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Abstract
We analyze the dynamics of discrete event systems with synchronization and priorities,
by means of Petri nets and queueing networks. We apply this to the performance
evaluation of an emergency call center.
Our original motivation is practical. In 2016, a new emergency call center became
operative in Paris area, handling emergency calls to police and firemen. The new or-
ganization includes a two-level call treatment. A first level of operators answers calls,
identifies urgent calls and handles (numerous) non-urgent calls. Second level operators
are specialists (policemen or firemen) and handle emergency demands. In this archi-
tecture, some calls are qualified as extremely urgent and receive a priority treatment.
We are interested in the performance evaluation of bilevel systems corresponding to
this general description.
We propose three different models addressing this kind of systems. The first two are
timed Petri net models. We enrich the classical framework of free choice Petri nets
by allowing conflict situations in which the routing is solved by priorities. The main
difficulty in this situation is that the dynamics becomes non monotone.
In a first model, we consider discrete dynamics for this class of Petri nets. We prove
that the counter variables of the Petri net are solutions of a piecewise linear system
with delays. We investigate the stationary regimes of the dynamics, and characterize
the affine ones as solutions of a piecewise linear system, which can be thought of as a
system of rational equations over a tropical (min-plus) semifield of germs. Numerical
experiments show that, however, convergence does not always holds towards these
affine stationary regimes.
The second model is a infinitesimal version of the previous one. For the same class
of Petri nets, we introduce a dynamics expressed by differential equations, so that
the tokens and time events become continuous. For this differential system with
discontinuous righthandside, we establish the existence and uniqueness of the solution.
The benefit of this continuous model is that the discrete time pathologies disappear.
We show however that the stationary regimes are the same as the stationary regimes of
the discrete time dynamics. Numerical experiments tend to show that, in this setting,
convergence effectively holds.
We also model the emergency call center described above as a queueing system, taking
into account the randomness of the different call center variables. For this system,
we prove that, under an appropriate scaling, the dynamics converges to a fluid limit
which corresponds to the differential equations of our Petri net model. This provides
support for the second model. Stochastic calculus for Poisson processes, generalized
Skorokhod problems formulations and coupling arguments are the main tools used to
establish this convergence.
Hence, our three models of an identical emergency call center yield the same schematic
asymptotic behavior, expressed as a piecewise linear system of the parameters, and
describing the different congestion phases of the system.
In a second part of this thesis, simulations are carried out and analyzed, taking into
account the many details of our case study. The simulations confirm the schematic
behavior described by our mathematical models. We also address the complex inter-
actions coming from the heterogeneous nature of level 2.
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Resumé
Nous analysons la dynamique de systèmes à événements discrets avec synchronisation
et priorités, au moyen de réseaux de Petri et de réseaux de files d’attente. Nous
appliquons cela à l’évaluation de performance d’un centre d’appels d’urgence.
Notre motivation est en premier lieu pratique. En 2016, un nouveau centre d’appels
d’urgence a été mis en place pour l’agglomération parisienne, traitant les appels pour la
police et les pompiers. La nouvelle organisation comporte deux niveaux de traitement.
Un premier niveau d’opérateurs répond aux appels, identifie les appels urgents et traite
les appels non urgents. Les opérateurs de second niveau sont spécialistes (policiers
ou pompiers) et traitent les demandes d’intervention. De plus, certains appels sont
identifiés comme très urgents et bénéficient d’un traitement prioritaire. Nous nous
intéressons à l’évaluation de performance de divers systèmes correspondant à cette
description générale.
Nous proposons trois modélisations différentes. Les deux premières sont des modèles
de réseaux de Petri temporisés. Nous enrichissons le cadre classique des réseaux de
Petri à choix libres en autorisant des situations de conflit où le routage est résolu par
des priorités. La principale difficulté est alors que l’opérateur de la dynamique n’est
plus monotone.
Dans un premier modèle, nous proposons une dynamique discrète pour cette classe
de réseaux de Petri. Nous prouvons que les variables compteurs du réseau sont les
solutions d’un système affine par morceaux avec retards. Nous étudions les régimes
stationnaires de cette dynamique, et caractérisons les régimes affines comme solutions
d’un système affine par morceaux, qui peut être vu comme un système d’équations
rationnelles sur le semi-corps de germes tropical (min plus). Les applications numé-
riques montrent cependant que la convergence ne se fait pas toujours vers ces régimes
stationnaires affines.
Le second modèle est une version infinitésimale du précédent. Pour la même classe
de réseaux de Petri, nous proposons une dynamique sous forme d’équations diffé-
rentielles : les jetons et le temps deviennent continus. Pour ce système différentiel
discontinu, nous établissons l’existence et l’unicité de la solution. L’avantage de cette
modélisation continue est que les pathologies du temps discret disparaissent. Nous
montrons cependant que les régimes stationaires sont les mêmes que ceux de la dy-
namique discrète. Les simulations numériques semblent montrer que la convergence
s’obtient effectivement dans ce cas.
Nous modélisons aussi le centre d’appels d’urgence comme un réseau de files d’attente,
prenant ainsi en compte le caractère aléatoire des différentes variables du centre d’ap-
pel. Pour ce système, nous prouvons que la dynamique, après une transformation
d’échelle, converge vers une limite fluide, qui correspond au système d’équations diffé-
rentielles de notre modèle de réseau de Petri. Cela conforte notre seconde modélisation.
Les principaux outils de la preuve de convergence sont le calcul stochastique pour les
processus de Poisson, des formulations en terme de problème de Skorokhod généralisé,
ou encore des arguments de couplage.
Ainsi, nos trois modèles d’un même centre d’appels d’urgence définissent un même
comportement asymptotique schématique, exprimé comme un système linéaire affine
par morceaux, décrivant différentes phases de congestion du centre.
Dans une seconde partie de cette thèse, nous analysons des simulations poussées, pre-
nant en compte les nombreux détails de notre étude de cas. Les simulations confirment
le comportement schématique prédit par nos modèles mathématiques. Nous discutons
aussi des interactions complexes provenant de la nature hétérogène du niveau 2.
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Chapter1
Introduction

1.1 Priority routing of calls in an emergency call center . . . . . . . . . . . . . 1
1.2 The “emergency physician” paradox . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Beyond non-expansive operators . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 A practical motivation: priority routing of calls in an
emergency call center

The new organization of emergency call treatment in Paris area This thesis finds its
source and impetus in a project led by Préfecture de police de Paris (PP) 1, in collaboration
with the Brigade de sapeurs de pompiers de Paris (BSPP) 2.

Since early 2016, a new organization of the treatment of emergency calls became operative
in Paris area. In a single call center, emergency calls to Police (17), Firemen (18) 3 and untyped
emergency calls (112), are answered, and treated according to the type of emergency. The new
architecture involves two levels of operators. At the first level, operators detect the type and
urgency of the calls, handle (numerous) non urgent calls, and transfer urgent calls to second
level operators, police or firemen. At the second level, operators handle the call request, and
dispatch emergency means, if needed. The second level is split into two pools of operators,
policemen and firemen. They have specific missions, and answer different types of calls. In
contrast, the first level is common to police and firemen.

For the project leaders (see [dpdP16]), this new organization aims at improving emergency
calls treatment, by identifying them faster and dedicating operators to them. Another objective
is to decrease waiting times, by increasing the number of operators, and pooling part of police
and firemen resources. Finally, gathering police and firemen operators in the same place is
meant to bring a better coordination between both security forces for joint operations.

In order to improve the quality of the response for the most urgent calls, a key feature of the
new organization is that, once they are identified as such, extremely urgent (EU) calls should
always be in line with an operator. As a consequence, when a level 1 operator transfers a call,
if the destination level is busy, the operator waits with the caller until a level 2 operator is
available. Moreover, if several calls are waiting for the same destination level, EU calls have
priority. We depict in Figure 1.1 the itinerary of an emergency call in the call center. Note that

1. Paris security authority
2. Paris Fire Brigade
3. also in charge of first aid

1
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Figure 1.1 – Schematic flow chart of a call treatment in the two-level emergency call center.

this is a simplified model. For example, a few partner organizations have direct access to level
2 (e.g., gas or electricity companies, public transportation operations centers).

This two-level architecture, together with the blocking of level 1 operators when a group of
level 2 is busy, does not enter in the classical call center models, nor in the standard queueing
network models. Specifically, these models would fail to account for the fact that the capacity
of level 1 is diminished when a level 2 group is saturated. Moreover, we shall also not expect
an exactly solvable Markov model: in these complex configurations, the invariant distribution
cannot have a simple analytical expression.

This calls for exploring mathematical models in more details, in order to provide suitable
formulæ for this system. From a user point of view, one would like to compute performance
bounds, performance indicators, depending on the parameters of the system, as well as to deliver
a general understanding on the different regimes and limit behaviors. In such situations, simple
operating principles are as helpful as complex simulation-based tables and charts. Furthermore,
a flexible tool is required, as the detailed architecture may vary in time and depending on the
successive analyses and feedbacks.

This is the kind of results we endeavored to deliver to the project leaders and heads of the
new emergency call center.

Petri net modeling Petri nets are a modeling language appropriate to account for concur-
rency and parallelism. A Petri net is a graph whose nodes are transitions and places, connected
by directed arcs. Places hold tokens, which circulate from place to place, moved by transition
firings. A transition can fire only if a token is available in each of the upstream places, and
when a transition fires, it consumes (removes) one token in each upstream place, and produces
(creates) one token in each downstream place. Therefore, a transition operates as a local syn-
chronization and distribution module in a network. Tokens typically represent resources in a
manufacturing process, or requests and servers in a communication network.

A Petri net modeling a simple call center is given in Figure 1.2.
Petri nets can also be given a timed semantics, in which case the circulation of tokens can

encounter delays, or traveling times. In our simple call center, for example, we associate with
each place a holding time: a token entering a place can leave it (by the firing of a downstream
transition) only after having sojourned a given delay in this place.

Being able to model complex concurrency phenomena, together with a timed interpretation,
Petri net is an appropriate, workable tool for modeling our two-level emergency call center.

On top of its flexibility, it is also a very convenient language for interacting with practitioners.
Petri net’s graphical representation, including token evolution by transition firings, makes it a
directly intelligible language, and this facilitates the delicate process of modeling a real system.
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τe

Waiting
calls

τi

Idle operators

τc

ConversationCall arrival Pick up Hang up

Figure 1.2 – Petri net of a simple call center. Transition are represented by thick black segments,
and places by circles. Tokens are dark red dots in places. The arrival of calls is modeled by
the left-most transition, and their release by the right-most transition. Here, there are two
operators, both in conversation with a caller, and three other calls queueing. In green, we have
represented the places’ holding times∗.
∗ Note that τe does not represent a token waiting time, but rather a fixed delay before entering in the queue,
for example, an automatic welcome message. The waiting time if no operator is idle comes in addition to this
holding time.

Priority Among the characteristics of the system described above, the priority allocation of
level 2 operators to EU calls is the only (but crucial) non standard Petri net feature. In this
thesis, we formalize priority routing of tokens in a timed Petri net.

Previously, Petri nets with priorities had already been studied in a non timed setting, which
involves order relations between all transitions in the net. See for example [BK92]. In contrast,
the priority rules that we study in our timed setting are local, restricted to clusters (group of
connected upstream places and output transitions), because it takes a certain amount of time
for a token to go from a cluster to another.

We found our inspiration in the anterior work of Farhi, Goursat and Quadrat [FGQ11],
where such local priority routings are applied to a timed road traffic model.

Specific features of an emergency call center Emergency call centers differ from classical
call centers in terms of objectives and characteristics.

Firstly, serving all callers, and serving them with minimum waiting times, is a much more
involving imperative in an emergency call center, for which spared minutes and answered calls
result in direct benefits in terms of lives, health and goods.

Secondly, an emergency call center must be designed, not only to face every-day situations,
but also critical situations arising from expected or unexpected events (e.g., storms, floods,
terrorist attacks), in which the characteristics of demand (incoming calls) may be completely
different. In such situations, one would like to design specific procedures to alert the people
in charge, and to ensure that calls are served. This comprises resorting to reinforcements, and
shifting in degraded modes.

In our work, we find simulations and formal analyses to be appropriate and complementary
to account for such critical situations. While simulations allow one to focus on specific case
studies, and to test in silico the performances of the planned organizations in the critical
situations observed in the past, formal analyses provide information on the general behavior of
the system, including at the limits. Besides, in our models, we will be particularly interested
in stressed situations, in which the system is saturated in incoming calls.

1.2 A Petri net theory motivation: the “emergency
physician” paradox

The paradox This apparent paradox was reported by Benchimol [Ben09], in the modeling of a
hospital emergency department by the means of Petri nets. For the Petri net constructed in this
work, some simulations were observed to yield a larger asymptotic throughput than what was
expected from computation, by applying the formulæ of Cohen, Gaubert and Quadrat [CGQ95],
allowing to compute the throughput of fluid approximations of Petri nets in which tokens are
routed according to preselection rules. The author identified the resource which caused this
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Figure 1.3 – The Petri net of the emergency physician paradox

throughput increase, and its associated subnet (a subset of places of transitions involving the
resource). This is the Petri net depicted in Figure 1.3.

It models the medical consultations that a group of emergency physicians deliver to patients
in a emergency department. After his or her arrival, and after a consultation by a nurse, a
patient undergoes a first visit by a physician, place p1. The physician usually asks for some
complementary examinations in order to set the diagnosis (in fact, he or she always does in
our modeling). Then, the patient goes through the series of exams without the presence of the
physician, and, afterwards, returns in a consultation room where he or she waits for a second
visit of a physician. Place pw models both the series of examinations and the waiting of the
second visit. Place p2 models the second visit. The time for the complementary examinations
is supposed to be fixed, equal to τw. Similarly, the time for a first (resp. second) consultation is
τ1 (resp. τ2), and a physician who becomes available stays in place pm a time τm before being
dispatched to a patient.

The Petri net model is a very simple one. It is consistent, which means that firing once every
transition yields an identical number of tokens in each place as before but it is not conservative,
because the number of tokens in place pw is unbounded: if doctors are always dispatched to
first visits, the number of patients in place pw never decreases and goes to infinity. Yet, it is
not free choice, which means that the concurrency situations are not simple ones.

In the daily workflow, physicians ensure first visits as often as second visits. The transi-
tion throughputs are identical for every transition, and the greatest throughput is achieved if
physicians always find a patient waiting when they become available, and it is

ρ∗ = Nm
τ1 + τ2 + 2τm

, (1.1)

withNm being the number of physicians in the system. The throughput computed by Benchimol
in his simulations was close to this throughput.

However, when modeling the routing of tokens in this Petri net by preselection rules, in which
tokens are allocated to downstream transitions, regardless of which are fireable, the theoretical
throughput can be much lower. Consider a situation in which the number of patients entering
the system is saturated, physicians are dispatched, half the time to a first visit, half the time to
a second visit, but, at time 0, the Nm physicians are all in place pm. Then, at the beginning of
the Petri net execution, half of the physicians are dispatched to second visits: no patient having
being treated at this time, these physicians have to wait a time τ1 +τw before meeting their first
patients, and this additional delay propagates during all the Petri net execution. Therefore,
the throughput of this Petri net is then

ρ = Nm
2τ1 + τw + τ2 + 2τm

< ρ∗ ,

and, as the delays τw and τ1 are likely to be large, the throughput loss is sizable. This was the
throughput computed by Benchimol.

The same phenomenon was identified by Gaujal and Giua [GG04b, Section 4], who under-
lined that, even if the routing proportions are those optimizing the throughput in a Petri net
(sending the physicians half the time to first visits and half the time to second visits is the best
strategy), this optimal throughput is not automatically obtained: the asymptotic throughput
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still depends on the initial markings in the places. In the Emergency physician Petri net, as-
signing the Nm physicians to place p1 at time 0 allows to reach the optimal throughput ρ∗,
even with preselection routing.

Discussion This apparent paradox, while not dissimulating complex mathematical issues,
still raises interesting modeling questions.

In a Petri net, we call conflict the situation in which one place has several output transitions.
This term underlines the fact that a token entering a place can be fired by only one of the
downstream transitions. In the modeling of a timed system, one would like to set a routing
rule, which would solve the conflict for each token entering the place, that is, allocate the token
to one of the place’s output transitions.

Assigning tokens (or fractions of) to the output transitions according to fixed ratios is a
convenient routing rule, which has led to powerful analytic results, allowing one to express the
asymptotic throughput of the system as the solution of linear programming [CGQ95, GG04b].
In addition, it is also a good upper approximation of periodic routing, and of Bernoulli routing
(assigning a token to output transitions according to fixed probabilities). It has also a strong
relationship with the race policy routing. See [BGM06] for an analysis of all these routing rules.

However, it fails to model downstream-dependent behaviors, like the one we have in this
model: in reality, in an emergency department, a physician who does not find any patient
waiting for a second visit would not stay unoccupied until a second-visit patient arrival, but
would take care of a first-visit patient. Thus, in terms of Petri net, the allocation of tokens to
the output transitions of place pm is conditioned by the availability of tokens in place pw. This
cannot be modeled by a pre-allocation routing scheme.

In this regard, the priority routing which is proposed in this work can be seen as an alter-
native, downstream-dependent routing procedure for tokens in Petri nets. Its analysis and the
subsequent dynamical equations proposed in this dissertation could hence be useful to every
Petri net user encountering priority or other downstream-dependent phenomena in the sys-
tems being modeled. Furthermore, as we will show, analytical formulæ and algorithms are still
available to compute the corresponding throughputs.

One can retain from this example that the throughputs obtained with priority routing
can be completely different from the throughputs computed in a preselection setting. Our
interpretation is that this is because the monotonicity of the system is lost. This is the topic
of the next section, which enters one step deeper in theoretical questions.

Still, we cannot leave this section without setting the reader’s mind at rest: an alternative
Petri net model for the emergency physician case shall be proposed later on, addressing the
drawbacks of the current model. See Section 2.4.2. In other words, we solve the paradox, by
replacing preselection rules by priority rules, and showing that the latter are still amenable to
an algebraic analysis.

1.3 A dynamical systems motivation: beyond
non-expansive operators

Let X be a vector space, and T : X → X an operator on X. The dynamics of a Petri net,
as many other discrete event dynamics, can be modeled by a system of the form:

x(n) = T (x(n− 1)) ∀n ∈ N, with x(0) = x0 ∈ X .

For example, in this thesis, we will be interested in the counter variables of the different
transitions of a Petri net. The x(n) will then be variables in RQ, and, for q a transition, xq(n)
will be the number of firings of transition q up to date n included.

An important question in discrete event dynamical systems is to determine whether the
sequence x(n)/n = Tn(x0)/n has a limit as n tends to ∞, and whether this limit depends on
the initial condition (with Tn denoting the n-th iterate of T ). The limit, if it exists, is commonly
named the cycle time of T , denoted by χ(T ), due to the following dual interpretation of x: n
describes the n-th event of a discrete event process, and x(n) is the date of this event. Despite
this terminology, in the context of counter variables of Petri net, counting the number of firings
of transitions up to a given date, such limit corresponds to an asymptotic throughput.

If T is monotone homogeneous, the answer is known.
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The eigenvalue problem An operator T : Rn → Rn is
• non-expansive for a given norm ‖·‖ of Rn if

‖T (x)− T (y)‖ 6 ‖x− y‖, for all x, y ∈ Rn ,

• monotone if

x 6 y =⇒ T (x) 6 T (y), for all x, y ∈ Rn ,

where 6 is the usual partial order of Rn,
• additively homogeneous if

T (λ+ x) = λ+ T (x), for all x ∈ Rn, λ ∈ R ,

where the addition of a scalar and a vector must be understood as an addition of this
scalar to each coordinate of the vector.

These three properties are closely related. Crandall and Tartar [CT80] proved that an
additively homogeneous map is non-expansive in the sup-norm if and only if it is monotone.

If T is non-expansive, then the limit of Tn(x0)/n, if it exists, is independent on the initial
condition.

Suppose now that T admits an additive eigenvector, that is, a vector ρ associated with a
scalar u (additive eigenvalue) such that T (ρ) = u+ ρ. Then, Tn(ρ) = ρ+nu, and therefore, all
the coordinates of x(n)/n have a common limit, independent of the initial conditions, equal to u.
Therefore, an important question is to determine the existence of such generalized eigenvectors.
If T is monotone (and if it respects a condition of connexity), a nonlinear equivalent of the
Perron-Frobenius theorem allows to answer in the affirmative. See [GG04a]. More generally,
nonlinear Perron-Frobenius theory provides a number of results allowing to characterize the
cycle time of monotone non-expansive operators. We refer to Gaubert [Gau05], who surveys
these results and their application to discrete event systems.

We do not detail these results, except for the following one, which applies to piecewise
linear systems. For u, ρ in Rn, the mapping t 7→ u + ρt is an invariant half-line of T if
T (u+ρt) = u+ρ(t+ 1), for any t > 0. Kohlberg [Koh80] proves that, if T is a piecewise linear,
non-expansive map, T has an invariant half-line, and, moreover, ρ is unique. A direct corollary
is that the sequence x(n)/n converges and has a limit independent of the initial conditions.
This applies, in particular, if T is expressed as the minimum of a finite family of linear maps,
T (x) = mini∈I ti(x).

Ergodic theory An important question in dynamical systems is to relate time averages with
space averages: if the operator of a dynamics converges to a given orbit, is the asymptotic time
average of the trace equal to the mean value of the orbit?

Birkhoff’s ergodic theorem is central to this regard. We state it, following [Rob03, Chapter
10], in the case of endomorphisms of a probability space (Ω,F ,P), with F a Borel σ-field. Recall
that T is an endomorphism of (Ω,F ,P) if it is measurable, and if the probability measure P is
invariant by T .

I Theorem 1.1 (Birkhoff’s ergodic theorem). If T : Ω → Ω is an endomorphism and f an
integrable function, P-almost surely,

lim
n→∞

1
n

n∑
i=1

f(T k(ω)) = E(f | I)(ω)

where I is the σ-field of the invariant measurable sets.

An operator T is ergodic if any invariant set by T has probability 0 or 1. If T is ergodic, a
consequence of Theorem 1.1 is that, for any integrable function f , P-almost surely,

lim
n→∞

1
n

n∑
i=1

f(T k(ω)) = E(f)
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Figure 1.4 – The ‘tent’ map (in blue). 0 and 2/3 are its two fixed points.

As a consequence, for an ergodic operator, the asymptotic throughput is almost surely
constant, equal to a mean in space.

A reference on ergodic theory is the book of Cornfeld [CFS12].

Counters of the dynamics of Petri nets are determined by more complex operators, involving
time shifts. However, it was proved that, with classical routing rules (pre-allocation, fluid ap-
proximation of Bernoulli routing), such operators are monotone, non-expansive, and, with some
additional constraints, the dynamics usually converges towards an asymptotic value, possibly
infinite, independent of the initial conditions. See Cohen, Gaubert and Quadrat [CGQ95] and
Gaujal and Giua [GG04b]. In stochastic settings, ergodic theory, together with monotonicity
properties, often helps to determine the convergence towards asymptotic throughputs. See for
example Baccelli and Mairesse [BM98] and Gaujal, Haar and Mairesse [GHM03].

In contrast, when allowing priority routing in Petri nets, the operator of the dynamics
becomes non monotone: a token entering later in the system can pass by a token which entered
before. The classical results obtained on Petri nets with monotone operators do not apply in
this situation, and we need to investigate the behavior of non monotone operators.

Non monotone operators The following example, developed by Farhi, Goursat and
Quadrat [FGQ11], shows that the general non monotone case is more complicated, even for
an additively homogeneous, ergodic operator.

Let T : R2 → R2 be given by T (x1, x2) = (x2, 3x2 − 2x1 ∧ 2 + 2x1 − x2), where ∧ stands
for a min operator. The map T is 1-homogeneous, and therefore, its analysis can be reduced
to analyzing the operator T̂ in the projective space R2/R (with ŷ = y2 − y1):

T̂ (x̂) = 2x̂ ∧ 2(1− x̂) . (1.2)

This is the (well-known) tent map, depicted in Figure 1.4.
It admits two fixed points, 0 and 2/3, which are, therefore, eigenvalues of T . Moreover,

T̂ k(x), with x any number with a finite binary development, reaches 0 after a finite number of
iterates: thus, a dense set of initial conditions of [0, 1] is such that T̂ k(x) converges towards 0.

However, neither 0 nor 2/3 corresponds to a mean asymptotic value of T̂ k(x)/k, independent
of the initial conditions. In fact, the trajectory of T̂ k(x) is chaotic for any irrational number.
In addition, for the Lebesgue measure, the unique invariant sets are sets of measure 0 or
1. Therefore, T̂ is ergodic, and the asymptotic cycle time T̂ k(ω)/k converges almost surely
towards the mean value of T̂ , that is, 1/2. We refer to Collet and Eckmann [CE09] for a more
detailed analysis of the tent map dynamics.

Hence, for non monotone operators, the asymptotic cycle time can be different from the
eigenvalues of the operator.

A motivation of our work is thus to go further in the analysis of such non monotone maps
resulting from Petri net dynamics with priorities.

Note that it is an open problem to construct a Petri net with priorities whose dynamics
would be reducible to the tent map.
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1.4 Contributions
We analyze the dynamics of discrete event systems with synchronization and priorities, by

means of Petri nets and queueing networks. We apply this to the performance evaluation of
the bilevel emergency call center described in Section 1.1.

Timed Petri nets are a convenient tool to model discrete event systems with complex con-
currency phenomena. Their performance is measured in terms of their counters variables,
counting the number of firings of transitions up to the current date. For restricted classes of
Petri nets, like event graphs, the dynamics of these counter variables are known to be expressed
by tropical (min-plus) linear equations, see Baccelli, Cohen, Olsder and Quadrat [BCOQ92].
Cohen, Gaubert and Quadrat [CGQ95] characterized the dynamics of a larger class of Petri
nets, Petri nets with preselection routing, as a combination of max-plus linear and classical
linear equations. From these counters equations, one can compute the asymptotic throughputs
of a fluid approximation of the Petri net, using the techniques mentioned in the above section
(Section 1.3). Convergence towards stationary regimes, whose throughputs are computed as
solutions of linear programs, was shown in [CGQ95] for Petri nets having a positive Q-invariant,
and in Gaujal and Giua [GG04b] in the general case.

Our approach in Chapter 3 builds on this series of results. A main novelty is that, while the
previous models were limited to Petri nets with preselection routing, whose fluid approximation
is in fact equivalent to the simpler class of choice-free Petri nets, we allow concurrency config-
urations, in which tokens are routed according to priority rules. We show that the dynamics
of Petri nets with free choice and priority routing can be expressed by piecewise linear equa-
tions, leading to a rational tropical dynamics (3.3)–(3.7), thus generalizing the case of Petri
nets with preselection routing. Moreover, we provide a complete proof of equivalence between
the counters along execution traces of our Petri net, and the càdlàg, non-decreasing solutions
of these piecewise linear equations (Theorem 3.1). We found our inspiration in the work of
Farhi, Goursat and Quadrat [FGQ11], in which this modeling of priorities by rational tropical
dynamics was applied to a timed Petri net describing a road traffic network.

Like in the case of Petri nets with preselection routing, this allows us to investigate the
asymptotic regimes. For the fluid approximation of the dynamics, we show that the affine
stationary regimes of our class of Petri nets are precisely the solutions of a set of lexicographic
piecewise linear equations, which constitutes a rational system over a tropical semifield of germs
of affine functions: see Theorem 3.6.

However, because of the priority rules, the operator of our dynamics becomes non monotone
(in a Petri net, a token having priority can pass by a non priority token), contrary to the
preselection routing case. This has two drawbacks. Firstly, one cannot apply classical iteration
algorithms, inspired by value iteration in Markov decision processes, to compute these affine
stationary solutions. Moreover, our applications show that several affine stationary regimes
may exist, for a given set of parameters, depending on the initial conditions (and they do
not form a convex set), so that one has to enumerate all the policies of the net in order to
determine the solutions. Nevertheless, expressing this problem as a rational system over a
tropical semifield shows that it reduces to solving a tropical polynomial system, so that the
asymptotic throughputs can still be computed.

Secondly, more fundamentally, the asymptotic regimes of this dynamics are not always the
expected affine regimes. Numerical experiments show that periodic behaviors can be reached
asymptotically, leading to different asymptotic throughputs. Such phenomena are occasioned by
arithmetical relationships between the holding times. Thus, it can be considered as a pathology
originating from our discrete time modeling.

The model investigated in Chapter 4 is therefore a continuous time one, designed so as to
avoid the pathologies of the discrete time one. In this chapter, we provide an alternative,
infinitesimal version of the dynamics described above, for the same class of Petri nets. In
this setting, the dynamics becomes a hybrid dynamics, expressed by a system of differential
equations, with a discontinuous right-hand-side. We require the variables of the Petri net to be
forward Carathéodory solutions of this hybrid system, that is, they are absolutely continuous
solutions of the system in its integral form, and left-accumulation of switching times is forbidden
(this corresponds to our solutions being càdlàg functions).

Differential dynamics of Petri nets were introduced by David and Alla [DA87], with the
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same motivation as ours, that is, computing simple approximations of the behavior of a discrete
Petri net. See also Vázquez et al. [VMJS13]. The main difference with our equations is that
we model an infinitesimal equivalent of holding durations, while the original model of [DA87]
rather considered enabling durations. Thus, the routing in this model was arbitrated by a race
policy, while we can handle priority routing, in addition to preselection routing. Furthermore,
this leads us to distinguish between tokens under processing and idle tokens in a place, and our
dynamics become discontinuous, because the firing rate of a transition depends on the presence
of idle tokens in its upstream place.

Our piecewise linear, piecewise continuous dynamics can be expressed as an infimum of
linear dynamics, expressed in terms of policies of a Petri net. A policy associates with each
transition a bottleneck upstream place, determining the flow of the transition when the policy
reaches the infimum. One of our main results, Theorem 4.9, is that there exists a unique forward
Carathéodory solution for this dynamics. It relies on the constructive proof that, at any time,
there exists a policy determining a valid solution on a forward time interval, and that this policy
is unique, except for the case that another policy yields the same dynamics.

Similarly to the discrete time case, we exhibit the affine stationary regimes of this hybrid
dynamics, see Theorem 4.11. We show in Corollary 4.12 that they are the same as the ones
computed in the discrete time case. Furthermore, numerical experiments tend to show that,
unlike the discrete time model, stationary regimes are always reached by the Petri net dynamics,
thus confirming the relevance of this model.

The idea of modeling a physical system by differential equations may seem remote from
reality. Chapter 5 gives support to this modeling, by providing the proof that the dynamics
of a stochastic, continuous-time network system, representing a bilevel call center, converges
towards the same set of differential equations, up to an appropriate scaling of the system
variables.

More precisely, the system considered in Chapter 5 is not a Petri net, but a queueing
network, representing a bilevel emergency call center with only two classes of calls, urgent and
non urgent. Level 1 operators answer all incoming calls, handle non urgent calls and transfer
urgent calls to level 2 operators. If all level 2 operators are busy, then the level 1 operator
waits with the urgent call, so that he is blocked until a level 2 operator becomes idle. The
distribution of service times is exponential at each level, so that the corresponding stochastic
process is Markovian.

For this model, under an appropriate scaling, we establish the convergence of the quantities
of the system (fraction of blocked servers, fraction of free servers) towards asymptotic values ex-
pressed as a piecewise linear function of the parameters of the system. The proof of convergence
is technical, because reflection conditions at boundaries (depending on the presence of blocked
operators at level 1 or idle operators at level 2) makes the analysis more complex. We resort to
a scaling analysis (this kind of analysis was applied by Kelly [Kel91] to loss networks), which
allows us to separate two regimes, one in which a fraction of level 1 servers remains blocked
after some fixed delay with probability one, and one in which a fraction of level 2 servers is
idle after some fixed delay with probability one. Interestingly enough, we show that, at the
scaling limit, after some fixed time, the dynamics is solution of an ordinary differential system,
corresponding to the dynamics proposed in Chapter 4.

Finally, our three dynamical models, based on different semantics (see Table 1.1), applied
to an identical physical system, lead to the same schematic asymptotic behavior, expressed as
a piecewise linear system of the parameters, and describing the different congestion phases of
the system.

Regarding our bilevel emergency call center, under a saturation hypothesis, our asymptotic
analysis allows us to identify three different congestion phases, described in Figure 1.5, depend-
ing on the ratio between the number of operators of level 2, N2, and the number of operators
of level 1, N1. Note that we suppose here that all level 2 operators have the same role. Going
from right to left, when N2/N1 is large, level 2 is sufficiently sized, and all calls are handled
at level 2. In an intermediate phase in which N2/N1 is between two critical rates, expressed
in terms of the parameters of the system, level 2 is congested, so that some urgent calls are
not answered, but the extremely urgent calls are protected by the priority rule. In the lower
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Discrete time Continuous time
Discrete firings Chapter 3 Chapter 5

(fixed processing times) (stochastic processing times)
Infinitesimal firings Chapter 4

(hybrid dynamical system)

Table 1.1 – Our three mathematical models in a nutshell.

PHASE 1

PHASE 2 PHASE 3

N2/N1

ρ

level 1
throughput

EU calls
throughput
U calls
throughput

ρ∗1

ρ∗EU

ρ∗U

r1 r2

Figure 1.5 – The three phases of the bilevel emergency call center with an homogeneous level 2,
depending on the ratio between the number of operators at level 2 (N2) and the number of
operators at level 1 (N1).

phase when N2/N1 is small, level 2 is so congested that no urgent call is handled and that
the treatment of extremely urgent calls is slowed down. Because of the three-way conversation
between level 1 operators and level 2 operators, level 1 operators are also blocked, waiting for
level 2, and the throughput of level 1 is diminished.

In the unique chapter of Part II (Chapter 6), we focus on our case study of the Parisian
emergency call center, and apply the analytical methods of Part I to a bilevel call center in
which the second level is composed of different groups of operators handling different kinds of
calls (police and firemen, in our case study). We also use simulations, which help us to present
our results with a more operational point of view, and which take into account a certain number
of characteristics of our call center that were not incorporated in our simplified model of Part I.

Despite the operational advantages of this complex bilevel organization, a few situations
are identified in which attention of practitioners is required. This is in particular the case of
situations of “cross-congestion”, in which one of the groups of level 2 is saturated, and slows
down level 1, because of three-way conferences. In such situations, all other groups of level 2
are also slowed down, because level 1 becomes bottleneck. This is an unwelcome side effect of
this organization, but simple procedures can help avoiding such situations.

We also propose a statistical analysis of our emergency call center data (without entering too
much into details), and point out a few additional observations derived from our simulations,
as for example, the unavoidable trade-off between operators activity and calls abandonment.
Calls abandonment could not be modeled by our Petri net class of Part I.
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The objective of this chapter is to recall some basic definitions, notations and properties
about Petri nets. In addition to the original model of Petri nets, we also develop some well-
known extensions of this model that will be used or mentioned in this work. We try to propose
a few relevant references for each of these extensions.

Going through all these notions and definitions (Sections 2.1, 2.2, 2.3), we arrive to the
notion of routing rules, and introduce the one which is central to this thesis, priority routing
(Section 2.4).

Finally, we propose three Petri net examples in Section 2.5. The first two ones will serve as
applications of the results in Chapters 3 and 4. The third one is an equivalent of the queueing
network examined in Chapter 5.
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2.1 Untimed Petri nets
The modeling language of Petri nets was introduced in the beginning of the sixties by Petri

[Pet62]. It was thought as a formal tool, aimed at modeling systems encountering concurrency
and parallelism, and, therefore, convenient for practical applications such as manufacturing
processes, communication networks, chemical reaction networks, and, more generally, processes
where countable resources circulate between different places, encountering “joins” (rendez-vous,
or synchronization), “forks” (splitting or branching) and “merges” (additions).

By the analysis of a Petri net, one would like to understand the behavior of a physical
system, identify the critical paths of resources, the possible deadlocks and unexpected states,
and provide guarantees of a “well-behaved” design.

We start by recalling the basic definitions of Petri nets.

2.1.1 General definitions of Petri nets
I Definition 1. A Petri net is a triple (P,Q, F ), consisting of a finite set P, whose elements
are called places, a finite set Q whose elements are called transitions, P ∩ Q = ∅, and a
mapping F : (P×Q)∪ (Q×P)→ N which indicates multiple directed arcs between places and
transitions. F (p, q) defines the number of arcs from place p to transition q, and F (q, p) defines
the number of arcs from q to p.

The mapping F of a Petri net is fully characterized by two P × Q matrices of natural
integers, denoted by C+ and C−, such that the (p, q) entry of C+ is F (q, p), indicating the
number of forward arcs from transition q to place p, and the (p, q) entry of C− is the value
F (p, q), indicating the number of backward arcs, pointing to transition q, from place p. We call
C+ the forward matrix of the Petri net and C− its backward matrix. Note that the ordering
of the columns and rows of C+ and C− entails a numbering of places and transitions: we usually
note transitions q1, q2, . . . , q|Q|, and places p1, p2, . . . , p|P|, according to this ordering. Owing to
the equivalence between F and the pair C+, C−, a Petri net can equivalently be defined by a
tuple (P,Q, C+, C−). Note that, in the Petri net literature, one often encounters the notations
Post (orW+) and Pre (orW−) to designate, respectively, the forward matrix and the backward
matrix. Equivalently, one also often consider F (x, y) as the valuation of a single (x, y) arc.

For two elements x, y ∈ P ∪ Q, we note x → y if F (x, y) > 0, and say that y is a forward
neighbor of x, and x a backward neighbor of y. The set of backward neighbors of x is denoted
xin := {y ∈ P ∪ Q | F (y, x) > 0} and its set of forward neighbors is xout := {y ∈ P ∪ Q |
F (x, y) > 0}. For a place p, sets pin and pout are subsets of Q. The set pin is called the set of
input transitions of p, and pout the set of output transitions of p. Similarly, for a transition q,
sets qin and qout are subsets of P. The set qin is called the set of upstream places of q, and
qout is called the set of downstream places of q.

We call self-loop the situation where a pair (p, q) has at least one backward arc and one
forward arc. A pure Petri net is a Petri net without self-loops, i.e., where the existence of a (p, q)
arc and of a (q, p) arc are mutually exclusive. This is equivalent to having min(C+, C−) = 0 (by
the minimum of two matrices or vectors, we mean the matrix or vector composed of entrywise
minima). For pure Petri net, we define the place–transition incidence matrix, or, for short,
the incidence matrix C := C+ − C−. A matrix C ∈ (N ∪ −N)P×Q uniquely determines the
matrices C+ and C− of a pure Petri net by C+ = min(C, 0) and C− = min(−C, 0), so that a
triple (P,Q, C) defines a pure Petri net.

I Definition 2. A marking of a Petri net is a mapping m : P → N. A place such that
m(p) > 0 is called a marked place. For such a place, we say that m(p) designates the number
of tokens of place p. We equivalently describe a marking as a column vector of NP . A marked
Petri net is a pair (N,m0) where N is a Petri net, and m0 a marking, called the initial
marking of the marked Petri net.

By state of a Petri net N , we mean a given marking m ∈ NP .

The following conventions hold for graphical representation of Petri nets: places are depicted
by circles, transitions by rectangle or thick segment lines, and directed arcs link places to
transitions, and vice-versa. Multiple arcs can equivalently be depicted by arcs with an integer
valuation. Finally, tokens are represented by dots inside the circles of the places. See Figure 2.1.
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2

Figure 2.1 – A Petri net with three places and a transition. Despite the three tokens in one of
its upstream places, the transition is not fireable, because its second upstream place is empty.
A firing of the transition would produce two tokens in its downstream place.

A Petri net is connected if it is connected as a bipartite graph. A subnet of a Petri net is
defined by P ′,Q′, C ′, where P ′ ⊆ P, Q′ is the set of transitions of Q having at least one arc to or
from P, and C ′ = C|P′,Q′ , that is, C restricted to its entries in P ′×Q′. A non connected Petri
net can be described by the partition of its maximal connected subnets. The absence of arcs
between two of these maximal connected subnets implies the absence of relationships between
them. Therefore, in the following, without loss of generality, we only consider connected Petri
nets.

2.1.2 Firing of transitions and Petri net dynamics
The dynamics of a marked Petri net describes the evolution of its marking under firings of

transitions.
For a matrix A of dimensions P×Q, the notation Aq with q ∈ Q stands for the q-th column

of A. The notation Ap,q with p ∈ P and q ∈ Q stands for the (p, q) entry of A.

