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General Introduction

The engineering problems encountered today in the field of material forming processes are getting more and more complex, due to the fast evolution of technology for existing processes, the design of new materials and the need to produce more and more sophisticated devices. This leads engineers, guided by economic and quality products constraints, to try to achieve a better understanding of those processes, and therefore gain a better control of those processes. To this end, two main different approaches can be adopted to reach the required level of understanding:

• The first is to use experimental devices to monitor the process: by measuring relevant physical quantities ( temperature, heat flux , velocity of the air,...) at several locations of the considered facility. This approach is widely used in many situations, and its efficiency is not to be demonstrated anymore, but, on the one hand, a particular experimental set up remains largely facility-dependant, and, on the other hand, when applied to "real" devices, that is to say the ones used for the industrial processes, the cost can easily become substantial, due to the experimenters, energy for the device and raw material.

• The second consists in the numerical modelling and simulation of the system of interest: the first step is the modelling step, when physics is used to describe the physical phenomena ( flow, heat transfer, electromagnetism, material deformations, ...) formally, most of the time by means of partial differential equations (PDE), referred to as models in the following. When different physical phenomena are at stake, a coupling strategy has to be conceived to ensure the exchange between models. Since in most cases corresponding to real situations, analytical solutions of those PDE are not available, alternative means are needed to obtain a quantitative description of system output. Hence, the second step consists in working on the model to convert it into a form where a computer can be used to get an approximation of the system output; this step, related to the field of applied mathematics, is often referred to as numerical analysis. The third step, closely related to the second one, consists in the implementation of the designed method, using softwares ( MATLAB c , SciLab c ) or programming languages (C++, FOR-TRAN) to concretely obtain the desired output. The result of this process will be referred to as a "code" in the following. Once this work has been done, one needs to ensure that the simulated result is realistic, or, in other words, one has to ensure the global model properly mimics the considered system.

If the engineers used methods, both experimental or numerical, that are well established and mastered, the diversity of industrial problems poses new problems everyday, and the duty to propose answers to those new problems belongs to researchers. Even if experimental and numerical approaches correspond to two very different ( sometimes distinct) communities, the two approaches present complementary features, and a performant framework for analysis of real industrial systems should, from the author's point of view, combine the two approaches. For example, a numerical simulation tool should be at first tested on "academic" examples ( i.e examples not corresponding to physical situations) in order to assess the robustness and performances of the designed tools.

Once the obtained results are considered satisfactory, the tool can undergo the trial of a real industrial investigation. Then, the results can be compared to experimental data, provided by an appropriate monitoring of the facility. An analysis of the deviation between experimental and numerical datas will help to improve the code. This PhD comes within a such approach, applied to the study of heat transfer in industrial furnaces and quenching problems. Since the PhD is part in the Thost consortium, all the involved compagnies will be briefly presented. Then, the working environment will be described, with a particular focus on the computational tools used for the numerical simulations.

Finally, a short description of the physics of industrial furnaces will be given, in order to highlight the critical points that will be adressed in this PhD and to recall the past and ongoing research on this topic 

Academic Context

This PhD was conducted in the CEMEF ( Center for Material Forming). Founded in 1976, it is part of Mines Paristech, a French Engineering school created in 1783.

Originally specialized in the modelling of material forming processes for polymers and metallurgy, it has recently acquired an expertise in the field of computational fluid dynamics and heat transfer, with PhD's on Finite Element method for fluid flow and heat transfer [START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF], numerical simulation of boiling [2], Fluid Structure Interaction [3],

space time adaptation [4] and NURBS for complex geometries [5].

Working environment 1.3.1 Computational environment

All the numerical methods that will be described in this PhD will have to be implemented. This will be done in the CIMLIB library [6]: it is a collaborative C++ library, developed since 15 years. It is connected with external libraries, as PETSC [START_REF] Balay | Petsc users manual revision 3[END_REF] to handle the linear algebra ( vector and matrix manipulation, linear system resolution) and MPI [START_REF] Gropp | Using MPI: portable parallel programming with the message-passing interface[END_REF] (Message passing interface) to handle the parrallel processing. It is worth mentionning that we have at our disposal advanced tools for parrallel meshing and remeshing [START_REF] Thierry Coupez | Parallel meshing and remeshing[END_REF] that will be at the heart of this work.

General assumptions

We detail here all the common features of the results that will be presented in this thesis, that will not be repeated again, with the exception of chapter 5 where a new formulation will be presented:

• All physical properties will be expressed in units of the international system, so the unities will not be repeated in this thesis.

• For all finite element simulations, we will make use of P 1 approximations, on meshes of tetrahedral elements (triangles in 2d). Moreover, the objects related with discrete formulations will be denoted with a subscript h.

• All along this work, differential operators, as gradients and divergences will be manipulated : it is understood that that we use the general tensorial definition, so that those operators apply regardless the order of the considered tensor, knowing that the gradient of a n th order tensor gives a tensor of order n + 1, and the divergence of a tensor gives a a tensor of order n -1.

• In the same vein than the previous observation, the inner products and associated norms in functional space will be used indifferently for scalar or vector valued functions, the computations being performed componentwise.

Physics of industrial furnaces

Navier-Stokes A lot of coupled physical phenomena are occuring in a furnace or in a quenching chamber:

Burners or nozzles generate a flow that drives convective heat transfer, with heat transfer of other types ( conduction inside solid parts, radiation between walls and pieces). Some other phenomena are involved as well, but will not be touched upon in this work:

• In the case of burner, combustion is occuring. It consists in the mixing of different chemical species reacting to form a flame. Modelling this phenomenon requires to deal with a system of convection-diffusion-reaction equations coupled by stiff source terms related to the chemical reaction. It could serve as a PhD topic within itself, and increase the complexity of the full problem, since it would influence the thermal balance due to the energy generated by chemical reactions, the reaction being thermo-active itself. It could even influcence the radiative transfer with a growing concentration of combustion products in the enclosure. Due to the increase of complexity it would induce, combustion will be neglected in this thesis, but appears as a promising lead for future work.

• Some metallurgic transformation could occur during the cooling or heating of solid parts. There is some expertise on this field in our laboratory [START_REF] Bernacki | Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework[END_REF], and a coupling with another software could be considered, but it will not be covered in this work.

• In the case of water quenching, heat transfer is caused by boiling and phase change.

A PhD on this topic is actually ongoing in the laboratory [START_REF] Khalouffi | Multiphase flows with phase change and turbulent boiling in quenching processes[END_REF].

Since this thesis will be focused on radiative heat transfer, one could be tempted to evaluate the importance of this phenomenon regarding others: since it is an interface phenomenon, it should be compared with convective heat transfer, so first, it is important to have a simple way to determine the order of magnitude of those transfers. We define T c = 20C = 293K and T h = 1000C = 1273K to be the operative temperature of a generic system. Those values are representative of furnaces situations ( T ingot = T c and T enclosure = T h ) or quenching ( T ingot = T h and T enclosure = T c ), so we will omit signs in further computations.

• The order of magnitude of the radiative heat transfer can be evaluated by

q rad = σ r (T 4 h -T 4 c ).
• The order of magnitude of the convective heat transfer can be evaluated by

q conv = h conv (T h -T c ), h conv being the convection coefficient.
Determining the value of h conv for a given application is not a straightforward task. It mostly depends on the thermophysical properties of the considered fluid, and the "characteristics" of the considered situation. If thermophysical properties are temperature dependent only, the "characteristics" of the situations include various different parameters: type of convection ( natural or forced), geometry of the enclosure and the object, nature of the device that generates the flow, etc. Most of the time, it is determined by applying inverse analysis, but can be obtained by using correlations between adimensional numbers relating to the Nusselt number N u = hconvL λ that relates the total heat transfer to the conductive heat transfer ( other adimensional numbers appearing here will be defined in the chapter 2 ).

• for forced convection, one has correlations of type

N u = f (Re, P r) (1.1)
• for natural convection, one has correlations of type

N u = g(Ra, P r) (1.2)
In order to set the ideas, we will consider the very simple case of a plate of characteristic dimension L = 1m. The thermophysical properties of the air ( considered at atmospheric pressure) will be computed at the temperature

T av = Tc+T h 2 = 510C = 783K. If we approximate X(T = 510C) ≃ X(T = 500C)
, some realistic values are ρ = 0.441, η = 3.63.10 -5 , c p = 1098, λ = 0.0578, β = 1.25.10 -3 . We also take g = g 2 = 10. The radiative flux will be the same value for natural and forced convection.

q rad = 1.485.10 5 W.m -2 (1.3)
Natural Convection Those values leads to Ra = 1.246.10 9 and P r = 0.689, so that the natural convection can be considered turbulent. Following the lines in [START_REF] Stuart | Correlating equations for laminar and turbulent free convection from a vertical plate[END_REF], we use the following relation:

√ N u = 0.825 + 0.387Ra 1 6 
(1 + ( 0.492 P r )

) 8 27

(1.4)

We therefore obtain N u = 130.945 and h conv = 7.568. It follows that

q conv = 7.417.10 3 W.m -2 (1.5)
One can see for those cases, the convective transfer does not exceed 5% of the radiative transfer.

Forced convection Here, one needs to determine a Reynolds number. It might be very dependent on the situations, but when the surrounding fluid is air, a typical value is Re = 10 5 . Here, the Nusselt number is determined by [START_REF] Whitaker | Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles[END_REF] :

N u = 0.036Re 0.8 P r 0.43 ( η h η c ) 1 4 
(1.6)

With η h = η(T = T h ) and η c = η(T = T c ). We get here N u = 390.7 and h conv = 22.5, from which we deduce

q conv = 2.21.10 4 W.m -2 (1.7)
Here again, the order of magnitude of the convection is about 15% of the radiative flux, underlining the importance of the phenomenon.

Even if the estimation just presented is not representative of a real industrial situation, it shows the crucial importance of radiative transfer in such situations. Hence, it is mandatory to have at hand performant tools for the modelling of such a phenomenon.

This will be the object of this thesis, of which the outline is detailed below

Outline of the thesis

• First, we will describe the physics of interest here and the formulations used to obtain numerical solutions. This will be the object of chapter 2.

• Then, the framework to deal with complex problems involving different components will be explained in chapter 3.

• Next, we will see the main contribution of this thesis which concerns radiative transfer. To this end, the chapter 4 will give a short overview of the physics of radiation, most common models for our range of applications, and the approach we developed for modelling surface radiation.

• Formerly, we will depict the method developed for volume radiation. Since the model we chose is quite recent ( the unifying publication is dated in 1999, even if there exists some previous work), so we will take the time to detail the model, its derivation and its main properties.

• In the chapter 6, we will present real problems rising from our industrials partners to illustrate how all the presented concepts work in unison.

• Finally, chapter 7 will be devoted to some concluding remarks, things that could be improved and ideas for future work.

Résumé français

Les problématiques rencontrées dans le domaine de l'ingénierie deviennent, du fait de l'émergence des nouveaux procédés et technologies, de plus en plus complexes. Dans cette perspective, il est de plus en plus fréquent de recourir à la modélisation numérique afin d'atteindre une meilleure compréhension et, par suite, une meilleure maitrise de ces procédés. C'est dans ce contexte que s'inscrit ce travail, plus précisément pour la modélisation des transferts thermiques dans le cadre de la mise en forme des matériaux.

Ce chapitre constitue un introduction générale de la problématique; on y précise les acteurs académiques et industriels impliqués dans le projet, on y détaille le cadre de travail qui sera utilisé, tant du point de vue théorique que celui de l'implémentation.

On expose ensuite les différents phénomènes mis en jeu dans un four industriel, afin de démontrer que le rayonnement thermique y joue une rôle prépondérant, ce qui légitime ce travail de thèse. Enfin on y présente le plan de ce manuscrit.

Chapter 2

Stabilized Finite Element Method for flow and heat transfer

As it was stated previously, even if thermal radiation is the dominant physical phenomenon in industrial furnaces, the approach retained for modelling radiation will be detailed in further chapters. The objective of this chapter is to detail the physical models of phenomena occuring in furnaces. We will see that most of those phenomena can be cast under the form of a convection-diffusion-reaction equation, at the exception of the flow that will be modelled by the Navier Stokes equations. The outline of the chapter will be as follows: we will first give details on the equations, their physical signification and an overview on the different possibilities for the boundary conditions. Then, the stabilized finite element formulations used in this work will be described, and some illustrative benchmarks will be given to demonstrate the potential of the methods. In what follows, we will denote by Ω ∈ R d the computational domain, and ∂Ω its boundary, assumed to be regular. and is "followed" over time. If this point of view fits for the description of motion of rigid and deformable solids, it is not well adapted for description of fluids, for the reason that it is not easy to "follow" a particle of fluid along its motion. For this problem an Eulerian approach is more adapted: it consists in considering local quantities passing through a fixed certain elementary volume ( referred to as "particle of fluid" hereafter)

and consider the fluid passing through it over time. This volume should be big enough to perform statistical averages, so that the local quantities of interest will be average of microscopic quantities. Here, the quantities of interest will be:

• A velocity vector u(x, t), being an average of velocities of all discrete particles ( atoms or molecules ) contained in the "particle of fluid". u(x, t) is a vector of R d , and x stands for the position. For boundary conditions, it is sometimes useful to work with the components separately, as u(x, t) = (u i (x, t)) i∈ 1;d .

• A scalar pressure field p(x, t), representing the average effect of discrete particles on the elementary volume boundary, all contributing to a global surfacic force.

Even though modern physics provides different ways to derive the NS equations, begining from the Boltzmann equation to the use of the continuum mechanics framework, we will derive it here in a way close to the original one given by Navier and Stokes, by evaluating the momentum balance over the particle of fluid. However, for the kinematics description of the "particle of fluid", one needs to take into account not only the time variations, but also spatial variations due to what is entering and leaving the volume of interest.

The appropriate description is given by

Du Dt = ∂u ∂t + (u • ∇)u (2.1)
This variation of momentum is balanced by all the forces applied on the volume; we can denote:

• the gravity forces, coming from the gravitation field of the earth, given by F grav = ρg. A modified form of this term can be considered to take into account natural convection, but this will be detailed when the fully coupled problem will be presented

• the viscosity forces, caused by the friction due to velocity gradients within the flow. This is given by F visc = ∇ • (η∇(u)). We restrain ourselves to the case of Newtonian fluids, so that η will remain constant in the whole fluid, even though temperature-dependancy could be considered.

• The pressure forces: as stated before, the pressure represents the average effect of particles acting on the border of the volume of interest. It is given by

F press = -∇(p).
The momentum balance can now be written, and is given by:

ρ Du Dt = F grav + F visc + F press (2.2)
which can be re-arranged in

ρ ∂u ∂t + (u • ∇)u = -∇(p) + ∇ • (η∇(u)) + ρg (2.
3)

It is now necessary to model the fact that we consider incompressible fluids. A fluid is said to be incompressible when its volume remains constant under the action of an external pressure. In practice, there exists no fully incompressible fluids, but it was stated that, in cases where the characteristic velocity is low compared to the velocity of the sound in the considered medium, the flow can be treated as an incompressible flow.

This formally can be written under the form

∇ • u = 0 (2.4)
We are now able to write the NS equations, describing the incompressible flow of a Newtonian fluid.

Find (u, p) such ∀(x, t) ∈ Ω * [0; T ] (2.5)

ρ ∂u ∂t + (u • ∇)u = -∇(p) + ∇ • (η∇(u)) + ρg ∇ • u = 0 (2.6)
These equations have received, and are still receiving, interest form researchers, mathematicians as well as engineers, and one of the millenium problems is related to the existence and regularity of solutions in 3d. We now turn to the the different types of boundary conditions.

2.1.2 Initial and boundary conditions for the Navier-Stokes equations

Initial Conditions

In the incompressible version presented above, since there is no transient term for the pressure, no initial condition is needed. For the velocity, one needs to specify u 0 (x), so we have

u(x, 0) = u 0 (x) ∀x ∈ Ω (2.7)
Note that, for the well posedness of the problem, u 0 (x) should be consistent with the incompressibilty constraint, that is to say, we should have ∇ • u 0 (x) = 0.

Boundary Conditions

As it is usually done, we make the difference between 

∂Ω D ∪ ∂Ω N = ∂Ω (2.8) ∂Ω D ∩ ∂Ω N = ∅ (2.9)
For the Dirichlet type, the imposed values will be related to the "role" of the boundary or to the way friction is taken into account:

• u = u D with u D = 0 corresponds to the inlet ( a burner for a furnace, a nozzle for quenching problems). u D can be constant or dependant on a local coordinate to obtain a parabolic profile.

• u = 0 is used for classical solid boundaries, known as a no slip bounday condition.

It is also possible to only set to zero the component normal to the boundary.

The Neumann boundary conditions are sometimes referred to as traction boundary conditions, since in the continuum mechanics framework, the stress tensor is related to the velocity gradient by the constitutive relation. Defining boundary conditions at the outlet of the domain is not straightforward, and remains an open question, so a zero Neumann boundary condition will be used for the velocity. One can see [START_REF] Philip | Some current cfd issues relevant to the incompressible navierstokes equations[END_REF] for boundary condition related problem of NS equations.

The pressure boundary conditions are of primary importance in the case where ∂Ω N = ∅.

In this case, the pressure is defined up to an arbitrary constant, and imposing a specified pressure on a part of the boundary helps to determine this constant.

There exists many ways of with dealing boundary conditions: the penalty method [START_REF] Hesthaven | A stable penalty method for the compressible navier-stokes equations: I. open boundary conditions[END_REF],

Lagrange multipliers [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF], but the Nitsche method has received a growing interest over the past years: it is a way to impose the boundary conditions weakly by remaining consistent with the original PDE, at the contrary of penalty method: it also provides a way to impose conditions on boundaries not fitting the mesh and yields to a symmetric positive definite matrices [START_REF] Burman | Stabilized explicit coupling for fluidstructure interaction using nitsche's method[END_REF][START_REF] Juntunen | Nitsche?s method for general boundary conditions[END_REF].

The Convection-Diffusion-Reaction equation

If the particular structure of the Navier-Stokes requires a special analysis and treatment, most of the physical phenomena that will be encountered in our context ( at the exception of radiation) can be cast in the general form of a convection-diffusion-reaction (CDR) equation that will be detailed in this subsection. An abstract form will be given, and the physical meaning and particular boundary conditions will be enumerated in the next section.

The abstract form reads:

find v(x, t) such ∀(x, t) ∈ Ω * [0; T ] (2.10) ∂v ∂t + β • ∇(v) -∇ • (λ∇(v)) + αv = f (2.11)
the different terms in this equation will be referred to as following:

• the term β • ∇(v) is the convection term. β is the convection field, or advection velocity.

• the term -∇ • (λ∇(v)) is the diffusion term. λ stands for the diffusion coefficient.

• the term αv is the reaction term, α being the reaction coefficient.

• f represents the source term, or forcing term.

All the particular cases of this abstract form share the need of prescribing an initial condition of the form

v(x, 0) = v 0 (x) ∀x ∈ Ω (2.
12)

The different physical situations and associated boundary conditions are detailed below, but what was said about ∂Ω D and ∂Ω N holds for the CDR equation as well. for schemes where all equations are solved together, referred to as "strong" coupling.

In all this work, a weak coupling will be used, that is to say, all equations are solved consecutively, and the quantities involved in the coupling terms are treated explicitly, as known quantities from the previous time stepping.

ρc p ∂T ∂t + u • ∇T -∇ • (λ∇T ) = f (2.13)
u represents here the velocity field coming from the NS equation. For this reason, the assumption of a divergence-free velocity field is often made in the analysis of the CDR equation. f might be temperature-dependent, as it will be the case for the P 1 radiation model that will be described below, but it will always be treated in an explicit manner.

For the energy equation, the following boundary condtions will be considered:

• T = T D will be used for illustrative benchmarks mostly, or at nozzles for quenching problems. However this type of boundary condition is rarely representative of real situations.

• ∇(T ) • n = q N will be encountered more often, a zero value corresponding to an adiabatic wall, a constant prescribed value representing the interaction between a volumic boundary and the outer environment. Modelling radiation by computing a flux involving border temperatures and geometric quantities is also a possibility, and will be the object of chapter 4.

kε Turbulence model

It is known that, for turbulent flows (roughly speaking, with high velocities or low viscosity, but this will be detailed further) often encountered in industrial furnaces, a chaotic behaviour of the flows is observed, resulting from large structures and small structures.

The large scale is responsible of the transport of the major part of the conserved quantities and the small scale is composed of whirlpools of changing characteristics being zero on average. It is in theory possible to model those effects by a direct resolution of the transient NS equations, but the computation power to perform such simulations is in practice out of range, since the grid size required is related to Re 9 4 ( with Re to be defined later on). To circumvent this issue, modelling turbulence allows to properly model the large scale by taking into account the small structures effects. Many options are possible for modelling of turbulence, and the one retained here is to solve supplementary equations, the resulting quantities being used to include turbulence effects in physical parameters, like viscosity and thermal conductivity. The k-ε model was chosen here: the idea is to introduce two equations governing the turbulent kinetic energy k and its dissipation rate ε. The more general model, derived from the NS equations [START_REF] Hou | Comparison between standard and renormalization group k-. epsilon. models in numerical simulation of swirling flow tundish[END_REF] presents unknown constants, for which values are situation-dependent, and are available in literature [START_REF] Edward | The numerical computation of turbulent flows[END_REF]. There also exists a well established one equation model, the Spallart-Allmaras model [START_REF] Philipe | A one equation turbulence model for aerodinamic flows[END_REF], but on the one hand, it is more dedicated to external flows and on the other hand, the way to properly derive a turbulent conductivity has not been clearly investigated yet, so the following version of the kε model will be used here :

ρ( ∂k ∂t + u.∇(k)) -∇(µ + µ t ∇(k)) + ρε = P t (2.14) ρ( ∂ε ∂t + u.∇(k)) -∇(µ + µ t )∇ε) + C 1 ρ ε 2 k = C 2 ε k P t (2.15)
with C 1 = 1.92, C 2 = 1.44 and C 3 = 0.09. P t = µt 2 (∇(u) + ∇(u) T is the turbulent production. The results are used to compute turbulent and effective viscosity as well as conductivity µ t , , λ t and µ ef f , , λ ef f

µ ef f = µ + C 3 ρk 2 ε =µt , λ ef f = λ + c p µ t 0.85 =λt (2.16)
where the constant P r t = 0.85 corresponds to a turbulent Prandtl number ( to be defined later on). The boundary conditions are related to the ones used for NS equations. At an inlet, for a prescribed velocity u D , one has

k = c bc u D 2 2
(2.17)

ε = C 3 k 3 2 L (2.18)
where c bc is an empirical constant (set to 0.02 here) and L is a characteristic length of the model.

At the outflow boundary, zero Neumann boundary condition are usually applied.

The boundary conditions on solid walls require a more sophisticated treatment. A law wall on a layer of thickness δ is considered, with a tangential stress τ w opposite to the local velocity, given by

u 2 τw ρ - 1 χ ln(E δρ η t τ w ρ ) = 0 (2.19)
where E is related to the roughness of the wall and χ = 0.41. Defining u * = τw ρ , the following values are imposed as Dirichlet boundary conditions for k and ε:

k = u 2 * √ C 3 (2.20) ε = u 3 * χ (2.21)
An interesting property of those turbulent models is to be noted: the results obtained with turbulence modelling should correspond to the ones obtained by direct resolution of NS equations averaged over space and time. This property is useful to check that the turbulence model is implemented correctly.

P 1 Radiation model

As we will see in further chapters, the major issue when dealing with numerical modelling of radiation is the angular dependency. Moreover to be something very unusual in the "engineering physics", it introduces a supplementary dimension to discretize, and for each point. An interesting lead is to consider models where angular dependency is eliminated. This can be done in several ways: expansion using spherical harmonics [START_REF] Szu-Cheng | Generalization of the spherical harmonic method to radiative transfer in multi-dimensional space[END_REF][START_REF] Ryan | Robust and accurate filtered spherical harmonics expansions for radiative transfer[END_REF], asymptotic expansion with respect to opacities [START_REF] Edward W Larsen | Simplified p n approximations to the equations of radiative heat transfer and applications[END_REF][START_REF] Olbrant | Asymptotic derivation and numerical investigation of time-dependent simplified pn equations[END_REF], or averaging over directions [START_REF] Frank | Approximate models for radiative transfer[END_REF]. The simplest model that can be obtained within this approach is given by the following equation

         ∇ • 1 3κ ∇(G) -κG = 4κσT 4 ∂G w ∂n = 3κǫ w 2(2 -ǫ w ) ) (4σT 4 w -G w ) (2.22)
The boundary condition used here is of Robin type, which is a combination of Dirichlet and Neumann boundary conditions. This model has well known limitations which will be detailed in a further chapter, but it will be useful to perform comparisons with the new method that will be presented in the same chapter.

Fully coupled aerothermal problem

As it can be seen in equation (2.13), a flow of velocity has an effect on the temperature through the term u•∇T ; that kind of exchange is referred to as convective heat transfer.

It is easy to understand the effect when the flow is generated independently of the heat transfer (burner, nozzle, turbines,...): this type of transfer is referred to as f orced convection. However, some flows are generated by a temperature gradient ( atmosphere wind formation, earth mantle convection, curls of smoke above hot liquids), referred to as natural convection. The physical cause of this phenomenon is the surrounding fluid receiving heat becomes less dense and it rises. A proper modelling would be to consider compressible flows, by modifying equation (2.4) as done in [START_REF] Hachem | Unified adaptive variational multiscale method for two phase compressible-incompressible flows[END_REF], but it leads to a more complex model, whereas most of the flows of interest here can be treated as weakly compressible flows. A good compromise is the Boussinesq approximation, consisting in ignoring the density variations except in the gravity term ρg. The Boussinesq term reads F grav = ρβ(T (x, t) -T 0 )g, where T 0 is a reference temperature. Under this approximation, the fully coupled aerothermal problem can be formulated as follows:

Find (u, p, T ) such ∀(x, t) ∈ Ω * [0; T ] (2.23)        ∇ • u = 0 ρ ∂u ∂t + (u • ∇)u + ∇(p) -∇ • (η∇(u)) = ρβ(T -T 0 )g ρc p ∂T ∂t + u • ∇T -∇ • (λ∇T ) = f (2.24)
When the situation requires it, effective viscosity and conductivity, computed by (2.16) will replace η and λ. At this point, it is interesting to introduce some adimensional numbers characterizing the different "regimes" for this coupled problem. In the following, L is characteristic distance of the considered phenomenon, and U stands for a characteristic velocity

• The Reynolds Number Re = ρU L η . This number represents the ratio between inertial forces ρ(u • ∇)u and viscous forces ∇ • (η∇(u)). A low value corresponds to a dominant transfer of momentum by diffusion (laminar regime), whereas a high value corresponds to a dominant transfer of momentum by convection ( turbulent regime).

