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Preamble

Bill Watterson, 23 July 1987

In the context of global warming, the ocean is the main receptacle having
absorbed more than 90 % of the anthropogenic energy surplus. The effects induced
by the warming become detectable and impact the structure of the ocean, its
circulation as well as atmospheric [Lambaerts et al. 2013] and oceanic ecosytems
[Villar et al. 2015]. A better understanding of the local and global oceanic circulation
will permit to improve the predictions from global climate models.

To gain better fundamental understanding of the ocean, it is natural to begin
by describing the structure of the ocean and to introduce the concept of
water mass. This vision of the ocean is a schematic vision of the ocean used by
oceanographers to understand the exchanges between the different basins. A brief
description of the two principal water masses relevant for this study is given in
chapter 1.

This project encompasses oceanic motions at very different time scales. These
include slow time scale of the thermohaline circulation, a quasi static vision of the
ocean. Other faster processes, like winds, tides or waves, play an important role in
maintaining the overturning circulation. A description of the diverse theories for
the global overturning circulation is given in chapter 1, allowing to introduce
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4 Contents

the role of waves in maintaining and modulating the oceanic circulation.

At this point, a physical description of the oceanic waves, involved in the
studies presented in this thesis, is salutary for the rest of the manuscript. The end
of chapter 1 thus details the specific conditions for the development of internal
waves and more specifically of internal tides, Kelvin waves and topographic Rossby
waves, and their principal characteristics.

This introduction to the global context of the study is followed in chapter 2 by
a first study on the mechanisms leading to the dissipation of the internal
tides (also called baroclinic tide) in an idealized ocean. Internal tides are internal
waves at the tidal frequency generated by the action of the barotropic tide in a
stratified fluid. In this study, we focus on the semi-diurnal lunar tide (M2) interacting
with a sinusoidal topography in a 2D high resolution numerical model. This study
has been submitted for publication in the Journal of Geophysical Research: Oceans.

Once the mechanisms behind the dissipation of internal tides are clarified, we
study in chapter 3 the effect of a background mean current like mesoscale
eddies or large-scale currents, on the latitudinal distribution of internal tide
energy dissipation. Using a 2D numerical model and, a realistic or an idealized
rough topography, we impose a weak mean current which does not affect the
generation of internal tides. The results of this study have been published in the
Journal of Physical Oceanography.

The last chapter is part of an ongoing research project developed at the
Geophysical Fluid Dynamics summer school (Woods Hole) in collaboration with
Renske Gelderloos, Larry Pratt and Jiayan Yang. The problem of water export
from a marginal sea toward open ocean is well known in oceanography. In this
study, we propose to investigate how upstream disturbances influence the
upstream circulation of a hydraulically controlled sill in a 1.5-layer reduced
gravity model. This study is still in preparation and will be published in the near
future.

The last chapter summarizes the key results of this thesis, and provides a
discussion of ongoing and future work.
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Introduction

Bill Watterson, 24 July 1987
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8 1.1. Ocean water masses: description

1.1 Ocean water masses: description

The ocean is something that most of people know and have experienced someday
at the beach. The first contact teaches, right away, that the ocean is a salty fluid
with a varying temperature: warmer at the surface and colder at depth. Once
the swim is over, it has happened to many of us, wistfully gazing out the ocean,
to realize how vast and unknown it is.

To improve our common vision of the ocean, most of the time restricted to the
coast, oceanographers do measurements all over the world revealing what is under
the surface. Through the measurements of temperature, salinity, oxygen and other
tracers, they give a global vision of the time varying structure of the ocean.

1.1.1 The oceanographers’ view

The ocean is a stratified fluid whose density varies with temperature and salinity
of the fluid. The densest fluids (cold and salty) fill the bottom and lightest
fluids (fresh and warm) are at the surface. A variation of temperature can be
induced, for example, by interaction with atmosphere or geothermal fluxes. On
the other hand, salinity varies with precipitation/evaporation, fresh water from
rivers or formation/melting of sea ice. The different forcings correspond globally
to the thermohaline forcing.

These processes are not homogeneous in space and time, which induces variations
of temperature and salinity, and thus density in the ocean. In order to understand
the structure of the ocean, oceanographers develop the concept of water masses.
A water mass is an identifiable body of water with a common formation history
whose physical properties (temperature and salinity, among others) are distinct
from surrounding water. Each water mass has a name reflecting its origin and its
depth location. Commonly in oceanography, we use their acronyms and the first
summary and review is given by [Emery and Meincke 1986]. We first restrict the
discussion to the Atlantic basin, before moving on to the circulation between four
connected basins.

Figure 1.1 shows the same meridional section of the Atlantic for potential
temperature 1, salinity and neutral density2. In these figures, we can easily identify

1Potential temperature: temperature of a water parcel that it would acquire if adiabatically
brought to a standard reference pressure.

2Neutral density is a variable commonly used in oceanography to identify water mass. In
fact, a neutral density surface is the surface along which a given water mass will move, remaining
neutrally buoyant. The neutral density is a function of temperature, salinity pressure and time. It
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Figure 1.1: (top) Potential temperature (◦C), (middle) salinity (PSU) and (bottom)
neutral density (kg m−3) for the Atlantic basin from 54◦S to 63◦N (see medallion). Areas
of surface water, North Atlantic Deep Water (NADW) and Antarctic Bottom Water are
roughly defined. From www.woceatlas.ucsd.edu

http://woceatlas.ucsd.edu/


10 1.1. Ocean water masses: description

areas with similar ranges of temperature and salinity defining their density; they
compose the water masses present in the Atlantic Ocean. At first glance, we can
identify a warm, salty and light surface water and two cold and salty tongues coming
from the north and south edges, corresponding to the formation of dense water in
the northern Atlantic and bottom water in the Southern Ocean (southern Atlantic).

All the water masses in the ocean will not be described in the present document,
only the two important water masses for our studies: the North Atlantic Deep Water
(NADW) and the AntArctic Bottom Water (AABW). These two water masses
form the two densest waters in the ocean and play a major role in the overturning
thermohaline circulation and in the climate. Indeed, before sinking, they are in
direct interaction with the atmosphere permitting, among others, the absorption
and sequestration in deep ocean of anthropogenic carbon. The rate of deep water
formation can vary strongly with atmospheric condition. Global warming could
inhibit deep water formation inducing a slow-down of 20-50% [Rahmstorf et al.
1999] or even a break-down of the thermohaline circulation [Broecker 1987].

1.1.2 North Atlantic Deep Water

North Atlantic Deep Water has a temperature of 2-4◦C, a salinity superior to 34.9
PSU and a neutral density superior to 26.76 kg m−3 (see Fig. 1.1). North Atlantic
Deep Water is well described by Hansen and Østerhus [2000].

North Atlantic Deep Water is mainly formed in the Nordic Seas (Greenland and
Norwegian seas) from Atlantic water during strong winters (see Fig. 1.2). The warm
and light Atlantic surface water loses heat by exchange with the cold atmosphere.
The water becomes colder at the surface and so sufficiently dense to induce a
convective movement: the cold surface water sinks and lighter deep water comes up
to the surface where it will be cooled (see Fig. 1.3). At the end of the winter, the
newly formed dense water fills the bottom of the Nordic Seas. Additionally, water
from the Arctic basin enters in the Nordic Seas from the Fram Strait and mixes with
the cooled surface Atlantic water acquiring its final characteristics before overflowing
equatorward through the Greenland-Iceland-Scotland ridge in the Atlantic basin as
a deep water (see Fig. 1.2 - dashed curves on the eastern flank of Greenland).

can be seen as the most natural layer interface in the deep ocean.
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Figure 1.2: Schematic circulation of surface currents (solid curves) and deep currents
(dashed curves) in the North Atlantic and in the Nordic Seas. Colors of curves indicate
approximate temperatures. Figure adapted from [Curry and Mauritzen 2005].11.2. THE OBSERVED THERMOHALINE CIRCULATION 237

FIGURE 11.12. Schematic diagram of the three phases of open-ocean deep convection: (a) preconditioning,
(b) deep convection and mixing, and (c) sinking and spreading. Buoyancy flux through the sea surface is
represented by curly arrows, and the underlying stratification/outcrops are shown by continuous lines. The
volume of fluid mixed by convection is shaded. From Marshall and Schott (1999).

FIGURE 11.13. Zonal average (0◦ −→ 60◦ W) temperature (top) and salinity (bottom) distributions across the
Atlantic Ocean. Antarctic Intermediate Water (AAIW), Antarctic Bottom Water (AABW), and North Atlantic Deep
Water (NADW) are marked. Compare this zonal-average section with the hydrographic section along 25◦ W shown
in Fig. 9.9.

Figure 1.3: Sketch of the three phases of ocean deep convection: (a) preconditioning,
(b) deep convection and mixing, and (c) sinking and spreading. Buoyancy flux through
the sea surface is represented by curly arrows, and the underlying stratification/outcrops
are shown by continuous lines. The volume of fluid mixed by convection is shaded. From
[Marshall and Schott 1999].

The export of dense water from the Nordic Seas into the Atlantic basin is
controlled by the presence of sills (see Fig. 1.2): the Denmark Strait between
Greenland and Iceland (sill depth 620 m and volume exported 3 Sv, 1 Sv = 106

m3s−1), the ridge between Iceland and Faroe Islands (840 m, 1 Sv) and Scotland
and the Faroe Bank Channel between Faroe Islands (420 m, 2 Sv). These sills are
hydraulically controlled [Whitehead et al. 1974; Nikolopoulos et al. 2003; Girton
et al. 2006] which means that the flow upstream of the sill is laminar (river regime)
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basin to the others must go over sills which exist as the lowest passages in these otherwise
tall topographic barriers.

When water moves over a sill, it behaves very much like a deep waterfall. In many cases,
a deep waterfall involves a volume flux on the order of 1–10 Sv (106−107 m3/s), and an
elevation change on the order of several hundreds of meters. Many people have visited the
Niagara Falls, one of the largest land-based waterfalls in the world, which has a maximal
volume flux of 3,000 m3/s and elevation drop of 56 m. In comparison, deep waterfalls are
much more powerful than any land-based waterfall on Earth, with a volume flux of more
than 1,000 times and elevation drop of more than 10 times that of the Niagara Falls.

The meaning of rotating hydraulics

An essential feature common to the overflow associated with deepwater formation is that
the overflow goes through the transition from subcritical to critical, and then to supercritical.
Whether a flow is subcritical or not is defined in terms of the Froude number. Using the
waterfall as an example, the concept of hydraulics for a non-rotating fluid can be explained
as follows. For water flowing in an open channel, signals propagate with the velocity of the
surface wave, i.e., c =

√
gh, where h is the depth of water. The Froude number is defined

as F = U/c, where U is the horizontal velocity of the fluid. For most cases of flow through
a channel, F < 1, so the fluid motion is subcritical, i.e., fluid travels at a speed slower than
the speed of signals.

If the mean slope of the channel is gradually increased, fluid speed increases. At a critical
value of slope, water travels so fast that its speed exactly matches the speed of surface waves.
Generally, the bottom of the channel is not flat, and there is a place in the channel where
the depth is the shallowest. This is called a sill, and depth both upstream and downstream
from the sill is greater, as shown in Figure 5.8.

Assume that water motion upstream from the sill is subcritical and the depth of the sill
is gradually reduced. The Froude number at the sill gradually increases, while flow in the

Signal speed 

Flow speed

Subcritical flow Critical flow Supercritical flow

h

Fig. 5.8 Sketch of overflow from a marginal sea to the open ocean, involving rotating hydraulics.
Figure 1.4: Sketch of an overflow from a marginal sea (Nordic Seas) to the open ocean
(Northern Atlantic) [Huang 2010].

and downstream of the sill the flow is highly turbulent (torrential regime) 3 (see
Fig. 1.4). The regime change is induced by a change in the relative importance of
the kinetic energy compared to the potential energy of the fluid and quantified by
the Froude number Fr = U/

√
g′h, where U is the fluid velocity, g′ = g∆ρ/ρ0 the

reduced gravity, ρ0 is the reference density, ∆ρ the density difference between the
two layers and h the fluid thickness, which is the ratio between the kinetic energy and
the potential energy. When the Froude number is greater than 1, for supercritical
flow, which corresponds to large U , small h, and kinetic energy dominated regime
(downstream of sill, torrential regime). When it becomes less than 1, for small U ,
large h, and hence potential energy dominated regime (upstream of sill, river regime).

In the case of an overflow, a propagating wave upstream of the sill can not
propagate downstream due to the torrential regime (Fr > 1). Then, this wave is
reflected at the sill and propagates backward modifying the upstream flow. The
hydraulically controlled sill exerts a feedback on the upstream flow through the
propagation of waves. This property can modulate the volume of overflow water
exported in the northern Atlantic inducing a temporal variability in the North
Atlantic Deep Water feeding. This mechanism will be further investigated in chapter
4 of this thesis.

In addition to North Atlantic Deep Water formed in the Nordic seas, there are
two other (smaller) sources: the Labrador sea (see Fig. 1.2) and the Mediterranean
Sea. The latter is at the upper edge (warmer water) of the water mass. North
Atlantic Deep Water flows southward between 1 000 and 4 000 m and outcrops in

3It corresponds to the case of a waterfall where the river is gentle on the plateau and falls
when the ground disappears.
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the Southern Ocean (see Fig. 1.1).

Its origins are directly linked to the atmospheric conditions through the formation
of sea ice in the Arctic and Labrador Seas, the cooling in the Nordic Seas and
to the evaporation in the Mediterranean Sea.

1.1.3 Antarctic Bottom Water

Antarctic Bottom Water is less salty (34.8 PSU), colder (T < 2◦C) and denser
(28.27 kg m−3) than the North Atlantic Deep Water.

Figure 1.5: Map of Antarctica showing the Southern Ocean and its connexions with
the other basins. The Ross and Weddell Seas are two spots of Antarctic Bottom Water
formation. From www.worldatlas.com

Antarctic Bottom Water is produced from the salty North Atlantic Deep Water
and a portion of light fresh surface water mainly in the Weddell and Ross Seas in
the Southern Ocean (see Fig. 1.5). The latter water cools by heat exchange with
the cold atmosphere and during austral winter is enriched in salt by formation of sea
ice and brine rejection. Cooling and enrichment in salt take place all over the winter
due to the presence of polynyas in the Weddell and Ross Seas. A polynya is an open
water area surrounding by sea ice, partly maintained by strong offshore katabatic
winds which push seaward the newly formed sea ice (see Fig. 1.6). Without the
sea ice lid, water continues to exchange heat with the atmosphere and to cool.
During the same time, sea ice is continually produced in the polynya and pushed

http://www.worldatlas.com/webimage/countrys/an.htm
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away by the winds, enriching the water in brine rejection and thus producing the
densest water mass. This dense water overflows the continental slope and fills up
the Atlantic, Indian and Pacific basins below 4.5 km depth [Johnson 2008].

488 Thermohaline circulation
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Fig. 5.6 Formation of AABW (redrawn from Gordon, 2002).

much more complicated due to many dynamical factors, including wind stress and surface
thermohaline forcing, stratification and rotation; thus, the arrows in the two-dimensional
sketch (Fig. 5.3) should not be taken as being the real trajectories of water parcels.

The formation of AABW involves many complicated physical processes (Fig. 5.6),
including the formation of dense and salty water within the coastal polynyas, the trans-
port of this water by the gyre circulation within the coastal area, the overflow from the
marginal sea to the open ocean, and the entrainment during the descent of the gravity cur-
rent along the continental slope. During the descent along the slope, it entrains the water in
the environment; thus, it is slightly warmed up from −2◦C to −1◦C. Eventually, it sinks
to the bottom with a temperature of nearly 0◦C. Due to vigorous entrainment during the
overflow from the marginal sea to the open ocean, the total volume flux of the final product
is greatly increased (Gordon, 2002). In addition, cabbeling may further increase the density
of the newly formed bottom water; thus, it may play a vital role in setting the properties of
the final product.

Deep convection

Another form of bottom/deep water formation in the oceans is the deep convection tak-
ing place in the open ocean (Fig. 5.7). The major sites of deep convection include the
northwestern Mediterranean, the Labrador Sea, and the Greenland Sea.

Figure 1.6: Sketch of a polynya and formation of Antarctic Bottom Water [Gordon
2002].

The newly formed Antarctic Bottom Water entrains and mixes with ambient
Southern ocean waters to reach a maximum northward flow of about 20-30 Sv near
30◦S [Ganachaud and Wunsch 2000; Lumpkin and Speer 2007; Talley et al. 2003;
Talley 2008; 2013].

As for North Atlantic Deep Water, Antarctic Bottom Water formation is
strongly influenced by the atmospheric condition around Antarctica but also by the
characteristics of North Atlantic Deep Water. In a way, the formation of Antarctic
Bottom Water is the result of a connexion between Arctic and Antarctic climates.

The circulation of the two main water masses and the northward return flow of
surface water in the Atlantic Ocean is summarized in figure 1.7. We now turn to a
full 3D description of water masses and circulation in the whole ocean.

1.1.4 A 3D ocean

The Atlantic basin is a good first step in understanding the ocean circulation, but
the overall picture is more complex. The global ocean is inherently 3D and the
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Figure 1.7: Sketch of the thermohaline Atlantic ocean circulation showing the formation
of dense waters in the North and the South and the presence of surface water. This sketch
has been adapted from [Huang 2010].

four main basins are connected by the central and circular Southern Ocean. A
rapid overview of the global ocean is given here.

Figure 1.8: Sketch of the 3D thermohaline circulation [Lumpkin and Speer 2007; Talley
2011]

Indian and Pacific oceans do not have a source of deep water as in the Atlantic
ocean but their circulation is connected with the other basins through the Southern
Ocean. In fact, Antarctic Bottom Water flows into the three basins, Atlantic, Indian
and Pacific, where it is modified before coming back in the Southern ocean (see Fig.
1.8).
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The journey of the water masses in the different basins permits the erosion of
their characteristics but also to efficiently exchange nutrients, carbon and other
tracers all around the world. As we will see later, the consumption of Antarctic
Bottom Water in the diverse basins is an important aspect of the overturning
circulation.

1.3 Various types of motion in the oceans 39
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Fig. 1.35 Various types of motion in the oceans.

Large-scale and low-frequency waves

These include Rossby waves and Kelvin waves, and they play a crucial role in the time
evolution of the oceanic circulation. The major difference between these waves and the
commonly encountered gravity waves is that these waves are characterized by the fact that
the Earth’s rotation is their restoring force. The existence of these waves can be detected
either through satellite measurements or by in situ observations.

Meso-scale eddies

These are the most energetic component of the oceanic circulation; 99 percent of the total
kinetic energy in the oceans belongs to meso-scale (or synoptical scale) eddies, which can
also be called geostrophic turbulence. They play an essential role in the energy cascade in
the oceans. However, our knowledge about the meso-scale eddies in the oceans remains very
incomplete because there are not enough data. Although satellite altimetry has provided a
wealth of data for the surface expression of meso-scale eddies, observing the meso-scale

Figure 1.9: Time and spatial scales of motion in the ocean. From [Huang 2010].

The thermohaline circulation is a slow averaged circulation driven by a differential
in temperature and salinity. It can be also defined as a balance of water masses
in the ocean. To balance the water masses there are two processes: water mass
formation and erosion. Most of the water masses are formed near the surface and
sink. Furthermore, through either transformation or erosion, water mass properties
are continually transformed (for example Indian Deep Water or Pacific Deep Water
in figure 1.8). The thermohaline circulation is the slowest movement in the ocean
with a time-scale of 100 to 10 000 years taking place all over the ocean from 100
km to 10 000 km (see Fig. 1.9). We note that this time scale only pertains to the
extent and spreading of water masses. In fact, the formation of deep/bottom water
happens seasonally. The long time-scale of the thermohaline circulation compared
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to other faster processes allows one to consider this circulation as steady.
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1.2 Meridional overturning circulation: pushed
of pulled?

In the previous section, we described the ocean in terms of water masses but it
was impossible to dissociate their origin and their future without talking about
movement and circulation. But how does the ocean move?

The first thing that comes to mind is the action of the wind at the surface of
the ocean. Then, from our personal experience, comes the souvenir of low tides
revealing large areas suitable for catching shellfish.

Two schools exist to explain the meridional overturning circulation: the school
of pushing, for whom the main mechanism is the formation of deep water at high
latitudes, and the school of pulling which considers that the overturning circulation
is mainly driven by external sources of mechanical energy, such as wind stress or
tidal dissipation.

1.2.1 The school of pushing: Deep water formation pushes
the deep current

5.4 Theories for the thermohaline circulation 637

Later on, this framework was modified as follows: mixing in the surface layer was
replaced by diapycnal mixing at the mid depth of the ocean interior. Accordingly, the main
balance in the oceanic interior is between the vertical upwelling and the downward heat
diffusion, as discussed by Munk (1966). In this modified framework, there is no need for
wind stress to function because the poleward flow of the surface layer is presumably driven
by the pressure gradient generated by the thermohaline circulation itself. Therefore, the
circulation is literally a pure thermohaline circulation. Similar to the previous framework,
the circulation system consists of four segments: cold and dense water formed at high
latitudes sinks to great depth; dense deep water spreads to the whole basin; deep water
upwells through the base of the main thermocline and gradually warms up; surface water
turns poleward and completes the cycle.

Three schools of the thermohaline circulation

Two theories, or schools, have been proposed for explaining the thermohaline circulation in
the oceans. The first one, which has dominated our thinking about thermohaline circulation,
postulates that thermohaline circulation is driven by deepwater formation at high latitudes,
as shown in Figure 5.119a. This will be called the “school of pushing.”

The second theory postulates that a thermohaline circulation needs mechanical energy
to overcome the friction; thus, the thermohaline circulation is driven by external sources of
mechanical energy, such as tidal dissipation and wind stress. We will call this the “school
of pulling.” The school of pulling is further separated into two sub-schools, as explained
below.

1. School of pushing: Deepwater formation pushes the deep current and thus maintains the
thermohaline circulation.

In this old school of thought, the thermohaline circulation is assumed to be driven by
surface thermohaline forcing, in particular the surface cooling/heating. Surface cooling pro-
duces dense water that sinks to a great depth. The high-latitude ocean is filled up with cold
and dense water from surface to bottom. Combining with the warm and light water in the
upper ocean at low latitudes, this creates a pressure force in the abyssal ocean which causes

Heating Cooling Heating Cooling CoolingHeating

. .