I Definition 3. Let N = (P,Q, C+, C−) be a Petri net and m0 be a marking. We say that
transition q is fireable with m0 if m0 > (C−)q (the notation (C−)q designates the q-th column
of C−, so this is a entrywise inequality on two vectors of NP), that is, if for each upstream place
p of q, the marking of p is larger than the number of arcs (p, q).

A transition q fires in state m to state m′ if it is fireable with marking m, and if

m′ = m− (C−)q + (C+)q . (2.1)

We use the notation m q−→ m′.

The firing of a transition consists in decreasing the marking in upstream places and in-
creasing the marking in downstream places, in quantities given by the backward and forward
matrices. We say that transition q consumes (C−)p,q tokens in each upstream place p and
produces (C+)p′,q tokens in each downstream place p′.

We now define a firing sequence as a sequence of firings of transitions, such that the (k+1)-th
transition is fireable for the marking reached after the firings of the k first transitions.

I Definition 4. A firing sequence σ for marked Petri net (N,m0) is a word on transitions
σ ∈ Q∗, that satisfies the following, inductive, rules:

m
ε−→ m′ if m = m′

m
σq−→ m′ if ∃m′′ ∈ NP : m σ−→ m′′

q−→ m′ ,

where σq is the word composed of the prefix σ and the letter q, and ε is the empty word.
We say that the firing sequence σ reaches marking m′ from m if m σ−→ m′. We also speak

of a firing sequence of a marked Petri net as an execution of the marked Petri net.

In discrete Petri nets, one is typically interested in describing the reachable markings of a
Petri net, that is, the markings that can be reached by some sequence of transitions.

I Definition 5. Let (N,m0) be a marked Petri net. A marking m is said to be reachable for
(N,m0) if there exists a firing sequence σ such that m0

σ−→ m.
We call reachability set of (N,m0) the set of reachable markings of (N,m0).
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If m is a reachable marking of (N,m0) and σ a firing sequence from m0 to m, we denote
by |σ| the vector of NQ counting the occurrences of every transition in σ, that is, |σ|q is the
number of occurrences of q in σ. Vector |σ| is called the occurrence count vector, or Parikh
vector, or commutative image of σ. The markings m0 and m are related to |σ| by the following
result:

I Lemma 2.1. Let (N,m0) be a marked Petri net and let m be a reachable marking of m0,
with the associated firing sequence σ. We have:

m = m0 + C|σ| . (2.2)

This equation is called the fundamental equation of the Petri net.

Given two markings m and m′, the existence of an x ∈ NQ such that m′ = m + Cx is
a necessary, but in general not sufficient condition for m′ to be a reachable marking of m.
Moreover, if m′ is a reachable marking of m and if x satisfies the equation m′ = m+Cx, there
does not necessarily exist a firing sequence σ with m →σ m′, whose occurrence count vector
would be x.

Proof. Equation (2.1) can be written m′ = m+Ceq, with eq the vector of dimension |Q| such
that (eq)q = 1 and (eq)q′ = 0 for q 6= q′. One proves by induction on the length of σ that
m′ = m+ C(

∑
q∈Q |σ|qeq). J

The following properties are related to the notion of reachable markings and firing sequences:

I Definition 6 (Basic properties of a Petri net). Let (N,m0) be a marked Petri net.
• A transition q is dead if there does not exist a firing sequence σ such that σq is a firing

sequence from m0.
• A transition q is live (or strongly live) if for every reachable marking m, there exists a
firing sequence σ such that σq is a firing sequence from m.

• A reachable marking m of (N,m0) is a deadlock if no transition is fireable at m. If no
reachable marking of (N,m0) is a deadlock, then (N,m0) is deadlock-free.

• A place p is k-bounded if, for any reachable marking m, m(p) 6 k. It is bounded if there
exists k such that it is k-bounded.

• If every transition of (N,m0) is dead, we say that the Petri net is dead. This is equivalent
to saying that no transition is fireable for m0.

• If every transition of (N,m0) is live, we say that (N,m0) is a live Petri net.
• If every place of (N,m0) is bounded, we say that (N,m0) is a bounded Petri net.

Characterizing the reachable states of a Petri net has been an important problem in Petri
net theory for decades. It was observed that many other problems on Petri nets reduce to this
reachability problem [Hac76]. We owe to Mayr [May84] and Kosaraju [Kos82] a major theorem
in this respect: the reachability problem for Petri nets is decidable, that is, that there exists an
algorithm that answers if, for a marked Petri net (N,m) and a vector m′ ∈ NP , m′ is reachable
from m (and returns a firing sequence σ such that m→σ m′). The proof builds on the results
of Karp and Miller on vector addition systems [KM69], which where shown to be equivalent to
Petri nets. However, the reachability problem is EXPSPACE-hard [Lip76]. See also the recent
algorithm of [FL15].

Reachability is just one of many useful Petri net properties. One would for example like to
know if a Petri net is bounded, if some marking is a home state, if a marked Petri net is live,
or deadlock-free, or persistent. One would also like to know if a given Petri net reachability
set has some specific structure, for example, if it is a language or a semilinear set. We refer
to the overview of Esparza and Nielsen [EN94] for decidability results (and definitions) of
such properties, for various subclasses of Petri nets. Many of these problems reduce to the
reachability problem.

We point out that these results build on the analysis of some structures associated with
Petri nets, such as the reachability graph of a Petri net, its coverability graph (see definitions in
[Mur89]), or its occurrence net (introduced in [BD90]).
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2.1.3 Free choice Petri nets
In contrast with the difficulties of the analysis of general Petri nets, some subclasses of Petri

nets were identified, for which most of the problems listed above find an easier answer (e.g.,
polynomial-time algorithms may exist). Among these classes, free-choice nets are of particular
interest.

I Definition 7. A Petri net (P,Q, F ) is said to be free-choice if, for any pair of transitions,
either they have no common upstream places, or they have a single, identical upstream place
with the same valuation (the same number of arcs):

∀q, q′ ∈ Q , q′ 6= q , qin ∩ q′in 6= ∅ =⇒ ∃p ∈ P | qin = q′
in = {p} and F (p, q) = F (p, q′)

A marked Petri net (N,m0) is said to be free-choice if the associated Petri net N is free-
choice.

A Petri net (P,Q, F ) is said to be extended free-choice if, for any pair of transitions,
either they have no common upstream places, or they have the same set of upstream places
with the same valuations:

∀q, q′ ∈ Q , q′ 6= q , qin ∩ q′in 6= ∅ =⇒ ∀p ∈ P , F (p, q) = F (p, q′)

The term “free-choice” is explained by the following property. In an (extended) free-choice
net, for any place and marking, either the place’s output transitions are all fireable, or none of
them are fireable, so that, either one cannot fire an output transition, or one has the “choice” of
which transition to fire. On the contrary, in general Petri nets, choosing which output transition
to fire may not be “free”, as some of the output transitions may not be fireable.

Note that many authors reserve the term “free-choice” to plain Petri nets, that is, Petri
nets for which F takes values in {0, 1} ([DE95], [BW13]). What we call here free-choice nets is
called “equal-conflict” nets by other authors (see [TS96]). However, as we are here interested
in generalizations of Petri nets, we choose to keep the term “free-choice” in a looser sense.
Indeed, we aim at underlying that generalized free-choice nets still convey similar properties as
free-choice, plain, discrete Petri nets.

For plain, extended free-choice nets, simple algebraic results allow to characterize liveness,
boundedness, and other properties. For example, the Commoner/Hack Criterion characterizes
liveness in a free-choice Petri net. The corresponding algorithm is, however, NP-complete.
However, the import property of well-formedness of a Petri net (existence of an initial marking
such that the marked Petri net is live and bounded) is equivalent to some simple algebraic
properties of the incidence matrix of the Petri net, and of polynomial complexity.

The book by Desel and Esparza [DE95] is the classical reference on free-choice nets and
extended free-choice nets. We also refer to the overview of [BW13], which includes further,
more recent results.

Note also that the analysis is again simplified and more detailed if a Petri net belongs to
one of the two well-known subclasses of free-choice nets, state machines (also called S-nets in
[DE95], where S is the authors’ notation for a set of places), and marked graphs (T -nets, where
T similarly holds for a set of transitions).

2.1.4 Fractioned firings: a relaxation of Petri nets
In a Petri net, a transition firing consumes exactly (C−)p,q tokens in each upstream place

p and produces exactly (C−)p′,q tokens in each downstream place p′. In a Petri net with
fractioned firings, this rule on transition firings is relaxed in the following way: a firing is
characterized by a transition q and a firing rate α ∈ Q>0, where Q is the set of rational
numbers, such that a firing of transition q with rate α consumes a rational number of tokens
α(C−)p,q in each upstream place p and produces a rational number of tokens α(C+)p′,q in
each downstream place p′. Consequently, markings become elements of QP>0. As before, for a
transition q to fire at rate α at state m, the marking in the upstream places before the firing
is required to be larger than the token consumption, that is, m > α(C−)q. If this condition
is satisfied, we say that transition q is α-fireable at state m, and we say that is fireable at
state m if there exists an α ∈ Q>0 such that it is α-fireable (context should make it clear if a
transition is fireable for the discrete setting or for the fractioned setting).
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In this context, for a marked Petri net (N,m0), a firing sequence σ is a sequence of pairs
(q, α), representing the firing of transition q at rate α, and it is defined by induction in the
following way: either it is the empty sequence, and the marking does not change, or it is of
size k > 1, its prefix of length k − 1 is a firing sequence, and from the marking m reached by
the prefix, the last pair (q, α) is such that q is α-fireable. We use the notation m αq−→ m′, and
m0

σ−→ m′. Associated to σ, we also define the counterpart of the occurrence count vector:

|σ| :=
∑

(q,αq)∈σ

αqeq .

Now, |σ| takes values in QQ>0. It satisfies a similar fundamental equation as the original one
(2.2), but with rational numbers instead of integers: for any marking m0 ∈ QP>0, and m such
that m0 →σ m with a fractioned firings semantics,

m = m0 + C|σ| . (2.3)

The introduction of these Petri nets dates back to the seminal work of David and Alla [DA87].
It aimed at approximating the behavior of discrete Petri nets, especially in a context where a
large number of tokens initially present in the system would lead to a blow up of the reachability
set. Indeed, by analogy with the relaxation of integer programming in optimization, such a
relaxation was expected to yield simplified behaviors and computations. Note that, because
the rate-1 firing of a transition corresponds to its firing in the original integer definition, the
reachability set of a marked Petri net with fractioned firings is a superset of its reachability set in
the original setting. However, the gap between both models may be very large (examples exist
of a discrete marked Petri net encountering a deadlock, while its counterpart with fractioned
firings is unbounded).

Most basic properties of Petri nets with fractioned firings, such as the reachability of a
given marking, are decidable and can be computed in polynomial time, which illustrates the
tractability of the approximation. The work by Fraca and Haddad [FH15] contains the latest
results on these issues. Other major results are exposed in [RTS99, JRS03, RHS10]. We note
that, in these works, Petri nets with fractioned firings are named continuous Petri nets (and the
firing rates are reals), but as this terminology is sometimes associated with time interpretations,
we prefer using our maybe cumbersome designation to avoid confusion.

Note that, either in the setting of fractioned firings, or in the setting of integer firings,
relaxing the incidence matrix entries to be rational numbers does not change the properties of
the system: for such a net, the same behavior is obtained by a net in which the entries of the
incidence matrix are scaled by an integer such that the new incidence matrix becomes integer-
valued, and the initial marking is scaled by the same integer. Attributing rational valuations
to arcs of a Petri net may be encountered, for example, when approximating stochastic routing
in output of a conflict place (the arc valuations then represent the proportion of tokens routed
along the arc).

2.1.5 External inputs and control
In the modeling of a physical system, it may be convenient to account for external arrivals

of tokens, which are not related to the inner behavior of the system. This can be done by the
means of input transitions, which have no upstream places, but whose firings are an external
input. Such models have a control flavor. Given information on the input firings, one would like
to assert the stability of the system, the observability of some markings, or to compute some
“output” quantities of the system. One may also want to control the system (for example, by
enabling or disabling the firing of a transition), in order to ensure stability or to ensure some
equations or inequalities on the place markings.

A Petri net with no external input can be named an autonomous Petri net, or a closed
Petri net (a generalization of “closed networks” in queueing theory) In the first part of this
thesis, we do not consider control issues or external inputs, so that all our Petri nets are
autonomous.

Nevertheless, we point out that Baccelli and Foss [BF95, BFG96] stated the following “satu-
ration rule” theorem: stochastic networks which have the monotone-homogeneous property are
stable under an arrival process of intensity λ if and only λ is strictly smaller than a constant
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which is expressed in terms of the limit when n→∞ of the date of the last event of the system
whose arrival process is a Dirac of size n at time 0. See also Bonald’s PhD thesis [Bon99, Chap-
ter 3]. This applies to stochastic, free-choice, consistent Petri nets with an external input. As
an approximate rule, we can hence retain that the stability of an autonomous Petri net where
some external input has been considered saturated implies the stability of the corresponding
non autonomous Petri net.

2.2 Structural analysis of Petri nets
A number of key properties of Petri nets are satisfied by all Petri nets considered in this

thesis (including their different extensions). They rely on the fundamental equation of the Petri
net, already written in the discrete model (2.2), and in the fractioned firings model (2.3), and
on the algebraic properties of its incidence matrix. We present them in this section.

We point out that the following results only hold for autonomous Petri nets, that is, Petri
nets in which the firing of transitions is determined by the marking present in the net.

2.2.1 An algebraic characterization of reachability
Let us first define a dead transition for Petri nets with fractioned firings.

I Definition 8. Let (N,m0) be a marked Petri net with fractioned firings. We say that
transition q is dead if there does not exist a firing sequence and an α > 0 such that (q, α) is an
element of the firing sequence. We denote by Ql(m0) the set of transitions in Q which are not
dead for marking m0.

Of course, a transition which is dead for a marked Petri net with fractioned firings is also
dead for the same marked Petri net restricted to discrete firings.

An immediate property is that, if a transition is dead for a given marked Petri net (N,m0),
then it is dead for any reachable marking of m0. Algorithm 1 of [RTS99] computes the dead
transitions of a Petri net (N,m0) in quadratic time.

If marking m0 is the initial marking of the Petri net, we also use the notation Ql(0) =
Ql(m0).

I Proposition 2.2. Let (N,m0) be a marked Petri net (with discrete or fractioned firings),
and C its place–transition incidence matrix. Any reachable marking of (N,m0) belongs to the
set RP>0 ∩

(
m0 + CRQ

l(0)
>0

)
.

Proof. This is a direct consequence of the fundamental equation (2.2) in the discrete case,
and (2.3) in the fractioned case. J

Any reachable marking is hence in a polyhedron which is the intersection of two affine cones.
We name it the reachability polyhedron.

The reachability polyhedron provides information on the reachable markings of a given
Petri net semantics. In the case of Petri nets with fractioned firings, it is a rather accurate
approximation of the reachability set, as shown by the following proposition.

I Theorem 2.3 ([JRS03]). Let (N,m0) be a marked Petri net with fractioned firings. The
closure of the reachability set of (N,m0) is equal to its reachability polyhedron.

I Remark 2.4. The reachability set of a Petri net with fractioned firings is in general not
closed, so that some markings of the reachability polyhedron do not belong to the reachability
set. See the example of Recalde et al., [RTS99, Figure 5].

I Remark 2.5 (Pre-processing). In a marked Petri net (N,m0), dead transitions induce dead
places of the Petri net, whose markings are and remain null. Therefore, the analysis of the Petri
net reduces to the analysis of its non dead part, that is, one considers the Petri net in which
the set of transitions is restricted to Ql(m0), and in which the set of places is restricted to the
ones having a non zero initial marking or a non dead input transition.
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2.2.2 Structural properties in the reachability polyhedron
The following basic properties of Petri nets can be understood in a discrete firings setting or

in a fractioned firings setting. The notion of reachable marking must be interpreted accordingly.

I Definition 9. Let N be a Petri net.
• Let m0 be an initial marking of N . A place p is bounded if there exists K>0 such that,
for any reachable marking m of m0, mp 6 K.

• A place p is structurally bounded if, for any initial marking m0, the place is bounded
(there exists K depending only on C and m0 such that, for any reachable marking m,
mp 6 K).

• N is structurally bounded if every place of P is structurally bounded.
• Let m0 be an initial marking of N . We say that a marked Petri net (N,m0) is par-
tially consistent if m0 is a reachable marking of m0, associated with a non empty firing
sequence.

• If, in this firing sequence, every transition is fired at least once, then the marked Petri
net is said to be consistent.

• N is structurally consistent if there exists an initial marking m0 such that the marked
net (N,m0) is consistent.

We have the following well-known algebraic characterizations of boundedness and consis-
tency in a Petri net with fractioned firings:

I Proposition 2.6. Let N be a Petri net.
(i) If there exists y ∈ RP>0 such that yp > 0 and yTC 6 0, then place p is structurally bounded.
(ii) If there exists y ∈ RP , y > 0 such that yTC 6 0, then the Petri net is structurally bounded.
(iii) If there exists y ∈ RP>0 such that yTC � 0, then the Petri net is not consistent.

Actually, the converse holds for each statement. However, from Section 2.4 on, we consider
restricted Petri net semantics, such that the set of reachable markings is a strict subset of the
set of reachable markings. Therefore, we are only interested in the if-part of these statements,
which holds for any such semantics.

Proof. (i) For such y and p, we have for every reachable marking m of (N,m0) the identity
yTm0 = yTm+ yTCx, so that yTm 6 yTm0. Therefore, mp 6 (yTm0)/yp.

(ii) If y is positive, then for any place p, (i) holds.
(iii) If the net is consistent, then m0 is a reachable marking of m0 with a firing sequence such

that every transition is fired at least once. By the fundamental equation, this implies that
there exists an x > 0 such that m0 = m0 + Cx, so that Cx = 0. By Stiemke’s theorem
(which is a variant of Farka’s lemma), exactly one of the two alternatives is true: there
exists y such that yTC � 0, and there exists x > 0 such that Cx = 0. J

Note that the above proposition is also true for the discrete Petri net model of Section 2.1,
with integer-valued vectors y. This is because Farka’s lemma and comparisons to zero also hold
with integer-valued vectors. Moreover, for such Petri nets, the converse of (i), (ii), (iii) is also
true. See Murata [Mur89, Section VIII].

From Proposition 2.6, we deduce that a well-chosen vector of RP>0 can provide a simple
Lyapunov function for the dynamics of our Petri net:

I Corollary 2.7. Let (N,m0) be a marked Petri net. Let y ∈ RP>0 be such that yTC 6 0, and
(yTC)q < 0 for some transition q. If m is a reachable marking, associated with x > 0, and if
xq > 0, then yTm < yTm0.

In fact, from a geometric point of view, a y 6= 0 such that yTC 6 0 is the normal of a
supporting hyperplane yTm = yTm0 of the reachability polyhedron of a Petri net. If, moreover,
y > 0, then the intersection of the half-space yTm 6 yTm0 with RP>0 is bounded, (one can say
that the supporting hyperplane “separates the reachability polyhedron from infinity”). Note
also that, if there exists a y 6= 0 such that yTC = 0, then the reachability polyhedron is included
in the supporting hyperplane. See two possible configurations in Figure 2.2.

A vector satisfying these properties has an important role in algebraic analysis of Petri nets.
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Figure 2.2 – Two bounded reachability polyhedra associated with two different marked Petri
nets (with three places, so that the reachability polyhedra are subsets of R3). Left: there is
a linear relationship between the transition vectors. The system is conservative (the vector
y is such that the quantity yTm is invariant). Right: any transition firing is such that yTm
decreases.

I Definition 10. Let N be a Petri net.
• A P-invariant is a vector y ∈ RP , y 6= 0, such that yTC = 0.
• A Q-invariant is a vector x ∈ RQ, x 6= 0, such that Cx = 0.

The term “invariant” comes from the fact that, if y is a P-invariant of N , then the quantity
yTm is invariant among the set of reachable markings of (N,m0).

Note that in the definition of a P-invariant of a discrete Petri net, the vector is restricted
to be integer-valued. However, any P-invariant of a Petri net with C having integer entries is
proportional to a rational-valued P-invariant, and hence to an integer-valued P-invariant.

The structural consistency of a Petri net is equivalent to the existence of a positive Q-
invariant:

I Proposition 2.8. A Petri net N is structurally consistent if and only if it admits a positive
Q-invariant.

Proof. The “only if” part is a direct consequence of the definition of a consistent net. For the
“if” part, it suffices to remark that, with a positive initial marking m0 > 0, every transition is
active, so that Ql(m0) = Q. For x a positive Q-invariant, and α > 0 small enough, we have
m0 = m0 + αCx, and any sequence of firings of the different (αxq, q) is fireable, so that m0 is
reachable from m0 and the consistency holds. J

The notion of conservative Petri nets is associated with the P-invariants of the net:

I Definition 11. A Petri net N is conservative if it admits a positive P-invariant.

2.2.3 Minimal-support invariants of a Petri net
If x is a vector indexed by a set E, its support is defined by [x] := {e ∈ E | xe 6= 0}.

A minimal-support P-invariant of N is a nonnegative P -invariant of N whose support is
minimal for the inclusion. Of course, if y is a minimal-support P-invariant of N , so is any λy,
with λ > 0. It is a well-known fact that minimal-support P-invariants generate all nonnegative
P-invariants of N :

I Theorem 2.9 (Theorem 2.43 of [DE95]). Every nonnegative P-invariant is the sum of
minimal-support P-invariants.

In fact, from a linear algebra point of view, this amounts to saying that the cone of the
nonnegative vectors of ker(CT) the kernel (or null space) of matrix CT is generated by its
vectors of minimal support (thus, these vectors are the extreme rays of the cone).
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Minimal-support P-invariants are of special interest, as they allow to compute lower bounds
on the throughput of the system in a timed semantics. See for example Proposition 4.13. Their
enumeration is however complicated: it reduces to computing the set of extreme rays of a cone
defined by a set of linear inequalities.

I Lemma 2.10 (Counting the minimal-support P-invariants). The number of minimal-support
nonnegative P-invariants of a Petri net with incident matrix C is upper bounded by the quantity

U(n, k) =
(
n− b(n− k)/2c

k + 1

)
+
(
n− d(n− k)/2e

k + 1

)
, (2.4)

where n = |P| and k = rank(C).

The notation bxc for x ∈ R stands for the largest integer k s.t. k 6 x. The notation dxe
stands for the smallest k s.t. k > x.

Proof. Let C be the incidence matrix of the Petri net, and A = CT. It will be convenient to
define n := |P|. We want to compute a minimal family of nonnegative elements of ker(A)∩Rn
generating all the elements of this set by positive linear combinations. We first remark that this
set is a polyhedral cone described by inequalities, and that this problem amounts to computing
the extreme rays of the cone.

Without loss of generality, we can suppose that A it is full rank, that is, its number of
rows is equal to its rank k. Indeed, if it is not, one can select k independent rows in A,
R1(A), . . . , Rk(A) such that Ay = 0⇔ (R1(A), . . . , Rk(A))Ty = 0.

If k = n, then the kernel of A is reduced to {0}, and it has no positive invariant. Let us
assume k < n. We re-order A in such a way that the k first columns of A form an independent
family of vectors, that is, A = (A1, A2) with A1 nonsingular. We can similarly re-order y in
two parts yT = (yT

1 , y
T
2 ). It is equivalent that Ay = 0 and that y1 = −A−1

1 A2y2. Therefore,
the set of nonnegative elements of the kernel of A has the following equivalent representation
in the smaller vectorial space Rn−k.

{x ∈ Rn−k | x > 0, A−1
1 A2x 6 0} .

Moreover, computing the extreme rays of this cone amounts to computing the vertices of the
polytope generated by its intersection with the hyperplane given by the equality

∑
i xi = 1:

{x ∈ Rn−k | x > 0, A−1
1 A2x 6 0,

n−k∑
i=1

xi = 1} ,

which itself admits an equivalent representation in the smaller vectorial space Rn−k−1 by re-
placing the last coordinate by its expression xn−k = 1−

∑n−k−1
i=1 xi:

{x ∈ Rn−k−1 | x > 0, A−1
1 A2x 6 0, 1−

n−k−1∑
i=1

xi > 0} .

The number of vertices of this polytope equals the number of extreme rays of the cone
ker(A) ∩ Rn>0. An upper bound to this number is given by McMullen’s Upper Bound The-
orem, see [McM70]. Note that this polytope has at most (n−k−1) + k + 1 = n facets, in
dimension n − k − 1. Relation (2.4) follows from this upper bound, where we have used the
identities d(n− k − 1)/2e = b(n− k)/2c and d(n− k − 1)/2e+ 1 = b(n− k)/2c. J

To the best of our knowledge, the best upper bound which was known until now, given by
Silva et al., (see for example [SCC92]), was(

|P|
b|P|/2c

)
. (2.5)

It relies on the fact that the support of two minimal-support nonnegative invariants are not
comparable for the inclusion relation, so that an upper bound is the maximal length of an
antichain in the graph of the inclusion relations for a set of size |P|. This, however, does
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not take advantage of the informations on the rank of the incidence matrix, and yields looser
bounds. As a simple example, for a matrix C with 10 rows and rank 7, the upper bound given
by (2.5) is 252, while the upper bound given by (2.4) is 18. In fact, the largest bounds in (2.4)
are obtained when k ∼ n/3. Yet, for a matrix C with 12 rows and rank 4, the upper bound
given by (2.5) is 924, while we obtain 112 with (2.4). Note also that McMullen proved his upper
bound to be tight for general polytopes.

Algorithms to enumerate the minimal-support P-invariants of a Petri net can be derived
from the polytope representation given in the proof of Lemma 2.10. Known algorithms are the
reverse-search algorithm of Avis and Fukuda, see [Avi00], or the double-description method of
Motzkin ([MRTT53]), for which we refer to Fukuda and Prodon [FP96].

Computing minimal-support invariants of Petri nets has historically relied on “Farkas’ al-
gorithm”, see [Tre88] and references therein. The work of Colom and Silva [CS91] is, to our
knowledge, the only one to identify the relationship with extreme rays of a cone and with
Motzkin’s method. This reference includes a comprehensive comparative study of algorithms
for computing the minimal invariants.

2.3 Timed semantics of Petri nets
In this thesis, the circulation of tokens in a Petri net is restricted to follow some time

constraints. Introducing time in Petri nets fundamentally changes the nature of analyses car-
ried out. Instead of analyzing properties of the reachable markings, one focuses on performance
issues, such as lower and upper bound for event times or route durations, or asymptotic through-
puts.

Still, the structural and untimed analysis of Petri nets is essential for their timed analysis.

2.3.1 Place and transition durations in Petri nets
In a (classical) Petri net, a given execution of a Petri net can be characterized by a sequence

of markings (m(k))k∈K , where K = {0, 1, . . .}, possibly infinite, where exactly one transition
firing occurs between steps k and k + 1. This is what we call a discrete-step execution.
Introducing time in Petri nets amounts to considering executions of the form (m(t))t∈R>0 . We
remark that this includes situations in which the marking execution (m(t)) is fully characterized
by its value at discrete time steps. In such situations, time can be modeled as an integer variable
t ∈ N.

The relationship and consistency between a timed execution of a Petri net and the previous
untimed semantics is given by the following property:

for any s, t ∈ R>0, s < t, m(t) is a reachable marking of m(s) . (2.6)

Of course, depending on the model, “reachable” can also be interpreted as for a fractioned
firing execution. In other words, a timed execution of a Petri net should follow the same kind
of trajectories than an untimed execution. One does simply measure the durations of the steps
of this untimed execution.

Typically, in a time semantics, a token is required to remain in a place at least a certain
amount of time (named “holding duration”), or the firing of a transition is required to last a
certain amount of time (named “firing duration”). A more complex setting is the following,
which introduces a timed concurrency between transitions: when a transition becomes fireable,
this triggers a clock, and the transition fires if it remains fireable until the clock reaches a certain
duration (“enabling duration”. The terminology comes from the expression enabled transition,
which is a synonym for fireable transition). Whatever the type of duration implemented, the
specification of the durations may also vary: a duration can be given as constant for each place
or transition, or varies in a fixed interval, or may be given by a sequence specifying the duration
of each successive event (one duration for each new token entering the place, or for each firing
of a transition).

Durations can also be specified as random variables, having known stochastic distributions:
it is usually required that the corresponding random variables are independent, and that they
are identically distributed for each place or transition. In this case, we speak of a stochastic
timed Petri net. Note that the term “stochastic Petri net” was reserved for memoryless time
distributions (exponential or geometric) in the initial work of Molloy [Mol82].
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Because the markings take integer values (or rational values), a time execution (m(t)) is
a piecewise constant function of time. It will be typically required to be a càdlàg function,
that is, a function which is right continuous and has a left limit at any time. If (tn)n∈N is
the increasing sequence of times where a jump of some component of (m(t)) occurs, then, the
sequence (m(tn))n∈N should be required to be such that, for any n, m(tn+1) is a reachable
marking of m(tn). However, at a given jumping time tn, several events may happen. Therefore,
a timed semantic should specify how such events interact at a given time. For example, if
two transitions become fireable at time tn, the firing of one can prevent the firing of the other
one. Besides, a timed semantics could lead to a Zeno behavior, that is, an infinite sequence of
jumping times (tn)n∈N that has a finite limit. A Zeno behavior of another, more trivial kind
occurs if tokens encounter holding (or firing) durations of value 0 in a cycle: this would lead to
infinite cycling at a fixed time. Durations of value 0 along a cycle of places and transitions are,
in general, forbidden (or the probability of this event should be 0).

In timed semantics in which durations are independent, memoryless random variables, and
token routing is deterministic or Bernoulli, it can be shown that the Petri net has the Markov
property. Moreover, with probability one, at most one transition fires at any time. We speak of
aMarkovian Petri net. The processes of the marking states (m(t))t>0 are then a continuous-
time Markov chain. This yields instructive results on the marking executions.

These different notions of time in Petri nets have led to a large variety of models, although
a number of them were shown to have the same modeling power. Merlin and Farber’s model
[MF76] is recognized as the first model extending Petri nets by a time notion. A detailed review
and analysis on the role of time in (non stochastic) Petri nets is the one of Bowden [Bow00].
See further references therein. A reference on stochastic timed extensions of Petri nets is the
book of Marsan et al. [MBC+94].

Petri nets with a time semantics raise completely different issues and analyses than the
original model. In a timed system, one would like to compute quantities such as waiting delays,
reaching times and path journey delays, or throughputs at transitions, or to provide lower or
upper bounds to these quantities. The set of states that can be reached in a timed semantics
may be smaller than the reachability set of the corresponding untimed Petri net, because some
sequences of firings would not be compatible with the given time constraints.

2.3.2 Differential Petri nets

Consider a Petri net with non integer firings of transitions and a timed semantics. If, in
a marking execution, the marking jumps are of weak amplitude and are separated by small
time intervals, it would look natural to consider the limit of such marking when both this jump
amplitude and time interval length go tend to zero. This implies that the markings become a
continuous function of time. In some cases, it can be shown that the markings are solutions of
an ordinary differential system (or of a differential system with discontinuous righthandside).
We use the loose term differential Petri nets to designate such systems.

The first introduction of differential Petri nets was proposed by David and Alla [DA87]
in the very same work that introduced Petri nets with fractioned firings. Indeed, solutions of
differential equations appear as the natural timed semantics for Petri nets with fractioned firings.
The two authors soon proposed two different firing semantics, a “constant speed continuous
Petri net” and a “variable speed continuous Petri net”. The quality of both approximations for
various classes of Petri nets was an important question in the years 1990-2000. It is addressed
for example in [MRS06] for the class of live, consistent, conservative, connected Petri nets.

It was underlined later on that such models could also be understood as a fluid approxima-
tion (and sometimes as a fluid limit) of Petri nets with stochastic times. To our knowledge,
the first reference pointing out the relationship between fluid limits of queueing networks and
“fluidization” of Petri nets is [BGM98]. Since then, it became a known fact in this track of
research, see for example [RS00] and [VMJS13].

Observe that a differential Petri net can be obtained as the limit of a Petri net with a
discrete-event semantics. It is not clear however if, at this limit, the continuous time execution
still follows the important property (2.6). We did not find any proof of this nature in the
literature, in a differential setting.
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Figure 2.3 – Two clusters and their upstream places. Left: a trivial cluster, reduced to a single
transition. Right: a more elaborate cluster.

2.4 Routing rules in Petri nets
In general, for a given marking in a Petri net, several transitions are fireable, but the firing

of one of them usually makes some others not fireable afterwards: a Petri net has in general
not the persistency property. Moreover, one firing of transition may yield significant changes
on the reachability set, for example, it may lead to a deadlock in the discrete setting, or some
transitions may become dead in the fractioned firings setting. In fact, if the reachability sets of
markings of a Petri net are forward invariants, they still encounter branching at some states.
The analysis and problems we described in Section 2.1 and 2.2 mostly consisted in characterizing
the behavior of the Petri net under arbitrary firing sequences of transitions, regardless of the
branchings.

Introducing time in Petri net, as is developed in Section 2.3, diminishes the number of
potential branchings, because the different durations of paths in the Petri nets forbids some
markings that were reachable in the untimed setting.

In this section, we consider another category of restrictions on the firing sequences of tran-
sitions that eliminate the potential branching of the reachability set induced by the choice
between several transitions fireable in output of a place. We call these restrictions routing
rules, or routing policy.

2.4.1 Introducing routing rules
A routing rule is meant to resolve conflicts occurring in clusters:

I Definition 12. Let N be a Petri net.
• We say that two transitions q and q′ are in structural conflict if they have common
upstream places, that is, if qin ∩ q′in 6= ∅.

• Let us denote q ∼c q′ if q and q′ are in structural conflict. It is a reflexive and symmet-
ric relation. Its transitive closure induces a partition of Q in equivalence classes. The
equivalence class of transition q is denoted cl[q], and it is named the cluster of q.

An example of clusters is given in Figure 2.3.
We extend the notion of set of backward or forward neighbors of a node, introduced in

Section 2.1.1, to a set of node, that is, if X ⊆ P ∪Q, X in = ∪x∈Xxin and Xout = ∪x∈Xxout. In
this way, we can denote the upstream set of a cluster of a transition q as cl[q]in. The partition
of Q into clusters induces a partition of P into upstream sets of clusters.

Routing rules require us to distinguish between enabled transitions and fireable transitions.
In a context with routing rules, we say that a transition is enabled if it is fireable for the
corresponding untimed Petri net (without routing rules). A transition is fireable if it is enabled
and if, moreover, its firing respects the routing rules given in the Petri net.

We say that a transition firing disables a transition q if q was enabled before this firing and
is not enabled afterwards.

I Lemma 2.11. Let q, q′ ∈ Q. If cl[q] 6= cl[q′], and if q and q′ are enabled, then the firing of
q does not disable q′.

Proof. After the firing of q, the marking strictly decreases only in places of qin, which is a
subset of cl[q]in. As cl[q]in ∩ cl[q′]in = ∅, the marking of the upstream places of q′ does not
decrease, so that q′ remains enabled. J

I Definition 13. Let (N,m0) be a marked Petri net. If, with marking m0, transitions q and q′
are enabled, but if the firing of one disables the other, we say that there is a conflict between
q and q′.
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aqp

µ

1−µ

µaqp

(1 − µ)aqp

Figure 2.4 – Fluid approximation of a Bernoulli routing. Left: the tokens are routed with
probability µ to the lower transition, and with probability 1−µ to the upper transition. Right:
the place is duplicated, and only one transition is available in output of each of both places.
The valuations of the input arcs of the places are multiplied by a coefficient µ (or 1−µ).

Remark that a conflict situation may be asymmetric, that is, the firing of q may disable q′,
while the firing of q′ does not disable q.

A routing rule resolves a conflict, by choosing which of the transitions to fire in a situation of
conflict. Setting routing rules for all the clusters of a Petri net yields a single-valued dynamics
of the Petri net: for a given realization of the random quantities, there is a unique possible
state evolution in the net.

The following routing rules are standard in Petri net semantics (see for example [BGM06]):
Pre-allocation routing A token entering in a place is allocated to an output transition,

regardless of which transitions are enabled or disabled (if the token does not enable the selected
output transition, it waits until the transition becomes fireable). One associates with each place
p a function Ap : N → pout determining the output transition of the n-th token entering the
place. This function can also depend on which input transition brought the token in the place,
or on the date of entrance of the token, in the case of a timed Petri net.

Bernoulli routing In this case, the output transition of a token in a place is a random
variable. For different tokens or different places, these random variables are independent. They
are also identically distributed for each place, with a fixed probability associated with each
output transition.

Race policy This kind of routing holds for timed Petri nets with enabling durations, that
is, a transition can fire only after it remains enabled during a given time. In this case, if,
moreover, one requires that a transition fires as soon as possible, there is a race between
the different output transitions of a place: the first transition that becomes fireable fires, and
therefore, disables transitions with which it is in conflict. One speaks of a race policy in the case
when the enabling time is given by a Poisson distribution. The parameter of this distribution
depends only on the transition.

We call choice-free the Petri nets with no structural conflict, that is, each place has a single
output transition. In these nets, routing is always trivial. Choice-free Petri nets are analyzed
in Teruel and Silva [TCS97]. They are a subclass of free-choice Petri nets.
I Remark 2.12 (Fluid approximation of Bernoulli routing). The following approximation is
standard for systems with routing involving probability distributions: instead of routing a token
with probability µ to transition q1 and 1−µ to transition q2, send a fraction µ of the token to
transition q1 and 1−µ to transition q2. This is what we call a fluid approximation. The
marking becomes a continuous value, and fractions of tokens circulate in the Petri net.

This also corresponds to transforming a cluster with structural conflict into a choice-free
configuration, see Figure 2.4.

If we apply this routing to a whole Petri net, we transform a Petri net into a choice-free
Petri net, in which all the routing is trivial. Gaujal and Giua [GG04b] show that the analysis
of the corresponding stationary routing continuous Petri net is much easier. In particular, the
asymptotic throughputs can be computed by linear programming (for a time semantics with
fixed holding times in each place).

2.4.2 Priority routing
The notion of priority routing that we consider in this dissertation is restricted to clusters.

In a cluster with priority routing, a situation of conflict between two transitions is always
arbitrated in favor of the same transition: this transition has priority over the other one.
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Figure 2.5 – A simple cluster with a priority routing.

More formally, in a cluster cl[q] of size c, the transitions are ranked according to a total
ordering, q1 < q2 < · · · < qc. The smallest transition q1 has the highest priority (we need it to
appear before the other ones in our order), and the largest transition qc has the lowest priority.
A priority routing of a token entering in an upstream place of this cluster corresponds to
assigning this token (after a potential holding time) to the transition with highest priority
among the transitions it enables. In other words, a transition in a cluster is fireable only if it
is enabled, and if no transition of the cluster with higher priority is enabled.

Graphically, the priority ranking of transition in a cluster is (partially) represented by
multiple arrows on place-transition arcs: the more chevrons there are on a place-transition arc,
the higher the priority of the transition is, among the output transitions of the upstream place.

In the following chapters, our analysis of priority routing will focus on elementary situations,
in which only two transitions are in a structural conflict, like the one in Figure 2.5. More com-
plicated cluster configurations can be solved with the same kind of analyses, up to considering
more elaborate equations.
I Remark 2.13 (Modeling power). Authorizing multiple priorities in a cluster has the mod-
eling power of a Turing machine. The proof consists in transforming a Petri net with priorities
in a Petri net with inhibitor arcs, see the construction of Chiola, Donatelli, and Franceschinis
[CDF91], which applies to our local priority rule. A place–transition inhibitor arc does not send
tokens to the downstream transition, but disables it as soon as its upstream place is non empty.
It was shown by Peterson [Pet81] that Petri nets with inhibitor arcs have the computation
power of a Turing machine.

Solving the emergency physician paradox We propose a construction, involving
Bernoulli routing and priority routing, modeling the emergency physician routing behavior
in a Petri net.

Suppose that we have the configuration in Figure 2.6(a): transitions q1 and q2 are in struc-
tural conflict, because they share the same upstream place p0. We want to model the following
routing rule: if a new token in place p0 enables both transitions q1 and q2, then it is routed
according to a random draw (assigning probability 1/2 to each choice). Otherwise, the token is
routed towards the transition it enables, if any.