• The Rayleigh number Ra = ρ 2 cpgβ∆T L 3 ηλ is characteristic of the dominant mode of heat transfer within a flow: the low values corresponding to conduction, and high values corresponding to natural convection.

• The Prandtl number P r = ηcp λ compares the diffusion of momentum and the thermal diffusion: the higher the value of the Prandtl number, the more the velocity profile will have an effect on the temperature distribution.

• The Grashof number Gr = gβ∆T L 3 ρ 2 η , that characterizes the natural convection in a fluid. It can be understood as the ratio of gravity forces on viscous forces and can be related to the Rayleigh and Prandtl number by Gr = Ra P r .

• The Peclet number P e = ρcpLU λ is the ratio of convective and conductive heat transfer. When applied to a CDR equation with an high value of P e, the classical formulations will produce numerical solutions of poor accuracy, and justify the stabilization methods that will be exposed in latter parts. Now all the continous models ( at the exception of radiation) that will be used in this thesis have been presented, the formulations used for the numerical approximations will be detailed.

Formulations for numerical approximations

The Finite Element Methods, since their emergence in the 1950's, have gained more attention from researchers and engineers with the evolution of computers( see [START_REF] Tinsley Oden | A history of scientific computing[END_REF] for a short historical review). The main features are the conversion of the initial PDE into a variational problem integrated over the computational domain, and using a piecewise approximation on a triangulation Ω h that stands for an approximation of the original domain Ω. It permits to work only at the local level ( the level of an element of the triangulation), the assembling procedure being standard and independent of the considered PDE. Moreover, functional analysis offers a setting to predict the quality of the computed approximation (existence, regularity, error estimates). Traditionally used in the field of structural mechanics, its utilisation in other fields of physics draws the attention of many researchers ( see [START_REF] Pavel | Least-squares finite element methods[END_REF] for applications to a large class of problems).

However, the classical FEM fails to produce accurate solutions when applied to the type of problems described in the precedent part, justifying the design of Stabilized FEM that will be the topic of the next part.

Classical Finite Element Formulation for the Navier-Stokes equations

Let us start by defining the functional setting and the Hilbertian structures necessary for a weak formulation

L 2 (Ω) = w, such Ω wdΩ < ∞ (2.25) H 1 (Ω) = w ∈ L 2 (Ω), such Ω ∇(w) 2 dΩ < ∞ (2.26)
The definition of H 1 is given for scalar valued functions, but the definition straightforwardly extends for vector valued functions componentwise. The subscript 0 for those functional spaces means that the elements of the respective spaces are zero-valued on ∂Ω D . On those spaces the following form defines an inner product and an associated Hilbertian norm

(u, w) = Ω uvdΩ (2.27)
The functional space for p will be P = L 2 (Ω), with a possible zero mean condition, since the pressure is defined up to a additional constant. For u, one needs to introduce the boundary conditions in the definition of the space, the associated test functions being defined for homogeneous boundary conditions

U = u ∈ (H 1 (Ω)) d , u |∂Ω D = u D (2.28) U 0 = u ∈ (H 1 (Ω)) d , u |∂Ω D = 0 (2.29)
U and U 0 are referred to as the trial and test spaces, respectively. The weak formulation of (2.5) is obtained by mutiplying by test functions, integrating over the domain and performing integration by parts on certain terms. The weak formulation reads Find (u, p) ∈ U * P such ∀(w, q) ∈ U 0 * P (2.30)

ρ ∂u ∂t , w + (ρ(u • ∇)u, w) + (η∇(u), ∇(w)) + (∇(p), w) = (ρg, w) (∇ • u, q) = 0 (2.

31)

At this stage, even though the pressure was defined as a primary variable, this mixed formulation can be viewed as an augmented formulation, the pressure being a Lagrange multiplier associated to the incompressibility constraint. The Galerkin approximation consists in constructing a approximation Ω h of Ω into a partition K h of non overlapping elements K covering the whole domain. Only triangular elements ( thetrahedral in 3d)

will be used here. This partition is then used to construct approximation spaces from (2.26) and (2.25), spanned by basis polynomial functions ( shape functions (φ h,K ) K∈K h ) on each element of the partition, the global approximated fields (u h , p h ) being continuous over the whole domain

U h = u h ∈ (C 0 (Ω)) d , u h| K ∈ (P 1 (K)) d , ∀K ∈ K h (2.

32)

P h = p h ∈ (C 0 (Ω)) d , p h| K ∈ P 1 (K), ∀K ∈ K h (2.33)
Expressing (u h , p h ) on the basis of shape functions and evaluting (v, q) for all the shape functions in (2.30) lead to a linear system, the uknown being the values of the fields at points of the triangulation.

Stabilization using the Variational Multiscale Method

The need of stabilization

The presented formulation is known to fail for two reasons:

• the theory of mixed finite elements (see [START_REF] Pavel | Least-squares finite element methods[END_REF] for a detailed analysis) state that the approximation spaces should verify an inf-sup condition ( also known as Babuska-Brezzi condition), formulated as follows:

∃β such inf u h ∈U h,0 sup q h ∈P h (∇ • u h , q h ) q h P h u h U h,0 ≥ β > 0 (2.34)
where β is independent of the mesh size h. It imposes a compatibility between velocity and pressure approximation spaces (rougly speaking, the velocity space has to be "bigger" than the pressure space ). An option would be to use a different order of interpolation for velocity and pressure (P 1 -P 0 or P 2 -P 1), but a pressure constant is sometimes not accurate enough for drag and lift computations, and using a P 2 approximation ( or higher) is prohibitive in terms of computation time when applied to 3d coupled problems. So equal order interpolation pair will be used in this work.

• For turbulent flows, the non-linear convective term (u • ∇)u is the predominant one and might generate spurious oscillations, leading to a poorly accurate approximation.

Scale Splitting

Most of the stabilization methods rely on enrichment of functional spaces used in the variational formulation. An option is to add extra diffusion in the upwind direction, but this will be detailed with the variational formulation for CDR equations. For mixed variational formulation, a powerful framework to design a stabilized Finite Element method is the Variational Multiscale method (VMS): proposed by Hughes [START_REF] Thomas | Multiscale phenomena: Green's functions, the dirichlet-toneumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF][START_REF] Thomas | The variational multiscale method?a paradigm for computational mechanics[END_REF], the idea is to model the effect of the smallest scale structures of the flows, but to numerically resolve only the large scales, so that the small scales are taken into account without an explicit resolution. Formally, it consists in splitting both unknowns and test functions into a large ( resolved) part and a small ( unresolved) part. This decomposition is then introduced in (2.30) leading to a large scale problem, with supplementary small scale terms that will provide the desired stabilization, and a fine scale problem, with right hand sides being some residuals of the large scale. This problem is solved in an approximate manner, and the fine scale is reintroduced in the large scale problem. The splitting for the unknowns and test functions is performed as follows:

U = U h U ⇒ u = u h + u (2.35) V = V h V ⇒ v = v h + v (2.
36)

P = P h P (2.

37)

⇒ p = p h + p and q = q h + q (2.38)

Introducing these decompositions in (2.30), one gets the large scale and fine scale problems:

   ρ ∂(u h + u) ∂t , v h + (ρ(u h + u) • ∇(u h + u), v h ) + (∇(p h + p), v h ) + (η∇(u h + u), ∇(v h )) = (ρg, v h ) (∇ • (u h + u), q h ) = 0 (2.39)    ρ ∂(u h + u) ∂t , v + (ρ(u h + u) • ∇)(u h + u), v) + (∇(p h + p), v) + (η∇(u h + u), ∇( v))) = (ρg, v) (∇ • (u h + u), q) = 0 (2.40)

Approximation for the fine scale problem

The next step is to solve (2.40) to reintroduce ( u, p) into (2.39). The first step is to move all the large scale terms at the right hand side of the fine scale problem, leading us to define large scale residuals:

R u,h = ρg - ρ∂u h ∂t + ρ(u h • ∇)u h ) + ∇(p h ) -∇ • (η∇(u h )) (2.41) R p,h = -∇ • u h (2.42)
To solve the fine scale problem, some assumptions have to be made, the quality of the stabilization depending on these assumptions, leading to different features of the fine scale problem. See [START_REF] Colomés | Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows[END_REF] for a detailed description of VMS methods for incompressible flows:

• The subscales will not be tracked in time, but will remain time dependent, driven by the large scale residuals. For examples with dynamic subscales, see [START_REF] Codina | Dynamic subscales in the finite element approximation of thermally coupled incompressible flows[END_REF][START_REF] Codina | Time dependent subscales in the stabilized finite element approximation of incompressible flow problems[END_REF] and [START_REF] Gamnitzer | Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow[END_REF] • The non-linear convective term only retains the large scale velocity ((

u h + u) • ∇)(u h + u) ≃ (u h • ∇)(u h + u).
The fine scale problem is therefore linear. For non-linear subscales, see [START_REF] Colomés | Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows[END_REF].

• The subscales are assumed to vanish on inter-element boundaries, leading to local contributions of each element to the global stabilization term. An extension to non-zero inter-element subscales consists in treating the subscales values with appropriate transmission conditions, see [START_REF] Codina | Subscales on the element boundaries in the variational two-scale finite element method[END_REF] Now, the fine scale problem can be expressed, in an abstract form, as follows:

B u ( u, p) = R u (2.43) B p ( u) = R p (2.44)
The principle is now to express the fine scale only in terms of large scale residuals.

It consists in finding a "good" approximation of inverses of operators B u and B p in a spectral sense. This is done by using a Fourrier analysis [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF], so that one finally gets:

u = τ u Π U (R u,h ) (2.45) p = τ p Π P (R p,h ) (2.46)
where Π U and Π P stands for projection operator onto the spaces U and P . Taking the projection operators equal to the identity on the considered space is usually referred to as "Algebric Subgrid Scale", and will be done in this work. It is also possible to take as orthogonal projection onto finite element spaces, known as "Orthogonal Subscales" [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF].

The values of the stabilization parameters τ u and τ p are obtained through the Fourrier analysis of the fine scale problem, leading to the following values, computed at element level

τ u = 1 ( c 1 η ρh 2 ) 2 + ( c 2 u h K,2 h
) 2

(2.47)

τ p = ( η ρ ) 2 + ( c 2 u h K,2 h c 1 ) 2 (2.48)
where h is the characteristic mesh size, u h K,2 is the L 2 norm of the velocity on the element. c 1 and c 2 are algorithmic constants. An interpretation about those constants, available in [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF], will be detailed for the CDR equation. It gives conditions on the values of those constants, so that we will take here c 1 = 4 and c 2 = 2.

The particular VMS approach that we presented have demonstrated its efficiency in many situations: for NS problems only [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF][START_REF] Coupez | Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF], but also for coupled problems rising from industrial applications [START_REF] Hachem | Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[END_REF][START_REF] Hachem | Modeling of heat transfer and turbulent flows inside industrial furnaces[END_REF][START_REF] Schmid | Unified formulation for modeling heat and fluid flow in complex real industrial equipment[END_REF] . However, we want to emphazise the fact the VMS framework offers flexibility to design other stabilized formulations: Codina and coworkers have proposed other formulations based on a different treatment of the fine scale problem for incompressible flows [START_REF] Codina | Time dependent subscales in the stabilized finite element approximation of incompressible flow problems[END_REF][START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF], flows with Corriolis forces [START_REF] Codina | A stabilized finite element method for generalized stationary incompressible flows[END_REF], and aerothermal coupled flows [START_REF] Codina | Dynamic subscales in the finite element approximation of thermally coupled incompressible flows[END_REF][START_REF] Avila | A finite element dynamical nonlinear subscale approximation for the low mach number flow equations[END_REF]. An interesting interpretation about the dissipative structure of the VMS was also presented [START_REF] Principe | The dissipative structure of variational multiscale methods for incompressible flows[END_REF]. We can also quote the work of Jiang and coworkers [START_REF] Jiang | A finite element variational multiscale method for incompressible flow[END_REF] providing error estimates, the work of Gravemeier [START_REF] Volker | Scale-separating operators for variational multiscale large eddy simulation of turbulent flows[END_REF][START_REF] Volker Gravemeier | An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow[END_REF] using a threescale VMS method, and publications with special treatment for turbulence [START_REF] Farhat | A dynamic variational multiscale method for large eddy simulations on unstructured meshes[END_REF], [START_REF] Tomás Chacón Rebollo | Numerical analysis of a finite element projection-based vms turbulence model with wall laws[END_REF] and compressible flows [START_REF] Fedderik Van Der Bos | A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques[END_REF]. Similar techniques have also been successfully used for Stokes [START_REF] Badia | On a multiscale approach to the transient stokes problem: Dynamic subscales and anisotropic space-time discretization[END_REF][START_REF] Badia | Unified stabilized finite element formulations for the stokes and the darcy problems[END_REF] and Darcy [START_REF] Masud | A stabilized mixed finite element method for darcy flow[END_REF][START_REF] Masud | A stabilized mixed finite element method for darcy-stokes flow[END_REF] [56] flows. In a forthcoming chapter, we will see that the VMS framework can be used for physical models very different of fluid dynamics.

Standard Galerkin Finite Element Method for the CDR equation

Since the CDR equation only involves one scalar equation, the classical Finite Element theory applies here. Even though we demonstrated that this type of equation can be encountered in various situations, the formulation and the stabilization is independent of the physics. If we define the following space:

V = v ∈ H 1 (Ω) v |∂Ω D = v D (2.49)
homogeneous V 0 and discrete V h spaces are naturally defined in the same manner than in the previous section.

Multipliying by a test function w and integrating over the domain, one gets

Find v ∈ V such ∀w ∈ V 0 (2.50) ( ∂v ∂t , w) + B(v, w) = (f, w) B(v, w) = (β • ∇(v), w) + (λ∇(v), ∇(w)) + (αv, w) (2.51)
However, it can be shown that the formulation presented above fails for high Peclet numbers. The following part is then dedicated to stabilization techniques.

Stabilization Techniques for the CDR equation

All the stabilization techniques relies, form a theoritical point of view, on modification of the test function. That kind of Finite Element methods, where trial and test spaces are not the same, is referred to as Petrov-Galerkin methods, at the contrary of Bubnov-Galerkin method, when trial and test spaces are the same.

Streamline Upwind Petrov Galerkin (SUPG)

Historically, some numerical pollution were observed for High Peclet numbers. The instability is therefore related to the convective phenomenon. The pioneering work of Hughes [START_REF] Alexander | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations[END_REF] was based on the following idea: a one dimensional analysis with help of finite differences show that the upwind schemes give more accurate solutions when the Peclet number rises (this can be related to the condition number of the global matrix), that can be interpreted as the artificial diffusion coming from the numerical approximation of the derivatives. A similar term can be obtained in a finite element context by a modification of test function in the following manner:

ϕ = ϕ + τ β • ∇(ϕ) (2.52)

Shock Capturing Petrov Galerkin (SCPG)

However, in some situations, the streamline direction is not the upwind direction (where artificial diffusion is needed to stabilize the solution). For those situations, Galeo and coworkers [START_REF] Galeão | A consistent approximate upwind petrov-galerkin method for convection-dominated problems[END_REF] extended the SUPG method in the direction of the gradient of the velocity.

The test functions are modified accordingly 

ϕ = ϕ + τ SU P G β • ∇(ϕ) + τ SCP G w • ∇(ϕ) (2.53) 
w =    β • ∇(ϕ) ∇(ϕ) 2 ∇(ϕ) if ∇(ϕ) = 0 0 if ∇(ϕ) = 0 (2.54)
The additional velocity w is nothing but an orthogonal projection of the advection field β onto the gradient of the shape functions.

Derivation of the stabilization parameters: a link between SUPG and VMS

The SUPG and SCPG both rely on adding artificial diffusion in a certain direction.

However, adding "too much" extra diffusion can modify substantially the solution, rendering it physically irrelevant. Two parameters τ SU P G and τ SCP G were introduced in the previous section, in order to tune the stabilization to only add the required amount of diffusion. An appropriate choice of those parameters is therefore critical in the design of a stabilized Finite Element Method. The values for those parameters were obtained following the lines in [START_REF] Alexander | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations[END_REF][START_REF] Galeão | A consistent approximate upwind petrov-galerkin method for convection-dominated problems[END_REF][START_REF] Badia | Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ale framework[END_REF], are:

τ SU P G = 1 (c 1 2 β K,2 h ) 2 + (c 2 λ h 2 ) 2 + α 2
(2.55)

τ SCP G = h 2 β K,c γ( β K,c β K,2 ) (2.56)
where

γ(x) = 2x(1 -x) and β K,c ==    β • ∇(ϕ) ∇(ϕ) 2 if ∇(ϕ) = 0 0 if ∇(ϕ) = 0
. c 1 and c 2 being algorithmic coefficient similar to the ones evoked for NS equations.

A fully detailed derivation is available in the references quoted above. However, the VMS framework presented in the context of NS equation offers a systematic and rigorous way for deriving the SUPG parameter ( The SCPG term consists just in a different computation of the upwind velocity), and such a derivation provides insight about the values of the algorithmic constants.

The first step consists in a scale splitting for both trial and test functions

V = V h V ⇒ v = v h + v (2.57) V 0 = V 0,h V 0 ⇒ w = w h + w (2.58)
Introducing (2.57) in (2.50) gives one coarse scale problem and one fine scale problem

( ∂(v h + v) ∂t , w h ) + B((v h + v), w h ) = (f, w h ) (2.59) ( ∂(v h + v) ∂t , w) + B((v h + v), w) = (f, w) (2.60)
The methodology is similar as before: the fine scale problem has to be approximated to be reintroduced in the coarse scale problem. To this end, we define a residual for the CDR equation, and using similar notations

R(v h ) = f - ∂v h ∂t -β • ∇(v h ) + ∇ • (λ∇(v h )) -αv h (2.61)
under the same assumptions which detailed for the fine scale problem of NS equations,

(2.60) can be re-arranged into

(β • ∇( v), w) -(∇ • (λ∇( v), w) + (α v, w) = (Π V (R(v h )), w) (2.62) ⇒ (β • ∇( v) -∇ • (λ∇( v) + α v -Π V (R(v h )), w) = 0 ∀ w ∈ V (2.63)
The last equality says nothing other than the left term of the inner product is zero. To obtain an approximation of the fine scale w = τ Π V (R(v h )), we follow the pioneering work of [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF] by introducing a Fourrier transform over an element K with respect to the space dimension.

v(k) = K v(x) exp(-i x • k h )dK (2.64)
applying this transform to (2.62), one gets

( iβ • k h - k 2 λ h 2 + α) v = Π V (R(v h )) (2.65) 
Using the Plancherel equality and the mean value theorem, the following expression for τ can be obtained

τ = 1 ( k K,2 β K,2 cos((β•k)) h ) 2 + ( λ k K,2 2 h 2 ) 2 + α 2 (2.66) by setting c 1 = k K,2 cos((β • k)) and c 2 = k K,2
, it is straightforward that c 2 1 ≤ c 2 , therefore c 1 = 2 and c 2 = 4 are appropriate values. Some modified parameters can be considered, to include unsteady effects or to ensure a correct asymptotic behaviour regarding the Peclet number, so that the stabilization vanishes when not needed, but we refer the reader to [START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF] and references therein. The choice of a characteristic mesh size is not straighforward either, and will be detailed in the next chapter. Now that all the ingredients for the numerical approximation of the physical models presented above was detailed, the next section is devoted to several numerical examples to assess the robustness and accuracy of the presented formulations. Cases of natural convection will be presented, in 2d as well as in 3d.

Numerical experiments 2.3.1 Natural convection in an empty cavity

The considered case models a square cavity of lenght L = 1.0m, with left and right walls maintained at fixed temperatures T h and T c , respectively. Compressibility effects are modelled using the Boussinesq approximation. The physical parameters are chosen here to obtain the desired Rayleigh and Prandtl numbers, as depicted in the appendix A. The horizontal walls are considered adiabatic. The initial condition for temperature

is T 0 = Tc+T h 2 .
Regarding the flow computation, classical boundary conditions are used. We plot the adimensionnal temperature θ, defined by θ = T -Tc T h -Tc . We propose here to explain the variations of temperature and velocity patterns with varying Rayleigh numbers from 10 2 to 10 8 . However, even though each value of Ra produces a curve of a certain shape, different set of parameters can lead to such a value. Hence, these curves are not a sufficient tool for 

N u conv = L λ(T h -T c ) 1 0 ∂T ∂x (0, y)dy (2.67)
The obtained values are compared with some of the ones available in literature in the One can see that the maximum discrepancy between the obtained results and the ref- For symmetry reasons exposed earlier, the profiles of temperature and velocity are similar to the ones obtained in the two dimensionnal case, but we will perform a similar validation than in 2d by comparing values of Nusselt numbers to the ones available in literature, even though there are less references available for the 3d case. These results are summarized in the following table 

Natural convection in a cavity containing a plate

The second problem, proposed in [START_REF] Saravanan | Coupled thermal radiation and natural convection heat transfer in a cavity with a heated plate inside[END_REF], is another natural convection example with a heated plate at T h inside a cavity of lenght L = 1.0m with horizontal walls maintained at T c . Two configurations, with a plate at horizontal and vertical positions, are considered.

No mention about the plate thickness is available in the reference, so we set a thickness of 0.02m, corresponding approximately to one characteristic mesh size. As in the previous case, homogeneous Neumann boundary conditions are applied on horizontal walls. The following pictures represent the iso-temperature lines on the left, and velocity patterns on the right. The results, in terms of iso temperature and streamlines, are in good agreement with [START_REF] Saravanan | Coupled thermal radiation and natural convection heat transfer in a cavity with a heated plate inside[END_REF] for Ra = 10 6 , but like in the previous case, we display the evolution of the results with increasing Rayleigh. The patterns for low Ra will not be displayed, since they are representative of diffusion only. Three dimensionnal versions of these cases will be presented, but, to the best of author's knowledge, results about such cases are not available in literature, so the validation step will not be adressed.

Horizontal plate

A similar behaviour of the aforementionned can be observed than in the previous case with boundary layers forming on the upper part of the vertical walls. The patterns in the lower part of the cavity are almost homogeneous cold temperature and low velocity, the compressibility effects making the hot fluid rise in the upper part of the cavity. The plate impacts the flows, small recirculation zone forming close to the horizontal limits of the plate and regrouping in a bigger one as the convection effect increases.

The obtained results were compared with the ones with the reference, in terms of adimensional temperature on the top horizontal wall A small difference is observed, which can be explained by the fact that a high order finite difference method was used in the reference. In fact, in order to eliminate bias, it would be more coherent to make comparison between BF results obtained using our A three dimensional version of this case was considered, as an extrusion of the twodimensional case in the z direction to consider a unit cube. The plate thickness in the z direction was set to 0.5 in order to have symmetric results in the z direction likewise in the x direction. This symmetry can be observed on the normalized temperature patterns and on streamlines. It would be possible to only simulate a quarter of the effective domain with appropriate boundary conditions, and deduce the whole results by symmetry, as it can be seen on 

Vertical plate

For this case, it is interesting to remark that for Ra = 10 5 and Ra = 10 6 , close to the center of the plate, the situation is similar to what happens in the empty cavity. One can note that, at this location, the iso temperature lines display the same shape as in the empty cavity. However, the velocity is different due to the absence of a solid boundary at the upper limit of the plate. We can observe two symmetric small recirculation zones between the plate and solid boundaries, in the direction of the iso-temperature lines for Ra = 10 4 , the shape becoming more complex when convection increases. As in the previous case, we compared the obtained results in terms of temperature along the top horizontal wall. For the same reasons exposed earlier, a small difference is observed but the discrepancy remains small.

The 3d version of this problem was adressed, the extension being in the same fashion as in the two other cases. One can observe the symmetry of the temperature with respect to the plane of equation z = 0.5 , and symmetry of the velocity streamlines with respect to

x c , the above pictures presenting temperature patterns and streamlines in plane z = 0.3, z = 0.5 and z = 0.7, respectively.

The iso temperature surfaces display, as for the horizontal case, some artifacts can be seen at the location of thermal boundary layers. It would be possible to have more proper iso surfaces by using a finer mesh, but on the one hand, the mesh used here is made up of about 1 million elements, so using a finer mesh could seem like an exageration, and on the other hand, we will see in the next chapter that the monolithic methods we will make use require fine meshes. 

Conclusions

This chapter has demonstrated the potential of the stabilized finite element formulations for the physical models of interest presented above. The results shown are satisfactory in the range of Ra, and were validated in terms of local quantites ( temperature) as well as on global quantities ( Nusselt numbers). 2d and 3d problems can be treated indifferently, even though finer meshes have to be considered for 3d simulations. The question of the convergence with respect to the mesh size was not adressed in this chapter, but will be in the next, along with the type of meshes that will be introduced in the next chapter. 

Résumé français

Chapter 3

The Monolithic approach: levelset methods, anisotropic mesh adaptation and mixing laws

The previous chapter was dedicated to the physical models of interest in this work, and the mathematical formulations to obtain numerical solutions of the aforementioned models. However, problems rising from industrial applications often present different components: in a furnace, not only the surrounding fluid is of interest, but also the solid boundaries that limit the enclosure, and, the most important, the ingots inside the enclosure. Let us recall that the goal of this work is the direct numerical simulation of heat transfer in material forming processes. Therefore, even though an accurate description of the flow and heat transfer inside the fluid is important to achieve a better control of the facility, the critical point is the temperature inside the ingots, since the temperature time story inside the solid parts have a strong influence on the mechanical properties of the final products, at the macroscale ( yield limit, fatigue strenght) as well at the microscale ( microstucture, cluster, surface roughness). The classical approach, usually referred to as the "Body-fitted" approach, is what we used in the previous chapter: the solid and the fluid computations are performed on separated meshes, the fluid domain containing a "hole" at the location of the solid part, and an appropriate coupling is required to ensure the communication at the interface between models. Even though this approach is used in many commercial softwares, it has some well-known drawbacks:

• When complex geometries for the ingots are considered, the construction of an appropriate mesh can be very time consuming. Moreover, different softwares are based on different numerical methods, therefore the mesh requirements are different for each software, rendering more difficult the task of designing a mesh for a specific application.

• A change in the position of the ingots means redefining the whole mesh. This becomes more problematic when solids move during the process, as it is often the case, since at each change of mesh, all the boundary conditions have to be redefined, which is a tedious task for complex geometries.