Wind

b   Pulling by deep mixing c   Pulling by wind stressa   Pushing by deepwater formation

Fig. 5.119 a–c Three schools of theory for the thermohaline circulation.Figure 1.10: The three schools of the overturning circulation [Huang 2010].

A first glimpse of the global overturning circulation can be given by a conceptual
model of the thermal overturning circulation driven by sea-surface differential heating
(precipitation/evaporation can be taken into account as well without changing the
results and when both effects are considered we talk about the thermohaline
circulation). In this experiment, developed by Sandstrom [1908; 1916], only the
thermal forcing is considered, with a cooling at one edge of the basin, representing
a pole, and a heating at the other edge, representing the equator. A schematic
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evolution of this experiment is given in figure 1.10a. The heating at the low latitudes
expands the water and induces a sea surface uplift. Conversely, at high latitudes,
water contracts and the sea surface declines. This differential in sea level creates
a pressure gradient which induces a poleward movement of the surface water (in
this simple experiment we do not take into account the role of Earth’s rotation).
The convergence of surface water at high latitude, yields an equatorward return
flow in the interior ocean. At the end, the circulation is strong only near the high
latitude and confined close to the surface. The surface thermal forcing alone drives
a circulation that is so weak that it is not be able to penetrate to the deep ocean.
At the end, the basin has a warm layer at low latitudes, and a thick cold deep layer.

In this system, the convective transfer of dense water to the bottom of the
ocean is a mechanism for decreasing the potential energy; the center of mass is
continually lowered. Later, Paparella and Young [2002] reformulate the discussion
to show that a flow driven by buoyancy forces applied only at the surface can
not generate an interior turbulence to maintain the circulation. To maintain this
thermal circulation, an external source of gravitational potential energy is required.
This source should be vertical mixing. Vertical mixing in a stratified fluid pushes
light (heavy) water downward (upward), raising the center of mass. Vertical mixing
is also called diapycnal mixing because it corresponds to a mixing across isopycnals.

1.2.2 The school of pulling by deep mixing: Deep mixing
removes cold water from the abyss

In the school of pushing, dense water piles up at the bottom. With a source of
mechanical energy to sustain mixing, as described below, deep mixing transforms
cold water into warm water in the deep ocean, creating space for newly formed deep
water (see Fig. 1.10b and 1.11). And therefore, deep mixing pulls the thermohaline
circulation [Munk and Wunsch 1998; Huang 1999].

By a simple one-dimensional scale analysis and considering that temperature,
salinity and density are local functions and horizontal velocities are negligeable,
Munk [1966] shows that the downward diffusion of heat or salt is balanced by
the upward advection of cold water. With an upward velocity estimated from the
production of dense water, he obtains a diffusivity (variable related to the mixing)
on the order of 10−4 m2s−1 needed to sustain the formation of dense water. This
order of magnitude for turbulent processes in the deep ocean is derived by assuming
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Figure 1.11: Sketch of consumption of Antarctic Bottom Water by diapycnal mixing.

that the vertical upwelling is spatially uniform. But numerous studies point out
the inhomogeneity of mixing and diverse sources of diapycnal mixing exist in the
deep ocean.

a. Lee waves and internal tides

The ocean is filled with ubiquitous internal waves [Garrett and Munk 1979;
Staquet and Sommeria 2002]. Internal waves are waves within interior of a stratified
fluid and in the ocean can be generated by interaction of currents with topography.
Idealized studies of ocean internal waves focus on two limits. The first case is a
constant current impinging a seafloor topography, as mesoscale eddies, and in that
case internal waves are called lee waves. The second case is a periodic current
impinging a seafloor topography, for example tides, and in that case, internal waves
are called internal tides. The presence of internal tides in the ocean has been detected
by altimetry [Egbert and Ray 2000] and tomography records [Dushaw et al. 1995].

Several mechanisms are at the origin of the generation of lee waves: mesoscale ed-
dies and large-scale circulation over topography. Garrett and Kunze [2007] estimate
that 0.5 TW is supplied by large-scale currents impinging bottom topography.

An estimated value of energy input by the tides into the ocean is 3.5 TW.
Internal tides are internal waves generated by a tidal current, whose frequency is
given by the tide at the origin of its generation. Munk and Wunsch [1998] estimate
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that 1 TW should be available to mix the abyssal ocean.

b. Geothermal heating

The geothermal heating is able to influence the circulation by heating the abyssal
water from below. The heat entering in the ocean is transported into the ocean
above the sea floor by molecular processes through the porous or solid seabed
and by hydrothermal flux of heat carried by fluid circulating through the seabed.
Nevertheless, geothermal heating is inhomogeneous in space and the estimated net
energy input is only 0.05 TW [Huang 1999; Wunsch and Ferrari 2004].

c. Drag forcing on the sea floor

Drag forcing provides energy input by mechanical interaction of the mean
circulation and the eddies with the topography. It could contribute 0.1 TW
[Stammer et al. 2000].

In the 1990s, high accuracy measurements of diffusivity (variable related to
turbulent mixing) showed weak mixing over the abyssal plains (O(10−5) m2s−1)
and enhanced mixing up to two order of magnitude higher above rough topography
[Polzin et al. 1997; Ledwell et al. 2000; Kunze et al. 2006]. Far from the Southern
ocean and the other places with strong eddy kinetic energy, the principal current
in the deep ocean is the barotropic tidal flow. Those two results suggest that the
main source of diapycnal mixing in the deep ocean is the breaking of internal tide
generated by the interaction of a tidal flow above rough topography.

1.2.3 The school of pulling by wind stress: The Southern
westerlies pull cold water from the deep ocean

Two example of wind conditions over the ocean

Winds acting on the sea surface produce direct conversion of the atmospheric kinetic
energy into oceanic kinetic and potential energies. Lueck and Reid [1984] estimate
a net transfer of kinetic energy from the wind field to the ocean surface-layer
between 7-36 TW.
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In this section, two examples of wind effect on the ocean circulation are developed
in relation with the studies presented in this thesis.

a. Nordic Seas circulation: westerlies and easterlies

Polar
cell

Ferrell
cell

Ferrell
cell

Polar
cell

Figure 1.12: Idealized view of the large scale flows in the atmosphere showing the
easterlies linked to the polar cell and the westerlies linked to the Ferrell cell. From
[Lutgens and Tarbuck 2001]

The Nordic Seas are located at the confluence of the Ferrell and polar cells (see
Fig. 1.12). The Ferrel cell is associated to northwesterly winds at the surface while
the polar cell has southeasterly winds at the surface. The mean wind circulation
in the Nordic Seas is cyclonic [Aagaard 1970]. By friction with the water surface,
water is entrained and forms a cyclonic gyre in the Nordic Seas (actually several
cyclonic gyres exist in the sub-basins).

Wind stress is communicated to the ocean surface layer through viscous pro-
cesses. The ocean is affected by the Coriolis acceleration and both effects (Coriolis
acceleration and wind stress) permit the development of an Ekman layer. Velocity
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in the Ekman layer is strongest at the sea surface (due to wind stress) and decreases
exponentially downward. The Coriolis acceleration induces a velocity vector spiral
with increasing depth. The transport associated with the Ekman layer is exactly
perpendicular to the right (to the left) of the wind in the Northern Hemisphere
(in the Southern hemisphere).

The cyclonic circulation in the Nordic Seas induces an Ekman transport toward
the coasts and then an upwelling in the center of the Nordic Seas, bringing deep
water to the surface. The cyclonic wind-driven circulation implies that the cooling
of Atlantic water happens in the middle of the gyre while the sinking of the newly
formed cold water happens along the boundaries.

b. Southern circulation: westerlies and easterlies

The circulation in the Southern Ocean is strongly linked to the winds: westerlies
between 40◦S and 60◦S and easterlies south of 60◦S, closer to Antarctica. Westerlies
are particularly strong due to the absence of land and entrain the water by friction
(wind-stress), generating a strong Ekman flow. The Ekman flow induces an upwelling
yielding a horizontal buoyancy gradient leading to a strong geostrophic current
named the Antarctic Circumpolar Current (ACC). The Antarctic Circumpolar
Current is affected by the seafloor like the Drake Passage, which is a semi-open
boundary, allowing the flow to pass. The Antarctic Circumpolar Current is highly
variable in time and space, and depends strongly on the atmospheric conditions.

In Antarctica, katabatic winds blow seaward and due to the Earth’s rotation,
are deviated on the left forming the easterlies. By the same processes as the
westerlies, they entrain the water below and produce a westward current close
to Antarctica coasts.

In the case of easterlies in the Southern Hemisphere, this implies that the Ekman
transport associated to the westward current along Antarctica is southward (toward
Antarctica), inducing a downwelling at the boundary. For the westerlies, the Ekman
transport associated with the Antarctic Circumpolar Current is equatorward. Both
Ekman transports produce a divergence around the latitude of 50-60◦S implying
the presence of an upwelling.



24 1.2. Meridional overturning circulation: pushed of pulled?

484 Thermohaline circulation

that, in the Pacific Basin, water of Antarctic origin with a high oxygen concentration fills
up the lower part of the water column in the Southern Hemisphere. In contrast, water with
very low oxygen concentration occupies the depths near 1 km in the high-latitude portion
of the North Pacific Ocean, which indicates the poor ventilation of the water mass at these
locations.

In addition, deep water with low oxygen concentration in the North Pacific Basin implies
that there is no deepwater source in this basin. The lack of a deepwater source in the North
Pacific Ocean is in great contrast to the abundant deepwater formation in the North Atlantic
Ocean, and this contrast between the North Atlantic and North Pacific Oceans is one of the
major features of the global thermohaline circulation under modern climate conditions.

Sources of deep/bottom water in the Atlantic Ocean

Deep water and bottom water in the Atlantic Ocean originate from marginal seas. There are
primarily two sources: (1) along the edge of the Antarctic Continent, especially the Weddell
Sea, and (2) Norwegian and Greenland Seas.

Water properties in these marginal seas and their modification during the outflow process
are vitally important elements of the global thermohaline circulation. The circulation in
the Atlantic Basin is a typical example, a two-dimensional sketch of which is shown in
Figure 5.3. Note that the circulation is a complicated three-dimensional phenomenon; thus,
the flow directions indicated in this diagram should not be interpreted as the actual flow
path in the oceans. Some of the dynamical details related to this diagram will be discussed
in later sections.

North Atlantic Deep Water is formed in the northern North Atlantic Ocean through two
processes, including open-ocean deep convection and boundary convection associated with
the horizontal gyre. Deep water formed in the Norwegian and Greenland Seas overflows the
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Fig. 5.3 Sketch of bottom/deep water formation and thermohaline circulation in the Atlantic Ocean.Figure 1.13: Sketch of the diverse mechanisms behind the overturning thermohaline
circulation in the Atlantic basin [Huang 2010]. The lower cell can be transposed in the
Indian and pacific basins.

Effect of the wind around Antarctica on the global overturning circula-
tion

The atmospheric conditions around Antarctica induce an Ekman upwelling around
the latitude of 50-60◦S. Due to this upwelling, North Atlantic Deep Water is pulled
up to the upper ocean where its properties are modified. Wind-driven upwelling
is believed to represent a significant part of the globl overturning circulation and
water mass transformation (see Fig. 1.10c). The wind stress energy input to the
ocean is in fact larger (7-36 TW) [Lueck and Reid 1984] than the energy input due
to tides (3.5 TW) [Toggweiller and Samuels 1995; Talley 2013].

1.2.4 Combination of the two schools of pulling

The total amount of mechanical energy required to sustain upwelling in the Southern
ocean is estimated as 2 TW, including the estimation of tidal dissipation in the
deep ocean and wind stress energy input to surface geostrophic currents [Munk
and Wunsch 1998]. An emerging picture is that the upwelling is sustained by both
wind stress driven Ekman transport and deep mixing [Wunsch and Ferrari 2004;
Kuhlbrodt et al. 2007].

In the ocean, all the processes presented in this section exist and participate to
the global overturning circulation. However, they do not contribute equally, and
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wind stress and deep mixing are two keys ingredients to maintain the global
overturning circulation.
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1.3 Waves

The ocean is a stratified fluid in salinity and temperature. A perturbation in
this fluid, like a rock thrown in a pond, generates waves by energy transfer from
the perturbation source to the waves. Once, the waves are generated, they can
propagate through the ocean and transfer energy from one point to another. Thus,
the waves become a local or a remote source of energy able to generate mixing
or to modify the flow.

We propose in this section to revisit three types of waves relevant to this thesis:
internal waves and internal tides, Kelvin waves and topographic Rossby waves.

1.3.1 Stratified ocean: the Brunt Väisälä frequency

The action of gravity on a fluid generates a vertical pressure gradient within the
fluid. For a fluid at rest, this pressure gradient is equal to the product of gravity
acceleration g by the density of the fluid ρ. This equilibrium can be applied in
dynamics when we consider movements essentially horizontal; more precisely it
applies when the horizontal scales are much larger than the vertical scales of motion.
This is the so called hydrostatic equilibrium

∂zP = −ρg, (1.1)

where the vertical axis is oriented upward, ∂z denotes partial derivative with
respect to z, and P the hydrostatic pressure. Now, if we immerse a body in a
fluid submitted to gravity, the action of the hydrostatic pressure on this body
corresponds to a vertical force equal to difference in weight between the body and
the displaced volume; this has been demonstrated by Archimedes. In the case
of a fluid volume with density ρ1 immersed in an homogeneous fluid of density
ρ2, the Archimedes’ thrust per unit volume is

FA = (ρ2 − ρ1)gz, (1.2)

where z is the unit vector in the vertical direction positive upward. In the case
of the ocean, the stratification is continuous with height ρ(z), and at a given height
this force will point downwards for fluid parcels heavier than the mean, and upwards
for fluid parcels with density lower than the mean. This results in an equilibrium
distribution of density as a function of depth with heavier, denser waters at depth.
Supposing that a mean stratification ρ(z) is established, a volume dV of water with
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density ρ0 will be at equilibrium at depth z0 if ρ(z0) = ρ0. Out of this position
of equilibrium, the acceleration a of the volume is

ρ0dV a = −(ρ0 − ρ(z))dV gz. (1.3)

Taking the origin of the vertical axis at z = z0, we obtain

a = ∂ttz = − g

ρ0
∂zρz = −N2z. (1.4)

This equation is the equation of a harmonic oscillator at pulsation with frequency
N , called the Brunt-Väisälä frequency. According to this equation, if N > 0, the
fluid parcel oscillates with period 2π/N . In reality where viscous effects are present,
it would oscillate with smaller and smaller amplitude, and eventually go back to
its position of equilibrium due to the action of viscosity.

1.3.2 Internal gravity waves

We discussed previously the impact of mixing for the global overturning circulation.
One particular type of waves is crucial to the spatial distribution of mixing, namely
internal gravity waves. In this section, we introduce their main properties.

The ocean is a continuously stratified fluid and far from the thermocline and
the upper ocean, the deep ocean can be considered stably and linearly stratified.
Therefore a water parcel that is displaced in the vertical, for example upward,
encounters water with lower density and accelerates back downward. The water
parcel starts to oscillate before going back to its original position. This oscillation
generates an internal gravity wave. The restoring force is the buoyancy force, which
is the product of gravity and the difference in density between the displaced water
parcel and the environment at the same pressure.

In the case of stratified fluid, it is common to use the Boussinesq approximation
which means we consider that the fluctuations of density around the mean value
are weak. In other words, we consider that the fluid has a constant density in the
horizontal to leading order, with a smaller density perturbation σ: ρ(x, y, z, t) =
ρ0 + ρs(z) + σ(x, y, z, t), ρ0 � ρs � σ. The vertical stratification ρs(z) is the
most important external ocean property with the Coriolis frequency f , for internal
gravity waves. The stratification is characterized by the Brunt-Väsiälä frequency,
N2 = − g

ρ0
∂zρs. Because internal waves can have a period on the order of hours,

internal gravity waves are influenced by the Earth’s rotation.
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Let us now derive the dispersion relation of internal gravity waves. We consider
a rotating and stratified ocean with a constant Brunt Väisälä frequency N . The
unapproximated mass conservation equation is

∂tρ+ u∇ρ+ ρ∇ · u = Dtρ+ ρ∇ · u = 0, (1.5)

where u = (u, v, w) is the velocity vector. In this equation the time scales
advectively (Dt scales in the same way as ∇ · u), then we may approximate
this equation by

∇ · u = 0. (1.6)

The motion of the fluid is governed by the Navier-Stokes equation

ρ (∂tu + u · ∇u + fk ∧ u) = −∇P + ρg + ν∆u, (1.7)

where f is the Coriolis frequency. These three equations define the dynamics of
rotating and stratified fluids. To derive the dispersion relation of internal waves, we
neglect the diffusive term. In general the viscous term is small compared to the
other terms in the interior of the fluid, though as we will see in the next chapters
it can become important for the smallest-scale internal waves. We introduce the
buoyancy perturbation b = −g(σ/ρ0). Rewriting the above equations under the
Boussinesq approximation, we obtain

∂tu+ u · ∇u− fv = − 1
ρ0
∂xp, (1.8)

∂tv + u · ∇v + fu = 1
ρ0
∂yp, (1.9)

∂tw + u · ∇w = − 1
ρ0
∂zp+ b, (1.10)

∂tb+ u · ∇b+ wN2 = 0, (1.11)

∇ · u = 0, (1.12)

(1.13)

where p is the nonhydrostatic pressure, and the total pressure P = phyd + p

is composed of a part phyd in hydrostatic equilibrium with ρ0 + ρs, and a non-
hydrostatic part p. This set of equations describes the nonlinear dynamics of
rotating and stratified fluids. We simplify the computation to the case of two-
dimensional waves, which are the most relevant to the following chapters. We
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thus work in the (x,z) plane but allowing a constant velocity v in the y direction.
We also linearize the equations around a state of rest, neglecting the nonlinear
terms. The above equations can then be reduced to a single equation for the
streamfunction ψ, defined as u = ∂zψ and w = −∂xψ,

∂tt∆ψ + f 2∂zzψ = −N2∂xxψ. (1.14)

This equation is the linear equation of internal wave propagation in the absence
of viscosity. We look for wave solutions of the form ψ0e

i(k·x−ωt), where k = (k, 0,m)
is the wave vector, ω the wave frequency and x = (x, y, z). The resulting
dispersion relation is

ω2 = k2N2 +m2f 2

k2 +m2 , (1.15)

rewritten in terms of slope

k

m
= ±

√
ω2 − f 2

N2 − ω2 = ±tanθ. (1.16)

The angle θ can vary between 0 and π/2 and represents the angle of the wave
vector k with the horizontal. There are four possible sign combinations for k and
m, corresponding to the four directions of propagation for the internal wave. An
important point from equation (1.16) is that the frequency of a propagative wave
has to be between the Coriolis and the Brunt-Väisälä frequencies, f < ω < N .

Lee waves versus internal tides

As mentioned earlier, theoretical studies of internal waves consider the two limits of
constant steady flow (lee waves) and periodic oscillating flow (internal tides). Here
we described those two limits.

a. Lee waves

In the case of the lee waves, the forcing source is a steady flow with an amplitude
U0. The time dependence in the previous set of equations (Eq. 1.8-1.12) disappears
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U0ux − fv = − 1
ρ0
∂xp, (1.17)

U0vx + fu = 0, (1.18)

U0wx = − 1
ρ0
∂zp+ b. (1.19)

U0bx + wN2 = 0, (1.20)

ux + wz = 0. (1.21)

(1.22)

The set of equations can be reduced to a single equation for the vertical velocity w,

U2
0 (wxx + wzz)xx +N2wxx + f 2wzz = 0. (1.23)

The wave solution is of the form w ∼ ei(kx+mz) and the dispersion relation be-
comes

m2 = k2N
2 − U2

0k
2

U2
0k

2 − f 2 . (1.24)

Lee waves can radiate away if their frequency U0k is in the range f < U0k < N

so that m is real.

b. Tides and internal tides

Tides are well known since 1687 and 1775 with Newton’s [Newton 1687] theory
of equilibrium tides and Laplace’s [Laplace 1775] formulation of the tidal equation.
The origin of tides comes from gravitational forces exerted by the sun and the
moon on Earth, including the ocean.

The presence of continents blocks the westward propagation of the tide as the
Earth turns. The result is a complex pattern of tides that move around each basin.
The tide in any location is unique because it is a function of the lunar and solar
tidal forcing but also of the basin and coastline geometry. The relative amplitude
of the tide depends on the location (see Fig. 1.14). The amplitude is zero where
the cotidal lines intersect, and these points are called amphidromes.

The primary tidal frequencies observed in terms of amplitude are the semi-diurnal
and diurnal. The characteristics of the tidal signal is an oscillatory movement of
the whole water column, hence the name barotropic tide. It induces a back and
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Figure 1.14: Maps of (top) cotidal (phase) lines (in ◦) and (bottom) tidal amplitude
(cm) for the semi-diurnal tide M2 Ray [1999].

forth horizontal motion of the whole water column.

Considering the semi-diurnal tide in a narrow zonal channel of uniform depth
H, narrow enough that the planetary rotation may be ignored, the equations
of the movement are

∂tu = −g∂x(η − ηe) (1.25)

∂tη +H∂xu = 0, (1.26)

where ηe is the equilibrium tide. In a zonal channel, this has the form

ηe = A sin(kx− ωtidet), (1.27)
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where ωtide is the frequency and k is the wavenumber of the semi-diurnal tide.
This represents the back and forth motion.

For the internal tides, the frequency of the waves ω is equal to the frequency
of the tide ωtide and the dispersion relation is given by (1.15).

1.3.3 Kelvin and topographic Rossby waves

Kelvin and topographic Rossby waves are believed to play an important role for
the ocean transport, a hypothesis that will be further investigated and quantified
in this thesis. In this section, we introduce the main properties of these waves.

