall and MSDerivatives (blue against orange), MSDerivatives
is slightly below Gall in terms of AUC, but is still better than Sobel. EER
is also close to Gall’s EER (81%). The training time is reduced by 2 (30

minutes) while detection time is reduced by one third (about 15 minutes
for 250 images, so 3 seconds per image). In terms of area under the curve,
GallHOG clearly performs better than MSDerivatives. If we consider the
point from the ROC curve obtained with a threshold of 1 (the detector only

138 Chapter 4. Object Detection

detects the highest peak from the multi-scale Hough Transform), the one
obtaind from GallHOG is better than the one from MSDerivatives: 98%

against 92%. In terms of application, if both detectors are configured to
detect only one pedestrian, GallHOG will perform fairly better. Globally,
those results demonstrate interest of multiscale derivatives as an alterna-
tive to HOG features.

FIGURE 4.13: GallHOG vs Sobel vs MSDerivatives

The main contribution of [TM16] concerns the stability of the detec-
tor. To test this, as indicated Tab. 4.1, we reduced the forest size (15 trees
vs 9) and the number of potential nodes generated (20 000 vs 500). In
these conditions, we can first notice how close we are to the average ROC
curve obtained with Gall in its original paper [GL13], with the parameter
set proposed by Gall (second column of Tab. 4.1). In both cases, EER is
86.5%. However, with the small number of potential nodes, performances
will widely vary. Then, as we want to study the stability of detector’s per-
formances with respect to the characteristics, we run 10 rounds of training
and test in the dataset. We obtain two results. First, Fig. 4.14 was obtained
by considering four hypotheses: MSDerivatives, MSDerivatives + Jun,
MSDerivatives + SP and MSDerivatives + Both, and plotting the worst
and the best curves in the three cases (in terms of area under the curve).
As we can see, using a saliency map to draw a certain number of patches
(30% in our case) significantly improves the stability (results in red), com-
pared to the min and max curves of MSDerivatives (in blue). Adding the
superpatch contribution increases the gap between those (green curves),
and seems to reduce the role of the saliency map (as MSDerivatives +
Both and MSDerivatives + SP produce similar min max curves). In the

4.4. Experiments 139

three cases (Jun, SP and Both), results are still slightly more stable than
the original method.

FIGURE 4.14: Worst and best curves in different cases

The second results we get are shown Fig. 4.15. We took the same
set of results as Fig. 4.14, but instead of looking for the best and worst
curves, at each threshold value used to compute all curves, we compute
the covariance matrix, and represent it by an ellipse (slanted according
to eigen vectors and with size proportional to eigen values). All curves
are obtained by averaging all the 10 ROC curves obtained at each series.
In this case, superpatch impact is more relevant, as ellipses are globally
smaller than those originally obtained (it is important to note that the dy-
namic of ordinate axis is higher than abscissa, and projection on this axis
shows that the simple MSDerivatives in blue is less stable).

FIGURE 4.15: Average ROC curves, and covariance el-
lipses for different threshold points

140 Chapter 4. Object Detection

One last study concerns the impact of spatial derivatives. We saw
Fig. 4.13 that the detector is performing much better moving from So-
bel based to multi-scale derivatives. But, what is happening when we are
still working with one space derivative? In that case, we compared three
hypotheses: MSDerivatives (scales 1 and 2), DerivativeS1 and Deriva-
tiveS2. As the patch size is equal to 16, it is not relevant to work on
larger scales. Average ROC curves (obtained from 10 realizations) are
displayed Fig. 4.16. It is interesting to note that moving from Sobel based
to Gaussian derivatives leads to a better detector. The second remark is
that DerivativeS2 and MSDerivatives are very similar. In that way, and as
DerivativeS2 is lighter to compute and train, we may prefer exploiting this
feature space.

FIGURE 4.16: MSDerivatives vs DerivativeS1 vs Deriva-
tiveS2 vs Sobel

4.5 Conclusion

This section, dedicated to object detection, was aimed to determine impact
of discarding HOG features from the original Hough Forest [GL13], to
work only with (multiscale) derivative features. Results on Section. 4.4.3
showed that the obtained detector was slightly less accurate than [GL13],
but still gives decent results, with smaller computation time and memory
footprint. However, we are still below real-time.

Our results in object detection are then not fully satisfactory. Further-
more, our experiments were done on relatively outdated datasets The next
objective will be to test it on harder datasets, such as those proposed by
Gall (INRIA persons [DT05] involving human with different poses, or

4.5. Conclusion 141

Weizmann horses [SBC08] requiring votes in the aspect ratio parameter).
At longer term, the objective will be to apply the detecor on multi-class
detection, and test it on related datasets (Pascal VOC challenges notably
[Eve+07]; [Eve+10]).

In terms of contributions, [TM16] does not show major improvements
in terms of accuracy. However, some interesting elements can be stud-
ied. In the patch drawing, using a geometrical measure (junction-ness) to
draw some patches leads to a more stable ROC curves. The next ques-
tion would be naturally to test other saliency measures (such as blob-ness
[Lin98]) and maybe keypoints. Concerning the superpatch approach, the
final detector is slightly more stable (see Fig. 4.15), but results are still rel-
atively limited. It may be due to the fact that superpatches are only valued
in {1, 2, 3}, and are built from binary patches: leading to a non significant
impact in terms of precision or stability. Our aim was to limit impacts
of strong peaks. However, it seems that it limits advantages of our ap-
proach. One solution may be to increase the dynamic of the superpatches.
Another remark concerns Eq. 4.1: superpatches approached was aimed to
draw all parameters except τ by a specific probability law. However, this
last parameter τ can degrade the quality of the binary test, as it is chosen
randomly according to a uniform law on Eq. 4.2. In that way, especially
when the range defined by Eq. 4.2 is large, the weak probability to draw
a relevant value for τ can lead to a useless binary test, even though other
parameters are drawn correctly. We will then study methods to improve
the choice of τ in the future.

If we want to combine our contribution with other Hough Forest ex-
tensions (see Section. 4.2.2), Wolhart’s work [Woh+12] may be combined
with the junction-ness measure. Indeed, on the one hand, his notion of ac-
tivation value depends on the positive patch’s displacement, and is higher
when the displacement has well contributed to a vote. On the second hand,
the junction-ness measure is able to draw patches in some relevant areas
(such as pedestrian’s foot). If we suppose those patches’s displacements
very similar (most of the time, people’s feet are at the lower part of the
body), we can suppose that naturally, those displacements will have high
activation values in Wohlhart’s definition. In that way, combining [TM16]
and [Woh+12] may improve results. Similarly, we can also think about
combining the junction-ness measure (or other geometrical measure) to
works of Murai [Mur+15], as he aims to increase the weight of positive
patches visually different from negative patches.

142 Chapter 4. Object Detection

Regarding perspectives related to other extensions, we can refer to
[Gal+11] to extend Hough Forest with derivatives features for other ap-
plications. For tracking context, our work on tracking [TM15]; [TM17]
showed that it is still possible to exploit the GHT in its simplest form
for accurate tracking. For action recognition, the question is interesting,
as temporal features (time derivatives and optical flow for instance) seem
essential for recognition. This question should be tackled in the future.
Similarly, works of Razawi about backprojection map [RGVG10] should
also be studied in the future.

The next and final chapter of the thesis will open the perspectives of
our works on tracking and detection.

143

Chapter 5

Perspectives and Conclusion

This chapter closes the thesis. It will be divided into two parts. In the first
part, after recalling the aim of our work, we will summarize all contribu-
tions presented in this thesis. We already dealt with perspectives related
to object tracking and detection independently. The second section will
be dedicated to further discussions on the possible implementation of our
algorithms in a low-cost system, and the related perspectives in terms of
autonomous systems.

5.1 Conclusion

We aimed to study benefits and limits of using exclusively pixel colors
and scaled derivatives, spatially pooled by the Hough Transform, for two
applications: object tracking and object detection.

The first Chapter was dedicated to image representation. A review of
color-based and shape-features, detailing how, from low-level features,
higher level ones have been developed: color attributes [VDW+09] or
HOG [DT05] notably. Due to the importance of the Hough Transform,
we dedicated the second part of the chapter to it, recalling its history, pre-
senting its numerous variants, and notably the Generalized Hough Trans-
form. We have emphasized its versatility, by mentioning its use in many
applications.

Our work on object tracking was presented in the second chapter.
Given different types of tracking, we started by setting our framework
and explaining challenges related to tracking. Then, after a literature re-
view presenting state-of-the-art, real-time and Hough based trackers, we
presented our contributions, starting from a tracker combining the original
GHT with a Particle Filter [TM15] and ending with a tracker substituting
to the Particle Filter a simple color histogram [TM17]. The last tracker has
proven effective and has been tested and evaluated on VOT14 and VOT15

144 Chapter 5. Perspectives and Conclusion

datasets. The second dataset has been used for further studies of [TM17]:
parameters tuning and feature space studies. This tracker was sent to the
VOT committee, for an active participation on the VOT17 challenge. It
has been accepted, and final ranking will be announced in October during
the VOT2017 workshop.

