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Chapter 1

Introduction and Thesis Framework

Materials which may be considered “photoactive” are those from which an observable re-
sponse may be elicited from interaction with light. The observable response in question
may be, for instance, an induced chemical reaction, change in colour or luminescence, an
alteration of magnetic properties, or a combination of several of these.

From these responsive materials, devices may be fabricated which harness their intrinsic
properties for a particular application. The constant development of new photoactive mate-
rials for use in areas such as light emitting, [1, 2] medical, [3, 4] and catalytic devices [5, 6] is
driven by the need for greater efficiency, improved performance and reduced cost. However,
innovation currently relies on incremental progress, trial-and-error, and accidental discov-
ery with reduced emphasis on pre-synthesis materials design.

With currently available hardware and recent developments in theoretical methods such
as time-dependent density functional theory, theory is well-positioned to provide a route
towards pre-synthetic design. There is a caveat, however, that changes in the excited-state
properties of said materials induced by the inherent condensed-phase environment of a
given device must be properly accounted for. In the context of modeling photophysical
processes at a molecular level, “condensed-phase” effects are those induced by surrounding
solvent molecules, in the case of solution, or other photoactive molecules in the case of
crystalline or amorphous-phase materials.

It is well known that photophysical properties of a given molecular system can be strongly
influenced, and are often predicated, by phase-sensitive interactions [7, 8]. For this reason,
considerable resources have been dedicated to the study of environmental influence in order
to gain insight into, and control over, different excited state processes which can give rise to
potentially useful photophysical traits to be applied within optoelectronic devices.

From both an experimental and theoretical perspective, methods for studying the pho-
tophysical properties of photoactive molecules in solution are very well developed to the
extent that theory-led molecular design is becoming feasible to exploit target properties.
Unfortunately, the state of the art in solid-state modeling lies far behind that which can be
applied to solutions. Additionally, in the solid-state, photophysical processes are more dif-
ficult to characterize experimentally and reports of interesting photophysical behavior in
periodic systems, which can often be small and subtle, are far rarer when compared with



2 Chapter 1. Introduction and Thesis Framework

solution. Describing complex photochemistry in the solid phase, therefore, represents a
significant and ongoing challenge for computational chemists. Models of sufficient qual-
ity - able to both understand and predict the influence of a given environment on optical
properties, as well as how they are altered by changing the environment - are a necessary
component for the understanding and design of functional molecules and materials.

This problem forms the central task of this thesis, in which we seek to develop and apply
a relatively low-cost embedding model – SC-Ewald – capable of modeling crucial electro-
static interactions with the solid-state environment, accounting for those at both short- and
long-range. SC-Ewald, which is essentially an embedded cluster approach and is described
in chapter 4, improves upon some aspects of current cluster embedding methods such as
ONIOM, which is demonstrated in several proof-of-concept studies throughout this thesis.

Chapter 5 represents the conception and first application of SC-Ewald, where it has been
used to study an excited-state double proton transfer reaction in a dual-emissive molecu-
lar crystal. The initial application of a ground-state embedding potential, while providing
an adequate description of the excited-state reaction mechanism, lead to an unsatisfactory
prediction of the dual-emission properties, which prompted the reformation of the embed-
ding potential, via a self-consistent adjustment procedure, to an excited-state embedding
potential. From this change in embedding strategy, we observed an excellent recovery of
the dual-emissive properties. The application of this self-consistent charge-adjustment pro-
cedure, later referred to as SC-Ewald, to other photo-active materials is then descibed in
subsequent chapters.

In chapter 6, SC-Ewald is used to understand the photophyscial behavior of an organic
molecule which is non-emissive in solution, yet exhibits bright luminescence in the solid-
state. Though different mechanisms are often cited for such behavior, known as aggregation-
induced emission, we suggest that the solid-state luminescence is a result of a brightening
of otherwise poorly-emissive states by the electrostatic potential induced by surrounding
molecules in the solid-state.

Chapter 7 extends the application of SC-Ewald to the study of a family of organic molecules
which exhibit mechanically- and structurally-sensitive fluorescence properties. Generally,
this property is known as mechanochromic fluorescence and is induced by mechanical grind-
ing of a given crystalline sample under irradiation. The amorphous nature of the resulting
ground sample introduces an additional problem for computational approaches due to the
many possible molecular configurations present. Using a hybrid approach rooted in clas-
sical molecular dynamics and SC-Ewald, we demonstrate that an intelligent sampling of
molecular configurations near to the excited-state crystalline geometry results in remarkable
reproduction of the mechanochromic properties, which, when combined with steady-state
and time-resolved experimental data, provides unprecedented insight into the mechanisms
behind mechanochromic fluorescence and indeed the interpretation of amorphous-phase
optical properties in general.

A step away from SC-Ewald, chapter 8 contains a study of the photophysical properties
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of metal-organic frameworks (MOFs), using an example of two isostrucural MOFs (based
on Cd and Zn) with strikingly different luminescent properties to discriminate between po-
tential sources of their respective luminescence. Using a mixed periodic and cluster-based
approach, a perhaps counter-intuitive conclusion was drawn – that luminescence from the
Zn- and Cd-based MOFs is a result of radiative decay from the lowest lying triplet and sin-
glet ligand-centered excited states, respectively.

Serving as an illustrative study into other issues related to condensed-phase modeling
besides interaction with the environment, chapter 9 raises the question of modeling spin-
state ordering in iron complexes, highlighting the somewhat arbitrary performance of den-
sity functional theory with respect to functional choice. Using wave function based ap-
proaches CASSCF and CASPT2, it is shown that different components of a given density
functional approximation – for instance the inclusion of Hartree-Fock exchange and depen-
dence on the kinetic energy density – respond differently, and in a systematic fashion, to
changes in ligand-field strength. As a preliminary study into how the flexibility of den-
sity functional theory through functional formulation and the multi-reference capabilities
of CASSCF may be applied to study these properties, the recently-developed MC-PDFT ap-
proach has also been applied, providing results in agreement with CASPT2, with an even
treatment of complexes containing both strong- and weak-field ligands. []
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Chapter 2

Theoretical Background

In this chapter, we outline the theoretical approaches used throughout this work. The first
section explores the root of most modern quantum chemistry: the Hartree-Fock approach,
along with its limitations. The second and third sections explore Density Functional Theory
and its extension to the excited state, Time-Dependent DFT. Finally, we look at how both
Hartree-Fock and DFT fail in modeling systems with significant multi-reference character,
and how this can be overcome by the way of wave-function based methods.

2.1 The Schrodinger Equation

To solve for a many-body wave function, one usually must obtain solutions to the time-
independent Schrodinger equation:

Ĥ = E (2.1)

where Ĥ is the Hamiltonian operator,  is the many-body wave function, which contains
all information on the quantum state of the system, and E is the total system energy. For a
system of N nuclei and n electrons, the non-relativistic Hamiltonian is written as a sum of
kinetic and potential energies:

Ĥ = T̂e + T̂N + V̂Ne + V̂ee + V̂NN (2.2)

Ĥ =
n
X

i

�~
2me

r2
i +

N
X

↵

�~
2M↵

r2
↵ +

N
X

↵

n
X

i

qiZ↵

4⇡✏0ri↵
+

n
X

i

n
X

j>i

qiqj
4⇡✏0rij

+
N
X

↵

N
X

�>↵

Z↵Z�

4⇡✏0r↵�
, (2.3)

where indexes i and j (↵ and �) run over all electrons (nuclei); q and m (Z and M ) are the
charge and mass of an electron (nucleus); r is the inter-particle distance; ~ is the reduced
Plank’s constant and r2 is the Laplacian. The wave function is then defined as a function of
3(n +N) coordinates. The two terms denoted by T̂ are the kinetic energies of the electrons
T̂e and nuclei T̂N . Terms denoted by V̂ are the electrostatic attraction between electrons and
nuclei V̂Ne, electron-electron electrostatic repulsion V̂ee and inter-nucleus repulsion V̂NN .
Noting that qi = �e, Z↵ = eZ↵ and using atomic units (me = 1, ~ = 1, e2

4⇡✏0
= 1), the
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Hamiltonian can be rewritten in a more condensed form:

Ĥ =
n
X

i

1

2
r2

i +
N
X

↵

1

2M↵
r2

↵ +
N
X

↵

n
X

i

qiZ↵

ri↵
+

n
X

i

n
X

j>i

qiqj
rij

+
N
X

↵

N
X

�>↵

Z↵Z�

r↵�
, (2.4)

As the mass of any given nuclei is far greater than that of the electrons, we may make the
approximation that the contribution of the kinetic energy of the nuclei to the total energy
is negligible. In this way, the movement of nuclei and electrons are decoupled and the
electronic properties of the system are calculated at a fixed nuclear geometry. This approx-
imation is known as the Born-Oppenheimer approximation. [9] An additional effect of this
approximation is that the nuclear repulsion term is a fixed quantity and thus is effectively
eliminated from the many-body problem. The remaining terms constitute what we shall
refer to as the electronic Hamiltonian Ĥel:

Ĥel el = Eel el (2.5)

where Ĥel is given by:

Ĥ =
n
X

i

1

2
r2

i +
N
X

↵

n
X

i

qiZ↵

ri↵
+

n
X

i

n
X

j>i

qiqj
rij

(2.6)

Equation 2.5 is an eigenvalue equation, whose solutions give the electronic wave function
 el and total system energy Eel. We may further rewrite this Hamiltonian as the sum of
mono- and bi-electronic terms:

Ĥel =
n
X

i

0

@ĥ1(i) +
n
X

j>i

ĥ12(i, j)

1

A . (2.7)

Now, the total energy of the system may be expressed as the sum of the electronic energy
and the nuclear repulsion constant:

Etot = Eel + ENN (2.8)

Where ENN is given by the final term in equation 2.4. Because of the bi-electronic term, the
Schrodinger equation cannot be solved analytically for systems with more complexity than
those containing a single electron (e.g. the hydrogen). In order to study more complex sys-
tems of chemical relevance, we must develop approximations which render the Schrodinger
equation readily solvable.
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2.2 The Hartree-Fock Method

2.2.1 Spin-Orbital Approximation

If we assume that the overall many-electron problem may be decomposed into a series
of non-interacting entities, the electronic Hamiltonian may be written as a sum of mono-
electronic operators:

ĥ(i)�(ri) = ✏i�(ri), (2.9)

where ri is the position vector of electron i. The overall electronic wave function  el is then
written as the (Hartree) product of the mono-electronic eigenfunctions, or orbitals [10, 11]:

 el = �(r1)�(r2) . . .�(rn). (2.10)

Thus the total electronic energy of the system is written as a sum of the orbital energies ✏i:

Eel =
n
X

i

✏i. (2.11)

Taking into account the property of electron spin, we may define our orbitals as a product
of space and spin functions, yielding so-called spin-orbitals. As our Hamiltonian is non-
relativistic in nature, there is no coupling between these spin and space functions compris-
ing a given spin-orbital. Such orbitals can then be written as a product of space �i and spin
�i functions:

�i(ri; si) = �(ri)�(si). (2.12)

Where the spin function describes the intrinsic angular moment of an electron, which may
take two values: ±1

2 , generally denoted by ↵ and �.

2.2.2 Slater Determinants

As electrons are fermions, the resulting wave function must possess certain properties. For
instance, it must be anti-symmetric with respect to the permutation of two electrons. In other
words, the sign of the wave function must be inverted when exchanging the coordinates of
two electrons. As a simple product of spin-orbitals does not fulfill this criterion, we rely on
a mathematical object known as a Slater Determinant, �K :

�K =
1p
n!

�

�

�

�

�

�

�

�

�

�

�1(r1)�(s1) �2(r1)�(s1) . . . �n(r1)�(s1)

�1(r2)�(s2) �2(r2)�(s2) . . . �n(r2)�(s2)
...

... . . . ...
�1(rn)�(sn) �2(rn)�(sn) . . . �n(rn)�(sn)

�

�

�

�

�

�

�

�

�

�

. (2.13)
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The pre-factor is a normalization constant of the wave function and the the space functions
of the spin-orbitals are orthonormal:

h�i|�ji = �ij , (2.14)

where we use Dirac notation to describe the overlap of two space functions and �ij is the
Kronecker delta. For discussion in subsequent sections of this chapter, it is important to note
that the HF determinant is composed from a single Slater Determinant, meaning that a single
electronic configuration may be considered when solving for the overall wave function.

2.2.3 Computing the Hartree-Fock Energy

Using the variational theorem, we may calculate the HF energy EHF
0 according to:

EHF
0 =

h�0|Ĥel|�0i
h�0|�0i

� Eexact
0 , (2.15)

meaning that the electronic energy computed via HF is at least greater than or equal to
the lowest possible energy of the system. With a given set of space functions {�i}, the
minimal energy for a given nuclear configuration can be found by varying the form of each
space function under the orthonormality constraint. For a closed-shell system, in which all
electrons of opposite spin are paired and all orbitals doubly occupied, the HF energy is a
sum of mono- and bi-electronic operators:

EHF
0 = h�0|Ĥel|�0i = 2

n/2
X

i

hii +

n/2
X

i

n/2
X

j

(2Jij �Kij), (2.16)

where each operator is given by the following integrals:

hii =

Z

�⇤i (1)ĥ1�i1dr1 = hi|ĥ1|ji (2.17)

Jij =

ZZ

�⇤i (1)�
⇤
j (2)ĥ12�i(1)�j(2) dr1dr2 = (ij|ij) (2.18)

Kij =

ZZ

�⇤i (1)�
⇤
j (2)ĥ12�j(1)�i(2) dr1dr2 = (ij|ji). (2.19)

Jij and Kij are called, respectively, the coulomb and exchange integrals. The latter is a
direct result of the anti-symmetric nature of the wave function described by the Slater De-
terminant. Each integral is performed over a finite volume element ri in three dimensions.
Note the factor of 2 preceding the coulomb interaction energy - a product of the concept
that only electrons of the same spin may experience exchange repulsion, as only electrons
of the same spin may be exchanged directly. In order to obtain the set of orbitals {�i} which
construct the HF wave function, we must consider both the interaction between electrons
and nuclei as well as between electrons. To do so, we approximate the potential felt by a
given electron as a mean-field of those remaining. In this framework, each orbital is then an
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eigenfunction of an effective operator, known as the Fock operator, F̂ . The i corresponding
eigenvalue equations are known as the Hartree-Fock equations:

F̂�i = ✏i�i. (2.20)

The minimization of the energy associated with the determinant describing the wave func-
tion�0 represents a series of eigenvalue problems, one for each of the n/2 molecular orbitals
present in the system. The expression of the Fock operator is given by the following equa-
tion:

F̂ (1) = ĥ1(1) +

n/2
X

j

[2Ĵj(1)� K̂j(1)], (2.21)

where:
Ĵj(1)�i(1) =

Z

�⇤j (2)ĥ12�j dr2 �i(1) (2.22)

K̂j(1)�i(1) =

Z

�⇤j (2)ĥ12�j dr2 �j(1). (2.23)

For a given orbital i, the HF potential is given by:

⌫HF
i =

n/2
X

j

[2Ĵj � K̂j ], (2.24)

which represents the average potential - produced by all other electrons and nuclei in the
system - felt by electron i occupying molecular orbital i.

2.2.4 Linear Combinations of Atomic Orbitals (LCAO)

In order to solve the HF equations, it is necessary to introduce a set of variable functions, or
basis set, which defines the space that our wave function can occupy. To do so, molecular
orbitals are usually defined using a linear combination of basis functions - or atomic orbitals
{�i} - centered on each atom [12]:

�i =
X

µ

cµi�µi. (2.25)

Where cµi are the coefficients that may be varied when optimizing the wave function. Within
this approximation, the electronic Schrodinger equation becomes a system of algebraic equa-
tions, solvable by standard matrix algebra techniques. Generally in calculations within the
field of quantum chemistry, the functions which constitute the basis set are of one of two
types: Slater-type orbitals (STO) and Gaussian-type orbitals (GTO). The former have the
following form:

�STO =
[2⇣]n+1/2

[(2n)!]1/2
rn�1 e�⇣r Y m

l (✓,⇧), (2.26)

with n, l and m as quantum numbers, Y m
l (✓,⇧) spherical harmonics as a function of radial

coordinates and ⇣ as the exponent of the function which controls its overall ‘diffuseness’
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with respect to the nuclear center. STOs have the advantage that they closely resemble the
orbital of the hydrogen atom, though, in practice, the calculation of their integrals is difficult.

As a result, it is far more common to use a linear combination of GTOs - which are far
simpler to integrate - to try to reproduce the overall form of a given STO. The general form
of a GTO is given by:

�GTO =

✓

2↵

⇡

◆3/4 (8↵)i+j+ki!j!k!

(2i)!(2j)!(2k)!

�1/2

xiyjzk e�↵r2 (2.27)

where the reduced likeness to the hydrogen 1s orbital stems from the more rapidly-decaying
exponential term, x, y and z are the Cartesian coordinates and ↵ controls the width of the
Gaussian function. As stated above, new contracted Gaussian functions (CGTO) are formed
as a linear combination of so-called primitive functions of the form in equation 2.27:

�CGTO =
X

mu

dµr�
GTO
µ (2.28)

where dµr are the coefficients preceding each primitive function which control the overall
shape of the CGTO. Each primitive function possesses the same overall character (i, j, k are
identical) and differ in the exponent ↵. Additionally, for a given contraction, the coefficients
are held constant and the weight of each contraction is controlled by an external coefficient,
reducing the number of coefficients to be determined during the optimization of the overall
wave function. It is with this genre of basis functions that all work in this thesis is carried
out.

2.2.5 The Secular Equation

Using the development of LCAO in the preceding section, the Hartree-Fock eigenvalue
problem may be rewritten in matrix form [12]:

X

µ

Fµ⌫c⌫i = ✏i
X

µ

Sµ⌫c⌫i (2.29)

FC = SC✏, (2.30)

where we have assumed that our basis functions are normalized but not orthogonal, leading
to the overlap matrix S with elements:

Sµ⌫ =

Z

�⇤
µ(1)�⌫(1) dr1 (2.31)

The Fock matrix elements F are given by the following:

Fµ⌫ = Hµ⌫ +
X

⇢

X

�

P⇢�[(µ⌫|⇢�)�
1

2
(µ�|⇢⌫)], (2.32)
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where (µ⌫|⇢�) and (µ�|⇢⌫) are the coulomb and exchange integrals respectively, P⇢� are
elements of the density matrix given by

P⇢� = 2

n/2
X

i

c⇢ic�i, (2.33)

and Hµ⌫ are the mono-electronic integrals of the form

Hµ⌫ =

Z

�⇤
µ(1)ĥ1�⌫(1) dr1, (2.34)

which remain fixed for a given basis set. With this information, it can be seen that the matrix
F depends on the density matrix P, which depends on the values of the molecular orbital
coefficients in C. Thus, the eigenvalue problem in equation 2.30 is non-linear and requires an
iterative process to be solved, beginning with a density matrix guess. This iterative process,
known as the Self Consistent Field (SCF) procedure, is discussed in the next section.

2.2.6 The Self-Consistent Field

The eigenvalue problem in equation 2.30 is solved using an iterative process. This Self Con-
sistent Field (SCF) procedure is outlined in figure 2.1.

In the first SCF cycle, one estimates P, calculates the interaction integrals and diagonal-
izes the Fock matrix to obtain energy eigenvalues and renewed basis function coefficients.
Using these new parameters, the same procedure is performed until the density matrix ele-
ments of the nth and n-1th cycles differ by less than a pre-defined threshold.

From a physical point of view, the HF approach constitutes multiple evaluation and
refinement of the Hartree-Fock potential. That is to say, until the mean-field produced by a
given charge density is identical to the field produced from the same density.
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FIGURE 2.1: Flowchart of the SCF procedure within the HF approach.
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2.2.7 Electron Correlation

The mean-field nature of Hartree–Fock theory imposes the fundamental approximation that
each electron moves in a static electric field of all the other electrons. When operating on
the resulting wave function with the Hamiltonian operator, we obtain the lowest possible
energy for that wave function, which is described by a single Slater determinant. As there
is a crucial difference between the Fock operator F̂ and the Hamiltonian Ĥ - the latter re-
turns the electronic energy for a many-body system of electrons and the former is a set of
interdependent one-electron operators - one might consider how the HF wave function may
be modified to return a lower total energy when applying the Hamiltonian. Naturally, from
the variational principle, such a wave function would serve as a better approximation of the
true wave function.

Within the limit of a complete basis set, the discrepancy between the energy produced by
the exact wave function and that produced by HF after the application of the Hamiltonian
is known as the correlation energy, Ecorr:

Ecorr = Eexact � EHF
0 < 0. (2.35)

In the following sections, we discuss different approaches to recover Ecorr, such as Density
Functional Theory (section 2.3) and post-HF approaches section (2.5)

2.3 Density Functional Theory

Rather than center the discussion of molecular electronic structure around a complex math-
ematical object (the wave function) defined by 3(n + N) coordinates, Density Functional
Theory (DFT) focuses on a simplified, more intuitive observable that can be defined in three
dimensions: the electron density ⇢(r), [13] which is linked to the wave function by the fol-
lowing relation:

⇢(r) =  ⇤(r) (r) = | 2(r)| (2.36)

This idea is attractive in that it permits the simplification of the overall electronic problem
and introduces scope for the inclusion of the correlation energy discussed in section 2.2.7.
The central idea of DFT is that the ground state of a given system is a functional (a function
of a function) of the electronic density. Integrating the density ⇢ over all space yields the
total number of electrons n:

Z

⇢(r) dr = n (2.37)

Within the Born-Oppenheimer approximation, the expression for the electronic Hamiltonian
reduces from:

Ĥel = T̂e + V̂Ne + V̂ee = �1

2

n
X

i

r2
i �

n
X

↵

n
X

i

Z↵

ri↵
+
X

j>i

1

rij
(2.38)
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to

Ĥel = �1

2

n
X

i

r2
i + vext(r) +

X

j>i

1

rij
(2.39)

However, the rigorous foundation for such a focus was not provided until 1964, when
Hohenberg and Kohn proved two theorems [14] critical to the establishment of DFT as a le-
gitimate methodology. These theorems, along with their application in quantum chemistry,
shall be introduced in the subsequent sections.

2.3.1 Hohenberg-Kohn Existence Theorem

The first theorem demonstrates that, in a given, finite n-electron system with a given par-
ticle interaction, there exists a one-to-one correspondence between the external potential
vext(r) and the ground-state density ⇢0(r). In other words, the external potential is a unique
functional of the ground-state density v[⇢0](r) within an arbitrary additive constant. As a
consequence, all observables - including the energy - can be written as a functional of the
electronic density. The total energy can thus be expressed as:

E[⇢] = T [⇢] + Vee[⇢] +

Z

⇢(r)vext(r) dr (2.40)

The first two terms of the above equation are a universal functional, meaning that they
are defined independently from the external potential. T [⇢] is the kinetic energy functional
while Vee[⇢] is the electron-electron repulsion potential.

2.3.2 Hohenberg-Kohn Variational Theorem

In their second theorem, Hohenberg and Kohn demonstrated that the electronic density of
the ground state can be calculated using the variational method. [15–17] In a similar vein to
the HF approach, the expectation value of the Hamiltonian is such that:

E[⇢] = h [⇢]|Ĥ| [⇢]i � E0, (2.41)

meaning that the exact ground state energy is a lower bound to what can be obtained with
DFT.

Although these theorems demonstrate a link between the electronic density and the sys-
tem wave function, they do not provide a means of obtaining ⇢ without first determining .
We are then confronted with the same problem as for HF insofar as the direct solution of the
Schrodinger equation is impossible due to the presence of the inter-electron repulsion term
V̂ee.

In order to resolve this problem, the real Hamiltonian - describing a system of n inter-
acting particles - is substituted with a fictitious Hamiltonian describing a system of non-
interacting particles with the same density as the fully-interacting system. [18] The resulting
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mono-electronic operator, the Kohn-Sham operator ĤKS is:

ĤKS = Ts +

Z

⇢(r)⇢(r0)

|r � r0| dr0 + vxc[⇢] + vext(r) (2.42)

where the first and second terms are the non-interacting kinetic and classic coulomb ener-
gies. The third term, known as the exchange-correlation potential, is defined as:

vxc[⇢] =
@Exc[⇢(r)]

@⇢(r)
. (2.43)

Exc is the exchange-correlation energy and contains all other interactions - including elec-
tron exchange, static and dynamic correlation and changes to the kinetic energy brought
by inter-electron interactions - and is discussed in the following section. In principle, Exc

not only accounts for the difference between the classical and quantum mechanical electron-
electron interactions, but also includes the difference in kinetic energy between the real and
fictitious non-interacting systems.

2.3.3 The Exchange-Correlation Approximation

At this point it is important to state that, in the formalism described above, DFT is formally
exact. [13] This means that, as long as we know the precise form of the exchange correlation
potential, DFT produces the exact energy of the system in question. The inherent complexity
of the exchange-correlation functional, however, means that its exact form is unknown. As
a consequence, we must make approximations as to its form and properties. A distinct and
fundamental disadvantage of DFT is that the method by which we approximate vxc[⇢] is not
obvious and, although some exact properties of the potential are known, there is no clear
hierarchical approach to systematically improve its formulation. In this section, various
approximations to vxc[⇢] are discussed along with their justification and implications on the
calculated energy of the system.

Local Density Approximation

We shall discuss the formulation of various functionals in terms of the functional depen-
dence of Exc on the electron density. This is expressed as an interaction between the electron
density and a so-called energy density "xc that depends explicitly on the electron density:

Exc[⇢] =

Z

⇢(r)"xc[⇢(r)] dr. (2.44)

Here, the energy density is a sum of individual exchange and correlation contributions.
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In the Local Density Approximation, [19] the energy density at some position r is com-
puted exclusively using the value of ⇢ at that same position - the local value of ⇢:

ELDA
xc [⇢(r)] =

Z

⇢(r)"xc[⇢(r)] dr. (2.45)

In practice, the only functionals which conform to such a definition that are regularly ap-
plied are those that derive from the uniform electron gas, [20] for which the density has an
identical value at every position. In this respect, for a given point in the system with an as-
sociated density, the contribution to the exchange-correlation energy is computed with the
rest of the system described locally by a uniform electron gas with the given density.

Generalized Gradient Approximation and Kinetic Energy Density

Since the electron density is typically rather far from spatially uniform, it is reasonable
to believe that the LDA approach will have limitations. An obvious way to improve the
exchange-correlation functional is to make it depend not only on the local value of the den-
sity, but on the extent to which the density is locally changing, for example by introducing
the gradient of the density into its formulation. Usually, gradient corrected functionals are
obtained by adding a correction term to the LDA functional:

"GGA
xc [⇢(r)] = "LDA

xc [⇢(r)] +�"xc



|r⇢(r)|
⇢4/3(r)

�

(2.46)

Where the correction depends on the dimensionless reduced gradient. This is generally
referred to as the Generalized Gradient Approximation (GGA). [21]

If including the gradient of the density constitutes an improvement over LDA, a logical
next step - in the same vein as a Taylor expansion - is to include a dependence on the second
derivative of the density (the Laplacian). Such functionals are called meta-GGA functionals
and go beyond the gradient-corrected approximation. However, due to numerical issues
with with the Laplacian of the density, an alternative and frequently-used meta-GGA for-
malism is to include the dependence on the kinetic-energy density ⌧ :

⌧(r) =
occupied
X

i

1

2
|r�(r)|2 (2.47)

where �i are the self-consistently determined Kohn-Sham orbitals.

The Adiabatic Connection and Hybrid Density Functionals

DFT assumes a fully non-interacting reference system of particles, but imagine if one could
control the extent of electron-electron interaction with a given parameter. Using the Hellam-
Feynman theorem, it can be shown that the exchange-correlation energy can be computed
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FIGURE 2.2: Pictorial analogy describing the adiabatic connection method.
Rectangle A represents the fully non-interacting system, for which we only
have exchange interaction. The full exchange-correlation energy is repre-
sented by the area in rectangle A plus that under the red curve in rectangle

B, i.e. some fraction x of rectangle B.

as [13]:

Exc =

Z 1

0
h (�)|vxc(�)| (�)i (2.48)

where the parameter � controls the extent of electron-electron interaction, with a range from
0 (none at all) to 1 (exact). It is useful to adopt a geometric picture to describe this integral. In
figure 2.2, we partition the electron-electron interaction into two portions - a lower rectangle,
A, and a fraction of another rectangle sitting on top, B. The lower rectangle represents
the fully non-interacting system - in which the only inter-electron interaction is exchange -
deriving from the antisymmetry of the wave function described by the Slater determinant.
As the breadth of this rectangle is 1, the total interaction energy represented by this portion
is thus just 1 times the exact exchange (HF) energy: EHF

x . The only real difference between
EHF

x for HF and DFT is that the Kohn-Sham orbitals are used. The remaining interaction
energy, therefore, is represented by the area under the curve in rectangle B, i.e. some fraction
x of rectangle B. As we do not know x, nor the expectation value of the fully interacting
exchange-correlation potential, we may only regard x as some parameter to be optimized.
In this case, the only option is to approximate the fully interacting system (at the upper
right corner of B) by some choice of DFT functional (for instance, one that relies on the GGA
approximation). In this regime, the total area under the curve (A+xB) can be approximated
as:

Exc = EHF
x + x(EDFT

xc � EHF
x ) (2.49)

It is convention to express Exc in terms of an alternative parameter, a, defined as 1 � x,
giving:

Exc = (1� a)EDFT
xc + aEHF

x (2.50)
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Drawing this connection between the interacting and non-interacting systems is known as
the Adiabatic Connection Method, and forms the basis for what are known as Hybrid Den-
sity Functionals.

One such Hybrid Functional, widely known as PBE0, [22] takes a value of a = 0.25 (i.e.
25% HF exchange):

Exc = EPBE
xc +

1

4
(EHF

x � EPBE
x ), (2.51)

Where the exchange and correlation functional used to approximate the fully-interacting
system is that of Perdew, Burke and Ernzerhoff - known as PBE. Note that, for PBE0, the
exchange and correlation portions of the fully interacting system are separated and the adi-
abatic connection method is applied only to the exchange part. Additionally, as the value of
a in PBE0 derives from perturbation theory arguments, and the underlying GGA functional
(PBE) contains no empirical parameters, it is considered a parameter-free hybrid functional.

2.4 Time-Dependent Density Functional Theory

Now that we have established ground state DFT, we discuss how it can be extended to cal-
culation of excited-state properties using what is known as Time-Dependent Density Func-
tional Theory (TDDFT). In the following, we introduce the formal justification for TDDFT,
how it can be used to calculate excitation energies for molecules, its weaknesses and how
these may be overcome.

Introducing the time-dependent Schrodinger equation:

Ĥel(r, t) el(r, t) = i
@

@t
 el(r, t), (2.52)

where:
Ĥel(r, t) = T̂e(r) + V̂ee(r, t) + V (r, t). (2.53)

As before, the first two terms are the kinetic and electron-electron repulsion terms. The final
term is an external potential, although in this case it is time-dependent. For times t  0,
the external potential is constant and therefore reduces to what we find in the previous
sections for the time-independent Schrodinger equation. At times t > 0, the system is now
interacting with the same field, though the field is time-dependent.

2.4.1 Runge-Gross Theorem

From the time-dependent Schrodinger equation, we have a formally-defined map by which
a given external potential V (t) produces a time dependent wave function  (t), evolved
from a given initial state  0. This wave function can then be used to map a time-dependent
density ⇢(r, t):

V (t) !  (t) ! ⇢(r, t) (2.54)
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In order to validate TDDFT, this map must be inverted - we must know that the time depen-
dent density is a valid variable which can completely determine the system dynamics as the
wave function does. This was demonstrated in a theorem by Runge and Gross in 1984, [23]
which shows that two densities ⇢(r, t) and ⇢0(r, t) that evolve from a common initial many-
body state 0 under two different time-dependent external potentials V (t) and V 0(t) become
different at times infinitesimally greater than t0. In this way, there is a one-to-one corre-
spondence between densities in potentials that evolve from a fixed initial state. This is the
fundamental existence theorem of TDDFT as, from this one-to-one correspondence, it fol-
lows that time-dependent density is a unique functional of the potential and vice-versa -
that the external potential is a unique functional of the time-dependent density. In turn, the
many-body Hamiltonian and thus the many-body wave function are functionals of ⇢(r, t) as
well.

2.4.2 Van-Leeuwen Theorem

As we have seen previously in DFT and HF theories, the difficulties associated with the
inter-electronic repulsion term of the time-dependent Hamiltonian are naturally present in
TDDFT. Therefore, in practice, it would be useful to have a scheme analogous to the Kohn-
Sham formalism of DFT, in which we replace the fully interacting system with a fictitious
non-interacting system which possesses the same density. With just the Runge-Gross theo-
rem, however, we are not explicitly allowed to do this.

In 1999, the theorem of van Leeuwen provided a solid foundation for such an approxima-
tion, stating that for a time-dependent density ⇢(r, t) associated with a many-body system
with particle-particle interaction !(r, r0), initial state 0 and external time-dependent poten-
tial V (t), there exists a different many-body system with interaction !‘(r, r0) and a unique
external potential V 0(t) which reproduces the same time-dependent density. Note that the
initial state  0 must possess the correct initial density and its time-derivative at t0.

Interestingly, imposing the condition !(r, r0) = !0(r, r0) (i.e. the interaction of the real
an fictitious systems is identical) and choosing  0 =  0

0, it is proved that there is a unique
potential V 0(t) that produces the density of the interacting system ⇢(r, t). This is exactly the
statement provided by the Runge-Gross theorem, revealing the Runge-Gross theorem to be
a special case of the Van-Leeuwen theorem.

2.4.3 Linear Response Formalism

TDDFT is able to capture the dynamical nature of an excitation process. During a transi-
tion between the ground and a given excited state, periodic charge-density fluctuations are
induced, accompanied by dynamical many-body effects and mixing of Kohn-Sham eigen-
states. Together, this leads to a correction to the raw Kohn-Sham eigenvalue spectrum (i.e. if
one were to construct an absorption spectrum using only the differences in the Kohn-Sham
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energy eigenvalues) towards the true spectrum. These dynamical many-body effects are em-
bedded in the so-called exchange-correlation kernel (fxc), the key component of TDDFT in
the same sense that the exchange-correlation functional is the key component of Kohn-Sham
DFT.

Up until now, we have spoken only in terms of the time-dependent Schrodinger equa-
tion. In practice, its full solution is often not required or, indeed, desirable. One can imagine
that, in cases where the system does not deviate much from the ground state (or, more gen-
erally, equilibrium), calculating the full time-dependent wave function only to extract small
deviations from it would be inefficient, not to mention numerically challenging. An alter-
native approach might be to attempt to calculate these differences directly, which can be
accomplished through response theory. [24]

Response theory, more specifically linear response theory, is a widely used method one
can apply to study how a system responds to weak perturbations. In the context of optical
spectroscopy techniques, the weak perturbation is the probing of the ground state by an
electric field and the linear response of the system to this field contains all of the information
about its optical spectrum.