Our construction in Figure 2.6(b), which involves Bernoulli routing downstream place p0,
and priority routing for cluster {q1, q2, q

′
1, q
′
2}, corresponds to this routing rule. Indeed, if a

token enters place p0, it is allocated to transition qa with probability 1/2, and to transition qb
otherwise. As transitions q1 and q2 have priority, if both p1 and p2 are non empty, then the
token that entered place p0 enters place p3 with probability 1/2 and place p4 with probability
1/2. Otherwise, suppose for example that place p2 is empty. Then, the token is routed towards
place p3, either by the firing of transition q1, or by transition q′1, depending on the place towards
which it was routed, pa or pb. In any case, if exactly one of the places p1 or p2 is empty, the
token does not stay waiting, but is routed towards the other part of the network.

The methods developed in Chapters 3 and 4 allow one to compute the stationary regimes of
Petri nets with priority routing. One can show that the expected asymptotic throughput (1.1)
is reached for the Petri net of Figure 1.3 transformed with this construction.

2.5 Three Petri net examples
The two Petri nets with priorities introduced in this chapter serve as running examples for

Chapter 3 and Chapter 4. The first one is a simplified model of the emergency call center
mentioned in the introduction. The second one is a well-known system in the literature on
Petri nets.
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Figure 2.6 – A cluster configuration (a) transformed in (b) to account for the “emergency
physician” routing rule. Transitions q1 and q2 have priority over transitions q′1 and q′2. In the
emergency physician Petri net of Figure 1.3, place p0 would correspond to place pm.

The third Petri net presented in this section is a simplification of the first one, used in
Chapter 5.

2.5.1 A simplified Petri net model of a two-level emergency call center
In this section, we describe a call center answering emergency calls according to the two

level instruction procedure developed in Section 1.1. In the new organization planned by PP
together with BSPP [RR15], the emergency calls to the police (number 17), to the firemen
(18), and untyped emergency calls (European number 112) are dealt with according to a unified
procedure, allowing a strong coordination. Another important feature of this organization is
that it involves a two level treatment. The present example is designed, so as to analyzing the
key features of this new architecture, the priority routing of extremely urgent calls, and the
blocking of level-1 operators when level-2 operators are busy, while keeping the model as simple
as possible. Hence, we discuss a simplified model, for academic purposes.

The first level operators filter the calls and assign them to three categories: extremely urgent
(potentially life threatening situation), urgent (needing further instruction), and non urgent
(e.g., call for advice). Non-urgent calls are dealt with entirely by level 1 operators. Extremely
urgent and urgent calls are passed to level 2 operators. An advantage of this procedure lies in
robustness considerations. In case of events generating bulk calls, the access to level 2 experts is
protected by the filtering of level 1. This allows for better guarantees of service for the extremely
urgent calls. Every call qualified as extremely urgent generates a 3-way conversation: the level 1
operator stays in line with the calling person when the call is passed to the level 2 operator.
Proper dimensioning of resources is needed to make sure that the synchronizations between
level 1 and level 2 operators created by these 3-way conversations do not create bottlenecks.
We focus on the case where the system is saturated, that is, there is an infinite queue of calls that
have to be handled. We want to evaluate the performance of the system, i.e. the throughput
of treatment of calls by the operators.

The call center is modeled by the timed Petri net of Figure 2.7. We use the convention that
all transitions can be fired instantaneously. Holding times are attached to places.

Let us give the interpretation in terms of places and transitions. The number of operators of
level 1 and 2 is equal to N1 and N2, respectively. The marking in places p1 and p2, respectively,
represents the number of idle operators of level 1 or 2 at a given time. In particular, the number
of tokens initially available in places p1 and p2 is N1 and N2. The initial marking of other
places is zero. A firing of transition q1 represents the beginning of a treatment of an incoming
emergency call by a level 1 operator. The arc from place p1 to transition q1 indicates that
every call requires one level 1 operator. The routing from transition q1 to transitions q2, q3, q4
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Figure 2.7 – Simplified Petri net model of the Parisian 17-18-112 emergency call center. Blue
arrows do not belong to the Petri net and symbolize the entrance and exit of calls in the system.

represents the qualification of a call as extremely urgent, urgent, or non urgent (advice). The
proportions of these calls are denoted by µext, µur, and µadv, respectively, so that µext + µur +
µadv = 1. The proportions are known from historical data. The instruction of the call at level
1 is assumed to take a deterministic time τext, τur, or τadv, respectively, depending on the type
of call.

After the treatment of a non urgent or urgent call at level 1, the level 1 operator is made
immediately available to handle a new call. This is represented by the arcs leading to place
p1 from the transitions located below the places with holding times τur and τadv. Before an
idle operator of level 2 is assigned to the treatment of an urgent call, which is represented by
the firing of transition q6, the call is stocked in the place located above q6. In contrast, the
sequel of the processing of an extremely urgent call (transition q5) requires the availability of
a level 2 operator (incoming arc p2 → q5) in order to initiate a 3-way conversation. The level
1 operator is released only after a time τtr corresponding to the duration of this conversation.
This is represented by the arc q7 → p1. The double arrow depicted on the arc p2 → q5 means
that level 2 operators are assigned to the treatment of extremely urgent calls (if any) in priority.
The holding times τ ′ext and τ ′ur represent the time needed by a level 2 operator to complete the
instruction of extremely urgent and urgent calls respectively.
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Figure 2.8 – The SR Petri net. Place p1 is subject to priority.

2.5.2 The Petri net of Silva and Recalde (2002)
The first occurrence of this Petri net we are aware of is in Silva and Recalde [SR02, Fig.14].

Therefore, in the following, we refer to it as the SR Petri net. This Petri net example appeared
many times since then, first as an example in which the throughput of the continuous model is
lower than the throughput of the discrete model, and more recently as an example in which the
asymptotic throughputs, expressed as functions of the firing rates or of the initial markings,
encounter discontinuities and non monotonicities [JRS05, Mey12, NGRTS16]. It is of interest
to notice that these phenomena appear, even in a consistent, conservative Petri net (but not
free-choice).

In this Petri net, place p1 is subject to a conflict between downstream transitions q1 and q2.
In all the references cited above, the downstream routing at place p1 encounters race policy.
Here, we implement priority routing, and assign priority to transition q1.

The incidence matrix of the Petri net is given by

C =


−2 −1 1 2
−1 1
1 −1
1 −1

1 −1

 .

It admits one Q-invariant and two P-invariants:

x =
(
1 1 1 1

)T

y1 =
(
1 0 1 1 2

)T

y2 =
(
0 1 1 0 0

)T

These two P-invariants are also the two minimal P-invariants of the net. Their sum y1 + y2 is
a positive invariant, so that the system is conservative: the weighted sum of markings of the
net is a constant.

2.5.3 The equivalent Petri net model of Chapter 5
In the stochastic model of Chapter 5, we, again, simplify our emergency call center model,

by considering a unique class of urgent calls, all being kept in line by level 1 operators until a
level 2 operator handles them.

This corresponds to the Petri net of Figure 2.9.
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p1

C1

p2

C2

q1

q2 q4

q5

q7

π
urgent

1−π
advice

Figure 2.9 – The two-class model of Chapter 5. This corresponds to the model of Figure 2.7,
in which the sequence of places indicating the circulation of urgent calls has been removed.
The places corresponding to the extremely urgent calls circulation now correspond to all urgent
calls, which are all kept in line between level 1 and level 2.
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The results of this chapter, without the proofs, are published in the proceedings of the
conference FORMATS [ABG15]. On top of the proofs of our theorems, we also established
and proved the converse of one of the main theorem: it was already stated that the counter
variables of the execution of a Petri net with free choice and priority routing are solutions of a
piecewise linear dynamical system with delays. We also establish that a càdlàg, nondecreasing
solution of such dynamical system is also the counter variable of an execution of the Petri net.
We have also added to this chapter the analysis of a second example, and the corresponding
numerical application.

3.1 Introduction
In the present chapter, we consider a first, natural modeling of our emergency call center as

a Petri net with discrete firings and a discrete time evolution. In our model, places are given a

33
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constant holding time. Free choice conflicts are solved by a stationary probability distribution
(with fixed probability, a token is routed towards a given downstream transition), and non free
choice situations are handled with priority rules.

This leads us to analyze the class of Petri nets in which the places can be partitioned in
two categories: the routing in certain places is subject to priority rules, whereas the routing at
the other places is free choice. We present an algebraic approach which allows to analyzing the
performance of such timed systems.

Counter variables determine the number of firings of the different transitions as a function
of time. A main result of this chapter shows that, for the earliest firing rule, the counter
variables are the solutions of a piecewise linear dynamical system, and that, moreover, any
nondecreasing solution of this dynamical system corresponds to a correct execution of the Petri
net (Section 3.2). Then, we introduce a fluid approximation in which the counter variables are
real valued, instead of integer valued. Our second main result shows that in the fluid model,
the affine stationary regimes are precisely the solutions of a set of lexicographic piecewise linear
equations, which constitutes a polynomial system over a tropical (min-plus) semifield of germs
(Section 3.3). The latter is a modification of the ordinary tropical semifield. In essence, this
result shows that computing affine stationary regimes reduces to solving tropical polynomial
systems.

Solving tropical polynomial systems is one of the most basic problems of tropical geometry.
The latter provides insights on the nature of solutions, as well as algorithmic tools. In particular,
the tropical approach allows one to determine the different congestion phases of the system.

We apply this approach to the case study of PP and BSPP. For the simplified model of the
emergency call center, introduced in Section 2.5.1, we solve the associated system of tropical
polynomial equations and arrive at an explicit computation of the different congestion phases,
depending on the ratio N2/N1 of the numbers of operators of level 2 and 1 (Section 3.4).
Our analytical results are obtained only for the approximate fluid model. However, they are
confirmed by simulations in which the original semantics of the Petri nets (with integer firings)
is respected (Section 3.6).

However, computations on this example and a second one also show that affine stationary
regimes are not the only possible asymptotic regimes of the fluid approximation of the dynamics.
Periodic behaviors may also be reached, yielding a different throughput (Section 3.6.2).

Related work.
Our approach finds its origin in the maxplus modeling of timed discrete event systems,

introduced by Cohen, Quadrat and Viot and further developed by Baccelli and Olsder,
see [BCOQ92, HOvdW06] for background. The idea of using counter variables already appeared
in their work. However, the classical results only apply to restricted classes of Petri nets, like
event graphs, or event graphs with weights as, for instance, in recent work by Cottenceau,
Hardouin and Boimond [CHB14]. The modeling of more general Petri nets by a combination
of min-plus linear constraints and classical linear constraints was proposed by Cohen, Gaubert
and Quadrat [CGQ98, CGQ95] and Libeaut and Loiseau (see [Lib96]). The question of analyz-
ing the behavior of the dynamical systems arising in this way was stated in a compendium of
open problems in control theory [Plu99]. For this model, Gaujal and Giua [GG04b] proved the
asymptotic throughput to be solution of a linear program. A key discrepancy with the previ-
ously developed min-plus algebraic models lies in the semantics of the Petri nets. The model
of [CGQ98, CGQ95, GG04b] requires the routing to be based on open loop preselection policies
of tokens at places, and it does not allow for priority rules. This is remedied in the present
work: we show that priority rules can be written in a piecewise linear way, leading to a rational
tropical dynamics. However, as is shown in numerical experiments, the stationary through-
put computed in the case with priority routing does not always correspond to the asymptotic
throughput of the dynamics, contrarily to the case with preselection policies [GG04b].

Our approach is inspired by a work of Farhi, Goursat and Quadrat [FGQ11], who devel-
oped a min-plus model for a road traffic network. The idea of modeling priorities by rational
min-plus dynamics first appeared there. By comparison, one aspect of novelty of the present
approach consists in showing that this idea applies to a large class of Petri nets, mixing free
choice and priority routing, so that its scope is not limited to a special class of road traffic
models. Moreover, we provide a complete proof that these Petri nets follow the rational trop-
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ical dynamics, based on a precise analysis of the counter variables along an execution trace.
Finally, the approach of [FGQ11] was developed in the discrete time case. A novelty of the
present work consists in the treatment of the continuous time. This requires the introduction of
a symbolic perturbation technique, working with semifield of germs. This technique was used
in [GG98] for algorithmic purposes. It has been recently applied by Allamigeon, Fahrenberg,
Gaubert, Katz, and Legay to the analysis of timed systems [AFG+14].

The analysis of timed Petri nets is a major question, which has been extensively studied.
We refer to [BD91, AN01, GRR04, JJMS11] for a non-exhaustive account on the topic, and
to [BV06, LRST09, BJS09] for examples of tools implementing these techniques. An important
effort has been devoted to the comparison of timed Petri nets with timed automata in terms of
expressivity, see for instance [BCH+05, Srb08]. The approaches developed in the aforementioned
works aim at checking whether a given specification is satisfied (for instance, reachability, or
more generally, a property expressed in a certain temporal logic), or at determining whether
two Petri nets are equivalent in the sense of bisimulation. Hence, the emphasis is on issues
different from the present ones: we focus on the performance analysis of timed Petri nets, by
determining the asymptotic throughputs of transitions.

3.2 Piecewise linear dynamics of timed Petri nets with
free choice and priority routing

3.2.1 Timed Petri nets: notation and semantics
A timed Petri net consists of a set P of places and a set Q of transitions, in which each

place p ∈ P is equipped with a holding time τp ∈ R>0 as well as an initial marking Mp ∈ N.
Given a place p ∈ P, we respectively denote by pin and pout the sets of input and output
transitions. Similarly, for all q ∈ Q, the sets of upstream and downstream places are denoted
by qin and qout respectively.

The semantics of the timed Petri net which we use in this chapter is based on the fact that
every token entering a place p ∈ P must stay at least τp time units in place p before becoming
available for a firing of a downstream transition. More formally, a state of the semantics of the
Petri net specifies, for each place p ∈ P, the set of tokens located at place p, together with the
age of these tokens since they have entered place p. In a given state σ, the Petri net can evolve
into a new state σ′ in two different ways:

(i) either a transition q ∈ Q is fired, which we denote σ q−→ σ′. This occurs when every
upstream place p contains a token whose age is greater than or equal to τp. The transition is
supposed to be instantaneous. A token enters in each downstream place, and its age is set to 0;

(ii) or all the tokens remain at their original places, and their ages are incremented by the
same amount of time d ∈ R>0. This is denoted σ

d−→ σ′.
In the initial state σ0, all the tokens of the initial marking are supposed to have an “infinite”

age, so that they are available for firings of downstream transitions from the beginning of the
execution of the Petri net. The set of relations of the form q−→ and d−→ constitutes a timed
transition system which, together with the initial state σ0, fully describe the semantics of the
Petri net. Note that in this semantics, transitions can be fired simultaneously. In particular, a
given transition can be fired several times at the same moment. Recall that every holding time
τp is positive, so that we cannot have any Zeno behavior.

In this setting, we can write any execution trace of the Petri net as a sequence of transitions
of the form:

σ0 d0

−→ q0
1−→ q0

2−→ . . .
q0
n0−→ σ1 d1

−→ q1
1−→ q1

2−→ . . .
q1
n1−→ σ2 d2

−→ . . . (3.1)

where d0 > 0 and d1, d2, · · · > 0. In other words, we consider traces in which we remove all
the time-elapsing transitions of duration 0, except the first one, and in which time-elapsing
transitions are separated by groups of firing transitions occurring simultaneously. We say that
a transition q is fired at the instant t if there is a transition q−→ in the trace such that the sum
of the durations of the transitions of the form d−→ which occur before in the trace is equal to t.
The state of the Petri net at the instant t refers to the state of the Petri net appearing in the
trace (3.1) after all transitions have been fired at the instant t.
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(a) (b)

p

pout+ pout−

(c)

Figure 3.1 – Conflict, synchronization and priority configurations.

In the rest of the chapter, we stick to a stronger variant of the semantics, referred to as
earliest behavior semantics, in which every transition q is fired at the earliest moment possible.
More formally, this means that in any state σ arising during the execution, a place p is allowed
to contain a token of age (strictly) greater than τp only if no downstream transition can be
fired (i.e. no transition q−→ with q ∈ pout can be applied to σ). The motivation to study the
earliest behavior semantics originates from our interest for emergency call centers, in which all
calls are supposed to be handled as soon as possible.

3.2.2 Timed Petri nets with free choice and priority routing
In this chapter, we consider timed Petri nets in which places are free choice, or subject to

priorities. This class of nets includes our model of emergency call center. Recall that a place
p ∈ P is said to be free choice if either |pout| = 1, or all the downstream transitions q ∈ pout
satisfy qin = {p}. The main property of such a place is the following: if one of the downstream
transitions is activated (i.e. it can be potentially fired), then the other downstream transitions
are also activated. A place is subject to priority if the available tokens in this place are
routed to downstream transitions according to a certain priority rule. We denote by Ppriority the
set of such places. We assume that no transition has more than one upstream place subject
to priority, that is, for any transition q, the set qin ∩ Ppriority has at most one element. This
allows to avoid inconsistency between priority rules (e.g. two priority places acting on the same
transitions in a contradictory way). For the sake of simplicity, we also assume in the following
that every p ∈ Ppriority has precisely two downstream transitions, which we respectively denote
by pout+ and pout− . Then, if both transitions are activated, the tokens available in place p are
assigned to pout+ as a priority. Equivalently, in the execution trace of the Petri net, we have
σ →pout

− σ′ only if the transition →pout
+ cannot be applied to the state σ. We remark that it

is possible to handle multiple priority levels, up to making the presentation of the subsequent
results more complicated.

To summarize, there are three possible place/transition patterns which can occur in the
timed Petri nets that we consider, see Figure 3.1. The first two involve only free choice places,
and are referred to as conflict and synchronization patterns respectively. We denote by
Pconflict the set of free choice places that have at least two output transitions, and by Qsync
the set of transitions such that every upstream place p satisfies |pout| = 1. By definition, we
have Pconflict ∩ (Qsync)in = ∅. The third configuration in Figure 3.1 depicts a place p subject
to priority. In order to distinguish pout+ and pout− , we depict the arc leading to the transition
pout+ by a double arrow. By assumption, the places r 6= p located upstream pout+ and pout− are
non-priority, so that they are free-choice and have only one output transition, as depicted in
Figure 3.1(c).

3.2.3 Piecewise linear representation by counter variables
Since we are interested in estimating the throughput of transitions in a Petri net, we associate

with any transition q ∈ Q a counter variable zq from R to N such that zq(t) represents the
number of firings of transition q that occurred up to time t included. Similarly, given a place
p ∈ P, we denote xp(t) the number of tokens that have entered place p up to time t included.
Note that the tokens initially present in place p are counted. More formally, xp(t) is given by
the sum of the initial marking Mp and of the numbers of firings of transitions q ∈ pin which
occurred before the instant t (included). We extend the counter variables xp and zq to R<0 by
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setting:

xp(t) = Mp , zq(t) = 0 , for all t < 0 . (3.2)

By construction, the functions xp and zq are non-decreasing. Besides, since they count tokens
up to time t included, they are càdlàg functions, which means that they are right continuous
and have left limits at any point. Given a càdlàg function f , we denote by f(t−) the left limit
at the point t.

The goal of this section is to describe the dynamics of timed Petri nets with free choice
and priority routing by means of a set of piecewise linear equality constraints over the counter
variables. We provide an informal presentation of these constraints. First observe that we
necessarily have:

∀p ∈ P , xp(t) = Mp +
∑
q∈pin

zq(t) , (3.3)

as the initial markingMp is counted in xp(t), and any token entering place p up to instant tmust
have been fired from an upstream transition q ∈ pin before. In a similar way, if p ∈ Pconflict, the
total number of times the downstream transitions have been fired up to instant t is necessarily
equal to the number of tokens which entered place p before time t− τp (included). This is due
to the fact that if a token enters p at the instant s, then it is consumed exactly at the instant
s+ τp (by definition of the earliest behavior semantics). This yields the identity:

∀p ∈ Pconflict ,
∑
q∈pout

zq(t) = xp(t− τp) . (3.4)

Now consider a transition q ∈ Qsync. The number of times this transition is fired at the instant
t is given by zq(t) − zq(t−). In each upstream place p ∈ qin, the number of tokens which are
available for firing q is equal to xp(t − τp) − zq(t−). Indeed, since place p does not have any
other output transition, the total number of tokens which have left place q until the instant t
equals zq(t−). By definition of the earliest behavior semantics, the number of firings of q at the
instant t must be exactly equal to the minimum number of tokens available in places p ∈ qin.
If we denote min(x, y) by x ∧ y, we consequently get:

∀q ∈ Qsync , zq(t) =
∧
p∈qin

xp(t− τp) . (3.5)

Finally, let us take a place p ∈ Ppriority. Since the transition pout+ has priority over pout− , the
quantity zpout

+
(t) − zpout

+
(t−) must be equal to the minimal number of tokens available in the

upstream places, including p. For every place r ∈ (pout+ )in distinct from p, the number of
available tokens is given by xr(t − τr) − zpout

+
(t−) (recall that pout+ is the only downstream

transition of r). In contrast, the number of tokens available for firing in place p is equal to
xp(t− τp)− (zpout

+
(t−) + zpout

−
(t−)). We deduce that we have:

∀p ∈ Ppriority , zpout
+

(t) =
(
xp(t− τp)− zpout

−
(t−)

)
∧

∧
r∈(pout

+ )in

r 6=p

xr(t− τr) . (3.6)

The number of tokens from place p which are available for the transition pout− after the firings
of pout+ is given by xp(t− τp)− (zpout

+
(t−) + zpout

−
(t−))− (zpout

+
(t)− zpout

+
(t−)). Hence, we obtain:

∀p ∈ Ppriority , zpout
−

(t) =
(
xp(t− τp)− zpout

+
(t)
)
∧

∧
r∈(pout

− )in

r 6=p

xr(t− τr) . (3.7)

We summarize the previous discussion by the following result:

I Theorem 3.1. Given any execution trace of a timed Petri net with free choice and priority
routing, the counter variables xp (p ∈ P) and zq (q ∈ Q) satisfy the constraints (3.3)–(3.7) for
all t > 0, together with the initial conditions (3.2).

Conversely, any nondecreasing, càdlàg solution of (3.3)–(3.7), with initial conditions (3.2),
consists in counter variables of an execution trace of a timed Petri net with free choice and
priority routing.
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We prove the first statement in Section 3.2.5, and its converse in 3.2.6. Notice that, if we do not
restrict to the earliest behavior semantics, the constraints (3.4)–(3.7) are relaxed to inequalities.

So far, we have described the dynamics of timed Petri nets in the continuous time setting.
However, since the Petri net of our case study is a model of a real system which is implemented
in silico, we need to investigate the dynamics in discrete time as well. In more details, assuming
that all the quantities τp are multiple of an elementary time step δ > 0, the discrete-time version
of the semantics of the Petri net restricts the transitions d−→ to the case where d is a multiple
of δ. In this case, on top of being càdlàg, the functions xp and zq are constant on any interval
of the form [kδ, (k + 1)δ) for all k ∈ N. Then, we can verify that the following result holds:

I Proposition 3.2. In the discrete time semantics, the counter variables xp and zq satisfy the
constraints (3.3)–(3.7) for all t > 0, independently of the choice of the elementary time step δ.

In other words, the dynamics in continuous-time is a valid representation of the dynamics in
discrete time which allows to abstract from the discretization time step. We also note that we
can refine the constraint given in (3.6) by replacing the left limit zpout

−
(t−) by an explicit value:

∀p ∈ Ppriority , zpout
+

(t) =



(
xp(t− τp)− zpout

−
(t− δ)

)
∧

∧
r∈(pout

+ )in , r 6=p

xr(t− τr) if t ∈ δN ,

(
xp(t− τp)− zpout

−
(t)
)

∧
∧

r∈(pout
+ )in , r 6=p

xr(t− τr) otherwise.

(3.8)

(Here and below, we denote by δN the set {0, δ, 2δ, . . .}.) The system formed by the con-
straints (3.3)–(3.5), (3.7), (3.8) is referred to as the δ-discretization of the Petri net dynamics.

The only source of non-determinism in the model that we consider is the routing policy
in the conflict pattern (Figure 3.1(a)). In the sequel, we assume that the tokens are assigned
according to a stationary probability distribution. Given a free choice place p ∈ Pconflict, we
denote by πqp the probability that an available token is assigned to the transition q ∈ pout.
In the following, we consider a fluid approximation of the dynamics of the system, in
which the xp and zq are non-decreasing càdlàg functions from R to itself, and the routing policy
degenerates in sharing the tokens in fractions πqp. Equivalently, the fluid dynamics is defined
by the constraints (3.3)–(3.7) and the following additional constraints:

∀p ∈ Pconflict , ∀q ∈ pout , zq(t) = πqpxp(t− τp) . (3.9)

Note that the latter equation is still valid in the context of discrete time. By extension, the
system formed by the constraints (3.3)–(3.5), (3.7)–(3.9) is referred to as the δ-discretization of
the fluid dynamics.
I Remark 3.3 (The case with valuations). We have considered plain Petri nets, that is,
Petri nets whose arcs all have valuation 1. The case with valuations yields more complicated
equations, which we do not detail here. The difficulty lies in the fact that transitions can only
fire a given integer number of tokens from upstream places.

In the case of the fluid approximation, however, we allow transitions to fire fractions of
tokens, so that the dynamics is much simpler. We postpone to the next chapter the extension
of the fluid approximation of the dynamics to the case with valuations: see Equations (4.21).

3.2.4 Application to our Petri net model of emergency call center
We illustrate Theorem 3.1 on the Petri net of Figure 2.7. We point out that in Figure 2.7,

we have omitted to specify the holding time of some places. By default, this holding time is set
to a certain τε > 0, and is meant to be negligible w.r.t. the other holding times.

For simplicity, we omit the counter variables of the places distinct from p1 and p2. Indeed,
each of theses places p has a unique input transition q, and its initial marking is 0. Therefore,
by definition, we have xp(t) = zq(t) for all t, which means that xp can be trivially substituted
in the constraints. Similarly, we omit the transitions which lead to places p1 and p2, as their
counter variables correspond the counter variables of some transitions located upstream and
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shifted by the holding time of the place in between. Finally, we denote by zi the counter
variables of transitions qi, and by xi the counter variables of places pi. We can verify that the
fluid dynamics is then given by the following constraints:

z1(t) = x1(t− τε)
z2(t) = µextz1(t− τε)
z3(t) = µurz1(t− τε)
z4(t) = µadvz1(t− τε)
z5(t) = (x2(t− τε)− z6(t−)) ∧ z2(t− τext)
z6(t) = (x2(t− τε)− z5(t)) ∧ z3(t− τur − τε)
z7(t) = z5(t− τtr)
x1(t) = N1 + z7(t) + z3(t− τur) + z4(t− τadv)
x2(t) = N2 + z7(t− τ ′ext) + z6(t− τ ′ur)

They can be simplified into the following system:

z1(t) = N1 + z5(t− τtr) + µurz1(t− τur − 2τε) + µadvz1(t− τadv − 2τε)
z5(t) =

(
N2 + z5(t− τtr − τ ′ext − τε) + z6(t− τ ′ur − τε)− z6(t−)

)
∧ µextz1(t− τext − τε)

z6(t) =
(
N2 + z5(t− τtr − τ ′ext − τε) + z6(t− τ ′ur − τε)− z5(t)

)
∧ µurz1(t− τur − τε)

(3.10)

which involve the counter variables z1, z5 and z6 only. These variables correspond to the key
characteristics of the system. They respectively represent the number of calls handled at level 1,
and the number of extremely urgent and urgent calls handled at level 2, up to time t. All the
other counter variables can be straightforwardly obtained from z1, z5 and z6.

For the sake of readability, we slightly modify the original holding times τext, τur, . . . to
incorporate the effect of τε. In more details, we substitute τext, τur, τadv, τ ′ext and τ ′ur by τext−τε,
τur − 2τε, τadv − 2τε, τ ′ext − τε and τ ′ur − τε respectively. Then, System (3.10) simply reads as:

z1(t) = N1 + z5(t− τtr) + µurz1(t− τur) + µadvz1(t− τadv)
z5(t) =

(
N2 + z5(t− τtr − τ ′ext) + z6(t− τ ′ur)− z6(t−)

)
∧ µextz1(t− τext)

z6(t) =
(
N2 + z5(t− τtr − τ ′ext) + z6(t− τ ′ur)− z5(t)

)
∧ µurz1(t− τur)

(3.11)

This is the system which we consider in the rest of the chapter.

3.2.5 Proof of the first part of Theorem 3.1
I Lemma 3.4. Suppose that all the holding times τp (p ∈ P) are positive, and consider the
subpart of the execution trace formed by the transitions fired at the instant t, i.e.:

. . .
d−→ σt

− q1−→ q2−→ . . .
qn−→ σt

d′−→ (3.12)

(with d > 0 unless t = 0, and d′ > 0). Then the following two properties hold:

(i) for all p ∈ Ppriority, no transition
pout
−−→ can occur before a transition

pout
+−→ in (3.12);

(ii) any pair of consecutive transitions qi−→qi+1−→ can be switched in (3.12) without changing
the states occurring after, provided that (qi, qi+1) is not equal to (pout

+ , pout
− ) for some

p ∈ Ppriority.

Proof. (i) Suppose that a transition
pout
−−→ occurs before

pout
+−→ in (3.12), i.e. we have a sub-

sequence of the form σ
pout
−−→ σ′ . . .

pout
+−→. As all the holding times are positive, all the tokens

consumed by pout+ are already present in the state σ. In other words, the transition σ
pout

+−→ . . .
is valid in the semantics. This contradicts the priority rule.
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(ii) Consider a pair of consecutive transitions

σi
qi−→qi+1−→ σi+2

such that (qi, qi+1) 6= (pout+ , pout− ). As discussed in the previous case, since the holding times are
positive, the transition qi+1 does not consume tokens produced by the transition qi. Besides,
there is no priority rule between qi and qi+1. Therefore, qi+1 can be fired before qi, and the
sequence σi qi+1−→ qi−→ leads to the same state σi+2. It follows that all the subsequent states
remain identical. J

Let us now prove Theorem 3.1. It is useful to extract the part of the execution trace leading
to the state σt of the Petri net at the instant t. It has one of the following two forms:

. . .
d−→ σt

− q1−→ q2−→ . . .
qn−→ σt

d′−→ (3.13)

or

. . .
d−→ q1−→ q2−→ . . .

qn−→ d′′−→ σt
d′−→ (3.14)

depending on whether some transitions q ∈ Q are fired at the instant t or not. In both cases,
d′, d′′ > 0 and d > 0 unless t = 0, and the durations of the time-elapsing transitions occurring
before the state σt in the trace sum up to t.

In this context, zq(t) counts the number of transitions occurring before σt in the trace, while
xp(t) is given by the sum of Mp and the number of transitions q ∈ pin occurring before σt. The
constraint (3.3) is therefore trivially satisfied by definition of xp(t) and the zq(t).

Consider p ∈ Pconflict. Since we use the earliest behavior semantics and p is free choice, any
token of the initial marking is consumed at the instant 0, and any token brought by an upstream
transition q′ ∈ pin at the instant s > 0 is consumed at the instant s+ τp. As a consequence, we
can build a bijection which maps each initial token with the transition q−→ which consumes it
at the instant 0, and any transition q′−→ occurring at the instant s− τp with the transition q−→
which consumes at the instant s the token brought by q′ to place p. We deduce that

Mp +
∑
q′∈pin

zq′(t− τp) =
∑
q∈pout

zq(t) .

Using the constraint (3.3), this yields to xp(t− τp) =
∑
q∈pout zq(t).

Now, let us take q ∈ Qsync. Consider p ∈ qin. Recall that, by definition of Qsync, q is the
only downstream transition of place p. Therefore, every transition q−→ arising at the instant
s consumes a token from place p. This token is either a initial token from Mp, or a token
brought by a transition q′ ∈ pin fired before the instant s − τp (included). Therefore, we have
zq(t) 6 xp(t− τp). In fact, xp(t− τp)− zq(t) is equal to the number of tokens with age greater
than or equal to τp located in place p in the state σt. At the instant t + ε with 0 < ε < d′,
the age of these tokens will be strictly greater than τp. Therefore, if xp(t − τp) − zq(t) > 0
for all p ∈ qin, the transition q can be fired at the instant t + ε. But this is impossible in the
earliest behavior semantics, since the places p ∈ qin are not allowed to contain tokens with
age strictly greater than τp while their downstream transition q can be fired. We deduce that
xp(t− τp) = zq(t) for some p ∈ qin. This proves (3.5).

Finally, consider p ∈ Ppriority. Using similar arguments as the ones used in the previous case,
we can show that zpout

+
(t) 6 xr(t − τr) for all r ∈ (pout+ )in, r 6= p, and zpout

−
(t) 6 xr(t − τr)

for all r ∈ (pout− )in, r 6= p. Besides, we have zpout
+

(t) + zpout
−

(t) 6 xp(t − τp), since every firing
of the transition pout+ or pout− at the instant s consumes a token of Mp or a token brought by
an upstream transition of p before the instant s − τp. In consequence, as the function zpout

−
is

non-decreasing, we obtain:

zpout
+

(t) + zpout
−

(t−) 6 xp(t− τp) .

In order to prove that (3.6) is satisfied, we distinguish two cases depending on the form of the
trace:
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(i) if the trace is of the form (3.13), then, by Lemma 3.4, we can rewrite the subpart of the
trace as follows:

. . .
d−→ σt

− q′1−→ q′2−→ . . .
q′k−→

pout
+−→ . . .

pout
+−→︸ ︷︷ ︸

k+ times

σ
pout
−−→ . . .

pout
−−→︸ ︷︷ ︸

k− times

σt
d′−→

where k+, k− > 0, and where pout+ and pout− do not appear in the q′i. Then, the quantity
xp(t − τp) − zpout

+
(t) − zpout

−
(t−) corresponds to the number of tokens with age greater than

or equal to τp in the intermediary state σ. If it is positive, and if xr(t − τr) − zpout
+

(t) > 0
for all r ∈ (pout+ )in such that r 6= p, then the transition pout+ can be fired right after the state
σ. This contradicts the priority rule if k− > 0. If k− = 0, we can fire pout+ at the instant
t + ε (0 < ε < d′), which contradicts the definition of the earliest behavior semantics (all the
upstream place of pout+ contains a token older than allowed).

(ii) if the trace is of the form (3.14), then zpout
−

(t−) = zpout
−

(t). In this case, the quantity
xp(t− τp)− zpout

+
(t)− zpout

−
(t−) represents the number of tokens with age greater than or equal

to τp at place p in the state σt. If xp(t−τp)−zpout
+

(t)−zpout
−

(t−) > 0 and xr(t−τr)−zpout
+

(t) > 0
for all r ∈ (pout+ )in such that r 6= p, then the transition pout+ can be fired at the instant t + ε
with 0 < ε < d′. This is again a contradiction with the earliest behavior semantics.

In both cases, we have xp(t − τp) − zpout
+

(t) − zpout
−

(t−) = 0 or xr(t − τr) − zpout
+

(t) = 0 for
some r ∈ (pout+ )in such that r 6= p. We deduce that the constraint (3.6) holds.

Now assume that xp(t − τp) − zpout
+

(t) − zpout
−

(t) > 0 and xr(t − τr) − zpout
−

(t) > 0 for
all r ∈ (pout− )in such that r 6= p. These quantities correspond to the number of tokens in
places p and r with age greater than or equal to τp and τr respectively, in the state σt. Thus,
the transition pout− is activated at the instant t + ε for all ε > 0 sufficiently small. Note that
xp(t−τp)−zpout

+
(t)−zpout

−
(t−) > 0 as zpout

−
(t−) < zpout

−
(t). Thus, there exists a place r′ ∈ (pout+ )in

with r 6= p, such that xr′(t − τr′) = zpout
+

(t). In other words, place r′ does not contain any
token with age greater than or equal to τr′ . Given ε > 0 sufficiently small, this is still true at
the instant t + ε, so that the transition pout+ cannot be fired at the instant t + ε. Therefore,
we are allowed to fire the transition pout− at the instant t+ ε, which is a contradiction with the
definition of the earliest behavior semantics. As a result, (3.7) is satisfied. J

3.2.6 Proof of the second part of Theorem 3.1
Consider a timed Petri net with free choice and priority routing, and suppose that we are

given functions xp : R>0 → N for p ∈ P and zq : R>0 → N for q ∈ Q satisfying equations (3.3)–
(3.7) for all t > 0, together with the initial conditions (3.2). Let us further assume that the xp
and zq are càdlàg, nondecreasing functions.

We first prove that the functions xp and zq are well defined on R>0 and admit a finite
number of discontinuities on any interval [0, T ], T > 0, which implies that the union of the
times of discontinuities of those functions is at most countable.

I Lemma 3.5. (i) If a function xp or zq admits an infinite number of discontinuities on a
time interval, then it goes to infinity on this interval.

(ii) If the functions xp, for p ∈ P, and zq, for q ∈ Q, are defined on [0, T ], then they are
defined on [0, T + τm], where τm = minp∈P τp.

(iii) The functions (xp) and (zq) are defined on R>0 and admit a finite number of discontinu-
ities on any interval [0, T ], T > 0.

Proof. (i) The functions being nondecreasing and having integer values, each point of dis-
continuity is associated with a jump of size > 1.

(ii) For any transition q, at any time, zq(t) is upper bounded by one of the xp(t − τp), with
p ∈ P. Besides, the xp(t) are expressed in terms of the zq(t).

(iii) This follows directly from (i) and (ii). J

We now prove that the xp and zq are the counter variables of an execution trace of the given
timed Petri net with free choice and priority routing.
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Let us first construct the corresponding execution trace, denoted σ. The zq being càdlàg,
they are piecewise constant, and encounter a positive jump at any point of discontinuity. Let
t1, t2 . . . be the (possibly infinite) increasing sequence of times of jumps of all the zq, q ∈ Q.
We define the execution trace inductively. It will be convenient to note t0 = −∞ and σt0 the
initial state preceding the beginning of the execution trace. Let i > 1 and ti be the i-th jump
time ; we suppose that we have constructed an execution trace up to time ti−1 included. Let
σti−1 be the associated state. Let us order the transitions in Q such that the transitions being
the non priority transitions of some place subject to priority are greater than all the other
transitions, that is, we have q(1) ≺ q(2) ≺ · · · ≺ q(|Q|) and, for any pair q, q′, if ∃p s.t. q = pout−
and @p s.t. q′ = pout− , then q � q′. For any transition q, we define Jq := zq(ti) − zq(ti−). The
functions zq being càdlàg and nondecreasing, Jq ∈ N. The execution trace between σti−1 and
σti is constructed as follows:

σti−1
ti−ti−1−→ σt

−
i−1

q(1)

−→ · · · q
(1)

−→︸ ︷︷ ︸
J
q(1) times

q(2)

−→ · · · q
(2)

−→︸ ︷︷ ︸
J
q(2) times

· · · q
(|Q|)

−→ · · · q
(|Q|)

−→︸ ︷︷ ︸
J
q(|Q|) times

σti . (3.15)

If i = 1, we replace the duration transition ti−ti−1−→ by ti−→.
We prove by induction that this execution trace is a sound execution trace of the Petri net:

that is, at any state of σ, a transition firing occurs only if every upstream place p contains
a token of age > τp, the execution sticks to the earliest behavior semantics, and the priority
rule is respected, that is, if the non priority transition pout− of some place p fires, then at the
state before the firing, the priority transition pout+ is not activated. We prove also that, for
this execution of the Petri net, at any time t, for any q, zq(t) counts the number of firings of
transition q up to time t included, and for any p, xp(t) counts the number of tokens entered
in place p up to time t included, plus the initial marking. We proceed by induction on the
sequence (t0, t1, t2, . . .).

For t ∈]−∞, 0[, by the initial conditions (3.2), zq(t) = 0 and xp(t) = Mp for any q and p.
Moreover, the execution of σ does not start before time 0. Therefore, the execution is correct
(nothing can happen in a Petri net before time 0), and the zq and xp have the correct meaning.

Now, suppose that the induction holds up to time ti−1 included, that is, the execution trace
defined by (3.15) is correct up to state σti−1 , and zq and xp are the counters of this Petri net
execution up to time ti−1 included.

The time ti is defined as the first time of discontinuity of some zq(t) after ti−1. If the
sequence t0, t1, t2, . . . is finite, and if ti−1 is its last element, we also define ti = +∞. In this
case σt−i shall stand for the state of the execution trace obtained after σti−1 and an infinite
duration transition →+∞.

