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Context and Motivation

Visual recognition of a person is a key aspect of the social communication. For example, we do not address our friends the same way as we address strangers, we do not react similarly to the same actions of a 3-years old child and an adult, and in many languages, the polite forms of referring to an unknown woman and an unknown man are different (e.g., "madam" and "sir" in English).

Moreover, being asked to spontaneously describe a given person, our resposne would strongly depend on whether we know the particular individual or not. Thus, given a photo from Figure 1.1.1-(a), the most probable answer would be "Barack Obama, the ex-president of the United States". At the same time, a reasonable description of (a priori unknown) individual in Figure 1.1.1-(b) would rather focus on the person's apparent traits (such as gender and age) resulting in something like "a man of 30-40 years old".

Indeed, gender recognition and age estimation from the visual appearance are tasks which are usually performed intuitively and amazingly fast by humans. This makes the concepts of gender and age especially useful for the semantic description of a stranger. Moreover, the human understanding of these concepts is much richer than a simple ability to estimate them from a person's appearance. For example, it is often possible to visually recognize a resemblance between a father and a son, or between siblings of different genders even without being acquainted with the particular people (cf. In this context, finding the algorithms to extract the gender and age information from faces is particularly indispensable because on the one hand, these concepts are equally applicable for indexing the photos of unknown and known people (cf. the example above), and on the other hand, unlike the identity recognition, they preserve the privacy of the personal data.

However, it has appeared hardly possible to algorithmically formalize what makes a face to look more feminine / masculine, or younger / older. Indeed, let us consider the two faces illustrated in Figure 

Problems and Objectives

In this manuscript, we consider the two principally different problem settings of gender and age analysis with deep learning, namely, "image to label" and "label to image", which are schematically illustrated in Figure 1.2.1.

In the first setting (i.e. "image to label"), a static face image is given at the input, and the goal is to recognize the gender and the age based on the image's content. Below, we refer to the described problem as the gender/age prediction, or more precisely, gender recognition and age estimation.

The second problem setting (i.e. "label to image") is somewhat opposite to the first one, and it gives rise to a pair of distinct problems of different complexity. The essence of the "image to label" setting is that gender and age are given at the input, and the goal is to generate a synthetic face image with the provided attributes. In a simpler case, there is no other constraints on the face to be generated apart from gender and age, and as a result, we have the face synthesis problem. But a more complex and practically important problem consists in editing a provided natural face image in order to change the visual perception of its gender and age in accordance with the input values. We refer to this last problem as the face editing one.

Gender/age prediction is a particular case of object recognition which is a well-studied problem of computer vision. As it is discussed below in Chapter 2, Convolutional Neural Networks (CNNs)

[LeC+89] (a specific kind of deep models) have revolutionized computer vision, and can today be considered as the standard models for object recognition. Nevertheless, CNNs have plenty degrees of liberty both in terms of the neural architectures and in terms of the training techniques. In "image to label" setting, a face image is given at the input, and the goal is to recognize the person's gender and age. In "label to image" setting, two distinct problems are considered: synthesis of an arbitrary face with the required gender/age semantics, and editing of a given face to change the visual perception of its gender and/or age (but preserving the original person's identity).

Therefore, the first objective of this PhD is to find optimal CNN design and training strategies in the context of gender recognition and age estimation problems. Importantly, the goal is not only obtaining the top performing CNNs for the considered problems, but also explaining what makes them work and therefore, providing the future studies on the subjects with useful hints. The first objective also implicitly implies the comparison between the two sub-problems: gender recognition and age estimation.

If gender/age prediction problem is essential for indexing of large collection of photos (cf. Section 1.1), face synthesis and especially, face editing is often used for normalization of faces prior to the indexing. For example, before the verification of a person identity versus an old reference photo, it might be helpful to "age" the old photo so that the reference face is of the same age as the tested one.

Contrary to object recognition which is done by discriminative models, image synthesis and editing usually requires generative models (the difference between these two kinds of machine learning models is formally explained in Chapter 2).

In this manuscript, we employ a particular type of deep generative models, which is called Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF], and which has recently proved to be very promising for synthesis of images of high visual fidelity (cf. Chapter 2). However, training of GANs is an active area of research, and, unlike training of CNNs, it remains highly unstable. Moreover, while perfectly adapted for image sampling, GANs cannot be directly used for image editing.

Therefore, the face synthesis and the face editing problems are solved sequentially in the present manuscript. More formally, the second objective of this PhD is twofold: the first step is to train a GAN which performs face generation conditioned on gender and age attributes, and the second step is to design an algorithm which constrains the trained GAN to reproduce the original identity from a provided input face but with altered gender and age attributes.

Contributions

The present manuscript has three main contributions which are described below.

1. On the one hand, we demonstrate that when a training task is challenging enough (in particular, we use the problem of gender recognition from pedestrian images as an example, because it is known to be much more complicated than gender recognition from face images), a CNN can learn internal representations which generalize significantly better than the universal human-engineered image representations for object recognition even with limited amount of training data. This effect is further accentuated by the usage of transfer learning (cf. Chapter 2 for the definition), which allows to easily adapt the best deep models trained for other tasks to the problem of interest.

On the other hand, we illustrate that neither the complexity of the neural architectures, nor the big number of training images is a guarantee of the high performances of a CNN. Indeed, we show that the gender recognition accuracy of a CNN trained on face images has a relatively small correlation with the depth of the architecture and the dataset size. Moreover, this accuracy is not better than the one obtained with human-engineered face representations (i.e. without deep learning).

Summarizing, our first contribution consists in confirming the fact that deep learning is a very promising approach for estimation of visual human traits, but highlighting that its effectiveness depends on the complexity of the problem which is chosen for the neural network training.

2. Our second contribution corresponds to the first objective of the present PhD which has been formulated in Section 1.2.

In particular, according to the previous studies, we identify five principal parameters of the CNN design and training which have the biggest impact on the resulting gender/age prediction accuracies. By experimentally selecting the optimal configurations of the selected parameters for the two studied problems, we design the state-of-the-art CNNs for gender recognition and age estimation which outperform existing alternatives on the most popular evaluation benchmarks, and reach the human-level performances on the unconstrained face images taken "in the wild" (i.e.

spontaneous photos in real-life conditions which is opposed to the controlled photos in predefined conditions).

Moreover, after adapting our age estimation CNN for apparent age estimation (cf. Chapter 3 for the definitions of biological and apparent ages), we participated and won an international competition on apparent age estimation.

3. Finally, our last contribution fulfils the second objective of this PhD stated in Section 1.2.

More precisely, we design a first GAN which is able to synthesise arbitrary face images within the required gender/age categories. After that, we propose a novel approach which allows the usage of the designed generative model for editing of the visual perception of gender and age in natural face images. The particularity of our face editing approach is its universality meaning that it can be potentially applied not only for editing of gender and age, but also for editing of other facial traits.

We demonstrate the effectiveness and the practical interest of the proposed face editing approach by employing it to improve the cross-age verification accuracy of an off-the-shelf face recognition software.

ORGANISATION OF THE MANUSCRIPT

Organisation of the Manuscript

The rest of this manuscript is organized in six chapters which are split into the following two parts.

Part I: State of the Art. Chapters 2 and 3 constitute the overview of the most notable works in two domains related to this PhD: deep learning and gender/age analysis from face images, respectively:

-Chapter 2 is dedicated to the presentation of deep learning. In order to provide a broader view of the domain, we start Chapter 2 with a brief historical perspective illustrating the development of the basic ideas and algorithms of deep learning. Then we focus on the detailed introduction of two types of deep models which are used in the present manuscript, namely: CNNs and GANs.

-In Chapter 3, we present the existing approaches for the two main problems addressed in this manuscript: i.e. gender/age prediction from face images and editing of gender/age in face images.

The majority of the deep learning studies on the considered subjects was published during the period of this PhD. For convenience, we separately present the works which employ the same classes of deep models as in this manuscript (i.e. CNNs for gender/age prediction and generative deep models for face synthesis/editing) at the beginnings of the respective contribution Chapters 5 and 6 highlighting their differences with our approaches.

Part II: Contributions. Three main contributions of this manuscript (which have been listed in Section 1.3) are subsequently presented in Chapters 4, 5 and 6. More precisely:

-Chapter 4 reports two preliminary studies which were performed during the first year of the PhD in order to qualitatively understand the advantages and the limitations of CNNs for visual analysis of human traits in different conditions. In particular, in the first study, we extensively compare learned and hand-crafted features (cf. Chapter 2 for the corresponding definitions) on gender recognition from pedestrian images, which is a complicated problem with limited training data.

On the contrary, in the second study, we train CNNs for a much simpler task and for which much more training data is available: gender recognition from face images. Conclusions of Chapter 4 are used in the subsequent Chapter 5.

-Chapter 5 details the contribution 2 which is briefly described in Section 1.3 and which addresses the first primary objective of this PhD. In particular, in Chapter 5, (1) we identify the CNN design and training parameters which have the biggest impact on the resulting gender and age prediction accuracies, (2) we select the optimal training strategies in the context of the considered problems,

(3) we train CNNs for gender recognition and age estimation, and (4) finally, we extensively evaluate both qualitative and quantitative aspects of the resulting deep CNNs.

-Chapter 6 details the contribution 3 which is briefly described in Section 1.3 and which addresses the second primary objective of this PhD. In particular, in Chapter 

Introduction

The problems which are addressed by the contemporary artificial intelligence can be roughly split into two categories: (1) the ones which can be described with a set of mathematical rules of a reasonable size, and (2) the ones which are extremely difficult to formalize. The problems of the first kind are often challenging for humans, but are approachable with classical computer science algorithms given enough computational power. A good example of such problem is the game of chess, where the human world champion, Garry Kasparov, was defeated as early as in 1997 by a computer called "Deep Blue" [START_REF] Hsu | Behind Deep Blue: Building the computer that defeated the world chess champion[END_REF].

Indeed, the chess game environment is restricted by the board of only 64 squares and by 32 pieces which 11 makes the exploration of the game tree by even (quasi) brute force algorithms incomparably faster than it is done by a human brain.

On the contrary, the problems of the second category may seem trivial for humans, but are prohibitively difficult to put in a computer algorithm. Gender recognition and age estimation, which are studied in the present manuscript, are examples of such problems. Indeed, as already discussed in Chapter 1, it is hardly possible to explicitly name all possible aspects making a human face to be perceived more feminine (masculine) or older (younger). Therefore, almost all gender recognition and age estimation approaches which will be discussed in Chapter 3 are machine learning-based.

The term "machine learning" was coined by Arthur Samuel [START_REF] Arthur | Some studies in machine learning using the game of checkers[END_REF] in 1959. It defines a specific domain of computer science which gives "computers the ability to learn without being explicitly programmed". The machine learning algorithms acquire knowledge (often in the form of regular patterns) from the training data, and this knowledge is further used to perform the required tasks (such as classification, clustering, information retrieval, etc.) Today, machine learning is used virtually everywhere: from search engines and e-commerce to private smartphones.

The performance of conventional machine learning algorithms strongly depends on how the raw data is preprocessed before being given at their input. For example, a logistic regression model for credit scoring expects a certain formal set of information about a bank client (such as her/his monthly income, marital status, age, etc.) in order to estimate her/his creditworthiness. This formal set of information is called a feature representation (or simply set of features) in machine learning.

In the same spirit, automatic analysis of images is rarely performed on raw RGB pixel values. Instead, a common practice of computer vision consists in encodings images with feature representations (such as LBP [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF], SIFT [START_REF] David G Lowe | Object recognition from local scale-invariant features[END_REF], HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], VLAD [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF], etc.) in order to keep only the most relevant information for decision making. Many of these image encodings were initially designed for a particular application, but later employed for other problems as well. Here and below, we refer to such feature representations as hand-crafted ones, because they are hand-engineered by human experts based on some prior knowledge about the target domain. Hand-crafted features have two major downsides: firstly, they are extremely difficult to design, and secondly (and more importantly), they are highly problem-dependent [Bac13; LBH15]. For example, as further mentioned in Chapter 3, LBP features happen to be effective for gender recognition but not for age estimation from face images.

A natural way to circumvent this problem is to learn feature representations for a particular problem.

For example, manifold learning allows to learn a projection of input images into another space of lower dimensionality. The resulting low dimensional embeddings are often better adapted for the target problems than initial raw pixels. More generally, a subset of machine learning techniques (manifold learning is one of them) which focus on learning useful representations of the input data is called representation learning. The features which are obtained as a result of representation learning are referred as learned features in the present manuscript.

Deep learning methods, which are the primary instruments for analysis of human faces in this manuscript, are in their turn, a subset of feature representation techniques (cf. The rest of this chapter is organised as follows: in Section 2.2, we briefly cover the milestones of the history of deep learning focusing on the basic notions, algorithms and models; then we present in more details two families of deep models which are used in this manuscript, namely convolutional neural networks and generative models (in particular, generative adversarial neural networks) in Sections 2.3 and 2.4, respectively; and finally, Section 2.5 summarizes this overview chapter.

1. The quote can be found here: http://spectrum.ieee.org/automaton/robotics/ artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning « Human » 

Neural Networks: Key Periods, Models and Algorithms

Despite deep learning has become widely popular only in the recent years, the basic principles and ideas behind ANNs have been developing for more than half a century. Thus, a simplified timeline with the most significant milestones in the history of ANNs is presented in Figure 2.2.1. In this section, we briefly cover the highlights of the development of ANNs introducing the corresponding central notions, models and algorithms. For a more detailed review of the domain, we invite the reader to refer to the excellent book by Goodfellow et al. [START_REF] Goodfellow | Deep learning[END_REF]. 

Artificial Neuron and Perceptron

The history of ANNs dates back to 1943 when McCulloch and Pitts proposed the first model of the artificial neuron [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF]. It was defined as a function f with n parameters w i (called weights) and n inputs x i :

f (x) = a( n i=0 x i w i ) (2.2.1)
where a is called an activation function, and in the original model of McCulloch and Pitts, it is just a threshold function:

a(x) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1, x > 0 0, otherwise (2.2.2) 
The artificial neuron can be trained to perform as an elementary linear classifier using the algorithm called Perceptron which was proposed by Rosenblatt [START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF]. Training of an artificial neuron means selecting its weights with respect to the provided training dataset with binary annotations. Perceptron is an online learning algorithm (meaning that the corresponding weights are updated after processing of each training example), and after random initialization of weights, it proceeds as following for each training example x ( j) with the ground truth binary label l ( j) :

1. Firstly, the actual output of the classifier is calculated with current state of weights:

p ( j) (t) = f (x ( j) ).
2. Then, all weights of the classifier are updated with respect to the difference between the ground truth label l ( j) and the predicted one p ( j) (t):

w i (t + 1) = w i (t) + (l ( j) -p ( j) (t))x ( j) i , i ∈ {0,...,n}.
Perceptron learning algorithm seemed very promising for its time and attracted a lot of attention from the media. However, quickly it became obvious that the set of function which can be simulated by Perceptron is very narrow. For example, Minsky and Papert [START_REF] Minsky | Perceptrons[END_REF] demonstrated that XOR binary function cannot be expressed with an artificial neuron defined in Formula 2.2.1. This discovery has drastically cut down the interest in ANNs for a certain period.

MLP and Backpropagation

In order to circumvent the stated limitation of Perceptron, the model can be naturally extended to Mutli-Layer Perceptron (MLP) [START_REF] David E Rumelhart | Learning internal representations by error propagation[END_REF]. In MLP, artificial neurons are organized in several layers which are related between each other by weighted connections (there is a weight w i j which is associated to each connection between the artificial neurons x i and x j ). A typical MLP is illustrated in Figure 2.2.2.

Input Layer

Hidden Layers Output Layer When data is fed at the input (0-th) layer of an MLP, the model subsequently calculates the activations of neurons in all layers one by one until the output (n-th) layer. In particular, given the activations x l j of the l-th layer, the activation x (l+1) j of the (l + 1)-th one are calculated as following:

x (l+1) j = a( n l i=0 x l i w l,(l+1) i j ) (2.2.3)
where w l,(l+1) i j

is the weight associated with the connection between the neurons x l i and x (l+1) j

, while n l is the number of neurons (i.e. the size) in the l-th layer.

As it is the case for Perceptron, training of an MLP consists in finding an optimal configuration of its weights w with respect to the training data. of MLP in the direction which is the opposite to the gradient of the loss function L with respect to this weight:

∆w i j = -α ∂ L ∂ w l,(l+1) i j (2.2.4)
Here, α is a real-valued hyperparamter of backpropagation called learning rate which controls the speed of training. The loss function L is also a training hyperparameter. Basically, L can be any differentiable function measuring the difference between the MLP predictions p and the ground truth labels l.

The partial derivative ∂ L ∂ w i j in Formula 2.2.4 is calculated sequentially, layer by layer, from the output layer down to the input one following the chain rule for differentiation of complex functions. In other words, the error signal from the loss function L is propagated back in neural network (hence, the name "backpropagation"). In practice, the weight updates (cf. Formula 2.2.4) are calculated either based on 

Data Dependent Models

As mentioned in Subsection 2.2.2, the invention of backpropagation resulted in resurgence of the interest in ANNs. In particular, two specific neural models appeared during the 80's, namely: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

CNNs are deliberately designed to deal with data which has some spatial topology (i.e. images, videos, sound spectrograms etc.), and are the central instrument for analysis of human visual traits in the present manuscript. Therefore, in this chapter, we devote a separate Section 2.3 for their introduction, while in the rest of this subsection, we focus on RNNs. MLP, which is described in Subsection 2.2.2, is also called feed-forward neural network, because at test stage, the signal passes in a direct manner from the input layer up to the output one. More formally, an oriented connection graph of a feedforward ANN does not contain cycles (cf. Figure 2

.2.2).

Unlike feedforward ANNs, RNNs contain one or more cycles in their oriented connection graphs. Thus, Figure 2.2.3-(a) illustrates a typical RNN which has the basic structure of an MLP, but each of its hidden neurons is also connected with itself.

RNNs are designed to process sequences of data, one element at a time. The easiest way to understand how it works in practice is to refer to (t + 1) of the neuron j of the (l + 1)-th layer at time (t + 1) depends both on the activations of neurons x l i (t + 1) from the previous layer l and on the activation of the same neuron x (l+1) j (t) at the previous time stamp t: As already mentioned above, the main domain of application of RNNs is modelling of data sequences (such as speech, text, videos, etc.) However, it was found by a number of studies [BSF94; Hoc+01] that RNNs which are trained with BPTT fail to "remember" long-term context from the past of the sequence due to the vanishing gradient problem. The problem is formally defined and thoroughly studied in [START_REF] Hochreiter | Gradient flow in recurrent nets: the difficulty of learning long-term dependencies[END_REF], but intuitively, it is very easy to understand. Indeed, due to the fact that neurons do not have an explicit memory to store values, the influence of an activation x l i (t) at time t is negligible for the activation x l i (t + n) of the same neuron at time (t + n), when n is sufficiently big.

x (l+1) j (t + 1) = a( n l i=0 x l i (t + 1)w l,(l+1) i j + x (l+1) j (t)w (l+1),(l+1) j j ) (2.2.5) (a) (b)
The problem of the vanishing gradient was effectively solved by the introduction of Long Short-Term Memory networks (LSTMs) [START_REF] Hochreiter | Long short-term memory[END_REF] which extend RNNs by substituting the artificial neurons of the hidden layers by the specific LSTM cells with the elements of memory. The detailed description of an LSTM is out of the scope of this overview chapter, we therefore refer an interested reader to the original work of Hochreiter and Schmidhuber [START_REF] Hochreiter | Long short-term memory[END_REF]. Today, LSTM RNNs are extensively used in natural language processing [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF], speech recognition [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF] and in video classification [START_REF] Baccouche | Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification[END_REF].

Despite the fact that the first applicative studies on CNNs and RNNs demonstrated a number of very promising results (such as recognition of hand-written digits [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] or phoneme classification [START_REF] Graves | Framewise phoneme classification with bidirectional LSTM and other neural network architectures[END_REF]), ANNs experienced one more significant drop in popularity in the late 90s because of two following main reasons. Firstly, it was (wrongly) thought that it is infeasible to optimize ANNs of many hidden layers with SGD [START_REF] Goodfellow | Deep learning[END_REF] due to the existence of poor local minima in the optimization surface. Secondly (and more importantly), the newly invented machine learning algorithms, such as Support Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF] and graphical models [START_REF] Irwin | Learning in graphical models[END_REF] were much easier to train and demonstrated similar or even better performances. Moreover, unlike ANNs with many trainable weights, SVMs are quite robust to overfitting (a recurrent problem in machine learning, when a model fits to noisy variations in training data which are irrelevant to the underlying relationship).

Deep Learning Revolution

It was not until 2006 that ANNs regain attention of the machine learning community for the third time. The breakthrough was made by Hinton et al. [START_REF] Geoffrey E Hinton | A fast learning algorithm for deep belief nets[END_REF] who showed an effective way of unsupervised training of neural networks with many hidden layers. More precisely, the authors proposed an iterative algorithm for training Deep Belief Networks (DBNs) [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF], a multi-layer unsupervised model which is composed of several single-layer Restricted Boltzmann Machines (RBMs) [START_REF] Smolensky | Information processing in dynamical systems: Foundations of harmony theory[END_REF]. Each layer of a DBN learns a more abstract and less redundant representation of the preceding one, meaning that as a whole, the model performs hierarchical representation learning.

DBNs can be used on their own [START_REF] Geoffrey E Hinton | A fast learning algorithm for deep belief nets[END_REF], and they can also serve as a good starting point for further supervised fine-tuning [START_REF] Krizhevsky | Using very deep autoencoders for contentbased image retrieval[END_REF], which means initialization of the layers of an ANN with the layers issued after training of another ANN (in this context, the DBN). Fine-tuning is a particular case of transfer learning [START_REF] Sinno | A survey on transfer learning[END_REF], a common technique in machine learning allowing to use the knowledge learned from one problem for another one.

Hinton et al. argued [START_REF] Geoffrey E Hinton | A fast learning algorithm for deep belief nets[END_REF] that the key of the DBN success is the depth (i.e. the number of hidden layers) of the trained models which provides the hierarchical structure of the learned features.

They even coined the term "deep learning" which became so popular later. This fundamental idea of the importance of the depth for learning effective feature representations has been intuitively motivated in the introductory Section 2.1, but a thorough and a theoretically sound explanation can be found in [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF].

The first major success of deep learning was in the domain of speech recognition in 2009 [START_REF] Abdel-Rahman Mohamed | Deep belief networks for phone recognition[END_REF] when DBN pretraining allowed effective fine-tuning for predicting probabilities of various fragments of 

Convolutional Neural Networks

As briefly introduced in Subsection 2.2.3, CNN is a particular case of ANN which is designed to process the data with a spatial topology (for example, static images). CNN is simply defined as ANN which (at least ones) uses a convolution operation for connecting the neurons of a pair of its consecutive layers [START_REF] Goodfellow | Deep learning[END_REF]. In this section, we firstly explain the basic principles and the intuitions behind CNNs in Subsection 2. The easiest way to explain the basic principles of a CNN is to refer to a particular example. Thus, (3) fully-connected ones (labelled by the letter F in Figure 2.3.1). The latter ones are the "standard" layers from MLP (cf. Subsection 2.2.2). Usually, convolutional and pooling layers alter each other at the beginning of the network, and a few fully-connected layers are stacked at its end (the output layer is almost always fully-connected).

Typical CNN: Basic Principles and Definitions

In image processing, a convolution operator requires two inputs (an image I, and a kernel W ) and produces a single output (an image O) which is calculated as following:

O(i, j) = (I * W )(i, j) = m n I(m,n)W (i -m, j -n) (2.3.1)
In the context of CNNs, every convolutional layer is associated with a certain number of kernels which in their turn define the number of feature maps of the layer. Using the general ANN terminology from Section 2.2, the kernels are the trainable parameters of the convolutional layer (i.e. its weights) while the feature maps are its activations. For example, the first convolutional layer C1 of LeNet-5 corresponds to 6 kernels of size 6x6 pixels, and when an input image of size 32x32 is convolved with each of these kernels according to Equation 2.3.1, 6 feature maps of size 28x28 are produced2 . As in case of fully-connected layers, the outputs of a convolutional layer are usually processed by a non-linear activation function.

Thus, the convolutional operation provides the local connectivity between the neurons of two consecutive layers which is opposed to the full connectivity between a pair of layers in MLP discussed in Subsection 2.2.2. In particular, as illustrated in Figure 2.3.1, a local region defined by the size of the convolutional kernel is connected with a neuron of the resulting feature map. Moreover, the convolutional operator is defined in a way that the same kernel "slides" over all input image meaning that the weights connecting the neurons of the resulting feature map and different regions of the input image are shared.

Summarizing, a convolutional layer has two particularities distinguishing it from a fully-connected one, namely: (1) local connectivity and (2) weight sharing, both of which can be intuitively motivated in the frame of image processing. Indeed, the motivation behind the local connectivity is the high correlation between local groups of pixels of a typical image which suggests that they can be effectively treated together. A the same time, weight sharing makes CNNs to be invariant to particular spatial locations of image patterns. It is also interesting to notice that a fully-connected layer can be seen as an extreme case of a convolutional layer when the kernel size is of 1x1. Thus, for historical reasons, in Figure 2.3.1

(which is extracted from [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]) the fully-connected layer C5 is labelled as a convolutional layer by the letter C.

If the role of convolutional layers is to detect regular motifs in input data, the goal of pooling layers is to merge semantically similar features in order to construct more complex and abstract features (i.e. hierarchical feature learning). Thus, contrary to convolutional and fully-connected layers, the pooling ones do not have trainable parameters. They simply perform downsampling of input feature maps by a certain factor (in case of LeNet-5 from Figure 2.3.1, by a factor of 2). Before, pooling was usually done by averaging of neighbouring pixels (average pooling), but in contemporary deep CNNs, max-pooling has been shown to be more effective.

Finally, backpropagation algorithm for MLPs which is discussed in Subsection 2.2.2 is very easy to adapt for training CNNs. Indeed, the constraint of local connectivity in convolutional layers is trivial to implement, while the weight sharing constraint is fulfilled via the synchronised updates of all shared weights by the same value.

Established Training Practices

A large body of research has been recently devoted to CNNs, and as a result, a number of universal training practices have been found which significantly improve and simplify the process of the CNN optimization. In this subsection, we discuss the most important and largely adopted of them.

Activation Function In early days of ANNs, in general, and CNNs, in particular, sigmoid σ (x) = 1 1+e -x and hyperbolic tangent tanh(x) = e x -e -x e x +e -x were usually used as activation functions. However, when CNNs became deeper, it turned out that sigmoid and hyperbolic activations create the problem of vanishing gradients. Indeed, the derivative of sigmoid σ ′ (x) = e x (1+e x ) 2 is close to zero when the inputs x have a big amplitude (and it often happens at the beginning of the training). However, once there is a zero derivative in a backward pass of backpropagation, all subsequent derivatives in earlier layers are also zeroed (due to the chain rule) meaning that the weights will not be updated and the CNN training will stuck.

In order to avoid this problem, Krizhevsky et al. [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] proposed using Rectified Linear Unit (ReLU) activation function which is simply defined as relu(x) = max(0,x). ReLU activations partly resolve the problem of vanishing gradients in CNNs allowing the convergence of very deep networks.

Later, a number of slight improvements to ReLU activations were proposed (such as Parametric ReLU (PReLU) [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] and Exponential Linear Units (ELU) [START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (elus)[END_REF]). ReLU and ReLU-like activation functions are used in the vast majority of the state-of-the-art CNNs, and in all CNNs of this manuscript.

Regularization Deep CNNs are powerful models with millions of trainable weights meaning that they can overfit even on a large training dataset. Therefore, preventing the overfitting is a major issue which defines how well a trained CNN will generalize on unseen data.

One of the simplest techniques in this context is the weight regularization which penalizes the CNN weights with large amplitudes. There are two mostly used weight regularization approaches, namely, L 1 and L 2 , which basically follow the same idea of adding a separate regularization term to the loss function: λ W L 1 and λ W L 2 , respectively (where W is the matrix with all weights of a CNN, and λ is a realvalued constant controlling the trade-off between the main optimization objective and the regularization term). Batch normalization has appeared to be surprisingly effective not only for speeding up the training, but also for improving the performances of CNNs [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Thus, batch normalization layers are currently a standard and an indispensable part of the state-of-the-art CNN architectures. was also innovative in many aspects. In particular, it was very deep for its time (5 convolutional layers and 3 fully-connected ones), it was one of the first to employ ReLU activations instead of the sigmoid ones, and finally Krizhevsky et al. [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] were the pioneers to employ dropout for CNN regularization.

State-of-the-Art CNN Architectures and CNN Applications

Later, Zeiler and Fergus [START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF] slightly improved AlexNet proposing a similar ZFNet CNN. Their work is also known for the excellent illustrations of the features which are learned in each layer of a CNN. 

Deep Generative Models

CNNs, which were presented in Section 2.3, are examples of discriminative models meaning that they are designed to predict a target label given an observation (i.e. an image) at their input. In Chapter 5, CNNs are used to address the first objective of this manuscript, the one of predicting gender and age from static face images.

At the same time, the second manuscript objective concerns the synthesis of new face images with the required labels (i.e. gender and age). This problem cannot be solved with discriminative models, but instead, it requires the usage of generative ones. Indeed, generative models learn to imitate the joint distribution of images and labels, and, unlike discriminative ones, allow to sample from this distribution.

More formally, if we denote the human faces by x and the studied face labels (gender and age) by y, we may assume that all natural human faces follow some (unknown) joint distribution p(x,y). According to this notation, discriminative models (for example, CNNs) learn to estimate the conditional distribution p(y x), while generative ones are focused on modelling of the joint distribution p(x,y).

Below, we briefly introduce the most notable existing deep generative models in Subsection 2.4.1, and then, in Subsection 2.4.2, we focus on Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF], a particular class of generative models which we further use for face synthesis and editing in Chapter 6.

Overview of Deep Generative Models

As already mentioned in the introductory Section 2.1, generative models are currently an area of active research in the deep learning community. Below, we give a general overview of different families of existing deep generative models focusing on their advantages and downsides.

In this manuscript, we focus on conditional generative models because our goal is the synthesis of face images with the required gender and age conditions rather than generating arbitrary faces. More formally, the objective of a conditional generative model is to learn the joint probability distribution p(x,y) of data (e.g. images) x and attributes or conditions (e.g. gender and age) y based on the labelled training dataset (x (i) ,y (i) ), i ∈ {1,...,N}, where N is the dataset size. Usually, this is done via the principle of Maximum Likelihood which consists in finding the set of model parameters θ maximizing the probability which the model assigns to the training data: of every pixel x i in an image depends only on the conditions y and the previous pixels (x 1 ,...,x i-1 ) (the pixel dependencies are in raster scan order, i.e. from left to right and from top to bottom):

θ * = argmax θ N i=1 p model (x (i) ,y (i) ;θ ) (2.
p(x y) = n 2 i=1 p(x i x 1 ,...,x i-1 ,y) (2.4.2) 
Note that the joint density distribution can be estimated as p(x,y) = p(x y)p(y) given the fact that it is usually considered that the conditions y follow some predefined regular distribution (for example, uniform or Gaussian).

Despite PixelCNNs can synthesize very plausible images and excel in the task of image synthesis, their major drawback is the time which is needed to generate samples. For example, it takes about 11 minutes to generate 16 RGB images of size 32x32 on a modern GPU according to the approach described in [START_REF] Oord | Conditional image generation with pixelcnn decoders[END_REF].

Unlike PixelCNN, the probability density functions in Boltzmann Machines (BMs) [START_REF] Hinton | Boltzmann machines: Constraint satisfaction networks that learn[END_REF] log p(x) of observing an image x can be calculated as following: log p(x) = z q(z x)log p(x) = z q(z x)log p(x,z) p(z x) = z q(z x)log p(x,z) q(z x) q(z x) p(z x) = z q(z x)log p(x,z) q(z x) + KL[q(z x) p(z x)] (2.4.3)

In the equation above, the encoder q(z x) = q(z x;φ ) approximates the intractable true posterior p(z x), while the decoder models the conditional distribution p(x z) = p(x z;θ ).

The second term of the log-likelihood 2.4.3 is the Kullback-Leibler divergence KL[q(z x;φ ) p(z x)]

illustrating the closeness of the true posterior p(z x) to its approximation q(z x;φ ). While infeasible for calculation, this term is always non-negative (due to the properties of the Kullback-Leibler divergence).

Therefore, log p(x) ⩾ ∑ z q(z x;φ )log p(x,z;θ )

q(z x;φ ) = L(θ ,φ ,x), where L(θ ,φ ,x) is called variational lower bound.
Training of a VAE requires the maximization of the variational lower bound L(θ ,φ ,x) (which gave the name to the generative model itself). We invite the interested readers to consult the original paper [START_REF] Diederik | Auto-encoding variational bayes[END_REF] for details on how L(θ ,φ ,x) is maximized in practice.

Obviously, a vanilla VAE can be extended to a conditional VAE (cVAE) which approximates the joint probability density p(x,y) by integrating the conditions y to the log-likelihood maximization 2.4.3 (details can be found in [START_REF] Yan | Attribute2image: Conditional image generation from visual attributes[END_REF]). Once a cVAE is trained, its decoder p(x z,y) = p(x z,y;θ ) can be used to synthesize images. To this end, it is enough to sample an arbitrary latent vector z from the latent distribution with the predefined prior p(z): z ∼ p(z), and set the conditions (i.e. attributes) y. Examples of cVAE-generated face images from [START_REF] Diederik | Auto-encoding variational bayes[END_REF] with different latent vectors z and gender/age conditions y are presented in Figure 2 VAEs (and cVAEs) are theoretically sound generative models which are relatively easy to optimize and which often converge to very good log-likelihood values [START_REF] Goodfellow | NIPS 2016 Tutorial: Generative Adversarial Networks[END_REF]. Nevertheless, the quality of the synthetic images produced by VAE is significantly lower that of PixelCNN and GAN. In particular, VAE-generated images are known to be blurry and to contain little details (cf. Up to now, we have discussed only the left branch of the taxonomy presented in Figure 2.4.1, where the generative models have an explicit representation for the joint probability density function p(x,y). On the contrary, the right branch of the taxonomy presents other generative models which, instead of directly defining of the probability density, offer a mechanism of indirect interaction (for example, sampling) with p(x,y). Thus, Generative Stochastic Networks (GSNs) [START_REF] Bengio | Deep generative stochastic networks trainable by backprop[END_REF] learn a Markov chain operator which, when it is run multiple times, produces samples from the model's joint distribution. However, similarly to BMs, GSNs fail to scale for high dimensional problems, and similarly to PixelCNNs, they are computationally costly at test time.

Finally, training algorithm of GANs, which are introduced in Subsection 2.4.2, requires only the model's ability to generate samples. Moreover, unlike GSNs, GANs scale well for high dimensional problems, and they can produce one sample at a time (i.e. no need for Markov chains).

Generative Adversarial Networks

As it has already been mentioned in Subsection 2.4.1, the objective of a GAN is to model an unknown image distribution via the ability to sample from it. The basic idea behind GANs is so unusual and simple that Y. LeCun called them one of the most important recent developments in deep learning 5 .

Informally, training of a GAN sets a game between two players, namely: a generator and a discriminator. The generator learns to draw synthetic images which should resemble the natural ones, while the discriminator learns to distinguish them. Training of the two players is done in parallel, and in order to succeed in the game, the generator must constantly improve its drawings, while the discriminator must look for more and more fine details to find the differences between the "fake" and "authentic" images. This competition between the players is very important, and training of one is not possible without the other (that is why the model is called "adversarial"). The whole process is illustrated in Figure 2.4.3.

Definition More formally, a vanilla (non-conditional) GAN [START_REF] Goodfellow | Generative adversarial nets[END_REF] is a pair of differentiable functions: the first one is called the generator G(z) and the second one is called the discriminator D(x).

These functions are modelled by ANNs (CNNs in the context of images) with the weights θ G and θ D , respectively.

Similarly to VAEs, GANs assume that the natural image distribution p data (x) is conditioned on some predefined prior distribution p(z). The generator of a GAN plays the same role as the decoder of a VAE. Thus, the generator maps vectors z from the latent space N z to the image space N x (G(z) ∶ N z → N x ).

The discriminator maps vectors from the image space N x to scalar values R (D(x) ∶ N z → R). More precisely, D(x) represents the probability that an image x is sampled from the image distribution p data (x) rather than from the generator distribution p G (x). Therefore, the discriminator is trained to assign high probabilities to the natural images x ∼ p data (x) (i.e. from the training dataset) and low probabilities to the 5. The quote can be found here: http://qr.ae/Tbcybl In other words, D and G play the following two-player minimax game with the value function

V (θ G ,θ D ): min θ G max θ D V (θ G ,θ D ) = E x∼p data [logD(x)] + E z∼pz(z) [log(1 -D(G(z)))] (2.4.4)
Of course, a vanilla GAN can be extended to model the joint probability p(x,y) of images x and conditions y. Arguably, the most natural way to do it was independently proposed in [START_REF] Mirza | Conditional generative adversarial nets[END_REF] and in [START_REF] Gauthier | Conditional generative adversarial nets for convolutional face generation[END_REF]. Both works modify the minimax problem 2.4.4 by introducing the vector of conditions y ∈ R Ny as additional input of both G and D. The value function

V (θ G ,θ D ) of the conditional GANs (cGAN) is presented below: min θ G max θ D V (θ G ,θ D ) = E x,y∼p data [logD(x,y)] + E z∼pz(z),ỹ∼py [log(1 -D(G(z,ỹ),ỹ))] (2.4.5)
Convergence Issues Today, GANs (and cGANs) are largely praised as the generative models which produce the most variative and visually plausible images [RMC16; Lar+16]. However, training of GANs is notorious to be highly unstable and difficult to control [START_REF] Salimans | Improved techniques for training gans[END_REF].

Indeed, the particularity of GAN optimization is the fact that the generator and the discriminator must balance each other during the whole process of the mini-max optimization (cf. Equation 2.4.4).

If at one moment of training, either generator or discriminator outperforms its respective opponent too much, the loss function will saturate and the training process stops.

For example, one particularly common failure scenario is when the gradients of all synthetic images point at the same area of the image space which is believed to be highly realistic by the current state of the discriminator. This makes the generator collapse to a state when it always outputs the same image (the one which is believed realistic). After the collapse has occurred, the discriminator rapidly understands that the regularly repeated image is the synthetic one, but the gradient descent optimization cannot split the identical outputs of the generator. This problem happens so often that it has even been named Helvetica Scenario [START_REF] Goodfellow | Generative adversarial nets[END_REF].

In order to avoid Helvetica Scenario and other problems with the convergence of GANs, a number of heuristics have been found by the deep learning community. Many of them are intuitive and are the results of numerous trials and errors. Thus, there was even a tutorial organized at NIPS 2016 6 which was entitled "How to Train a GAN? Tips and tricks to make GANs work".

Many of such GAN training hints are summarized in the Deep Convolutional GAN (DCGAN) which was designed by Radford et al. [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF], and which was one of the first successfully trained GANs using deep CNN architectures both for the generator and the discriminator. The key principles of the DCGAN architecture are described by its authors as following:

1. Strided and fractional-strided convolutions are used instead of pooling and upsampling layers.

2. Batch normalization is used both for G and D.

3. Both G and D are fully-convolutional CNNs (i.e. without fully-connected layers).

4. ReLU is used as the activation function in all layers of G except for the output layer where the hyperbolic tangent activation is employed.

5. LeakyReLU is used as the activation function in all layers of D.

These basic principles of the DCGAN architecture have appeared to be applicable both for vanilla GANs and for cGANs and have allowed training of the models for the large variety of different applications (some of them are cited below). In Chapter 6 of the present manuscript, we also apply DCGAN for synthesis and editing of face images with the required gender and age conditions.

Applications Due to the high visual fidelity of the generated images, GANs have attracted a lot of attention of the computer vision community.

Arguably, the most straightforward application of GANs is the generation of synthetic (labelled, in case of cGANs) training data for the domains where the data collection is costly. Thus, Sixt et al.

created a synthetic dataset of images of barcode-like markers that are attached to honeybees [START_REF] Sixt | Rendergan: Generating realistic labeled data[END_REF].

In the same spirit, Tan et al. [START_REF] Wei Ren Tan | ArtGAN: Artwork Synthesis with Conditional Categorial GANs[END_REF] proposed a GAN-model to synthesize paintings which imitate well-known artists.