The Van-Leeuwen theorem was discussed in section 2.4.2, which stated that the time de-
pendent density ⇢(r, t) corresponding to the external potential can also be reproduced in a
non-interacting time-dependent Kohn-Sham system with time-dependent external poteni-
tal:

vks[⇢](r, t) = V (r, t) +

Z

⇢(r, t)

|r � r0|dr
0 + vxc[⇢](r, t). (2.55)

This can be formally inverted, giving the time-dependent density as a function of the Kohn-
Sham potential:

⇢(r, t) = ⇢[vks](r, t) (2.56)

If we were to expand the time-dependent density in orders of the effective potential, we
would obtain the first order term:

⇢1(r, t) =

ZZ

�ks(r, t, r
0, t0)vks1(r

0, t0) dr0dt0 (2.57)

�ks =
�⇢[vks](r, t)

�vks(r0, t0)

�

�

�

�

�

vks[⇢0](r)

(2.58)

This is the linear response equation in TDDFT, which is the density-density response func-
tion for non-interacting Kohn-Sham particles and yields the same response as the fully in-
teracting, many-body response equation. The resulting linearized effective potential is:

vks[⇢](r, t) = V1(r, t) +

Z

⇢1(r, t)

|r � r0|dr
0 + vxc1[⇢](r, t). (2.59)

While the first two terms - the external perturbation and the linearized time-dependent
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Hartree potential - can actually be written down, the last term - the linearized exchange-
correlation potential - can be written explicitly only via a functional Taylor expansion:

vxc1 =

ZZ

�vxc[⇢](r, t)

⇢(r0, t0)
dr0dt0

�

�

�

�

�

⇢0(r)

⇢(r0, t0) (2.60)

which features the so-called time dependent exchange-correlation kernel:

fxc(r, t, r
0, t0) =

�vxc[⇢](r, t)

⇢(r0, t0)

�

�

�

�

�

⇢0(r)

(2.61)

which is a functional of the ground state density. As previously alluded to, the kernel is
the key quantity of TDDFT in the linear response regime. Now that we have an idea of the
linearized potential vxc1 let us substitute it into the TDDFT linear response equation 2.57:

⇢1(r, t) =

ZZ

�ks(r, t, r
0, t0) dr0dt0



V1(r, t)

+

ZZ

⇢

�(t0 � ⌧)

|r0 � x| + fxc(r
0, t0, x, ⌧)

�

dxd⌧ ⇢1(x, ⌧)

� (2.62)

where we have introduced two dummy variables, x and ⌧ , to emphasize the different dou-
ble integrals. This expression highlights the dependency of the linearized potential on
⇢(r, t), and thus demonstrates that the overall linear density response must be solved self-
consistently.

2.4.4 Calculating Excitation Energies with TDDFT

In this section we shall introduce how excitation energies are usually calculated within the
TDDFT framework. To do so, it is convenient to work in the frequency domain. Performing
a Fourier transformation of equation 2.62:

⇢1(r,!) =

Z

�ks(r, r
0,!) dr0



V1(r,!) +

Z

⇢

1

|r0 � x| + fxc(r
0, x,!)

�

dx ⇢1(x,!)

�

(2.63)

With the frequency-dependent, non-interacting Kohn-Sham response function:

�ks(r, r
0,!) =

1
X

i=1

1
X

j=1

(fi � fj)
�0i (r)�

0⇤
j (r)�0⇤i (r0)�0j (r

0)

! � !ij
(2.64)

where fi and fj are the occupation numbers of the Kohn-Sham ground state and

!ij = "i � "j (2.65)

are the differences between the Kohn-Sham energy eigenvalues for pairs of given molecular
orbitals. The above double sum is written so as to include only contributions that involve
one occupied (f = 1) and one unoccupied (f = 0) molecular orbital. The denominator is
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such that the non-interacting response function has poles at the excitation energies of the
Kohn-Sham system.

At this point, we summarize that the exact excitation energies are given by the poles
of the density-density response function, which diverges if the system is subjected to any
perturbation at such a frequency and has an eigenmode character. [24]Moreover, inspecting
equation 2.62 reveals that an external perturbation is not even required, as a system can
provide a finite response at its excitation frequencies even without external perturbation.
From here, the idea is to produce a method of calculating these modes directly, for which
the starting point is equation 2.63 with the external potential term dropped:

⇢1(r,!) =

Z

�ks(r, r
0,!) dr0



Z

⇢

1

|r0 � x| + fxc(r
0, x,!)

�

dx ⇢1(x,!)

�

(2.66)

Multiplying by the terms in square brackets and integrating over r we obtain:

FHxc(x,!) =
1
X

i=1

1
X

j=1

(fi � fj)

! � !ij

Z

dr

⇢

1

|x� r| + fxc(x, r,!)

�

�0i (r)�
0⇤
j (r)

⇥
Z

dr0 �0⇤i (r0)�0j (r
0)FHxc(r

0,!)

(2.67)

where:
FHxc(r,!) =

Z

dr0
⇢

1

|r � r0| + fxc(r
0, x,!)

�

⇢1(r
0,!) (2.68)

For brevity, we have not included spin explicitly, but it is sufficient to mention that, in ab-
sence of spin-orbit coupling terms, excitations are only allowed between orbitals of like spin.
In any case, within a closed shell formalism, there is no distinction in space between a given
orbital pair of opposite spin. Next, after multiplying by �0⇤i (r0)�0j (r

0) and integrating by r

once more, me may rewrite equation 2.67 to give:

Z

dr �0⇤i (r)�0j (r)FHxc(r,!) =
1
X

i=1

1
X

j=1

(fi � fj)

! � !ij
Kij,i0j0(!)

Z

dr �0⇤i (r0)�0j (r
0)FHxc(r

0,!)

(2.69)
Where we have defined what are known as the coupling matrix elements, K(!):

Kij,i0j0(!) =

Z

dr

Z

dr0 �0⇤i (r)�0j (r)

⇢

1

|r � r0| + fxc(r, r
0,!)

�

�0i0(r
0)�0⇤j0 (r

0) (2.70)

Introducing a final auxiliary quantity:

�ij(!) =
1

! � !ij

Z

dr �0⇤i (r)�0j (r)FHxc(r,!) (2.71)
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We obtain the final expression:

1
X

i=1

1
X

j=1

[�ii0�jj0!ij + (fi � fj)Kij,i0j0(!)]�i0j0(!) = !�ij(!) (2.72)

Which has the form of an eigenvalue equation where the eigenvalues are the exact excita-
tion energies of the system. Note that the equation is of infinite dimension since the sums
run over all bound states in the Kohn-Sham regime. Naturally, the above equation is only
defined where fi � fj 6= 0, which means that we must only consider transitions from un-
occupied to occupied Kohn-Sham states (and vice-versa). In turn, we can rewrite equation
2.72 as two coupled equations:

1
X

i=1

1
X

j=1

[�pi0�qj0!ij + (fi � fj)Kpq,i0j0(!)]�i0j0(!) = !�pq(!) (2.73)

1
X

i=1

1
X

j=1

[�qi0�pj0!ij + (fi � fj)Kqp,i0j0(!)]�i0j0(!) = !�qp(!) (2.74)

where we have used the notation p, p0 for occupied states and q, q0 for unoccupied states. If
we explicitly introduce the occupation numbers in each case, we can rewrite the coupled
equations in more detail:

1
X

i=1

1
X

j=1

n

[�pp0�qq0!pq �Kpq,p0q0(!)]�p0q0(!) +Kpq,q0p0(!)�q0p0(!)
o

= !�pq(!) (2.75)

1
X

i=1

1
X

j=1

n

�Kqp,p0q0(!)�p0q0(!) + [�qq0�pp0!qp +Kqp,p0q0(!)]�q0p0(!)
o

= !�qp(!) (2.76)

If we let:
Xpq = ��pq, Ypq = �qp, (2.77)

We obtain the final expression for the direct computation of the exact excitation energies of
a given non-interacting Kohn-Sham system of particles:

1
X

i=1

1
X

j=1

n

[�pp0�qq0!pq +Kpq,p0q0 ]Xp0q0 +Kpq,q0p0Yp0q0
o

= !Xpq (2.78)

1
X

i=1

1
X

j=1

n

Kqp,p0q0Xp0q0 + [�qq0�pp0!qp +Kqp,p0q0 ]Yp0q0
o

= !Ypq. (2.79)

If we assume that the Kohn-Sham orbitals are real, we can write the coupled equation set in
compact matrix form, sometimes known as the Casida Equation [25]:

 

A B
B A

! 

X

Y

!

= !

 

� 0

0

! 

X

Y

!

(2.80)
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Where matrix elements of and are:

Apq,p0q0(!) = �pp0�qq0!q0p0 +Kpq,p0q0(!) (2.81)

Bpq,p0q0(!) = Kpq,p0q0(!) (2.82)

Which are sometimes referred to as the orbital rotation Hessians. [24] Again, this matrix
pseudo-eigenvalue equation has infinite dimension, so in practice we only solve for a set
number of excitation energies (i.e. a pre-defined number of eigenvalues). Generally, the ac-
curacy of an eigenvalue associated with a given excitation energy increases with the number
of higher-energy eigenvalues computed, meaning that one should usually consider a greater
number of excited states than explicitly required.

In general, the Casida equation returns the exact excitation energies of any many-body
system. In order to obtain exact excitation energies however, certain conditions must be
met. Firstly, the exact Kohn-Sham ground state of the system must be obtained, which
requires an exact Kohn-Sham density functional. Secondly, we require the exact, frequency-
dependent exchange-correlation kernel, fxc, and the infinite eigenvalue problem must be
solved. Since matrix elements and explicitly depend on the frequency via the exchange-
correlation kernel, this must be done in a self-consistent fashion. It is not necessary to say
that, in practice, none of these conditions can be met exactly. Therefore, varying degrees of
approximation must be made.

It is also important to note that setting the coupling matrix elements to zero simply yields
the Kohn-Sham excitation energies wij as eigenvalues which are single excitations - no dou-
ble or multiple excitations are accounted for. On the other hand, if we were to possess an
exact, frequency-dependent kernel, we would obtain poles of the many-body response func-
tion ! with multiple-excitation character. Unfortunately, this is never true in practice as we
shall discuss now.

2.4.5 The Adiabatic Approximation in TDDFT

As outlined above, the key quantity in TDDFT is the frequency dependent exchange cor-
relation kernel, which describes the frequency dependent exchange-correlation potential
vxc[⇢](r,!). In analogy to ground-state DFT, application of TDDFT requires an approxi-
mation of this potential. The simplest approximation to make here would be to transfer
exchange-correlation functionals used in ground-state DFT (e.g. GGA, Hybrid Functionals)
to the excited state, where we substitute the frequency-dependent density for the ground
state density:

vAxc(r,!) = vGS
xc [⇢(r,!)](r). (2.83)

In TDDFT, this is known as the adiabatic approximation. [24] The term ‘adiabatic’ indicates
that vAxc(r,!) becomes exact where a perturbation acting on the system is sufficiently slow.
In reality, this condition is rarely realized, however the adiabatic approximation is used in
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almost all applications of TD-DFT in chemistry. A consequence of this is the lack of fre-
quency dependence of fxc, meaning that only singly-excited states may be accessed within
the adiabatic approximation.

2.4.6 Charge Transfer Excitations

A well known weakness of TDDFT is the computation of excitation energies where the hole
and electron are separated by a large distance. [26] In this section, we outline how this arises
and how the choice of density functional within the adiabatic approximation can alleviate
this weakness. [24]

Let us begin by considering a case where the donor and acceptor moieties are separated
by a large distance R. In this limit, we can use elementary concepts to obtain the excita-
tion energy, assuming that we have some way of clearly defining R. The minimum energy
required to remove an electron from the donor is given by the ionization potential of the
donor, Id. When the electron arrives at the acceptor, some of that energy is recovered by the
acceptor’s electron affinity, Aa. Once this event has occurred, the two sub-systems feel the
electrostatic interaction energy of the resulting electron hole pair, given by �1

R . For R ! 1:

!exact
ct = Id �Aa �

1

R
(2.84)

Note that, in principle, this is the exact limit. Comparing with what we would obtain from
TDDFT assuming that the charge-transfer excitation lies sufficiently far from any other ex-
citation:

!TDDFT
ct = "DFT

a � "DFT
d + 2

ZZ

�a(r)�d(r)

⇢

1

|r0 � x| + fxc(r
0, x,!)

�

�a(r
0)�d(r

0) dr dr0,

(2.85)
where the orbitals in question are the highest occupied �d(r) and lowest unoccupied �a(r)

orbitals of the donor and acceptor moieties, respectively. Since �d(r) and �a(r) have an
exponentially vanishing overlap, at large distances the final term tends to zero. As a result,
the excitation energy computed at TDDFT level collapses to the difference in the Kohn-Sham
orbital eigenvalues:

!TDDFT
ct ! "a � "d. (2.86)

This result is insufficient in two ways. Firstly, we clearly lack the �1
R component from equa-

tion 2.84. Secondly, in the limit of the exact exchange-correlation functional:

Id = �"DFT
d , Aa = �"DFT

a . (2.87)

As has been mentioned several times previously, however, we do not possess the exact
exchange-correlation functional. Within standard approximations (i.e. GGA), DFT tends to
provide excitation energies which are significantly underestimated, explaining why TDDFT
can often drastically fail when computing charge-transfer phenomena.
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Next, let us consider the same model, only this time we apply a time-dependent Hartree-
Fock (TDHF) approach:

!TDHF
ct = "HF

a � "HF
d �

ZZ

�a(r)�d(r)�a(r0)�d(r0)

|r � r0| dr dr0, (2.88)

which becomes, in the limit of large separation:

!TDHF
ct = "HF

a � "HF
d � 1

R
(2.89)

This demonstrates that the exact-exchange integral is responsible for the �1
R behavior. Addi-

tionally, from Koopman’s theorem, [27] we know that the difference in orbital eigenvalues
computed with Hartree-Fock is approximately equal to the difference between the ioniza-
tion potential of the donor and the electron affinity of the acceptor. As a result, TDHF pro-
duces charge-transfer excitation energies at least qualitatively correctly.

From here, it is unsurprising that if exact exchange were to somehow be incorporated
into the exchange-correlation functional (i.e. Hybrid functionals), we would achieve an
improved description of charge-transfer excitations. Functionals which contain a low to
moderate amount of exact exchange, such as PBE0 [22] which contains 25% HF exchange,
perform well when the distance between the donor and acceptor moieties is not too large.
In larger systems, however, where R becomes large, even hybrid functionals with a reduced
amount of exchange fail to cure the underestimation of charge-transfer excitation energies.
One might assume that we can just increase the amount of exchange to 100% to completely
nullify this problem, though in practice this is not the case as we in turn sacrifice the short-
range qualities of a given functional. This apparent trade-off problem has been tackled by a
class of functionals known as range-separated hybrids, which are discussed in the next section.

Range-Separated Hybrid Functionals

The basic idea of a range-separated hybrid is to separate the Coulomb interaction into short
range (SR) and long range (LR) parts, which are connected by some kind of function f [28]:

1

|r � r0| =
f(⌘, r)

|r � r0| +
1� f(⌘, r)

|r � r0| , (2.90)

where typical choices for function f are:

f(⌘, r) = e�⌘|r�r0|, f(⌘, r) = erf(⌘, r) =
1p
⇡

Z 1

r
e�r02 dr0 (2.91)

where the separation parameter ⌘ can be defined either empirically or using some physical
arguments. The resulting general formula for a range-separated hybrid (RSH) is then:

ERSH
xc = ESR�DFA

x + ELR�HF
x + EDFA

c (2.92)
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where DFA stands for ‘density functional approximation’, meaning any standard approxi-
mation to the exchange-correlation energy within DFT. Since the separation function forces
the exact-exchange contribution to Exc to be 100% at large distances, range-separated hy-
brids have the correct asymptotic behavior (�1

R ) while at short distances they make use of
the full density functional approximation. Needless to say, these properties mean that range-
separated hybrids perform well in the calculation of excitations with significant charge-
transfer character, as has been outlined in several benchmark studies. It is for this reason
that, at several points throughout this thesis, they have been employed for the study of
charge-transfer processes in the condensed phase.

2.5 Recovering Static Correlation

In section 2.2.7, we introduced the main deficiency of Hartree-Fock theory - its neglect of
electron correlation. Generally, electron correlation is broadly divided into two types: ‘dy-
namic’ and ‘static’. [13] Dynamic correlation is intuitive, and arises from the correlated mo-
tion of each electron with respect to the others. In most cases, dynamic correlation is the
dominant contributor to the overall electronic correlation energy Ecorr and, up until now,
we have discussed how this might be recovered using a system of non-interacting particles
that experience an exchange-correlation potential in the framework of DFT. Slightly more
opaque, static correlation might arise in situations where we have (near-)degenerate fron-
tier orbitals. Using an illustrative example, if we consider a given molecule whose molecular
orbitals are filled until we arrive at (in this example) two degenerate frontier orbitals with
only one electron left to place, we must choose one of the two orbitals in which to place
it. Let’s say we choose orbital 1 and optimize the wave function using HF theory. We now
have a wave function which has been optimized where all other electrons and nuclei feel the
electrostatic potential of the electron in orbital 1. However, we could have equally chosen
a different initial electron configuration by placing the electron in orbital 2, from which we
would have obtained a different wave function. The restriction of only being able to place
our electron in one of the two orbitals comes from how we have constructed our wave func-
tion - using a single Slater determinant. As, within HF and DFT, we cannot do better than
our single Slater determinant, a logical next step would be to construct the wave function
using a linear combination of determinants:

 =
X

i

ci i, (2.93)

where the coefficients ci reflect the weight of a given electron configuration  i, known as
a configuration state function (CSF), to the overall wave function  . The first determinant
is usually chosen as the HF determinant, however this does not have to be the case in gen-
eral. To obtain such a wave function, not only must we optimize the coefficients ci, but the
coefficients that lie within each determinant (i.e. those which constitute the basis set). In
the next section, we introduce how this is done via the Multi-Configuration Self-Consistent
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Field (MCSCF) approach. [13] Not that, as DFT is formally exact, if one were to be in posses-
sion of the exact exchange-correlation functional, DFT is capable of recovering all of what
is described above. Unfortunately, this is never the case, and DFT is in practice a single-
reference method. As a result, it is necessary to explore other methods capable of recovering
the multi-reference character, some of which are outlined below.

2.5.1 Multi-Configuration Self-Consistent Field

From the expression in equation 2.93, the total energy may be written as follows:

E =
X

ij

c⇤i cj h i|Ĥ| ji (2.94)

Where Ĥ is the electronic Hamiltonian. In the context of MCSCF, it is useful to introduce
the unitary group generators (also called shift operators):

Êpq = a†p↵aq↵ + a†p�aq� , (2.95)

where a†p↵ is a creation operator for an electron in orbital p with spin ↵, while aq↵ is an
annihilation operator forn an electron in orbital q with spin ↵. In other words, the overall
operator Êpq serves to generate electron configurations by ‘exciting’ electrons from occupied
to unoccupied orbitals. The Hamiltonian can be expressed in terms of these operators:

Ĥ =
X

pq

(p|ĥ1|q)Êpq +
1

2

X

pqrs

(pq|rs)(ÊpqÊrs � �qrÊps). (2.96)

With this, the matrix elements from equation 2.94 become:

h i|Ĥ| ji =
X

pq

�ijpqhpq +
1

2

X

pqrs

�ijpqrs(pq|rs), (2.97)

where the coefficients in front of the one- and two-electron integrals for each matrix element
are called the coupling coefficients, written as follows:

�ijpq = h i|Êpq| ji (2.98)

�ijpq = h i|ÊpqÊrs � �qrÊps| ji . (2.99)

We now have the following expression for the energy, in terms of the one- and two-electron
integrals and the coupling coefficients:

E =
X

ij

c⇤i cj



X

pq

�ijpqhpq +
1

2

X

pqrs

�ijpqrs(pq|rs)
�

(2.100)



2.5. Recovering Static Correlation 29

Moving the sums over the determinant coefficients inside the inner loops, we arrive at the
most compact form:

E =
X

pq

�pqhpq +
1

2

X

pqrs

�pqrs(pq|rs) (2.101)

where the coupling coefficients have become:

�pq =
X

ij

c⇤i cj�
ij
pqrs, (2.102)

�pq =
X

ij

c⇤i cj�
ij
pqrs. (2.103)

Respectively, these are known as the one- and two-particle density matrices. Now that we
have an expression for the energy, we need to be able to minimize this energy with respect
to the orbital coefficients. Here, the final, optimized orbitals may be written as some unitary
transformation U of the original orbital coefficients C0:

C = C0U (2.104)

where, as in Hartree-Fock, C and C0 are matrices of the molecular-orbital coefficients with
a number of rows (columns) equal to the number of atomic orbitals (molecular orbitals).
While there are several approaches to parameterizing U, a common approach is to write it
as the exponential of an anti-Hermitian matrix:

U = eR (2.105)

and expanding it to the second order in R using the power series expansion of the exponen-
tial. This yields an expression for the new molecular orbitals:

�p ⇡ �0p +
X

q

�0q

✓

Rqp +
1

2

X

r

RqrRrp

◆

. (2.106)

From what we have outlined so far, in order to calculate an MCSCF wave function, one
must consider all electrons and all orbitals and all of the possible ways in which these can
be arranged to form our linear combination of CSFs. Within the choice of basis set, this ap-
proach, referred to as ‘Full CI’, yields an exact solution of the time-independent Schrodinger
equation (within the Born-Oppenheimer approximation and neglecting relativistic effects).
Having said this, the number of CSFs (NCSF ) for even very small systems can be enormous,
as is illustrated by the following equation:

NCSF =
n!(n+ 1)!

�

m
2

�

!
�

m
2 + 1

�

!
�

n� m
2

�

!
�

n� m
2 + 1

�

!
(2.107)

where n and m are the number of orbitals and electrons, respectively. As a result, full CI
calculations are only performed on the smallest of systems. This does not represent the
extent of the application of MCSCF in computational chemistry, however. One can imagine
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that the CSFs that are dominant contributors to the overall static correlation energy can be
pinpointed using chemical intuition. If we were to restrict the number of electrons and
orbitals that may be exchanged to form our total number of CSFs, the result would be a
significant saving of computational effort and the ability to extend the MCSCF approach to
larger systems. This approach, knows as the Complete Active Space Self-Consistent Field
(CASSCF) method, is introduced in the next section.

2.5.2 Complete Active Space Self-Consistent Field

CASSCF [29] limits the full CI calculations by dividing the one-electron orbital space into
three sub-spaces: (i) inactive, orbitals which are always kept doubly occupied; (ii) secondary,
orbitals which are always kept unoccupied and (iii) active, a set of orbitals which is partially
occupied - known as the active space. Within the active space, a full CI calculation is es-
sentially carried out, meaning that CSFs are generated from every possible configuration of
electrons and orbitals. Naturally, only the active space needs to be chosen and from there the
inactive and secondary orbital sub-spaces are inferred. An aspect - and, in some respects,
weakness - of CASSCF is that the active space must be chosen by the user, using chemical
intuition and, as a result, CASSCF calculations can require far more expertise to conduct
in comparison with HF or DFT calculations. Typical considerations for choosing the active
space might be to include orbitals which are involved in bond-breaking, bond-formation or
in electronic transitions. With the scaling of the CI expansion outlined in equation 2.107,
the size of the active space that can be feasibly used is limited to around sixteen electrons
in sixteen orbitals. The setup for a given CASSCF calculation is outlined schematically in
figure 2.3.

2.5.3 Perturbation Theory and CASSCF

A drawback of CASSCF, when used in isolation, is that - unlike in a full CI calculation -
not all dynamic correlation is included due to the restriction on the number of CSFs that
are generated. As a result, some dynamic correlation is only recovered within the active
space. Fortunately, the majority of the remaining dynamic correlation can be recovered with
methods which act as an on-top correction to the CASSCF energy - known as a post-SCF
procedure. The most popular of these approaches relies on second-order perturbation the-
ory to account for the remaining correlation energy and is known commonly as CASPT2.
Naturally, the core difference between CASPT2 and, for instance, Moller-Plesset second-
order perturbation theorey (MP2) is that CASPT2 uses the multireference wave function
 CASSCF instead of a single reference HF wave function as the unperturbed system. Gen-
erally, CASPT2 represents a non-negligible addition to the overall computational cost of a
CASSCF calculation, and can often represent the true bottleneck for medium- to large-sized
systems.
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FIGURE 2.3: Schematic of how the orbital space is partitioned in CASSCF cal-
culations. Within the active space, all possible electron configurations are al-
lowed, while in the inactive and secondary sub-spaces orbitals are forced dou-

bly occupied and unoccupied, respectively.
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2.5.4 Multi-Configuration Pair-Density Functional Theory

The more-recently-developed multiconfiguration pair-density functional theory (MC-PDFT)
[30] seeks to combine the explicitly multiconfigurational CASSCF wave function with the
low cost of KS-DFT; and it provides a promising alternative to CASPT2 in terms of the re-
quired computational resources. The formulation of MC-PDFT has two key differences from
Kohn-Sham DFT: (i) the reference wave function is multiconfigurational, and (ii) the density
functional employed (called the on-top density functional) depends on the total density and
the on-top pair density (in contrast to the exchange-correlation density functionals of Kohn-
Sham DFT, which depend on the up-spin and the down-spin densities).

Essentially, MC-PDFT involves two steps: (1) a MCSCF calculation and (2) a post-SCF
calculation with an on-top density functional. The MC-PDFT energy is given by:

E[⇢,⇧] =
X

pq

hpq�pq +
X

pqrs

gpqrs�pq�rs + Eot[⇢,⇧] + VNN (2.108)

where ⇢ is the MCSCF density; ⇧ is the MCSCF on-top pair density; p, q, r, and s are or-
bital indices; hpq are the one-electron kinetic energy, nuclear attraction, and effective core
potential integrals, �pq is an element of the MCSCF one-electron density matrix, gpqrs are the
two-electron integrals, Eot is the on-top energy, and VNN is the inter-nuclear repulsion. The
on-top energy, akin to the exchange-correlation energy in KS-DFT, includes a correction to
the MCSCF one-electron terms plus the exchange and correlation corrections to the MCSCF
classical coulomb energy (which is given by the four-index sum in equation 2.108.

Here, it is necessary to discuss the concept of ‘double-counting’ of dynamic electron cor-
relation as, naturally, any attempt to include static correlation energy via a wave function
method invariably involves the inclusion of some dynamic correlation energy. In MC-PDFT,
this issue is circumvented by only extracting the Coulomb energy and a multi-configurational
portion of the kinetic energy from the MCSCF wave function, with the remainder of the en-
ergy calculated using an ‘on-top’ density functional, [31] which are described in the next
section. In doing so, there is no double-counting of electron correlation within MC-PDFT.

On-Top Density Functionals

In order to calculate MC-PDFT energies, we need a density functional. While the ultimate
goal would be to develop new density functionals to be used specifically with MC-PDFT,
the first step that has been taken is to ‘translate’ standard exchange-correlation functionals
into what have been termed ‘on-top functionals’ - introducing a dependence on the on-top
pair density ⇧. [32]

To outline how these functionals are formed, it is necessary to recall that if we approx-
imate an exchange-correlation functional using only local densities and their gradients (i.e.
GGA), the exchange-correlation functional for a given spin-polarized system may be writ-
ten as a functional of the total density ⇢ and the difference in densities of different spin m.
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From here, Becke suggested that the dependence on m could instead by substituted for a
dependence on the on-top pair density ⇧. For a singe-determinant wave function, m can be
related to ⇧ and ⇢ by:

m = ⇢[1�R]1/2 (2.109)

where
R =

4⇧

⇢2
(2.110)

with R  1 at all points in space. When it comes to multi-determinant wave functions,
however, R can have values greater than 1. Given that E(⇢,m, ⇢0,m), the current general
prescription for the translation procedure is given by:

Eot[⇢,⇧] = Exc

 

⇢,

(

⇢(1�R)1/2 if R  1

0 if R > 1

)

, ⇢0,

(

⇢0(1�R)1/2 if R  1

0 if R > 1

)!

(2.111)

Essentially, we now have an on-top density functional which has been translated from a
given standard GGA functional.

2.6 Modeling Solvent Effects

Whether analyzing the absorption properties or excited state lifetime of a molecular system,
the majority of photophysical measurements take place in solution. Accurate modeling of
the solvation environment, therefore, is paramount from a computational point of view. [33]
Here, two main schools of modeling exist [33]: explicit solvation, where solvent molecules
are accounted for either classically or quantum mechanically, and implicit solvation, where
interactions with the solvent are accounted for using a reaction field - more commonly re-
ferred to as a continuum model. The latter is by far the most commonly employed for
modeling solute-solvent interactions and it is this method that we have employed through-
out this work. In the following, we outline the main concepts behind common solvation
techniques in theoretical chemistry.

2.6.1 The Polarizable Continuum Model

In some form or another, the polarizable continuum model (PCM), [34] represents the most
frequently used reaction field method. Therein, molecule and solvent are separated by
means of a predefined cavity into which the quantum mechanically treated molecule is
placed. This cavity can be constructed via, for instance, a superposition of spheres centered
on each atom, with smoothing functions applied to prevent discontinuities in the resulting
surface or on the iso-density surface of a given molecule. At the surface, the cavity is divided
into small, triangular regions by projecting polyhedra from the center of each atomic sphere.
This projection produces triangular regions, or tesserae, at the center of which point charges
are placed that represent the electrostatic polarisation of the solute electronic density by the
solvent. The contribution of the reaction field to the solute free energy can then be expressed
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FIGURE 2.4: Left: Arbitrary ground (S0) and excited (S1) potential energy
surfaces. Arrows corresponding to absorption (blue) and emission (green)
electronic transitions are shown, as well as the ideal equilibrium state of the
solvent with respect to the solute used in their calculation. Right: Procedure
for obtaining the corrected linear response (cLR) and state specific (SS) solu-

tions for excited-state equilibrium of the solvent.

as:
G =

1

2
V†q, (2.112)

where vector quantity V represents the values of the solute electrostatic potential and q

are the charges on the cavity surface centered at each of the tesserae. Though several dif-
ferent models exist for determining the surface charge values, a general relationship, which
depends on the solvents electrostatic potential (and therefore, density) can be expressed as:

q = �DV, (2.113)

where D is a square matrix defined by the inverse of the matrix defining the PCM linear
system of equations and is related to the geometrical parameters of the cavity and the solvent
dielectric constant ✏. The relative polarity of a given solvent is introduced by this dielectric
constant, where ✏ = 1 (i.e. vacuum) within the cavity and ✏ = ✏solvent elsewhere.

Electrostatic solute-solvent interactions are introduced as a perturbation of the solute
Hamiltonian. In the context of TD-DFT, the solute-solvent interaction is expressed as a re-
sponse operator Q, resulting in a dielectric-dependent perturbative term being added to the
coupling matrix elements K:

Kµ⌫,�⌧ = K0
µ⌫,�⌧ +

tesserae
X

IJ

�µ⌫(r)QIJ(✏)��⌧ (r) (2.114)

Where K0
µ⌫,�⌧ is the coupling matrix element for an isolated system. The second term

is the solute-solvent interaction free energy where we have assumed that the solute-solvent
interaction surface is approximated by a series of point charges, centered on each of the
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tesserae. In this formulation, known as Linear Response PCM (LR-PCM) due to the linear-
response formalism of the solute-solvent interaction, the electronic degrees of freedom of the
solvent remain in equilibrium with the ground state. This, naturally, is an approximation
which may be justifiable in situations where differences in the ground and excited state den-
sities are small. When this is not the case, such as for electronic excitations with significant
charge-transfer character, the electrostatic potential produced by the solvent charges can be
brought into equilibrium with the density of the excited state of interest in an approach
known as Corrected Linear Response (cLR-PCM). [35] The cLR-PCM can be taken as-is or
can be seen as the first iteration of a self-consistent determination of the excited state den-
sity and associated solvent electrostatic potential, known as State-Specific PCM (SS-PCM,
see Figure 2.4). [36] The solute degrees of freedom that we consider to be in equilibrium
(or not) with the solute can be divided into two broad terms: electronic and inertial. In
physical terms, the former corresponds to the degrees of freedom available to the solvent
electronic density, whereas the latter corresponds to the implicit nuclear degrees of freedom
of the solvent. Which of these terms we desire to be in equilibrium with our solute (and at
which electronic state) depends on the properties we wish to calculate. Figure 2.4 shows an
arbitrary representation of a ground and excited-state potential energy surface, onto which
we have indicated the ideal equilibrium state of the solute with respect to the solvent for a
given property (absorption or emission).

In this thesis, we are primarily interested in assessing the performance of the electro-
static embedding model outlined in chapter 4 for various applications. A core aspect of its
assessment is the consideration of system behavior upon changing environment (e.g. fluo-
rescence changes from solution to solid-state) as an explicit observable. For everything that
concerns the calculation of optical properties in solution, we make use of PCM using, where
appropriate, its various implementations.
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Chapter 3

Modeling the Crystalline Phase

It is well known that photophysical properties of a given molecular system can be strongly
influenced, and are often predicated, by interactions with the surrounding environment,
whether it be surrounding solvent [7] or indeed other surrounding molecules within a
molecular crystal. [8] For this reason, considerable resources have been dedicated to the
study of environmental influence in order to gain insight into, and control over, different
excited state processes which can give rise to potentially useful photophysical traits to be
applied within optoelectronic devices.

From both an experimental and theoretical perspective, methods for studying photo-
physical properties in solvents are very well developed to the extent that it is becoming
possible to gain control over and tune excited state processes in solution. In the solid state,
such processes are more difficult to characterize experimentally and reports of interesting
photophysical behavior in periodic systems, which can often be small and subtle, are far
rarer when compared with solution. Describing complex photochemistry in the crystalline
phase represents a significant and ongoing challenge for computational chemists. Models
of sufficient quality - able to both understand and predict the influence of a given environ-
ment on optical properties, as well as how they are altered by changing the environment
- are a necessary component in the design-process of functional molecules and materials.
This chapter outlines what is considered when constructing a given model and constitutes
an outline of current computational techniques for approximating the crystalline phase in
the context of excited-state modeling.

3.1 Periodic Boundary Conditions

If one wishes to study crystalline systems - which are inherently periodic - with quantum
chemical methods, a logical step is to extend the approaches outlined in chapter 2 to such
periodic systems. In this section, we outline how this is generally achieved by introducing
the concept of Bloch functions [37] and how these are applied in solving the Schrodinger
Equation for periodic systems.
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3.1.1 Bloch Functions and Crystalline Orbitals

Let us consider a translation operator T̂ , associated with a given lattice vector T , applied to
the Hamiltonian operator discussed previously for HF and Kohn-Sham theory:

T̂ Ĥ(r) (r) = Ĥ(r + T ) (r + T ) = Ĥ(r)T̂ (r). (3.1)

Due to the periodic nature of the crystal, the Hamiltonian operator itself is also periodic
and is associated with a periodic potential. The commutation relation between T̂ and Ĥ

means that the wave function is an eigenfunction of both the translation operator and the
Hamiltonian. Now introducing the Bloch theorem, which states that such eigenfunctions
 (r) satisfy the relation:

T̂ (r) = eik·T̂ (r) (3.2)

(where k is a lattice vector defined in reciprocal space) and imposing appropriate periodic
boundaries defined by a given crystalline unit cell, we may now in principle model the
electronic properties of the crystal using a three-dimensional, periodic array of identical
unit cells which are repeated indefinitely. In this way, we are said to be applying ‘periodic
boundary conditions’ (PBC) [38] to our system. In analogy with molecular systems, a given
mono-electronic wave function may be built using a linear combination of Bloch functions
which form what we may now refer to as ‘crystalline orbitals’  k:

 k(r) =
X

µ

ckµ�
k
µ(r) (3.3)

Using these Bloch functions, methods previously outlined in chapter 2 (HF, DFT) may be
used to variationally solve for the crystalline orbital coefficients. At this stage, it is impor-
tant to highlight that, due to the periodic properties of Bloch functions in reciprocal space,
the resolution of the HF or Kohn-Sham equations can be limited to the first ‘Irreducible Bril-
louin Zone’ (IBZ, the unit cell of the symmetrically-reduced reciprocal lattice). As such, the
complete set of Bloch eigenfunctions { (r)} can be found for a predefined number of points
k (k-points) in the IBZ, at each of which the given system of equations are independently
solved.