In the case of a reverse 1.5-layer reduced gravity model, where we consider a
thick and motionless upper layer and a thin and active bottom layer, the equations
governing the dynamics (momentum equation, mass conservation equation and
incompressible fluid) are

∂tu + u · ∇u + fu ∧ k = −g′∂xh+ ν∆u, (1.28)

∂th+ u · ∇h+ h∇ · u = 0, (1.29)

∇ · u = 0, (1.30)

where u = (u, v) is the horizontal velocity, f the Coriolis frequency, g′ = g∆ρ/ρ0

the reduced gravity, h the displacement of the interface and ν the viscosity. Making
the assumption that the nonlinear terms and the viscosity can be neglected, the
momentum and the mass-conservation equations become

∂tu− fv = −g′∂xη, (1.31)

∂tv + fu = −g′∂yη, (1.32)

∂th+ [∂x(hu) + ∂y(hv)] = 0, (1.33)

Where h(x, y, t) = H + h′(x, y) + η(x, y, t).
After calculations and using the vorticity equation (∂x(1.32) − ∂y(1.31)) and

the divergence equation (∂x(1.31) + ∂y(1.32)), we obtain

∂

∂t

[
∂ttη + f 2η −∇ · (g′h∇η)

]
+ g′fJ(η, h) = 0, (1.34)

where J(a, b) = ∂xa∂yb− ∂ya∂xb is the Jacobian operator.



1. Introduction 33

The scale analysis of the equation gives

η

T 3 ,
f 2η

T
,

g′Hη

L2T
,

Hδg′fη

L2 ,

where T is the time-scale of the waves, L the horizontal length scale, H the
mean depth and Hδ is the typical size of topographic mountain heights at the
horizontal scale L.

a. Kelvin waves

Kelvin waves are another type of waves whose particularity is to be "trapped"
to the coastlines, which means that their amplitude is highest at the coast (y=0)
and decreases exponentially seaward. Kelvin waves propagate with the coast to the
right in the Northern Hemisphere (and to the left in the Southern Hemisphere).

The Kelvin wave is a high frequency wave, so the equation is dominated by
the first term. The Kelvin wave is trapped to the coast so the no-normal flow
boundary condition implies that v = 0 at y = 0. This result suggests that we look
for a solution with v = 0 everywhere. One last thing, we consider the water depth
constant and equals to H. The Kelvin wave equation is

∂ttu = c2∂xxu. (1.35)

where c =
√
g′H, the phase of shallow water waves. The solution of the

previous equation is

u = F1(x+ ct, y) + F2(x− ct, y), (1.36)

giving a surface displacement of the form

η =
√
H

g′
[−F1(x+ ct, y) + F2(x− ct, y)] . (1.37)

The solution is a superposition of two waves, one (F1) travelling in the negative
x−direction, and the other in the positive x−direction. The y dependence of the
wave is obtain using equation 1.32, with v = 0, which gives

∂yF1 = f√
g′H

F1, (1.38)

∂yF2 = − f√
g′H

F2, (1.39)
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with solutions

F1 = F (x+ ct)ey/Ld , (1.40)

F2 = G(x− ct)e−y/Ld , (1.41)

where Ld =
√
g′H/f is the length of decay (radius of deformation) in the

y−direction. The solution F1 grows exponentially away from the coast, and so fails
to satisfy the condition of boundedness at infinity. The remaining solution is

u = G(x− ct)e−y/Ld , (1.42)

v = 0, (1.43)

η =
√
H

g′
G(x− ct)e−y/Ld . (1.44)

The Kelvin decays exponentially away from the boundary.

b. Topographic Rossby waves

The topographic Rossby wave is a particular case of Rossby wave. The existence
and radiation of Rossby waves require variations of potential vorticity. In fact,
Rossby waves undulate on the background potential vorticity gradient shearing
and reshaping the background potential vorticity. A variation of vorticity can be
induced by a variation in latitude or in the case of a topographic Rossby wave, a
variation of the fluid depth (presence of a slope).

The topographic Rossby wave is a low frequency wave and in equation (1.34),
the first term can be neglected. Now, for the topographic Rossby waves, we consider
that h′(x, y) = −αy, where α is the slope of the topography. Neglecting η in the
equation for h and the second order terms, equation (1.34) becomes

f 2

g′
∂tη − ∂t

[
(H − αy)

(
∂xxη + ∂yyη + −α

(H − αy)∂yη
)]
− fα∂xη = 0. (1.45)

Scale analysis of the equation gives the following terms

f 2η

g′T
,

(H + αL)η
L2T

,
(H + αL)η

L2T
,

αη

LT
,

fαη

L
.
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We consider the topographic height small compared to the fluid height (αL�
H), so we neglect the αy part in terms 2, 3 and 4. Then, the equation for the
topographic Rossby wave is

∂t∆η −
f 2

g′H
∂tη + fα

H
∂xη = 0. (1.46)

We look for solutions of this equation of the form η = η0e
i(k·r−ωt), where

k = (k, l, 0) is the wave vector and ω the wave frequency. The resulting dis-
persion relation is

ω = − βtopogk

k2 + l2 + 1
R2

bc

, (1.47)

where βtopog = (fα/H) is the topographic beta and Rbc =
√
g′H/f is the

baroclinic Rossby radius.

After introducing the global context of the following studies and the main
properties of the waves treated in this thesis, the introduction is followed by two
parts on the dissipation of internal tides generated at the topography in 2D numerical
simulations and a third part on the role of Kelvin and topographic Rossby waves
on the circulation of an upstream basin controlled by a hydraulically controlled
sill. The last part concludes on those three projects.
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2
Internal tide dissipation at topography:
triadic resonant instability equatorward
and evanescent waves poleward of the

critical latitude

The first project presented in this thesis is about the mechanisms behind the
latitudinal dependence of the internal tide energy dissipation. In others words, we
propose a mechanism to explain the dissipation of the semi-diurnal lunar tide (M2)
in the deep ocean. This study is based on theoretical results and idealized numerical
simulations where a tidal current is impinging a sinusoidal topography.

Bill Watterson, 7 October 1986

37
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2.1 Introduction

Internal waves are ubiquitous in the ocean and they play a key role in the circulation
and the stratification of the oceans [Garrett and Munk 1979]. They permit energy
transfer from mesoscale flows to small spatial scales, where they are dissipated
and induce diapycnal mixing [Munk and Wunsch 1998; Wunsch and Ferrari 2004].
Interest in internal waves dynamics has been enhanced in the last decades with
parametrization of internal waves-driven mixing in the global climate models. The
consumption of Antarctic Bottom Water (AABW) in the ocean interior is strongly
influenced by wave-induced diapycnal mixing [Talley 2013; Melet et al. 2016] and
more precisely by mixing at the topography [Ferrari et al. 2016]. Far from the
Antarctic Circumpolar Current (ACC), diapycnal mixing is primarily induced by
internal tides [Nikurashin and Ferrari 2013; De Lavergne et al. 2016b;a], which are
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internal waves generated by barotropic tide current impinging rough topography
[Garrett and Kunze 2007]. Estimates of AABW upwelling can differ by a factor
two or more depending on the spatial distribution of internal tide dissipation and
the associated mixing [De Lavergne et al. 2016b].

For the purpose of understanding the dynamics of internal tides, several numerical
studies considered the dissipation of semi-diurnal internal tide (generated by
topography interacting with the semi-diurnal baropotropic M2 tide). They showed
a strong latitudinal distribution and the existence of a critical latitude where
dissipation is strongly enhanced. This critical latitude exhibits enhanced dissipation
of both low-mode [MacKinnon and Winters 2005] and high-mode internal tide
[Nikurashin and Legg 2011; Richet et al. 2017]. The critical latitude corresponds
to the latitude where the Coriolis frequency f matches half the tidal semi-diurnal
frequency ω0: f ≈ ω0/2. Observations confirm the enhancement of dissipation near
the critical latitude, albeit with weaker amplitude than expected from numerical
studies [Alford et al. 2007; MacKinnon et al. 2013]. One possible explanation
for this amplitude discrepancy is the Doppler effect due to background oceanic
currents, which spreads the dissipation over a wider range of critical latitudes [Richet
et al. 2017]. MacKinnon and Winters [2005], Hazewinkel and Winters [2011] and
Nikurashin and Legg [2011] suggest that the mechanism to explain the latitudinal
dependence of internal tide dissipation is the Parametric Subharmonic Instability
(PSI). In this paper, we propose to complete Nikurashin and Legg [2011]’s numerical
study and investigate in detail the physical processes leading to the distribution
of M2 internal tide dissipation with latitude.

PSI is a weakly nonlinear resonant phenomenon [McComas and Bretherton 1977;
Young et al. 2008] in which the energy is transferred, from large scales to smaller
scales, from the primary internal tide to two secondary waves at approximately half
the tidal frequency. The instability of a primary wave producing two secondary
waves which match the resonant conditions of triadic resonant instability (TRI) has
been confirmed experimentally in a rotating tank [Maurer et al. 2016]. However,
the constraints associated with laboratory experiments, in particular size contraints,
imply that the Reynolds number is low, in other words viscous effects are much
stronger than in the ocean, and this can impact energy transfer in triads. Here we
revisit and expand the generation of triads via the TRI observed in Maurer et al.
[2016], in numerical simulations more representative of the oceanic conditions.

Equatorward of the critical latitude, we investigate whether TRI is the most
efficient mechanism that dissipates internal tide energy, and which triads are involved
in these energy transfers. Two candidates in the literature are triads with secondary
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waves at frequencies ω1 = f and ω2 = ω0 − f [Nikurashin and Legg 2011], or
ω1 = ω2 = ω0/2 [MacKinnon and Winters 2005]. Note that in both cases, these
secondary waves satisfy the resonance conditions ω0 = ω1 + ω2 (see Section 2.4 for
more details on the triadic resonant instability theory). Poleward of the critical
latitude, one of the waves has a frequency below f for both of those triads, which
is then not within the range of internal wave frequencies (internal waves have
frequencies between f and the stratification frequency N), so there is no resonant
triad. Another dissipation mechanism has been proposed and will be investigated
here, the “2f -pump” [Young et al. 2008; Korobov and Lamb 2008]. The 2f -pump
is an extension of PSI in a rotating frame, with the generation of near-inertial
secondary waves which are evanescent. This physical process can extract energy
from the primary internal tide at ω0 to evanescent secondary waves at ω0/2. We
will investigate whether this process plays a role in our simulations and whether
it can lead to strong dissipation poleward of the critical latitude.

Section 2.2 of the paper describes the equations governing the motion of
internal waves and the setup of the numerical simulations. Section 2.3 is an
overview of the results, where we split the latitudinal dynamics of internal tides
into two parts: part I, equatorward of the critical latitude, where internal tides are
propagating waves and transfer their energy through triadic resonant instabilities,
and part II, poleward of the critical latitude, where there is the possibility of energy
transfer to secondary evanescent waves. Sections 2.4 and 2.5 investigate in detail
the mechanisms of dissipation in these two parts. Results are summarized and
conclusions are offered in section 2.6.

2.2 Methods

2.2.1 Theoretical background: equations of motion

Internal waves are waves found in stratified fluids. In this section, we derive
their dispersion relation from a simplified set of equations, namely the Boussinesq
equations on the f -plane assuming constant stratification. Under the Boussinesq
approximation, the total density is ρ(x, z, t) = ρ0 + ρs(z) + σ(x, z, t), where ρ0

is assumed constant, and ρs is linked to the background vertical stratification
corresponding to the Brunt-Väisälä frequency N satisfying N2 = −(g/ρ0)(dρs/dz)
assumed constant. We introduce the buoyancy related to the density perturbation
b = −(g/ρ0)σ. Internal waves are governed by the nonlinear Boussinesq equations
of motion on the f -plane:
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D

Dt
u + f ẑ× u = − 1

ρ0
∇p+ bẑ + ν∇2u, (2.1)

D

Dt
b+N2w = 0, (2.2)

∇ · u = 0. (2.3)

We reduce the set of equations to the 2D case (x, z), considering ∂/∂y ≡ 0.
Nevertheless, we allow for a velocity v constant in the y direction. The model is
a 2D model with three components. This assumption is relevant if we consider
that roughness of ridges is nearly two-dimensional. D/Dt denotes the Lagrangian
derivative, and we solve the equations for flow velocity u = (u, v, w) and buoyancy
b. ν denotes the viscosity.

If we linearize this set of equations about a state of rest neglecting viscosity,
and look for wave solutions of the form ∝ ei(kx+mz−ωt), we obtain the dispersion
relation of internal waves:

ω2 = N2 sin2 θ + f 2 cos2 θ = N2k2 + f 2m2

κ2 , (2.4)

with ω the frequency of the internal wave, θ is the angle of energy propagation
with the horizontal such that k = (k, 0,m) = κ(sin θ, 0, cos θ) where κ is the
magnitude of the wavevector k. We see that propagating waves (i.e. with real
ω, k and m), necessarily have their frequency ω ∈ [f,N ] (f < N typically in
the ocean). Note also that for a given horizontal scale, i.e. for a given k, the
vertical scale of the waves decreases when the frequency decreases. In other words
lower frequency waves have smaller scales, and are hence more likely to break and
dissipate their energy, yielding the mixing ultimately relevant to the large-scale
ocean circulation [Staquet and Sommeria 2002].

2.2.2 Numerical simulations configuration

For the numerical simulations, we use the Massachusetts Institute of Technology
Global Circulation Model (MITgcm; Marshall et al. [1997]), a high-resolution
numerical model in nonhydrostatic configuration. The nonhydrostatic configuration
allows the explicit representation of processes such as hydraulic jumps or Kelvin-
Helmholtz instabilities. The model is developed with the finite-volume method to
provide the treatment of irregular geometries like the topography using the MITgcm
partial cells’ architecture. The bottom boundary is treated with a no-slip condition.
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Figure 2.1: Schematic of the numerical setup. The barotropic tidal current, with
amplitude U0 and frequency ω0 interacts with a one-dimension sinusoidal topography in
a linearly stratified (N constant) and rotating (f constant) fluid and generates internal
tides (oblique dashed lines). The gray shaded area at the top of the domain represents
the sponge layer.

The main characteristics of the domain are synthetized in Figure 2.1. The
domain is two-dimensional and periodic in the x direction. The horizontal size of
the domain is 24 km with a uniform resolution of 30 m. The vertical extent of the
domain is equal to 7.5 km, organized in two layers: the 4.5 km bottom layer and
the 3 km sponge layer at the top. Indeed, the goal of this paper is to highlight the
mechanisms by which internal tides dissipate locally near their generation site, so
we neglect the reflection of the waves at the ocean surface and their interactions
with the thermocline. In other words, we consider a semi-infinite ocean, and for
this purpose we impose a sponge layer at the top of the ocean interior to absorb
upward-propagating waves which are not dissipated locally. In the sponge layer,
momentum and buoyancy are damped with a linear drag with a time scale of 1 hour.
The bottom layer corresponding to the ocean interior has a uniform resolution of
10 m. The resolution of the sponge layer is progressively stretched from 10 m at
the base of the layer to 70 m at the top. The model time step is 30 seconds. These
high-resolution idealized simulations are designed to allow the resolution of a wide
range of spatial and temporal scales of the turbulence.

In the simulations, the fluid is linearly stratified in the vertical with constant
buoyancy frequency N = 10−3 s−1, representative of the deep-ocean stratification.
Following Nikurashin and Legg [2011] and Richet et al. [2017], the viscosity
(horizontal and vertical) is equal to ν = 2×10−3 m2s−1 and the diffusivity (horizontal
and vertical) is set to κ = 10−4 m2s−1. The Coriolis frequency f is set to be constant
for each given simulation. To investigate the latitudinal variation of internal tide
dissipation, we vary f between simulations.
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The simulations are initiated from a state of rest and run for 30 days (a
statistically steady state is reached in 5 to 10 days). The tidal barotropic flow is
imposed by adding a body force to the momentum equations, yielding a barotropic
semi-diurnal lunar M2 tide, U(t) = U0 sin(ω0t) with an amplitude U0 = 2.5 cm
s−1 and the tidal frequency ω0 = 1.4 × 10−4 s−1.

Internal tides are generated by the barotropic flow interacting with an idealized
sinusoidal topography. The choice of a simple idealized sinusoidal topography is
motivated by the fact that the dissipation profiles and magnitudes are found to be
similar to those obtained with a realistic topography spectrum, as long as the vertical
and horizontal Froude numbers are the same [Richet et al. 2017]. We therefore use
the realistic horizontal and vertical Froude numbers Frh = U0/(N2π/k0) ≈ 4× 10−3

and Frv = U0/(Nh) ≈ 10−1, where k0 = 0.8×10−3 m−1 is the horizontal wavenumber
and h = 110 m is the rms height of the sinusoidal topography. With this choice, we
expect the sensitivity of dissipation to latitude and the physical processes involved
in our simulations to be relevant, at least qualitatively, to more realistic conditions
representative of the deep ocean in the region of the Brazil Basin [Nikurashin
and Legg 2011; Richet et al. 2017].

2.3 Overview of numerical results: latitudinal dis-
tribution of tidal dissipation and physical pro-
cesses involved

The purpose of this study is to explain the physical mechanisms behind the
latitudinal distribution of internal tide energy dissipation. From numerical results,
we give a first glimpse of possible mechanisms and their repartition with latitude
before studying them in detail and validate their existence and their efficiency for
the dissipation of internal tide energy in following sections.

Nikurashin and Legg [2011] and Richet et al. [2017] show a strong dependence of
internal tide energy dissipation with latitude. Figure 2.2 summarizes these results.
Each point corresponds to a simulation at a given latitude (f constant) and the
viscous energy dissipation is averaged over x direction and over the last 10 days
of simulation, and integrated over 0 m to 50 m above topography for the bottom
boundary layer, and over 50 m to 2 km for the ocean interior. The critical latitude
(28.8◦ corresponding to f = 0.7×10−4 s−1) is defined as the latitude where f = ω0/2
and is found to be close to the maximum of energy dissipation. From the equator
toward the critical latitude, the energy dissipation increases slowly at the beginning
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Figure 2.2: Energy dissipation rate integrated in the bottom 50 m (cross) and between
50 m and 2 km (circle). The vertical black dotted line materializes the critical latitude
when f = ω0/2.

and strongly after ∼22◦ of latitude (f = 0.53× 10−4 s−1). Poleward of the critical
latitude, energy dissipation decreases and becomes constant after ∼35◦ of latitude
(f = 0.8 × 10−4 s−1). We divide the curve into two parts: part I equatorward
of the critical latitude where secondary waves, in particular at ω0/2 or ω0 − f ,
are propagating, i.e. their frequency is in the internal wave range [f,N ] see Eqn.
(2.4); and part II poleward of the critical latitude where those secondary waves are
evanescent, i.e. for a given horizontal wavenumber k, their vertical wavenumber m
is imaginary and the waves are evanescent in the vertical direction z (Eqn. 2.4).
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Figure 2.3: Kinetic energy density spectra from simulations at (a) f = 0.53× 10−4 s−1

and (b) f = 0.75× 10−4 s−1. Spectra are calculated over the period of 5 to 30 days and
averaged zonally and over the region 500 m above topography.

Figure 2.3 shows kinetic energy density spectra from simulations at f = 0.53×
10−4 s−1 and f = 0.75 × 10−4 s−1 averaged over 5 to 30 days. Equatorward of
the critical latitude (Figure 2.3a), dominant frequencies in the domain are ω0, the
primary internal tide, but also waves at frequency f , i.e. inertial waves, and at
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frequencies (ω0 − f) (and with smaller amplitude ω0 + f). These results suggest
that the physical mechanism responsible for the energy transfer from internal tides
to smaller-scale secondary waves is the formation of resonant triads between the
primary internal tide, inertial waves and waves at frequencies (ω0 − f), and to a
lesser extent (ω0 + f). Poleward of the critical latitude (Figure 2.3b), the dominant
frequencies in the kinetic energy spectrum are the primary internal tide at ω0 and
the evanescent wave at ω0/2 (ω0/2 < f). This result suggests the transfer of energy
to smaller-scale evanescent near-inertial waves as the dominant physical process
leading to the dissipation of the primary internal tide.
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Figure 2.4: Latitudinal evolution of the kinetic energy density for the leading frequencies
in the domain: the primary internal tide ω0 (gray dashed), inertial waves f (black plain)
and waves at frequencies (ω0 − f) (gray point-dashed), (ω0 + f) (gray plain - here nearly
indistinguishable from the axis) and ω0/2 (black dashed). The vertical black dotted line
materializes the critical latitude.

The latitudinal evolution of the main wave frequencies are summarized in Figure
2.4. Equatorward of the critical latitude, the enhancement of energy dissipation
seems to be linked to a strong generation of inertial waves accompanied by waves
at ω0− f . The waves at ω0 + f do not play a leading-order role. It should be noted
here and it will be proved later that the triad involving ω0 + f is not an unstable
triad. Poleward of the critical latitude, the dissipation seems to be dominated
by energy transfers to secondary waves at ω0/2.

These results suggest two different mechanisms for internal tides dissipation
in the two regions previously defined: equatorward of the critical latitude (part I)
and poleward of the critical latitude (part II). Equatorward of the critical latitude,
dissipation of internal tides seems to involve triadic resonant instabilities. Poleward
of the critical latitude, dissipation seems to be linked to the energy transfer to
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evanescent waves. In the next sections, we investigate in detail those physical
mechanisms and provide further evidence for their key role in the dissipation
of tidal energy.

2.4 Part I - Equatorward of the critical latitude:
Triadic Resonant Instabilities (TRI)

In order to explain the latitudinal dependence of the energy dissipation equatorward
of the critical latitude, we investigate theoretically resonant triads. We will see that
the energy transfers occur in three stages. During the first stage, corresponding to
the beginning of the simulation, secondary waves with a wide range of frequencies are
generated by triadic resonant instability from the primary internal tide. A second
stage consists of an accumulation of inertial waves close to topography. Finally, in a
third stage, the dominant triadic resonant instability appears between the primary
internal tide and the inertial waves, generating waves at frequencies (ω0 − f).