• The Body fitted approach often models the convection at the interface fluid-solid with boundary conditions of type -λ∇(T ) For all the reasons mentionned, as we want to design "general" numerical tools, in the sense that it should be adapted to a broad range of situations, a classical body-fitted approach does not seem well adapted. To circumvent these issues, we propose to use an immersed volume method (IVM), consisting in treating both solids and fluids on a single mesh and with a single set of equations being solved for the whole domain, that is to say, in a monolithic way. The field of immersed methods have attracted the attention of many researchers in the past few years, with applications to different types of flows, such as Stokes flows [START_REF] Adjerid | An immersed discontinuous finite element method for stokes interface problems[END_REF], incompressible viscous flows [START_REF] Yuan | An immersed-boundary method based on the gas kinetic bgk scheme for incompressible viscous flow[END_REF][START_REF] Cf Rowlatt | A spectral element formulation of the immersed boundary method for newtonian fluids[END_REF], fluid-structure interaction with rigid [START_REF] Wang | Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method[END_REF], [START_REF] Lācis | A stable fluid-structureinteraction solver for low-density rigid bodies using the immersed boundary projection method[END_REF], [START_REF] Li | An immersed boundary-lattice boltzmann method for single-and multi-component fluid flows[END_REF] and flexible bodies [START_REF] Jeffrey | Simulating flexible fiber suspensions using a scalable immersed boundary algorithm[END_REF]. Heat transfer in a monolithic context was only adressed very recently, with applications to biology [START_REF] My Ge | Analytical and numerical study of tissue cryofreezing via the immersed boundary method[END_REF] and phase change [START_REF] Xia | A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation[END_REF].

• n = h conv (T -T w ),
The immersed volume method that is going to be described was already successfully applied to different situations [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF][START_REF] Hachem | Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[END_REF][START_REF] Schmid | Unified formulation for modeling heat and fluid flow in complex real industrial equipment[END_REF], but the main characteristics will be recalled in this chapter, and supplementary validation test will be performed.

The three main features of an immersed method are:

• The representation of interfaces.

• The construction of a mesh to properly capture the interface phenomena.

• The assessment of effective physical properties for different domains.

Each of the three aforementionned points will be the object of a subsection in this chapter

Representing interfaces using a levelset framework

The first issue is how to represent the interfaces between fluid and different solids. To this end, an interesting approach constists in using levelset functions (see [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] for a good review). It is used in many domains as computer vision, optimization [START_REF] Kang | Structural topology optimization with minimum distance control of multiphase embedded components by level set method[END_REF] and image processing. The principle is to define a signed distance function α(x), positive inside the considered object and negative outside. Formally, it reads, Γ representing the fluid-solid interface:

α(x) = d(x, Γ) if x ∈ Ω solid -d(x, Γ) if x / ∈ Ω solid (3.1)
where d(x, Γ) is given by

d(x, Γ) = min y∈Γ x -y 2 (3.2)
For simple geometries, as with circles of polygons, α can be determined analytically from geometric parameters. For more complex geometries, the considered object is first modelled using CAD tools, (CATIA c for instance) and a surface mesh of the object is generated. This surface mesh is then "merged" into a background mesh, and we make use of the algorithm depicted in [START_REF] Bruchon | Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. from a lagrangian approach to an eulerian approach[END_REF] to compute the levelset on the main mesh. Here we see displayed the levelset functions a circle and a square centered on (0.5, 0.5), the computational domain being [0, 1] * [0, 1]. It is also possible to make the levelset function "move" in the computational domain.

This is achieved by introducing a supplementary equation ruling the evolution of the levelset function as follows:

∂α ∂t + U • ∇(α) = 0 (3.3)
U being a transport velocity ( a rigid body velocity in the case of moving objects, a convective velocity in the case of multiphase flows ). Many researchers have worked on those reinitialization techniques for interface tracking [START_REF] Wac | A consistent solution of the re-initialization equation in the conservative level-set method[END_REF][START_REF] Amin Mahmoudi Moghadam | Development of a high-order level set method: Compact conservative level set (ccls)[END_REF][START_REF] Luo | Efficient formulation of scale separation for multiscale modeling of interfacial flows[END_REF], with applications for

Stokes flows [START_REF] Yang | An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids[END_REF] . levelset functions can be used in a different context as well, like contact-mechanics [START_REF] Graveleau | The inequality levelset approach to handle contact: membrane case[END_REF] and metal microstructure modelling [START_REF] Bernacki | Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework[END_REF]. Some applications to Fluid-Structure interaction [START_REF] Pino Muñoz | A finite element-based level set method for fluid-elastic solid interaction with surface tension[END_REF] can be noted as well. This approach, consisting in modelling the solid using levelset functions is interesting, since it provides a convenient representation of the solid , and this representation has the potential to model solids of very complex geometries [5]. However, since most of the critical phenomena occur at the interface fluid-solid ( boundary layers, convective transfer, forces applied on the solid,..), it is desirable to dispose of an appropriate discrete representation of the interface, since the interface will, in the end, be represented on a mesh. Different options are possible to track the interface: by using another mesh or by moving on the background principal mesh as done [START_REF] Rasthofer | Computational multiscale methods for turbulent single and twophase flows[END_REF], in order to track the interface, follow "effective" nodes and edges of the mesh being representative of the interface following the lines in [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF]. However, this is difficult to achieve, particularly when complex geometric forms are of interest. We will follow another approach that consists in the construction of a mesh "adapted" to the representation of the considered levelset function, in a sense to be defined later on.

The purpose of the next section is to introduce the tools necessary to the construction of such meshes 3.2 Error estimators, metric fields and anisotropic mesh adaptation 3.2.1 Error estimation

Motivations

Formally, a mesh is defined as a collection of polygons, composed of vertices, edges and faces, that defines a polyhedral object. As stated in the previous chapter, it is a natural way to construct an approximation Ω h of the computational domain Ω. If different forms of polygons ( also referred to as simplices, cells in a finite volume context, elements in a Finite Element context) can be considered ( triangles, quandrangles, hexahedras), the question of buidling a mesh suitable for the desired application is common to all kinds of meshes. It is common to introduce more elements in the location of "sharp" phenomena ( close to boundary for instance), but this requires an a priori knowledge of the considered system. Therefore, it is desirable to have at hand general tools to achieve such an understanding of the underlying model, sometimes a first calculation is necessary to have an a posteriori knowledge of the solution and adapt the computation afterwards. To introduce the concepts necessary to such an analysis, let us consider an abstract problem under the following form:

L(u) = f (3.4)
where L(•) stands for a differential operator representing the considered PDE ( including the boundary conditions, forcing terms and model parameters), f is a forcing term and u is the solution that we are looking for. Under certain assumptions (regularity, coercivity) on L and f , functional analysis theory can provide information (existence, unicity, regularity regarding datas) regarding the exact solution of this problem, that will be denoted u ex in the following. Using the techniques described in the previous chapter, one can transform the problem into a weaker one, in order to be able to obtain an approximate solution u h , so that the discrete abstract problem reads:

B(u h , v) = l(v) ∀v ∈ V h (3.5) 
Knowing this, one can define the approximation error e h , as follows:

e h = u ex -u h (3.6)
e h will be evaluated with an appropriate norm, depending on the considered problem.

Two main approaches to study the behaviour of this error can be quoted:

• A priori error estimation: this approach consists in using the functional analysis theory to assess the order of convergence of the considered method, based on mathematical assumptions ( properties of the PDE, regularity of the datas, type of boundary conditions, properties of the numerical formulation). Such error estimations are often presented in the form e h ≤ Ch p , where C is a constant independent of the mesh, h is the characteristic mesh size, and the exponant p is related to the order of interpolation of the chosen approximation. However, that kind of result is valid only asymptotically (i.e. when h → 0), hence such an approach is impossible to use in pratice.

• A posteriori error estimation: this approach is different in the sense that it makes use of the approximated solution to compute the approximation error e h . This can be done by different ways, depending on the considered physics.

The following subsection is dedicated to a short overview of error estimations techniques.

Approximation error

Since the Finite Element method was originally applied to structural mechanics, the foundations of error estimation are related to such problems. One can quote at least three different approaches:

• Following the pioneering work in [START_REF] Babuška | A-posteriori error estimates for the finite element method[END_REF], an option is to make use of Finite Element residuals: using the Galerkin orthogonality, one can show that the error e h is the solution of a variational problem similar to the original one, with a Finite Element residual as a right hand side. It is interesting to remark how such residual-based methods echoe with the VMS stabilization evoked in the previous chapter.

• Another option is to exploit the lack of regularity of the Finite Element solution [START_REF] Olgierd | A simple error estimator and adaptive procedure for practical engineerng analysis[END_REF][START_REF] Cecil | The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique[END_REF][START_REF] Cecil | The superconvergent patch recovery and a posteriori error estimates. part 2: Error estimates and adaptivity[END_REF]. The computation of the approximation error therefore consists in the construction of a smoothed approximation. Such methods are really simple and easy to implement, but they suffer from a lack of good properties, even though improved versions can be considered.

• A third option consists in defining a measure of the error with respect to the constitutive relationship [START_REF] Ladeveze | Error estimate procedure in the finite element method and applications[END_REF], but with a step for the construction of a more regular solution with techniques such as flux equilibration. It offers a interesting framework but not suited for CFD, since the non linearity comes from the convective term and not from the constitutive relation.

One can see [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF], [START_REF] Grätsch | A posteriori error estimation techniques in practical finite element analysis[END_REF] or [START_REF] Segeth | A review of some a posteriori error estimates for adaptive finite element methods[END_REF] for reviews on error estimation for adaptive Finite Element formulations, but such topics are still attracting interest of many research teams, extending error estimation approaches to new problems: for linear elasticity, we can quote [START_REF] Gallimard | A posteriori global error estimator based on the error in the constitutive relation for reduced basis approximation of parametrized linear elastic problems[END_REF] in the context of model reduction, [START_REF] Tomás P Barrios | Low cost a posteriori error estimators for an augmented mixed fem in linear elasticity[END_REF] for mixed augmented method with Lagrange multipliers and [START_REF] Hauke | Variational multiscale a posteriori error estimation for systems. application to linear elasticity[END_REF] for VMS formulation in elasticity. Some examples in different contexts are available as well, adressing the question of goal oriented estimation, when one wants to estimate not the global error of the problem, but on a quantity of interest: [START_REF] Mozolevski | Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems[END_REF] for Poisson equation, [START_REF] Chamoin | Control of modeling errors in the coupling of linear transport and diffusion models[END_REF] for linear transport and diffusion, [START_REF] Ainsworth | Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension[END_REF] for diffusion-reaction systems and [START_REF] Li | A priori and posteriori error analysis for timedependent maxwell's equations[END_REF] for Maxwell equations. A great effort was also devoted to such studies for Navier-Stokes equations, with special focus on turbulence [START_REF] Tinsley Oden | An a posteriori error estimate for finite element approximations of the navier-stokes equations[END_REF] [102] [START_REF] Bowers | Error analysis and iterative solvers for navier-stokes projection methods with standard and sparse grad-div stabilization[END_REF], and some study for VMS based stabilization methods [START_REF] Hauke | Variational multiscale a posteriori error estimation for systems: The euler and navier-stokes equations[END_REF]. However, in our context, on the one hand we are considering multiphysic problems, so it is desirable to use an error estimation valid for all models, and on the other hand, we are looking for an estimator to adapt the mesh only. Therefore, the next subsection introduces the framework to study the interpolation error that will be used in this work.

Interpolation error

We start by recalling the Cea lemma that states, for linear problems:

∃C ∈ R, ∀v ∈ V h , u ex -u h ≤ C u ex -v (3.7)
where C is again a constant independent of the mesh. One can see that, for a suitable choice of v, it is possible to obtain a quantity that is an upper bound for the approximation error. We introduce the Clement interpolation operator, where V is the functional space where u ex lies

Π h : V → V h (3.8)
Roughly speaking, Π h can be understood as a projection operator onto the Finite element mesh. Setting v = Π h (u ex ), the quantity u ex -Π h (u ex ) , referred to as the interpolation error appears to be a good choice to control the approximation error. Moreover, the interpolation error only measures the error made when a function is represented on a mesh, and therefore seems a natural tool to use for mesh adaptation. The general idea of the mesh adaptation is to compute such an interpolation error once a first calculation has been done, and to construct a new mesh by equidistributing the error. However, as it was shown in the previous chapter with the SUPG and SCPG methods, some phenomenoma present a natural anisotropy ( in the direction of the upwinding velocity). Following the same idea, an interesting lead is to consider a mesh composed of elements presenting similar characteristics, i.e. with a prefered direction aligned with the one of the gradient of the field to be represented. The purpose of the next sections is to introduce the theoritical framework necessary for the construction of such meshes using the notion of metrics.

Change of geometry: metric fields

It is classical to say that a geometry is defined once a scalar product and its associated norm are at hand. The usual Euclidian space considers what we refer to as the "canonical" scalar product. However, it is possible to define many other scalar products just with the help of a symmetric definite postive matrix M ∈ R d * d , such that the associated scalar products and norms are as follows:

(x, y) M = x T My (3.9)

x M = √ x T Mx (3.10)
If we consider an element of the mesh, the definition of a single characteristic mesh size for the element ( even more for the whole mesh) is not well suited for anisotropy. Hence, if we want to define characteristic mesh sizes in each direction (h x , h y , h z ), a natural way to define a metric M K for the element is the following:

M =     1 (hx) 2 0 0 0 1 (hy) 2 0 0 0 1 (hz) 2     (3.11) 
By doing so, each tetrahedron ( triangle in 2d) is equilateral with respect to its natural metric. For the case of an isotropic element of size h, the metric is an homothety of ratio

1 h 2 .
Therefore, the problem of the construction of a mesh adapted to the representation of a given function is replaced by the following problem: for a given error estimate, how to build local metrics for each element, so that they will be adapted to represent a given function. We notify that the use of such elements make the definition of a characteristic length for an element even more difficult. Even if different options are possible, for the length appearing in the definition of the stabilization parameters in chapter 2, we follow the lines in [START_REF] Hachem | Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[END_REF].

Even though other alternatives are possible ( see [START_REF] Huang | Metric tensors for anisotropic mesh generation[END_REF] and references therein), we will present two different approaches that are used in our library

Metric construction by length distribution tensor

In this case, the metric map is constructed directly at the nodes of the mesh. The construction of the metric relies on the notion of length distribution tensor and permits to define an edgebased error estimator. We will recall here the main steps of the construction, but for more information, the reader can refer to [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF] or [4]: let us start by introducing some useful notations: 

K set of elements N set of nodes K ∈ K mesh element X i , i ∈ N
vector of coordinates for the ith node X ij = X i -X j edge vector made of nodes i and j sharing at least one element

h ij = |X ij | edge length Γ(i) = {j ∈ N , ∃K ∈ K, X ij ∈ K} set of nodes connected to node i ("patch") |Γ(i)| cardinal of the set Γ(i)
The Length Distribution Tensor is defined by

X i = d |Γ(i)| j∈Γ(i) X ij ⊗ X ij (3.12)
This tensor will appear in the construction of an interpolation error that measures the accuracy of the process of building a continuous gradient from values at nodes of the mesh. This reconstructed gradient G i is defined using the following minimization problem

G i = arg min G   j∈Γ(i) |G.X ij -U ij | 2   (3.13)
where U ij is the nodal value of a field approximated in the interpolation space. The solution of this problem is given by:

G i = (X i ) -1 U i (3.14)
We can now turn to the definition of the interpolation error estimator e ij , which is given by:

e ij = G ij • X ij (3.15)
This estimator is then used to to compute a stretching factor s ij , based on a principle of equidistributed error e for all lengths, with a fixed number of nodes N , which leads to the following definition of the stretching factor

s ij = e e(N ) -1 2 =   i n i N   2 d e -1/2 ij , (3.16) 
with

n i = det d |Γ(i)| j∈Γ(i) s -1 ij X ij |X ij | ⊗ X ij |X ij |
Then, the new metric can finally be defined:

M i = |Γ(i)| d X i -1 , (3.17) 
where X i is computed by substituting X ij with X ij = s ij X ij . However, even though this approach is interesting in the sense that it exploits an analogy with an orientation tensor, the construction of the metric relies on geometric characteristics only. Another approach is possible, based on a different philosophy, and will be detailed in the next part.

Metric construction using an hessian based error estimator

Here again, the reader can refer to [START_REF] Mesri | On optimal simplicial 3d meshes for minimizing the hessian-based errors[END_REF], but we recall here the components of the approach. This philosophy is different than the previous one in the sense that we make use of higher order derivatives. If we come back to (3.7), one can show

u ex -u h p ≤ C u ex -v p ≤ C( K∈K H(u ex )(x) p K,p ) 1 p (3.18)
where

H(u ex )(x) = D 2 (u ex )(x)(x -x K )(x -x K ), D 2 (u ex )(x)
stands for the hessian matrix of u ex and x K being the barycenter of element K. The computation of the error estimator is based on a recovered Hessian H R (u ex )(x), obtained through techniques depicted in [START_REF] Cecil | The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique[END_REF][START_REF] Cecil | The superconvergent patch recovery and a posteriori error estimates. part 2: Error estimates and adaptivity[END_REF]. Using this the following error estimates can be obtained, with α ≥ 0:

u ex -u h p ≤ C u ex -v p ≤ C ′ card(K) α H R (u ex )(x) p (3.19)
The local metric is defined acording to the recovered Hessian, related to its eigenvectors

(e i ) 1≤i≤d ( H R (u ex )(x)
is a real symmetric matrix due to the Schwartz theorem) and the mesh sizes in each corresponding directions (h i ) 1≤i≤d , as follows:

M = d i=1 1 h i e i ⊗ e i (3.20)
However, even though H(u h )(x) appears as a good candidate for the recovered hessian, it cannot be used directly as a metric, since it is not guaranteed to be positive-definite.

If we denote by (λ i ) 1≤i≤d its eigenvalues, we can define

H = RΛR T (3.21)
with R being a rotation matrix formed of (e i ) 1≤i≤d as column vectors ( the order being re-arranged to form an orthonormal basis), and Λ = diag(|λ i | 1≤i≤d ). That allows us to define an error estimator ε K on each element K and an upper bound

ε K = K (H(u h )(x K )(x -x K )(x -x K )) p 1 p (3.22) ⇒ ε K ≤ K d i=1 λ i (x K )h 2 i 1 p (3.23)
In the following, the two metrics will be referred to as "Edge-based" metric and "Hessianbased" metric, respectively. A proper comparison of the two metrics could be performed by using "exotic" analytical functions, but will not be performed in this thesis, since the two approaches lead to similar results, even though the "Hessian-based" approach is simpler to implement. Now that we exposed two approaches to compute anisotropic error estimators, it is necessary to construct a mesh with respect to those error estimators, in a way described in the next section.

Mesh adaptation algorithms

The construction of a mesh is, in general, not an easy task. It is easy in the case of structured mesh, but becomes more tricky for unstructured meshes, and could serve as a PhD topic on itself. Even though the principle is always to equidistribute the error on each element, some geometric considerations are of interest:

As described in [START_REF] Gruau | 3d tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric[END_REF][START_REF] Boussetta | Adaptive remeshing based on a posteriori error estimation for forging simulation[END_REF] relying on a discrete point of view, a mesh is a set of node and a topology. Within this view, an optimal mesh is constructed using criterions such as minimal volume for simplices, by performing "cut and paste" operations for node generation and deletion.

The mesh adaptation procedure is illustrated below on the case of a circle, where the mesh is adapted on the levelset of the circle. One can see that the mesh obtained through this procedure is gradually refined at the interface, enabling a sharp description of the interface on the one hand and ensuring an accurate description of interface quantities (Temperature, velocity), mandatory for industrial applications on the other hand. The four pictures illustrate that the static mesh adaptation is an iterative process. One could argue that such a mesh adaptation is costly in terms of computational ressources, but such a mesh adaptation process is "offline", because it is done before any calculation.

The procedure has also been tested on 3d examples, displayed in the following. The results show the perfomances of the procedure, on simple geometric forms as well as on more complicated geometries coming from our industrial partners. The whole industrial facility ( an overview is depicted below) was modelled as well, with an explicit description of boundaries and a sand layer, demonstrating the potential of the method to properly capture several interfaces. A special treatment is required to adapt simultaneoulsy on ingots, walls and sand, but this will be detailed in the chapter regarding industrial applications. It is also possible to apply those mesh adapation techniques on the computed fields such as temperature or velocity. In this case, the mesh adaptation and resolution of the equation become strongly coupled, in the sense that a solution is computed on a mesh, which is then adapted to the computed solution. This coupling is attained by iterating at a fixed point algorithm. Such an adaptation is illustrated on pictures below, on problems considered in the past chapter, namely the 2d natural convection in an empty cavity, and the 3d natural convection with an horizontal plate. The benefit of such a dynamic mesh adaptation can be substantial, particularly in terms of computational time.

Now that the tools for the construction of an apropriate mesh are introduced, the next section is dedicated to the method for dealing with multidomain problems. 

Multidomain problems

Let us recall that we want to perform monolithic simulations in the sense that both solids and fluids are represented on a single mesh leading to one single computation.

However, fluids and solids are characterized by different thermophysical properties, so the question is now : how to assess physical properties to each "subdomain"? The most straightforward option would be to consider conform meshes, with nodes on the real interface, but on the one hand, the interface is only implicitely defined, and on the other hand, such a conform mesh is hard to construct for complex geometries. Another options is to make use of Generalized Finite Elements [START_REF] Strouboulis | The generalized finite element method[END_REF]: the idea is to enrich the Finite Element space with a suitable function, allowing to capture effects that a classical Finite Element fails to represent. It has been sucessfully applied to different problems with heterogeneous materials [START_REF] Soghrati | Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations[END_REF][START_REF] Soghrati | 3d hierarchical interface-enriched finite element method: Implementation and applications[END_REF] [113] and crack propagation [START_REF] Dolbow | A finite element method for crack growth without remeshing[END_REF]. However, the theoritical analysis is restricted to elliptic problems, and it was shown that the classical version lead to ill conditioned matrixes, even though improved versions can be considered [START_REF] Kergrene | Stable generalized finite element method and associated iterative schemes; application to interface problems[END_REF]. Here, we are considering another approach based on "mixing laws". We illustrate it by taking the example of the density ρ: if we denote by ρ f and ρ s the densities of fluid and solid respectively, the "effective" density ρ(x) is given by :

ρ(x) = ρ f H(α(x)) + ρ s (1 -H(α(x))) (3.24)
where H(α(x)) is a Heaviside function, so that the density has the appropriate value in each region. However, this version produces a very sharp transition, and leads to inaccurate results. To circumvent this issue, we consider a smoothed Heavisde function by introducing an interface thickness ǫ , verifying ǫ = O(h). The Heaviside function will be smoothed on the thickness with respect to the following expression:

H(α(x)) =        1 if α(x) > ǫ 1 2 1 + α(x) ǫ + 1 π sin( πα(x) ǫ ) if |α(x)| ≤ ǫ 0 if α(x) < -ǫ (3.25)
All thermophyiscal properties will be computed in the same manner, referred to as linear mixing law at the exception of thermal conductivity, which has to be mixed using an harmonic mixing law to ensure conservation of conductive fluxes. It also can be understood by thinking of the way equivalent thermal resistances are obtained from assemblies in series.

η(x) = η f H(α(x)) + η s (1 -H(α(x))) (3.26) T (x) = T f H(α(x)) + T s (1 -H(α(x))) (3.27) κ(x) = κ f H(α(x)) + κ s (1 -H(α(x))) (3.28) β(x) = β f H(α(x)) + β s (1 -H(α(x))) (3.29) 
ρc p (x) = ρ f c p,f H(α(x)) + ρ s c p,s (1 -H(α(x))) (3.30) 
λ(x) = 1 H(α(x)) λ f + 1-H(α(x)) λs (3.31)
Even though the temperature is one of the variables of the problem, such a mixing law will be useful to prescribe initial values in solid and fluid. For the viscosity, since there exists no definition of the viscosity for a solid, we will set a very important value ( typically η s = 10 6 ) in order to ensure a zero velocity inside the solid. This method, known as the penalty viscosity method, show satisfactory results to fit with classical body fitted results. For the case of moving objects, an augmented formulation can be considered [START_REF] Hachem | Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation[END_REF], the constraint being to have a solid body (rigid or elastic) velocity in the solid obstacle. Regarding the thermal behaviour, a solid boundary with a Dirichlet boundary condition in temperature can easily be modelled in a monolithic context, by setting an important value of the thermal conductivity. To illustrate the use of such mixing laws, we come back to the case of the facility, where we display the effective heat capacity and viscosity.

It is interesting to note that the computation is driven by those spatially dependent properties: the velocity field, due to the high value of the viscosity at solid boundaries, coupled to appropriate physical properties of each component, properly mimics the convective transfer naturally, with no supplementary effort. The method allows to consider various industrial configurations, the price to pay being the fact that the construction of the mesh can be time consuming, but, as stated previoulsy, the construction of the mesh is an "offline" operation. Once the mesh has been constructed, the overall method has a computational cost similar to more classical methods, but allows to perform simulations that would be difficult to set up using a body fitted approach, as the results of chapter 6 will show.

Before moving to the numerical experiments regarding the immersed volume method, it is important to recall that the three features of this monolithic approach are strongly coupled: there might be several iterations to find a good couple between a well adapted mesh, properly represented interfaces and well assessed physical properties, due mostly in the choice of ǫ: a to small value of interface thickness would consume too many elements to represent the interface and a too large value would lead to an oversized interface that would modify the physical output of the system, leading to non-relevant results. The next section is dedicated to numerical experiments to demonstrate the consistency of the monolithic approach.

Numerical experiments

When a novel approach such as the IVM described upper is developed, the first validation step consists in the comparison of the obtained results with the ones obtained using a classical ( boddy-fitted here ) approach. Since the BF results were compared to results from literature in the last chapter, they will be considered as a reference here. We will see that the convergence of both results is essentially related to the construction of an appropriate mesh. In fact, it is not an easy task to construct a "monolithic" mesh that is comparable with a classical one; on the one hand, it is difficult to properly control the number of elements necessary to represent the interface over the total number of elements, and on the other hand, in the case of unstructured anisotropic meshes, what stands for the characteristic mesh size? To validate the approach we will make use of the problems presented in the previous part, in 2d as well in 3d.

Natural convection in an empty cavity

For the 2d version, we will enlarge the domain model with slabs of a very highly conductive solid body (in order to replace the thermal boundary conditions) of lenght l = 0.25m, so that the computational domain that was Recall that, the "immersed" versions were considered naturally by introducing a levelset Function for the heated plate. For the duration of study, we keep Ra = 10 6 and P r = 0.71. An interesting feature of our immersed method is that the set up for the vertical and horizontal cases are exactly the same, except for the definition of the levelset function.

The meshes used for the computations are displayed below. Note that there are very few elements inside the plate, which makes sense since the quantities are expected to remain constant inside. Controlling the number of elements inside and outside is possible with our implementation of the "edge-based" metric. As in the previous case, we used body fitted meshes with approximately the same background mesh size than the ones displayed.