Object detection is the subject of the third Chapter. After formalizing
the problem, we presented some state-of-the-art and Hough-based detec-
tors. Then, as our contribution is strongly related to the Hough Forest
[GL13], we presented Gall’s work and Hough Forest extensions. Then,
we detailed our contributions, aiming to improve the stability of the detec-
tor. Finally, a section dedicated to experiments presented results on UIUC
Cars dataset and TUD pedestrians. Experiments showed that reducing the
feature space originally proposed by Gall (by discarding HOG features
and keeping only derivatives and pixel colors) presents a real interest.

Regarding our working hypotheses, in tracking, the outcome is satis-
factory: we got a fast but effective tracker relying on local features, with
light functions (color histograms, and GHT used in its purest form), which
has proven competitive (good results on VOT14 and 15, participation to
VOT17). Concerning detection, results are more mitigated: outcome from
[TM16] is somewhat disappointing, but we have shown that scaled deriva-
tives can compensate the lack of HOG features. However, results obtained
from [TM16] are not as satisfactory as we hoped.

One concrete application of our work is the implementation on an au-
tonomous system. The final section of the thesis deals with discussions
on the implementation of our work on a low-cost system. We will also
consider our work in a global point of view, to give possible perspectives
made by combining the Hough-based tracker and detector.

5.2 Perspectives

This section will be divided into two parts:

• First, we will mention implementation of the studied tracker and de-
tector on Raspberry Pi 3. The interest is to provide a better under-
standing of what is necessary to implement an autonomous system
based on our work

• Second, we will take a global point of view, and explain how to
combine the tracker and the detector for higher level vision tasks

5.2. Perspectives 145

Perspectives presented in this chapter are at middle to long-term, com-
pared to those presented on chapters dedicated to tracking (Section. 3) or
detection (Section. 4).

5.2.1 Raspberry Pi 3 Implementation

The Raspberry Pi is a single-board computer originally designed for edu-
cational purpose. Different enhancements in terms of hardware led to the
Raspberry Pi 3 (equipped with an ARM processor), which is now used for
different purposes (digital media player, robotics, home automation...). A
picture of the computer is available Fig. 5.1 (photo taken from 1). Given

FIGURE 5.1: Raspberry Pi 3 Model B

its size (credit card format), its low cost and the availability of RGB and
thermal camera, we used it as a support to study behavior of our work, and
more generally, to study computer vision algorithms on low cost systems.

The tracker has been implemented under its two forms: the "position
tracker only" and the "position + scale" versions. From a sequence di-
rectly acquired by the camera (webcam or Raspberry Pi specific camera),
the user can select one or several objects to track. The first aim of the
test was to measure the speed of the tracker on low-cost system. The test
was successful, since, except for big objects, tracking can be done at real-
time (more than 20 fps), even in multiple targets mode (at most 5 targets).
One weakness found in VOT15 was the relative inability of the "position
+ scale" tracker to correctly estimate the target scale. Testing our tracker
on live sequence confirm this issue. We are able to test our tracker in di-
verse situations (environment, context) that we can control (illumination),
by selecting any kind of target. Due to the size of the computer, we can

1https://en.wikipedia.org/wiki/Raspberry_Pi

https://en.wikipedia.org/wiki/Raspberry_Pi

146 Chapter 5. Perspectives and Conclusion

consider embedding the Raspberry Pi on a small vehicle, to experiment
some specific camera motion. From an academic point of view, in con-
trast with evaluation on public datasets, which always present some bias
(type of objects, difficulties related to chosen sequences), the interest is
the possibility to test and evaluate our tracker on any setup.

The Hough Forest detector has also been implemented on Raspberry
Pi, but only in its original version (with HOG features). We used forests
trained on TUD Pedestrians. In this condition, with the Raspberry camera,
we are able to run the detector at about 10 fps, by rescaling the image, and
computing the Hough Transform in only one scale. The detector is then
able to detect people measuring 1.80m at about 3m from the camera. This
limitation can be compensated with some explicit multi-threading (each
thread computing the Hough Transform at a different scale). This solution,
however, adds a constraint in terms of hardware (multi-core processor).
We did not test the detector with derivatives features only. This version
should be faster, but since moving from Derivatives + HOG to Derivatives
only reduces the detection time of about 33%, real-time should not be
achieved anyway.

5.2.1.1 Global perspectives

Previously, we used both tracker and detector implementations on Rasp-
berry Pi 3 to elaborate perspectives of the two algorithms taken separately.
This section is dedicated to mutual benefits. Indeed, as both algorithms are
using derivatives features (gradient only for [TM16] and scaled derivatives
for [TM17]) and are unified by the Generalized Hough Transform (in its
purest form for one, and with a Random Forest replacing the R-Table for
the second), combining the two algorithms for diverse purposes is natural.

Using the tracker as a base, and the Hough Forest as a support can lead
to object-specific tracker, when pre-trained (pedestrian tracker for exam-
ple). Inspired by [GRB13], a more interesting task can be to train the Ran-
dom Forest (or the Random Fern in Godec’s case) online to move from our
current short-term tracker, without recovery function, to long-term track-
ing, like TLD [KMM12]. In full occlusion case (pedestrian walking be-
hind a pillar for example), our current tracker will fail, and the necessity to
compute the foreground/background color model could be very time con-
suming for recovering the target. Using the GHT alone on the whole scene

5.2. Perspectives 147

until recovery can be a solution (with a threshold on the peak for the recov-
ery), but may not be effective (since the GHT alone does not perform well
on VOT2015). In that case, a Hough Forest, trained online may give better
results. The forest training can be similar to Godec’s method [GRB13]:
all binary tests can be generated offline, while the forest is trained online,
and updated every frame: at each frame, positive and negative patches are
drawn according to target state, and are going through all (already) gener-
ated trees to build the set of displacements stored in all leaves. As we are
only computing derivatives both in tracking and detection and the tracker
is very light, we should be able to do online training while remaining real-
time. The real difficult problem would be to propose a method to switch
from one algorithm to the other. More precisely, we have to estimate fail-
ure case for tracking (using a combination of Bhattacharyyaa coefficient
and variation measure of the Hough peak), and validate recovery for the
detector (Hough peak only for instance).

Conversely, with a detector as a base and a tracker (or several instances
of the tracker) as a support, we can address object counting . A detector,
combined with a simple prediction model or a labeling, can do it. Indeed,
a detector alone may count and recount the same instance. However, cur-
rently, our detector is still relatively heavy in terms of computation time. A
more effective solution involving a tracker should be to create an instance
of tracking for each new target detected by the detector. Then, by not per-
forming detection on the areas of tracked targets, recounting issues can
be avoided. Moreover, reducing the detection search area limits the time
consumed by the detector, which should be the heaviest function of the
system. An involved problem is the robustness to noise of the tracker: in
Chapter. 4, a correct detection is considered for overlap measure (Eq. 3.29)
above 0.50. In this case, the tracker can be badly initialized. Even though
results on VOT14 showed a certain robustness to noise (see Tab. 3.4), dis-
turbed initialization as tested in VOT14 may be very moderate compared
to those involved by a poor detection.

In any case, these two perspectives have an interest in terms of appli-
cations for autonomous systems. Benefits are related to low computation
time, due to a unique and light feature space (color + spatial derivatives
only) and a low memory footprint (Generalized Hough Transform as a
main algorithm, tracker model consuming less than 50 ko), making the
hypothetical autonomous system usable on embedded or low-cost condi-
tions. However, in terms of accuracy, we need to realize further studies.

148 Chapter 5. Perspectives and Conclusion

One major limit concerns the scale estimation in both cases. In tracking
case, our implemented solution is not satisfactory [TM17]. In detection
case, multiple scales (and multiple ratios) Hough Transform may give
decent results, but is very slow. One solution to further investigate are
the backprojection maps, since Razavi [RGVG10] and Gall [GRVG12]
demonstrated that this operation can be used for different purposes (multi-
view detection, bounding box estimation...).