2.4.1 Stage I: TRI
Triadic resonant instability theory

In the following, we consider that only the primary wave with streamfunction
amplitude Ψ0 (See appendix A for the streamfunction form of Equations (2.1-
2.3)) with frequency s0ω0 (by convention, we consider ω0 > 0 and s0 is its sign),
wavevector k0 = (k0,m0) and sign s0, is present initially in the system. We impose
m0 < 0 to match the numerical simulation where the primary internal tide is
generated at the topography and propagates upward (i.e. has positive vertical
group velocity, which for internal waves is equivalent to negative vertical phase
velocity). The secondary waves with amplitudes Ψ1,2 are present as noise. The
two secondary waves (s1, ω1,k1) and (s2, ω2,k2) form a resonant triad with the
primary wave, satisfying the spatial resonant condition

k0 = k1 + k2, (2.5)

and the temporal resonance condition

s0ω0 = s1ω1 + s2ω2. (2.6)

In all calculations, we consider that wave frequencies ω0,1,2 are positive,while
s0,1,2 are their signs. Using the dispersion relation for internal waves Eqn. (2.4),
the resonant conditions lead to
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Figure 2.5: The curves represent the location of (k1,m1) satisfying Equation 2.7 at f =
0.53×10−4 s−1 for the three possible combinations of signs and for the realistic parameter
values used in our simulations. Plain lines represent unstable branches associated to (+,+)
combination signs, while dashed lines correspond to neutrally stable cases.

Without loss of generality, we can set s0 = +1. For a given primary wave
(s0, k0,m0), the solution of this equation for each sign combination (s0 = +1, s1, s2)
is the curve in the (k1,m1)-plane shown on Figure 2.5 using the stratification value
N = 10−3 s−1 representative of the deep ocean, and a value of f equatorward
of the critical latitude f = 0.53 × 10−4 s−1. We use the same sign convention
on wave frequencies as Bourget et al. [2013] and Maurer et al. [2016], leading to
similar results. But Figure 2.5 as well as the growth rates in Figure 2.6 show
differences compared to these observational studies. This is because of the oceanic
parameter values used here, while their values were constrained by the laboratory
experiments. In particular, Maurer et al. [2016] are constrained by the limited
spatial scales allowed in experiments, and have a Reynolds number Re ∼ 200.
In our simulations, the Reynolds number is more turbulent and thus closer to
the oceanic regime with a Re ∼ 104.

As the sign of the primary wave is imposed, we have to consider four sign
combinations for (s1, s2): (-,-), (+,+), (-,+) and (+,-). First of all, no solution exists
for the combination (-,-). To know which branch, defined by the sign combination,
is stable or unstable, we calculate the associated growth rate σ given by (see full
calculation and definition of coefficients I1 and I2 in Appendix A):

σ = −ν4
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A negative growth rate corresponds to a stable branch (dashed curves on Figure
2.5) and is not relevant for this study, which is the case for combinations (+,-) and
(-,+). The study will focus only on the (+,+) combination which has a positive
growth rate and hence corresponds to an unstable branch (plain curves on Figure
2.5). In the simulations, we expect to observe a transfer of energy to the most
unstable secondary waves (i.e. with the largest growth rate).

Without loss of generality, we can limit our analysis to the upper branch: the
upper and lower branches (+,+) correspond to exchanging the labels 1 and 2
between (ω1,k1) and (ω2,k2), and thus show the same triad (ω0 primary wave
yields ω1 and ω2 secondary waves). It follows from Eqn. 2.5 that they are obtained
from one another by symmetry with respect to k0/2.

Figure 2.6: Growth rate σ as a function of the frequency of secondary waves associated
to the upper unstable branch (plain black line on Figure 2.5) for f = 0.53 × 10−4 s−1.
The plain curve represents the growth rate as a function of the frequency of the first
secondary wave ω1, and the dashed curve represents the growth rate as a function of the
frequency of the second secondary wave ω2.

Figure 2.6 shows the growth rate σ associated with the upper unstable branch
as a function of the secondary waves frequencies (ω1 or ω2), calculated for each
point of the upper branch of Figure 2.5 (as mentioned above, because of the
symmetry (ω1,k1) −→ (ω2,k2), there is no need to consider the lower branch
(+,+) on Figure 2.5). Despite a weak maximum growth rate σmax, we see that the
temporal growth rate is roughly constant over a wide range of frequencies (between
f and ω0 − f). In other words, no specific triad is selected. We therefore expect
in the simulations that TRIs generate, from the primary internal tide, secondary
waves with a wide range of frequencies.

It should be noted that as f is increased toward ω0/2 the unstable branch gets
more and more folded with a cusp moving to infinity when approaching ω0/2. No
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triadic instability is possible after the critical latitude f = ω0/2. We will come back
to internal tide dissipation poleward of the critical latitude in section 2.5.

Hence the theory of TRI, applied with oceanic parameters, predicts the genera-
tion, from the primary tide, of secondary waves with a wide range of frequencies.
In the next section, this theoretical result is compared to numerical simulations to
validate TRI as the principal mechanism in internal tide dissipation equatorward
of the critical latitude.

Consistency with the numerical results at early times

The numerical simulation discussed here is at the same latitude as the theoretical
case (f = 0.53× 10−4 s−1). Several snapshots of the wave field (left column) and
the wave field without the primary internal tide signal (right column) are shown on
Figure 2.7 at 0.5, 1.5, 3 and 5 days. The wave field is obtained by subtracting the
zonal mean flow. The primary internal tide has been removed by subtracting two
snapshots at t and at t + Ttide, where Ttide is the tide period (2π/ω0 ∼12 hours).
Linear characteristics for given frequencies are drawn on the snapshot at 5 days.

The transient phase lasts 3 to 5 days, corresponding to the development and
the propagation of the primary tide toward the sponge layer. As early as 1.5
days of simulation, waves with smaller wavelengths appear throughout the water
depth, faster than expected from upward propagation from topography (the group
velocity of small-scale waves is slower than that of large-scale waves). This suggests
that they are not generated at the topography during the transient phase, but
instead are generated by nonlinearities at all heights. These figures visually confirm
that a wide range of secondary waves are generated at the beginning of the
simulation by nonlinearities.

2.4.2 Stage II: accumulation of inertial waves

Figure 2.8 shows the kinetic energy associated with the different frequencies in the
simulation over the period 1-15 days and 15-30 days. During the first 15 days, the
most energetic waves are associated to frequencies ω0, the primary internal tide,
f , the near-inertial wave and ω0 − f . There is a signal at ω = 0 s−1, probably
linked to a weak mean flow induced by the waves [Grisouard and Bühler 2012].
During the second period, near-inertial waves have more and more energy and
become stronger than the primary internal wave. The near-inertial waves are
present above topography until 2 500 m, and have significant energy as high as
1 500 m above the bottom.
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Figure 2.7: Snapshot of (left) the horizontal velocity (u, m s−1) associated with the
wave field and (right) the wave field without the primary internal tide signal at 0.5, 1.5, 3
and 5 days (right), for f = 0.53× 10−4 s−1. The wave field is obtained by subtracting
the zonal mean flow. The primary internal tide has been removed by subtracting two
snapshots at t and at t+ Ttide, where Ttide is the tide period (2π/ω0 ∼12 hours). Dashed
lines correspond to linear characteristics for waves at (ω0 − f) (yellow dashed), (ω0 + f)
(yellow pointed dashed), ω1,σmax (purple dashed), ω2,σmax (purple pointed dashed), f
(orange dashed) and for harmonics (pink dashed).
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Figure 2.8: Kinetic energy spectrum in time (in m2s−2) as a function of wave frequency
ω and height above topography, and averaged zonally over the time period of (left) 1-15
days and (right) 15-30 days, for f = 0.53 × 10−4 s−1. Vertical lines correspond to the
main observed frequencies. The colorbar is saturated to highlight the main secondary
frequencies (beyond the primary wave tidal frequency ω0).

Near-inertial waves (i.e. with frequencies near f) are those with vertical group
velocity close to zero (in fact for inertial waves ω = f , kIW = 0⇒ cg,z = ∂ω/∂m = 0,
consistent with the horizontal characteristic lines seen for instance Figure 2.7). For
this reason, they do not propagate upward or downward, and they accumulate near
their generation site, growing to order one. Gradually, they accumulate and can
not be considered as noise anymore compared to the primary internal wave.
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Figure 2.9: Kinetic energy spectrum in time and space (in m2s−2) as a function of wave
frequency ω and vertical wavenumber m, and averaged zonally over the time period of
(right) 1-15 days and (left) 15-30 days, for f = 0.53× 10−4 s−1. Vertical lines corresponds
to the main observed frequencies. The colorbar is saturated to highlight the main
frequencies.

Moreover, the sign of the vertical group velocity of internal waves,

Cgz = −mk
2(N2 − f 2)

ω(k2 +m2)2 , (2.9)

is minus the sign of the vertical wavenumber m (ω is positive with our convention).
Figure 2.9 shows the kinetic energy of the waves as a function of vertical wavenumber
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and frequency over 1-15 days and 15-30 days. As seen previously, near-inertial
waves have more and more energy. The near-inertial waves are associated with
a vertical wavenumber positive which means that the energy goes toward the
topography and confirm the accumulation of near-inertial waves at the topography.
We note in passing that the primary internal tide at ω0 has a vertical wavenumber
m < 0 implying a propagation upward which is coherent with their generation at
the topography. After 15 days, near-inertial waves and primary internal tide
are of the same order.

2.4.3 Stage III: dominant TRI

Consistent with the aforementioned accumulation of inertial waves, the wave field
in the numerical simulation strongly evolves with time and the waves are very
different after 19 days compared to earlier times (see Figure 2.10 right panel, where
the primary internal tide has been removed). The linear characteristics highlight
the waves at frequency (ω0 − f) which dominate in the whole domain at the end
of the simulation. The triad with waves at f and ω0 − f has become order one
and clearly dominates the wave field.
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Figure 2.10: Snapshot of (left) the wave field and (right) the wave field without the
primary internal tide signal at 19 days, for f = 0.53×10−4 s−1. The wave field is obtained
by subtracting the zonal mean flow. The primary internal tide has been removed by
subtracting two snapshots at t and at t+ Ttide, where Ttide is the tide period (2π/ω0 ∼
12 hours). Dashed lines corresponds to linear characteristics for waves at ω0 − f (yellow)
and inertial waves f (orange).

In fact, if we come back to Figures 2.8 and 2.9, we can see that waves at
ω0 − f have more and more energy over time suggesting that their generation is
linked to the strengthening of the near-inertial waves. Figure 2.9 also shows that
waves at ω0 − f have a vertical wavenumber m < 0 implying that they propagate
upward and their energy is dissipated in the sponge layer. This result is coherent
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with Figure 2.8 where ω0 − f has homogeneous kinetic energy all over the water
column above the maximum of f .

Going back to the TRI theory and triad selection, Figure 2.9 gives one more piece
of information which is that the selected triad is the triad (ω1 = ω0−f,m1 < 0) and
(ω2 = f,m2 > 0). This triad is located on the right part of the upper unstable branch
(see Figure 2.5 as well as Figure 2.11 left panel). Indeed, m1 < 0 (same sign as m0 on
this branch), thus the triad selected corresponds to ω1 = ω0 − f with m1 < 0, open
circles Figure 2.11. Note that in that case m2 > 0 (since |m1/m0| > 1 see Figure
2.11) and the wave ω2 = f , m2 > 0 thus propagates downward consistent with
Figure 2.9 and the aforementioned accumulation of inertial waves at the topography.

Once near-inertial waves accumulate and become order one compared to the
primary internal tide, they can interact with the internal tide, generating a new
wave via TRI. The new wave frequency could be, with the combination of ω0

and f , (ω0 − f) or (ω0 + f). If we go back to the triadic relation (Eq. 2.7), the
only unstable branch corresponds to sign combination (s1 = +, s2 = +), yielding
ω0 = ω1 + ω2, with ω0,1,2 positive. This result implies that the only unstable
triad is between frequencies ω0, f and ω0 − f . In other words, the dominant TRI
generates waves at frequency (ω0 − f). This theoretical result is confirmed by
the numerical simulation on Figure 2.10.

Thus we conclude that in our simulations, equatorward of the critical latitude,
the dissipation of internal tides involves energy transfers to smaller scales (smaller
frequencies) via TRI. More precisely, it occurs in three stages: generation of new
secondary waves via TRIs over a wide range of frequencies, accumulation of inertial
waves which can not propagate vertically, and domination of a TRI between the
primary internal tide and inertial waves involving a third wave at ω0 − f . This
theoretical and numerical study of internal tide instability and dissipation confirms
the prediction that TRI is the main mechanism for internal tide dissipation in the
ocean. We note that in the ocean, assuming that a steady state with the barotropic
tidal forcing is reached, stages I and II are not relevant, and it is stage III, i.e. the
interaction of internal tides with order one inertial waves, which dominates. We
still need to explain how this dissipation mechanism can help explain the strong
enhancement of dissipation at the critical latitude f = ω0/2.
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2.4.4 Evolution of dissipation from the equator toward the
critical latitude

Internal tide energy dissipation is not constant equatorward of the critical latitude
(see Figure 2.2), it increases toward the critical latitude. In this section, we
investigate the effect of the latitude on TRI growth rate and secondary waves, in order
to investigate the reason behind the increase of dissipation at the critical latitude.
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Figure 2.11: Location of (k1,m1) satisfying Equation 2.7 for the three possible
combinations of signs for different latitudes. Plain curves are unstable branches. The
associated growth rate as a function of the secondary wave frequencies are shown right
panel. Vertical plain lines correspond to ω = f and vertical dashed lines to ω = ω0 − f .
Vertical black plain line indicates the critical latitude. Colored cross marks denotes
maximum growth rate at each latitude.

Figure 2.11 shows for different latitudes the loci of TRI and the associated
growth rate of the unstable branches as a function of the frequency of secondary
waves. From the equator (f = 0 s−1) toward the critical latitude, the unstable
branch goes to infinite vertical wavenumbers and tightens. For the growth rate,
it becomes sharper close to the critical latitude, tending to only generate inertial
waves. In fact, at the critical latitude, only one resonant triad exists and both
secondary waves have their frequencies equal to ω0/2. We call this specific TRI, the
Parametric Subharmonic Instability (PSI) [Bouruet-Aubertot et al. 1995; Staquet
and Sommeria 2002; Bourget et al. 2013]. The sharp increase as f approaches the
critical latitude in Figure 2.2 is not explained by a change in the maximum growth
rate, which remains roughly constant with f (crosses in the right panel of Figure
2.11). We now investigate whether the growth rate of the other triad involving
waves at f and ω0 − f can explain this sharp increase and whether changes in
scales of the secondary waves may also play a role, as waves with smaller scales
are more prone to break and dissipate their energy.

Figure 2.12 represents the latitudinal evolution of growth rate, horizontal
wavenumber and vertical wavenumber for the key frequencies. From the equator
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Figure 2.12: Latitudinal evolution of growth rate, horizontal wavenumber k1, vertical
wavenumber m1 for different frequencies.

toward the critical latitude, we recover the fact that the maximum growth rate
is roughly constant, and even decreases. But the growth rate of inertial waves
and waves at (ω0 − f) increases. The horizontal scales of the waves seem to be
almost constant with latitude. On the other hand, the vertical wavenumber (vertical
scale) increases (decreases) strongly getting closer to the critical latitude. TRIs
promote the generation of inertial waves and waves at ω0 − f close to the critical
latitude, which have smaller and smaller vertical scales near the critical latitude
promoting their dissipation. These theoretical results suggest that the enhanced
energy dissipation at the critical latitude is due to faster generation (increased growth
rate) of secondary waves with smaller vertical scales which are dissipated quickly
after their generation, leading to the strong energy dissipation seen in Figure 2.2.

2.5 Part II - Poleward of the critical latitude:
evanescent waves

Poleward of the critical latitude, TRI is not a possible mechanism for internal
tide dissipation, since waves at ω0 − f are not radiating internal waves anymore.
But surprisingly, the dissipation does not decrease sharply. Instead, internal tides
continue to dissipate for about 5◦ of latitude poleward (see Figure 2.2) and thus to
participate in diapycnal mixing. The energy dissipation seems to be associated with
waves at ω0/2 (see Figure 2.4) which are not radiating either (ω0/2 < f), but instead
are evanescent in z. Young et al. [2008] propose a mechanism, the “2-f pump”, which
extends PSI theory poleward of the critical latitude. In Young et al. [2008] theory,
the barotropic tide at ω0 is able to exchange energy with near-inertial waves, leading
to its dissipation. Here we compare expectations from this theory to our simulations.
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2.5.1 Theory of PSI extension

In Young et al. [2008]’s theory, internal tides can transfer energy to evanescent
secondary waves at ω0/2 via a mechanism called the 2f -pump. As mentioned earlier,
we refer to PSI as the specific TRI where resonant conditions are

k0 = k1 + k2, (2.10)

ω0 = ω1 + ω2 = ω0

2 + ω0

2 . (2.11)

Young et al. [2008] studied near-inertial PSI which corresponds to a case where
the primary wave has a frequency ω0 ≈ 2f , where f is the local inertial frequency,
inducing that secondary waves are near-inertial oscillations. Transfer of energy in
this mechanism is particularly efficient because near-inertial oscillations are almost
stationary and therefore might dissipate locally.

Young et al. [2008] show that an infinite plane wave at frequency ω0 = 2f+ε, (ε�
f and ε can be positive or negative), extracts energy from the non-geostrophic part
of the background flow then transferring to near-inertial oscillations via near-inertial
PSI. If the de-tuning frequency ε is negative, which means secondary waves at ω0/2
fall outside the internal wave frequency band [f,N ], Young et al. [2008] point that
PSI can extend the internal wave frequency band to slightly subinertial frequencies.

The growth rate of the near-inertial PSI of an infinite-plane internal wave
ω0 = 2f + ε, on the f -plane, is (see appendix B for the full growth rate calculation
and e.g. Muller and Bühler [2009] for polarization relations (their Equation 9) used
to determine the amplitude of the 2-f pump in our simulations):

σ = 1
2

√√√√λ2 −
(
N2

2f

)2 (
k2

1
m2

1
+ k2

2
m2

2
− 2 εf

N2

)2

, (2.12)

where

λ2 = U0h0k
2
0

2ω0

√√√√(N2 − ω2
0)(ω0 + f)

(ω0 − f) (2.13)

Figure 2.13 represents the growth rate from Equation (2.12) for different latitudes.
The growth rate of near-inertial PSI is maximum at the critical latitude (f =
0.7× 10−4 s−1) and decreases poleward of the critical latitude. A second important
point is that the instability is larger at higher vertical wavenumber (small vertical
scales). This last result is consistent with the strong dissipation observed near and
poleward of the critical latitude (see Figure 2.2), since dissipation is favored by
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Figure 2.13: Growth rate (in s−1) from (2.12) as a function of m1/m0 and k1/k0 for
different latitudes: f = 0.7× 10−4 s−1, f = 0.75× 10−4 s−1 and f = 0.77× 10−4 s−1.

smaller-scale waves. When m1/m0 →∞, the growth rate asymptotes to 1
2

√
λ2 − ε2.

From this result, we can evaluate εc when the growth rate is zero. We obtain
εc/f ≈ 0.2 which extends the dissipation poleward of the critical latitude to
f ≈ 0.77 × 10−4 s−1 (∼ 32◦). This result is in excellent quantitative agreement
with the latitudinal extent of enhanced dissipation poleward of the critical latitude
found in our simulations Figure 2.2. Further comparison with our numerical results
are provided in the next section.

2.5.2 Numerical results

Figure 2.14 is a snapshot of the wave field at 19 days (primary internal tide removed)
for a simulation poleward of the critical latitude (f = 0.75× 10−4 s−1). We draw
the characteristics of linear waves at ω0/2, showing the presence of these near-
inertial waves. These near-inertial waves are confined to a few hundred meters
from topography, as expected since these are evanescent in the vertical. Consistent
with Figure 2.2 and with the theoretical latitude of zero growth rate derived at
the end of the previous section, we find that those near-inertial waves at ω0/2
are present approximately until f = 0.8 × 10−4 s−1. These results suggest that
poleward of the critical latitude, the dissipation of internal tides is dominated by
this extension of PSI, namely the 2f-pump mechanism. In other words, we find
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Figure 2.14: Snapshot of the wave field after removing the primary internal tide at 5
days, for f = 0.75× 10−4 s−1. The wave field is obtained by subtracting the zonal mean
flow. Dashed lines corresponds to linear characteristics for waves at ω0/2 (purple).

that the generation of evanescent waves via nonlinear energy transfers from the
primary internal tide, is an efficient process to dissipate tidal energy. Though PSI
has been widely studied, the transfer of energy to evanescent waves has not received
as much attention, while our work suggests that it could be an equally efficient
mechanism to dissipate tidal energy near the critical latitude.

2.6 Discussion and conclusions

In this paper, we investigate the physical processes responsible for the dissipation
of internal tides. In particular, we want to determine which physical process, if
any, dominates in setting the latitudinal distribution of tidal dissipation and the
strong enhancement of energy dissipation at the critical latitude f ≈ 0.7× 10−4 s−1

(Figure 2.2). Our results suggest that the physical process behind the dissipation of
internal tides is different equatorward and poleward of the critical latitude.

Equatorward of the critical latitude, triadic resonant instabilities are the most
efficient mechanism to transfer energy from the primary wave, i.e. the internal
tide, to secondary waves. These secondary waves have lower frequencies than the
primary wave, hence smaller vertical scales, and are more prone to dissipate. In
our simulations, this mechanism involves three stages after the generation of the
primary internal tide: generation of secondary waves at various frequencies via
TRI, accumulation of near-inertial waves close to the topography (because of their
small vertical group velocity) and when inertial waves become of the same order
than the primary internal tide, triadic interaction between the primary wave at ω0

and inertial waves at f leads to the generation of waves at ω0 − f . In the ocean
only the last stage is relevant, if we consider that the ocean has reached a steady
state. Internal tides and inertial waves are of the same order, and they interact
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nonlinearly to generate waves at ω0 − f . TRI is found to be a powerful mechanism
to extract tidal energy. The increase of energy dissipation from the equator toward
the critical latitude is due to increased instability growth rates, as well as to the
smaller and smaller vertical scales of the secondary waves (Figure 2.12), hence
more likely to break and dissipate their energy.