Contrary to VAE, GAN is not an autoencoder and does not have an explicit mechanism for reconstructing an input image. Nevertheless, a number of studies proposed different approaches to circumvent this limitation [Zhu+16; Lar+16; Dum+17] (more details are provided in the beginning of Chapter 6). As a result, GANs (and cGANs) have been successfully applied for different types of natural image editing and enhancement, such as manipulating the image content [Zhu+16; Per+16], domain (style) transferring [Iso+17; TPW17], inpainting [START_REF] Yeh | Semantic Image Inpainting with Perceptual and Contextual Losses[END_REF] and super-resolution [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF]. Inspired by these works, in Chapter 6, we design a cGAN-based approach for editing of human visual demographic traits: gender and age.

Finally, GANs can be used as a part of other non-generative models. Thus, Luc et al. [START_REF] Luc | Semantic segmentation using adversarial networks[END_REF] improved the state-of-the-art image segmentation by integrating an adversarial loss, while Ho and Erman

[HE16] used a GAN in the reinforcement learning setting as a part of "imitation learning".

Conclusion

This chapter has been devoted to a brief overview of the most prominent techniques of deep learning for image analysis and synthesis. Therefore, we have mainly focused on the deep learning algorithms and models which are essential for understanding the rest of the manuscript. The more detailed and extensive presentation of the field can be found in the excellent book by Goodfellow et al. [START_REF] Goodfellow | Deep learning[END_REF].

In Section 2.1, we have introduced deep learning as a subdomain of machine learning explaining the difference between the hand-crafted and the learned features. The take-away message of this section is that deep learning is a particular case of representation learning where, in the context of computer vision, the features are learned in a hierarchical manner starting from the elementary edge detectors and up to the complex, problem dependent features.

Deep learning is often presented in the media as a field which has appeared from nowhere during the last decade. However, as it is reported in Section 2.2 of this chapter, the key concepts of deep learning have been developing for more than 60 years. More precisely, in Section 2.2, we have focused on the presentation of the fundamental ideas and algorithms (such as artificial neuron, training via backpropagation, ANN depth, transfer learning etc.) which are the basis of the contemporary deep learning.

CNNs are primary deep learning models which are used in all contributions of the present manuscript.

They have been presented in Section 2.3 as the models which have revolutionized various domains of computer vision. In Section 2.3, we have focused not only on the design aspects of different CNN architectures, but also on the largely adopted training principles which significantly ameliorate the CNN convergence and generalization (such as rectified activations, dropout and batch normalization).

Finally, Section 2.4 has been devoted to the introduction of GANs, the generative deep models, which are employed for editing of gender and age perception in human faces in Chapter 6. We have introduced GANs by comparing their advantages and downsides with respect to alternative deep generative models.

In particular, our choice of using GANs is motivated by the fact that once trained, they can produce synthetic images of high visual fidelity without significant computational costs.

Chapter 3

Gender/Age Prediction and Editing from Faces Contents 

Introduction

Soft biometrics traits are defined by Jain et al. [START_REF] Anil K Jain | Soft biometric traits for personal recognition systems[END_REF] as "characteristics that provide some information about the individual, but lack the distinctiveness and permanence to sufficiently differentiate any two individuals". The history of soft biometrics dates back to a French police officer Alphonse Bertillon [START_REF] Taylor | Alphonse Bertillon, father of scientific detection[END_REF] who created the law enforcement system (bertillonage) based on the anthropometric and anatomical characteristics of people in 1888. An example of a real police card of a criminal which was created as a part of bertillonage is presented in Figure 3.1.1-(a).

The contemporary soft biometrics studies a wide spectrum of human traits which are depicted in ). The list of the soft biometrics traits and the biometric modalities from which these traits are extracted.

[Dan+11]. Recognition and synthesis of gender and age is an active research area involving the studies with various data modalities such as voice [START_REF] Marianna Madry-Pronobis | Automatic gender recognition based on audiovisual cues[END_REF], iris [START_REF] Thomas | Learning to predict gender from iris images[END_REF], body [START_REF] Lu | Gait-based human age estimation[END_REF], hand [START_REF] Shamir | Automatic age estimation by hand photos[END_REF] and others (cf. However, among all human-related data modalities, the face (which was poetically named the "window to the soul" [Zeb97] by Zebrowitz) is the richest source of information about a person [START_REF] Arun A Ross | Handbook of biometrics[END_REF].

Indeed, apart gender and age, a human face can reveal a person's identity [START_REF] Zhao | Face recognition: A literature survey[END_REF], mood [START_REF] Yingli Tian | Facial expression recognition[END_REF],

ethnic origin [START_REF] Xie | A robust approach to facial ethnicity classification on large scale face databases[END_REF] and many other details. Moreover, as mentioned in Chapter 1, the development of social networks has dramatically increased the amount of face images (especially of celebrities) which are publicly uploaded in the Internet. Not only does it underpin the practical interest of creating automatic systems of face analysis, but it also offers an opportunity to train complex machine learning models (for example, deep ANNs), which was not possible even a decade ago. This explains why we have chosen human face images as the input data for predicting and artificially synthesizing of gender and age.

More formally, face is one of the primary aspects of the sexual dimorphism (i.e. the secondary sex characteristics allowing to distinguish men and women) [START_REF] Sr Loth | ANTHROPOLOGY| Sex Determination[END_REF]. Indeed, an average female face is rounder than an average male one, while men often have more facial hair than women. Nevertheless, Loth and Iscan [START_REF] Sr Loth | ANTHROPOLOGY| Sex Determination[END_REF] showed that not a single face characteristic can be solely used to confidently recognize gender. Moreover, the difficulty of gender recognition can be significantly increased by the presence of make-up and facial accessories (eyeglasses, scarf, etc.) Despite all that, humans are very good in recognizing gender from faces [START_REF] Yasar | The human skeleton in forensic medicine[END_REF], because of its importance for social interactions.

As a side remark, it is important to notice that from the linguistic point of view, human sex refers to an ensemble of biological characteristics which differentiate men and women, while the notion of human gender is more related to socio-cultural aspects which are associated with two sexes. Nevertheless, in the present manuscript, we follow the majority of the previous computer vision studies on automatic estimation of biological sex from face images which used the term "gender recognition" when describing their approaches [START_REF] Dantcheva | What else does your biometric data reveal? A survey on soft biometrics[END_REF].

Gender and age are two principally different biological characteristics as the former one is a part of a person's identity, while the latter one changes throughout the person's life. However, similarly to the ability to recognize gender, since the early childhood, humans develop a skill of estimating an age from the face with a high accuracy [START_REF] Patricia | Factors influencing the accuracy of age estimates of unfamiliar faces[END_REF]. 

Gender/Age Prediction from Face Images

This section presents a typical pipeline of gender/age prediction systems and makes an overview of the existing algorithms for addressing the considered problems in Subsections 3.2.1 and 3.2.2, 3.2.3, respectively. We end this section by illustrating some potential areas of application for the systems of automatic prediction of gender/age from faces in Subsection 3.2.4.

It is important to highlight that below, we deliberately do not provide the gender recognition and age estimation accuracies of the described approaches from the original articles. The reason is that there is a big discrepancy between the used testing datasets and the various evaluation protocols (i.e.

same-dataset, cross-validation, cross-dataset), which makes the resulting scores incomparable between each other. This is especially true for early works on the subjects. Instead, in Tables 5.3.2 and 5.3.3 of Chapter 5, we summarize all scores which were reported on three most popular contemporary gender and age benchmark datasets with well established evaluation protocols. rectangle, oval etc.) depends on the particular face detector. For example, in this manuscript, we employ a private face detector which is based on [START_REF] Zhang | Face detection based on multi-block lbp representation[END_REF] and outputs square-sized face regions.

Standard Pipeline for Gender and Age Prediction from Face Images

Sometimes, the output of a face detector is directly given to the face analysis component of gender/age prediction system. But more often, the input faces are expected to be in a certain normalized form. For example, a face image can be normalized by rotating it so that the two eyes lie on a horizontal line, and by scaling the resulting image in order to set the distance between the eyes in pixels to some predefined value. The described normalization method is simple but it is very sensible to precise estimation of the position of the eyes. Instead, a much more general and robust approach consists in detecting a set of landmarks (their exact number depends on the particular implementation) and then performing a (2D or 3D) affine transformation of the detected set to the set of the predefined landmark positions. This process is called face landmark alignment and is illustrated in 

Gender/Age-Aware Feature Extraction

Below, we present different approaches for description of face images (i.e. feature extraction) which have been utilized prior to gender recognition and age estimation in previous studies. We have organized the feature extraction methods based on their nature following the methodologies from [FGH10; Han+15; DER16].

Anthropometry-Based Features

Anthropometry-based features are a set of distances and ratios which are calculated between fiducial (landmark) points in a frontal normalized face. The idea is to use these distances in order to describe the topological differences between male and female faces or between faces of different ages. Basically, the anthropometric features derive the geometric dimensions of the skull based on the provided face image.

For example, one of the first attempts to distinguish cranial shapes of male and female faces was performed by Poggio et al. [START_REF] Brunelli Poggio | HyberBF networks for gender classification[END_REF]. To this end, the authors used 15 fiducial distances: pupil to eyebrow separation and nose width appeared to be the most discriminative among them. Later, Fellous [START_REF] Fellous | Gender discrimination and prediction on the basis of facial metric information[END_REF] extended the previous study [START_REF] Brunelli Poggio | HyberBF networks for gender classification[END_REF] by proposing 24 fiducial distances for gender recognition (the selected distances are illustrated in Figure 3. the width of the nose, the total width of the face and the distance between the two eye pupils were also found useful for gender recognition in [START_REF] Fellous | Gender discrimination and prediction on the basis of facial metric information[END_REF].

As it is presented in applied anthropometry-based features for age estimation from children faces.

Finally, a common downside of anthropometric features is the fact that they are very sensitive to precise estimation of the fiducial points in the face and to the face pose [START_REF] Hu Han | Demographic estimation from face images: Human vs. machine performance[END_REF]. In other words, if an input face is not well aligned, or a part of the face is occluded, the anthropometric features become almost useless. Due to this limitation, these features are rarely used for gender recognition and age estimation in real-life applications.

Texture-Based Features

Many studies on gender recognition and age estimation from face images are based on extraction of both holistic and local texture information. The most straightforward way to achieve that is to directly use the pixel intensities. This simple approach was employed by several gender recognition studies [GWP98;

MY02; BR07] with various classification algorithms. Raw pixels contain a lot of redundant information which can be removed using dimensionality reduction methods. The other popular possibility to extract texture information from a face image is the usage of the general-purpose hand-crafted features of computer vision. For example, Local Binary Patterns (LBP)

[OPH96] are one of the most basic and popular hand-crafted features. They were broadly utilised for both problems considered in the present section. Interestingly, LBP features appeared to be much more effective for gender recognition [Sha12; TP13; JC15] than for age estimation [YA07; GN08]. On the contrary, Biologically Inspired Features (BIF) [START_REF] Riesenhuber | Hierarchical models of object recognition in cortex[END_REF] were attempted for gender recognition in [START_REF] Hu Han | Demographic estimation from face images: Human vs. machine performance[END_REF],

but they proved to be particularly effective for age estimation [START_REF] Guo | Human age estimation and sex classification[END_REF] 

Manifold Learning Features

The objective of the manifold learning in the context of gender recognition (age estimation) is to find a low dimensional manifold as well as the projection to this manifold from the space of face images which together allow to separate manifold embeddings corresponding to face images of different genders Despite the mentioned success of the LLE algorithm for gender recognition, Guo et al. [START_REF] Guo | Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression[END_REF] demonstrated that LLE fails to project face images to sufficiently discriminative subspaces for age estimation. Instead, they employed Orthogonal Locality Preserving Projections (OLPP) [START_REF] Cai | Orthogonal laplacianfaces for face recognition[END_REF] which is yet another manifold learning approach. The particularity of OLPP is that is preserves the initial space 

Appearance-Based Features

Finally, the appearance features are based both on shape and texture information.

A typical method for extracting appearance features is Active Appearance Models (AAM) which was initially proposed for image coding [START_REF] Timothy F Cootes | Active appearance models[END_REF]. Using the training dataset, AAM separately applies PCA to learn a statistical shape model and an intensity model of face images. Lanitis et al. [START_REF] Lanitis | Toward automatic simulation of aging effects on face images[END_REF] extended AAM for age modelling by proposing an aging function to explain variations in ages. Later, AAM was independently applied for gender recognition by Xu et al. [START_REF] Xu | A hybrid approach to gender classification from face images[END_REF] and by Shih [START_REF] Shih | Robust gender classification using a precise patch histogram[END_REF].

Contrary to anthropometric features, AAM-based features can deal with all age categories, and not only with children.

The famous AGing pattErn Subspace (AGES) algorithm for age estimation [GZSM07] also uses AAM. The basic idea of AGES is to model the aging pattern, which is defined as a sequence of a particular individual's face images sorted in time order, by constructing a representative subspace. The proper aging pattern for a previously unseen face image is determined by the projection in the subspace that can reconstruct the face image with minimum reconstruction error, while the position of the face image in that aging pattern will then indicate its age. In AGES, each face is firstly encoded with AAMbased features. However, the practical usage of AGES is strongly limited by the fact it assumes the existence of multiple face images of the same person in the dataset.

In general, the appearance features which are extracted with AAM suffer from imprecise estimation of fiducial points similarly to the anthropometric features.

Gender/Age Prediction

In this subsection, we focus on the last step of the face processing pipeline presented in Figure 3 The optimal model was selected as a combination of the three approaches. Later, quadratic regression was also successfully used by Guo et al. [START_REF] Guo | Image-based human age estimation by manifold learning and locally adjusted robust regression[END_REF]. An original idea of modelling age evolution via a Gaussian Process was firstly proposed by Xiao et al. [START_REF] Xiao | Metric learning for regression problems and human age estimation[END_REF]. This idea was further developed by

Zhang et al. [ZY10], who proposed an algorithm for personalized age estimation via multi-task Gaussian

Processes where one task corresponds to one person. Support Vector Regression (SVR) [START_REF] Cortes | Support-vector networks[END_REF] is an adaptation of SVM for the case of regression. Age estimation was approached with SVR based on BIF texture features [START_REF] Guo | Human age estimation using bio-inspired features[END_REF].

There are hybrid approaches combining classification and regression in one model. For example, Han et al. [START_REF] Hu Han | Demographic estimation from face images: Human vs. machine performance[END_REF] proposed a hierarchical model for age estimation: firstly, they performed a coarse classification to identify an approximative age category for a given face, and then, the fine-grained age estimation was done within the selected category.

Apart from the most used classification and regression formulations, Chang et al. [START_REF] Chang | Ordinal hyperplanes ranker with cost sensitivities for age estimation[END_REF] addressed age estimation as an ordinal ranking problem via the algorithm which they called OHRANK. Given K different ages in a training dataset, OHRANK solves (K -1) binary classification problems where the goal is to estimate whether a face is older or younger than k years old. Having trained (K -1) binary classifiers f k (x), at test time, the ranking of a given face is evaluated as

r(x) = ∑ K-1 k=1 [[ f k (x) > 0]],
where

[[⋅]
] is 1 when inner condition is true and 0 otherwise. In practice, the ordinal ranking formulation has appeared to be equally effective for age estimation as the regression one. However, the principal downside of ranking with respect to classification and regression is that it requires (K -1) age estimations instead of a single one.

Finally, Geng et al. [START_REF] Geng | Facial age estimation by learning from label distributions[END_REF] proposed a way to extend the classification formulation of age estimation. The idea consists in using real-valued "soft" class labels instead of binary one-hot 1 vectors during the training. The experimental results reported in [START_REF] Geng | Facial age estimation by learning from label distributions[END_REF] are very promising, because they demonstrate that distributed labels introduce the notion of the age continuity to the pure classification formulation.

We present label distribution encoding in more details in Chapter 5, where we use it for training of age estimation CNNs.

Metrics

Gender Recognition Gender recognition is a binary classification problem, and the accuracy of automatic gender recognition algorithms is most often measured by a Classification Accuracy (CA), which is simply defined as the ratio between the number of correct predictions N c and the total number of predictions N: CA = Nc N . The biggest downside of CA is that it does not reflect the partial prediction scores for men and women. Thus, sometimes the standard binary classification metrics such as True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) rates are used together with CA. Otherwise, ROC curve is often employed in addition to CA for binary classification problems. A simple way to summarize a ROC curve in one real value is the usage of an Area Under Curve (AUC) [START_REF] James | The meaning and use of the area under a receiver operating characteristic (ROC) curve[END_REF] which allows the direct comparison between a pair of ROC curves.

Age Estimation As discussed in Paragraph 3.2.3.1, age estimation can be approached both as a classification and as a regression problem.

In the first case, age prediction accuracy is estimated with the already introduced CA. However, in 1. One-hot is a group of bits among which the legal combinations of values are only those with a single high (1) bit and all the others low (0). the regression scenario, the most used metric is Mean Absolute Error (MAE). MAE is simply defined as a mean value of absolute differences between predicted ages p and real ages t (the averaging is done on

N testing examples): MAE = 1 N N i=1 p i -t i (3.2.1)
MAE is a single real value which allows an easy comparison between different age estimation approaches, and that is why this metric is used in quasi-all research studies on the subject.

Practical Interest

The significant amount of research studies (presented in this section) which is devoted to automatic gender recognition and age estimation is explained by the high practical interest of these problems. For example, gender and age prediction systems are widely used in marketing and in the analysis of the customer's demographics. Owners of shops and boutiques are more and more interested in automatically collecting the demographics of the clients which are interested in certain groups of goods. Indeed, the recognition of the clients' gender and age can be used to automatically propose the targeted products.

Thus, Adidas is planning to use "digital walls" in their shops located in the USA and UK to automatically profile the clients and to eventually speed up the service2 . In the same spirit, commercials in the billboards can be potentially adapted depending on the pedestrians who pass by.

Automatic age estimation is also used to prevent children from accessing to services with age restriction (like purchasing of tobacco and alcohol from the vending machines, trying roller coasters in amusement parks, browsing through adult websites, etc.) In the same spirit, visual demographics recognition is essential for humanoid robots 3 which must adapt their interaction depending on the people in front of them.

Moreover, being the primary soft biometrics characteristics, gender and age have a lot of applications in the domain of video surveillance and security. Indeed, intelligent security systems can locate a person of interest suspect based on a specific set of soft biometrics attributes.

In Orange, we are interested in gender recognition and age estimation from face images due to three main reasons. Firstly, as mentioned in the introductory Chapter 1, estimation of facial traits is indispensable for automatic indexing of photo collections which are stored by our clients in the Orange cloud.

Secondly, similarly to the use cases presented above, demographics recognition systems can be used in Orange boutiques for collecting anonymized information about the customers and their preferences. Finally, gender recognition and age estimation can potentially be integrated at home TV terminals in order to propose the targeted content with respect to the audience.

Gender/Age Synthesis and Editing in Face Images

The problem of gender/age prediction which has been considered in Section 3.2 and the problem of gender/age synthesis and editing which is discussed in the present section are both focused on the same facial traits, but the latter one is arguably much more difficult. Indeed, unlike the prediction task, gender/age synthesis and editing requires a comprehensive representation of all face characteristics (including identity traits, facial expression, etc.) in addition to gender and age. Below, we separately present how such a complex modelling was performed in the most significant works on automatic aging/rejuvenation and gender swapping.

Face Aging/Rejuvenation

Also known as age progression/regression [START_REF] Shu | Personalized age progression with aging dictionary[END_REF] and age synthesis [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF], automatic face aging/rejuvenation is defined as aesthetically rendering a face image with natural aging and rejuvenating effects on the individual face [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF]. Synthetic modelling of an aging process is an extremely complex and ill-posed problem because an appearance of a particular person at a certain age is conditioned on a number of external factors such as living style, health state, genetic heritage, amount of emotional stress, disease processes, exposure to ultraviolet radiation, etc. [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF].

In this subsection, we make a brief presentation of the most notable works on the synthetic face aging/rejuvenation which form two distinct families, namely modelling-based and prototype-based. An interested reader can find a more extensive overview of aging/rejuvenation approaches in [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF] (for works before 2010) and in [START_REF] Shu | Age progression: current technologies and applications[END_REF] (for more recent works). graphs [START_REF] Suo | A compositional and dynamic model for face aging[END_REF], statistical-based [START_REF] Paysan | Statistical modeling of facial aging based on 3D scans[END_REF] and 3D models [START_REF] Shen | Exemplarbased age progression prediction in children faces[END_REF].

For example, the craniofacial approach of Ramanathan et al. [START_REF] Ramanathan | Face verification across age progression[END_REF] consists of two models: shape transformation one which detects the aging-caused skull deformations in a human face, and a texture transformation one which focuses on the skin changes and wrinkles.

And-or graph [START_REF] Suo | A compositional and dynamic model for face aging[END_REF] Modelling-based models often exploit the knowledge of the face physiology. Thus, Shihfeng et al.

[Shi+12] simulated face aging via preselected groups of face muscles (cf. The prototype approaches are often fast, but due to the fact that they discard personalized information, these methods are prone to lose the identity while aging. Therefore, contemporary prototype-based methods use explicit mechanisms to preserve the original identity.

One of the most well known and typical prototype-based approaches was developed by Kemelmacher-Shlizerman et al. [START_REF] Kemelmacher-Shlizerman | Illuminationaware age progression[END_REF]. Leveraging a huge Internet-based photo collection, the authors introduced an original method for constructing average image subspaces. The resulting prototypes depict averaged men and women aged between 0 and 80 years old keeping the texture differences between modelled ages. One of the key parts of the algorithm is the simulation of the initial image lightning in the aged/rejuvenated one, which surprisingly improves the human perception of the results. As indicated by the authors, the model of Kemelmacher-Shlizerman et al. [START_REF] Kemelmacher-Shlizerman | Illuminationaware age progression[END_REF] is particularly effective for aging of children.

The two state-of-the-art studies [Shu+15; Wan+16] on face aging/rejuvenation are also prototypebased. Shu et al. [START_REF] Shu | Personalized age progression with aging dictionary[END_REF] proposed Coupled Dictionary Learning (CDL). The authors learn a dictionary per each age category, and the aging pattern is encoded by the dictionary bases. Pairs of neighbouring dictionaries are learned jointly, and the identity information is regarded as the reconstruction error which Despite aging and rejuvenation are equally important, once trained, the vast majority of the discussed methods can change ages only in one direction (i.e. either to age or to rejuvenate, but not both). This is a serious limitation which can be naturally addressed by employing generative models (cf. Chapter 6).

Gender Swapping

Swapping gender of a human face is a challenging problem of face editing where the goal is to change the visual perception of gender in a given photo without altering other face attributes. Contrary to face aging/rejuvenation, gender swapping is a problem for which it is difficult to find training examples with the ground truth. Indeed, there are relatively few persons who have physically changed gender during their lives, and, to the best of our knowledge, there is no public dataset for the gender swapping problem. Therefore, this problem received less attention than the problem of synthetic aging/rejuvenation.

Nevertheless, some of the universal techniques which are presented above in the context of synthetic aging/rejuvenation were adapted for the problem of gender swapping as well.

For example, Rowland and Perrett [RP95] used a basic prototype-based algorithm for gender swapping. More precisely, the authors calculated the male and female prototypes, and the difference between the two was added to an input face in order to swap its gender (similarly to the pipeline presented in for gender swapping in [START_REF] Suo | High-resolution face fusion for gender conversion[END_REF].

To the best of our knowledge, the most recent (non-deep learning) approach for gender swapping was proposed by Othman and Ross [START_REF] Asem | Privacy of Facial Soft Biometrics: Suppressing Gender But Retaining Identity[END_REF]. It consists in morphing two (priorly aligned) faces (a female and a male ones) and selecting an intermediate face in a trade-off between the identity preservation and gender alteration. This morphing approach is simple and fast to implement, but the resulting face images suffer from numerous ghosting artefacts.

Practical Interest

The discussed approaches for aging/rejuvenation and gender swapping in faces are not only interesting from the scientific point of view, but also have a number of immediate and potential applications.

There is a huge demand on age synthesis solutions in police and law enforcement services [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF].

Indeed, automatic face aging/rejuvenation algorithms may serve as an alternative to forensic artists 4 , the humans with professional drawing skills, who create sketches of the wanted suspects, escaped fugitives, or lost persons whose existing photos are outdated.

Synthetic aging and rejuvenation are also required in film production to hinder the real age of actors.

Such effects are usually obtained via special visual effects or make-up. A classical example which is often given in this context, is the Hollywood film "The Curious Case of Benjamin Button" 5 , where the appearance of the character portrayed by Brad Pitt is convincingly changed throughout all ages.

The ability to stop physical aging or, at least, to change the visual appearance in order to look younger has always been a dream of many people. The contemporary cosmetology proposes plastic surgeries which can physically change the shape and the texture of a human face. However, such surgeries are often associated with a certain risk, and the synthetic rejuvenation techniques offer an opportunity to imagine the surgery results prior to the physical intervention [START_REF] Koch | Simulating facial surgery using finite element models[END_REF].

Finally, face aging/rejuvenation methods are often used to enhance face recognition software. Indeed, as it is further discussed in Section 6.4 of Chapter 6, despite a tremendous progress of face recognition models in recent years [PVZ15; SKP15], the sensitivity to human age variations remains an Achilles' heel of the majority of the state-of-the-art face verification software. A possibility to synthetically normalize ages in a pair of compared faces can therefore be crucial to improve the quality of cross-age face verification. As a matter of fact, this face verification use case is the most relevant one for Orange, and this is the reason why in Chapter 6, we explicitly show that the face editing method which is proposed in this manuscript can be used for age normalization in the cross-age identity verification scenario.

Gender swapping can also be potentially used in different contexts. For example, one can imagine employing gender and age editing in a pair with a face verification software to estimate the kinship [START_REF] Lu | The fg 2015 kinship verification in the wild evaluation[END_REF] or siblings [START_REF] Tiago | Detecting siblings in image pairs[END_REF] relationships. Not to mention that it is simply fun to discover a male or female version of yourself. Thus, there are some entertainment online applications which propose to masculinize or to feminize a given face. 6 

Conclusion

The In the rest of this manuscript, we describe our contributions comparing the resulting deep models for gender/age prediction and editing with the state-of-the-art studies presented above. 

to generalize to unknown data. Indeed, the first of these two aspects is extremely important in the context of the contemporary training datasets which are often automatically collected from various sources in the Internet, while the second one is simply essential for real-life applications of a machine learning 51 model. For the experimental comparison, we have selected the problem of gender prediction from images of pedestrians, which we believe to be particularly suitable for the stated goals (our motivations for selecting this problem are provided in Subsection 4.2.1). Despite a limited amount of pedestrian images available for training, the first preliminary study demonstrates the superiority of CNN-learned features over hand-crafted ones, and in addition, it shows the high effectiveness of transfer learning via fine-tuning of an already pretrained CNN.

In our second preliminary study, we approach one of the primary problems of this PhD: gender recognition from face images. In the frame of this study, we explore the importance of the complexity 

of

Study 1: CNN-Learned vs. Hand-Crafted Features

As discussed in Chapter 2, deep CNNs have revolutionized the domain of computer vision, and are currently the standard models for object recognition in images. Nowadays, it is a common practice to reuse the features which are learned by deep CNNs on large datasets (typically, on ImageNet) for other problems. These CNN-learned features (which are either used "as is" or fine-tuned for the target domain)

in the majority of cases, outperform the hand-crafted features even if the latter are specifically designed for the particular problem [START_REF] Sharif Razavian | CNN features off-the-shelf: an astounding baseline for recognition[END_REF].

However, what is the principal advantage of learned features with respect to hand-crafted ones? In an attempt to answer to this question, in this section, we compare these two classes of image representations in the context of gender recognition from pedestrian photos. The results of our experiments suggest that one of the key difference of the learned features with respect to the hand-crafted ones is the ability of the former to better absorb the heterogeneity of the training data which results in better generalization of the learned features on unseen datasets. This flexibility to variations in training images is achieved during the training process (which does not exist for hand-crafted features), and as shown in this section, even a relatively small number of training images and a very compact CNN architecture are enough to learn features with the stated above properties.

Gender Recognition from Images of Pedestrians

Motivation

Despite this PhD is focused on the analysis of face images with deep learning, we have selected the problem of gender recognition from pedestrian images (and not from face images) for the comparison between CNN-learned and hand-crafted features in the present section. There are three main reasons motivating our decision which are presented hereafter.

-As stated above, one of the objectives of this section is the evaluation of how the two compared classes of feature representations adapt to heterogeneous training data. Given all possible camera positions, body orientations, weather conditions, etc., there are obviously much more variations in images of pedestrians than in images of faces.

-The second reason is in part the consequence of the first one. Indeed, gender recognition from pedestrian images is generally more difficult than gender recognition from faces (thus, the CA for the former are in the vicinity of 80%, while for the latter, the state-of-the-art CA are above 95%).

At the same time, comparison of features on a more challenging problem is more representative, as in this case, the quality of image descriptors can really make the difference.

-Finally, the last but not the least reason is the fact that there are relatively few pedestrian images at public access. This gives us a possibility to evaluate the CNN-learned features in the context of limited training data, as well as to test the effectiveness of transfer learning.

Finally, on its own, the problem of pedestrian gender recognition is also very important from the applicative point of view. We elaborate more on that in the following paragraph.

Problem Description

The ability to automatically profile pedestrians based on their gender is a very important issue which has immediate applications in video surveillance and security. However, in these particular domains, obtaining a clear shot of a person's face might be infeasible due to technical, environmental and privacy reasons. Indeed, in the context of video surveillance by CCTV cameras, the Subjects of Interest (SoI) do not cooperatively look head on into the camera. Therefore, it is likely that SoI is seen from the back or her (his) face or the face is occluded. Moreover, the video surveillance scenario implies that SoI takes a little part of the camera's field of view. Hence, the pixel resolution of the face region is often prohibitively low for robust face analysis. Thus, it is important to also be able to estimate a gender of a pedestrian having only a general image of her (his) body.

There are many clues which add humans to instantly estimate a gender of a person without seeing her (his) face. For example, a silhouette of the body is a strong clue. However, the silhouette details are often hidden behind the clothes which in its turn can be useful to guess a person's gender. Otherwise, the hairstyle is one of the most obvious clues though it can also be a source of confusion. Despite the difficulty of the problem, the study presented below in Subsection 4.2.4 shows that in about 90% of cases, human observers correctly estimate a person's gender given a single image of her (his) body.

Here and below, by pedestrian (or body) image, we understand a static color image containing a full body of a single human (including head, torso, arms and legs).

Related Work

Being focused on face-centred studies, we have not covered the existing works on gender recognition from body images in Chapter 3. Therefore, an overview of the state-of-the-art for the considered problem is performed below.

Cao et al. [START_REF] Cao | Gender recognition from body[END_REF] were the first to address the problem of automatic gender recognition from static body images. Authors preprocessed input images by centring and normalizing the height of bodies and subsequently splitting them into overlapping patches which correspond to specific body parts. HOG features were further extracted from these patches and concatenated to form a single feature vector which was provided at the input of a boosting classifier.

In the same spirit, Therefore, the mentioned approaches (and, in particular, feature representations) cannot be compared between each other based on the scores in Table 4.2.1. Moreover, the previous studies did not evaluate their respective models in the cross-dataset scenario which is essential to measure the practical utility of the designed models in real-life conditions.

On the contrary, the experiments of this section are performed on a collection of heterogeneous datasets (presented in Paragraph 4.2.3.1) both in the same-dataset and cross-dataset scenarios, which allows a complete and fair comparison of learned and hand-crafted features.

Compared Feature Representations

In this section, we compare the effectiveness of six image features, three hand-crafted ones ( 

Hand-Crafted Features

A number of various hand-crafted feature representations have been designed for different problems of computer vision. Often such features are well-adapted for certain problems, and are much less effective for another ones. For our experiments, we have selected three particular types of feature representations, namely: person Re-Identification, LBP and HOG, which are mostly suitable for gender recognition from pedestrian images according to the previous studies.

Person Re-Identification Features Introduced in [START_REF] Layne | Person Re-identification by Attributes[END_REF], Re-Identification (RI) features of an image contain low-level color and texture information. They were initially proposed for person recognition (identification) in the crowd [START_REF] Layne | Person Re-identification by Attributes[END_REF], hence the name. We have selected RI features for comparison as they were used for pedestrian gender recognition in the original work describing the PETA collection of images [START_REF] Deng | Pedestrian attribute recognition at far distance[END_REF] (the dataset which we use in our experiments, cf. Paragraph 4.2.3.1 for more details).

The size of the RI features vector is independent of the size of an input image. In particular, the complete vector is composed of six 464-dimensional vectors each of which is extracted from 6 equallysized horizontal strips from a body image. These strips are described using 8 color channels (RGB, HSV and YCbCr) and 21 texture filters (Gabor, Schmid) derived from the luminance channel. Histograms with a bin size of 16 are used to describe each channel. Therefore, the resulting features vector is of size 2784 = (8 + 21) × 16 × 6.

LBP Features Local Binary Pattern (LBP) features [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF] are arguably the most popular handcrafted features for texture description. Selection of LBP features for our experiments is natural given the fact that, as mentioned in Chapter 3, they were successfully employed for gender recognition from face images.

In our implementation of the LBP encoding, square cells of size 5x5 are used to compare the central pixel with its 8 neighbours which are located at a distance of 2 pixels. The rotation invariance of the descriptors is ensured by counting only the uniform patterns in histograms as recommended in [START_REF] Barkan | Fast high dimensional vector multiplication face recognition[END_REF] (therefore, the resulting histograms are composed of 10 bins). All local histograms are normalized before concatenation. LPB features have been extracted from body images of size 150x50 which results in 3000-dimensional feature vectors.

HOG Features As one may notice from Table 4.2.1, Histogram of Oriented Gradients (HOG) features were the most used ones in relevant works on gender recognition from pedestrian images. This is not surprising given the fact that HOG features were initially introduced for detection of pedestrians from static photos [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. This explains the choice of HOG for the comparison in this section.

In particular, we use 8x8 square cells which are organized in 2-by-2 blocks to extract HOG features.

The number of histogram bins is set to 9. Thus, given a body image of size 150x50, the resulting features vector contains 2448 values.

CNN-Learned Features

As mentioned in Chapter 2, trained CNNs can be used as feature extractors. In particular, in order to extract CNN-learned features, a given image must be processed by a CNN. After that, a features vector is normally composed of the activations of one of the CNN layers (convolutional or fully-connected).

Usually, the deepest layers (i.e. those which are closer to the network output) are selected for feature extraction, because the respective image representations are more problem-dependent (cf. Chapter 2 for the details).

In this section, we have selected two CNN architectures for feature learning, namely: pedestrian_CNN and AlexNet [KSH12] (the two are presented in Table 4.2.2).

The role of the pedestrian_CNN in our comparison is to verify whether it is possibly to learn decent feature representations with a small amount of training images. Therefore, the CNN has been designed to be trained from scratch for gender recognition on available pedestrian images. Due to the very limited size of the training dataset (in total, 10K images, but for certain experiments only about 1K images are used for training (cf. Subsection 4.2.3)) the architecture of pedestrian_CNN is very compact in order to avoid overfitting. In particular, the design of pedestrian_CNN is largely inspired by the one of LeNet-5

(cf. Chapter 2).
Alternatively, the role of AlexNet is to evaluate the effectiveness of transfer learning for the selected problem. Therefore, we have used the CNN which was initially pretrained on the ImageNet dataset. As a side remark, it is important to mention that any other deep CNN pretrained on ImageNet (such as VGG-16/19, ResNet etc.), could have also been employed for the stated purpose, but, for simplicity, we have selected the smallest of these architectures (i.e. AlexNet). As explained above, there are two possibilities of transfer learning from a pretrained CNN: (1) using the network "as is", or (2) priorly fine-tuning it on the available training images. In this section, we explore both these options by using the original AlexNet and the one fine-tuned on the pedestrian images. The latter network is further referred as AlexNet-FT.

Below, we provide some details on training (fine-tuning) of the presented CNNs. The pedestrian_CNN features are extracted from the activations of the fully-connected layer, so the resulting feature vectors are composed of 100 values (which is more than 100 times smaller than all hand-crafted feature representations presented above).

Features Learned by AlexNet and AlexNet-FT Both for AlexNet and AlexNet-FT, the activations of the last fully-connected layer of 4096 neurons are used as learned features. In order to fine-tune AlexNet-FT, we substitute the original final layer of 1000 neurons with the same layer of 2 neurons and the Softmax activation as in the case of pedestrian_CNN. During the fine-tuning, we have been using the small learning rate (10 -4 ) for the convolutional layers to preserve the original features learned on ImageNet and bigger learning rate (10 -2 ) for the fully-connected layers to better adapt to the target problem (i.e. gender classification from pedestrian images).

Experiments

PETA Collection of Datasets

We compare learned and hand-crafted features on the PETA (PEdesTrian Attribute) collection of datasets [START_REF] Deng | Pedestrian attribute recognition at far distance[END_REF]. To the best of our knowledge, PETA is the largest open-access collection of pedestrian images with gender annotations. Originally PETA was composed of 10 datasets of different sizes: CUHK, PRID, GRID, MIT, VIPeR, 3DPeS, CAVIAR, i-LIDS, SARC3D and TownCentre (following the same naming as in [START_REF] Deng | Pedestrian attribute recognition at far distance[END_REF]), with a total of about 19,000 images. Two of these datasets (MIT and VIPeR) were used in many previous works on gender recognition from full body images as reported in Authors of PETA performed some preliminary gender recognition experiments on the whole collection of 19,000 images [START_REF] Deng | Pedestrian attribute recognition at far distance[END_REF] using RI features (which have been presented above). They randomly split the total collection into 9,500 images for training, 1,900 for validation and 7,600 for testing. The reported CAs vary between 79.7% and 81.4% depending on the used classifier. We have successfully reproduced these results using several random splits of 19,000 images in the same proportions as it was done by authors of PETA 1 . However, the PETA collection contains many images of the same persons which are taken few seconds away from each other by surveillance cameras. Images like that are almost identical and can considerably bias the resulting prediction rates (if they are split between training and test). After manually removing all quasi-identical images from PETA the CAs of the approach proposed in [START_REF] Deng | Pedestrian attribute recognition at far distance[END_REF] drop down to 63-65%.

(a) (b) (c) (d) (e) (g) (f) (h) (i) (j)
This drastic drop in performances proves the importance of the manual filtering of PETA collection.

In addition to quasi-identical images, PETA contains a few images of a very low resolution (height is less than 120 pixels or width is less than 40 pixels) and images where SoI is occluded by side objects (for example, by strollers or by other persons). Such images have also been manually removed from PETA.

As a result, 8,365 images have been left which is less than half as many as the initial size of PETA.

Further in this section, the "filtered" version of the PETA collection is referred as PETA_cleaned. 

Experimental Protocol

In order to fairly compare the presented hand-crafted and learned features taking into the account different evaluation scenarios, we perform three separate experiments of increasing complexity. 4.2.4. To ensure an objective evaluation, all test datasets are balanced between genders. Moreover, we compare not only resulting gender CAs, but also AUCs as the latter is invariant to the choice of the decision threshold of the classifier.

The goal of the presented experiments is the features comparison and not designing the best gender classifier for pedestrian images. Therefore, for all compared feature representations, we employ the same SVM classifier with a linear kernel (in particular, we use the SVM implementation by Joachims [START_REF] Joachims | Making large-scale SVM learning practical[END_REF]).

In case of learned features, the CNNs are firstly trained in a classical manner using back-propagation, and then at test phase, the final classification layer of 2 neurons is cut off and the learned networks are used just as feature extractors.

As presented in Paragraph 4. 

Experiment 1: Homogeneous Training Data; Same-dataset Evaluation Scenario

The results of Experiment 1 are summarized in Table 4.2.5. For convenience, we present CAs and AUCs on the five test datasets and the corresponding average values as well.

There is a clear difference in performances of the SVM models using three different types of handcrafted features. We observe, that RI features with the average CA of 59.3% are hardly applicable for the problem of gender recognition from body images. Presumably, successful results obtained using We believe that the advantage of HOG features with respect to other hand-crafted alternatives is that HOG is particularly suited for detecting the shape of an object (in our case, the body silhouette), while, for example, LBP is more sensible to texture differences. At the same time, in pedestrian gender recognition, a body silhouette is a more reliable characteristic than particular texture details.

All three learned feature representations demonstrate decent gender recognition scores comparable or better than the ones obtained by HOG features. The fine-tuned AlexNet-FT significantly outperforms the original AlexNet highlighting the importance of fitting to the target domain in transfer learning. The 100-dimensional feature vector of a very compact pedestrian_CNN obtains the CA score of 77.2% which is almost on par with the score of HOG features and significantly better than the one of original AlexNet features. This result proves that good enough features can be learned even with a small CNN on a tiny dataset.