However, the validation would not be complete without a quantitative study, so we chose to study some relevant quantities along some lines at y = cst. We want to verify the properly captured. To this end we chose four lines for each case, listed in the table below: ) As it can be seen on the patterns, for the horizontal case, the results between y 2 and y 3 are almost symmetric, with a zone where the quantities are constant ( u 2 = and θ = 1), as it can be expected in the vicinity of the heated plate. It should be pointed out that during previous computations, it was observed that a gap between BF and IVM values can be observed if the mesh is not well adapted at the interface, even though the results appear to be the same "to the eye". The 3d extension for those cases were performed similarly to the 3d BF cases. We display three cutting planes for each mesh, showing that the interface is properly captured in all directions

y 1 BF y 1 IMV y 2 BF y 2 IMV
One can see that the obtained results in the plane z = 0.5 are, for both cases, the same results that the ones obtained for the 2d cases. The results in the plate plane are presented as well, showing once again a good agreement for both problems.

Here again, we will verify that we obtain the same results quantitatively. As for the 2d, we will verify the consistency on quantitites at middle locations between the plate and the boundaries and close to the interface. To this end, we chose different locations in the cavity. The chosen locations are listed in the table below. We considered the two directions, in order to verify the quantitites at the interfaces in the two directions. • Regarding the results in temperature, the small discrepancy might come from the stabilization technique: one of the stabilization term implies the thermal diffusivity λ ρcp , and since important values were prescribed inside the plate to ensure a constant temperature, the gap for this stabilization parameter across the interface could be significant. It shows that the "tuning" of stabilization parameters is not yet perfect, and could be improved.

Nevertheless, a curious fact was observed during comparisons between BF and IVM simulations, particularly on the case of the vertical plate: sometimes the results looked "better" with the immersed volume method, even when a similar number of elements was used. This can be be explained by the fact that, in the case of the immersed volume method, the elements are more "intelligently" located, where one can expect to encounter the thermal boundary layers. This is another argument in favor of the immersed volume method, when one knows the difficulty to construct a mesh before any computation.

We recall that this study regarding the consistency of the IVM is to be linked with the ones previously done in [START_REF] Hachem | Modeling of heat transfer and turbulent flows inside industrial furnaces[END_REF][START_REF] Hachem | Stabilized finite element solution to handle complex heat and turbulent flows in industrial furnaces[END_REF].

Résumé français

Ce chapitre présente les méthodes utilisées pour le traitement de problèmes multidomaines tels que les fours industriels ou les procédés de trempe. La géométrie des différents composants est représentée par le biais de fonctions levelset, qui peuvent être calculées de manière systématique à partir d'un modèle CAO de l'objet considéré. Chapter 4

Monolithic Surface Radiation:

The "Immersed-Surface-to-Immersed-Surface" (IS2IS) method

Now that the retained approach has been presented and illustrated on several examples, we turn to the major contribution of this work, the numerical modelling of the radiation.

In many engineering situations, such as glass treatment [START_REF] Lentes | Three-dimensional radiative heat transfer in glass cooling processes[END_REF], nuclear engineering [START_REF] Hyoung | Benchmark calculations of a radiation heat transfer for a candu fuel channel analysis using the cfd code[END_REF],

combustion and flame modelling [START_REF] Viskanta | Radiation heat transfer in combustion systems[END_REF][START_REF] Tessé | Monte carlo modeling of radiative transfer in a turbulent sooty flame[END_REF][START_REF] Garten | Detailed radiation modeling of a partial-oxidation flame[END_REF] and industrial furnaces [START_REF] Kang | Modeling and simulation of load heating in heat treatment furnaces[END_REF][START_REF] Ep Keramida | Radiative heat transfer in natural gas-fired furnaces[END_REF][START_REF] Habibi | Impact of radiation models in cfd simulations of steam cracking furnaces[END_REF], thermal radiation is the dominant mode of heat transfer. However, at the contrary of other physics presented in chapter 2, that can be stated as macroscopic physics, in the sense that, even if the pheneomena can be related to the action of particles (atoms, molecules), the constitutive equations are, in some sense, averaged. This approach is not valid for the radiation, the considered particles being photons, and the point of view of the statiscal physics have to be considered, when the particles are not directly considered, but only density of probability of their presence. This leads to an equation of Boltzmann type, the Radiative Transfer Equation, for which the numerical tools usually employed in the "Engineer" physics are not well suited, for many reasons that will be detailed in this chapter, but the main one being the complexity of the RTE. Therefore, some simplifications have to be made in order to be able to obtain a numerical solution. The main one being based on the fact that radiative effects can be split in two contributions:

• Surface radiation: when the medium separating the surfaces that define the enclosure does not affect the exchanges between surfaces, the medium is said to be transparent. This assumption is valid for vacuum, and for air at low and moderate temperature. Those exchanges constitute the major part of interest, and the method exposed in this chapter aims to take these effects in account.

• Volume radiation: when the medium cannot be considered as transparent, one has to take in account the interaction with the surrounding medium, by means of emission, absorption and deflection of photons. Methods to deal with this type of transfer will be described in this chapter, but the specific method we developed will be detailed in a following chapter.

Before turning to the method we designed, we will briefly recall the basics of radiative transfer and give an overview of the existing methods.

The Radiative Transfer Equation

Equation and boundary conditions

Let Ω be the computational domain and ∂Ω its boundary. The considered time interval is [0, T ]. A direction of the space ω can be parametrized by two angles (ϕ,θ), so that we can write the direction vector as

ω =     cos(θ) sin(ϕ) sin(θ) sin(ϕ) cos(ϕ)     (4.1)
Let S denote the unit sphere. In what follows, the symbol S means that the integration is performed over all the directions, i.e., for all ω ∈ S, which is equivalent to say that

ϕ ∈ [0, 2π] and θ ∈ [0, π].
The grey medium assumption is considered, and this yields to equations integrated all over the frequency range, therefore all the considered quantities will be frequency independent. The RTE permits to determine the specific radiative intensity I(x, t, ω), which describes the density of photons at a given position, time and in a given direction.

By considering an isotropic scattering to simplify the exposition, the full RTE reads:

1 c ∂I ∂t + ω • ∇I = σ r π κT 4 -(κ + σ)I + σ 4π S I(ω ′ )dω ′ (4.2)
Here, κ ≥ 0 is the absorption coefficient, σ ≥ 0 the scattering coefficient, σ r the Stefan-Boltzmann constant, c the light speed and T the (given) temperature field, acting as a right hand side in this case.

As boundary condition, different choices are possible. The most simple is to prescribe I at inflows to a given function I 0 , i.e.,

I(x, t, ω) = I 0 for x ∈ ∂Ω such that ω • n < 0 (4.3)
However, this kind of boundary condition is a bit simplistic, and a more realistic boundary condition would be to consider a reflected part (related to the solution) and an emitted part (related to the Planck distribution) 1 exp(-hν kT )-1 dν. The difference from a blackbody to a real body is contained in κ, which can be related to the emissive properties thanks to the Kirchoff law, even though κ is used as a volume property, whereas the emissivity ε is preferred for surface description.

I(x, t, ω) = (1 -ε) π ω•n<0 I(x, t, ω ′ )|ω ′ • n|dω ′ + εσ r π T 4 w for x ∈ ∂Ω such that ω • n < 0 (4.4)

Physical meaning of the different terms

ε κ σ "in" σ "in" σ "out" σ "out" ω ω ′ ω ′ x x ′
• Finally, σ 4π S I(ω ′ )dω ′ represents the radiative energy deflected from all the directions of the space through the considered volume (in scattering). Even though isotropic scattering was considered, anisotropic effects could be taken into account by means of a phase function φ(ω → ω ′ ) ( we have φ(ω → ω ′ ) = 1 4π for isotropic scaterring), so that this term become S φ(ω → ω ′ )I(ω ′ )dω ′ .

Numerical difficulties

There are at least two main reasons which make this equation difficult to solve :

• The presence of the scattering term σ 4π S I(ω ′ )dω ′ , so that we have to deal with an integro differential equation, and things get even worse with anisotropic phase functions. However, this is not the most important in the situations we will consider, and, in first approximation, this term can be neglected.

• The major difficulty lies in the term ω • ∇I, and, more generally the fact that I is a function of the direction ω. On the one hand, it is not a common thing, so that conventional discretization methods are difficult to apply to such an equation, and on the other hand, it introduces a supplementary dimension to discretize, followed by an increase in the computational cost.

We will see in the following sections, that, all discretizations methods differ in the way that the angular dependency is treated. An approach is to consider an averaged version of the RTE, leading to model such as the P 1 model evoked in the chapter 2, or the M 1 model [START_REF] Dubroca | Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif[END_REF], but this will be detailed in the next chapter. We now turn to the methods of discretization of the radiative transfer equation, for which a good review can be found in [START_REF] Meinköhn | Numerical methods for multidimensional radiative transfer[END_REF].

Numerical formulations for the RTE 4.2.1 Monte Carlo Method

This approach, introduced by [START_REF] Fleck | The calculation of nonlinear radiation transport by a monte carlo method[END_REF], is an application of the well-known Monte Carlo Method to radiative transfer. It is based on sampling a random walks of photons, introducing probability laws for the travelling of photons without interaction. This approach is mentionned in order to demonstrate a complete study, but due to its computational cost, it is unaffordable in situations coupled with other physics that are considered in this work, and as such, it will not be detailed here. A good summary of the principles can be found in [START_REF] Whitney | Monte carlo radiative transfer[END_REF].

Finite Element Methods

Here, the angular dependency is treated by means of angular shape functions. A variable separation can be performed to separate the contributions of classical spatial shape functions and angular shape functions. This leads us to consider inner products and decompositions of the solution of the following forms (u, v) Ω * S = Ω S uvdxdω (4.5)

I h (x, ω) = Nx i=1 Nω k=1 α i,k ϕ i (x)ψ k (ω) (4.6)
Since, for a given ω, the RTE can be viewed as an advection-reaction equation, so it is natural to consider stabilized formulations, with SUPG stabilization for instance.

We can quote several contributions, [START_REF] Widmer | Sparse adaptive finite elements for radiative transfer[END_REF] for a "sparse tensor product" formulation of spatial and angular shape functions and with an extensive theoritical analysis, [START_REF] Lehtikangas | Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index[END_REF] in a domain decomposition context, [START_REF] Tarvainen | Finite element model for the coupled radiative transfer equation and diffusion approximation[END_REF][START_REF] Gorpas | A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging[END_REF] for a formulation coupled with a diffusion approximation that will be detailed later on, [START_REF] Rafael | Spatial and angular finite element method for radiative transfer in participating media[END_REF][START_REF] Avila | Spatial approximation of the radiation transport equation using a subgrid-scale finite element method[END_REF] for stabilized formulations using the VMS approach and [START_REF] Guermond | Asymptotic analysis of upwind discontinuous galerkin approximation of the radiative transport equation in the diffusive limit[END_REF] for a discontinuous Galerkin formulation.

S N : Discrete Ordinates Method

A more straightforward idea, initially introduced by Chandrasekhar [START_REF] Chandrasekhar | Radiative transfer[END_REF] in the context of astrophysics, would be to consider discrete directions in a collocation fashion, that is to say, exhibit couples (w i , ω i ) i∈[1;N ] , ω i being discrete directions and w i being some weight to approximate the scattering term. Hence the DOM RTE reads, I i being the intensity on the ith ordinate:

∀i ∈ [1; N ], 1 c ∂I i ∂t + ω i • ∇I i + (κ + σ)I i = 4σ r κT 4 + σ j∈I,j =i w j Φ(ω j -ω i )I j (4.7)
This leads to a system of "ordinary" partial differential equations, coupled by the scaterring term. However, even though the angular dependency is adressed this manner, a spatial discretization has to be performed, and there exits several approaches to do so: by means of finite volume [START_REF] Selçuk | Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces[END_REF] in the context of furnaces (see [START_REF] Coelho | Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media[END_REF] for a complete review about Finite Volume and DOM), [START_REF] Jean C Ragusa | A robust s n-dgapproximation for radiation transport in optically thick and diffusive regimes[END_REF] with a discontinous galerkin method, [START_REF] An | Finite element method for radiative heat transfer in absorbing and anisotropic scattering media[END_REF] using a classical finite element method in space, [START_REF] Barry | The response matrix discrete ordinates solution to the 1d radiative transfer equation[END_REF][START_REF] Stamnes | Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[END_REF] for matrix implementations.

Recently, studies regarding the high performance computing aspects (Preconditiong, Krylov acceleration, fast resolution) can be quoted [START_REF] Matthew T Calef | Nonlinear krylov acceleration applied to a discrete ordinates formulation of the k-eigenvalue problem[END_REF][START_REF] Bruss | S 2 sa preconditioning for the s n equations with strictly nonnegative spatial discretization[END_REF][START_REF] Jia | Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography[END_REF].

P N : Spherical Harmonics

This approach, originally proposed by Jeans [START_REF] Jeans | The equations of radiative transfer of energy[END_REF] in the context of the study of gaseous stars, consists in eliminating the angular dependency of the radiative intensity by expanding it in terms of a generalized Fourrier series. Formally, it reads:

I = ∞ l=0 l m=-l I m l Y m l (θ, ϕ) ≈ N l=0 l m=-l I m l Y m l (θ, ϕ) (4.8) 
where θ and ϕ are according to (4.1), and I m l (x) are the unknowns of the problem. Y m l (θ, ϕ) is the spherical mode, given by

Y m l (θ, ϕ) = cos(mϕ)P m l (cos(θ)) if m ≥ 0 sin(mϕ)P m l (cos(θ)) if m < 0 (4.9)
P m l (x) being the associated Legendre polynomial, defined by

P m n (x) = (-1) m (1 -x 2 ) |m| 2 2 n n! d n+|m| (x 2 -1) n dx n+|m| (4.10)
This leads to a set of coupled partial differential equations, the integer N giving the order of the approximation. It is known that even order approximation gives irrelevant results

( the obtained intensity can be negative), so that only odd order approximations are used, even though it can be improved by a filtering operation [START_REF] Ryan | Robust and accurate filtered spherical harmonics expansions for radiative transfer[END_REF]. It can be shown [START_REF] Frank | Approximate models for radiative transfer[END_REF] that the spherical harmonics are equivalent to the DOM when a gaussian quadrature is chosen for For N = 1, one recovers the P 1 approximation of chapter 2. However, the complexity of those equations greatly increases for high order N , particularly for multidimensional problems [START_REF] Szu-Cheng | Generalization of the spherical harmonic method to radiative transfer in multi-dimensional space[END_REF], leading to the use of so called simplified approximations SP N , which has driven the interest of many researchers in the past years. One can see [START_REF] Olbrant | Asymptotic derivation and numerical investigation of time-dependent simplified pn equations[END_REF] for a derivation of time-dependant SP N equations, [START_REF] Steven | Efficient solution of the simplified pn equations[END_REF] which adresses the structure of matrixes obtained from the discretization of such equations, [START_REF] Altaç | On radiative transfer using synthetic kernel and simplified spherical harmonics methods in linearly anisotropically scattering media[END_REF] for rigorous derivation of boundary conditions, [START_REF] Schäfer | Diffusive corrections to p n approximations[END_REF] which introduces a corrected approximation to account diffusive effects, [START_REF] Frank | Adaptive finite element simulation of the time-dependent simplified p n equations[END_REF] with adaptive finite elements and [START_REF] Grella | Sparse tensor spherical harmonics approximation in radiative transfer[END_REF] for an multidimensional formulation using tensor products. A detailed construction, when the time dependance is neglected, using a different method, is available in [START_REF] Edward W Larsen | Simplified p n approximations to the equations of radiative heat transfer and applications[END_REF] or [START_REF] Teleaga | Radiation models for thermal flows at low mach number[END_REF], but the main ideas are to perform an asymptotic development with respect to opacities and the use of formal

Neumann series, the order of the approximation being related to the index at which the truncation of the formal series is operated. We give the first members of this family below, the unknown ϕ r being related to the radiative energy and ǫ = 1 (κ+σ)L :

SP 1 Approximation -ǫ 2 ∇ • ( 1 3(κ + σ) ∇ϕ r ) + κϕ r = κ(4σ r T 4 ) (4.11) SP 2 Approximation -ǫ 2 ∇ • 1 3(κ + σ) ∇(ϕ r - 4 5 
(ϕ r -4σ r T 4 )) + κϕ r = κ(4σ r T 4 ) (4.12) SP 3 Approximation ϕ r is here a linear combination of ψ 1 et ψ 2 , solutions of the following equations One can note the SP 1 approximation is nothing but the P 1 approximation, obtained by a different approach. We will see in the next chapter that there exists a third way to derive these equations. Now that a short overview of the existing method for the numerical resolution has been given, one can note that, since we are only interested here in surface radiation effects, it is not necessary to consider a full version of (4.2); in fact, for a transparent medium, we have κ = 0 and σ = 0, so that the right-hand side of the RTE vanishes. Moreover, the characteristic speed of the radiative phenomenon is very large compared to other phenomena, so that the transient term can be dropped as well. It leads us to consider a simplified model, where only the boundary of the domain ∂Ω is to be considered, and involves only geometric quantities. In the next part, we will give a state of the art explanation about this method, called the radiosity method, net radiative exchange or surface-to-surface method, and we will detail the extension we propose within our monolithic framework.

-ǫ 2 ∇ • µ 1 (κ + σ) ∇ψ 1 + κψ 1 = κ(4σ r T 4 ) (4.13) -ǫ 2 ∇ • µ 2 (κ + σ) ∇ψ 2 + κψ 2 = κ(4σ r T 4 ) (4.14) ϕ r = 1 30 (5 -3 5 

4.3

The Surface-to-Surface Method: state of the art

The view factor: a geometric function

As stated before, we are working in situations where the medium that separates the surfaces does not affect the energy exchange between them. Hence, the influent quantities here are the surface temperatures, its physical parameters ( area and emissivity ε mostly), and the most important, its geometric characteristics. The geometric characteristics have to be taken into account, not for a surface alone, but for couples of surfaces, that is to say, the relative orientation and distance are of importance. To introduce this notion, let us consider to infinitesimal surfaces dS i and dS j . The view f actor (sometimes referred to as conf iguration f actor, angle f actor or shape f actor) is defined as the part of energy leaving the surface dS i that directly strikes dS j .

S i dS i dS j n i n j θ i θ j S j δ g j,l g i,k δ k,l
It is given by, according to notations of figure 4.2:

dF dS i →dS j = (cos(θ i )dS i )dΩ i = cos(θ i ) cos(θ j )dS i dS j δ 2 (4.17)
The view factor between those two surfaces is then obtained by performing integration over surfaces S i and S j .

F S i →S j = F ij = 1 S i S i S j cos(θ i ) cos(θ j ) δ 2 dS i dS j (4.18)
It can be proved that the view factor verifies the following relations:

Reciprocity law:

F ij S i = F ji S j (4.19)
This relation is useful to save computation time, because it allows the computation of a view factor from the knowledge of the other. This assumption is valid for many considered surfaces, but become less appropriate for polished surfaces; in this case, one has to compute specular view factors [START_REF] Eckert | Radiative heat exchange between surfaces with specular reflection[END_REF]. For simple geometric configurations, the view factor can be determined analytically (catalogue for well-known configurations are available in [START_REF] Michael | Radiative heat transfer[END_REF]), but the calculation of a view factor for a particular configuration can serve as a publication on itself [START_REF] Vladimir | View factors of cylindrical spiral surfaces[END_REF][START_REF] Santosh | Determination of view factors by contour integral technique[END_REF][START_REF] Kang Khor | On the role of radiation view factor in thermal performance of straight-fin heat sinks[END_REF]. However, as we will see in the following, we intend to perform surface calculation using some faces of the finite element mesh, so we will have to deal with arbitrary configurations. Hence, a general approach is necessary to numerically compute the view factor. One can see [START_REF] George N Walton | Calculation of obstructed view factors by adaptive integration[END_REF] for a review of existing methods, but here we detail a few the most common methods: • Area integration: the most straighforward approach, consists in computing numerically the two surface integrals by using a quadrature rule. However, since the integrand is non polynomial, high order integration might be required.

Summation law

N F j=1 F ij = 1 (4.
• Analytic integration: where the considered surfaces are polygons, analytic formulas can be obtained, but it implies using complex functions such as dilogarithm [START_REF] Schröder | A closed form expression for the form factor between two polygons[END_REF],

which have to be evaluated numerically. Another analytic expression has been proposed for polygons [START_REF] Narayanaswamy | An analytic expression for radiation view factor between two arbitrarily oriented planar polygons[END_REF], but at the price of a complicated analysis.

• Statistical determination: the view factor can be calculated by statistical sampling, using the Monte-Carlo method depicted earlier. The computation is expensive, but it often serves as a benchmark to assess the accurracy of new methods.

• Alternative methods: view factors can be determined by using basic properties and relations (4. [START_REF] Hou | Comparison between standard and renormalization group k-. epsilon. models in numerical simulation of swirling flow tundish[END_REF]) and (4.20), but is only valid for a limited number of surfaces.

The unit sphere method, making use of geometric projection can be quoted as well, as an interesting alternative [START_REF] Farrell | Determination of configuration factors of irregular shape[END_REF], [START_REF] Alciatore | Closed form solution of the general threedimensional radiation configuration factor problem with microcomputer solution[END_REF].

We want now to detail two particular approaches that will be used in this work: for 2d calculations, an interesting approach, developed by Hottel and Sarofilm [START_REF] Eckert | Radiative transfer, hc hottel and af sarofim, mcgraw-hill book company, new york[END_REF] is the crossed string method. Using this, the view factor can be written, using notations according to fig ( 4.3)

F ij = ac + db -(ad + bc) 2ab (4.21)
Even though this formula is really simple and easy to implement, on the one hand, it does not involve any orientation of the surface, and, on the other hand, remains limited to 2d geometries. For 3d cases, eq (4.18) can be transformed into a double line integration [START_REF] Kakuta | Estimation of radiative heat transfer using a geometric human model[END_REF] using the Stokes theorem, leading to the following relation, using notations of fig (4.2).

F i,j = 1 4πA i 3 k=1 3 l=1 g i k g j l ln(δ k,l )g i k g j l dg i k dg j l (4.22)
This method has gained popularity over the past years [START_REF] Ambirajan | Accurate determination of diffuse view factors between planar surfaces[END_REF], [START_REF] Ravishankar | Application of the modified differential approximation for radiative transfer to arbitrary geometry[END_REF], since it reduces to two simple integrals. However, since the integrand involves a logarithm function, the integral might be singular for surfaces sharing one edge. An analytical treatment of this singularity has been proposed in [START_REF] Rao | Efficient evaluation of diffuse view factors for radiation[END_REF]. An interesting implementation, available in [START_REF] Mazumder | General procedure for calculation of diffuse view factors between arbitrary planar polygons[END_REF], is used here, and some details about the implementation are given in appendix B.

Visibility and obstructions

As mentionned above, the expressions (4.21) and (4.22) do not involve the relative orientation of surfaces. However, for some situations, depending on the relative orientation, there might be no radiative exchange between certain surfaces, because the two surfaces do not "see" each other or because the view can be obstructed by a third surface.

Therefore, some view factors will not be calculated, because it would lead to a wrong contribution to the thermal balance on the one hand, and it permits to save computational time on the other hand. More details about this questions can be found in [START_REF] Daniel R Baum | Improving radiosity solutions through the use of analytically determined form-factors[END_REF], [START_REF] Sara C Francisco | Calculation of view factors for complex geometries using stokes theorem[END_REF] for visibility and [START_REF] George N Walton | Calculation of obstructed view factors by adaptive integration[END_REF], [START_REF] Sara C Francisco | Calculation of view factors for complex geometries using stokes theorem[END_REF] for obstructions. "centroids" ( with a barycenter for example) C i = (x i 0,p ) (1≤p≤d) and C j = (x j 0,p ) (1≤p≤d) and the distance between those centroids d ij = (d ij p ) (1≤p≤d) . For surface S k , given a centroid C k = (x k 0,p ) (1≤p≤d) and the normal n k = (n k p ) (1≤p≤d) , one equation of the plane defined by S k is , with X = (x p ) (1≤p≤d) being the current point:

(X -C K ) • n K = 0 (4.28) d p=1 n k p • x p - d p=1 n k p • x k 0,p = 0 (P k ) (4.29) 
with this equation, one easily gets the distance between the current point and the plane K, with the help of an orthogonal projection.

δ = d p=1 n k p • x p -d p=1 n k p • x k 0,p d p=1 (n k p ) 2 (4.30) 
We now want to check if the intersection point between P k and d ij belongs to the triangle S k . To this end, we use a parametric representation for d ij .

d ij p = x i 0,p + t(x j 0,p -x i 0,p ) t ∈ [0; 1] (4.31)
making δ = 0 and replacing the coordinates using (4.31), one can get the parameter corresponding to the intersection point t

I t I = d p=1 n k p • x i 0,p -d p=1 n k p • x k 0,p d p=1 n k p • (x j 0,p -x i 0,p ) (4.32)
substituting (4.32) in (4.31) gives the coordinates of the intersection point X I = (x I,p ) (1≤p≤d) .

The final step is to check if the intersection point belongs to S k . This is achieved by defining a parametric representation of S k similar to (4.31), find the parameter t K corresponding to X I , and check if 0 ≤ t K ≤ 1. A brutal approach for obstruction calculation would be to perform a loop over all surfaces for all pairs of surfaces (S i , S j ) to check if, in the set of surfaces, there exists a surface that obstructs the view between S i and S j . However, this method was observed to be prohibitive in terms of computational time, even when used on relatively "light" meshes. To circumvent this issue, we will perform obstruction calculation at the level of the obstacle in the enclosure, since most obstructions encountered are between objects inside the enclosure and border faces. To this end, we extract the faces corresponding to the object interface, and we identify the minimum and maximum coordinates in each direction X min = (X min,i ) (1≤i≤d) and

X max = (X max,i ) (1≤i≤d)
. Those minimum and maximum coordinates are then used to build an "encompassing" box defining lines in 2d and planes in 3d that will be used for the obstruction calculations.

Total exchange area, real surfaces and coupling with thermal balance

The notion of view factor as it was discussed in the begining of this chapter holds for black surfaces, that absorb all the incoming radiation. However, for real surface (characterized by an emissivity ε, 0 ≤ ε ≤ 1, there exists a fraction of the incoming radiation ( corresponding to ρ = 1ε) that is reflected, and thus emited through other surfaces. On the other hand, the computation of the radiative flux requires the solution of a non sparse linear system ( the considered matrix being related to F), which can be computationaly demanding. Hence, an interesting approach, based on the idea of [START_REF] James | The zone method: explicit matrix relations for total exchange areas[END_REF] or [START_REF] Edwards | The plating algorithm for radiation script-f transfer factor[END_REF], consists in introducing another view factor, the total view factor ( or total exchange area) that takes into account both the mutlireflections and the non-gray surfaces. We recall here the basic features by setting up the equations for the surface radiation problem.