We prove that the execution trace is correct up to σt−i , that is, we prove that no transition
could be fired in the Petri net in the time interval ]ti−1, ti[. Suppose that this is not true, and
let tf ∈]ti−1, ti[ be the first instant when a transition should fire after ti−1 in a correct Petri
net execution, and q be such transition. Let p be a limiting place of q at time ti−1. As the
number of tokens of age > τp in p at time ti−1 is null, there is necessarily a token entering place
p in the time interval ]ti−1 − τp, tf − τp], and we define te as being the date of its entrance.
If te > ti−1, then this would mean that one of the upstream transitions of p fires at time te,
te ∈]ti−1, tf − τp]. This contradicts the minimality of tf . On the other hand, if te 6 ti−1, this
token entrance should be associated with an increase of xp(te), and therefore, with an increase
of zq(te + τp). But te + τp 6 tf < ti, and te + τp > ti−1, so that it would contradict the
minimality of ti. Finally, this proves that no transition can fire before time ti in the Petri net
execution, and therefore, that σ is correct up to state σt−i .

In addition, the functions zq have no discontinuities in the interval ]ti, ti−1[, so that
zq(ti−1) = zq(t) = zq(t−i ), for any t in the interval. Therefore, the zq have the correct meaning
(no transition fires in the time interval). For the xp, the result follows from the relation (3.3),
and from the induction hypothesis.

Now, let us prove the correctness of the transition firings described by σ at time ti. We
distinguish the following cases:
• Let p ∈ Pconflict. The number of tokens of age greater than or equal to τp in place p

in state σt−i is given by xp(ti − τp) −
∑
q∈pout zq(t−i ), by the induction hypothesis. A correct

execution at time ti should be that these tokens (if any) are fired by the output transitions of
p, whatever the distribution and sequencing of these transition firings (otherwise, just after ti,
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there are tokens of age greater than τp in place p, while any downstream transition of p can
be fired, which would contradict the earliest behavior semantics). Therefore, the execution is
correct if and only if∑

q

zq(ti)− zq(t−i ) = xp(ti − τp)−
∑
q∈pout

zq(t−i ) ,

the quantity zq(ti)− zq(t−i ) being equal to the number of firings of q at time ti in the execution
trace (3.15). By (3.4) for t = ti, the above equality holds, and therefore, the execution is correct
for this part of the Petri net.
• Let q ∈ Qsync. At state σt−i , the number of tokens of age greater than or equal to τp in

each upstream place p of q is given by xp(ti−τp)−zq(t−i ), by the induction hypothesis. Because
of the earliest behavior semantics, the number of firings of transition q at time ti is given by
the minimal number of tokens of sufficient age in its upstream places, that is,∧

p∈qin

(
xp(ti − τp)− zq(t−i )

)
.

By (3.5), this is also equal to zq(ti)− zq(t−i ). This is precisely the number of occurrences of→q

in σ at time ti.
• Let p ∈ Ppriority, and pout+ its priority output transition. At state σt−i , the number of tokens

of age greater than or equal to τp in an upstream place r ∈ (pout+ )in, r 6= p, is xr(ti − τr) −
zpout

+
(t−i ), by correctness of the counters for t up to ti (not included). In place p, this number is

xp(t− τp)− zpout
+

(t−i )− zpout
−

(t−i ). Therefore, under our earliest behavior semantics and priority
routing, the number of tokens that should be fired by priority transition pout+ is(

xp(ti − τp)−zpout
+

(t−i )−zpout
−

(t−i )
)
∧

∧
r∈(pout

+ )in,r 6=p

(
xr(ti − τr)− zq(t−i )

)
.

By (3.5), this is also equal to zpout
+

(ti)− zpout
+

(t−i ). This is precisely the number of occurrence of

→pout
+ in σ at time ti. In addition, these transitions appear before the transitions of type

pout
−−→

in σ.
Now, consider pout− the non priority transition of p, and let us consider the number of tokens in
place p at time ti, just after the firings of transition pout+ (if any). In this state, the number of
tokens of age greater than or equal to τp is number of tokens in this place in state σt−i , which
equals xp(t−τp)−zpout

+
(t−i )−zpout

−
(t−i ) by the induction hypothesis, minus the number of firings

of transition pout+ at this time, which we just proved to be correctly equal to zpout
+

(ti)−zpout
+

(t−i ).
The other places upstream pout− have no other output transition, and therefore, the number of
tokens of age greater than or equal to τp is xr(ti−τr)−zpout

−
(t−i ). Finally, the number of tokens

that transition pout− can fire (and, because of the earliest behavior semantics, has to fire) is

(xp(ti − τp)− zpout
+

(ti)− zpout
−

(t−i )) ∧
∧

r∈(pout
− )in,r 6=p

(
xr(ti − τr)− zpout

−
(t−i )

)
.

This is precisely zpout
−

(ti) − zpout
−

(t−i ) by (3.7), so that the number of firings of pout− at time ti
equals the number of occurrences of →pout

− at time ti.
The sets (Pconflict)out, (Ppriority)out and Qsync describe the whole Q. As a conclusion, all

the transitions appearing between σt−i and σti correspond to appropriate firings of a Petri net
execution, in a correct order, and none is missing. Moreover, for any transition q, the difference
zq(ti)−zq(t−i ) correctly counts the number of transitions occurring at time ti, and consequently,
by (3.3), for any place p, xp(ti)−xp(t−i ) correctly counts the number of tokens entering in place
p at time ti. This completes the proof. J

3.3 Computing stationary regimes
We investigate the stationary regimes of the fluid dynamics associated with Petri nets with

free choice and priority routing. More specifically, our goal is to characterize the non-decreasing
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càdlàg solutions xp and zq of the dynamics which behave ultimately as affine functions t 7→ u+ρt
(u ∈ R and ρ ∈ R>0). By ultimately, we mean that the property holds for t large enough. In
this case, the scalar ρ corresponds to the asymptotic throughput of the associated place or
transition. However, if the functions xp and zq are continuous, and a fortiori if they are affine,
their values at points t and t− coincide, and then, the effect of the priority rule on the dynamics
vanishes (see Equation (3.6)). Hence, looking for ultimately affine solutions of the continuous
time equations might look as an ill-posed problem, if one interprets it in a naive way. In
contrast, looking for the ultimately affine solutions of the δ-discretization of the fluid dynamics
is a perfectly well-posed problem. In other words, we aim at determining the solutions xp and
zq of the discrete dynamics which coincide with affine functions at points kδ for all sufficiently
large k ∈ N. These solutions are referred to as the stationary solutions of the dynamics. As
we shall prove in Theorem 3.6, the characterization of these solutions does not depend on the
value of δ, leading to a proper definition of ultimately affine solutions of the continuous time
dynamics.

In order to determine the stationary regimes, we use the notion of germs of affine functions.
We introduce an equivalence relation ∼ over functions from R to itself, defined by f ∼ g if f(t)
and g(t) are equal for all t ∈ δN sufficiently large. A germ of function (at point infinity) is
an equivalence class of functions with respect to the relation ∼. For brevity, we refer to the
germs of affine functions as affine germs, and we denote by (ρ, u) the germ of the function
t 7→ u+ ρt. In this setting, our goal is to determine the affine germs of the counter variables of
the Petri net in the stationary regimes.

Given two functions f and g of affine germs (ρ, u) and (ρ′, u′) respectively, it is easy to show
that f(t) 6 g(t) for all sufficiently large t ∈ δN if, and only if, the couple (ρ, u) is smaller than
or equal to (ρ′, u′) in the lexicographic order. Moreover, the affine germ of the function f + g
is simply given by the germ (ρ + ρ′, u + u′), which we denote by (ρ, u) + (ρ′, u′) by abuse of
notation. As a consequence, affine germs provide an ordered group. Let us add to this group a
greatest element >, with the convention that >+ (ρ, u) = (ρ, u) +> = >. Then, we obtain the
tropical (min-plus) semiring of affine germs (G,∧,+), where G is defined as {>} ∪R2, and for
all x, y ∈ G, x ∧ y stands for the minimum of x and y in lexicographic order (extended to >).
Since in G, the addition plays the role of the multiplicative law, the additive inversion defined
by −(ρ, u) := (−ρ,−u) corresponds to a division over G. This makes G a semifield, i.e., in
loose terms, a structure similar to a field, except that the additive law has no inverse. Finally,
we can define the multiplication by a scalar λ ∈ R by λ(ρ, u) := (λρ, λu). When λ ∈ N, this
can be understood as an exponentiation operation in G.

Instantiating the functions xp and zq by affine asymptotics t 7→ up + tρp and t 7→ uq +
tρq in the δ-discretization of the fluid dynamics leads to the following counterparts of the
constraints (3.3), (3.5), (3.7) and (3.9), the variables being now elements of the semifield G of
germs:

∀p ∈ P , (ρp, up) = (0,Mp) +
∑
q∈pin

(ρq, uq) (3.16a)

∀p ∈ Pconflict ,∀q ∈ pout , (ρq, uq) = πqp(ρp, up − ρpτp) (3.16b)

∀q ∈ Qsync , (ρq, uq) =
∧
p∈qin

(ρp, up − ρpτp) (3.16c)

∀p ∈ Ppriority , (ρpout
−
, upout

−
) = (ρp − ρpout

+
, up − ρpτp − upout

+
)

∧
∧

r∈(pout
− )in , r 6=p

(ρr, ur − ρrτr)
(3.16d)

Given p ∈ Ppriority, the transposition of (3.6) (or equivalently (3.8)) to germs is more elaborate
due to the occurrence of the left limit xpout

−
(t−). We obtain:

(ρpout
+
, upout

+
) =



(ρp − ρpout
−
, up − ρpτp − upout

−
)

∧
∧

r∈(pout
+ )in , r 6=p

(ρr, ur − ρrτr) if ρpout
−

= 0 ,

∧
r∈(pout

+ )in , r 6=p

(ρr, ur − ρrτr) otherwise.

(3.16e)
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The correctness of these constraints is stated in the following result:

I Theorem 3.6. The affine germs of the stationary solutions of the δ-discretization of the
fluid dynamics are precisely the solutions of System (3.16) such that ρp, ρq > 0 (p ∈ P, q ∈ Q).

Proof. We denote the lexicographic order over R2 by 4, and we use the notation x ≺ y when
x 4 y and x 6= y.

We first remark that given two functions f and g of affine germs (ρ, u) and (ρ′, u′), the
function t 7→ f(t)∧ g(t) belongs to the affine germ given by the minimum (ρ, u)∧ (ρ′, u′) taken
in the lexicographic order. Besides, if τ ∈ δN, the function t 7→ f(t − τ) belongs to the affine
germ (ρ, u − τρ). Finally, for all λ ∈ R, the affine germ of the map t 7→ λf(t) is equal to
λ(ρ, u) = (λρ, λu).

Now, suppose that xp and zq are stationary solutions of the δ-discretization of the fluid
dynamics, and let (ρp, up) and (ρq, uq) be the respective germs, for p ∈ P and q ∈ Q. Since
the functions xp and zq satisfy the constraints (3.3), (3.5), (3.7), (3.9) for all t ∈ δN, we deduce
from the previous properties that the constraints (3.16a)–(3.16d) are satisfied. Besides, given
p ∈ Ppriority, (3.8) ensures that for all t ∈ δN, we have:

zpout
+

(t) =
(
xp(t− τp)− zpout

−
(t− δ)

)
∧

∧
r∈(pout

+ )in , r 6=p

xr(t− τr) .

Consequently, we obtain

(ρpout
+
, upout

+
) = (ρp− ρpout

−
, up− ρpτp − upout

−
+ ρpout

−
δ)∧

∧
r∈(pout

+ )in , r 6=p

(ρr, ur − ρrτr) . (3.17)

If ρpout
−

= 0, this amounts to the constraint given in (3.16e). Now consider the case where
ρpout
−

> 0. Using (3.16d), we know that

(ρpout
−
, upout

−
) 4 (ρp − ρpout

+
, up − ρpτp − upout

+
) ,

and thus

(ρpout
+
, upout

+
) 4 (ρp − ρpout

−
, up − ρpτp − upout

−
) ,

Since δ > 0, it follows that

(ρpout
+
, upout

+
) ≺ (ρp − ρpout

−
, up − ρpτp − upout

−
+ ρpout

−
δ) .

We conclude that the constraint (3.17) is equivalent to (3.16e) when ρpout
−

> 0.
Conversely, let (ρp, up) and (ρq, uq) be solutions of System (3.16). We define xp and zq as

the functions given by xp(t) = up + ρpkδ and zq(t) = uq + ρqkδ for all t ∈ [kδ, (k + 1)δ) and
k ∈ N. The constraints (3.16a)–(3.16d) ensure that (3.3), (3.5), (3.7), (3.9) hold for all t ∈ δN.
Since all the holding times τp belong to δN and the functions xp and zq are constant on the
intervals of the form [kδ, (k + 1)δ), we deduce that these constraints (3.3), (3.5), (3.7), (3.9)
actually hold for all t in such intervals, and so for all t > 0. Moreover, as previously shown,
the constraint given in (3.16e) is equivalent to (3.17), since (3.16d) is satisfied. This proves
that the constraint (3.8) holds for all t ∈ δN. It remains to show that the latter constraint
is satisfied when t ∈ (kδ, (k + 1)δ). First observe that zpout

+
(kδ) 6

∧
r∈(pout

+ )in , r 6=p xr(kδ − τr)
ensures that zpout

+
(t) 6

∧
r∈(pout

+ )in , r 6=p xr(t − τr). Besides, by (3.7), we know that zpout
+

(t) 6

xp(t− τp)− zpout
−

(t). We now distinguish two cases:
(i) if we have zpout

+
(kδ) =

∧
r∈(pout

+ )in , r 6=p xr(kδ − τr), then straightforwardly, zpout
+

(t) =∧
r∈(pout

+ )in , r 6=p xr(t− τr).
(ii) if zpout

+
(kδ) = xp(kδ − τp)− zpout

−
((k − 1)δ), we obtain:

zpout
+

(kδ) > xp(kδ − τp)− zpout
−

(kδ) > zpout
+

(kδ) ,

where the first inequality comes from the fact that zpout
−

is non-decreasing, and the second
inequality from (3.7). We deduce that zpout

+
(kδ) = xp(kδ − τp) − zpout

−
(kδ). Hence, we get

zpout
+

(t) = xp(t− τp)− zpout
−

(t).



46 Discrete dynamics and fluid approximation Chapter 3

As a consequence, in both cases, we have proved that zpout
+

(t) is the minimum between
zpout

+
(t)− zpout

−
(t) and

∧
r∈(pout

+ )in , r 6=p xr(t− τr). This shows that (3.8) holds for all t > 0. J

Since the expressions at the right hand side of the constraints of System (3.16) involve
minima of linear terms, these expressions can be interpreted as fractional functions over the
tropical semifield G. In this way, System (3.16) can be thought of as a set of tropical polynomial
constraints (or more precisely, rational constraints).

The solutions of tropical polynomial systems is a topic of current interest, owing to its
relations with fundamental algorithmic issues concerning classical polynomial system solving
over the reals. Here, we describe a simple method to solve System (3.16), which is akin to policy
search in stochastic control. Observe that System (3.16) corresponds to a fixed point equation
(ρ, u) = f(ρ, u), where the function f can be expressed as the infimum

∧
π f

π of finitely many
linear (affine) maps fπ. In more details, every function fπ is obtained by selecting one term
for each minimum operation

∧
occurring in the constraints (for instance, in (3.16c), we select

one term (ρp, up− ρpτp) with p ∈ qin). For every selection π, we can solve the associated linear
system (ρ, u) = fπ(ρ, u), and under some structural assumptions on the Petri net, the solution
(ρπ, uπ) is unique 1. If fπ(ρπ, uπ) = f(ρπ, uπ), i.e. in every constraint, the term we selected
is smaller than or equal to the other terms appearing in the minimum, then (ρπ, uπ) forms
a solution of System (3.16) associated with the selection π. Otherwise, the selection π does
not lead to any solution. Iterating this technique over the set of selections provides all the
solutions of System (3.16). Every iteration can be done in polynomial time. However, since
there is an exponential number of possible selections, the overall time complexity of the method
is exponential in the size of the Petri net.

Section 3.5 provides an example in which several policies provide several valid, but different
solutions.

3.4 Application: the emergency call center PN
We now apply the results of Section 3.3 to determine the stationary regimes of the fluid dy-

namics associated with our timed Petri net model of emergency call center. As in Section 3.2.4,
we consider the subsystem reduced to the variables z1, z5 and z6. The corresponding system of
constraints over the germ variables (u1, ρ1), (u5, ρ5) and (u6, ρ6) is given by:

(ρ1, u1) =
(
ρ5 + µurρ1 + µadvρ1,
N1 + (u5 − ρ5τtr) + µur(u1 − ρ1τur) + µadv(u1 − ρ1τadv)

) (3.18a)

(ρ5, u5) =
{(
ρ5, N2 + u5 − ρ5(τtr + τ ′ext)

)
∧ µext(ρ1, u1 − ρ1τext) if ρ6 = 0

µext(ρ1, u1 − ρ1τext) if ρ6 > 0
(3.18b)

(ρ6, u6) =
(
ρ6, N2 − ρ5(τtr + τ ′ext) + (u6 − ρ6τ

′
ur)
)
∧ µur(ρ1, u1 − ρ1τur) (3.18c)

To solve this system, it is convenient to introduce the following quantity

τ̄ := µext(τext + τtr) + µurτur + µadvτadv ,

which represents the average time of treatment of a call at level 1 of the model. Note that we
exclude the trivial case where ρ1 = 0 (and subsequently ρ5 = ρ6 = 0), since it cannot occur
unless the quantity N1 is null.

The ρ-part of (3.18a) and (3.18c) show that

ρ5 = µextρ1 , 0 6 ρ6 6 µurρ1 .

We start by considering the case where ρ6 = 0. Since ρ1 > 0, the minimum in (3.18c) is
necessarily attained by the left term. From this, we deduce

ρ1 = N2

µext(τtr + τ ′ext)
.

1. More on this in Chapter 4, in which an equivalent formula is used to compute stationary affine solutions.
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Table 3.1 – The normalized throughputs ρ1, ρ5 and ρ6 as piecewise linear functions of N2/N1.

0 6 N2/N1 6 r1 r1 6 N2/N1 6 r2 r2 6 N2/N1

ρ1/ρ
∗ τ̄

µext(τtr + τ ′ext)
N2

N1
1 1

ρ5/ρ
∗ τ̄

τtr + τ ′ext

N2

N1
µext µext

ρ6/ρ
∗ 0 τ̄

τ ′ur

(N2

N1
− r1

)
µur

As (ρ5, u5) 6 µext(ρ1, u1 − ρ1τext) (by (3.18b)) and ρ5 = µextρ1, the inequality u5 6 µext(u1 −
ρ1τext) holds. Using the u-part of (3.18a), we can show that this amounts to the inequality

N2

N1
6 r1 := µext(τtr + τ ′ext)

τ̄
.

We now assume that ρ6 > 0. The fact that u5 = µext(u1 − ρ1τext) (by (3.18b)) leads to the
identity

ρ1 = N1

τ̄
.

It remains to distinguish the subcases corresponding to the minimum in (3.18c).
• Suppose that the minimum is attained by the left term. We deduce that:

ρ6 = N2

τ ′ur
− N1

τ̄

µext(τtr + τ ′ext)
τ ′ur

= N2 −N1r1

τ ′ur
.

Since 0 < ρ6 6 µurρ1, we also derive:

r1 <
N2

N1
6 r2 := µext(τtr + τ ′ext) + µurτ

′
ur

τ̄
.

• If the minimum is reached by the right term, then we have ρ6 = µurρ1, or equivalently
ρ6 = µur

N1
τ̄ . Moreover, we necessarily have u6 6 N2 − ρ5(τtr + τ ′ext) + (u6 − ρ6τ

′
ur), which

provides N2
N1

> r2. Note that the latter inequality is strict as soon as the minimum in (3.18c) is
attained by the right term only.

To summarize, we report the possible values of the throughputs ρ1, ρ5 and ρ6 in Table 3.1
in the stationary regimes. We normalize these values by a quantity ρ∗ which corresponds
to the throughput (of transition q1) in an “ideal” call center which involves as many level 2
operators as necessary, i.e. N2 = +∞. Then, the throughput ρ∗ is given by N1/τ̄ , where
τ̄ := µext(τext + τtr) + µurτur + µadvτadv represents the average time of treatment at level 1.

As shown in Table 3.1, the ratios ρ1/ρ
∗, ρ5/ρ

∗ and ρ6/ρ
∗ are piecewise linear functions of

the ratio N2/N1. The non-differentiability points are given by:

r1 := µext(τtr + τ ′ext)
τ̄

r2 := µext(τtr + τ ′ext) + µurτ
′
ur

τ̄
.

They separate three phases:
(i) when N2/N1 is strictly smaller than r1, the number of level 2 operators is so small that

some extremely urgent calls cannot be handled, and no urgent call is handled. This is why
the throughput of the latter calls at level 2 is null. Also, level 1 operators are slowed down by
the congestion of level 2, since, in the treatment of an extremely urgent call, a level 1 operator
cannot be released until the call is handled by a level 2 operator.

(ii) when N2/N1 is between r1 and r2, there are enough level 2 operators to handle all
the extremely urgent calls, which is why the throughput ρ5 is equal to ρ1 multiplied by the
proportion µext of extremely urgent calls. As a consequence, level 2 is no longer slowing down
level 1 (the throughput ρ1 reaches its maximal value ρ∗). However, the throughput of urgent
calls at level 2 is still limited because N2 is not sufficiently large.
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Figure 3.2 – Comparison of the throughputs of the non-fluid simulations with the theoretical
throughputs (fluid model). The three phases are identified by two vertical lines.

(iii) if N2/N1 is larger than r2, the three throughputs reach their maximal values. This
means that level 2 is sufficiently well-staffed w.r.t. level 1.

This analysis provides a qualitative method to determine an optimal dimensioning of the
system in stationary regimes. Given a fixed N1, the number N2 of level 2 operators should be
taken to be the minimal integer such that N2/N1 > r2. This ensures that the level 2 properly
handles the calls transmitted by the level 1 (all calls are treated). Then, N1 should be the
minimal integer such that ρ1 = N1/τ̄ dominates the arrival rate of calls.

3.5 Application: the SR Petri net
The Petri net of Silva and Recalde (2002) is introduced in Section 2.5.2. Note that this Petri

net has no conflict configuration (in the sense of Figure 3.1(a)), and therefore, no randomized
feature.

We extend the equations of the fluid dynamics (3.3)–(3.7) and (3.9) to Petri net with val-
uations in a straightforward way. Note that this leads to an additional fluid approximation.
Indeed, in a discrete setting, a place-transition arc with valuation 2 implies that a firing is
possible only when two tokens are available in the corresponding place. In contrast, in the
counter equations of the fluid dynamics, the transition is allowed to fire even if there are less
than two tokens in the place. Of course, the proportions of token consumed in upstream places
are preserved.

The fluid approximation of the discrete dynamics is given by the following system:

Z1(t) = 1
2
(
N1 + Z3(t− τ1) + 2Z4(t− τ1)− Z2(t−)

)
∧N2 + Z2(t− τ2)

Z2(t) = (N1 + Z3(t− τ1) + 2Z4(t− τ1)− 2Z1(t)) ∧N3 + Z1(t− τ3)
Z3(t) = N4 + Z1(t− τ4)
Z4(t) = N5 + Z2(t− τ5) ,

(3.19)

which can be simplified in a system in Z1 and Z2 only:

Z1(t) = 1
2
(
N1 +N4 + 2N5 + Z1(t− τ1 − τ4) + 2Z2(t− τ1 − τ5)− Z2(t−)

)
∧N2 + Z2(t− τ2)

Z2(t) = (N1 +N4 + 2N5 + Z1(t− τ1 − τ4) + 2Z2(t− τ1 − τ5)− 2Z1(t)) ∧N3 + Z1(t− τ3) .

The system of equations over the germ variables (ρ, u) is given by:

(ρ1, u1) =


( 1

2 (ρ1 + ρ2), 1
2 (N1 +N4 + 2N5 + u1 + u2 − ρ1(τ1 + τ4)− 2ρ2(τ1 + τ5)

)
∧

(ρ2, N2 + u2 − ρ2τ2) if ρ2 = 0
(ρ2, N2 + u2 − ρ2τ2) if ρ2 > 0

(ρ2, u2) = (2ρ2 − ρ1, N1 +N4 + 2N5 + 2u2 − u1 − ρ1(τ1 + τ4)− 2ρ2(τ1 + τ5))∧
(ρ1, N3 + u1 − ρ1τ3) .

(3.20)
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0
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0
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0
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or
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0

π2τ

Table 3.2 – Throughput of the SR Petri net, depending on τ and N0.

Solving the system in the ρ coordinate yields ρ1 = ρ2, and equality in each side of the
minimum. Therefore, denoting ρ this common value, we have the following system in u:

u1 =
{

1
2 (N1 +N4 + 2N5 + u1 + u2) ∧N2 + u2 if ρ = 0
N2 + u2 − ρτ2 if ρ > 0

(3.21a)

u2 = N1 +N4 + 2N5 + 2u2 − u1 − ρ(3τ1 + τ4 + 2τ5) ∧N3 + u1 − ρτ3 . (3.21b)

If ρ = 0 , then (3.21a) yields

u1 − u2 = N2 ∧N1 +N4 + 2N5

and (3.21b) yields{
u2 − u1 = N3

u1 − u2 6 N1 +N4 + 2N5
or

{
u1 − u2 = N1 +N4 + 2N5

u2 − u1 6 N3
.

Therefore, either u2 − u1 = N1 + N4 + 2N5 6 N2 and N1 + N4 + 2N5 > −N3. Or u2 − u1 =
−N2 = N3 6 N1 + N4 + 2N5, but then N2 = N3 = 0. The condition is hence ρ = 0 ⇒
N1 −N2 +N4 + 2N5 6 0 or N2 = N3 = 0.

If ρ > 0 , u2 − u1 = −N2 + ρτ2 and, either u1 − u2 = N1 +N4 + 2N5 − ρ(3τ1 + τ4 + 2τ5) >
−N3 + ρτ3, or u1 − u2 = −N3 + ρτ3 6 N1 +N4 + 2N5 − ρ(3τ1 + τ4 + 2τ5).
In any case, we have

ρ 6
N1 +N3 +N4 + 2N5

3τ1 + τ3 + τ4 + 2τ5
.

In the first case, if (3τ1 − τ2 + τ4 + 2τ5) 6= 0 this yields

ρ = N1 −N2 +N4 + 2N5

3τ1 − τ2 + τ4 + 2τ5
6
N2 +N3

τ2 + τ3
.

Of course, this is possible only if (3τ1 − τ2 + τ4 + 2τ5)(N1 −N2 +N4 + 2N5) > 0.
In the second case, we have

ρ = N2 +N3

τ2 + τ3
and ρ(3τ1 − τ2 + τ4 + 2τ5) 6 N1 −N2 +N4 + 2N5

Finally, the different possibilities are listed in the Table 3.2, depending on the sign of different
parameters of the system (and we easily verify that they all satisfy (3.20)). We have denoted
by y1 = (1, 0, 1, 1, 3)T, y2 = (0, 1, 1, 0, 0)T the two nonnegative minimal P-invariants of the
Petri net, and π1 = (3, 0, 1, 1, 2), π2 = (0, 1, 1, 0, 0) the corresponding row vectors by which the
holding times are multiplied.

The case τ 2 small In the case π1τ > π2τ , the expression of the throughput is very similar
to the expression of the throughput ρ6 of the Petri net analyzed in Section 3.4. Let us denote
r := π1τ/π2τ and ρ∗ = yT

2N
0/π2τ , we have the following values of ρ, as a nondecreasing,

continuous, piecewise linear function of yT
1N

0/yT
2N

0.

0 6 yT
1N

0/yT
2N

0 6 1 1 6 yT
1N

0/yT
2N

0 6 r r 6 yT
1N

0/yT
2N

0

ρ/ρ∗ 0 1
r − 1

(
yT

1N
0

yT
2N

0 − 1
)

1
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The case τ 2 large On the other hand, if r < 1 (τ2 large), the throughput in the case
r < yT

1N
0/yT

2N
0 < 1 is not fully determined, but can take three different values, for initial

markings belonging to the same affine space m′0 = m0 + Cx, x ∈ R.
Incidentally, this proves that the operator of the dynamics is not non-expansive. Indeed,

observe that the operator of the dynamics is homogeneous – firing once every transition does not
change the place markings, the net is consistent, – so that, if the operator was non-expansive,
the asymptotic throughput would be unique for a given set of parameters. See Akian and
Gaubert [AG03], and references in Section 1.3.

3.6 Numerical experiments
We first compare the analytical results of Section 3.4 with the asymptotic throughputs of

the non-fluid settings.
We then simulate the fluid approximation of the dynamics, and compare the asymptotic

throughputs with the affine stationary throughputs computed in the previous section, for the
two applications of Section 3.4 and Section 3.5.

3.6.1 Asymptotic behavior of the non-fluid dynamics for the emer-
gency call center PN

We have implemented the δ-discretization of the non-fluid dynamics (Equations (3.3)–(3.5),
(3.7) and (3.8)) since this setting is the closest to reality. Recall that, in this case, tokens
are routed towards transitions q2, q3 and q4 randomly according to a constant probability
distribution. We assume that holding times are given by integer numbers of seconds, so that
we take δ = 1 s. In this way, we compute the quantities z1(t), z5(t) and z6(t) by induction on
t ∈ N using the equations describing the dynamics. In the simulations, we choose holding times
and probabilities which are representative of the urgency of calls.

Figure 3.2 compares the limits when t→ +∞ of the throughputs z1(t)/t, z5(t)/t, z6(t)/t of
the “real” system, with the throughputs ρ1, ρ5 and ρ6 of the stationary solutions which have
been determined in Section 3.4. The latter are simply computed using the analytical formulæ
of Table 3.1. We estimate the limits of the throughput zi(t)/t by evaluating the latter quantity
for t = 106 s. As shown in Figure 3.2, these estimations confirm the existence of three phases,
as described in the previous section. The convergence of zi(t)/t towards the throughputs ρi is
mostly reached in the two extreme phases. In the intermediate phase, the difference between
the limit of zi(t)/t and the throughput ρi is more important. This originates from the stochastic
nature of the routing, which causes more variations in the realization of the minima in the zi(t):
the throughput of q6 increases and the throughputs of q1 and q5 decrease.

3.6.2 Asymptotic behavior of the fluid dynamics
We also simulate the discrete-time fluid dymamics (using Equations (3.3)–(3.5) and (3.7)–

(3.9)) of our two example Petri nets.

The Emergency call center Petri net We implement the dynamics (3.11). All simulations
have been computed with exact rationals in Q, using the GMP library [Gt16].

In most cases, we observe that the corresponding asymptotic throughputs converge to the
throughputs of the stationary solutions. This is illustrated in Figures 3.3(a), 3.3(b) and 3.3(c),
which are obtained using the same set of holding times, and by varying the ratio N2/N1 (lower,
intermediate and upper phase respectively).

However, there are also cases in which the convergence does not hold. In the experiments
we have made, this happens only in the lower phase and in the intermediate phase, that is,
when N2/N1 < r2, and when τtr + τ ′ext and τ ′ur are in an arithmetical relationship. This is
illustrated in Figure 3.3(d), in which we have increased τ ′ext by one unit of time in comparison
to Figure 3.3(b). Such cases suggest the existence of other kinds of stationary regimes of the
dynamics, in which the system oscillates between different phases. An interpretation lies in the
fact that, if cycle times are not coprime in the system, phenomena of synchronization may lead
to recurrent slow-down of extreme urgent calls by urgent calls in the two lower phases, which
could lower the throughput of the system.
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(a) (b)

(c) (d)

Figure 3.3 – Comparison of the fluid dymamics with the stationary regimes. Error ratios
|zi(t)/t− ρi|/ρi are plotted in log-log scale, respectively in blue, red and green when i = 1, 5, 6.

In other words, this would correspond to stationary regimes for which the stationary counters
would be the sum of an affine function t 7→ ρt and a periodic function, taking values in [0, ρ[.
For such a function, the minima in (3.16) are reached periodically by different terms.

We show in Figure 3.4 the asymptotic throughputs computed in such situation where arith-
metical relationships occur between the time parameters. Interestingly enough, the throughputs
appear to be (more complex) piecewise linear functions of the variables.

IRemark 3.7 (Analogy with Markov decision processes). It is pointed out in [CGQ95] that, in
the homogeneous, free-choice case, the evolution equation of a counter of a Petri net corresponds
to the value function of a semi-Markov decision process. It is proven for such problems that
history dependent or randomized policies do not provide a better throughput than Markovian
deterministic policies, see [Put94, Sections 5.5, 7.1].

The present Petri net is also homogeneous, but encounters priorities, so that the probability
matrices of the corresponding semi Markov decision processes (whose value iteration would
correspond to the counter equations) would have negative entries. It can be considered as a
semi Markov decision process with negative probabilities. For such models, the optimality of
the Markovian deterministic policies do not hold. In our case, periodic policies achieve smaller
throughputs than policies assigning a fixed decision to each state.

The SR Petri net The fluid dynamics is given by System (3.19). We recall that this Petri
net is consistent and conservative, with a unique nonnegative Q-invariant. These properties are
often associated with simple dynamical behaviors.

However, even in this situation, we observe that the asymptotic throughputs computed by
simulation can differ from the stationary affine throughputs. In our experiments, this happen
only in the case when τ2 is large. See Figure 3.5.

We also note that, in the case τ2 large, any of the three valuations that are valid for
the throughput in the intermediate phase (π1τ/π2τ < yT

1N
0/yT

2N
0 < 1) can be reached by

simulations. For example the stationary regime itself is solution of the counter equations.



52 Discrete dynamics and fluid approximation Chapter 3

N2/N1

ρ/N1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

0.05

0.15

0.25

0.1

0.2

ρ1

ρ5
ρ6
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Figure 3.4 – Petri net asymptotic throughputs in a case with τtr + τ ′ext = τ ′ur. The plain lines
represent the theoretical throughputs, and the marked data represents asymptotic throughputs
computed by simulation.
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Left: N0 = (∗, 4, 4, 0, 0), τ = (1, 2, 2, 1, 1). Right: N0 = (∗, 24, 10, 2.5, 2), τ = (1, 16, 4, 1, 1).

Figure 3.5 – Asymptotic throughputs (t = 10000) of the SR Petri net, in blue, and theoretical
throughputs, in black, forN1 varying. The vertical gray lines separate the different phases. Left:
τ2 small. The asymptotic throughputs are identical to the theoretical ones. Right: τ2 large.
The asymptotic throughputs differ from the theoretical ones when N1 enters the third phase
(yT

1N
0 > yT

2N
0). Observe also the – unexplained – throughput decrease when N1 ∈ [24, 26].
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3.7 Concluding remarks
The dynamics of Petri nets with free choice and priority routing are characterized by delay

equations on the counters of the Petri net. We prove an equivalence between this dynamics
and executions of the Petri net. From these delay equations, the affine stationary regimes can
then be computed for the fluid approximation of the dynamics, by means of tropical geometry.
This allows us to characterize the asymptotic behavior of the Petri net, by identifying different
regimes, depending on the parameters of the system. Numerical experiments indicate that these
theoretical results are representative of the real dynamics.

However, our experiments also exhibit pathological behaviors of the fluid approximation
of our dynamics. While our fluid approximation was designed so as to provide schematic
behaviors of the Petri net executions, simulations show that the asymptotic behavior is not
always the affine stationary regime that was expected, and that, for some parameters, this
can yield different throughputs. These phenomena seem to be related with the discrete time
semantics of our Petri net: arithmetical relationships between holding times in different places
affect the long-term behavior of the Petri net. This motivates the continuous time modeling we
study in the forthcoming chapter.

We also underline here that the discrete dynamics and its fluid counterpart we proposed in
this chapter would deserve further analysis. For example, on top of the affine regimes, it remains
to characterize periodic regimes, which were shown to modify the asymptotic regimes of the
net. More generally, we would like to exhibit conditions of convergence of the fluid dynamics
to a stationary regime. Future works should also focus on analyzing the treatment times of the
system, on top of the throughputs.

Finally, we point out that the enumeration algorithm that we quickly sketched in Section 3.3
should be further detailed and analyzed. This would allow to implement an analysis tool
determining automatically the stationary regimes of a timed Petri net given in input.
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This chapter originated from a joint work with Xavier Allamigeon and Stéphane Gaubert,
and was first presented to the conference Valuetools [ABG16], and then published in the Perfor-
mance Evaluation Journal [ABG17]. The current chapter comprises the content of this journal
article, and some original content: a whole section comprising the result of well-posedness of
our hybrid dynamics (Section 4.3), an additional proposition on the stationary solutions of the
dynamics (Proposition 4.13) and the application of the dynamics to the Petri net example of
Silva and Recalde (Section 4.5.2).

4.1 Introduction
In this chapter, we analyze an alternative dynamics modeling of Petri nets with priorities,

based on systems of differential equations. This continuous-time model aims at avoiding the
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discrete-time pathologies observed in the model of Chapter 3, and at obtaining a sound fluid
approximation of our emergency call center system. Whereas classical (discrete) Petri nets
belong to the class of discrete event dynamic systems, the circulation of tokens in hybrid Petri
nets is a continuous phenomenon: tokens are assumed to be fluid, i.e., a transition can fire an
infinitesimal quantity of tokens. In this way, the continuous dynamics can be represented by a
system of differential equations or differential inclusions in which, however, the right-hand-side
may be discontinuous (piecewise continuous).

Contributions The general organization of this chapter has some similarities with the orga-
nization of the previous one: we first propose a dynamics for a class of Petri nets comprising
our model of an emergency call center (Section 4.2), and then, compute the stationary regimes
of this dynamics (Section 4.4). Numerical experiments complete the chapter (Section 4.5).

However, our dynamics here is quite different, as we describe the markings of the Petri net
as solutions of a differential (hybrid) system. Our system builds on the differential equations
of continuous Petri nets proposed by David and Alla [DA87], and studied in many subsequent
works. This differential dynamics models nets in which routing is arbitrated according to a
fluid equivalent of the race policy. The main novelty of our approach is that it handles a class
of Petri nets in which tokens can be routed according to priority rules (Section 4.2). For this
purpose, we found it convenient to attach time to places instead of transitions. This also leads
us to distinguish tokens being processed in a place, and tokens available for the firing of a
downstream transition.

A consequence of this modeling is that the operator of the dynamics is only piecewise con-
tinuous: the flow of a transition encounters discontinuities, as its value depends on whether its
different upstream places have a positive amount of tokens available for firing or not. A first
main result of this chapter shows that, for the class of Petri nets with free choice and priority
routing, the dynamics is well-posed, that is, that there exists a unique forward Carathéodory so-
lution (a solution of the system in its integral form, that does not encounter a left-accumulation
of switches) (Section 4.3). For this result, we had to express the continuous dynamics in terms
of policies. A policy is a map associating with each transition one of its upstream places. In
this way, the dynamics of the Petri net can be written as an infimum of the dynamics of sub-
nets induced by the different policies. The policies reaching the infimum indicate the places
which are bottleneck in the Petri net. We prove that, at any time, one can find a policy which
determines the execution of the dynamics on some time interval ahead. On this interval, the
dynamics reduces to a linear system.

We characterize the stationary solutions in terms of the policies of the Petri net. This
allows us to set up a correspondence between the (ultimately affine) stationary solutions of
the discrete dynamics that were described in Chapter 3 and the stationary solutions of the
continuous dynamics (Section 4.4). We also relate the continuous stationary solutions to the
initial marking of the Petri net or invariants of the Petri net, for some restrictive assumptions.

We finally provide some numerical simulations of the continuous dynamics, for our model
of a two-level emergency call center, and for the SR Petri net. On both Petri nets, numerical
experiments illustrate the convergence of the trajectory towards the stationary solution. This
exhibits an advantage of this hybrid continuous setting in comparison to the discrete one, in
which, for certain values of the parameters, the asymptotic throughputs computed by simula-
tions differ from the stationary solutions (Section 4.5.1).