Experiment 1 is the simplest one among the three performed in the present section. On the contrary, all three learned features show a good capacity to absorb the variety of training data by maintaining almost the same level of performances as in Experiment 1.

In our opinion, the results of the performed experiment are of the uttermost importance, because they illustrate the fundamental difference between the two compared classes of feature representations.

Indeed, unlike hand-crafted features, the CNN-learned ones have little sensibility to the heterogeneity of the training images, because they have the possibility to adapt to the particular data during the training process. We believe that this is one of the main reasons of why learned features better scale up to problems with large datasets and many classes, such as ImageNet classification. The results of the third experiment confirm the above conclusions. In particular, unable to adapt to variations in training datasets, hand-crafted features naturally fail to generalize to new datasets.

Experiment 3: Heterogeneous Training Data; Cross-dataset Evaluation Scenario

Indeed, the difference between hand-crafted and learned features becomes even more significant in 

Pedestrian Gender Recognition in Presence of Privacy Protection Filters

The study presented in this subsection is a side research project which has been derived from the main topic of this section (comparison between CNN-learned and hand-crafted features). It has been performed in the frame of a collaboration with Natacha Ruchaud (Eurecom), Pavel Korshunov (EPFL)

and Touradj Ebrahimi (EPFL).

In particular, the goal of this study is to evaluate the sensitivity of our best pedestrian gender recognition model to altering of test images with privacy protection filters (which are often used in practical applications of video surveillance). More precisely, we compare the gender CAs of our model with that of human estimators (with and without privacy protection) via a crowdsourcing campaign.

Based on the results of Experiments 1-3 presented above, we have selected AlexNet-FT CNN as our best pedestrian gender recognition model. Contrary to experiments presented above, in this subsection, AlexNet-FT is used both for feature extraction and for gender classification which results in better recognition performances.

Privacy Protection Filters

By Privacy Protection Filters (PPF), we understand an ensemble of techniques which allow to hide Masking PPF is a simple approach which consists in mixing an original image x with a completely black image x bk . The opacity constant α controls the level of privacy protection (the bigger is α, the more obscure is the resulting protected image x p ):

x p = (1 -α) × x + α × x bk .
Morphing PPF [START_REF] Korshunov | Using face morphing to protect privacy[END_REF] is an extension of the Masking PPF, where an original image x is combined with a target one x t (which in our case can be an average body image, for example). The method firstly divides both images into Delaunay triangles and mixes the vertices of x and the vertices of x t (in the same way as in Masking PPF). Then the pixel intensities are interpolated according to the closest vertices. A simple image downsampling can also serve as a PPF which is known as Pixelization. In this case, the strength of PPF is controlled by a downsampling ratio.

Gaussian Blur PPF consists in filtering an input image with a Gaussian kernel G(x,y) = 1 2πσ 2 e -x 2 +y 2 2σ 2 , where the standard deviation σ controls the PPF's strength. 

Evaluation of Human Gender Classification Accuracy by Crowdsourcing

In order to compare the gender recognition performances of AlexNet-FT with that of humans in the presence of the listed PPFs, we have organised a crowdsourcing campaign.

We have randomly selected 300 images from 10 test datasets of PETA_cleaned for the evaluation in the crowdsourcing experiment. The usage of all test images from PETA_cleaned (as in experiments of Subsection 4.2.3) has appeared to be prohibitively expensive. The selected images have been protected by five presented PPFs at three different strength levels (cf. Table 4.2.8), resulting in 300 × 5 × 3 = 4500 images evaluated in this crowdsourcing study. Each crowdsourcing worker has been asked to look at a

body image and answer the question "What is the gender of the person?" with the following options:

"male", "female" and "I don't know".

To ensure a statistically significant number of evaluations for each image, 40 subjects were assigned to each image, with a total of 2652 subjects participating in the evaluations. By automatically filtering out 198 unreliable workers, 2454 evaluations have been finally used to estimate human scores.

AlexNet vs. Human Estimators: Results

Original and protected images. The outputs of AlexNet-FT are binary ("female", "male") while the human evaluators had three options ("female", "male", "I don't know") during the crowdsourcing. Therefore, in order to calculate CAs for human annotators we assume that 50% of "I don't know" answers are correct.

On original images, humans outperform our AlexNet-FT by about 8 points, which indicates the improvement margin for the proposed gender recognition solution. We believe that CA of AlexNet-FT can be significantly increased by using a bigger dataset for fine-tuning (as in our experiments, we have used less than 10K images for this purpose which is very little even for transfer learning of a deep CNN). In presence of various PPFs, the performance gap between humans and AlexNet-FT is generally reduced with the single exception: Masking PPF, which does not seem to have a major impact on human scores.

Summary of the First Preliminary Study

Exp Good generalization of the learned features to heterogeneous and unseen data can be explained by the fact that contrary to hand-crafted features, they focus on the semantics of the problem and not on lowlevel image details (like edges, corners etc.) This general understanding of the problem is learned during the training phase (which is absent for the hand-crafted features) and it allows the learned features to grasp the concept of gender through the large variety of body poses, backgrounds etc. Remarkably, even the original AlexNet features better generalize to unseen body images than HOG features. It demonstrates that high-level semantic concepts from the ImageNet dataset are transferable to body images.

Study 2: CNN Architecture for Training from Scratch

Among other things, the experiments in Section 4.2 have demonstrated the effectiveness of transfer learning which allows reusing of the CNN-features learned on large multi-class datasets (such as ImageNet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] or Places [START_REF] Zhou | Learning deep features for scene recognition using places database[END_REF]) for other problems.

But what if we want to train a CNN from scratch so that the corresponding learned features are better fit to the particular application? The example of pedestrian_CNN from the previous Section 4.2 demonstrates that a very compact CNN trained from scratch can obtain comparable performances with a fine-tuned AlexNet. However, this example is biased by the fact that few training images are available for gender recognition from bodies. But in case if training data is abundant, does it necessarily mean that the deeper CNN architecture would outperform the shallower one?

In order to answer to this question, in this section, we consider the problem of gender recognition from face images which has been introduced in Chapter 3. Unlike pedestrian images, today, there are big public datasets of face images annotated with gender information which can be used for training. We propose a simple algorithm for CNN architecture optimization which allows us to experimentally show that when trained from scratch, the gender CAs are saturated with a quite shallow CNN. Results of this section highlight the importance of the target problem for the effectiveness of deep learning.

Algorithm to Optimize CNN Architecture

In order to design an optimal CNN architecture for gender recognition from face images, we propose a simple but effective algorithm (cf. Algorithm 4.1). It takes a complex start_CNN architecture at its input and successively optimize it to obtain more compact optimized_CNN at the output without decreasing the resulting gender CAs.

More precisely, once start_CNN is trained, we evaluate its score on the validation dataset and fix it as False), when current_CNN achieves the reference accuracy with respect to its standard deviation: CA 0 ⩽ µ current + σ current (in other words, we consider one model to be better than another one only if the margin between the two CAs is at least as big as the corresponding standard deviation).

The optimization is composed of three main steps which can be summarized as (1) reducing the CNN's depth; (2) reducing the CNN's width; and (3) reducing the number of fully-connected weights.

Below, we detail each of these steps motivating our choices.

The first step of Algorithm 4.1 (lines 3-9) optimizes the number of convolutional blocks in the CNN architecture. Beginning with start_CNN, we iteratively remove the convolutional blocks until the gender recognition accuracy deteriorates significantly (in the sense described above). Due to the fact that con- 24 optimized_CNN ∶= current_optimal_CNN ; Algorithm 4.1: Optimization of the CNN architecture. The algorithm assumes that initial start_CNN architecture is composed of several convolutional blocks each followed by a factor-2 subsampling and a final fully-connected layer. For simplicity, the number of convolutional feature maps (#ConvFeatureMaps) in each convolutional layer and the number of neurons in the fully-connected layer (#FCNeurons) is expected to be a power of 2. volutional blocks are ended by a factor-2 subsampling, when removing each of them, we also half the height and width of retina. This allows preserving the size of feature maps at the last convolutional block.

The optimal architecture after the first step is given at the input of the second one (lines 10-16 of Algorithm 4.1) which objective is to reduce the number of feature maps in each convolutional layer (in other words, the architecture's width). Number of feature maps in all convolutional layers of the initial start_CNN is a power of 2, so during every iteration of the second step of Algorithm 4.1, we half the feature maps quantity.

Similarly, during the last third step of the algorithm, we iteratively half the number of neurons in the start_CNN

Step 1

Step 2

Step 3 fully-connected layer. When the third step is completed, the resulting CNN architecture is considered as the algorithm's output optimized_CNN.
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It is interesting to notice that an approach very similar to Algorithm 4.1 has been later independently proposed by Perez de San Roman et al. [START_REF] Pérez San-Roman | Saliency Driven Object recognition in egocentric videos with deep CNN: toward application in assistance to Neuroprostheses[END_REF] for optimizing the CNN architecture in the context of the analysis of egocentric videos.

Experiments

In this subsection, we optimize start_CNN according to Algorithm 4.1 presented above. Once an optimal CNN architecture is found, we evaluate its performance on a separate test dataset (cross-dataset evaluation protocol) and measure the impact of the training dataset's size on gender recognition accuracy.

The design of the starting architecture (to be optimized) is inspired by that of the CNN proposed by Simonyan and Zisserman [SZ15] (the architecture "B" from their work). Following their work, start_CNN is composed of several convolutional blocks each containing two successive convolutional layers with ReLU activations and max-pooling subsampling operations. The kernels of all convolutional layers have a spatial dimension of 3x3 pixels. However, start_CNN has several differences from its initial prototype in [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF]. In start_CNN, the input image resolution is of 128x128 pixels instead of 224x224 pixels. We use a lower resolution because initial resolutions of face images in the training dataset vary approximately from 60x60 to 120x120 pixels, and it does not make sense to significantly upsample input faces. Taking into account the smaller inputs, start_CNN contains 4 instead of 5 convolutional blocks.

Finally, due to the fact that the gender recognition problem is easier than ImageNet classification (2 target classes instead of 1000 classes), we have reduced the number of kernels in the convolutional layers and used only one fully-connected layer. The final architecture of start_CNN is detailed in the first column of Table 4

.3.1.
Training of all CNNs in this subsection has been carried out by optimizing the binary cross-entropy objective function using the mini-batch Nesterov's accelerated gradient descent ( [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O (1/k2)[END_REF]). In order to prevent the CNNs from overfitting, we have employed the "dropout" regularization ([Sri+14]) on the activations of convolutional layers and the fully-connected layer. We have made the ratio of the "dropout" to be dependent on the particular size of the convolutional or the fully-connected layer varying it from 0 (i.e. no "dropout") to 0.5. The training has been stopped once the validation accuracy stops improving.

In practice, it corresponds to the moment when the training accuracy is between 98.0% and 98.1%

(depending on the particular CNN architecture). Training has taken about 30 epochs with slight variations depending on the particular CNN architecture, which corresponds to about 27 hours of training for the start_CNN and 2.5 hours of training for the resulting optimized_CNN on a contemporary GPU.

Datasets

The experiments presented in this section have been carried out on two publicly available face datasets: CASIA WebFace [START_REF] Yi | Learning face representation from scratch[END_REF] and Labeled Faces in the Wild (LFW) [START_REF] Gary B Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF]. The first one is used for training and validation whereas the second one is used for testing. Authors of CASIA WebFace provide names of 10,575 subjects but not their genders. We have annotated genders using the metadata provided by IMDb and also by manual annotation. 

Optimization of start_CNN

Below, we report the results of optimizing start_CNN according to Algorithm 4.1 by subsequently performing the three steps of the algorithm.

Step 1. Optimizing the retina size and the number of convolutional layers. In the first step of 4.3.1-(step 1)). In order to vary the number of convolutional layers while approximatively preserving the global number of weights in the CNN, we keep constant the number and size of the feature maps at the last convolutional layer during the first step (as more than 90% of weights of start_CNN are concentrated between the last convolutional and the fully-connected layers). This time, the difference between compared CNNs is less significant than in the first two optimization steps indicating that the size of the fully-connected layer is less influential on the resulting gender recognition accuracy than the number and the width of the convolutional layers. Nevertheless, we observe that CNNs B, E -I reach the reference threshold of 97.5% of CA, while the performances of CNNs J -M are below the threshold on the validation dataset. Hence, the CNN architecture I is selected after the last optimization step and is considered as the final output of the optimization algorithm: optimized_CNN ∶= CNN I.

Impact of the Training Dataset Size

In order to assess the impact of the training dataset's size on the resulting gender recognition CAs, The accuracy of optimized_CNN trained only on a half of available images does not distinguish significantly from the accuracy of optimized_CNN trained on all data. Further reducing of the training dataset down to 25% and 10% of its initial size leads to a loss of performance. However, these losses are relatively small. Thus, optimized_CNN which is trained on only 10% of the available data (i.e. on about 45K images) performs reasonably well: 96.0% of correct gender predictions on LFW (it is better than, for example, the model by [START_REF] Shan | Learning local binary patterns for gender classification on real-world face images[END_REF] which used to be the state-of-the-art on LFW in 2012).

Gender Recognition Accuracy on LFW

The gender CA of optimized_CNN on the test LFW dataset is of 96.9% which is the state-of-theart result among CNNs trained from scratch. When combining three instances of optimized_CNN in a single ensemble model, the CA is marginally improved reaching 97.3% (the model fusion is done on the predictions level). We have not observed considerable ameliorations of this result by combining more than three CNNs in one ensemble. Therefore, contrary to the pedestrian gender recognition problem considered in Section 4.2, in case of gender recognition from faces, the hand-crafted features (in particular, LBP) are as good as the features learned from scratch. Moreover, combining the two leads to the increase in performances. We believe that there are two explanations to the observed results:

Reference

1. Body images have more variety than face ones in terms of poses, environments, occlusions etc.

Hence, the advantages of learned features (their abilities to better adapt to heterogeneous data and to better generalize to unknown data demonstrated in Section 4.2) are less visible in case of gender recognition from face images.

2. Gender recognition training does not result in learning as rich and expressive features as those learned by training for more general and complicated tasks (for example, ImageNet classification). This point is detailed in Chapter 5, where we demonstrate that face recognition pretraining drastically improves the gender recognition accuracy.

Summary of the Second Preliminary Study

In this section, we have optimized a CNN architecture for a particular problem in the frame of training from scratch. For our experiments, we have chosen the problem of gender recognition from face images which on the one hand, is not trivial (cf. Chapter 3) and on the other hand, is easier than other discriminative problems considered in this manuscript: gender recognition from pedestrian images, age estimation and face recognition. For optimization of the CNN architecture, we propose a simple but efficient Algorithm 4.1. Our main conclusions are the following:

1. In a CNN, the number and the width of convolutional layers has more impact on the resulting performances than the size of the fully-connected layer. This finding conforms with several recent studies [LCY14; Sze+15] (and is used in Chapter 5).

2. When trained from scratch, a very compact gender recognition optimized_CNN is enough to saturate the gender recognition accuracy (we confirm this finding in Chapter 5).

3. When trained from scratch, gender recognition accuracy is not improved by using more than 250K training images.

4. The obtained test LFW CA of 96.9% is on par with the CA obtained by Jia and Cristianini [START_REF] Jia | Learning to classify gender from four million images[END_REF] with LBP features and a SVM-like algorithm.

On the one hand, the designed optimized_CNN reaches decent gender recognition performances which are among the state-of-the-art, and the network is compact enough to be used in real-time even on embedded devices with very limited resources. But on the other hand, the fact that a shallow optim-ized_CNN appears to be optimal reveals that the gender recognition problem is not demanding enough and cannot take the full advantage of deep learning. In Chapter 5, we elaborate more on this issue and remedy it by pretraining on a more challenging problem.

Conclusion

There is a common confusion that all the power of deep learning relies just on two pillars: (1) deep neural architectures and (2) huge datasets. While both of them are very important, in this chapter, we

show that the two are neither essential nor a guarantee of the top performances.

Indeed, in Section 4.2, we demonstrate that the learned features better adapt to heterogeneous or unseen data than the hand-crafted ones. In other words, the learned features has proved to generalize better than hand-crafted ones despite the tiny training dataset of less than 10K images and the fact that one of the employed CNN architectures (pedestrian_CNN) is very shallow (only two convolutional layers).

Moreover, we prove that the problem of the lack of training data can be effectively resolved by transfer learning even when initial and target domains are quite different (ImageNet classification and gender recognition from pedestrian images, respectively).

In addition to that, in Section 4.3, it is shown that when trained from scratch, the performances of face gender recognition CNNs are saturated with about 250K training images. More importantly, a very compact optimized_CNN architecture is enough to obtain the maximum gender recognition CA, the one which can be obtained with only classical hand-crafted features. This result indicates that the problem of gender recognition from face images is not sufficiently challenging to learn expressive features from scratch which are able to considerably improve the hand-crafted baseline.

The last observation leads us to the main take-away message of this chapter: the effectiveness of learned features (and deep learning, in general) depends not only on the used neural architecture and the size of the training dataset, but also on the difficulty of the problem on which they are trained.

Thus, in Chapter 5, we show that face recognition and age estimation problems require bigger CNN architectures and more training data than gender recognition problem, and we demonstrate that a complex task pretraining can drastically improve the accuracy of a face gender recognition CNN.

Introduction

In the present chapter, we detail one of the two central contributions of this manuscript: design of the 

CNN Design and Training Strategy

The objective of this section is to find the optimal design and training parameters for gender recognition and age estimation CNNs.

To this end, we firstly refer to the existing works on CNN gender and age prediction in Subsection 

Previous Studies on Gender and Age Prediction with CNNs

Due to the overwhelming popularity of deep learning for computer vision tasks, a significant number of recent studies have applied deep CNNs for gender recognition and age estimation. In this subsection, we organize these works highlighting the key differences between them. Non-CNN studies on gender and age prediction have been presented earlier in this manuscript (in Chapter 3).

CNN Architecture and Pretraining One of the most evident differences between various CNN models is the choice of the network architecture. CNNs can be roughly split into shallow networks (i.e. For objective evaluation of the impact of the CNN architecture and pretraining on the resulting gender and age accuracies, we separate these two aspects in the experiments of the present section. In particular, we demonstrate that face recognition pretraining is effective regardless of the CNN architecture while the importance of the latter varies between gender recognition and age estimation problems.

Format of Face Images Perhaps surprisingly, there is no widely adopted "standard" of what is understood by face images in previous studies on gender recognition and age estimation from face images.

Thus, the vast majority of the CNN-based approaches use square-sized face images, but there is no consensus of what part of the face is given to CNNs. Indeed, due to the fact that faces are rather oval than square shaped, there is a dilemma between focusing only on central part of the face (cropping the top of the forehead and the bottom of the chin) as in [START_REF] Hu Han | Demographic estimation from face images: Human vs. machine performance[END_REF], or providing the CNNs with full head photos (which probably contain some face unrelated information on the sides) as in [START_REF] Levi | Age and gender classification using convolutional neural networks[END_REF].

In this section, we show that gender and age prediction CNNs gain in performances when they are fed with images containing full heads of SoI even if these photos contain some background information. 1. Here and below in this chapter, by the "general task pretraining", we understand the classification pretraining on the ImageNet dataset of 1000 classes.

Loss Functions for

A common downside of the mentioned approaches is their complexity: the respective loss function are composed of several parts (which often balance each other in a trade-off) increasing the difficulty of the CNN optimization. Instead, in the present section, we adopt the idea of employing distributed age encodings which was firstly proposed in [START_REF] Geng | Facial age estimation by learning from label distributions[END_REF]. Distributed age encodings reflect both the continuity and the uncertainty of age annotations, and, as shown below, allow a natural formulation of age estimation as a continuous (soft) classification problem.

Mono-task vs. Multi-task Learning Finally, several studies [YLL14; Yan+15a] compared mono-task learning for gender recognition and age estimation versus simultaneous learning for both tasks. The results of the two studies seem contradictory: Yi el al. [START_REF] Yi | Age estimation by multi-scale convolutional network[END_REF] reported no difference between monotask and multi-task learnings, while Yang et al. [START_REF] Yang | Automatic Age Estimation from Face Images via Deep Ranking[END_REF] obtained an improvement in age estimation accuracy from the multi-task learning.

Contrary to the mentioned works, in the present section, we compare the two learning approaches on a test dataset which has been explicitly balanced between genders and between different age categories.

As a result, we find that the effectiveness of multi-task learning is of the same nature as the one of face recognition pretraining. 

Studied Parameters

Target Age Encoding and Loss Function

Target encoding defines how the target labels (in our case, genders and ages) are represented in a neural network. Both the information which is given (or not) to the neural network during the training and the choice of the loss function for optimization depend on target encoding.

Gender recognition is a binary classification problem which does not leave much liberty for the choice of the target encoding and the loss function to optimize. Binary classification problems are solved by neural networks with one or two neurons at the output layer. In the first case, the logistic regression loss function is employed for optimization and in the second case, the cross-entropy one. Cross-entropy loss is mathematically equivalent to logistic one in case of binary classification, so there is no need for experimental comparison of the two losses. If not said otherwise, we train gender recognition CNNs with two neurons at the output layer and the cross-entropy loss (in the same way as in the preliminary studies of Chapter 4). 

CAE = -1 N ∑ N k=1 ∑ 100 i=1 t (k) i log p (k) i RVAE L RVAE = 1 N ∑ N k=1 (t (k) -p (k) ) 2 LDAE L LDAE = -1 N ∑ N k=1 ∑ 100 i=1 (t (k) i log p (k) i + (1 -t (k) i )log(1 -p (k) i ))
Table 5.2.2 -Age encodings and corresponding loss functions. N denotes the number of images in a mini-batch, t denotes the targets and p denotes the predictions of CNNs. 0/1-CAE = 0/1-Classification Age Encoding. RVAE = Real-Value Age Encoding. LDAE = Label Distribution Age Encoding.

interne Orange 1 Below, we detail each of the three encodings.

In pure per-year classification, each age (with a precision up to one year) is treated as a separate class which implies that the age label is encoded as a one-hot 1D-vector. The size of this vector corresponds to the number of classes (in this work, we use 100 classes for ages between 0 and 99 years old).

We further refer to this encoding as 0/1-Classification Age Encoding (0/1-CAE). 

Pure regression

Face Crop

Face images which are given at the input of CNNs define the face part which is received by a CNN and which is further used to predict gender and age. For clarity, here and below, we refer to such images as face crops. Thus, in Subsection 5.2.1, we highlight that previous studies often significantly vary in their interpretations of what is understood by face crops.

In Chapter 3, it is explained that a typical pipeline of face crop extraction consists of (1) face detection, and (2) face alignment stages. The second stage, face alignment, is optional, and in its turn, it consists of (a) face landmark detection, and (b) alignment itself (cf. Chapter 3 for details). In the preliminary study presented in Section 4.3 of Chapter 4, we have not performed face alignment for the sake of simplicity. On the contrary, in the present section, our goal is to find good practices for design and training of the gender recognition and age estimation CNNs. To this end, we look for an optimal face alignment which would allow the resulting face crops to contain the most useful information for gender and age prediction. Indeed, a particular face alignment defines the positions of a certain set of landmarks, and therefore, it allows controlling which face parts (e.g. front, chin, ears or hair) are included in face crops and which are not.

Thus, in the present section, we compare two types of face crops, namely: "face-only" and "face+40%" (cf. Figure 5.2.2), which correspond to two manually predefined sets of 27 landmark points. We have designed both crops to be square-sized in order to facilitate the subsequent treatment by the state-of-theart CNN architectures (such as VGG-16 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] or ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]) which expect square inputs. At the same time, an average human face is oval and not square. Therefore, we can either focus only on the central part of a face by discarding the extremities (as in "face-only" crop), or allow some background information on the sides, but preserve all face information (as in "face+40%" crop). In other words, the choice between the "face-only" and "face+40%" crops represents a trade-off between (1) feeding a CNN with only useful but (probably) incomplete information, or (2) feeding a CNN with complete information but (probably) with some side noise, respectively.

In order to optimally resolve this trade-off, in Paragraph 5.2.3.2, we experimentally compare "faceonly" and "face+40%" crops between each other. However, it should be noted that when rescaled to the same size (cf. For example, the distance between the eyes (measured in pixels) is two times bigger in "faceonly" crop than in "face+40%" one. Therefore, for the sake of a fair comparison, in the experiments of Paragraph 5.2.3.2, we use CNNs with identical architectures, but different retina sizes: 32x32 in case of "face-only" and 64x64 (i.e. upscaled by a factor of 2) in case of "face+40%" crops.

CNN Depth

As already outlined on multiple occasions in Chapters 2 and 4, the depth of a neural network (i.e. Therefore, in the present chapter, we evaluate only the impact of the number of convolutional layers on the quality of gender/age CNNs. In particular, by increasing the CNN depth from 2 and up 8 convolutional layers, we compare its relative impacts on the corresponding gender and age prediction accuracies in Paragraph 5.2.3.2.

Pretraining and Multi-Task Learning

Despite pretraining and multi-task learning may seem as two completely independent techniques at the first sight, both of them can be considered as particular cases of transfer learning (already used in chapter 4). Indeed, the idea of transfer learning is that the knowledge learned from one problem can be reused for the other one. It is both reflected in pretraining and multi-task learning.

In A multi-task CNN is trained to resolve several problems (in our case, gender recognition and age estimation) at the same time. This way, the CNN learns to extract more information from input images than in case of mono-task training which also results in richer internal CNN representations.

In Paragraph 5.2.3.2, face recognition pretraining and multi-task learning are evaluated both separately and simultaneously in the frame of the two studied problems.

Experiments

We firstly define the experimental protocol which is used for evaluation of all tested CNN parameters in this section. The protocol consists of the set of the CNN architectures with varying number of convolutional layers as well as of the training and test datasets. We have opted for quite compact CNN architectures (comparing to the state-of-the-art ones like VGG-16 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF] and ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]). Indeed, the goal of this section is the objective comparison of the presented above CNN parameters rather than the design of the best performing gender/age CNNs. The latter is done in Section 5.3, where we train very deep state-of-the-art CNNs using pretraining based on the conclusions of the present section.

Experimental

As it is the case of our start_CNN from Section 4.3 of Chapter 4, fast_CNN follows the same basic design principles as VGG-16 CNN [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF]. In particular, (1) all convolutional layers are composed of square feature maps with kernels of size 3x3 pixels, and (2) max-pooling layers reduce both heights and widths of feature maps in 2 times. In order to facilitate convergence and to prevent overfitting, we employ fast_CNN_2 fast_CNN_4 fast_CNN_6 fast_CNN_8

Input retinal size depends on the used face crops: 32x32 for "face-only", 64x64 for "face+40%" Conv1_1: 32@3x3 Conv1_1: 32@3x3 Conv1_1: 32@3x3 Conv1_1: 32@3x3 -Conv1_2: 32@3x3 Conv1_2: 32@3x3 Conv1_2: 32@3x3 --Conv1_3: 32@3x3 Conv1_3: 32@3x3 ---Conv1_4: 32@3x3 MaxPool: 2x2

MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2 Conv2_1: 32@3x3 Conv2_1: 32@3x3 Conv2_1: 32@3x3 Conv2_1: 32@3x3 -Conv2_2: 32@3x3 Conv2_2: 32@3x3 Conv2_2: 32@3x3 --Conv2_3: 32@3x3 Conv2_3: 32@3x3 Training Dataset: IMDB-Wiki_cleaned In order to train gender recognition and age estimation CNNs on the same data, we need a dataset with both gender and age annotations. The currently biggest public dataset with these properties was collected by Rothe et al. [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF] and called IMDB-Wiki following the two sources of the face images. Indeed, the dataset consists of 523,051 images collected from IMDb (460,723 images) and Wikipedia (62,328 images). Due to the fact that each image contains a celebrity (whose identity, gender and birth date are known) and a timestamp, the authors managed to automatically annotate all images in the IMDB-Wiki dataset with genders and ages.

However, for the majority of images from IMDB-Wiki, the provided annotations are not directly usable. The problem comes from the fact that a lot of original images contain more than one person.

Assuming that all faces in the image are detected, it is not obvious how to automatically select the face to which the given annotation corresponds to. To circumvent this problem, we have pursued the following two approaches:

1. We have used those images for which the "Head Hunter" face detector [START_REF] Mathias | Face detection without bells and whistles[END_REF] has detected only one face. In this case, we can be almost sure (the approximatively estimated error rate is less than 1%) that the detected face corresponds to the provided age annotation. This approach has resulted in 182,019 images.

2. We have developed a simple web interface to manually annotate the remaining images. Given an Thus, in total, 250,367 images from the IMDB-Wiki dataset have been used in our experiments. In order to avoid ambiguity with the whole IMDB-Wiki dataset, below, we refer to this subset of 250,367 images of IMDB-Wiki as the IMDB-Wiki_cleaned. The performances measured on these benchmarks are prone to be biased. This is not critical for comparing the final best gender and age estimators with other state-of-the-art models (anyway, almost all gender recognition and age estimation studies evaluate their algorithms on one of the three listed benchmarks).

Dataset

However, in this section, where our goal is to make important design and training choices for gender and age CNNs, we want to minimize the possible bias due to the evaluation dataset. To this end, we use a private internal dataset of non-celebrities. For each age in the interval between 12 years old and 70 years old, the dataset contains 30 images of men and 30 images of women. Thus, 3540 images in total.

The resulting dataset perfectly suits the evaluation purposes as (1) it is ideally balanced between genders and ages, and (2) it is composed of non-celebrities which avoids all possible intersections with IMDB-Wiki_cleaned which is used for training. Below, we refer to this dataset as Private Balanced Gender Age or simply PBGA dataset.

In Table 5.2.4 and Figure 5.2.4, we compare the distributions of genders and ages in all datasets used in the present chapter highlighting that our PBGA dataset is the only one to be balanced. All results reported on the PBGA dataset in this section are calculated according to the cross-dataset protocol (i.e.

without fine-tuning on PBGA). to the neuron with the highest activation -we denote this approach as "ArgMax" in Table 5.2.5. On the other hand, the age can be estimated as the expected value of all output activations: age = ∑ 100 i=1 i * p i , where p i is the activation of the i-th output neuron (here, we assume that ∑ 100 i=1 p i = 1). The results in Table 5.2.5 have at least two conclusions. Firstly, we observe that age estimation by expected values significantly outperforms the one by "ArgMax" both for 0/1-CAE and for LDAE. This result conforms with the similar findings by Rothe et al. [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF]. Secondly, the results demonstrate the general superiority of the CNN trained with LDAE over CNNs trained with 0/1-CAE and RVAE. Indeed, LDAE combines the strong points of the two other encodings: the similarity of the neighbouring ages (as in RVAE) and the robustness of age estimation (as in 0/1-CAE). Based on the obtained results, in the rest of the chapter, we use LDAE encoding and the expected value approach for age estimation.

Experimental Results

Target Age Encoding

Face crop

Gender Age MAE CA AUC "face-only" 89.2% 0.9777 6.54 "face+40%" 92.8% 0.9867 6.05 Table 5.2.6 -Comparison of "face-only" and "face+40%" crops. Experiments are performed using the fast_CNN architecture. The retina size of fast_CNN is set to 32x32 for "face-only" crop and to 64x64 for "face+40%" one. Results are reported on the PBGA dataset.

Face Crop The comparison of performances of the gender recognition and age estimation fast_CNNs which are trained with either "face-only" or "face+40%" face crops is presented in Table 5.2.6. As explained in Paragraph 5.2.2.2, in order to maintain the same resolution of the face details at the input of fast_CNN, the retina of the "face-only" fast_CNN is set to 32x32, while the one of the "face+40%"

fast_CNN is set to 64x64. As in Chapter 4, CNNs are evaluated both according to their CAs and AUCs for the sake of more balanced evaluation between two classes (men and women). It is important to highlight that in this paragraph, our goal is not finding an optimal number of convolutional layers for fast_CNN, but evaluating the relationship between the CNN depth and the resulting gender recognition and age estimation performances. Thus, we observe that there exists a positive correlation between the CNN depth and the age estimation accuracy, while the gender recognition precision is not directly dependent on the number of convolutional layers.

Results in

More generally, the results in Table 5.2.7 illustrate that age estimation is a more complex and demanding problem than gender recognition. Indeed, the performed experiments show that contrary to age estimation, gender recognition training does not provide CNNs with the information which is discriminative enough to take the full advantage of the CNN's depth.

Pretraining and Multi-Task Learning Below, we firstly provide details on how we perform in practice the face recognition pretraining and multi-task learning for fast_CNN, and then we report the respective experimental results.

Training of a multi-task fast_CNN is very similar to the training of a mono-task one. In particularly, we also employ LDAE to encode age information. The only difference is that multi-task fast_CNN has 101 output neurons instead of 100 as 1 bit of gender information is concatenated to LDAE of size 100.

fast-CNN for face recognition is trained on a subset of the recent Ms-Celeb-V1 dataset [START_REF] Guo | Ms-celeb-1m: challenge of recognizing one million celebrities in the real world[END_REF] (which was deliberately collected by its authors for face recognition purposes) containing the faces of 7,395 most popular persons (in terms of the number of images) from the original dataset. For simplicity, we approach the face recognition task as an identity classification problem with 7,395 classes. Therefore, 

the

Summary of the Optimal Design and Training Choices

The presented section has been devoted to the selection of optimal practices for design 5) possibility of multi-task learning for the two problems simultaneously.

The results of the section can be summarized as following:

1. LDAE should be employed as the age encoding strategy.

2. More noisy but wider "face+40%" face crops are better for gender and age prediction CNNs than less noisy but more narrow "face-only" face crops.

3. Age estimation is a more complex problem than gender recognition, and both gender recognition and age estimation trainings can be improved with the help of transfer learning.

4. Face recognition pretraining is particularly effective for gender recognition.

5. Face recognition pretraining encompasses multi-task learning meaning that the two transfer learning strategies should not be used together.

The stated conclusions are used in the following section for training our top performing state-of-theart gender recognition and age estimation CNNs.

Top Performing CNNs for Gender and Age Prediction

In this section, we design the top performing gender and age prediction CNNs for gender recognition and age estimation:

1. Gender and age CNNs are firstly pretrained for face recognition.

2. Gender and age CNNs are trained separately (mono-task learning).

3. LDAE is used to encode ages for age estimation CNNs.

Design of the Top Performing CNNs

In order to design the best performing gender recognition and age estimation models, we employ VGG-16 and ResNet-50 which have been pretrained for face recognition. The two CNNs obtain respectively 97.2% and 99.3% of face verification accuracy when evaluated according to the the standard LFW

protocol 2 .
As already observed in Section 5.2, face recognition pretraining has a direct influence on gender recognition because the latter can be considered as a particular sub-problem of the former. This is further confirmed by the results in Table 5 More precisely, VGG-16 is composed of five blocks of 2-3 convolutional layers in each of them, and in Figure 5.3.1, we present the mean activations at the last convolutional layers of each of these block. In general, early convolutional layers of a deep CNN are activated by elementary parts of input images: like edges, corners etc. Thus, activations in the early layers conv1_2 and conv2_2 of the face recognition and general task VGG-16 CNNs are similar, and they focus on the most salient face parts (i.e. eyes, mouth, and nose). Face recognition VGG-16 further consolidates these activations in the deeper layers conv3_3, conv4_3 and conv5_3 targeting its attention on the face region. Therefore, the last convolutional layer of the face recognition CNN is a high-level face descriptor which can be potentially used for gender recognition and age estimation. On the contrary, the mean activations of the last conv5_3 layer of the general task VGG-16 are uniformly dispersed all over the map demonstrating that the general task VGG-16 is not trained to focus on human faces (there are few human faces among ImageNet images). Thus, face recognition pretraining allows a CNN to better extract high-level information from face images than general task pretraining making the former more suitable for face-related problems such as gender and age prediction.

Benchmark Evaluation

In Subsection 5.3.1, we have designed the top performing deep CNNs: ResNet-50 for gender recognition and VGG-16 for age estimation. In this subsection we evaluate these two CNNs on three popular benchmark datasets: LFW (for gender recognition), FG-NET (for age estimation) and MORPH-II (for both tasks).

Benchmark Datasets

Below, we present the benchmark datasets and the corresponding evaluation protocols. The distribution of genders and ages in all three used datasets is illustrated in Figure 5.2.4.

LFW (gender recognition)

The Labelled Faces in the Wild (LFW) dataset which is today the standard benchmark for face and gender recognition systems has already been presented and used in Chapter 4.

Below, we employ it for the comparison of our best gender recognition CNN with the state-of-the-art gender recognition models. Most of the recent studies reporting gender recognition results on LFW do not fine-tune their models on the target dataset. Therefore, we also follow this cross-dataset protocol for LFW.

MORPH-II (gender recognition and age estimation)

The MORPH-II dataset [START_REF] Ricanek | Morph: A longitudinal image database of normal adult age-progression[END_REF] is the biggest public dataset of non-celebrities with both gender and age annotations. The dataset which was collected by American law enforcement services contains more than 50K face images.

Guo et al. [START_REF] Guo | Human age estimation: What is the influence across race and gender?[END_REF] proposed an evaluation protocol on MORPH-II which was later adopted by a large part of the research community. The protocol is the following: the MORPH-II dataset is split into three non-overlapping parts S 1 , S 2 and S 3 with predefined proportions on gender and ethnicity distributions in each of the parts. Gender recognition and age estimation models are firstly trained on S 1 and tested on S 2 ∪ S 3 , and secondly trained on S 2 and tested on S 1 ∪ S 3 . Mean CA and MAE over these two experiments are reported as the final ones. We follow this protocol to evaluate both our best gender and age CNNs.

FG-NET (age estimation) FG-NET 3 is a tiny dataset containing 975 face images of 82 persons with age annotations. Despite its small size, FG-NET is still broadly used in age estimation research. The Leave One Person Out (LOPO) (i.e. 82-fold Cross-Validation) protocol has been widely adopted for evaluating age estimation models on FG-NET. We follow this protocol to compare our age CNN with the state-of-the-art.

Evaluation Results

For convenience, Tables 5.3 We improve the results of these two works from 98.0% to 99.3% and from 98.4% to 99.4%, respectively. For both datasets, the improvements are statistically significant with p < 0.01 according to the proportions test. We believe that the key reason for the success of our model is the usage of face recognition as pretraining which has allowed us to effectively train a much deeper CNN than those which were employed by previous CNN-based approaches for gender recognition. The state-of-the-art age estimation models were described in the recent works [START_REF] Kuan-Hsien Liu | Age estimation via grouping and decision fusion[END_REF], [START_REF] Liu | Group-aware deep feature learning for facial age estimation[END_REF] and [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF]. The study from [START_REF] Kuan-Hsien Liu | Age estimation via grouping and decision fusion[END_REF] is extremely interesting. Indeed, despite the fact that the authors employed a fusion of very basic hand-crafted features with a standard SVR, they managed to obtain excellent age estimation results by a meticulous selection of a hierarchical structure of their model (i.e. by firstly predicting an age group and then estimating the precise age inside the group) and by proposing several feature fusion algorithms. However, the choice of an optimal combination of features to fuse depends on the dataset, therefore it is difficult to evaluate the real age estimation scores from their work (thus, in Table 5.3.3, we provide intervals from their paper rather than a single score). Liu et al. [START_REF] Liu | Group-aware deep feature learning for facial age estimation[END_REF] used a hierarchical age grouping to train an age CNN reporting the currently best score on MORPH-II following the well-established protocol from [START_REF] Guo | Human age estimation: What is the influence across race and gender?[END_REF]. Rothe at al. [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF] did not follow this protocol so their score on MORPH-II cannot be compared to others in Table 5.3.3 (for the sake of fair comparison, we evaluate our age CNN both according to the protocols from [START_REF] Guo | Human age estimation: What is the influence across race and gender?[END_REF] and [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF]). However, the principal difference between our solutions is the fact that we use LDAE instead of RVAE encoding and the face recognition pretraining instead of the general task pretraining. The results in Table 5.3.3 confirm the validity of the training choices made in Section 5.2.

Finally, some successful and failed examples of gender recognition and age estimation by our best

CNNs on the benchmark datasets are presented in Figure 5.3.2. As one can observe, the failed cases correspond to either peculiar facial expressions (the top line) or unusual aging patterns (the bottom line).

Qualitative Analysis

Subsection 5.3.2 shows that our ResNet-50 and VGG-16 CNNs obtain the state-of-the-art performances on the most popular gender and age benchmarks, respectively. Below, we additionally perform several qualitative assessments of the designed models, namely: evaluation of their sensitivities to the resolutions and occlusions in input face images, and comparison of our age CNN with human participants on a popular French TV show.