149

Appendix A

Per sequence results on
VOT2015 for different color
spaces

[TM17] ab lab Grayscale

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

bag 0.33 0.00 0.31 0.00 0.28 0.00 0.28 0.00

ball1 0.76 2.00 0.35 7.00 0.70 6.00 0.70 6.00

ball2 0.73 3.00 0.00 3.00 0.70 3.00 0.70 3.00

basketball 0.52 0.00 0.34 9.00 0.52 3.00 0.52 3.00

birds1 0.45 7.00 0.43 5.00 0.48 3.00 0.48 3.00

birds2 0.55 0.00 0.28 2.00 0.37 2.00 0.37 2.00

blanket 0.48 0.00 0.53 1.00 0.65 1.00 0.65 1.00

bmx 0.21 0.00 0.10 0.00 0.18 0.00 0.18 0.00

bolt1 0.48 0.00 0.52 0.00 0.46 0.00 0.46 0.00

bolt2 0.53 0.00 0.55 1.00 0.50 0.00 0.50 0.00

book 0.16 9.00 0.11 5.00 0.18 8.00 0.18 8.00

butterfly 0.44 1.00 0.42 1.00 0.41 1.00 0.41 1.00

car1 0.67 3.00 0.06 65.00 0.65 2.00 0.65 2.00

car2 0.76 0.00 0.78 0.00 0.79 0.00 0.79 0.00

crossing 0.50 1.00 0.48 1.00 0.50 1.00 0.50 1.00

dinosaur 0.41 1.00 0.27 5.00 0.36 4.00 0.36 4.00

fernando 0.37 1.00 0.41 3.00 0.39 2.00 0.39 2.00

fish1 0.35 4.00 0.19 8.00 0.37 5.00 0.37 5.00

fish2 0.22 8.00 0.19 9.00 0.22 8.00 0.22 8.00

fish3 0.44 0.00 0.22 7.00 0.46 2.00 0.46 2.00

fish4 0.28 0.00 0.32 2.00 0.35 2.00 0.35 2.00

150Appendix A. Per sequence results on VOT2015 for different color spaces

[TM17] ab lab Grayscale

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

girl 0.63 1.00 0.52 7.00 0.47 2.00 0.47 2.00

glove 0.45 3.00 0.10 9.00 0.43 2.00 0.43 2.00

godfather 0.51 0.00 0.47 0.00 0.48 0.00 0.48 0.00

graduate 0.34 5.00 0.38 6.00 0.42 5.00 0.42 5.00

gymnastics1 0.42 8.00 0.38 7.00 0.40 9.00 0.40 9.00

gymnastics2 0.58 2.00 0.61 6.00 0.65 6.00 0.65 6.00

gymnastics3 0.31 4.00 0.19 4.00 0.31 4.00 0.31 4.00

gymnastics4 0.42 3.00 0.35 4.00 0.32 5.00 0.32 5.00

hand 0.36 9.00 0.29 9.00 0.30 9.00 0.30 9.00

handball1 0.53 4.00 0.23 8.00 0.43 7.00 0.43 7.00

handball2 0.42 3.00 0.17 22.00 0.38 7.00 0.38 7.00

helicopter 0.37 0.00 0.50 2.00 0.43 2.00 0.43 2.00

iceskater1 0.38 2.00 0.33 5.00 0.37 3.00 0.37 3.00

iceskater2 0.52 3.00 0.34 6.00 0.37 6.00 0.37 6.00

leaves 0.05 6.00 0.17 6.00 0.15 6.00 0.15 6.00

marching 0.73 0.00 0.75 0.00 0.76 0.00 0.76 0.00

matrix 0.60 4.00 0.48 4.00 0.53 5.00 0.53 5.00

motocross1 0.46 1.00 0.34 3.00 0.31 3.00 0.31 3.00

motocross2 0.57 0.00 0.49 1.00 0.38 0.00 0.38 0.00

nature 0.46 4.00 0.27 5.00 0.32 5.00 0.32 5.00

octopus 0.26 1.00 0.25 2.00 0.28 0.00 0.28 0.00

pedestrian1 0.49 9.00 0.48 10.00 0.59 9.00 0.59 9.00

pedestrian2 0.51 1.00 0.34 1.00 0.34 1.00 0.34 1.00

rabbit 0.19 5.00 0.27 4.00 0.24 6.00 0.24 6.00

racing 0.37 0.00 0.35 0.00 0.36 0.00 0.36 0.00

road 0.65 0.00 0.64 0.00 0.65 0.00 0.65 0.00

shaking 0.62 1.00 0.58 8.00 0.51 1.00 0.51 1.00

sheep 0.52 0.00 0.50 0.00 0.51 0.00 0.51 0.00

singer1 0.36 0.00 0.36 0.00 0.36 0.00 0.36 0.00

singer2 0.59 1.00 0.47 3.00 0.55 4.00 0.55 4.00

singer3 0.16 1.00 0.14 1.00 0.15 1.00 0.15 1.00

soccer1 0.34 3.00 0.54 6.00 0.45 2.00 0.45 2.00

soccer2 0.63 10.00 0.07 13.00 0.71 10.00 0.71 10.00

soldier 0.42 1.00 0.24 2.00 0.34 1.00 0.34 1.00

Appendix A. Per sequence results on VOT2015 for different color spaces151

[TM17] ab lab Grayscale

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

sphere 0.68 1.00 0.35 1.00 0.67 1.00 0.67 1.00

tiger 0.67 2.00 0.58 3.00 0.60 3.00 0.60 3.00

traffic 0.68 1.00 0.68 0.00 0.68 0.00 0.68 0.00

tunnel 0.36 0.00 0.51 2.00 0.39 0.00 0.39 0.00

wiper 0.73 1.00 0.73 1.00 0.72 2.00 0.72 2.00

Average 0.48 2.13 0.39 6.58 0.45 3.02 0.45 3.02

TABLE A.1: Performances by varying color space (part
1)

[TM17] HSV Att11 Att50

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

bag 0.33 0.00 0.28 0.00 0.26 0.00 0.37 0.00

ball1 0.76 2.00 0.70 6.00 0.73 3.00 0.57 5.00

ball2 0.73 3.00 0.70 3.00 0.00 4.00 0.73 3.00

basketball 0.52 0.00 0.52 3.00 0.57 0.00 0.52 6.00

birds1 0.45 7.00 0.48 3.00 0.45 5.00 0.40 10.00

birds2 0.55 0.00 0.37 2.00 0.37 1.00 0.33 1.00

blanket 0.48 0.00 0.65 1.00 0.46 0.00 0.50 1.00

bmx 0.21 0.00 0.18 0.00 0.21 0.00 0.15 0.00

bolt1 0.48 0.00 0.46 0.00 0.49 0.00 0.49 0.00

bolt2 0.53 0.00 0.50 0.00 0.52 1.00 0.58 1.00

book 0.16 9.00 0.18 8.00 0.19 6.00 0.24 9.00

butterfly 0.44 1.00 0.41 1.00 0.49 2.00 0.40 2.00

car1 0.67 3.00 0.65 2.00 0.54 9.00 0.70 17.00

car2 0.76 0.00 0.79 0.00 0.77 0.00 0.75 0.00

crossing 0.50 1.00 0.50 1.00 0.48 1.00 0.49 1.00

dinosaur 0.41 1.00 0.36 4.00 0.40 4.00 0.36 3.00

fernando 0.37 1.00 0.39 2.00 0.22 2.00 0.38 4.00

fish1 0.35 4.00 0.37 5.00 0.40 4.00 0.36 6.00

fish2 0.22 8.00 0.22 8.00 0.27 6.00 0.23 8.00

fish3 0.44 0.00 0.46 2.00 0.42 1.00 0.44 1.00

fish4 0.28 0.00 0.35 2.00 0.34 2.00 0.34 1.00

girl 0.63 1.00 0.47 2.00 0.55 2.00 0.55 5.00

glove 0.45 3.00 0.43 2.00 0.31 1.00 0.46 3.00

152Appendix A. Per sequence results on VOT2015 for different color spaces

[TM17] HSV Att11 Att50

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

godfather 0.51 0.00 0.48 0.00 0.32 2.00 0.44 0.00

graduate 0.34 5.00 0.42 5.00 0.42 6.00 0.38 8.00

gymnastics1 0.42 8.00 0.40 9.00 0.29 7.00 0.46 12.00

gymnastics2 0.58 2.00 0.65 6.00 0.55 5.00 0.67 6.00

gymnastics3 0.31 4.00 0.31 4.00 0.30 4.00 0.31 4.00

gymnastics4 0.42 3.00 0.32 5.00 0.36 3.00 0.26 5.00

hand 0.36 9.00 0.30 9.00 0.41 7.00 0.33 8.00

handball1 0.53 4.00 0.43 7.00 0.39 4.00 0.41 5.00

handball2 0.42 3.00 0.38 7.00 0.37 9.00 0.42 11.00

helicopter 0.37 0.00 0.43 2.00 0.36 0.00 0.37 0.00

iceskater1 0.38 2.00 0.37 3.00 0.28 7.00 0.31 9.00

iceskater2 0.52 3.00 0.37 6.00 0.36 11.00 0.37 11.00

leaves 0.05 6.00 0.15 6.00 0.12 5.00 0.00 7.00

marching 0.73 0.00 0.76 0.00 0.75 0.00 0.75 0.00

matrix 0.60 4.00 0.53 5.00 0.59 3.00 0.57 5.00

motocross1 0.46 1.00 0.31 3.00 0.41 4.00 0.31 3.00

motocross2 0.57 0.00 0.38 0.00 0.23 1.00 0.51 0.00

nature 0.46 4.00 0.32 5.00 0.42 4.00 0.38 5.00

octopus 0.26 1.00 0.28 0.00 0.26 0.00 0.25 0.00

pedestrian1 0.49 9.00 0.59 9.00 0.51 10.00 0.49 10.00

pedestrian2 0.51 1.00 0.34 1.00 0.34 1.00 0.56 1.00

rabbit 0.19 5.00 0.24 6.00 0.41 6.00 0.18 7.00

racing 0.37 0.00 0.36 0.00 0.35 0.00 0.36 0.00

road 0.65 0.00 0.65 0.00 0.62 0.00 0.50 0.00

shaking 0.62 1.00 0.51 1.00 0.53 1.00 0.29 3.00

sheep 0.52 0.00 0.51 0.00 0.50 0.00 0.50 0.00

singer1 0.36 0.00 0.36 0.00 0.36 0.00 0.36 0.00

singer2 0.59 1.00 0.55 4.00 0.62 2.00 0.60 2.00

singer3 0.16 1.00 0.15 1.00 0.14 1.00 0.15 1.00

soccer1 0.34 3.00 0.45 2.00 0.38 3.00 0.43 3.00

soccer2 0.63 10.00 0.71 10.00 0.79 10.00 0.74 11.00

soldier 0.42 1.00 0.34 1.00 0.41 1.00 0.40 2.00

sphere 0.68 1.00 0.67 1.00 0.30 5.00 0.68 1.00

tiger 0.67 2.00 0.60 3.00 0.62 4.00 0.64 2.00

Appendix A. Per sequence results on VOT2015 for different color spaces153

[TM17] HSV Att11 Att50

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

traffic 0.68 1.00 0.68 0.00 0.68 0.00 0.69 1.00

tunnel 0.36 0.00 0.39 0.00 0.38 0.00 0.39 0.00

wiper 0.73 1.00 0.72 2.00 0.57 2.00 0.36 2.00

Average 0.48 2.13 0.45 3.02 0.43 3.22 0.44 4.48

TABLE A.2: Performances by varying color space (part
2)