To construct our Bloch functions, we require a basis set. A direct extension of what
is discussed in 2, these are made up of local functions �µ centered on atoms within the
crystalline unit cell which are replicated in three-dimensions so as to obtain periodic Bloch
functions of the form:

�kµ =
1p
N

X

T

eik·T̂�T
µ (r � rµ) (3.4)

indicating the inherent periodicity of the underlying basis set. In this thesis, calculations
conducted using periodic boundary are performed exclusively using localized basis sets.
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3.1.2 Periodic Boundary Conditions and Excited-State Properties

While the extension of, for example, DFT to excited states (TDDFT) for molecular systems is
nowadays well developed, this is not the case for periodic calculations of crystalline systems.
One frequently-used approximation in the literature is to interpret differences between elec-
tronic bands in periodic systems directly from Kohn-Sham eigenvalues. [24] Though this
approximation can yield surprisingly accurate results, it has no formal justification and ne-
glects potentially significant particle-hole interactions at the excited state. [24] Additionally,
agreement with experimental observables is often conditional on the application of empiri-
cal shifts. The next step, as for molecular systems, might be to extend ground state methods
to the excited state in periodic systems (i.e. TDDFT, TDHF), though in practice this approach
suffers from two major drawbacks. [24] As discussed in chapter 2, such methods have been
found to be sufficiently accurate for many molecular systems, however this accuracy is not
transferred to infinite periodic systems, yielding results of far lower quality. This so-called
‘scale-up catastrophe’ has been attributed (in TDDFT) to the increased dominance of the
exchange-correlation kernel over the Hartree response kernel in periodic systems, while the
opposite is true for molecular systems. The second drawback is related to the Bloch theorem,
as it has been demonstrated that the coupling matrix terms derived from linear-response
theory depend simultaneously on more than one k-point in the IBZ. As was outlined in the
previous section, Kohn-Sham/HF equations at given k-points in periodic calculations are
solved for independently. For infinite three-dimensional systems, the simultaneous depen-
dence on multiple k-points renders the eigenvalue problem restrictively large, though this
can be alleviated using TDDFT-style methods that do not construct large matrices explicitly.

In the following, we discuss how the problem of crystalline systems being periodic can
be somewhat circumvented using clusters, which are essentially a representative portion of
the bulk solid which has been extracted from the periodic system. Naturally, as clusters are
inherently ‘molecular’, well-developed methods for molecular systems can be, in principle,
ported over and applied to a given cluster model. However, there can be serious conse-
quences of approximating fully periodic systems with finite clusters - specifically when it
comes to accounting for the bulk environment - and cluster methods can not be applied
for the study of all solid-state properties. Different approaches to cluster modeling of peri-
odic systems are discussed in the next section, along with their respective applicability and
drawbacks.

3.2 Cluster Modeling

For a number of years, traditional quantum chemistry methods have been used to study the
energetics of periodic systems using cluster-based approaches, where the total system is ap-
proximated using a finite volume of the bulk. Although cluster-modeling is not appropriate
for the calculation of all bulk-phase properties, it can be applied in situations where a bulk
property can be described by a well-defined portion of the overall material. [39] This can be
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the case, for example, for point defects in periodic solids, surface adsorption of molecules,
and heterogeneous catalysis. [40] This same concept can easily be extended to study excited-
state processes, as the change in electronic structure brought by photon absorption is usually
confined to a given photoactive center.

The quantum chemical methods which underpin cluster modeling, however, can only
be applied when studying small fragments of the overall system due to their nonlinear scal-
ing properties, forcing one to neglect often crucial interactions with the surrounding envi-
ronment. This section is dedicated to a discussion on how recent developments in cluster
modeling permit the inclusion of these interactions, their underlying assumptions, and how
these affect their applicability in both ground- and excited-state modeling.

3.2.1 Hybrid Energy Schemes

In situations where we have a well-defined area of interest within a given cluster, a clear
option is to use a more expensive computational method for that portion of the cluster,
while approximating the surrounding, less important, environment using a less expensive
approach. Of the various advancements in recent years within this paradigm, hybrid energy
techniques [39] represent the most popular development. The starting point for such models
is to divide the system into at least two regions (I and II), where the total energy of the system
is given, generally, by:

E = Ehigh
I + Elow

II + Einteraction (3.5)

These regions are treated with different levels of theory, applying varying degrees of approx-
imation with associated varying computational cost to each. Typically, the most accurate,
and computationally expensive, theory (high level) is reserved for the chemically interest-
ing region (I) where, for example, bond breaking, bond formation or photon absorption is
occurring. The remainder of the system (II) is treated with a more approximate, yet cost ef-
fective, theory (low). Generally, the material difference between hybrid energy models lies
in the interaction term, for which different approximations have been explored. While the
underlying formalism and objectives are similar for most hybrid energy schemes, there are
key distinctions which lead to differences in model accuracy, applicability, and computa-
tional investment. The next section outlines currently available hybrid energy schemes that
can be used to compute excited state properties of crystalline systems.

ONIOM

The ONIOM approach, [41] in its various implementations, represents the most popular of
these hybrid energy schemes. In cases where the studied system is split into two regions,
the general form of the hybrid energy is:

EONIOM = E(R)low + E(M)high � E(M)low (3.6)
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Where low and high indicate the relative level of theory applied to each of the real (R) and
model (M) subsystems, and R and M signify the entire cluster and the high-level portion
respectively (see figure 3.1). We can draw a direct analogy with equation 3.5 by adding and
subtracting the low-level energy of the model system:

EONIOM = (E(R)low � E(M)low) + E(M)low + (E(M)high � E(M)low) (3.7)

In keeping with equation 3.5, the first term in brackets is the energy of the region II , the sec-
ond term is the energy of region I , and the third term is the interaction energy - described
by the difference in energy between the high and low levels of theory for the model sys-
tem. The level of theory we choose for each layer is strongly dependent on the properties of
interest. The vast majority of ONIOM-type calculations are performed in the QM:MM for-
malism, where the high-level layer is treated quantum mechanically (usually with DFT) and
the low-level layer is treated classically, with a molecular mechanics force-field. However,
molecular mechanics is often inadequate as the low-level method, especially when elec-
tronic effects between the regions are important. [42] In such cases, QM:QM’ approaches
can be employed, for which the low-level region, while also treated quantum mechanically,
takes on a reduced basis-set size or a lower-cost QM method.

Electrostatic interactions between the low- and high-level layers are approximated en-
tirely at the low-level, using a simple, classical point charge model:

Eelec =
X

i

X

j

qiqj
Rij

(3.8)

Where i and j are charges located in the high- and low-level subsystems, respectively, and
Rij is the distance between two atomic centers. Charges correspond either to those of the
molecular mechanics force-field (QM:MM) [43] or Mulliken charges derived from the QM’
electron density (QM:QM’). [42] Here, as the interaction between the two regions is treated
entirely by the low-level theory, the high-level wave function is still effectively optimized
in isolation, and the interaction energy is included as an additive term to the total energy -

FIGURE 3.1: Schematic representation of equation 3.6, describing how an
ONIOM model of a periodic, crystalline system might be constructed.



42 Chapter 3. Modeling the Crystalline Phase

known as mechanical or classical embedding. The lack of direct coupling between the low-
level region the high-level wave function can lead to serious errors in cases which involve
significant charge transfer in the high-level region. To improve upon this approximation,
introduce direct coupling between layers, and allow for the polarization of the high-level
wave function by the low-level layer, this interaction term - in a process known as electronic
embedding [42] - can be included explicitly in the quantum-level Hamiltonian as a pertur-
bation:

Ĥ = Ĥ0 �
X

i

X

j

qiqj
Rij

(3.9)

Which, in the LCAO approximation, yeilds perturbed matrix elements of the core Hamito-
nian:

hµ⌫ = h0µ⌫ �
X

j

qjVµ⌫ (3.10)

Within the SCF procedure, this results in a perturbed density matrix and a subsequent al-
teration of the final SCF energy. The resulting density can be rationalized as the polarized
electronic density of the high-level region by the electrostatic potential of the low-level re-
gion.

An as-yet unsolved issue lies in the polarization of the low-level subsystem. [42] In
principle, the high- and low-level systems will undergo a mutual polarization until a self-
consistency is reached in their charge distributions. In the context of QM:MM, this relies on
a polarizable force-field [44] and the introduction of an additional, external self-consistency
to equilibrate the excited-state density of the high-level layer with the ground-state density
of the low-level layer.

With ONIOM, one can describe the short-range electrostatic potential of the environment
and even include the polarizing effect of the environment on a given quantum-mechanical
cluster. More recently, the mutual polarization of the QM cluster and the environment has
been accounted for using polarizable force-fields for the low-level layer. While not every
variation of ONIOM discussed above has been applied to study excited states in crystalline
systems, it is important to note that all of these approaches could feasibly be used, with
varying degrees of approximation. Generally, ONIOM relies on the confinement of the ex-
citon to the high-level system and, in all cases that do not use non-polarizable force-fields,
assumes that the low-level density is reasonably approximated by that of the unpolarized
ground state. Naturally, this assumption breaks down if there is a significant change in the
low-level wave function between ground and excited states through charge transfer - of-
ten an integral part of photochemical processes. For reasons that shall be further discussed
in section 4.1, another drawback of ONIOM is its applicability to infinite, periodic systems
due to the discrepancy between long-range electrostatic potentials computed for finite and
infinite systems.
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Frozen Density Embedding

Frozen Density Embedding (FDE) [45] represents another hybrid energy formalism. Appli-
cable for both three-dimensional periodic systems and surface calculations, the interaction
term is described via an embedding potential obtained by partitioning the electron density
into two subsystems:

⇢tot(r) = ⇢I(r) + ⇢II(r) (3.11)

Region I is the area of interest while region II is the periodically infinite background. With
this partitioning, the total energy Etot is defined:

Etot = EI + EII + EINT = h tot|ĤI + ĤII + ĤINT | toti (3.12)

Where ĤINT and EINT denote the Hamiltonian and interaction energy between regions I

and II , and where HI , HII and EI , EII refer to the Hamiltonian and energy for regions I

and II , respectively. As region II influences region I only through the interaction Hamilto-
nian, the interaction energy represents the key quantity and can equally be expressed as:

EINT = Etot[⇢tot]� EI [⇢I ]� EII [⇢II ] (3.13)

Where each energy functional contains terms analogous to that found in the conventional
DFT framework. The total density ⇢tot is obtained from a periodic DFT calculation and is
held constant, therefore making the assumption that the level of theory used for this step
already produces a good approximation of the electronic density. From this, the embedding
potential is expressed as the functional derivative of the interaction energy with respect to
the density in region I :

⌫̂emb =
�EINT

�⇢I
(3.14)

In the Hartree-Fock representation, this potential is added to the Fock operator F̂µ⌫ as a one-
electron operator. Solving for the region I density matrix in the cluster molecular-orbital
basis according to

X

⌫

(F̂µ⌫ + h�µ(r)|⌫̂emb(r)|�⌫(r)i)C⌫,i = ✏i
X

⌫

Sµ⌫Cµ,i (3.15)

produces a renewed density matrix for region I . As the embedding potential itself depends
on ⇢I , a self-consistent procedure is used to obtain a corrected embedding potential. Follow-
ing this procedure, the total enegy of the system is approximated as:

Etot ⇡ Eemb
tot = EI + EDFT

II + EDFT
INT (3.16)

Where the energy of region I is obtained at some higher level of theory than that of both
region II and the interaction energy. Adding and subtracting the DFT energy of region I
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(EDFT
I ) allows the total energy to be rewritten:

Eemb
tot = EDFT

tot + Eab
I � EDFT

I (3.17)

This is reminiscent of the total energy expression for ONIOM, where the total energy of the
system is written as the total energy computed at some lower level of theory plus a correc-
tion term. Unlike ONIOM, FDE accounts explicitly for the long-range electrostatic interac-
tions of the periodic system through the initial, periodically-derived embedding potential.
In the context of excited-state modeling, FDE assumes that the ground state wavefunction of
the periodic environment is sufficient when deriving the embedding potential. As discussed
for ONIOM, this may not always be justified, particularly in cases where charge-transfer ex-
citations play a key role in the photochemistry of interest.

Periodic Electrostatic Embedded Cluster Method

Another hybrid energy approach, the Periodic Electrostatic Embedded Cluster Method (PEECM)
[46] makes use of a periodic system of point charges to describe the electrostatic interaction
between the quantum-mechanically treated fragment and its environment. In this case, the
periodic system is split into three sections: (i) the quantum mechanical region, (ii) an isolat-
ing layer of point charges where cations are replaced by all-electron effective core potentials
(ECPs), (iii) an array of point charges. As this approach is intended for the study of point
defects ionic solids, where the magnitude of a given point charge can be relatively large, the
isolating shell serves to prevent over-polarization of the central region by nearby, positive
point charges. In an analogous fashion to ONIOM electrostatic embedding, interaction be-
tween the QM cluster and the surrounding periodic array of point charges is expressed by a
perturbation term in the Fock matrix, F̂emb:

F̂emb = �
X

L

X

j

qj

Z

µ(r�Rµ)⌫(r�R⌫)�(r0 �RJ + L)

|r� r0| drdr0 (3.18)

Where L is a lattice vector in direct space, qj is a point charge at position Rj � L outside
the quantum cluster. This means that this infinite sum includes all periodic point charge
images except those that lie inside the quantum cluster or ECP regions. Gaussian functions
µ and ⌫ at positions Rµ and R⌫ belong to the QM cluster itself. In practice, the embedding
perturbation is split into the so-called "near-field" (NF) and "far-field" (FF) contributions:

F̂ emb
µ⌫ = F̂NF

µ⌫ + F̂FF
µ⌫ (3.19)

Coulomb interactions between the cluster and NF point charges are calculated as a direct
sum, with the FF contributions solved using multipole expansions - specifically an approach
known as the periodic fast multipole method (PFMM). [47] In contrast to the more precise
Ewald approach (discussed in the next chapter), PFMM is conducted entirely in real space
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and results in a systematic shift in the electrostatic potential with respect to the Ewald po-
tential. As one is generally only interested in differences in potentials, however, this shift is
not significant.

PEECM has been principally developed for the study of ionic crystalline systems, where
the charge density at a given site is usually well defined. In principle, it could be ex-
tended to study other crystalline systems, provided that a reasonable guess for the point
charges which make up the environment could be obtained. Although, to our knowledge,
PEECM has not been used for the calculation of excited state properties, it would suffer from
the same drawback as both conventional ONIOM methods and FDE, in the sense that the
ground state density of the environment may not always be appropriate when describing
the embedding potential.

3.2.2 Cluster Modeling vs. Periodic Boundary Conditions

It is useful to give additional context to cluster models by discussing their advantages and
disadvantages with respect to periodic calculations. Firstly, cluster approaches usually rep-
resent a reduced computational cost - particularly when a given property of interest is rather
local in nature, leading to a reduced required cluster size. Secondly, a larger number of non-
periodic quantum chemical programs are generally available to use. Aside from economical
aspects, a larger variety of quantum-chemical models are available to cluster models (for in-
stance, explicitly correlated ab initio methods necessary for systems with large contributions
from static correlation). Furthermore, there are a larger number of implemented property
analyses - for example a large variety of charge fitting processes. Lastly, the modeling of
non-ideal crystalline properties - such as point defects, disorder and impurities - is easily
achieved.

Although these advantages are substantial, there are also some significant disadvan-
tages of cluster-based methods. Approximating the bulk system as a cluster automatically
removes all translational symmetry of the wave function and can lead to the loss of local
point group symmetry. The finite nature of the model can lead to an approximate treatment
or even full neglect of long-range interactions and a lack of strict boundary constraints such
as the total system charge. Cluster models are also conceptually less simple as there are
usually a larger number of parameters that need to be set prior to calculation, such as the
cluster size, boundary and associated level(s) of theory.

Through the methods outlined above, we have seen how some of these disadvantages
may be mitigated by applying various approximations to the crystalline environment. In the
next chapter, we introduce the method developed in this thesis which, like those previously
discussed, serves as an approximation to the crystalline environment. However, the major
difference between this method and those discussed above is that it allows one to generate
an excited-state embedding potential, rather than that of the ground state.
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Chapter 4

SC-Ewald: A Self-Consistent
Excited-State Embedding Potential

Within the context of the cluster-based techniques in Chapter 3, we have outlined different
approaches and considerations for modeling excited-state properties in crystalline media,
underlined requirements for the electrostatic potential produced by the environment and
how these requirements are, and can be, achieved. We now introduce the electrostatic em-
bedding approach which lays the foundation for the majority of work presented later in this
thesis. In essence, this approach counters the problem of long-range electrostatics in infi-
nite periodic systems using the Ewald summation technique. Coupled with a self-consisted
procedure, this approach produces an embedding potential derived from the excited-state
density of the quantum-mechanical cluster. This chapter first introduces the problem of
long-range electrostatics in infinite systems and how this was solved by Ewald, before intro-
ducing the original Ewald embedding method for the calculation of ground state properties.
Lastly, we outline the self-consistent procedure which yields the excited state embedding
potential.

4.1 The Infinite Electrostatic Potential

Using the cluster-based approaches discussed in Chapter 3, one seeks to reproduce the elec-
trostatic potential of the surrounding - for our purposes crystalline - environment. While
FDE and PEECM explicitly account for long-range electrostatic interactions through, respec-
tively, the embedding operator and fast multipole methods, ONIOM - by far the most fre-
quently used embedding approach - neglects interaction with any of the surrounding bulk
crystalline atoms not explicitly included in the chosen cluster. One might assume that these
interactions are negligible if the atoms concerned lie sufficiently far from the quantum me-
chanical cluster. However, in this section, we discuss how this is almost always not the case
and how this assumption can lead to significant error in the ground state potential.

The electrostatic potential felt by an atom at a given point within a periodic lattice,
known as the Madelung potential, [48] represents that of the surrounding infinite medium.
For a periodic system of point-charges, the interaction energy between a given point-charge



48 Chapter 4. SC-Ewald: A Self-Consistent Excited-State Embedding Potential

qi and the remaining lattice - represented by charges qj - is:

E =
1

2

X

n

X

j

qiqj
|rij + nL| (4.1)

Where the sum is conducted over integer values of n = (nxL, nyL, nzL), resulting in a sum
over all points on the lattice. Naturally, computing the electrostatic interaction between a
given point and an infinite, periodic system requires an infinite summation - unfeasible in
practical terms. A logical assumption would be that, if we were to take a large enough array
of charges surrounding our point qi, it would serve as an accurate approximation of the
infinite electrostatic potential. In reality, due to the slow and conditional nature of the direct
summation, approximating the Madelung potential with a finite charge array - however
large - can lead to serious errors. [49] The only exception is where the dipole moment of the
crystallographic unit cell is exactly zero and where higher electrostatic moments are very
small, however in the vast majority of cases these conditions are not met. [49]

A clever solution to this computational problem was given by Ewald in 1921, [50] using
an approach which allows one to circumvent the conditional convergence properties of the
direct sum. We shall now outline how Ewald summation is performed. Computing the
energy Ei of a point-charge qi at position ri within an infinite periodic lattice requires three
quantities. The first quantity is the binding energy Er

i of charge qi due to the infinite array
of other charges qj with position rj , each of which is shielded by a fictitious Gaussian charge
distribution with total charge �qj . Crucially, the shielding function allows this summation
to converge rapidly in real (direct) space. The second quantity Ef

i is represented by the
binding energy of the charge qi, due to the infinite array of Gaussian charge distributions
described above, plus an additional Gaussian distribution with total charge �qi centered at
ri. This sum is conducted over a complete, periodic array of identical Gaussian distributions
and, as such, is rapidly convergent when solved in Fourier (reciprocal) space. The third term
Ec

i is effectively the binding energy of charge qi due to the additional Gaussian function
centered at ri described previously. The terms are combined to compute the binding energy
of point-charge qi:

Ei = Er
i � Ef

i + Ec
i (4.2)

FIGURE 4.1: Schematic representation of equation 4.2 - how the terms com-
puted in the Ewald summation approach are combined to give the electro-
static potential at site qi produced by all other atoms qj in a periodic lattice.
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A schematic of how this combination yields the interaction energy of qi with the periodic
lattice is given in Figure 11.1. The real space Ewald sum Er

i is given by:

Er
i = qi

X

j

qj
X

n

erfc(↵|ri + nL|)
↵|ri + nL| (4.3)

Where
erfc(x) =

2p
⇡

Z 1

x
e�t2dt (4.4)

The reciprocal lattice Ewald sum is given by:

Ef
i =

�qk
⇡V

X

j

qj
X

m

exp(�⇡2|fm|2/↵2)

fm
cos[2⇡ fm(ri � rj)] (4.5)

Where V is the unit cell volume and fm are the coordinates in inverse lattice space. The
Ewald term for the interaction energy of qi with its own Gaussian function Ec

i is:

Ec
i =

�↵q2kp
⇡

(4.6)

The term ↵ used throughout governs the relative convergence rates for the real and recip-
rocal based sums. Large values of ↵ result in a narrow Gaussian distribution and reciprocal
lattice sums which are slow to converge, while small values of ↵ lead to wider Gaussian
functions and real space sums which converge more rapidly. Importantly, the overall sum
Ej is independent of the chosen value of ↵ when the summation limits for each sum are
sufficiently large.

From the above discussion, it is easy to comprehend how this long-range electrostatics
problem carries over to any treatment of quantum-mechanical clusters, where the surround-
ing medium is usually represented as a finite set of point charges designed to reproduce the
electrostatic field of the rest of the crystal. Where we have a quantum-mechanically treated
cluster embedded within a finite charge array, the embedding potential is given by:

Vµ⌫(r) =
X

j

h�µ|
qj

|r� rj |
|�⌫i (4.7)

Where qj are point charges representing the electrostatic potential of the environment and
�µ and �⌫ are basis functions located on the quantum-mechanical cluster. This potential
represents a direct sum over a finite volume of charges and therefore is subject to the same
errors discussed above for direct sum approaches.

4.2 The Ewald Embedding Approach

In this section, we introduce a method [51, 52] - originally conceived by Klintenberg and
co-workers in 1999 - which seeks to solve some of the problems related to the long-range
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electrostatic potential in crystalline environments, without the explicit use of quantum-level
periodic calculations. This approach - and its extension to excited state potentials - lays
the foundation for the majority of this thesis. In summary, this approach couples point-
charge embedding with a charge fitting process, automatically producing a point-charge
array which accurately reproduces the Madelung potential for an arbitrary crystalline sys-
tem, and was originally applied to produce ionic crystal fields for the study of point-defects
in periodic systems. A five-step algorithm, outlined schematically in Figure 11.2, is used to
generate the array.

Step 1 - Setting up the Charge Array.

The total charge array volume is given by a 2N⇥2N⇥2N supercell, produced trivially
from the crystallographic unit cell of the chosen system, where the volume of the unit cell
array is centered at the origin.

Step 2 - Dividing up the Array.

The charge array produced in step 1 is split into three "Zones". Zone 1 is the central
region containing the N1 atoms for the quantum-mechanical cluster. Zone 2 is a spherical
volume of N2 charges, centered at the origin and encasing the cluster in Zone 1, that do not
change throughout the procedure. Zone 3 is the N3 charges in the remainder of the array
that undergo a fitting procedure.

Step 3 - Computing the Ewald potentials.

Using the Ewald summation method (Section 4.1), the site potentials in Zones 1 and 2
are computed.

Step 4 - Fitting the Zone 3 Charges.

This step seeks to alter the values of the point-charges in Zone 3 to make the site po-
tentials computed via the direct sum approach V (rk) equal to that of the Ewald potential
VE(rk) for all sites in Zones 1 and 2. An additional goal of the procedure is to reduce the
charge and electric dipole moment of the total array equal to zero. A set of linear equations
is solved, comprising the NC = N1 +N2 equations that make the site potentials V (rk) of the
charges in Zones 1 and 2 equal to their Ewald values

NT
X

i 6=k

qi +�qi
|rk � ri|

= VE(rk) k = 1 to N1 +N2, (4.8)

the charge neutrality equation
NT
X

i=Nc+1

�qi = 0, (4.9)
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FIGURE 4.2: Schematic of the Ewald embedding procedure. Formation of the
array as a supercell of the crystallographic unit cell (left), partitioning of the
array into 3 Zones (center), after completion of Zone 3 charge fitting proce-
dure, Ewald electrostatic potential is reproduced at all sites within Zones 1

and 2 (inside green sphere) (right).

and the three dipole equations
NT
X

i=Nc+1

�qi(r)i = 0. (4.10)

The resulting N1 +N2 + 4 equations are solved for the changes to the N3 charge values
�qi. As the index i runs over all sites from N1+N2+1 to N1+N2+N3 and N3 > N1+N2+4,
(there are more parameters to be solved for than equations) the minimum norm solution is
chosen. The resulting charge array corresponds to the initial array generated in step 1 with
the point-charges in Zone 3 modified by�qi.

Step 5 - Checking the Quality of the Potential.

The solution is checked calculating the average and rms deviations between the direct
sum and Ewald potentials at 1000 randomly chosen points within Zone 1, producing the
combined rms deviation between V (rk) and VE(rk):

Vrms =
p

�2
ave +�

2
rms =

v

u

u

t

1

1000

1000
X

k=1

[V (rk)� VE(rk)]2 (4.11)

This quality check, assuming an appropriate values have been chosen for the volume of the
charge array and the diameter of Zone 2, typically returns rms errors between the direct and
Ewald sum potentials on the order of micro-Volts. This error can be reduced systematically
by increasing the array volume and/or Zone 2 diameter.

As the electrostatic potential, computed via a direct sum, at sites within the quantum-
mechanical cluster is now equal to that of the precise Ewald sum approach, the issue of
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erroneous long-range electrostatic potentials in finite cluster methods is circumvented. Re-
calling equation 4.7,

Vµ⌫(r) =
X

j

h�µ|
qi +�qi
|r� rj |

|�⌫i (4.12)

the total summation is now finite, though the electrostatic potential it produces is accurately
derived from Ewald summation. Although the issue of the long-range electrostatic poten-
tial is resolved, we still face similar challenges to those described for ONIOM, PEECM and
FDE. Namely, in the Ewald embedding scheme, the charge background is able to polarize
the ground-state wave function of the quantum cluster, though the charge background it-
self is held fixed. Therefore, the effects of mutual polarization between the central cluster
in Zone 1 and the rest of the array is not accounted for, resulting in potentially serious con-
sequences when studying excited state - and in particular charge-transfer - phenomena. In
the next section, we introduce an extension of the Ewald embedding scheme, able to pro-
duce an excited state embedding potential in full electronic equilibrium with the quantum
mechanical cluster.

4.3 Extension of Ewald Embedding to the Excited-State

4.3.1 The SC-Ewald Algorithm

We will now introduce the approach we have developed to extend the Ewald embedding
approach to the excited state. In doing so, we use Ewald as a starting point to produce an
excited-state embedding potential generated by Mulliken point charges. The steps involved
in this process are outlined below and are shown schematically in Figure 11.3.

Step 1 - Producing the Ground-State Embedding Potential.

In contrast to the Ewald embedding approach, from this point forward we do not ex-
plicitly consider the lattice to be made up of point charges with formal values, as are found
in an ionic crystalline system (e.g. NaCl). This means that we require an initial periodic
calculation to obtain values to attribute to the atoms in the crystallographic unit cell. These
are obtained at the quantum level using CRYSTAL - a program which makes use of lo-
calized Gaussian basis sets and is therefore ideal for use in conjunction with finite cluster
approaches. After calculating the ground-state electron density of the periodic system, a
Mulliken population analysis is performed to obtain the initial charge values qi for use in
the Ewald charge-fitting scheme. At this point, with an appropriate quantum mechani-
cal cluster (Zone 1) defined, the Ewald embedding algorithm is employed as described in
Section 4.2. It is also useful to note that the charge-fitting algorithm used to produce the
Ewald potential is usually associated with a negligible computational cost compared with
the quantum-level calculations.

Step 2 - Calculating the Excited-State Density.
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From Step 1, we now have a quantum-mechanically treated cluster embedded inside
a charge array which produces an accurate electrostatic potential of the surrounding crys-
talline system. Here, we use TD-DFT - or, in principle, any method which allows access to
exited states - to determine the excited-state density of the cluster in Zone 1. As before, a
Mulliken population analysis is performed to obtain charges corresponding to the quantum-
mechanical cluster atoms. If one wishes only to compute the absorption properties of the
central cluster, it can be appropriate to stop at this stage, as it makes the most physical
sense to compute vertical absorption properties in the presence of the ground-state crys-
talline environment. If, however, emission properties are desired, it is necessary to follow
the subsequent steps.

Step 3 - Producing the Excited-State Embedding Potential.

At this point, we take advantage of the crystalline nature of our medium to extrapolate
the excited-state charges obtained in Step 2 and create the excited-state embedding charge
array. To do this, assuming that the central cluster contains at least one of all the unique
atoms in the unit cell, we make use of the symmetry operators available to the space group
of the given system. In doing so, we produce the point charges corresponding to each atom
in the full crystallographic unit cell, corresponding to those of the excited state density of
the central cluster. This unit cell is subsequently used to reform the charge array used in the
Ewald algorithm, and the charge fitting process, outlined in Section 4.2, begins anew. Steps
2 and 3 are iterated in a self consistent manner until mean-average deviation in the charges
computed for the nth and n � 1th iterations does not exceed 0.001 |e�|. At this point, we
consider the excited-state electrostatic potential produced by the charge environment - as
well as the excited-state electronic density of the central cluster - to be equilibrated.

Step 4 - Optimizing the Excited-State Geometry.

With the central cluster now situated within the excited-state field of the crystal, we
perform a geometry optimization just as one would for an isolated cluster. It is necessary to
perform Steps 2 and 3 once more to re-equilibrate the charge array with the newly-acquired
excited-state geometry and density. It is worth noting that it is then possible to iterate these
steps as well, so as to obtain not only a fully equilibated embedding potential and density,
but a fully equilibrated central cluster (and charge array) geometry. This last step, however,
represents a substantial computational investment.

4.3.2 SC-Ewald Algorithm and User Manual

In the appendix to this chapter, an outline of how to perform calculations with SC-Ewald is
given, along with a detailed discussion of input and output files.
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FIGURE 4.3: Self-consistent procedure used to obtain the excited-state embed-
ding potential of the crystalline environment, and optimize the central cluster

geometry at the excited state to obtain crystalline emission properties.

4.3.3 Limitations of the Current Implementation

Here we discuss limitations of the current implementation of SC-Ewald, covering potential
numerical issues, practical problems as well as how some of these have been overcome.

Loss of Crystalline Symmetry

The first point is related to how the charge values computed within the quantum cluster are
transferred to the Ewald charge array. The number of electrons in the quantum cluster re-
gion is usually restrained to integer values. The total charge of the array, however, may take
any value and is restricted only by the requirement that the charge array should produce
an accurate Ewald potential in the central region. The result is that symmetry breaking can
occur with respect to the charge values produced by the central region, resulting in differing
charges on atoms which should be identical by symmetry. To circumvent this, charges are
averaged according to symmetry:

q�j =
1

n

n
X

i2�j

qi (4.13)

Where �j is a group of atoms in the quantum cluster which are equivalent by symmetry
and n is the total number of atoms in this group. In this way, divergent solutions of the
self-consistent procedure in SC-Ewald are avoided. The averaging procedure can lead to
an undesired consequence, however. If the average charge produced causes the sum of all
charges in the quantum region to be slightly greater than zero (due to rounding), this car-
ries through to the creation of the newly formed charge array. As a condition for the Ewald
summation is that the total charge of the unit cell (and therefore, array) is zero, this causes
spurious errors in the charge fitting process - even if the deviation from zero is very small.
There is a simple fix to this however, which is to spread the (extremely small) additional
charge over the atoms in the QM cluster, leading to a negligible change in each atom’s indi-
vidual charge but preserving the neutrality requirement of the unit cell.
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Neglect of Quantum Effects on Potential

A drawback of this method - and of all charge-embedding methods - is that the potential
of the environment is modeled through classical electrostatics and other electronic effects,
such as exchange interaction, are neglected. The only way of improving this conventionally
is to increase the size of the quantum cluster so as to include such interactions around an
area of interest, which rapidly becomes infeasible as the total number of basis functions in
the quantum cluster increases. A potential solution to mitigate this would be to couple the
SC-Ewald approach with ONIOM in the QM:QM’ variation. In this way, these interactions
are at least accounted for in the low-level portion of the hybrid energy formalism.

The Cluster-Point Charge Boundary

The abrupt change from fully QM treatment of the central cluster to point-charge treatment
of the environment could pose problems, as has been discussed previously in the context of
over-polarization of the central cluster when modeling ionic solids. [46] For this reason, one
must take care when constructing the boundary of the central QM cluster. In cases where the
nearest point charges to the cluster are relatively far away and the magnitude of the point
charges is generally small (e.g. in the vast majority of organic molecular crystalline materi-
als) this may not pose any problems. However, even when charges are situated relatively
far from the cluster, the choice of basis set can be crucial in the context of the SC-Ewald
procedure. Generally, diffuse functions should always be avoided when calculating the em-
bedding potential itself, as they tend to reach out towards nearby, positive point-charges.
Generally, this does not pose any issue as (i) we expect to achieve better quality Mulliken
charges with more local basis sets and (ii) the periodic calculation providing the initial guess
charges will almost certainly have not made use of diffuse functions. In cases where the user
requires diffuse functions for the calculation of a given property, these may be restored later
and used in a single-point calculation (or geometry optimization) within the embedding
potential obtained with the reduced basis set. In contrast, densely packed solids with signif-
icant ionic character and highly charged atomic centers require additional treatment, at least
ensuring that the QM cluster is sufficiently large to mitigate the effects of over-polarization.

Crystalline Networks

The issue of close-range point-charges can be extended to encompass cases where chemical
bonding is important - for example in networked solids with no obvious, discrete sub-units.
In these cases, error is naturally introduced at the cluster boundary where a covalent bond
has to be broken. If this defect is located far enough from the nuclei of interest, however, its
effect on computed properties will be small. This relies on being able to use a QM cluster of
sufficient size to realize this constraint and could also be accomplished by coupling the SC-
Ewald approach with an ONIOM QM:QM’ calculation to minimize the extra computational
cost.
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Lower-Dimensional Periodicity

Although the current form of SC-Ewald is only applicable to solids with 3D periodicity, it
could be interesting to investigate its potential for studying systems of lower-dimensional
periodicity as well. Indeed, 2D [53] and 1D [54] Ewald summation techniques are avail-
able, and coupling this with the charge-fitting strategy first outlined by Kintenberg and
co-workers [51] as well as the self-consistent procedure outlined in this thesis could see ap-
plications in surface and polymer chemistry, for application in - for instance - dye sensitized
solar cell or photo-catalytic water splitting technology.

Now that we have introduced the necessary theoretical background and the SC-Ewald
approach itself, most of the remainder of this thesis concerns the application of SC-Ewald to
the calculation of various excited-state phenomena occurring in the crystalline phase. These
include a proof-of-concept study on excited state proton transfer in the solid state (chapter
5), aggregation-induced emission (chapter 6), and mechanochromic fluorescence (Chapter
7). Aside from this, we also explore situations where periodic boundary conditions and
large clusters can be used to study the photophysical properties of metal-organic frame-
works (Chapter 8) and, finally, we present a perspective concerning how interactions with
the environment are not always the key issue in condensed-phase modeling (Chapter 9).
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Chapter 5

Excited-State Intramolecular Proton
Transfer in the Solid-State

5.1 Introduction

Proton coupled electron transfer (PCET) refers to the concerted intermolecular or intramolec-
ular transfer of a single proton and electron, a reaction which is pervasive in biology. [55–57]
Though this process can occur at the ground state between proton donor and acceptor sites,
recent attention has been focused on proton transfer reaction induced by light irradiation,
or excited state proton transfer (ESPT). [58] The driving force for such a reaction stems from
the reorganization of molecular electronic density upon excitation, resulting in the increased
acidity of the proton donor and its spontaneous deprotonation. [59] As for PCET, this pro-
cess can occur at both an inter- and intramolecular level. The case of intramolecular excited
state proton transfer (ESIPT) can be described as a four-level photo-cycle, shown in figure
11.4, where, after the absorption of a photon, proton transfer is thermodynamically favored
at the excited state between the proton donor (Y) and acceptor (X) sites. Conversely, radia-
tive decay to the ground state drives the reverse reaction, and the original form (Y–H) is
recovered. The pre-requisite for the four-level cycle at the heart of ESIPT is the presence of
an intramolecular hydrogen bond (H-bond) between close-range proton donor and proton
acceptor groups. [60] The inherent speed of the ESIPT process (kESIPT > 1012s�1) is such
that it is able to proceed even at very low temperature, [61] though the rate itself depends
on the given donor/acceptor groups involved and the surrounding medium - be it solvent
or other ESIPT chromophores in a molecular crystalline form.