Face Crop Resolution

It is intuitively obvious that the higher is the resolution of an input face crop the easier it is to correctly estimate the corresponding gender and age. But to what extent the accuracies of our best gender and age CNNs depend on the input resolution?

In order to answer to this question, it is firstly important to separate the notions of the size of the face crops which are given at the input of CNNs, and the resolution of these crops. Indeed, the former is defined uniquely by the retina of the used CNN model: for example, fast_CNN which is used in Section 5.2 requires face crops of size 64x64, while our best ResNet-50 and VGG-16 CNN require face crops of size 224x224. At the same time, the crop resolution depends both on the initial images from which the face crops are extracted, and on the model retina. More precisely, if the target retina size is bigger (smaller) than the size of the face crop region in the original photo, then this region is downsampled (upsampled) to the target retina size using bilinear interpolation. Therefore, the maximum possible resolution of face crops is limited by the size of the model retina meaning that in case of our best CNNs, it is of 224x224 pixels.

Original size: 224x224

Original size: 192x192

Original size: 128x128

Original size: 96x96

Original size: 64x64

Original size: 32x32

Original size: 16x16 The results of the performed resolution experiment are summarized in Table 5.3.4. As one can observe, the dependency of the CNN accuracies on the maximum resolution of face crops is highly nonlinear both for gender recognition and for age estimation. The degradations of performances of the two networks are marginal even when the maximum resolution is reduced down to 96x96 (as a side remark, it is interesting to notice that the same observation was made by Schroff et al. [START_REF] Schroff | Facenet: A unified embedding for face recognition and clustering[END_REF] in the context of the face recognition problem). The further reduction of the resolution down to 64x64 pixels results in more significant losses of precision (especially, in case of age estimation), but the scores remain comparable to the original ones (i.e. those with the maximum resolution of 224x224). Finally, there is a clear gap between the CNN performances on face crops with resolutions of 32x32 and 64x64 pixels. The obtained results informally confirm the choice of 64x64 as a retina size for fast_CNN in the experiments of Section 5.2.

Sensitivity to Occlusions

In this paragraph, we perform a simple ablation analysis to estimate the relative importance of various regions of human faces for our gender recognition and age estimation CNNs. The idea is to mask these regions in face crops and to evaluate the resulting impacts on gender recognition and age estimation accuracies. The amount of impact on performances indicates the importance of each tested region for the respective tasks.

We uniformly split input images into 63 regions as shown in Figure 5.3.4 (top): 49 tiny square regions to evaluate the impact of small local parts of the face, 7 horizontal stripes and 7 vertical stripes to evaluate the respective symmetries. It is important to highlight that the described test regions are selected uniformly in face crops and not in connection with certain face landmarks and/or semantic face parts.

This way, we do not introduce any human a priori on which face regions should be tested and which ones should not. For each of 63 tested regions, we blur the corresponding part in all face crops of the PBGA dataset using a Gaussian filter with σ = 7 which makes the considered part completely concealed. After processing the blurred images with our best gender and age CNNs, we evaluate the performance losses If we analyse the heat maps of small square regions (the 1st column of Figure 5.3.4 (middle and bottom)), we observe that globally, both networks are sensitive to the salient regions of the face: eyes, eyebrows, nose and mouth. It makes sense because as it is illustrated in Figure 5.3.1, the salient face regions produce the majority of activations in the first layers of CNNs. Moreover, the gender CNN is more sensitive to the center of the mouth and to the periocular region conforming with previous studies [Hu+11; JX+16], while the age CNN more equally depends on all salient face parts. Finally, Figure 5.3.4 also demonstrates that the two CNNs quite precisely follow the horizontal symmetry of faces.

"Guess My Age" TV Show 4

Being humans, we rarely experience difficulties in gender recognition from face images. At the same time, precise age estimation can be very challenging even for human perception. Thus, the French TV channel "C8" launched a TV show named "Guess My Age: Saurez-vous devinez mon âge ?" which has rapidly gained popularity among spectators 5 . The TV show is a game where a pair of participants can win money depending on how well they estimate ages of strangers.

"Guess My Age" offers a good opportunity to compare our best VGG-16 CNN versus humans on age estimation task. Indeed, contrary to human estimators taking part in a crowdourcing campaign, the participants of the TV show have a strong financial motivation to do their best in order to correctly predict age. Moreover, when the game participants estimate ages, they see the full bodies of strangers which allows rectifying their decisions based on the strangers' clothes and accessories (the strangers are explicitly asked to be dressed in the same way as they are in everyday life). Due to the fact, that our age estimation CNN takes only face crops at its input, the game participants are a priori in more advantageous conditions. Therefore, the age estimation results of the TV game participants represent a very challenging baseline for our age model. Table 5.3.5 compares the resulting accuracies of the age CNN with those of humans according to two metrics, namely: MAE and the number of better estimations. The latter represents the number of times our model better predicts an age of a certain person than the TV game participants, and vice-versa.

Despite the fact that the game participants have been in more favourable conditions (cf. explanations above), our model estimates the age more accurately according to both metrics. 4. The experiments presented in this paragraph have been performed by Alexandre Fradet, a master student at Eurecom, in the frame of his semester project (autumn 2016). The project was supervised by Grigory Antipov and Jean-Luc Dugelay.

5. The show was elected as the "best TV game of the season" by TV Notes 2017.

Human Participants VGG-16 CNN MAE 5.3 4.8 # of better estimations 24 37

Table 5.3.5 -Comparison of age estimation by humans participants of a TV show "Guess My Age" and by our best VGG-16 CNN using on some screenshots from the show. "# of better estimations" is the number of times our model (the human participants) better predicts an age of a certain person than the human participants (our model).

The obtained results clearly demonstrate that our VGG-16 CNN is at least as accurate as the participants of the TV show. However, the small number of available test images does not allow us to conclude with enough statistical significance that our model is better than an average human participant.

Indeed, a p-value of a two-sided Wilcoxon signed rank test with a null hypothesis that (xy) (where x is a vector of 61 absolute human age estimation errors, and y is the similar list for our model) comes from a distribution with a zero median is only 0.2. In future, we plan to collect more screenshots from the second season of the TV game (which just ended) in order to perform a more complete study.

Top Performing CNNs: Summary

In the presented section, we have obtained the central results of this chapter: the state-of-the-art Finally, the evaluation of our best age CNN on the screenshots from "Guess My Age" TV show has allowed to compare the age estimation by the designed model and by human vision. Thus, the obtained results have confidently shown that our model performs at least as good as highly motivated human estimators.

ResNet

ChaLearn Competition on Apparent Age Estimation

In Section 5.3, we have designed the best performing age estimation CNN according to the most popular public benchmarks. The reported age estimation results concern biological age estimation.

At the same time, apparent age estimation (cf. Chapter 3 for definitions of biological and apparent ages) has recently attracted a lot of attention due to to the first public Apparent Age Estimation Competition (AAEC) organized by ChaLearn in 2015 [START_REF] Escalera | ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results[END_REF]. The organizers collected a dataset of face images and developed a web interface where people could annotate these images with apparent ages.

More than 100 teams participated in the competition and the five best approaches were based on deep

CNNs [START_REF] Escalera | ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results[END_REF].

The interest to the first edition of the AAEC was so high, that in 2016, ChaLearn decided to organize its second edition [START_REF] Escalera | ChaLearn Looking at People and Faces of the World: Face Analysis Workshop and Challenge 2016[END_REF]. Being motivated to verify whether our conclusions on the optimal design and training strategy of age CNNs from Section 5.2 (notably, the usage of face recognition pretraining and LDAE age encoding) hold for apparent age estimation as well, we participated in this second edition by adapting our best biological age estimation VGG-16 CNN for apparent age. As a result, we won the first place of the second edition of ChaLearn AAEC significantly outperforming other participants.

In this section, we describe the competition and detail our winning solution. In particular, the section is organized as following: we firstly present the competition organization and protocol in Subsection 

AAEC Protocol

With the help of a Facebook game-like application and Amazon Mechanical Turk 6 crowdsourcing campaign, the competition organizers collected the biggest public dataset annotated with apparent ages.

We will further refer to it as ChaLearn dataset. It contains 7591 images (4113 images for training, 1500

for validation and 1978 for test). The apparent age annotations for training and validation images have been made public, while only the organizers have an access to the annotations of the test images.

Each image of the competition dataset is annotated with a mean age µ and a corresponding standard deviation σ (these statistics are calculated based on at least 10 human votes per image). The metric which was chosen by the competition organizers to evaluate apparent age estimation models is quite different from MAE which is used for biological age estimation. The competition metric ε is defined as the size of the tail of the normal distribution with the mean µ and the standard deviation σ with respect to the predicted age x:

ε = 1 -e - ( x-µ) 2 2σ 2 (5.4.1) 
Therefore, the apparent age estimation errors on examples with a small standard deviation (i.e. on examples on which human votes are close to each other) are penalized stronger than the same errors on examples with a high standard deviation (i.e. on examples on which human votes disagree).

The competition itself is organised in two stages. During the first development stage (which lasts for about three months), the participants have access to training images with annotations and validation images without annotations. The participants can train their models using the training images and evaluate the respective performances on the validation ones via a dedicated web interface (there are no limit on the number of evaluations). It is important to mention, that the organizers strongly encourage the usage of external training data.

During the second (evaluation) stage, the organizers publish the apparent age annotations for the validation images as well as the test images which must be used the final evaluation. The second stage lasts for only a couple of days, and the competitors are required to upload their age estimations of the test images to the competition website (only one attempt is authorized) as well as the source codes of the 6. https://www.mturk.com/mturk/welcome developped solutions. The official results are announced in about a week after the end of the competition (as soon as the organizers verify the validity of the provided source codes).

Proposed Solution

As outlined above, our final solution at the ChaLearn AAEC is largely based on our best performing VGG-16 CNN from Section 5.3 which is designed for biological age estimation. Basically, the key idea is to fine-tune our biological age CNN for apparent age estimation using the competition training data. A similar approach was adopted by the winners of the first edition of the AAEC [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF]. Nevertheless, our solution has one important particularity: we design a separate CNN for apparent age estimation of children. Below, we detail our approach motivating the key design choices.

Face Crop Extraction

ChaLearn AAEC is an "end-to-end" contest meaning that given at input raw real-life images (which are mostly extracted from social networks), the participants have to output corresponding apparent age estimations. Image preprocessing is considered as a part of the challenge, and the participants are free to apply any algorithms with the condition to provide the respective sources afterwards. Face detection We have used the open source "Head Hunter" face detector [START_REF] Mathias | Face detection without bells and whistles[END_REF]. In particularly,

we have employed the fast implementation by [START_REF] Omkar M Parkhi | Deep face recognition[END_REF]. In order to detect faces regardless of the image orientation, we rotate each input image at all angles in the range [-90°, 90°] with the step of 5°. We then select the rotated version of the input image which gives the strongest output of the face detector for the face alignment step. If no face is detected in all rotated versions of the input image, the initial image is upscaled and the presented algorithm is repeated until a face is detected. 2 upscaling operations have been enough to detect at least one face in all images of the competition test dataset.

Face alignment

We have chosen a popular face landmark extraction solution which is proposed in [START_REF] Uricár | Real-time multi-view facial landmark detector learned by the structured output SVM[END_REF]. The solution of [START_REF] Uricár | Real-time multi-view facial landmark detector learned by the structured output SVM[END_REF] is based on a multi-view facial landmark extraction approach. There are five landmark extraction models: a frontal model, two profile models and two half-profile models.

Each of these models is tuned to work on one of the corresponding facial poses (cf. The face alignment follows the face detection and requires running of all 5 landmark models on the detected face. Each model reports a confidence score which shows how well the corresponding landmarks are detected in the given face. We then select the model with the highest confidence score and perform an affine transformation from the detected landmarks to the predefined optimal positions of these landmarks with respect to the detected facial pose. 

Separate Age Estimation CNN for Children

If we compare the age distributions of the IMDB-Wiki_cleaned dataset, which has been used for training of our biological age VGG-16 CNN, and of the ChaLearn dataset, which is used in the competition, we will immediately notice that the two have very different proportions of children images. Indeed, less than 1% of IMDB-Wiki_cleaned images belong to the age category 0-12, while the competition dataset contain about 10% of such images (cf. Figure 5.2.4).

Moreover, we have noticed that according to the competition dataset annotations, the average standard deviation of human votes for images of children (between 0 and 12 years old) is about 1, while the average standard deviation for all other images is about 5 (cf. is defined in a way that the errors on the test images for which the standard deviation σ is low (i.e. for which various human estimations agree between each other) are penalized the most. The data augmentation during the fine-tuning for apparent age estimation (line 3 of Table 5.4.1) has proved to be very effective gaining us about 0.015 of ε-score (i.e. 5%) with respect to fine-tuning without data augmentation. The data augmentation during the test stage (as explained in Paragraph 5.4.2.4) has been effective as well: a gain of about 0.005 in terms of ε-score i.e. 2% (line 4 of Table 5.4.1).

Finally, the last line of Table 5.4.1 proves the importance of the accurate age estimation of children.

Adding a separate model for this age category has improved our validation score by about 0.017 of ε-points (i.e. 6%). The final results of the second edition of the ChaLearn LAP AAEC are presented in Table 5.4.2.

AAEC Results

Our team (OrangeLabs) has won the first place largely outperforming all other participants. Our final score on the test dataset (ε = 0.2411) improved our best result obtained on the validation dataset (ε = 0.2609) by about 0.02 of ε-points (i.e. 8%). As the winners of the previous year's competition [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF], we have experienced a significant gain of performance due to merging of multiple models which have been trained using cross-validation.

In Figure 5.4.5, we present some examples of apparent age estimation by our solution on images from the competition test dataset.

After comparing our solution with the ones of other participants, we believe that our solution has two decisive aspects which distinguish it from the alternatives. The first one is a very good starting point (i.e. our biological age VGG-16 CNN designed in Section 5.3) for the apparent age estimation finetuning, while the second one is the usage of a separate "children" CNN. Indeed, all 8 best teams which are mentioned in Table 5.4.2 have used CNN-based approaches pretraining their models on external biological age datasets (often IMDB-Wiki as ourselves), and have employed the data augmentation (which is the standard "competition trick").

Thus, the obtained results further confirm the choice of the training strategy for our biological age VGG-16 CNN (in particularly, LDAE age encoding and face recognition pretraining).

Conclusion

The presented chapter has dealt with one of the primary problems of this thesis: design of the top performing CNNs for gender recognition and age estimation.

We have started in Subsection 5.2 by identifying and comparing the key CNN design and training parameters which impact the effectiveness of the CNN optimization for the studied problems. As a result, we have made some important observations which can be summarized as following:

1. Age estimation is a more challenging problem than gender recognition. It requires bigger training datasets and deeper CNN architectures.

2. Face recognition pretraining helps subsequent training for gender recognition and age estimation.

Face recognition pretraining has been shown more effective than general task one for both studied problems, and especially for gender recognition.

3. LDAE age encoding is more effective than commonly employed 0/1-CAE or RVAE encodings for training of age estimation CNNs.

Introduction

In this last contribution chapter, we address the second primary objective of the present manuscript which consists in designing deep models for synthesis and editing of human faces with the required gender and age attributes.

Such models are often used as means of data augmentation and face normalization prior to automatic face analysis. The complete list of practical motivations as well as the potential domains of applications for face synthesis and editing have been presented in Chapters 1 and 3, but the general scientific interest for studying these problems can be summarized by a famous aphorism of Richard Feynman which states "what I cannot create, I do not understand".
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More formally, as introduced in Chapter 1, gender and age prediction allows annotating human faces, while face synthesis and editing allows generating new faces with the required annotations. In this sense, the contributions presented below are complementary to the ones of Chapter 5.

In particular, we open this chapter by firstly discussing how generative deep models can be used for synthesis and editing of images in general, and then by focusing on the existing face-related approaches highlighting their limitations in Section 6.2. After that, the problems of face synthesis and editing are addressed in a sequential manner.

Indeed, in Section 6.3, we start by training a conditional generative model of face images, which is able to produce synthetic faces with the required demographic parameters. The resulting generative model becomes the core of our novel method for aging/rejuvenation and gender swapping of an input face, which is the primary contribution of the chapter. More precisely, we describe the basic part of our face editing method in the second part of Section 6.3 (cf. Subsection 6.3.3), while in Section 6.4,

we propose an amelioration of our approach which eventually allows its application for improving an off-the-shelf face recognition software in a cross-age face verification scenario. The key advantages of our face editing method, distinguishing it from existing alternatives, are (1) high visual fidelity of the resulting face images, (2) quasi-perfect preservation of the original person's identity after face editing, and (3) finally, its universality which means that our method can be easily adapted to modify any face attributes (and not only gender and age).

Face Editing with Conditional Generative Models

In Section 3.3 of Chapter 3, we have discussed different classical methods of face editing observing a common limitation which is shared by many of them. As a matter of fact, the observed methods are fit uniquely for editing of a single face attribute (e.g. gender or age), and their application for other face attributes is impossible without redesigning of the whole algorithm. Even more, the majority of the aging/rejuvenation models from Chapter 3 can do only one out of two tasks at a time (i.e. either aging or rejuvenation), and in order to do the other one, a separate model must be trained. These constraints are counter intuitive and limit the possibilities for the practical application of such methods.

Instead, in this chapter, we are looking for a universal face editing method, which can be equally easy applied for editing of various face attributes. The recent development of deep conditional generative models provides a promising tool to achieve this goal. Indeed, as explained in Chapter 2, conditional generative models learn to imitate the joint distribution p(x,y) of human faces x and face attributes y which enables them to intrinsically model all face variations together.

There are two classes of deep conditional generative models, namely conditional Variational AutoEncoders (cVAEs) and conditional Generative Adversarial Networks (cGANs), which allow (1) sampling from the joint distribution p(x,y) of faces x and face attributes (conditions) y, and (2) full control over the synthesized face images via selection of the latent vectors z from the latent space N z with a known distribution. In particular, a pair of a latent vector z and a face condition y (in our case, y encodes the required gender and age) completely defines the face which will be synthesized by a cVAE or a cGAN.

An important property of these two classes of conditional generative models is that both of them learn to implicitly disentangle the face information encoded by the latent vectors z and by the conditions y [Yan+16; Lar+16; Per+16] For example, if y encodes gender and age information (as it is the case in the present chapter), then z encodes everything apart from gender and age (this is explained in more details in Subsection 6.3.2).

This property makes cVAE and cGAN particularly suitable for face editing. Indeed, imagine that an input face x (y 0 ) with initial face attributes y 0 is approximated by the synthetic face x(y 0 ) = G(z * ,y 0 ),

where G is either a generator of a cGAN or a decoder of a cVAE (cf. Section 2.4 of Chapter 2) and z * is a particular latent vector estimated with respect to the given input. Then the same latent vector z * can be used in a pair with the target face attributes y 1 to synthesize the final result of face editing:

x(y 1 ) = G(z * ,y 1 ). In other words, face editing with conditional generative models is trivial once an optimal latent vector z * (enabling to synthetically reconstruct the initial face x (y 0 ) ) is found.

cVAEs have an explicit mechanism for estimating z * given an input face x with facial attributes y. Indeed, being an autoencoder, cVAE consists of an encoder E(x) ∶ N x → N z and a decoder G(z,y) ∶ N z ×N y → N x , where N x is the space of face images, N z is the latent space and N y is the space of conditions. During the training, the encoder learns to approximate the inverse mapping of the decoder: x ≈ G(E(x),y).

Therefore, z * can be simply found by processing of the input face by the encoder: z * = E(x). However, as The synthetic images produced by cGANs are indeed much more realistic and sharp than those produced by cVAEs [START_REF] Goodfellow | NIPS 2016 Tutorial: Generative Adversarial Networks[END_REF]. However, the original cGAN framework does not contain an encoder E able to directly estimate a latent vector z * which complicates its application for face editing.

Therefore, a number of studies has been devoted to circumvent this problem. For example, Dumoulin et al. [START_REF] Vincent Dumoulin | Adversarially learned inference[END_REF] proposed the ALI (Adversarially Learned Inference) model extending the GAN framework with a second generator. More precisely, ALI [START_REF] Vincent Dumoulin | Adversarially learned inference[END_REF] is composed of two generators: the one which synthesizes images from latent vectors and conditions G x ∶ N z × N y → N x and the other one which maps in the opposite direction: G z ∶ N x → N z × N y . The two generators are trained simultaneously with a single discriminator D(z,y,x) which tries to distinguish the triples (z,y,x) issued from G x from those issued from G z . Once ALI is trained, the generator G z can be used for inferring the latent vector z * for an input face x.

In a similar way, Larsen et al. [START_REF] Boesen | Autoencoding beyond pixels using a learned similarity metric[END_REF] designed a VAE/GAN model regrouping cGAN and cVAE in one framework. In VAE/GAN, a cGAN and a cVAE share the same generator (called "decoder" in the cVAE context) which allows to train the two models together. The authors of VAE/GAN [START_REF] Boesen | Autoencoding beyond pixels using a learned similarity metric[END_REF] were one of the first to apply a cGAN-based model for face editing. In particular, they reported results on editing several binary facial attributes (such as color of hair, presence of smile, gender, etc.)

Both ALI and VAE/GAN integrate the inference of the latent vector z * directly in the training process.

However, the studies of Zhu et al. [Zhu+16] and Perarnau et al. [START_REF] Perarnau | Invertible Conditional GANs for image editing[END_REF] demonstrated that an encoder E for a cGAN can be also trained posterior to the training of a cGAN. This significantly simplifies the convergence of cGANs with respect to ALI and VAE/GAN, and often results in synthetic faces of superior quality [START_REF] Perarnau | Invertible Conditional GANs for image editing[END_REF]. Thus, in Figure 6. In particular, despite the high visual similarity between the original and the cGAN-reconstructed faces, a human observer directly perceives that the person identities in the original and reconstructed faces are not the same. This is an extremely important issue, because a person's identity is something which we definitely want to preserve when editing face attributes. Below, we address the stated issue designing a novel face editing method which is able to quasi-perfectly preserve the original person's identity.

Gender and Age Conditioned Generative Adversarial Network

In this section, we design a first cGAN which is able to synthesize human faces of high visual fidelity with the required gender and age. Here and further in this work, we refer to our model as GA-cGAN (which stands for Gender/Age-conditioned Generative Adversarial Network). Section 6.2 explains that face editing with a cGAN is trivial if there is a mechanism to infer a latent vector z * allowing the generator of the cGAN to reconstruct an input face. Despite a number of works [START_REF] Boesen | Autoencoding beyond pixels using a learned similarity metric[END_REF][START_REF] Perarnau | Invertible Conditional GANs for image editing[END_REF] applied cGANs to editing of various face attributes, to the best of our knowledge, no existing study proposes a cGAN-based model which performs artificial aging/rejuvenation. In order to make the latter possible with our GA-cGAN, in the present section, we propose a novel approach for the inference of z * , which is focused on preserving the original person's identity. Our GA-cGAN is trained on "face-only" cropped images contrary to "face+40%" crops which are employed in Chapter 5. The reason for that is two-fold: firstly, the more narrow crops compensate the limited resolution of the synthetic images (as the retina of 64x64 pixels is imposed by the DCGAN architecture) by "zooming into" the face region, and secondly, they improve the quality of face reconstruction of GA-cGAN by better preserving the person identity traits (cf. Subsection 6.3.4 for the detailed comparison).

GA-cGAN has been trained with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] (β 1 = 0.5, β 2 = 0.999, ε = 10 -8 ) with a learning rate of 0.002 and a mini-batch size of 64 during 50 epochs (these particular values of the training hyperparameters have been selected according to the recommendations in [START_REF] Perarnau | Invertible Conditional GANs for image editing[END_REF]). We have used the matching-aware discriminator method for cGAN training [START_REF] Reed | Generative adversarial text to image synthesis[END_REF] in order to accelerate the learning of the conditional distribution, which has proven to be very effective. The training curves for G and D are presented in Figure 6.3.2. One may observe that over the time, the average loss of the generator slightly grows, while the one of the discriminator progressively goes down, which is quite usual behaviour for the cGAN training (the particular GAN training dynamics can take a variety of shapes depending on the dataset, hyperparameters and even the random initialization). In order to illustrate the progress of the generator over the training, we also provide some random samples which were generated by G from the same latent vectors z and conditions y at different epochs in Figure 6.3.2.

Synthetic Face Manifold

Once GA-cGAN training is finished, the generator G can generate plausible synthetic faces following a distribution similar to the one of natural faces. Varying the latent vectors z and the conditions y at the input of G results in different synthetic faces x at its output. Importantly, the mapping learned by the generator is continuous meaning that small variations in latent vectors z and conditions y result in small variations in the generated faces x. Thus, an ensemble of all possible synthetic faces produced by G with various z ∈ N z and y ∈ N y taken together form a synthetic manifold Nx (the term was coined in [Zhu+16]).

Interpolated latent vectors "0-18" "19-29" "30-39" "40-49" "50-59" "60+" "0-18" "19-29" "30-39" "40-49" "50-59" "60+" 

Interpolated

Face Reconstruction via Manifold Projection

In Section 6.2, we highlight that the key part of face editing with conditional generative models in general and with cGANs in particular is the reconstruction of an input face x (y 0 ) by the synthetic one

x(y 0 ) = G(z * ,y 0 ). We assume that the initial face attributes y 0 of the input face (i.e. initial gender and age in case of our GA-cGAN) are either known in advance or can be estimated (for example, by gender/age prediction CNNs proposed in Chapter 5). Therefore, the reconstruction of the input face resumes to the inference of an optimal latent vector z * . Here and below, we refer to such reconstruction as projection of an input face x (y 0 ) onto the synthetic manifold Nx .

In the present work, we employ the approach from [START_REF] Perarnau | Invertible Conditional GANs for image editing[END_REF] consisting in the posterior training of a separate encoder CNN to perform the synthetic manifold projection (the details are provided in Paragraph 6.3.3.1). However, as already reported in Section 6.2, this approach suffers from the poor preservation of the original person's identity in the reconstructed face despite the latter is essential for face editing.

Therefore, in Paragraph 6.3.3.2, we propose a novel approach to optimize the initial manifold projection focusing on the preservation of the original identities.

Initial Manifold Projection

As in [Per+16; Zhu+16], we design an encoder CNN E to learn the mapping from the image space N x to the latent space N z inverting the mapping learned by the generator G of GA-cGAN. The architecture of the encoder CNN is provided in Table 6.3.1. In order to train E, we generate a dataset of 100K {latent vector, synthetic image} pairs: {z (i) ,G(z (i) ,y (i) )}, i = 1,...,10 5 , where z (i) ∼ N(0,I) are random latent vectors and y (i) ∼ U are random gender/age conditions sampled from the discrete uniform distribution.

Given a synthetic image G(z (i) ,y (i) ), E must output the source latent vector z (i) . Therefore, E is trained to minimize the Euclidean distances between the estimated latent vectors z(i) = E(G(z (i) ,y (i) )) and the latent vector optimizations as optimized manifold projections and denote them respectively as xpixel and xIP . In Subsection 6.3.4, it is shown both subjectively and objectively that xIP better preserves a person's identity than xpixel while keeping the superficial face details intact.

Experimental Evaluation of Manifold Projection Approaches

As already mentioned on multiple occasions in the present section, the initial face reconstruction via manifold projection is the cornerstone of the face editing with our GA-cGAN. Below, we experimentally compare the quality of the identity preservation with the synthetic reconstructions by three approaches discussed in Subsection 6.3.3, namely: using initial manifold projections x0 , using "pixelwise" manifold projections xpixel , and finally using the proposed "identity-preserving" manifold projections xIP . In order to evaluate the face reconstruction quality in more strict conditions (cf. Protocol 2 in Paragraph 6.3.4.2) we have also employed the LFW dataset. , "pixelwise" manifold projections ( xpixel ) and our "identity-preserving" manifold projections ( xIP ). Evaluation is performed according to two face crops ("face-only" and "face+40%") and two experimental protocols: in the first one, the optimal theoretical Face Verification (FV) accuracy is of 100.0%, while in the second one, the optimal FV accuracy is of 89.4% (cf. Paragraph 6.3.4.2 for details). software outputs a single value which is the relative distance between the provided pair of faces. The smaller is the distance, the closer are the respective human identities according to the software. The authors of OpenFace recommend using 0.99 as a threshold value to decide whether a pair of photos belong to the same person or not.

In particular, we employ OpenFace to evaluate three manifold projection approaches within two experimental protocols of varying difficulty. In the first protocol, the face verification software directly compares the original faces with the corresponding synthetic reconstructions. In practice, the evaluation is performed on 10K of IMDB-Wiki_cleaned images which are not used during the training of GA-cGAN (cf. Paragraph 6.3.4.1). For each of the three compared manifold projection approaches, we calculate the percentage of the {original, synthetic reconstruction} pairs which are predicted as "positive" by OpenFace (i.e. for which the software outputs a face verification distance inferior or equal to the 0.99 threshold). The higher is the resulting percentage the better is the identity preservation. The optimal score for Protocol 1 is obviously of 100.0% (which occurs when all faces are reconstructed well enough to make OpenFace believe that the original and synthetic faces belong to the same person). The results of the experimental comparison of three manifold projection approaches according to Protocol 1 are presented in the third column of Table 6.3.2.

The first experimental protocol allows to compare the quality of the identity preservation of three manifold projection approaches. However, the ultimate objective of the present chapter is to design a face editing model which can ameliorate an off-the-shelf face verification software in the cross-age evaluation scenario. This implies that the normalized synthetic faces are sufficiently realistic to be used instead of the original ones for face verification. Therefore, in the second experimental protocol, we measure the difference between the face verification accuracies of OpenFace on original face images and on the respective synthetic reconstructions. More precisely, Protocol 2 is the following: given a pair of original faces {x 1 ,x 2 }, they are firstly reconstructed with the synthetic ones { x1 , x2 } which are then given at the input of the face verification software. The evaluation is performed following the standard LFW face verification protocol using 10-fold cross-validation As one can see from the results in Table 6.3.2, the second experimental protocol is much more challenging than the first one. Naturally, when a reconstructed face is compared with the original one, OpenFace often classifies the pair as positive even in case of imperfect identity preservation (just because of high visual resemblance of the two images on pixel level). At the same time, such superficial similarity is not enough in Protocol 2 as in this case, the compared synthetic images are reconstructions of two different photos.

Anyway, the results of the comparative evaluation of three considered manifold projection approaches agree between both experimental protocols. Thus, we observe that "pixelwise" optimization slightly improves the quality of the reconstruction with respect to the initial manifold projections. Due to the reasons explained above, the effect is more visible in Protocol 1 than in Protocol 2. However, the performed experiments clearly demonstrate the advantage of our "identity-preserving" projection optimization approach with respect to the basic "pixelwise" optimization. The proposed approach outperforms the "pixelwise" baseline by 3.1 and 3.5 points for the two experimental protocols, respectively. In Protocol 1, "identity-preserving" optimization allows obtaining a quasi-perfect score of 97.6%. At the same time, the second experimental protocol demonstrates that the gap between the optimal face verification score of OpenFace (89.4%) and the best face verification score obtained with the synthetic faces (82.0%) is still very important. In Section 6.4, we show that in order to be used in the cross-age face verification scenario, the quality of face reconstruction with GA-cGAN should be further improved.

Finally, in order to quantitatively confirm the choice of the "face-only" crops for training of GA-cGAN (which is qualitatively motivated in Subsection 6.3.1), we evaluate the original identity preservation both with GA-cGANs trained on "face-only" and on "face+40%" crops. The comparison between the lower and the upper parts of Table 6.3.2 clearly demonstrates the advantages of "face-only" crops with respect to the "face+40%" ones according to both experimental protocols. 

Local Manifold Adaptation

Despite GANs are arguably the most powerful generative models today, their variability and expressiveness are obviously limited. In other words, the generator G which is trained on (no matter how big but) finite number of faces cannot exactly reproduce the details of all real-life face images with their infinite possibilities of minor facial details, accessories, etc. As a result, even the optimal projection x * of a natural input face x on the manifold Nx is still quite different from the original (cf. ). When taken together, these subtle facial details transform in rather significant identity differences between the original and the reconstructed faces.

A natural way to remedy this problem is to modify the designed synthetic face manifold Nx given an input face x in order to bring closer x and its projection x * . In particular, we propose changing only the local area around the projection x * in the manifold Nx . We therefore refer to our approach as Local Manifold Adaptation (LMA) (cf. Since the synthetic manifold Nx is completely defined by the generator, LMA is performed by a slight automatic modification of the generator G with respect to an input image x. More precisely, the key idea of LMA is the following: instead of aging/rejuvenating an input image x (y 0 ) of age y 0 with a general generator G (issued from the GA-cGAN training), we firstly customize the general generator G to better fit the input face x (y 0 ) obtaining a new generator G x (y 0 ) . After LMA, G x (y 0 ) can produce an improved reconstruction x(y 0 ) = G x (y 0 ) (z * ,y 0 ) of the input face x (y 0 ) . Our intuition suggests that if the LMA reconstruction x(y 0 ) is closer to the original face x (y 0 ) than the GA-cGAN reconstruction x * (y 0 ) , then the aged/rejuvenated face x(y 1 ) = G x (y 0 ) (z * ,y 1 ) will also better preserve the original identity than the one obtained via the general generator G. This intuition is confirmed by the experiments in Paragraph 6.4.3.3.

The same optimization objective as in Equation 6.3.2 (i.e. the distance between natural and reconstructed face recognition embeddings: FR(x) -FR(G(z * ,y)) L 2 ) is used to customize G for an input face x. However, in case of LMA, we "freeze" the previously found z * and optimize G instead. Given the fact that inputs (z * and y) of the generator are fixed, we employ a classical backpropagation algorithm to optimize G. In order to make the changes of Nx local and to preserve the continuity of the synthetic manifold which is learned during the adversarial training, the number of backpropagation iterations N iter and the used learning rate µ should be limited. In Paragraph 6.4.3.1, we experimentally find the optimal N iter and µ for LMA and demonstrate both quantitatively and qualitatively the positive effect of our approach on preserving the original identities in the input face reconstructions.

In order to avoid confusion, further in this chapter, we distinguish the face editing/reconstruction with GA-cGAN via manifold projection onto the original manifold (as in Section 6.3) and via manifold projection onto the locally adapted manifold by referring to the former as "GA-cGAN" and to the latter as "GA-cGAN+LMA".

Age Normalization

The objective of age normalization is to compensate the impact of human face aging on the robustness of a face verification software. Usually, the software outputs the relative distance between a pair of input faces. After age normalization this distance should be invariant to age variations in input faces.

Obviously, age normalization can be done differently. For example, in recent works [START_REF] Shu | Personalized age progression with aging dictionary[END_REF][START_REF] Wang | Recurrent face aging[END_REF], the authors synthetically aged the younger face of a pair to the age category of the older one. Aging was preferred over rejuvenation because the respective aging methods could perform the age change only in one direction (make faces older). This is not the case of our GA-cGAN and GA-cGAN+LMA which are able to perform both rejuvenation and aging. More precisely, a pair of input faces can be transformed to belong to any of six age categories. Hence, we can employ two principally different algorithms to normalize ages which are detailed below.

Half-Synthetic Age Normalization In the first algorithm, we edit only one face image of an input pair to the age category of the other. As a result, a pair of faces which is given to the input of a face verification software is composed of a synthetic face and an original one. Therefore, we further refer to the first algorithm as "Half-Synthetic" (HS) age normalization.

Due to the fact that we do not know in advance which operation (rejuvenation or aging) is more suited for a particular face pair, our HS age normalization algorithm performs both and averages the results. In particular, given a pair of faces x 1 of age y 1 and x 2 of age y 2 , we generate two pairs for face verification: { x1(y 2 ) ,x 2 } and {x 1 , x2(y 1 ) }. Both pairs are evaluated by a face verification software which outputs two respective face distances, and the mean of these distances is taken as the final result of face verification.

HS age normalization with Age-cGAN+LMA is illustrated in Figure 6.4.2-(a).

Fully-Synthetic Age Normalization Contrary to HS age normalization, in the second algorithm, we replace both original faces of an input pair by the corresponding synthetically edited versions which belong to the same age category. Following the same logic as for the first algorithm, we have baptised the second one "Fully-Synthetic" (FS) age normalization.

FS age normalization proceeds as following: for each pair of face images x 1 and x 2 , we generate six face verification pairs x1(y i ) and x2(y i ) , i ∈ {1,2,3,4,5,6} belonging to each age category. Thus, FS algorithm performs a uniform normalization between all age categories. The mean of the six corresponding face distances is taken as the final result. FS age normalization is illustrated in Figure 6 

Experiments

In Subsections 6.4.1 and 6.4.2, we have respectively proposed the LMA approach to improve the identity preservation in synthetic face reconstructions by GA-cGAN, and two age normalization algorithms which apply the designed generative face editing method for cross-age face verification. In this subsection, we firstly experimentally select the optimal hyperparameters {N iter , µ} for LMA in Paragraph 6.4.3.1, and then we evaluate both mentioned contributions highlighting the necessity of LMA for identity preserving face editing with GA-cGAN and the effectiveness of the proposed age normalization algorithms in cross-age face verification scenario in Paragraphs 6.4.3.2 and 6.4.3.3, respectively.

Optimal Hyperparameters for LMA

As explained in Subsection 6.4.1, LMA requires two hyperparameters to be selected: the number of backpropagation iterations N iter per face image and the respective learning rate µ. In order to find optimal values for these hyperparamters, we perform a grid search varying N iter from 10 to 50 with a step of 10 and trying 7 different values for µ between 0.0001 and 0.01. In particular, we have tested five learning rates µ ∈ [0.0001,0.001] which are uniformly spaced with the step of 0.00025, and two significantly bigger learning rates of 0.005 and 0.01 in order to find the learning rate limit for the LMA approach. Thus, 35 pairs of N iter and µ have been tested in total.

For each pair of hyperparameters {N iter , µ}, we measure how well the synthetic face reconstructions x produced by the resulting GA-cGAN+LMA preserve the identity of the original faces x. To this end, we In Figure 6.4.3, we illustrate the results of the grid search in the form of a heatmap, and in Figure 6.4.4, we provide some examples of the reconstructed faces with the too small, the too big and the optimal learning rates µ of 0.00001, 0.01 and 0.00075, respectively (for all examples, the number of backpropagation iterations is fixed: N iter = 50). Figure 6.4.4 shows that when µ is too small, the reconstructed face identity is far from the original one (in this case, LMA does not bring anything with respect to the "identity-preserving" manifold projections), while the excessively big µ destroys the synthetic manifold and the resulting reconstruction is completely degenerated. More formally, depending on the tested hyperparameters, the resulting face verification scores have varied between 73.0% and 88.7% (cf. Figure 6.4.3). Overall, one can observe that good learning rate values µ lie in the segment [0.00025,0.001] and LMA generally requires at least N = 30 iterations to converge. The best face verification score of 88.7% is obtained with N = 50 and µ = 0.00075, so these values are selected as the optimal hyperparameters. ods manage to synthesize faces with the required gender/age conditions which is particularly remarkable for GA-cGAN+LMA. Indeed, the proposed LMA approach modifies the learned synthetic manifold Nx which potentially could have negatively affected the aging/rejuvenation process and the gender swapping. This unwanted side effect is prevented by the fact that we carefully select the hyperparameters µ and N iter keeping the manifold alterations local.

Examples in Figure 6.4.5 also show some interesting properties of the synthetic manifold and the training dataset. For example, the synthetic faces of women tend to smile more than those of men (this is particularly visible in lines 4 and 6). Obviously, the reason for that is the learned bias from the training dataset of celebrities. In the same spirit, the black and white input photo in the last line has turned into a colored one after aging. This is due to the fact that in the training dataset, many childhood photos of contemporary actors are very old (and therefore, black and white), while the respective adulthood photos are more recent (and colorful).

Globally, the face editing results of GA-cGAN+LMA seem much more convincing than those of GA-cGAN. The only downside of the LMA approach is that it can create slight noisy artefacts when the input face is very far from the initial manifold (cf. for example, the last line of Figure 6.4.5-(b)).

However, we believe that the pixel-level regularization should be able to remove such noise and "polish" the face editing results. This is a part of our future work. dataset, there are 1519 face pairs fulfilling the three conditions, and we select all of them as positive pairs for face verification. We also randomly select the same number of negative pairs (composed of photos of different persons) following the same conditions (2) and (3) as for positive pairs. Among the selected pairs (both positive and negative), 61.4% have an age gap of 10-20 years, 24.0% of 20-30 years, 11.1% of 30-40 years, and 3.5% of 40+ years. Finally, the obtained results do not allow to convincingly tell which of the two age normalization algorithms (HS or FS) is more effective. Thus, FS normalization demonstrates slightly better scores on the whole test dataset, while HS one is vaguely preferable for the 40 years gap subset. All in all, the fact that two different age normalization algorithms significantly improve the cross-age face verification scores proves the universality and the high potential of our GA-cGAN+LMA face editing method.