Poleward of the critical latitude, the “2f-pump” mechanism described in Young
et al. [2008] seems to be the leading order mechanism by which internal tides lose
energy. In this case, the internal tide transfers energy nonlinearly to evanescent
waves at frequencies ω0/2, which dissipate internal tide energy as efficiently as
PSI equatorward of the critical latitude. In fact, the 2f-pump is an extension of
PSI poleward of the critical latitude when we consider near-inertial waves (f + ε)
for small values of ε. The strong dissipation poleward of the critical latitude has
implications for the possible consumption of AABW. These results suggest that
evanescent waves could play a leading order role in the dissipation of tidal energy in
the deep ocean poleward of the critical latitude, and could contribute significantly
to the diapycnal mixing relevant to the large-scale ocean circulation and to water
masses.
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3
Impact of a Mean Current on the Internal

Tide Energy Dissipation at the Critical
Latitude

This project describes the effect of a mean current on the local dissipation of semi-
diurnal tide (M2). Without a mean current, the dependence of internal tide energy
dissipation on latitude is strong and strongly enhanced at the critical latitude in
the numerical studies. This enhancement is not as strong in oceanic measurements.
Here we explore the possible explanation for this discrepancy between simulations
and observations. One possibility is the presence of mean currents, such as large-
scale oceanic currents or mesoscale eddies, which can perturb the propagation
and the dissipation of the waves.

Bill Watterson, 18 June 1993
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3.1 Introduction

In the abyssal ocean, away from boundaries where exchanges with the atmosphere
or land can occur, the largest buoyancy forcing happens via mixing. In the ocean
interior, observations indicate that diapycnal mixing (mixing across isopycnals) is
largely dominated by the breaking of internal waves [Polzin et al. 1997; Ledwell et al.
2000; Waterhouse et al. 2014]. Internal waves are ubiquitous in the ocean [Garrett
and Munk 1979]. They transport energy, and when they become unstable and break,
they dissipate this energy, thereby contributing to mixing oceanic water masses.
This mixing is strongly inhomogeneous in space and time, but its distribution
remains poorly understood. Uncertainties in the spatial distribution of wave-energy
dissipation and concomitant diapycnal mixing, limit our ability to understand the
ocean global circulation and water mass formation, especially deep waters whose
isopycnals do not outcrop at high latitudes [Talley 2013; Ferrari 2014].

Numerous studies show the impact of inhomogeneous mixing on the abyssal
circulation, from idealized models [Samelson 1998; Nikurashin et al. 2012; Mashayek
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et al. 2015] to more realistic global ocean models [Jayne 2009; Munday et al. 2011;
Melet et al. 2016]. Global climate models do not resolve processes associated with
internal waves, which are therefore parameterized. The consumption of Antarctic
Bottom Water (AABW, dense cold bottom water mass formed in Antarctica) in
the ocean interior is strongly influenced by wave-induced diapycnal mixing [Talley
2013; Melet et al. 2016]. It is primarily influenced by internal tides [Nikurashin and
Ferrari 2013; De Lavergne et al. 2016b;a], which are internal waves generated by
barotropic tidal currents flowing above topography (see Garrett and Kunze [2007]
for a review). Depending on the spatial distribution of internal tides dissipation
and the induced mixing, estimates of AABW upwelling differ by a factor 2 or
more [De Lavergne et al. 2016b].

One major uncertainty is the vertical profile of the internal tides dissipation.
To leading order, its maximum height, which determines the depth of the AABW
return flow to the Southern Ocean along isopycnals [Ferrari 2014], is dictated by
the topographic height [Nikurashin and Ferrari 2013], since dissipation is strongly
localized near topography. Nevertheless, vertical profiles with enhanced dissipation
up to 500 m or 1 km above topography have been found in numerical studies
[Nikurashin and Legg 2011]. Along with the Antarctic latitudinal extent of ice
cover, the height of dissipation dictates exchanges with the atmosphere (carbon
dioxide, oxygen, etc) in the Southern Ocean, and hence largely determines the
carbon storage in the deep ocean [Ferrari et al. 2014]. Another major uncertainty
is the fraction of internal tide energy which dissipates locally near the seafloor
upon generation, and the remaining fraction of internal tides which escape and
are hence available to dissipate remotely. The latter could contribute as low as
1 Sv and as high as 28 Sv of AABW upwelling depending on their energy and
vertical dissipation profile [De Lavergne et al. 2016b]. Understanding internal tides
sources, mechanisms of energy transfers and the resulting mixing, are therefore
crucial steps to understand the global distribution of temperature, salinity and
biogeochemical tracers in the abyssal ocean, and to improve the representation
of wave-induced mixing in climate models.

Mechanisms of internal tides breaking are not well understood, and several
mechanisms have been proposed. These include breaking through convective or
shear instability [Muller and Bühler 2009], scattering by the bottom [Müller and Xu
1992] and the thermocline [Gerkema 2001], critical reflection [Gemmrich and Klymak
2015], scattering by mesoscale features [Rainville and Pinkel 2006], or energy transfer
to smaller scales via nonlinear wave-wave interactions [Polzin 2009; MacKinnon and
Winters 2005]. It is believed that internal tides with small scales (high spatial modes,
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generated by topography with horizontal scales below 10 km or so) are dissipated
near their generation site [St. Laurent and Garrett 2002; Muller and Bühler 2009;
Lefauve et al. 2015], while waves with larger scales (low spatial modes) generated
at large topographic features (e.g. the Hawaiian ridge) can propagate thousands of
kilometers across oceanic basins [Hazewinkel and Winters 2011]. We focus on the
local dissipation of internal tides near their generation site. Of particular interest is
the latitudinal distribution of the local dissipation (high-mode internal tides).

Recent idealized simulations show that the latitudinal distribution of tidal mixing
may be largely determined by an instability known as the Parametric Subharmonic
Instability (PSI). PSI is the class of resonant wave-wave nonlinear interactions
wherein energy is transferred from large scales to smaller scales, and where the
frequencies of the secondary waves are near half the primary frequency [Bouruet-
Aubertot et al. 1995; Staquet and Sommeria 2002; Bourget et al. 2013]. When the
primary waves are internal tides generated at the tidal frequency ω0 (about twice a
day for the largest semi-diurnal lunar tide), PSI yields two secondary waves through
nonlinear interactions with frequency ω0/2. Both idealized numerical studies of
low [MacKinnon and Winters 2005] and high [Nikurashin and Legg 2011] modes
find a large enhancement of the dissipation of internal tides at a critical latitude of
∼29◦ (f = 0.7× 10−4 s−1). This corresponds to the latitude where the frequency
of the secondary waves ω0/2 matches the Coriolis frequency f = 2Ω sinφ, where
Ω denotes the Earth rotation rate and φ latitude. In other words, the secondary
waves at the critical latitude are near-inertial waves. The secondary waves have
frequencies lower than the primary waves, hence smaller scales.

On the other hand, observations only indicate a modest enhancement of dis-
sipation at the critical latitude [Alford et al. 2007; MacKinnon et al. 2013], at
least for low mode internal tides. Indeed these observations were not deep enough
to capture the high modes discussed in Nikurashin and Legg [2011]. In other
words, observations of low modes do not confirm the “catastrophic" dissipation that
numerical studies of low modes [MacKinnon and Winters 2005] and high modes
[Nikurashin and Legg 2011] suggest. For the low mode internal tides propagating
away from their generation site, it was suggested that the time scale of PSI may
be too slow to significantly impact the propagating low-mode wave packet as it
crosses the critical latitude [Hazewinkel and Winters 2011]. But for the high-mode
internal tides whose group velocities are smaller and who are continuously generated
near the seafloor, PSI could significantly impact their local dissipation. This is the
question addressed here, namely what role does PSI play in the local dissipation of
internal tides near their generation site? In particular, do we expect the enhanced
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dissipation at the critical latitude observed in the idealized simulations of Nikurashin
and Legg [2011] under more realistic oceanic conditions?

In order to address these questions, we investigate whether the presence of a
background mean current can impact the enhanced local dissipation at the critical
latitude. Indeed, internal tides do not propagate through a quiescent ocean. Large-
scale currents or mesoscale eddies are ubiquitous in the ocean and can yield currents
with amplitudes comparable to or larger than the barotropic tide [Nikurashin
and Ferrari 2011]. This mean current can interact with internal tides and modify
their propagation and dissipation. In this paper we investigate the impact of a
weak mean current, with an amplitude on the order of the barotropic tide, on
the high-mode internal tides dissipation.

Section 2 describes the numerical model used and the setting. Section 3 presents
results first without a mean current, reproducing the main results of [Nikurashin and
Legg 2011], and second with a mean current whose impact is discussed. In section 4,
we validate the hypothesis of a Doppler effect with idealized simulations of internal
tides generated by simple monochromatic sinusoidal topography. Conclusions and
implications for the large-scale circulation are discussed in section 5.

3.2 Methods

3.2.1 Numerical model

Our goal is to investigate the impact of a mean current on the resonant dissipation
found at the critical latitude in the simulations of Nikurashin and Legg [2011]. We
therefore follow their methodology and use the same numerical model in similar
settings. Namely, we use the Massachussetts Institute of Technology general
circulation model (MITgcm; Marshall et al. [1997]) a high-resolution numerical model
in nonhydrostatic configuration. The nonhydrostatic configuration allows the explicit
representation of processes such as hydraulic jumps or Kelvin-Helmholtz instabilities.
The MITgcm solves the equations of an incompressible fluid under the Boussinesq
approximation. The model is developed with the finite volume techniques to provide
the treatment of irregular geometries like the topography using the MITgcm partial
cells architecture. The bottom boundary is treated with a no-slip condition.

The main characteristics of the domain are synthesized on Fig. 3.1. The domain
is two-dimensional with horizontal periodicity in the x direction. The horizontal
size of the domain is 60 km with a uniform resolution of ∆x = 30 m and the total
vertical extent is 7.5 km. The 4.5 km bottom layer has a uniform resolution of
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Figure 3.1: Schematic of the numerical setup. The barotropic tidal current, with
amplitude Utide and frequency ω0, interacts with a one-dimensional realistic topography
in a stratified (N constant) and rotating (f varying with latitude) fluid. The mean flow
Umc has an amplitude equal to zero below the maximum of topography and reaches an
amplitude αUtide 100 m above the maximum of topography. The parameter α governing
the relative strength of the mean current varies between 0 and 1 in the various simulations.
The gray shaded layer at the top of the domain corresponds to the sponge layer.

∆z = 10 m. The last upper 3 km form the sponge layer where the resolution is
progressively stretched from ∆z = 10 m to ∆z = 70 m. The model time step
is 30 seconds. Although two-dimensional (∂/∂y ≡ 0), we allow for a velocity v
constant in the y direction. As in Nikurashin and Legg [2011], these high-resolution
idealised simulations are designed to allow the resolution of a wide range of spatial
and temporal scales of the turbulence.

We are interested in the local dissipation of internal tides near their generation
site, so we neglect reflection at the ocean surface and assume a semi-infinite
ocean. We therefore add the sponge layer at the top of the domain to absorb
the upward propagating waves which do not dissipate locally, and whose remote
dissipation would require further investigation beyond the scope of this study.
In the sponge layer, buoyancy and momentum are damped with a linear drag
with a time scale of 1 hour.

3.2.2 Settings

In the simulations, the fluid is linearly stratified in the vertical with constant
buoyancy frequency N = 10−3 s−1 representative of the deep ocean stratification.
The Coriolis frequency is varied with varying latitude, to investigate the latitudinal
variation of internal tides dissipation. At the critical latitude 28.8◦, f = 0.7× 10−4

s−1. The horizontal and vertical viscosities and diffusivities are set to νh = νv =
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2 × 10−3 m2 s−1 and κh = κv = 10−4 m2 s−1 (values close to the ones used in
Nikurashin and Legg [2011], who found that the energy dissipation profiles are
robust to reasonable changes of these values). All simulations are initiated from
a state at rest and run for 30 days (a statistically steady state is reached in 5
to 10 days depending on the simulation).

3.2.3 Topography

Following Nikurashin and Legg [2011], we focus on tidal generation in the Brazil
Basin where high levels of mixing have been observed [Polzin et al. 1997; Waterhouse
et al. 2014] and are attributed to internal tides breaking. In the Brazil Basin, the Mid-
Atlantic Ridge (MAR) is almost oriented East-West. Abyssal ridges are anisotropic
and elongated perpendicular to the direction of spreading. For this reason and
in the case of the MAR, the roughest topography is oriented almost South-North
and a 2D numerical model in this direction is a good first approximation for wave
generation. Topographic variability associated with abyssal hills is described by a
one-dimensional topography spectrum obtained by integrating the two-dimensional
spectrum of Goff and Jordan [1989] (see also Goff and Arbic [2010])

H(k, l) = 4πνh2

k0l0

(
k2

k2
0

+ l2

l20
+ 1

)−(ν+1)

(3.1)

along the smooth direction (see Muller and Bühler [2009]; Nikurashin and Legg
[2011] for more details about the one-dimensional topography computation). The
topography used in § 3.3 is designed to have this observed spectrum with parameters
from the Brazil basin: root mean square (rms) height h = 110 m, high wavenumber
slope ν = 0.90, and roll-off wavenumber k0 = 1.0 × 10−3 m−1.

In § 3.4, additional simulations with idealized sinusoidal topography will be
performed. The sinusoidal topography is designed to have similar vertical and
horizontal Froude numbers as the realistic topography, Frv = Utide/Nh ≈ 10−1 and
Frh = Utide/(N2π/k0) ≈ 4× 10−3 respectively, where Utide denotes the amplitude
of the barotropic tide (see next section for more details). This ensures that we
keep the same flow regimes. We note in passing that holding Frh and Frv constant
implies that both the ratio of the wave slope to topography slope ≈ ω/N

h/(2π/k) , and the
tidal excursion U/ω

2π/k are kept constant, since ω and N are the same in all simulations.
Hence, the rms height of the sinusoidal topography is set to h = 110 m , and the
horizontal wavenumber is equal to k0 ≈ 0.8 × 10−3 m−1.
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3.2.4 Tidal and mean currents imposed

The tidal barotropic flow is forced by adding a body force to the momentum
equations, yielding a barotropic semi-diurnal lunar M2 tide U(t) = Utide sin(ω0t)
with amplitude Utide = 2.5 cm s−1 and frequency ω0 = 1.4× 10−4 s−1. In some of
the simulations, a mean current Umc is also imposed. To allow waves to feedback on
the mean current, we do not use relaxation towards an imposed profile, but instead
we impose a geostrophic current by adding a meridional pressure gradient. Our
goal is to investigate the impact of this mean current on the propagation of waves,
not on their generation. We therefore only add the mean current above topography,
and increase the amplitude of Umc from 0 at the maximum height of topography
to αUtide a hundred meters above that height using a smooth arctan profile (see
Appendix C for more details about the few lee waves generated by the mean current
intersecting the highest topographic features and the negligible energy dissipation
associated with those). The parameter α is varied between 0 and 1 in the different
simulations, to assess the impact of the relative amplitude of the mean current on
the internal tides. The vertical profile of the mean current Umc is shown in Fig. 3.1.

As noted above, our goal is to investigate the impact of the mean current on the
internal tides and their energy dissipation to secondary waves via PSI. We therefore
need to make sure that the 100 m vertical shear layer does not impact significantly
the upward-propagating internal tides before they reach the mean current region.
Two possible undesirable effects of the shear layer can destabilize the primary waves
and prevent their upward-propagation: shear instability and/or a critical layer.
Empirically, we will see that the energy dissipation is not enhanced in the shear
layer, implying that the waves can propagate through and past the shear layer.

This is expected theoretically since shear instability is determined by the non-
dimensional Richardson number Ri = N2/(∂u/∂z)2 ≥ 4 for a 100 m thick shear
layer and 0 ≤ α ≤ 1 (strength of the mean current). Hence Ri > 1/4 ensuring
stability in the shear layer. The second possible source of dissipation are critical
levels, where the mean current matches the horizontal phase speed c = ω0/k of the
internal tides [Booker and Bretherton 1967; Maslowe 1986]. At critical levels, the
momentum of the waves is transferred to the mean flow and the waves are attenuated.
The non-dimensional parameter relevant in that case is U/c = Uk/ω0, which is the
so-called tidal excursion [Garrett and Kunze 2007], typically below unity in the
ocean. In our simulations U/c = O(10−1) ensuring stability through the shear layer.
We therefore expect the internal tides generated at the topography to propagate
upward past the shear layer into the mean-current region U ≡ Umc of interest.
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3.3 Results: realistic topography

In this section, we investigate the dissipation of internal tides generated by realistic
topography, without and with mean current. We start by reproducing the peak of
tidal dissipation at the critical latitude found by Nikurashin and Legg [2011] (our
control simulations). In these control simulations, the only forcing is the barotropic
tide. We then add a mean current and investigate whether the enhanced dissipation
at the critical latitude is robust or altered.

3.3.1 Control case: tidal energy transfer without mean
current
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Figure 3.2: Snapshots of the wave zonal velocity (m s−1) from the control simulation
without mean current at the critical latitude (f = 0.7 × 10−4 s−1, α = 0) after 5 days
(middle) and 19 days (bottom) of simulation. The linear solution is also shown for
comparison (top), as well as wave characteristics from the linear theory dispersion relation
(dashed yellow lines).

Fig. 3.2 shows snapshots of the zonal velocity anomaly (deviation from the
zonally averaged flow) at 5 and 19 days in the control simulation at the critical
latitude (f = 0.7× 10−4 s−1, α = 0). In the simulations, internal tides are generated
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at the topography as the barotropic tide oscillates back and forth. As these waves
propagate into the ocean interior, they either break and dissipate, or propagate all
the way to 4.5 km above which they are absorbed in the sponge layer. Internal
tides typically take 5-10 days to reach the sponge layer (depending on their scales,
larger scales propagating faster). This time corresponds to the establishment of
a stationary wave field in the ocean interior, where the energy input from the
barotropic tide is equilibrated by the energy output into wave dissipation in the
ocean interior or wave damping in the sponge layer.

At day 5, the generation of internal tides is in good agreement with lin-
ear theory, shown in the top panel [Bell 1975; Muller and Bühler 2009]. The
dashed yellow lines repeated in all the panels indicate the linear wave slopes
k/m = ±

√
(ω2

0 − f 2)/(N2 − ω2
0). The observed wave field is the multichromatic

superposition of plane waves generated at the various wavelengths of the topography
spectrum. Note that from their dispersion relationship, internal waves propagate
with a slope determined solely by their temporal frequency, ω0 for waves generated
at the fundamental tidal frequency, which clearly dominate the wave field here
(we can also observe some higher harmonics with frequency 2ω0 and accordingly
steeper slopes).

After 19 days, the wave field has largely diverged from linear theory, and
horizontal waves appear. This is consistent with the results of Nikurashin and Legg
[2011] who show that nonlinear interactions spontaneously generate secondary waves
at ω0/2, which is equal to f at the critical latitude. The horizontal waves observed
towards the end of the simulation on Fig. 3.2 are those secondary near-inertial
waves. They largely dominate the wavefield at day 19, consistent with earlier
results in the literature that the transfer of energy from the primary wave at ω0

to secondary waves at ω0/2 is maximum when there is resonance with f = ω0/2,
i.e. at the critical latitude.

The energy dissipation rate diagnosed from the control simulation is shown in
Fig. 3.3 (blue plain curve) and compared to dissipation rate at other latitudes (blue
dashed and dotted curves). The dissipation rate is computed as

ε = νi

〈(
∂uj
∂xi

)(
∂uj
∂xi

)〉
, (3.2)

where ν is viscosity, u is velocity, 〈.〉 denotes zonal and temporal mean and repeated
indices are understood as sums. The dissipation rate is averaged over the last 10
days of simulation. The vertical dissipation profiles obtained at different latitudes
(plain line f = 0.7 × 10−4 s−1, dotted line f = 0.53 × 10−4 s−1 and dashed line



3. Impact of a Mean Current on the Internal Tide Energy Dissipation at the
Critical Latitude 71

10
−11

10
−10

10
−9

10
−8

0

500

1000

1500

2000

Energy dissipation, (W kg−1)

H
e
ig
h
t
a
b
o
v
e
to
p
o
g
r
a
p
h
y
,
(m

)

 

 

f = 0.53e−4
s
−1

f = 0.7e−4
s
−1

f = 0.75e−4
s
−1

f = 0.53e−4
s
−1

f = 0.7e−4
s
−1

f = 0.75e−4
s
−1

Figure 3.3: Profiles of energy dissipation rates averaged zonally and over the last 10
days of the simulations. Blue profiles correspond to simulations with α = 0 (no mean
current) and red profiles to simulations with α = 1 (mean current).

f = 0.75× 10−4 s−1) exhibit 3 distinct regions. The first one extends a few tens of
meters above topography, where, for all latitudes, the energy dissipation is enhanced
up to O(10−8) W.kg−1. This region corresponds to the bottom boundary layer
where energy dissipation is sustained by nonlinear effects such as flow separation
from topography, hydraulic jumps, and direct breaking of the smallest-scale internal
tide O(50) m or less (not shown). The second one is the region above the bottom
boundary layer until the first kilometer above topography. In this region, the energy
dissipation profile at the critical latitude (f = 0.7 × 10−4 s−1) is different from
those obtained at the other latitudes (f = 0.53 × 10−4 s−1 and f = 0.75 × 10−4

s−1), with a one kilometer thick “pocket" of enhanced dissipation. Dissipation is
enhanced up to O(10−9) W.kg−1 at a height of 500 m above topography. This is
consistent with Fig. 3.2: at the critical latitude tidal energy is transferred efficiently
to near-inertial frequencies via PSI, while at the other latitudes the instability is
not as efficient at transferring energy to near-inertial waves. The third and last
region is higher than 1 km above topography. The energy dissipation is close to
the background value of O(10−10) W.kg−1, except at the critical latitude where the
energy dissipation falls to O(10−11) W.kg−1 as in Nikurashin and Legg [2011].