Signature properties of ESIPT fluorophores include large Stokes shifts, dual emission,
and a sensitivity of optical properties to the surrounding medium. [62,63] The dual-emissive
nature of these chromophores stems from the shorter (longer) emission wavelength of the
reactant (product). [64, 65] Thanks to the dual-emissive properties of ESIPT chromophores
and the resulting broad emission bands capable of covering the whole visible domain, such
systems have garnered significant interest for the production of white light. [62, 66, 67] As
well as this, ESIPT chromophores have been applied in various fields as molecular logic
gates, [68] fluorescence imaging devices, [69] and UV-absorbers. [70]
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FIGURE 5.1: Generic four-level ESIPT mechanism. The proton transfer reac-
tion is forbidden in the ground state but thermodynamically favorable in the
excited state, resulting in an equilibrium between reactant (Y–H) and product
(X–H) in the excited state each associated with a distinct emission wavelength.

At this point, there is a rich literature containing synthesis methods, [59] extensive pho-
tophysical studies, [71] and application studies of ESIPT in solution, [72] however solid state
emitters which exhibit ESIPT behavior have been explored to a far lesser extent. When one
considers that many reported ESIPT molecules are highly emissive in solution but weakly
emissive in the solid state and suffer from notable shortcomings including low quantum
yield and short fluorescence lifetimes, [65] this is unsurprising. The cause of the lower
performance of ESIPT molecules in the solid state can be attributed to aggregation-caused
quenching (discussed in detail in chapter 6) though, by considering certain design criteria
during the synthesis of such chromophores, these effects may be minimized and the ESIPT
properties enhanced. [65]

From a computational point of view, possessing a reliable tool able to quantitatively
recover the absolute photophysical properties of ESIPT chromophores in solution and in
the solid state as well as how these are subject to their environment would represent a
potentially invaluable asset not only for post-synthesis understanding of ESIPT but at the
molecular-design stage as well. Though the concept of modeling ESIPT in solution is well-
established and has become routine, this is far from the case in the solid state. Difficulties
arise from the directional nature of intermolecular interactions in the solid state as well as the
proper account of long-range electrostatic interactions that could prove crucial to the under-
standing and prediction of the thermodynamic and photophysical processes at the core of
ESIPT in the solid state. With this in mind, we aim to use a case study of a crystalline system
exhibiting a (in this case double) proton transfer reaction yielding dual emission behavior
to show that i) we can use the SC-Ewald algorithm to cheaply and easily incorporate these
interactions into any crystalline model with 3D periodicity for the study of its photophysical
properties and ii) their inclusion leads to a better reproduction of the environmental effects
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FIGURE 5.2: Left: structure of DHNA molecule considered in this chapter.
Right: packing of crystalline DHNA (hydrogen: white; carbon: black, oxygen:

red).

that are imposed by the crystalline environment and therefore better insight into how these
might affect relevant photophysical processes. At this point we would like to stress the dif-
ference between this approach and more “conventional” approaches to charge embedding.
While more traditional approaches indeed seek to incorporate effects of the surrounding
crystalline medium with – often large – arrays of point charges fixed at predefined values
obtained from cluster calculations, these do not reproduce the exact coulomb potential of a
crystalline system. This is due to the charge array inevitably being truncated – regardless
of its size – and the concomitant loss of the effect of infinite periodicity on the electrostatic
potential. In contrast, this work seeks to use the fitting process outlined in chapter 4 which
imposes the exact coulomb potential of the infinite crystal within a predefined area of inter-
est. Indeed, this work represents the first application of SC-Ewald and serves as a proof of
concept study before its further use in subsequent chapters.

In order to test our method effectively, it is desirable to select a system with excel-
lent experimental data at hand - both photophysical and structural - as well as interesting,
environment-sensitive excited-state properties. With this in mind, we selected the recently
synthesized molecular crystal comprised of 1,8-Dihydroxy-2-napthaldehyde (DHNA), [73]
that is schematically depicted in figure 11.5. This molecule was strategically designed to di-
rectly probe the excited state intramolecular double proton transfer (ESIDPT) mechanism at
the excited state, which in this case arises from two distinct intramolecular hydrogen bonds
and results in clear dual emission. Peng and co-workers conducted a comprehensive exper-
imental investigation of the photophysical properties of DHNA in cyclohexane solution and
in single crystalline form with an accompanying theoretical analysis, [73] in the case of the
solution, performed using DFT and TDDFT. In the case of DHNA in cyclohexane solution,
using UV-vis spectroscopy and time-resolved femtosecond fluorescence upconversion tech-
niques, they were able to attribute the observed dual emission to radiation from species that
arose after the first (TA*) and second (TB*) proton transfer reaction. A general outline of the
proposed mechanism is thus depicted in figure 5.3. Interestingly, going from solution to the
solid state, the TA* emission band undergoes a significant red shift – from 520 nm to 560 nm
while the position of the TB* emission band remains unchanged.
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FIGURE 5.3: General reaction scheme for the excited double intramolecular
proton transfer reaction taking place in crystalline DHNA. The values here
are those computed using model TEMB (see figure 5.4) with electronic em-
bedding. Emission wavelengths (in nm) and relative energies with respect to
DHNA (in kcal/mol) are given. Those shown for the ground state species cor-
respond to points calculated on the ground state potential energy surface at

the corresponding optimized excited state geometry.

Furthermore, insight into the thermodynamics of the ESIDPT processes in both the so-
lution and the single crystal was gleaned from the study of variable temperature emission
spectra, with interesting results. In the case of the solution, the TB* state is thermodynam-
ically favored while, in the solid, the TA* state is prevalent. This stark difference between
the thermodynamics of the ESIDPT reaction in solid state and in solution highlights the
sensitivity of this reaction to environmental effects. These differences, associated with an
environmental change from solution to solid state, make this system an ideal case study for
the SC-Ewald approach.

This remainder of this chapter is structured as follows: following an outline of the com-
putational details, a comparison of the different models used in this work is given. Next,
the reproduction of the changes in the dual emission phenomenon between solvated and
solid state DHNA is discussed, first for the simple charge embedding applied in a QM/QM’
scheme and then for its self-consistent variant to simulate its emissive behavior. Finally,
some concluding remarks are given.

5.2 Computational Details

The computational procedure involves calculations that make use of single molecules and
molecular clusters which are predicated by calculations using periodic boundary conditions.
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In this work, we employ only DFT for ground state calculations and TDDFT for those at the
excited state.

All calculations using periodic boundary conditions were performed with the Crystal
code, [74] which makes use of all-electron, atom-centered Gaussian basis sets. Energy con-
vergence with respect to the number of k-points in the Monkhorst-Pack [75] grid was con-
firmed with the number of k-points in the irreducible Brillouin zone set to 30. The default
settings for integral tolerances and convergence criteria were used throughout. A full ge-
ometry optimization was conducted at the B3LYP-D2 [76, 77] level of theory - introducing
empirical corrections to account for dispersion interactions - with a double zeta basis set in-
cluding polarization and diffuse functions (i.e. the 6-31+G(d,p) Pople basis). For solid state
calculations, diffuse functions were omitted from the basis set due to problems related to
basis set linear dependence. As well as the geometry optimization, a population analysis
was performed in order to determine the Mulliken charges for each atom in the unit cell.

Using this optimized geometry and the associated Mulliken Charges, the Ewald code
[51] outlined in chapter 4 was used to construct and compute an array of background
charges. This algorithm seeks to reproduce the Ewald potential felt by a predefined cluster
within a 3D periodic lattice using only the knowledge of the positions and partial charges of
the atoms within the crystallographic unit cell. An Nx|⇥Ny⇥Nzsupercell is formed which
is then split into three zones: 1) the cluster of interest which will be given quantum mechan-
ical treatment, 2) a spherical zone of point charges encasing the first zone with its partial
charge values held constant and 3) all other point charges, which are allowed to vary (see
chapter 4). In the charge-fitting process, the Ewald formula is used to compute the site po-
tentials at all sites within zones 1 and 2 and, subsequently, a system of linear equations is
solved to find charge values for zone 3 that allow the potential of all sites in zones 1 and 2 to
be exactly equal to their Ewald values (and drives the overall dipole moment of the charge
array to zero). This strategy is applied in both static and self-consistent schemes (see below).

In ref [52], general guidelines are given regarding the strategy for choosing the size of
each zone for computing ground state potentials. Though their relative and absolute size
appear to be system dependent, one essential constraint is that the root mean square (rms)
of the discrepancy between the Ewald potential and the computed potential (after charge
fitting) in zones 1 and 2 should be sufficiently small (see chapter 4, [78]). In the same study,
it was also found that Ewald potentials in Zone 1 were improved both by increasing the
number of atoms in Zone 2 and the overall size of the charge array (comprising Zones 1, 2
and 3). Keeping these general considerations in mind, in this work a 6⇥6⇥4 supercell was
used in order to obtain a cube-like distribution of point charges resulting in a total of ap-
proximately 12000 point charges. For the quantum cluster (zone 1) both a DHNA monomer
and a trimer were used, with the number of atoms in zone 2 set to 1500 in order to ensure
that the central molecule(s) are not close to the outside ‘wall’ of the sphere comprising zone
2. Indeed, this gave an adequate root mean square (rms) error on the Ewald potential within
zone 1 of 0.17 µV for the monomer and 6.5 µV for the trimer – deemed within the desired
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FIGURE 5.4: Schematic of models used in this work in which we have shown
the optimized DHNA species. The coloured background signifies the pres-
ence of a background charge distribution generated by Ewald. Models in-
clude a single molecule in vacuum (MV AC), a single molecule embedded
in the charge distribution generated by Ewald (MEMB), a trimer in vacuum
(TV AC) and a trimer embedded in the charge distribution generated by Ewald
(TEMB). The final model (MSC

EMB) involves the same initial setup as model
MEMB , although the charge background is determined self consistently with

the excited state in question (indicated by different Zone 2 and 3 colour).

accuracy required for the calculation of absorption and emission spectra. Furthermore in-
creasing the size of zone 2, with the total number of charges in the array fixed, lead to no
appreciable variation.

All molecular calculations were performed using Gaussian 09 [79] and the same (6-
31+G(d,p)) basis set. In the first approach, each of the species in the ESIDPT reaction
were studied with four different models, specifically: using i) a single molecule in vac-
uum (MV AC), ii) a single molecule embedded in the charge distribution generated by Ewald
(MEMB), iii) a trimer in vacuum (TV AC) and iv) a trimer embedded in the charge distribution
generated by Ewald (TEMB) (see figure 5.4). For calculations involving a single molecule,
the B3LYP [76] exchange-correlation functional was used to optimize the structure at the
ground state for each of the species in the ESIDPT reaction. Subsequently, TD-DFT was
used to optimize their structures at the excited state and calculate their respective emission
energies. For calculations involving a trimer, the ONIOM QM/QM’ method was employed
using the B3LYP/6-31+G(d,p) level of theory for the high-layer and HF/STO-3G for the
low-layer, with the atoms in the low layer held fixed during the geometry optimization pro-
cedure. As, in all cases, the point charge positions and low level ONIOM atoms are at the
optimized ground state geometry provided by the periodic calculations, it is assumed that
there is no cooperativity between molecules during the ESIDPT reaction.
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In the second approach, charges were recomputed self-consistently - using the SC-Ewlad
approach introduced in chapter 4 - with respect to the electron density for a given excited
state. This was done in order to attempt to recover the mutual polarization effect between
the molecule of interest and the surrounding crystal due to the electronic rearrangement
that occurs upon excitation. This was done using a convergence criterion of 0.001 |e-|
with respect to the mean average deviation of the Mulliken charges of the central molecule,
with tighter convergence criteria found to have a negligible effect on the computed emis-
sion energies. Note that, to avoid instabilities similar to those described previously, [80] the
background charges were computed self-consistently using a smaller basis (6-31G(d,p)) and
then the emission energies and new geometries calculated both using this basis set and by
re-introducing the diffuse functions. Also it is to be noted that, in this case, the asymmetric
unit of the crystal structure is equal to that of a single molecule of DHNA. Employing the
Ewald code in a self-consistent manner with respect to charges computed quantum mechan-
ically was done previously in the determination of ground state properties, such as NMR
chemical shifts and indeed, other embedding programs capable of accounting for local de-
fects in crystalline environments in a self-consistent manner exist.

All minima were verified by computing the harmonic frequencies either analytically
(ground state) or semi-numerically (excited state) and checking that all frequencies were
real. For transition states, one imaginary frequency, corresponding to the proton transfer
reaction coordinate, was found.

5.3 Results and Discussion

5.3.1 Computed Emission Energies

With the focus of this work being the prediction of excited state properties in the solid state,
we shall begin by discussing the performance of each model (figure 5.4) in attempting to re-
produce the emission energy of each species observed via experiment. Table 5.1 shows all of
the calculated emission wavelengths, in nm, for each model studied in this work alongside
the experimental data from both a single crystal and cyclohexane solution.

Generally, at least at this level of theory, all models overestimate the emission energy
of both the TA* and TB* species, with varying degrees of severity. Properties of molecular
crystals are often approximated via the study of an isolated molecule in the gas phase, as-
suming all intermolecular forces are negligible. For this reason, we shall initially discuss the
performance of each model with respect to this approximation – here designated MV AC . In
the case of MEMB , the emission energy from TA* is overestimated by a significant 0.31 eV.
Furthermore, we were unable to achieve an excited state minimum for the TB* species using
only an isolated molecule and therefore were unable to calculate a meaningful emission en-
ergy. In turn, the absence of an excited state energy minimum for TB* shows that this model
fails to predict the inherent dual emission property of the DHNA molecular crystal observed
experimentally. The rather large overestimation of the emission energy from TA* together
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with the lack of a stable energy minimum for TB* is the first indication of the importance of
intermolecular effects in the DHNA molecular crystal and that their inclusion in any model
is crucial to the prediction of the photophysical properties.

For model MEMB , it is clear that the inclusion of the ground state charge background
offers a significant improvement. In the case of TA* emission, the overestimation is reduced
to 0.28 eV which, in any case, still represents a significant error. A more stark improvement
can be found when analyzing the TB* emission. Not only was it possible to locate an ener-
getic minimum on the excited state potential energy surface, the emission wavelength was
predicted to be 600 nm, in fairly good agreement with experiment, with an acceptable over-
estimation of 0.16 eV. In model MEMB we have attempted to accurately capture long range
electrostatic effects while ignoring other, likely influential, intermolecular forces. While the
good agreement with the experimental TB* emission is encouraging, the still rather poor
agreement in the case of TA* prompted us to further modify and refine the model in an
attempt to capture other potentially important intermolecular effects.

This led to the introduction of models TV AC and TEMB (Figure 5), in which we have
designated a trimer of DHNA molecules to be treated at the quantum level. This was done
in order to more accurately capture closer-range electrostatic effects each of the species in
the ESDIPT reaction and lead to lower, and so more accurate, excitation energies.

In the case of model TEMB , the inclusion of both the trimer and the charge background
improves the prediction of the TA* emission wavelength to 514 nm (the best overall result,
corresponding to an overestimation of an acceptable 0.20 eV with respect to experiment)
while it has no effect on the calculated TB* emission energy. Since this is the best perform-
ing model of those we have proposed with respect to experimental data, it highlights the
effectiveness of both capturing the closer range electrostatic interactions while maintaining
the longer-range electrostatic influence of the inherent periodicity of the crystal – here de-
scribed in terms of the ground state Ewald background charge distribution. The remaining
error observed with respect to the experimental data, other than the inherent error in the
exchange-correlation functional, could be ascribed to the fixed nature of the charge distribu-
tion. In fact, if the surrounding charge field were somehow allowed to equilibrate with the
electronic density of the central molecule upon excitation, it could be reasonable to assume
that this would further enhance the quality of the calculated emission energy of each species
– a point we shall return to later.

5.3.2 Emission Dependence on Environment: QM:QM’ and Ewald

Experimentally, the behavior of the ESIDPT reaction was observed to be rather different
depending on whether it takes place in cyclohexane solution or in a crystalline medium.
Two major effects were observed: the apparent red shift of the TA* emission peak by 0.17 eV
(520 – 560 nm) going from the solution to the crystal and the inversion of relative emission
band intensities of each species. Specifically, the emission band ascribed to the TB* species
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is far more intense than that of the TA* band in cyclohexane solution, with the inverse being
true in the case of the single crystal.

Regarding the first effect, Peng and co-workers already conducted DFT and TD-DFT
studies of the ESIDPT reaction using a single DHNA molecule in cyclohexane solution (des-
ignated MSOL), taking advantage of a polarizable continuum model (see chapter 2) to ac-
count for solvent effects and so we will use their results in comparison with our calculated
values of TA* emission to assess each model’s ability to reproduce the red shift (crystal shift)
observed going from cyclohexane solution to the solid state.

It can be seen from table 5.1 that model MEMB predicts no shift with respect to the cal-
culated value in cyclohexane solution, showing that the charge distribution alone is insuf-
ficient to model this effect. Moving to the trimer (TV AC), we make a modest improvement,
the crystal shift at least travelling in the correct direction, with a calculated red shift of 0.03
eV. Next, considering model TEMB , we see an improvement with respect to TV AC (crystal
shift of 0.08 eV), bringing the calculated crystal shift into good agreement (within 0.1 eV)
with the experimental value. However, in the same manner the TB* emission was deter-
mined to be 0.1 eV lower in energy with respect to the solution - even greater than that of
TA* - while no shift was observed experimentally for TB*. This shows that, at least for these
models, the shift of the TA* and TB* emission in the solid state with respect to solution is not
well reproduced. This point will be revisited within the context of the self-consistent charge
scheme computed at the excited state.

5.3.3 Effect of the Environment on Reaction Thermodynamics

With respect to the second effect, namely the inversion of the relative intensities of the emis-
sion bands ascribed to TA* and TB* going from cyclohexane solution to the crystal, we will
firstly discuss the calculated oscillator strengths determined alongside each emission wave-
length for the first four models shown in figure 5.4, given in brackets in table 5.1. We can see
that, whether in solution or crystalline form and regardless of the model used to describe the
crystalline environment, the calculated oscillator strength is slightly greater for TB* than for
TA*. This means that this information alone is insufficient to describe the intensity inversion
phenomenon and points towards reaction thermodynamics as the root cause – as previously
suggested by Peng and co-workers. [73]

To gain more insight, the excited state potential energy surface was mapped out along
the ESIDPT reaction coordinate via interpolation between minimal energy structures at the
excited state for models MV AC , MEMB , TV AC and TEMB and these are shown in figure 5.5
along with the corresponding relative ground state energies at the excited state geometry.
In all cases, TB* is higher in energy than TA*, ranging from 2.66 kcal/mol in model TV AC to
3.65 kcal/mol in model TEMB . It is clear that any attempt to include the effects of the sur-
rounding solid state environment destabilizes the TB* form therefore making any emission
from this species less likely. It is important to note that, as previously calculated by Peng
and co-workers [73] in the case of the solution, B3LYP is known to overestimate the energy
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FIGURE 5.5: Excited state potential energy surfaces mapped along a reaction
coordinate interpolating between each optimised excited state species. Each
model, as outlined in figure 5.4, has been considered. As MV AC did not pro-
duce an excited state minimum for TB*, the structure for MEMB was used for

interpolation.

of the TB* species giving results inconsistent with experimental data. In their work this was
remedied through performing single point EOM-CCSD calculations on TD-DFT optimized
structures which revealed the TB* energy to be lower than TA* in cyclohexane solution by
1.82 kcal/mol – contrary to what was observed with B3LYP. However, given that the most
reliable model (TEMB) that we have investigated so far predicts that TB* is 3.26 kcal/mol
higher in energy than TA*, it could be reasonable to conclude, despite the inherent overes-
timation of TB* by B3LYP, that TB* is indeed higher in energy than TA* in the solid state.
This is the inverse of what observed in cyclohexane solution and so the increased emission
intensity of TA* relative to TB* in the solid state compared with in solution is a direct result
of the destabilization of the TB* species by the crystalline environment.

Analyzing the nature of the main molecular orbitals involved in the transition (figure
5.6), we can see that each step of the double proton transfer reaction results in visibly in-
creased ⇡-conjugation at the excited state which was previously cited as responsible for the
reduced emission energy going from TA* to TB*. As we have established that TB* is likely
higher in energy than TA* in the solid state, it follows that this observation alone is not suf-
ficient to explain the lower emission energy measured experimentally for TB*. Looking at
the relative energies at the ground state for each species at the corresponding excited state
geometry, it can be seen that the TB ground state is significantly destabilized relative to the
TA ground state by the solid state environment in the non-equilibrium limit (by approxi-
mately 3.7 kcal/mol and 1.8 kcal/mol comparing models TV AC and TEMB for TB and TA
respectively), which, in turn, reduces the emission energy. It can be seen that this effect is
exaggerated upon the inclusion of the background charge distribution (TEMB) to the trimer,
relative to the trimer alone (TV AC). Indeed, it is true that in all cases where the Ewald charges
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TABLE 5.2: Computed emission wavelengths (in nm) from the lowest lying
excited state TA* and TB* (in nm, with corresponding calculated oscillator
strengths, in arbitrary units, given in brackets) using the MSC

EMB model by self-
consistently equilibrating first the charges only (Charges) and then charges

and excited state geometry of the central molecule (Charges + Opt).

Species Charges Charges + Opt

TA* 539 (0.097) 541 (0.089)

TB* 621 (0.107) 619 (0.101)

are included, both TA* and TB* are destabilized - TB* more profoundly so than TA*.

To further support the idea that the TB* emission is less likely in the solid state (and
therefore less intense) than the TA* emission, we will discuss the computed transition state
barrier heights at the excited state. In agreement with experimental data (and in all solid
state models tested) the TS2 barrier (corresponding to the TA*!TB* reaction) was computed
to be slightly higher - ranging from 1.66 kcal/mol for model MEMB to 0.72 kcal/mol for
model TEMB - than that of TS1 (corresponding to the DHNA*!TA* reaction).

5.3.4 Emission Dependence on Environment: SC-Ewald

Returning to the idea that the systematic underestimation of the TA* and TB* emission en-
ergies could be related to the absence of polarization of the charge embedding background,
an attempt was made to alleviate this problem by using a single molecule of DHNA while
calculating background charges self-consistently with respect to the first excited states of
TA and TB. This model is hereafter designated as MSC

EMB and corresponds to the SC-Ewald
method introduced in chapter 4. This was done in order to mimic the mutual polarization
between the central molecule and the surrounding crystalline environment after excitation
of the central molecule. The results are shown in the bar graph in figure 11.6. It is clear that,
for both TA* and TB* emission, the calculation of the emission energies is significantly im-
proved, even when compared to the best model investigated previously (TEMB). For TA*,
the absolute error using model TEMB is reduced from 0.198 eV (514 nm) to 0.001 eV (560
nm), providing excellent agreement with the experimental value. In the case of TB* where
the absolute error is reduced from 0.061 eV (630 nm) to 0.047 eV (634 nm), it is encouraging
that SC-Ewald did not cause an emission energy that is already compatible with experiment
to become significantly underestimated. Furthermore, when we compare the self-consistent
result with that of MV AC for TB*, we observe a significant improvement (error decreases
from 0.276 eV to 0.047 eV) while dealing with just a single molecule. These results show that
the polarization of surrounding molecules in the molecular crystal upon the excitation of a
given molecule should not be neglected when aiming to reproduce fine effects and that it
could be intrinsically related to the overall photophysical properties of a molecular crystal.

From a more technical point of view, looking at both the ground state and excited state
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FIGURE 5.6: HOMO and LUMO molecular orbitals (surface isovalue 0.03 au)
at the optimised excited state (model MEMB) geometries of each species in the
ESDIPT reaction. Note that the orbital character does not change significantly

depending on the model used.

dipole moments for the TA and TB species allows one to rationalize the difference in red
shift between TA* and TB* emission with respect to solution, a phenomenon that was not
recovered using the models discussed thus far. For TA, the dipole moment of the excited
state (9.03 D) was calculated to be 3.27 D greater than that of the ground state (5.76 D),
whereas the dipole moment for TB* is only 1.08 D greater (7.46 and 8.54 D for the ground
and excited states respectively). This explains the considerably lower energy obtained with
respect to the non-self-consistent charges for TA* emission relative to the far more modest
reduction for TB*. This can be rationalized through the idea of the greater ‘polarizing power’
of TA* relative to TB* on the surrounding molecules in the crystal. Indeed, the greater red
shift for TA* compared to TB* going from solution to the solid state is now quantitatively
reproduced. It can be concluded, then, that the greater dipole moment of TA* relative to
TB* and thus the greater stabilization of TA* in the solid-state gives rise to the apparent red
shift observed experimentally for TA* species only, going from solution in cyclohexane to
the molecular crystalline environment.

In general, it is worth noting that the charge background reaches convergence relatively
quickly with a typical number of cycles ranging from 3-8 in this case. Furthermore, it can
be seen that, with respect to the self-consistent charges obtained for the geometry in MEMB ,
the mutual optimization of the charges and the excited state geometry yields no significant
improvement in calculated emission energies for either TA* or TB* table 5.2. This suggests
that in future use of this method one iteration – that is to say one optimization of the charges
with no subsequent geometry optimization - could be sufficient to describe the correction to
the emission energies due to polarization of the surrounding crystal structure, although this
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FIGURE 5.7: Absolute error in emission energies (eV) computed for each
model considered in this chapter. Note that the error is considered infinite
for TB* emission using the MV AC model as no minimum on the excited-state

potential energy surface is obtained.
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requires further testing. This good agreement with experiment also lends insight into the
dynamics of the excited state process. Specifically, as all of the surrounding point charges
are in the original DHNA positions and are frozen in place, this suggests that geometrical
reorganization is sufficiently fast (and local) that it can be assumed to have no effect on that
of the surrounding molecules. As a final point, it could be concluded that the stabilization of
the excited states TA* and TB* by the polarization of the surrounding crystal lattice is in fact
more important factor for the proper prediction of the emission energies than the accurate
descriptions of closer-range electrostatic interactions, as in the QM/QM’ (TEMB) approach.

5.4 Conclusions

The key conclusions of this chapter are summarized below:

• We have demonstrated that accounting for long-range electrostatic effects using the
Ewald program offers improvement over the inclusion of only short-range electrostatic
interactions introduced via an ONIOM QM:QM’ model.

• As an initial application of the SC-Ewald approach, we have demonstrated that it
can be used to cost-effectively account for local changes in electronic structure at the
excited-state in the crystalline environment while, at the same time, explicitly account-
ing for long-range electrostatic effects inherent in periodic systems. The impact of
these considerations on computed photophysical properties (in this case, emission) is
compelling, with the model able to very accurately reproduce experimental observa-
tions, serving as a jumping-off point for further application in later chapters.

• As well as emission energies in the solid state, SC-Ewald is also able to recover the sen-
sitivity of these properties to the environment, when changing from DHNA in solution
to the crystalline phase.

• The state- and system-specific nature of SC-Ewald is evident in its behavior with re-
spect to TA* and TB* emission, with each species exhibiting a different response to the
self-consistent algorithm. This point is particularly encouraging for further applica-
tions to come.

This work has used a case study of a system (DHNA), exhibiting an excited state in-
tramolecular double proton transfer reaction and whose complex photophysical properties
are sensitive to environmental effects, to develop and demonstrate approaches which are
capable of recovering the subtle yet profound effects of a crystalline environment on photo-
physical properties. Initially, a background charge distribution reproducing the exact Ewald
potential of the crystal was used with improved results obtained using a QM/QM’ approach
alongside this charge distribution. In a second approach, results were found to be further
improved (and indeed, in very good agreement with experiment) by using a self-consistent
method to determine the values of the background point charges while considering only a
single molecule explicitly at the QM level.
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In this case, we demonstrate two different approaches that, while associated with very
little additional computational cost, are able to retain the inherent effect of crystalline peri-
odicity on the electrostatic potential felt by a central molecule and apply this in the context
of photophysical property calculations. We have demonstrated that the inclusion of these
effects can be crucial if one wishes to accurately describe and predict the result of photo-
physical processes at play in the solid state and, furthermore, to investigate how these may
or may not differ from observed photophysical phenomena in other media, such as in solu-
tion. In the following chapters, we will see how SC-Ewald may be applied to other systems
to study complex, environment-sensitive optical properties of organic molecules.
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Chapter 6

Aggregation-Induced Emission:
The case of Diphenyl Fluoronone

6.1 Introduction

Many organic luminophores exhibit very different photophysical behavior between dilute
and concentrated solution. [81] Naturally, this difference in behavior is brought by the in-
creased likelihood of inter-luminophore interactions in concentrated solutions. As a result,
desirable properties observed from experimental measurements made in dilute solution are
often (and indeed usually) not transferable to molecular aggregates or powders composed
from the same organic molecule. More specifically, through what is often referred to as
“concentraton quenching”, the bright luminescence observed in dilute solutions for most
organic luminophores is absent upon concentration of the solution. [82] Usually attributed
to aggregate formation, the associated loss of intense luminescence properties is linked to
the conventional design strategies that are used to construct such luminophores. [83] Specif-
ically, the governance of organic molecular luminescence by the extent of molecular orbital
conjugation leads to the ubiquitous presence of fused aromatic rings, resulting in increased
⇡-conjugation and a flat, often rigid, molecular structure (as in the case of perylene, see fig-
ure 11.7) [84]. The resulting molecules can indeed demonstrate intense luminescence in di-
lute solution, though the increased opportunity for intermolecular ⇡-stacking promotes the
formation of excimers (two or more molecules which are weakly bound at the excited state
by dissociation of an exciton across each molecule), the formation of which is a common
source of aggregation-caused quenching (ACQ) [84]. From an applications point of view,
the ACQ effect is considered undesirable for devices such as organic light-emitting diodes
(OLEDs), for which the formation of solid-state crystalline material or films is crucial. [85,86]
Furthermore, any application which requires contact with aqueous solution is made more
difficult by the intrinsic hydrophobic nature of the ⇡-conjugated backbone. Although this
may be mitigated somewhat by the addition of polar functional groups, aggregate formation
at sufficiently high concentrations is still prevalent. [87]

From these barriers to direct application, intense research effort has been devoted to cir-
cumvent the problem of ACQ and to provide organic molecular systems which are capable
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FIGURE 6.1: Typical organic molecules which exhibit aggregation-caused
quenching (ACQ) and aggregation-induced emission (AIE).

of bright luminescence both in concentrated solution and in the solid state. Initially, attempts
were made to obstruct the aggregation process through the addition of bulky substituents or
to simply reduce the extent of conjugation for a given luminophore, though these strategies
often lead to a drop in the luminescence efficiency. [87] In the last decade, systems which run
counter to the ACQ paradigm were introduced - a series of silole derivatives, non-emissive
in dilute solution yet highly fluorescent in aggregated or powdered forms. [88,89] This prop-
erty, diametrically opposed to the destructive ACQ phenomenon, was termed “aggregation-
induced emission” and has since resulted in the synthesis of many classes of such molecules.
Though these observations spelled improvements in technological applications of organic
luminophores, additional effort was required to understand the mechanisms behind AIE
and how these may be exploited.

The vast majority of AIE behavior, including that of the silole derivative (HPS) shown
in figure 11.7, is rationalized by the restriction of intramolecular rotation (RIR) paradigm.
[88, 90–92] For HPS, there are six phenyl ring substituents linked to the silole core. These
rings, which may rotate around their single bonds with the silole moiety, serve as an efficient
rotational (or, more generally, vibrational) deactivation pathway, leading to non-radiative
decay from a excited states to the ground state. In aggregates or in the solid state, this
movement is severely restricted - removing this non-radiative deactivation pathway and
conserving the otherwise brightly-emissive properties of the HPS molecule. This attribution
of the RIR mechanism to the AIE phenomenon has also been investigated and verified by
monitoring fluorescence as a function of solvent viscosity, system temperature, and by the
application of pressure. [88]

From a theoretical point of view, attempts have been made to rationalize this process via
the calculation of potential energy surfaces along rotational trajectories and the analysis of
the non-radiative decay rates along these pathways. [93, 94] While this concept can readily
explain AIE observed in chromophores such as HPS, in which the emission of the aggregate
is of a similar wavelength to that of the molecule in solution, it is not sufficient to explain
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FIGURE 6.2: Top: Fully optimized B3LYP-D*/6-31G(d,p) crystalline structure
of DPF. The blue line represents the conventional unit cell, whereas the two
equal intermolecular O-H hydrogen bonds are represented by purple sticks.
The unit cell of the experimental structure (a = 34.84Å, b = 6.85Å, c =
7.21Å, is well-reproduced, with the resulting optimized lattice parameters
a = 34.61Å, b = 6.48Å, c = 7.17Å. Bottom: Structure of the DPF molecule.

large solvatochromic-like effects observed in some AIE chromophores. This apparent gap
in understanding for this sub-set of AIE systems presents an opportunity for theoretical
approaches to aid in their understanding through the application of excited-state methods
such as TDDFT. Experimentally, the concomitant brightening and significant bathochromic
shift of emission band maxima during the aggregation of such chromophores is often at-
tributed to the formation of excimers, which is substantiated by an apparent broadening of
the emission band itself, along with an increased excited state lifetime observed via time
resolved fluorescence techniques. [95]

2,7-diphenylfluorenone (DPF) is one such chromophore, demonstrating more than a 150
nm red shift of the emission band after aggregation, which is attributed to excited state
excimer formation. [95] This chromophore also readily forms powders, which exhibit very
similar optical properties to the aggregates. In this chapter, we highlight an alternative root-
cause for the AIE behavior of DPF and demonstrate that it arises from a single-molecule
process rather than the formation of excimers. Using the SC-Ewald electrostatic embed-
ding model (chapter 4) as an approximation of the solid state environment, it will be shown
that the field induced by the crystalline environment can enhance the relative brightness
of otherwise poorly emissive states in DPF, resulting in both enhanced fluorescence and a
substantial bathochromic shift when compared with emission in dilute solution. [96]
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FIGURE 6.3: Schematic representation of the solid state models used in this
work. (a) Solid state modeled using a two-level ONIOM QM/QM’ scheme,
with the low-level region including 20 nearest-neighbor molecules. (b) Solid
state modeled using the ground (absorption) or excited state (emission) po-
tentials generated by the SC-Ewald procedure, outlined in chapter 4. Fitted
charges (grey cube, Zone 3) are used to reproduce the excited state infinite
crystalline potential within a given zone (red ball, Zone 2). Within this zone,

a quantum-mechanically treated cluster is placed (black molecule, Zone 1).

6.2 Computational Details

DFT and TDDFT calculations have been used to investigate the ground and excited state
properties of a single DPF molecule in vacuum and in THF solution.The latter were de-
scribed by using the Conductor-like Polarizable continuum solvation Model (C-PCM) [34]
in the linear response formulation. Ground and excited state geometry optimizations and
absorption/emission energies have been performed using both B3LYP [76] and CAM-B3LYP
[97] functionals coupled with the 6-31+G(d,p) basis set. All calculations have been carried
out with the Gaussian09 [79] suite of programs.

In order to determine the equilibrium atomic positions and unit cell parameters for sub-
sequent embedding techniques, ground-state periodic calculations have been carried out on
bulk DPF, employing the parallel version of the CRYSTAL09 [74] package. With the purpose
of obtaining an electronic ground-state structurally as close as possible to the experimental
one, we performed a dispersion-corrected B3LYP-D* [98]/6-31G(d,p) optimization of the
solid crystalline system, shown in 11.8. In such a case, diffuse functions were not utilized to
avoid basis-set linear dependence issues. The Monkhorst-Pack [75] grid was set to 6 k-points
within the Irreducible Brillouin Zone. In order to determine excited state properties of crys-
talline DPF, the QM/QM’ ONIOM and the Self-Consistent Ewald embedding methods have
been used.