GA-cGAN+LMA to Improve Cross-Age Face Verification: Summary

In the present section, we have successfully applied our GA-cGAN generative model for age normalization in order to improve the cross-age verification accuracy of an off-the-shelf OpenFace face recognition software. To make it possible, we have improved the "identity-preserving" manifold projection from Section 6.3 with the novel LMA approach. The effectiveness of the resulting GA-cGAN+LMA face editing method for age normalization has been evaluated according to two different age normalization algorithms.

More precisely, our contributions can be summarized as following:

1. The proposed LMA approach further improves the identity preservation of the "identity-preserving" manifold projection while extending its running time by only 0.4 second per image. As a result, the synthetic reconstructions by GA-cGAN+LMA can be used instead of original faces for face verification with almost zero loss of quality.

2. Synthetic aging/rejuvenation and gender swapping by GA-cGAN+LMA produce visually plausible results which are favourably compared to the state-off-the-art alternatives.

3. Age normalization based on GA-cGAN+LMA boosts FRR@10 of the OpenFace face verification software by about 8 points in average and by about 12 points in case of the biggest age gaps.

Conclusion

In the presented chapter, we have subsequently explored numerous problems of synthetic face generation and editing of increasing difficulty.

We have started in Subsections 6.3.1 and 6.3.2 by designing a first cGAN for face synthesis conditioned on gender and age information. We have baptised our model as GA-cGAN and has shown that it can sample random face images within the required gender and age categories which together belong to a continuous manifold.

The next step has been applying the designed model for face editing. We have demonstrated that the principal downside of existing cGAN-based methods is the fact that they poorly preserve the original person's identity. Thus, in Paragraph 6.3.3.2, we have proposed a novel approach which significantly improves identity preservation with respect to the existing alternatives.

Finally, our ultimate challenge has been improving the accuracy of an off-the-shelf face verification software in the cross-age evaluation scenario. Despite the effectiveness of our "identity-preserving" manifold projection approach, we have discovered that face editing by GA-cGAN still loses too much identity information to be directly applied for the stated problem. Therefore, in Subsection 6.4.1, we have extended GA-cGAN with the LMA approach which adapts the face editing for a particular input face. This last chapter concludes the present manuscript summarizing the main results which have been obtained in the frame of this PhD. We start by recalling the key contributions of our work in Section 7.1.

Then, we discuss the limitations of the proposed approaches suggesting the possibilities for the future research in Section 7.2. Finally, the publications associated with this PhD are listed in Section 7.3.

Summary of the Contributions

In this PhD, we have been interested in bridging the gap between the rapidly developing domain of deep learning and the domain of gender and age analysis of human faces. In this context, the following two primary objectives have been set for this work: on the one hand, learning to automatically annotate a given face image with the corresponding gender and age semantics (i.e. the problem of gender/age prediction), and on the other hand, learning to synthesize new face images with the required gender and age attributes (i.e. the problems of face synthesis and face editing).

Preliminrary Studies Before directly addressing these main objectives, we have started our research with two preliminary studies which have been dedicated to better understanding of CNNs, the models which have been further used throughout the whole PhD.

In particular, in the first study, we have compared the effectiveness of the features learned by CNNs versus several relevant hand-crafted feature representations for the problem of gender recognition from images of pedestrians. This problem is notorious for its complexity and the fact that a relatively small number of images (about 10K) is available for training. Despite the lack of the training data, we have shown that the features learned by a very compact pedestrian_CNN generalize significantly better on new datasets than the hand-crafted HOG features (even though, the latter were explicitly designed for the precisely, the designed models obtain the top performances on three mostly used benchmarks: LFW, MORPH-II and FG-NET. When evaluated on the very challenging private PBGA dataset, which is balanced between the two genders and has a uniform distribution of ages, our best CNNs reach the gender CA of 98.7% and the age MAE of 4.26 years.

Our age CNN achieves the human-level of biological age estimation which is illustrated by its comparison with the participants of the TV show "Guess My Age". Moreover, this biological age CNN can be also effortlessly adapted to estimate apparent ages. Thus, our winning entry to the ChaLearn AAEC contest has confirmed the selected training approach for apparent age estimation as well.

Face Synthesis and Editing Finally, our last contribution consists in proposing a novel approach for face synthesis and editing with the required gender and age semantics, which fulfils the second main objective of this PhD.

The face synthesis part of the problem is the simple one, and it has been resolved by designing GA-cGAN, the first cGAN which can synthesize faces of high visual fidelity within the required gender and age categories.

However, application of GA-cGAN for face editing requires a separate approach for the inference of an optimal latent vector z * given an input face x (or in other words, for synthetic reconstruction of x). Therefore, we have proposed "identity-preserving" manifold projection algorithm which allows to preserve the original person's identity in the reconstructed synthetic face better than existing alternative latent vector inference approaches. In particular, when comparing the original faces with their synthetic reconstructions synthesized by GA-cGAN via the "identity-preserving" manifold projection algorithm, a typical face verification software "believes" that the two faces belong to the same person in 97.6% of cases (which is more than 3 points better than the similar score of previous approaches).

Nevertheless, some practical applications of face editing (for example, cross-age face verification) require even higher (i.e. quasi-perfect) quality of identity preservation. To this end, we have suggested an extension of our "identity-preserving" manifold projection algorithm, which ameliorates the latter by increasing its running time by only 0.4 seconds per face image. We have called this extension Local Manifold Adaptation (LMA), and its key idea consists in locally changing the manifold of GA-cGAN in order to reduce the distance between it and an input face prior to the manifold projection. LMA significantly improves the quality of the "identity-preserving" manifold projection algorithm which has been illustrated both quantitatively and qualitatively.

The resulting GA-cGAN+LMA face editing method has shown visually convincing results for automatic gender swapping and aging/rejuvenation in human faces. Moreover, in order to demonstrate its practical pertinence, we have employed GA-cGAN+LMA for age normalization prior to face verification in a cross-age evaluation scenario. As a result, we have obtained improvements of the face verification score by about 8 points in average, and by about 12 points in case of the biggest age gaps.

Last but not the least, it is important to highlight that in this manuscript, we have used our GA-cGAN+LMA face editing method exclusively for aging/rejuvenation and gender swapping, but the main advantage of the proposed method is its universality, meaning that it can be potentially applied for modifying of any face attributes.

face image is firstly classified in a coarse age category and then, gender/age prediction is done within the selected category by a specialized model) proved to be helpful in several previous studies [Han+15;

LYK15], and therefore, is definitely a promising direction to explore.

We have also noticed that our age estimation CNN is quite sensible to changes in face expressions.

In particular, our model generally predicts smiling faces to be younger than neutral and frowning ones.

In our opinion, this effect is due to a bias in the training dataset where younger people tend to smile more than older ones. More generally, the lack of robustness to face expressions is a known issue in age estimation research [START_REF] Guo | A study on human age estimation under facial expression changes[END_REF], and there are at least two possibilities to deal with this problem. Firstly, the invariance to face expressions can be learned during the training by integrating a dedicated objective to the loss function. Alternatively, expression normalization can be performed prior to age estimation using, for example, our GA-cGAN+LMA face editing method (for that, the GA-cGAN generative model must be trained with expression conditions).

Otherwise, we believe that the accuracy of our age estimation CNN would be further refined if more training images were available. Indeed, the experiments in Chapter 5 have shown that, unlike gender CNNs, the accuracy of which is completely determined by the face recognition pretraining, the age estimation training takes advantage of deep CNN architectures. Thus, we expect that more training data will help avoiding overfitting and will allow using more complex CNN architectures than VGG-16 for age estimation (for example, ResNet-50).

In Chapter 5, we have also found that a straightforward multi-task learning for gender recognition and age estimation favourably compares with respect to mono-task learnings when the CNNs are trained from scratch. We anticipate that this effect will be even more evident in multi-task learning with k > 2 modalities (such as presence of smile, presence of glasses, facial pose etc.) Ideally, we expect that multitask learning for k various modalities can substitute the need for face recognition pretraining (we have seen that the two transfer learning approaches are interconnected). In order to verify this hypothesis, a big face dataset with the corresponding annotations is needed. For example, the recent CelebA dataset [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF] containing about 200K face images annotated with 40 binary labels could have been a good candidate for generalizing our work to other facial traits, if it had been also annotated with ages.

In this PhD, we have been working exclusively with static RGB images of faces. At the same time, some works reported that facial visual traits can be better perceived in action. For example, there are two studies [Dib+12; BDB16] which demonstrated that a video of a smiling person adds additional information for gender recognition and age estimation with respect to the sequence of static images. Therefore, exploring of the face dynamics in the context of gender/age prediction seems an interesting possibility for future work. Similarly to video sequences which can potentially provide additional information for gender/age prediction with respect to static images, the alternative modes of image acquisition can also be used to capture some complimentary face details comparing to the conventional digital cameras.

For example, there are some works attempting to improve the human demographics prediction by using RGB-depth [START_REF] Huynh | An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data[END_REF], 3D [START_REF] Han | Gender classification based on 3D face geometry features using SVM[END_REF], and even near-infrared [CR11] face images. However, one of the main difficulties of applying deep learning in the mentioned contexts is the lack of large publicly available datasets of faces in the respective formats.

Finally, in this manuscript, we have evaluated our gender recognition and age estimation CNNs on three public benchmarks and on the internal challenging PBGA dataset which gives an idea of the respective gender and age prediction accuracies in average. However, from the applicative point of view, it would be very useful if it was possible to guarantee a certain level of the gender/age prediction confidence given a particular input photo. This can be achieved by evaluating our models on specific sets of face images which are selected according to some predefined criteria reflecting the difficulty of the gender and age analysis. For example, such criteria could be the spatial orientation of the face (e.g. whether it is frontal, half-profile or profile), the resolution of the input image (the corresponding evaluation has been performed in Paragraph 5.3.3.1 of Chapter 5), the presence of face accessories (such as sunglasses, hats or scarfs), the face expression, etc. In order to properly perform this evaluation, a laboratory-collected dataset of faces (balanced between genders and ages) where the same persons are photographed in all respective conditions is needed.

Face Synthesis and Editing

The most evident limitation of our GA-cGAN generative model and of the resulting GA-cGAN+LMA method for automatic face editing is undoubtedly the fact that they only deal with small images of 64x64 pixels. The reason for that is the prohibitive difficulty of training of a cGAN on images of a bigger resolution. For example, extending the DCGAN architecture [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] (which is used in this manuscript) even to the resolution of 96x96 pixels results in a cGAN which does not converge at all. However, the recently proposed Wasserstein GAN by Arjovsky et al. substituting horses with zebras and vice versa). For example, if Cycle-GAN was applied for face aging, an input domain could be young faces, while the target domain could be senior faces. On the one hand, this transformation approach allows working with images of almost arbitrary resolution, but on the other hand, it loses the universality of our face editing method. Indeed, unlike GA-cGAN+LMA, the approach 
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The results described in this manuscript were partly presented in a number of peer-reviewed publications as well as invited talks which are listed below. l'extraction des descripteurs appris. Les couches dont les activations constituent les descripteurs sont mises en gras. "Conv : N@MxM" désigne une couche convolutionnelle avec N noyaux de convolution de taille MxM. "MaxPool : MxM" désigne un sous-échantillonnage de type "Max-Pooling" par un facteur M. "FC : N" désigne une couche entièrement connectée avec N neurones. des descripteurs appris avec ce réseau affiné (le réseau est appelé AlexNet-FT dans la suite de cette section) est effectuée de la même façon que pour AlexNet classique. 24 optimized_CNN ∶= current_optimal_CNN ; Algorithm 8.1: Optimisation de l'architecture du CNN. L'algorithme suppose que l'architecture initiale de start_CNN est composée de plusieurs blocs de couches convolutionelles suivis par des sous-échantillonnages du facteur de 2. Le nombre de noyaux de convolution (#ConvFeatureMaps) dans chaque couche convolutionelle ainsi que le nombre de neurones dans la couche entièrement connectée (#FCNeurons) est supposé être une puissance de 2. images d'apprentissage. -Dans un premier temps, nous choisissons l'encodage optimal de l'âge pendant l'apprentissage.
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La Collection PETA et le Protocole Expérimental

Conclusion

En effet, ce choix (qui est trivial dans le cas de la classification du genre) joue un rôle important pour les CNNs de l'estimation de l'âge en définissant la fonction de coût utilisée pour l'apprentis- 

Résultats

Les résultats de nos expérimentations sur la conception d'architecture de CNN et sur la stratégie d'apprentissage pour les deux tâches en question peuvent être résumés dans les cinq conclusions qui sont présentées ci-dessous :

1. Le LDAE est l'approche optimale pour l'encodage de l'âge.

2. Le cadrage "face+40%" est mieux adapté aux CNN de la classification du genre et l'estimation de l'âge que le cadrage "face-only".

3. L'estimation de l'âge est un problème plus complexe que celui de la classification du genre, mais dans les deux cas, le transfer learning s'est avéré très utile pour améliorer la convergence de CNNs. -Chaque CNN est d'abord pré-entrainé pour la reconnaissance faciale.

-Les CNNs pour la classification du genre et pour l'estimation de l'âge sont entrainés séparément.

-Le LDAE est utilisé pour encoder les âges.

Comme dans la Sous-section 8. Plus particulièrement, les conditions y = (y g ,y a ) à l'entrée de GA-cGAN sont des vecteurs binaires de taille 7 composés de deux parties, à savoir : y g (une valeur qui encode le genre) et y a (un vecteur binaire de taille 6 qui encode l'âge). En effet, nous identifions 6 catégories d'âge, à savoir : "0-18", "19-29", "30-39", "40-49", "50-59" et "60+" ans. Les catégories d'âge sont choisies de façon à ce qu'il y ait au moins 5K images d'apprentissage dans chacune des catégories (nous utilisons le corpus IMDB-Wiki_cleaned pour l'apprentissage).

Générateur G Discriminateur D Encodeur E Reconnaissance Faciale FR 4x4(2x2)@512, BN, ReLU 4x4(2x2)@64, LReLU 5x5(2x2)@32, BN, ReLU 3x3(1x1)@32, BN, ↓, ELU 4x4(2x2)@256, BN, ReLU 4x4(2x2)@128, BN, LReLU 5x5(2x2)@64, BN, ReLU 3x3(1x1)@64, BN, ↓, ELU 4x4(2x2)@128, BN, ReLU 4x4(2x2)@256, BN, LReLU 5x5(2x2)@128, BN, ReLU 3x3(1x1)@128, BN, ↓, ELU 4x4(2x2)@64, BN, ReLU 4x4(2x2)@512, BN, LReLU 5x5(2x2)@256, BN, ReLU 3x3(1x1)@256, BN, ↓, ELU 4x4(2x2)@3, Tanh 4x4(1x1)@1, Sigmoid FC 4096, BN, ReLU 

Conclusion

La présente section a abordé les problèmes de synthèse et d'édition d'images de visages avec le genre et l'âge demandés. Les contributions de la section sont résumées ci-dessous :

1. Nous avons entrainé GA-cGAN, le cGAN pour la synthèse d'images de visages conditionné sur le genre et l'âge. GA-cGAN est capable de transformer de façon continue les vecteurs de l'espace latent (N(0,I)) vers des images de visages plausibles avec le genre et l'âge souhaité.

2. Nous avons proposé une nouvelle méthode d'inférence du vecteur latent en fonction de l'image de visage en entrée qui surpasse les méthodes existantes sur la qualité de la préservation de l'identité originale. Cette méthode permet la reconstruction et l'édition d'images de visages naturelles avec GA-cGAN.

3. Finalement, nous avons proposé une approche nommée LMA qui permet de perfectionner la préservation de l'identité dans les reconstructions par GA-cGAN. Par conséquent, nous avons démontré qu'avec LMA, GA-cGAN peut être utilisé pour le vieillissement / rajeunissement dans le cadre de la vérification faciale pour compenser les variations d'âge dans les images évaluées.

Conclusion Générale

Les résultats principaux de cette thèse se résument en trois contributions principales qui sont présentées ci-dessous :

-Nos deux études préliminaires ont démontré que l'efficacité des descripteurs appris par les CNNs dépendent de la complexité du problème cible. Plus particulièrement, les descripteurs appris par les CNNs se sont avérés beaucoup plus efficaces que les descripteurs manuellement conçus sur le problème de la classification du genre à partir d'images de piétons. Au contraire, dans le cadre de la classification du genre à partir d'images de visages (qui est un problème plus simple), les CNNs n'arrivent pas à extraire de meilleures descripteurs pendant l'apprentissage à partir de zéro. Ce résultat explique la nécessité du pré-apprentissage sur un problème complexe avant l'apprentissage pour la classification du genre à partir d'images de visages.

-Nous avons effectué une étude poussée qui a abouti à une formulation empirique des principes de la conception et de l'apprentissage optimaux de CNNs pour la prédiction du genre et de l'âge à partir d'images de visages. Notamment, nous démontrons que la reconnaissance faciale est très utile pour le pré-apprentissage de CNNs de la classification du genre. Nous identifions également LDAE comme une méthode d'encodage d'âge très adaptée pour l'apprentissage de CNN de l'estimation de l'âge. Au final, ces principes nous ont permis de concevoir les CNNs de l'état de l'art pour la classification du genre et l'estimation de l'âge sur les trois corpus les plus utilisés ainsi que de gagner une compétition internationale sur l'estimation de l'âge apparent.

-Nous avons proposé le modèle GA-cGAN qui est à notre connaissance le premier cGAN pour la synthèse conditionnée d'images de visages avec le genre et l'âge demandés. Ensuite, nous avons
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 111111 Figure 1.1.1 -(The photos are extracted from public online media sources). Different scenarios of the visual description of humans: (a) a known person who can be directly identified; (b) a person of unknown identity (instead, gender and age can be used for the description of the person's visual appearance); (c) two persons whose father-son relationship can be visually perceived; and (d) two persons whose brothersister relationship can be visually perceived.
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 12112113 Figure 1.1.2 -(The photos are extracted from public online media sources). (a) Human visual perception of gender is changed due to subtle contrast variations between the two photos of the same face. (b)Human vision can effortlessly rank the presented ladies according to their age even in the absence of the most obvious apparent age characteristics (such as wrinkles, white hair color, eyeglasses etc.)
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 121 Figure 1.2.1 -Two problem settings and three main problems which are addressed in the present manuscript.In "image to label" setting, a face image is given at the input, and the goal is to recognize the person's gender and age. In "label to image" setting, two distinct problems are considered: synthesis of an arbitrary face with the required gender/age semantics, and editing of a given face to change the visual perception of its gender and/or age (but preserving the original person's identity).
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 2211 Figure 2.1.1 -(Reproduced from [GBC16]). Venn diagram demonstrating the place of deep learning in the context of representation learning, machine learning and Artificial Intelligence (AI) in general.
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 21 Figure 2.1.2 illustrates a typical (deep) ANN for image classification. It consists of multiple layers,and each layer corresponds to an internal feature representation (informally, the deeper is the layer, the more abstract are the respective features). In particular, the model takes matrices of raw pixel values at its input (corresponding to a human face image, for example), and the learned features of the early layers detect elementary patterns in the input image, i.e. edges, colors and corners. The average layers are learned to arrange the detected trivial patterns into more meaningful object parts (in our case, eyes, nose, ears etc.) Finally, the features of the deepest layers operate with the most abstract concepts combining the obtained object parts into the target objects and allowing our model to correctly classify the input image as a human.As a result, during the training, a deep model for image classification learns both feature representations for images and a classification model. Thus, one of the pioneers of the domain, Yann LeCun, describes deep learning as "end-to-end machine learning" 1 .
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 2 Figure 2.1.2 -(Better viewed in color). Schematic presentation of a typical deep model for image classification. A hierarchy of learned feature representations of increasing complexity allows to correctly classify the input image as a human.
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 221 Figure 2.2.1 -The key moments of the history of Artificial Neural Networks (ANNs) and deep learning. (a) Invention of the artificial neuron [MP43]. (b) Invention of Perceptron [Ros58]. (c) Invention of backpropagation [Wer74]. (d) Invention of Convolutional Neural Networks (CNNs) [LeC+89]. (e) Invention of Long Short-Term Memory networks (LSTMs) [HS97]. (f) Invention of Deep Belief Networks (DBNs) [HOT06]. (g) AlexNet CNN wins ImageNet [KSH12].

Figure 2 .

 2 Figure 2.2.2 -(Extracted from [Bac13]). The oriented connection graph (i.e. architecture) of a Multi-Layer Perceptron (MLP).

  each training example separately (fully stochastic training) or based on small batches of several training examples (mini-batch training). MLP trained with batchpropagation proved to be very effective supervised machine learning algorithm and revived the interest in ANNs during the late 80s [LBH15]. Even today, backpropagation remains the basic training algorithm for the majority of deep learning models, while a number of improvements have been proposed to facilitate the convergence of the underlying SGD optimization (i.e. introduction of momentum [Pla+86], Nesterov optimization [Nes83], ADAM [KB14], etc.)
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 223 (b) which illustrates unfolding of the RNN from
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 223 Figure 2.2.3-(a) in time. Thus, an activation x
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 223 Figure 2.2.3 -(Extracted from [Bac13]). (a) The oriented connection graph (i.e. architecture) of a Recurrent Neural Network (RNN), and (b) its unfolding in time.

  Figure 2.2.3-(b)) is actually a feedforward neural network, meaning that backpropagation can be applied for its training. This particular case of backpropagation is known as BackPropagation Through Time (BPTT) and was firstly proposed by Williams and Zipser [WZ95].
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 231 Figure 2.3.1 -(Extracted from [LeC+98]). LeNet-5 CNN for recognition of handwritten digits.
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 231 Figure 2.3.1 illustrates LeNet-5, one of the first CNNs successfully applied for a real-life problem. The CNN was designed by LeCun et al. [LeC+98] for automatic recognition of handwritten digits. A typical CNN, such as LeNet-5, is composed of three types of layers: (1) convolutional ones (labelled by the letter C in Figure 2.3.1), (2) pooling (or subsampling) ones (labelled by the letter S in Figure 2.3.1), and
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 232 Figure 2.3.2 -(Extracted from [Sri+14]). Dropout algorithm for ANN regularization. During each iteration of training some randomly selected neurons (and respective connections) of an ANN are "switched off". (a) Standard ANN. (b) ANN after applying dropout.
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 233 Figure 2.3.3 -(Extracted from [Sze+15]). Inception module which is a building block of GoogLeNet CNN.
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 2 Figure 2.4.1 -(Reproduced from [Goo16]). Taxonomy of deep generative models.

Figure 2 .

 2 Figure 2.4.2 -(a) (Extracted from [KW14]). Schematic presentation of Variational AutoEncoder (VAE). (b) (Extracted from [Yan+16]). Examples of cVAE-generated synthetic face images with varying gender and age conditions.

  .4.2-(b).
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 242 (b)).

Figure 2 .

 2 Figure 2.4.3 -(Extracted from [Goo16]). Illustration of the training process of a GAN for generating human face images. Two ANNs, the generator G and the discriminator D, are optimized in parallel with the opposite objectives: synthesis of the realistic faces, and discrimination between the synthetic and the natural faces, respectively.
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 3113 Figure 3.1.1-(b).The big advantage of soft biometrics with respect to "traditional" biometrics (the goal of which is to identify a person) is that the former provides only a partial description of an individual preserving her/his privacy. This allows to use soft biometrics for anonymized statistics collection.For example, human gender and age, studied in this manuscript, are particular cases of soft biometrics traits which are often called demographics, because they are commonly used for population analysis
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 311 (b)).
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 312 Figure 3.1.2 -(Extracted from [Shu+16].) An illustration of human aging progress. At various stages of life, aging affects different face parts.
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 321 Figure 3.2.1 -Typical pipeline of automatic gender recognition and age estimation systems. It consists of two phases (face extraction, and face analysis) and five steps: (a) face detection, (b) face landmark detection, (c) face alignment, (d) feature extraction, and (e) gender/age prediction.
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 321 steps (b) and (c)). 2D (or 3D) face rotation and scaling is done implicitly by face alignment as a part of the affine transformation.If not said otherwise, in the present manuscript, we use private face detection and 2D face alignment solutions of Orange which are based on[START_REF] Zhang | Face detection based on multi-block lbp representation[END_REF] and[START_REF] Peter N Belhumeur | Localizing parts of faces using a consensus of exemplars[END_REF], respectively. At the same time, the contributions of this work concern the face analysis phase from the pipeline in Figure3.2.1, which is discussed below.Being composed of two distinct steps: feature extraction and gender/age prediction, the face analysis phase of the pipeline in Figure3.2.1 is the typical one for the majority of non-deep learning approaches for object recognition in computer vision. As already discussed in the introductory Section 2.1 of Chapter 2, the features representing the input data have a decisive impact on the effectiveness of the subsequent machine learning algorithms for classification or regression. Therefore, the previous studies on gender recognition and age estimation tried a large variety of approaches for gender/age-aware feature extraction from face images. We make an overview of the attempted methods in Subsection 3.2.2. After that, in Subsection 3.2.3, we report on different machine learning algorithms which have been tested on the extracted face features in order to predict gender and age.

  Figure 3.2.2 -(a) (Extracted from [Fel97]). The set of 24 face fiducial distances for anthropometric prediction of gender. (b) (Better viewed in color). (Extracted from [RC06b]). Growth pattern of a child's skull during the aging.
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 312 the cranial changes are characteristic only for children and teenagers under 18 years old. Therefore, anthropometric features are useful only for age estimation of minors. Thus, Ramanathan and Chellappa [RC06b] defined a growth pattern based on 8 fiducial proportions which models the children age progression (cf. Figure 3.2.2-(b)). Similarly, Gunay and Nabiyev [GN07]

(

  ages). Contrary to hand-crafted features discussed in Paragraph 3.2.2.2, manifold learning is a way to obtain learned features based on the training images. In fact, PCA and ICA dimensionality reduction approaches, which are mentioned in Paragraph 3.2.2.2, can be seen as elementary linear manifold learning techniques. However, in this paragraph, we discuss studies which employed two alternative non-linear manifold learning algorithms for gender recognition and age estimation. Thus, Hadid and Pietikainen proposed[START_REF] Hadid | Manifold learning for gender classification from face sequences[END_REF] Local Linear Embedding (LLE)[START_REF] Sam | Nonlinear dimensionality reduction by locally linear embedding[END_REF] to learn features for gender recognition. The LLE algorithm is a non-linear manifold learning approach which exploits local symmetries of class reconstructions. LLE face representations allowed the authors improving the gender classification accuracy by about 10 points with respect to the LBP baseline[START_REF] Hadid | Manifold learning for gender classification from face sequences[END_REF].
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 323 Figure 3.2.3 -(Better viewed in color). (Extracted from [Guo+08]). Illustration of 2D and 3D age manifolds learned with three different manifold learning techniques: PCA, LLE, and OLPP. The colours of points indicate the age of people in the respective face images.

Figure 3

 3 Figure 3.3.1 -(a) (Extracted from [Suo+10]). And-or graph for modelling-based aging/rejuvenation: "and" nodes split a human face into multiple coarse-to-fine parts, while "or" nodes propose a selection of templates for each considered face part (i.e. eyes, ears, nose etc.) For aging/rejuvenation, and-or graphs corresponding to various age categories are connected in a Markov chain. (b) (Better viewed in color). (Extracted from [Shi+12]). Aging/rejuvenation based on separate modelling of facial muscles.

  Figure 3.3.1-(b)). Deformation of each muscle is modelled separately, and the parameters of the corresponding growth functions are estimated during the training. The common limitation of all modelling-based methods is similar to the one of anthropometry-based approaches for age estimation (which are discussed in Paragraph 3.2.2.1), namely the requirement of the input faces to be perfectly frontal and aligned. Obviously, this requirement cannot be always fulfilled for the photos taken "in the wild". Moreover, many of the modelling-based methods of aging/rejuvenation also require long-term aging sequences of the same person. Unfortunately, it is very costly to collect big enough training datasets with such sequences. Finally, modelling-based methods are also known to be computationally expensive. As a result, the vast majority of the contemporary face aging/rejuvenation methods are prototype-based. Prototype-Based Approaches Prototype-based methods [BP95; TBP01; KSSS14] define average faces calculated on training images of certain age categories as their prototypes. Differences between the prototype faces constitute the aging patterns which are further used to transform an input face image into the target age category. A typical pipeline of face aging/rejuvenation with a prototype-based approach is illustrated in Figure 3.3.2.

Figure 3 .

 3 Figure 3.3.2 -(Extracted from[START_REF] Michael | Perception of age in adult Caucasian male faces: Computer graphic manipulation of shape and colour information[END_REF]). A typical pipeline of face aging/rejuvenation with a prototypebased approach. Input face is aligned (warped) with the pre-calculated face prototypes for the target and initial age categories. After that, aging is performed by simply adding the aging pattern (which is just the difference between the two prototypes) to the initial face.

Figure 3 .

 3 Figure 3.3.2). In the same spirit, Suo et al. adapted and-or graph presented above (cf. Figure 3.3.1-(a))

4 .

 4 Modelling approaches for synthetic aging/rejuvenation often require input sequences of faces of the target person taken at different ages, which is hardly realistic for real life applications. At the same time, the prototyping approaches are prone to produce "too averaged" faces which often lose the original person's identity after aging/rejuvenation. 5. Gender swapping problem has attracted less attention of the research community than synthetic aging/rejuvenation due to the lack of the training datasets with the ground truth.
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 421 Appearances of body images hugely vary between different datasets of PETA in terms of image resolutions (from 39x17 to 365x169), camera angles (pictures are taken either by ground-based cameras or by surveillance cameras which are set at a certain height) and environments (indoors or outdoors). This variety allows the experimental comparison of gender recognition approaches in different conditions and scenarios (cf. Paragraph 4.2.3.2). Examples of PETA images from each of 10 datasets are presented in Figure 4.2.1.
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 421 Figure 4.2.1 -Examples of pedestrian images from the PETA collection: (a) CUHK; (b) PRID; (c) GRID; (d) MIT; (e) VIPeR; (f) 3DPeS; (g) CAVIAR; (h) i-LIDS; (i) SARC3D; (j) TownCentre. Original image proportions are preserved.

Experiment 1

 1 provides the easiest conditions for gender recognition models: they are separately trained and tested on the five biggest datasets of the PETA_cleaned collection: CUHK, PRID, GRID, MIT and VIPeR. In many aspects, body images from the same dataset are closer to each other than body images from different datasets: for example, they are usually taken by the same camera, preprocessed in the same way etc. We further refer to training images coming from a single dataset as homogeneous training data. Therefore, Experiment 1 can be summarized as "homogeneous training data; same-dataset evaluation scenario".Experiment 2 is one step more difficult than the first one. The features are compared on the same five biggest datasets of PETA_cleaned, but in this case, for each feature representation, a single gender recognition model is trained on a mixture of the datasets. Then the obtained model is evaluated on the five testing parts of the respective datasets as in Experiment 1. This way, we test the ability of the compared features to adapt to heterogeneous training data from different sources (datasets). In other words, Experiment 2 can be summarized as "heterogeneous training data; same-dataset evaluation scenario".Experiment 3 represents the most adverse conditions for gender recognition systems. As in Experiment 2, the gender recognition models are trained on a mixture of five biggest datasets (i.e. on heterogeneous data), but contrary to the first two experiments, they are tested on five completely unseen datasets: 3DPeS, CAVIAR, i-LIDS, SARC3D and TownCentre ensuring the cross-dataset evaluation scenario. As a result, Experiment 3 can be characterized as "heterogeneous training data; cross-dataset evaluation scenario" and is the closest experiment to the real-life conditions. The details of split of all datasets of PETA_cleaned collection into training and test parts are provided in Table
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 231 the original images of the PETA_cleaned collection are of different sizes. Before feature extraction, we standardize the image dimensions, making them of 150x50 pixels for all hand-crafted features and for pedestrian_CNN, and of 227x227 pixels for AlexNet (the latter is imposed by the respective CNN architecture). When rescaling to the new dimensions, it is essential to preserve the original proportions of body images (as they can help in gender recognition). Thus, we firstly rescale an input image so that the resulting image height is 150 pixels while the resulting image width is adapted proportionally. Then, depending on the obtained width, we either symmetrically crop it or symmetrically add empty "black" pixels on both sides of the image to fit the target width of 50 pixels (cf. Figures 4.2.2 -(a) and 4.2.2-(b), respectively).
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 422 Figure 4.2.2 -Examples of rescaling images from the PETA_cleaned collection. Firstly, original images are rescaled so that the resulting image height is 150 pixels. Then the image widths are adapted proportionally by either (a) symmetric cropping; or (b) symmetric adding of "black" pixels.

  sensitive information in images (for example, PPFs are used to hide human faces and car plates in Google Street View 2 ). A number of PPFs has been proposed in literature. Below, we present the most popular among them which are further used in our experiments: Masking, Morphing, Pixelization, Gaussian Blur and k-Means.

2 .

 2 https://www.google.com/intl/en/streetview/
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 423 Figure 4.2.3 -Privacy Protection Filters (PPFs) used in our experiments. (a) original body image; (b) body image protected by Masking PPF; (c) body image protected by Morphing PPF; (d) body image protected by Pixelization PPF; (e) body image protected by Gaussian Blur PPF; (f) body image protected by k-Means PPF.

Finally, as indicated

  by its name, k-Means PPF consists in clustering input image pixels in k categories using the k-Means algorithm. Clustering is based on pixel intensities and usually applied separately on three image channels (RGB). The lower is k the stronger is PPF. An example of applying the presented PPFs on a body image is presented in Figure 4.2.3. In Table
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 424 Figure 4.2.4 -Gender recognition from body images: comparison of CAs by human estimators and by our best model AlexNet-FT on original images and in presence of PPFs.

Figure 4 . 2 .

 42 Figure 4.2.4 compares the gender recognition CAs of AlexNet-FT and human evaluators on original
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 425 Figure 4.2.5 -Learned vs. hand-crafted features: average results. Exp. 1: homogeneous training data; same-dataset evaluation scenario. Exp. 2: heterogeneous training data; same-dataset evaluation scenario. Exp. 3: heterogeneous training data; cross-dataset evaluation scenario. The details are provided in Subsection 4.2.3.

  a reference accuracy CA 0 . The subsequent optimization of start_CNN should simplify the architecture without deteriorating the reference gender recognition accuracy. Therefore, all intermediate architectures in Algorithm 4.1 are compared against CA 0 . For the sake of a fair evaluation, every intermediate CNN is trained 3 times which results in 3 different CAs per CNN architecture. When CA current of an intermediate architecture is compared with CA 0 (lines 9, 16 and 23 of Algorithm 4.1) both mean values µ current and standard deviations σ current (estimated over 3 evaluations) are taken into account. More precisely, we consider that start_CNN and an intermediate current_CNN have a similar gender recognition accuracy (i.e., the criterion from lines 9, 16 and 23 of Algorithm 4.1 is NOT fulfilled: criterion(CA 0 ,CA current ) =

  Figures 4.3.1-(a) and 4.3.1-(b) present some example images of the two respective datasets. While collecting the CASIA WebFace dataset, its authors made sure that there are no subject intersections between CASIA WebFace and LFW [Yi+14]. CASIA WebFace dataset CASIA WebFace dataset was collected for face recognition purposes by [Yi+14]. The dataset contains photos of actors and actresses born between 1940 and 2014 from the IMDb website 3 . Images of the CASIA WebFace dataset include random variations of poses, illuminations, facial expressions and image resolutions. In total, there are 494,414 face images of 10,575 subjects (53.5% of men faces and 46.5% of women faces). Images of the CASIA WebFace dataset are split between training and validation in proportion 90% to 10%. There are no subject intersections between training and validation parts.
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 4314 Figure 4.3.1 -Face datasets used in Section 4.3. (a) Examples of images from CASIA WebFace; (b) examples of images from LFW; (c) illustration of face detection and resizing.
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 41 we minimize the number of convolutional blocks and the associated retina size. By
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 432 Figure 4.3.2 -Optimization of start_CNN according to Algorithm 4.1 -step 1. Optimizing the retina size and the number of convolutional layers: the CNN architecture B is selected after step 1.

Figure 4 .

 4 Figure 4.3.2 compares gender CAs of start_CNN, CNN A, CNN B and CNN C. Mean CAs are depicted by bars while corresponding standard deviations are given by error segments (both statistics are estimated using 3 CNN instances trained from scratch). The reference CA 0 = 97.5% corresponds to the accuracy of start_CNN on the validation dataset and is fixed for all three steps of Algorithm 4.1. In order to illustrate how the validation accuracy on the CASIA WebFace dataset is related to the test accuracy on the LFW dataset, we also present the test accuracies of all compared CNNs in Figure 4.3.2. However, we highlight that the results on the test dataset are not used in the architecture selection.There is no significant difference between the CAs of start_CNN, CNN A and CNN B. All of them show validation scores which are very close to the reference CA 0 (with respect to the criterion defined in Subsection 4.3.1). The accuracy of CNN C is significantly lower than accuracies of the first three networks: decrease of about 1.5 points on the validation dataset. Therefore, as the objective is to reduce the complexity of the architecture while preserving the gender recognition accuracy, CNN B is selected after this first optimization step.
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 433 Figure 4.3.3 -Optimization of start_CNN according to Algorithm 4.1 -step 2. Optimizing the number of feature maps (the CNN's width): the CNN architecture B is selected after step 2.

  we have trained several instances of optimized_CNN varying the number of training images. The corres-
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 434 Figure 4.3.4 -Optimization of start_CNN according to Algorithm 4.1 -step 3. Optimizing the number of neurons in the fully-connected layer: the CNN architecture I is selected after step 3.

  The full comparison of optimized_CNN (and other gender recognition models developed by us which

Figure 4 . 3 . 5 -

 435 Figure 4.3.5 -Impact of the number of training images on gender CA of optimized_CNN.

5. 2 .

 2 1 highlighting and analysing the differences between them. As a result, we come up with five CNN training and design parameters which are further studied below. These parameters are the following:(1) the age encoding and the loss function for the age CNNs, (2) the alignments of the face images which are given at the input of the CNNs, (3) the depth of the employed CNN architectures, (4) the use of pretraining, and (5) the training strategy: mono-task vs. multi-task. After that, in Subsection 5.2.2, we present the mentioned CNN parameters in details highlighting their importance and motivating our choices, and in Subsection 5.2.3, we experimentally compare various gender and age CNNs which are trained by modifying the studied parameters. The conclusions of this section are used to train the deep top performing gender and age CNNs in the following Section 5.3.
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 521 Figure 5.2.1 -Example of age encodings. t denotes the resulting encoding. σ is a hyper-parameter of Label Distribution Age Encoding (LDAE). In this work, we use σ = 2.5 (by experimenting with various σ ∈ [1,4], we have not experienced a significant impact of the σ value on the resulting performance).
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 522 Figure 5.2.2 -(Better viewed in color). Face crops for gender recognition and age estimation which are compared in Section 5.2. (a) Initial image. (b) "face-only" crop. (c) "face+40%" crop.

  Figures 5.2.2-(b) and 5.2.2-(c)), the two face crops have different resolutions of face details.

  number of its hidden layers) has a fundamental importance in deep learning as it allows to learn a hierarchy of image descriptors for a particular problem starting from the elementary features in the early hidden layers until the high-level problem-dependent features in the last ones[START_REF] Bengio | Learning deep architectures for AI[END_REF][START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF]. Informally, the more complicated is a problem, the deeper CNN architecture is required to address it.Several recent works [LCY14; Sze+15] as well as the experiments in Section 4.3 of Chapter 4 haveshown that fully-convolutional CNNs (i.e. CNNs composed of only convolutional layers with no fullyconnected ones) perform almost identically to classical CNNs while having much less trainable parameters. It suggests that the discriminative power of a CNN depends rather on its convolutional layers than on its fully-connected ones.

  2. "Conv: N@MxM" denotes a convolutional layer with N kernels of size MxM. "MaxPool: MxM" means that input maps are downsampled by a factor of M using Max-Pooling. "FC: N" denotes a fully-connected layer with N neurons. a batch normalization module[START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] before ReLU activations and a 0.5-dropout module[START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] on the fully connected layer. As explained in Paragraph 5.2.2.2, fast_CNN is fed with either 32x32 or 64x64 RGB-images for "face-only" and "face+40%" crops, respectively. Contrary to Section 4.3 of Chapter 4, fast_CNN does not require prior normalization of face crops given the fact that batch normalization is employed. The design of the output (fully-connected) layer as well as the corresponding loss function depend on the particular problem (gender recognition or age estimation) and on the age encoding type (in case of age estimation).

