F. Other-lessons, 109 6.3.1 Efficiency of operators, p.110

M. Salah-aguir, F. Zeynep-ak?in, Y. Karaesmen, and . Dallery, On the interaction between retrials and sizing of call centers, European Journal of Operational Research, vol.191, issue.2, pp.398-408, 2008.
DOI : 10.1016/j.ejor.2007.06.051

V. Xavier-allamigeon, S. Boeuf, and . Gaubert, Performance Evaluation of an Emergency Call Center: Tropical Polynomial Systems Applied to Timed Petri Nets, FORMATS, pp.10-26, 2015.
DOI : 10.1007/978-3-319-22975-1_2

V. Xavier-allamigeon, S. Boeuf, and . Gaubert, Stationary solutions of discrete and continuous Petri nets with priorities, VALUETOOLS'16, Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools, 2016.

V. Xavier-allamigeon, S. Boeuf, and . Gaubert, Stationary solutions of discrete and continuous Petri nets with priorities. Performance Evaluation, 2017.

N. Athanassios, W. Avramidis, M. Chan, . Gendreau, L. Pierre et al., Optimizing daily agent scheduling in a multiskill call center, European Journal of Operational Research, vol.200, issue.3, pp.822-832, 2010.

N. Athanassios, A. Avramidis, P. Deslauriers, and . Ecuyer, Modeling daily arrivals to a telephone call center, Management Science, vol.50, issue.7, pp.896-908, 2004.

U. Xavier-allamigeon, S. Fahrenberg, A. Gaubert, R. Legay, and . Katz, Tropical Fourier???Motzkin elimination, with an application to real-time verification, International Journal of Algebra and Computation, vol.13, issue.05, pp.569-607, 2014.
DOI : 10.1016/0304-3975(95)00188-3

M. Akian and S. Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control, Nonlinear Analysis: Theory, Methods & Applications, vol.52, issue.2, pp.637-679, 2003.
DOI : 10.1016/S0362-546X(02)00170-0

URL : https://hal.archives-ouvertes.fr/inria-00000201

N. Athanassios, P. Avramidis, and . Ecuyer, Modeling and simulation of call centers, Simulation Conference, 2005 Proceedings of the Winter, p.9, 2005.

A. [. Abdulla and . Nylén, Timed Petri Nets and BQOs, Applications and Theory of Petri Nets '01, 2001.
DOI : 10.1007/3-540-45740-2_5

URL : http://www.it.uu.se/research/docs/fm/apv/tools/tpns/files/bqo.pdf

F. Robert, S. Anderson, and . Orey, Small random perturbation of dynamical systems with reflecting boundary, Nagoya Math. J, vol.60, pp.189-216, 1976.

T. A. Ta, P. L. Ecuyer, and F. Bastin, Staffing optimization with chance constraints for emergency call centers, MOSIM 2016-11th International Conference on Modeling, Optimization and Simulation, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399507

D. Avis, A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm, Polytopes?combinatorics and computation (Oberwolfach, pp.177-198, 1997.
DOI : 10.1007/978-3-0348-8438-9_9

[. Balsamo, Queueing Networks with Blocking: Analysis, Solution Algorithms and Properties, pp.233-257, 2011.
DOI : 10.1287/opre.35.1.87

F. Bause, Queueing Petri Nets-A formalism for the combined qualitative and quantitative analysis of systems, Proceedings of 5th International Workshop on Petri Nets and Performance Models, pp.14-23, 1993.
DOI : 10.1109/PNPM.1993.393439

. Bch-+-05-]-b, F. Bérard, S. Cassez, D. Haddad, O. H. Lime et al., Comparison of the expressiveness of timed automata and time Petri nets, FORMATS'05, 2005.

E. Best and J. Desel, Partial order behaviour and structure of Petri nets. Formal aspects of computing, pp.123-138, 1990.

[. Berthomieu and M. Diaz, Modeling and verification of time dependent systems using time Petri nets. Software Engineering, IEEE Transactions on, vol.17, issue.3, 1991.

P. Benchimol, Modélisation du service des urgences de l'Hôtel-Dieu, 2009.

[. Baccelli and S. Foss, On the saturation rule for the stability of queues, Journal of Applied Probability, vol.17, issue.02, pp.494-507, 1995.
DOI : 10.1214/aop/1176996798

URL : https://hal.archives-ouvertes.fr/inria-00074656

[. Baccelli, S. Foss, and B. Gaujal, Free-choice Petri nets-an algebraic approach, IEEE Transactions on Automatic Control, issue.12, pp.411751-1778, 1996.
DOI : 10.1109/9.545714

URL : https://hal.archives-ouvertes.fr/inria-00073851

[. Balduzzi, A. Giua, and G. Menga, Hybrid stochastic Petri nets: firing speed computation and FMS modelling, WODES'98 Proc. Fourth Workshop on Discrete Event Systems, pp.432-438, 1998.