For the ONIOM QM/QM’ calculations, a sufficiently large cluster is cut from a crys-
talline supercell and treated at the QM/QM’ level in which the high level region consists
of the a single DPF molecule or a DPF dimer, as shown in figure 6.3. The low-level region
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includes 20 DPF molecules for the monomer model (figure 6.3 a), whereas it includes 20 and
22 DPF molecules (the nearest-neighbor molecules, within a range of 3.8-4.0 Å) for the two
dimer models considered, Dimer 1 and Dimer 2, respectively (figures 6.4 b and c).

Monomer and dimer vertical absorption energies have been computed at the TD-DFT/6-
31+G(d,p):HF/STO-3G level of theory, at the optimized crystalline geometry (see above)
whereas the emission spectra were computed by optimizing the lowest-energy bright sin-
glet excited-states, S1 and S3, involved in the experimentally-observed fluorescence. The
S2 state was not considered since, in every case, it was computed to be a dark (i.e. non-
emissive) state (oscillator strength f=0.000 a.u.). As DFT approximations, B3LYP and CAM-
B3LYP functionals were considered for the high-level QM region. Following previous inves-
tigations, the low level region was treated at the Hartree-Fock (HF) level coupled with the
Slater-type STO-3G minimal basis set which has been found to provide Mulliken charges
similar to those obtained with more accurate calculations.

With the SC-Ewald approach, the solid state environment has also been modeled as is
detailed in chapter 4. Briefly, this process seeks to approximate the excited state crystalline
environment via a large array of point charges while, at the same time, performing a charge
fitting process to reproduce the infinite electrostatic potential of the fully periodic system.

The charge array was composed of a 5⇥5⇥5 supercell, in order to obtain a cube-like
distribution of point charges, giving a total of approximately 11000 point charges. For the
charge fitting procedure, the fixed charge zone (Zone 2, see figure 6.3 b) was set to an origin-
centered sphere containing 1500 atoms in order to ensure the QM region (Zone 1) is not close
to the ‘outside wall’ of Zone 2. The resulting fitted charges in Zone 3 produced an adequate
root mean square (RMS) error of the Ewald potential within Zone 1 of less than 0.1 µV.

To model the crystalline environment at the excited state, this charge array was recom-
puted self-consistently using the Mulliken charges derived from the electronic density of
the excited state of interest (S1 and S3 states in this case), applying a convergence criterion
of 0.001 |e-| with respect to the mean average deviation of the computed charges in Zone
1. In order to avoid numerical instabilities, the SC-Ewald procedure was carried out us-
ing a reduced basis set (6-31G(d)), before reverting to the full basis set (6-31+G(d,p)) for
the calculation of optical absorption and emission properties within the generated charge
background.

6.3 Results and Discussion

6.3.1 Assessment of Dimer Coupling at the Excited State

Following the experimental interpretation of excimer formation as the root cause of AIE in
DPF, [95] absorption features were first determined for two sets of dimers found in crys-
talline DPF. From figure 6.4, it can be clearly observed that, regardless of the dimer chosen,
the effect on the calculated absorption spectrum - with respect to that of the monomer - is
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negligible. This observation also holds when the solid state environment is approximated
using the ONIOM method. Together, these results show that, at least in the vertical absorp-
tion regime, the intermolecular coupling is not sufficient to alter the observed photophysical
properties either in terms of energy or absorption intensity. From these results, it is then nec-
essary to consider alternative mechanisms to rationalize the AIE behaviour of DPF. In the
following, starting from a monomer picture, it will be shown that both the absorption and
emission spectra of aggregated DPF can be explained via a single-molecule process, facili-
tated by interactions with the crystalline environment at the excited state.

6.3.2 Assignment of Spectral Absorption Bands

Figure 6.5 shows the UV-Visible absorption spectra computed at B3LYP and CAM-B3LYP
level for the DPF monomer in vacuum, THF solution and with the ONIOM QM/QM’ and
SC-Ewald embedding protocols. At first glance, a qualitative accuracy of both functionals
for the overall spectral band shapes can be observed, with respect to the experimental coun-
terpart in concentrated (60 µM) THF solution (figure 1g of the experimental paper [95]) –
where DPF is said to be an emissive, aggregated form. Also, an almost quantitative spectral
characterization is provided by B3LYP in terms of �max wavelengths, relative band intensi-
ties and band shapes. It should be noted that, to facilitate a comparison between isolated
and aggregated properties of DFP, absorption spectra will be compared with those in con-
centrated THF solution (60 µM), whereas �max refers to experimental results obtained in
mixed THF/water solutions (20 µM), though the optical transitions in each case are identi-
cal.

In more detail, the main transitions found experimentally (Table 1 of reference [95] –
corresponding to 4.34 eV, 3.64 eV and 2.63 eV (286 nm, 341 nm, and 471 nm) – are quite well
reproduced. A sizable bathochromic (hypsochromic) shift is observed with B3LYP (CAM-
B3LYP) for the high energy/most intense ⇡-⇡* transition located experimentally at 4.34 eV,
though this band is of little interest in the context of potential AIE mechanisms, due to the
very low probability of populating the associated singlet excited state (S0!S5).

Moving towards lower energy transitions, a better description is given by B3LYP for the
two convoluted bands at around 3.84 eV (S0!S3 and S0!S2 transitions with ⇡-⇡* character),
whereas CAM-B3LYP predicts hypsochromically shifted transitions. It is worth noting here
that the vibronic band shape observed in the experimental spectrum is not accounted for
within the current computational protocol.

Though a weak absorption band at 2.63 eV (471 nm) is not explicitly discussed in the
experimental work for the 20 µM THF solution, it is consistent with a distinguishable non-
negligible absorption band (figure 1c of reference [95]) present in the computed B3LYP spec-
tra, corresponding to the HOMO-LUMO (S0!S1) transition, with charge transfer (CT) char-
acter. Here, the electronic effects from the use of different structural and environmental
descriptions of DPF highlight that: i) as expected, B3LYP gives, in general, a better predic-
tion of the S0!S1 wavelength, compared to experiment, but this could be due to the limited
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FIGURE 6.4: a) Absorption spectra of dimer clusters extracted from the crys-
talline structure of DPF, computed at the CAM-B3LYP level of theory for two
different dimer configurations: Dimer 1 (b) and Dimer 2 (c). These spec-
tra have been obtained both in vacuum (solid lines) and using the ONIOM
QM/QM’ cluster model (dotted lines). A FWHM value of 0.35 eV is used
throughout. For comparison, analogous calculations performed on monomers

and the experimental spectrum16 are given.
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through-space character of this transition, whereas ii) CAM-B3LYP, though underestimating
the �max of all transitions, yields a systematic shift. Moreover, recalling that such functional
is known to perform well in describing transitions with CT character, [26, 99] we expect it
to provide reasonable values for emission with respect to B3LYP, which usually underesti-
mates emission energies. iii) A bathochromic shift - from 376 nm to 397 nm - is associated
with the changing electrostatic interactions when passing from vacuum to implicit solva-
tion, to ONIOM QM/QM’ and then to SC-Ewald embedding (CAM-B3LYP). Such a trend
goes towards the experimental transition of 471 nm (though graphically, the �max is located
even closer at ca. 440 nm). Note that the same magnitude of bathochromic shift is observed
for B3LYP, going from 452 nm to 468 nm.

6.3.3 Solvated and Aggregated Fluorescence of DPF

In the following, it will be shown that the enhanced emission observed upon aggregation of
DPF can be rationalized considering only a single molecule, with the condition that one must
account for the influence of the solid state environment. Figure 11.9 shows the calculated
and experimental emission spectra. Experimentally, [95] it is observed that concentrated
solutions of DPF dissolved in tetrahydrofuran produce two distinct emission bands. The
first band, at 360 nm (3.44 eV), is attributed to emission from isolated molecules of DPF
in solution (ESOL) whereas the second band, at 534 nm (2.32 eV), is attributed to emission
from the DPF aggregate (EAGG). Importantly, EAGG is not observed in low concentration
(20 µM) THF solutions of DPF, due to the absence of aggregate formation. In the following,
we approximate the aggregated form of DPF as a perfect crystal. Due to the near-identical
emission behavior observed experimentally for powdered DFP and aggregated DPF and the
precipitate-like nature of the aggregate, we deem this approximation to be viable.

From calculations performed on a single molecule of DPF, both in THF solution and by
approximating the crystalline environment, ESOL can be attributed to radiative emission
from the S3 state, which corresponds to a ⇡-⇡* excited state. From figure 11.9 it can be seen
that, of all of the models tested ESOL is best reproduced, albeit with a marginal blue shift,
using the THF solvent model which results in a calculated emission energy approximately
0.2 eV from the experimental value. The solid-state models, however, yield a significantly
blue shifted (by 0.5 eV) emission maximum relative to experiment. Given the superior per-
formance of the THF model, these results support that ESOL is indeed a result of emission
from isolated monomers of DPF in solution. Additionally, it can be seen that both solid
state models – ONIOM QM/QM’ and SC-Ewald – produce similar emission bands. This is
significant, as it is an indication that the close-range electrostatic interactions are well repro-
duced by the SC-Ewald approach, despite relying on simple point charges to approximate
the crystalline environment. Furthermore, although SC-Ewald approximates the excited
state crystalline potential while ONIOM approximates the ground state environment, due
to the small spatial difference in density between the ground state and S3 excited state it is
to be expected that the ground and excited state potentials – and thus the resulting emission
energies – will be similar.
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FIGURE 6.5: Calculated absorption spectra of DPF at the (a) B3LYP and (b)
CAM-B3LYP level, adopting four different models to approximate the envi-
ronment: i) in vacuum, ii) in THF, using implicit solvation, iii) in the solid
state using an ONIOM QM/QM’ model and iv) in the solid state using the
ground state embedding potential as determined by the SC-Ewald procedure.
A FWHM value of 0.35 eV is used throughout. The experimental absorp-
tion [?] is also shown (dashed lines). (c) Assignment and molecular orbitals
involved in first three bright transitions (S0!S1, S0!S3, and S0!S5) of DPF
(orbital isocontour value of 0.03 a.u.) along with the experimental absorption

energies of the relevant bands.
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FIGURE 6.6: Calculated emission spectra of both S0 ! S1 and S0 ! S3 tran-
sitions at the CAM-B3LYP level: i) in THF (implicit solvation, C-PCM), ii) in
the solid state using ONIOM QM/QM’ and iii) in the solid state using the SC-
Ewald embedding procedure. A FWHM value of 0.35 eV is used throughout.
The experimental spectrum [95] is also shown (dashed lines). ESOL and EAGG

indicate experimental emission bands attributed to dissolved and aggregated
DPF respectively. All spectra are normalized with respect to EAGG.

Now considering EAGG – a result of emission from the S1 CT excited state (S0!S1) –
all models produce emission energies comparable with experiment, with errors of just 0.11,
0.12 and 0.05 eV for THF, ONIOM and SC-Ewald, respectively. In contrast to ESOL, ONIOM
and SC-Ewald yield somewhat different emission energies for EAGG, with SC-Ewald pro-
ducing an emission energy that is 0.15 eV red-shifted with respect to ONIOM. Again, this
is significant and highlights the state-specific nature of the excited state crystalline potential
generated by SC-Ewald. Naturally, the pronounced charge transfer character of the S1 ex-
cited state results in a marked rearrangement of the electronic density and, consequently, a
non-negligible alteration to the surrounding embedding potential, which is reflected in the
calculated emission energy.

Perhaps more interesting within the context of AIE is the difference in relative intensity
between ESOL and EAGG produced by each model. In the case of THF, the weak emission
from the S1 state relative to that of the S3 state is consistent with the lack of emission in-
tensity observed experimentally for DPF in THF solution. Upon introducing the solid-state
environment via the ONIOM model, a marginal enhancement of EAGG can be noticed, in
terms of brightness, although this is not of a sufficient magnitude to account for the exper-
imentally measured enhanced emission of the aggregate. However, when accounting for
the excited state crystalline potential as produced by SC-Ewald, a remarkable agreement
with the experimental spectrum is observed, and the enhanced emission as a result of the



6.4. Conclusions 83

aggregation is recovered. In this way, the potentially non-negligible effects of not only the
long-range electrostatic interactions but also the excited solid state potential are evident.
Crucially, using this model it can be shown that both the large red-shift and enhanced emis-
sion intensity upon aggregation of DPF can be rationalized with a single molecule, without
considering intermolecular electronically excited states or excimer formation. Notably, this
is in contrast to the previous experimental interpretation, which relies on the formation of
so-called “static excimers” – comprising dimers of DPF – to account for the 150 nm red-shift
upon aggregation.

6.4 Conclusions

The key conclusions form this chapter are outlined below:

• In the modeling of AIE processes, we have demonstrated the potential importance of
including environmental effects, and how different models (ONIOM and SC-Ewald)
can lead to differences in the interpretation of the AIE mechanism.

• While the RIR paradigm is sufficient to rationalize AIE phenomena in many organic
molecular systems, DPF highlights that this is not always the case.

• Our theoretical analysis demonstrates that the simultaneous enhancement and red-
shifting of the emission maximum of DPF upon aggregation is a result of the electro-
static field induced by the crystalline environment, enhancing the intensity of other-
wise poorly-emissive states (in solution).

Our results demonstrate how, generally, modelling different environmental effects to a suffi-
cient quality is crucial for the understanding and reproduction of experimental observations
within the context of AIE. More specifically, in the case of DPF, it has been shown that the
often-cited restriction of intramolecular rotation paradigm provides an incomplete picture
of the AIE process in this particular case. Instead, a theoretical analysis has shown that the
concomitant red-shift and fluorescence-enhancement upon aggregation of DPF monomers
in solution is due to an environmentally driven process, relying on both short- and long-
range excited state electrostatic interactions between a single molecule and its surroundings
within the aggregate. We therefore suggest that the excited-state field of the environment
enables the enhanced emission of otherwise poorly emissive, low-lying excited states and
leads to an observed intense aggregate emission at lower wavelength with respect to solu-
tion. Interestingly, this lies in contrast to the previous interpretation of experimental results,
which cite the formation of so-called “static excimers”. We envisage that, for other reported
cases of AIE accompanied by a significant changes in emission maxima, this protocol could
be generally applied as a tool not only to understand, but to aid in the design of better-
performing materials by providing a means of accommodating interaction with complex
environments.
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Chapter 7

Mechanochromic Fluorescence:
Extending SC-Ewald to the
Amorphous Phase

7.1 Introduction

The solid-state fluorescence of organic molecules strongly depends on the molecular struc-
ture and intermolecular interactions present in different morphologies. [100] In previous
chapters, we have explored how fluorescence properties of organic molecular crystals can be
altered by excited-state reactivity (proton transfer) and aggregation. These properties were
also found to be highly sensitive to electrostatic interactions with the environment. In this
chapter, we explore the sensitivity of solid-state fluorescence properties to both polymor-
phism and mechanical stress. In the context of material science, polymorphism is the ability
of a given molecule to, when crystallized, assume different crystalline structures. [101] As
a result, different polymorphs derived from the same parent molecule can exhibit distinctly
different intermolecular interactions and, as a result, strikingly different optical properties.
[102] Furthermore, by applying pressure through mechanical grinding and forming less-
ordered polymorphs, some materials can exhibit a color change or a change in luminescence
behavior, known as “mechanochromism”. [103] More recently, selective mechanochromism,
sensitive to the type of mechanical pressure applied - be it anisotropic or isotropic - has been
demonstrated for some materials. [104]

Although mechanochromism has become an intensively studied property of molecular
materials, [103] the microscopic processes that lie at its origin remain poorly understood,
prohibiting any kind of rational design strategy for real-world application. Opening up
pathways towards design requires profound insight into the highly correlated structure-
property relationships at the excited-state that govern mechanochromism. Up until this
point, turning to theoretical approaches to study these connections has been impractical
due to the inherent complexity related to the description and prediction of amorphous phase
properties, particularly at the excited state. Indeed, theoretical description of absorption and
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fluorescence requires sophisticated quantum chemical approaches which are often compu-
tationally demanding. Sampling a representative number of molecular configurations in
the amorphous phase represents a tremendous computational investment, particularly for
excited state calculations, and thus prevents any attempt at the reproduction or prediction
of optical properties. With a dual experimental-theoretical approach, in this contribution
we demonstrate that intelligent sampling of thermally accessible configurations in the crys-
talline phase, coupled with an understanding of the factors ruling local order in the amor-
phous phase, leads to a remarkable reproduction of experimental emission spectra and, in
turn, provides vital understanding of the key processes behind mechanochromism and in-
deed the interpretation of amorphous-phase optical properties in general.

To do so, we introduce what shall be referred to as the DFB-X family of molecules -
DFB-H, DFB-E and DFB-A - shown in figure 11.10. Taking DFB-A as an example, figure
7.2 highlights the effects of the environment (i.e. solution or crystalline), polymorphism
and mechanical stress on fluorescence properties. In THF solution, DFB-A shows an emis-
sion maximum at around 425 nm and has two stable crystalline polymorphs (DFB-A1 and
DFB-A2) with broader emission spectra at 480 and 520 nm, respectively. Interestingly, me-
chanical grinding (amorphization) of DFB-A crystals results in a global red-shift and sig-
nificant broadening of the emission spectrum, with a maximum at 550 nm. DFB-A serves
as an excellent example of how a change in intermolecular interactions brought by altering
the relative conformations within the molecular material results in significant alterations of
fluorescence behavior. Furthermore, DFB-H and DFB-E - due to the different potential inter-
molecular interactions brought by substitution of different donor groups - exhibit their own
distinct polymorphism and response to mechanical perturbation. The complex response of
this family of molecules to different environmental interactions and stimuli make it an ideal
challenge for computational techniques which seek to account for such subtleties. There-
fore, in this chapter we shall demonstrate how SC-Ewald - in conjunction with molecular
dynamics (MD) techniques - is able to recover spectral changes due to polymorphism and
uncover key physical concepts behind mechanochromic fluorescence.

7.2 Computational Details

As we are interested in the photophysical properties of the DFB-X family in solution, crys-
talline and amorphous phases, we rely on several different techniques, rooted in both den-
sity functional theory (DFT) and Molecular Dynamics (MD).

All calculations using periodic boundary conditions were performed with Crystal 14,
[74] which permits the use of both hybrid density functionals and all-electron Gaussian-type
basis sets. Starting from experimentally-resolved crystalline structures, using the B3LYP [76]
functional and a 6-31G(d) basis set, optimization of the atomic positions and Mulliken popu-
lation analyses for each member of the DFB-X family and their respective polymorphs were
performed. In each case, a Monkhorst-Pack shrinking factor [75] of 4 is used, correspond-
ing to 36 points in the irreducible Brillouin zone (IBZ) for DFB-H, DFB-E1, DFB-E2, and
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FIGURE 7.1: Molecular structures of molecules DFB-H, DFB-E and DFB-A.
Colored kite shapes indicate the relative orientation and overlap of dimer
pairs each of the experimentally resolved crystalline polymorphs, with a black

line indicating the center of mass (COM) distance r in each case.

DFB-A1. As the crystalline structure of DFB-A2 could not be resolved experimentally, The
Materials Studio package was used with the Dreiding force field, [105] considered the most
reliable force field for molecular crystal prediction, [106,107] along with the RESP [108] par-
tial charges calculated for the MD simulation. From the resulting polymorphs, the lowest-
energy unique structure was selected and subsequently refined at DFT level in the same
fashion as the other DFB-X polymorphs, again with a Monkhorst-Pack shrinking factor of 4,
corresponding to 36 points in the IBZ. As it is not yet possible to directly compute electronic
emission properties using periodic boundary conditions, these resulting structures and Mul-
liken population analyses are used as a starting point for the calculation of crystalline and
amorphous emission, which are based on the SC-Ewald approach introduced in chapter 4.

7.2.1 Crystalline-Phase Emission

In doing so, we calculated the fluorescence properties of each polymorph in the DFB-X fam-
ily in figure 11.10 , using the Gaussian 09 [79] software suite. In each case, the charge array is
formed of an 8⇥8⇥8 supercell, with the number of atoms in spherical Zone 2 kept constant
at 2000, ensuring that each quantum-mechanically treated cluster is completely confined
therein. The quality of the Madelung potential produced by the charge fitting process is
assessed at 1000 check-points randomly distributed around the cluster. In all cases, the rms
difference between the direct-sum and crystalline (Ewald) potentials was less than 0.2 µV. In
order to retain consistency with the guess charge values from periodic calculations and due
to the well-known sensitivity of Mulliken charges to basis set size, [109] we used a 6-31G(d)
basis set during the self-consistent procedure. For the excited state geometry optimisation
and calculation of emission properties, this was extended to 6-31+G(d,p). Unless otherwise
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FIGURE 7.2: Illustration of how environmental differences between solva-
tion (THF), crystalization and amorphization affect fluorescence properties of

DFB-A (described by emission band maxima �em).

stated all results were obtained with the range-separated hybrid density functional CAM-
B3LYP [97] due to (i) its enhanced performance when modelling charge-transfer excitations
over density functionals mixed with a fixed amount of Hartree-Fock exchange and those
that rely solely on the generalized gradient approximation [99] and (ii) its stability with re-
spect to the self-consistent charge adjustment procedure within SC-Ewald. From appendix
15, we see that both global hybrid functionals tested (B3LYP [76], PBE0 [22]) result in spu-
rious charge transfer states as a result of the self-consistent procedure, leading to signifi-
cantly underestimated emission energies. A schematic of the dimer clusters investigated in
this work are shown in figure 7.1. Dimer clusters were selected as excimer formation is a
frequently-suggested mechanism for fluorescence color changes upon crystallization of or-
ganic molecules. [102, 110, 111] The 10 lowest-energy excited states were calculated for each
cluster, although in each case only the first excited-state (S1) geometry was optimized.

7.2.2 Amorphous-Phase Emission

The amorphous phases of DFB-H, DFB-E and DFB-A were reconstructed through Molecular
Dynamics (MD) simulations. The starting configuration for each system was built by plac-
ing 500 molecules at random positions in a cubic, periodic box with an edge-length of 150 Å.
All systems were equilibrated in the NPT ensemble at atmospheric pressure and high tem-
perature (P = 1 atm; T = 800 K) until the volume of the periodic box reached an equilibrium
value. Following a further equilibration run at 300 K, a 30 ns trajectory in the NPT ensemble
was obtained for each system. All MD simulations employed a time step of 1 fs. A cutoff of
12 Å was applied to the van der Waals interactions through a switching function, whereas
the particle mesh Ewald (PME) method was employed to calculate the electrostatic inter-
actions. All simulations were performed using the NAMD2.11 package [112] with a Nose-
Hoover Langevin barostat [113,114] (oscillation period 200 fs, decay coefficient 100 fs) and a
Langevin thermostat [115] (damping coefficient 1 ps�1). The molecules were parametrized
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using the CGenFF [116] force field along with accurate partial charges obtained through
the restrained electrostatic potential (RESP) [108] procedure on the basis of HF/6-31G(d,p)
calculations.

In order to create a link between the amorphous phase and crystalline defects, the frames
extracted from the MD trajectories were used to calculate the probability p(r) of finding a
dimer for which the constituent monomers lie on parallel planes. The planarity condition
was satisfied when the four angles ✓ii = 1, 2, 3, 4 between the planes defined by the phenyl
moieties were less than 15� or more than 165� (figure 7.3). This criterion was imposed due
to the parallel nature of molecular planes in the crystalline phases. The probability was
defined as the ratio between the number of parallel dimers with inter-monomeric distance
r and the total number of parallel dimers. This probability is subsequently used to weight
the emission signal calculated for a series of defects in the crystalline phase, based on their
frequency in the amorphous phase.

Specifically, we perform a scan by projecting one of the monomer units along the direc-
tions parallel and perpendicular to the long-axis of the monomer, within its average plane.
In doing so, we obtain emission energies, oscillator strengths and total energies of different
structural defects in the crystal. Additionally, in order to combine with the MD simulations,
the inter-monomeric distance r is measured for each defect. With this information in hand,
the emission spectrum (F) of the amorphous phase is calculated using a sum of weighted
Gaussian functions:

F =
X

i

Pi ⇥ gi ⇥ e�
�Ei
kT (7.1)

Where Pi is the probability of a given defect in the amorphous phase at inter-monomeric
distance r, gi is a Gaussian function centred at the calculated emission energy of the defect,
with an integrated area equal to the oscillator strength, and a full width at half maximum
(FWHM) of 0.15 eV. Each contribution is also weighted using a Boltzmann factor calculated
using the total excited-state energy of the defect relative to the equilibrium excited-state
geometry in the crystalline phase (�Ei).

7.2.3 Emission in Solvent

For comparison with experimentally observed changes upon crystallisation, emission ener-
gies were obtained for each system in tetrahydrofuran (THF) solution, modelling the sur-
rounding solvent using the conductor-like polarizable continuum model [34] (CPCM) ap-
plied within the state-specific paradigm [36]. Again, the range-separated exchange-correlation
functional CAM-B3LYP [97] was used along with the 6-31+G(d,p) basis set.

7.3 Results and Discussion

In order to provide a complete picture of mechanochromic fluorescence from an ab-initio
perspective, we naturally must provide a means of describing fluorescence from both the
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crystalline and amorphous phases of a given molecular assembly. For the former, SC-Ewald
enables the quantitative description of absorption and fluorescence events in molecular crys-
tals. This scheme, described in detail in chapter 4, approximates the electrostatic (Madelung)
potential of either the ground or excited state of the crystalline environment which acts on
a preselected, quantum mechanically (QM) described part of the bulk solid (cluster). Due
to previous reports of excimer formation in mechanochromic molecular crystals, we have
considered QM clusters comprising both monomers and dimers (figure 7.1), although only
results obtained using dimer clusters are discussed in the main text as these are able to
consistently capture all relevant excited states for the description of the condensed-phase
emission. As well as crystalline and amorphous emission, we further test the capabilities of
our model by comparing with fluorescence properties calculated in THF solution.

7.3.1 Emission in DFB-X Crystalline Polymorphs

Table 7.2 shows the calculated change in emission energy for the DFB-X family in the crys-
talline (C) phase with respect to emission in solution (S).We shall refer to this quantity as
�EC

S . In the case of DFB-H, crystallisation results in a red-shift of the emission maximum
with an experimentally measured �EC

S value of -0.47 eV, the negative sign indicating a
lower emission energy in the crystalline phase than in solution. The monomer model fails
to qualitatively reproduce �EC

S , predicting a slight blue shift. The dimer model, for which
the HOMO and LUMO orbitals are delocalized over both monomer units – indicating ex-
cimer formation – performs considerably better, correctly predicting�EC

S from a qualitative
standpoint (-0.28 eV).

Crystallising DFB-E was found to result in two stable polymorphs, DFB-E1 and DFB-
E2, with �EC

S values of -0.40 and -0.26 eV respectively. Calculations performed on DFB-E1
performed analogously to those of DFB-H, although the monomer model in this case was
at least qualitatively correct, predicting a red-shift of -0.16 eV, with the dimer model con-
siderably improving upon this result (-0.29 eV). Due to the “herringbone” structural mo-
tif present in DFB-E2, it was necessary to consider two different dimer models (Dimer 1,
Dimer 2), as two unique dimers with slightly different stacking are present in the crystalline
phase as opposed to the discrete dimer units found in DFB-H and DFB-E1. As for DFB-H,
the monomer model yields a blue-shift, in contradiction with experiment. Interestingly, of
the two dimer models tested, only Dimer 2 demonstrates true excimer behavior, with the
HOMO and LUMO orbitals fully delocalized over both monomer sub-units. Analyzing the
crystal structure of DFB-E2, we observed that Dimer 2 possesses a slightly greater inter-
molecular overlap with respect to Dimer 1. This is reflected in the distances between the
centers of mass (COM) of each monomer sub-unit, equal to 5.5 and 6.3 Å in Dimers 1 and
2 respectively. This increased overlap lends itself to excimer formation, explains the lower
emission energy calculated for Dimer 2 relative to Dimer 1 and highlights the potential im-
pact of subtle structure-property relationships in the solid state.
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TABLE 7.1: Computed emission energies for each member of the DFB-X fam-
ily (in eV), computed with the SC-Ewald approach. In each case, different
cluster models were tested, comprising monomers and dimers (see figure

11.10).

DFB-H DFB-E1 DFB-E2 DFB-A1 DFB-A2

Monomer

(vac)
3.55 3.37 3.37 3.43 3.36

Monomer (emb) 3.39 2.99 3.18 2.85 3.11

Dimer 1 (vac) 3.26 3.05 3.31 3.12 3.09

Dimer 1 (emb) 3.12 2.85 3.12 2.83 3.01

Dimer 2 (vac) - - 3.17 3.41 -

Dimer 2 (emb) - - 2.98 2.82 -

Solution (THF) 3.40 3.15 3.15 3.19 3.19

TABLE 7.2: Differences in emission energy (�EC
S ) going from solution to the

solid state (in eV) for each member of the DFB-X family, computed with the
SC-Ewald approach. In each case, different cluster models were tested, com-
prising monomers and dimers (see figure 11.10). A negative (positive) value
indicates a red (blue) shift with respect to emission in solution. Results were
obtained both with Madelung field produced using SC-Ewald (emb) and in

vacuum (vac).

DFB-H DFB-E1 DFB-E2 DFB-A1 DFB-A2

Monomer (vac) 0.15 0.22 0.22 0.24 0.17

Monomer (emb) -0.00 -0.16 0.04 -0.34 -0.08

Dimer 1 (vac) -0.14 -0.09 0.17 0.22 -0.10

Dimer 1 (emb) -0.28 -0.29 -0.02 -0.37 -0.18

Dimer 2 (vac) - - 0.03 - -

Dimer 2 (emb) - - -0.16 - -

Experiment -0.47 -0.40 -0.26 -0.39 -0.26
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As for DFB-E, DFB-A also crystallises into two polymorphs (DFB-A1 and DFB-A2). In-
specting the molecular orbitals in appendix 15, we see that there is indeed excimer forma-
tion for DFB-A, with similar delocalisation over the second monomer unit as observed for
the other polymorphs.

Although experimental emission spectra allude to two stable polymorphs of DFB-A,
only DFB-A1 (space group P21/n) could be structurally resolved. We made use of a polymorph-
prediction package to determine the structure of DFB-A2, imposing the space group P1̄ in
keeping with DFB-H and DFB-E1. The resulting structure was refined at DFT level and,
interestingly, was found to be only 2.1 kcal/mol higher in energy than the DFB-A1 poly-
morph. Unlike DFB-A1, the imposition of the P1̄ space group guarantees that DFB-A2 shares
an analogous structure to DFB-H and DFB-E1 and, in turn, similar fluorescence properties.
The DFB-A2 monomer model at least qualitatively predicts the experimental red-shift of -
0.26 eV, although the dimer model (exhibiting excimer formation) provides a quantitatively
accurate result (-0.18 eV).

We also note that the SC-Ewald approach was able to quantitatively predict the relative
emission energies between different crystalline polymorphs. For example, the difference in
emission energy measured experimentally between DFB-E1 and DFB-E2 is 0.14 eV, which
we compare to the computationally determined value of 0.13 eV between excimer emission
energies in each polymorph. We point to similar performance for DFB-A1 and DFB-A2,
comparing the experimental and computational values of 0.15 and 0.13 eV respectively.

7.3.2 Emission in Amorphized DFB-X

To identify common structural features between the resulting crystalline and amorphous
phases of the DFB-X family, we measured the distance between pairs of molecules in the
amorphous phase (see figure 7.3). In figure 7.4, the resulting distances are plotted as a prob-
ability distribution and are compared with analogous distances computed for each of the
corresponding crystalline polymorphs – shown as vertical dashed lines. It is striking that
each polymorph possesses an inter-monomeric distance that lies very close to the peaks
of the probability distribution for the corresponding amorphous phase. The number of
peaks present in a given distribution appears linked to the number of stable crystalline poly-
morphs. DFB-H, which possesses one stable crystalline structure, produces a single distinct
peak in the amorphous probability distribution while amorphous DFB-E and DFB-A yield
two distinct probability peaks and each exhibit two stable crystalline polymorphs. While
all of the polymorphs exhibit intermolecular ⇡-stacking interactions, substitution of ester
and amide groups in the case of DFB-E and DFB-A respectively introduces the potential
for hydrogen-bonding interactions, leading to increased polymorphism and, subsequently,
other distinct regions of crystalline-like local order in the amorphous phase. This indicates
that a given amorphous material can inherit local structural properties from any available
crystalline polymorphs, the structures of which are governed by the intermolecular interac-
tions available to their constituent molecules. This serves as an indication that the design
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FIGURE 7.3: Criteria used to link amorphous and crystalline structures and
generate probability distribution of parallel dimers in the amorphous phase

separated by centre of mass (COM) distance r.

FIGURE 7.4: Probability distribution of (semi-)parallel dimers in the amor-
phous phase with a given intermolecular distance r. Vertical dashed lines
indicate the same value computed for each crystalline polymorph. The inset

shows an image of the computed amorphous phase for DFB-H.
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of amorphous materials could be made possible through a consideration of potential inter-
molecular interactions in the crystalline phase.

From a computational point of view, these observations have significant consequences
for the study of amorphous-phase photophysical properties, as a brute-force exploration
of all possible excited-state molecular configurations is not feasible. Taking advantage of
the local order present in the amorphous phase and its similarity to crystalline structural
motifs, we model fluorescence properties using a hybrid approach employing ground-state
MD simulations and excited-state calculations at TD-DFT level. For the latter, we approx-
imate the amorphous phase as a series of “defects” in the crystalline phase, using the MD
simulations to infer the probability of the presence of a given defect. Intuitively, this can be
likened to an exploration of nearby higher-energy structures in the crystalline phase which
are only accessible after the application of an external force (in this case, mechanical grind-
ing). Though one can imagine many possible crystalline defects, we perform a simple scan
limited only to two degrees of freedom, as shown in the inset of figure 11.11D. Specifi-
cally, we perform a geometrical scan by projecting a single molecule within each polymorph
along its average plane in directions parallel (�x) and perpendicular (�y) to its long-axis.
We expect the defect configurations within this scan to encompass those most relevant for
the recovery of spectroscopic properties of the amorphous phase. In doing so, we obtain
emission energies, oscillator strengths and total energies of different structural defects in
the crystal. The starting point for each scan is the excited-state equilibrium geometry, the
emission properties of which correspond to those of the crystalline phase itself. This tech-
nique relies on the interplay between various properties of these defects and how they are
reflected in the computed emission spectrum. To introduce the application of this concept,
we shall begin by discussing the amorphous phase of DFB-H. Here, we note that the lowest-
lying excited state in crystalline DFB-H is a direct result of excimer formation, highlighted
via the delocalization of the exciton over two monomer units. The formation of excimers is
consistent with previous experimental interpretations of related systems. [102, 110, 111] To
achieve coherence with experimental data, two monomer units have been included within
the quantum-mechanically treated cluster throughout.