Related work Analysis of differential equations for Petri nets dates back to the work of
David and Alla [DA87] in the end of the 80s. They were first seen as a relaxation of the
integer firings of a Petri net with discrete firing sequences, the parallel being drawn with the
continuous relaxation of integer programming. There is in general no guarantee on the quality
of this relaxation to compute quantities such as the asymptotic throughputs of the transitions.
However, the comparison between continuous nets and their discrete counterparts has led to
fruitful results for some classes of Petri nets. The quality of these approximations for various
classes of Petri nets was an important question in the years 1990-2000. It is addressed for
example in [MRS06] for the class of live, consistent, conservative, connected Petri nets. A
recent introduction to continuous models can be found in [VMJS13], while a more extensive
reference is [DA10].
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The relationship between this dynamics and stochastic Markovian dynamics was underlined
later on, see Recalde and Silva [RS00]. Indeed, the continuous dynamics of Petri nets can
be seen as a fluid limit of a queueing system in which each place consists of a queue with an
infinite number of servers having i.i.d. exponential service rates. For this fluid limit, the number
of tokens in each place is scaled by a factor proportional to N , and the continuous marking is
the limit Mp(N)/N . The analysis of stochastic systems by the means of a fluid limit leading to
differential equations is a classical method in stochastic calculus, see Darling and Norris [DN08]
for some applications. However, in the context of Petri nets, differential equations generally
come with no result of convergence. Chapter 5 aims at providing such convergence results. We
remark that, in this regard, our model can also be seen as the fluid limit of the Queueing Petri
nets of Bause [Bau93].

The “continuization” of our dynamics draws inspiration from the original continuous model
where time is attached to transitions. In particular, the situation in which the routing of a
token at a given place is influenced by the firing times of the output transitions through a race
policy has received much attention, see [VMJS13]. Here, we address the situation in which the
routing is specified by priority or preselection rules which are independent of the processing
rates. To do so, it is convenient to attach times to places, instead of attaching firing rates
to transitions. We point out in Remark 4.4 that our model can be reduced to a variant of
the standard continuous model [VMJS13] in which we allow immediate transitions and require
non-trivial routings to occur only at these transitions. A benefit of our presentation is to allow
a more transparent comparison between the continuous model and the discrete time piecewise
affine models studied in [CGQ95, GG04b], and in Chapter 3.

In order to evaluate the long-term performance of Petri nets, one has to characterize the
stationary or steady states of the Petri nets dynamics. Cohen, Gaubert and Quadrat [CGQ95]
introduced an approximation of a discrete Petri net by a fluid, piecewise affine dynamics with
finite delays, and showed that the limit throughput does exist for a class of consistent and
free choice Petri nets. In the more recent work of Gaujal and Giua [GG04b], the result is
extended to larger classes of Petri nets, and the stationary throughputs are computed as the
solutions of a linear program. The results obtained using this fluid approximation hardly
apply to the discrete model, up to a remarkable exception identified by Bouillard, Gaujal and
Mairesse [BGM06] (bounded Petri nets under total allocation). This reference illustrates the
many difficulties that arise from the discrete setting (e.g., some firing sequences may lead to a
deadlock).

In the hybrid dynamics setting, with time attached to transitions, Recalde and Silva [RS00]
showed that the steady states of free choice Petri nets as well as upper bounds of the throughputs
in larger classes of Petri nets can be determined by linear programming. However, in general,
the asymptotic throughputs are non-monotone with respect to the initial marking or the firing
rates of the transitions [MRS06]. An example of oscillations in infinite time around a steady
state is also given in [MRTRS08].

Contrarily to the original differential model, the dynamics of our model belongs to the cate-
gory of differential equations with a discontinuous right-hand-side. In such situation, existence,
uniqueness and stability of solutions require a specific analysis. An acknowledged reference
is the monograph of Filippov [Fil88]. We also refer to the tutorial of Cortés [Cor08], and to
[HcVdSS02] in the specific cases of hybrid systems and piecewise linear systems.

The use of the term “policy” refers to the theory of Markov decision processes, owing to
the analogy between the discrete time dynamics and the value function of a semi-Markovian
decision process. Note that in the context of hybrid or continuous Petri nets, policies are also
known as “configurations”, see [MRS06] for an example.

4.2 Hybrid dynamics of Petri nets with time attached to
places

4.2.1 General notation
A Petri net consists of a set P of places, a set Q of transitions and a set of arcs E ⊂

(P × Q) ∪ (Q × P). Every arc is given a valuation in N. Each place p ∈ P is given an initial
marking M0

p ∈ N, which represents the number of tokens initially present in the place.
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We denote by a+
qp the valuation of the arc from transition q to place p, with the convention

that a+
qp = 0 if there is no such arc. Similarly, we denote by a−qp the valuation of the arc from

place p to transition q, with the same convention. We set aqp := a+
qp−a−qp. The place-transition

incidence matrix C of the Petri net is the P ×Q matrix defined by C := (aqp)p∈P,q∈Q. We also
denote by C+ (resp. C−) the P ×Q matrix with entry a+

qp (resp. a−qp), so that C = C+ − C−.
We limit our attention to pure Petri nets, i.e., Petri nets with no self-loop: for every pair (q, p),
at least one of a+

qp and a−qp is zero.
We denote by qin the set of upstream places of transition q and by qout the set of downstream

places of transition q. Similarly, we use the notation pin and pout to refer to the sets of input
and output transitions of a place p.

4.2.2 General dynamics
We now equip the Petri net with a continuous semantics. Given a transition q, we associate

a flow fq(t) which represents the instantaneous firing rate of transition q at time t. We also
associate with each place p a marking Mp(t), which is a continuous real valued function of
the time t. In the case of discrete timed Petri nets, one typically requires that every token
stays a minimum time in the place, — at this stage, the token may be considered as under
processing — before becoming available for the firing of output transitions. To capture this
property in the continuous setting, we assume that the marking Mp(t) can be decomposed as
Mp(t) = mp(t) +wp(t), where mp(t) is the quantity of tokens under processing and wp(t) is the
quantity of tokens waiting to contribute to the firing of an output transition.

We associate with each place p a time constant τp > 0. Each token entering in a place is
processed with the rate 1/τp. This leads to the following differential equation:

ṁp(t) =
∑
q∈pin

a+
qpfq(t)−

mp(t)
τp

. (4.1)

The evolution of the number of tokens waiting in place p is described by the relation:

ẇp(t) = mp(t)
τp

−
∑
q∈pout

a−qpfq(t) . (4.2)

Moreover, for all transitions q, we require that

min
p∈qin, wp(t)=0

(mp(t)
τp

−
∑

q′∈pout

a−q′pfq′(t)
)

= 0 . (4.3)

In particular, this implies that at least one place p ∈ qin verifies wp(t) = 0. In this case, (4.3)
means that each of the upstream places p that has a zero quantity of waiting tokens (wp(t) = 0)
must satisfy ẇp(t) > 0, and that at least one of these places satisfies ẇp(t) = 0. In other words,
there is at least one bottleneck upstream place p of q, which has no waiting tokens and whose
outgoing flow

∑
q′∈pout a

−
q′pfq′(t) coincides with its processing flow mp(t)/τp.

The relation provided in (4.3) can be simplified in the case of free choice conflict and
synchronization patterns. In more detail, if q has a unique upstream place p, and this place is
free choice (conflict pattern), then (4.3) reduces to:

mp(t)
τp

−
∑

q′∈pout

a−q′pfq′(t) = 0 . (4.4)

Now, if q has several upstream places, which are all free choice (synchronization pattern), then
(4.3) reads as:

fq(t) = min
p∈qin, wp(t)=0

mp(t)
a−qpτp

. (4.5)

This equation also holds if |qin| = 1 and if the upstream place of q has a single output transition.
We respectively denote by m(t), w(t) and f(t) the vectors of entries mp(t), wp(t) and fq(t).
Albeit the dynamics that we presented so far is piecewise affine, a trajectory t 7→

(m(t), w(t), f(t)) may be discontinuous. Indeed, in (4.5), the set of the places over which
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the minimum is taken may change over time. If at time t, there is a new place p ∈ qin such that
wp(t) cancels, and if the quantity mp(t)/(a−qpτp) is sufficiently small, then the minimum in (4.5)
(and subsequently the flow fq(t)) discontinuously jumps to the latter value. In the case of
differential equations with discontinuous right-hand-side, various notions of solutions of the dy-
namics exist. In the following, any trajectory considered is supposed be a forward Carathéodory
solution of the dynamics. We report to Section 4.3.3 the definition of this category of solutions
of hybrid systems.

Initial conditions of the dynamics are specified by a pair (m(ti), w(ti)) such that the mini-
mum in (4.3) makes sense, i.e., at least one wp(ti) is equal to 0 for each set of places qin. One
can easily show that if the set {p ∈ qin : wp(t) = 0} is nonempty for all transitions q ∈ Q at
time t = ti, then it remains nonempty at any time t > ti.
I Remark 4.1. Suppose that, at time 0, for a transition q, in every upstream place p ∈ qin, a
given marking is instantaneously available for firing, that is, for all p ∈ qin, wp(0) > 0. This is
an ill-posed initial condition in our setting. In fact, transition q would be able to fire a batch
of tokens in instantaneous time, that is, fq(0) = minp∈qin(1/a−qp)wp(0)δ0, where δ0 represents a
Dirac at time 0, so that, for any downstream place of q,mp(0+) = mp(0)+minp∈qin(1/a−qp)wp(0).

From an ill-posed initial condition, a simple procedure can hence build a well-posed initial
condition: it suffices to fire for each transition the batches of tokens available for firing, until
one of the upstream wp reaches 0, and to increase the downstream markings mp(0) according
to these firings.

The dynamics (4.1)–(4.3) may admit different trajectories for a given initial condition. These
correspond to different routings of tokens in places with several output transitions. However,
each of these trajectories satisfies the conservation law:

ṁ(t) + ẇ(t) = Cf(t) . (4.6)

As usual, matrix C is the place–transition incidence matrix of the Petri net.
Recall that a P-invariant of the Petri net refers to a solution y 6= 0 of the system yTC = 0.

In the discrete setting, a P-invariant corresponds to a weighting of places that is constant for any
reachable marking, meaning that the quantity yTM is preserved under any firing of transition.
An analogous statement holds in the hybrid continuous setting:

I Proposition 4.2. Given a P-invariant y of the Petri net, the quantity yT(m(t) + w(t))p∈P
is independent of t.

In particular, if the entries of y are all positive, then the Petri net is bounded, i.e., each
function t 7→Mp(t) is bounded.

Proof. The proof consists in multiplying both sides of (4.6) by the row vector yT. It follows
that the derivative of yT(m(t) + w(t))p∈P is zero. If the entries of y are all positive, then(
yT(m(0) + w(0))p∈P

)
/yp is an upper bound to the marking of any place p. J

The following proposition collects several homogeneity properties of the continuous dynam-
ics:

I Proposition 4.3. Let (m(t), w(t), f(t)) be a trajectory solution of the dynamics (4.1)–(4.3),
with the initial markings (mp(0))p∈P , and the holding times (τp)p∈P and let α ∈ R>0, then:
(i) (αm(t), αw(t), αf(t)) is a trajectory solution of the dynamics, associated with the initial

markings (αmp(0))p∈P .
(ii) (m(t/α), w(t/α), (1/α)f(t/α)) is a trajectory solution of the dynamics, associated with the

holding times (ατp)p∈P and the same initial conditions.
(iii) let x be a vector of the kernel of C, and D = diag(τ) be the P × P diagonal matrix

such that Dpp = τp, then (m(t) + αDC+x,w(t), f(t) + αx) is a trajectory solution of the
dynamics, associated with the initial markings (m(0) + αDC+x).

Proof. The first two statements derive easily from the homogeneity properties of Equa-
tions (4.1)–(4.3). For the third statement, one can note that adding αxq to each fq(t) and
adding α

∑
q∈pin a+

qpxq to each mp(t)/τp in (4.1)–(4.3) does not change the right hand sides
of (4.1) and (4.2), or the expression within the minimum in (4.3). For (4.2) and (4.3), this is
due to the fact that (C+ − C−)x = Cx = 0. J
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(a) (b)

p

q+(p) q−(p)

(c)

Figure 4.1 – Conflict, synchronization and priority patterns

4.2.3 Hybrid dynamics of Petri nets with free choice and priority
routing

Like in the previous chapter, we consider the class of Petri nets in which places are either
free choice or subject to priority. Recall that a place p ∈ P is said to be free choice if either
all the output transitions q ∈ pout satisfy qin = {p} (conflict, see Figure 4.1(a)), or |pout| = 1
(synchronization, see Figure 4.1(b)). A place is subject to priority if its tokens are routed
to output transitions according to a priority rule. We refer to Figure 4.1(c) for an illustration.
For the sake of simplicity, we assume that each place subject to priority has exactly two output
transitions, and that any transition has at most one upstream place subject to priority. Given
a place p subject to priority, we denote by q+(p) and q−(p) its two output transitions, with the
convention that q+(p) has priority over q−(p). For the sake of readability, we use the notation
q+ and q− when the place p is clear from context.

The set of transitions such that every upstream place p satisfies |pout| = 1 is referred to as
Qsync and the set of free choice places that have at least two output transitions is referred to
as Pconflict. We denote by Ppriority the set of places subject to priority. The sets (Pconflict)out,
Qsync and (Ppriority)out form a partition of Q. Figure 4.1 hence summarizes the three possible
place/transition patterns that can occur in this class of Petri nets.

We now complete the description of the continuous dynamics (4.1)–(4.3) by additional equa-
tions which arise from the specification of routing rules. As we will show in Section 4.3, these
routing rules yield a unique solution of the dynamics.

Such rules occur in the following two situations:
Conflict. Given p ∈ Pconflict, we suppose that tokens are routed according to a stationary

distribution specified by weights µqp > 0 associated with each output transition q. Therefore,

∀p ∈ Pconflict, ∀q ∈ pout, a−qpfq(t) = µqp
mp(t)
τp

. (4.7)

Priority. Let p ∈ Ppriority, and q+ and q− be the two output transitions, as illustrated in
Figure 4.1(c). In order to specify that the flow is routed in priority to transition q+, we require
that:

fq+(t) = min
r∈qin

+ , wr(t)=0

mr(t)
a−q+rτr

, (4.8)

fq−(t) =


minr∈qin

−\{p},wr(t)=0
mr(t)
a−q−rτr

if wp(t) 6= 0 ,

min
(mp(t)
a−qpτp

−
a−q+p

a−qp
fq+(t) ,minr∈qin

−\{p},wr(t)=0
mr(t)
a−q−rτr

)
if wp(t) = 0 .

(4.9)

The expression of fq−(t) in (4.9), when wp = 0, indicates that only the outgoing flow from p
that is not already consumed by the priority transition q+ is available to q−. Note that p is
uniquely determined by q− or q+. See also Figure 4.2.

The first two properties of homogeneity in Proposition 4.3 are still satisfied by the dynamics
extended by the routing rules (4.7)–(4.9). However, a trajectory translated by a Q-invariant
according to the equations given in the third item of this proposition is a solution of the general
dynamics (4.1)–(4.3) but may not respect the priority routing rules (4.8)–(4.9).
I Remark 4.4. We already mentioned in the introduction that our model differs from the
standard continuous Petri net model in which transitions are equipped with firing rates, in the
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wr−

w0

wr+

•

fq+ = mr+/τr+
fq− = mr−/τr−

fq+ = mr+/τr+
fq− = m0/τ0 −mr+/τr+

fq+ = m0/τ0
fq− = 0

r+ p0 r−

q+ q−

Figure 4.2 – Priority configuration (left), and states reachable by the quantities w0, wr+ and
wr− corresponding to this configuration (right). The blue color characterizes reachable regions.
The purple arrows depict the achievable moves. Here, all the non-zero valuations a−qp are set
to 1.

sense that in the latter model, the flows of the output transitions of a given place are pairwise
independent. To overcome this limitation, immediate transitions have been introduced [RMS06].
These transitions come with the specification of routing rules, for instance, in the case of conflict
pattern. In this way, our model could be reduced to a classical continuous model enriched with
immediate transitions. In this reduction, we require timed transitions to have exactly one
upstream place and one downstream place, so that all the routing is determined by immediate
transitions, which inherit the equations defined in our place-timed dynamics.

Simply put, our model is the continuous analogue of discrete Petri nets equipped with
“holding durations”, in which tokens are frozen during processing, whereas the usual continuous
Petri net model can be seen as the continuous analogues of Petri nets with “enabling durations”,
in which transitions preempt tokens. We refer to Bowden [Bow00] for a discussion on the
different interpretations of time in Petri nets.

4.3 Well-posedness of the dynamics
The general dynamics proposed in (4.1)–(4.3) for continuous Petri nets with holding dura-

tions belongs to the category of differential inclusions. Moreover, if at least one transition has
several upstream places, the operator of the dynamics is discontinuous, because of the condition
wp(t) = 0 in the minimum operator in (4.3), see Section 4.2.2.

In such settings, existence and uniqueness of a solution of the differential system cannot be
taken for granted, and a more detailed analysis is required. This is the purpose of this section.
We prove that, for the class of Petri nets with free choice and priority routing, there exists a
unique forward Carathéodory solution of the system on R>0.

The technical analysis developed here relies on the notion of policies of a Petri net. Fixing a
policy allows one to solve the dynamics on a region where it is linear. We shall see in Section 4.4
that policies also arise in the characterization of stationary solutions.

4.3.1 Policies and bottleneck places
Even if our continuous dynamics holds for more general classes of Petri nets, we focus in

the remaining of this section on autonomous Petri nets (without external inputs), and require
that each transition has at least one upstream place.

We observe that the dynamics of Petri nets with free choice and priority routing (4.1)–(4.2),
(4.5) and (4.7)–(4.9) is linear on each region where the arguments of the minimum operators do
not change. More precisely, at any time t, for any transition q ∈ Q, there exists a place p ∈ qin
such that wp(t) = 0 and, either p is the unique upstream place of q, or p realizes the minimum
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in the expression (4.5), (4.8) or (4.9) of fq(t). Place p is then referred to as a bottleneck place
of transition q at time t.

We define a policy π as a function from Q to P, which maps any transition q to one of its
upstream places π(q) ∈ qin. A policy is meant to indicate the bottleneck place of each transition
q. We denote by Sπ the selection matrix associated with π, that is, the Q× P matrix such
that (Sπ)qp = 1 if p = π(q), and 0 otherwise. In particular, (Sπ)qp = 1 implies that aqp < 0.

Note that, if p realizes the minimum in one of the equations (4.5), (4.8) or (4.9) for some
transition, then p also realizes the minimum in (4.3). The converse is not true if places are
subject to priority. For p denoting a priority place and q+ its priority output transition, if p
realizes the minimum in (4.3) for transition q+, then, p does not necessarily realize the minimum
in (4.8). In other words, our definition of a bottleneck place is dependent on the routing rules
of the net.

We point out that notions comparable to policies are used in [MRS06] (and subsequent
works) in the context of continuous Petri nets with time attached to transitions.

Our term “policy” comes from the analogy with Markov decision processes, in which the
value iteration formula corresponds to choosing the policy (the set of actions) realizing the
minimum in an expression similar to the ones we handle in the following.

Hybrid dynamics of Petri nets in terms of policies Let us first propose a matrix rep-
resentation of the initial conditions of our dynamics. Let w0,m0 ∈ RP>0:

m(0) = m0 , w(0) = w0 , and there exists π s.t. Sπw0 = 0 . (4.10)

The latter condition ensures that, for any transition q, there exists an upstream place p of q
such that (w0)p = 0.

We recall the notation D := diag(τ), the P×P diagonal matrix such that Dpp = τp. The use
of policies allows us to introduce the following equivalent representation of the general dynamics
of continuous Petri nets (4.1)–(4.3).

ṁ(t) = C+f(t)−D−1m(t) (4.11)
ẇ(t) = D−1m(t)− C−f(t) (4.12)

and

min
π s.t. Sπw(t)=0

(
SπD

−1m(t)− SπC−f(t)
)

= 0 (4.13)

The minimum in (4.13) is taken over the different policies of the net, and must be understood
as an infimum for the partial order over RQ induced by 6. However, at any time, there is at least
one policy attaining the infimum: it suffices to build this policy componentwise, by associating
with each transition q a place that attains the minimum for row q of (4.13).

Policies for Petri nets with free choice and priority routing In the following, we
propose an expression of our routing rules (4.7)–(4.9) in terms of policies of our Petri net.
Naturally, this expression shall have some similarities with (4.13). In this latter equation, the
quantity (SπC−f(t))q corresponds to the output flow of the upstream place of transition q
selected by π. In fact, our routing rules relate an upstream place with its output flow more
precisely, depending on the policy π: this leads us to replace matrix SπC− by a new downstream
incidence matrix C−π , whose coefficients depend on the policy π. We shall see that this matrix
is nonsingular, which means that the flow can be fully characterized by the knowledge of the
bottleneck places of each transition.

Now, Equations (4.5) and (4.7)–(4.9) imply, at any time t,

min
π s.t. Sπw(t)=0

(
SπD

−1m(t)− C−π f(t)
)

= 0 , (4.14)
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where, for any policy π, the matrix C−π is such that, for f ∈ RQ:

∀q ∈ Q , (C−π f)q =

a−qπ(q)fq if π(q) 6∈ (Pconflict ∪ Ppriority) ,
a−qπ(q)

µqπ(q)
fq if π(q) ∈ Pconflict ,

a−q+π(q+)fq+ if π(q) ∈ Ppriority and q = q+ is its priority transition ,
a−q−π(q−)fq− + a−q+π(q+)fq+ if π(q) ∈ Ppriority and q = q− is its non priority transition .

One can easily check that, by construction of C−π , the routing equations (4.5) and (4.7)–(4.9)
are equivalent to (4.14).

Similarly to the case of the general dynamics (4.13), the minimum in (4.14) is reached at
any time, since it suffices to choose a policy which associates with each transition one of its
bottleneck places.

Consequently, at any time t, there exists a policy δt such that,

Sδtw(t) = 0 , (4.15a)
SδtD

−1m(t) = C−δtf(t) , (4.15b)

and for any policy π,

Sπw(t) = 0⇒ SπD
−1m(t) > C−π f(t) . (4.15c)

A policy δ which satisfies (4.15) on some time interval for a trajectory (m(t), w(t), f(t)) solution
of the dynamics is said to be a valid policy on this time interval for this trajectory.

Matrix C−π is nonsingular, which implies that the flow at a given time is uniquely determined
by the marking of the different bottleneck places of the Petri net. Indeed, all diagonal entries of
C−π are positive. Moreover, if we order the transitions of the Petri net such that the transitions
which have lower priority for some upstream place subject to priority are the largest for this
order 1, then the matrix becomes lower triangular.

It will be useful to provide a description of C−π and of its inverse by blocks. We define
by Q− the set of transitions being lower priority transitions of some place subject to priority,
and Q0+ := Q \ Q− the set of the remaining transitions. Note that, in our class of Petri
nets, transitions being assigned a high priority necessarily belong to Q0+. The order that
we introduced just before is such that the transitions of Q0+ are before the transitions of Q−.
Matrix C−π admits the following block decomposition, according to the partition Q = Q0+∪Q−:

C−π =
(
Aπ+ 0
Aπ−+ Aπ−

)
,

where Aπ+ and Aπ− are diagonal matrices whose diagonal entries are all positive. Both matrices
are hence nonsingular, and, for x, y ∈ RQ, with notation x = (x0+, x−) and y = (y0+, y−),

C−π x = y ⇔


x0+ = (Aπ+)−1y0+ ,

x− = (Aπ−)−1 (y− −Aπ−+x0+
)

= (Aπ−)−1 (y− −Aπ−+(Aπ+)−1y0+
)
.

As a consequence, the inverse of C−π is given by

(C−π )−1 =
(

(Aπ+)−1 0
−(Aπ−)−1Aπ−+(Aπ+)−1 (Aπ−)−1

)
.

Computing the flow at a given time Given an initial condition m0, w0, computing the
flow at time 0 is straightforward using Equations (4.5) and (4.7)–(4.9). Remark that this
computation almost corresponds to computing a minimum, transition by transition. However,
one must ensure that the flow in transitions of type q+ is computed before the flow of transitions
of type q−.

1. Note that this ordering is valid, because in our class of Petri net, each transition has at most one usptream
place subject to priority.
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Now, starting from Relation (4.14), if all the matrices C−π were diagonal with positive
diagonal entries, then f(t) would have a simple expression as an infimum:

f(t) = min
π s.t. Sπw(t)=0

(
(C−π )−1SπD

−1m(t)
)
,

and a valid policy at time t would be a policy attaining the minimum. This actually holds when
the Petri net is free choice. Moreover, we remark that, if two policies attain the minimum in
the latter equation, then any mixing of these policies (choosing arbitrarily the bottleneck place
of one or the other policy) also attain the minimum.

When there is a place subject to priority, this simple expression is no more valid. However,
we invite the reader to think of the resolution of (4.14) as a componentwise computation of an
infimum, in which one considers elements of Q0+ before elements of Q−. A formal meaning
shall be given in Section 4.7 to this informal discussion. We will be interested in computing,
not only f(t), but also its successive derivatives, using this componentwise computation with
an appropriate ordering of the transitions.

Indeed, our purpose is to determine if, starting from a given time t0, there exists one or
several policies that remain valid on some time interval [t0, t0 + ε], with ε>0. If there exists a
unique policy attaining the minimum in (4.14) at time t0, then, by continuity of the different
terms of this minimum, this policy is valid on a time interval. However, if there are several
policies attaining the minimum, then, determining which of these policies (if any) is valid just
after time t0 requires comparing the derivatives of the different candidate flows, and, if there
are still several candidate policies, again, the successive derivatives.

This is the subject of the next section.

4.3.2 Working out a valid policy in a forward time interval
We consider the system (4.11), (4.12), (4.14), together with initial conditions (4.10). Let us

assume that π is a valid policy for the dynamics during a time interval [0, T ], that is, for any
transition q, place π(q) is bottleneck for q on [0, T [. Then, (4.15a) and (4.15b) hold for π on
[0, T [.

If we multiply (4.11) by Sπ, and replace the term SπD
−1m(t) by its expression given

in (4.15b), we obtain

Sπṁ(t) = (SπC+ − C−π )f(t) . (4.16)

Let Dπ be the Q×Q diagonal matrix such that (Dπ)qq = τπ(q), that is, Dπ := SπDSπ
T.

Equation (4.15b) then writes

Sπm(t) = DπC
−
π f(t) . (4.17)

By differentiating this expression, we can replace the left-hand-side of (4.16), and get

ḟ(t) = (C−π )−1D−1
π

(
SπC

+ − C−π
)
f(t) . (4.18)

In addition, by (4.11) and (4.15b), we also have

ṁ(t) = (C+(C−π )−1Sπ − I)D−1m(t) .

Finally, if π is a valid policy during a time interval [0, T ], then, for t ∈ [0, T ],

m(t) = eAπtm0

f(t) = eBπt(C−π )−1SπD
−1m0 ,

with Aπ := (C+(C−π )−1Sπ − I)D−1 and Bπ := (C−π )−1D−1
π (SπC+ − C−π ).

Now, for any policy π, we define the candidate flow fπ starting from t = 0 associated with π
as the flow given by this expression: fπ : t 7→ eBπt(C−π )−1SπD

−1m0, and the candidate marking
mπ : t 7→ eAπtm0.

The following proposition is crucial for establishing the well-posedness of the differential
system. It is a characterization of smooth continuation of a piecewise linear system in one of the
different linear modes by a lexicographic relation on the successive derivatives of the operator



Section 4.3 Well-posedness of the dynamics 65

of the dynamics. A similar characterization was established in [IvdS00] in a more general

case. For the sake of readability, the lexicographical ordering relation ((x1)q, (x2)q, . . . )
lex.
6

((y1)q, (y2)q, . . . ), where x1, x2, . . . and y1, y2, . . . are vectors of RQ, is abridged in the following

way: (x1, x2, . . . )q
lex.
6 (y1, y2, . . . )q.

IProposition 4.5. Let δ be a policy, andmδ and fδ its associated candidate flow and candidate
marking. The two following properties are equivalent:
• There exists a trajectory (m(t), w(t), f(t)) solution of (4.10), (4.11), (4.12), and (4.14),

and ε > 0 such that δ is a valid policy on [0, ε],
• The equality Sδw0 = 0 holds, and, for any policy π,

∀q ∈ Q, (Sδw0, C
−
π f

(1)
δ (0), C−π f

(2)
δ (0), . . . )q

lex.
6

(Sπw0, SπD
−1m

(1)
δ (0), SπD−1m

(2)
δ (0), . . . )q . (4.19)

Observe that, if δ is such that the second property holds, then (4.19) implies in particular
that δ realizes the minimum in (4.14) at time 0, sincem(1)

δ (0) = m0 and SπD−1m0 = C−π f
(1)
π (0).

Proof. ⇒ Let ε>0. We suppose that δ is a valid policy on [0, ε] for m(t), w(t), f(t). This
implies that Sδw(t) = 0, f(t) = fδ(t) and m(t) = mδ(t) on this time interval. Let π be another
policy, and let q be a transition. If (Sπw0)q > 0, then Relation (4.19) holds for π and q. Now,
suppose (Sπw0)q = 0. Suppose also, for the contradiction, that there exists an index j>0 such
that, for i<j, (C−π f

(i)
δ (0))q = (SπD−1m

(i)
δ (0))q, and (C−π f

(j)
δ (0))q > (SπD−1m

(j)
δ (0))q. Then,

on an interval ]0, η[, with η > 0, (C−π fδ(0)− SπD−1mδ(0))q is positive. Note that this implies
that π(q) 6= δ(q), because of (4.15c). In particular, π(q) cannot be in Pconflict. We show that
wπ(q) would become negative. Remember that wπ(q)(0) = 0. In the cases when q ∈ Qsync, or
when q has one upstream place subject to priority, but this place is not π(q), or when π(q)
is subject to priority, and q is its non priority transition, then this simply comes from the
fact that (C−π fδ(0))q = a−qπ(q)(fδ)q(0) = (SπC−fδ(0))q. Consequently, by (4.12) multiplied by
Sπ, the first nonzero derivative of w is negative, and so wπ(q) becomes negative, which is a
contradiction.
It remains to handle the case when q is the priority transition of place π(q). We note q− the
non priority transition of π(q). In this case, (C−π fδ(0))q = a−qπ(q)(fδ)q(0) 6 a−qπ(q)(fδ)q(0) +
a−q−π(q)(fδ)q−(0) 6 (SπC−fδ(0))q, so that, again, by (4.12) multiplied by Sπ, the first nonzero
derivative of w is negative, and so wπ(q) becomes negative. Contradiction.
⇐ We prove that, at time 0 and for some time afterwards, Equations (4.11), (4.12), (4.15)

hold for the candidate marking and flow mδ(t), fδ(t), and for w(t) solution of (4.12) with
m = mδ, f = fδ and initial condition w0. Note that Relations (4.12), (4.11) and (4.15b)
automatically hold, by assumption, and by construction of fδ and mδ. The fact that Sδw(t)
remains 0 is a consequence of (4.13), in which δ realizes the minimum: when multiplying (4.12)
by Sδ, the right-hand-side cancels, and we get Sδẇ(t) = 0. This proves (4.15a).
It remains to prove that (4.15c) holds on some time interval.
Let π be a policy, and q be a transition. If (Sπw0)q > 0, then, by continuity of w, there exists a
time interval [0, εq] such that the inequality remains true. If (Sπw0)q = 0, then, (4.19) implies
that the first nonzero derivative of (SπD−1mδ(t)−C−π fδ(t))q is positive, or that all derivatives
are null. In the first situation, just after time 0, (SπD−1mδ(t) − C−π fδ(t))q becomes positive,
and remains positive for some time interval ]0, εq], so that inequality in (4.15c) holds on this
time interval. Otherwise, all the derivatives are zero. The difference (SπD−1mδ(t)−C−π fδ(t))q
being a linear transformation of two functions solutions of linear differential systems, the fact
that its derivatives are all zero at some time implies that the function itself is zero, and (4.15c)
also holds for row q, for any εq. Finally, by taking ε = minq∈Q εq, the result is proven. J

Proposition 4.5 provides a characterization of a valid policy in terms of Relation (4.19),
expressed in terms of the sequence of derivatives (fδ, f (2)

δ , . . .). One would like to use this
relation to prove the existence and uniqueness (in some sense) of a valid policy on some interval
[0, ε]. However, Relation (4.19) has several drawbacks.

Observe first that the formula of (4.19) is not symmetric in policies δ, π, so that one has
to prove that the relation is however antisymmetric: if Relation (4.19) holds for the pair of
policies (δ, π) and for the pair of policies (π, δ), then, it is an equality.
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Furthermore, some policies are not comparable for Relation (4.19), because different coor-
dinates q may lead to opposite comparisons. However, if a pair of policies is not comparable, it
will be shown that a third policy is comparable and smaller than both policies for this relation.

The proposition below follows from such manipulations of Relation (4.19):

I Proposition 4.6. There exists a policy δ such that Sδw0 = 0 and, for any policy π, Rela-
tion (4.19) holds. Moreover, if there exists two such policies δ1 and δ2, then, fδ1 = fδ2 , and
Relation (4.19) with δ = δ1 and π = δ2 is an equality, and similarly, it is an equality for δ = δ2
and π = δ1.

The proof of Proposition 4.6 is demanding and requires some technical developments. We
report it to the end of this chapter, see Section 4.7. We remark here that it can be largely
simplified if the Petri net is free-choice (without places subject to priority). In this situation,
the matrices C−π are all diagonal, so that, for a vector x ∈ RP>0, comparing C−π (C−σ )−1Sσx

and Sπx is equivalent to comparing (C−σ )−1Sσx and (C−π )−1Sπx. The policies that realize
the minimum of the set {(C−π )−1SπD

−1m0} attain this minimum componentwise (and can be
computed componentwise), and if there are several, the same componentwise selection can be
achieved successively for the sequence of derivatives.

4.3.3 Smooth continuation and well-posedness
A direct corollary of Proposition 4.6 is the following:

I Corollary 4.7 (Smooth continuation). At any time t, there exists a unique smooth contin-
uation of the dynamics, i.e., there exists a trajectory solution of the dynamics, ε > 0, and a
policy δ such that δ is valid on [t, t+ ε], and any other policy π valid on an interval of the form
[t, t+ ε′] yields the same trajectory.

Let δ be a valid policy of a trajectory solution of the dynamics during some time interval. If
there exists a time at which the policy is no more valid, then, the right bound of the maximal
time interval on which δ is valid is called a switching time. At this switching time, the
trajectory is not smooth.

By the latter corollary, one can construct a solution of the dynamics starting from time
0, such that there exists a sequence of switching times t1, t2, . . . and a sequence of policies
δ(1), δ(2), . . . with, for any i, δ(i) is a valid policy on [ti−1, ti[, δ(i) 6= δ(i − 1), and, for t > 0
and for n such that tn 6 t < tn+1,

m(t) = eAδ(n)(t−tn)...eAδ(2)(t2−t1)eAδ(1)t1m0 , (4.20)

is a solution of the system.
Such a solution is bounded on any finite time interval:

I Corollary 4.8. A solution of the kind (4.20) does not goes to infinity in finite time.

Proof. Let a > 0 be a common upper bound of all the matrices Aπ, for an operator norm.
Then, for any π, ‖eAπt‖ 6 eat. Consequently, by (4.20), ‖m(t)‖ 6 eat‖m(0)‖. J

A forward Carathéodory solution 2 of a differential system ẋ(t) = F (x(t)), x(0) = x0,
with F a discontinuous vector field, is an absolutely continuous function x(t) on an interval
[0, T [ satisfying x(t) =

∫ t
0 F (x(s)) ds for t ∈ [0, T [, and, such that, moreover, there is no left-

accumulation point of event times on [0, T [, that is, no left-accumulation point of switching
times of F (x(t)).

Note that the notion of forward Carathéodory solution of a differential system with discon-
tinuous right-hand-side excludes sliding modes (which appear in Filippov solutions) and points
of left-accumulation (which can exist in classical Carathéodory solutions). This seems the right
notion of a solution of a differential system involving a timed system, where we expect functions
describing the behavior of the system to be càdlàg. An example of a piecewise linear system
having an infinity of Carathédory solutions and a point of left-accumulation can be found in
[Fil88, p.116], see also [HcVdSS02].

2. See definition in [IvdS00], where the notion appears under the vocable extended Carathéodory solution.
Our terminology is borrowed from [Tc11], see comments therein.
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I Theorem 4.9. The dynamical system (4.11), (4.12), (4.15), together with initial condi-
tions (4.10), admits a unique forward Carathéodory solution on R>0.

Proof. This is a direct consequence of Corollary 4.7, by Lemma 2.1 of [IvdS00], which estab-
lishes the equivalence between the smooth continuation property and forward Carathéodory
solutions.

Note that Lemma 2.1 of [IvdS00] is stated in the bimodal case, for which the vector space
is divided in two half-spaces on which the operator of the dynamics is continuous. This lemma
has a natural extension in the multi-modal case (number of maximal regions of continuity
larger than 2). This is the version used in Section 6 of [IvdS00] (see, in particular, proof of
Theorem 6.1). J

I Remark 4.10 (Zeno behavior). A forward Carathéodory solution forbids points of left-
accumulation. However, we do not exclude that right-accumulation points exist. In the case
when there is such a right-accumulation, i.e., a sequence of switching times t1<t2< · · · → t∞,
with finite t∞, the place markings m, w still have a limit at t∞, and from this time on, the
execution continues.

This, however, raises tractability issues when implementing the Petri net, so that one
would like to determine in which conditions a Petri net execution can encounter such right-
accumulation points. This is an open question for executions of continuous Petri nets with
holding durations 3.

A simple case is when there is only one transition having two upstream places (all the other
transitions having a unique upstream place). In this case, the system is a bimodal linear system,
and it can be proven that its Carathéodory solution is also a Filippov solution, and that Zeno
behavior cannot happen. See [Tc11].

4.4 Stationary solutions
In this section, we prove that the stationary solutions of the continuous and discrete dynam-

ics of a timed Petri net with free-choice and priority routing are the same. To do so, we first
recall in Section 4.4.1 the formulation of the discrete dynamics and the associated stationary
solutions given in [ABG15].

4.4.1 Stationary solutions of the discrete dynamics

The discrete dynamics of Petri nets with free choice and priority is expressed in terms of
counter variables associated with transitions and places. Given a transition q, the counter
variable zq : R>0 → N denotes the number of firings of q that occurred up to time t included.
Similarly, the counter variable of place p is a function xp : R>0 → N which represents the
number of tokens that have visited place p up to time t included (taking into account the initial
marking). On top of being non-decreasing, the counter variables are càdlàg functions, which
means that they are right continuous and have a left limit at any time.

In this setting, the parameter τp associated with the place p represents a minimal holding
time. It is shown in [ABG15] that, if tokens are supposed to be fired as early as possible, the
counter variables satisfy the following equations (we generalize the equations to the case with
valuations):

∀p ∈ P , xp(t) = M0
p +

∑
q∈pin

a+
qpzq(t) , (4.21a)

∀p ∈ Pconflict ,
∑
q∈pout

a−qpzq(t) = xp(t− τp) , (4.21b)

∀q ∈ Qsync , zq(t) = min
p∈qin

xp(t− τp)/a−qp , (4.21c)

3. Note that Zeno behaviors appear in very simple physical systems ; a well-known example is that of the
bouncing times of a bouncing ball.
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∀p ∈ Ppriority ,

zq+(t) = min
(( 1

a−q+p
xp(t− τp)−

a−q−p

a−q+p
lim
s↑t

zq−(s)
)
, min
r∈qin

+ ,r 6=p

1
a−q+r

xr(t− τr)
)
, (4.21d)

zq−(t) = min
(( 1

a−q−p
xp(t− τp)−

a−q+p

a−q−p
zq+(t)

)
, min
r∈qin
− ,r 6=p

1
a−q−r

xr(t− τr)
)
, (4.21e)

where q+ (q−) is the priority (non priority) output transition of p ∈ Ppriority.
Note that if all the holding times τp are integer multiples of a fixed time δ, the left limit

lims↑t zq−(s) in (4.21d) can be replaced by zq−(t− δ). This is helpful in particular to simulate
these equations.