If we denote by H i the incoming flux density on the surface zone i and W i the outgoing flux density, one has the following equations:

H i A i = N F j=1 F ij W j ∀i ∈ 1; N F (4.33) W i = ε i σ r T 4 i + (1 -ε i )H i ∀i ∈ 1; N F (4.34) Q r,i = A i (W i -H i ) ∀i ∈ 1; N F (4.35)
Using a matrix notation, it gives, using the following notations:

• I = (δ ij ) 1≤i,j≤N F • W = (W i ) 1≤i≤N F • H = (H i ) 1≤i≤N F • E = (ε i σ r T 4 i ) 1≤i≤N F • Q r = (Q i ) 1≤i≤N [ F • ε = (diag(ε i ))) 1≤i≤N F • ρ = (diag((1 -ε i ))) 1≤i≤N F • A = (diag(A i )) 1≤i≤N F AH = FW (4.36) W = εE + ρH (4.37) Q r = A(W -H) (4.38)
One can see that, to get the appropriate radiative flux to prescribe as a boundary condition, it is necessary to solve a non sparse N F * N F system with temperature as input, which is not very convenient, since all the solvers for linear systems we have at hand are designed for sparse matrixes rising from finite element formulations. To circumvent this issue, we follow the lines described in [START_REF] James | The zone method: explicit matrix relations for total exchange areas[END_REF], by using some total exchange area, that can be readily used to compute the needed radiative flux Q r . The matrix of total exchange areas F is defined by:

Q r = εAE -FE (4.39)
F can be explicitly determined by a general elimination procedure. Substituting (4.37) in (4.36) leads to

(A -ρF) =R H = εFE =⇒ H = R -1 εFE (4.40)
one finally gets

F = AεR -1 εF (4.41)
and the associated radiative boundary flux on the face i is given by

Q r,i = σ r A i N j=1 A j F ij (T 4 i -T 4 j ) (4.42)
A "naive" approach to compute the total exchange factors would need to invert the matrix R. However it can be shown [START_REF] Edwards | The plating algorithm for radiation script-f transfer factor[END_REF] that the total exchange factors can be obtained from the view factors and surfaces characteristics (ε k , ρ k ) using the following algorithm Given (F, A, ε, ρ); for i=1..N do for j=1..N do for k=1..N do

F kk = ε 2 k F kk 1.0-ρ k F kk ; F ik = ε k F ik 1.0-ρ k F kk ; F kj = ε k F kj 1.0-ρ k F kk ; F ij = F ij + ρ k F ik F kj 1.0-ρ k F kk ; end end end Algorithm 1: Plating algorithm
The S2S method, or its extension to radiation in participative media, the zonal method, has been successfully applied in different contexts: furnaces [START_REF] Tr | Radiative heat transfer in furnaces: further development of the zone method of analysis[END_REF][START_REF] Shuaibu Ndache | Numerical computation of net radiative heat transfer within a non absorbing furnace enclosure[END_REF], urban canyons [START_REF] Glenn | The determination of view-factors in urban canyons[END_REF], combustion and fire modelling [START_REF] Glenn | Computing radiative heat transfer occurring in a zone fire model[END_REF][START_REF] Sayah | Computational fluid dynamics modeling of a self-recuperative burner and development of a simplified equivalent radiative model[END_REF], human modelling [START_REF] Kakuta | Estimation of radiative heat transfer using a geometric human model[END_REF], electronic cooling [START_REF] Kang Khor | On the role of radiation view factor in thermal performance of straight-fin heat sinks[END_REF][179] and solar reflectors [START_REF] Reddy | Estimation of convective and radiative heat losses from an inverted trapezoidal cavity receiver of solar linear fresnel reflector system[END_REF] among others.

The IS2IS method 4.4.1 Motivations and features

Our goal is to design a computational framework based on the same principles as the S2S method, but adapted to the immersed volume method. Here, the main difficulty relies in the representation of the interfaces, since the interfaces between fluids and solids are implicitly defined by the zero iso-value of the levelset. Hence, one needs to reconstruct an approximation of the interface before performing a surface-to-surface calculation. This interface approximation will be reconstructed in terms of finite element mesh: in fact, the set of faces, that can be viewed as a submanifold of the one defined by the elements, gives a natural approximation of the interface, particularly in the framework depicted in the previous chapter, with a mesh appropriately refined around the interface. The next subsection is devoted to the description of the procedure used for the selection of suitable faces for the radiation calculation. We will see that a such approximation of the interface will permit to naturally handle complex geometries, in the sense that, as demonstrated in the previous chapter, our method is able to automatically generate a mesh for a given levelset, regardless of its geometric complexity.

Interface reconstruction

Our starting point is to come back to the finite element triangulation Ω h . We recall some useful notations for the interface reconstruction procedure:

Notations Definitions d dimension of space D topological dimension K set of elements N set of nodes K ∈ K mesh element N (K) = (N i (K)) i∈ 1:D nodes of a mesh element K F(K) = (F i (K)) i∈ 1:D "faces" of a mesh element K N (F(K)) = (N i (F(K))) i∈ 1:D-1 nodes of a "face" F(K) of a mesh element K X i , i ∈ N
vector of coordinates for the ith node Table 4.1: Notations for the mesh.

Numerical treatment of interfaces has received a growing interest in the recent years, together with the research conducted about immersed methods, and more generally, the research conducted on levelset methods: we can quote work for numerical modelling of multiphase flows [START_REF] Yang | An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF][START_REF] Sussman | An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow[END_REF][START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF]. However, in all previously quoted references, the interface remains implicitly defined only as the zero isovalue of a levelset fonction.

But some physical situations require a more explicit description of the interface, for volume fraction modelling [START_REF] Diot | An interface reconstruction method based on an analytical formula for 3d arbitrary convex cells[END_REF] or interfacial flows [START_REF] Luo | Efficient formulation of scale separation for multiscale modeling of interfacial flows[END_REF]. The approach proposed in [START_REF] Luo | Efficient formulation of scale separation for multiscale modeling of interfacial flows[END_REF] is interesting in the sense that auxiliary levelset isovalues are introduced to improve interface representation on certains elements. In the method presented in this chapter, those "auxiliary interfaces" will appear naturally.

Formally, the fluid-solid interface is defined as the zero isovalue of the levelset, in agreement with the notations of the previous chapter, we have

Γ i = {x ∈ Ω, α(x) = 0} (4.43)
its discrete equivalent can be defined by

Γ i,h = {K ∈ K, ∃ X i , X j ∈ N (K), α(X i ) • α(X j ) <= 0} (4.44)
Γ i is a line in 2d, and a surface in 3d. The first step of the interface reconstruction procedure is to detect the elements crossed by Γ i . To this end, we follow the lines described in [START_REF] Pino Muñoz | A finite element-based level set method for fluid-elastic solid interaction with surface tension[END_REF], of which we recall the main features: considering all the possible cases in 2d and 3d, as illustrated below, elements of different types can be classified by the number of nodes where α(x) > 0, α(x) < 0 or α(x) = 0. Once this procedure is performed, one gets a set of connected elements, that we call E(Γ i ), which defines a volume. Therefore, the next step consists in, roughly speaking, eliminating what is "inside" the volume defined by E(Γ i ). More formally, if we define 

Γ Γ Γ Γ α < 0 α = 0 Γ α > 0
Γ + i = {x ∈ Ω, α(x) > 0} (4.45) Γ - i = {x ∈ Ω, α(x) < 0} (4.46) and if V (Γ i ) stands for the counterpart of Γ + i ∪ Γ - i in E(Γ i )
, we want to only retain the element of E(Γ i ) belonging to Γ + i or Γ - i , or, in other words, eliminate elements of V (Γ i ). At the discrete level, since we want to reconstruct an approximation of Γ i , it seems interesting to define Γ + i,h and Γ - i,h (discrete equivalent of Γ + i and Γ - i ) in terms of element "faces".

Γ + i,h = {F(K), K ∈ Γ i,h , ∀X ∈ N (F(K)), α(X) < 0} (4.47) Γ - i,h = {F(K), K ∈ Γ i,h , ∀X ∈ N (F(K)), α(X) > 0} (4.48)
Elements of Γ + i,h and Γ - i,h will be referred to as "Face Sup" and "Faces Inf" in the following. It is also useful to define E(Γ i ) as a collection of faces of connected elements previously identified, which reads

E(Γ i,h ) = { K∈Γ i,h F(K)} (4.49)
Having such a vision of E(Γ i,h ), eliminating the interior faces becomes quite simple, knowing that since the interior faces are shared by two elements, they appear twice in the set E(Γ i,h ). Hence, retaining only the none repeated element of E(Γ i,h ), one gets the set Γ - i,h ∪Γ + i,h , that can be easily sorted in Γ - i,h and Γ + i,h by evaluating α at the face nodes. To check the efficiency of the approach described here, we chose to test the procedure on a very simple mesh where the considered object ( a square here) is aligned on the mesh. 

Computational aspects

At this point, in order to estimate the computational ressources to be dedicated to the further view factor computation, it would be interesting to know what part of the total mesh is of interest for the calculations. Hence, we conducted a study on several meshes to at least get a tendancy on this behaviour. 

d si = |N is -N ii |.
difference between "Faces Sup" and "Faces Inf"

Two kind of meshes were used for this study: unadapted meshes, classically constucted using GMSH, and adapted meshes as explained in the previous chapter. We used here the metric described in [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF] because the implementation we dispose of, permits to control the maximum stretching factor, referred to as s max in [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF]. Unadapted meshes were the two already quoted above and another for 2d, obtained by refining the one shown. Several adapted meshes are considered: four considering the same geometry for the unadapted mesh, for different value of the maximum stretching factor, and the circle presented above. In 3d, we used the meshes presented in the previous chapter to illustrate the mesh adaptation, displayed again here for sake of clarity. The results are available on the following tables. One can see that, for all meshes considered, the number of faces involved in the surface computation does not exceed 5% of the total number of faces. It is interesting to note that the number of involved faces decreases as s max increases. It can be explained in the following way: the higher the stretching factor is, the taller the elements are in the direction parrallel to the interface and therefore less elements are needed to cover the whole interface. The conclusions of this study can be summarized as the following: the proposed approach naturally defines two approximated interfaces Γ + i,h and Γ - i,h , quantitatively different on a arbitrary mesh, but along the mesh adaptation procedure, those two interfaces tend to get closer to each other, leading to an accurate description of the interface. The numerical results will confirm this tendancy, by showing that this interface aproximation is able to reproduce results obtained by a classical BF approach, where the interface is part the domain boundary. As stated before, the method we are describing can be understood as an "immersed" version of the S2S method. Hence, some of the features have to be adapted, for implementation purposes mostly:

It is sometimes common to perform a partionning of the face set depending on certain characteristics, as seen in [START_REF] James | The zone method: explicit matrix relations for total exchange areas[END_REF] for black and non-black surfaces, or it could be done for temperature-prescribed and flux-prescribed boundary faces. Here, the natural partionning is between border faces and intern faces. Hence, since we know that

N F = N b + N i
we introduce the following notations to ease the discussion:

F = F ii F ib F T ib F bb (4.50)
For a classical surface-to-surface calculation, only F bb exists, and will govern the radiative exchange between boundaries of the domain. F ib drives the radiative exchange between boundaries and the immersed object, and F ii represents radiative exchanges of the object onto itself a, phenomenon known as "self-radiation".

If the computation of a boundary flux Q r,i is classical in the S2S method, the novelty is we have to prescribe a similar quantity at the fluid-solid interface, ie on internal faces.

Those effects will be taken into account by means of a source term S r,i localized on the interface.

For visibility and obstruction calculations, it is mandatory to have a consistent orientation for all faces, that is to say, the normals should be pointing outward. If it is naturally the case for the border faces, due to their specific treatment for boundary conditions, additional work has to be done for the interior faces. This is achieved by a first computation of the normal, and a checking test to be consistent with the gradient of the levelset function of the object.

For the plating algorithm described earlier, since all the blocks or F are computed separately, one have to concatenate all the blocks in one single list, perform the plating operation, and de-concatenate, since we implemented in a way which compute the different contributions separately.

Parallel processing aspects

It is worth mentionning that the surface computation is not well fitted for the parrallel processing framework implemented in our library: in fact, for classical resolutions (Navier-Stokes, Convection-diffusion-reaction equations), the computational domain is partitionned into subdomains, so that each processor only compute on one subdomain, and one has to deal with communication between processors in order to render the original problem. Unfortunately, this approach does not work for a view factor computation, since view factor have to be computed from one surface to all others. So that a special treatment is needed to perform a view factor computation on multiple processors. A possible strategy consists in, once the surfaces liable to participate to the surface radiation calculation have been identified, to duplicate these informations to all processors, and to balance the load of the view factor computation between all processors. It is also important to make sure that all processors are well synchronized during all the computation.

Numerical experiments

Before we try to assess the consistency of the new method, it is necessary to make sure our implementation is valid for a classical " surface-to-surface" calculation, that is to say when only the boundary faces are considered. The simulations we are going to use are the ones presented in the previous chapter, enhanced by taking into account radiative effects. As done in the previous chapter, the IS2IS method will be tested on the "immersed version" on each case, to assess the consistency of the method. To validate the radiative code, the obtained results were compared to the ones available in the references in terms of Nusselt number as defined in the chapter 2, and its radiative equivalent, defined as follows:

N u rad = L λ(T h -T c ) 1 0 q r (0, y)dy (4.51)

Natural convection in a square empty cavity

Here, radiation is taken into account, by prescribing a net radiative flux, computed as depicted in previous sections, imposed as a Neumann boundary condition on the horizontal walls. The obtained results, in terms of iso temperature and streamlines, are in good agreement with [START_REF] Raji | Combined mixed convection and radiation in ventilated cavities[END_REF] and [START_REF] Colomer | Numerical methods for radiative heat transfer[END_REF]. We plot the adimensional temperature θ, along the line y = 0.5. One can note that, at the contrary of volumic radiation, For the immersed version of this case, additional work is necessary to select the "radiative" faces, since not all the border faces will be involved in the radiation computation ( only the ones corresponding to the horizontal walls in the BF case). In order to sort those faces among others, we make use of a "Flag" field naturally generated in our code, valued at one on the considered boundary, and zero elsewhere, so that sorting faces is done by evaluating the value of the Flag on the faces nodes. The meshes used are the ones displayed in the previous chapter. Quantitative comparisons, performed in the same manner as before, show an excellent agreement. We used the developed method on the 3d version of the case that was already presented in the previous chapter. The iso temperature and streamlines are compared with the case without radiation for Ra = 10 6 . One can see that the radiative fluxes applied on the top and bottom boundaries gives a "bathtub" like shape to the iso temperature lines, that are also more curved near the corner of the cavity. One can see a good agreement with the results presented in [START_REF] Colomer | Numerical methods for radiative heat transfer[END_REF]. As a consequence, the shape of the streamlines is modified, with bigger recirculations zone close to the corners of the cavity. The obtained results, in terms of radiative and convective Nusselt numbers, are displayed below and compared with the results available in [START_REF] Colomer | Numerical methods for radiative heat transfer[END_REF]. One can see that the discrepancy does not exceed 3.5%. Similarly to the 2d case, the immersed version of the case was simulated, and results

❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ reference N u N u conv N u rad N u = N u conv + N
were compared to the ones obtained by a classical body fitted approach, in terms of velocity and normalized temperature. Here again, a good agreement is observed. Here again, radiative flux are prescribed on horizontal walls as in the previous case.

One could think that in this case, the plate inside the cavity may cause obstruction and visibility issues between border faces, but it was observed that taking into acount the visibility and obstruction in the viewfactor computation does not have a significant influence. To represent the results, we make use of the symmetry around the line x = 0.5.

The following pictures represent the iso-temperature lines on the left, and the streamlines on the right. The results, in terms of iso temperature and streamlines, correspond well with [START_REF] Saravanan | Coupled thermal radiation and natural convection heat transfer in a cavity with a heated plate inside[END_REF]. As in the previous case, radiative fluxes on horizontal walls generates temperature gradients that move away the iso temperature curves and modify the shape of the recirculation cells. As it can be seen on the curves, the supplementary amount of energy provided by radiative fluxes slightly increases the values of temperature inside the cavity, leading to a slight increase of velocity values by means of the Boussinesq term. The influence of the obstacle can also be observed, more pronounced in the case of the horizontal plate. One can see that, on both cases, the discrepancy between the obtained results and the benchmark do not exceed 1.8%. As observed in the previous case, the IS2IS method show results that seem to correspond well with the classical ones, in terms of temperature as well in terms of velocity.

❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ reference N u N u conv N u rad N u = N u conv + N u rad
❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ reference N u N u conv N u rad N u = N u conv + N u rad
For the quantitative analysis, we will display plot along lines at y = cst, which is natural considering the symmetry of the problem. It also interesting to plot quantities along lines close to the solid obstacle, since it could be expected to encounter the steepest gradients at this location. The philosophy of the immersed volume method used here demontrates its efficiency, since most elements of the mesh are around the interface in order to properly represent the sharp gradients. For the vertical case we chose the lines y = 0.225, y = 0.5, y = 0.775. For the body fitted case, all values go to zero inside the Likewise the previous chapters, we used our method on the 3d versions of these two cases. We notify that, since these cases are not presented in the literature, there is no way to compare the results with a reference. First we compare with the case without Regarding the flow, the problem is also symmetric around the plane z = 0.5.

For both cases, one can see that, similarly to the 2d cases, due to the radiative fluxes on the horizontal boundaries, some convection is observed in the bottom part of the cavity, with curved iso temperature lines appearing below the plate. This can be seen on the streamlines as well, with a significant modification of their shapes. As for the 2d case, one can see that the impact of the plate on the flow is more pronounced in the horizontal case that in the vertical one, with a central iso line perturbed by the plate.

One can also see the modification of thermal boundary layers for the horizontal case, with tighten lines compared to the no radiation case.

Conclusions

In this chapter, a method to model surface radiation in a monolithic context was developed. The key point is the definition of an interface approximation relying on the finite element mesh and the levelset isovalue zero, then used to perform a surface-to-surface computation with the classical features of the S2S approach. The approximation of the interface in terms of faces of the finite element mesh is an important feature, in the sense that the method provides radiative fluxes and source terms that naturally fits on the mesh, avoiding the problem of transport from a mesh to another one, and the coupling can be done without any supplementary effort. The method was proven to be consistent with the classical approach, that is to say, for an appropriately refined mesh, the IS2IS approach give the same results that the classical S2S approach, for 2d problems as well for 3d problems. The problems of computational time and ressources are significant only in 3d, but it was observed that the number of intern faces involved in the surface radiation computation remains reasonnable, as expected from the results of the study conducted earlier in this chapter.

Résumé français

Dans ce chapitre, on présente une méthode pour modéliser le rayonnement surfacique dans le contexte de la méthode d'immersion de volume décrite au chapitre précédent, l'approche IS2IS pour "Immerse-surface-to-Immerse-surface". La difficulté majeure réside dans le fait que la description des interfaces y est implicite, uniquement définie par l'iso valeur zéro de fonctions levelset. On décrit le principe utilisé pour reconstruire un interface en termes de faces du maillage éléments finis: on détecte les éléments traversés par la fonction levelset, donnant un bande d'éléments dont les faces intérieures sont éliminées. On procède ensuite à un calcul surfacique classique reposant sur la notion de facteur de forme, dont les éléments principaux sont rappelés dans ce chapitre. La méthode est ensuite illustrée sur les exemples présentés dans les chapitre précédent, ou l'on analyse l'influence du rayonnement surfacique sur la convection naturelle. Enfin, on vérifie que l'approche développée ici est consistante par rapport à une approche classique, avec un démarche similaire à celle du chapitre précédent.

Chapter 5

Monolithic Volume Radiation:

Stabilized Finite Element Method for the Minimum Entropy closure

M 1 radiation model
The last chapter was dedicated to the modelling of surface radiation effects, responsible for most radiative effects for the considered problems. Still, when temperature become very high, when dissociation and ionization of moleclules can occur, or for furnaces, in the presence of combustion products ( C0 2 , H 2 O or soot) can be radiatively active, that is to say, the absorption and scattering by the medium cannot be neglected anymore.

Taking into account those volumic effects implies a resolution of the RTE but, as explained in the previous chapter, the numerical methods to tackle this equation are not common in the engineering community and can be very computationally demanding.

On the other hand, one can remark that, within this framework, since the purpose is the coupling of the radiation with the thermal balance, the quantity to be inserted in the energy equation (as a source term) has to be direction independent. Therefore, instead of considering the "full" radiative transfer equation, a promising lead is to consider approximate forms of the RTE (see [START_REF] Thomas | Forms of approximate radiation transport[END_REF] or [START_REF] Frank | Approximate models for radiative transfer[END_REF] for good reviews on this topic), where the angular dependency has been eliminated, as done with the Spherical Harmonics or the DOM depicted in the previous chapter, but, in both cases, if one wants a good numerical approximation, it means dealing with an important number of equations (related to the order of the Legendre polynomial or the number of discrete ordinates), which increases substantially the computational cost and the complexity of the problem to be solved.

It would be desirable to deal with a fixed number of equations, of a "classical" type if possible ( ie only dependant on space and time). Those requirements are fulfilled by the so-called moment models, where the RTE is averaged over the unit sphere, resulting in a coupled system of PDE, but with supplementary equations needed to close the system, the "essence" of the obtained model being the closure relation. Two main closures will be considered, one leading to the P 1 model briefly presented in chapter 2, and a more sophisticated one, namely the M 1 model.

Moreover, in many situations, the radiative disequilibrium is caused by spatially heterogeneous radiative properties. To treat such situations, the IVM appears as a natural tool, and so the developed method will be tested on multidomain problems.

The outline of this chapter will be as follows: first, we will introduce the concepts necessary for moment models, we will derive the two aforementioned models and a few others, secondly we will provide an overview of the existing methods for such models, and finally, we will describe the formulation we propose for the M 1 model.

Introduction to moment models

For the sake of clarity, we recall here the full RTE, the notations remaining the same

1 c ∂I ∂t + ω • ∇I = σ r π κT 4 -(κ + σ)I + σ 4π S I(ω ′ )dω ′ (5.1) 
At this stage, we would like to add that this equation presents different predominant regimes, depending on the values of the opacities κ and σ:

• when κ and σ values are low, the photons travel free in the medium without significant interactions with the medium. The interactions are therefore mainly long distance: this is the transport limit.

• when κ and σ values are high, the photons strongly interact with the medium, rendering the interaction close to isotropy ( even close to the Planck distribution):

this is the dif f usion limit.

If those two limits are naturally obtained with the full RTE, this is not guaranteed for the approximate models that will be considered in this work, and the respect of this asymptotic behaviour is a desirable property for an approximate model.

The first step is the definition of the moments of the radiative intensity, the radiative energy E r , radiative flux F r , and radiative pressure tensor P r ( a less common quantity than the first two, but interpretations and comments about it can be found in [START_REF] Chen | The radiative stress tensor[END_REF] or in [START_REF] Domínguez-Cascante | Nonequilibrium corrections in the pressure tensor due to an energy flux[END_REF]), are defined as the zeroth (sometimes called the incident radiation G, an can be expressed including the factor 1 c ), first and second order angular moments of the specific radiative intensity, respectively, i.e., E r = S

Idω

(5.2)

F r = S ωIdω (5.3) 
P r = S (ω ⊗ ω)Idω (5.4) 
⊗ being the dyadic product. It is also possible to define a n order moment as follows

M n (I) = S ω n Idω (5.5) 
with

ω n = ω ⊗ ... ⊗ ω n⊗ (5.6) 
We notify that, thanks to the Cauchy-Schwarz inequality, (5.2) and (5.3) implies the two following so-called realizability conditions:

E r ≥ 0 since I ≥ 0 (5.7)
and

F r 2 ≤ E r since ω 2 ≤ 1 (5.8) 
It can be demonstrated that all the couples (E r , F r ) that fulfill those realizability conditions, the set of admissible states, defined by

C = {(E r , F r ) ∈ R * R d such E r ≥ 0 and F r 2 ≤ E r } (5.9)
is a closed convex cone. At this level, it is useful to define the reduced flux f = Fr Er and f = f 2 . The realizability conditions implies that 0 ≤ f ≤ 1. We will see that, depending on the chosen closure, those requirements are not necessarily fulfilled. A general family of moment models is obtained by integrating (5.1) and (5.1) multiplied by ω over all S leads to

1 c ∂E r ∂t + ∇ • F r + κE r = 4κσ r T 4 (5.10) 1 c ∂F r ∂t + ∇ • P r + (κ + σ)F r = 0 (5.11) 
One can note that the present system is not closed: we have 10 unknowns (E r , 3 components for F r , 6 components for P r ) for only four equations. We could be tempted to introduce angular moment of higher order, but because of the term ω • ∇I, the equation for the n th order moment will involve the moment of order n + 1. Hence, we need to introduce more equations to close the system. Two closures will be presented and compared in the following. An analogy of this system, involving the three quantities (E r , F r , P r ) can be done with the one encountered in the Navier Stokes equations, which involves (ρ, u, σ). Actually, the way which the NS equations are obtained from the Boltzmann equation [START_REF] Bardos | Fluid dynamic limits of kinetic equations. i. formal derivations[END_REF][START_REF] Helbing | Gas-kinetic derivation of navier-stokes-like traffic equations[END_REF] is very similar to the approach presented here, (ρ, u, σ)

being the moments of the distribution function of particles. Knowing this, the closure, which expresses the higher order moment in terms of lower order moments, can be seen as a constitutive relation.

Different closures

Three different models will be presented in this section, but a difference can be made between the first two, where a closed system is obtained by means of simplifying assumptions, and the third, where the closure relationship is obtained through a rigorous analysis. It is necessary to mention that, the source term to be inserted in the thermal balance is given by

S rad = -∇ • q r = κ(4σ r T 4 -E r ) (5.12)

Rosseland approximation

The idea here is to express the radiative effects as a non-linear diffusion term. We assume a stationary phenomenon, an optically thick medium ( high values of κ and σ). In such situations, the radiative energy is a Planckian of the temperature and, one gets

q r = - 4σ r 3(κ + σ) ∇(T 4 ) = - 16σ r T 3 3(κ + σ) =λ rad (T ) ∇(T ) (5.13) 
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This model is really easy to include in the thermal balance, just by adding a non-linear conductivity λ rad (T ) which is available in many commercial softwares. Nonetheless, the model is adapted for optically thick media only, therefore is not well suited for transparent media.

P 1 model

This model remains interesting in the sense that it can be obtained using the spherical harmonics (the lowest order possible), and the SP N approximation ( asymptotic development with respect to opacities). We present here a way to derive it from the general moment equations, and it will provide a comparison tool to see the improvements thanks to the M 1 model that will be presented later. The closure is obtained starting from (5.11) assuming an isotropic radiative pressure P r = 1 3 E r I and a stationary radiative flux so that one gets

F r = - 1 3(κ + σ) ∇E r (5.14) 
Introducing (5.14) into (5.10) leads to the following linear diffusion-reaction time dependant type equation ( the radiative energy is usually denoted as G in this context) :

1 c ∂G ∂t -∇ • 1 3(κ + σ) ∇G + κG = 4σ r κT 4 (5.15) 
As we will see after, equation (5.15) will correspond to the diffusion limit of the M 1 model.