In figure 11.11, we show the results of this scanning procedure via a series of surface
plots, where the emission energy is plotted for each scan coordinate to form a 3D surface.
We use this to explain the origins of the color change observed upon amorphization of crys-
talline DFB-H. Figure 11.11A shows this 3D surface onto which we have mapped a color
scheme depicting the probability of finding a pair of molecules in the amorphous phase -
separated by distance r - with the same intermolecular distance as our crystalline defect.
In line with figure 7.4, the highest-probability region is close to the excited-state equilib-
rium geometry of the crystalline phase. Figure 11.11B shows a similar plot. Here, the color
map corresponds to the calculated oscillator strength for each dimer configuration. Positive
displacement along the�x direction (long axis) results in an increased oscillator strength, at-
tributed to the reduced distance between donor and acceptor moieties of adjacent monomer
units – promoting the charge transfer character of the transition. This effect is also reflected
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FIGURE 7.5: Surface plots of calculated emission energy with respect to the
defect scan coordinates. For a given pair of molecules in the crystalline phase,
one molecule (highlighted in red) is displaced along its average plane in di-
rections parallel (�x) and perpendicular (�y) to its long axis. A color scheme
is mapped onto this surface, representing A) the probability to find a par-
ticular configuration in the amorphous phase, B) the oscillator strength, C)
the Boltzmann factor and D) the normalized product of each of these, yield-
ing the weighted oscillator strength. Red (blue) regions represent a greater
(lesser) contribution of a given scan coordinate to the overall computed emis-
sion spectrum in the amorphous phase. E) Computed emission spectra for
solution (THF), crystalline and amorphous phases of DFB-H. Molecular struc-
tures shown indicate crystalline structure and maximum-contributing defect.
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in the decreasing emission energy with increasing values of�x. Figure 11.11C maps the rel-
ative probability (via the Boltzmann factor), of the existence of a given configuration at the
excited state. This plot is crucial as the MD simulations are performed at the ground state
and it is necessary to link the ground and excited state configurations of the amorphous and
crystalline phases, respectively. As one might expect, the area of maximum probability sur-
rounds the excited state equilibrium configuration in the crystal, although a distinct channel
of higher-probability structures is evident along the�x direction. The aforementioned plots
are combined to form figure 11.11D, in which the product of the MD probabilities (Pi), oscil-
lator strengths (fi) and Boltzmann factors (Bi) are mapped onto the emission energy surface.
In this plot, red (blue) areas indicate a greater (lesser) contribution of a particular configu-
ration to the overall amorphous-phase emission spectra. Remarkably, the area with greatest
contribution does not lie at the excited state equilibrium configuration, but in a nearby re-
gion with lower emission energy. This represents the compensation of the reduced stability
of excited-state configurations with slightly greater energy by a concomitant increase in os-
cillator strength – in this case stemming from increased charge-transfer character – resulting
in a globally shifted emission maximum. We point to this counter-intuitive perturbation
effect as the reason for the drastic change in emission color upon mechanical perturbation
of the crystalline phase, which represents the first computational evidence for such a pro-
cess that has indeed been previously suggested – for related polymorphs – based on results
obtained using precise, directional mechanical perturbation techniques. [117] Additionally,
mechanochromism resulting from the slipping of molecular columns by mechanical stimu-
lus has been postulated for inorganic molecular systems. [118] To provide further support,
we constructed the emission spectrum (F) of the amorphous phase according to equation
7.1. This is essentially the same process used to generate the color map in figure 11.11D,
replacing the oscillator strength with a Gaussian function. We show the resulting spectrum
in figure 11.11E.

In figure 7.6, comparing with the corresponding experimental spectra reveals an im-
pressive reproduction of the separation of the emission maxima in solution, crystalline and
amorphous phases, especially given that the many potential configurations of the amor-
phous phase have been reduced to a simple two-dimensional scan. The amorphous exper-
imental spectrum exhibits a shoulder at 396 nm which, due to its almost-perfect overlap
with the crystalline emission spectrum, one might immediately attribute to left-over crys-
talline residue after smearing to form the amorphous phase. However, we show that the
calculated emission spectrum of amorphous DFB-H captures this same feature, suggesting
that this spectral shoulder is an intrinsic property of the amorphous phase and not a re-
sult of incomplete smearing of DFB-H crystals. Overall, despite the slight underestimation
of the red-shift and the reduced broadening of the emission spectrum compared to experi-
ment, this approach is able to recover all of the salient features of the amorphous emission
spectrum.

From figure 7.6, the standard of the model is retained upon extension to DFB-E and DFB-
A. Generally, the agreement with experimental differences between solution, crystalline and
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amorphous emission maxima values is of an impressive quality. We note, however, that
the SC-Ewald approach leads to an apparent systematic underestimation of the crystalline
emission energy by approximately 0.1 eV with respect to the experimental measurements.
This could be attributed to several factors, such as the neglect of any interactions with the
environment other than electrostatics or the simplification of the environment to simple
point charges.

For each amorphous (and indeed crystalline) model, the reproduction of experimen-
tal behaviour arises from an understanding of the formation of low-energy excited states
through excimer formation. This echoes previous experimental hypotheses suggesting that
low-energy, excimer-based exciton traps are responsible for mechanochromism, although,
to our knowledge, this work represents the first clear foundation for such a mechanism
based on both theoretical and experimental evidence. What we observe from our model
suggests that small numbers of molecular configurations which are close to those of the
crystalline materials themselves are responsible for mechanochromic fluorescence, rather
than a complete phase change to a different solid state form. Moreover, the strength of
the mechanochromic effect itself appears liked to the number of specific intermolecular in-
teractions present in the solid state, with weaker slip planes bound mainly though van der
Waals forces giving rise to more potent mechanochromic properties that are otherwise inhib-
ited by specific intermolecular interactions such as hydrogen bonding. Naturally, this could
lead to new concepts in the framework of molecular design, with the aim to influence the
mechanochromic properties of materials by considering the balance between specific and
non-specific intermolecular interactions and their subsequent effects on amorphous-phase
fluorescence.
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FIGURE 7.6: Computed (top) and experimental (bottom) emission spectra determined for solution, crystalline and amorphous phases
for DFB-H (left), DFB-E (centre) and DFB-A (right).
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7.4 Conclusions

The key conclusions of this chapter are outlined below:

• We have presented the first computational study of organic molecules in solution, crys-
talline and amorphous phases all together.

• Together, each phase model was able to quantitatively reproduce the changing fluo-
rescence behavior of each member of the DFB-X family and recover the key polymor-
phism and mechanochromism properties.

• For the amorphous phase, complex band shape (in the case of DFB-H) and band broad-
ening was also recovered.

• From a physical point of view, the computationally-observed, crystal-like local order
in amorphous-phase DFB-X provides evidence for the presence of low-energy exciton
traps which cause the global red-shift of emission maxima upon mechanical grinding.

• Overall, we have highlighted structure-property relationships which govern competi-
tion between low-energy excited states and how these influence the resulting emission
spectra for given crystalline polymorphs and amorphous materials.

In this chapter, we have used the SC-Ewald approach introduced in chapter 4 to investigate
changes in emission behavior of a family of molecules based on difluoroboron avobenzone
brought by both polymorphism in the crystalline phase and amorphization via mechani-
cal grinding. As well as a quantitative recovery of influence of polymorphism on fluores-
cence, using intelligent sampling of thermally-accessible molecular configurations in the
amorphous phase, we have obtained a quantitative model which provides physical insight
into the origins of mechanochromic luminiescence and the optical properties of amorhous
materials in general. Additionally,we have seen how the degree of polymorphism can be
altered via the substitution of donor moieties which facilitate a wider array of potential in-
termolecular interactions, how this translates to regions of local order in the amorphous
phase and the resulting influence on amorphous-phase fluorescence.
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Chapter 8

Cluster Modeling of Luminescent
Metal-Organic Frameworks

8.1 Introduction

MOFs are supramolecular solids composed of organic molecules (linkers) which link inor-
ganic building units [119]. The enormous chemical space available for the design of these
organic and inorganic moieties means the number of possible MOF structures that can be
conceived is essentially infinite, promising tailored materials for specific purposes [120,121].
Although the structural properties of MOFs have been investigated extensively both from
experimental and a theoretical points of view, the electronic properties of these materials
have recently become an area of increasing interest - with particular attention paid to en-
hanced photoluminescence - with the idea of exploiting these properties in areas such as
small molecule sensing [122], non-linear optics [123] and biomedical applications [124].
There is a particular interest in photoresponsive frameworks, which respond to light ab-
sorption by changes in their structure, or stimuli-responsive photoluminescent frameworks,
whose optical properties are modified by external physical or chemical stimulations [125].

Luminescent properties of metal–organic frameworks (MOFs) have garnered attention
for some time [126]. The flexibility offered by the building-block nature of MOFs trans-
lates to the design of functional luminescent materials, with different linkers and inorganic
building units giving rise to different, often competing, modes of luminescence [127]. As an
introduction, we shall outline different possible sources of luminescence for MOFs compris-
ing transition metals [128], namely:

• Ligand-centered (LC)

• Metal-centered (MC)

• Metal-to-ligand Charge Transfer (MLCT)

• Ligand-to-Metal Charge Transfer (LMCT)

• Ligand-Ligand Charge Transfer (LLCT) or excimer formation
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In the context of ligand-centered emission, as the linker moieties are typically conjugated
organic compounds, they absorb in the UV and visible region. Linker excitation typically
occurs via allowed singlet–singlet transitions and emission from the lowest singlet excited
state, in line with Kasha’s rule. Situations where this is not the case include where there
are efficient, non-radiative decay pathways to lower-lying states, which could either be the
ground state or - when efficient intersystem crossing is possible - lower-lying triplet states.
In the latter case, lower-energy luminescence from the triplet state to the ground state (phos-
phorescence) can be observed. Additionally, the increased rigidity offered by coordination
to metal sites has been shown to reduce non-radiative decay rates and therefore increase the
fluorescence intensity of otherwise poorly emissive organic linker molecules.

Depending on the metal’s electronic configuration and relative metal and linker orbital
energies, a metal ion can have varying degrees of influence on emission properties. Where
the transition metals within the inorganic building units do not have fully saturated valence
shells, low-energy (albeit forbidden), metal-centered transitions can occur between these
states. For appreciable intensity, however, significant distortion of the coordination envi-
ronment is required in many cases. Alternatively, vacant orbitals in the outer shell of the
metal can facilitate ligand-to-metal charge transfer. Conversely, for transition metals such
as Cd(II) and Zn(II), fully saturated d10 valence shells render LMCT and MC transitions
impossible, though, depending on the relative energy of ligand-centered orbitals relative to
those in the d-shell of the transition metal, metal-to-ligand charge transfer may occur.

In cases where the density of a given MOF structure is high and there is significant inter-
ligand ⇡-⇡ interactions, charge transfer between ligands or the dissociation of excitons across
several ligands becomes possible, resulting in lower-energy luminescence bands with broad,
featureless shapes. Generally, as can be inferred from the above, the observed emission is
governed by the interplay between the electronic structure of the inorganic building units
and the structure of the MOF itself, which is dictated by linker orientation, geometry, and
size. As a result, while several different luminescence mechanisms are possible, the potential
for fine-tuning and competition between mechanisms is promising from an applications
point of view.

While luminescence from MOF structures is a frequently observed phenomenon, little
effort thus far has been invested to gain a complete understanding of these excited state
processes. Furthermore, identifying emission routes and discerning between competing
processes is usually difficult from an experimental point of view.

In this respect, gaining a more complete understanding of excited state behavior in MOFs
from a theoretical perspective could be a powerful tool, aiding in the rational design of high-
performance luminescent materials. With this in mind, this paper attempts to improve upon
the current understanding of MOF luminescence via the design of a suitable quantum com-
putational protocol, rooted in density functional theory (DFT) and its time-dependent coun-
terpart (TD-DFT), for the characterization and prediction of MOF luminescence behavior.
To this end, we have chosen an appropriate case study of a pair of MOF structures com-
posed of a 4,4-bis((3,5-dimethyl-1H-pyrazol-4-yl)methyl)biphenyl (H2DMPMB) ligand and
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interchangeable metal cations of zinc and cadmium, recently characterised experimentally
by Tabacaru and co-workers, [129] hereafter labelled M[DMPMB] (M = Zn, Cd). With an
orthorhombic structure, these two frameworks crystallise in near-identical structures (in the
Pccn space group), depicted in figure 8.1 along with the protonated ligand structure. Each
transition metal ion is coordinated by four ligand molecules in a distorted tetrahedral fash-
ion. The nitrogen atoms of a pyrazole ring each bond to a different M atom by their lone
pair, thus bridging between two metal ions. The biphenyl groups of neighboring ligands
are oriented on perpendicular planes, giving rise to the possibility of T-shaped ⇡-⇡ interac-
tions. While other MOFs constructed using this linker were reported, the zinc and cadmium
frameworks were specifically selected as they are isostructural – allowing one to directly
probe the effects of changing the coordinating metal – and both exhibit interesting lumines-
cence properties. Furthermore, the simple interchange of the coordinating metal from zinc
to cadmium results in a 0.88 eV (that is, from 441 nm to 335 nm) blue shift and thus is an
interesting and novel example of tuneable luminescence in metal-organic frameworks. De-
spite this, no explanation for this rather large change in emission wavelength was proposed
in the literature.

First, a computational protocol is determined by screening the performance of various
exchange–correlation functionals with respect to the prediction of important structural fea-
tures including cell parameters and the coordination environment of the metal ions. Next,
we investigate the excited state properties using DFT and TD-DFT approaches to character-
ize the emission behavior. The combined use of full periodic and cluster model approaches
at appropriate levels of theory allows one to form a detailed picture of the excited state
processes at play in these materials. [130]

8.2 Computational Details

Calculations were performed both on periodic and cluster models for each MOF structure.
The computational setup used in each case is described below.

All calculations were carried out using the Crystal14 package [74] which uses atom-
centred Gaussian basis sets. In order to strike a good balance between time and accuracy, the
Pople double zeta basis set 6-31G(d) was used in all calculations for all but transition-metal
atoms. Zinc and cadmium were described by the basis sets proposed by Pettinger [131] and
Dou, [132] respectively. The number of k-points in the irreducible Brillouin zone was set to
8 via a shrinking factor of 2. A total of five exchange-correlation functionals were tested.
This test set was composed of two GGA functionals (PBE [21] and BLYP [133, 134]), two
hybrids (PBE0 [22] and B3LYP [76]) and a functional purposely optimized to yield accurate
equilibrium structure properties in solids (bond lengths and lattice parameters) known as
PBEsol [135].

Structural optimization of the MOFs and molecular crystal of the ligand (H2DMPMB)
were performed. The Grimme [77] “D2” dispersion correction scheme was tested within the
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FIGURE 8.1: View along cell vector c showing unit cell; protonated
H2DMPMB ligand structure; view along cell vector b showing metal coor-

dination environment and infinite network

molecular crystal to better assess the extent of interligand interaction that arises from both
⇡-⇡ stacking and hydrogen bonding interactions.

In order to qualitatively evaluate the emission energy from the triplet state, periodic
calculations were also conducted using the SPINLOCK feature of Crystal14, allowing one
to fix the difference between the number of alpha and beta electrons. This difference was
set to 8 to simulate a triplet excited state centred on the 4 ligands present in the unit cell.
After the optimisation of this excited state, a single point calculation was conducted for the
singlet state while retaining the geometry of the triplet electron configuration in order to
quantify the vertical energy gap between the singlet and triplet potential energy surfaces at
this point.

All calculations on molecular clusters were conducted using Gaussian 09. [79] Calcula-
tions were performed on a cluster cut from the periodic structure of each of the M[DMPMB]
(M=Zn, Cd) systems previously optimized at PBE0 level of theory. Each cluster consists
of two metal ions bridged by two DMPMB ligands, with an additional 4 ligands used to
complete the metal coordination sphere and terminate the cluster. Hydrogen atoms were
added to the uncoordinated pyrazole groups, as shown in figure 8.2. TD-DFT calculations
were performed in order to calculate the vertical excitation energies and associated oscil-
lator strengths of these clusters. All calculations were again performed with the 6-31G(d)
Pople double zeta basis set for all non-metal atoms while the Los Alamos (LANL2) [136]
effective core pseudopotential and corresponding double zeta valence basis set were used



8.3. Results and Discussion 105

FIGURE 8.2: Cluster model taken along the 1D inorganic chain within
M[DMPMB] used for TDDFT calculations showing metal cation (red), coor-
dinating nitrogen atoms (blue) and organic linker with carbon (black) and hy-

drogen (white).

to describe the cadmium and zinc atoms. The same technique as described above for pe-
riodic calculations, while holding the uncoordinated (i.e. extended) nitrogen atoms fixed,
was also used to assess the singlet-triplet energy gap and, in turn, validate the cluster model
used to describe the solid state framework. Additionally, the S1!S0 emission energies of
the H2DMPMB ligand were calculated by optimising its first singlet excited state geome-
try at TDDFT level for both the free ligand and with the nitrogen atoms constrained to the
positions of the calculated MOF structures.

Absorption spectra have been presented as a combination of convoluted Gaussian func-
tions with full width at half maximum height set to 0.3 eV centered at each excitation energy.
Computed oscillator strengths are reported in the same figure as vertical lines.

8.3 Results and Discussion

8.3.1 Density Functional Performance

We first performed full energy-minimization of the Zn(DMPMB) and Cd(DMPMB) periodic
structures, including both atomic coordinates and unit cell parameters, with our test set of
functionals. Figure 8.3 shows the absolute error obtained for the a, b, and c lattice parame-
ters at the ground state for both Zn(DMPMB) (in blue) and Cd(DMPMB) (in green). While
it is clear that, from the small absolute error relative to the experimental data, all functionals
tested perform well in the description of the lattice geometry, the solid-state-tuned PBEsol
functional performs best in the prediction of each lattice vector, followed by the PBE0 func-
tional, for both materials.

Figure 8.4 shows the percentage error in the calculated metal coordination environment
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relative to the experimental data, again using the functional test set mentioned above, at the
ground state. The ability of a given functional to characterize the first coordination sphere
of the metal centers was evaluated using two criteria: the error in i) nitrogen-metal-nitrogen
coordination angles and in ii) the bond distance between the metal centres and coordinating
nitrogen atoms. As with the lattice parameters, the data show that all functionals perform
within a low margin of error for all parameters tested across both structures (maximum of
4.0% (4.4�) for BLYP GGA functional when calculating coordination angles). Surprisingly,
given its remit, the PBEsol functional appears to give no appreciable increase in accuracy
when calculating either bond lengths or angles and all functionals deliver a similar perfor-
mance with no single level of theory standing out, in this case, as superior. Furthermore,
there is no discernible difference in performance between hybrid and GGA functionals for
the calculation of these structural features. From this it can be concluded that, for these
MOF systems, the metal coordination environment is not very sensitive to the functional
chosen given that GGAs, hybrids and a solids-optimised functional all performed similarly
and were able to predict the coordination geometry of the metal sites with sufficient ac-
curacy. Generally, hybrid functionals (such as PBE0 or B3LYP) slightly outperform GGAs.
The lack of sensitivity of the coordination environment to the choice of functional and gen-
eral good performance of all those tested rendered this an unimportant factor in the choice
of functional and level of theory to be used in excited state calculations. For this reason,
PBE0 was chosen for excited state calculations since it gave results of a similar quality to the
PBEsol functional for structural parameters and as it is known to perform well or a broad
range of systems within TD-DFT calculations [99, 137]. To test if charge transfer would play
a significant role, vertical absorption energies for the Zn MOF were also calculated using
the long-range corrected CAM-B3LYP functional, which is known to correctly treat both va-
lence and charge transfer excitations [26]. Results shown in appendix 16 show no qualitative
difference with respect to those calculated with PBE0 and we will thus only present and dis-
cuss the results obtained with PBE0 here. Given the importance of inter-ligand interactions
in MOFs, significant dispersion interactions effects can be important in the prediction and
characterization of luminescence phenomena. [109]

In light of this, the PBE0 functional was taken forward in order to investigate the effects
of inter-ligand interaction of H2DMPMB, via the incorporation of dispersion interactions us-
ing an empirical pairwise potential as proposed by Grimme [77] (the corresponding results
being labelled as PBE0-D2). The results are summarized in table 8.1. The H2DMPMB molec-
ular crystal was chosen as a relevant test case as there are two potential inter-ligand interac-
tion types within its structure: i) intermolecular hydrogen bonds between the hydrogen and
nitrogen atoms located on the pyrazole moieties and ii) ⇡-⇡ stacking between the biphenyl
parts. Table 8.1 shows that the inclusion of the dispersion interactions roughly halves both
the error in the hydrogen bond interaction, here monitored by the pyrazole nitrogen to nitro-
gen intermolecular distance (1.35% to 0.55%), and the ⇡-⇡ stacking distance (5.06% to 2.88%),
with a small increase in error with respect to the primitive cell volume (0.38% to 0.71%) and
density (0.33% to 0.64%). This slight loss of accuracy with respect to the cell volume and
density can be attributed to the tendency of the Grimme correction scheme to overestimate
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FIGURE 8.3: Histogram showing absolute error (in Å) in calculated lattice
vectors relative to experimental data. Results obtained for Zn(DMPMB) and

Cd(DMPMB) are represented as blue and green bars, respectively

FIGURE 8.4: Histogram showing average percentage error in calculated co-
ordination angles and coordination bond distances relative to experimental
data. Results obtained for Zn(DMPMB) and Cd(DMPMB) are represented as

blue and green bars, respectively.
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FIGURE 8.5: Structural view of 2 adjacent unit cells of H2DMPMB ligand
molecular crystal. Hydrogens are omitted for clarity. Green arrow indicates

hydrogen bond distance defined via intermolecular nitrogen distance.

the long-range electron correlations that are responsible for intermolecular van der Waals
forces. At first, it seems strange that the stacking distance is underestimated by the PBE0
functional alone (without dispersion correction) – suggesting that the PBE0 functional itself
overestimates these interactions – but this is an indirect effect, due to the hydrogen bonding
between ligands being poorly represented. Indeed, looking at the two-dimensional, layered
structure of the molecular crystal figure 8.5, weaker hydrogen bonding interactions allow
the coordinating pyrazole groups to spread further apart and, in turn, reduce the distance
between biphenyl moieties. The introduction of the dispersion interactions better describes
both the hydrogen bonding and ⇡-⇡ stacking, pulling the ligands closer together at the pyra-
zole parts and further apart with respect to the biphenyl groups. This effect is rooted in the
two-dimensional nature of the molecular crystal and is not a result of the PBE0 functional
somehow overestimating the inter-ligand stacking interactions between biphenyl groups
with respect to the addition of dispersion interactions.

8.3.2 Absorption and Fluorescence

Figure 8.6 shows the calculated vertical absorption spectra previously described using clus-
ter models of the cadmium and zinc MOFs (as shown in figure 8.2) along with calculated
absorption and emission spectra of the free ligand. The calculated absorption spectrum for
the free ligand shows one, single band located at 259 nm. This band corresponds to a ⇡-
⇡* transition centred on the biphenyl moiety. All computed vertical transition energies are
explicitly reported in the Supporting Information.

Overall, the spectra of the three compounds are actually dominated by this intense lig-
and centred (LC) transition which is only slightly tuned by the MOF environment. Impor-
tantly, at least for singlet-to-singlet transitions, no other “bright” transitions were computed
within the energy range of interest. Here, a “bright” transition is deemed to be a transition
with a calculated oscillator strength significantly greater than zero. As for the free ligand,
for the zinc and cadmium MOF clusters an absorption band of ⇡-⇡* character correspond-
ing to the biphenyl-centred excitation of the ligand was determined and agrees well with
the absorption band calculated for the free ligand itself at 264 nm.
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TABLE 8.1: Calculated and experimental values of key structural parame-
ters investigated on the H2DMPMB ligand molecular crystal. Nitrogen-to-
Nitrogen intermolecular distance is defined as that between closest neighbor-
ing nitrogen atoms in the crystal and taken as a measure of intermolecular

hydrogen bond features.

Functional PBE0 PBE0-D2 Experimental

Nitrogen-Nitrogen distance (Å) 2.935 2.912 2.896

Unit Cell Volume (Å3) 1017.3 1006.2 1013.4

Density (g/cm3) 1.209 1.222 1.213

Stacking Distance (Å) 3.658 3.742 3.853

Now we shall consider the emission properties of these materials. Experimentally, the
photoluminescence has been ascribed to LC states, which is consistent with the fact that
the LC computed transition is the only bright transition dominating the spectra of the com-
pounds. Nevertheless, the origin of the large shift observed in emission going from the Zn
to Cd based MOF it is not obvious or clear. To clarify this point - following the reason-
ing which supposes a LC emission - the emission energies for the M[DMPMB] clusters and
H2DMPMB ligand were computed and they are reported, along with those derived from
experiment [129], in Table 2 Note that the determination of the emission energy from the
singlet excited state (S1!S0) (calculated via the full optimisation of the S1 excited state ge-
ometry) was undertaken for the free ligand only, while the energy of the phosphorescence
(T1!S0) was determined as described in the computational details section.

The emission wavelength from the singlet ⇡-⇡* excited state of the free ligand was calcu-
lated at 332 nm. Fixing the nitrogen atom positions constrained in the coordination geom-
etry for both Zn[DMPMB] and Cd[DMPMB], the same calculations of the emission wave-
length from the singlet ⇡-⇡* excited state were undertaken to decouple any perturbative
effects of the metal with those of the geometrical constraints imposed on the ligand by the
metal within the MOF structures. It was found that this geometrical constraint had little ef-
fect as shown by both the calculated absorption and emission values for the ligand with
constrained nitrogen on the pyrazole groups corresponding to the optimized solid-state
structures for Zn[DMPMB] (4.44 eV -279 nm- absorption; 3.78 eV -328 nm- emission) and
Cd[DMPMB] (4.48 eV -277 nm- absorption; 3.79 eV -327 nm- emission). Comparing the
calculated emission energy for the free ligand or the ligand constrained at Cd[DMPMB] ge-
ometry (332 nm and 327 nm, respectively) and the experimentally observed emission value
for the Cd[DMPMB] species (3.70 eV, 335 nm), it is clear that the emission from the cad-
mium based MOF can be ascribed confidently to a ligand centred transition, as previously
predicted in the experimental work [129]. This is also shown pictorially in figure 8.6. Upon
comparing the calculated emission energy from the singlet ⇡-⇡* excited state of the free lig-
and or the ligand constrained at Zn[DMPMB] geometry (332 nm and 328 nm, respectively)
and the experimental emission energy for Zn[DMPMB] (2.81 eV, 441 nm) it is clear that the
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FIGURE 8.6: Calculated absorption spectra for clusters of Zn[DMPMB] and
Cd[DMPMB] along with simulated absorption and emission spectra for the
free H2DMPMB ligand. The wavelength of the experimentally observed emis-
sion maxima for both MOF species are also indicated. a and b indicate experi-

mental excitation wavelengths of 254 and 365 nm, respectively.



8.3. Results and Discussion 111

emission shown by the zinc based MOF is not adequately explained by ligand centred emis-
sion from the singlet excited state. Furthermore, as seen above, accounting for the geometri-
cal constraints imposed by coordination environment in Zn[DMPMB] does not account for
this shift in emission energy with respect to the free ligand. Lastly, given the experimental
excitation energy used in the case of Zn[DMPMB] (3.40 eV), it is unlikely that the emission
observed in this MOF is a result of the same process as that observed for Cd[DMPMB] since
the ⇡-⇡* ligand centered excited state is predicted to be higher - vertically - than the excita-
tion energy experimentally used (computed at 264 nm).

8.3.3 Phosphorescence in Zn[DMPMB]

If the Zn[DMPMB] emission does not stem from the ligand-centred singlet ⇡-⇡* state, we
are left with the option of this luminescence behaviour resulting either from another singlet
excited state (fluorescence (S1!S0)) that can be accessed using the experimental absorption
energy of 3.40 eV or from the triplet ⇡-⇡* excited state (phosphorescence (T1!S0)) centred
on the ligand.

As previously discussed for the absorption spectra of the Zn and Cd MOF clusters, there
are no other singlet excited states with appreciable oscillator strength that lie within the
required energy region and therefore are not likely to be at the origin of the intense photo-
luminescence properties observed for the Zn MOF. Therefore an emission from the triplet,
which has been observed in other d10 metal-organic complexes [138, 139] could provide
a reasonable explanation for the difference in fluorescence behavior between the zinc and
cadmium based MOFs. Using the cluster approach, the triplet excited states were vertically
computed from the ground state Zn and Cd MOF geometries at 378 and 371 nm, respec-
tively. Therefore upon irradiation at 365 nm, as in experiment, this state can be populated.
Indeed, although this type of transition is spin forbidden, the presence of metal ions allows
their efficient population through spin-orbit coupling.

In addition to the emission energies from the singlet ⇡-⇡* state, the emission energies
from the triplet ⇡-⇡* of the free ligand and Zn and Cd MOFs were also estimated using the
previously described methodology, and these are shown, along with fluorescence data, in
table 8.2. From an electronic density-difference plot (⇢↵ � ⇢�) (figure 8.7), it can be seen
that this triplet excited state is indeed centred on the biphenyl moiety of the ligand. The
emission from the triplet excited state of the free ligand was found to be significantly red
shifted (with respect to the singlet emission energy) at 554 nm (2.24 eV). The emission en-
ergies estimated from the triplet excited states of the constrained ligand geometries were
found to be slightly blue shifted with respect to the free ligand (522 nm; 2.38 eV) for both
Cd[DMPMB] and Zn[DMPMB]. Furthermore, phosphorescence wavelengths from the ⇡-⇡*
state were calculated using both cluster (figure 8.2) and periodic models. Beginning with
the cluster model for Zn[DMPMB], a blue shift of 0.27 eV is observed relative to the free
ligand phosphorescence from the ⇡-⇡* state while a slightly smaller blue shift of 0.17 eV
is determined via periodic calculations. For Cd[DMPMB], a smaller blue shift of 0.01 eV
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FIGURE 8.7: Spin density difference plot (⇢alpha�⇢beta) computed for the first
triplet state (T1) of the Zn[DMPMB] cluster.

is determined using the cluster model. From this, the effect of the environment is clearly
observed on the emission energy from the triplet ⇡-⇡* excited state.

Considering the emission energy observed in experiment and the calculated energy dif-
ference between the T1 and S0 surfaces for the Zn[DMPMB] cluster at the optimized T1
geometry, the results are comparable (2.50 eV calculated, 2.81 eV in experiment). This leads
to the conclusion that the emission observed for the zinc compound could, indeed, also be
a result of phosphorescence from a ⇡-⇡* triplet excited state. It is also worth noting that,
according to calculations conducted using PBE0, there is no appreciable change in coordi-
nation geometry between the optimised singlet ground state and triplet state of either MOF.

Finally, the small discrepancy between the T1 ! S0 energy values calculated using the
cluster model and periodic calculations (0.09 eV for Zn[DMPMB]; 0.059 eV for Cd[DMPMB])
allows one to conclude that the cluster model used to determine absorption energies via
TDDFT calculations is sufficiently accurate. This also illustrates that these excitations are
local processes in MOFs and could validate further use of similar cluster models to study
excited state processes not only in metal-organic frameworks but in other photo-active ma-
terials.
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TABLE 8.2: Calculated main absorption and emission energies for H2DMPMB,
Zn[DMPMB] and Cd[DMPMB] along with experimental data. Calculations
were also conducted holding the position of the nitrogen atoms of the lig-
and constrained to that computed at the ground state at PBE0 level for
Zn[DMPMB] and Cd[DMPMB], labelled constrained NZn and constrained

NCd respectively.

Model
Calculated Experimental

�abs (nm)

S0!S1

�em(nm)

S1!S0

�em (nm)

T1!S0
�em (nm)

H2DMPMB (Free) 285 332 554 -

H2DMPMB (Constrained NZn) 279 328 522 -

H2DMPMB (Constrained NCd) 277 327 522 -

Cd[DMPMB] (Cluster) 269 - 520
335 a

Cd[DMPMB] (Periodic) - - 515

Zn[DMPMB] (Cluster) 266 - 495
441 b

Zn[DMPMB] (Periodic) - - 514
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8.4 Conclusions

The key conclusions for this chapter are outlined below:

• We have outlined a cluster-based protocol for the computation of luminescence prop-
erties of metal organic frameworks, which has been used to discriminate between the
different emission behavior of two iso-structural transition-metal based Zn and Cd
MOFs.

• With this protocol, we were able to identify that Cd[DMPMB] emission results from
ligand-centered emission from the first singlet excited-state, whereas Zn[DMPMB]
emission likely results from ligand-centered emission from the first triplet excited-
state.

• We observed that using periodic boundary conditions had a minimal effect on phos-
phorescence properties, suggesting that such properties may be modeled locally using
clusters.

Rational design of useful optical properties within metal-organic frameworks is a subject of
ever increasing attention in recent years with theoretical approaches poised to play a key
role alongside experiment in the understanding further development of high performance
materials. We have demonstrated a computational protocol rooted in quantum mechanical
calculations at DFT and TD-DFT level able to successfully discriminate between subtle lu-
minescence mechanisms in a pair of isostructural MOFs with interchangeable metal cations.
This pair of systems is a novel example of tuneable luminescence in MOFs with an ap-
proximately 0.88 eV (441 nm to 335 nm) blue shift going from the zinc based to cadmium
based structure. This method was able to confirm the higher energy emission seen from
the cadmium-based structure is a result of a ligand-centred emission from the singlet ⇡-⇡*
excited state. The luminescence behavior resulting from the zinc-based structure was found
to be more complex, with luminescence possibly resulting from both the triplet ⇡-⇡* excited
state (localised on the ligand). The effectiveness of this protocol in the discrimination of ex-
cited state processes in MOFs at relatively low computational cost can be a valuable tool in
the design and understanding of high performance optical materials.
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Chapter 9

Additional Concerns in
Condensed-Phase Modeling:
Spin-State Ordering in Transition
Metal Complexes

9.1 Introduction

Up until this point, we have explored several examples of how excited-state phenomena
can be influenced by environmental effects using density functional theory coupled with an
charge embedding procedure. Generally, we have demonstrated how sensitivity to the envi-
ronment can govern certain photophysical processes and that proper account of long-range
electrostatics is crucial for their recovery. In this chapter, we move away from the concept
that interactions in the condensed-phase are the primary concern, introducing challenging
cases for DFT and how these may be modeled. In chapter 2, we introduced the concept of
static electron correlation and how intrinsically single-reference (single-determinant) meth-
ods such as DFT can fail in the description of electronic structure when such concepts are
important. Due to this inherent failure, the addition of an embedding method - however
developed - cannot possibly improve upon computed properties.

One area where the incorporation of multi-reference methods can be crucial is the accu-
rate description of bonding and spin state energetics in molecular complexes (and indeed
metal-organic solids) containing transition metals with partially-filled d-shells. For the un-
derstanding and prediction of catalytic reactivity [140, 141], including biological reactions,
and magnetic properties [142–144], accurate quantum-mechanical models are essential, yet
these are often hindered by the the near-degenerate nature of the metal-centered frontier
orbitals which can introduce significant multi-reference character. As a result, the quanti-
tative calculation of spin-state ordering in transition metal complexes has been repeatedly
highlighted as a significant challenge for modern computational methods [145,146]. Within
this context, Density functional Theory, within the Kohn-Sham formalism (KS-DFT), suffers
from its ever-present sensitivity to the chosen approximation of the exchange-correlation
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FIGURE 9.1: Model complexes considered in this study.

energy. Local approximations (LDA or GGA) are biased towards low-spin ground states
due to their over-delocalisation of bonding molecular orbitals [147, 148]. This can be coun-
tered by the admixture of Hartree-Fock (HF) exchange present in hybrid density function-
als, which are known to favor high-spin ground states [149, 150]. The optimal fraction of
HF exchange, however, is case-dependent and has been shown to depend strongly on the
ligand field [150], with commonly-used functionals, such as B3LYP [76] and PBE0 [22] reg-
ularly failing to predict the ground spin-state configuration of such compounds. Recently,
an investigation into the effect of meta-GGA exchange, which depends on the Laplacian of
the density, demonstrated that meta-GGA exchange favours high-spin states in strong-field
ligands and low-spin states in weak-field ligands [151]. Additionally, due to the intrinsic
multi-configurational nature of several of the spin states computed, a balanced and con-
trolled description of static and dynamic correlation is required, which may be problematic
for several of the approaches mentioned above.