154Appendix A. Per sequence results on VOT2015 for different color spaces

155

Appendix B

Per sequence results on
VOT2015 for different
derivatives scales

[TM17] σ = 2 σ = 4 σ = 8

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

bag 0.33 0.00 0.36 0.00 0.32 0.00 0.32 0.00

ball1 0.76 2.00 0.80 2.00 0.80 1.00 0.68 2.00

ball2 0.73 3.00 0.85 3.00 0.71 3.00 0.03 4.00

basketball 0.52 0.00 0.52 2.00 0.46 3.00 0.48 3.00

birds1 0.45 7.00 0.37 12.00 0.42 9.00 0.47 3.00

birds2 0.55 0.00 0.57 0.00 0.46 0.00 0.55 0.00

blanket 0.48 0.00 0.52 0.00 0.38 0.00 0.43 0.00

bmx 0.21 0.00 0.17 1.00 0.16 1.00 0.15 0.00

bolt1 0.48 0.00 0.54 1.00 0.60 1.00 0.47 2.00

bolt2 0.53 0.00 0.65 0.00 0.64 0.00 0.62 1.00

book 0.16 9.00 0.14 5.00 0.20 8.00 0.13 8.00

butterfly 0.44 1.00 0.52 1.00 0.45 1.00 0.26 1.00

car1 0.67 3.00 0.61 1.00 0.60 0.00 0.72 1.00

car2 0.76 0.00 0.80 0.00 0.72 0.00 0.49 1.00

crossing 0.50 1.00 0.50 1.00 0.49 1.00 0.50 1.00

dinosaur 0.41 1.00 0.34 0.00 0.44 2.00 0.39 2.00

fernando 0.37 1.00 0.43 2.00 0.35 2.00 0.40 2.00

fish1 0.35 4.00 0.36 2.00 0.45 3.00 0.36 4.00

fish2 0.22 8.00 0.25 3.00 0.26 5.00 0.28 6.00

fish3 0.44 0.00 0.54 1.00 0.42 1.00 0.49 0.00

fish4 0.28 0.00 0.42 1.00 0.42 2.00 0.31 1.00

girl 0.63 1.00 0.61 1.00 0.68 1.00 0.62 2.00

156
Appendix B. Per sequence results on VOT2015 for different derivatives

scales

[TM17] σ = 2 σ = 4 σ = 8

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

glove 0.45 3.00 0.45 3.00 0.48 3.00 0.54 3.00

godfather 0.51 0.00 0.40 1.00 0.44 1.00 0.50 2.00

graduate 0.34 5.00 0.39 7.00 0.39 6.00 0.45 12.00

gymnastics1 0.42 8.00 0.34 6.00 0.50 6.00 0.42 5.00

gymnastics2 0.58 2.00 0.62 3.00 0.59 3.00 0.56 5.00

gymnastics3 0.31 4.00 0.28 3.00 0.32 4.00 0.29 3.00

gymnastics4 0.42 3.00 0.33 3.00 0.41 3.00 0.41 0.00

hand 0.36 9.00 0.52 5.00 0.47 8.00 0.33 10.00

handball1 0.53 4.00 0.47 3.00 0.61 2.00 0.47 7.00

handball2 0.42 3.00 0.41 3.00 0.36 2.00 0.50 5.00

helicopter 0.37 0.00 0.42 2.00 0.37 0.00 0.37 0.00

iceskater1 0.38 2.00 0.38 3.00 0.37 4.00 0.32 5.00

iceskater2 0.52 3.00 0.45 3.00 0.47 3.00 0.48 2.00

leaves 0.05 6.00 0.03 6.00 0.13 5.00 0.37 5.00

marching 0.73 0.00 0.74 0.00 0.73 0.00 0.74 0.00

matrix 0.60 4.00 0.50 4.00 0.55 3.00 0.44 3.00

motocross1 0.46 1.00 0.38 3.00 0.24 3.00 0.33 3.00

motocross2 0.57 0.00 0.55 0.00 0.52 0.00 0.31 0.00

nature 0.46 4.00 0.48 4.00 0.48 4.00 0.40 6.00

octopus 0.26 1.00 0.34 1.00 0.31 0.00 0.33 1.00

pedestrian1 0.49 9.00 0.58 7.00 0.64 8.00 0.54 6.00

pedestrian2 0.51 1.00 0.30 0.00 0.31 0.00 0.31 1.00

rabbit 0.19 5.00 0.37 5.00 0.39 4.00 0.27 5.00

racing 0.37 0.00 0.38 0.00 0.42 0.00 0.37 0.00

road 0.65 0.00 0.64 0.00 0.60 0.00 0.68 0.00

shaking 0.62 1.00 0.51 0.00 0.66 1.00 0.57 0.00

sheep 0.52 0.00 0.52 0.00 0.49 1.00 0.53 1.00

singer1 0.36 0.00 0.36 0.00 0.36 0.00 0.34 0.00

singer2 0.59 1.00 0.58 1.00 0.67 1.00 0.64 1.00

singer3 0.16 1.00 0.14 1.00 0.32 1.00 0.33 2.00

soccer1 0.34 3.00 0.48 3.00 0.49 3.00 0.41 2.00

soccer2 0.63 10.00 0.86 13.00 0.88 13.00 0.71 12.00

soldier 0.42 1.00 0.46 1.00 0.43 1.00 0.37 1.00

sphere 0.68 1.00 0.53 1.00 0.56 2.00 0.57 0.00

Appendix B. Per sequence results on VOT2015 for different derivatives
scales

157

[TM17] σ = 2 σ = 4 σ = 8

Sequence Ove. Fail. Ove. Fail. Ove. Fail. Ove. Fail.

tiger 0.67 2.00 0.69 1.00 0.57 1.00 0.75 1.00

traffic 0.68 1.00 0.68 0.00 0.61 1.00 0.55 1.00

tunnel 0.36 0.00 0.37 0.00 0.37 0.00 0.59 1.00

wiper 0.73 1.00 0.74 1.00 0.70 1.00 0.59 1.00

Average 0.48 2.13 0.48 2.17 0.48 2.21 0.47 2.68

TABLE B.1: Performances by varying derivative scale

159

Bibliography

[AAR04] Shivani Agarwal, Aatif Awan, and Dan Roth. “Learning
to detect objects in images via a sparse, part-based repre-
sentation”. In: IEEE transactions on pattern analysis and

machine intelligence 26.11 (2004), pp. 1475–1490.

[Ach+10] Radhakrishna Achanta et al. Slic superpixels. Tech. rep.
2010.

[Ach+12] Radhakrishna Achanta et al. “SLIC superpixels compared
to state-of-the-art superpixel methods”. In: IEEE transac-

tions on pattern analysis and machine intelligence 34.11
(2012), pp. 2274–2282.

[AOV12] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst.
“FREAK: Fast retina keypoint”. In: Computer vision and

pattern recognition (CVPR), 2012 IEEE conference on.
Ieee. 2012, pp. 510–517.

[ARS08] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. “People-
tracking-by-detection and people-detection-by-tracking”.
In: Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[Aru+02] M Sanjeev Arulampalam et al. “A tutorial on particle fil-
ters for online nonlinear/non-Gaussian Bayesian tracking”.
In: IEEE Transactions on signal processing 50.2 (2002),
pp. 174–188.

[Bal81] Dana H Ballard. “Generalizing the Hough transform to
detect arbitrary shapes”. In: Pattern recognition 13.2 (1981),
pp. 111–122.

[Bay+08] Herbert Bay et al. “Speeded-up robust features (SURF)”.
In: Computer vision and image understanding 110.3 (2008),
pp. 346–359.

160 BIBLIOGRAPHY

[BCM05] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-
local algorithm for image denoising”. In: Computer Vision

and Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on. Vol. 2. IEEE. 2005, pp. 60–
65.