Figure 5 .

 5 Figure 5.2.3 -(Better viewed in color). Screenshot of the web interface which has been developped for "cleaning" the annotations of the IMDB-Wiki dataset [RTVG16]. The name of the celebrity to look for in the photo as well as the corresponding annotations are indicated at the top of the screen, while the initial face proposal is denoted by the yellow rectangle. A user can either confirm the initial face proposal, or manually select another face among those presented in the photo.

Figure 5 .

 5 Figure 5.2.4 -(Better viewed in color). Histograms of the age distributions for all datasets which are used for training and/or evaluation of age CNNs in the present chapter. Each bin corresponds to an interval of five years.

  . The idea is to employ some of contemporary deep CNN architectures which have proven to be the most effective for other problems (such as ImageNet classification) and to train them for gender recognition and age estimation according to the conclusions of Section 5.2. In particular, we adopt two recent CNN architectures:VGG-16[START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] and ResNet-50[START_REF] He | Deep Residual Learning for Image Recognition[END_REF] of 16 and 50 layers, respectively. VGG-16 is a natural choice because the design of fast_CNN, which has been used in Section 5.2, is inspired from VGG-16, so this architecture can be considered as a very deep extension of fast_CNN. At the same time, ResNets of different depths are currently one of the state-of-the-art CNN architectures. As shown in[START_REF] Canziani | An Analysis of Deep Neural Network Models for Practical Applications[END_REF], ResNet-50 is a very good trade-off between the running time and the resulting performances.More precisely, we adopt the following strategy for training both CNNs (VGG-16 and ResNet-50)

Figure 5 .

 5 Figure 5.3.1 -(Better viewed in color). Heat maps of mean activations of convolutional layers in two VGG-16 CNNs: the one trained for general task classification on ImageNet (top), and the one trained for face recognition (bottom).

Figure 5 .

 5 Figure 5.3.2 -(Better viewed in color). Examples of gender recognition (on LFW) and of age estimation (on MORPH-II) by our best models. Both successful and failed cases are presented. For GR, the maximum softmax activation is provided.

  Rothe et al. [RTVG16] also obtained the best MAE of 3.09 on the FG-NET dataset. The approach of Rothe et al. is very similar to ours: the same VGG-16 CNN architecture and IMDB-Wiki training dataset.
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 533 Figure 5.3.3 -(Better viewed in color). Example of face crops of the same size (224x224), but of different resolutions varying from 224x224 down to 16x16. In order to upscale a lower resolution face crop to 224x224, the nearest-neighbour interpolation is used.

Figure 5 4 (

 54 Figure 5.3.4 -(Better viewed in color). (Top) examples of the used occlusions: (a) 1 of 49 square areas of 32x32 pixels, (b) 1 of 7 horizontal stripes of the height of 32 pixels, and (c) 1 of 7 vertical stripes of the width of 32 pixels. White lines are presented only for the sake of illustration and are not the part of the occlusions. (Middle) sensitivity of our gender recognition ResNet-50 to the occlusions. (Bottom) sensitivity of our age estimation VGG-16 to the occlusions. Percentages and heat maps indicate the relative losses in performances after blurring the corresponding image parts.

Figure 5 .

 5 Figure 5.3.5 -(Better viewed in color). Examples of screenshots from the TV show "Guess My Age" which have been used for face crop extraction and subsequent age evaluation.

  -50 CNN for gender recognition and VGG-16 CNN for age estimation. The superiority of the performances by the designed models over the ones reported in previous studies have been shown on three most popular benchmark datasets. Moreover, the qualitative analysis of the obtained gender and age CNNs has allowed to experimentally confirm a number of intuitive conjectures which have been made before in the manuscript. Thus, the comparison of two VGG-16 CNNs, which have been pretrained for ImageNet classification and face recognition problems, have demonstrated the advantages of the latter for the face related problems confirming the intuitive motivation for selecting face recognition as a pretraining task in Section 5.2. The experiments in Paragraph 5.3.3.1 have validated the choice of the retina size (64x64) for our fast_CNN architecture from Section 5.2.
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 41 then we outline our winning solution highlighting the importance of its subparts in Subsections 5.4.2 and 5.4.3, and finally we report and analyse the competition results in Subsection 5.4.4.

  As for biological age estimation, we have performed face crop extraction prior to the CNN processing, which consists in face detection, face landmark extraction and face alignment (cf. Paragraph 5.2.2.2). However, unlike all other experiments in this manuscript (which use face crops extracted with private face detection and face landmark detection solutions), for the AAEC, we have employed opensource algorithms which are presented below (this way, our final solution is completely reproducible, as required by the competition rules).
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 5 4.1).
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 541 Figure 5.4.1 -Examples of facial poses: (a) frontal, (b) -half-profile, (c) half-profile, (d) -profile, (e) profile.

Figure 5 . 4 . 2 )

 542 . In other words, according to the competition data, humans estimate an age of a child almost 5 times more precisely than an age of an adult. At the same time, as outlined in Subsection 5.4.1, the competition metric ε (cf. Equation 5.4.1)
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 542 Figure 5.4.2 -Histogram of standard deviations of apprarent age estimation depending on the age categories. Calculated based on human annotations of the ChaLearn dataset. Each bin corresponds to an interval of five years.

Figure 5 .

 5 Figure 5.4.5 -(Better viewed in color). Examples of apparent age estimation of test images from the ChaLearn dataset. Ground truth is unknown, so only estimations by our solution are provided.
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 621 Figure 6.2.1 -(Better viewed in color). Input face reconstruction with conditional generative models. (a) cVAE [Yan+16]; (b) several cGAN-based approaches: ALI [Dum+17], VAE/GAN [Lar+16] and using the encoder E which is trained posterior to the cGAN training [Per+16]. Examples are extracted from the original articles.

2 . 1 -

 21 (b), we provide some examples of the face reconstruction by ALI, VAE/GAN and posteriorly trained encoder, which are extracted from the respective articles. As one can tell from Figure 6.2.1, the faces reconstructed with cGAN-based methods (Figure 6.2.1-(b)) have more details and are visually more plausible than those which are reconstructed with cVAE (Figure 6.2.1-(a)). At the same time, the cGAN-based reconstructions are also far from being perfect.
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 632 Figure 6.3.2 -(Better viewed in color). Training progress of our GA-cGAN. Top: the loss curves for the generator G and the discriminator D. Bottom: examples of the synthetic faces generated by G at different stages of training (inputs (z,y) are fixed).

Figure 6

 6 Figure 6.3.3 -(Better viewed in color). Exploration of the synthetic manifold Nx learned by our GA-cGAN. Each face has been synthesized by the generator G with particular inputs: (z,(y g ,y a )). The rows illustrate progression in the latent space N z , the columns represent six age conditions y a while the binary gender condition y g is switched between (a) and (b).

Figure 6 . 3 .

 63 Figure 6.3.3 is a good illustration of the ability of cGANs to disentangle the face information encoded by z and by y (which is mentioned in Section 6.2). Thus, one may observe that in our GA-cGAN, y g and y a encode gender and age, while z encodes other face attributes such as facial pose, expression etc. Interestingly, the person's identity traits are split between z and y: gender is encoded by y g while the remaining identity information is encoded by z. Indeed, comparing the synthetic faces at the same (row, column) positions in Figures 6.3.3-(a) and (b) reveals that the respective pairs may have belonged to siblings or cousins.
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 341 Datasets GA-cGAN has been trained using the IMDB-Wiki_cleaned dataset presented in Chapter 5. In order to stabilize the GA-cGAN training, we have limited the non-relevant variations in the training data by using only frontal faces from IMDB-Wiki_cleaned which have been automatically filtered using the open source pose estimator [Uři+16a]. Thus, about 120K frontal faces have been detected, 110K of which have been used for the GA-cGAN training, and the remaining 10K faces have been utilized for the face reconstruction evaluation (cf. Protocol 1 in Paragraph 6.3.4.2).
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 634 Figure 6.3.4 -(Better viewed in color). Synthetic face reconstructions via three manifold projection approaches: initial manifold projections ( x0 ), "pixelwise" manifold projections ( xpixel ) and our "identitypreserving" manifold projections xIP . Reconstructions are produced by (a) "face-only" GA-cGAN, and (b) "face+40%" GA-cGAN.

  Figure 6.4.1 -(Better viewed in color).Local Manifold Adaptation (LMA) approach to improve the identity preservation in the synthetically reconstructed face. (a) Input face x is reconstructed by projecting it on the synthetic manifold Nx (using "identity-preserving" manifold projection as proposed in Section 6.3). (b) LMA locally modifies the synthetic manifold Nx transforming it to the new manifold N x . As a result, the initial face x and its projection x on the new manifold are brought closer than they were before LMA.
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 641 (a)) in terms of subtle facial details (i.e. unique form of the mouth, of the eyes, of the nose, skin particularities, etc.
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 641 (b)). The key idea of LMA is inspired from the stateof-the-art methods [KSSS14; Shu+15] which automatically adapt their respective aging/rejuvenation models given a particular input face.

  .

  4.2-(b). The effectiveness of HS and FS age normalizations for improving cross-age face verification are compared in Paragraph 6.4.3.3.

  employ the experimental Protocol 2 from Paragraph 6.3.4.2 consisting in face verification evaluation via OpenFace software on the synthetically reconstructed faces from the LFW dataset, because this protocol has proven to be much more challenging than Protocol 1 (cf. Paragraph 6.3.4.2).

Figure 6

 6 Figure 6.4.3 -(Better viewed in color). Grid search of the optimal hyperparameters (learning rate µ and the number of backpropagation iterations N iter ) for LMA. The quality of the original identity preservation by GA-cGAN+LMA is measured via OpenFace face verification software on the standard LFW benchmark (i.e. Protocol 2 from Paragraph 6.3.4.2).

Figure 6 .

 6 Figure 6.4.6 -(Better viewed in color). Comparison of face aging by our GA-cGAN and GA-cGAN+LMA versus alternative methods from the recent works. Each line corresponds to aging of a face image from the FG-NET dataset: the initial and the target ages are provided at the beginning of the line. 5 methods are compared: Coupled Dictionary Learning (CDL)[START_REF] Shu | Personalized age progression with aging dictionary[END_REF], Recurrent Face Aging (RFA)[START_REF] Wang | Recurrent face aging[END_REF], Adversarial AutoEncoder (AAE)[START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF], GA-cGAN (proposed in Section 6.3), and GA-cGAN+LMA (proposed in Section 6.4). Our methods are highlighted by a green rectangle.

  [ACB17] remedies this problem by significantly stabilizing the GAN convergence which allows using almost arbitrary CNN architecture in a GAN framework. Therefore, it seems promising to train a Wasserstein version of our GA-cGAN.Another possible workaround for the same problem of a GAN convergence on images of higher resolution is to directly train a generative model for face editing instead of generating the new faces from scratch. For example, a very recent work by Zhu et al.[START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF] is a good illustration to this idea, as the authors trained their model (Cycle-GAN) to directly transform images from one domain to the other (e.g.
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 821 FIGURE 8.2.1 -Exemples d'images de piétons issus des différents corpus de la collection PETA : (a) CUHK ; (b) PRID ; (c) GRID ; (d) MIT ; (e) VIPeR ; (f) 3DPeS ; (g) CAVIAR ; (h) i-LIDS ; (i) SARC3D ; (j) TownCentre. Les proportions originales des images sont préservées.

  Dans cette section, nous avons effectué deux études préliminaires. D'abord, nous avons comparé les capacités des descripteurs manuellement conçus et des descripteurs appris par des CNNs (1) à s'adapter à l'hétérogénéité des données d'apprentissage, et (2) à se généraliser face aux données inconnues. Le premier de ces points est important dans un contexte où les corpus d'apprentissage contemporains proviennent souvent de sources très variées sur Internet, alors que le Afin de choisir des valeurs optimales pour chacun de ces paramètres, nous effectuons les expérimentations dans des conditions contrôlées. Plus particulièrement, nous comparons les paramètres d'architecture et les stratégies d'apprentissage de CNNs qui sont résumés dans le Tableau 8.3.1 et détaillés ci-dessous :
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 831832 FIGURE 8.3.1 -Exemple de l'encodage de l'âge avec les trois approches comparées dans la Sous-section 8.3.2. t désigne les encodages. σ est un hyper-paramètre LDAE (nous utilisons σ = 2.5).

  sage. Ainsi, nous comparons les trois méthodes d'encodage les plus utilisées dans l'état de l'art, à savoir : 0/1-CAE, RVAE et LDAE (cf. la Figure 8.3.1). Les encodages Real-Valued Age Encoding (RVAE) [Liu+15a] et 0/1-Classification Age Encoding (0/1-CAE) [RTVG16] constituent deux approches opposées, car RVAE encode un âge en tant que valeur réelle unique (ce qui transforme le CNN en un modèle de régression), alors que 0/1-CAE encode un âge avec un vecteur binaire (ce qui transforme le CNN en un modèle de classification). Le Label Distributed Age Encoding (LDAE) [GYZ13] est un mélange des deux méthodes présentées auparavant puisque, comme cela est illustré dans la Figure 8.3.1, l'encodage LDAE est un vecteur de valeurs réelles (ce qui transforme le CNN en un modèle de classification "douce").L'apprentissage de tous les CNNs est effectué sur le corpus IMDB-Wiki_cleaned (la version nettoyée du corpus IMDB-Wiki) contenant 250K images de visages de célébrités. À notre connaissance, il s'agit du plus grand corpus de visages en libre accès annoté à la fois avec le genre et l'âge. Ensuite, l'évaluation et la comparaison des résultats sont faites sur le corpus interne de non-célébrités PBGA contenants 3540 images de visages. Collecté manuellement, ce corpus est parfaitement équilibré entre les deux genres et les âges de 12 et à 70 ans.
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 45833 Le pré-apprentissage pour la reconnaissance faciale est particulièrement efficace comme technique de transfer learning dans le cadre des deux problèmes étudiés. Le pré-apprentissage pour la reconnaissance faciale englobe les effets positifs de l'apprentissage multi-tâches pour la prédiction du genre et de l'âge. Ces deux approches de transfer learning ne doivent pas être utilisées ensemble. CNNs les Plus Performants pour la Prédiction du Genre et de l'Âge Afin de concevoir les CNN les plus performants pour la classification du genre et l'estimation de l'âge à partir d'images de visages, nous utilisons les conclusions de la Sous-section 8.3.2 ainsi que les architectures de CNN de l'état de l'art. Plus particulièrement, nous adoptons les architectures de VGG-16 [SZ15] et de ResNet-50 [He+15]. VGG-16 est un choix naturel puisque cette architecture peut être considérée comme une version plus profonde et plus complexe des fast_CNNs utilisés dans la Soussection 8.3.2. En même temps, les ResNets de différentes tailles sont les architectures les plus efficaces pour les problèmes de prédictions aujourd'hui (le ResNet-50 constitue notamment un très bon équilibre entre le temps de traitement d'une image et les performances obtenues [CPC16]). Les CNNs VGG-16 et ResNet-50 pour la prédiction du genre et de l'âge sont entrainés selon les règles suivantes (qui sont motivées par les conclusions de la Sous-section 8.3.2) :
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 428421 GA-cGAN pour la Synthèse et l'Édition du Genre et de l'Âge Conception et Apprentissage de GA-cGANNotre méthode pour la synthèse et l'édition du genre et de l'âge est basée sur des réseaux de neurones génératifs adversaires (GANs)[START_REF] Goodfellow | Generative adversarial nets[END_REF]. Nous commençons donc par un petit rappel des notions essentielles sur les GANs.GANs et cGANs : ThéorieUn GAN est une paire de réseaux de neurones : un générateur G et un discriminateur D. G génère des images synthétiques x à partir de vecteurs latents z qui sont échantillonnés selon la loi normale p z ∼ N(0,I). Autrement dit, G définit une fonction de l'espace latent N z vers l'espace d'images N x . Dans ce travail, N x est un espace d'images de visages. L'objectif du générateur est d'imiter la distribution p data des images de visages. En même temps, le discriminateur essaie de distinguer les images de visages naturelles qui suivent la distribution p data des images synthétisées par le générateur. Ayant en entrée une image x (synthétique ou naturelle), D produit une probabilité que x est plutôt une image naturelle qu'une image synthétique. Par conséquent, les deux réseaux ont des objectifs opposés et sont optimisés de façon itérative dans le cadre d'un jeu "minimax". Plus formellement, l'apprentissage de GAN peut être défini comme une optimisation de la fonction v(θ G ,θ D ), où θ G et θ D sont des paramètres de G et D, respectivement : min θ G max θ D V (θ G ,θ D ) = E x∼p data [logD(x)] + E z∼pz(z) [log(1 -D(G(z)))] (8.4.1) Un GAN conditionnel (cGAN) [MO14 ; Gau14] est une extension du GAN classique qui permet la génération d'images de visages avec certains attributs (i.e. "conditions"). En pratique, ces conditions y ∈ N y peuvent contenir des informations quelconques (liées aux visages) : le niveau de luminosité, la pose, les attributs faciaux, etc. L'optimisation des cGAN est très similaire à l'optimisation des GAN classiques (cf. Equation 8.4.1). La seule différence est liée au fait que l'information conditionnelle supplémentaire est donnée aux entrées de G et D dans le cas des cGAN : (θ G ,θ D ) = E x,y∼p data [logD(x,y)] + E z∼pz(z),ỹ∼py [log(1 -D(G(z,ỹ),ỹ))] (8.4.2) GA-cGAN Afin de synthétiser des images de visages avec des attributs définis de genre et d'âge, nous entrainons GA-cGAN, un cGAN conditionné sur le genre et l'âge.

1 -

 1 Les architectures de CNNs utilisées dans la Section 8.4. kxk(sxs)@M désigne une couche convolutionnelle (ou une couche déconvolutionnelle pour G) composée de M noyaux de convolution de taille k et de pas s ; FC N désigne une couche entièrement connectée de N neurones ; BN désigne "batch normalization" ; ↓ désigne un sous-échantillonnage de type "MaxPooling" par un facteur 2.
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 841842843 FIGURE 8.4.1 -La progression de l'apprentissage de GA-cGAN. En haut : les courbes des fonctions de perte pour le générateur G et pour le discriminateur D. En bas : des exemples d'images de visages synthétisés par G aux différentes étapes de l'apprentissage (les entrées (z,y) sont fixées).
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 845 FIGURE 8.4.5 -Les courbes d'erreurs de la vérification faciale avec OpenFace calculées sur le corpus FG-NET.
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  3.1, and then in Subsections 2.3.2 and 2.3.3, we introduce the well-established training strategies and CNN architectures which have proved to be effective for a large variety of applicative problems.

  Comparison of the scores in the first two lines of Table 2.3.1 demonstrates the gap between CNN-based and CNN-free approaches on large-scale image classification. As one can observe, AlexNet [KSH12] outperforms the result of the previous year winner by more than 9 points. Not only AlexNet was the first CNN to obtain the state-of-the-art results on large-scale image classification, but this architecture

	learning).				
	Winner	CNN Name Year Number of Weight Layers Top-5 Classification Error (%)
	[Per+10]	-	2011	-	25.8
	[KSH12]	AlexNet	2012	8	16.4
	[ZF14]	ZFNet	2013	8	14.8
	[SZ15] (2nd place)	VGG	2014	16/19	6.8
	[Sze+15]	GoogLeNet 2014	22	6.7
	[He+16]	ResNet	2015	34-152	3.6
	Table 2.3.1 -ImageNet competition winners from 2011 to 2015. CNN architectures which are used in
	the present manuscript are highlighted in bold. Top-5% classification error is one of the competition's
	metrics which measures how often the target class is not among the 5 most probable classes according to
	the prediction model (the lower, the better).		
	Over the last years, CNNs have achieved a tremendous progress in computer vision tasks, and the
	depth of the state-of-the-art architectures has increased significantly. The evolution of the results of the
	ImageNet general image classification competition, which is presented in Table 2.3.1, often serves as an
	illustration to these words.			
	Thus, 2011 was the last year when the winner [Per+10] of ImageNet did not use CNNs (and deep

These CNNs are much deeper than AlexNet: 16 or 19 layers for VGG (depending on the particular version), and 22 layers for GoogLeNet. In both cases, this increase in depth is obtained due to the bigger number of convolutional layers suggesting that convolutional layers have the decisive impact on the CNN performance. Unlike AlexNet which uses the convolutional kernels of different sizes,

  Figure 2.3.4 -(Extracted from [He+16]). Residual blocks which allow the intermediate layers of ResNet CNN to learn the residual mapping F(x) = H(x)x instead of the original one H(x). this manuscript, for different tasks, we employ AlexNet, VGG and ResNet CNN architectures, they are highlighted in bold in Table 2.3.1.

	In It is important to precise that despite the state-of-the-art CNN architectures are evaluated and com-
	pared between each other on the ImageNet dataset, general image classification is by far not the sole
	application of CNNs. Thus, transfer learning (introduced in Subsection 2.2.4) allows adapting ImageNet
	CNNs from Table 2.3.1 to other visual problems even with limited training data. More generally, as it has
	already been mentioned above, CNNs are presently used almost in all domains of computer vision. For
	example, in the domain of object detection and object localization, the performances have been continu-
	ously growing with region-based CNNs [Gir+14; Red+16]. Similarly, semantic segmentation is currently
	unimaginable without fully convolutional CNNs [LSD15; Lia+16]. CNNs have been successfully ap-
	plied not only for image analysis, but also for image enhancement: in [Don+14] for super-resolution and
	in [Pat+16] for inpainting. On multiple occasions, CNNs have been used for video processing including
	video classification [Bac+12; Kar+14], video prediction [MCL16] and optical flow learning [Fis+15].
	Not to mention, that the human-level results of CNNs for automatic face recognition [Tai+14; SKP15]
	have been among the main motivations behind the present PhD thesis. Finally, in Chapter 5, we separ-
	ately present and analyse the existing CNN-based approaches which are directly related to the subject of
	VGG is based only on convolutions with kernels of size 3x3. At the same time, being composed of the the thesis: gender recognition and age estimation from face images.
	so-called Inception modules (cf. Figure 2.3.3), GoogLeNet has much less trainable weights than VGG Today, CNNs are started to be used not only for pure vision tasks, but also for the problems which lie
	and is the one of the first non-linear CNN architectures. on the frontiers of several domains. For instance, very promising studies on image captioning [Vin+15;
	The trend of increasing the depth of the state-of-the-art CNNs continued in 2015 when He et al. JKFF16] and visual question answering [MRF15; Wu+16] have emerged from the mixture of computer
	[He+16] designed the record-breaking ResNet CNN, one of the versions of which contains 152 hidden vision and natural image processing. In the same spirit, the symbiosis of CNNs and reinforcement
	layers. The convergence of so deep CNNs is not possible without the residual blocks which are the main learning has resulted in AlphaGo program [Sil+16] which defeated the world Go champion 3 , and in
	novelty in the approach of He et al., and which also gave the name to the CNN architecture. The key artificial agents which learn to play complex 3D video games such as DOOM 4 based exclusively on
	idea of ResNet is very simple: the authors noticed that the intermediate layers of a deep CNN fail to high-dimensional sensory streams [DK17].
	implicitly learn the identity mapping. Hence, He et al. added explicit identity connections from the input
	to the output of a residual block allowing to circumvent the weighted connections (cf. Figure 2.3.4). As
	illustrated in Figure 2.3.4, mathematically, it means that instead of learning an original mapping H(x), a 3. https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
	ResNet layer learns the residual mapping F(x) = H(x) -x. 4. A legendary first person shooter video game. First version was released in 1993.

  which was confirmed in a number of works [GM10; GM11; GM14]. Some other hand-crafted features were also tried for gender recognition and age estimation, though less frequently than LBP and BIF. For example, Wang et al.[START_REF] Wang | Boosting dense SIFT descriptors and shape contexts of face images for gender recognition[END_REF] employed Scaled Invariant Feature Transforms (SIFT)[START_REF] David G Lowe | Object recognition from local scale-invariant features[END_REF] for gender recognition, Gabor filters[START_REF] Fogel | Gabor filters as texture discriminator[END_REF] were used by Xia et al.[START_REF] Xia | Multi-view gender classification based on local Gabor binary mapping pattern and support vector machines[END_REF] 

for gender recognition and by Liu and Wechesler

[START_REF] Liu | Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition[END_REF] 

for age estimation, and Haar-like features

[START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF] 

allowed Zhou et al.

[START_REF] Shaohua | Image based regression using boosting method[END_REF] 

to train a boosting model for age estimation.

Moreover, a very promising approach is combining various texture-based features in one model. Thus, in the recent work by Castrillón-Santana et al. [CS+16], the authors analysed and compared different methods of fusion of various hand-crafted features, including LBP, Histogram of Oriented Gradients (HOG) [DT05], Weber Local Descriptors (WLD) [Che+10] and others, in one gender recognition model. Similarly, Moeini et al. [Moe+17] combined LBP features and raw pixel intensities extracted from different regions of faces to learn a regression dictionary for gender recognition and age estimation. In the same spirit, Liu et al. [LYK15] combined LBP, HOG and BIF features to train a hierarchical age estimation model obtaining very good performances.

  .2.1, i.e. on algorithms which perform gender/age prediction based on the image descriptors discussed in Subsection 3.2.2. In Paragraph 3.2.3.1, we introduce the principal prediction algorithms which were utilized for the studied problems, while in Paragraph 3.2.3.2, we discuss the evaluation metrics which are used to compare automatic systems of gender/age prediction.

3.2.3.1 Algorithms

Gender Recognition A number of well-established classification algorithms were applied for gender recognition from face images. Thus, long before a vast arrival of CNNs (the respective gender recognition studies are discussed in Chapter 5), MLPs were applied for gender recognition by Golomb et al. [GLS90] and by Khan et al. [KMM05]. Boosting classifiers (and in particular, Adaboost [FS97]) were widely used between 2000 and 2009 as the models which automatically perform feature selection. So numerous studies [Sun+06; YA07; BR07] employed Adaboost for gender recognition during this period. Statistical approaches, like Linear Discriminative Analysis (LDA) and Bayesian classifiers, were also tried for gender recognition by Bekios-Calfa et al. [BCBB11] and Toews and Arbel [TA09], respectively. However, the most popular classification algorithm for gender recognition is by far SVM. It was used by a large variety of recent works [XSL08; Hu+11; TP13; JC15; CSLNRB16] with different feature representations which have been discussed in Subsection 3.2.2. Age Estimation Age estimation problem is usually approached as a classification problem (with coarse or fine-grained classes) or as a regression one. Among the studies of the first category, we can highlight the work of Lanitis et al. [LDC04] showing the superiority of MLP over the Nearest Neighbour (NN) classifier for age estimation. Otherwise, Ueki et al. [UHK06] trained 11 Gaussian models corresponding to 11 age categories using Expectation Maximization (EM) algorithm. At test stage, each image is fit to all 11 Gaussians, and the age class which corresponds to the model with the maximum likelihood is selected. Of course, SVM was also tested for age classification on multiple occasions [GZSM07; ZMZ11]. However, it was shown by several research groups [Xia+09; ZY10] that the classification formulation is less advantageous than the regression one for age estimation. Indeed, in general, classification assumes that separate classes are uncorrelated, which is obviously untrue for age estimation problem. In other words, human age evaluates continuously, making the regression formulation a more natural way to address the problem. Thus, Lanitis et al. [LTC02] compared age estimation with linear, quadratic and cubic regression.

  is another typical example of a modelling-based aging/rejuvenation approach. As illustrated in Figure3.3.1-(a), and-or graph is a hierarchical model, where "and" nodes split a human face into multiple coarse-to-fine parts, while "or" nodes propose a selection of templates for each considered face part (i.e. eyes, ears, nose etc.) There are as many and-or graphs as there are different age categories, and aging between them is performed by training a Markov chain. At test time, firstly, the current age category is estimated by selecting the and-or graph which maximizes the posteriori probability of a given face, and then, the aged version of the face is obtained via sampling through the

	Markov chain.

  presented chapter has been devoted to the overview of the most notable non-deep learning works

	on two main problems which are addressed in the present manuscript, namely: (1) gender/age prediction
	(cf. Subsection 3.2) and (2) gender/age editing (cf. Subsection 3.3) based on images of human faces. As
	explained above, the analysis of the existing deep learning studies is done separately in the beginning of
	Chapters 5 and 6.
	Below, we present the summary of the observations which we believe the most important in this
	overview chapter:

1. Gender recognition and age estimation are different problems in terms of hand-crafted feature representations which are mostly effective for them (LBP for gender recognition and BIF for age estimation).

2. Features which are learned with different manifold learning algorithms have been proven competitive with the hand-crafted ones for both tasks.

3. Age estimation is more effectively solved as a regression problem than a classification one. However, label distribution encoding

[START_REF] Geng | Facial age estimation by learning from label distributions[END_REF] 

is a promising way to introduce the notion of the age continuity in the classification formulation of age estimation.

  the CNN architecture (i.e. number of trainable layers, and number of weights in each layer) for this particular problem when training is done from scratch (i.e. without fine-tuning of a pretrained CNN).More precisely, our goal is to investigate the relation between the size of the CNN architecture and the resulting gender classification accuracy. At the first sight, the answer seems obvious. Indeed, as

mentioned in Chapters 1 and 2, it has been previously shown on multiple occasions that given enough training images, deep CNNs generally outperform shallow CNNs (in other words, the bigger is the CNN architecture the better are its performances). Nevertheless, despite the abundance of face images with gender annotations for training (about 450K), the results of the second study demonstrate that gender recognition accuracy is saturated with a very shallow CNN. We suspect that the reason for that is a relative simplicity of the problem of gender recognition from face images (for example, with respect to gender recognition from images of pedestrians), the conjecture which is further confirmed in Chapter 5 by comparing gender recognition and age estimation problems.

The conclusions of the two preliminary studies are used in Chapter 5, where we design the state-ofthe-art solutions for gender and age prediction from face images.

  Collins et al. [Col+09] also employed HOG-like features for body-based gender recognition. They proposed their own feature descriptor called PixelHOG which is based on very dense HOG features computed on a custom edge map. Collins et al. combined these features with color information extracted from hue and saturation values of images pixels. Tunnel [See+08] and different private datasets), allowed human body poses (only frontal, frontal and back, unconstrained), and even evaluation protocols (single test, CV (Cross Validation)).

	Reference	Dataset	Features	Classifier	Evaluation Protocol	CA (%)
	[Cao+08]	MIT (frontal, back)	HOG	Adaboost variant	5-CV	75.0
	[Col+09]	MIT (frontal) VIPeR (frontal)	PixelHOG, color	SVM	5-CV	76.0 80.6
	[GMF10]	MIT (frontal, back)	BIF	SVM	5-CV	80.6
	[BMM11] Private (unconstrained) HOG, color, skin	SVM	single test	82.4
	[NTG13]	MIT (frontal, back)	Learned (CNN)	CNN	single test	80.4
	[GS+16]	Tunnel (frontal)	HOG	SVM	5-CV	87.9
	Table 4.2.1 -Related work on gender recognition from pedestrian (body) images. Classification Ac-
	curacies (CAs) are provided for indicative purposes, but they cannot be directly compared between each
	other due to the differences in evaluation datasets and protocols. CV = Cross Validation.	

Unlike previous studies, Guo et al.

[START_REF] Guo | Gender from body: A biologically-inspired approach with manifold learning[END_REF] 

employed manifold learning on Gabor-like BIF features and the SVM classifier for gender recognition. Only C1 BIF features were used as the authors reported that C2 BIF features degraded the performance (as in the case of gender recognition from face images).

A new feature representation named "poselet" was proposed Bourdev et al.

[START_REF] Bourdev | Describing people: A poseletbased approach to attribute classification[END_REF]

. Basically, a poselet combines HOG features, color information extracted at the pixel level and skin features.

The first CNN for the considered problem was trained by Ng et al.

[START_REF] Ng | A convolutional neural network for pedestrian gender recognition[END_REF]

. In particular, the authors used a tiny CNN of about 60K trainable weights which were organised in 2 convolutional and 2 fully-connected layers.

Finally, body-based gender recognition model was a part of a multi-distance gender recognition system proposed by Gonzalez et al.

[START_REF] Gonzalez-Sosa | Image-based gender estimation from body and face across distances[END_REF]

. As in the majority of the related works, their model employed HOG hand-crafted features to describe body images. More precisely, body images were split into patches to extract HOG features while the gender classification was done by linear SVM.

The key aspects of all studies mentioned above are summarized in Table

4

.2.1. As one may notice from Table 4.2.1, there is no common protocol for evaluating gender recognition models on body images. The experimental parts of the existing studies vary in terms of the used datasets (MIT [Ore+97], VIPeR [GBT07],

Table 4 .

 4 2.2 -CNN architectures used to extract the learned features. The layers from which the features are extracted are highlighted in bold. "Conv: N@MxM" denotes a convolutional layer with N kernels of size MxM. "MaxPool: MxM" denotes downsampling by a factor of M using Max-Pooling. "FC: N" denotes a fully-connected layer with N neurons.Features Learned by pedestrian_CNN As detailed in Table4.2.2, pedestrian_CNN is composed of two convolutional layers, a fully-connected layer of 100 neurons and the final layer of 2 neurons which is used for 2-class gender classification with the Softmax activation function. 0.5 dropout is employed after the second convolutional layer. Contrary to LeNet5, pedestrian_CNN is trained with ReLU activations instead of Sigmoid activations, as empirically, it has appeared to significantly improve the convergence.

	pedestrian_CNN	AlexNet
	Input: 150x50	Input: 227x227
	Conv: 100@5x5 Conv: 96@11x11
	MaxPool: 2x2
	Conv: 100@5x5 Conv: 256@5x5
	MaxPool: 2x2
	-	Conv: 384@3x3
	-	Conv: 384@3x3
	-	Conv: 256@3x3
	-	MaxPool: 2x2
	-	FC: 4096
	FC: 100	FC: 4096
	Softmax: 2

Table 4 . 2

 42 

	Collection	CUHK PRID GRID MIT VIPeR 3DPeS CAVIAR i-LIDS SARC3D	TC
	PETA	4563	1134	1275	888	1264	1012	1220	477	200	6967
	PETA_cleaned	3809	1043	1028	876	1258	100	68	100	41	42

.

3 

provides the details on the number of images before and after the manual filtering in each of the 10 datasets.

Table 4 .

 4 2.3 -Number of images in the PETA and PETA_cleaned collections.

	Dataset CUHK	Train size (♂+ ♀) 3432 = (2420 + 1012) 377 = (189 + 188) Test size (♂+ ♀)
	PRID	942 = (449 + 493)	101 = (50 + 51)
	GRID	928 = (531 + 397)	100 = (50 + 50)
	MIT	792 = (532 + 260)	84 = (42 + 42)
	VIPeR	1138 = (556 + 582)	120 = (60 + 60)
	3DPeS	0	100 = (50 + 50)
	CAVIAR	0	68 = (34 + 34)
	i-LIDS	0	100 = (50 + 50)
	SARC3D	0	41 = (21 + 20)
	TC	0	42 = (21 + 21)

Table 4 .

 4 2.4 -Datasets of the PETA_cleaned collection: training and test parts per dataset.

Table 4 .

 4 2.5 -Learned vs. hand-crafted features. Experiment 1: homogeneous training data; same-dataset evaluation scenario. RI features in [Den+14] are due to a significant number of quasi-identical images between training and testing datasets (as it is explained in Paragraph 4.2.3.1). While the CA scores of LBP features are superior to that of RI ones, they remain quite moderate. On the contrary, HOG features demonstrate by large the

		Features	Evaluation Metric	CUHK	PRID	GRID	MIT	VIPeR	Average
		RI	CA (%) AUC	69.5 0.7714 0.5059 0.6340 0.5612 0.6778 47.5 58.0 57.1 64.2	59.3 0.6301
	Hand-crafted	LBP	CA (%) AUC	68.4 0.7595 0.6663 0.7412 0.5890 0.7261 59.4 63.0 66.0 66.7	64.7 0.6964
		HOG	CA (%) AUC	84.1 0.9199 0.8588 0.9088 0.9002 0.8097 77.2 83.0 81.0 73.3	79.7 0.8795
		pedestrian_CNN	CA (%) AUC	82.2 0.9105 0.8424 0.8736 0.8458 0.8111 75.3 79.0 73.8 75.8	77.2 0.8567
	CNN-learned	AlexNet	CA (%) AUC	78.3 0.8924 0.7220 0.8984 0.7988 0.7814 58.4 78.0 69.1 70.0	70.8 0.8186
		AlexNet-FT	CA (%) AUC	89.1 0.9563 0.8663 0.9660 0.8577 0.8372 80.2 88.0 78.6 75.0	82.2 0.8967

best CA and AUC performances among the hand-crafted features. These results are quite expected given the fact that the majority of previous related works employed HOG features for the considered problem (cf. Subsection 4.2.1).

4 Experiment 2: Heterogeneous Training Data; Same-dataset Evaluation Scenario

  The observed results show that when evaluation is done within controlled conditions (i.e. the same source of images for training and test, and homogeneous training data), the performances of the best CNN-learned and hand-crafted features are globally comparable.

	Hand-crafted CNN-learned 4.2.3.Features RI LBP HOG pedestrian_CNN AlexNet AlexNet-FT	Evaluation Metric CA (%) AUC CA (%) AUC CA (%) AUC CA (%) AUC CA (%) AUC CA (%) AUC	CUHK 65.5 0.7730 0.6624 0.6863 0.5663 0.6669 PRID GRID MIT VIPeR 49.5 51.0 58.3 60.0 69.0 61.4 55.0 60.7 68.3 0.7724 0.6604 0.5888 0.6508 0.7536 79.8 64.4 66.0 66.7 63.3 0.9169 0.7824 0.6860 0.6477 0.7731 87.3 77.2 68.0 77.4 70.0 0.9485 0.8490 0.7371 0.8861 0.7961 81.7 55.4 72.0 67.9 71.7 0.8897 0.5957 0.8284 0.8458 0.7992 90.5 79.2 84.0 81.0 78.3 0.9567 0.8502 0.9064 0.8736 0.8481	Average 56.9 0.6690 62.9 0.6852 68.0 0.7612 76.0 0.8434 69.7 0.7918 82.6 0.8870

Experiment 2 evaluates the ability of the compared features to adapt to the heterogeneous training data. The obtained results, which are presented in Table

4

.2.6, significantly vary between hand-crafted and learned features. Thus, the CA (respectively, AUC) score of HOG features in Experiment 2 is about 12 (respectively,

Table 4 .

 4 2.6 -Learned vs. hand-crafted features. Experiment 2: heterogeneous training data; samedataset evaluation scenario.

0.12) points lower than in Experiment 1 (not to mention RI and LBP which demonstrate poor results even in the easiest Experiment 1). This drastic drop of performances illustrate that hand-crafted features suffer from heterogeneous training data.

Table 4 .
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		Features	Evaluation Metric	3DPeS CAVIAR i-LIDS SARC3D	TC	Average
		RI	CA (%) AUC	59.0 0.6332	57.4 0.8750	67.0 0.7197	51.2 N/A	66.7 0.6984	60.3 N/A
	Hand-crafted	LBP	CA (%) AUC	53.0 0.6040	70.6 0.7093	65.0 0.7168	43.9 0.5238	50.0 0.4996	56.5 0.6107
		HOG	CA (%) AUC	47.0 0.5553	61.8 0.5133	57.0 0.7088	70.7 0.7571	57.1 0.6485	58.7 0.6366
		pedestrian_CNN	CA (%) AUC	78.0 0.7900	80.9 0.8841	70.0 0.7424	82.9 0.9143	61.9 0.7392	74.7 0.8140
	CNN-learned	AlexNet	CA (%) AUC	70.0 0.7684	60.3 0.6445	64.0 0.6916	82.9 0.9095	69.0 0.7438	69.2 0.7516
		AlexNet-FT	CA (%) AUC	81.0 0.8984	82.4 0.8997	75.0 0.7384	80.5 0.9286	78.6 0.8798	79.5 0.8690

2.7 -Learned vs. hand-crafted features. Experiment 3: heterogeneous training data; crossdataset evaluation scenario.

Table 4 .