More consistent results have been obtained with methods rooted in wave function the-
ory (WFT), such as the complete active space self-consistent field [29] (CASSCF) approach.
However, CASSCF energies usually require a correction to recover dynamic correlation en-
ergy not accounted for outside of the chosen active space, often added via multi-reference
perturbation theory, such as CASPT2 [152]. Methods which approximate dynamic correla-
tion based on multi-configurational reference functions are, however, generally limited to
small- to medium-sized systems. A systematic application of these methods is conditional
upon their ability to handle medium- to large-sized systems, and the computational expense
required for this latter step often presents a significant bottleneck.

The recently-developed Multi-Configurational Pair Density Functional Theory [30] (MC-
PDFT, see chapter 2) approach, which seeks to combine the advantages of WFT and DFT,
presents a promising alternative to CASPT2 and requires significantly less computational
effort [153]. The formulation of MC-PDFT exhibits two key differences with respect to
KS-DFT: i) the reference wave-function is multi-configurational in nature and ii) a given
density functional depends on both the total density and the on-top pair density. Further-
more, MC-PDFT has been recently extended to work with generalised-active-space multi-
configurational wave functions [154], promising further reduced computational time and,
in turn, access to yet larger and more complex systems.
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TABLE 9.1: Basis sets used in MCSCF calculations.

Atom Contraction

Fe [7s6p5d3f2g1h]
N, O, C (donor) [4s3p2d1f]
H [3s1p]

In this light, we decided to test the performance of MC-PDFT on the prediction of spin-
state ordering and check if it offers any improvement over KS-DFT methods. To this end, we
tested MC-PDFT on 9 model Fe(II) and Fe(III) complexes with five ligands of diverse ligand-
field strength, shown in figure 9.1. We shall compare the performance of this method with
both CASPT2 and KS-DFT results for a wide range of density functionals. Additionally, we
investigated the dependence of CASPT2 and MC-PDFT on the size of the active-space. [155]

9.2 Computational Details

MC-PDFT calculations are performed using a set of four on-top density functionals, two of
which are based on the PBE [21] exchange-correlation functional, which has no empirical
parameters, with the other two based on revPBE [156], a modified form of PBE where one
parameter is altered to improve agreement of atomic exchange energies with known exact
results. In order to allow compatibility with MC-PDFT, PBE and revPBE are ‘translated’ in
order to introduce a dependence on the on-top density. In the present paper, we test two
translation procedures previously proposed in literature [32]. They are based on the on-top
and spin densities for a broken-symmetry slater determinant [157] (hereafter labelled t) or
on a ‘full’ translation (ft) which also introduces a dependence on the on-top density gradient.
The resulting on-top density functionals are tPBE, ftPBE, trevPBE and ftrevPBE, where the
prefixes ‘t’ and ‘ft’ indicate the method of translation from KS density functionals to on-
top density functionals. These functionals represent the first-generation of on-top density
functionals which, in principle, could be further optimized by considering exact theoretical
constraints or optimisation against experimental data.

MC-PDFT, introduced in chapter 2 represents a post-SCF correction to the MCSCF en-
ergy and therefore a converged MCSCF wave function is a prerequisite for the calculation
of MC-PDFT energies. In turn, MC-PDFT inherits the intrinsic drawbacks of MCSCF such
as the case-dependent choice of the active space. The on-top energy, akin to the exchange-
correlation energy in KS-DFT, includes a correction to the MCSCF kinetic energy plus the
exchange and correlation energy.

We calculate the spin-state ordering of the above mentioned 9 complexes using a CASSCF
wave function as the MCSCF method to which post-SCF energy corrections are applied us-
ing both CASPT2 and MCPDFT. We use basis sets analogous to those previously suggested
by Pierloot and co-workers [158]. An exploratory investigation of the effect of active space
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size was performed and we shall refer to these as (m/m-1,n), where m (m-1) is the number
of active electrons in Fe(II) (Fe(III)) active spaces and n is the number of orbitals. 5 different
active spaces are considered (figure 9.2):

• (6/5,5) – Fe(II) d-orbitals

• (10/9,7) – Fe(II) d-orbitals plus two �-bonding Fe-ligand orbitals

• (6/5,10) – Fe(II) d-orbitals plus a second set d-orbitals of higher angular momentum

• (10/9,12) – (6,10) plus two �-bonding, eg-like Fe-ligand orbitals

• (12/11,14) – (10,12) plus Fe 3s and its corresponding antibonding orbital

The largest of these is the active space proposed by Hauser [159]. For comparison, and to
underline the effects of Hartree-Fock exchange on spin state ordering, we also conducted a
representative benchmark of KS-DFT functionals comprising GGA, global-hybrid and meta-
GGA exchange-correlation functionals. In all cases, a D2h symmetry was imposed for both
geometries and energy calculations (except for complexes 4 and 9, for which Ci symmetry
was used). The use of symmetry, beside a trivial gain in computational time, is justified
by two main arguments: i) we wish only to compare different theoretical methods and ii)
it retains consistency in the active space across different complexes with ligands of varying
ligand-field strength. Generally, we shall discuss results in terms of the energy difference
between high- and low-spin forms of each complex (�EH/L). Positive (negative) values of
�EH/L indicate that the low (high) spin state is energetically favoured. Additionally, we
refer to the difference in �EH/L computed for different ligands, with strong-field ligands
expected to produce higher values of �EH/L than weak-field ligands. We consider 5 dif-
ferent ligands with the expected ordering H2O<NH3<NCH<CO<CNH, in terms of �EH/L,
inferred from the spectrochemical series. Additionally, based on previous diffusion Monte
Carlo results from Droghetti [160] and ligand field theory, we expect Fe complexes with
CNH and CO to have low-spin ground states and complexes with NCH, NH3 and H2O to
have high-spin ground states.

All KS-DFT calculations were conducted using Gaussian 09 [79]. Geometry optimisa-
tions were conducted using KS-DFT with the PBE0 exchange-correlation functional and
TZVP basis set by Ahlrichs [161], with which vibrational frequency calculations were also
performed to ensure the resulting geometries correspond to true minima. Using these ge-
ometries, single-point calculations for each density functional tested were conducted using
the def2-QZVPP basis set previously suggested by Neese [162].

CASSCF, CASPT2 and MC-PDFT were conducted using a locally modified version of
Molcas 7.9 [163]. We employ the default IPEA shift of 0.25 au and an imaginary level shifter
of 0.10 au. All calculations made use of the ANO-RCC basis set – including relativistic effects
via the standard second-order Douglass-Kroll-Hess Hamiltonian [164–167] – with the con-
traction schemes suggested by Pierloot [158] outlined in table 9.1. All MCSCF calculations
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FIGURE 9.2: Example of the orbitals used in active spaces in this work, here
shown using [Fe(CO)6]2+. Five different active spaces, which represent vari-

ous combinations of these orbitals, are used in total.

were performed at the PBE0 structures obtained at KS-DFT level – a strategy previously
suggested by Pierloot and Vancoillie [158].

9.3 Results and Discussion

9.3.1 A Representative Benchmark with DFT

Figure 9.3 shows the results of the KS-DFT approaches, with CASPT2 (active space (12,11/14))
results shown as horizontal lines for comparison. Generally, for Fe(II) complexes, local func-
tionals (i.e. with no explicit HF exchange) qualitatively reproduce the expected ordering of
�EH/L with respect to the ligand-field strength. GGA functionals, such as BP86 [133, 168]
and BLYP [133, 134], systematically overestimate �EH/L with respect to CASPT2, with the
exception of OPBE which reduces the overestimation for all ligands and underestimates
�EH/L for H2O by 10 kcal/mol. For meta-GGA functionals, such as VSXC [169] and
TPSS [170], we recall the trend recently outlined by Kulik [151], with a systematic under-
estimation (overestimation) of �EH/L for strong (weak) field ligands. M11-L [171] and
MN15-L [172], despite being meta-GGA, represent outliers in this case. M11-L significantly
overestimates �EH/L for all ligands, with the effect more severe for weak-field ligands.
Conversely, MN15-L systematically underestimates �EH/L for all ligands, this time with
strong-field ligands affected more significantly. No local functional is able to predict the
correct ground state for every ligand, although M06-L returns the best performance, able
to correctly predict a singlet ground state for CNH and CO ligands and a quintet ground
state for NH3 and H2O ligands. It incorrectly predicts a singlet ground state for NCH lig-
ands, although only by a small margin (�EH/L= 1.0 kcal/mol) and together these results
represent a mean average error (MAE) of 11.8 kcal/mol with respect to CASPT2. Indeed,
[Fe(NCH)6]2+ is arguably the only system in this work which can be considered a true spin-
crossover complex, with a �EH/L value of -12.84 kcal/mol calculated at CASPT2 level. All
other complexes indeed present, even at CASPT2 level, very high�EH/L values.
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FIGURE 9.3: �EH/L calculated for Fe(II) (top) and Fe(III) (bottom) complexes.
Region highlighted in orange includes only functionals with zero HF ex-
change, while the yellow region includes hybrid functionals with an ascend-
ing fraction of HF exchange (from left to right). Solid horizontal lines indicate
�EH/L values calculated with CASPT2 (active space (12/11,14)) for each com-

plex.
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The section highlighted in yellow in figure 9.3 contains hybrid functionals ordered by as-
cending percentage of HF exchange. As expected, mixing HF exchange with otherwise pure
functionals systematically reduces�EH/L as high-spin states are stabilised. This is exempli-
fied in the comparison between the PBE and PBE0 functionals, the latter containing 25% HF
exchange. We also note that the introduction of HF exchange induces greater high-spin sta-
bility in strong-field ligands than in weak-field ligands, echoing previous observations [150].
This can be rationalised via the different types of ligand-to-metal bonding present in each
complex. Ligands which are good ⇡-acceptors (CNH, CO) are most affected by introducing
HF exchange. As the self-interaction error is reduced in orbitals of ⇡-symmetry, the bonding
metal-to-ligand ⇡-orbitals are destabilized and the overall ligand-field strength is reduced,
resulting in lower values of �EH/L. Conversely, ligands which are good ⇡-donors (NCH,
H2O) are less affected due to the increased population of more localized, antibonding d-
orbitals upon ligand-to-metal donation. Lastly, ligands which only participate in �-donation
(NH3) are the least affected by the introduction of HF exchange, due to the more local nature
of the �-symmetry bonding orbitals.

Additionally, we note that the introduction of HF exchange seems to mostly override
other contributing factors to�EH/L, with a clear trend towards high-spin stability observed
in functionals with increasing HF exchange. The near-constant slope in �EH/L observed
going from TPSSh [170] to PBE0 (representing an interval of 10-25% HF exchange in incre-
ments of 5%) is indicative of the near-insensitivity of this quantity to other parameters. For
functionals with very high levels of HF exchange, such as M06-2X [173] and M06-HF [174],
this relationship seems to break down. Not only do we observe the loss of the linear rela-
tionship between�EH/L and %HF, but the disproportionate stabilisation of high-spin states
for strong-field ligands results in a different ordering of �EH/L for different ligands, when
compared with both the spectrochemical series and calculations at CASPT2 level.

Moving on to Fe(III) complexes, we observe a similar overestimation of �EH/L for local
GGA functionals with respect to CASPT2. This overestimation, particularly for weak-field
ligands, is again minimised in OPBE, which correctly predicts the doublet (sextet) ground
state for CNH and CO (NCH and NH3) ligands. The substitution of the PBE exchange func-
tional for O [175] exchange, which constitutes an improvement over Becke’s GGA exchange
functional by a single-parameter optimisation against exchange energies of the first and sec-
ond row atoms, provides a systematic improvement in �EH/L calculated for all ligands
and for both Fe(II) an Fe(III) complexes. This is consistent with the strong dependence of
�EH/L on exchange, as observed for hybrid functionals, and highlights the importance of
this contribution to the overall energy. We note also that it is mirrored by the previous suc-
cess of the OPBE functional for the calculation of spin-state ordering in spin-crossover com-
pounds [176]. Again, M11-L and MN15-L are outliers within this test set, with analogous
behaviour to what is observed for the Fe(II) complexes. The introduction of HF exchange
via hybrid functionals has a similar effect as for Fe(II) complexes, again only showing an
apparent linear dependence on %HF exchange, with a breakdown at very high levels of HF
exchange. Another general observation, for both Fe(II) and Fe(III) complexes, is that the
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FIGURE 9.4: �EH/L calculated for Fe(II) and Fe(III) complexes as a function
of active space size (in ascending order with respect to the number of orbitals
used). Results computed with CASSCF, CASPT2 and MC-PDFT using the

tPBE on-top density functional.
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difference in�EH/L computed between each of the two strong-field ligands remains largely
constant, irrespective of the functional used. The same holds true for weak-field ligands.
This indicates that the true sensitivity with respect to the density functional approximation
lies in the effective and balanced description of different types of metal-ligand bonding,
highlighted in the ligand-dependent effect of HF exchange. These results establish that lig-
ands which exhibit ⇡-backbonding interactions with the metal (e.g. in strong-field ligands
such as CO), are more affected by an increase in %HF exchange with respect to those which
rely on ligand-to-metal ⇡-donation or �-bonding (e.g. in weak field ligands such as NH3).
The cause for this lies in the greater tendency for orbital over-delocalisation in ⇡-bonding
orbitals with respect to ⇡-antibonding or �-bonding orbitals, which is at the heart of the
apparent arbitrary performance of DFT with respect to functional formulation.

9.3.2 Performance of Wave Function Theory-Based Approaches

Based on these observations, the more consistent performance of WFT-based methods for
the description of spin-state ordering could be attributed to a more balanced treatment of
different metal-ligand bonding interactions. We expect this to hold true for CASSCF since
the starting point for such calculations is the HF determinant, with the proviso that the dy-
namic correlation can be adequately recovered by some post-SCF procedure. For CASSCF
calculations, this is usually accomplished via CASPT2 – a second order multi-reference per-
turbation method. CASPT2, however, is associated with a substantial computational invest-
ment which – for medium- to large-sized systems – can render this approach unfeasible.
In this context, we shall now discuss the performance of the much more computationally
affordable MC-PDFT approach and compare this to CASPT2. Figure 9.4 shows calculated
�EH/L values for CASSCF, CASPT2 and MC-PDFT (with the tPBE functional) for 5 differ-
ent active spaces. Straight away we note that CASSCF alone is insufficient to describe the
expected spin-state ordering of both the Fe(II) and Fe(III) complexes for any active space
tested. Interestingly, it appears that, while �EH/L is only modestly underestimated for
weak-field ligands (with respect to CASPT2 values), the failure is much greater for strong-
field ligands. Comparing the results of CASPT2 and MC-PDFT with respect to the active
space size, we note that MC-PDFT reacts very similarly to CASPT2 upon changing the ac-
tive space. Generally, introducing the eg-like �-bonding orbitals stabilises low-spin states.
As one might expect, this stabilisation is stronger for strong-field ligands than weak-field
ligands. Interestingly, incorporation of the so-called ‘double shell’ effect [177] alone, by in-
cluding Fe d-orbitals of higher angular momentum in the active space, has little effect on
�EH/L. It is only when combined with the �-bonding orbitals in the active space that a
slight stabilisation of low-spin states is observed for strong-field ligands. Additionally, the
inclusion of Fe 3s orbital and the corresponding antibonding orbital to the active space has
little effect, with the exception of a modest stabilisation of Fe(II) complexes with weak-field
ligands. This is to be expected, however, as the incorporation of these orbitals into the ac-
tive space serves only to retain consistency of the active space across different systems, as
outlined previously [159]. Despite minor variations, the general trend with respect to active
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FIGURE 9.5: �EH/L (kcal/mol) calculated for Fe(II) and Fe(III) complexes as a
function of active space size (in ascending order with respect to the number of
orbitals used). In each case, four different formulations for the on-top density
functional was used: tPBE, ftPBE, tREVPBE and ftREVPBE. Solid horizontal
lines indicate�EH/L values calculated with CASPT2 (active space (12/11,14))

for each complex.
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space size is that an increase in the active space size results in a stabilisation of low-spin
states. This is consistent, as low-spin configurations are inherently more multi-reference in
nature then high-spin configurations. Perhaps the most interesting result here is the qual-
itative similarity between �EH/L values calculated at MC-PDFT and CASPT2 level across
all active spaces. Specifically, the differences in �EH/L between ligands calculated with
CASPT2 are largely preserved when using MC-PDFT, demonstrating that this method ben-
efits from the post-SCF nature of the correction to the energy and, although accomplished
using an on-top density functional, does not compromise the balanced treatment of strong-
and weak-field ligand bonding.

Figure 9.5 shows �EH/L calculated using each of the four on-top density functionals
tested – again as a function of the active space size. In general, changing the transla-
tion method from ‘t’ to ‘ft’ results in a minor systematic increase in �EH/L for all ligands,
whereas changing the base functional from PBE to revPBE yields a systematic decrease in
�EH/L. This stabilisation of low-spin states going from PBE to revPBE echoes the replace-
ment of PBE exchange with O exchange previously highlighted in the KS-DFT results. In-
terestingly, both revPBE and O make use of a fitting procedure based on atomic exchange
energies. Crucially, a change in the functional formulation shows no difference in the treat-
ment of strong- and weak-field ligands, underlining the even treatment of different bonding
types by the CASSCF wave function. This is very encouraging, despite the systematic over-
estimation of�EH/L by MC-PDFT with respect to CASPT2 data, as MC-PDFT in its current
implementation has much greater scope for improvement compared with CASPT2. In other
words, having the possibility to improve the current first-generation functionals by taking
into account known exact theoretical constraints or parametrisation against experimental
data, MC-PDFT shows a flexibility similar to KS-DFT in functional formulation without suf-
fering from the imbalanced treatment of different metal-ligand bonding modes. This point is
further illustrated through figure 9.6, which demonstrates that MC-PDFT follows the trend
set out by CASPT2, while PBE and PBE0 perform differently depending on the ligand-field
strength of the ligand in the complex concerned. Additionally, the systematically improved
performance of trevPBE over tPBE echoes the improvement of exchange-tuned functionals
investigated using KS-DFT (i.e. OPBE) and highlights the scope for improvement concern-
ing on-top density functionals.
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FIGURE 9.6: �EH/L (kcal/mol) calculated for Fe(II) (left) and Fe(III) (right)
complexes in ascending order of computed ligand field strength. Results
obtained using PBE, PBE0, MC-PDFT (with two different on-top functionals
tPBE and trevPBE), and CASPT2 are shown, with the CASPT2 and MC-PDFT
results based on the (12/11, 14) active space. Positive (negative) values of

�EH/L correspond to a low-spin (high-spin) ground state.
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9.4 Conclusions and Perspectives

By testing the performance of MC-PDFT in calculating the spin state ordering of nine Fe(II)
and Fe(III) complexes, we find that, not only this method is able to qualitatively reproduce
the spin-state ordering calculated at CASPT2 level, but that the treatment of ligands with
diverse ligand field strengths is retained. We conclude that MC-PDFT is able to take advan-
tage of the more even treatment of different ligand-metal bonding types by the underlying
CASSCF wave function while at the same time benefiting from the reduced computational
cost associated with calculating exchange and correlation energy using a density functional.
MC-PDFT also reacts similarly to CASPT2 as a function of active space size and shows mod-
est, yet consistent, sensitivity to the on-top density functional. We also emphasise that these
results represent the application of first-generation on-top density functionals and are, in
this respect, particularly encouraging.

This chapter serves as a type of perspective, so as to demonstrate that - regardless of
the quality of a given environmental model - other problems related to the formulation of
the underlying methodology can persist. Though not explored in this work, in principle it
would be possible to couple findings from this chapter (i.e. the more consistent performance
of multi-configurational wave function methods compared with DFT for the calculaton of
spin state ordering in Iron complexes) with those from previous chapters. Specifically, there
is no reason why a methodology such as SC-Ewald could not be coupled with wave function
theory methods such as CASSCF to account for environmental and static correlation effects.
This could be a promising computational protocol for studying, for example, heterogeneous
catalytic processes or magnetic properties in the solid state.
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Chapter 10

General Conclusions and Perspectives

The objective of this thesis was to devise, construct and apply cost-effective approaches
to calculate photophysical properties of crystalline media, specifically organic molecular
crystals, by accounting for electrostatic interactions with the environment.

To do so, we made use of a self-consistent charge-adjustment procedure, SC-Ewald,
which, through application of an excited-state embedding potential, attempts to recover
both short- and long-range electrostatic contributions both from neighboring molecules and
the long range, infinite potential (Madelung field). The resulting embedding procedure is
then introduced into excited-state calculations based on time-dependent density functional
theory. The resulting algorithm was tested on various molecular crystalline materials ex-
hibiting interesting, and varied, optical properties.

Specifically, the first study, which was introduced as an effective proof-of-concept study
for SC-Ewald applied to a dual-emissive molecular crystal exhibiting an excited-state dual
proton transfer reaction, demonstrated that fluorescence properties calculated with SC-Ewald
were superior to those calculated with other cost-mitigating methods, such as ONIOM. In-
deed, emission properties calculated with SC-Ewald were of a remarkable quality when
compared with experimental values.

In a second study, this time concerning the phenomenon of aggregation-induced emis-
sion observed in molecular crystalline diphenyl fluoronone, revealed that the enhanced
emissive properties of its aggregates and powders when compared with solution could be
rationalized through a single-molecule process in which the radiative intensity of otherwise
poorly-emitting states is enhanced by the electrostatic field produced by the excited-state
embedding potential provided by SC-Ewald.

Extending the application of SC-Ewald to the study of fluorescent amorphous materi-
als, we then studied a family of difluoroboron avobenzone derivatives which exhibit inter-
esting structure-dependent fluorescent properties resulting from both polymorphism and
mechanochromic fluorescence. As well as a quantitative recovery of the influence of poly-
morphism on fluorescence, using intelligent sampling of thermally-accessible molecular
configurations in the amorphous phase, we obtained a quantitative model which provides
physical insight into the origins of mechanochromic luminescence and the optical properties
of amorphous materials in general. Additionally, through molecular dynamics simulations,
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we have seen how the degree of polymorphism can be altered via the substitution of donor
moieties which facilitate a wider array of potential intermolecular interactions, and how this
translates to regions of local order in the amorphous phase and the resulting influence on
amorphous-phase fluorescence.

The following study, actually completed earlier in the time-frame of the thesis, concerned
a preliminary investigation into the luminescent properties of metal-organic frameworks,
and how these may be studied using a combined cluster and periodic approach. Through
this methodology, we postulated that the drastically different luminescence properties of
a pair of iso-structural frameworks could arise through different radiative processes, be it
fluorescence - in the case of the Cd-based framework, or phosphorescence - in the case of
the Zn-based framework.

The final contribution to this thesis serves as a perspective and highlights the failings of
density functional theory for the specific task of calculating spin-state ordering in transition
metal complexes. Though application of wave function-based methods and the recently-
developed multiconfiguration pair-density functional theory, we demonstrate that these
methods can provide a more balanced treatment of strong- and weak-field ligands and their
effects on spin-state ordering. Though this study does not concern the condensed phase, it is
clear how these issues transfer to the solid state, and that special care - not only concerning
environmental effects - must be taken.

With the development of SC-Ewald and the first three studies outlined in this thesis, it is
clear that this represents a promising and cost-effective way of addressing the challenge of
including environmental factors in the modeling of solid-state photophysical processes. In-
deed, we have shown how this is often crucial for the understanding and prediction of such
phenomena. Though these initial results are promising, further study into the behavior of
SC-Ewald with respect to, for instance, functional choice and charge types is desirable, as
well as further systematic study of the phenomena already presented in this work. Never-
theless, the performance and versatility of this model has thus far been rather remarkable,
and should prompt further development into the study of other condensed-phase optical
phenomena as well as lower-dimensional periodic systems such as surfaces and polymers.

[]
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Chapter 11

Résumé en français

11.1 Introduction

Les matériaux qui peuvent être considérés comme «photoactifs» sont ceux dont une réponse
observable peut être provoquée par l’interaction avec la lumière. La réponse observable en
question est, par exemple, une réaction chimique induite, un changement de couleur ou de
luminescence, un changement de propriétés magnétiques.

A partir de ces matériaux, des dispositifs exploitant leurs propriétés pour une applica-
tion donnée peuvent être fabriqués. Le développement constant de nouveaux matériaux
photoactifs destinés à être utilisés dans des domaines tels que les dispositifs électrolumines-
cents, médicaux et catalytiques résulte de la nécessité d’une plus grande efficacité, d’une
performance améliorée et d’un coût réduit. Cependant, l’innovation repose actuellement
sur des progrès incrémentaux, des essais, et une découverte parfois accidentelle où peu
d’attention est portée à la conception de matériaux avant leur synthèse.

Compte tenu des moyens de calcul actuellement disponibles et des développements ré-
cents dans les méthodes de la fonctionnelle de la densité dépendant du temps, la modéli-
sation peut permettre ce design pré-synthétique. Pour cela cependant, prendre en compte
les changements induits par l’environnement en phase condensée sur les propriétés à l’état
excité de ces matériaux est indispensable. Dans le cadre de la modélisation des processus
photophysiques, au niveau moléculaire, les effets de la "phase condensée" sont ceux induits
par les molécules de solvant d’une solution, alors qu’il s’agit de ceux d’autres molécules
photoactives dans le cas de matériaux cristallins ou en phase amorphe.

Il est bien connu que les propriétés photophysiques d’un système moléculaire peuvent
être fortement influencées par des interactions avec le milieu. Pour cette raison, des ressources
considérables ont été consacrées à l’étude de l’influence environnementale afin de mieux
comprendre et contrôler différents processus à l’état excité.

D’un point de vue expérimental et théorique, les méthodes d’étude des propriétés pho-
tophysiques de molécules photoactives en solution sont très bien développées, et la concep-
tion moléculaire guidée par la modélisation devient possible pour exploiter certains pro-
priétés. Malheureusement, l’état de l’art dans la modélisation de l’état solide est beaucoup
moins développé par rapport à la modélisation des effets de solvant. En outre, à l’état
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solide, les processus photophysiques sont plus difficiles à caractériser expérimentalement
et les constats de comportement photophysique intéressant dans les systèmes périodiques,
souvent faibles et subtils, sont beaucoup plus rares par rapport aux cas connus en solution.
Décrire la photochimie complexe en phase solide représente donc un défi important pour
les chimistes théoriciens. L’élaboration de modèles de qualité suffisante - à la fois capables
de comprendre et de prédire l’influence d’un environnement sur les propriétés optiques,
ainsi que leur modification par changement de l’environnement - constituent un élément
nécessaire à la compréhension et à la conception de molécules et de matériaux fonctionnels.

Ce problème représente une tâche centrale de cette thèse, dans laquelle nous avons
développé et appliqué un modèle d’embedding relativement peu coûteux - SC-Ewald - et
capable de modéliser des interactions électrostatiques cruciales avec l’environnement à l’état
solide. Cette approche, de type “embedded cluster” décrite dans le chapitre 4, améliore cer-
tains aspects des méthodes actuelles plus traditionnelles d’embedding telles que l’ONIOM.

11.2 Embedding à l’état excité: SC-Ewald

Nous présentons maintenant l’approche utilisée pour incorporer les effets électrostatiques
d’environnement qui constitue la base de la majorité des travaux présentés plus loin dans
cette thèse. Cette approche s’affranchit des problèmes liés à l’électrostatique à longue dis-
tance dans les systèmes périodiques infinis en utilisant la technique de sommation d’Ewald.
Associée à une formulation auto-cohérente, cette approche produit un potentiel d’embedding
dérivé de la densité d’état excité du cluster quantique. Dans la suite, nous introduisons tout
d’abord le problème de l’électrostatique à longue distance dans les systèmes infinis et la
façon dont Ewald l’a résolu, puis nous présentons la méthode d’embedding d’Ewald orig-
inelle pour le calcul des propriétés à l’état fondamental. Enfin, nous décrivons la procédure
auto-cohérente qui génère le potentiel d’embedding de l’état excité. Bien que l’on puisse
supposer que ces interactions soient négligeables si les atomes concernés sont suffisamment
éloignés du clsuter quantique d’intérêt, démontrons dans la suite que ce n’est généralement
pas le cas et comment cette hypothèse peut entraîner des erreurs importantes dans le poten-
tiel de l’état fondamental.

Le potentiel électrostatique ressenti par un atome en un point donné dans un réseau
périodique, connu sous le nom de potentiel de Madelung, [48] peut être representé par une
somme directe infinie qui n’est malheureusement que conditionellement et lentement con-
vergente. Ainsi, utiliser un jeu fini de charges ponctuelles pour décrire l’interaction avec le
milieu peut entraîner de fortes erreurs.

Une solution intelligente à ce problème a été proposée par Ewald en 1921, [50] en util-
isant une approche qui permet de contourner les propriétés de convergence conditionnelles
de la somme directe. Dans cette approche, calculer l’énergie d’une charge ponctuelle qi dans
un réseau périodique infini nécessite trois quantités. La première est l’énergie de liaison
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FIGURE 11.1: Représentation schématique de l’équation 4.2 - comment les
termers intervenant dans la somme d’Ewald sont combinés pour reproduire
le potentiel électrostatique au site qi généré par tous les autres atoms qj dans

un réseau périodique.

de la charge qi au milieu des autres charges qj , chacune étant complétée par une distribu-
tion de charge Gaussienne fictive de charge totale de �qj . Fondamentalement, cette fonc-
tion d’écrantage permet à cette somme de converger rapidement dans l’espace réel (direct).
La deuxième quantité est l’énergie de liaison de la charge qi avec les fonctions d’écrantage
Gaussiennes décrites ci-dessus, plus une distribution gaussienne supplémentaire de charge
totale �qi centrée à la position de la charge qi. Cette somme est réalisée sur un ensemble
complet et périodique de distributions Gaussiennes identiques, et converge donc rapide-
ment lorsqu’elle est effectuée dans l’espace réciproque. Le troisième terme est l’énergie de
liaison de la charge qi en raison de la fonction Gaussienne supplémentaire décrite précédem-
ment. En combinant ces trois termes, l’énergie de liaison de la charge ponctuelle qi, montré
schématiquement en figure 11.1 est obtenue.

À partir de cette discussion, il est facile de comprendre que ce problème est général et se
pose lors du traitement de clusters quantiques, où le milieu est habituellement représenté
par un jeu fini de charges ponctuelles conçu pour reproduire le champ électrostatique du
reste du cristal.

Nous introduisons maintenant une méthode [51, 52] - initialement conçue par Klinten-
berg et ses collègues en 1999 - qui cherche à résoudre certains des problèmes liés au po-
tentiel électrostatique à longue distance dans les environnements cristallins, sans calculs
périodiques au niveau quantique. Cette approche - et son extension aux potentiels d’états
excités - constitue la base de la majorité de cette thèse. En résumé, originellement utilisée
pour l’étude de défauts dans des systèmes périodiques ioniques, cette approche consiste ici
à associer incorporation de charges ponctuelles à un processus d’ajustement de charges, pro-
duisant automatiquement un jeu de charges ponctuelles représentant exactement le poten-
tiel de Madelung pour un système cristallin arbitraire. Un algorithme en cinq étapes, décrit
schématiquement en Figure 11.2, est utilisé pour générer le jeu de charges ponctuelles.

Après la génération de charges ponctuelles ajustées, le potentiel électrostatique, cal-
culé via une somme directe aux sites du cluster quantique, est maintenant égal à celui de
l’approche d’Ewald et le problème des potentiels électrostatiques à longue distance erronés
dans les méthodes de cluster fini est résolue. La somme totale est maintenant finie, bien que
le potentiel électrostatique qu’elle produit soit dérivé avec précision de la somme d’Ewald.
Dans le cadre de l’embedding d’Ewald, bien que les charges d’environnement permettent
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FIGURE 11.2: Représentation de la procédure d’embedding d’Ewald. Généra-
tion du jeu de charges comme supermaille de la maille cristallographique
(gauche), division de ce jeu en trois zones (centre). Après ajustement de la
valeur des charges en zone 3, le potentiel électrostatique d’Ewald est repro-

duit en tous points des zones 1 et 2 (intérieur de la sphère verte) (droite).

de polariser la fonction d’onde de l’état fondamental du cluster quantique, celles-ci restent
fixes, rendant les effets de polarisation mutuelle impossible entre le cluster quantique de la
Zone 1 et le reste du système. Ceci introduit potentiellement de graves approximations lors
de l’étude de phénomènes à l’état excité - et en particulier pour les transferts de charge. Par
conséquent, nous avons conçu une extension de l’embedding d’Ewald, capable de produire
un potentiel électrostatique à l’état excité électroniquement équilibré avec le cluster quan-
tique. Ce faisant, nous utilisons Ewald comme point de départ pour produire un poten-
tiel d’embedding à l’état excité généré par des charges de Mulliken. Les étapes impliquées
dans ce processus sont décrites ci-dessous et sont montrées schématiquement en Figure 11.3.
Maintenant que nous avons introduit les fondements théoriques nécessaires et l’approche
SC-Ewald elle-même, la majeure partie du reste de cette thèse concerne l’application de cette
dernière au calcul de divers phénomènes à l’état excité se produisant en phase cristalline.
En particulier, on décrit ici une étude de type preuve de concept concernant le transfert de
protons à l’état excité à l’état solide (chapitre 5), puis des phénomèmes d’émission induite
par agrégation (chapitre 6) ou encore de fluorescence mécanochromique (chapitre 7 ).

11.3 Application au transfert de protons à l’état excité

Le transfert de proton intramoléculaire à l’état excité (ESIPT) est un processus photochim-
ique qui produit un tautomère ayant une structure électronique différente de la forme ex-
citée d’origine. [58] Généralement, cette réaction est décrite par un cycle à quatre niveaux,
résultant du processus de tautomérisation de la forme énol (E) à kéto (K), qui est représenté
schématiquement en figure 11.4.

Les propriétés de signature des fluorophores ESIPT incluent des déplacements de Stokes
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FIGURE 11.3: Procédure auto-cohérente utilisée pour obtenir le potentiel
d’embedding à l’état excité de l’environnement cristallin, et pour optimiser
la géométrie du cluster central à l’état excité afin d’ontenir les propriétés

d’émission du cristal.

importants, des émissions duales et une sensibilité des propriétés optiques au milieu. [62,
63] La nature d’ émissivité duale de ces chromophores provient de la longueur d’onde
d’émission plus courte (plus longue) de la forme énol (kéto). La condition nécessaire au
cycle à quatre niveaux à la base de l’ESIPT est la présence d’une liaison hydrogène in-
tramoléculaire (liaison H) entre les donneurs de protons et les groupes accepteurs de pro-
tons. [60] La vitesse inhérente de l’ESIPT (kESIPT > 1012s�1) est telle que ce processus
peut avoir lieu même à très basse température, [61] bien que le taux de processus ESIPT
dépende des groupes donneurs/accepteurs impliqués et du milieu, qu’il s’agisse de solvants
ou d’autres chromophores ESIPT sous forme de cristaux moléculaires. [64, 65] Grâce aux
propriétés de double émission des chromophores ESIPT et aux larges bandes d’émission
résultantes capables de couvrir tout le domaine visible, ces systèmes ont gagné un intérêt
considérable pour la production de lumière blanche. [62, 66, 67] De plus, les chromopores
ESIPT ont été appliqués dans divers domaines comme celui des portes logiques molécu-
laires, [68] des dispositifs d’imagerie par fluorescence, [69] et encore d’absorbants d’UV. [70]

D’un point de vue informatique, posséder un outil capable de reproduire quantitative-
ment les propriétés photophysiques de chromophores ESIPT en solution et à l’état solide
ainsi que la façon dont ils sont soumis à leur environnement représenterait un atout poten-
tiellement inestimable non seulement pour la compréhension de l’ESIPT mais aussi pour la
conception moléculaire. Bien que le concept de modélisation de l’ESIPT en solution soit bien
établi et devenu habituel, cela est loin d’être le cas à l’état solide. Les difficultés résultent
de la nature directionnelle des interactions intermoleculaires à l’état solide ainsi que du bon
rapport des interactions électrostatiques à longue distance qui pourraient être cruciales pour
la compréhension et la prédiction des processus thermodynamiques et photophysiques à la
base de l’ESIPT à l’état solide. Dans cet esprit, nous avons essayé d’utiliser une étude d’un
système cristallin présentant deux réactions de transfert de proton résultant en une émis-
sion duale pour montrer que i) on peut utiliser l’algorithme SC-Ewald pour incorporer - à
faible coût calculatoire et facilement - les interactions qui sont imposées par l’environnement



136 Chapter 11. Résumé en français

FIGURE 11.4: Mécamisme général d’ESIPT à quatre étapes. Le tautomérisme
entre les formes énol et kéto est interdit à l’état fondamental mais thermo-
dynamiquement favorisé à l’état excité, donnant lieu à un équilibre entre les
formes énol et kéto à l’état excité associées à des longueurs d’onde d’émission

distinctes.

dans n’importe quel modèle cristallin avec une périodicité 3D pour l’étude de ses propriétés
photophysiques et ii) leur inclusion conduit à une meilleure reproduction des effets envi-
ronnementaux et donc une meilleure compréhension de la façon dont ceux-ci pourraient
affecter les processus photophysiques pertinents.