[Ber+16] Luca Bertinetto et al. “Staple: Complementary learners
for real-time tracking”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2016,
pp. 1401–1409.

[BH01] Kai Briechle and Uwe D Hanebeck. “Template matching
using fast normalized cross correlation”. In: Aerospace/Defense

Sensing, Simulation, and Controls. International Society
for Optics and Photonics. 2001, pp. 95–102.

[Bha43] A Bhattachayya. “On a measure of divergence between
two statistical population defined by their population dis-
tributions”. In: Bulletin Calcutta Mathematical Society 35
(1943), pp. 99–109.

[Bol+10] David S Bolme et al. “Visual object tracking using adap-
tive correlation filters”. In: Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on. IEEE.
2010, pp. 2544–2550.

[BR05] Stanley T Birchfield and Sriram Rangarajan. “Spatiograms
versus histograms for region-based tracking”. In: 2005 IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05). Vol. 2. IEEE. 2005, pp. 1158–
1163.

[Bra98] Gary R Bradski. “Computer vision face tracking for use
in a perceptual user interface”. In: (1998).

[Bre+09] Michael D Breitenstein et al. “Robust tracking-by-detection
using a detector confidence particle filter”. In: Computer

Vision, 2009 IEEE 12th International Conference on. IEEE.
2009, pp. 1515–1522.

[Bre01] Leo Breiman. “Random forests”. In: Machine learning

45.1 (2001), pp. 5–32.

BIBLIOGRAPHY 161

[BVD11] Olivier Barnich and Marc Van Droogenbroeck. “ViBe: A
universal background subtraction algorithm for video se-
quences”. In: IEEE Transactions on Image processing 20.6
(2011), pp. 1709–1724.

[Béz66] Pierre Bézier. “Définition numérique des courbes et sur-
faces I”. In: Automatisme 11.12 (1966), pp. 625–632.

[Can08] Kevin Cannons. “A review of visual tracking”. In: Dept.

Comput. Sci. Eng., York Univ., Toronto, Canada, Tech.

Rep. CSE-2008-07 (2008).

[CFM10] Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni.
“Minutia cylinder-code: A new representation and match-
ing technique for fingerprint recognition”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 32.12
(2010), pp. 2128–2141.

[CG10] Michael Crosier and Lewis D Griffin. “Using basic image
features for texture classification”. In: International Jour-

nal of Computer Vision 88.3 (2010), pp. 447–460.

[Cio+15] Andrea Ciolini et al. “Efficient Hough forest object de-
tection for low-power devices”. In: Multimedia & Expo

Workshops (ICMEW), 2015 IEEE International Confer-

ence on. IEEE. 2015, pp. 1–6.

[CLL05] Robert T Collins, Yanxi Liu, and Marius Leordeanu. “On-
line selection of discriminative tracking features”. In: IEEE

transactions on pattern analysis and machine intelligence

27.10 (2005), pp. 1631–1643.

[CM02] Dorin Comaniciu and Peter Meer. “Mean shift: A robust
approach toward feature space analysis”. In: IEEE Trans-

actions on pattern analysis and machine intelligence 24.5
(2002), pp. 603–619.

[CRM03] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer.
“Kernel-based object tracking”. In: IEEE Transactions on

pattern analysis and machine intelligence 25.5 (2003),
pp. 564–577.

[Csu+04] Gabriella Csurka et al. “Visual categorization with bags of
keypoints”. In: Workshop on statistical learning in com-

puter vision, ECCV. Vol. 1. 1-22. Prague. 2004, pp. 1–2.

162 BIBLIOGRAPHY

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector net-
works”. In: Machine learning 20.3 (1995), pp. 273–297.

[Dan+14a] Martin Danelljan et al. “Accurate scale estimation for ro-
bust visual tracking”. In: British Machine Vision Confer-

ence, Nottingham, September 1-5, 2014. BMVA Press. 2014.

[Dan+14b] Martin Danelljan et al. “Adaptive color attributes for real-
time visual tracking”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2014,
pp. 1090–1097.

[Dan+16] Martin Danelljan et al. “Beyond correlation filters: Learn-
ing continuous convolution operators for visual tracking”.
In: European Conference on Computer Vision. Springer.
2016, pp. 472–488.

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical im-
age database”. In: Computer Vision and Pattern Recog-

nition, 2009. CVPR 2009. IEEE Conference on. IEEE.
2009, pp. 248–255.

[Der87] Rachid Deriche. “Using Canny’s criteria to derive a re-
cursively implemented optimal edge detector”. In: Inter-

national journal of computer vision 1.2 (1987), pp. 167–
187.

[DG13] Stefan Duffner and Christophe Garcia. “Pixeltrack: a fast
adaptive algorithm for tracking non-rigid objects”. In: Pro-

ceedings of the IEEE international conference on com-

puter vision. 2013, pp. 2480–2487.

[DH72] Richard O Duda and Peter E Hart. “Use of the Hough
transformation to detect lines and curves in pictures”. In:
Communications of the ACM 15.1 (1972), pp. 11–15.

[DT05] Navneet Dalal and Bill Triggs. “Histograms of oriented
gradients for human detection”. In: 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition (CVPR’05). Vol. 1. IEEE. 2005, pp. 886–893.

[Dub15] Séverine Dubuisson. “Visual Tracking by Particle Filter-
ing”. In: Tracking with Particle Filter for High-Dimensional

Observation and State Spaces (2015), pp. 1–27.

BIBLIOGRAPHY 163

[Eca+08] Olivier Ecabert et al. “Automatic model-based segmenta-
tion of the heart in CT images”. In: IEEE transactions on

medical imaging 27.9 (2008), pp. 1189–1201.

[Eve+07] Mark Everingham et al. “The PASCAL Visual Object Classes
challenge 2007 (VOC2007) results”. In: (2007).

[Eve+10] Mark Everingham et al. “The PASCAL Visual Object Classes
(VOC) challenge”. In: International journal of computer

vision 88.2 (2010), pp. 303–338.

[Fan+10] Jialue Fan et al. “Human tracking using convolutional neu-
ral networks”. In: IEEE Transactions on Neural Networks

21.10 (2010), pp. 1610–1623.

[Fel+10] Pedro F Felzenszwalb et al. “Object detection with dis-
criminatively trained part-based models”. In: IEEE trans-

actions on pattern analysis and machine intelligence 32.9
(2010), pp. 1627–1645.

[FH75] Keinosuke Fukunaga and Larry Hostetler. “The estima-
tion of the gradient of a density function, with applica-
tions in pattern recognition”. In: IEEE Transactions on

information theory 21.1 (1975), pp. 32–40.

[FHX05] Graham D Finlayson, Steven D Hordley, and Ruixia Xu.
“Convex programming colour constancy with a diagonal-
offset model”. In: IEEE International Conference on Im-

age Processing 2005. Vol. 3. IEEE. 2005, pp. III–948.

[FLW95] Johan Forsberg, Ulf Larsson, and Ake Wernersson. “Mo-
bile robot navigation using the range-weighted Hough trans-
form”. In: IEEE Robotics & Automation Magazine 2.1
(1995), pp. 18–26.

[FS95] Yoav Freund and Robert E Schapire. “A decision-theoretic
generalization of on-line learning and an application to
boosting”. In: European conference on computational learn-

ing theory. Springer. 1995, pp. 23–37.

[Gal+11] Juergen Gall et al. “Hough forests for object detection,
tracking, and action recognition”. In: IEEE transactions

on pattern analysis and machine intelligence 33.11 (2011),
pp. 2188–2202.

164 BIBLIOGRAPHY

[Gha15] Youness Aliyari Ghassabeh. “A sufficient condition for
the convergence of the mean shift algorithm with Gaus-
sian kernel”. In: Journal of Multivariate Analysis 135 (2015),
pp. 1–10.

[Gir+14] Ross Girshick et al. “Rich feature hierarchies for accu-
rate object detection and semantic segmentation”. In: Pro-

ceedings of the IEEE conference on computer vision and

pattern recognition. 2014, pp. 580–587.

[GL13] Juergen Gall and Victor Lempitsky. “Class-specific Hough
forests for object detection”. In: Decision forests for com-

puter vision and medical image analysis. Springer, 2013,
pp. 143–157.

[Gol+06] S Golemati et al. “Comparison of B-mode, M-mode and
Hough transform methods for measurement of arterial di-
astolic and systolic diameters”. In: Engineering in Medicine

and Biology Society, 2005. IEEE-EMBS 2005. 27th An-

nual International Conference of the. IEEE. 2006, pp. 1758–
1761.

[GRB13] Martin Godec, Peter M Roth, and Horst Bischof. “Hough-
based tracking of non-rigid objects”. In: Computer Vision

and Image Understanding 117.10 (2013), pp. 1245–1256.

[Gri06] Lewis D Griffin. “The 2nd order local-image-structure solid”.
In: Perception ECVP abstract 35 (2006), pp. 0–0.

[GRVG12] Juergen Gall, Nima Razavi, and Luc Van Gool. “An in-
troduction to random forests for multi-class object detec-
tion”. In: Outdoor and large-scale real-world scene anal-

ysis. Springer, 2012, pp. 243–263.