N. Lawrence-brown, A. Gans, A. Mandelbaum, H. Sakov, S. Shen et al., Statistical Analysis of a Telephone Call Center, Journal of the American Statistical Association, vol.100, issue.469, pp.36-50, 2005.
DOI : 10.1198/016214504000001808

A. Bouillard, B. Gaujal, and J. Mairesse, Extremal Throughputs in Free-Choice Nets, Discrete Event Dynamic Systems, vol.35, issue.4, pp.327-352, 2006.
DOI : 10.1007/s10626-006-9326-y

URL : https://hal.archives-ouvertes.fr/hal-00164817

P. Billingsley, Convergence of probability measures Wiley Series in Probability and Statistics: Probability and Statistics, 1999.

K. [. Byg, J. Jørgensen, and . Srba, TAPAAL: Editor, Simulator and Verifier of Timed-Arc Petri Nets, ATVA'09, 2009.
DOI : 10.1007/978-3-642-04761-9_7

E. Best and M. Koutny, Petri net semantics of priority systems, Second Workshop on Concurrency and Compositionality, pp.175-215, 1990.
DOI : 10.1016/0304-3975(92)90184-H

[. Baccelli and J. Mairesse, Ergodic theorems for stochastic operators and discrete event networks., Idempotency (Bristol, vol.11, pp.171-208, 1994.
DOI : 10.1017/CBO9780511662508.011

URL : https://hal.archives-ouvertes.fr/inria-00074049

T. Bonald, Stabilite des systemes dynamiques a evenements discrets application au controle de flux dans les reseaux de telecommunication, 1999.

D. Fred and . Bowden, A brief survey and synthesis of the roles of time in Petri nets, Math. and Comput. Model, vol.31, issue.10, pp.55-68, 2000.

[. Boeuf and P. Robert, A stochastic analysis of a network with two levels of service, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583704

F. [. Berthomieu and . Vernadat, Time Petri nets analysis with TINA, QEST'06, 2006.
DOI : 10.1002/9780470611012.ch1

E. Best and H. Wimmel, Structure theory of Petri nets In Transactions on Petri Nets and Other Models of Concurrency VII, pp.162-224, 2013.

J. Campos, G. Chiola, and M. Silva, Ergodicity and throughput bounds of Petri nets with unique consistent firing count vector, IEEE Transactions on Software Engineering, vol.17, issue.2, pp.117-125, 1991.
DOI : 10.1109/32.67593

G. Chiola, S. Donatelli, and G. Franceschinis, Priorities, inhibitor arcs and concurrency in P/T nets, Proc. of ICATPN, pp.182-205, 1991.

P. Collet and J. Eckmann, Iterated maps on the interval as dynamical systems, 2009.
DOI : 10.1007/978-0-8176-4927-2

P. Isaac, . Cornfeld, V. Sergej, Y. Fomin, and . Sinai, Ergodic theory, 2012.

[. Cohen, S. Gaubert, and J. Quadrat, Asymptotic throughput of continuous timed Petri nets, Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995.
DOI : 10.1109/CDC.1995.480646

[. Cohen, S. Gaubert, J. Cottenceau, L. Hardouin, and J. L. Boimond, Algebraic system analysis of timed Petri nets Modeling and control of weightbalanced timed event graphs in dioids, Idempotency, Publications of the Isaac Newton Institute 2014. [CM91] H. Chen and A. Mandelbaum. Discrete flow networks: bottleneck analysis and fluid approximations. Mathematics of Operation Research, pp.145-170408, 1991.

J. Cortes, Discontinuous dynamical systems, IEEE Control Systems Magazine, vol.28, issue.3, 2008.
DOI : 10.1109/MCS.2008.919306

J. Manuel, C. , and M. Silva, Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal p-semiflows, Advances in Petri nets, pp.79-112, 1989.

G. Michael, L. Crandall, and . Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer, pp.385-390, 1980.

R. David and H. Alla, Continuous Petri nets In 8th European Workshop on Application and Theory of Petri nets, pp.275-294, 1987.