Ce travail s’est porté sur l’étude d’un système (DHNA, figure 11.5), présentant une
réaction de transfert de proton intramoléculaire à l’état excité et dont les propriétés photo-
physiques complexes sont sensibles aux effets environnementaux, pour développer et tester
des approches capables de reproduire des effets subtils mais significatifs. Les résultats prin-
cipaux obtenus sont résumés en figure 11.6. Initialement, une distribution de charge re-
produisant le potentiel Ewald de l’état fondamental exact du cristal a été utilisée avec des
résultats améliorés obtenus en utilisant un cluster QM/QM’ en plusde cette distribution de

FIGURE 11.5: Gauche: structure de la molécule de DHNA considérée dans
ce chapitre. Droite: packing de DHNA sous forme cristalline (hydrogènee:

blanc; carbone: noir; oxygène: rouge).
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FIGURE 11.6: Erreurs absolues sur les énergies d’émission (eV) calculées
pour chacun des modèles considérés dans ce chapitre. L’erreur est consid-
érée comme infinie pour l’émission TB* avec le modèle MV AC puisqu’aucun

minimum sur la surface d’énergie potentielle de l’état excité n’est obtenu.
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FIGURE 11.7: Molécules organiques typiques présentant des phénomèmes
d’aggregation-caused quenching (ACQ) et d’aggregation-induced emission

(AIE).

charges. Dans une deuxième approche, les résultats ont été améliorés (et obtenus en très bon
accord avec l’expérience) en utilisant notre méthode auto-cohérente (SC-Ewald) pour déter-
miner les valeurs des charges ponctuelles d’environnement tout en considérant uniquement
une seule molécule explicitement au niveau QM .

Ici, nous avons présenté deux approches différentes qui, associées à un très faible coût
de calcul supplémentaire, peuvent conserver l’effet de la périodicité cristalline sur le po-
tentiel électrostatique ressenti par une molécule centrale et l’appliquer dans le contexte du
calcul de propriétés photophysiques. Nous avons démontré que l’inclusion de ces effets
peut être cruciale si on souhaite décrire ces effets avec précision et prédire le résultat de pro-
cessus photophysiques à l’état solide. Dans les sections suivantes, nous verrons comment
SC-Ewald peut être appliqué à d’autres systèmes pour étudier leurs propriétés optiques
complexes et sensibles à l’environnement.

11.4 Application aux agrégats émissifs

Au cours de la dernière décennie, un groupe de molécules ne subissant pas l’effet d’«aggregation
caused quenching» (ACQ), molécules émissives qui deviennent non-émissives après agré-
gation ou à l’état solide, ont été proposées - une série de dérivés du silole, non émissif en so-
lution diluée mais fortement fluorescent sous forme agrégée ou en poudre. [88,89] Cette pro-
priété, totalement à l’opposé du phénomène destructif de l’ACQ, nommée «émission induite
par agrégation» (AIE) et a entraîné la synthèse de nombreuses classes de ces molécules. Bien
que des améliorations dans les applications technologiques des luminophores organiques
aient été constatées, des efforts supplémentaires sont nécessaires pour comprendre les mé-
canismes mis en jeu dans l’AIE et comment ceux-ci peuvent être exploités.

La grande majorité du comportement d’AIE, y compris celui des dérivés du silole (HPS)
présenté en figure ??, est rationalisé par la restriction de rotation intramoléculaire (RIR).
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FIGURE 11.8: Structure cristalline complètement optimisée au niveau B3LYP-
D*/6-31G(d,p) du DPF. Le trait bleu représente la maille conventionnelle, et
les deux liaisons hydrogènes O-H intermoléculaires sont en mises en évi-
dence à l’aide de segments violets. La maille de la sructure expérimentale
(a = 34.84Å, b = 6.85Å, c = 7.21Å), est bien reproduite, en comparaison des

paramètres de maille optimisés (a = 34.61Å, b = 6.48Å, c = 7.17Å)

[88,90–92] Pour HPS, il existe six substituants cycliques liés au cœur de silole. Ces fragments
cyclique, qui peuvent tourner autour de leurs liaisons simples avec la fraction de silole, ser-
vent comme voies de désactivation rotative efficace (ou, plus généralement, vibrationnelle),
conduisant à une désintégration non radiative d’un état excité à l’état fondamental. Dans
les agrégats ou à l’état solide, ce mouvement est sévèrement restreint - en supprimant cette
voie de désactivation non radiative et en conservant les propriétés hautement émissives de
la molécule HPS. Cette attribution du mécanisme RIR au phénomène AIE a également été
étudiée et vérifiée en observant la fluorescence en fonction de la viscosité du solvant, de la
température du système et de l’application d’une pression. [88]

La 2,7-diphénylfluorénone (DPF) est un AIE chromophore, qui présente un déplacement
vers le rouge de 150 nm de la bande d’émission après agrégation, attribué à la formation
d’excimère à l’état excité. [95] Ce chromophore forme également facilement des poudres qui
présentent des propriétés optiques très similaires aux agrégats. Dans ce chapitre, nous met-
tons en évidence une autre cause pour le comportement AIE de DPF et démontrons qu’il
provient d’un processus à une seule molécule plutôt que de la formation d’excimères. En
utilisant le modèle d’embedding SC-Ewald (chapitre ??) comme approximation de l’environnement
à l’état solide, il est démontré (figure 11.9) que le champ induit par l’environnement cristallin
peut améliorer la luminosité relative des états faiblement émissifs dans DPF, résultant à la
fois en une fluorescence améliorée et un déplacement bathochrome substentiel par rapport
aux émissions en solution diluée.
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FIGURE 11.9: Spectres d’émission simulés pour les transitions S0 ! S1 et S0
! S3 au niveau CAM-B3LYP: i) dans le THF (solvatation implicite, C-PCM),
ii) à l’état solide en utilisant une approche ONIOM QM/QM’ et iii) à l’état
solide en utilisant la procédure d’embedding SC-Ewald. Valeur de FWHM de

0.35 eV. Le spectre expérimental [?] est également reporté (pointillés).

Nos résultats démontrent comment, en général, la modélisation de différents effets en-
vironnementaux est cruciale pour la compréhension et la reproduction des observations ex-
périmentales dans le contexte de l’AIE. Plus précisément, dans le cas de DPF, il a été dé-
montré que la paradigme de la restriction de rotation intramoléculaire fournit une image
incomplète du processus AIE dans ce cas particulier. Au lieu de cela, une analyse théorique
a montré que l’augmentation simultanée de la fluorescence et de la longueur d’onde de flu-
orescence lors de l’agrégation des monomères de DPF en solution est due à un processus
centré sur l’environnement, en s’appuyant sur des interactions électrostatiques à l’état ex-
cité à courte et à longue distance entre une seule molécule et son environnement. Nous sug-
gérons donc que le champ de l’environnement à l’état excité permet une émission améliorée
d’états excités et conduit à une émission intense d’agrégats observée à plus faible énergie
par rapport à la solution. Il est intéressant de noter que cela diffère de l’interprétation an-
térieure des résultats expérimentaux, qui proposait la formation d’«excimères statiques».
Nous prévoyons que, pour d’autres cas signalés d’AIE accompagnés d’un changement sig-
nificatif dans les maxima d’émission, ce protocole pourrait généralement être utilisé comme
outil non seulement pour comprendre, mais aussi pour faciliter la conception de matéri-
aux performants en fournissant un moyen pour inclure des interactions avec des environ-
nements complexes.
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11.5 Extension aux matériaux amorphes

La fluorescence à l’état solide des molécules organiques dépend fortement de la structure
moléculaire et des interactions intermoleculaires présentes dans différentes morphologies. []
Dans les chapitres précédents, nous avons étudié comment les propriétés de fluorescence
des cristaux moléculaires organiques peuvent être modifiées par la réactivité à l’état excité
(transfert de proton) et agrégation. Ces propriétés ont également été jugées très sensibles aux
interactions électrostatiques avec l’environnement. Dans cette section, nous étudions la sen-
sibilité des propriétés de fluorescence à l’état solide ainsi qu’au polymorphisme et au stress
mécanique. Dans le contexte de la science des matériaux, le polymorphisme est la capac-
ité d’une molécule à adopter différentes structures cristallines. En conséquence, différents
polymorphes dérivés de la même molécule peuvent présenter des interactions intermolec-
ulaires distinctement différentes et, par conséquent, des propriétés optiques remarquable-
ment différentes. En outre, en appliquant une pression par broyage mécanique en formant
des polymorphes moins ordonnés, certains matériaux peuvent présenter un changement
de couleur ou un changement de comportement de luminescence, connu sous le nom de
«mécanochromisme». Plus récemment, le mécanochromisme sélectif, sensible au type de
pression mécanique appliquée - qu’il soit anisotropique ou isotrope - a été démontré pour
certains matériaux.

Bien que le mécanochromisme soit devenu une propriété intensément étudiée des matéri-
aux moléculaires [], les processus microscopiques qui sont au cœur de ces effets restent mal
compris, interdisant toute sorte de stratégie de conception rationnelle pour l’application
dans le monde réel. Envisager une voie de conception suppose une compréhension fine des
relations structure-propriété fortement corrélées à l’état excité qui régissent le mécanochromisme.
Jusqu’ici, se tourner vers des approches théoriques pour étudier ces relations a été diffi-
cile en raison de la complexité de la description et de la prédiction des propriétés de la
phase amorphe, tout particulièrement à l’état excité. En effet, la description théorique de
l’absorption et de la fluorescence nécessite des approches chimiques quantiques sophis-
tiquées qui sont souvent exigeantes en termes de calcul. L’échantillonnage d’un nombre
représentatif de configurations moléculaires dans la phase amorphe représente un énorme
investissement de calcul, en particulier pour le calcul d’états excités, et empêche ainsi la
reproduction ou la prédiction des propriétés optiques. En utilisant une double approche
théorique-expérimentale, dans cette contribution, nous démontrons qu’un échantillonnage
intelligent des configurations thermiquement accessibles en phase cristalline, couplé à une
compréhension des facteurs qui régissent l’ordre local dans la phase amorphe, conduit à une
reproduction remarquable des spectres d’émission expérimentaux et fournit non seulement
une compréhension vitale des processus clés à la base du mécanochromisme mais aussi une
interprétation des propriétés optiques des phases amorphes plus généralement.

Pour ce faire, nous présentons ce que l’on appellera la famille des molécules DFB-X -
DFB-H, DFB-E et DFB-A - représentée en figure 11.10. En prenant DFB-A comme exemple,
la figure ?? met en évidence les effets de l’environnement (c’est-à-dire solution ou milieu
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FIGURE 11.10: Structures moléculaires des molécules de DFB-H, DFB-E et
DFB-A. Les motifs colorés indiquent les orientations relatives et le recouvre-
ment entre paires de dimères pour les polymorphes cristallines résolus ex-
périmetalement, le trait noir mettant en évidence la distance entre centre de

masse r dans chaque cas.

cristallin), le polymorphisme et le stress mécanique sur les propriétés de fluorescence. Dans
la solution de THF, le DFB-A présente un maximum d’émission à environ 425 nm et possède
deux polymorphes cristallins stables (DFB-A1 et DFB-A2) avec des spectres d’émission plus
larges à 480 et 520 nm, respectivement. Le broyage mécanique des cristaux DFB-A entraîne
un décalage global vers le rouge et un élargissement significatif du spectre d’émission, avec
un maximum à 550 nm. Le DFB-A constitue un excellent exemple de la façon dont une
modification des interactions intermoleculaires apportées par la modification des confor-
mations relatives dans les matériaux moléculaires entraîne des altérations importantes du
comportement de fluorescence. En outre, DFB-H et DFB-E - en raison des interactions in-
termoleculaires différentes apportées par substitution de différents groupes de donneurs
- présentent leur propre polymorphisme distinct et leur réponse à une perturbation mé-
canique. La réponse complexe de cette famille de molécules à différentes interactions et
stimuli environnementaux en fait un candidat idéal pour tester et développer des approches
de modélisation qui cherchent à expliquer de telles subtilités. Par conséquent, dans ce tra-
vail, nous avons démontré comment SC-Ewald - en conjonction avec les techniques de la
dynamique moléculaire (MD) - est capable de reproduire les changements spectraux dus
au polymorphisme et de mettre en évidence les concepts physiques à la base de la fluores-
cence mécanochromique. Dans ce travail, nous avons utilisé l’approche SC-Ewald introduite
dans le chapitre ?? pour étudier les changements de comportement d’émission d’une famille
de molécules dus à la fois au polymorphisme en phase cristalline et à l’amorphisation par
broyage mécanique. Une reproduction quantitative de l’influence du polymorphisme sur la
fluorescence a pu être obtenue, en utilisant un échantillonnage intelligent de configurations
moléculaires accessibles thermiquement dans la phase amorphe, qui a pu fournir un aperçu
physique des origines de la luminosité mécanochromique et des propriétés optiques des
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FIGURE 11.11: Tracés de surafce des énergies d’émission calculées en fonction
des coordonnées de scan du défaut. Pour une paire donnée de molécules en
phase cristalline, une molécule (en rouge) est déplacée le long de son plan
moyen parallèlement (�x) ou perpendiculairement (�y) de son axe. Une
palette de couleurs est alors projetée sur cette surface, représentant A) la prob-
abilité de trouver une configuration donnée en phase amorphe, B) la force
d’oscillateur, C) le facteur de Boltzmann et D) le produit normalisé des ter-
mes précédents, donnant une force d’oscillateur pondérée. Les régions rouges
(bleues) représentent une plus forte (faible) contribution d’une coordonnée de
scan donnée au spectre d’émission calculé de la phase amorphe. E) spec-
tre d’émission calculé en solution (THF), en phases cristalline et amorphe
de DFB-H. Les structures moléculaires représentées indiquent les structures

cristallines et le défaut contribuant le plus.
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matériaux amorphes en général. En outre, nous avons vu comment le degré de polymor-
phisme peut être modifié par la substitution de fragments de donneurs qui facilitent une
plus grande variété d’interactions intermoleculaires potentielles, comme cela se traduit par
des zones localement ordonnées dans la phase amorphe et par l’influence sur la fluorescence
en phase amorphe.
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This section outlines the file structure needed for a given calculation and the different modes
that can be employed within SC-Ewald.

Input Files

SC-Ewald requires several input files which constitute a combination of inputs for both
Gaussian and Ewald. Note that the Ewald input files required to run SC-Ewald are dif-
ferent from the input files for the original Ewald code. Figure 12.1 schematically outlines
all the input files required. In the following, an example of each input will be given for the

FIGURE 12.1: Summary of files required before running an SC-Ewald calcula-
tion.

molecular crystal of urea. Boxes highlighted in gray mark the input file lines which should
be entered.

SC-Ewald Control File (ewald.in)

The main control file for Ewald. Here, specifics of the crystalline system under study,
the method of producing QM-based charges and the geometrical specifications of the charge
array are included.

Quantum Cluster File (.qc)

Specifies the Cartesian coordinates, symmetry constraints and initial charges of the quan-
tum cluster (Zone 1). It is imperative that symmetrically equivalent atoms are placed one
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after another in the .qc file and that their order matches that of the .uc file (see below). Speci-
fying the number of equivalent atoms in the cluster ensures that the symmetry of the crystal
itself is accounted for when the charge values are averaged and transferred to the external
charge array.

Unit Cell File (.uc)

Similar to the .qc file, here the fractional coordinates of the unit cell are specified along
with symmetry constraints and initial charges. As for the .qc file, it is very important that
symmetrically equivalent atoms are placed one after another in the .uc file and that the
order of the atoms must match that of the .qc file. Careful attention must be payed to the
total charge of the unit cell. Formally, it should be zero but numerical rounding in the guess
charges can lead to a small non-zero total charge. If this residual charge is too large it can
cause the charge fitting algorithm to explode, resulting in large, nonphysical charges. Matrix
elements aij define the unit cell vectors and Ni defines the number of unit cells in the overall
charge array (Zones 1, 2 and 3) which will have dimension 2Nx⇥2Ny⇥2Nz.

Seedfile

This file is just used to generate random numbers for use in the charge fitting process.
Seed 1 should be in the range [1, 231 � 86] and seed 2 in the range [1, 231 � 250].

Gaussian Input File

Specifies parameters for excited state calculations on the quantum cluster. Note that –
trivially – the atoms specified in the geometry of the Gaussian and .qc files should be the
same. Pay attention also to the use of Charge and NoSymm in the Gaussian keyword com-
mands. These are absolutely required and cannot be omitted. Charge ensures that Gaussian
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knows to read the locations and values of the point charges that will be written to the input
after the first Ewald run. NoSymm guarantees that the quantum cluster and point charges
are positioned correctly and are not converted to the Gaussian standard orientation. Also
note that density=current is required in order to obtain the charges of the excited state of in-
terest, indicated by the root. It is important to note that an error will be returned if the ‘opt’
keyword is inserted in the Gaussian input file. If optimization of the geometry is required,
SC-Ewald will automatically introduce the keyword at the appropriate moment in the algo-
rithm. If specific actions during the optimization are required, these should be specified in
the ewald.in control file.
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Output Files

Aside from the standard Gaussian output file, Self-Consistent Ewald produces three addi-
tional outputs. Again these output files are for the test case of the urea molecular crystal.

SC-Ewald Output (ewald.out)

This is the main output file of the program. It keeps track of the self-consistent procedure.
The contents of the output are largely self-explanatory. The first statement outlines the mode

that you have chosen for the SC-Ewald program to work with. The mode one uses is subject
to the properties of interest and each of these is outlined below, in the next sub-section. It
can be seen that the excited state potential converges in three iterations for urea, and this is
indeed typical in general.

Charge Fitting Output (filename.out)
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Where, in this case, ‘filename’ is urea as was specified in the first line of ewald.in. This
output file contains the results of the Ewald calculation and formation of the charge array.
The key part of the output file is outlined below. The key values here are “rmspot” – the

root mean squared deviation between the direct sum and Ewald sum potential at randomly
checked points within Zone 1. These must be sufficiently small to ensure an accurate and
reliable reproduction of the Ewald potential inside Zone 2. If these are deemed not to be
small enough, the user can either increase the size of Zone 2 or Zone 3 or both.

Compiled Output (output.log)

This file simply appends all of the Gaussian and Ewald inputs into one file so that the
user has a detailed account of the whole process during the self-consistent procedure.

Launching SC-Ewald Modes of Use

From the terminal, in the directory containing all of the above input files, SC-Ewald can be
launched using the command:

./SCEwald.py natom ncell mode gau &

Where natom and ncell are the number of atoms in the quantum cluster (Zone 1) and
the crystallographic unit cell, respectively. Parameter “gau” is the name of the relevant
Gaussian input file. The mode corresponds to an integer - from 1 to 5 - and governs the
actions SC-Ewald takes when executed. For each integer, these actions are:

1. An excited-state embedding potential fully equilibrated with the quantum-cluster ex-
cited state density is determined, along with the associated vertical excitation energies.

2. A single iteration is performed of the self-consistent cycle and the associated vertical
excitation energies are computed.
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3. The ground-state embedding potential is computed along with the associated vertical
excitation energies. This should be considered the standard approach for the calcula-
tion of absorption energies.

4. Mode 1 is performed followed by an excited state optimization of the central cluster
and a re-equilibration of the embedding potential with the newly acquired geometry
and electronic density of the central cluster. This should be considered the standard
mode for computing emission properties.

5. Mode 4 is performed self-consistently, producing an equilibrated set of point charge
values, point charge positions and central cluster geometry.

When using the excited-state optimized geometry of the central cluster to reform the charge
array, the Cartesian coordinates of the optimized central cluster are converted to fractional
coordinates according to

rcart.coord = T̄�1 · rfract.coord, (12.1)

where the transformation matrix T̄ is determined from the unit cell parameters:

T̄ =

0

B

B

B

@

a 0 0

bcos(�) bsin(�) 0

ccos(�) c(cos(↵)�cos(�)cos(�)
sin(�)

V
absin(�)

1

C

C

C

A

(12.2)

with the volume of the unit cell, V :

V = abc
p

1� cos2(↵)� cos2(�)� cos2(�) + 2cos(↵)cos(�)cos(�) (12.3)

The symmetry operators of the selected space group are then applied and duplicate coor-
dinates removed to yeild the new atomic positions in the crystallographic unit cell, before
reforming the overall charge array using this new unit cell.





153

Chapter 13

Appendix to Chapter 5

TABLE 13.1: Computed and experimental lattice parameters for the DHNA
crystal.

Parameter Experimental Calculated Error

a Å 8.48 8.31 0.17
b Å 6.76 6.29 0.46
c Å 14.99 14.55 0.44
� (degrees) 105.17 105.09 0.08

FIGURE 13.1: Molecule studied in this work with atom labels. The TA* geom-
etry is shown but atom labels are kept consistent throughout.



154 Chapter 13. Appendix to Chapter 5

TABLE 13.2: Charges (in |e�|) computed for the central molecule (Zone 1) by
Gaussian for each iteration during the generation of the self-consistent em-
bedding potential. The procedure begins by using the Mulliken charges com-
puted in the solid state as a guess. In this case, for TA*, the charges reach
convergence (mean average deviation�MA < 0.001|e�|) within 7 iterations.

Atom Crystal Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7

C 1 -0.1650 -0.1220 -0.1234 -0.1224 -0.1228 -0.1213 -0.1206 -0.1212
C 2 0.2270 0.1461 0.1303 0.1139 0.1091 0.1056 0.1067 0.1082
C 3 0.0400 0.0369 0.0354 0.0330 0.0315 0.0314 0.0308 0.0306
C 4 0.2690 0.2113 0.1974 0.1891 0.1855 0.1842 0.1848 0.1858
C 5 0.0560 0.0659 0.0659 0.0682 0.0684 0.0693 0.0691 0.0692
C 6 0.2990 0.3078 0.2951 0.2989 0.2979 0.2986 0.2988 0.2999
C 7 -0.1420 -0.1078 -0.0967 -0.0916 -0.0903 -0.0893 -0.0886 -0.0878
C 8 0.0820 0.0557 0.0641 0.0695 0.0715 0.0736 0.0731 0.0726
C 9 -0.1070 -0.1040 -0.0708 -0.0668 -0.0626 -0.0611 -0.0590 -0.0590
C 10 -0.1750 -0.0925 -0.0736 -0.0695 -0.0669 -0.0649 -0.0632 -0.0644
C 11 -0.1370 -0.1336 -0.1432 -0.1411 -0.1436 -0.1428 -0.1435 -0.1426
H 12 0.1220 0.1321 0.1232 0.1260 0.1288 0.1345 0.1264 0.1219
H 13 0.3720 0.3782 0.3839 0.3824 0.3823 0.3821 0.3838 0.3841
H 14 0.1040 0.1374 0.1493 0.1467 0.1483 0.1469 0.1474 0.1481
H 15 0.3850 0.3576 0.3529 0.3503 0.3500 0.3491 0.3508 0.3509
H 16 0.1340 0.1208 0.1234 0.1230 0.1241 0.1225 0.1249 0.1247
H 17 0.0920 0.0855 0.0948 0.0970 0.0978 0.0949 0.0901 0.0872
H 18 0.1390 0.1953 0.1759 0.1773 0.1757 0.1748 0.1741 0.1763
H 19 0.1010 0.1384 0.1432 0.1449 0.1458 0.1438 0.1422 0.1420
O 20 -0.5230 -0.5951 -0.6089 -0.6111 -0.6117 -0.6151 -0.6118 -0.6108
O 21 -0.5620 -0.5732 -0.5743 -0.5709 -0.5714 -0.5687 -0.5700 -0.5698
O 22 -0.6110 -0.6409 -0.6441 -0.6470 -0.6475 -0.6481 -0.6463 -0.6459
�MA - 0.0298 0.0096 0.0036 0.0016 0.0017 0.0017 0.0009
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FIGURE 14.1: Computed vertical excitations (the lowest five excited singlets
are shown) at the B3LYP and CAM-B3LYP level in gas-phase and with implicit
THF solvation (C-PCM). Results for monomer clusters employing the ONIOM
QM/QM’ approach and the SC-Ewald embedding model are also reported.
The main character(s) of the transition (H-L stands for HOMO-LUMO), its
coefficient(s), the related energy (E) and wavelength (�max), and the oscillator

strength (f) are shown.
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TABLE 15.1: Emission energies (in eV) calculated using SC-Ewald (emb) and
in vacuum (vac) for monomer and dimer clusters of DFB-H. A test set of four
density functionals are used comprising range separated hybrid (LC-PBE,

CAM-B3LYP) and global hybrid (B3LYP, PBE0) functionals.

B3LYP CAM-B3LYP PBE0 LC-PBE

Monomer (vac) 3.28 3.55 3.38 3.81
Monomer (emb) 3.10 3.39 3.18 3.60

Dimer (vac) 2.39 3.26 2.46 3.61
Dimer (emb) 2.15 3.12 2.24 3.45

Monomer (sol) 3.15 3.40 3.25 3.58

TABLE 15.2: Corresponding differences in emission energy (�EC
S ) going from

solution to the solid state (in eV). A negative (positive) value indicates a red
(blue) shift with respect to emission in solution.

B3LYP CAM-B3LYP PBE0 LC-PBE

Monomer (vac) 0.13 0.15 0.14 0.23
Monomer (emb) -0.05 -0.00 -0.07 0.02

Dimer (vac) -0.76 -0.14 -0.79 0.03
Dimer (emb) -1.00 -0.28 -1.02 -0.13
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FIGURE 15.1: Computed molecular orbitals for each QM cluster used in this
work. Orbitals shown were obtained with the CAM-B3LYP functional and an

isovalue of 0.002 is used.
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FIGURE 15.2: Surface plots of calculated emission energy for A) DFB-E1, B)
DFB-E2 and C) DFB-A1 with respect to the defect scan coordinates. For a
given pair of molecules in the crystalline phase, one molecule (highlighted in
red) is displaced along its average plane in directions parallel (�x) and per-
pendicular (�y) to its long axis. A colour scheme is mapped onto this surface,
representing the normalized product of each of these, yielding the weighted
oscillator strength. Red (blue) regions represent a greater (lesser) contribution
of a given scan coordinate to the overall computed emission spectrum in the

amorphous phase.
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TABLE 16.1: Vertical excitation energies and associated oscillator strengths
computed at PBE0 level for Zn[DMPMB].

Transition Wavelength (nm) Oscillator Strength (a.u.) Character
1 264 0.235

⇡⇡⇤ biphenyl
2 266 2.995
3 267 1.020

⇡⇡⇤ pyrazole
4 266 0.128

TABLE 16.2: Vertical excitation energies and associated oscillator strengths
computed at CAM-B3LYP level for Zn[DMPMB].

Transition Wavelength (nm) Oscillator Strength (a.u.) Character
1 259 0.188

⇡⇡⇤ biphenyl
2 254 3.276
3 252 0.917

⇡⇡⇤ pyrazole
4 248 0.259

TABLE 16.3: Vertical excitation energies and associated oscillator strengths
computed at PBE0 level for Cd[DMPMB].

Transition Wavelength (nm) Oscillator Strength (a.u.) Character
1 269 0.195

⇡⇡⇤ biphenyl
2 269 2.995
3 270 0.998

⇡⇡⇤ pyrazole
4 270 0.224
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TABLE 16.4: Vertical excitation energies and associated oscillator strengths
computed at PBE0 for H2DMPMB ligand.

Transition Wavelength (nm) Oscillator Strength (a.u.) Character
1 269 0.195

⇡⇡⇤
2 269 2.995
3 270 0.998
4 270 0.224
5 237 0.010
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TABLE 17.1: MC-PDFT �EH/L splitting energies (in kcal/mol) calculated
for 5 different active spaces and 4 different on-top density functionals: tPBE,

ftPBE, trevPBE, ftrevPBE.

Fe(II) Fe(III)
CO NCH CNH NH3 H2O CO NCH CNH NH3

tPBE (6/5,5) 31.2 -5.8 44.4 -24.6 -28.6 6.4 -18.1 23.6 -22.6
(10/9,7) 41.9 -3.5 56.0 -24.6 -28.6 24.1 -19.1 40.0 -12.3
(6/5,10) 44.3 0.3 59.0 -9.1 -25.7 14.7 -5.7 32.8 -16.8
(10/9,12) 68.2 -0.8 82.6 -11.1 -30.4 29.2 -11.9 46.4 -4.9

(12/11,14) 68.1 10.1 82.7 -2.4 -23.5 28.2 -20.0 45.5 -5.3
ftPBE (6/5,5) 33.1 -5.8 46.8 -21.1 -23.2 9.5 -13.2 29.1 -19.9

(10/9,7) 49.9 0.1 63.1 -20.0 -22.2 26.0 -16.2 41.9 -10.3
(6/5,10) 44.3 4.5 66.9 -6.2 -19.0 13.9 -9.1 35.2 -14.4
(10/9,12) 71.0 6.9 84.0 -6.4 -23.4 31.9 -8.2 49.8 -2.5

(12/11,14) 70.9 12.9 85.8 1.9 -24.1 36.2 -11.3 50.1 -1.1
trevPBE (6/5,5) 21.4 -12.6 34.8 -29.2 -31.6 -0.5 -22.0 16.5 -27.4

(10/9,7) 31.8 -10.3 46.1 -29.3 -31.6 16.9 -23.0 32.4 -17.3
(6/5,10) 21.4 -12.6 52.9 -29.2 -31.6 -0.5 -22.0 16.5 -27.4
(10/9,12) 57.6 -7.8 72.2 -15.8 -33.5 21.5 -16.1 38.5 -10.3

(12/11,14) 57.5 2.9 72.3 -7.3 -26.6 20.5 -27.9 37.6 -10.8
ftrevPBE (6/5,5) 32.2 -3.4 45.9 -18.2 -23.4 13.5 -7.7 30.8 -14.4

(10/9,7) 42.3 -1.1 56.9 -18.2 -23.6 29.7 -8.8 45.5 -4.6
(6/5,10) 32.2 -3.4 66.3 -18.2 -23.4 13.5 -7.7 30.8 -14.4
(10/9,12) 65.2 -1.2 80.1 -9.3 -27.8 31.0 -7.2 48.2 -0.3

(12/11,14) 63.6 9.2 78.7 -1.1 -20.8 28.1 -14.2 45.3 -2.8
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TABLE 17.2: CASSCF and CASPT2 �EH/L splitting energies (in kcal/mol)
calculated for 5 different active spaces.

Fe(II) Fe(III)
CO NCH CNH NH3 H2O CO NCH CNH NH3

CASSCF (6/5,5) -99.3 -71.3 -85.0 -47.1 -63.7 -102.0 -92.6 -87.4 -69.6
(10/9,7) -92.6 -69.9 -77.5 -47.1 -62.7 -85.9 -85.8 -70.2 -69.6
(6/5,10) -75.6 -59.6 -60.0 -52.1 -57.1 -88.6 -82.7 -72.9 -72.2
(10/9,12) -33.5 -43.9 -15.1 -38.0 -44.8 -48.5 -62.6 -29.8 -52.4
(12/11,14) -32.8 -46.2 -14.5 -40.1 -51.7 -45.8 -59.7 -27.2 -42.0

CASPT2 (6/5,5) 32.4 -19.0 48.6 -43.4 -49.7 -2.2 -37.0 17.0 -40.3
(10/9,7) 39.2 -18.0 56.5 -43.3 -46.8 10.2 -31.8 28.4 -40.3
(6/5,10) 26.6 -19.6 42.6 -29.9 -49.3 -4.6 -38.1 14.3 -32.0
(10/9,12) 47.8 -18.6 64.2 -29.4 -49.5 12.2 -26.1 31.2 -33.2
(12/11,14) 49.4 -12.8 61.8 -23.9 -46.0 12.6 -40.2 29.1 -28.1
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Résumé 
 
L'objectif de cette thèse était de concevoir, de 
construire et d'appliquer des approches pour 
calculer les propriétés photophysiques des 
matériaux  cristallins, en particulier les 
cristaux moléculaires organiques, en tenant 
compte des interactions électrostatiques avec 
l'environnement. 
 
Pour ce faire, nous avons utilisé une 
procédure, SC-Ewald, qui, grâce à 
l'application d'un potentiel d’embedding d'état 
excité, tente de récupérer les contributions 
électrostatiques à courte et à longue distance. 
La procédure d’émbedding résultante est 
ensuite introduite dans des calculs d'état 
excité basés sur la théorie fonctionnelle de la 
densité dépendant du temps. L'algorithme 
résultant a été testé sur différents matériaux 
cristallins présentant des propriétés optiques 
intéressantes et variées. 
 
La première propriété étudiée était la 
réactivité de l'état excité, sous la forme d'une 
réaction de transfert des protons 
intramoléculaire à l’état excité, pour laquelle 
les bases de la méthode SC-Ewald étaient 
mise en place. 
 
Dans une deuxième étude portant sur le 
phénomène des émissions induites par 
l'agrégation, nous avons démontré que 
l'amélioration de l'émission à l'état solide est 
influencée par l'environnement d'état excité, 
grâce à une amélioration des états faiblement 
émissifs. 
 
Dans une troisième étude, nous avons exploré 
comment SC-Ewald peut être étendu pour 
étudier les propriétés à l'état excité dans la 
phase amorphe, par le phénomène de la 
mécanochromisme. Dans cette étude, nous 
avons révélé le caractère directionnel de cette 
propriété et introduit des lignes directrices 
pour la conception des matériaux à haute 
performance qui sont sensibles au stress. 

 
Mots Clés 
État éxcité, cristaux moleculaires, DFT, AIE, 
méchanochromisme, transfert des protons 

 

Abstract 
 
The objective of this thesis was to devise, 
construct and apply cost-effective approaches 
to calculate photophysical properties of 
crystalline media, specifically organic 
molecular crystals, by accounting for 
electrostatic interactions with the environment 
 
To do so, we made use of a self-consistent 
charge-adjustment procedure, SC-Ewald, 
which, through application of an excited-state 
embedding potential, attempts to recover both 
short- and long-range electrostatic 
contributions both from neighboring 
molecules and the long range, infinite 
potential (Madelung field). The resulting 
embedding procedure is then introduced into 
excited-state calculations based on time-
dependent density functional theory. The 
resulting algorithm was tested on various 
molecular crystalline materials exhibiting 
interesting, and varied, optical properties. 
 
The first property studied was excited state 
reactivity, in the form of a excited state 
intramolecular double proton transfer 
reaction, for which the foundations for the SC-
Ewald method were lain.  
 
In a second study concerting the 
phenomenon of aggregation induced 
emission, we demonstrated that the emission 
enhancement in the solid state is driven by 
the excited state environment, through an 
enhancement of otherwise poorly emissive 
states.  
 
In a third study, we explored how SC-Ewald 
may be extended to study excited state 
properties in the amorphous phase through 
the phenomenon of mechanochromic 
luminescence. In this study, we revealed the 
directional nature of this property and 
introduce guidelines for the design of high-
performance, stress-sensitive materials 
 
 

Keywords 
Excited states, molecular crystals, DFT, AIE, 
mechanochromism, proton transfer 
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