Those two models have some well identified drawbacks: anisotropic effects cannot be rendered by such approximations ( due to the isotropic radiative pressure). Moreover, the realizabilty conditions (5.7) and (5.8) can be violated: in (5.14), one can see that the F r is colinear to ∇E r , leading to a possible violation of (5.8). This can be partially cured using the notion of "flux limiter" as described in [START_REF] Cd Levermore | Relating eddington factors to flux limiters[END_REF], by modifying (5.14) up to a multiplicative factor, but no satisfactory compromise has been found for the transport limit yet. This justifies the use of a more sophisticated model, described in the next subsection.

Minimum entropy closure: the M 1 model

A section will be dedicated to a new formulation for this model, so we detail its derivation and its mathematical properties. Here the closure relationship is obtained using a maximum entropy principle. This idea has been successfully applied in other contexts, as kinetic theory [START_REF] Clinton | Towards physically realizable and hyperbolic moment closures for kinetic theory[END_REF], [START_REF] José | Numerical schemes of diffusion asymptotics and moment closures for kinetic equations[END_REF], [START_REF] David | Moment closure hierarchies for kinetic theories[END_REF] or Fokker-Planck equation [START_REF] Dubroca | Angular moment model for the fokkerplanck equation[END_REF]. Other work can be noted as well; [START_REF] Junk | Maximum entropy for reduced moment problems[END_REF] for the same approach in an abstract form, [START_REF] Jose A Pons | Hyperbolic character of the angular moment equations of radiative transfer and numerical methods[END_REF] for a detailed 1d

analysis and [START_REF] Fort | Information-theoretical approach to radiative transfer[END_REF] for the same results obtained with a different methodology. The idea can be described as follows: we are looking for the specific intensities that minimize a radiative entropy, under a realizability constraint, that is to say, the two first moments of the specific intensity are the ones that appear in (5.2) and (5.3). This procedure can be performed for a moment model of arbitrary high order, namely M n models, but on the one hand, an analytic closure is only known for M 1 model, and on the other hand, a n order model involve an n + 1 order tensor, so such models are not convenient to implement within classic data structures, and only one dimensional applications are available in the literature for n > 1: we can quote [START_REF] Hauck | Perturbed, entropy-based closure for radiative transfer[END_REF] with the introduction of perturbed closure, [START_REF] Graham W Alldredge | Adaptive change of basis in entropy-based moment closures for linear kinetic equations[END_REF] using adaptive closure, [START_REF] Graham W Alldredge | High-order entropybased closures for linear transport in slab geometry ii: A computational study of the optimization problem[END_REF] for a special focus on the optimization problem, [START_REF] Banach | One-dimensional maximum entropy radiation hydrodynamics: three-moment theory[END_REF] for an exemple with a three moment model and [START_REF] Hauck | High-order entropy-based closures for linear transport in slab geometry[END_REF] for application to slab geometries.

Other non published work [START_REF] Monreal | Higher order minimum entropy approximations in radiative transfer[END_REF][205] can be evoked for the sake of a complete analysis.

We detail only for n = 1, where the problem can be written as a convex optimization problem, with help from the following Lagrangian:

I = arg min I * ν ,α,β J (I * ν ) = I(I * ν ) + α( ∞ 0 S I * ν dωdν -Er) + β • ( ∞ 0 S I * ν ωdω -Fr) (5.16 
)

I(I * ν ) = ∞ 0 S (n log(n) -(n + 1) log(n + 1)) 2kν 2 c 3 dνdω (5.17) 
where n = c 2 2hν 3 I * .

The saddle point of this Lagrangian is obtained for the following form [START_REF] Dubroca | Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif[END_REF] of the radiative intensity

I * ν = 2hν 3 c 2 1 exp( hν kT (α + β • ω)) -1 (5.18) 
The Lagrange multipliers α and β are then determined using realizabilty constraints.

An integration over all frequencies gives

I * = 2π 4 k 4 T 4 15c 2 h 3 1 1 - 2- √ 4-3f 2 f 2 4 (5.19)
We now want to emphasize the fact that the model to be obtained through this procedure can produce anisotropic effects : the goal is now to express a constitutive relation, under the form P r = D(f )E r , where D(f ) is called the Eddington Tensor. Following Levermore's approach [START_REF] Cd Levermore | Relating eddington factors to flux limiters[END_REF], we introduce normalized intensity and flux, defined by :

I = E r ϕ , F r = E r f (5.20)
where ϕ is the normalized radiative intensity, and f is the reduced flux as previously defined. Using those quantities, the definition of the moments (5.2) can the be recast as: is to be understood in the sense that Df ⊗ f is a positive symetric tensor (ie all its eigenvalues are non-negative). Now, let us consider the case when the intensity is symetric about a prefered direction, denoted n: it implies, thanks to equations (5.21) and (5.22), that ϕ, f and D should remain invariant under rotations that fix n. It follows that :

f = f n (5.26) D n = χn (5.27)
Due to well-known arguments about real symmetric matrices, the plane orthogonal to n must be an eigenspace of D with an eigenvalue λ ⊥ different of χ. Using (5.24), we obtain:

λ ⊥ = 1 -χ 2 (5.28)
Thus, D may be written in the form:

D = 1 -χ 2 (I -n ⊗ n) + χn ⊗ n (5.29) D = 1 -χ 2 I + 3χ -1 2 n ⊗ n (5.30)
Finally, thanks to the relations ϕ = I cEr and f = f n, we can come back to the radiative pressure tensor:

P r =      1 -χ 2 I (1) + 3χ -1 2 f ⊗ f f 2 (2)      =D(f ) E r (5.31)
The expression for χ is still to be defined. We determine it using the relation:

brings an answer to this question. Nevertheless, in most of the cases [START_REF] Dubroca | A consistent approach for the coupling of radiation and hydrodynamics at low mach number[END_REF], [START_REF] Berthon | An hllc scheme to solve the m 1 model of radiative transfer in two space dimensions[END_REF], the following boundary conditions are used

E r|∂Ω = 4πσ r T 4 w (5.38)
Where T w is the temperature of the considered wall. We also consider that no radiative flux is transmitted through the wall of the enclosure, which writes

F r,|∂Ω = 0 (5.39)
Some studies about derivation of boundary conditions for general moment models (going beyond the context of radiative transfer) are available in [START_REF] Thomas | Two new boundary conditions for use with the maximum entropy closure and an approximate riemann solver[END_REF], [START_REF] Latyshev | Moment boundary conditions in rarefied gas slip-flow problems[END_REF] or [START_REF] Michael | Moment model and boundary conditions for energy transport in the phonon gas[END_REF].

This model has been widely used in Radiation Hydrodynamics, since it offers a natural coupling with the other physics [START_REF] Lowrie | Issues with high-resolution godunov methods for radiation hydrodynamics[END_REF], [START_REF] Gonzalez | Contribution à l'étude numérique de l'hydrodynamique radiative: des expériences de chocs radiatifs aux jets astrophysiques[END_REF], [START_REF] Vaytet | A numerical model for multigroup radiation hydrodynamics[END_REF][START_REF] Vaytet | Simulations of protostellar collapse using multigroup radiation hydrodynamics[END_REF], [START_REF] Samet Y Kadioglu | A second order self-consistent imex method for radiation hydrodynamics[END_REF], [START_REF] Ibgui | Assessment of the gray m 1 model in the case of a laboratory radiative shock simulation[END_REF], and the more advanced research codes for radiation hydrodynamics are based on these approaches: HERACLES [START_REF] Gonzalez | Heracles: a three-dimensional radiation hydrodynamics code[END_REF], HADES [START_REF] Michaut | Computational radiation hydrodynamics[END_REF] or KORAL [START_REF] Skadowski | Semi-implicit scheme for treating radiation under m1 closure in general relativistic conservative fluid dynamics codes[END_REF]. Some applications dedicated to low Mach flows are also available [START_REF] Dubroca | A consistent approach for the coupling of radiation and hydrodynamics at low mach number[END_REF][START_REF] Seaıd | Flux limiters in the coupling of radiation and hydrodynamic models[END_REF].

5.2.4

Extensions of the M 1 model

Method of partial moments

It is known that the M 1 model can produce non-physical solutions, notably in the 1d case of two opposed beams, where a non-physical shock is observed compared to the solution of the full RTE [START_REF] Frank | Partial moment entropy approximation to radiative heat transfer[END_REF]. The reasons not to use higher order minimum entropy closure were depicted above, but an alternative is to define "partial" moments, not defined on the entire unit sphere S but on a non overlapping subset forming a partition of S ( denoted here A, with a current element A ∈ A), for which we define a reduced flux f A and an Eddington factor χ A , but the closure (5.33) cannot be determined analytically anymore for general partial moments models. The first trace of this idea is

given by [START_REF] Meador | Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement[END_REF] but without the notion of moment. Dubroca and coworkers impulsed this lead [START_REF] Dubroca | Half-moment closure for radiative transfer equations[END_REF] with a half-moment approximation in 1d, generalized by Ripoll [START_REF] Ripoll | A half-moment model for radiative transfer in a 3d gray medium and its reduction to a moment model for hot, opaque sources[END_REF] for multidimensional problems. A rigorous analysis for any partition and multidimensional problems is credited to Frank [START_REF] Frank | Optimal prediction for radiative transfer: A new perspective on moment closure[END_REF][START_REF] Frank | Partial moment entropy approximation to radiative heat transfer[END_REF]. One can also note an application to non-gray radiation [START_REF] Turpault | Multigroup half space moment approximations to the radiative heat transfer equations[END_REF], the subject of the next part.

Non-gray radiative transfer

In situations like astrophysics and flame modelling, the gray medium assumption is sometimes not sufficient. If full descriptions of the spectrum are available by means of databases, this is in practise out of range for situations of interest. Another option is to divide the spectrum in intervals on which radiative properties can be considered constant. One can speak of frequency groups or bands, the bands being thinner than groups. See [START_REF] Turpault | A consistent multigroup model for radiative transfer and its underlying mean opacities[END_REF] for multigroup model and [START_REF] Ripoll | A 3-d multiband closure for radiation and neutron transfer moment models[END_REF] for a 3d multiband model, or [START_REF] Turpault | Properties and frequential hybridisation of the multigroup m1 model for radiative transfer[END_REF] for a hybrid (coupled M 1 and full RTE ) model.

State of the art: existing schemes for the M 1 model

Most of the numerical schemes for the M 1 model are of Harten-Lax-van Leer (HLL) type [START_REF] Harten | On upstream differencing and godunov-type schemes for hyperbolic conservation laws[END_REF], a finite volume method taking advantage of the hyperbolic eigenstructure of the system, which can be viewed as a non-linear conservation law, and an interpretation using Riemann problems [START_REF] Kurganov | Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers[END_REF], [236][237], [START_REF] Dinshaw | Multidimensional riemann problem with self-similar internal structure. part ii-application to hyperbolic conservation laws on unstructured meshes[END_REF] between cells. The work of Berthon and coworkers, that designed a series of "asymptotic preserving" schemes [START_REF] Berthon | An hllc scheme to solve the m 1 model of radiative transfer in two space dimensions[END_REF][START_REF] Berthon | Inégalités d'entropie pour un schéma de relaxation[END_REF][START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF][START_REF] Berthon | Late-time relaxation limits of nonlinear hyperbolic systems. a general framework[END_REF][START_REF] Berthon | A free streaming contact preserving scheme for the m1 model[END_REF][START_REF] Berthon | Asymptotic preserving hll schemes[END_REF][START_REF] Berthon | A numerical correction of the m1model in the diffusive limit[END_REF][START_REF] Krycki | Asymptotic preserving numerical schemes for a non-classical radiation transport model for atmospheric clouds[END_REF][START_REF] Berthon | Asymptoticpreserving godunov-type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation terms[END_REF][START_REF] Berthon | Late-time/stiffrelaxation asymptotic-preserving approximations of hyperbolic equations[END_REF],

is to be noted, since most of the schemes in literature are of this type. The work of Buet is also notable [START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF][START_REF] Buet | An asymptotic preserving scheme with the maximum principle for the m1 model on distorded meshes[END_REF] and [START_REF] Franck | Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes[END_REF], with an extension to radiation hydrodynamics, with the possibility of taking into account relativistic effects. Two other approaches can also be quoted, namely, one based on a discontinuous Galerkin approach credited to [START_REF] Olbrant | A realizability-preserving discontinuous galerkin method for the m1 model of radiative transfer[END_REF], and another one based on a modified system of moments proposed in [START_REF] Vikas | Radiation transport modeling using extended quadrature method of moments[END_REF]. In both cases, applications remain restricted to one-dimensional situations. We want to propose a multidimensional finite element method for the M 1 system: it will be a mixed formulation due to the coupled nature of the system, a stabilized formulation since we want to avoid the use of inf-sup compatible pairs, so we restrain ourselves to equal order interpolation spaces. The non-linearity of the equations will require a specific treatment as well.

5.4 Mixed Finite Element formulation for the M 1 radiation model

Weak formulation

We now turn to the weak formulation for the M 1 model, defined by equations (5.10),

(5.11), (5.31) and (5.33). Let Q be the space where E r belongs for each time t and W the space where F r belongs, i.e., E r (•, t) ∈ Q, F r (•, t) ∈ W for all t > 0. The spaces for the test functions will be denoted by Q 0 and W 0 , so that functions in these spaces will be zero where functions in the corresponding trial spaces will be prescribed with Dirichlet boundary conditions. To avoid technical details, appropriate regularity in both space and time will be assumed.

The weak formulation of the problem is obtained by multiplying (5.10) by q ∈ Q 0 and

(5.11) by w ∈ W 0 , integrating over the computational domain and using integration by parts on the term involving P r . This leads to the following problem:

Find (F r , E r ) ∈ W × Q such that for all (w, q) ∈ W 0 × Q 0 1 c ∂F r ∂t , w + (κ + σ)F r , w -P r , ∇w = 0 (5.40) 1 c ∂E r ∂t , q + κE r , q + ∇ • F r , q = 4πκσ r T 4 , q (5.41) 
Here and in the following, f, g = Ω f g for any functions f and g, vector or scalar valued.

Time discretization and treatment of the non-linear term

Let us consider a uniform partition of the time interval [0, T ], so that 0 = t 0 < t 1 < • • • < t N = T , with δt := t n+1t n constant, n = 0, . . . , N -1. The time discretization will be performed using standard finite difference schemes. Using for example backward differences, for a generic time dependent function g(t), the time derivative at t n can be approximated by an appropriate incremental quotient δg n δt , with δg n depending on g n-k , k = 0, 1, . . . , and g n being an approximation to g(t n ). In particular, in the numerical examples we will use the simplest backward Euler scheme, in which δg n = g ng n-1 and all terms in the equation are evaluated at t n . Since there is no possibility of confusion, the superscript with the time step level will be omitted.

As previously mentioned, all the non-linearity of the M 1 model is contained in P r . Hence, this term has to be treated in an appropriate manner, by performing non-linear iterations within each time step. Introducing a superscript counter i for these iterations, we can consider the following expansion of the radiative pressure tensor:

P i+1 r ≈ P i r + J i E (E i+1 r -Er i ) + J i F (F i+1 r -F i r ) (5.42)
where J i E and J i F ( a third order tensor) are the Jacobian matrices of P r with respect to E r and F r , respectively. The calculation of those matrices is detailed in the appendix C. Introducing (5.42) into (5.40) and (5.41), one gets

1 c δF i+1 r δt , w + (κ + σ)F i+1 r , w -J i F F i+1 r , ∇w -J i E E i+1 r , ∇w = P i r , ∇w -J i F F i r , ∇w -J i E E i r , ∇w (5.43) 1 c δE i+1 r δt , q + κE i+1 r , q + ∇ • F i+1 r , q = 4πκσ r T 4 , q (5.44) 
More implementation details can be found in the appendix C. During numerical experiments, no significant difference was observed by using the classical Newton method and a linearization performed over a time step. However, further investigation about these questions have to be conducted, and will be the subject of future work.

Galerkin finite element approximation

Let us consider a finite element partition T h = {K} of the computational domain of diameter h. From this we may construct finite element spaces

W h ⊂ W , W h,0 ⊂ W 0 , Q h ⊂ Q and Q h,0 ⊂ Q 0 in the usual way.
The Galerkin finite element approximation to problem (5.43)-(5.44) reads: for each iteration i + 1 of each time step, find

F i+1 r,h ∈ W h , E i+1 r,h ∈ Q h such that 1 c δF i+1 r,h δt , w h + (κ + σ)F i+1 r,h , w h -J i F F i+1 r,h , ∇w h -J i E E i+1 r,h , ∇w h = P i r , ∇w h -J i F F i r,h , ∇w h -J i E E i r,h , ∇w h (5.45) 1 c δE i+1 r,h δt , q h + κE i+1 r,h , q h + ∇ • F i+1 r,h , q h = 4πκσ r T 4 , q h (5.46)
for all w h ∈ W h,0 and q h ∈ Q h,0 . It is understood that the Jacobians and the pressure radiation tensor are computed with the finite element unknowns. This is the classical Galerkin finite element method for the M 1 radiation model. To the best of the author's knowledge, there is no other finite element method available in literature for this model. Still, it was observed that the solution of the proposed formulation (5.45)-(5.46) suffers from numerical oscillations when it is used in the way we presented it above. Before turning to the stabilized approach, we propose coming back on the VMS approach.

The VMS as an abstract tool

The Variational MultiScale method presented and applied to NS and CDR problems was first introduced in the context of fluid dynamics, with the natural interpretation of fine and coarse scales as small structures and large structures. But, after all, if one analyzes the problem from an abstract point of view, the VMS method can be seen as a formal decomposition of functional spaces into a direct sum, implying a splitting of unkowns and test functions to be inserted in the weak formulation. Hence, if one has at hand the tools for a finite element method ( the weak formulation and the functional setting), the VMS framework can be used to stabilize the formulation of any problem. This has been achieved for a large class of problems: strain localization in solid mechanics [START_REF] Garikipati | A variational multiscale approach to strain localization-formulation for multidimensional problems[END_REF],

inelasticity [START_REF] Masud | A variational multiscale method for inelasticity: Application to superelasticity in shape memory alloys[END_REF], diffusion in random media [START_REF] Ganapathysubramanian | Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method[END_REF], Boussinesq equations [START_REF] Codina | Finite element approximation of the modified boussinesq equations using a stabilized formulation[END_REF], crack propagation [START_REF] Mergheim | A variational multiscale method to model crack propagation at finite strains[END_REF], non-linear solid mechanics [START_REF] Cervera | Mixed stabilized finite element methods in nonlinear solid mechanics: Part ii: Strain localization[END_REF], Lagrangian Hydrodynamics [START_REF] Scovazzi | Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach[END_REF] or plasma flows [START_REF] Pablo | Variational multiscale method for nonequilibrium plasma flows[END_REF]. But the problem that inspired the most is the problem of waves, since the mixed form of the wave equation permits to handle situations that are out of reach with the full form of the wave equation [START_REF] Guasch | A stabilized finite element method for the mixed wave equation in an ale framework with application to diphthong production[END_REF], even though the VMS was applied before to the Helmotz equation [START_REF] Assad | A multiscale finite element method for the helmholtz equation[END_REF]. The first work on this problem is in [START_REF] Codina | Finite element approximation of the hyperbolic wave equation in mixed form[END_REF], followed by [START_REF] Scovazzi | Weak boundary conditions for wave propagation problems in confined domains: Formulation and implementation using a variational multiscale method[END_REF][START_REF] Guasch | A stabilized finite element method for the mixed wave equation in an ale framework with application to diphthong production[END_REF][START_REF] Badia | Stability, convergence, and accuracy of stabilized finite element methods for the wave equation in mixed form[END_REF][START_REF] Espinoza | A sommerfeld nonreflecting boundary condition for the wave equation in mixed form[END_REF][START_REF] Espinoza | On some time marching schemes for the stabilized finite element approximation of the mixed wave equation[END_REF][START_REF] Song | A nitsche method for wave propagation problems in time domain[END_REF]. Knowing this, the VMS appears as a natural tool to stabilize the presented formulation.

Stabilization for the proposed formulation

For ease the notation in the analysis to come, the following notations are introduced:

F f = P i r -J i F F i r,h -J i E E i r,h (5.47 
)

f E = 4πκσ r T 4
(5.48)

Scale splitting within the VMS framework

Once the equations to be solved are written in variational form, a VMS decomposition is applied and the radiative flux and energy are split into a coarse-scale/fine-scale decomposition, and likewise for the associated test functions. Thus, the corresponding spaces can be written as

W = W h ⊕ W ′ and Q = Q h ⊕ Q ′ ,
and the functions belonging to them as

F r = F r,h + F ′ r , E r = E r,h + E ′ r w = w h + w ′ , q = q h + q ′
with the obvious identification of unknowns and test functions.

At each iteration we have to solve a linear problem. Since there is no possibility of confusion, superscripts are omitted in the following. Introducing the previous decompositions into the weak formulation leads to a coarse-scale and a fine scale problem for each unknown, which reads:

• Radiative flux equation 1 c δ(F r,h + F ′ r ) δt , w h + (κ + σ)(F r,h + F ′ r ), w h -J F (F r,h + F ′ r ), ∇w h -J E (E r,h + E ′ r ), ∇w h = F f , ∇w h (5.49) 1 c δ(F r,h + F ′ r ) δt , w ′ + (κ + σ)(F r,h + F ′ r ), w ′ -J F (F r,h + F ′ r ), ∇w ′ -J E (E r,h + E ′ r ), ∇w ′ = F f , ∇w ′ (5.50)
• Radiative energy equation

1 c δ(E r,h + E ′ r ) δt , q h + ∇ • (F r,h + F ′ r ), q h + κ(E r,h + E ′ r ), q h = f E , q h (5.51) 1 c δ(E r,h + E ′ r ) δt , q ′ + ∇ • (F r,h + F ′ r ), q ′ + κ(E r,h + E ′ r ), q ′ = f E , q ′
(5.52)

Approximation for the Fine-scale problem

To approximate the fine scale problem, we will work under the assumptions presented in chapter 2. Nonetheless, some uncommon difficulties arise here due to the presence of tensors in the fine scale problem that require a specific treatment Let us introduce the following notation:

R F,1 = -(κ + σ) F r,h - 1 c δF r,h δt (5.53) R F,2 = F f + J F F r,h + J E E r,h (5.54 
)

R E = f E - 1 c δE r,h δt -∇ • F r,h -κE r,h (5.55) 
A = J F F ′ r + J E E ′ r (5.56)
With our working assumptions, the fine scale problem (5.50)-(5.52) then reads:

(κ + σ)F ′ r , w ′ -A, ∇w ′ = R F,1 , w ′ + R F,2 , ∇w ′ (5.57) ∇ • F ′ r , q ′ + κE ′ r , q ′ = R E , q ′ (5.58)
as stated before, the fine scale problem does not really need to be solved in a accurate way, it just has to be approximated in order to capture the effect of the fine scales on the large scales.

Since the fine scales vanish on inter-element boundaries, we can write

A, ∇w ′ = -∇ • A, w ′ R F,2 , ∇w ′ = -∇ • R F,2 , w ′
We can now define

R F = R F,1 -∇ • R F,2
The term ∇ • A requires to make more assumptions. Since only the steady state is of interest, spatial variations of the Jacobian matrices in the left-hand side can be neglected without compromising the accuracy of the scheme. Hence, by denoting J F = (J p F ) p∈{1,...,d} , we can write

∇ • A = J E ∇E ′ r + d p=1 J p F ∇F ′ r,p (5.59) 
Using this, the fine-scale problem can be written as

(κ + σ)F ′ r + J E ∇E ′ r + d p=1 J p F ∇F ′ r,p , w ′ = R F , w ′ (5.60) ∇ • F ′ r + κE ′ r , q ′ = R E , q ′ (5.61)
for all test functions w ′ and q ′ . This problem can be cast in the following abstract form

P ′ (L(U )) = P ′ (R) (5.62) with U = F ′ r E ′ r , R = R F R E
L is the differential operator appearing in the left-hand-side of (5.60)-(5.61) and P ′ is the projection onto the space of subscales. In essence, the two common choices for this operator are to take either the projection orthogonal to the finite element space (OSS method) or the identity when applied to finite element residuals (ASGS method); see [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF]. As mentioned before, the ASGS formulation will be used in this work.

The idea is now to approximate the operator L by an operator easy to invert. A straightforward solution is to take L -1 ≈ T, where T is a diagonal matrix. Thus, we take

T = τ F I d 0 0 τ E
The values are obtained thanks to the Fourrier analysis presented in chapter 2. Applying this transform to (5.62) gives:

(κ + σ) F ′ r -J E ik h E ′ r - d p=1 J p F ik h F ′ r,p = R F (5.63) - ik h • F ′ r + κ E ′ r = R E (5.64)
where we have assumed again that subscales vanish on the element boundaries.

At this stage, we would like to point out that the governing equations of the M 1 model are similar to a system of damped waves in mixed form, as addressed in [START_REF] Amiya | Mixed finite element method for a strongly damped wave equation[END_REF]. This leads us to make an analogy with the approach proposed in [START_REF] Codina | Finite element approximation of the hyperbolic wave equation in mixed form[END_REF] or [START_REF] Song | A nitsche method for wave propagation problems in time domain[END_REF] for undamped waves, and choose the stabilization parameters as

τ F = 1 c 1 (ρ(J E )+ d i=1 ρ(J i F )) h 2 + (κ + σ) 2
(5.65)

τ E = 1 ( c 2 h ) 2 + κ 2
(5.66)

where ρ(•) stands for the spectral radius of a matrix and c 1 and c 2 are algorithmic constants defined earlier. We finally get

F ′ r = τ F R F , E ′ r = τ E R E (5.67)
Then, one just needs to introduce (5.67) in (5.49) and (5.51) after integrating by parts the terms involving the subscales, leading to new terms in the previous formulation that provide the desired extra control. We now turn to numerical experiments.

Numerical results

This section is devoted to the testing of the formulation on four benchmark problems available in literature, in order to assess the implementation of the new mixed stabilized finite element method. The first example considers one single domain, whereas the three other problems deal with multidomains to illustrate the use of the immersed volume method for such situations.

Transparent media in a square enclosure

For our first example, we consider radiative transfer in a static non-participating media contained in the unit square. This test case is close to the ones presented in [START_REF] Subhash C Mishra | Computational efficiency improvements of the radiative transfer problems with or without conduction--a comparison of the collapsed dimension method and the discrete transfer method[END_REF] and [START_REF] González | 2d numerical comparison between sn and m1 radiation transport methods[END_REF] or [START_REF] Dubroca | A consistent approach for the coupling of radiation and hydrodynamics at low mach number[END_REF], with the difference that we set here κ = 0 m -1 . We want to make a comparison with the P 1 model, so we also perform the computation with κ = 10 -4 m -1 .