 4 2.7 summarizing the results of Experiment 3. More precisely, when tested on completely unseen datasets, HOG features lose about 21 (respectively, 0.25) points of CA (respectively, AUC) comparing to Experiment 1, and drop to the same level of performances as RI and LBP.At the same time, even if the performances of the CNN-learned features in Experiment 3 are also lower than in Experiment 1, the corresponding gaps are much smaller: about 3 (respectively, 0.04) points of CA (respectively, AUC) which is completely expectable given more severe conditions of Experiment 3. Summarizing, all compared learned features generalize well on unseen data which is not the case for hand-crafted features.
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 4 4.2.8, we present the listed PPFs as well as the respective hyper-parameters which have been used in our 2.8 -Privacy Protection Filters (PPFs) used in the experiments and the respective hyperparameters which control the strength of the PPFs.

	experiments.	
	PPF	Strength Hyper-parameter
	Masking	α: 0.4, 0.7, 0.9
	Morphing	α: 0.4, 0.7, 0.9
	Pixelization	Downsampling Ratio: 3, 5, 7
	Gaussian Blur	σ : 2, 4, 6
	k-Means	k: 6, 4, 2

  Initial CNN architecture start_CNN; training and validation datasets output: Optimized CNN architecture optimized_CNN 1 train (start_CNN); 2 CA 0 ∶= evaluate_CA (start_CNN); CA current ∶= evaluate_CA (current_CNN); 9 until criterion (CA 0 ,CA current ) or current_CNN .#ConvBlocks < 2; / * Step 2. Optimizing number of convolutional feature maps. * / 10 current_CNN ∶= current_optimal_CNN ; 16 until criterion (CA 0 ,CA current ) or current_CNN .#ConvFeatureMaps < 2;

		/ * Step 1. Optimizing number of convolutional blocks and retina
		size.	* /
	3 current_CNN ∶= start_CNN ;
	4 repeat
	5	current_optimal_CNN ∶= current_CNN ;
	6	current_CNN ∶= remove_ConvBlock (current_CNN);
	7	train (current_CNN);
	11 repeat
	12	current_optimal_CNN ∶= current_CNN ;
	13	current_CNN ∶= half_CNNWidth (current_CNN);
	14	train (current_CNN);
		/ * Step 3. Optimizing number of neurons in the fully-connected
		layer.	* /
	17 current_CNN ∶= current_optimal_CNN ;
	18 repeat
	19	current_optimal_CNN ∶= current_CNN ;

input : 8 15 CA current ∶= evaluate_CA (current_CNN); 20 current_CNN ∶= half_FCNeurons (current_CNN); 21 train (current_CNN); 22 CA current ∶= evaluate_CA (current_CNN); 23 until criterion (CA 0 ,CA current );

Table 4 .

 4 

3.1 -Optimization of the start_CNN architecture by Algorithm 4.1. "Conv: N@MxM" denotes a convolutional layer with N kernels of size MxM. "MaxPool: MxM" denotes downsampling by a factor of M using Max-Pooling. "FC: N" denotes a fully-connected layer with N neurons.

Table 4 .
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	Features	CA on LFW

3.2 -Evaluation of the optimized CNN I on the test LFW dataset.

are presented further in the manuscript) with the state-of-the-art is provided in Chapter 5. However,

Table 4 .

 4 3.2 compares gender CAs of optimized_CNN with two other models which, in our opinion, are very illustrative. The first model by Jia and Cristianini[START_REF] Jia | Learning to classify gender from four million images[END_REF] is the state-of-the-art among the approaches which apply only hand-crafted features for face gender recognition, and the second one by Castrillon-

	Santana et al. [CSLNRB16] combines learned (by a shallow CNN) and hand-crafted features. Our
	optimized_CNN and the model by Jia and Cristianini [JC15] obtains the same CAs of 96.9%. On the
	contrary, the model by Castrillon-Santana et al. [CSLNRB16] outperforms our optimized_CNN by about
	1 point which is a very significant improvement for face gender recognition.

  motivations and the summary of the most notable non-CNN studies on the topics. Below, we focus exclusively on technical aspects of CNN training for the considered problems.Preliminary studies in Chapter 4 have shown that training of CNNs can be very tricky. Indeed, neither a state-of-the-art CNN architecture nor a huge training dataset on their own has appeared to be a guarantee of top performances. Hence, in Section 5.2 of this chapter, we begin with outlining the optimal practices for gender recognition and age estimation CNNs. To this end, we firstly analyse the existing CNN-based approaches for gender and age prediction, and underline the CNN design and training parameters which mostly differ between them. Then, we methodically compare the selected parameters looking for configurations which facilitate the training of gender and age prediction CNNs.The optimal strategies of the CNN design and training which are identified in Section 5.2 are further used in Section 5.3 to obtain our best performing models for gender recognition and age estimation. In practice, we take advantage of the synergy between the found training strategies and the state-of-the-art CNN architectures, namely: VGG-16[START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] and ResNet[START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. We show that the designed mod-

state-of-the-art CNNs for gender and age prediction. The interest of the research in gender recognition and age estimation from face images is catalysed by the constantly growing demand in the fields of targeted advertising, multimedia analysis and security. We refer the authors to Chapters 1 and 3 for the 79 list of els outperform previous gender recognition and biological age estimation approaches on three mostly used benchmark datasets. Moreover, our best biological age estimation CNN favourably compares with motivated human participants of a popular French TV show "Guess My Age" (cf. Paragraph 5.3.3.3).

Finally, as explained in Chapter 3, in the state-of-the-art, biological and apparent age estimation problems are distinguished. In order to demonstrate that the found CNN training and design principles hold for apparent age estimation as well, we have participated and won the first place in the international competition on apparent age estimation

[START_REF] Escalera | ChaLearn Looking at People and Faces of the World: Face Analysis Workshop and Challenge 2016[END_REF] 

(cf. Section 5.4).

  Moreover, two pretraining types (the general task 1 one and the face recognition one) were used for the demographics estimation. Their fitness for the target problems was studied by Ozbulak et al. [OAE16]. However, the results of Ozbulak et al. are difficult to interpret given the fact that two types of pretraining are compared on two different architectures: AlexNet and VGG-16.

	up to 5-6 convolutional layers) and deep networks with more convolutional layers. We have observed
	that in general, the studies [CSLNRB16; YLL14; WGK15; Yan+15a; LH15; Ekm16] which train
	gender/age CNNs from scratch use shallow architectures, while the works employing deeper architec-
	tures (like AlexNet or VGG-16/19) fine-tune already pretrained CNNs [RTVG16; Liu+15a; Zhu+15;
	Liu+17; OAE16]. Indeed, for all well-known deep CNN architectures, there are publicly available CNN
	instances already pretrained on the ImageNet dataset which gives the possibility of employing transfer
	learning (in a similar way as it has been illustrated in Section 4.2 of Chapter 4).

  Age CNNs Loss functions and age encoding strategies are another source of variation between different age estimation CNNs. The vast majority of CNN-based age models were

	trained with either pure classification [LH15; OAE16; RTVG16] or with pure metric regression object-
	ives [YLL14; Liu+15a; Zhu+15].
	The two approaches have opposite advantages and downsides. Thus, the classification training is
	more robust to outliers and to incorrect annotations, while the regression training better reflects the con-
	tinuous aspect of the human age. Therefore, a number of studies have attempted to design complex loss
	functions composed of both classification and regression parts [DLL16; Liu+17]. Similarly, ordinal rank-
	ing employed by [Yan+15a; Niu+16] can also be seen as an intermediate approach between classification

and regression. As explained in Chapter 3, in the ordinal ranking formulation performs, a real-valued age estimation is calculated as a linear combination of the results of (K -1) binary age classification.

Table 5 .

 5 2.1 -CNN design and training parameters for gender recognition and age estimation CNNs which are evaluated in Section 5.2. FR = Face Recognition.

	Parameter	Tested Values Gender CNN Age CNN
		0/1-CAE
	Target Age Encoding	N/A	RVAE
			LDAE
	Face Crop	"face-only" "face+40%"	
		2 conv. layers
	CNN Depth	4 conv. layers 6 conv. layers
		8 conv. layers
		No pretraining, mono-task
	Pretraining / Multi-task Learning	FR pretraining, mono-task No pretraining, multi-task
		FR pretraining, multi-task
	Table 5.2.1 summarizes the CNN design and training parameters which are evaluated in the present
	section. Below, we subsequently define each of them highlighting their importance for gender recogni-
	tion and age estimation CNNs.		

  Contrary to gender recognition, the age estimation problem can be approached in many different ways: classification with coarse categories, per-year classification, regression or even ranking (cf. Subsection 5.2.1). Each case imposes particular age encoding and loss function. In this section, we compare three strategies which proved to be the most effective during the first edition of ChaLearn Apparent

	Encoding	Loss function
	0/1-CAE	L

Age Estimation Challenge

[START_REF] Escalera | ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results[END_REF]

: pure per-year classification (employed by the 1st place winner

[START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF]

), pure regression (employed by the runner-ups [Liu+15a; Zhu+15]) and soft classification (employed by the participants who got the 4th place

[START_REF] Yang | Deep label distribution learning for apparent age estimation[END_REF]

). It is important to highlight that the results of the ChaLearn Challenge cannot be regarded as a fair comparison between the mentioned age encoding strategies because many other factors influence the final performances of age estimation methods (each team used different CNN architectures, pretraining types, training datasets etc.)

Table 5 .

 5 has real numbers as targets, therefore real age values are used as labels in this case. This straightforward age encoding is referred as Real-Value Age Encoding (RVAE) in our work. Finally, soft classification can be seen as an intermediate case between the discrete classification and continuous regression. As in pure classification, ages are encoded by vectors of the dimension which corresponds to the number of classes. However, instead of being binary, the values in the vector are encoded with Gaussian distribution centred at the target age. This allows to encode a notion of neighbourhood between different age classes (which is present in RVAE but does not exist in 0/1-CAE): for example, LDAE encodes the information that the age of 20 years old is closer to the age of 21 years old than to the age of 80 years old. Following the work where the encoding was introduced [GYZ13], we refer to it as Label Distribution Age Encoding (LDAE). 2.2 presents the discussed encodings as well as the corresponding loss functions, and Figure 5.2.1 provides an example of how they are used to encode an age of an example face image. An experimental evaluation of the compared age encodings is provided in Paragraph 5.2.3.2.

  case of pretraining, CNN is initialized by training on a separate complex problem for which there is a lot of training data. The rich internal CNN representations which are learned during pretraining facilitate the further CNN training (fine-tuning) for a problem of interest. Thus, unlike Section 4.2 of Chapter 4 (where we have used a general task pretraining), in this chapter, we have selected face recognition as a pretraining task due to the following two intuitions. Firstly, contrary to gender recognition and age estimation problems, face recognition allows training very deep CNNs from scratch as in [Tai+14; PVZ15; SWT15] which proves that this problem is difficult enough to serve as a strong CNN regularizer during the training. Secondly, being a face-related task, face recognition is close to our target problems. Indeed, gender is a part of a person's identity, therefore gender recognition can be seen as an elementary sub-problem of face recognition. Though age is clearly independent of a person's identity, it was shown that the face representation learned by a CNN which is trained for face recognition implicitly encodes elementary age information[START_REF] Liu | Deep learning face attributes in the wild[END_REF].

Table 5 .

 5 2.3 -CNN architectures which are used in experiments of Section 5.

	-	-	-	Conv2_4: 32@3x3
	MaxPool: 2x2	MaxPool: 2x2	MaxPool: 2x2	MaxPool: 2x2
	FC: 512	FC: 512	FC: 512	FC: 512
		Experiment-specific output layer	

Table 5 .
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		Men	Women
	IMDB-Wiki_cleaned 56.9% 43.1%
	PBGA	50.0% 50.0%
	LFW	82.0% 18.0%
	MORPH-II	84.7% 15.3%

2.4 -Men / women ratio for all datasets which are used for training and/or evaluation of gender CNNs in the present chapter.

Table 5 .

 5 Table 5.2.5 compares AE accuracies of fast_CNNs trained with different target age encodings presented in Paragraph 5.2.2.1. In Table 5.2.5 and further in this manuscript, age estimation CNNs are compared according to their MAEs (cf. the definition in Chapter 3). 2.5 -Comparison of target age encodings. Age estimation MAEs are reported on the PBGA dataset. Experiments are performed using the fast_CNN architecture. For 0/1-CAE-and LDAE-based CNNs, we explore two possibilities to predict an age given 100 activations of the output layer. On the one hand, one can select the class (i.e. the age) which corresponds

	Age Encoding Age Prediction Type Age MAE
	0/1-CAE	ArgMax Expected Value	7.00 6.42
	RVAE	N/A	7.19
	LDAE	ArgMax Expected Value	6.58 6.05

Table 5

 5 face-only" crops both on gender recognition and age estimation problems. The performed experiments demonstrate that the top of the forehead and the chin (which are present in "face+40%" crops but not in "face-only" ones) provide some additional information for CNNs which is helpful for the studied problems (the ablation study in Paragraph 5.3.3.2 further confirm this result). At the same time, fast_CNNs are not confused by the background face-unrelated noise on the sides of "face+40%" crops which shows that CNNs learn to focus on the task-related information during the training.Based on the obtained results, in all further experiments of the present chapter, we employ "face+40%" face crops both for gender recognition and age estimation CNNs.CNN Depth Below, we compare four CNN architectures of different depths: fast_CNN_n, where n ∈ {2,4,6,8} is the number of convolutional layers, for gender recognition and age estimation tasks.

	CNN	Gender CA AUC	Age MAE
	fast_CNN_2 92.2% 0.9833	6.65
	fast_CNN_4 92.8% 0.9867	6.05
	fast_CNN_6 92.9% 0.9862	5.95
	fast_CNN_8 92.3% 0.9859	5.89

.2.6 leave no doubt on the choice of the face crops for gender and age CNNs. Indeed, fast_CNNs which are trained with "face+40%" crops significantly outperform the ones which are trained with "
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2.7 -Impact of the CNN's depth on gender recognition and age estimation. Results are reported on the PBGA dataset.

The results presented in Table

5

.2.7 highlight the difference between gender recognition and age estimation. Indeed, in case of gender recognition (columns 2-3 of Table

5

.2.7), we observe that the best performances are already obtained with only four convolutional layers. Increasing the depth up to six layers has almost no impact on gender recognition results, while fast_CNN_8 of eight convolutional layers performs even worse than shallower networks overfitting on the training dataset. At the same time, the column 4 of Table

5

.2.7 clearly indicates a positive correlation between the depth of age CNNs and their performances. fast_CNN_4 outperforms fast_CNN_2 by almost 10% while fast_CNN_6 and fast_CNN_8 subsequently improve the age estimation by more than 1% each.

Table 5 . 2

 52 output layer of the face recognition fast-CNN contains 7,395 neurons with the softmax activation function. The CNN is optimized with the cross-entropy loss function in the similar way, as the gender recognition fast_CNN. The resulting model obtains a very decent accuracy of 92.1% when evaluated according to the LFW face verification protocol[START_REF] Learned-Miller | Labeled faces in the wild: A survey[END_REF] (for example, this accuracy is close to the one of the very popular OpenFace software[START_REF] Amos | OpenFace: A generalpurpose face recognition library with mobile applications[END_REF], which is further used in Chapter 6). Once face recognition pretraining is done, the last layer containing 7,395 neurons is substituted by a new (randomly initialized) layer for further fine-tuning for either gender recognition or age estimation, or for both tasks simultaneously.

	Training Type Pretraining	Gender CA AUC	Age MAE
	Mono-task	None	92.8% 0.9867	6.05
	Multi-task	None	93.9% 0.9891	5.96
	Mono-task	FR	95.0% 0.9917	5.96
	Multi-task	FR	94.5% 0.9874	5.96

.8 evaluates the impacts of the face recognition pretraining and multi-task learning on the performances of gender and age fast_CNNs. Thus, both face recognition pretraining and simultaneous learning for the two tasks increase the gender and age prediction accuracies with respect to the mono-task fast_CNN which is trained from scratch (lines (1, 3) and (1, 2) of Table

5

.2.8, respectively).
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 52 This perfectly makes sense as gender recognition training itself is not challenging enough to take the full advantage of deep CNNs (cf. the results of the CNN depth experiments). Hence, face recognition pretraining and multi-task learning work as regularizers during the gender recognition training making fast_CNN to learn richer and more expressive internal CNN representations. At the same time, age estimation is a more complicated problem than gender recognition which rather requires more sophisticated deep CNN architectures than an explicit help of transfer learning (though the latter also remains useful for age fast_CNN as shown in Table5.2.8).Finally, the lines (3, 4) of Table5.2.8 demonstrate that face recognition pretraining and multi-task learning for gender recognition and age estimation are not complimentary. Combining the two approaches together does not improve age MAEs and even leads to a slight decrease of gender CAs. This result indicates that the CNN regularization arising from the multi-task learning has already been obtained during the face recognition pretraining. So we can conclude that face recognition pretraining encompasses the positive effects of the multi-task learning for gender recognition and age estimation being a more general regularization approach.

	Moreover, while the two transfer learning approaches have exactly the same impact on age fast_CNN

.8 -Effect of transfer learning (face recognition pretraining and multi-task learning) for gender recognition and age estimation CNNs. Results are reported on the PBGA dataset using fast_CNN. FR = Face Recognition.

The relative improvement of transfer learning on gender fast_CNN is more important than that on age fast_CNN.

(MAE reduction from 6.05 to 5.96), face recognition pretraining is more effective than multi-task learning for gender fast_CNN. Indeed, as already mentioned above, gender recognition can be considered as a sub-problem of face recognition because gender is a part of a person's identity. Thus, the internal CNN representations of input faces which are learned during face recognition pretraining contain information which can be directly used to predict gender.

  and training of gender recognition and age estimation CNNs. To this end, we have methodically identified and studied

the following five parameters: (1) target age encoding strategies for age CNNs; (2) face crops which are given at the input of CNNs; (3) depth of the used CNN architectures; (4) usage of face recognition pretraining; and finally (
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 53 .3.1. Indeed, being more accurate for face recognition, ResNet-50 also outperforms VGG-16 for gender recognition by 1.6 CA points. ResNet-50 CNN model is so complex that it overfits on 250K of training images just after about 5 training epochs (while VGG-16 does not overfit even after 50 full epochs). That said, we believe that ResNet-50 would outperform VGG-16 on age estimation if more training images with age annotations were available. Summarizing, we select ResNet-50 CNN as our best model for gender recognition, and VGG-16 CNN as our best model for age estimation (the last two lines of Table 5.3.1). CNNs for gender recognition and age estimation (1) from scratch, and (2) by fine-tuning from the ImageNet version of VGG-16 [SZ15]. The resulting performances are presented in the lines 1 and 2 of Table 5.3.1.As one may observe by comparing these lines, general task pretraining also improves the quality of gender/age prediction with respect to a VGG-16 CNN which is trained from scratch. This is particularly visible for the gender CNN which has experienced an amelioration of CA from 93.7% up to 96.8% (confirming one of the conclusions of Subsection 5.2.1 about ineffectiveness of the CNN training from scratch for gender recognition). However, the lines 2 and 3 of Table5.3.1 clearly indicate that face recognition pretraining is more effective than general task one for both studied problems.

	CNN	Pretraining	Gender CA AUC	Age MAE
	VGG-16	None	93.7% 0.9883	4.91
	VGG-16	GT	96.8% 0.9958	4.50
	VGG-16	FR	97.1% 0.9967	4.26
	ResNet-50	FR	98.7% 0.9991	4.33

.1 -Deep CNNs for gender recognition and age estimation. Results are reported on the PBGA dataset. FR = Face Recognition. GT = General Task.

On the contrary, age estimation and face recognition are two independent problems, and while face recognition pretraining has a very important regularization role to facilitate age CNN training, the particular face recognition accuracy is not a decisive aspect for age estimation as in the case of gender recognition. Thus, as presented in Table

5

.3.1, the age estimation accuracies of ResNet-50 and VGG-16 are almost the same. Actually, the fact that a much deeper ResNet-50 does not improve VGG-16 for age estimation reveals the limits of the IMDB-Wiki_cleaned dataset which is used for the training. Indeed, ular impact of face recognition pretraining with respect to general task pretraining. Indeed, in Paragraph 5.2.2.4, we only intuitively motivate the choice of face recognition as a pretraining task. In order to quantitatively confirm this intuition, we have also trained VGG-16

Table 5 .

 5 .2 and 5.3.3 regroup the scores of our best gender recognition ResNet-50 and age estimation VGG-16, respectively comparing them with the state-of-the-art. For the sake of exhaustiveness, Table 5.3.2 also reports the score of our optimized_CNN from Section 4.3 of Chapter 4 on the LFW dataset. 3. Download link: www.cse.msu.edu/rgroups/biometrics/Publications/Databases/FGNETAgeEstimation.zip 3.2 -Comparison of our best gender recognition CNN with the state-of-the-art works on LFW and MORPH-II datasets.

	Reference	Year	Used Approach	LFW	CA MORPH-II
	[GM10]	2010	BIF + OLPP	N/A	97.8%
	[GM11]	2011	BIF + kPLS	N/A	98.2%
	[Sha12]	2012	LBP + SVM	94.8%	N/A
	[TP13]	2013	Multiscale LBP + SVM	95.6%	N/A
	[GM14]	2014	BIF + kCCA	N/A	98.4%
	[YLL14]	2014	Multi-scale CNN	N/A	97.9%
	[Yan+15a]	2015	CNN	N/A	97.9%
	[Han+15]	2015	BIF + hierarchical SVM Human Estimators	N/A N/A	97.6% 96.9%
	[DBM15]	2015	FIS + SVM/RBF	93.4%	N/A
	[JC15]	2015	LBP + C-Pegagos	96.9%	N/A
	[MAP16]	2016	Local CNN	94.5%	N/A
	This work (Chapter 4) 2016 Ensemble of optimized_CNNs 97.3%	N/A
	[CSLNRB16]	2016	LBP/HOG/CNN + SVM	98.0%	N/A
	[Moe+17]	2017	SLCDL + CRC	96.4%	N/A
	This work	2017	ResNet-50 CNN	99.3%	99.4%
	Reference Year		Used Approach	MAE FG-NET MORPH-II
	[Zho+05] 2005	Boosting + Regression	7.48	N/A
	[GZSM07] 2007		AGES	6.77	8.83
	[Guo+08] 2008		OLPP + regression	5.07	N/A
	[Luu+09] 2009		AAM + SVR	4.37	N/A
	[ZY10]	2010		MTWGP	4.83	6.28
	[GM10]	2010		BIF + OLPP	N/A	4.33
	[Luu+11] 2011		CAM + SVR	4.12	N/A
	[CCH11] 2011		OHRANK	4.85	5.69
	[GM11]	2011		BIF + kPLS	N/A	4.18
	[GM14]	2014		BIF + kCCA	N/A	3.92
	[YLL14]	2014		Multi-scale CNN	N/A	3.63
	[Han+15]	2015	BIF + hierarchical SVM Human Estimators	4.8 4.7	3.8 6.3
	[WGK15] 2015		Unsupervised CNN	4.11	3.81
	[Yan+15a] 2015		Ranking CNN	N/A	3.48
	[LYK15]	2015	Hierarchical grouping and fusion	2.81-3.55 2.97-3.63
	[Niu+16] 2016		Ordinal CNN	N/A	3.27
	[RTVG16] 2016 ImageNet VGG-16 CNN + regression	3.09	2.68*
	[Liu+17]	2017		Group-aware CNN	3.93	3.25
	This work 2017	VGG-16 CNN + LDAE	2.84	2.99/2.35*

Table 5 .

 5 3.3 -Comparison of our best age estimation CNN with the state-of-the-art works on FG-NET and MORPH-II datasets. (*) different protocol (80% of dataset for training, 20% for test).The majority of the works from Tables 5.3.2 and 5.3.3 are discussed in Chapter 3, but for all reported results we provide short descriptions of the employed methods in the dedicated column. To the best of our knowledge, the current best results for gender recognition were obtained by[START_REF] Castrillón-Santana | Descriptors and regions of interest fusion for gender classification in the wild. Comparison and combination with CNNs[END_REF] and[START_REF] Guo | A framework for joint estimation of age, gender and ethnicity on a large database[END_REF] on LFW and MORPH-II, respectively. Castrillon et al.[START_REF] Castrillón-Santana | Descriptors and regions of interest fusion for gender classification in the wild. Comparison and combination with CNNs[END_REF] combined hand-crafted features (LBP and HOG) with the features from a compact CNN (comparable by size to fast_CNN) and used an SVM classifier above. Guo et al.[START_REF] Guo | A framework for joint estimation of age, gender and ethnicity on a large database[END_REF] used BIF features (which are somewhat similar to the features from early layers of deep CNNs) and a kernel-based Canonical Correlation Analysis for simultaneous estimation of gender and age.

Table 5 .

 5 CNNs to the maximum face crop resolution, we vary the latter from 224x224 to 16x16, and report the respective gender and age scores on the PBGA dataset. Examples of face crops of the same sizes (224x224, which is the retina size of ResNet-50 and VGG-16) but with varying resolutions are illustrated in Figure 5.3.3. 3.4 -Sensitivity of our best performing gender and age CNNs to face crop resolution. The maximum resolution of face crops is varied from 224x224 pixels down to 16x16 pixels. Results are reported on the PBGA dataset.

	Maximum Resolution (pixels)	Gender CA AUC	Age MAE
	224x224	98.7% 0.9991	4.26
	196x196	98.7% 0.9990	4.31
	128x128	98.6% 0.9987	4.48
	96x96	98.6% 0.9988	4.46
	64x64	98.5% 0.9977	4.79
	32x32	94.0% 0.9858	8.06
	16x16	50.9% 0.6532	13.70

can be easily reduced to n 2 xn 2 (n 1 > n 2 ) by firstly downsampling it to n 2 xn 2 , and then uspamling it back to n 1 xn 1 using nearest-neighbour interpolation (in Subsection 4.2.4 of Chapter 4, we refer to this operation as "Pixelization PPF"). Thus, in order to measure the sensitivity of the designed ResNet-50 and VGG-16

Table 5 .

 5 4.2 -Final results of the second edition of the ChaLearn AAEC [Esc+16].

	Position	Team	ε-score	Reference
	1	OrangeLabs 0.2411	This work
	2	palm_seu	0.3214	[Huo+16]
	3	cmp+ETH	0.3361	[Uři+16b]
	4	WYU_CVL	0.3405	-
	5	ITU_SiMiT	0.3668 [CMAKE16]
	6	Bogazici	0.3740	[Gur+16]
	7	MIPAL_SNU 0.4569	-
	8	DeepAge	0.4573	-

  1 . Contrary to Protocol 1, in this experiment, the maximal score is limited by the OpenFace score on the original LFW images. We have estimated this score by aligning the original LFW dataset according to the used "face-only" crops and obtained 89.4% (which is slightly lower than the score reported in the original OpenFace article[START_REF] Amos | OpenFace: A generalpurpose face recognition library with mobile applications[END_REF] because of the difference in face alignments). The results of the evaluation according to Protocol 2 are regrouped in the fourth column of Table6.3.2.

Table 6 .

 6 Age normalization by GA-cGAN+LMA (the red curve) significantly increases the accuracy of face verification with respect to the original pairs (the green dashed curve). Obviously, the biggest improvements are due to falsely rejected original positive pairs (the upper left corner of Figure8.4.5), i.e. pairs of images of the same person at different ages which are initially rejected by OpenFace, but which are accepted after removing the age difference. At the same, the blue curve of Figure8.4.5 perfectly demonstrates that LMA is indispensable for age normalization with GA-cGAN, because without it, the positive effect of age normalization is not enough to compensate the degradation of performances due to imperfect face reconstructions. 4.1 summarizes the comparison of face verification on original and age-normalized image pairs according to three popular metrics, namely: AUC, False Rejection Rate (FRR) when False Acceptance Rate (FAR) is of 10% (FRR@10) and Equal Error Rate (EER). The results are provided for the two age normalization algorithms proposed in this section, namely HS and FS. Both algorithms significantly boost face verification with respect to all three metrics, and in particular, for FRR@10, the improvement reaches almost 6 and 8 points for HS and FS normalizations, respectively. Moreover, the bigger is the initial age gap between the tested faces, the more important is the impact of age normalization. This is illustrated in the lower part of Table6.4.1, where we present the scores for face verification on the test subset containing pairs with at least 40 years of age gap. In this case, both age normalization algorithms boost FRR@10 by almost 12 points.

				Cross-Age Face Verification on FG-NET
		0.5			GA-cGAN+LMA Original GA-cGAN
	False Rejection Rate	0.2 0.3 0.4		
		0.1		
		0.0 0.0	0.1	0.2 False Acceptance Rate 0.3 0.4	0.5
	Figure 6.4.7 -"FAR vs. FRR" curves of cross-age face verification on the FG-NET dataset. The curves
	have been calculated calculated (1) on "Fully-Synthetic" (FS) age-normalized pairs generated by GA-
	cGAN+LMA, (2) on original pairs, and (3) on FS age-normalized pairs generated by basic GA-cGAN.
		Tested Cross-Age Pairs	AUC FRR@10	EER
			Normalized (FS) 89.5%	29.3%	18.9%
		All	Normalized (HS) 89.2%	31.2%	19.3%
				Original	87.6%	37.1%	20.5%
			Normalized (FS)	84.5%	37.7%	23.6%
		≥ 40	Normalized (HS) 85.1%	37.7%	17.9%
				Original	80.4%	49.1%	26.4%
	Table 6.4.1 -Impact of age normalization with GA-cGAN+LMA on cross-age Face Verification (FV)
	on the FG-NET dataset, and comparison of 2 age normalization algorithms presented in Subsection
	6.4.2: (1) Fully-Synthetic (FS) and (2) Half-Synthetic (HS). Evaluation on all cross-age positive/negative
	pairs and also on the pairs with a particularly huge age gap (at least, 40 years of difference). Results
	are provided for 3 metrics: Area Under ROC Curve (AUC), False Rejection Rate (FRR) when False
	Acceptance Rate (FAR) is of 10% (FRR@10), and Equal Error Rate (EER).

In Figure

8

.4.5, we compare the "False Acceptance Rate (FAR) vs. False Rejection rate (FRR)" curves calculated on the original pairs and on the ones after FS age normalization. In order to highlight the benefits of the proposed LMA approach, we also plot the curve for the FS age-normalized pairs for which the corresponding aging/rejuvenation is performed without LMA (i.e. following the basic GA-cGAN).
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	7.1

The resulting GA-cGAN+LMA face editing method boosts the accuracy of a popular face verification software on a very challenging cross-age benchmark (cf. Paragraph 6.4.3.3).

  ofZhu et al. requires training of a separate Cycle-GAN for each target domain (in other words, for each face editing operation: gender swapping, face rejuvenation etc.) Moreover, Cycle-GAN cannot be used for synthesis of random face with the required face attributes. e. the more conditions are used during the training), the better is their convergence. Therefore, extending our GA-cGAN with other face modalities (such as presence of eyeglasses or beard) will not only allow synthesizing and editing of the respective face attributes, but might also improve the visual quality of the resulting synthetic faces. However, similar to the case of gender/age prediction CNNs, exploring this research direction requires a face dataset which is simultaneously annotated with gender, age and other face attributes. We suggest using CelebA dataset for this purpose by automatically annotating it with age labels (for example, this can be done using our age CNN).

	Otherwise, the proposed GA-cGAN is trained with only six age categories which limits the age pre-
	cision in the resulting synthesized faces. Therefore, a possible improvement of our model consists in
	refining these age categories (i.e. splitting them into more age classes of smaller sizes) or completely
	replacing them with real age values. For example, such refined model would be very useful for generat-
	ing new synthetic datasets with accurate age annotations (which can be further used for age estimation
	training). However, learning of a GA-cGAN with fine-grained age categories would require a signific-

antly bigger training dataset than IMDB-Wiki_cleaned which is used in the present manuscript. Indeed, we have empirically observed that if a certain age is underrepresented during the training, cGAN "learns by heart" the respective examples, and, as a result, always generates the same face for this age. Finally, it is was shown by a number of studies [Sal+16; OOS16] that the more supervised are cGANs (i.

8.1.1 Contexte et Motivations Les

  concepts du genre et de l'âge sont extrêmement importants dans notre vie quotidienne. En effet, la compréhension de ces concepts par des humains est profonde et intuitive : non seulement nous pouvons immédiatement estimer le genre et l'âge d'un inconnu dans la rue, mais nous sommes aussi souvent capables de reconnaître visuellement des liens parentaux entre un père et un fils, ou des relations familiales entre un frère et une soeur. Une question donc se pose naturellement : l'intelligence artificielle, est-elle capable d'effectuer les mêmes tâches ? En effet, l'analyse visuelle automatique de l'apparence humaine est un domaine de recherche très demandé aujourd'hui. Le développement inédit des caméras digitales et de l'Internet ont augmenté de manière significative le nombre de photos qui sont constamment crées et partagées entre les gens partout dans le monde. Par conséquent, l'indexation et l'organisation de telles quantités d'images de visages digitales ne sont possibles qu'avec des solutions efficaces pour la reconnaissance et la description sémantiques de visages humains.

	8.1.2 Objectifs
	Dans cette thèse, nous nous sommes particulièrement intéressés à deux objectifs complémentaires,
	à savoir : (1) la reconnaissance du genre et de l'âge à partir d'images de visages, et (2) la synthèse et
	l'édition du genre et de l'âge dans des images de visages.
	8.1.2.

Récemment, une famille de méthodes d'apprentissage automatique qui est basée sur les réseaux de neurones artificiels profonds s'est avérée être particulièrement adaptée aux larges quantités de données d'apprentissage et peut se généraliser remarquablement mieux que les approches alternatives. Cette famille est connue aujourd'hui sous le nom "d'apprentissage profond" ("deep learning" en anglais).

Durant les dernières années, l'apprentissage profond a battu plusieurs records dans les différents domaines de l'intelligence artificielle [Hin+12 ; SVL14 ; Xio+15]. Cependant, le progrès le plus incontestable a été constaté dans le domaine de la vision par ordinateur grâce aux réseaux de neurones convolutifs (CNNs)

[START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]

. Aujourd'hui, quasiment toutes les solutions de l'état de l'art pour la classification d'images et de vidéos

[START_REF] Karpathy | Large-scale video classification with convolutional neural networks[END_REF]

, la segmentation d'images

[START_REF] Luc | Semantic segmentation using adversarial networks[END_REF]

, la restauration et la super-résolution

[START_REF] Romano | RAISR: rapid and accurate image super resolution[END_REF]

, la reconnaissance optique des caractères

[START_REF] Ibarz | Multidigit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks[END_REF] 

et la reconnaissance faciale

[START_REF] Schroff | Facenet: A unified embedding for face recognition and clustering[END_REF] 

sont basées sur des CNNs.

Ainsi, la présente thèse est dédiée à l'exploration et à la conception des méthodes d'apprentissage profond dans le cadre de l'analyse du genre et de l'âge dans les images de visages.

1 Prédiction du Genre et de l'Âge Le

  Les méthodes classiques pour la classification du genre et l'estimation de l'âge suivent un procédé typique consistant en deux étapes : l'extraction des descripteurs d'image de visage en question (souvent sous forme d'un vecteur), et ensuite, la classification (ou bien la régression) à partir de ces descripteurs pour obtenir le résultat final. Dans ce schéma, l'étape d'extraction des descripteurs a une importance

	primordiale car elle définit quelles informations sur le visage en question sont données à l'entrée de
	la méthode de classification (ou de régression). Ainsi, dans l'état de l'art, nous pouvons globalement
	distinguer quatre familles de descripteurs de visages qui ont été utilisées pour les problèmes en question
	et qui sont listées ci-dessous :
	-Les descripteurs anthropométriques [PBP92 ; Fel97] constituent un ensemble de distances et de
	proportions géométriques qui sont calculées entre les points de repères de visages.
	-Les descripteurs basés sur la texture [YA07 ; XSL08] se focalisent sur les motifs récurrents dans
	les images de visages.

premier objectif constitue un problème de description du visage (à l'entrée nous avons une image et il faut trouver son annotation). Plus particulièrement, par la prédiction du genre, nous entendons la classification binaire avec deux classes (femmes et hommes), alors que l'estimation de l'âge constitue un problème de régression où une valeur réelle (l'âge de la personne) est attendue en sortie.

-Les descripteurs appris via une variété [HP09 ; GM11] sont obtenus en projetant les images de visages sur une variété où les genres et les âges sont facilement distinguables.

-Les descripteurs basés sur l'apparence [LTC02 ; GZSM07] combinent à la fois les informations extraites de la texture et de la forme des visages. Contrairement aux travaux précédents, nous fusionnons les étapes d'extraction des descripteurs et de prédiction du genre et de l'âge dans un modèle en employant les CNNs. Plus particulièrement, notre objectif est de trouver des méthodes optimales pour la conception et l'apprentissage de CNNs pour ces deux problèmes. 8.1.

2.2 Synthèse et Édition du Genre et de l'Âge Le

  'édition de visage est un problème plus complexe que la synthèse puisqu'il exige le fait que l'image synthétisée doit correspondre à l'image donnée à l'exception des paramètres modifiées. Par exemple, dans le cadre de l'édition de l'âge (i.e. vieillissement / rajeunissement), nous devons changer l'apparence de l'âge de la personne mais préserver tous les autres paramètres du visage. De même, le changement de genre ne doit pas affecter l'âge de la personne, son expression faciale, etc. Dans ce travail, notre objectif est de proposer une approche neuronale générique qui est applicable pour la synthèse des images de visages aléatoires avec le genre et l'âge cibles, mais qui peut être également adaptée pour l'édition d'un visage donné. Pour cela nous nous focalisons sur les modèles neuronaux génératifs[START_REF] Goodfellow | Generative adversarial nets[END_REF] qui ont connu un progrès significatif récemment.

	Les travaux précédents se focalisent davantage sur le problème d'édition de visage. Notamment, les
	deux familles d'approches suivantes prévalent dans l'état de l'art :
	-Les approchent qui effectuent le vieillissement / rajeunissement ou le changement de genre via
	la modélisation paramétrique des différentes parties du visage (i.e. les muscles, le crâne, la peau,
	etc.) [Suo+10 ; Shi+12].

deuxième objectif de la thèse est complémentaire au premier, car pour la synthèse et l'édition d'images de visages, à l'entrée, nous avons les descriptions sémantiques ciblées (i.e. le genre et l'âge), et à la sortie, nous devons générer une image de visage qui correspond à ces descriptions. L-Les approches qui se basent sur la conception des prototypes moyennés pour chaque genre ou pour chaque catégorie d'âge [TBP01 ; KSSS14]. L'édition est ensuite effectuée avec la projection de l'image initiale sur les prototypes pré-calculés.

8.1.

3 Contributions et Organisation de la Thèse Les

  trois contributions principales de cette thèse sont présentées dans trois sections séparées. D'abord, dans la Section 8.2, nous effectuons deux études préliminaires qui illustrent la caractéristique très importante des CNNs. En particulier, nous démontrons que l'efficacité des descripteurs appris avec un CNN dépend non seulement de la taille de l'architecture employée, et de la quantité de données d'apprentissage, mais aussi de la complexité du problème cible. Cette conclusion est prise en compte plus tard dans la thèse, pendant la conception de CNNs pour la classification du genre et l'estimation de l'âge. La Section 8.3 répond au premier objectif de la thèse. Plus particulièrement, nous proposons une stratégie d'apprentissage de CNNs pour la classification du genre et de l'âge qui est validée empiriquement. Elle nous permet de concevoir les CNNs qui surpassent l'état de l'art actuel sur les problèmes en question.

Le deuxième objectif de la thèse est ensuite abordé dans la Section 8.4. Nous proposons un modèle génératif pour la synthèse d'image de visage conditionnée sur le genre et l'âge. Ensuite, nous présentons une méthode permettant d'appliquer ce modèle pour l'édition d'images existantes. Afin de démontrer l'utilité pratique de notre approche, nous l'appliquons à la normalisation des âges de visages ce qui permet d'améliorer les performances d'un moteur de vérification faciale.

Finalement, la Section 8.5 dresse un bilan des résultats de cette thèse et présente des pistes pour les futurs travaux.

8.

2 Études Préliminaires 8.2.1 Introduction

  

	La présente section est dédiée à deux études préliminaires distinctes ayant pour but de mieux com-
	prendre le fonctionnement des CNNs, qui sont les principaux modèles utilisés pour la classification du
	genre et l'estimation de l'âge dans la Section 8.3.
	La première étude présentée dans la Sous-section 8.2.2 porte autour de la comparaison entre deux
	types de descripteurs d'images : les descripteurs manuellement conçus (i.e. ceux qui sont extraits via un
	algorithme prédéfini par des humains selon une expertise liée à un domaine particulier) et les descripteurs
	appris automatiquement par des CNNs.
	Le but de la deuxième étude résumée dans la Sous-section 8.2.3 est d'évaluer le rapport entre la

complexité de l'architecture de CNN (i.e. le nombre de paramètres, la profondeur, etc.) utilisés pour résoudre un certain problème et les performances finales. Nous nous sommes particulièrement focalisés sur l'apprentissage de CNNs à partir de zéro (sans utiliser de modèles pré-entrainés) ce qui nous permet d'évaluer l'impact du problème cible sur l'efficacité de l'apprentissage.