R. David and H. Alla, Discrete, continuous, and hybrid Petri nets, 2010.
DOI : 10.1007/978-3-642-10669-9

URL : https://hal.archives-ouvertes.fr/hal-00495611

]. P. Ddlbp16, S. Dejean-de-la-bâtie, and . Petroff, Projet de modélisation de la PFAU, 2016.

J. Desel and J. Esparza, Free choice Petri nets, 1995.
DOI : 10.1017/CBO9780511526558

J. [. Darling and . Norris, Differential equation approximations for Markov chains, Probability Surveys, vol.5, issue.0, pp.37-79, 2008.
DOI : 10.1214/07-PS121

URL : http://arxiv.org/pdf/0710.3269v1.pdf

M. [. Karoui and . Chaleyat, Temps locaux, volume 52-53, chapter Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur R, Exposés du Séminaire J. Azéma-M. Yor, pp.117-144, 1978.

J. Esparza and M. Nielsen, Decidability Issues for Petri Nets, BRICS Report Series, vol.1, issue.8, 1994.
DOI : 10.7146/brics.v1i8.21662

[. Farhi, M. Goursat, and J. Quadrat, Piecewise linear concave dynamical systems appearing in the microscopic traffic modeling, Linear Algebra and its Applications, vol.435, issue.7, pp.1711-1735, 2011.
DOI : 10.1016/j.laa.2011.03.002

URL : https://hal.archives-ouvertes.fr/hal-00860210

[. Fraca and S. Haddad, Complexity analysis of continuous Petri nets. Fundamenta informaticae, pp.1-28
URL : https://hal.archives-ouvertes.fr/hal-00926196

A. Fedorovich and F. , Differential equations with discontinuous right-hand side, 1988.

A. Finkel and J. Leroux, Recent and simple algorithms for Petri nets. Software & Systems Modeling, pp.719-725, 2015.
DOI : 10.1007/s10270-014-0426-0

. Spaceex, Scalable verification of hybrid systems, CAV, pp.379-395, 2011.

K. Fukuda and A. Prodon, Double description method revisited, Combinatorics and computer science, pp.91-111, 1995.
DOI : 10.1007/3-540-61576-8_77

S. Gaubert, Nonlinear Perron-Frobenius theory and discrete event systems, Journal Europ??en des Syst??mes Automatis??s, vol.39, issue.1-3, p.175, 2005.
DOI : 10.3166/jesa.39.175-190

S. Gaubert and J. Gunawardena, The duality theorem for min-max functions, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.326, issue.1, pp.43-48, 1998.
DOI : 10.1016/S0764-4442(97)82710-3

S. Gaubert and J. Gunawardena, The perron-frobenius theorem for homogeneous, monotone functions. Transactions of the, pp.4931-4950, 2004.

B. Gaujal and A. Giua, Optimal stationary behavior for a class of timed continuous Petri nets, Automatica, vol.40, issue.9, pp.1505-1516, 2004.
DOI : 10.1016/j.automatica.2004.04.018

URL : https://hal.archives-ouvertes.fr/inria-00100141

[. Gaujal, S. Haar, and J. Mairesse, Blocking a transition in a free choice net and what it tells about its throughput, Journal of Computer and System Sciences, vol.66, issue.3, pp.515-548, 2003.
DOI : 10.1016/S0022-0000(03)00039-4

URL : https://hal.archives-ouvertes.fr/inria-00072394

[. Garnett, A. Mandelbaum, and M. Reiman, Designing a call center with impatient customers. Manufacturing & Service Operations Management, pp.208-227, 2002.

O. [. Gardey, O. F. Roux, and . Roux, Using Zone Graph Method for Computing the State Space of a??Time Petri Net, FORMATS'04, 2004.
DOI : 10.1007/978-3-540-40903-8_20

M. Henri and T. Hack, Decidability questions for Petri Nets, 1976.

[. Heemels, . Çaml?bel, J. Van-der-schaft, and . Schumacher, On the existence and uniqueness of solution trajectories to hybrid dynamical systems. Nonlinear and hybrid control in automotive applications The theory of hybrid automata, Verification of Digital and Hybrid Systems, pp.391-422, 2000.