We work with non-dimensional quantities, so that we have c = 1. We use Dirichlet boundary conditions with a bottom wall at a fixed E r,in = 7. is reached after only one time step, and using a smaller time step does not make any difference. This example demonstrates that the obtained solution is free of oscillations, justifying the coupled formulation and the stabilization developed here.

An important question is the accuracy of the formulation; to the best of our knowledge, there exists no analytical solution for the radiative transfer equation in two dimensions (for one-dimension, see [START_REF] Su | An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium[END_REF], but a two dimensional extension is not straightforward).

We then propose to perform an error analysis by performing calculations on several meshes of diferent sizes. We will use a solution E r,ref computed on an unstructured mesh of 105 584 elements as our reference. The chosen norm is

ε(u h ) = ( Ω (u h -u ref ) 2 dΩ) 1 2 
(5.68)

We This case is taken from [START_REF] Seaıd | Efficient numerical methods for radiation in gas turbines[END_REF], where solutions of different approximate models for radiation presented in this chapter and chapter 4 are compared to solutions obtained by a direct resolution of Eq. (5.1), so it offers a reference to compare our results. We The patterns show that both the P 1 and M 1 models overestimate the value of the radiative energy inside D 0 , but whereas the P 1 model shows a qualitatively wrong profile, the correct profile is obtained with the M 1 model. Again, this numerical test demonstrates that the obtained solution is stable and free of oscillations, justifying the coupled formulation and the stabilization developed here. The next example to be presented was introduced in [START_REF] Mordant | Some efficient lagrangian mesh finite elements encoded in zephyr for two-dimensional transport calculations[END_REF][START_REF] Pieter G Dykema | A new scheme for multidimensional line transfer. iii. a two-dimensional lagrangian variable tensor method with discontinuous finite-element sn transport[END_REF] and is also presented in [START_REF] González | 2d numerical comparison between sn and m1 radiation transport methods[END_REF]. The M 1 results obtained are correspondant with those obtained in the reference mentioned above. Since a flux limited diffusion was used in that reference, the pattern obtained differs a bit, but the same tendency is observed.

T (x) = 1000 K if x ∈ D 0 1800 K if x ∈ D 1 (5.69) κ(x) = 3 m -1 if x ∈ D 0 1 m -1 if x ∈ D 1 (5.

Radiative transfer behind an obstacle: the shadow test

The purpose of this test, inspired in the benchmark presented in [START_REF] John | Beyond flux-limited diffusion: parallel algorithms for multidimensional radiation hydrodynamics[END_REF] and [START_REF] Gonzalez | Contribution à l'étude numérique de l'hydrodynamique radiative: des expériences de chocs radiatifs aux jets astrophysiques[END_REF], is to show the ability of the M 1 model to capture the anisotropy of the radiative field, contrary An ellipsoidal obstacle, of semi-major and semi-minor axes (0.1, 0.06), respectively, is located in the domain. We have chosen values of absorption coefficient with a large difference between the obstacle and the surrounding media to produce a shadow effect (κ obstacle = 50000 m -1 , κ media = 0 m -1 ). Contours of the obstacle are smoothed in [START_REF] John | Beyond flux-limited diffusion: parallel algorithms for multidimensional radiation hydrodynamics[END_REF],

but this is replaced here by the anisotropic mesh adaptation to capture the interface of the obstacle properly. A radiative energy of E r,in = 6. for the radiative energy, the M 1 model gives clearly a better approximation of the energy distribution. However, the shadow effect is not sharp as as presented in [START_REF] John | Beyond flux-limited diffusion: parallel algorithms for multidimensional radiation hydrodynamics[END_REF]. This can be explained by the principle of the stabilization method: the most important term is a "diffusion-like" one. On the other hand, the M 1 model aims to make a balance between a transport part and a diffusive part. Therefore, the extra diffusion added for the stabilization perturbs this balance. In fact, even if this balance is ensured at the continuous level (equation (5.31)), it is not guaranteed that it still holds for the discretized formulations.

Concluding remarks

In this chapter, a new stabilized finite element formulation for the M 1 radiation model has been developed and tested on some illustrative examples. The ability to represent multi-domain problems was also demonstrated. It is a first attempt, using a finite element framework, to deal with such a coupled non-linear system that solves both radiative energy and flux. Nevertheless, the formulation can be improved:

• Additional work should be done to ensure that the formulation preserves the admissible states: in a finite element context, this can be done by including the realizabilty constraints in the functional setting. However, since the set of realizable states is a convex set, it is not straightforward to exhibit such a space. An option would be to use the theorem of projection in an Hilbert space onto a convex [START_REF] Heinz H Bauschke | The method of cyclic projections for closed convex sets in hilbert space[END_REF], [START_REF] Crombez | Finding projections onto the intersection of convex sets in hilbert spaces[END_REF] iteratively, by finding the unique projection, consider its orthogonal complement and repeat the same operation. Another option would be to consider an augmented formulation, following the lines in [START_REF] Hachem | Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation[END_REF], the constraint being related to the realizable states. This means to deal with variational inequations, as seen in the in the context of contact mechanics [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF].

• Regarding the mixed finite element theory, all of the variational theory [START_REF] Pavel | Least-squares finite element methods[END_REF] assumes a symmetric formulation, which does not hold here. Therefore, it would be interesting to investigate the classical properties of the finite element formulation ( order of convergence, regularity with respect to datas, existence of continuous weak solutions).

• An asymptotic analysis like the one presented in [START_REF] Berthon | Asymptoticpreserving godunov-type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation terms[END_REF][START_REF] Berthon | Late-time/stiffrelaxation asymptotic-preserving approximations of hyperbolic equations[END_REF] or more recently in [START_REF] Blachère | An admissibility and asymptoticpreserving scheme for systems of conservation laws with source term on 2d unstructured meshes[END_REF] is difficult to transpose in a finite element context, on the one hand because the proposed formulation is fully implicit, so there is no CFL condition to work on, and on the other hand, there is no numerical reconstruction flux step or Riemann problem equivalent in a classical finite element context. An option would be to investigate the consequences of the realizabilty constraints on the jacobians J E and J F , since they appear to be the equivalent of the numerical fluxes in a finite element context.

Therefore, providing an asymptotic analysis on the proposed formulation represents a substantial work, and could serve as a mathematics PhD topic in itself, but the goal of this work was to propose a stabilized formulation for such systems of conservation laws, and it was demonstrated that our formulation is able to reproduce reference solutions on benchmarks problems. Chapter 6
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Industrial Applications

This chapter is devoted to the numerical simulations of industrial applications rising from situations encountered by our industrial partners. The goal of this chapter is to demonstrate the ability of methods presented in the previous chapters to deal with "real" examples with a geometry and physical parameters representative of the reality. This study will show some specific problems that rise when dealing with such problems only, for the meshing as well for the solvers. When possible, the results will be compared with experimental results. The next section is related to the publication [42]:

6.1 Quenching of an hat shaped disk in various configurations These problems are proposed by the industry to optimize the process of cooling for a particular shape. It consists in testing three different contexts and environments with ascending difficulty. We study first the free cooling of a solid in the air, then a forced convection using 12 jets inside an open cavity with supporting grid, and finally a natural convection inside a confined chamber with up to four different materials in contact. These problems highlight well the flexibility of the immersed methods, the necessity of applying anisotropic mesh adaptation and finally the inevitability of using full Eulerian stabilized solvers to handle abrupt changes in the temperature and in the material discontinuities across the interface. The geometry and the dimension of this disk are given in Figure 6.1. The material properties of the disk as well as the used physical parameter for the surrounding air are depicted in Table 6.1. Moreover, as shown in the consistency studies, setting the relative kinematic viscosity to a very high value in the solid region satisfies the zero velocity and hence the no-slip condition on the interface is also satisfied. We apply the anisotropic mesh adaptation taking into account at the same time the levelset of the fine supporting grid, the immersed disk as well as the injectors. The total with up to four different materials in contact. Note that due to the complexity of the geometry and the given material, the classical use of heat transfer coefficients may fail if no a priori experimental tests are executed and inverse analysis are applied. Figure 6.24

shows both the experimental and the numerical setup of the test case. We can clearly highlight the fidelity of this approach to reproduce the facility using the levelset of each material: the disk with three small supports (Titanium TA6V), the hexagonal supports (steel) as well as the different layers at the walls (refractory bricks). 

Conclusions about the study

These three examples demonstrate the features of our immersed volume method, and assess its performances. The method can be interpreted as an unified Eulerian formulation for solving conjugate heat transfer problems. The corresponding stabilized finite element methods to compute the velocities, the pressure and the temperature were to work in unison with the multidomain framework, improving computational stability.

It was shown that the variational multiscale method allows an accurate simulation of high Reynolds number flows and that the streamline upwind method gives oscillationfree solution, even when used in a monolithic context. The three 3d real industrial problems to demonstrate the ability of the method to handle problems arising from real industrial situations.

These test cases highlight the benefits of the immersed Eulerian method that can simultaneously model and solve for solutions in both the fluid and solid regions, as well as to compute the temperatures along the fluid-solid interface directly.

However, for radiation modelling, The P 1 model was used but is not adapted for those situations. There results were satisfactory here because of the relatively limited size of the enclosure and the fact that both device and ingots does not produce anisotropic effects. However, the next example that will be displayed will exhibit the limitations of the use of the P 1 model in a such context.

Quenching of two ingots in an enclosure

Another problem, proposed by one of our industrial partners, is similar the three last problem treated in the last part, with the difference that two ingots are present in the enclosure, so that some radiative exchange can be expected between the two pieces.

Furthermore, the two considered ingots are in fact composed of three smaller pieces in contact, with thermal contact neglected, so that different part of a piece are treated as a whole piece, that can exchange radiation with itself. These two ingots are lying on a sand layer, and the enclosure is delimited by an isolating material. The isolating material is actually composed of three layers of different materials, but a simplification assumption was made to consider an homogenized isolant, because on the one hand a full description of the three layers would require an important number of elements to capture interfaces, and on the other hand, since only conduction is occurring in the isolant, this approximation is not so rough. All physical properties will be considered temperature-dependent.

Mesh Generation

In this problem, several components are in contact ( sand with ingots, sand with isolant), so that an appropriate treatement is to be perfomed to adapt the mesh on these interfaces. Two options are possible:

• The first option is to build a metric field for each component, and to compute the intersection of these different metrics, in the sense detailed in [4] and references therein.

• The other option is to perfom mutli-component adaptation, following the lines in [START_REF] Coupez | Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF]: instead of building a metric for each component, one can build a metric with contributions of all different component weighted by coefficients between 0 and 1.

In our implementation, it is more simple to make use of metric intersection with the hessian based metric, and to use the multi-component adaptation with the edge based metric. One can see here the three different cross sections of the mesh of the facilty, obtained by the two different aforementionned methods. satisfactory mesh can only be obtained after a tricky adjustment of weights and others computational parameters. The intersection approach naturally produce a more "homogeneous" repartition of elements far from the interfaces, but, in the hessian implementation, if the prescribed target number of elements is well respected for one single metric, it was observed that this property is not as well respected for metric intersection. Finally, the more appropriate choice of metric for a given problem remains, to the author's point of view, an open question.

First computations and simplifying assumptions

First, we performed simulations with modelling convection and conduction only. The pattern of the streamlines is displayed below, but this case was a first test, with a smaller temperature difference, just to verify the set up of the whole simulation. 

Conclusions

In this chapter, the methods developed were tested on some industrial problems. Some new problems, not present when dealing with benchmark problems, were encountered, like thermal shocks due to the large differences of temperature, the need of meshes composed of a large number of elements to properly capture the numerous interfaces, and, as a consequence, the computational ressources, in terms of time and memory, to simulate such a facility. Regarding the IS2IS method, as explained, we are still working on the parralelization, and the computation using one single core is , in terms 
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Dans ce chapitre, on s'est attaché à mettre en oeuvre l'ensemble des outils présentés et développés dans cette thèse sur des problèmes fournis par nos partenaires industriels. On y a rencontré des problèmes non présents dans les cas des problèmes illustratifs des derniers chapitres, tels que les chocs thermiques liés aux écarts importants de température, la difficulté de capturer les nombreuses interfaces nécessitant des maillages relativement fins, impliquant des calculs longs et une importante mémoire CPU.

Comme précisé dans le chapitre 4, nous travaillons actuellement sur une version parallèle de l'approche IS2IS, et son utilisation avec un seul coeur de calcul sur de tels maillages, est, du point de vue du temps de calcul, prohibitive. Toutefois, la préparation des simulations est, comme le démontre ce chapitre, finalisée, et nous avons bon espoir de pouvoir bientôt confronter les résultats obtenus aux données expérimentales.

Chapter 7

Conclusions and Outlook

Conclusions

The objective of this PhD was to improve, in a general manner, the modelling of thermal radiation. All the numerical developments will serve to improve the heat thermal software Thost and will be used by the industrial partners of this project. Based on an immersed volume method, the new developments must take into account such framework about how to deal with interfaces to represent complex geometries, how to deal with equations to ensure a direct fluid solid coupling, and how to ensure that these two a priori independent elements work in unison to achieve an accurate description of real systems that we intend to model. In this thesis, we took the time, in chapter 2 and chapter 3, to test these methods on some illustrative benchmarks and to prove the consistency of the approach. Regarding the main contributions of these thesis, described in chapters 4 and 5, the following comments can be made:

• The IS2IS approach, depicted in chapter 4, is, from the author's point of view, more interesting with regard to the interface reconstruction than the surface radiation. Indeed, regarding the surface radiation physics, we tried to gather all the advantages of existing approaches, but no major novelty about any one of these points was discovered. The innovative part of the approach lies in the way the interface is reconstructed in a topologic manner, that is to say, the only information required is the global node numbering. We think that this approach is an open door to an enhanced treatment of interface phenomena using immersed methods, when some quantities have to be localized on interfaces like surface tension, phase change, or, in solid mechanics with contact forces. Another approach for interface localization, based on regularized Dirac functions, was explored in [START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF], showing that there are many alternatives to deal with implicit interfaces, despite of their implicit description, and we believe that this topic will draw the attention of engineers and researchers in the years to come. However, a drawback of this approach is the fact that it raises parallelization issues, even though all the functionalities have been validated. Future work will be dedicated to the optimization of the program for parralelization, "clustering" of faces to not compute useless viewfactors, and improvments about the visibility and the obstructions treatment.

• The stabilized formulation designed for the M 1 radiation model, described in chapter 5, is a contribution of a different kind: the idea to describe volume radiation effects by means of a fixed number of "classical" partial differential equations. Indeed it seems very interesting particularly in terms of computational time, when compared to other approaches available in literature. However, since most of available methods are based on a finite volume scheme, it remains therefore difficult to implement and to use within our data structures. Therefore, we proposed a novel finite element formulation suited for this system of equations. This groundbreaking and original formulation was very attractive, however we faced all along the developments numerous theoretical problems, for which, despite a relentless and meticulous investigation, we only found few answers in the published literature.

Thanks to the VMS framework, we were able to reproduce the few benchmarks problems available in the references, but we then faced other problems, related to the fast radiation time scale, stabilization problems related to the importance of the source term or considerations about radiation in the monolithic framework, as much as outstanding question under investigation. But it should be recalled that after the pionnering work of Hugues and coworkers [START_REF] Thomas | Multiscale phenomena: Green's functions, the dirichlet-toneumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF] about the stabilization techniques, it took almost 20 or 30 years for these concepts to be accepted by the community and to reach the maturity necessary to be used for industrial problems. Hence, this formulation is considered not as a "final product" but rather as a foundation stone for the future researchers interested in the VMS framework.

We would like to point out that, radiative effects represent a challenging problem inside industrial furnaces. Indeed, we count the wall refractions, radiations from the flame, auto-radiation between the treated solids. Therefore, all these effects cannot finally be treated by the proposed version of the M 1 model. We then limited ourselves to more classical models, for which we mobilized research effort to adapt such methods to our computational framework, which led us to design the IS2IS method. Hence, in this Phd work, a settlement between new fundamental research work and answering industrials needs must be considered and taken into account, in particular, for a three years program.

Outlook

The focus in this work is on a new concept for numerical methods to estimate the thermal radiation distributions at the same time in the furnace and within the workpieces under specified furnace geometry, thermal schedule, parts loading design, initial operation conditions, and performance requirements. Clearly, a number of other considerations have to be taken into account for more accurate predictions. Here is the list of several important steps towards enhanced simulation tools for more realistic problems. We can classify the possible improvements in three main categories: modelling issues, numerical issues and "experimental feedback" issues:

Modelling issues:

• Regarding combustion in burners: as stated in chapter 1, this phenomenon was neglected all along this work. Usually, some particular boundary conditions, in terms of velocity and temperature are obtained through empirical computations and measurements. This could be improved by considering a real combustion model, with the mixing of different species coupled by the chemistry. It would be useful for a better description of the volume radiation, since we know that the combustion products make the fluid inside the furnace become radiatively active.

• Regarding the boiling, as stated in chapter 1, a PhD [START_REF] Khalouffi | Multiphase flows with phase change and turbulent boiling in quenching processes[END_REF] is actually ongoing in our laboratory: The preliminary results, about an implicit treatment of the surface tension, improvements concerning the convection of a levelset function for multiphase flow and numerical modelling of phase change, are promising , and a part of it is available in [START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF].

• The modelling of natural convection could be improved as well: until now, it was modelled under the Boussinesq approximation, so that the compressibility effects are only considered in the gravity terms. However, it is known that this approximation fails for large temperature differences. An improvement would be to consider a modified version of the Navier-Stokes equations with different mass conservation, supplemented by a state equation ρ = ρ(p, T ) as done in [START_REF] Sergey | Stability of natural convection flow in a tall vertical enclosure under non-boussinesq conditions[END_REF]. Note that an activity has started in our laboratory about these questions, as it can be seen in [START_REF] Hachem | Unified adaptive variational multiscale method for two phase compressible-incompressible flows[END_REF].

Numerical issues:

• For the duration of this work, we made of first order accurate scheme, in space as well in time. However, when industrial problems are treated, one often encounters large temperature differences, so that solutions can exhibit nonphysical shocks.

This would be cured by considering higher order formulations; if implementing P 2 or higher elements for the finite element formulations could result in an increase of computational time, implementing high order time marching scheme could be done easily, without a significant implementation effort, and appear as a promising lead for future work.

• The computational time to perform such simulations, remains, at a certain level, quite expensive: in fact, when the domain to model present different geometric details, the number of elements to properly capture all the interfaces can become important. For instance, on the last case presented in the previous chapter, simulating a few seconds of "real-time" takes a few hour of computations, which is prohibitive for an industrial user. To circumvent this issue, it could be interesting to resort to reduction model techniques, by constructing a reduced basis. To do so, for the type of equations (NS-CDR) considered in this work, two main alternatives are possible: an a posteriori approach, the proper orthogonal decomposition (POD) [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF][START_REF] Iliescu | Variational multiscale proper orthogonal decomposition: Convection-dominated convection-diffusion-reaction equations[END_REF], which relies on a first computation ("snapshot") to compute a reduced basis by means of a single value decomposition (SVD). This approach can be applied regardless of the considered physics, but the computed reduced basis is dependent on the snaphsot. An a priori approach is also possible, based on the proper generalized decomposition (PGD) [START_REF] Chinesta | Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models[END_REF][START_REF] Dumon | Proper general decomposition (pgd) for the resolution of navier-stokes equations[END_REF], where the original problem is converted in a collection of 1d problems regarding each variable. This approach is promising, but theoretical properties can be proven only for simple elliptic problems. The model reduction will be investigated for the Thost consortium within the HECO project for moving ingots and meshes in [START_REF] Daldoul | Du chauffage au refroidissement : le suivi des charges pour le traitement thermique[END_REF].

Experimental feedback issues:

This category is different from the two previous in the sense that, there is no specific points on which we can improve, but it is more a global process that can be improved.

As stated in chapter 1, the goal of implementing numerical methods for industrial applications is to compare the results with experimental data, to see where discrepancies remain, to validate the developed approach on the one hand, and to understand which phenomena are not well modelled on the other hand. It was covered in this PhD, but not as much as the author would have preferred. Actions have started from our industrials partners, by setting up quenching and heating chambers, not at an industrial scale, but more at a "laboratory" scale, which can be a valuable tool for researchers. At this step, one can see that the tedious part of the calculation consists in differentiating χ(f ) with respect to E r and F r . We detail this calculation as follows.
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We know that Knowing this, the calculation of J E is straightforward:

χ(f ) = χ F r cE
∂D ∂E r = 1 2 ∂χ ∂E r 3 F r ⊗ F r F r 2 -I d (C.10)
Then we have

J E = D - f 2 4 -3f 2 3 F r ⊗ F r F r 2 -I d (C.11)
We now turn to ∂D ∂Fr . We choose to make the differentiation component-wise. We can write

P ij r = 1 -χ 2 δ ij + 3χ -1 2 
F i r F j r F r 2 (C.12)
We now have

∂P ij r ∂F k r = 1 2 ∂χ ∂F k r 3 F i r F j r F r 2 -δ ij + 3χ -1 2 
δ ik F k r F r 2 + δ kj F i r F r 2 - 2F i r F j r F k r F r 4 ∂P ij r ∂F k r = f 2cE r 4 -3f 2 3 F i r F j r F k r F r 3 - δ ij F k r F r + 3χ -1 2 
δ ik F k r F r 2 + δ kj F i r F r 2 - 2F i r F j r F k r F r 4
Re-arranging terms, we finally get

J ijk F = 3f 2cE r 4 -3f 2 - 3χ -1 F r F i r F j r F k r F r 3 + 3χ -1 2 F j r δ ik F r 2 + F i r δ jk F r 2 - f 2cE r 4 -3f 2 F k r δ ij F r (C.13)

C.2 Calculation of spectral radii

The expressions of the stabilization parameters τ F and τ E involve the spectral radii of J E and J k F , the second order tensor of components J ijk F for a fixed k. So we need to get an expression, or at least an approximation to these spectral radii. For J E , since we know that

ρ(D) = max χ, 1 -χ 2 
it is necessary to calculate the spectral radius of

B = 3 F r ⊗ F r F r 2 -I d
Since F r ⊗ F r is a rank-one matrix and the trace of F r ⊗ F r is F r 2 , we have

ρ F r ⊗ F r F r 2 = 1 ⇒ ρ(B) = 2
From this we obtain

ρ(J E ) = ρ(D) + 2f 2 4 -3f 2 (C.14)
Using similar arguments about rank-one matrixes, one can obtain

ρ(J k F ) = 4α|F k r | F r (C.15) d k=1 ρ(J k F ) = 4α F r 1 F r 2 (C.16)
with a F F (F r,h , w h ) + a F E (E r,h , w h ) = s F (w h ) a EF (F r,h , q h ) + a EE (E r,h , q h ) = s E (q h ) (C.17) each of the bilinear linear forms written above can be cast in the form:

x y,stab = x y,Galerkin + x The Galerkin terms have already been calculated in a previous section, so we will not repeat it here. We separate contributions to the differents terms coming form enrichment on F r and E r . 

C'est dans ce contexte que s'inscrit le projet

Thost, au sein duquel est réalisée cette thèse. L'objectif est donc de développer des outils pour la modélisation du rayonnement dans le contexte d'immersion de volume propre au logiciel Thost. Deux approches sont développées : l'une consistant en l'adaptation d'une méthode existante au contexte de l'immersion de volume, l'autre explorant l'élaboration d'une formulation pour un modèle particulier de rayonnement. Les outils développés sont ensuite mis à l'épreuve sur des simulations de cas industriels fournis par nos partenaires.

Mots Clés

Eléments Finis Stabilisés, approche LevelSet, adaptation de maillage anisotrope, Rayonnement thermique, applications industrielles Abstract For heating and quenching operations occurring during material forming processes, thermal radiation is the the predominant physical phenomenon. Hence, when one tries to simulate such processes, it is important to have at disposal powerful tools for the numerical modelling of thermal radiation.

The numerical simulation of these processes often rises numerous problems and questions, as the representation of a complex environment, involving several components ( ingots, burners, nozzles, walls), to deal with different coupled physical phenomena ( flow, heat transfer, boiling, thermal radiation). In this regard, some "immersed" numerical methods, allows a generalist treatment of these different problems, have gained popularity and drag interest of the scientific community in the recent years.