In the setting of [ABG15], all conflicts are solved by a stationary distribution routing. The
equivalent of the routing rule introduced to solve conflicts in the continuous setting is obtained
here by allowing the tokens to be shared in fractions, so that the counter functions take real
values. This corresponds to a fluid approximation of the discrete dynamics. In this setting,
for each p ∈ Pconflict and q ∈ pout, we fix µqp > 0, giving the proportion of the tokens routed
from p to q. We have:

∀p ∈ Pconflict , ∀q ∈ pout , zq(t) = µqp

a−qp
xp(t− τp) . (4.22)

The stationary solutions of the discrete dynamics are defined as functions xp and zq satisfying
the relations (4.21)–(4.22) and which ultimately behave as affine functions, i.e., xp(t) = up+tρp
and zq(t) = uq + tρq for all t large enough. In this case, ρp (resp. ρq) represents the asymptotic
throughput of place p (resp. transition q). We have shown in [ABG15, Theorem 3] that these
stationary solutions are precisely given by the following system (we generalize the equations to
the case with valuations):

∀p ∈ P , ρp =
∑
q∈pin

a+
qpρq , (4.23a)

∀p ∈ Pconflict ,∀q ∈ pout , ρq = µqpρp/a
−
qp , (4.23b)

∀q ∈ Qsync , ρq = min
p∈qin

ρp/a
−
qp , (4.23c)

∀p ∈ Ppriority , ρq+ = min
r∈qin

+

ρr/a
−
q+r , (4.23d)

∀p ∈ Ppriority , ρq− = min
((
ρp − a−q+pρq+

)
/a−q−p, min

r∈qin
−\{p}

ρr/a
−
q−r

)
, (4.23e)

∀p ∈ P , up = M0
p +

∑
q∈pin

a+
qpuq , (4.24a)

∀p ∈ Pconflict ,∀q ∈ pout, uq = (µqp/a−qp)(up − ρpτp) , (4.24b)

∀q ∈ Qsync , uq = min
p∈qin,ρq=ρp

(up − ρpτp)/a−qp , (4.24c)

∀p ∈ Ppriority ,

uq+ =


min

(
(up − ρpτp − a−q−puq−)/a−q+p,

min
r∈qin

+ \{p}, ρq+ =ρr
(ur − ρrτr)/a−q+r

) if ρq− = 0 ,

min
r∈qin

+ \{p}, ρq+ =ρr
(ur − ρrτr)/a−q+r otherwise,

(4.24d)

uq− =


min

(
(up − ρpτp − a−q+puq+)/a−q−p,

min
r∈qin
−\{p}, ρq−=ρr

(ur − ρrτr)/a−q−r
) if ρq− + ρq+ = ρp ,

min
r∈qin
−\{p}, ρq−=ρr

(ur − ρrτr)/a−q−r otherwise.

(4.24e)
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The above equations are expressed in a more compact form in [ABG15], using a semiring of
germs of affine functions, which encodes lexicographic minimization operations.

4.4.2 Stationary solutions of the continuous time dynamics
In the continuous setting, we define a stationary solution as a solution (m,w, f) of the

continuous dynamics such that for any place, mp is constant and wp is affine (ẇp is constant).
The following theorem provides a characterization of the stationary solutions.

I Theorem 4.11. A triple (m,w, f) of vectors of resp. |P|, |P| and |Q| functions from R>0 to
R>0, with all the mp constant and all the wp affine, is a stationary solution of the continuous
dynamics if and only if the following conditions hold:

D−1m = C+f , (4.25a)
ẇ = D−1m− C−f , (4.25b)
Cf > 0 , (4.25c)

and there exists a policy δ, such that

∀t , Sδw(t) = 0 , (4.25d)(
SδC

+ − C−δ
)
f = 0 . (4.25e)

Note that the existence of an f  0 that satisfies (4.25c) provides a simple algebraic necessary
condition to the existence of a stationary flow in a Petri net. This corresponds to the net being
partially repetitive (see [Mur89] for a definition).

Proof. Equations (4.25a) and (4.25b) are derived from (4.11) and (4.12), with ṁ = 0 for a
stationary solution.

In a stationary solution, for any place p, ẇp is constant, so that one cannot have ẇp < 0,
otherwise this would yield limt→∞ wp(t) = −∞. Therefore, by (4.25b), D−1m > C−f , and
by (4.25a), we can replace D−1m by C+f , and get (4.25c).

As the ẇ are constant, if, for some place p and at some time t0 > 0, wp(t0) = 0, then ẇp = 0,
(otherwise it would contradict wp(t) > 0 for 0 6 t < t0 or for t > t0). Hence, the set of places
p such that wp(t) = 0 is independent of time for t > 0.

Moreover, the mp are constant, so that, if a policy π is valid at some time, then it is valid
at any time. This means that, if (m,w, f) is a solution of the continuous dynamics, then there
exists a policy δ such that:

∀t , Sδw(t) = 0 ,
C−δ f = SδD

−1m(t) .

Now, by (4.25a) again, we can replace D−1m by C+f in the above equation, and we get
Equations (4.25d) and (4.25e).

Conversely, suppose that a triple of functions (m,w, f) satisfies the conditions of the the-
orem, with policy δ. We prove that the the relations (4.11), (4.12) and (4.15), describing the
dynamics are satisfied. First, (4.11) and (4.12) are derived from (4.25a) and (4.25b), with
ṁp = 0. Equations (4.25d) is (4.15a). We also note that, in Equations (4.25c) and (4.25e),
replacing the term C+f by m/τ (by (4.25a)) leads to the following equations:

C−f 6 D−1m, (4.26)
f = (C−δ )−1SδD

−1m. (4.27)

Equation (4.27) implies (4.15b).
It remains to prove (4.15c). We prove this inequality row by row. Let q be a transition. We

distinguish the following cases:
• if q ∈ Qsync, then (C−f)π(q) = (C−π f)q for any π (for any choice of an upstream place of
q) so that (4.15c) follows from (4.26).

• if q has a unique upstream place p, with p ∈ Pconflict, then for any π, π(q) = pδ(q) so
that (4.15c) follows from (4.27).
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• assume now that q+ is the priority transition of a place p subject to priority. Then,
by (4.26), mp/τp > a−q+pfq+ + a−q−pfq− > a−q+pfq+ and for r ∈ qin+ \ {p}, mr/τr > a−q+rfq+ .
Finally, for any r ∈ qin+ , a−q+rfq+ 6 mr/τr. This proves (4.15c).

• let q− be the non priority transition of a place p subject to priority. Then (C−f)π(q−) =
(C−π f)q− for any policy π, so that (4.15c) follows from (4.26). J

As a consequence of Theorem 4.11, we obtain a correspondence between the stationary
solutions of the continuous dynamics and the stationary solutions of the discrete dynamics. In
order to highlight the parallel between the discrete and the continuous setting, we denote by
fp the processing flow mp/τp for every place p.

I Corollary 4.12. (i) Suppose (m,w, f) defines a stationary solution of the continuous dy-
namics. Then, for the initial marking M0

p = mp, setting ρ := f , up := M0
p , and uq := 0

yields a stationary solution of the discrete dynamics.
(ii) Conversely, suppose (ρ, u) is a stationary solution of the discrete dynamics. Then, defining

f := ρ, setting mp := ρpτp for every place p, and defining w according to (4.25b) and
(4.25d) yields a stationary solution of the continuous dynamics.

Proof. Both statements are straightforward. We point out that (4.23a) reads ρp = C+ρq and
that (4.23b)–(4.23e) are equivalent to ρq = minπ(C−π )−1Sπρp. The same relationship between
the fq and the fp was established in the proof of Theorem 4.11. J

4.4.3 Properties of the stationary solutions
The characterization (4.25) leads to simple algebraic facts on the affine stationary solutions

of Petri nets with free-choice and priority. For example, a stationary flow always exists, because
the vector 0Q is such that C0 > 0 (but the associated marking may not exist).

If the Petri net is conservative, i.e., there exists a positive y such that yTC = 0, then
any x > 0 such that Cx > 0 necessarily satisfies Cx = 0, because yTCx = 0 and y > 0.
Consequently, if the Petri net is conservative, the possible stationary flows are the nonnegative
vectors of the kernel of C (the nonnegative Q-invariants of the Petri net). If 0 is the only
annuller of C, this means that a stationary solution is such that all the markings mp are zero.
In such stationary solution, the transitions do not fire anymore and hence no tokens are under
processing, even if some tokens may remain idle in some places.

Furthermore, we come across an equivalent of the classical Little’s law applied to Petri nets,
and the corresponding classical upper bound on the Petri net flow:

I Proposition 4.13. Suppose that the stationary flow f is known to be proportional to a
given vector u, f = λu. (For example, the Petri net is conservative, and it admits a unique
Q-invariant, up to a multiplicative constant).
(i) Let y be a nonnegative P-invariant of the Petri net. Then,

λ(yTDC+u) 6 yTM0,

where M0 is the vector of the initial markings, M0
p = mp(0) + wp(0).

(ii) If Y is a family of minimal nonnegative P-invariants of the Petri net,

λ 6 min
y∈Y

yTM0

yTDC+u
(4.28)

Proof. (i) This follows from the token conservation yT(m∞+w∞) = yTM0, for a stationary
solution with markings m∞, w∞, and from Equation (4.25a).

(ii) Straightforward from the previous item. J

Determining under which conditions equality holds in (4.28) is a well-known question in
the Petri net literature. See for example [CCS91]. See Section 2.2.3 on computing minimal
P-invariants of a Petri net.

Regarding this important issue of relating the stationary flow to the initial marking, very
little can be obtained on top of the relations given by the invariants of the Petri nets, as
most results in this direction are limited to nets without priorities, and rely on monotonicity
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properties of the dynamics. The next theorem identifies, however, a somehow special situation
in which such a relation persists even in the presence of priority. This applies in particular to
the Petri net of the next section.

I Theorem 4.14. If a trajectory of the continuous Petri net converges towards a stationary
solution (m∞, w∞, f∞), if for this trajectory, there exists a policy π valid on R>0, and if 0
is a semi-simple eigenvalue of (SπC+ − C−π ) associated with this policy, then f∞ is uniquely
determined by the initial marking.

(Recall that the eigenvalue λ of a matrix B is said to be semi-simple if the dimension of its
eigenspace is equal to its algebraic multiplicity, that is, to the multiplicity of λ as the root of
the characteristic polynomial of B. In particular, if 0 is a semi-simple eigenvalue of B, then the
kernel of B and its range space are complementary subspaces.)

Proof. Under the conditions of the theorem, there exists a policy π such that, for any t,

Sπṁ(t) = (SπC+ − C−π )f(t) , (4.29)
Sπm(t) = DπC

−
π f(t) , (4.30)

see Relations (4.16) and (4.17).
Since 0 is a semi-simple eigenvalue of (SπC+−C−π ), the same property holds for the matrix

(SπC+ − C−π )(DπC
−
π )−1 = (SπC+(C−π )−1 − I)D−1

π . Therefore, the kernel of this matrix and
its range space are complementary subspaces. We denote by Q the projection onto the former
along the latter.

By (4.29), we obtain that QSπṁ(t) = Q(SπC+−C−π )f(t) = 0, so that QSπm(t) is indepen-
dent of time, and

QSπm(0) = QSπm∞ = QDπC
−
π f∞ .

Moreover, as (m∞, w∞, f∞) is a stationary solution of the continuous dynamics, Equa-
tion (4.25e) holds and DπC

−
π f∞ belongs to the kernel of (SπC+(C−π )−1 − I)D−1

π . Therefore,

f∞ = (C−π )−1D−1
π QSπm(0) . J

4.5 Numerical experiments
The dynamics expressed by (4.1)–(4.2), (4.5) and (4.7)–(4.9) belongs to the class of hybrid

automata [Hen00], which can handle piecewise linear but discontinuous dynamics like ours. We
simulate our dynamics with the tool SpaceEx [FLGD+11], which is a verification platform for
hybrid systems. The particularity of SpaceEx is that it computes a sound over-approximation
of the trajectories.

4.5.1 The two-level emergency call center Petri net
In this section, we illustrate our results on our running model of an emergency call center

with two treatment levels, introduced in Section 2.5.1, see Figure 2.7. Every arc has a valuation
equal to one. The initial marking M0

1 = N1 (resp. M0
2 = N2) of place p1 (p2) denotes the

available number of operators of level 1 (level 2) in the call center.
It was observed in Chapter 3 that the discrete dynamics has a pathological feature: when

certain arithmetic relations between the time delays are satisfied, the discrete time trajectory
may not converge to a stationary solution, and its asymptotic throughput may differ from the
throughput of the stationary solution. It follows from our correspondence result (Corollary 4.12)
that the continuous dynamics has the same stationary solutions as the corresponding discrete
dynamics. We shall observe that, in this continuous setting, the trajectory converges towards
a stationary solution, so that the former pathology vanishes.

We recall in Figure 4.3 the throughputs of transitions q5 and q6 (see Figure 2.7), obtained for
the discrete dynamics, compared with the throughputs of the stationary solutions, computed
by System (4.25). This is the same computation that was led in Section 3.6.2, and we keep the
same parameters.
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• M0
2 /M

0
1

ρ

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

2

4

6

8

ρ5 (stationary solution)
ρ5 (discrete dynamics)
ρ6 (stationary solution)
ρ6 (discrete dynamics)

The initial markings of the places different from p1 and p2 are null. The holding times are τext = 4, τur = 3,
τadv = 3, τtr = 1, τ ′ext = 6, τ ′ur = 7, and 0.01 for the remaining places.

Figure 4.3 – Emergency call center Petri net. Comparison of the throughputs of the discrete
dynamics simulations with the theoretical throughputs (fluid model).

M0
2 /M

0
1 0.2 0.4 0.6 0.8 1.0 1.2
ρ5 2.857 5.714 8.333 8.333 8.333 8.333
fup5 2.865 5.716 8.334 8.338 8.339 8.340

fdown5 2.849 5.707 8.333 8.328 8.328 8.327
ρ6 0 0 0.238 3.095 5.952 8.333
fup6 < 0.001 < 0.001 0.239 3.107 5.968 8.340

fdown6 0 0 0.237 3.083 5.936 8.327

Table 4.1 – Lower and upper bounds of the throughputs of the continuous dynamics computed
by SpaceEx, and comparison with the stationary throughputs

At the scale of Figure 4.3, the lower and upper bounds to the values of the throughputs,
computed by SpaceEx, coincide with the shape of the stationary throughputs curve. Table 4.1
compares the numerical values of these lower and upper bounds with the stationary throughputs
for a few values of M0

2 /M
0
1 . We observe that the over-approximation computed by SpaceEx

provides an accurate estimate of the stationary throughput computed via System (4.25). This
tends to show that the continuous dynamics converges towards the stationary throughputs,
unlike the discrete dynamics.

4.5.2 The SR Petri net
We consider the Petri net of Silva and Recalde (2002), introduced in Section 2.5.2. As for

the previous Petri net, our experiments show that the throughput always reaches one of the
stationary states computed in Section 3.5.

This contrasts with our observations in the case of the fluid approximation of the discrete
dynamics, see Section 3.6.2.

In Figure 4.4, we show simulation results in the case when several asymptotic through-
puts are possible, that is, when the system parameters satisfy π1τ 6 π2τ and π1τ/π2τ 6
yT

1N
0/yT

2N
0 6 1. We vary the initial markings m1(0), m2(0), m3(0), while keeping the Petri

net invariants yT
1N

0, yT
2N

0 constant.
We observe that, when m1(0) increases, the different possible asymptotic throughputs are

reached. In our experiments, the throughput (y1 − y2)TN0/(π1 − π2)τ is reached only when
the initial markings are the markings of the corresponding stationary solution. Therefore, this
seems to be an unstable asymptotic state.
I Remark 4.15 (Discontinuities and non monotonicities). For the model of continuous Petri
nets with race policy routing ([DA87, VMJS13]), discontinuities and non monotonicities of
throughputs in terms of the parameters of the system were observed and analyzed in a series
of works [JRS05, Mey12, NGRTS16]. Such behaviors require special attention, because, in the



Section 4.7 Concluding remarks 73

m1(0)

ρ

0 2 4 6 8
0

0.5

1

1.5 •

The parameters are those of Figure 3.5 Right. τ = (1, 16, 4, 1, 1), m4(0) = 2.5, m5(0) = 1, m3(0) = 14.5−m1(0)
and m2(0) +m3(0) = 34. All the wp are initially null.

Figure 4.4 – SR Petri net. Asymptotic throughputs with m1(0), m2(0), m3(0) varying, while
keeping the invariants constant (with τ2 large, and in the intermediate phase). The three
possible throughputs are reached when the parameters vary.

modeling of real systems, a slight perturbation on one transition’s firing time would lead to a
completely different throughput, or increasing one transition’s firing rate would decrease the
global throughput of the Petri net (for example, increasing the failure rate of an equipment in
a manufacturing system decreases the production throughput).

In comparison, in the same SR Petri net, but with a priority routing and our differential
semantics, we also observe that, in the intermediate case, the throughput is decreasing in the
marking N2, (not that it is nondecreasing in the normalized parameter yT

1N
0/yT

2N
0). It is

also increasing in the holding time τ2. Moreover, in the situation π1τ 6 π2τ , we can observe
discontinuities in the values of the throughput. Take the case π1τ = π2τ for example: if
yT

1N
0 < yT

2N
0, then the throughput is 0. If yT

1N
0 > yT

2N
0, the throughput is yT

2N
0/π2τ . The

case yT
1N

0 = yT
2N

0 depends on the value of the different coordinates of N0.

4.6 Concluding remarks
We introduced a hybrid dynamical system model for continuous Petri nets having both free

choice and priority places, and showed that there is a correspondence between the stationary
solutions of the continuous dynamics and the discrete one. An advantage of the continuous
setting is that some pathologies of the discrete model (failure of convergence to a stationary
solution) may vanish. This is the case in our two examples, and we therefore may apply this
dynamics to model the behavior of our different emergency call center architectures.

Regarding the model introduced in this paper, further investigations still need to be done.
First, as already mentioned in Section 2.3.2, we remark that, since the introduction of hybrid
dynamics of Petri nets, no formal proof has been proposed that the markings reached by these
differential equations belong to the set of reachable markings of the untimed Petri net with
fractioned firings, analyzed for example in [RTS99]. We leave it for further work to propose
such proof, for our dynamics, as for the original hybrid dynamics of [DA87].

Now, concerning our differential system, it still remains to see under which generality con-
vergence towards the stationary solution can be established. In particular, one would like to
know if stationary regimes with oscillations could exist, or if asymptotic throughputs different
from the throughputs of the affine solutions could be reached for some systems.

Finally, we remark that forward Carathéodory solutions of a piecewise linear system do not
exclude Zeno behaviors. Can such phenomena be observed for our class of differential equations?

4.7 Proof of Proposition 4.6
We recall here that we are interested in the policies δ such that, for any other policy π,

∀q ∈ Q, (Sδw0, C
−
π f

(1)
δ (0), C−π f

(2)
δ (0), . . . )q

lex.
6

(Sπw0, SπD
−1m

(1)
δ (0), SπD−1m

(2)
δ (0), . . . )q . (4.31)
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We build our proof of Proposition 4.6 on three lemmas.

I Lemma 4.16. Let x ∈ RQ>0. There exists, for any transition q, a subset of upstream places
upx(q) ⊆ qin, such that any policy σ associating transitions to their upstream places in upx
satisfies the relation

∀π, C−π (C−σ )−1Sσx 6 Sπx , (4.32)

and such that, for any other policy, the relation would not hold. Moreover, the quantity
(C−π )−1Sπx is independent of π selecting places in the subsets upx, so that, for these policies,
the relation is an equality.

The result still holds if we restrict ourselves to policies which associate to each transition a
place belonging to fixed subsets of qin.

Proof. We proceed by necessary conditions. Suppose that σ is such that (4.32) holds. Then,
for any policy π, using the decomposition of C−π and of its inverse on Q0+ ∪ Q− given in
Section 4.3.1, necessarily,

Aπ+(Aσ+)−1(Sσx)0+ 6 (Sπx)0+ ,

where, for a vector z, z0+ designates the coordinates of z in Q0+.
Matrix Aπ+ is a diagonal matrix with positive entries, so that any σ such that (4.32) holds

is also such that (Aσ+)−1(Sσx)0+ is minimal in the set S1 = {(Aπ+)−1(Sπx)0+ | π policy}.
Moreover, for q ∈ Q0+, it happens that the value of ((Aπ+)−1(Sπx)0+)q depends only on the value
of π(q) (and not on any other π(q′)). We denote by a(x, q, π(q)) this quantity. Consequently,
S1 has a minimum which can be chosen componentwise according to the following procedure:
for any q ∈ Q0+, let upx,+(q) = argmin{a(x, q, p) | p ∈ qin}. Therefore, the set of policies such
that (4.32) holds is included in the set of policies such that the upstream places of transitions
q ∈ Q0+ are in upx,+(q), and we denote by y0+ the common value (Aσ+)−1(Sσx)0+ (and y0+ is
nonnegative).

Now, using again the decomposition of C−π and of its inverse, a policy σ such that (4.32)
holds should also satisfy

Aπ−+(Aσ+)−1(Sσx)0+ +Aπ−(Aσ−)−1 ((Sσx)− −Aσ−+(Aσ+)−1(Sσx)0+
)
6 (Sπx)−

which, by replacing (Aσ+)−1(Sσx)0+ by y0+, gives

Aπ−+y0+ +Aπ−(Aσ−)−1 ((Sσx)− −Aσ−+y0+
)
6 (Sπx)− .

After a few manipulations, we get

(Aσ−)−1 ((Sσx)− −Aσ−+y0+
)
6 (Aπ−)−1 ((Sπx)− −Aπ−+y0+

)
,

using the fact that Aπ− is diagonal, with positive diagonal entries.
Therefore, a policy σ satisfying (4.32) also attains the minimum in the set S2 =

{(Aπ−)−1 ((Sπx)− −Aπ−+y0+
)
| π policy}. Now, for a transition q ∈ Q−, remember that q

is the non priority transition of an upstream place p0 subject to priority. Entry (q, q′) of matrix
Aπ−+ is different from 0 only if π(q) = p0, and if q′ is the priority transition of p0. In this
situation, the value of the entry is a−q′π(q) and does not depend on the other values of π (in
particular, it does not depend on π(q′)). Therefore, again, for any transition q ∈ Q−, one can
choose independently a subset upx,−(q) ⊆ qin of places realizing the minimum for coordinate
q, and a policy satisfying (4.32) should choose upstream places of transitions of Q− in the sets
upx,−(q). The minimum of S2 is denoted by y− and is reached by any such policy.

To summarize, necessarily, a policy such that (4.32) holds associates with transitions q ∈
Q0+ places in the respective upx,+(q) and with transitions q ∈ Q− places in the respective
upx,−(q) (depending on the value obtained by selecting places in upx,+(q)). We can hence
build a selection of upstream places upx(q) for any q ∈ Q, composed of the maps upx,+ and
upx,−. The value of (C−σ )−1Sσx is independent of a policy associating to each transition q
a place of upx(q), and equals y := (y0+, y−). In addition, such y is constructed such that it
satisfies, for any policy π, C−π y 6 Sπx. This concludes the proof in the general case.

Concerning the last assertion, we observe that, when constructing the sets upx(q), it suffices
to consider only the places belonging to the required subsets. J
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By the previous lemma, we are able to compare the elements of (4.31) pairwise. The next
lemma now compares the sequences of elements, up to an arbitrary index i.

I Lemma 4.17. Let i > 0. For each transition q, there exists a non empty subset upi(q) ⊆ qin

of upstream places of q such that, for each policy δ selecting for each q a place in upi(q), for
each policy π,

∀q ∈ Q, (Sδw0, C
−
π f

(1)
δ (0), . . . , C−π f

(i−1)
δ (0))q

lex.
6

(Sπw0, SπD
−1m

(1)
δ (0), . . . , SπD−1m

(i−1)
δ (0))q , (4.33)

and the inequality is an equality for each transition if and only if, for any q, policy π selects a
place of upi(q).

We note Πi the set of policies associating with each q an upstream place in upi(q).

Proof. We prove the lemma by induction on i. If i = 0, this simply corresponds just to
selecting, for each transition q the upstream places whose marking (w0)p is zero:

∀q ∈ Q, up0(q) = {p ∈ qin | (w0)p = 0} ,

and none of these sets are empty, by the initial conditions (4.10). Moreover, it follows from the
definition of up0(q) that, if, for some policy π and transition q, π(q) /∈ up0(q), then (w0)π(q) > 0,
so that the inequality (4.33) is strict for this transition. Finally, for any policies δ, σ ∈ Π0,
Sδw0 = Sσw0 = 0.

Now, let j>0 and suppose that the result of the lemma holds for j. Suppose, that,
moreover, it holds that the vectors f (1)

σ (0), . . . , f (j−1)
σ (0) are independent of σ ∈ Πj . We

note them (d1, . . . , dj−1). We prove these properties for j+1. First observe that the vectors
m

(1)
σ (0), . . . ,m(j−1)

σ (0) are independent of σ ∈ Πj . Indeed, this is true for mσ(0) = m(0) = m0,
and this can be shown by a straightforward induction, using Relation (4.11) and the fact that
the result holds for the f (i)

σ . We note these quantities (g1, . . . , gj−1). Moreover, we observe
that, again because of the relation m(j)

σ (0) = C+dj−1 −D−1gj−1, this is also true for m(j)
σ (0),

which we denote gj . We finally note that, for σ ∈ Πj , f (j)
σ = (C−σ )−1SσD

−1gj , by construction
of fσ.

By Lemma 4.16, the set of policies σ ∈ Πj such that, for any other policy π ∈ Πj ,

C−π (C−σ )−1SσD
−1gj 6 SπD

−1gj ,

is exactly the set of policies associating to each transition q a place of up(D−1gj)(q) ⊆ upj(q),
and there is equality for two policies of this kind. We define upj+1(q) := up(D−1gj)(q), and
we denote by Πj+1 the corresponding set of policies. Moreover, by Lemma 4.16 again, for
σ ∈ Πj+1, f (j+1)

σ (0) = (C−σ )−1SδD
−1gj , and it is independent of σ ∈ Πj+1.

By the induction assumption, as Πj+1 ⊆ Πj , and by Lemma 4.16 for index j, any δ ∈ Πj+1

satisfies, for any other policy σ ∈ Πj , for any q,

(C−σ d1, . . . , C
−
σ dj−1, C

−
σ (C−δ )−1SδD

−1gj)
lex.
6 (SσD−1g1, . . . , SσD

−1gj)

and there is equality if σ ∈ Πj+1.
Now, suppose that, for another policy π /∈ Πj , we have for a transition q,(

C−π (C−σ )−1SσD
−1gj

)
> (SπD−1gj)q. Then, necessarily, π(q) /∈ upj(q). The sets (upi(q))i>0

form a nondecreasing sequence for the inclusion relation ⊆, so that, either π(q) /∈ up0(q), which
means that wπ(q) > 0, or there exists an index i < j such that π(q) ∈ upi(q) and π(q) /∈ upi+1(q).
This implies, by construction of upi+1(q),

(
C−π (C−σ )−1SσD

−1gi
)
q
< (SπD−1gi)q, and, for any

k < i,
(
C−π (C−σ )−1SσD

−1gk
)
q
< (SπD−1gk)q. Therefore, using the induction assumption, the

lexicographic ordering also holds for policies π outside Πj .
Finally, the set of policies Πj+1 is such that (4.33) holds for any policy π, and equality holds

only for pairs of transitions of Πj+1. This completes the proof. J

The next lemma shows that, in Relation (4.31), it suffices to compare them+2 first elements.
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I Lemma 4.18. If, for two policies π and σ, f (i)
π (0) = f

(i)
σ (0) for i ∈ {1, . . . ,m + 1}, where

m := |Q|, then equality holds for any i > m+ 1.

Proof. Recall that, by (4.18) and by definition of matrix Bπ, for any policy, and i > 1,
f

(i)
π (0) = Bπf

(i−1)
π (0) = Bi−1

π fπ(0).
Let us also note that, by the Cayley-Hamilton Theorem, Bπ is a zero of its characteristic

polynomial, so that Bmπ can be expressed in terms the smaller powers of Bπ:

Bmπ =
m−1∑
i=0

λiB
i
π .

Therefore, by multiplying the relation by fπ(0) on the right, the following holds:

f (m+1)
π (0) =

m−1∑
i=0

λif
(i+1)
π (0) . (4.34)

Now, let π, σ be such that f (i)
π (0) = f

(i)
σ (0) for i ∈ {1, . . . ,m + 1}. We prove by induction

that the equality is true for any i ∈ N. Note that it is true for i ∈ {1, . . . ,m+ 1} by hypothesis.
Now, take l > m and suppose that the equality holds for any i 6 l. We prove the equality for
l + 1. By multiplying Relation (4.34) by Bl−mπ , we get

f (l+1)
π (0) =

m−1∑
i=0

λif
(l−m+i+1)
π (0)

=
m−1∑
i=0

λif
(l−m+i+1)
σ (0)

= Bl−mσ

m−1∑
i=0

λif
(i+1)
σ (0)

= Bl−mσ f (m+1)
σ (0) = f (l+1)

σ (0) .

The second and fourth equalities follow from the induction hypothesis. J

Proof of Proposition 4.6. We apply Lemma 4.17 with i = m+ 2. For the policies of Πm+2,
that realize the equality in (4.33), equality further holds for any j > m + 2 by Lemma 4.18.
The set of policies such that (4.31) holds is therefore exactly the set Πm+2, and equality holds
in the relation for two policies of Πm+2.

Now if Πm+2 contains two different policies σ and δ, the equality of the derivatives at time
0 implies that the quantities eBσtfσ(0) and eBδtfδ(0) are identical for any t, so that the two
policies lead to the same dynamics on the interval on which they are valid. J
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This chapter is a joint work with Philippe Robert (Inria de Paris). This work has led to a
pre-print [BR17], submitted to the journal Mathematics of Operations Research. It is included
as such.

5.1 Introduction
The motivation of the model analyzed in this paper originates from a collaboration with

“Préfecture de police de Paris”, the police department of Paris, and “Brigade de sapeurs-
pompiers de Paris”, the fire department of Paris, to design an emergency call center in charge
of receiving emergency calls for police and for firemen in Paris area. The previous organization
had two independent call centers with a single level of operators. The new call center has an
architecture with two levels of operators. A first-level pool of operators handles (numerous) non-
urgent calls and has to detect and transfer calls classified as urgent to a second-level pool of more
specialized operators, policemen or firemen, depending on the nature of the call. Second level
operators may dispatch emergency means, if needed. The first level pool operates therefore as
a filter so that the second-level pool can process efficiently urgent calls. An additional, natural,
constraint is that if a first level operator has detected an urgent call, this operator releases the
call only when a second level operator has handled it. In particular, the operator will wait
when all servers of the second level are busy. In this situation there are two issues: firstly, the
handling of the urgent call is delayed and, secondly, the server of the first level is blocked and,
consequently, the processing capacity of the first level is reduced. The main problem in the

77
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design of this new organization is of determining a minimal number of (expensive) second level
operators necessary so that this blocking phenomenon has a small probability.

We will investigate the behavior of this architecture in stressed situations, i.e., when a large
number of incoming calls is arriving at the first level. A key characteristic to analyze in this
situation is the evolution of the number of blocked operators at level 1. This number should
remain small in a convenient design. For this reason, it will be assumed that an infinite number
of calls are waiting for processing in a queue. Calls require random processing time whose
distribution depends on the level and the class of the call (urgent or non-urgent). We now give
a quick description of this system in terms of a queueing model.

A Queueing Description of the System
As input, there is an infinite queue of jobs waiting to enter the system, this is the saturation

assumption mentioned above. With probability p∈[0, 1] a job is of class 0, otherwise it is of
class 1. A job of class 0 represents an urgent call, otherwise it is a non-urgent call.

1. The first level has C1 servers.
Every time a server of this level is idle, it immediately receives a job from the infinite
queue. It is of class i∈{0,1} with probability p∈[0,1] and 1−p, respectively. A job of class
i requires an exponentially distributed service with rate µi1 at this level.
Class 0 jobs are urgent calls and have to be processed by level 2.
(a) When a job of class 0 completes its service at level 1, it goes to the second level if

there is at least one idle server there.
(b) If there is no place then it remains at the first level and, consequently, blocks a server

at this level. As soon as a job leaves the second level, a blocked job at the first level
is sent to the second level and the server can take a new job in the infinite queue.

When a job of class 1 completes its service, it leaves the system.
2. The second level has C2 servers and receives only class 0 jobs. A job at this level requires

a exponentially distributed service with rate µ02.
See Figure 5.1. A key feature of this network is that blocked jobs of class 0 at level 1 reduce
the capacity of the system since the corresponding servers at level 1 cannot process the calls
waiting in the saturated queue.

Level 1 (C1 servers)

Level 2 (C2 servers)

Class 1
Class 0
Class 0 blocked

Figure 5.1 – Queueing System with Two Levels

Literature
Deterministic Modeling

In this paper, the classes of calls and their processing times are assumed to be random.
In a non-random setting, some aspects of this system have been investigated in Allamigeon et
al. [ABG15, ABG17] where a performance analysis was carried out using a deterministic Petri
net modeling. A Petri net is a language describing systems in which resources circulate from
place to place, incurring concurrency, synchronizations and bifurcations [Mur89, BW13]. The
dynamics of a Petri net can be translated into a dynamical system, whose stability and stable
points can be analyzed, see Cohen et al. [CGQ95]. In Allamigeon et al. [ABG15, ABG17], a
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simplified model of the emergency call center is investigated. Computations on the stationary
regimes of the dynamical system have shown a phase transition characterizing the different
levels of congestion of the call center. The threshold is a critical ratio between the number of
operators at level 1 and level 2.

The analysis of Petri net models may give general results for this class of systems in a
deterministic framework. However, the dynamics investigated in the above articles do not take
account of the random nature of the delays or the classes of calls in the call center for example.
In contrast, the queueing network analysis adopted in the present article focuses on a simpler
system describing the transfer or the blocking of calls from level 1 to level 2. As it will be seen,
it provides a deeper understanding of the behavior of this system in a random context.

It should be noted that the differential equations resulting from the continuous Petri net
modeling of Allamigeon et al. [ABG17] do correspond do the dynamical system that we obtain
below as the scaling limit of our model. This highlights the consistency and strong relationship
between both analyses.

Queueing Models of Blocking Phenomena

A natural class of stochastic models related to the system described above is that of call
centers. There is a huge literature dealing with the problem of staffing these systems. To the
best of our knowledge, few seem to have considered jobs going through a series of call centers
as in our case. The closest models of this literature seem to be multi-skill call centers where
jobs can have different levels of quality of service depending on the call center chosen. They
are nevertheless addressing quite different problems than the ones considered in this paper. See
Koole and Mandelbaum [KM02] for a survey.

The model that we are studying can be described in terms of finite capacity queues with
blocking in tandem. The blocking has the effect that, when a server at level 1 completes the
service of a class 0 job, it cannot be used again until a server at level 2 is available. At level 1
a fraction of the servers, and consequently the corresponding calls, may be blocked. Related
models have been investigated in the literature, see the survey Balsamo [Bal11]. The papers
study the corresponding finite Markovian models of these systems to express in particular the
blocking probability at equilibrium. The corresponding equilibrium equations do not have,
in general, a solution with a closed form expression. When the values of the capacities (the
numbers of operators) are not small, the dimension of the state space can be quite large so
that a numerical procedure can also be out of reach in practice. Some approximations have
been proposed but, for the moment, without any convergence result which could give an idea
of the accuracy of such estimations. Kelly [Kel86] has investigated the problem of blocking of
a series of queues, the analysis is concentrated on the estimation, via bounds, of the achievable
throughput of such a system. To conclude, the literature of rigorous mathematical results for
finite capacity queues with blocking is therefore somewhat scarce.

When the blocking is replaced by the following mechanism defined as an exclusion process:
a job blocked at some stage immediately repeats a service until the next stage can accommodate
it, the situation is quite different. Some of the mathematical models related to the asymmetric
simple exclusion process can give some insights on the performances of these systems(e.g.,
throughputs). Due to its relative mathematical tractability, the literature investigating these
processes is also huge. See, for example Liggett [Lig85] for a general presentation of these
important processes and Liggett [Lig75] for a study of asymmetric simple exclusion process in
finite dimension. These models are however quite different and do not seem to be usable since
the blocking phenomenon of interest is not really taken into account.

Contributions
With the above notations for our system, one of the main results of the paper, Theorem 5.13,

shows that, under appropriate scaling conditions, if r is the ratio of the capacities of the two
levels, r=C2/C1, then the condition

r

(
p

µ01
+ 1−p
µ11

)
>

p

µ02
(5.1)

implies that there exists some fixed instant independent of the initial state such that after that
time, with high probability, there are no blocked customers at level 1 on any finite time interval.
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See Theorem 5.13 and Corollary 5.12.
Otherwise, if the opposite (strict) inequality

r

(
p

µ01
+ 1−p
µ11

)
<

p

µ02
(5.2)

holds then, Theorem 5.9 shows that, under appropriate scaling conditions, the fraction of
blocked customers at level 1 is positive after some time almost surely and it converges to

1− µ02

µ01

C2

C1

(
(1− p)µ01

pµ11
+ 1
)
.

See also Corollary 5.8.
Consequently, as the intuition suggests, if the ratio C2/C1 of the number of servers is larger

than the ratio of the loads of the two levels, then the phenomenon of blocking will not occur
with high probability. Relation (5.1) gives therefore a rule for a convenient design of such a
system.

A Heuristic Picture

Assume that there is no blocking at level 1 of class 0 jobs. Level 1 can be seen as a simple
birth and death process described by the number of jobs (Q(t)) of class 0. A birth (resp. death)
occurs when a job of class 1 (resp. 0) completing its service is replaced by a job of class 0
(resp. 1). Therefore in state x∈{0, . . . , C1}, the birth rate is p(C1 − x)µ11 and the death rate
is (1− p)µ01x. At equilibrium these two rates should be of the same order and therefore that,
for a large C1, the number Q0 of class 0 jobs is of the order of

Q0 ∼ C1
pµ11

(1− p)µ01 + pµ11
.

To avoid congestion, the rate µ01Q0 at which class 0 jobs enter level 2 must be smaller than
the maximal output rate of the second level, that is C2µ02. This gives exactly Condition (5.1).

Mathematical Aspects

Proving rigorously these intuitive results turns out to be, quite surprisingly, challenging.
The Markov process associated with the queueing system has a finite state space, included in
N3. It bears some similarity with classical loss networks of the literature but with a routing
mechanism as in Jackson networks. See Kelly [Kel79]. As such, little can be said for this process,
in particular its invariant probability distribution does not seem to have a simple closed form
expression.

To get quantitative results on this system a scaling approach is used. It is assumed that the
capacities C1 and C2 are both large so that C2/C1 is close to some fixed constant r>0. In this
framework one investigates convergence of the distributions of the stochastic processes, when
the scaling parameter C1 goes to infinity. The main technical difficulties lie in the behavior
of the processes at the boundaries of the state space, when there are no blocked customers
at level 1 or when there are no idle servers at level 2. As always with processes behaving
locally as random walks, getting convergence results of scaled process in this context with two
boundaries may be difficult. This situation has some similarities with the reflected random walks
associated with classical queueing networks where the convergence results can be, sometimes,
obtained by using a Skorokhod problem formulation. See Harrison and Reiman [HR81], Chen
and Mandelbaum [CM91] or Section 9.4 of Robert [Rob03] for example. There is no such global
Skorokhod problem formulation for our model. An additional difficulty is the dependence on
the scaling parameter of the location of time intervals where blocking (or no-blocking) occurs
eventually.

To handle this complicated setting, we introduce two auxiliary processes which are first
separately investigated in Section 5.3, for each of them, only one of the boundary conditions
is involved. A generalized Skorokhod problem formulation is used in both cases. The final
Section 5.4 establishes the main convergence results. Stochastic calculus with Poisson processes,
coupling arguments and the results obtained on auxiliary processes are the main ingredients of
the proofs. See the proof of Proposition 5.6 for example.
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5.2 The Stochastic Model
To analyze the stability properties of this network, it will be assumed that the capacities

of the two levels of service are large, proportional to a scaling parameter N . Qualitative and
quantitative properties of the system when N gets large will be obtained. In particular we
will determine the conditions on the parameters for which the blocking probability is negligible
or not. We begin with a brief reminder on Poisson processes and some notations used in this
domain.

Notations for Poisson processes
Throughout the paper, for ξ>0, one denotes by Nξ=(tn) a Poisson point process on R+

with rate ξ and (Nξ,i) denotes a sequence of i.i.d. such Poisson processes. In the following,
we will use at some occasions the following coupling of Poisson processes, for 0<α6β, one can
construct a version of Nα and Nβ such that, for all 06s6t,

Nα([s, t]) def.=
∫ t

s

Nα(ds) 6 Nβ([s, t]).

This can be done in the following way. If P is a Poisson process on R+
2 whose intensity measure

is Lebesgue on this space, then for ξ∈{α, β}, the order relation will hold if we take

Nξ(dt) = P([0, ξ]× dt).