[Haa10] Alfred Haar. “Zur theorie der orthogonalen funktionen-
systeme”. In: Mathematische Annalen 69.3 (1910), pp. 331–
371.

[Har09] Peter E Hart. “How the Hough transform was invented
[DSP History]”. In: IEEE Signal Processing Magazine

26.6 (2009), pp. 18–22.

BIBLIOGRAPHY 165

[HAS15] Yang Hua, Karteek Alahari, and Cordelia Schmid. “On-
line object tracking with proposal selection”. In: Proceed-

ings of the IEEE International Conference on Computer

Vision. 2015, pp. 3092–3100.

[HBS14] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. “How
good are detection proposals, really?” In: arXiv preprint

arXiv:1406.6962 (2014).

[Hen+12] João F Henriques et al. “Exploiting the circulant structure
of tracking-by-detection with kernels”. In: European con-

ference on computer vision. Springer. 2012, pp. 702–715.

[Hen+15] João F Henriques et al. “High-speed tracking with kernel-
ized correlation filters”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 37.3 (2015), pp. 583–
596.

[Ho95] Tin Kam Ho. “Random decision forests”. In: Document

Analysis and Recognition, 1995., Proceedings of the Third

International Conference on. Vol. 1. IEEE. 1995, pp. 278–
282.

[Hou62] P.V.C. Hough. Method and means for recognizing com-

plex patterns. US Patent 3,069,654. Dec. 1962. URL: https:
//www.google.com/patents/US3069654.

[HS88] Chris Harris and Mike Stephens. “A combined corner and
edge detector.” In: Alvey vision conference. Vol. 15. Cite-
seer. 1988, p. 50.

[HST11] Sam Hare, Amir Saffari, and Philip HS Torr. “Struck: Struc-
tured output tracking with kernels”. In: 2011 International

Conference on Computer Vision. IEEE. 2011, pp. 263–
270.

[HTS16] David Held, Sebastian Thrun, and Silvio Savarese. “Learn-
ing to track at 100 fps with deep regression networks”.
In: European Conference on Computer Vision. Springer.
2016, pp. 749–765.

[IB98] Michael Isard and Andrew Blake. “Condensation: condi-
tional density propagation for visual tracking”. In: Inter-

national journal of computer vision 29.1 (1998), pp. 5–
28.

https://www.google.com/patents/US3069654
https://www.google.com/patents/US3069654

166 BIBLIOGRAPHY

[IK88] John Illingworth and Josef Kittler. “A survey of the Hough
transform”. In: Computer vision, graphics, and image pro-

cessing 44.1 (1988), pp. 87–116.

[IKN+98] Laurent Itti, Christof Koch, Ernst Niebur, et al. “A model
of saliency-based visual attention for rapid scene analy-
sis”. In: IEEE Transactions on pattern analysis and ma-

chine intelligence 20.11 (1998), pp. 1254–1259.

[JW+02] Richard Arnold Johnson, Dean W Wichern, et al. Applied

multivariate statistical analysis. Vol. 5. 8. Prentice hall
Upper Saddle River, NJ, 2002.

[KEB91] Nahum Kiryati, Yuval Eldar, and Alfred M Bruckstein.
“A Probabilistic Hough transform”. In: Pattern recogni-

tion 24.4 (1991), pp. 303–316.

[Kha+13] Fahad Shahbaz Khan et al. “Coloring action recognition
in still images”. In: International journal of computer vi-

sion 105.3 (2013), pp. 205–221.

[KKA00] Nahum Kiryati, Heikki Kälviäinen, and Satu Alaoutinen.
“Randomized or Probabilistic Hough transform: unified
performance evaluation”. In: Pattern Recognition Letters

21.13 (2000), pp. 1157–1164.

[KMM10] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. “Forward-
backward error: Automatic detection of tracking failures”.
In: Pattern recognition (ICPR), 2010 20th international

conference on. IEEE. 2010, pp. 2756–2759.

[KMM12] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. “Tracking-
Learning-Detection”. In: IEEE transactions on pattern anal-

ysis and machine intelligence 34.7 (2012), pp. 1409–1422.

[KPL+] Matej Kristan, Roman Pflugfelder, Ales Leonardis, et al.
The visual object tracking VOT2014 challenge results.

[Kri+13] Matej Kristan et al. “The visual object tracking VOT2013
challenge results”. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision Workshops. 2013,
pp. 98–111.

BIBLIOGRAPHY 167

[Kri+15] Matej Kristan et al. “The visual object tracking vot2015
challenge results”. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision Workshops. 2015,
pp. 1–23.

[Kri+16a] Matej Kristan et al. A Novel Performance Evaluation Method-

ology for Single-Target Trackers. 2016. URL: http://
arxiv.org/abs/1503.01313.

[Kri+16b] Matej Kristan et al. The Visual Object Tracking VOT2016

challenge results. Springer. 2016. URL: http://www.
springer.com/gp/book/9783319488806.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
“Imagenet classification with deep convolutional neural
networks”. In: Advances in neural information processing

systems. 2012, pp. 1097–1105.

[KVD90] Jan J Koenderink and AJ Van Doorn. “Receptive field
families”. In: Biological cybernetics 63.4 (1990), pp. 291–
297.

[LBL15] Pengpeng Liang, Erik Blasch, and Haibin Ling. “Encod-
ing color information for visual tracking: Algorithms and
benchmark”. In: IEEE Transactions on Image Processing

24.12 (2015), pp. 5630–5644.

[Lew95] John P Lewis. “Fast template matching”. In: Vision inter-

face. Vol. 95. 120123. 1995, pp. 15–19.

[Lin98] Tony Lindeberg. “Feature detection with automatic scale
selection”. In: International journal of computer vision

30.2 (1998), pp. 79–116.

[LK+81] Bruce D Lucas, Takeo Kanade, et al. “An iterative im-
age registration technique with an application to stereo
vision.” In: IJCAI. Vol. 81. 1. 1981, pp. 674–679.

[LLP16] Hanxi Li, Yi Li, and Fatih Porikli. “Deeptrack: Learning
discriminative feature representations online for robust vi-
sual tracking”. In: IEEE Transactions on Image Process-

ing 25.4 (2016), pp. 1834–1848.

http://arxiv.org/abs/1503.01313
http://arxiv.org/abs/1503.01313
http://www.springer.com/gp/book/9783319488806
http://www.springer.com/gp/book/9783319488806

168 BIBLIOGRAPHY

[LLS08] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. “Ro-
bust object detection with interleaved categorization and
segmentation”. In: International journal of computer vi-

sion 77.1-3 (2008), pp. 259–289.

[Low99] David G Lowe. “Object recognition from local scale-invariant
features”. In: Computer vision, 1999. The proceedings of

the seventh IEEE international conference on. Vol. 2. Ieee.
1999, pp. 1150–1157.

[Man10] Antoine Manzanera. “Local Jet based similarity for NL-
Means filtering”. In: Pattern Recognition (ICPR), 2010

20th International Conference on. IEEE. 2010, pp. 2668–
2671.

[Man11] Antoine Manzanera. “Local jet feature space framework
for image processing and representation”. In: Signal-Image

Technology and Internet-Based Systems (SITIS), 2011 Sev-

enth International Conference on. IEEE. 2011, pp. 261–
268.

[MC15] Priyanka Mukhopadhyay and Bidyut B Chaudhuri. “A sur-
vey of Hough Transform”. In: Pattern Recognition 48.3
(2015), pp. 993–1010.

[Min+04] Florica Mindru et al. “Moment invariants for recognition
under changing viewpoint and illumination”. In: Computer

Vision and Image Understanding 94.1 (2004), pp. 3–27.

[MM09] Subhransu Maji and Jitendra Malik. “Object detection us-
ing a max-margin hough transform”. In: Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Con-

ference on. IEEE. 2009, pp. 1038–1045.

[MNJ08] Frank Moosmann, Eric Nowak, and Frederic Jurie. “Ran-
domized clustering forests for image classification”. In:
IEEE Transactions on Pattern Analysis and Machine In-

telligence 30.9 (2008), pp. 1632–1646.

[MP13] Mario Edoardo Maresca and Alfredo Petrosino. “MATRIOSKA:
A multi-level approach to fast tracking by learning”. In:
International Conference on Image Analysis and Process-

ing. Springer. 2013, pp. 419–428.

BIBLIOGRAPHY 169

[MP14] Mario Edoardo Maresca and Alfredo Petrosino. “Cluster-
ing local motion estimates for robust and efficient object
tracking”. In: European Conference on Computer Vision.
Springer. 2014, pp. 244–253.

[MSN12] John E McManigle, Richard V Stebbing, and J Alison
Noble. “Modified Hough transform for left ventricle my-
ocardium segmentation in 3-D echocardiogram images”.
In: Biomedical Imaging (ISBI), 2012 9th IEEE Interna-

tional Symposium on. IEEE. 2012, pp. 290–293.

[Mur+15] Yusuke Murai et al. “Weighted Hough Forest for object
detection”. In: Machine Vision Applications (MVA), 2015

14th IAPR International Conference on. IEEE. 2015, pp. 122–
125.