The vertically-integrated energy dissipation over the bottom 50 m, and from
50m to 2 km above topography, are shown for several latitudes in Fig. 3.4 (blue
curves). Consistent with the above results and earlier studies, the bottom energy
dissipation (50 m from topography) is largely insensitive to f , while the energy
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Figure 3.4: (Top) Energy dissipation rate integrated in the bottom 50 m (squares) and
between 50 and 2 km (circles). (Middle) Energy flux at the topography. (Bottom) Energy
dissipation expressed as a fraction of the energy flux at the topography. Blue curves
correspond to simulations without mean current (α = 0) and red curves to simulations
with mean current (α = 1, note that in that case f = 0 is not shown since a mean current
can not be imposed via geostrophy with f = 0, see Methods for details).

dissipation above the bottom boundary layer is strongly dependent on the Coriolis
frequency. It increases from near the equator (f = 0.2 × 10−4 s−1 =⇒ ε ≈ 0.3
mW.m−2) to the critical latitude (f = 0.7 × 10−4 s−1 =⇒ ε ≈ 0.6 mW.m−2)
and decreases rapidly poleward (f = 1 × 10−4 s−1 =⇒ ε ≈ 0.2 mW.m−2). The
energy flux at the topography, defined as the vertical wave energy flux p′w′ averaged
over the surface bounding the topography

EF =
〈∫

p′w′dx dy∫
dx dy

〉
T

(3.3)

where p′ and w′ are pressure and vertical velocity zonal anomalies and 〈.〉T denotes
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the time average between 5th and 15th tidal periods, is shown in the middle
panel in Fig. 3.4. It decreases with latitude (consistent with the linear theory
which predicts EF ∝

√
ω2

0 − f 2 decaying with f [Muller and Bühler 2009]). The
local dissipation fraction, shown in the bottom panel in Fig. 3.4 and defined as
the energy dissipation vertically integrated normalized by the energy flux at the
topography, increases from 10% at the equator (latitude 0) to 40% at the critical
latitude (28.8◦) and decreases to 25-30% at higher latitudes. In other words, our
simulations so far confirm the results from earlier studies that the critical latitude
may serve as a “hotspot" for tidal dissipation.

3.3.2 Impact of a mean current on energy dissipation

We now investigate the impact of a mean current on the radiation and breaking of
internal tides. As noted in the Methods, the mean current increases progressively
above the topography to reach an amplitude of αUtide a hundred meters above
the topography, so that the generation of internal tides is unchanged (see Fig.
3.1 and Appendix for details).

The zonal wave field (deviation from the zonally averaged flow) at the critical
latitude is shown in Fig. 3.5 after 5 (middle) and 19 (bottom) days of simulation.
Comparing Fig. 3.2 and Fig. 3.5, a striking feature is the absence of the near-inertial
horizontal waves that developed at day 19 near the seafloor in Fig. 3.2. Without a
mean current, the linear wave field was largely distorted by nonlinearities, yielding
strong near-inertial waves at day 19. This is not the case in Fig. 3.5 once a mean
current is added, here instead the middle and bottom panels of Fig. 3.5 are similar.
As before, we added the linear wave slopes, note however that the Doppler shift
ω0 − Umck, and hence the wave slope, is scale dependent. For illustration purposes
we picked k = k0, roll-off wavenumber in the spectrum, for the yellow lines, showing
reasonable but not perfect (as expected) agreement with the linear theory (top
panel). Overall, the wave field remains fairly close to the linear wave field (top
panel) even after 19 days. So the mean current seems to impact the nonlinear
transfer of energy to secondary near-inertial waves.

We further quantify this observed reduction of nonlinear secondary wave genera-
tion by looking at energy dissipation profiles in Fig. 3.6. Each profile corresponds
to a simulation where α is fixed. In the boundary layer (tens of meters from
topography), the energy dissipation is not affected by the mean current (this is
unsurprising since the mean current starts above topography). Above the bottom
boundary layer, when α is increased, the enhanced energy dissipation associated
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Figure 3.5: Snapshots of the wave zonal velocity (m s−1) from the simulation with a
mean current (f = 0.7× 10−4 s−1, α = 1) after (middle) 5 days and (bottom) 19 days
of simulation. The linear solution is also shown (top) for comparison, with the slopes
(yellow dashed lines) from linear theory with Doppler shift (computed using a typical
topographic wavenumber close to the topography spectrum wavenumber rolloff k0).

with PSI at the critical latitude progressively disappears. Going back to the vertical
profiles of dissipation Fig. 3.3, we superimpose the new profiles obtained with
a mean current (α = 1, red curves) to the previous profiles (blue curves). The
new profiles at all latitudes almost perfectly match earlier profiles at non-resonant
latitudes. Thus the latitude dependence of energy dissipation seems to disappear
when a mean current is added.

This result is also visible on vertically-integrated energy dissipation rates (Fig.
3.4 - red curve). The energy dissipation in the boundary layer is unchanged when the
mean current is added. But in the ocean interior, the enhancement of dissipation is
weaker and more spread-out, for values of f between 0.6× 10−4 s−1 and 0.85× 10−4

s−1 (latitudes between 20◦ and 35◦). The energy flux at the topography is shown
in the middle panel in Fig. 3.4 and is quite similar to simulations without a mean
current showing that the mean current does not affect the generation of waves. The
local dissipation fraction (bottom panel Fig. 3.4) increases slowly from 10% at the
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Figure 3.6: Profiles of energy dissipation rates averaged zonally and over the last 10
days of the simulations. Each profile corresponds to a simulation with a given α (which
dictates the strength of the mean current) at f = 0.7× 10−4 s−1.

equator to ∼33% at 35◦ latitude and decreases at higher latitudes. Overall, with a
mean current, the energy dissipation fraction is less peaked and closer to a constant
northward of 25◦ latitude. Closer inspection of the local fraction shows that there
are still two weak “resonant" latitudes shifted to ∼25◦ and ∼35◦ latitudes. In order
to understand this behavior and the physical processes responsible for the new
latitudinal dependence of dissipation, we analyze the kinetic energy spectrum.

3.3.3 Kinetic energy spectrum and Doppler effects

Given that the mean current is above the topography and thus does not impact the
generation of waves, the picture that emerges is that the mean current impacts the
propagation of the waves, and more precisely the generation of secondary waves
via PSI. One possible explanation is that the growth rate of this instability for a
wave packet is sensitive to the presence of a background mean velocity [Bourget
et al. 2014]. Indeed, if the time scale of advection of the wave packet is faster than
the growth rate of PSI, the instability may not have time to significantly distort
the wave. Though this may play a role in our simulations, we believe that it is
small. The waves are not spatially localized in the simulations, instead they fill
the whole domain, partly due to the x-periodicity. We note however that in the
ocean where localized topographic features can generate localized wave packets,
this effect could play a role, in particular for the longer low-mode internal tides.
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Instead here, we believe that the main reason for the behavior observed is the
Doppler effect on the secondary waves.

Fig. 3.5 clearly shows the distortion of the radiating waves by the mean
current. The slope of internal tides changes: upstream waves have steeper slopes
and downstream waves have gentle slopes. The angle of the slant of the wave
rays is changed due to Doppler effects. For a wave ∝ ei(kx−ω0t), the frequency in
the frame moving with the fluid becomes ωf = ω0 − Umck. For internal tides,
the left-propagating waves have k < 0 since their horizontal group velocity is
negative, and the right-propagating waves have k > 0 (positive horizontal group
velocity). This implies that the left propagating waves have a higher frequency
ωf = ω0 + Umc|k| hence steeper slopes, while the right propagating waves have
lower frequencies ωf = ω0 − Umc|k| hence gentler slopes. The slopes shown in Fig.
3.5 change consistently with this theoretical prediction.

This can also be seen on the kinetic energy spectrum as a function of horizontal
and vertical wavenumber (Fig. 3.7). The curves from linear theory accounting for
Doppler shift are shown (note that the frequency of Doppler shifted waves depends
of the magnitude of the mean current but also on the horizontal wavenumber. Also
note that their vertical wavenumber changes accordingly to satisfy the dispersion
relation in the frame of the fluid). The agreement with the numerical simulations
suggests that the Doppler effect on the primary internal tides may be important.

These changes in the primary waves imply that the secondary waves generated
in the moving frame via PSI have frequencies (ω0 ± Umc|k|)/2. So the “critical
latitude" at which these frequencies match the Coriolis frequency f , will now be
a function of the wavenumber. This may explain the widening of the latitude
window for which tidal dissipation is enhanced in Fig. 3.4 with a mean current. We
note also the generation of secondary waves at f and ωf − f = ω0 + Umc|k| − f
from the left propagating wave (k < 0) on Fig. 3.7. For the right propagating
wave, those secondary waves are not generated since the frequency ωf − f =
ω0 − Umc|k| − f is below f .

Fig. 3.8 illustrates schematically the Doppler effects on primary and secondary
waves. Without mean current the primary wave at frequency ω0 yields two secondary
waves at frequency ω0/2 = f at the critical latitude. With a mean current, in
the frame of the fluid, the left propagating wave can generate a secondary wave
via PSI at frequency (ω0 + Umc|k|)/2, but the right propagating wave can not
excite secondary waves at the critical latitude since the corresponding frequency
(ω0−Umc|k|)/2 is below f . So Doppler effects limit transfers from the primary wave
and hence reduce the energy loss via PSI at the critical latitude.
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Figure 3.7: Snapshots of the horizontal and vertical wavenumber kinetic energy spectrum
from (top) simulation (f = 0.7×10−4 s−1, α = 0) and (bottom) simulation (f = 0.7×10−4

s−1, α = 1) after (left) 5 days and (right) 19 days of simulation. The linear solution for
the internal tide at fundamental frequency ω0 is shown as black dashed lines (including
Doppler effects with mean current bottom panels). In the bottom panels, the plain lines
represent the Doppler shifted wave at ωf − f and the dotted line the Doppler shifted
wave at ωf/2.

This is also shown on Fig. 3.9 which schematically highlights the wavenumbers
for which PSI can not excite secondary waves (blue regions ⇔ (ω0 − Umck)/2 < f).
The top panel shows the wave frequency in the frame of the fluid as a function
of horizontal wavenumber with a mean current (oblique line ωf = ω0 − Umck).
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Figure 3.8: Diagrams of the Doppler effect. The left diagram represents PSI without
mean current in the frame of the topography. The middle diagram represents PSI with
Doppler effect in the frame of the mean current Umc. The right diagram represents the
frequency of the waves in the frame of topography.

−2 −1 0 1 2

−2 −1 0 1 2

Figure 3.9: Diagram of (top) frequency of the fluid ωf as a function of the horizontal
wavenumber k in case without mean current (horizontal line ωf = ω0) and with mean
current (ωf = ω0 − Umck). Diagram of (bottom) wave energy from linear theory as a
function of the horizontal wavenumber k for the simulation with f = 0.53 × 10−4 and
α = 0. In the case of a mean current, the crosshatching section represents the domain
where primary internal wave can not exist (ω0 − Umck < f ⇔ k > kc). The blue area
corresponds to the domain where PSI can not exist and where waves propagate without
dissipation ((ω0 − Uk)/2 < f ⇔ k > k′c).
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The bottom diagram on Fig. 3.9 represents the energy of the waves from linear
theory, for f = 0.53 × 10−4 s−1. In the presence of a mean current, primary
waves with k > kc can not exist since their frequency is below f (crosshatching
area) and the energy at those horizontal wavenumbers is lost through dissipation,
but these represent a small amount of wave energy. The important point is that
waves with k > k′c (blue area) can not generate secondary waves via PSI and
hence propagate without losing energy.

In order to illustrate this effect more clearly, we turn to a simpler monochromatic
topography. Indeed, the realistic topography used here has a wide range of
horizontal wavenumbers, which makes it difficult to highlight the Doppler effect.
We perform new simulations with a sinusoidal topography, thus containing only
one horizontal wavenumber.

3.4 Results: sinusoidal topography

The internal tides generated by sinusoidal topography h(x) = h0 sin(ktx) at the
critical latitude are shown in Fig. 3.10 without mean current and Fig. 3.11 with
mean current. The topographic height h0 and wavenumber kt are chosen to match
the horizontal and vertical Froude numbers of the realistic topography of the
previous section, so that we remain in the same flow regimes and can expect similar
behavior (see Methods for detail). Two snapshots of the wave zonal velocity at 5
(middle) and 19 (right) days are shown in Figs. 3.10 and 3.11.

Without mean current, PSI yields strong inertial waves which are fully developed
at day 19 (horizontal waves similar to the ones that were observed in Fig 3.2). With
mean current, the strong horizontal inertial waves are absent even at day 19. The
transfer of energy to smaller scales via PSI is largely suppressed, consistent with the
results from the previous section. We note though that the left-propagating waves
still undergo some nonlinear transfer (as in the previous section Fig. 3.7) to lower
frequency waves at f and ωf − f , yielding some waves with lower frequency (smaller
slopes) at day 19. But the right propagating wave is preserved even after 19 days,
consistent with the theoretical prediction that Doppler effects prevent the generation
of secondary waves via PSI for the right propagating wave. Indeed its frequency in
the frame of the fluid is ωf = ω0−Umckt, hence ωf/2 is below f at the critical latitude.

The vertical energy dissipation profiles at different latitudes are shown in Fig.
3.12. As before, blue curves correspond to simulations without a mean current
(α = 0) and red curves correspond to simulations with a mean current (α = 1).
Without a mean current, we recover the critical latitude at f = 0.7 × 10−4 s−1
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Figure 3.10: Snapshots of the wave zonal velocity (m s−1) from the simulation at the
critical latitude with sinusoidal topography (f = 0.7× 10−4 s−1, α = 0), after (middle)
5 days and (bottom) 19 days of simulation. The linear solution is also shown (top) for
comparison, as well as wave characteristics from the linear theory dispersion relation
(dashed yellow lines).

where the energy dissipation is enhanced in the first kilometer above topography.
When a mean current is added, consistent with our earlier results, the profiles
look similar regardless of the latitude.

The vertically-integrated energy dissipation also confirms our earlier results (Fig.
3.13). As before, the energy dissipation in the bottom boundary layer does not
depend on latitude, and without a mean current the dissipation in the ocean interior
peaks at the critical latitude f ≈ 0.7× 10−4 s−1. When a mean current is added,
the maximum dissipation is weaker and more spread-out with latitudes. In fact, we
see two new “critical" latitudes emerging, where the energy dissipation is maximum
(f = 0.55×10−4 s−1 and f = 0.75×10−4 s−1). In this simple case of monochromatic
topography the interpretation of the results is clearer. Without mean current, the
transfer of energy from the primary wave at ω0 to secondary waves with frequency
ω0/2 is maximum when f = ω0/2, i.e. when the frequency of the secondary waves
resonates with the Coriolis frequency. With mean current, the resonance occurs at
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Figure 3.11: Snapshots of the wave zonal velocity (m s−1) from the simulation at the
critical latitude with sinusoidal topography with mean current (f = 0.7 × 10−4 s−1,
α = 1), after (middle) 5 days and (bottom) 19 days of simulation. The Doppler-shifted
linear solution is also shown (top) for comparison, with the slopes (yellow dashed lines)
from linear theory with Doppler shift. The coral dashed lines show the left-propagating
secondary waves at ωf − f .

two latitudes: f = (ω0 − Umckt)/2, and f = (ω0 + Umckt)/2. Those two “critical"
latitudes hence correspond to frequencies of secondary waves with a Doppler shift.

Closer inspection shows that those two maxima are slightly asymmetric, with
somewhat stronger dissipation at the higher latitude. Fig. 3.14 shows wavenumber
spectra of the kinetic energy for f = 0.53× 10−4 s−1 and f = 0.75× 10−4 s−1, at
5 (left) and 19 (right) days of simulation. At the beginning of the simulation, for
both latitudes, spectra have energy localized at the unique topographic horizontal
wavenumber kt and its harmonics. After 19 days, there are new horizontal
wavenumbers generated via non-linearities. We can see again that there is a
slight asymmetry between the two resonant latitudes. There is more energy at these
new horizontal wavenumbers at f = 0.75× 10−4 s−1 suggesting that the nonlinear
transfer seems to be more vigorous at this latitude (consistent with the dissipation
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Figure 3.12: Profiles of energy dissipation rates averaged zonally and over the last 10
days from simulations with sinusoidal topography. Blue profiles correspond to simulations
with α = 0 and red profiles to simulations with α = 1. The enhanced dissipation at the
critical latitude without mean current disappears when a current is added, consistent
with the earlier results for realistic topography.

in Fig. 3.13). We interpret this asymmetry as resulting from the slower group
velocities of the waves at f = 0.75× 10−4 s−1, allowing non linearities to develop
and to transfer a larger amount of energy to smaller scales.

3.5 Conclusions and discussion

In this paper, we investigate the latitudinal dependence of the local dissipation of
internal tides, near their generation site at the seafloor. We recover earlier results
that were obtained in the idealized case of internal tides propagating in a quiescent
ocean. In that case, without a mean current, the local dissipation of internal tides
generated at rough topography is strongly enhanced at a critical latitude. The latter
is the latitude where inertial waves at f resonate with the secondary waves generated
by PSI at ω0/2. When a mean current is added, though weak (same order as the
barotropic tide: a few cm s−1), this behavior drastically changes. The dissipation
peak at the critical latitude disappears and the local dissipation fraction of internal
tides is closer to a constant, with two weak peaks at about 25◦ and 35◦ latitude.

Despite its simplicity, the idealized case of sinusoidal topography reproduces the
main features of the internal tides generated by realistic multichromatic topography.
This helps shed some light into the processes determining the latitudinal distribution
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Figure 3.13: Energy dissipation rate integrated in the bottom 50 m (square) and between
50 and 2 km (circle) with sinusoidal topography. Blue curves correspond to simulations
with no Umc and red curves to simulations with Umc and α = 1. We recover the results
of the previous section with realistic topography, namely the dissipation enhancement
at the critical latitude disappears when a mean current is added, and the dissipation is
closer to a constant, with two new weaker peaks at Doppler shifted latitudes.

of wave instability and dissipation. This sensitivity to a mean current can be
understood by accounting for the Doppler shift of the primary internal tides as
they propagate through the mean current. Different scales of the waves are shifted
with different magnitudes, yielding a wide range of critical latitudes for the shifted
primary frequency. In other words, the peak of dissipation at the critical latitude
is not robust to the presence of a mean current.

This suggests that under realistic conditions, where waves are unlikely to
propagate through a quiescent ocean, the local dissipation of the internal tide is
not a strong function of latitude. The reduced dissipation fraction near the critical
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Figure 3.14: Snapshots of the horizontal and vertical wavenumber spectrum from (top)
simulation (f = 0.53× 10−4 s−1, α = 1) and (bottom) simulation (f = 0.75× 10−4 s−1,
α = 1) after (left) 5 days and (right) 19 days of simulation with sinusoidal topography.

latitude implies that more wave energy than previously thought may propagate
away from topography, and hence may be available to dissipate in remote locations.
A recent observational study also highlights the impact of Doppler effects on the
propagation of near-inertial waves, which can propagate poleward beyond their
critical latitude [Xie et al. 2016].
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This has implications for the transformation of deep water masses and the
abyssal circulation. Recent estimates of internal waves’ impact on the overturning
circulation point out the large uncertainty associated with remote dissipation of tides
which do not dissipate locally near their generation site. Depending on where this
dissipation and the concomitant mixing occur, in particular its vertical structure,
such mixing could drive 1 to 28 Sv of AABW upwelling. More work is desirable
to help better constrain estimates of remote internal tide energy propagation and
dissipation.
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4
Influence of upstream perturbations on
upstream circulation of a hydraulically

controlled sill

Long waves, with larger scales than waves studied in the two previous chapters, can
also modify currents. In this last study, we investigate the effect of a hydraulically
controlled sill on the upstream circulation submitted to an inflow perturbation
in the upstream basin. In this configuration, the sill is the only location for the
upstream and downstream basin to communicate and to exchange water.

Bill Watterson, 4 July 1988
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4.1 Introduction

The Atlantic Ocean is separated from the Nordic and Arctic Seas by the Greenland-
Iceland-Scotland Ridge (GISR, Fig. 4.1). The surface waters from the Atlantic
flow into the Nordic Seas where they lose buoyancy and form a dense water mass
through deep convection and other processes [Hattermann et al. 2016]. The dense
water spills over the shallow sills in the various channels that cut through the
GISR, and mix with lighter water masses downstream to form North Atlantic Deep
Water (NADW), which feeds the lower limb of the Atlantic Meridional Overturning
Circulation (AMOC) [Dickson and Brown 1994][Hansen and Østerhus 2007]. The
overflow volume of dense water, Denmark Strait Overflow Water (DSOW, potential
density σθ larger than 27.8 kg.m−3 [Dickson and Brown 1994]) over the GISR is
equal to 6 Sv (1 Sv = 106 m3.s−1) and distributed between the Denmark Strait
(sill depth 620 m, 3 Sv), the Faroe Bank Channel (sill depth 840 m, 2 Sv) and the
Iceland Faroe Ridge (sill depth 420 m,1 Sv) [Hansen et al. 2008].

DS

FBC

Figure 4.1: Bathymetry of the Nordic Seas from [Yang and Pratt 2014]. Abbreviations
correspond to, DS: Denmark Strait, EGC: East Greenland Current, NIJ: North Icelandic
Jet, s-EGC: separated EGC and FBC: Faroe Bank Channel.
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From the Nordic Seas side of the ridge, three currents approach the Denmark
Strait: the East Greenland Current (EGC), which follows the East Greenland
coastline and is the main conduit for Arctic-origin fresh water flowing into the
subpolar gyre on the East side of Greenland [Mauritzen 1996]; the North Icelandic
Jet (NIJ), which approaches Denmark Strait along the Iceland shelf break [Våge
et al. 2013] [Harden et al. 2016]; and the separated-EGC (sEGC), which branches
off the EGC upstream of Denmark Strait and joins the NIJ close to the Denmark
Strait [Våge et al. 2013] [Harden et al. 2016]. The Denmark Strait Overflow Water
(DSOW) is composed by these three currents. Its volume transport varies on short
timescales of a few days [Mastropole et al. 2016] [Von Appen et al. 2016] but does
not display seasonal variability or a long-term trend [Dickson and Brown 1994]
[Jónsson 1999] [Jochumsen et al. 2012].