M. [. Harrison and . Reiman, Reflected Brownian Motion on an Orthant, The Annals of Probability, vol.9, issue.2, pp.302-308, 1981.
DOI : 10.1214/aop/1176994471

URL : http://doi.org/10.1214/aop/1176994471

[. Ibrahim, L. Pierre, H. Ecuyer, M. Shen, and . Thiongane, Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers, European Journal of Operational Research, vol.250, issue.2, pp.480-492, 2016.
DOI : 10.1016/j.ejor.2015.10.017

URL : https://hal.archives-ouvertes.fr/hal-01399541

J. Imura and A. Van-der-schaft, Characterization of well-posedness of piecewise-linear systems, IEEE Transactions on Automatic Control, vol.45, issue.9, pp.1600-1619865, 2000.
DOI : 10.1109/9.880612

M. [. Jacobsen, M. H. Jacobsen, J. Møller, and . Srba, Verification of Timed-Arc Petri Nets, SOFSEM'11, 2011.
DOI : 10.1007/978-3-540-85778-5_3

[. Jongbloed and G. Koole, Managing uncertainty in call centres using poisson mixtures Applied Stochastic Models in Business and Industry, pp.307-318, 2001.

J. Júlvez, L. Recalde, and M. Silva, On Reachability in Autonomous Continuous Petri Net Systems, In ICATPN, pp.221-240, 2003.
DOI : 10.1007/3-540-44919-1_16

J. Júlvez, L. Recalde, and M. Silva, Steady-state performance evaluation of continuous mono-T-semiflow Petri nets, Kel79] Frank P. Kelly. Reversibility and stochastic networks Wiley Series in Probability and Mathematical Statistics, pp.605-616, 1979.
DOI : 10.1016/j.automatica.2004.11.007

P. Frank and . Kelly, Blocking probabilities in large circuit-switched networks, Advances in Applied Probability, vol.18, pp.473-505, 1986.

P. Frank and . Kelly, Loss networks, Annals of Applied Probability C. Kingman. Poisson processes. Oxford studies in probability, vol.1, issue.3, pp.319-378, 1991.

M. Richard, . Karp, E. Raymond, and . Miller, Parallel program schemata, Journal of Computer and system Sciences, vol.3, issue.2, pp.147-195, 1969.

G. Koole and A. Mandelbaum, Queueing models of call centers: An introduction, Annals of Operations Research, vol.113, issue.1/4, pp.41-59, 2002.
DOI : 10.1023/A:1020949626017

E. Kohlberg, Invariant Half-Lines of Nonexpansive Piecewise-Linear Transformations, Mathematics of Operations Research, vol.5, issue.3, pp.366-372, 1980.
DOI : 10.1287/moor.5.3.366

[. Kosaraju, Decidability of reachability in vector addition systems, Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp.267-281, 1982.

]. L. Lib96 and . Libeaut, Sur l'utilisation des dioïdes pour la commande des systèmes à événements discrets, Thèse, École Centrale de Nantes, 1996.

M. Thomas and . Liggett, Ergodic theorems for the asymmetric simple exclusion process. Transactions of the, pp.237-261, 1975.

M. Thomas and . Liggett, Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, 1985.

R. Lipton, The reachability problem requires exponential space, Research Report, vol.62, 1976.

O. [. Lime, C. Roux, L. Seidner, and . Traonouez, Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches, TACAS'09, 2009.
DOI : 10.1007/11513988_41

W. Ernst and . Mayr, An algorithm for the general Petri net reachability problem, SIAM Journal on computing, vol.13, issue.3, pp.441-460, 1984.

G. Marco-ajmone-marsan, G. Balbo, S. Conte, G. Donatelli, and . Franceschinis, Modelling with generalized stochastic Petri nets, 1994.

P. Mcmullen, The maximum numbers of faces of a convex polytope, Mathematika, vol.16, issue.02, pp.179-184, 1970.
DOI : 10.4153/CJM-1964-067-6

[. Meyer, Discontinuity Induced Bifurcations in Timed Continuous Petri Nets, IFAC Proceedings Volumes, pp.28-33, 2012.
DOI : 10.3182/20121003-3-MX-4033.00008

P. Merlin and D. Farber, Recoverability of Communication Protocols--Implications of a Theoretical Study, IEEE Transactions on Communications, vol.24, issue.9, pp.1036-1043, 1976.
DOI : 10.1109/TCOM.1976.1093424

K. Michael and . Molloy, Performance analysis using stochastic Petri nets, IEEE Transactions on computers, vol.31, issue.9, pp.913-917, 1982.

[. Mahulea, L. Recalde, and M. Silva, On performance monotonicity and basic servers semantics of continuous Petri nets, Discrete Event Syst. 8th International Workshop on, pp.345-351, 2006.