The notation N ξ=(tn, Bn) is for a marked point Poisson process on R+×{0,1}, where (tn) is
a Poisson process with rate ξ on R+ and (Bn) is an i.i.d. sequence of Bernoulli random variables
with parameter p. If f is some positive Borelian function on R+×{0,1}, we will use the (usual)
notation∫

f(t, b),N ξ(ds,db) =
∑
n>1

f(tn, Bn),

(N ξ,i) denotes a sequence of such i.i.d. marked point Poisson processes. Concerning marked
point Poisson processes see Kingman [Kin93] for example. They can be interpreted as follows in
our case, if ξ∈{µ01,µ11,µ02}, u∈{0,1} and the quantity N ξ,i(dt,{u}) is not 0, then a completion
of a service occurs at time t, and if a new job enters the first level at this occasion, u is the
class of this job. Clearly the point process Nξ(dt) has the same distribution as N ξ(dt,{0,1}).

Scaling
The capacities C1 and C2 of levels 1 and 2 depend on a scaling parameter N , C1=CN1 =N

and C2=CN2 such that the convergence

lim
N→+∞

CN2 /C
N
1 = r (5.3)

holds for some r>0.
The evolution of the state of this system can described by the stochastic process (XN (t)) :=

(Y N∗ (t), Y N (t), ZN (t)) with, for t>0,
• (Y N∗ (t)) being the number of class 0 jobs blocked at level 1 at time t,
• (Y N (t)), the number of class 0 jobs being served at level 1,
• (ZN (t)), the number of idle servers at level 2.

For t>0, remark that at least one of the variables Y N∗ (t) or ZN (t) is null. It is not difficult to
see that (XN (t)) is an irreducible Markov process on the state space

SN :=
{
x = (y∗, y, z) ∈ N3 : y + y∗ 6 CN1 , z 6 CN2 , y∗· z = 0

}
It will be assumed that the sequence of initial states satisfies the relation

lim
N→+∞

1
N

(Y N∗ (0), Y N (0), ZN (0))=x0=(y∗0, y0, z0)∈[0, 1]2×[0, r]. (5.4)
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y∗

y

z
CN

2 CN
1

CN
1

y∗ = 0
(no blocked jobs at level 1)

z = 0
(no free jobs at level 2)

µ02(CN2 −z)

µ11p0(CN1−y)

µ01p0y

µ01(1−p0)y µ02p0C
N
2

µ02(1−p0)CN2

µ11p0(CN1−y−y∗)

µ01y

Figure 5.2 – A Representation of the Transitions Rates of (XN (t)). The 3-dimensional process
with y∗ · z = 0 is “unfolded” in two dimensions.

The vector x0 will be referred to as the initial fluid state in the following. The transition rates
are defined as follows, for x=(y∗, y, z)∈S,

x 7→



(y∗+1, y−1, 0) at rate µ01y1{z=0},

(0, y−1, z−1) " µ01y(1−p)1{z>0},

(0, y, z−1) " µ01yp1{z>0},

(y∗, y+1, z) " µ11p(N−y∗−y),
(y∗−1, y, z) " (1−p)µ02C

N
2 1{y∗>0},

(y∗−1, y+1, z) " pµ02C
N
2 1{y∗>0},

(0, y, z+1) " µ02(CN2 −z)1{y∗=0}.

(5.5)

Due to the constraints on the coordinates y∗ and z of x (at least one of them is 0), the Markov
process (XN (t)) can be seen as a two-dimensional process as depicted in Figure 5.2.

Representation by Stochastic Differential Equations

From the transition rates (5.5), the process (XN (t)) can also be seen as the unique solution
of the following stochastic differential equations,

dY N∗ (t) =
+∞∑
i=1

1{i6Y N (t−),ZN (t−)=0}N µ01,i(dt, {0, 1})

− 1{Y N∗ (t−)>0}

CN2∑
i=1
N µ02,i(dt, {0, 1}), (5.6)

dY N (t) = −
+∞∑
i=1

1{i6Y N (t−)}1{ZN (t−)=0}N µ01,i(dt, {0, 1})

− 1{ZN (t−)>0}N µ01,i(dt, {1}) + 1{Y N∗ (t−)>0}

CN2∑
i=1
N µ02,i(dt, {0})

+
+∞∑
i=1

1{i6N−Y N∗ (t−)−Y N (t−)}N µ11,i(dt, {0}), (5.7)
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dZN (t) = −
+∞∑
i=1

1{i6Y N (t−),ZN (t−)>0}N µ01,i(dt, {0, 1})

+
+∞∑
i=1

1{i6CN2 −ZN (t−),Y N∗ (t−)=0}N µ02,i(dt, {0, 1}), (5.8)

starting from some fixed initial state. The notation f(t−) stands for the left-limit of f at t.

Filtration
The σ-field Ft of the events up to time t is classically defined as the σ-field generated by

the random variables

N ξ,i([0, s]×u), where ξ ∈ {µ01, µ11, µ02}, s ∈ [0, t], u ∈ {{0}, {1}} and i ∈ N.

With this definition the process (Y N∗ (t), Y N (t), ZN (t)) is clearly (Ft)-adapted. The martingale
properties mentioned in the following are understood to be with respect to this filtration.

Evolution equations
The rescaled process is denoted by(

X
N (t)

)
def.=
(
Y
N

∗ (t), Y N (t), ZN (t)
)

:= 1
N

(
Y N∗ (t), Y N (t), ZN (t)

)
, (5.9)

the integration of the above SDEs and classical stochastic calculus give the relations

Y
N

∗ (t) = Y
N

∗ (0) + µ01

∫ t

0
Y
N (s)1{ZN (s)=0} ds

− µ02
CN2
N

∫ t

0
1{Y N∗ (s)>0} ds + M

N

Y∗(t), (5.10)

Y
N (t) = Y

N (0)− µ01

∫ t

0
Y
N (s)

(
1−p1{Z(s)>0}

)
ds

+ pµ02
CN2
N

∫ t

0
1{Y N∗ (s)>0} ds+ pµ11

∫ t

0
(1−Y N∗ (s)−Y N (s)) ds+M

N

Y (t), (5.11)

Z
N (t) = Z

N (0)− µ01

∫ t

0
Y
N (s)1{ZN (s)>0} ds

+ µ02

∫ t

0

(
CN2
N
−ZN (s)

)
1{Y N∗ (s)=0} ds + M

N

Z (t), (5.12)

where, for V ∈{Y∗, Y, Z}, (MN

V (t)) is a martingale. We complete this section with a tightness
result.

I Proposition 5.1. The sequence of processes (XN (t)) defined by Relation (5.9) is tight and
any of its limiting points is a continuous process.

Proof. Since, for t>0, one has Y N∗ (t)+Y N(t)6N and ZN(t)6CN2 , the variables Y N∗ (t), Y N(t)
and ZN(t) are thus uniformly bounded. By using a similar procedure as in the proof of The-
orem 6.13 page 159 of Robert [Rob03], one can show that the expected value of the previsible
increasing process of the martingales (MN

V (t)), V ∈{Y∗, Y, Z}, is of the order of 1/N and thus
converges to 0. By Doob’s Inequality, one gets that for any η>0 and T>0, the relation

lim
N→0

P
(

sup
06t6T

|MN

V (t)| > η

)
= 0. (5.13)

holds. Denote by wf,T the modulus of continuity of a function (f(t)) on [0, T ], i.e., for δ>0

wf,T (δ) = sup (|f(t)−f(s)| : 06s6t6T, |t− s|6δ) .
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y∗

y

CN
1

CN
1

µ02p0C
N
2

µ02(1−p0)CN2

µ11p0(CN1−y−y∗)

µ01y

Figure 5.3 – The first auxiliary process, with saturation of level 2.

By using again that (Y N∗ (t)), (Y N (t)) and (ZN (t)) are bounded and by Relation (5.13), Equa-
tions (5.10), (5.11) and (5.12) show that for any ε>0 and η>0, there exist N0>1 and δ0>0 such
that if N>N0 and δ<δ0 then

P (wV,T (δ) > η) 6 ε, V ∈
{
Y
N

∗ , Y
N
, Z

N
}
.

One concludes with Theorem 15.1 of Billingsley [Bil99]. J

5.3 Analysis of Auxiliary Processes
To study the asymptotic evolution of blocked customers, it is convenient to introduce two

important stochastic processes. The first one describes the behavior of the system when the
second level is permanently full, and the second one corresponds to the situation when there
are no blocked class 0 customers at level 1.

5.3.1 A Process with Saturation of Level 2
The corresponding process is denoted by (Y Na∗ (t), Y Na (t)), it describes a system when level 2

is always saturated by class 0 jobs. The process (Y Na (t)) [resp. (Y Na∗ (t))] indicates the number
of class 0 jobs [resp. blocked] at level 1. For this system blocked class 0 jobs are served at rate
µ02C

N
2 , otherwise the statistical assumptions are the same as before: see Figure 5.3.

This is a Markov process with transition rates defined by

(y∗, y) 7→


(y∗+1, y−1) at rate µ01y,

(y∗−1, y) " (1− p)µ02C
N
2 1{y∗>0},

(y∗−1, y+1) " pµ02C
N
2 1{y∗>0},

(y∗, y+1) " pµ11(N−y∗−y).

(5.14)

The first transition is for a 0 job being blocked after its service at level 1. The second one
corresponds to a 0 job leaving level 2 allowing a blocked 0 job to go to level 2 and a new 1 job
is added at level 1. The third transition is similar except that a new 0 job enters level 1. The
last transition corresponds to a 1 job leaving level 1 allowing a 0 job to enter level 1.

As long as Y N∗ (t)>0, this Markov process has the same transition rates as the process
(Y N∗ (t), Y N (t)), see Relation (5.5).

I Proposition 5.2. If the initial condition of (Y Na∗ (t), Y Na (t)) is such that

lim
N→+∞

1
N

(Y Na∗ (0), Y Na (0)) = (y0
a∗, y

0
a) ∈ [0, 1]2, (5.15)

with 0 6 y0
a∗+y0

a 6 1 then, for the convergence in distribution, the relation

lim
N→+∞

1
N

(Y Na∗ (t), Y Na (t)) = (ya∗(t), ya(t))
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holds, where (ya∗(t), ya(t)) is a couple of continuous functions such that

ya∗(t) + ya(t) > h(t) := (y0
a∗ + y0

a)e−pµ11t +
(

1− (1− p)µ02r

pµ11

)(
1− e−pµ11t

)
(5.16)

and (ya∗(t), u(t)) is the unique solution of the following Skorokhod problem

ya∗(t) = y0
a∗ + µ01

∫ t

0
ya(s) ds− µ02rt+ u(t) (5.17)

where (u(t)) is a non-decreasing continuous function such that u(0) = 0 and∫ +∞

0
ya∗(s) du(s) = 0.

Concerning the Skorokhod problem in dimension 1, see Skorokhod [Sko62], Chaleyat-Maurel and
El Karoui [EKCM78]. The main trick is to express the couple (ya∗(t), u(t)) of Equation (5.17)
as a regular functional of the free process(

y0
a∗+µ01

∫ t

0
ya(s) ds−µ02rt

)
.

Note that, in our case, this free process depends on (ya∗(t), ya(t)).

Proof. We will proceed as follows, first show that any limiting point (ya∗(t), ya(t)) of
(Y Na∗ (t), Y Na (t)) is such that (ya∗(t)) can be seen as the first coordinate of the solution of a
Skorokhod problem associated with a free process. In a second step, we will show that the later
process can be expressed as a regular functional of (ya∗(t)). One has then to use uniqueness
results of Anderson and Orey [AO76] to conclude the proof.

From the transition rates (5.14), the process (Y Na∗ (t), Y Na (t)) can be seen as the solution of
the stochastic differential equations (SDE)

dY Na∗ (t) =
+∞∑
i=1

1{i6Y Na (t−)}N µ01,i(dt,{0, 1})− 1{Y Na∗(t−)>0,i6CN2 }N µ02,i(dt,{0, 1}),

dY Na (t) = −
+∞∑
i=1

1{i6Y Na (t−)}N µ01,i(dt,{0, 1}) + 1{Y Na∗(t−)>0,i6CN2 }N µ02,i(dt,{0})

+
+∞∑
i=1

1{i6N−Y Na∗(t−)−Y Na∗(t−)}N µ11,i(dt,{0}).

With the notation(
Y
N

a∗(t), Y
N

a (t)
)

= 1
N

(
Y Na∗ (t), Y Na (t)

)
,

by integrating the above SDE, one gets the relations

Y
N

a∗(t) = Y
N

a∗(0) + µ01

∫ t

0
Y
N

a (s) ds− µ02
CN2
N

∫ t

0
1{Y Na∗(s)>0} ds+MN

∗ (t) (5.18)

Y
N

a (t) = Y
N

a (0)− µ01

∫ t

0
Y
N

a (s) ds+ pµ11

∫ t

0

(
1− Y Na∗(s)− Y

N

a (s)
)

ds (5.19)

+ pµ02
CN2
N

∫ t

0
1{Y Na∗(s)>0} ds+MN (t),

where (MN
∗ (t)) and (MN (t)) are local martingales. In the same way as in the proof of Propo-

sition 5.1 of Section 5.2, one can prove that the sequence of processes (Y Na∗(t), Y
N

a (t)) is tight
and that any of its limiting points is a continuous process.

Let (ya∗(t), ya(t)) be a limiting point, i.e., for some subsequence (Nk) the relation

lim
k→+∞

(
Y
Nk
a∗ (t), Y Nka (t)

)
= (ya∗(t), ya(t))
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holds for the convergence in distribution of processes. Denote

FNa (t) = Y
N

a∗(0) + µ01

∫ t

0
Y
N

a (s) ds− µ02
CN2
N

t+MN
∗ (t). (5.20)

Equation (5.18) can be written as

Y
N

a∗(t) = FNa (t) + µ02
CN2
N

∫ t

0
1{Y Na∗(s)=0} ds,

so that the couple(
Y
N

a∗(t), µ02
CN2
N

∫ t

0
1{Y Na∗(s)=0} ds

)
is the solution of the Skorokhod problem associated with the free process (FNa (t)). See Sko-
rokhod [Sko62] and Appendix D of Robert [Rob03] for a brief account.

For the convergence in distribution of processes, one has

lim
k→+∞

(FNka (t)) = (fa(t)) :=
(
y0
a∗ + µ01

∫ t

0
ya(s) ds− µ02rt

)
, (5.21)

since, as before, the martingales are vanishing as N gets large. From Proposition D.4 of the
appendix of Robert [Rob03], one gets that (ya∗(t)) is the first coordinate of the solution of the
Skorokhod problem associated with (fa(t)) and (ya∗(t)) is differentiable almost everywhere for
the Lebesgue measure on R+. In particular Relation (5.17) holds.

Since the free process (fa(t)) depends on (ya∗(t), ya(t)), there is no guarantee of the unique-
ness of such a limit point (ya∗(t), ya(t)). We now give a representation of (fa(t)) in terms of
(ya∗(t)). We proceed by getting rid of the process (Y Na (t)) in the expression (5.20) of (FNa (t)).
From Equations (5.18) and (5.19), we get the relation

pY
N

a∗(t) + Y
N

a (t) = pY
N

a∗(0) + Y
N

a (0) + pµ11t− pµ11

∫ t

0
Y
N

a∗(s) ds

− ((1− p)µ01 + pµ11)
∫ t

0
Y
N

a (s) ds+ pMN
∗ (t) +MN (t).

By reordering the terms, one gets the relation

Y
N

a (t) + µ

∫ t

0
Y
N

a (s) ds =
(
pY

N

a∗(0) + Y
N

a (0)
)

+ pµ11t− pY
N

a∗(t)

− pµ11

∫ t

0
Y
N

a∗(s) ds+ pMN
∗ (t) +MN (t),

(5.22)

with µ def.= (1−p)µ01+pµ11. Hence, by denoting

KN (t) def.= 1
µ

(
pY

N

a∗(0) + Y
N

a (0)
) (
eµt − 1

)
+ pµ11

µ2
(
1 + (µt− 1)eµt

)
,

and (k(t)) its limit,

k(t) def.= 1
µ

(
py0
a∗ + y0

a

) (
eµt − 1

)
+ pµ11

µ2
(
1 + (µt− 1)eµt

)
,

from Equation (5.22), trite calculations give the representation

∫ t

0
Y
N

a (s) ds = KN (t)e−µt − p
∫ t

0

(
Y
N

a∗(s) + µ11

∫ s

0
Y
N

a∗(u) du
)
e−µ(t−s) ds

+
∫ t

0

(
pMN
∗ (s) +MN (s)

)
e−µ(t−s) ds.



Section 5.3 Analysis of Auxiliary Processes 87

Therefore, we can write the free process (FNa (t)) as

FNa (t) = G
(
Y
N

a∗

)
(t) + Y

N

a∗(0) + µ01K
N (t)e−µt − µ02

CN2
N

t

+ µ01

∫ t

0

(
pMN
∗ (s) +MN (s)

)
e−µ(t−s) ds + MN

∗ (t), (5.23)

where G(·) is a functional on Borelian functions (x(t)) defined by

G(x)(t) = −pµ01

∫ t

0

(
x(s) + µ11

∫ s

0
x(u) du

)
e−µ(t−s) ds.

This gives us an alternative representation of (fa(t)) as

fa(t) = G(ya∗)(t)
def.= G(ya∗)(t) + y0

a∗ + µ01k(t)e−µt − µ02rt. (5.24)

We have shown that (ya∗(t)) is the first coordinate of (ya∗(t), u(t)), the solution of a generalized
Skorokhod problem associated to the functional G,

ya∗(t) = G(ya∗)(t) + u(t) and
∫ +∞

0
ya∗(s) du(s) = 0,

with the usual assumptions on (ya∗(t)) and (u(t)). See Anderson and Orey [AO76]. For any
Borelian functions (a(t)) and (b(t)) on R+, it is not difficult to check that

‖G(a)−G(b)‖∞,t
def.= sup

06s6t
‖G(a)(s)−G(b)(s)‖ 6 Ct

∫ t

0
‖a− b‖∞,s ds,

with Ct = pµ01(1 + µ11t). Anderson and Orey [AO76] show that such (ya∗(t)) is unique. The
convergence in distribution follows:

lim
N→+∞

(
Y
N

a∗(t), µ02
CN2
N

∫ t

0
1{Y Na∗(s)=0} ds

)
= (ya∗(t), u(t)).

Consequently, Relations (5.18) and (5.19) give the relations
ya∗(t) = y0

a∗ + µ01

∫ t

0
ya(s) ds− µ02rt+ u(t),

ya(t) = y0
a − µ01

∫ t

0
ya(s) ds+ pµ11

∫ t

0
(1− ya∗(s)− ya(s)) ds

+pµ02rt− pu(t).

(5.25)

By using Relations (5.21) and (5.24), one deduce the uniqueness of (ya(t))and, therefore, the
convergence in distribution of the sequence of processes (Y Na∗ (t), Y Na (t)).

We now prove that the limit (ya∗(t), ya(t)) satisfies necessarily ya∗(t)+ya(t)>h(t) for all t,
where h is the solution of

h(t) = (y0
a∗ + y0

a)− (1−p)µ02rt+ pµ11

∫ t

0

(
1− h(s)

)
ds,

that is,

h(t) = (y0
a∗ + y0

a)e−pµ11t +
(

1− (1− p)µ02r

pµ11

)
(1− e−pµ11t).

First note that, for any N , the process Y Na is bounded above by 1, so that FNa is Lipschitz.
Hence, again by Proposition D.4 of the appendix of Robert [Rob03], u is also Lipschitz, and
thus continuous.

From Relations (5.25), one gets that the identity

(ya∗(t) + ya(t)) = (y0
a∗ + y0

a)− (1−p)µ02rt

+ pµ11

∫ t

0
(1− (ya∗(s) + ya(s))) ds + (1−p)u(t)
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holds, so that the difference ya∗+ya−h satisfies the system

x(t) + pµ11

∫ t

0
x(s) ds = (1−p)u(t), with x(0) = 0

Any continuous solution (x(t)) of this system is non-negative. Suppose that there exists t1>0
such that x(t1)<0. Then, by continuity of (x(t)), there exists t0<t1 such that x(t0)=0 and
x(t)<0 for t0<t<t1. But

x(t1)− x(t0) = x(t1) = (1−p)(u(t1)− u(t0))− pµ11

∫ t1

t0

x(s) ds

and the right-hand-side of the equality is positive because (u(t)) is non-decreasing and (x(t))
is negative on this interval, which is a contradiction. Relation (5.16) is established. The
proposition is proved. J

I Proposition 5.3. Under Condition (5.1), there exists t0>0, independent of the initial
state (5.15), such that for t>t0, the functions (ya∗(t)) and (ya(t)) introduced in Proposition 5.2
are differentiable at t and

d
dtya∗(t) = µ01ya(t)− µ02r,

d
dtya(t) = −(µ01+pµ11)ya(t)− pµ11ya∗(t) + p(µ02r+µ11)

(5.26)

Any solution (ya∗(t), ya(t)) of the differential system (5.26) converges to(
1−µ02r

µ01

(
(1−p)µ01

pµ11
+1
)
,
µ02r

µ01

)
. (5.27)

Proof. The above proposition shows that

lim inf
t→+∞

ya∗(t) + ya(t) > 1− (1− p)µ02r

pµ11
.

Let

ε0 =
(

1− (1− p)µ02r

pµ11

)
− µ02r

µ01
,

then ε0>0 by Condition (5.1). Let t0 be such that if t>t0 then

ya∗(t) + ya(t) > 1− (1− p)µ02r

pµ11
− ε0

2 . (5.28)

The classical representation of the solution of one-dimensional Skorokhod problem, see Rela-
tion (D.1) p.376 of Robert [Rob03], gives the identity

ya∗(t) =
(
y0
a∗ + µ01

∫ t

0
ya(u) du− µ02rt

)
∨ sup

06s6t

(
µ01

∫ t

s

ya(u) du− µ02r(t− s)
)
.

If t1>t0 is such that ya∗(t1)=0, then by continuity of (ya(t)), one gets the relation

µ01ya(t1) 6 µ02r,

and, by using Relation (5.28),

1− (1− p)µ02r

pµ11
− ε0

2 6 ya∗(t1) + ya(t1) = ya(t1) 6 µ02r

µ01

which leads to a contradiction. One concludes that t 7→ ya∗(t) is positive for t>t0 and conse-
quently that the measure du(t) vanishes on the interval (t0,+∞). The proposition is proved. J
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y

z
CN

2

CN
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µ02(CN2 −z)

µ11p0(CN1−y)

µ01p0y

µ01(1−p0)y

Figure 5.4 – The second auxiliary process, without blocked jobs.

5.3.2 A System without blocked jobs
A second auxiliary process is introduced, it is denoted by (Y Nb (t), ZNb (t)). It describes the

situation when there are no blocked jobs at level one: if a class 0 job finishes while level two
is saturated, i.e., ZNb (t)=0, then it leaves the system, instead of being blocked. If there are
free servers at level two, the process behaves in the same way as the main process under study,
see Figure 5.4. The process (Y Nb (t), ZNb (t)) is a Markov process, with the following transition
rates:

(y, z) 7→



(y−1, 0) at rate (1−p)µ01y1{z=0},

(y−1, z−1) " (1−p)µ01y1{z>0},

(y, z−1) " pµ01y1{z>0},

(y+1, z) " pµ11(N−y),
(y, z+1) " µ02(CN2 −z).

(5.29)

Note that, when z>0, this Markov process has the same transition rates as the process (XN (t))
(see (5.5)).
I Proposition 5.4. If the initial condition of (Y Nb (t), ZNb (t)) is such that

lim
N→+∞

1
N

(Y Nb (0), ZNb (0)) = (y0
b , z

0
b ) ∈ [0, 1]× [0, r], (5.30)

then, for the convergence in distribution, the relation

lim
N→+∞

1
N

(Y Nb (t), ZNb (t)) = (yb(t), zb(t))

holds, where (yb(t)) is given by

yb(t) = y0
be
−(pµ11+(1−p)µ01)t + pµ11

pµ11+(1−p)µ01

(
1−e−(pµ11+(1−p)µ01)t

)
(5.31)

and (zb(t)) is the unique solution of the Skorokhod problem

zb(t) = z0
b + µ02rt− µ02

∫ t

0
zb(s) ds− µ01

∫ t

0
yb(s) ds+ u(t) (5.32)

where (u(t)) is a non-decreasing continuous function such that u(0)=0 and∫ +∞

0
zb(s) du(s) = 0 .

As before, the free process associated to the Skorokhod problem is(
z0
b + µ02rt− µ02

∫ t

0
zb(s) ds− µ01

∫ t

0
yb(s) ds

)
,

it is also a functional of (zb(t)), see the proof of Proposition 5.2.
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Proof. From the transition rates (5.29) and as in the proof of Proposition 5.2, if(
Y
N

b (t), ZNb (t)
)

:= 1
N

(
Y Nb (t), ZNb (t)

)
,

then one gets the evolution equations

Y
N

b (t) = Y
N

b (0)− µ01(1− p)
∫ t

0
Y
N

b (s) ds+ pµ11

∫ t

0
(1− Y Nb (s)) ds+MN

Y (t),

Z
N

b (t) = Z
N

b (0) + µ02
CN2
N

t− µ02

∫ t

0
Z
N

b (s) ds− µ01

∫ t

0
Y
N

b (s) ds+MN
Z (t) +RNZ (t),

with

RNZ (t) = µ01

∫ t

0
Y
N

b (s)1{ZNb (s)=0} ds,

and (MN
Z (t)) and (MN

Y (t)) are local martingales. It is easily seen that these two martingales
vanish when N gets large and hence that, with the criterion of the modulus of continuity, the
sequence of processes (Y Nb (t)) is tight. Furthermore, any limiting point (yb(t)) satisfies the
integral equation

yb(t) = y0
b − (pµ11 + (1− p)µ01)

∫ t

0
yb(s) ds+ pµ11t,

so that Relation (5.31) holds.
Clearly, (ZNb (t), RNZ (t)) is the solution of a generalized Skorokhod process associated with

a free process which depends itself on ZNb (t)). One concludes in the same way as in the proof
of Proposition 5.2. J

We now prove that, under Condition (5.2), the reflecting part of the Skorokhod problem of the
last proposition vanishes for t large enough.
I Proposition 5.5. Under Condition (5.2), there exists t0>0, independent of the initial
state (5.30), such that for t>t0,

d
dtzb(t) = µ02r − µ02zb(t)− µ01yb(t). (5.33)

Furthermore,

lim
t→+∞

(yb(t), zb(t)) =
(

pµ11

pµ11+(1−p)µ01
, r− pµ01µ11

µ02(pµ11+(1−p)µ01)

)
.

Proof. By Proposition 5.4, (ya(t)) converges to yb as t gets large. By Condition (5.2), the
relation yb<µ02r/µ01 holds. Consequently, there exists t0 such that the inequality

µ01yb(t)<µ02r

holds for t>t0.
Theorem D.1 of Robert [Rob03] gives the relation

zb(t) =
(
z0
b + µ02rt− µ02

∫ t

0
zb(s) ds− µ01

∫ t

0
yb(s) ds

)
∨ sup

06s6t

(
µ02r(t−s)− µ02

∫ t

s

zb(u) du− µ01

∫ t

s

yb(u) du
)
.

Suppose that zb(t1)=0 for some t1>t0, then in particular, for 06s6t1,

µ02r(t1−s)− µ02

∫ t1

s

zb(u) du− µ01

∫ t1

s

yb(u) du 6 0,

by continuity of (zb(t)) and (yb(t)), this gives that

µ02r−µ01yb(t1) = µ02r−µ02zb(t1)−µ01yb(t1) 6 0,

contradiction. This implies that zb(t)>0 holds for t>t0 and, consequently, the measure du(t)
vanishes on [t0,+∞). The proposition is proved. J
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5.4 Asymptotic Study of the Blocking Phenomenon
The goal of this section is of showing that if the ratio r∼CN2 /CN1 of the capacities of the

two levels of our system is less than the quantity

rc
def.= p

µ02

/(
p

µ01
+1−p
µ11

)
,

then there exists some fixed instant t0 such that, with a probability converging to 1 as N gets
large, the number of blocked servers at level 1 is of the order of N on any finite time interval
after t0. Otherwise, if r>rc, then there exists t0>0 such that the number of blocked servers is 0
with high probability on any finite time interval after t0. These results are respectively proved
in Sections 5.4.1 and 5.4.2. The proofs use the technical tools introduced in the last section
and additional probabilistic arguments.

5.4.1 The Overloaded Regime
In this section, we will assume that Condition (5.1) holds, i.e., that r<rc. Recall that

(Y N∗ (t), Y N (t), ZN (t)) describes the state of our system. The following proposition is a technical
result that shows that type 0 jobs occupy at least a fixed fraction of the first level after some
time.

I Proposition 5.6. Under Condition (5.1), for ε>0, there exists t0>0 such that, for any
initial fluid state (5.4), and T>t0, then

lim
N→∞

P
(

inf
t∈[t0,T ]

(
Y N∗ (t)+Y N (t)

)
> N(ȳ−ε)

)
= 1,

with

ȳ := pµ11

pµ11+(1−p)µ01
.

Proof. Define, for t > 0,

HN (t) = Nȳ−Y N∗ (t)−Y N (t),

we want to show that HN (t) is, with high probability, below Nε on any finite time interval
after some finite fixed instant.

The stochastic differential equations (5.6) and (5.7) give the relation

dHN (t) = −
+∞∑
i=1

1{i6N(1−ȳ)+HN (t−)}N µ11,i(dt,{0}) + dDN
0 (t) (5.34)

where (DN
0 (t)) is the process associated with the positive jumps of this SDE,

DN
0 (t) def.=

+∞∑
i=1

∫ t

0
1{Y N∗ (s)>0,i6CN2 }N µ02,i(ds,{1}) + 1{i6Y N (s),ZN (s)>0}N µ01,i(ds,{1}).

In the following we will use repeatedly, without mentioning it explicitly, the coupling of Poisson
process with ordered rates described at the beginning of Section 5.2.

If, for some T>0, one has that, for all 06t6T , HN (t)>dεNe, then, on this time interval,
Y N (t)6N(ȳ−ε) and, DN

0 (t)−DN
0 (s)6DN

1 (t)−DN
1 (s) for all 06s6t, with

DN
1 (t) def.=

∫ t

0

+∞∑
i=1

1{Y N∗ (s)>0,i6CN2 }N µ02,i(ds,{1}) + 1{i6N(ȳ−ε),ZN (s)>0}N µ01,i(ds,{1}).

By using classical results on superposition and thinning of independent Poisson processes, see
Kingman [Kin93] for example, we have (DN

1 (t)) dist.= (DN
2 (t)), with

DN
2 (t) def.=

∫ t

0
1{Y N∗ (s)>0}Nµ02(1−p)CN2 (ds)+1{ZN (s)>0}Nµ01(1−p)N(ȳ−ε)(ds).
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It is easily seen that Condition (5.1) is equivalent to the relation rµ02<ȳµ01, hence for η>0
there exists some N0 such that

µ02C
N
2 < µ01(ȳ + η)N, for N>N0.

By using this inequality and the relation {Y N∗ (t−)>0}⊂{ZN (t−)=0}, one has∫ t

0
1{Y N∗ (s)>0}Nµ02(1−p)CN2 (ds) 6

∫ t

0
1{ZN (s)=0}Nµ01(1−p)N(ȳ+η)(ds).

Moreover, since∫ t

0
1{ZN (s)>0}Nµ01(1−p)N(ȳ−ε)(ds) 6

∫ t

0
1{ZN (s)>0}Nµ01(1−p)N(ȳ+η)(ds),

hence DN
2 (t)−DN

2 (s)6DN
3 (t)−DN

3 (s), for 06s6t, with

DN
3 (t) def.=

∫ t

0
1{ZN (s)=0}Nµ01(1−p)N(ȳ+η)(ds) + 1{ZN (s)>0}Nµ01(1−p)N(ȳ+η),2(ds),

where Nµ01(1−p)N(ȳ+η) and Nµ01(1−p)N(ε+η),2 are two independent Poisson point processes. The
integer valued process (DN

3 (t)) has jumps of size 1 and it is easily checked that(
DN

3 (t)−µ01N(1−p)(ȳ+η)t
)

is a martingale. From Watanabe’s Theorem, see Watanabe [Wat64], one gets that (DN
3 (t)) is a

Poisson process on R+ with rate λHN with λH
def.= µ01(1−p)(ȳ+η).

If, for all 06t6T , HN (t)>dεNe then

DN
0 (t)−DN

0 (s) 6 DN
3 (t)−DN

3 (s) for 06s6t, (5.35)

where (DN
3 (t)) is a Poisson process with rate λHN .

Assume that HN (0)>dεNe and define the process (HN(t)), with the initial condition
H
N(0)=HN (0)−dεNe and such that

dHN(t) = NλHN (dt)− 1{HN (t−)>0}

+∞∑
i=1

1{i6N(1−ȳ)+εN}N µ11,i(dt,{0}) (5.36)

holds for t>0. Clearly, (HN(t)) has the same distribution as (LH(Nt)), where (LH(t)) is the
Markov process associated with an M/M/1 queue whose arrival and services rates are respec-
tively λH and µH

def.= pµ11(1−ȳ+ε). Note that, by definition of ȳ,

λH−µH = µ01(1−p)η − pµ11ε.

One can choose η>0 so that λH−µH<−pµ11ε/2, hence (LH(t)) is an ergodic Markov process
in this case.

Let TNε = inf{t > 0 : HN (t)<εN}, in particular HN (t)>dεNe for 06t6TNε . From Rela-
tions (5.34), (5.35) and (5.36), we get therefore the inequality

HN (t)−dεNe 6 H
N(t), (5.37)

for t<TNε , hence TNε 6τNL , with

τNL = inf
{
t > 0 : HN (t) = 0

}
= inf{t > 0 : LH(Nt) = 0}.

Since HN(0)6HN (0)6N , Proposition 5.16 of Robert [Rob03] gives that, for any t0 such that
t0>1/(µH−λH) then

lim
N→+∞

P
(
TNε 6 t0

)
> lim
N→+∞

P
(
τNL 6 t0

)
= 1.
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By using the strong Markov property, up to a change of time origin, one can assume that
HN (0)6dεNe. If (HN(t)) is defined as before with the initial condition HN (0)=0, then it is not
difficult to show that Relation (5.37) holds for all t>0. For the excursions of (HN (t)) below
dεNe this is clear and for the excursions above this level it has just been proved. In particular,
for any T > 0,

P
(

inf
06t6T

Y N∗ (t)+Y N (t) 6 N(ȳ−2ε)
)

= P
(

sup
06t6T

H
N (t) > 2εN

)
6 P0

(
sup

06t6NT
LH(t) > bεNc

)
,

and the last quantity is the probability that the hitting time of bεNc by an M/M/1 queue
starting from 0 is less that NT . Proposition 5.11 of Robert [Rob03] shows that this hitting
time is of the order of (µH/λH)bεNc and therefore exponentially large in N (recall that λH<µH).
In particular, the last term of the right-hand-side of the above relation is converging to 0 as N
gets large. The proposition is proved. J

The above proof relies on the comparisons of point processes associated to the counting processes
(Di(t)), i∈{0, 1, 2, 3}. We have, for example, that the point process associated to (D0(t)) is
“smaller” that the one associated to (D1(t)): DN

0 (t)−DN
0 (s)6DN

1 (t)−DN
1 (s) for all 06s6t. In

the following, for convenience, we will use the notation D0(dt)6D1(dt).

I Proposition 5.7. Under Condition (5.1), for any ε>0 small enough, there exists t1>0 such
that, for any initial fluid state (5.4), and for any T>t1, the relation

lim
N→∞

P
(

inf
t∈[t1,T ]

Y N∗ (t) > εN

)
= 1.

holds.

Proof. From Equations (5.6) and (5.8), we get that

d
(
Y N∗ −ZN

)
(t) =

+∞∑
i=1

1{i6Y N (t−)}Nµ01,i(dt)−
+∞∑
i=1

1{i6CN2 −ZN (t−)}Nµ02,i(dt).

By Proposition 5.6, there exists t0 be such that, for T>t0, for the events

AN
def.=
{

inf
t∈[t0,T ]

(
Y N∗ (t)+Y N (t)

)
> N(ȳ−ε)

}
,

the sequence (P(AN )) converges to 1.
Suppose that, for some time t∈(t0, T ), Y N∗ (t)<2εN , then, on the eventAN , Y N (t)>N(ȳ−3ε)

and consequently

d
(
Y N∗ −ZN

)
(t) >

+∞∑
i=1

1{i6N(ȳ−3ε)}Nµ01,i(dt)−
+∞∑
i=1

1{i6CN2 }Nµ02,i(dt) (5.38)

dist.= NµN (dt)−NλN (dt).

with µN=bµ01N(ȳ−3ε)c and λN=µ02C
N
2 . As noted before, Condition (5.1) is equivalent to the

relation ȳµ01−rµ02>0. Since

lim
N→+∞

µN−λN
N

= (µ01ȳ − µ02r)− µ013ε,

one can find 0<λ<µ and ε sufficiently small, such that for N sufficiently large λN>λN and
µN6µN hold. If

TN = inf{t>0 : Y N∗ (t)>2εN},

then since
(
Y N∗ −ZN

)
(0)>−CN2 , Relation (5.38) gives the existence of t1>0 such that

lim
N→+∞

P(TN6t1) = 1.



94 A stochastic analysis of a network with two levels of service Chapter 5

We now assume that
(
Y N∗ −ZN

)
(0)=d2εNe. By taking T>t1, using Relation (5.38) and the

estimates for λN and µN , we get that, on the event AN ,(
Y N∗ −ZN

)
(t) > d2εNe −X(Nt)

holds for all t>0, where (X(t)) is an M/M/1 queue with arrival [resp. service] rate λ [resp. µ]
starting at 0. With the same argument as the end of the previous proof, since λ<µ, we have
that, for any T>0,

lim
N→+∞

P
(

sup
06t6NT

X(s) > εN

)
= 0,

consequently

lim
N→+∞

P
({

sup
06t6T

(
Y N∗ −ZN

)
(t) > dεNe

}⋂
AN
)

= 1.

We conclude the proof by using the fact that Y N∗ (t)>0 implies that ZN (t)=0. J

The following corollary gives a more precise statement concerning the asymptotic behavior of
the Z-component of the state vector. It is a simple consequence of the fact that Y N∗ (t)>0
implies ZN (t)=0.

I Corollary 5.8. Under Condition (5.1), there exists t1>0 such that, for all T > t1,

lim
N→+∞

P
(
ZN (t) = 0,∀t ∈ [t1, T ]

)
= 1

holds for any initial fluid state (5.4).

I Theorem 5.9 (Saturated regime). Under Condition (5.1), there exists t1>0 such that, for
any initial fluid state (5.4), any limiting point (y∗∞(t), y∞(t), z∞(t)) of the sequence (XN (t)) de-
fined by Relation (5.9) satisfies the following relations, for all t>t1, z∞(t)=0 and the differential
equations

dy∗∞
dt (t) = µ01y∞(t)− µ02r,

dy∞
dt (t) = −µ01y∞(t) + p(µ02r + µ11(1− y∗∞(t)− y∞(t))).

hold. Furthermore

lim
t→+∞

(y∗∞(t), y∞(t)) =
(

1−µ02r

µ01

(
(1−p)µ01

pµ11
+1
)
,
µ02r

µ01

)
.

Proof. By Proposition 5.7, for some ε0 sufficiently small, there exists t1 such that, for any
T>t1, the event

EN
def.=
{
Y N∗ (t)>ε0N : ∀t ∈ [t1, T ]

}
has a probability arbitrarily close to 1 as N gets large. Consider the process (Y Na∗ (t), Y Na (t))
defined in Section 5.3.1 with initial state (Y N∗ (t1), Y N (t1)), then by checking Q-matrix of both
processes, it is easily seen that, on the event EN , the relation(

(Y N∗ (t), Y N (t)), t16t6T
) dist.=

(
(Y Na∗ (t), Y Na (t)), t16t6T

)
holds. By using the fact that the sequence of random variables(

1
N

(Y N∗ (t1), Y N (t1))
)
∈ [0, 1]

is tight, one has only to use Proposition 5.2 to conclude the proof of the theorem. J
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5.4.2 The Underloaded Regime
In this section, it will be assumed that Condition (5.2) holds.