The overflow in the Denmark Strait is hydraulically controlled [Whitehead et al.
1974] [Nikolopoulos et al. 2003] [Girton et al. 2006], which means that the flow
upstream of the sill is dominated by its kinetic energy (river regime) and downstream
of the sill by its potential energy (torrential regime). The DSOW can be seen as
a marine waterfall. The particularity of a hydraulically controlled sill is that a
perturbation in the supply of dense water in the upstream (for example Nordic
Seas) basin will communicate via a long ocean waves reflected at the sill and modify
the transport of the overflow water (here DSOW) [Pratt and Whitehead 2008].

We propose to study the effect of long waves (Kelvin and topographic Rossby
waves) on a hydraulically controlled overflow in a 1.5-layer reduced gravity model.
The purpose of this study is to understand the upstream influence of a hydraulically
controlling sill in a case where a peninsula or an island geometry complicates the
path taken by an upstream disturbance. The model set up is described in section
2, followed by the description of a simulation with a dam break. In section 3, we
present simulation results from a case with a dam break and an inflow/outflow as
initial conditions and the impact of a perturbation in the inflow and its response.

4.2 Methods

The numerical model is a 1.5 layer reduced gravity model. It is assumed that the
overlying fluid layer is very thick compared to the bottom layer and motionless.
The horizontal velocity (u, v) and the layer thickness H of the thin, dynamically
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Figure 4.2: (a) Bathymetry of the domain and (b) sketch of the lateral view of the
domain at the initial state.

active bottom layer are governed by the shallow water equations:

∂tu+ u · ∇u− fv = −g′∂xH + ν∇2u, (4.1)

∂tv + u · ∇v + fu = −g′∂yH + ν∇2v, (4.2)

∂tH +∇(uH) = 0, (4.3)

where f is the Coriolis frequency, g′ = g∆ρ/ρ0 is the reduced gravity, ν = 5× 10−4

m2s−1 is the horizontal viscosity and ∇2 the horizontal Laplacian. The control
simulation latitude is 66◦N. At the initial state, the fluid in the bottom layer is
at rest and the interface is flat. In the initial layer thickness is equal to H0(x, y),
which is larger in the upstream basin and varies according to the bathymetry. In
view of the presence of ∇2u, we need to specify a lateral boundary condition (no
stress, free slip and no-normal flow). In the absence of sources and sinks, a steady
state is reached, and a perturbation corresponding to an inflow/outflow through a
lateral opening boundary is added. The horizontal resolution is the same in the x−
(zonal) and y− (meridional) directions and equals to 5 km. The discretization of
the model is based on the Arakawa C-grid and the model domain spans 1155 km
zonally and 2505 km meridionally.

Figure 4.2 shows the bathymetry and the initial state of the model. The upstream
and downstream basins have a flat bottom, except along the boundaries where there
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is a slope. The depth of the Denmark Strait is equal to 620 m and the depth of the
Iceland-Scotland Ridge is a bit shallower with a depth of 520 m. The initial state
corresponds to a situation where the lower layer depth is more than twice large as in
the upstream basin, and separated from the downstream basin by virtual dams in
the middle of the Denmark Strait and the Iceland-Scotland Ridge. The maximum
thickness in the upstream basin is equal to 2500 m and 1000 m in the downstream
basin. The interface is set to zero in the upstream basin. The model allows
grounding but still maintains a thin (20 cm) sheet of lower-layer fluid throughout.

4.3 Preliminary numerical results: dam break

We first consider the case of simulations with only a dam break in a channel.
What we call a "dam break" is an initialization with a step in the interface depth
between the upstream and the downstream basin, in the middle of the channel.
The upstream basin has a maximum lower layer thickness of 2500 meters and the
downstream basin of 1000 meters. The reference simulation has a latitude of 66◦, a
∆ρ = ρ2 − ρ1 = 0.3 kg m−3, a sill depth equal to 1880 m and a slope of 0.0833.

4.3.1 Circulation in the basins
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Figure 4.3: Snapshot of velocity field (arrows) at different times after the dam breaks.
Colors represent the bathymetry.

A snapshot of the circulation induced by the dam break is shown in Fig. 4.3
(blue arrows) at 1 day, 20 days and 500 days. The dam break generates a current
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from the channel which propagates along the eastern boundary in the upstream
basin and the western boundary in the downstream basin. The generated circulation
in the upstream basin is thus anti-cyclonic, while in the downstream basin the
circulation is cyclonic. The flow in both basins is maximum over the slope.
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Figure 4.4: Snapshot of the layer thickness anomaly (variations around the zero line on
figure 4.2b, in meters) at different times after the dam breaks. The color-scale has been
saturated to highlight the propagation of the wave in the upstream basin.

Fig. 4.4 shows the layer thickness anomaly (variations around the zero line on
figure 4.2b) for 3 snapshots in the simulation. The dam break generates a wave
in the channel which propagates in the cyclonic direction in both basins. The
wave shows up as a decrease in the layer thickness along the upstream boundary
and an increase along the downstream boundary (not shown on the figure due to
the saturated colorbar used to highlight the decreased layer thickness). 500 days
after the dam break, the surplus of dense water in the channel has flown into the
downstream basin and the effect of the rotation constrains the lower-layer flow
to the western flank of the channel (Fig. 4.4c).

4.3.2 Hydraulic control in the channel and transport

One way to know if the flow in a channel is hydraulically controlled is to calculate
the generalized Froude number (Stern’s criterion [Stern 1974])

Fr =
∫−w/2
w/2

1
g′H2dx∫−w/2

w/2
1

Hv2dx
, (4.4)
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where w is the width where the flow is unidirectional, g′ the reduced gravity,
H the layer thickness and v the velocity in the channel. If Fr < 1 the flow is
subcritical upstream of the sill and the kinetic energy is smaller, and if Fr > 1, the
flow is supercritical downstream of the sill and the kinetic is larger.
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Figure 4.5: Time series of (a) the maximum generalized Froude number in the channel
and (b) transport. The generalized Froude number achieves 12 at the begin.

Figure 4.5a shows the time series of the generalized Froude number. We can
notice that the maximum Froude number in steady state is less than 1 meaning
that the flow in the channel is subcritical. The generalized Froude number may
not be applicable here, because in our simulations, once the flow achieves a steady
state, it is separated (grounded interface - see figure 4.4) and it is unsure that the
Stern’s criterion is still valid. Nevertheless, the maximum local Froude number is
greater than 1 (not shown) in the channel, a necessary condition for supercritical
channel flow. Moreover, with the configuration of the simulations with a layer
depth lower than the sill in the downstream basin, we can thus conclude with some
confidence that the flow in the channel is hydraulically controlled, though further
investigation is desired to determine this with certainty. The associated transport
is shown on figure 4.5b. During the first days, the transport from the upstream
channel toward the downstream channel is very strong but quickly decreases, and
then increases slowly. After 300 days, the transport reaches a constant value around
2 Sv meaning that the simulation achieves its steady state.

4.3.3 Waves induced by the dam break

We saw previously in figure 4.4 that the dam break generates a cyclonic wave
propagating on the slope and associated with a decrease in the layer thickness.
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Figure 4.6 shows the phase speed of the observed wave for different simulations with
a given latitude and ∆ρ. We add the theoretical phase speed of the topographic
Rossby wave (c = R2

bc × βtopog, where Rbc = g′H/f 2 is the baroclinic Rossby radius
of deformation and βtopog is the topographic beta) and the Kelvin waves (c =

√
g′H

- H = 833 m is the layer thickness for which the phase speed has been calculated
in the simulation) for comparison. Though there is some uncertainty in figure 4.6,
the phase speed of the waves in the simulations are consistent with that of Kelvin
waves.
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Figure 4.6: Wave phase speed for different simulation (∗) as a function of (a) ∆ρ and
(b) latitude. Solid lines correspond to the theoretical phase speed of the topographic
Rossby wave and dashed lines to the theoretical phase speed of the Kelvin wave in the
layer thickness equal to 833 m. Colors are given in the legend.

4.3.4 Influence of parameters (∆ρ, latitude, sill depth and
slope) on Froude number and transport

We evaluate the generalized Froude number for different simulations varying the
latitude, ∆ρ, sill depth and the slope in the basins (Fig. 4.7). The Froude number
number generally decreases with latitude, and increases with ∆ρ and with sill depth
(Fig. 4.7 left and middle). The evolution of the Froude number with sill depth (low
sill depth equals to high layer thickness) is easily understandable (Fr ∼ v2/(g′H)).
For the evolution with ∆ρ and the latitude, we link the increase of the Froude
number with the geostrophic velocity v = g′∂xH/f . In fact, when f increases, v
decreases and thus the Froude number decreases. The same applies for ∆ρ which
appears in g′, v increases with ∆ρ and so the Froude number increases. The last
parameter is the slope of the basins and in this case, the Froude number seems to
increase with the slope which is in good agreement with the geostrophic flow.
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Figure 4.7: Maximum generalized Froude number (Stern’s criterion) in the channel,
averaged over the last 100 days of simulation as a function of (a) latitude and ∆ρ, (b) sill
depth and (c) slope of the basins.
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Figure 4.8: Time series of transport at the entrance of the channel averaged over the
last 100 days at 66◦N. Colors correspond to various values of ∆ρ: blue - ∆ρ = 0.1, orange
- ∆ρ = 0.3, yellow - ∆ρ = 0.5 and purple - ∆ρ = 0.7.

Figure 4.8 shows time series of the transport through the channel at 66◦N
for different ∆ρ. All the simulations reach a steady state after around 200 days.
The transport increases with ∆ρ and with the slope and decreases with latitude
(Fig. 4.9a and c) which is again in good agreement with the geostrophic velocity.
The transport decreases with sill depth (Fig. 4.9b) which implies a thinner layer
thickness and so a weaker transport.

4.4 Dam break simulation with a northern inflow

In this section, we look at the flow dynamics in simulations initialized with a dam
break in the middle of the channel and a constant inflow of 1.5 Sv through a channel
in the northern boundary of the upstream basin. We run simulations during 500 days.
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Figure 4.9: Transport in the channel averaged over the last 100 days of simulation as a
function of (a) latitude and ∆ρ, (b) sill depth and (c) slope of the basins.
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Figure 4.10: Snapshots of velocity field (arrows) at different times after the dam breaks.
Colors represent the bathymetry. The latitude is 66◦, ∆ρ = 0.3 kg m−3, the sill depth is
1880 m and the slope is 0.0833.

Figure 4.10 shows snapshots of the velocity field at day 1, 20 and 500. The
circulation in the upstream basin is anti-cyclonic and cyclonic in the downstream
basin. The dam break generates waves that propagate with the coast on their
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right-hand side in both basins. The inflow is directed southward through the channel.
The outflow channel prevents propagation of the signal from the channel around
the downstream basin and back into the upstream basin.

The anti-cyclonic circulation in the upstream basin follows from the potential
vorticity budget. Following [Pratt and Llewellyn Smith 1997], [Yang and Price
2000] and [Yang and Price 2007], and considering w = w(z), f = f0 + βy and after
derivation of the model equations (ζ = ∂x(4.2) − ∂y(4.1))

dt(ζ) + (ζ + f)∇.u+ βv = ∇× (ν∇4u), (4.5)

where ζ is the relative vorticity and d is the Lagrangian derivative. Consid-
ering dt = βv

dt(ζ + f) + (ζ + f)∇.u = ∇× (ν∇4u). (4.6)

Using the continuity equation and multiplying by 1/H

dt
(
ζ + f

H

)
+ (ζ + f)

H
∂zw = 1

H
∇× (ν∇4u). (4.7)

Now in steady state and considering only the vertical component

u.∇
(
ζ + f

H

)
−
(
ζ + f

H

)
∂zw = 1

H
∇× (ν∇4u), (4.8)

where the first term is the vorticity advection, the second term is vortex stretching
and last term is the friction. q = ζ+f

H
is the potential vorticity. In that case,

the vertical component in the potential vorticity budget is small compare to
the relative vorticity ζ

∇.
(
Uh

(
ζ + f

H

))
= ∇× (ν∇4u). (4.9)

After integration over the whole domain and using the Stokes theorem

∮
C

(Uh.n̂)
(
ζ + f

H

)
dS =

∫ ∫
A
Dpdxdy, (4.10)

where Uh = H(u, v) and Dp is the curl of the friction. The left hand side in the
equation corresponds to the lateral potential vorticity advection and the right hand
side to the frictional torque. Considering that the relative vorticity ζ is smaller
than the planetary vorticity f , the deviation of the layer thickness from the initial
value is small, and the friction is approximated as a Rayleigh friction
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N∑
i=1

Qifi
H0i

≈ −λ
∮
C

(u.l)dS, (4.11)

where u is the tangential velocity along the boundary, Qi is the volume transport
out of the basin across the sill, λ the Rayleigh friction coefficient and l the unit
tangential vector.

In our simulations, the inflow channel in the upstream basin is deeper than the
channel between the two basins, which induces a positive potential vorticity anomaly
and thus an anti-cyclonic circulation.

4.4.2 Froude number: hydraulically controlled?

The maximum Froude number based on Stern’s criterion (Eq. 4.4) and averaged
over the last 100 days of simulation varies around a value of 1 in the simulations
(Fig. 4.11). We can not conclude based on this criterion alone whether the channel
flow is hydraulically controlled or not, as the applicability of this criterion in our
case is unclear as mentioned earlier. This is due to the presence of a separated
flow but in view of the domain configuration and the value of the maximum local
Froude number, we are hydraulically controlled. Maximum generalized Froude
number increases with ∆ρ and decreases with latitude (Fig. 4.11a). It increases
with sill depth and with slope. An increase of the Froude number with sill depth
(low sill depth equals to high layer thickness) is coherent (Fr ∼ v2/(g′H), where v
is the meridional velocity, g′ the gravity reduced and H the layer thickness). Now
if the geostrophic velocity v decreases with latitude, so does the Froude number.
The same reasoning applies to ∆ρ and the slope, but in that case v increases with
larger density difference or with the slope.

4.4.3 Transport through the channel

The transport in the channel is calculated at the entrance. We can see on figure 4.12
that the steady state in the simulations is achieved in 200 days and the transport is
greater than without the inflow case (dashed curve). The transport is directed from
the upstream basin toward the downstream basin (negative transport associated
with negative meridional velocity - by convention, meridional velocity is positive
northward) and it increases with ∆ρ. In fact, the geostrophic velocity, v ∼ g′/f∂xH

increases with ∆ρ.
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Figure 4.11: Maximum generalized Froude number (Stern’s criterion) in the channel,
averaged over the last 100 days of simulation as a function of (a) latitude and ∆ρ, (b) sill
depth and (c) slope of the basins.
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Figure 4.12: Time series of transport at the entrance of the channel averaged over the
last 100 days at 66◦N with ∆ρ = 0.3. Dashed curve corresponds to the case without an
inflow and plain curve to the case with an inflow.

As seen previously, the transport increases with ∆ρ (Fig. 4.13a). It also decreases

with latitude due to a decrease in the velocity v (geostrophic flow). The transport

increases with sill depth or more exactly decreases with layer thickness (Fig. 4.13b).

Furthermore, the transport decreases with the slope (Fig. 4.13c).

After almost 200 days, the transport seems to be constant but the magnitude

can be greater than the inflow transport showing that the flow has not reached

an equilibrium.
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Figure 4.13: Transport in the channel averaged over the last 100 days of simulation as
a function of (a) latitude and ∆ρ, (b) sill depth and (c) slope of the basins.
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Figure 4.14: Snapshots of the layer thickness anomaly (variations around the zero line
on figure 4.2b, in meters) at different times after the dam breaks. The latitude is 66◦,
∆ρ = 0.3 kg m−3, the sill depth is 1880 m and the slope is 0.0833. The color-scale has
been saturated to highlight the propagation of the wave in the upstream basin.

4.4.4 Waves induced by the inflow and the dam break

Snapshots of the layer thickness anomaly (Fig. 4.14) show two propagative waves
in the upstream basin: one induced by the inflow and characterized by a positive
anomaly (yellow) and a second one induced by the dam break and characterized
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by a negative anomaly (cyan). Both are cyclonic waves and propagate along
the boundaries.

We track these waves to obtain their phase velocity and thus to identify them.
The figure 4.15 shows the phase speed of the dam break and the inflow waves in
different simulation (∗) and also the theoretical phase speed of the topographic
Rossby wave (solid lines) for diverse latitudes (colors) and of the Kelvin wave (black
dashed lines) for a layer thickness equals to 833 m.
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Figure 4.15: Wave phase speed for different simulation (∗) as a function of ∆ρ for (a)
the dam break wave and (b) the inflow wave. Solid lines correspond to the theoretical
phase speed of the topographic Rossby wave and dashed lines to the theoretical phase
speed of the Kelvin wave for a layer thickness equals to 833 m. Colors are given in the
legend.

The phase speed of the dam break wave (Fig. 4.15a) is closer to the Kelvin wave
phase speed for the same parameters than in the simulations (∆ρ and initial layer
thickness). The layer thickness of 833 m corresponds to the initial layer thickness
where we track the velocity of the wave. The phase speed of the inflow wave (Fig.
4.15b) is in good agreement with the theoretical phase speed of the Kelvin wave. We
can conclude that the dam break and the inflow both generate a cyclonic Kelvin wave.

4.5 Perturbation of the northern inflow

After reaching the steady state, we increase or decrease the inflow transport (initially
equals to 1.5 Sv) during a period of 5 days and after that we come back to the
initial transport. This perturbation in the inflow transport generates a wave which
propagates along the boundary toward the channel.

It is possible to track the propagation of the wave around the upstream basin
looking at the layer thickness variations (Fig. 4.16). The wave is cyclonic, reaches
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Figure 4.16: Time series of the layer thickness at different locations of the upstream
basin. The localization of the time series is summarized on the left figure on the basins
bathymetry. After reaching the steady state at 500 days, we decrease the inflow transport
to 0.5 Sv (blue) or 1 Sv (orange), or we increase the inflow transport to 3 Sv (yellow) or 5
Sv (violet).

the channel in 29 days and takes 41 days to travel around the upstream basin. A
decrease in the inflow transport generates a wave with a negative layer thickness
anomaly and an increase a positive layer thickness anomaly. We can also notice the
decrease of magnitude of the layer thickness displacement after each passage.

If we look at the time evolution of the layer thickness in the channel (Fig. 4.17),
we can see that the wave have an effect in the channel. In fact, a part of the wave is
reflected and another part is refracted on the channel. We can notice that the wave
has only a effect on the western wall of the channel because the effect of the rotation
constrains the lower layer flow to the western flank of the channel (see Fig. 4.14).

As the wave modifies the layer thickness, it also changes the transport through
the channel (Fig. 4.18), increasing or decreasing the transport, according to the
perturbation, at each passage from the upstream basin toward the downstream basin.

4.6 Discussion and conclusion

The numerical simulations without and with an inflow/outflow have a anti-cyclonic
circulation in the thin bottom layer due to the potential vorticity balance in the
basins. Unfortunately, Stern’s criterion does not allow to conclude on the fact that
the flow in the channel is hydraulically controlled, due to the presence of separated
flows in our simulations. Based on the local Froude number and on the configuration
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Figure 4.17: Time series of the layer thickness on each wall of the channel. The
localization of the time series is summarized on the right figure on the basins bathymetry.
After reaching the steady state at 500 days, we decrease the inflow transport to 0.5 Sv
(blue) or 1 Sv (orange), or we increase the inflow transport to 3 Sv (yellow) or 5 Sv
(violet).
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Figure 4.18: Time series of the difference between the perturb transport and the
transport with a constant inflow at 1.5 Sv through the channel. After reaching the steady
state at 500 days, we decrease the inflow transport to 0.5 Sv (blue) or 1 Sv (orange), or
we increase the inflow transport to 3 Sv (yellow) or 5 Sv (violet).

of the domain, we can conclude with some confidence though that the flow is
hydraulically controlled but more investigation is necessary to find a robust criterion.

The dam break in the channel and the initialization of the inflow generate two
cyclonic waves which propagate in the upstream basin with the coast on their right.
After comparison with the theoretical formula of topographic Rossby and Kelvin
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waves, the simulated waves are found to be close to Kelvin waves. These waves turn
around cyclonically in the upstream basin until dissipation. A perturbation in the
inflow, generates a new Kelvin wave which propagates all around the upstream basin.
Nevertheless, a part of the Kelvin wave is refracted in the channel and propagates
downstream. This interaction with the sill modifies the transport periodically,
with a period equal to the time needed for the Kelvin wave to go around the
upstream basin. In fact, the Kelvin wave goes around the upstream basin and at
each passage it interacts with the sill and a part of the Kelvin wave is transmitted
to the downstream basin modifying less and less the transport through the channel.

These results suggest that the interaction between a wave and a hydraulically
controlled sill modulates the transport of water from a basin to another. The
presence of long-waves in the Nordic Seas could explain the variability of the
transport of Denmark Strait Overflow Water observed at the Denmark Strait.
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5.1 Conclusions on the projects

The oceanic circulation involves various time and spatial scales making its modeling
challenging. In fact, high resolution in time and space is necessary for small and
fast phenomena like internal waves which need small scales in the topography. On
the other hand, the ocean is so vast that for global modeling, large domains are
necessary, thus the spatial and temporal resolutions need to be degraded due to the
high computational cost. It is for this reason that large ocean modeling studies are
completed by high resolution modeling to understand the small-scales phenomena
and hence parametrize them in the large-scale models.

With this goal in mind, we studied the spatial distribution of tidal dissipation,
and the physical processes responsible for the internal tide instability and dissipation.
The mixing induced by tidal dissipation is known to be key in large-scale models.
More precisely, we demonstrated that the latitudinal dependence of the tidal energy
dissipation is sensitivity to the presence of a mean current. This sensitivity is
induced by a change in the frequency of the waves by Doppler effect. Different
scales of the waves are shifted with different magnitude due to the multichromatic
topography, yielding a wide range of critical latitudes and hence a smoother
latitudinal dependence. This result implies that near the critical latitude, the
local energy dissipation is lower than expected from idealized studies neglecting
background mean flows. Therefore, more waves escape and propagate away from the
topography. Those waves carry energy away from the topography and can dissipate
their energy in remote locations, participating in the non-local consumption of
bottom water.