[. Mahulea, A. Ramírez-treviño, L. Recalde, and M. Silva, Steady-State Control Reference and Token Conservation Laws in Continuous Petri Net Systems, IEEE Transactions on Automation Science and Engineering, vol.5, issue.2, pp.307-320, 2008.
DOI : 10.1109/TASE.2007.893504

H. [. Motzkin, G. L. Raiffa, and R. M. Thompson, 3. The Double Description Method, Contributions to the theory of games, pp.51-73, 1953.
DOI : 10.1515/9781400881970-004

T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE, pp.541-580, 1989.
DOI : 10.1109/5.24143

M. Navarro-gutiérrez, A. Ramírez-treviño, and M. Silva, Discontinuities and non-monotonicities in Mono-T-Semiflow timed continuous Petri nets, 2016 13th International Workshop on Discrete Event Systems (WODES), pp.493-500, 2016.
DOI : 10.1109/WODES.2016.7497893

C. Palm, Methods of judging the annoyance caused by congestion, Tele, vol.4, pp.4-5, 1953.

C. Adam and P. , Kommunikation mit automaten, 1962.

J. Peterson, Petri net theory and the modeling of systems, N.J, 1981.

]. M. Plu99 and . Plus, Max-plus-times linear systems, Open Problems in Mathematical Systems and Control Theory, 1999.

L. Martin and . Puterman, Markov decision processes: discrete stochastic dynamic programming Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, 1994.

[. Recalde, S. Haddad, and M. Silva, CONTINUOUS PETRI NETS: EXPRESSIVE POWER AND DECIDABILITY ISSUES, International Journal of Foundations of Computer Science, vol.21, issue.02, pp.235-256, 2010.
DOI : 10.1007/978-94-011-6955-4_1

URL : https://hal.archives-ouvertes.fr/hal-00779919

[. Recalde, C. Mahulea, and M. Silva, Improving analysis and simulation of continuous Petri Nets, 2006 IEEE International Conference on Automation Science and Engineering, pp.9-14, 2006.
DOI : 10.1109/COASE.2006.326847

P. Robert, Stochastic Networks and Queues, volume 52 of Stochastic Modelling and Applied Probability Series, 2003.

R. [. Raclot, Analysis of the new call center organization at PP and BSPP, 2015.

L. Recalde and M. Silva, PN fluidification revisited: Semantics and steady state Automation of Mixed Processes: Hybrid Dynamics Systems, J. Zaytoon S. Engell, pp.279-286, 2000.

[. Recalde, E. Teruel, and M. Silva, Autonomous Continuous P/T Systems, Petri Nets, pp.107-126, 1999.
DOI : 10.1007/3-540-48745-X_8

J. [. Silva, J. Colom, and . Campos, Linear algebraic techniques for the analysis of Petri nets In Recent advances in mathematical theory of systems, control, networks and signal processing, pp.35-42, 1991.

]. A. Sko62 and . Skorokhod, Stochastic equations for diffusion processes in a bounded region, Theory Probab. Appl, vol.7, pp.3-23, 1962.

M. Silva and L. Recalde, Petri nets and integrality relaxations: a view of continuous petri net models, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.32, issue.4, pp.314-327, 2002.
DOI : 10.1109/TSMCC.2002.806063

]. J. Srb08 and . Srba, Comparing the expressiveness of timed automata and timed extensions of Petri nets, FORMATS'08, 2008.

L. Quang-thuan and M. K. Çaml?bel, Continuous Piecewise Affine Dynamical Systems do not Exhibit Zeno Behavior, IEEE Transactions on Automatic Control, vol.56, issue.8, pp.1932-1936, 2011.
DOI : 10.1109/TAC.2011.2141570

E. Teruel, J. Manuel-colom, and M. Silva, Choice-free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.27, issue.1, pp.73-83, 1997.
DOI : 10.1109/3468.553226

[. Treves, A comparative study of different techniques for semi-flows computation in place/transition nets, European Workshop on Applications and Theory in Petri Nets, pp.433-452, 1988.
DOI : 10.1007/3-540-52494-0_40

E. Teruel and M. Silva, Structure theory of equal conflict systems, Theoretical Computer Science, vol.153, issue.1-2, pp.271-300, 1996.
DOI : 10.1016/0304-3975(95)00124-7

C. Vázquez, C. Mahulea, J. Júlvez, and M. Silva, Introduction to Fluid Petri Nets, Control of Discrete-Event Systems, pp.365-386, 2013.
DOI : 10.1007/978-1-4471-4276-8_18

[. Watanabe, On discontinuous additive functionals and L??vy measures of a Markov process, Japanese journal of mathematics :transactions and abstracts, vol.34, issue.0, pp.53-70, 1964.
DOI : 10.4099/jjm1924.34.0_53