[MV11] Jiří Matas and Tomáš Vojíř. “Robustifying the flock of
trackers”. In: 16th Computer Vision Winter Workshop. Cite-

seer. Citeseer. 2011, p. 91.

[NBH16] Hyeonseob Nam, Mooyeol Baek, and Bohyung Han. “Mod-
eling and propagating cnns in a tree structure for visual
tracking”. In: arXiv preprint arXiv:1608.07242 (2016).

[NH16] Hyeonseob Nam and Bohyung Han. “Learning multi-domain
convolutional neural networks for visual tracking”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 2016, pp. 4293–4302.

[NKMVG03] Katja Nummiaro, Esther Koller-Meier, and Luc Van Gool.
“An adaptive color-based particle filter”. In: Image and

vision computing 21.1 (2003), pp. 99–110.

[Ots75] Nobuyuki Otsu. “A threshold selection method from gray-
level histograms”. In: Automatica 11.285-296 (1975), pp. 23–
27.

[PFJ13] Alessandra A Paulino, Jianjiang Feng, and Anil K Jain.
“Latent fingerprint matching using descriptor-based hough
transform”. In: IEEE Transactions on Information Foren-

sics and Security 8.1 (2013), pp. 31–45.

170 BIBLIOGRAPHY

[PMB15] Horst Possegger, Thomas Mauthner, and Horst Bischof.
“In defense of color-based model-free tracking”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 2015, pp. 2113–2120.

[Por05] Fatih Porikli. “Integral histogram: A fast way to extract
histograms in cartesian spaces”. In: 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition (CVPR’05). Vol. 1. IEEE. 2005, pp. 829–836.

[Pér+02] Patrick Pérez et al. “Color-based probabilistic tracking”.
In: European Conference on Computer Vision. Springer.
2002, pp. 661–675.

[Raz+12] Nima Razavi et al. “Latent Hough transform for object
detection”. In: European Conference on Computer Vision.
Springer. 2012, pp. 312–325.

[RD06] Edward Rosten and Tom Drummond. “Machine learning
for high-speed corner detection”. In: European confer-

ence on computer vision. Springer. 2006, pp. 430–443.

[Red+16] Joseph Redmon et al. “You only look once: Unified, real-
time object detection”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2016,
pp. 779–788.

[Ren+15] Shaoqing Ren et al. “Faster R-CNN: Towards real-time
object detection with region proposal networks”. In: Ad-

vances in neural information processing systems. 2015,
pp. 91–99.

[RGVG10] Nima Razavi, Juergen Gall, and Luc Van Gool. “Back-
projection revisited: Scalable multi-view object detection
and similarity metrics for detections”. In: European Con-

ference on Computer Vision. Springer. 2010, pp. 620–633.

[RKB04] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
“GrabCut: Interactive foreground extraction using iterated
graph cuts”. In: ACM transactions on graphics (TOG).
Vol. 23. 3. ACM. 2004, pp. 309–314.

BIBLIOGRAPHY 171

[RM03] Xiaofeng Ren and Jitendra Malik. “Learning a classifica-
tion model for segmentation”. In: Computer Vision, 2003.

Proceedings. Ninth IEEE International Conference on. IEEE.
2003, pp. 10–17.

[Ros69] Azriel Rosenfeld. “Picture processing by computer”. In:
ACM Computing Surveys (CSUR) 1.3 (1969), pp. 147–
176.

[Roz+16] Denys Rozumnyi et al. “The World of Fast Moving Ob-
jects”. In: arXiv preprint arXiv:1611.07889 (2016).

[Rub+11] Ethan Rublee et al. “ORB: An efficient alternative to SIFT
or SURF”. In: 2011 International conference on computer

vision. IEEE. 2011, pp. 2564–2571.

[Rus+14] Olga Russakovsky et al. “ImageNet Large Scale Visual
Recognition Challenge”. In: CoRR abs/1409.0575 (2014).
URL: http://arxiv.org/abs/1409.0575.

[SA04] Koichi Sato and Jake K Aggarwal. “Temporal spatio-velocity
transform and its application to tracking and interaction”.
In: Computer Vision and Image Understanding 96.2 (2004),
pp. 100–128.

[Sat+10] Ravi Kumar Satzoda et al. “Hierarchical additive Hough
Transform for lane detection”. In: IEEE Embedded Sys-

tems Letters 2.2 (2010), pp. 23–26.

[SB91] Michael J Swain and Dana H Ballard. “Color indexing”.
In: International journal of computer vision 7.1 (1991),
pp. 11–32.

[SBC08] Jamie Shotton, Andrew Blake, and Roberto Cipolla. “Ef-
ficiently Combining Contour and Texture Cues for Object
Recognition.” In: BMVC. 2008, pp. 1–10.

[Ser+13] Pierre Sermanet et al. “Overfeat: Integrated recognition,
localization and detection using convolutional networks”.
In: arXiv preprint arXiv:1312.6229 (2013).

[Shi+94] Jianbo Shi et al. “Good features to track”. In: Computer

Vision and Pattern Recognition, 1994. Proceedings CVPR’94.,

1994 IEEE Computer Society Conference on. IEEE. 1994,
pp. 593–600.

http://arxiv.org/abs/1409.0575

172 BIBLIOGRAPHY

[Sme+14] Arnold WM Smeulders et al. “Visual tracking: An exper-
imental survey”. In: IEEE Transactions on Pattern Analy-

sis and Machine Intelligence 36.7 (2014), pp. 1442–1468.

[Smi78] Alvy Ray Smith. “Color gamut transform pairs”. In: ACM

Siggraph Computer Graphics 12.3 (1978), pp. 12–19.

[SZ14] Karen Simonyan and Andrew Zisserman. “Very deep con-
volutional networks for large-scale image recognition”.
In: arXiv preprint arXiv:1409.1556 (2014).

[TBA02] Klaus Toennies, Frank Behrens, and Melanie Aurnham-
mer. “Feasibility of hough-transform-based iris localisa-
tion for real-time-application”. In: Pattern Recognition,

2002. Proceedings. 16th International Conference on. Vol. 2.
IEEE. 2002, pp. 1053–1056.

[Tej+14] Alykhan Tejani et al. “Latent-class Hough forests for 3D
object detection and pose estimation”. In: European Con-

ference on Computer Vision. Springer. 2014, pp. 462–477.

[Tia+04] Qi-Chuan Tian et al. “Fast algorithm and application of
hough transform in iris segmentation”. In: Machine Learn-

ing and Cybernetics, 2004. Proceedings of 2004 Interna-

tional Conference on. Vol. 7. IEEE. 2004, pp. 3977–3980.

[TM15] Antoine Tran and Antoine Manzanera. “A versatile object
tracking algorithm combining Particle Filter and Gener-
alised Hough Transform”. In: Image Processing Theory,

Tools and Applications (IPTA), 2015 International Con-

ference on. IEEE. 2015, pp. 105–110.

[TM16] Antoine Tran and Antoine Manzanera. “Fast growing Hough
forest as a stable model for object detection”. In: Image

Processing Theory Tools and Applications (IPTA), 2016

6th International Conference on. IEEE. 2016, pp. 1–6.

[TM17] Antoine Tran and Antoine Manzanera. “Mixing Hough
and Color Histogram Models for Accurate Real-Time Ob-
ject Tracking”. In: International Conference on Computer

Analysis of Images and Patterns (to appear). 2017.

BIBLIOGRAPHY 173

[TPM08] Oncel Tuzel, Fatih Porikli, and Peter Meer. “Pedestrian
detection via classification on Riemannian manifolds”. In:
IEEE transactions on pattern analysis and machine intel-

ligence 30.10 (2008), pp. 1713–1727.

[Tsa97] Du-Ming Tsai. “An improved generalized Hough Trans-
form for the recognition of overlapping objects”. In: Im-

age and Vision computing 15.12 (1997), pp. 877–888.

[TT+03] Marko Tkalcic, Jurij F Tasic, et al. “Colour spaces: per-
ceptual, historical and applicational background”. In: Eu-

rocon. 2003.

[VDSGS10] Koen Van De Sande, Theo Gevers, and Cees Snoek. “Eval-
uating color descriptors for object and scene recognition”.
In: IEEE transactions on pattern analysis and machine in-

telligence 32.9 (2010), pp. 1582–1596.

[VDW+09] Joost Van De Weijer et al. “Learning color names for real-
world applications”. In: IEEE Transactions on Image Pro-

cessing 18.7 (2009), pp. 1512–1523.

[VJ01] Paul Viola and Michael Jones. “Rapid object detection us-
ing a boosted cascade of simple features”. In: Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Pro-

ceedings of the 2001 IEEE Computer Society Conference

on. Vol. 1. IEEE. 2001, pp. I–I.

[VL15] Andrea Vedaldi and Karel Lenc. “Matconvnet: Convolu-
tional Neural Networks for matlab”. In: Proceedings of

the 23rd ACM international conference on Multimedia.
ACM. 2015, pp. 689–692.

[vLK16] Luka Čehovin, Aleš Leonardis, and Matej Kristan. Visual

object tracking performance measures revisited. 2016. URL:
http://arxiv.org/abs/1502.05803.