In this thesis, we also clarified the physical process responsible for the instability
and dissipation of internal tide near topography, and its sensitivity to latitude in
the absence of mean flow. We highlighted the key role of triad resonant instabilities
involving near-inertial waves and waves at ω0 − f . The latter triad extracts energy
from the internal tide equatorward of the critical latitude. The strong increase
in energy dissipation toward the critical latitude is due to smaller and smaller
vertical scales of the secondary waves which easily locally dissipate. Poleward of the
critical latitude, significant dissipation persists for a few degrees of latitude latitude,
though the waves at ω0 − f fall outside of the internal wave frequency range. This
dissipation is therefore not from triad interactions, but instead is induced by energy
transfers to evanescent waves which seems to be as efficient as the triadic resonant
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instability.

At larger scales, long waves also play a role in the oceanic circulation. Their
generation is associated with a disturbance in the system, such as the inflow transport
which is the case studied here. In the configuration of a hydraulically controlled
sill, we find that the upstream flow is controlled by the sill. This implies that a
long wave generated by a disturbance interacts with the sill modifying the volume
of water exported in the downstream basin. In our idealized model, the inflow
perturbation generates Kelvin and topographic waves which propagate around the
upstream basin. At each turn, they interact with the sill modifying temporarily the
transport through the channel. This change in the upstream outflow is associated
with the partial refraction of the wave at the sill, the remaining fraction of the
wave being reflected and continuing to propagate in the upstream basin. More
investigation is needed to find the valid Froude number for this basin configuration,
to validate the hydraulic control of the sill. Additionally, to be closer to the Nordic
seas configuration, we will investigate the propagation of the waves around an island
and how it will modify the upstream circulation.

5.2 Future work

Following the idea of energy dissipation by internal waves, we are currently working
on a new project on the dissipation of mesoscale eddy energy by interaction with
rough topography. As in internal tides dissipation, the interaction of the eddy
with the topography generates internal waves and more precisely lee waves. The
generation of lee waves seems to be an efficient way to dissipate the energy of
the eddy with 80 % of the total volume-integrated energy dissipated below 1 km
depth in high-resolution simulations of the Southern Ocean [Nikurashin et al. 2012].
To explain the eddy energy dissipation and energy transfer to waves, we will run
high-resolution 3D numerical simulations.

The planned configuration of the simulations, presented in figure 5.1, is one
barotropic eddy sitting on rough topography or on a flat bottom for comparison.
The eddy will be in equilibrium with the temperature field. The diameter of the
eddy will be on the order of 30 km. The generation of lee waves by an eddy speed
of ∼ 5 cm s−1 imposes horizontal topography scales of the order of 300 m to 1500 m
(f < Uk < N , where f is the Coriolis frequency, U the eddy speed, k the horizontal
wavenumber of the topography and N the stratification). A configuration with a
horizontal resolution of 200 m and a vertical resolution of 20 m can be reached.
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The slope of the waves imposes a vertical depth of 3 km so that the wave can
cross the eddy. In order to prevent the interaction between the eddy and the
waves radiating outside the domain, lateral sponge layers will be added. All these
constraints lead to a domain of 100 km in both horizontal directions and 3 km in
the vertical. The purpose of this study is to understand the energy transfer near
the topography, so we consider a constant stratification representative of the deep
ocean, with a constant stratification with N = 10−3 s−1.
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Figure 5.1: Sketch of the numerical setup. The eddy current interacts with a Gaussian
topography in a linearly stratified (N constant) and rotating (f constant) fluid. The light
gray areas represent the lateral sponge layers.

Mesoscale eddies are ubiquitous in the oceans, and play a crucial role in our
climate. They modulate the interaction and exchanges between the atmosphere
and the ocean at the ocean surface, and impact the transport of nutrients and thus
ecosystems. They also play a key role in the carbon cycle.

The role of internal waves in dissipating mesoscale eddy energy and setting
their large-scale properties is still unknown, and is thus of leading order importance
in our current climate and in a warming climate.
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A
Growth rate calculations

In this section, we develop the full growth rate calculation for a triadic resonant
instability in a rotating frame, following Bourget et al. [2013] and Maurer et al. [2016].

Using Equations (2.1), (2.2) and (2.3), and introducing the streamfunction
ψ with u = (∂zψ, v,−∂xψ) (recall that the velocity v is constant in our setting),
we obtain a new set of equations

∂∇2ψ

∂t
+ J(∇2ψ, ψ)− f ∂v

∂z
= − ∂b

∂x
+ ν∆2ψ, (A.1)

∂v

∂t
+ J(v, ψ) + f

∂ψ

∂z
= ν∆v, (A.2)

∂b

∂t
+ J(b, ψ) = N2∂ψ

∂x
, (A.3)

where J is the Jacobian operator such as J(A,B) = ∂xA∂zB− ∂zA∂xB. We are
interested in triadic interactions, so we are looking for solutions of the form

ψ =
2∑
j=0

Ψj(t)ei(kj·r−ωjt) + c.c., (A.4)

v =
2∑
j=0

Vj(t)ei(kj·r−ωjt) + c.c., (A.5)

b =
2∑
j=0

Rj(t)ei(kj·r−ωjt) + c.c., (A.6)

113



114 A. Growth rate calculations

where kj = (k, 0,m) is the wavevector. Using these solutions in Equations
(A.1), (A.2) and (A.3), we obtain

2∑
j=0

[−κ2
j(Ψ̇j − iωjΨj) + ikjRj − νκ4

jΨj − ifmjVj]ei(kj·r−ωjt) + c.c. = −J(∆ψ, ψ),(A.7)

2∑
j=0

[V̇j − iωjVj + νκ2
jVj + ifmjΨj]ei(kj·r−ωjt) + c.c. = −J(v, ψ),(A.8)

2∑
j=0

[Ṙj − iωjRj − iN2kjΨj]ei(kj·r−ωjt) + c.c. = −J(b, ψ),(A.9)

where κj =
√
k2
j +m2

j . The Jacobian terms on the right handside can be
rearranged. The usual inviscid linear dynamics of (A.8) and (A.9) provides the
polarization relation

Rj = −N
2kj
ωj

Ψj, (A.10)

Vj = fmj

ωj
Ψj. (A.11)

After some calculations on Equations (A.7), (A.8) and (A.9), they become

J(∆ψ, ψ) =
2∑
p=0

∑
q 6=p

[(kpmq −mpkq)κ2
pΨpΨq]ei[(kp+kq)·r−(ωp+ωq)t]

−[(kpmq −mpkq)κ2
pΨpΨ?

qe
i[(kp−kq)·r−(ωp−ωq)t]] + c.c.

(A.12)

J(v, ψ) =
2∑
p=0

∑
q 6=p

[(−kpmq +mpkq)VpΨq]ei[(kp+kq)·r−(ωp+ωq)t]

−[(−kpmq +mpkq)VpΨ?
qe
i[(kp−kq)·r−(ωp−ωq)t]] + c.c.

(A.13)

J(b, ψ) =
2∑
p=0

∑
q 6=p

[(kpmq −mpkq)RpΨq]ei[(kp+kq)·r−(ωp+ωq)t]

−[(−kpmq +mpkq)RpΨ?
qe
i[(kp−kq)·r−(ωp−ωq)t]] + c.c.

(A.14)

We now get the evolution of a particular wavenumber component (kr, ωr)
associated with the streamfunction ψ, in which r = 0,1 or 2, by averaging both
the left and the right hand side over the period of that wave. The resonant terms
on the right hand side that balance the left hand side correspond to the wave
fulfilling the resonant conditions 2.5 and 2.6.

Highlighting only the resonant terms and using the polarization relations (A.10)
and (A.11), the Jacobian terms can be rewritten as
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J(∇2ψ, ψ) = (k1m2 −m1k2)(κ2
1 − κ2

2)Ψ1Ψ2e
i(k0·r−ω0t)

−(k0m2 −m0k2)(κ2
0 − κ2

2)Ψ0Ψ?
2e
i(k1·r−ω1t)

−(k0m1 −m0k1)(κ2
0 − κ2

1)Ψ0Ψ?
1e
i(k2·r−ω2t) +NRT,

(A.15)

J(v, ψ) = −(k1m2 −m1k2)f
(
m1

ω1
− m2

ω2

)
Ψ1Ψ2e

i(k0·r−ω0t)

+(k0m2 −m0k2)f
(
m0

ω0
− m2

ω2

)
Ψ0Ψ?

2e
i(k1·r−ω1t)

+(k0m1 −m0k1)f
(
m0

ω0
− m1

ω1

)
Ψ0Ψ?

1e
i(k2·r−ω2t) +NRT,

(A.16)

J(b, ψ) = (k1m2 −m1k2)N2
(
k1

ω1
− k2

ω2

)
Ψ1Ψ2e

i(k0·r−ω0t)

−(k0m2 −m0k2)N2
(
k0

ω0
− k2

ω2

)
Ψ0Ψ?

2e
i(k1·r−ω1t)

−(k0m1 −m0k1)N2
(
k0

ω0
− k1

ω1

)
Ψ0Ψ?

1e
i(k2·r−ω2t) +NRT,

(A.17)

where NRT is the acronym for non-resonant terms and they are not relevant for
this problem.

At the first order, we make the further assumption that the amplitude Ψj varies
slowly with respect to the period of the wave. It is therefore appropriate to consider
that Ψ̇j � ωjΨj . Use of this assumption in the derivative of (A.10) and (A.11) yields

V̇j = fmj

ωj
Ψ̇j, (A.18)

Ṙj = −N
2kj
ωj

Ψ̇j. (A.19)

Using (A.18) in resonant terms of Equation (A.8), we obtain

V0 =
−γ0β0Ψ1Ψ2 + ifm0Ψ0 + f m0

ω0
∂tΨ0

iω0 − νκ2
0

, (A.20)

V1 =
−γ1β1Ψ0Ψ?

2 + ifm1Ψ1 + f m1
ω1
∂tΨ1

iω1 − νκ2
1

, (A.21)

V2 =
−γ2β2Ψ0Ψ?

1 + ifm2Ψ2 + f m2
ω2
∂tΨ2

iω2 − νκ2
2

, (A.22)

where γ0 = 1, γ1,2 = −1 and
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βr = (kpmq −mpkq)
(
mp

ωp
− mq

ωq

)
, (A.23)

with (p, q, r) = (0, 1, 2) or any circular permutation. Now, using (A.19) in
resonant terms of Equation (A.7)

R0 = − i

k0

[
κ2

0(Ψ̇0 − iω0Ψ0) + νκ4
0Ψ0 − γ0α0Ψ1Ψ2 + ifm0V0

]
, (A.24)

R1 = − i

k1

[
κ2

1(Ψ̇1 − iω1Ψ1) + νκ4
1Ψ1 − γ1α1Ψ0Ψ?

2 + ifm1V1
]
, (A.25)

R2 = − i

k2

[
κ2

2(Ψ̇2 − iω2Ψ2) + νκ4
2Ψ2 − γ2α2Ψ0Ψ?

1 + ifm2V2
]
, (A.26)

where

αr = (kpmq −mpkq)(κ2
p − κ2

q), (A.27)

with (p, q, r) = (0, 1, 2) or any circular permutation. Therefore, using all the
previous results in Equation (A.9) leads to

N2k0

ω0
Ψ̇0 + iω0R0 + iN2k0Ψ0 = γ0δ0N

2Ψ1Ψ2, (A.28)

where

δr = (kpmq −mpkq)
(
kp
ωp
− kq
ωq

)
, (A.29)

with (p, q, r) = (0, 1, 2) or any circular permutation. Replacing R0 and V0

by their expression

N2k2
0

ω2
0Ψ̇0

+ κ2
0(Ψ̇0 − iω0Ψ0) + νκ4

0Ψ0 − γ0α0Ψ1Ψ2

+ifm0

−γ0fβ0Ψ1Ψ2 + ifm0Ψ0 + f m0
ω0

Ψ̇0

iω0 − νκ2
0

+ i
N2k0

ω0
Ψ0 = γ0

k0

ω0
δ0N

2Ψ1Ψ2,

(A.30)

relating the time derivative of the wave amplitude, Ψ0, to the other wave ampli-
tudes.

Ψ̇0 = γ0

2κ2
0

(
α0 + δ0N

2k0

ω0
+ f 2m0β0

ω0

)
Ψ1Ψ2 −

1
2ν
(
κ2

0 + f 2m2
0

ω2
0

)
Ψ0. (A.31)
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Ψ̇0 = I0Ψ1Ψ2 −
1
2νκ

2
0

(
1 + f 2m2

0
κ2

0ω
2
0

)
Ψ0, (A.32)

Ψ̇1 = I1Ψ0Ψ?
2 −

1
2νκ

2
1

(
1 + f 2m2

1
κ2

1ω
2
1

)
Ψ1, (A.33)

Ψ̇2 = I2Ψ0Ψ?
1 −

1
2νκ

2
2

(
1 + f 2m2

2
κ2

2ω
2
2

)
Ψ2, (A.34)

where Ir is

Ir = γr
2κ2

r

(
αr + δrN

2kr
ωr

+ f 2mrβr
ωr

)

= γr
kpmq −mpkq

2ωrκ2
r
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ωr(κ2

p − κ2
q) + krN

2
(
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ωp
− kq
ωq

)
+mrf

2
(
mp

ωp
− mq

ωq

)]
.

(A.35)

We consider Ψ0 as the primary wave and it is constant in early times since
amplitudes of the secondary waves, Ψ1 and Ψ2 are negligible compare to the
amplitude of Ψ0. Combining Equations (A.34) and (A.34), we get

Ψ̈1 = I1I2Ψ2
0Ψ1−

1
4ν

2κ2
1κ

2
2

(
1 + f 2m2

1
κ2

1ω
2
1

)(
1 + f 2m2

2
κ2

2ω
2
2

)
Ψ1−

1
2ν
(
κ2

1 + κ2
2 + f 2m2

1
ω2

1
+ f 2m2

2
ω2

2

)
Ψ̇1.

(A.36)
The solution of Equation (A.36) is of the form Ψ1,2 = A1,2e

σ+T + B1,2e
σ−T ,

where σ is the growth rate defined as (2.8).
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B
PSI extension calculations

In this part, we give a brief description of the 2f-pump mechanism described in
detail in Young et al. [2008]. Of particular interest is the derivation of the growth
rate (Equation 2.12). We consider the interaction of a background flow (U, V,W )
with a pure inertial oscillation. W is a function of time t and depth z and is
given by the incompressibility condition Ux + Vy +Wz = 0. For us, a pure inertial
oscillation is a disturbance with infinite horizontal spatial scales which implicates
that the velocity is (u(z, t), v(z, t), 0). A pure inertial oscillation has no pressure
or buoyancy signal so that its dynamic is entirely governed by the horizontal
momentum equations, after removing second order terms,

ut +Wuz + uUx + vUy − fv = 0, (B.1)

vt +Wvz + uVx + vVy + fu = 0. (B.2)

Rewriting Equations (B.1) and (B.2) in term of the ’back-rotated’ velocity
Ω ≡ (u + iv)eift, we obtain

Ωt +WΩz + 1
2 [(Ux + Vy) + i(Vx − Uy)] Ω + 1

2 [(Ux − Vy) + i (Vx + Uy)] e2iftΩ? = 0.
(B.3)

We consider that the background flow and the near-inertial oscillation interact
weakly so that the envelope of Ω(z, t) is evolving slowly relative to the inertial
time scale. The secular evolution of Ω(z, t) (evolution on really long time period)
is then obtained by time-averaging (denoted by an overbar) Equation (B.3) over
an interval which is long relative to f−1

Ωt + 1
2iζΩ + 1

2ΥΩ? = 0, (B.4)
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where
ζ ≡ V x − Uy, (B.5)

is the vertical velocity of the low-frequency part of the background flow, assuming
that the low-frequency part of the background flow is geostrophycally balanced so
that W = Ux + V y = 0. The term involving 1

2iζ in Equation (B.4) corresponds
to Kunze [1985]’s result that the effective inertial frequency is shifted away from
the local inertial frequency by half the relative vorticity of the low-frequency
geostrophic background flow. The second coefficient Υ in Equation (B.4) is the
amplitude of the 2f -pump

Υ ≡ [(Ux − Vy) + i (Vx + Uy)] e2ift, (B.6)

which is non-zero if the background flow strain rates have spectral content at 2f .
Now we consider the propagation of near-inertial oscillations through a geostrophic

flow which changes slowly relative to the inertial period. The background flow
has two components: a geostrophic component (denoted by subscript g) and a
2f -pump flow (denoted by subscript p). There is no transfer of energy between
the geostrophic part of the background flow and the near-inertial waves [Young
and Jelloul 1997]. Thus, the 2f−pump part of the background flow plays the
essential role of energizing the near-inertial oscillations. The dynamics of the near-
inertial field (u, v, w, b, p) is given by the linearized Boussinesq equations around
the background flow (U, V,W,B, P )

ut + Uux + V uy +Wuz + uUx + vUy + wUz − fv + px = 0, (B.7)

vt + Uvx + V vy +Wvz + uVx + vVy + wVz + fu+ py = 0, (B.8)

−b+ pz = 0, (B.9)

ux + vy + wz = 0, (B.10)

bt + Ubx + V by +Wbz + uBx + vBy + wBz + wN2 = 0. (B.11)

We emphasize that PSI is driven solely and essentially by the pump component
of the background flow. Young et al. [2008]’s calculations lead to the evolution
equation of near-inertial fields (f−plane, uniform N , ∂y ≡ 0 and magnitude of $
is too small to affect the solution [Young et al. 2008])

Azzt + 1
2
N2

f
iAxx + 1

2ΥA?zz = 0, (B.12)
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Considering now the instability of an infinite-plane internal gravity wave with
a uniform stratification on an f -plane. Its pressure is given by

Pp = a cosφ, (B.13)

where φ = kx + mz − ω0t and a = U0h0m(ω2
0−f

2)
kω0

is the amplitude of the pump.
The frequency and the wavenumber are related by the non-hydrostatic dispersion

relation (2.4). Since, we consider ω0 close to 2f , we write

ω0 = 2f + ε, (B.14)

with ε� f , where the de-tunning frequency ε, might be either positive or negative;
in our case, we consider a negative de-tuning.

Substituting the pressure into the linearized Boussinesq equations, we obtain
the other pump fields

Up = akω0

(ω2
0 − f 2) cosφ, (B.15)

Vp = afk

(ω2
0 − f 2) sinφ, (B.16)

Wp = − ak2ω0

m(ω2
0 − f 2) cosφ, (B.17)

Bp = − ak2N2

m(ω2
0 − f 2) sinφ. (B.18)

From there, we want to calculate the amplitude of the 2f -pump from Equation
(B.6), considering ∂y ≡ 0. Thus

Upx + iVpx = ∂xRe(
∼
Upe

iφ) + i∂xRe(
∼
V pe

iφ) = iak2eiφ

2(ω0 − f) −
iak2e−iφ

2(ω0 + f) (B.19)

and therefore

Υ = (Upx + iVpx)e2ift = iλei(kx+mz−εt), (B.20)

where

λ2 = U0h0k
2
0

2ω0

√√√√(N2 − ω2
0)(ω0 + f)

(ω0 − f) . (B.21)

Replacing Υ by its expression in Equation (B.12), we obtain

Azzt + 1
2
N2

f
iAxx + 1

2iλe
i(kx+mz−εt)A?zz = 0. (B.22)
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The solution of this equation is of the form

A = e−iεt/2
[
A1(t)ei(k1x+m1z) + A?2(t)ei(k2x+m2z)

]
. (B.23)

Now, we use the spatial resonant condition (2.5) in Equation (B.23) leading to

A1t + i

(
N2k2

1
2fm2

1
− ε

2

)
A1 + iλm2

2
2m2

1
A2 = 0, (B.24)

A2t − i
(
N2k2

2
2fm2

2
− ε

2

)
A2 −

iλm2
1

2m2
2
A1 = 0. (B.25)

Combining the two previous equations, we obtain a single equation for A1(t)

A1tt + i

(
N2k2

1
2fm2

1
− N2k2

2
2fm2

2

)
A1t +

(
N2k2

1
2fm2

1

N2k2
2

2fm2
2
− λ2

4

)
A1 = 0. (B.26)

If A1 = Â1e
st then

s = 1
2

(
N2k2

1
2fm2

1
− N2k2

2
2fm2

2

)
i± 1

2

√√√√λ2 −
(
N2k2

1
2fm2

1
+ N2k2

2
2fm2

2

)2

. (B.27)

Finally, the growth rate is σ =Re(s), such as

σ = 1
2

√√√√λ2 −
(
N2

2f

)2 (
k2

1
m2

1
+ k2

2
m2

2
− 2 εf

N2

)2

. (B.28)



C
Mean current

In this Appendix, we show that adding a mean current to the simulations of internal
tides does not impact significantly the generation of internal tides at the topography.
Indeed, we want to investigate the impact of a mean current on the propagation
and dissipation of waves, not on their generation.

In order to ensure minimal interaction of the mean current with topography, we
start increasing the strength of the mean current near the highest topography peak.
The amplitude of Umc increases from 0 near the maximum height of topography
to αUtide a hunder meters above that height.

In the simulations discussed in the paper, the shear layer starts at z = 500 m
and ends at 600 m above which the mean current is constant (Fig. 3.1). Here
we show that even if the shear layer is lowered between z = 400 m and 500 m to
accentuate the generation of lee waves by the mean current, the generation and
the energy dissipation of those lee waves are negligible compared to the internal
tides discussed in the paper. The mean current used in the paper (starting higher
at 500 m) yields even weaker lee waves and dissipation.

Fig. C.1 (top and middle panels) shows snapshots of a simulation with mean
current only (no barotropic tide). Some lee waves are generated at the highest
topographic peaks, but the signal is very weak compared to the internal tides
shown Fig. 3.2 or 3.5. The energy dissipation associated to those lee waves is
small compared to the energy dissipation associated to internal tides (Fig. C.1
bottom panel). We are therefore confident that the presence of lee waves does
not impact the results presented here.
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Figure C.1: Snapshots of the wave zonal velocity (m s−1) from the simulation without a
tidal flow (f = 0.7× 10−4 s−1, α = 1 and Utide = 0 m.s−1) after 5 days (top) and 19 days
(middle) of simulation. The bottom panel shows the vertical profile of energy dissipation
averaged over the last 10 days of the simulation. For comparison, the vertical profiles
with tidal forcing are repeated from Fig. 3.6.
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