I Proposition 5.10. Under Condition (5.2), there exists η0>0 and t1>0 such that, for any
initial fluid state (5.4) and for T>t1,

lim
N→∞

P

(
sup

t∈[t1,T ]

(
Y N∗ (t)+Y N (t)

)
6 N

(
y−η0

))
= 1,

with y=rµ02/µ01.

Note that y<1 by Condition (5.2).

Proof. By using the SDEs (5.6) and (5.7), we get that

d
(
Y N∗ +Y N

)
(t) =

+∞∑
i=1

1{i6N−Y N∗ (t−)−Y N (t−)}N µ11,i(dt, {0})

− 1{Y N∗ (t−)>0}N µ02CN2
(dt, {1})−

+∞∑
i=1

1{i6Y N (t−),ZN (t−)>0}N µ01,i(dt, {1}) (5.39)

holds. The strategy of the proof is of deriving an upper bound for the process (Y N∗ (t)+Y N (t)),
as before we will work on the differential terms of the above relation.

We choose η>0 sufficiently small so that for N large enough the relation

µ02

µ01
CN2 >

⌊
N

(
r
µ02

µ01
−η
)⌋

holds. Under this condition one has, with a convenient coupling of Poisson processes,

N µ02CN2
(dt, du) >

+∞∑
i=1

1{i6N(µ02r/µ01−η)}N µ01,i(dt, du). (5.40)

The relation Y N∗ (t−)>0 implies ZN (t−)=0, consequently, we get the inequality

1{Y N∗ (t−)>0}N µ02CN2
(dt, {1}) > 1{ZN (t−)=0}

+∞∑
i=1

1{i6N(µ02r/µ01−η)}N µ01,i(dt, {1}).

If the relation Y N (t−)+Y N∗ (t−)>N(µ02r/µ01−η) holds, then

1{ZN (t−)>0}

+∞∑
i=1

1{i6Y N (t−)}N µ01,i(dt, {1})

> 1{ZN (t−)>0}

+∞∑
i=1

1{i6N(µ02r/µ01−η)}N µ01,i(dt, {1}), (5.41)

since Y N∗ (t−)=0 if ZN (t−)>0.
By plugging Relations (5.40) and (5.41) into the SDE (5.39), we get that

d
(
Y N∗ +Y N

)
(t) 6 NλN (dt)−NµN (dt) (5.42)

holds on the event Y N (t−)+Y N∗ (t−)>N(µ02r/µ01−η), with

(λN , µN ) def.=
(⌊

pµ11N

(
1− rµ02

µ01
+ η

)⌋
,

⌊
(1− p)µ01N

(
r
µ02

µ01
− η
)⌋)

.

By Condition (5.2) we can take η=η0>0 to be such that

2η0 < r
µ02

µ01
− pµ11

pµ11 + (1− p)µ01
,
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In this case if (λ, µ) is the limit of the sequence ((λN , µN )/N), then λ<µ. There exist 0<λ0<µ0,
such that, for N sufficiently large, the relations λN6λ0N and µN>µ0N hold. Let (X(t))
be the (ergodic) M/M/1 queue with input [resp. service] rate given by λ0 [resp. µ0] and
X(0)=N , then Equation (5.42) gives the coupling relation (Y N∗ +Y N )(t)6X(Nt) for t less
than the hitting time of N(µ02r/µ01−2η0). Consequently, by ergodicity, there exists some
t1>0 such that this hitting time is, with high probability, less than t1N . Now, by taking
the initial conditions (Y N∗ +Y N )(0)=X(0)=dN(µ02r/µ01−2η0)e, with the same argument as
in the proof of Proposition 5.7, one gets that, for T>0, the process ((Y N∗ +Y N )(t)) remains
below N(µ02r/µ01−η0) on the time interval [0, T ] with high probability. The proposition is
proved. J

The following result is the analogue of Proposition 5.7 for the underloaded regime.

I Proposition 5.11. Under Condition (5.2), for any ε>0 small enough, there exists a time
t1>0 such that, for any initial fluid state (5.4) and for T>t1,

lim
N→∞

P
(

inf
t∈[t1,T ]

(ZN (t)−Y N∗ (t)) > εN

)
= 1.

Proof. Since the proof follows the same lines as in the proof of Proposition 5.7, we sketch the
main technical arguments. From the last proposition, one can chose η0 and t1>0 such that the
event

BN
def.=
{

sup
t∈[t1,T ]

(Y N∗ (t)+Y N (t)) 6 N

(
r
µ02

µ01
− η0

)}
has a probability converging to 1 when N gets large.

The SDEs (5.7) and (5.8) give the relation

d
(
ZN−Y N∗

)
(t) =

+∞∑
i=1

1{i6CN2 −ZN (t−)}Nµ02,i(dt)−
+∞∑
i=1

1{i6Y N (t−)}Nµ01,i(dt),

by using again that ZN (t−) is null if Y N∗ (t−) is positive.
One takes η0<µ02ε/(4µ01) then, on the event BN , if ZN (t)6εN ,

d
(
ZN−Y N∗

)
(t) >

+∞∑
i=1

1{i6CN2 −εN}Nµ02,i(dt)−
+∞∑
i=1

1{i6Nµ02(r−ε/2)/µ01}Nµ01,i(dt).

Hence, the process (ZN−Y N∗ (t)) can be compared with a (scaled) ergodic M/M/1 queue with
arrival rate bCN2 −εNcµ02 and service rate bN(r−ε/2)µ02/µ01cµ01. We conclude the proof in
the same way as in the proof of Proposition 5.6. J

I Corollary 5.12. Under Condition (5.2), there exists t1>0 such that, for all T > t1,

lim
N→+∞

P
(
Y N∗ (t) = 0,∀t ∈ [t1, T ]

)
= 1

holds for any initial fluid state (5.4).

Proof. The proof follows from the mutual exclusivity of the events {Y N∗ (t)>0} and {ZN (t)>0}
and from Proposition 5.11. J

We can now state the main result for the underloaded regime.

I Theorem 5.13 (Underloaded Regime). Under Condition (5.1), there exists t1>0 such that,
for any initial fluid state (5.4), any limiting point (y∗∞(t), y∞(t), z∞(t)) of the sequence (XN (t))
defined by Relation (5.9) satisfies the following relations, for all t>t1, y∗∞(t)=0 and the differ-
ential equations

dy∞
dt (t) = −(pµ11 + (1− p)µ01)y∞(t) + pµ11

dz∞
dt (t) = −µ02z∞(t)− µ01y∞(t) + µ02r
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Figure 5.5 – A queueing network with a third class of calls

hold. Furthermore,

lim
t→+∞

(y∞(t), z∞(t)) =
(

pµ11

pµ11+(1−p)µ01
, r− pµ01µ11

µ02(pµ11+(1−p)µ01)

)
.

Proof. In the same way as in the proof of Theorem 5.9, a coupling between the processes
(Y Nb (t), ZNb (t)) defined in Section 5.3.2 and the process (YN (t), ZN (t)) can be constructed so
that the convergence results of Proposition 5.5 can be used. J

5.5 Concluding remarks
In this chapter, we considered a bilevel call center with only one class of calls directed to

level 2. In future work, we would like to extend these results to the case when there is a third
class of calls, also needing a treatment by level 2. These calls, however, shall not be kept in
line by level 1 operator, but are directed to an independent queue if level 2 operators are busy.
This is the queueing model depicted in Figure 5.5.

This would allow a perfect correspondence between the results of this chapter, and the
results of Chapter 3 and Chapter 4.
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In this chapter, we focus on our emergency call center application, which motivated the
theoretical approach developed in the first part of this thesis. The key features of this emergency
call center is a two-level architecture, with three-way conferences between operators of both
levels and callers, and the priority treatment of some of the calls at the second level.

Our numerical simulations take into account many features that were not included in the
simplified model described in Section 2.5.1, some of which could not be modeled with our
formalism, and some others were dropped out for the sake of simplicity.

Among these additional features, the most significant one is certainly the heterogeneous
nature of level 2. In the planned architecture of the Parisian emergency call center, level 2
is composed of firemen and policemen, who do not answer the same calls: level 1 operators
identify which of the incoming calls should be dispatched to police and firemen. Moreover, in
early versions of the system, policemen of different administrative areas do not use the same
information systems and, hence, also form separated groups. This can still be modeled by
the Petri nets with free choice and priorities described in Chapters 3 and 4, at the cost of
complicating the models: see Section 6.2.1.

The other important characteristics of the emergency call center that we take into account in
our simulation are the impatience of callers, who can give up their calls, the latencies between
two successive call treatments by an operator, or the typical statistical distributions of the
call service times. See our analysis in Section 6.1. Furthermore, we evaluate performance
by measuring, not only call throughputs, but also classical quality of service criteria, such as
waiting times or abandonment rates.

101
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Note that call abandonment cannot be modeled by our Petri nets with free choice and
priority. However, this does not invalidate these models, as we were interested in measuring
capacities (maximal throughputs). In a first order (and rough) approximation, abandonment
rates are low as long as the system does not work at full capacity. In our simulations, we ran
more detailed analyses in order to take into account impatience of callers and its consequence
in terms of sizing. See Section 6.3.1.

An important preliminary remark is the following: in this chapter, as in the rest of this
dissertation, we do not intend to provide an optimal operator sizing, on a daily and hourly
basis, in order to achieve some performance targets. This would require to resort to elaborate
optimization tools, that we did not develop in this thesis. On this topic, see for example
[ACG+10, ATLB16]. Our goal here is rather to further investigate and comment on the specific
features and behaviors of this two-level architecture, especially in situations of congestion.

Most of the results presented in this chapter have been delivered to Préfecture de police de
Paris and Brigade de sapeurs-pompiers de Paris in a more practitioner-focused presentation. In
the present chapter, we give a general overview of this applied work, leaving apart some details
of the real application, because of confidentiality imperatives.

6.1 Data analysis of an emergency call center
The new bilevel architecture of the emergency call center was set in year 2016. Our analysis

focuses on the situation before this event, because our objective was then to foresee the behavior
of the new call center. We had the opportunity to study several weeks of data from the ‘18-112’
emergency call center of BSPP, and the ‘17’ emergency call center of Préfecture de police de
Paris, at the individual call level.

Some processing of the data was required. For example, before entering the queue or being
assigned to an operator, all incoming calls are welcomed by an initial voice message, whose
duration essentially depends on the emergency call number. We filtered out of our data set all
calls that did abandon before the end of this message, and did not count this initial delay in our
waiting times. It is a well-known fact by people in charge of the call center that the duration of
this initial voice message is a key parameter to control the volume (and urgency) of incoming
calls. We nevertheless did not analyze this phenomenon in this dissertation.

We refer to Brown et al. [BGM+05] for a detailed statistical analysis of a call center. We
found our statistical analyses to yield similar results to the ones described by these authors.
This was helped by the fact that the number of calls handled by our emergency call center
represents the same order of magnitude than the number of calls treated by operators in the
call center they analyzed. Statistical analyses of call centers is an active field of research. Other
relevant references are avramidis2005modeling,matteson2011forecasting,ibrahim2016modeling,

In the following, we describe a few key characteristics of the two call centers we analyzed.
Because of confidentiality issues, most numerical values are obfuscated.

Call arrival The call arrival rate varies continuously in a day, with amplitude between
the hour with minimal rate and the hour with maximal rate going up to a factor 7. The
volume of incoming calls can also vary up to 60% between two different days of the week. In
contrast with the queueing models used in Chapter 5, the statistical distribution is significantly
different from a Poisson distribution, even for small time periods. In Figure 6.1, we select
4-hour periods during weekdays, cumulate our observations on a few months, and compare the
statistical distribution with the Poisson distribution with the same mean. It appears to have a
larger dispersion than its mean, as in call centers observed by Jongbloed and Koole [JK01] or
Avramidis et al. [ADL04] (with more accurate methods). We refer to Ibrahim et al. [IYLS16]
for a recent survey on call arrivals analysis.

Service times Brown et al. [BGM+05] observed that the statistical distribution of service
times in their case study fitted a lognormal distribution. This also contrasts with the standard
queueing model, in which the service times are supposed to be exponential. In our case study, we
observed that the service times were a mixture of two different lognormal distribution, one with
very short service times (less than 10 seconds) and one with longer service time. See Figure 6.2.
The weight of this second category of calls is much larger. According to our discussions with
call center practitioners, the first category could correspond to error calls with nobody on line.
This is a current phenomenon for emergency call centers, because an emergency call number
is likely to be dialed by random moves of a phone in a pocket. We point out, however, that a
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data Poisson distribution

0.000

0.025

0.050

0.075

Number of calls in the hour

Fr
eq
ue
nc

y

data Poisson distribution

0.00

0.05

0.10

Number of calls in the hour

Fr
eq
ue

nc
y

Figure 6.1 – Distribution of the number of calls received in one hour, counted on a few months
during a given 4-hour period of the day, during regular weekdays, vs distribution of a data set
drawn from a Poisson distribution with the same mean value. Right and left correspond to
different moments of the day. Note that part of the variance of the data distribution could also
be explained by other factors (e.g., holidays, or days with special events).
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Figure 6.2 – Conversation times in log scale for calls to ‘17’ and ‘18’. The graphs suggest that
this statistical distribution corresponds the weighted sum of two lognormal distributions, one
for short calls, the other one for long calls.

lognormal distribution modeling is a rough model that fails to account for more accurate results
from call center data analysis, as the servers heterogeneity, or the interdependency of service
times: see [ILST16] and references therein.
Service times vary depending on the hour of the day. Another interesting phenomenon we
observed is that, for one of the two call centers we analyzed, there was a negative correlation
between the number of calls received in an hour and the mean service time in this hour, while
in the other call center, the two variables seemed to be independent. See Figure 6.3.
This suggests that, in the first call center, operators adapt their response to the affluence of calls.
In the second call center, this is not the case. Two explanations were possible: either the type
of service was different and the operators could not adapt their service time, or the operators
of the first call center were better informed and alerted when several calls were queueing, or
when the maximal waiting time in the queue went beyond some threshold.
The analysis of the new call center, in which all operators have the same information on calls
queueing, and on their waiting times, shall allow to identify the correct explanation.

Call abandonment In trying to estimate the patience of callers, that is, their willingness
to wait for service, one needs to take into account that, the longer a caller accepts to wait for
service, the larger the probability is that he or she is served before abandoning. Consequently,
the patience of callers cannot be measured by the distribution of waiting times, or by the
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Figure 6.3 – Mean conversation time as a function of the number of calls in the hour, and linear
regression: each point represent an hour, taken in a given month. Plots (a) and (b) correspond
to our two different call centers.
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Figure 6.4 – Hazard rate as a function of waiting time. After the first 0.1 units, the hazard
rate approaches a constant function. The outlier point at a waiting time of 0.3 units does not
correspond to a large rate of abandonments at this time, but to a specific procedure of the call
center which leads to loosing track of the call.

distribution of waiting times of those abandoning. In fact, for a given caller, one observes only
the minimum of these two quantities, his or her patience and the time before he or she is served.
However, by plotting the hazard rate function for this system (following the method
in [BGM+05], first introduced by Palm [Pal53] for service systems), corresponding to the frac-
tion of calls giving up in the next time interval among calls that are still in the queue, one
can observe a rather constant function: see Figure 6.4. This suggests that an exponential
distribution of callers’ patience may be a reasonable approximation.

Inter-call delays A major challenge to improve simulations was to model inter-call delays,
that is, the non-reducible periods of time during which an operator is not available, at the end
of a call. The available data allows us to compute the periods during which an operator is not
in communication with a caller, which comprises, but cannot be reduced to this inter-call delay.
Indeed, these periods correspond to various situations, such as:
• After-call work (ACW): dispatching, communications with emergency services, with man-
agers and co-workers.

• Wait: the operator is idle but no call is dispatched to him or her.
• Breaks: some are necessary, other can be delayed or adjusted depending on the frequency
of call arrivals.

• End of service or beginning of service.
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Figure 6.5 – Delays between two successive call handlings, for three different operator stations
(arbitrary scale): the distribution is remarkably smooth, with no break between frequent small
durations and unfrequent long durations.

In simulations, one would like to model only after-call work and minimal break periods, consid-
ering that the call center operators are in alert, so that the capacity of the call center is maximal
(of course periods of waiting are unavoidable, and resort as outputs of the simulations). How-
ever, this information is not directly available. The distribution of inter-call delays observed in
our data is given in Figure 6.5 for one of the call centers (for the other call center, we did not
have information on which operator station answered the call). Its main characteristics is the
continuity from short durations to long durations, so that the different categories of inter-call
delays do not seem to be distinguishable. Still, we observed, as one can expect, that there is
a negative correlation between the mean inter-call delay during a period and the number of
incoming calls in this period.

Retrials We did not analyze retrials (situations in which a caller cannot reach an operator
and calls again), in particular because call numbers were not available for privacy reasons.
However, we point out the analysis of Aguir et al. [AAKD08], that these retrials can have a
significant impact on the call center behavior in situations with large waiting times, which are
of course rare in emergency call center, but may happen in situations of crisis.

6.2 The impact of having separated groups of operators
at level 2

Recall that one of the key characteristics of the call center of our case study is that operators
of level 2 are split between 2 groups (or even more), which do not handle the same kind of calls.
We first describe the behavior of this organization by the analytical methods of Part I.

6.2.1 Analysis of a model with two separated groups at level 2
The Petri net in Figure 6.6 models a call center with two groups of operators of level 2. In

comparison with the Petri net of Section 2.1 (see Figure 2.7), the itinerary of extremely urgent
calls and urgent calls is duplicated: in addition to the level of urgency of a call, the operator
of level 1 also determines if the call should be addressed to police or firemen. This yields four
different tracks for calls directed to level 2, instead of two tracks before. In contrast, advice
calls, which are handled at level 1, are not labeled as “police” or “firemen”.

This is a Petri net with free choice and priority, as the ones considered in Chapters 3 and 4.
The asymptotic throughputs of the dynamics can be expressed as a piecewise linear function of
the parameters of the system, following the methods of Section 3.3.

Without entering into the details of the computation, we exhibit here the asymptotic
throughputs formulæ. The rates µfext, µ

p
ext, µ

f
ur, µ

p
ur, µadv, with µ

f
ext+µpext+µfur+µpur+µadv = 1,
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Figure 6.6 – Petri net modeling of a call center with two groups at level 2.

correspond to the fractions of calls classified in one of the different categories: f stands for ‘fire-
men’ and p stands for ‘police’. The constant τ̄ characterizes here the average sojourn time at
level 1, τ̄ := µfextτ

f
ext + µpextτ

p
ext + µfurτ

f
ur + µpurτ

p
ur + µadvτadv.

As in the application of Part I (see Section 2.1), transitions qf5 and qp5 characterize the
extremely urgent calls throughput at level 2 (firemen or police, resp.), and transitions qf6 and
qp6 characterize the urgent calls throughput at level 2.

We define the constants rf1 , r
p
1 , r

f
2 , r

p
2 in a similar way to the constants r1 and r2 of

Section 3.4, that is:

rf1 := µfext(τ
f
tr + τ ′fext)
τ̄

rp1 := µpext(τ
p
tr + τ ′pext)
τ̄

rf2 := µfext(τ
f
tr + τ ′fext) + µfurτ

′f
ur

τ̄
rp2 := µpext(τ

p
tr + τ ′pext) + µpurτ

′p
ur

τ̄

The stationary throughputs of the system are the following:

• In any situation, ρf5 = µfextρ1 and ρp5 = µpextρ1.
• If Nf

2 /N1 6 rf1 and Nf
2 /N

p
2 6 rf1/r

p
1 , then

ρ1 = Nf
2 /µ

f
extτ
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tr
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ρp6 =
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2
τ ′pur
−Nf

2
µpextτ

p
ext

µfextτ
f
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1

µpurρ1 if Np
2 /N

f
2 > rp2/r

f
1
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Figure 6.7 – Regimes of the call center with two groups at level 2. The yellow area is such that
level 1 is fluid. The green area is such that every group of operators of level 2 is fluid. In the
rest of the diagram, the throughput of level 1 is determined by the limiting group of operators
at level 2.
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The different regimes of this new organization are depicted in Figure 6.7. When Nf
2 /N1 > rf1

and Np
2 /N1 > rp1 , the throughput at level 1 is maximal, equal to N1/τ̄ , and the throughputs at

both sides of level 2, police and firemen, are determined by the same kind of formulæ as in the
case of Chapter 3, as if this level 2 was unique. The reason is that, in this situation, the two
groups of level 2 are able to handle all extremely urgent calls, so that level 1 operators are not
slowed down by level 2.

In contrast, when one of the two groups of level 2 is undersized in comparison to level 1, this
affects level 1, and therefore, also the other group of level 2, even if this group was normally
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Figure 6.8 – Bottleneck level 1: when the number of level 1 operators diminishes, the fraction of
abandoning calls increases, and the occupancy ratio of (remaining) level 1 operators increases,
while level 2 operators become inactive. These graphs are “hand-drawn”, but directly inspired
by outputs of simulations. Therefore, the horizontal axis is intentionally not given values.

sized. We call this situation cross-congestion, and it is identified as a critical issue for the
call center practitioners. In this situation, the whole system is congested because of just one
undersized group of operators. General bad performance for call treatment is then associated
with some operators being underemployed in the other group at level 2. The next sections
analyze this issue by the means of simulations.

6.2.2 Cross-congestion
Our simulations allow us to illustrate phenomena of cross-congestion exhibited by compu-

tations, and to point out their effects on operators activity and abandonment rates.
First, we recall that an undersized level 1 can become bottleneck for the system. As all

calls have to go through level 1, the fluidity of this level is crucial for the call center. A direct
illustration is given in Figure 6.8: if the number of operators of level 1 is too low, calls abandon
before level 1, and cannot be treated by level 2 operators, who become inactive, which yields
inefficient situations. Furthermore, calls giving up before level 1 are not qualified, so that urgent
calls and extremely urgent calls can be lost at this step. Note that, in practice, when level 1
encounters congestion, level 1 operators can speed up conversation times of advice calls. This
flexibility is crucial for the system.

Now, consider a case in which a large fraction of calls are accompanied to a group of level
2 (for example, firemen). Then, in a situation in which this group is saturated by incoming
calls, level 1 operators are blocked, forced to wait with callers until an operator of this group
becomes available. As a consequence, level 1 is slowed down, so that it also cannot feed the
other group(s) of level 2, which become inactive. This is illustrated by Figure 6.9. From a
practitioner point of view, this is a sensitive situation, in which police can hamper firemen, or
firemen can hamper police.

We proposed a few methods to avoid such situations, like trunk reservation or cross-priorities.
Inactive operators of level 2 could also be allowed to directly answer incoming calls. The first
two methods are made possible by the fact that most calls from the emergency number 17
are eventually oriented to police, and most calls from the emergency number 18 are eventually
oriented to firemen.

6.2.3 Arbitrating between the different levels of priority.
The role of three-way conferences between level 1 and level 2 is to improve quality of call

treatment for the most urgent calls. An important question is the following: is it better to
accompany as much calls as possible between the two levels?

While the answer shall be affirmative in fluid situations, our experiments tend to show that,
if all calls are kept in line by level 1 operators while queuing, this can be counterproductive.
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Figure 6.9 – Cross congestion: here, calls dispatched to the group of firemen of level 2 are
all accompanied. When the number of firemen operators of level 2 decreases, waiting times
between level 1 and level 2 increase, so that level 1 operators are more and more active. As
a consequence, fewer calls are transferred to police operators of level 2, who become inactive.
These graphs are “hand-drawn”, but directly inspired by outputs of simulations. Therefore, the
horizontal axis is intentionally not given values.

Indeed, this diminishes the range of the buffer regime in which level 1 is fluid, while a group
of level 2 starts to be saturated. At the limit when all calls are accompanied, this buffer regime
disappears, and as soon as no level 2 operator is available, level 1 begins to be slowed down.
This can be negative for the whole system, and even for urgent calls accompanied between
level 1 and level 2, because some of these calls are lost before level 1. See Figure 6.10.

Therefore, a subtle compromise should be found between these two extremes of accompa-
nying no urgent call at level 2 (and taking the risk to loose some extremely urgent calls in the
queue before level 2), and accompanying all urgent calls, which quickly slows down the whole
system. Of course, in fluid situations, accompanying all urgent calls to level 2 is possible, as
soon as procedures are set to handle congestion situations.

Our experiments tend to show that, as long as extremely urgent calls represent a small
proportion of the urgent calls, the buffer regime is wide enough, and accompanying extremely
urgent calls to level 2 does not hamper the system.

6.3 Other lessons from simulations

6.3.1 Efficiency of operators

The impatience of callers, associated with the random arrival of calls, result in the existence
of a trade-off between idleness of operators and abandonment rate: one cannot achieve full-time
activity of operators and no caller giving up with the same organization.

Our simulations allow us to draw the curve of the best trade-offs between abandonment rates
and occupancy ratios (or efficiency) for our 17-18-112 emergency call center (see Figures 6.11,
6.12 and 6.13). For example, in order to achieve an abandonment rate of less than 10% of the
calls entering the system, the best occupancy ratio that can be achieved in the system (with an
appropriate distribution of operators in the different groups) is 70%. In other words, in order to
achieve a certain performance in terms of call abandonments, one must expect that operators
in the call center remain idle during significant periods of time.

Of course, this best trade-off between operators activity and abandonment is strongly related
to the size of the call center. The larger the volume of incoming calls is, the more productive
are operators of the call center, because the effect of the randomness of calls arriving is reduced
in proportions, due to their large number.

We refer to the model of [GMR02] for a mathematical analysis of this trade-off between
efficiency and abandonment.
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Figure 6.10 – Abandonment rates depending on the number of operators at the corresponding
group of level 2, for extremely urgent (EU) calls, simply urgent (U) calls, and calls at level
1. The three graphs describe three strategies of call accompaniment. The second strategy
(accompanying only extremely urgent calls) is the strategy that best protects EU calls in situ-
ations of low congestion. These graphs are “hand-drawn”, but directly inspired by outputs of
simulations.

6.3.2 Other qualitative observations
The sensitivity to conversation times An important part of our simulations and analyses
were conducted before the new bilevel emergency call center became operational. At that
moment, the conversation times of calls at level 1 and level 2 could only be estimated from
the conversation times observed in the current single-level call centers. For this purpose, a
conservative approach would be to consider that the conversation time at level 2 would be
equal to the conversation time observed in the single-level call center. Then conversation time
at level 1 must still be added to obtain the total conversation time experienced by the caller.
The total of the conversation times of a call at level 1 and level 2 can also be bounded from
below: it should not be inferior to the conversation time observed in the single-level call center.

In our simulations, we found our results to be very sensitive to the position of the cursor
between these two extreme cases. The total conversation time of the new organization, if much
larger than the conversation time of the ancient one, could lead to lower throughputs and lower
performance, if the number of operators is equivalent, or to a larger number of operators, in
order to reach the same level of (quantitative) performance, despite the advantages of pooling
operators from police and firemen.

This can of course also be assessed from the classical analytical formulæ, which establish
that the throughput of a bottleneck service place is proportional to the inverse of the mean
service time.

We highlighted this in our reports delivered to the heads of the new emergency call center
project: the success of the project was also conditioned to the ability of the new organization
to staff more operators or to control conversation times, so that information is not repeated
nor lost between level 1 and level 2, and that the call qualification at level 1 is as efficient as
possible.

However, the advantages expected from the new organization of the emergency call center
should not be measured only in terms of throughputs and quantitative performance (e.g., volume
of calls answered), but also in regard to other criteria of fundamental importance, such as quality
of call handling, appropriateness of emergency means dispatching, or improved coordination
between police and firemen (see Section 1.1).

The need for detailed metrics As in any operations center, there is a need for practitioners
to evaluate the state of the emergency call center by a few eloquent metrics, easy to understand
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and to support decision. Examples of these simple metrics are the volume of calls answered, the
maximal waiting times, the maximal number of callers waiting in the queue, or the abandonment
rates 1.

In the architecture of the new emergency call center, however, these simple metrics do not
account for the different types of calls, and for their various itineraries. Firstly, the urgency of
the calls being qualified by operators of level 1, it is possible and advised to consider metrics
specific to the urgent calls and extremely urgent calls, which are supposed to be offered a better
treatment.

Secondly, our simulations showed that, under some conditions, a good performance for calls
in general could be associated with a much lower performance for a certain category of calls,
raising fairness issues. As an example, suppose that, for one of the emergency numbers 17
or 18, whose urgent calls are essentially directed to, respectively, second level police operators
and second level firemen operators, the ratio of extremely urgent calls is much lower than for
the other one. Then, it can happen that the mean waiting time of extremely urgent calls is
low, while it remains high for this specific emergency number. Such situation would lead to
extremely urgent calls of one emergency number experiencing long waiting times.

While this could be the best configuration depending on the context, we strongly recommend
to keep abreast of such unbalanced situations, and hence, to develop a certain number of
indicators so that the performance measure is differentiated according to the different call
types.

6.4 Concluding remarks
Complementary to our analytical developments of Part I, the large range of simulations that

we ran was a crucial work in order to understand our complex, bilevel emergency call center,
especially in critical configurations identified by the practitioners (meteorological events, for
example), and to test the system at its limits.

A major limitation of our work, that we underlined regularly in our contacts with the call
center project leaders, is that our results focus on congestion, circulation of calls, and, more
generally, quantitative performance of the call treatment, aiming at optimizing the staffing of
the call center and minimizing the number of lost calls. This is just one dimension of the whole
criteria that practitioners have to keep in mind.

In particular, the quality of conversations, leading to better interactions with the caller, who
may be in situations of distress, and to a better dispatching of emergency means, is crucial in
an emergency call center. Moreover, some major benefits of the new organization could not be
captured by our study. Thus, the existence of a first level group of operators allows to protect
second level operators from calls with no one in line, or callers with inappropriate requests, and
therefore to focus on real emergencies. Moreover, a key feature of this project was to gather
together policemen and firemen, and hence, to improve coordination between services.

Another limitation of our work is that we did not model the human intelligence of the
organization, which is illustrated, for example, in Figure 6.3: operators adapt their efficiency
(and their breaks and inter-call delays) to the call center peak periods, but which of course
comprises many other characteristics.

Despite these limitations, we were able to provide some quantitative and qualitative results
to the emergency call center project leaders, on top of the classical call center theory, which
already indicates that pooling operators is beneficial in general.

The major lesson that we exhibited is the cost of keeping calls in line with an operator
between level 1 and level 2. Our analyses show that it may be harmless in fluid situations, but
that, as soon as a group of operators of level 2 encounters some congestion, it can slow down
level 1, and therefore, the whole system, generating “cross-congestion”. However, we do not
recommend to stop accompanying calls from level 1 to level 2 (remember that this operational
choice was driven by the need to serve properly people in distress), but rather to keep this
feature for the most important calls or, alternatively, to activate some downgraded modes as
soon as this feature yields congestion at level 1. Simulations and numerical analyses show that
keeping this feature only for a fraction of urgent calls permits to have a “buffer regime” in which
a group of level 2 starts to be saturated, without impacting the rest of the call center. This

1. Examples of more “state-of-the-art” metrics can be found in [ACG+10, ATLB16]
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coincides with our analytical results exposed in Part I, see for example the graph of Figure 1.5,
in which Phase 2 corresponds to the buffer regime.

Other key issues were identified in this chapter, such as the unavoidable inactivity of op-
erators during some periods of time, in order to be able to address more incoming calls, the
importance of differentiating metrics indicating the quality of service for the various emergency
number and types of urgencies, or the impact of conversation times, which controls at first order
the number of operators needed to staff the call center.

Finally, this case study also pointed out, from a practitioner point of view, the importance for
an emergency call center to identify quickly and properly the most urgent calls, so as to provide
them a service as good as it can be. This was one of the reason of this two-level organization
of our case study. More generally, it calls for other innovations and ideas, that should probably
involve recent or future technologies, to serve this objective of identifying quickly and properly
the most urgent calls. For these calls, some seconds spared can dramatically make the difference.

6.5 A few words on our simulations
For our simulations, we developed a program written in Python 3 and using only its stan-

dard libraries 2. Our program allows us to design various call centers, in which calls circulate
depending on their characteristics (emergency number, urgency). It allows to model situations
in which several operators of different groups are in conversation with the same person. In
case of concurrency between different type of calls in queues, calls are assigned to operators
according to different levels of priority, and to a “first-in, first-out” rule, for calls of the same
priority. For each queue of the network, it is possible to specify if calls can give up or not.
Metrics (waiting times, abandonments) are collected for each queue of the network and for each
type of calls. It is also possible to measure throughputs at the different stages of the calls
itineraries.

Our program allows us to “replay” some days of activity of our call center, while varying the
staffing of operators, the architecture of the call center, or other parameters of the system. In
particular, we had access to data of a few crisis events (like meteorological events, celebrations
and festivals), leading to stressed situations in which the volume of emergency calls forced the
call center to work at full regime. It is also possible to generate a data set of “incoming calls”
from scratch, following certain statistical distributions and parameters. Some insights on the
statistics of our data are given in Section 6.1 (see also Avramidis and L’Ecuyer [AL05]).

Of these two cases, replaying real situations is the toughest part, as a lot of data re-
construction is required. For example, for a given call logged in the data, one cannot determine
simultaneously its patience (its willingness to wait for service) and its conversation time: if the
caller gives up, we have access to the call’s patience, but not to the conversation time, and if
the call is answered, we have access to the conversation times, but only to a lower bound of its
patience. For the needs of our simulations, we re-constructed data according to the following
lines: first, we considered that conversation times of calls giving up were similar in distribution
to the conversation times of calls answered. Second, we assumed patience of callers to follow
an exponential distribution, in accordance with the analysis developed in Section 6.1 (see Fig-
ure 6.4). This made it simple to compute patience of calls that were answered, just by adding
an exponential draw to their waiting times.

The validation of our program (before the new call center became operative, and its data
became available) was twofold. First, we modeled the previous call center organizations, so that
comparing our simulations with data sets of these call centers allowed us to validate our model
and to calibrate some parameters. Moreover, we benefited from the student project of Dejean
de la Bâtie and Petroff [DdlBP16], who worked on the same case study and also simulated
one of the architectures in project, in an other programming language: this double simulation
allowed us to validate our program by pointing out and resolving differences in the outputs.

2. We plan to share some parts of this code online, so that the community can use it and verify it. However,
some work is still required to clean the specificities from our call center case study.
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Titre : Dynamique d’un système bi-niveau avec priorités et application à un centre d’appels d’urgence

Mots clés : évaluation de performance, réseau de Petri, calcul stochastique, systèmes à événements
discrets, systèmes hybrides, centres d’appels

Résumé : Nous analysons la dynamique de systèmes à événements discrets avec synchronisation et priorités, au moyen de réseaux de Petri et de
réseaux de files d’attente. Nous appliquons cela à l’évaluation de performance d’un centre d’appels d’urgence.
Notre motivation est en premier lieu pratique. En 2016, un nouveau centre d’appels d’urgence a été mis en place pour l’agglomération parisienne,
traitant les appels pour la police et les pompiers. La nouvelle organisation comporte deux niveaux de traitement. Un premier niveau d’opérateurs
répond aux appels, identifie les appels urgents et traite les appels non urgents. Les opérateurs de second niveau sont spécialistes (policiers ou
pompiers) et traitent les demandes d’intervention. De plus, certains appels sont identifiés comme très urgents et bénéficient d’un traitement
prioritaire. Nous nous intéressons à l’évaluation de performance de divers systèmes correspondant à cette description générale.
Nous proposons trois modélisations différentes. Les deux premières sont des modèles de réseaux de Petri temporisés. Nous enrichissons le cadre
classique des réseaux de Petri à choix libres en autorisant des situations de conflit où le routage est résolu par des priorités. La principale difficulté
est alors que l’opérateur de la dynamique n’est plus monotone.
Dans un premier modèle, nous proposons une dynamique discrète pour cette classe de réseaux de Petri. Nous prouvons que les variables compteurs
du réseau sont les solutions d’un système affine par morceaux avec retards. Nous étudions les régimes stationnaires de cette dynamique, et
caractérisons les régimes affines comme solutions d’un système affine par morceaux, qui peut être vu comme un système d’équations rationnelles sur
le semi-corps de germes tropical (min plus). Les applications numériques montrent cependant que la convergence ne se fait pas toujours vers ces
régimes stationnaires affines.
Le second modèle est une version infinitésimale du précédent. Pour la même classe de réseaux de Petri, nous proposons une dynamique sous forme
d’équations différentielles : les jetons et le temps deviennent continus. Pour ce système différentiel discontinu, nous établissons l’existence et l’unicité
de la solution. L’avantage de cette modélisation continue est que les pathologies du temps discret disparaissent. Nous montrons cependant que les
régimes stationaires sont les mêmes que ceux de la dynamique discrète. Les simulations numériques semblent montrer que la convergence s’obtient
effectivement dans ce cas.
Nous modélisons aussi le centre d’appels d’urgence comme un réseau de files d’attente, prenant ainsi en compte le caractère aléatoire des différentes
variables du centre d’appel. Pour ce système, nous prouvons que la dynamique, après une transformation d’échelle, converge vers une limite fluide,
qui correspond au système d’équations différentielles de notre modèle de réseau de Petri. Cela conforte notre seconde modélisation. Les principaux
outils de la preuve de convergence sont le calcul stochastique pour les processus de Poisson, des formulations en terme de problème de Skorokhod
généralisé, ou encore des arguments de couplage.
Ainsi, nos trois modèles d’un même centre d’appels d’urgence définissent un même comportement asymptotique schématique, exprimé comme un
système linéaire affine par morceaux, décrivant différentes phases de congestion du centre.
Dans une seconde partie de cette thèse, nous analysons des simulations poussées, prenant en compte les nombreux détails de notre étude de cas. Les
simulations confirment le comportement schématique prédit par nos modèles mathématiques. Nous discutons aussi des interactions complexes
provenant de la nature hétérogène du niveau 2.

Title : Dynamics of a two-level system with priorities and application to an emergency call center

Keywords : performance evaluation, Petri net, stochastic calculus, discrete event systems, hybrid
systems, call centers

Abstract We analyze the dynamics of discrete event systems with synchronization and priorities, by means of Petri nets and queueing networks. We
apply this to the performance evaluation of an emergency call center.
Our original motivation is practical. In 2016, a new emergency call center became operative in Paris area, handling emergency calls to police and
firemen. The new organization includes a two-level call treatment. A first level of operators answers calls, identifies urgent calls and handles
(numerous) non-urgent calls. Second level operators are specialists (policemen or firemen) and handle emergency demands. In this architecture,
some calls are qualified as extremely urgent and receive a priority treatment. We are interested in the performance evaluation of bilevel systems
corresponding to this general description.
We propose three different models addressing this kind of systems. The first two are timed Petri net models. We enrich the classical framework of
free choice Petri nets by allowing conflict situations in which the routing is solved by priorities. The main difficulty in this situation is that the
dynamics becomes non monotone.
In a first model, we consider discrete dynamics for this class of Petri nets. We prove that the counter variables of the Petri net are solutions of a
piecewise linear system with delays. We investigate the stationary regimes of the dynamics, and characterize the affine ones as solutions of a
piecewise linear system, which can be thought of as a system of rational equations over a tropical (min-plus) semifield of germs. Numerical
experiments show that, however, convergence does not always holds towards these affine stationary regimes.
The second model is a infinitesimal version of the previous one. For the same class of Petri nets, we introduce a dynamics expressed by differential
equations, so that the tokens and time events become continuous. For this differential system with discontinuous righthandside, we establish the
existence and uniqueness of the solution. The benefit of this continuous model is that the discrete time pathologies disappear. We show however that
the stationary regimes are the same as the stationary regimes of the discrete time dynamics. Numerical experiments tend to show that, in this
setting, convergence effectively holds.
We also model the emergency call center described above as a queueing system, taking into account the randomness of the different call center
variables. For this system, we prove that, under an appropriate scaling, the dynamics converges to a fluid limit which corresponds to the differential
equations of our Petri net model. This provides support for the second model. Stochastic calculus for Poisson processes, generalized Skorokhod
problems formulations and coupling arguments are the main tools used to establish this convergence.
Hence, our three models of an identical emergency call center yield the same schematic asymptotic behavior, expressed as a piecewise linear system
of the parameters, and describing the different congestion phases of the system.
In a second part of this thesis, simulations are carried out and analyzed, taking into account the many details of our case study. The simulations
confirm the schematic behavior described by our mathematical models. We also address the complex interactions coming from the heterogeneous
nature of level 2.

Université Paris-Saclay
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