8.

2.2 Étude 1 : Descripteurs Appris par des CNNs vs. Descripteurs Manuellement Conçus Malgré

  le fait que dans cette thèse nous nous soyons principalement intéressés à l'analyse d'images de visages, nous avons choisi le problème de la classification du genre à partir d'images de piétons afin d'effectuer la comparaison entre les descripteurs manuellement conçus et les descripteurs appris par les CNNs dans le cadre de la première étude préliminaire. Ce choix est dicté par le fait que la classification du genre est plus compliquée quand l'estimation est faite à partir d'images de piétons par rapport à l'estimation à partir d'images de visages. En effet, la comparaison des descripteurs sur un problème complexe est plus représentative puisque dans ce cas là, la qualité des représentations d'images peut vraiment faire la différence. Dans le cadre de cette étude, six descripteurs d'images de piétons ont été choisis pour la comparaison. Nous avons notamment sélectionné les trois descripteurs manuellement conçus qui sont pertinents pour la représentation d'images de piétons et la classification du genre. Ces descripteurs sont listés ci-Dans notre implémentation, une image de piéton de taille 150x50 pixels est représentée par un vecteur de 2500 ou 3000 valeurs réelles selon les descripteurs manuellement conçus utilisés.Les trois descripteurs appris sont obtenus avec les activations issues des avant dernières couches des trois CNNs présentés ci-dessous :-Le premier réseau est nommé pedestrian_CNN et son architecture est largement inspirée par le fameux LeNet-5 [LeC+98] (cf. la première colonne du Tableau 8.2.1). L'architecture de pedes-trian_CNN étant assez compacte, elle est particulièrement adaptée à l'apprentissage sur des corpus de petite taille (ce qui est le cas dans la présente étude). Les descripteurs extraits avec pedes-trian_CNN sont des vecteurs réels de taille 100.-Nous avons également comparé les descripteurs universels d'apprentissage profond qui sont issus de l'avant dernière couche d'AlexNet[START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] (4096 valeurs réelles, cf. la deuxième colonne

	pedestrian_CNN	AlexNet
	Entrée : 150x50	Entrée : 227x227
	Conv : 100@5x5 Conv : 96@11x11
	MaxPool : 2x2
	Conv : 100@5x5 Conv : 256@5x5
	MaxPool : 2x2
	-	Conv : 384@3x3
	-	Conv : 384@3x3
	-	Conv : 256@3x3
	-	MaxPool : 2x2
	-	FC : 4096
	FC : 100	FC : 4096
	Softmax : 2
	8.2.2.1 Descripteurs Comparés	
	du genre.	
	-Enfin, les descripteurs Histogram of Oriented Gradients (HOG) sont les plus adaptés, selon les
	travaux précédents [Col+09 ; BMM11 ; GS+16], à la classification du genre à partir d'images de
	piétons.	

dessous :

-Les descripteurs Re-Identification (RI)

[START_REF] Layne | Person Re-identification by Attributes[END_REF] 

ont été choisis en tant que descripteurs explicitement conçus pour l'identification de piétons.

-Les descripteurs Local Binary Pattern (LBP)

[START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF] 

sont souvent utilisés pour la classification du Tableau 8.2.1). AlexNet a été pré-entrainé sur ImageNet pour la classification multi-objets

[START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF]

.

-Afin d'évaluer l'importance de l'adaptation au domaine cible et de l'efficacité du transfer learning, nous avons affiné AlexNet pour la classification du genre à partir d'images de piétons. L'extraction

TABLE 8 .

 8 2.1 -Les architectures de CNNs utilisées pour

3 Étude 2 : L'Architecture de CNN pour l'Apprentissage à Partir de Zéro Dans

  La comparaison des six descripteurs en question est effectuée sur les trois expérimentations suivantes de la complexité croissante. illustrés sur la Figure 8.2.2. Comme nous pouvons le remarquer dans la Figure 8.2.2, les descripteurs manuellement conçus (notamment les descripteurs HOG) concurrencent les descripteurs appris par les CNNs seulement dans les conditions très limitées de l'expérimentation 1. Les expérimentations 2 et 3 démontrent que les descripteurs HOG n'arrivent pas à s'adapter aux données d'apprentissage hétérogènes et surtout à l'évaluation inter-corpus. Cela n'est pas le cas pour les descripteurs appris par les CNNs car ils obtiennent des résultats similaires dans les trois expérimentations, ce qui prouve leur aptitude à s'adapter à des données variées et à se généraliser face à des données inconnues. Finalement, il est aussi important de souligner que les descripteurs AlexNet-FT surpassent nettement les descripteurs AlexNet ce qui démontre une plus grande efficacité d'adaptation des descripteurs au domaine cible. la deuxième étude préliminaire, nous nous intéressons à l'évaluation de l'influence de la taille de l'architecture du CNN sur la précision de la classification du genre à partir d'images de visages. Pour cela, nous commençons par entrainer un CNN à l'architecture assez profonde et complexe (qui est nommé start_CNN), puis, nous simplifions cette architecture de façon progressive sans sacrifier sa précision. L'architecture de start_CNN est présentée dans la première colonne du Tableau 8.2.2. Afin d'optimiser start_CNN pour la classification du genre à partir d'images de visages, nous proposons l'Algorithme 8.1 qui est simple mais efficace. L'Algorithme 8.1 débute par l'évaluation du CA de start_CNN (qui est désigné comme CA 0 ). Ensuite, l'optimisation est faite en trois étapes qui se suivent de façon successive : (1) la minimisation de la profondeur de l'architecture (i.e. le nombre de couches cachées), (2) la minimisation de la largeur de l'architecture (i.e. le nombre de noyaux de convolution), et enfin (3) la minimisation du nombre de neurones dans la couche entièrement connectée. Dans l'Algorithme 8.1, les performances de toutes les architectures intermédiaires sont comparées à CA 0 , et à chaque étape, l'optimisation s'arrête dès que le CA du CNN en question est dégradé par rapport à CA 0 . Nous avons utilisé le corpus CASIA WebFace [Yi+14] pour nos expérimentations dans le cadre de la deuxième étude préliminaire. Parmi environ 500K images de ce corpus, 450K images ont été utilisées pour l'apprentissage et les 50K autres images ont constitué le corpus de validation. Dans le Tableau 8.2.2, nous illustrons le processus d'optimisation de start_CNN selon l'Algorithme 8.1. Les architectures qui ont été sélectionnées après chaque étape sont soulignées en gras. Le CNN I est la sortie finale de l'algorithme. Ce réseau est 10 fois plus rapide et prend 15 fois moins d'espace mémoire que start_CNN. Nous avons également remarqué que CNN I nécessite seulement 50% des données d'apprentissage disponible (i.e. de 450K images de visages) pour arriver à ces performances maximales. Ainsi, les performances du CNN appris à partir de zéro pour la classification du genre à partir d'images de visages sont saturées avec l'architecture de seulement 4 couches convolutionelles et 225Kinput : L'architecture initiale start_CNN ; les corpus d'apprentissage et de validation output: L'architecture optimisée optimized_CNN 1 train (start_CNN); 2 CA 0 ∶= evaluate_CA (start_CNN); / * Étape 1. Optimisation du nombre de couches convolutionelles et de la taille de la rétine. * / 3 current_CNN ∶= start_CNN ; CA current ∶= evaluate_CA (current_CNN); 9 until criterion (CA 0 ,CA current ) or current_CNN .#ConvBlocks < 2; / * Étape 2. Optimisation du nombre de noyaux de convolution. * / 10 current_CNN ∶= current_optimal_CNN ; ∶= evaluate_CA (current_CNN); 16 until criterion (CA 0 ,CA current ) or current_CNN .#ConvFeatureMaps < 2; / * Step 3. Optimisation du nombre de neurones dans la couche entièrement connectée. * / 17 current_CNN ∶= current_optimal_CNN ; ∶= evaluate_CA (current_CNN); 23 until criterion (CA 0 ,CA current );

	4 repeat
	5	current_optimal_CNN ∶= current_CNN ;
	6	current_CNN ∶= remove_ConvBlock (current_CNN);
	7	train (current_CNN);
	11 repeat 12 current_optimal_CNN ∶= current_CNN ; 13 current_CNN ∶= half_CNNWidth (current_CNN); 14 train (current_CNN); 18 repeat 19 current_optimal_CNN ∶= current_CNN ; 20 current_CNN ∶= half_FCNeurons (current_CNN); 8.2.8.2.3.2 Expérimentations et Résultats 21 train (current_CNN);

8.2.3.1 Algorithme pour l'Optimisation de l'Architecture du CNN

8 15 CA current 22 CA current
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 8 3.2, nous entraînons les CNNs sur le corpus IMDB-Wiki_cleaned et évaluons leurs performances sur le corpus interne PBGA. 3.3 -Comparaison de notre meilleur CNN pour la classification du genre à partir d'images de visages avec l'état de l'art sur les corpus LFW et MORPH-II.

	Référence	Année	Approche	LFW	CA MORPH-II
	[GM10]	2010	BIF + OLPP	N/A	97.8%
	[GM11]	2011	BIF + kPLS	N/A	98.2%
	[Sha12]	2012	LBP + SVM	94.8%	N/A
	[TP13]		2013	Multiscale LBP + SVM	95.6%	N/A
	[GM14]	2014	BIF + kCCA	N/A	98.4%
	[YLL14]	2014	Multi-scale CNN	N/A	97.9%
	[Yan+15a]	2015	CNN	N/A	97.9%
	[Han+15]	2015	BIF + hierarchical SVM Human Estimators	N/A N/A	97.6% 96.9%
	[DBM15]	2015	FIS + SVM/RBF	93.4%	N/A
	[JC15]		2015	LBP + C-Pegagos	96.9%	N/A
	[MAP16]	2016	Local CNN	94.5%	N/A
	Ce travail (Section 8.2) 2016 Ensemble de optimized_CNNs 97.3%	N/A
	[CSLNRB16]	2016	LBP/HOG/CNN + SVM	98.0%	N/A
	[Moe+17]	2017	SLCDL + CRC	96.4%	N/A
	Ce travail	2017	ResNet-50 CNN	99.3%	99.4%
	Référence Année		Approche	MAE FG-NET MORPH-II
	[Zho+05]	2005	Boosting + Regression	7.48	N/A
	[GZSM07] 2007		AGES	6.77	8.83
	[Guo+08]	2008		OLPP + regression	5.07	N/A
	[Luu+09]	2009		AAM + SVR	4.37	N/A
	[ZY10]	2010		MTWGP	4.83	6.28
	[GM10]	2010		BIF + OLPP	N/A	4.33
	[Luu+11]	2011		CAM + SVR	4.12	N/A
	[CCH11]	2011		OHRANK	4.85	5.69
	[GM11]	2011		BIF + kPLS	N/A	4.18
	[GM14]	2014		BIF + kCCA	N/A	3.92
	[YLL14]	2014		Multi-scale CNN	N/A	3.63
	[Han+15]	2015	BIF + hierarchical SVM Human Estimators	4.8 4.7	3.8 6.3
	[WGK15]	2015		Unsupervised CNN	4.11	3.81
	[Yan+15a]	2015		Ranking CNN	N/A	3.48
	[LYK15]	2015	Hierarchical grouping and fusion	2.81-3.55 2.97-3.63
	[Niu+16]	2016		Ordinal CNN	N/A	3.27
	[RTVG16]	2016 ImageNet VGG-16 CNN + regression	3.09	2.68*
	[Liu+17]	2017		Group-aware CNN	3.93	3.25
	Ce travail	2017	VGG-16 CNN + LDAE	2.84	2.99/2.35*
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 8 3.4 -Comparaison de notre meilleur CNN pour l'estimation de l'âge à partir d'images de visages avec l'état de l'art sur les corpus MORPH-II et FG-NET. (*) Un protocole différent (80% du corpus pour l'apprentissage, 20% du corpus pour l'évaluation). Nous avons trouvé que le réseau ResNet-50 obtient le meilleur taux de classification du genre (CA de 98.7% contre CA de 97.1% par VGG-16) alors que le réseau VGG-16 surpasse légèrement ResNet-50 pour l'estimation de l'âge (Mean Absolute Error (MAE) de 4.26 ans contre MAE de 4.33 ans). Ainsi, nous avons choisi le ResNet-50 comme notre meilleur modèle pour la classification du genre et le VGG-16 comme notre meilleur modèle pour l'estimation de l'âge. Pour comparer ces modèles avec l'état de l'art, nous les avons évalués sur les trois corpus publics les plus utilisés, à savoir : Labeled Faces in the Wild (LFW) [Hua+07] (pour la classification du genre), MORPH-II [RJT06] (pour la classification du genre et pour l'estimation de l'âge) et FG-NET 1 (pour l'estimation de l'âge). Les résultats sont présentés dans les Tableaux 8.3.3 et 8.3.4. À titre indicatif, dans le Tableau 8.3.3, nous fournissons également les scores de la classification du genre par optimized_CNN conçu dans la Section 8.2. Comme nous pouvons le constater, les CNNs proposés surpassent nettement l'état de l'art sur les deux tâches (incluant des travaux très récents également basés sur l'apprentissage profond).

8.3.

4 La Compétition ChaLearn pour l'Estimation de l'Âge Apparent Notre

  VGG-16 CNN qui a été détaillé et évalué dans la Sous-section 8.3.3 est conçu pour l'estimation de l'âge biologique (i.e. le temps passé depuis la naissance de la personne en question). En même temps, dans certains scénarios, il est aussi important de pouvoir estimer de façon automatique l'âge apparent d'un individu (i.e. l'âge qui aurait été perçu par un humain moyen). Ainsi, en 2016, une compétition internationale sur l'estimation de l'âge apparent (AAEC) a été organisée par ChaLearn[START_REF] Escalera | ChaLearn Looking at People and Faces of the World: Face Analysis Workshop and Challenge 2016[END_REF]. Afin de valider notre approche de l'apprentissage de CNN pour l'estimation de l'âge dans le cadre des âges apparents, nous avons participé à cette compétition.Les organisateurs de AAEC ont collecté un corpus contenant 7591 images de visages (dont 5613 fournies pour l'apprentissage et 1978 utilisées pour l'évaluation). Chaque image de visage a été annotée par au moins 10 humains ce qui permet de calculer la moyenne µ et l'écart type σ de l'âge apparent. Les approches des participants de la compétition ChaLearn ont été évaluées selon la métrique ε suivante (le meilleur score correspond à la valeur la plus faible) : une estimation de l'âge apparent par un algorithme évalué. Par conséquent, les erreurs sur les images avec de faibles écarts types (i.e. sur les images sur lesquelles les estimations humaines étaient proches) sont davantage pénalisées que les erreurs sur les images avec des écarts types élevés.La dernière observation a une importance capitale pour AAEC. En effet, en analysant le corpus de la compétition, nous avons remarqué que la confiance des estimateurs humains dépend de la catégorie de l'âge. Plus particulièrement, les écarts types sont considérablement plus faibles pour les images d'enfants que pour les images d'adultes (cf. Figure 8.3.3). Cela veut dire que les résultats de la compétition AAEC dépendent beaucoup de la précision de l'estimation de l'âge apparent des enfants. C'est pour cette raison que nous avons entrainé deux CNNs séparés sur le corpus de la compétition 1. www.cse.msu.edu/rgroups/biometrics/Publications/Databases/FGNETAgeEstimation. zipFIGURE 8.3.3 -Histogramme des écarts types d'âges apparents pour les différentes catégories d'âge. Calculé en se basant sur les annotations humaines du corpus de la compétition ChaLearn AAEC [Esc+16]. Chaque colonne correspond à un intervalle de cinq ans.pour l'estimation de l'âge apparent (en affinant VGG-16 pour l'âge biologique présenté dans la Soussection 8.3.3), à savoir : un modèle "général" pour tous les âges et un modèle "enfants" dédié aux enfants de 0 à 12 ans. Pour l'apprentissage du modèle "enfants", nous avons manuellement collecté environ 6K images de visages d'enfants sur Internet. Pendant la phase d'évaluation, nous avons utilisé nos deux modèles de la manière suivante. D'abord, l'estimation de l'âge apparent avec le CNN "général" a été faite. Si l'âge estimé était supérieur à 12 ans, nous avons gardé cette estimation comme réponse finale.Dans le cas contraire, l'estimation par le CNN "enfants" a été faite et considérée comme réponse finale.
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		5	ITU_SiMiT	0.3668	[CMAKE16]
		6	Bogazici	0.3740	[Gur+16]
		7	MIPAL_SNU	0.4569	-
		8	DeepAge	0.4573	-
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 8 3.5 -Le classement finale de la compétition ChaLearn AAEC [Esc+16]. En utilisant cet algorithme de fusion des modèles, nous avons remporté la compétition ChaLearn AAEC. Comme cela peut être constaté dans le Tableau 8.3.5, l'écart des performances entre notre solution et celle de la deuxième place est assez important. nous arrivons à démontrer que la normalisation de l'âge avec notre méthode permet d'améliorer les performances d'un moteur de vérification faciale dans le cadre de l'évaluation avec des écarts d'âge.

Actually, the exact size of the output of the convolutional operator depends not only on the sizes of the input and of the kernel, but also on how border effects are handled.

International conference on advances in Neural Information Processing Systems (NIPS) is one of two major annual scientific meeting on deep learning. The summary of the tutorial on GANs in NIPS 2016 can be found here: https:// github.com/soumith/ganhacks.

http://www.orange-business.com/fr/magazine/tendances/reconnaissance-faciale-explorez-la-tete-de-vos-clients

https://www.theguardian.com/travel/2015/aug/14/japan-henn-na-hotel-staffed-by-robots

An example of a website of a professional forensic artist can be consulted here: http://www.forartist.com

http://www.imdb.com/title/tt0421715/

We thank the authors of the PETA dataset[START_REF] Deng | Pedestrian attribute recognition at far distance[END_REF] for providing the source codes which allowed reproduction of their scores.

Gender annotations for the LFW dataset are available at http://face.cs.kit.edu/431.php

The details of the LFW face verification protocol are provided here: http://vis-www.cs.umass.edu/lfw/.

The details of the LFW face verification protocol are provided here: http://vis-www.cs.umass.edu/lfw/.

http://vis-www.cs.umass.edu/lfw/

présenté une nouvelle méthode permettant d'appliquer GA-cGAN à l'édition du genre et de l'âge dans les images de visages en préservant l'identité de l'image originale. Cette méthode est composée de deux étapes : (1) d'abord, nous inférons le vecteur latent qui préserve au maximum l'identité de la personne avec le générateur générique, et (2) ensuite, nous adaptons le générateur à l'image en question pour encore améliorer la préservation de l'identité. Nous illustrons l'intérêt pratique de notre approche, en appliquant GA-cGAN à la normalisation de l'âge dans le cadre de la vérification faciale. Cela permet l'amélioration jusqu'à 8 points des performances d'un moteur de vérification faciale en présence des variations d'âges.Dans le travail futur, nous planifions de généraliser les conclusions de cette thèse sur les autres modalités faciales (comme l'expression, les différents attributs, etc). Cela concerne non seulement la conception de CNNs pour l'estimation de ces modalités, mais aussi la minimisation de leur impact sur nos modèles de la classification du genre et de l'estimation de l'âge (par exemple, nous avons remarqué que notre meilleure CNN de l'âge n'est pas très robuste aux variations de l'expression faciale). Autrement, nous planifions d'augmenter la résolution d'images de visages synthétisées et éditées par notre GA-cGAN (pour le moment, il s'agit de seulement 64x64 pixels). Pour cela, nous envisageons l'utilisation des Wasserstein GANs qui ont été proposées très récemment [ACB17].

Remerciements

The observations above lead to a key issue which needs to be addressed. Indeed, on the one hand, precise age estimation of children images is vital for the ChaLearn AAEC, and on the other hand, due to the lack of the training data, our biological VGG-16 CNN is prone to underperform on children images.

In order to resolve this problem, we have trained a separate "children" VGG-16 CNN which is dedicated exclusively to age estimation of children between 0 and 12 years old in addition to a "general" age VGG-16 CNN (trained in Section 5.3).

To this end, we have collected a private dataset of about 6K children images in the 0-12 age category (biological ages) using the Internet search engines. In particular, we have used the following 2 approaches for the data collection:

1. Queries in the search engines of type "1 year old baby" or "girl 7 years old" in different languages.

This approach requires a manual verification of the search engine results.

2. Usage of own private class photos (from the primary and secondary schools). These photos are very useful, because each photo usually contain frontal faces of 20-30 children of the same age.

Once the children dataset has been collected, we have trained the "children" VGG-16 CNN by finetuning from the "general" network on the images of children. Unlike the "general" VGG-16, the last layer of the "children" CNN contains 13 neurons as the network outputs only ages between 0 and 12 years old.

Fine-tuning for Apparent Age Estimation

Having two CNNs (the "general" and the "children" ones) for biological age estimation, our next step is fine-tuning them for apparent age estimation on the competition ChaLearn dataset. The two networks are fine-tuned separately: the "general" VGG-16 is fine-tuned on all available ChaLearn images, while the "children" one only on those images for which (apparent) age annotations are between 0 and 12 years old. Moreover, following the winners of the first edition of the ChaLearn AAEC [START_REF] Rasmus Rothe | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF], we have fine-tuned several instances of "general" and "children" CNNs (cf. Figure 5.4.3).

In particular, in case of the "general" CNN, we have combined all training and validation images from the ChaLearn (5613 images in total) and fine-tuned 11 "general" CNNs for apparent age estimation using 11-fold cross-validation where the size of each of 11 training datasets is 5113 images and the size of each of 11 non-overlapping validation datasets is 500 images. In case of the "children" CNNs, we have combined all children images from the training and validation parts of the competition dataset (there are 543 of them). Due to the small number of available images, we fine-tune the "children" CNNs for apparent age estimation without any validation saving the CNN weights at 3 predefined points which have been chosen by experimenting on the validation dataset. As a result, we obtain 3 "children" CNNs for apparent age estimation.

Due to the relatively small size of the ChaLearn dataset, we have used "5-times data augmentation" when fine-tuning "general" and "children" CNNs for apparent age estimation. Apart from the original images, we have used their mirrored versions, randomly rotated versions (the absolute rotation angle is no more than 5°), randomly shifted versions (the absolute shift length is no more than 5% of the image size) and randomly scaled versions (the scaled size is between 95% and 105% of the original size). 

Full Test Pipeline

Summarizing, the whole pipeline of our final solution at test stage is presented in Figure 5.4.4. A test image is firstly processed by a face detector which defines a face bounding box and rotates the image accordingly. Then the detected face is aligned and the resulting image is resized to 224x224 pixels.

From the obtained image, we generate its 7 modified versions: the mirrored one, the ones rotated at ±5°, the ones shifted by 5% on the left/right and the ones scaled in/out by 5%. This is done in order to compensate a negative impact from minor face alignment errors (which are inevitable given the difficulty of the competition dataset). In total, there are 8 images including the original one.

All these images are processed by 11 "general" CNNs. We take the values of 100 output neurons after each of 88(= 8 × 11) CNN forward passes, average them and normalize them to sum up to 1. Thus, we obtain an averaged vector p of 100 values representing probabilities of belonging to ages between 0 and 99 years old. The final "general" age prediction is calculated as an expected value of these probabilities:

If the predicted "general" age is superior to 12, it is considered as the final apparent age estimation and the algorithm stops. In the opposite case, we process the same 8 images as before by 3 "children" CNNs. We take the values of 13 output neurons after each of 24(= 8 × 3) CNN forward passes, average them and normalize them to sum up to 1. Thus, we obtain a vector p of 13 values representing probabilities of belonging to ages between 0 and 12 years old. The final "children" Finally, our winning entry at the ChaLearn AAEC (which has been described in Section 5.4) has proved that the designed biological age estimation model can be effortlessly adapted for apparent age estimation as well.

Experiments

Design and Training of GA-cGAN

Generator G Discriminator D Encoder E Face Recognition FR 4x4(2x2)@512, BN, ReLU 4x4(2x2)@64, LReLU 5x5(2x2)@32, BN, ReLU 3x3(1x1)@32, BN, ↓, ELU 4x4(2x2)@256, BN, ReLU 4x4(2x2)@128, BN, LReLU 5x5(2x2)@64, BN, ReLU 3x3(1x1)@64, BN, ↓, ELU 4x4(2x2)@128, BN, ReLU 4x4(2x2)@256, BN, LReLU 5x5(2x2)@128, BN, ReLU 3x3(1x1)@128, BN, ↓, ELU 4x4(2x2)@64, BN, ReLU 4x4(2x2)@512, BN, LReLU 5x5(2x2)@256, BN, ReLU 3x3(1x1)@256, BN, ↓, ELU 4x4(2x2)@3, Tanh 4x4(1x1)@ As explained in Chapter 2, GAN training is known to be very unstable and difficult to control. Therefore, we follow the widely adopted practices to facilitate the convergence of GANs. Thus, we employ the DCGAN CNN architectures for the generator G and the discriminator D which were proposed by Radford et al. [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. The two architectures are detailed in the first two columns of Table 6.3.1. As in the original work [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF], the generator G of our GA-cGAN is fed with latent 100-dimensional vectors z ∈ N z , N z = R 100 which are sampled from the standard normal distribution z ∼ N(0,I), and produces 3-channel RGB images of size 64x64.

In order to encode a person's age, we have identified six age categories: "0-18", "19-29", "30-39", "40-49", "50-59" and "60+" years old. They have been selected so that there are at least 5K images belonging to each category in the training dataset (which will be presented in Paragraph 6.3.4.1). Thus, the age conditions y a of GA-cGAN are 6-dimensional one-hot vectors. The gender conditions y g are simply encoded with binary values. Therefore, the complete conditional vectors y of GA-cGAN are 7-dimensional vectors which are composed by concatenating y g and y a : y = (y g ,y a ). ground truth ones z (i) . More precisely, the loss function L E for training of E is the following:

where m is the mini-batch size.

Further in this chapter, we refer to the manifold projections G(E(x),y) (of an input face x with gender/age attributes y) as intital manifold projections and denote them as x0 .

Identity-Preserving Projection Optimization

In Subsection 6.3.4, we experimentally show that the initial manifold projections globally approximate a human face, but they do not convey the more subtle details of the input loosing the original person's identity. Therefore, we propose a novel optimization approach to improve the initial manifold projections.

In [Zhu+16], the similar problem of image reconstruction enhancement is solved by optimizing the latent vector z to minimize the pixelwise Euclidean distance between the ground truth image x and the reconstructed image x. However, in the context of face reconstruction, the described "pixelwise" latent vector optimization has two obvious downsides: firstly, it increases the blurriness of reconstructions and secondly (and more importantly), it focuses only on superficial details of input face images which have a strong impact on pixel level (such as image lightning, presence of sunglasses etc.), but often misses the identity traits.

Contrary to the "pixelwise" latent vector optimization, our "identity-preserving" optimization approach focuses both on reconstructing the superficial pixel-level information, and also on preserving the original human identity. The key idea is simple: given a face recognition neural network FR able to recognize a person's identity in an input face image x, the difference between the identities in the original and reconstructed images x and x can be expressed as the Euclidean distance between the corresponding embeddings FR(x) and FR( x). Hence, minimizing this distance should improve the identity preservation in the reconstructed image x:

In order to learn the embeddings FR(⋅), we have trained a face recognition CNN FR (the architecture of which is provided in the last column of Table 6.3.1) in a similar way as the face recognition CNN in Chapter 5. More precisely, we have empirically found the last convolutional layer of FR (highlighted in bold in Table 6.3.1) to be the optimal embedding layer as the good trade-off between purely superficial pixel-level information (which is encoded in the early layers of FR) and purely identity-dependent information (which is encoded in the fully-connected layers of FR).

The generator G(z,y) and the face recognition network FR(x) are differentiable with respect to their inputs, so the optimization problem 6.3.2 can be solved using the L-BFGS-B algorithm [START_REF] Richard H Byrd | A limited memory algorithm for bound constrained optimization[END_REF] with backtracking line search. The L-BFGS-B algorithm is initialized with the output of the encoder E on the input face x: z 0 = E(x).

Further in this chapter, we refer to the face reconstructions with "pixelwise" and "identity-preserving"

Qualitative Comparison

The results of the experimental comparison between the manifold projection approaches and face crops presented in Paragraph 6.3.4.2 can be easily confirmed visually. To this end, in Figure 6.3.4, we illustrate the synthetic reconstructions of several faces from the evaluation part of the IMDB-Wiki_cleaned dataset.

The fact that "identity-preserving" manifold projections better reflect the original person's identity than alternative approaches is directly perceivable both in "face-only" and "face+40%" versions of GA-cGAN. Moreover, contrary to "pixelwise" manifold projections, the "identity-preserving" ones are less blurry which also makes them more realistic.

The advantage of "face-only" crops over the "face+40%" ones is also apparent when the same lines are compared between Figure 6.3.4-(a) and Figure 6.3.4-(b). Indeed, the "face-only" reconstructions much better transfer subtle facial details such as the form of the eyes in line 5 and the nose in line 6.

Identity-Preserving Face Reconstruction with GA-cGAN: Summary

In this section, we have designed and trained GA-cGAN, a cGAN which is able to generate synthetic faces of high visual fidelity within the required gender and age categories. In order to make possible the application of GA-cGAN for artificial face aging/rejuvenation and gender swapping, we have also proposed a novel approach for the inference of an optimal latent vector z * given an input face x.

Summarizing, our contributions are as following:

1. We have shown both objectively and subjectively that our novel "identity-preserving" manifold projection approach allows to better preserve the original person's identity in the synthetically reconstructed face than it is done by existing approaches.

2. Using "identity-preserving" manifold projection, the designed GA-cGAN can be used to convincingly perform aging/rejuvenation and gender swapping. The corresponding experiments are presented below in Paragraph 6.4.3.2.

Based on the results of this section, further in the chapter, we always employ the proposed "identitypreserving" approach of manifold projection. Therefore, for the sake of simplicity, we will use the simplified notation x * (instead of x0 and xIP used in the present section) to denote the final result of the manifold projection (i.e. after "identity-preserving" optimization).

Boosting Cross-Age Face Verification with Age Normalization

In Section 6.3, we have designed GA-cGAN, a generative model which can be applied for synthetic aging/rejuvenation and gender swapping. The main objective of the present section is to use GA-cGAN in order to improve the accuracy of an off-the-shelf face verification solution in the cross-age scenario. The idea is to normalize ages in a pair of face images (with the help of GA-cGAN) prior to face verification.

However, the experimental results (Protocol 2) in Paragraph 6.3.4.2 demonstrate that even though our "identity-preserving" manifold projection approach significantly improves the original identity preservation with respect to existing methods, the face verification score calculated with reconstructed synthetic images is more than 7 points below the one calculated with original images on the LFW benchmark. It When compared to the results in Table 6.3.2, we observe that the score of GA-cGAN+LMA (88.7%) is almost 7 points above the one of GA-cGAN (82.0%), and is only 0.7 points below the maximal score calculated on the original LFW images (89.4%). It is also interesting to mention that when GA-cGAN+LMA is evaluated according to the experimental Protocol 1 from Paragraph 6.3.4.2, it obtains the maximal score of 100.0%. Finally, it is important to highlight that the proposed LMA approach does not extend a lot the execution time of the aging/rejuvenation process with respect to the basic GA-cGAN.

Thus, 50 backpropagation iterations of LMA take about 0.4 second on Tesla K40c GPU for a single image, while the process of finding an optimal z * with L-BFGS-B takes about 1.5 seconds.

Summarizing, LMA approach further improves the quality of the identity preservation with respect to the "identity-preserving" optimized manifold projection which is proposed in Section 6.3. In Paragraph 6.4.3.3, we demonstrate that the proposed HS and FS age normalization algorithms which use GA-cGAN+LMA as a face editing method boost the face verification accuracy of an off-the-shelf face verification software in the cross-age scenario.

Gender/Age Editing with GA-cGAN+LMA

The results of Paragraph 6. Therefore, we propose to qualitatively compare the faces aged by our methods and by the listed alternatives on some examples from FG-NET in Figure 6.4.6. To this end, we directly use illustrations from the respective articles. It should be noted that the qualitative comparison in Figure 6.4.6 is provided only for information, and cannot serve for strong conclusions due to its subjectiveness and a very small number of available aged faces.

Nevertheless, even the few examples in Figure 6.4.6 are enough to show that our GA-cGAN+LMA face editing method is at least competitive with respect to the previous works. Indeed, contrary to CDL [START_REF] Shu | Personalized age progression with aging dictionary[END_REF] and RFA [START_REF] Wang | Recurrent face aging[END_REF], GA-cGAN+LMA quasi-perfectly preserves the original person's identity. Moreover, the synthetic images of Age-cGAN+LMA look much more realistic than those of AAE [START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF] (most visible in lines 1 and 3). Finally, contrary to non-generative methods (CDL [START_REF] Shu | Personalized age progression with aging dictionary[END_REF] and RFA [START_REF] Wang | Recurrent face aging[END_REF]) which are trained only to perform face aging, our GA-cGAN+LMA is a universal face editing method. Indeed, it is trained to both perform face aging/rejuvenation and gender swapping, and it can be easily be adapted to also model other face attributes (like the presence of glasses or the presence of beard) just by adding the corresponding conditions to the cGAN.

Boosting Cross-Age Face Verification

Below, we illustrate how GA-cGAN+LMA can be used for a practical application: improving the face verification accuracy in the cross-age evaluation scenario. To this end, we utilize our face editing method for face rejuvenation/aging in the frame of the two age normalization algorithms presented in Subsection 6.4.2

In particular, we have selected the FG-NET dataset for cross-age face verification experiments. FG-NET and CACD [START_REF] Bor-Chun Chen | Cross-age reference coding for age-invariant face recognition and retrieval[END_REF] are the two most used benchmarks for cross-age face verification. However, CACD is composed of celebrities and have a lot of intersections with IMDB-Wiki_cleaned which is utilized for training of our GA-cGAN. Moreover, OpenFace face verification software, which we employ in this chapter, was trained using the images of the same celebrities as in CACD. Therefore, in order to avoid biased results, we have not used the CACD dataset for cross-age face verification in this work.

In order to evaluate the proposed HS and FS age normalization algorithms on cross-age face verification, we have selected all pairs from FG-NET where both face images of a pair (1) belong to the same person, (2) belong to different age categories (according to the six age categories of GA-cGAN), and

(3) are of at least 10 years old (there are almost no children younger than 10 years old in the training IMDB-Wiki_cleaned dataset, so we do not evaluate our algorithm on children images). In the FG-NET detection of pedestrians [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]). Moreover, this first study has perfectly illustrated the power of transfer learning, as the best pedestrian gender CA (of 79.5% in the cross-dataset evaluation scenario) has been obtained by fine-tuning of AlexNet which was initially trained on the ImageNet dataset.

The second preliminary study has been focused on training of various CNNs from scratch for gender prediction from faces. The problem of face gender recognition is not only simpler than the problem of pedestrian gender recognition (thus, recent works reported gender CAs of 95+% for the former), but also plenty of face images with gender annotations are available in public access (for example, about 450K in the CASIA WebFace dataset). Hence, having enough training data, we have explicitly avoided the usage of pretrained CNNs in the second study, which has allowed us to measure the direct impact of different parameters of the CNN architecture on the resulting performances. As a result, by sequentially reducing the depth and the width of a relatively complex start_CNN architecture, we have been surprised

to discover that a shallow optimized_CNN performs as good as the initial deep start_CNN. Moreover, the best gender CA of optimized_CNN of 96.9% is not better than the one obtained with the LBP handcrafted features and an SVM classifier in [START_REF] Jia | Learning to classify gender from four million images[END_REF].

All in all, the experimental results of the two preliminary studies have demonstrated that the quality of the features learned by a CNN depends not only on the depth of the neural architecture and the amount of training data, but also on the complexity of the target problem. This conclusion has strongly impacted our further research by highlighting the importance of the CNN pretraining on a more challenging problem even in the case, when there is no lack of training data for the problem of interest. In particular, it explains the necessity of face recognition pretraining prior to training of CNNs for gender/age prediction which is discussed hereafter.

Gender Recognition and Age Estimation

Our second contribution addresses the first primary objective of this PhD which consists in finding the optimal ways of training CNNs for gender recognition and age estimation.

To this end, we have identified several parameters which, according to the previous studies, have the biggest impact on the performances of gender recognition and age estimation CNNs. These parameters concern practically all aspects of the CNN design and training, in particular: (1) the form of the CNN inputs (in our case, face crops), (2) the CNN depth, (3) the form of the CNN outputs (i.e. target encodings and loss functions), and (4) different forms of transfer learning (pretraining and multi-task learning).

By experimentally comparing various configurations of these parameters, we have made the following general conclusions:

1. Label Distribution Age Encoding (LDAE) is more effective for age estimation than commonly used pure classification and pure regression encodings.

2. While both face recognition pretraining and multi-task learning are helpful, the two transfer learning techniques are not complimentary, and the former is more effective. Face recognition pretraining is also better suited to the target problems than ImageNet pretraining. 

Limitations and Future Work

The results obtained during this PhD are globally very promising and encouraging. However, in this section, we focus on the limitations of the designed models and approaches, and, at the same time, on the possible solutions to overcome them. This way, we suggest the directions for the future research which have not been explored in the present manuscript. For simplicity, similarly to the previous one, this section is organized into three parts: one per contribution.

Importance of the Problem Complexity for Feature Learning The results of the preliminary studies have indicated that the quality of the learned features (which are issued after the CNN training) depends on the target problem. In particular, the more challenging it is, the more expressive and generative are the resulting learned features. Despite this conclusion has been further implicitly confirmed in Chapter 5 (by comparison of gender recognition and age estimation problems, and the fact that the more complicated age estimation problem requires deeper CNN architectures when training is done from scratch),

we believe that such an important and general conjecture deserves to be verified via an explicitly dedicated experiment on a more conventional domain than gender/age analysis: for example, on ImageNet classification.

More precisely, ImageNet is an image dataset organized according to the WordNet ontology [START_REF] Miller | WordNet: a lexical database for English[END_REF].

For example, in ImageNet, a class "poodle dog" is a subclass of the bigger class "dog" which, in turn, is a subclass of the class "domestic animal", etc. This hierarchical structure of ImageNet allows to easily control the complexity of the classification problem by varying the number of classes. Indeed, by choosing the level of the class abstraction (i.e. many fine-grained classes or few coarse classes), we implicitly set the difficulty of classification while preserving the same number of training images.

We have the following experimental protocol in mind: using a standard CNN architecture (e.g.

ResNet-50), train N CNNs for classification of the same set of training images but with gradually increasing number of classes. Then, the idea is to compare the features learned by these CNNs (without loss of generality, the last but one layer of ResNet-50 can be used for feature extraction). The most objective way to perform this comparison is transfer learning, in other words, reusing the learned features for other problems in a similar way as it was done by Razavian et al. [START_REF] Sharif Razavian | CNN features off-the-shelf: an astounding baseline for recognition[END_REF]. We expect the features learned by CNNs with many fine-grained classes to be more general, than the features learned by CNNs with few coarse classes, and to better adapt for other applications.

Gender/Age Prediction We also anticipate several possibilities for improvement of our gender and age recognition CNNs.

Thus, a relatively straightforward amelioration consists in a separate processing of the children photos. Indeed, the IMDB-Wiki_cleaned dataset (which was used for training of our models) contains very few images of children (cf. Taille de la rétine : 32x32 pour "face-only", 64x64 pour "face+40%" Conv1_1 : 32@3x3 Conv1_1 : 32@3x3 Conv1_1 : 32@3x3 Conv1_1 : 32@3x3 -Conv1_2 : 32@3x3 Conv1_2 : 32@3x3 Conv1_2 : 32@3x3 --Conv1_3 : 32@3x3 Conv1_3 : 32@3x3 ---Conv1_4 : 32@3x3 MaxPool : 2x2

MaxPool : 2x2 MaxPool : 2x2 MaxPool : 2x2 Conv2_1 : 32@3x3 Conv2_1 : 32@3x3 Conv2_1 : 32@3x3 Conv2_1 : 32@3x3 -Conv2_2 : 32@3x3 Conv2_2 : 32@3x3 Conv2_2 : 32@3x3 --Conv2_3 : 32@3x3 Conv2_3 : 32@3x3