[VM14] Tomáš Vojíř and Jiří Matas. “The enhanced flock of track-
ers”. In: Registration and Recognition in Images and Videos.
Springer, 2014, pp. 113–136.

[VNM13] Tomas Vojir, Jana Noskova, and Jiri Matas. “Robust scale-
adaptive mean-shift for tracking”. In: Scandinavian Con-

ference on Image Analysis. Springer. 2013, pp. 652–663.

http://arxiv.org/abs/1502.05803

174 BIBLIOGRAPHY

[Wit87] Andrew P Witkin. Scale-space filtering. US Patent 4,658,372.
Apr. 1987.

[WLY13] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. “Online ob-
ject tracking: A benchmark”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition.
2013, pp. 2411–2418.

[Woh+12] Paul Wohlhart et al. “Discriminative Hough Forests for
Object Detection.” In: BMVC. 2012, pp. 1–11.

[XO09] Lei Xu and Erkki Oja. “Randomized Hough Transform”.
In: Encyclopedia of Artificial Intelligence. IGI Global, 2009,
pp. 1343–1350.

[XOK90] Lei Xu, Erkki Oja, and Pekka Kultanen. “A new curve de-
tection method: Randomized Hough Transform (RHT)”.
In: Pattern recognition letters 11.5 (1990), pp. 331–338.

[Yan+11] Hanxuan Yang et al. “Recent advances and trends in vi-
sual tracking: A review”. In: Neurocomputing 74.18 (2011),
pp. 3823–3831.

[YGVG10] Angela Yao, Juergen Gall, and Luc Van Gool. “A Hough
transform-based voting framework for action recognition”.
In: Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on. IEEE. 2010, pp. 2061–2068.

[YJS06] Alper Yilmaz, Omar Javed, and Mubarak Shah. “Object
tracking: A survey”. In: Acm computing surveys (CSUR)

38.4 (2006), p. 13.

[ZD14] C Lawrence Zitnick and Piotr Dollár. “Edge boxes: Locat-
ing object proposals from edges”. In: European Confer-

ence on Computer Vision. Springer. 2014, pp. 391–405.

[Čeh17] Luka Čehovin. “TraX: The visual Tracking eXchange pro-
tocol and library”. In: Neurocomputing (2017).

Titre : Représentation d’objets dans des espaces de caractéristiques locales : application à la poursuite
de cibles temps-réel et à la détection
Mots clefs : Vision par ordinateur, Poursuite de cibles, Detection d’objets, Espaces de Caracteristiques, Transformée de Hough

Résumé : La représentation visuelle est un problème fon-
damental en vision par ordinateur. Le but est de réduire
l’information au strict nécessaire pour une tâche désirée.
Plusieurs types de représentation existent, comme les carac-
téristiques de couleur (histogrammes, attributs de couleurs...),
de forme (dérivées, points d’intérêt...) ou d’autres, comme les
bancs de filtres.
Les caractéristiques bas-niveau (locales) sont rapides à cal-
culer. Elles ont un pouvoir de représentation limité, mais leur
généricité présente un intérêt pour des systèmes autonomes
et multi-tâches, puisque les caractéristiques haut-niveau dé-
coulent d’elles.
Le but de cette thèse est de construire puis d’étudier l’impact
de représentations fondées seulement sur des caractéristiques
locales de bas-niveau (couleurs, dérivées spatiales) pour deux
tâches : la poursuite d’objets génériques, nécessitant des car-
actéristiques robustes aux variations d’aspect de l’objet et
du contexte au cours du temps; la détection d’objets, où
la représentation doit décrire une classe d’objets en tenant
compte des variations intra-classe. Plutôt que de constru-
ire des descripteurs d’objets globaux dédiés, nous nous ap-
puyons entièrement sur les caractéristiques locales et sur des
mécanismes statistiques flexibles visant à estimer leur distri-
bution (histogrammes) et leurs co-occurrences (Transformée
de Hough Généralisée).
La Transformée de Hough Généralisée (THG), créée pour la
détection de formes quelconques, consiste à créer une struc-
ture de données représentant un objet, une classe... Cette

structure, d’abord indexée par l’orientation du gradient, a été
étendue à d’autres caractéristiques. Travaillant sur des car-
actéristiques locales, nous voulons rester proche de la THG
originale.
En poursuite d’objets, après avoir présenté nos premiers
travaux, combinant la THG avec un filtre particulaire (util-
isant un histogramme de couleurs), nous présentons un algo-
rithme plus léger et rapide (100fps), plus précis et robuste.
Nous présentons une évaluation qualitative et étudierons
l’impact des caractéristiques utilisées (espace de couleur, for-
mulation des dérivées partielles...).
En détection, nous avons utilisé l’algorithme de Gall appelé
forêts de Hough. Notre but est de réduire l’espace de car-
actéristiques utilisé par Gall, en supprimant celles de type
HOG, pour ne garder que les dérivées partielles et les carac-
téristiques de couleur. Pour compenser cette réduction, nous
avons amélioré deux étapes de l’entraînement : le support des
descripteurs locaux (patchs) est partiellement produit selon
une mesure géométrique, et l’entraînement des nœuds se fait
en générant une carte de probabilité spécifique prenant en
compte les patchs utilisés pour cette étape. Avec l’espace de
caractéristiques réduit, le détecteur n’est pas plus précis. Avec
les mêmes caractéristiques que Gall, sur une même durée
d’entraînement, nos travaux ont permis d’avoir des résultats
identiques, mais avec une variance plus faible et donc une
meilleure répétabilité.

Title : Object representation in local feature spaces: application to real-time tracking and detection
Keywords : Computer Vision, Object tracking, Object detection, Feature spaces, Hough Transform

Abstract : Visual representation is a fundamental problem in
computer vision. The aim is to reduce the information to the
strict necessary for a query task. Many types of representa-
tion exist, like color features (histograms, color attributes...),
shape ones (derivatives, keypoints...) or filterbanks.
Low-level (and local) features are fast to compute. Their
power of representation are limited, but their genericity have
an interest for autonomous or multi-task systems, as higher
level ones derivate from them.
We aim to build, then study impact of low-level and lo-
cal feature spaces (color and derivatives only) for two tasks:
generic object tracking, requiring features robust to object
and environment’s aspect changes over the time; object de-
tection, for which the representation should describe object
class and cope with intra-class variations. Then, rather than
using global object descriptors, we use entirely local fea-
tures and statisticals mecanisms to estimate their distribution
(histograms) and their co-occurrences (Generalized Hough
Transform).
The Generalized Hough Transform (GHT), created for detec-
tion of any shape, consists in building a codebook, originally

indexed by gradient orientation, then to diverse features, mod-
eling an object, a class. As we work on local features, we aim
to remain close to the original GHT.
In tracking, after presenting preliminary works combining
the GHT with a particle filter (using color histograms), we
present a lighter and fast (100 fps) tracker, more accurate and
robust. We present a qualitative evaluation and study the im-
pact of used features (color space, spatial derivative formula-
tion).
In detection, we used Gall’s Hough Forest. We aim to reduce
Gall’s feature space and discard HOG features, to keep only
derivatives and color ones. To compensate the reduction, we
enhanced two steps: the support of local descriptors (patches)
are partially chosen using a geometrical measure, and node
training is done by using a specific probability map based on
patches used at this step. With reduced feature space, the de-
tector is less accurate than with Gall’s feature space, but for
the same training time, our works lead to identical results, but
with higher stability and then better repeatability.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Acknowledgements
	Introduction
	Scope of the thesis
	Contributions
	Outline of the thesis

	Object representation
	Visual Features
	Color-Based features
	Color space
	Color Histogram
	Higher Level of representation
	Conclusion

	Shape-Based Representation
	Mathematical context
	Sobel filter
	Local Jet space
	Higher level features
	Conclusion

	Conclusion of the section

	Hough Transform
	History of the Hough Transform
	General formulation
	Variant of the Hough Transform

	Generalized Hough Transform
	Applications of Hough Transforms in computer vision

	Conclusion

	Object Tracking
	Definition
	Tracking conditions
	Difficulties
	Conclusion

	Literature review
	State-of-the-art
	Hough Transform for Object Tracking

	Combining color histogram and Gradient for tracking
	Backprojection map
	Combining GHT and Particle Filter
	Transitional tracker
	Final tracker
	Position estimation
	Scale and orientation estimations
	Updating model
	Conclusion

	Results
	Implementation details
	Optimization

	VOT datasets
	History of the VOT Challenge
	Parameter details
	VOT2014
	VOT15
	Analysis of results

	Conclusion

	Object Detection
	Literature review
	Object classification, detection, recognition
	Hough detectors

	Hough Forest
	Forest training
	Generating training set
	Training tree
	Implementation details
	Detection

	Extensions of the Hough Forest

	Our contributions
	Patch generation
	Node training

	Experiments
	Evaluation method
	UIUC Cars
	TUD Pedestrian

	Conclusion

	Perspectives and Conclusion
	Conclusion
	Perspectives
	Raspberry Pi 3 Implementation
	Global perspectives

	Per sequence results on VOT2015 for different color spaces
	Per sequence results on VOT2015 for different derivatives scales
	Bibliography