The Thost project, aiming to produce a software for heat transfer during material forming processes, fits in the framework, and this PhD is part of this project. The goal is therefore to design tools for numerical modelling of thermal radiation within the immersed volume method of the Thost software. Two approaches are presented: one consisting in the adaptation of an existing method to the context of the immersed volume method, another concerning the development of a formulation for a specific model of radiation. These methods are then tested on industrial applications provided by our partners.
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 2 General Context 1.2.1 Industrial Context The consortium Thost, created in 2006, composed of the following industrial partners: AUBERT & DUVAL Created in 1907, Aubert & Duval is part of the Eramet group. The group employs about 4.700 collaborators and declares a turnover of 991 million euros in 2015. They are specialized in hot material forming processes for steel and aluminium alloys for various applications within the high standards requirements: aeronautics, automotive and medical among others. SAFRAN AIRCRAFT ENGINE Formerly the national society for study and design of aircraft engines (SNECMA) founded in 1945, it is now part of the Safran group. They produce engines for the aerospace and aeronautics (both civilian and military) industry. They employ about 11.600 people over 12 different sites in France. The declared turnover in 2015 is 7.6 billions euros in 2015. AREVA Created in 2001, AREVA is a French group in the field of Energy, the core business being the nuclear energy, with various tasks as uranium extraction, operation of nuclear plants and management of nuclear wastes. Composed of about 42.000 collaborators, the declared turnover was 8.3 billions euros in 2014.FAURECIA Created in 1997, Faurecia produces various automotive equipements, and is the world leader of equipments for automotive interior and seating. Employing 99.000 collaborators all around the world, the declared turnover is about 18.83 billions euros in 2014. LISI AEROSPACE Part of the LISI group, founded in 1899, Lisi Aeropsace is specialized in the fabrication of clamping devices and components for the aeronautics industry. Employing about 11.000 collaborators, the declared turnover in 2015 is of 1.458 millions euros. SCIENCE COMPUTERS CONSULTANTS Created in 2001, Science Computers Consultants is not an industrial partner, but the society that produces the software to be used by the industrial partners from the C++ code developed in the CEMEF, as well as other products as XIMEX c , LUDOVIC c and SOLID c . It is a SME of 5 collaborators with a declared turnover of 401.880 euros in 2015.
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 1112 Figure 1.1: Illustration of the fully coupled physics in an industrial furnace
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 21 Figure 2.1: Illustration of Eulerian and Lagrangian points of view

  Dirichlet and Neumann boundary conditions, since the superposition of different types of boundary conditions at the same location would lead to an ill posed problem. Formally, we denote by ∂Ω D and ∂Ω N the location of Dirichlet (Neumann respectively) boundary conditions. They should verify:

2. 1 . 4

 14 Different physical exemples of Convection-Diffusion-Reaction equations 2.1.4.1 The energy equation This equation, issued from the first principle of thermodynamics ( energy balance) governs the variations of temperature. It is sometimes presented with the NS equations,
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 22 Figure 2.2: Illustration of 1d shape function modification
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 23224 Figure 2.3: 2d Empty cavity: iso temperature for Ra = 10 2
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 25 Figure 2.5: 2d Empty cavity: iso temperature for Ra = 10 3
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 263 Figure 2.6: 2d Empty cavity: streamlines for Ra = 10 3
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 27428 Figure 2.7: 2d Empty cavity: iso temperature for Ra = 10 4
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 295210 Figure 2.9: 2d Empty cavity: iso temperature for Ra = 10 5

Figure 2 . 11 : 6 Figure 2 . 12 :

 2116212 Figure 2.11: 2d Empty cavity: iso temperature for Ra = 10 6

Figure 2 . 13 : 7 Figure 2 . 14 :

 2137214 Figure 2.13: 2d Empty cavity: iso temperature for Ra = 10 7
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 21582168 Figure 2.15: 2d Empty cavity: iso temperature for Ra = 10 8

Figure 2 . 17 :• s - 1 )Figure 2 . 18 :

 2171218 Figure 2.17: 2d Empty cavity: θ along y = 0.5 for the considered range of Ra

  erences does not exceed 5%. It is straightforward to extend this case into a three dimensional version by an extrusion in the z dimension. All quantities are symetric around the point x c = (0.5; 0.5; 0.5). The temperature remains invariant by translations in the z direction, since adiabatic walls have no influence on the temperature patterns, and the velocity profile is symetric around the z = 0.5 plane, as it is displayed on the streamlines, plotted along the line l c = (1; 1; 1) and the center point x c .
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 219 Figure 2.19: 3d Empty cavity: streamlines along l c for Ra = 10 3
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 220 Figure 2.20: 3d Empty cavity: streamlines around x c for Ra = 10 3
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 221 Figure 2.21: 3d Empty cavity: streamlines along l c for Ra = 10 4
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 222 Figure 2.22: 3d Empty cavity: streamlines around x c for Ra = 10 4
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 223 Figure 2.23: 3d Empty cavity: streamlines along l c for Ra = 10 5
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 224 Figure 2.24: 3d Empty cavity: streamlines around x c for Ra = 10 5

Figure 2 . 25 :

 225 Figure 2.25: 3d Empty cavity: streamlines along l c for Ra = 10 6
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 226 Figure 2.26: 3d Empty cavity: streamlines around x c for Ra = 10 6
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 227 Figure 2.27: 3d Empty cavity: iso temperature surfaces for Ra = 10 3
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 228 Figure 2.28: 3d Empty cavity: iso temperature surfaces for Ra = 10 4

Figure 2 . 29 :

 229 Figure 2.29: 3d Empty cavity: iso temperature surfaces for Ra = 10 5
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 230 Figure 2.30: 3d Empty cavity: iso temperature surfaces for Ra = 10 6
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 231 Figure 2.31: 2d Horizontal plate: iso temperature for Ra = 10 4
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 2 Figure 2.32: 2d Horizontal plate: velocity for Ra = 10 4
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 233 Figure 2.33: 2d Horizontal plate: iso temperature for Ra = 10 5
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 2 Figure 2.34: 2d Horizontal plate: velocity for Ra = 10 5
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 235 Figure 2.35: 2d Horizontal plate: iso temperature for Ra = 10 6
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 2 Figure 2.36: 2d Horizontal plate: velocity for Ra = 10 6
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 2371238 Figure 2.37: 2d Horizontal plate: θ along y = 0.65 for the considered range of Ra
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 2392 Figure 2.39: 2d Horizontal plate: θ along y = 1.0
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 2 Figure 2.41: 3d Horizontal plate: temperature pattern in symetry planes for Ra = 10 4
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 25262 Figure 2.42: 3d Horizontal plate: temperature pattern in symetry planes for Ra = 10 5
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 2 Figure 2.45: 3d Horizontal plate: streamlines in symetry planes for Ra = 10 4
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 2 Figure 2.46: 3d Horizontal plate: streamlines in symetry planes for Ra = 10 5

Figure 2 .

 2 Figure 2.47: 3d Horizontal plate: streamlines in symetry planes for Ra = 10 6
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 2 Figure 2.48: 3d Horizontal plate: iso temperature surfaces for Ra = 10 3
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 2 Figure 2.49: 3d Horizontal plate: iso temperature surfaces for Ra = 10 4
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 2 Figure 2.50: 3d Horizontal plate: iso temperature surfaces for Ra = 10 5
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 2 Figure 2.51: 3d Horizontal plate: iso temperature surfaces for Ra = 10 6
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 2 Figure 2.52: 2d Vertical plate: iso temperature for Ra = 10 4
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 242 Figure 2.53: 2d Vertical plate: velocity for Ra = 10 4
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 2 Figure 2.55: 2d Vertical plate: velocity for Ra = 10 5
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 2 Figure 2.56: 2d Vertical plate: iso temperature for Ra = 10 6
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 26 Figure 2.57: 2d Vertical plate: velocity for Ra = 10 6

Figure 2 . 58 : 1 )Figure 2 . 59 :

 2581259 Figure 2.58: 2d Vertical plate: θ along y = 0.8 for the considered range of Ra
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 22 Figure 2.60: 2d Vertical plate: θ along y = 1.0
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 232 Figure 2.62: 3d Vertical plate: streamlines for Ra = 10 3
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 2 Figure 2.64: 3d Vertical plate: streamlines for Ra = 10 4
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 2 Figure 2.65: 3d Vertical plate: temperature patterns for Ra = 10 5
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 252 Figure 2.66: 3d Vertical plate: streamlines for Ra = 10 5
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 262 Figure 2.68: 3d Vertical plate: streamlines for Ra = 10 6
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 2 Figure 2.70: 3d Vertical plate: iso temperature for Ra = 10 4
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 2 Figure 2.71: 3d Vertical plate: iso temperature for Ra = 10 5

Figure 2 .

 2 Figure 2.72: 3d Vertical plate: iso temperature for Ra = 10 6

  h conv being the convection coefficient. As explained in chapter 1, this convection coefficient can be obtained by different ways: correlations between adimensional numbers through the Vaschy-Buckingham or inverse problems, but such coefficients are very dependent on the configuration inside the facility ( position of ingots and burner/nozzles, inlets velocities, physical properties of the fluid).
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 3132 Figure 3.1: levelset Function of a circle
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 33 Figure 3.3: Illustration of anisotropic elements

Figure 3 . 4 :Figure 3 . 5 :Figure 3 . 6 :Figure 3 . 7 :Figure 3 . 8 :

 3435363738 Figure 3.4: Mesh adaptation procedure: initial mesh
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 39311312313314 Figure 3.9: 3d Adapted mesh: brick
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 315 Figure 3.15: Whole Facility: cross section along the xz plane
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 318319320321323 Figure 3.18: 2d Empty Cavity for Ra = 10 6 : Temperature lines
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 324325 Figure 3.24: Industrial Facility: effective heat capacity

  [0; 1] * [0; 1] will finally be Ω = [-0.25; 1.25] × [0; 1]. Adiabatic boundary conditions are imposed on lower and upper walls, and slip boundary conditions are imposed on all the boundaries for the velocity. We set here P r = 0.71 and Ra = 10 6 for the 2d and 3d validation. Since an error analysis similar to the one in [44] will be performed in 2d, we chose the same values for the temperature which are T h = 960K, T c = 240K and T 0 = 600K.
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 3263273303313325333334335 Figure 3.26: 2d Empty cavity: mesh for the body-fitted approach
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 336 Figure 3.36: 3d Empty cavity: meshes used for the "BF" (left) and "IVM" (right) simulations
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 337 Figure 3.37: 3d Empty cavity: temperature profiles for "BF" (left) and "IVM" (right) simulations
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 338339134013411342343234423452346 Figure 3.38: 3d Empty cavity: velocity profile for "BF" (left) and "IVM" (right) simulations
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 3473348349350 Figure 3.47: 3d Empty cavity: u 2 along l 3
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 351 Figure 3.51: 2d Horizontal plate: θ for IVM and BF
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 352353 Figure 3.52: 2d Horizontal plate: velocity for IVM and BF
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 355 Figure 3.55: 2d Vertical obstacle: θ along considered lines 1/2
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 35635713344358 Figure 3.56: 2d Vertical obstacle: u 2 along considered lines 1/2
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 35911122360361362 Figure 3.59: 2d Horizontal obstacle: θ along considered lines 1/2
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 363364 Figure 3.63: 3d Horizontal plate: IVM mesh
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 3653663693713723734374437543763775378537953803816382 Figure 3.65: 3d Horizontal plate: θ in the z = 0.5 plane

  On décrit ensuite les outils nécessaires à la construction d'un maillage approprié à la représentation des interfaces. On introduit les notions d'erreur d'approximation et d'interpolation ainsi que celle de métrique, dont on détaille les deux exemples qui sont utilisés dans ce travail. On précise ensuite les lois de mélange utilisées pour déduire des propriétés physiques effectives à partir de celles des différents composants. Ces trois éléments constituent la méthode dite d"immersion de volume", qualifiée de monolithique au sens ou tous les composants sont traités sur une même maillage. Ces méthodes sont ensuite illustrées sur les problèmes illustratifs traités dans le chapitre 2, et l'on vérifie que l'approche présentée est consistante avec l'approche classique.
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 41 Figure 4.1: Illustration of the photon balance on an elementary volume
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 42 Figure 4.2: Geometric characteristics of the two surfaces
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 204 [START_REF] Edward | The numerical computation of turbulent flows[END_REF] is only a consequence of the energy conservation principle: all the radiation leaving the surface i is entirely intercepted by other surfaces of the enclosure. This relation will be useful for code verification. The view factors are usually stored in a matrix F = (F ij ) 1≤i,j≤N F . Here, we made the assumption of dif f use view factors, in the sense that the energy absorbed by the surface is then re-emitted isotropically in all directions.
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 43 Figure 4.3: Illustration of the crossed strings method
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 444544647 Figure 4.4: Different possibility for surfaces relative orientations
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 49 Figure 4.9: 3d Situations
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 410411412 Figure 4.10: Test on a square brick: mesh
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 413 Figure 4.13: Test on a rectangular circle: elements crossed
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 414416 Figure 4.14: 2d Example:Mesh Figure 4.15: 2d Example: levelset of the square
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 417 Figure 4.17: 2d Example: levelset zero isovalue
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 418 Figure 4.18: 3d Example: Mesh
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 419 Figure 4.19: 3d Example: levelset Zero isovalue and Flag field
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 420 Figure 4.20: 3d Adapted mesh: brick

Figure 4

 4 Figure 4.21: 3d Adapted mesh: cylinder

  surface radiation preserves the centro-symmetry of the problem. The results shows the effect of radiation on the overall temperature distribution: the obtained radiative flux on horizontal walls is symetric ( negative on the upper wall, positive on the lower wall). Those radiative fluxes modify the thermal boundary layer by "moving away" the extremal values of the temperature inside the cavity, at the difference with the case ε = 0, where the maximal values of the vertical profile are located on the horizontal walls, as it can be seen on the temperature plot.
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 44 Figure 4.22: 2d Empty cavity: iso temperature and streamlines: ε = 0
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 424 Figure 4.24: 2d Empty cavity: θ along y = 0.5
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 4251426142714284294304315432 Figure 4.25: 2d Empty cavity: temperature profile BF ε = 1
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 433434 Figure 4.33: 3d Empty cavity: iso Temperature: ε = 1 (left) and ε = 0 (right)
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 435436 Figure 4.35: 3d Empty cavity: streamlines along x: ε = 1 (left) and ε = 0 (right)
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 4371438152 Figure 4.37: 3d Empty cavity: θ along l 1
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 44 Figure 4.39: 2d Horizontal plate: iso temperature and streamlines: ε = 0
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 441442 Figure 4.41: 2d Horizontal plate: θ along y = 0.15
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 44 Figure 4.43: 2d Vertical plate: iso temperature and streamlines: ε = 0
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 445 Figure 4.45: 2d Vertical plate: θ along y = 0.15
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 446 Figure 4.46: 2d Vertical plate: u 2 along y = 0.15
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 447 Figure 4.47: 2d Horizontal obstacle: iso temperature ε = 1
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 4481449 Figure 4.48: 2d Horizontal obstacle: streamlines ε = 1
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 450 Figure 4.50: 2d Horizontal obstacle: streamlines ε = 1
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 451452453454 Figure 4.51: 2d Vertical obstacle: θ along considered lines
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 455 Figure 4.55: 2d Horizontal obstacle: θ along considered upper lines
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 456 Figure 4.56: 2d Horizontal obstacle: u 2 along considered upper lines
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 457458 Figure 4.57: 3d Horizontal obstacle: iso-temperature : ε = 1 (left) and ε = 0 (right)
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 459460 Figure 4.59: 3d Vertical obstacle: iso-temperature : ε = 1 (left) and ε = 0 (right)
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 23 Since ϕ is a non-negative density defined on the unit sphere, and f and D are its first and second order angular moment, respectively, they must satisfy the constraints:tr(D) = 1 (5.24) Df ⊗ f ≥ 0(5.25)(5.24) tells us that the sum of the eigenvalues of the tensor D are equal to one and(5.25) 
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 5 W and the other walls are at E r,b = 5800 W, and a zero value is fixed for the normal component of F r .The initial radiative energy is E r,0 = 5800 W. For both simulations, the time step is δt = 0.05, and we use a mesh of approximately 11 200 elements.
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 51525354 Figure 5.1: Radiative Energy for P 1 model (left) and M 1 model (right): t = 5δt
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 55 Figure 5.5: L 2 error with respect to the mesh size

  considered a fixed temperature, constant in two different subsdomains, with a spatially dependent absorption coefficient κ. The computational domain is D = [0, 1]×[0, 10], and we define D 0 = [0.45, 0.55] × [4.5, 5.5], D 1 = D \ D 0 . We set σ = 1 and the temperature and absorption coefficients are taken as

70 )

 70 This temperature leads to a "manufactured" source term for Eq. (5.10), varying in space, but constant in time. The immersed volume method allows us to represent the spatial dependence of the absorption coefficient in a natural way.The mesh used for the computations and the representation of the levelset function of the object are displayed in Fig.5.6; this mesh is composed of 218 072 elements. We use homogeneous Neuman boundary conditions for E r and a zero Dirichlet condition for the normal component of F r .
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 56 Figure 5.6: Adapted mesh and levelset of the center zone
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 575859 Figure 5.7: Patterns of the radiative energy obtained for P 1 (left) and M 1 (right) models

Figure 5 . 10 :

 510 Figure 5.10: Adapted mesh and levelset of the center zone
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 51115125131514 Figure 5.11: Patterns obtained for M 1 model
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 6 W is imposed at the left boundary of the domain, and zero Neumann conditions are imposed elsewhere. On the whole boundary, a zero Dirichlet condition is imposed for the normal component of F r . The initial condition is E r (x, 0) = E r,0 = 5.04 10 2 W. The distributed absorption coefficient and the mesh used for the computations are presented in Fig. 5.15. We only look for steady state results. A mesh of 268 012 elements is used. The results in Fig 5.16 show that whereas the P 1 model cannot reproduce disequilibrium
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 515516 Figure 5.15: Distributed absorption and adapted mesh
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 667677681469 Figure 6.6: Comparisons of the temperature evolution in sensor 7
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 6 Figure 6.10 gives a clear idea on the experimental setup and the position of the disk inside a 2.25 × 2.25 × 3m 3 chamber while Figure 6.11 highlights the positions of the sensors.
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 616617618619620621622623 Figure 6.16: Comparisons of the temperature evolution in sensor 2

Figure 6 . 24 :Figure 6 .

 6246 Figure 6.24: The immersed disk inside the chamber: experimental (left) and numerical (right)
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 625 Figure 6.25: The adapted obtained mesh
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 626627628629630631632633634635636 Figure 6.26: A snapshot of the streamline solution
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 637 Figure 6.37: Cross section along the xz plane with hessian metric
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 638639640641 Figure 6.38: Cross section along the xz plane with edge based metric
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 642 Figure 6.42: Cross section along the yz plane with edge based metric
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 643 Figure 6.43: patterns of streamlines obtained for the facility
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 646647 Figure 6.46: Conduction-radiation: temperature cross section at t = 1312.5s

Figure 6 . 48 :

 648 Figure 6.48: Conduction-radiation: pattern of streamlines and iso temperature surfaces
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  'objectif de cette thèse était de proposer de nouveaux outils pour la modélisation du rayonnement thermique dans le contexte de la méthode d'immersion de volume sur laquelle est basée le logiciel Thost. Nous nous sommes attachés, dans la première partie de cette thèse, à décrire et tester les outils utilisés, tant pour la résolution numérique de problèmes physiques que pour les méthodes de description d'environnement complexes. Ensuite, les deux contributions principales de ce travail ont été décrites. Elle sont de natures différentes, l'une consistant en l'adaptation d'une méthode existant à notre contexte d'immersion, la nouveauté principale résidant dans la façon d'approximer l'interface, l'autre faisant appel à des notions avancées de la technologie des éléments finis stabilisés, appliqués à un modèle de rayonnement pour lequel il n'existait que des formulations aux volumes finis. Il subsiste toutefois un petit regret, celui de n'avoir pas pu passer beaucoup de temps à mettre les méthodes développées à l'épreuve "du feu" des simulations industrielles, dans la mesure ou les développements ont démarré d'une feuille blanche. Toutefois, il y a eu le souci de laisser des outils pérennes , afin que les futurs chercheurs qui s'intéresseront à ces questions puisse faire progresser et améliorer les actions initiées par ce travail. computing parameters will be used for all natural convection problem benchmarks, even though the obtained values are not representative of realistic simulations. The reader could use results as a comparison tool, since they are presented in terms of adimensional temperature.

  

  

  

  

  

table below :
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	P P P P P P P P P reference Ra	10 3	10 4	10 5	10 6
	De Vahl [60]	1.118 2.243 4.519	8.8
	Kalita and al. [61] 1.118 2.243 4.521	8.831
	Dixit and al. [62]	1.118 2.286 4.5463 8.652
	present work	1.13	2.445 4.661	8.446

Table 2 .

 2 

1: 2d Empty cavity: comparisons with benchmark solutions

Table 2 .

 2 

	P P P P P P P P P reference Ra	10 3 10 4	10 5	10 6
	Wakashima and al. [63] -	2.0634 4.3713 8.77
	Tric and al. [64]	1.07 2.054	4.337	8.64
	present work	1.09 2.188	4.76	8.22

2: 3d Empty cavity: comparisons with benchmark solutions

  Ce chapitre décrit les modèles physiques et les méthodes de résolution numérique utilisées tout au long de ce travail. On détaille pour la mécanique des fluides incompressibles, les équations de Navier-Stokes, les différents types de conditions aux limites et initiales envisagées. Le reste de la physique modélisée ici, à l'exception du rayonnement, peut être décrit au moyen d'une equation de convection-diffusion-réaction générale, ou les spécificités relatives à chaque modèle ( equation de l'énergie, modèle de turbulence, modèle de rayonnement P 1 ) sont introduites et détaillées une par une. Le problème d'aérothermie couplée est ensuite présenté. La seconde partie de ce chapitre est consacrée aux formulations aux éléments finis utilisées: on dérive les formulations faibles à partir des problèmes continus, on y rappelle les notions nécessaires aux approximations

éléments finis classiques ainsi que leurs limitations pour les problèmes considérés. On précise ensuite les méthodes de stabilisation utilisées, basé sur l'approche variationnelle multi-échelle, en terme de laquelle on peut interpréter les méthodes plus classiques, telles que la méthode SUPG. Ces méthodes sont illustrées sur des exemples illustratifs issus de la littérature en 2d et 3d, ou l'on observe une bonne corrélation entre les résultats obtenus et ceux présentés dans les références.
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	2: 2d plates: y for the chosen lines
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3: 3d plates: coordinates of the chosen lines
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 42 Notations for faces numbers.

	Notations
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	3: 2d Meshes

Table 4 . 5

 45 u rad

	Colomer [185]	8.102	3.568	11.670
	present work	8.122	3.712	11.834

: 3d Empty cavity: comparisons with benchmark solution

Table 4 .

 4 

				7: 2d Vertical plate: comparisons with benchmark solution
	0.3				
	0.2				
	θ				
	0.1				
				with Radiation	
	0	0	0.2	0.4 Without Radiation 0.6 0.8	1
				x(m)	

Saravanan and al. [65] 6.6731 10.1914 16.8645 present work 6.7955 10.1144 16.9099

  considered four meshes (M i ) i=1..4 . Their characteristics (number of elements, mesh size) are given in the table below. As it can be expected from the finite element theory, a linear convergence is observed.

		Mesh Number of elements N meshe size h
		M 1 M 2 M 3 M 4	250 522 1036 4302			0.09006 0,057556 0.040449 0.019711
		Table 5.1: Meshes used for the error analysis
		18.5				
						results
						slope -0.8
	r,h ))	18				
	log(ε(E	17.5				
		17	1	1.2	1.4	1.6	1.8
					-log(h)	

  The considered domain is a unit square. The test represents a purely absorbing region (a square rod of side 0.6) surrounded by a scattering region. Only steady state results are presented. The properties of the different zones are summarized in Table5.2.Again, the central zone and the heterogeneous properties are represented by means of the immersed volume method. The adapted mesh (composed of 102 488 elements) and the levelset function used to adapt the mesh are presented in Fig.5.10. In[START_REF] González | 2d numerical comparison between sn and m1 radiation transport methods[END_REF], results were compared with the results obtained by the discrete ordinates method, and it was shown that results from the M 1 model can differ for those obtained by the classical discrete ordinates method due to complex geometrical effects. The boundary conditions are zero Neumann on the left and bottom boundaries, and a specular reflection on the top and right boundaries. For the M 1 , for a boundary Γ, with F r = (F rn , F rt ) being respectively the normal and tangential components of the flux, those conditions read:E r,Γ = E r,w F rn,Γ = -F rn,w F rt,Γ = F rt,wwhere X Γ refers to quantities imposed on the considered boundary, and X w are those obtained from the calculations (hence, those boundary conditions are updated at each time step). It is not straightforward to derive this kind of boundary conditions, since in the P 1 model the flux is related to the gradient of E r , and therefore imposing E r and ∇E r on the same boundary would lead to an ill-posed problem. However, we tried the two alternatives, which give similar results; these results are presented below.

	❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ Properties Zone Center zone Outer zone
	κ	100	0.05
	σ	0	0,95
	S rad	0	1

Table 5 . 2
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: Thermodynamical properties of the considered case

  Dans ce chapitre, on s'intéresse à la modélisation du rayonnement volumique. Pour ce faire, l'approche retenue consiste à utiliser des modèles aux moments, obtenus en moyennant l'équation du transfert radiatif sur l'espace des directions. On s'intéresse plus particulièrement au modèle dit M 1 , ou la relation de fermeture est obtenue au travers d'un principe de maximum d'entropie. On décrit l'état de l'art sur les différents modèles au moments, ainsi que les formulations existantes. Dans la mesure ou la plupart des schémas pour ce modèle sont de type volumes finis HLL, on propose un formulation aux éléments finis pour ce système. Cette formulation, de type mixte, stabilisée par l'approche variationnelle multi-échelle, est détaillée au cours de ce chapitre. Elle est ensuite mise à l'épreuve et validée sur des problèmes illustratifs disponibles dans la littérature.

  y,F-Stab + x y,E-Stab (C.18)

x ∈ [a; s]

(C.19) y ∈ [F F ; F E; EF ; EE] (C.20)

  F F,E-stab (F r,h , w h ) = τE JE∇ • F r,h , ∇w h (C.23) • FE terms a F E,F -stab (E r,h , w h ) = -τF (κ + σ)JE∇E r,h , w h + τF JF (JE∇E r,h ) , ∇w h (C.24)• F right-hand-side termss F,F -stab (w h ) = -τF (κ + σ) c∆t F n r,h , w h + τF 1 c∆t JF F n r,h , ∇w h (C.26) -τF (κ + σ)∇ • RF,2, w h + τF JF ∇ • RF,2, ∇w h (C.27) s F,E-stab (w h ) = τE JE fE + EF,F -stab (E r,h , q h ) = τF 1 c∆t + (κ + σ) F r,h , ∇q h + τF EF,E-stab (E r,h , q h ) = -τE κ∇ • F r,h , q h (C.30)• EE terms a EE,F -stab (E r,h , q h ) = τF JE∇E r,h , ∇q h (C.31)

	Résumé			
	Dans le cadre des procédés de chauffage et			
	de trempe réalisés lors d'opération de mise			
	en forme des matériaux, le rayonnement thermique joue un rôle prépondérant. Lors de l'élaboration de modèles numériques	E n r,h c∆t	, ∇w h		(C.28)
	permettant la simulation de ces procédés, il • EF terms est donc nécessaire de disposer d'outils a d performants pour simuler ce phénomène.	J i F ∇F i r,h , ∇q h	(C.29)
			i=1	
	La simulation numérique de tels procédés			
	soulèvent de nombreuses problématiques,			
	r,h c∆t a E n comme la représentation d'un environnement complexe impliquant plusieurs composants (pièces, bruleurs, buses d'injection, parois), la gestion des divers phénomènes physiques couplés (écoulement, transfert thermiques, ébullition, rayonnement). Dans cette perspective, les méthodes dites « d'immersion », permettant un traitement généraliste de ces divers problèmes, rencontrent depuis quelques années un intérêt grandissant dans la communauté scientifique.	, q h		(C.34)
	d			d
		J i F ∇F i r,h , w h + τF JF	J i F ∇F i r,h	, ∇w h
	i=1			i=1
					(C.22)

• FF terms

a F F,F -stab (F r,h , w h ) = -τF 1 c∆t + (κ + σ) (κ + σ)F r,h , w h + τF 1 c∆t + (κ + σ) JF F r,h , ∇w h (C.21) -τF (κ + σ) a a F E,E-stab (E r,h , w h ) = τE 1 c∆t + κ JEE r,h , ∇w h (C.25) a EE,E-stab (E r,h , q h ) = -τE 1 c∆t + κ κE r,h , q h (C.32) • E right-hand-side s E,F -stab (q h ) = τF F n r,h c∆t , ∇q h + τF ∇ • RF,2, ∇q h (C.33)

s E,E-stab (q h ) = -τE κ fE +

case 3 : segment (point) case 4 : segment arbitrary case 2 : segment ( edge) case 1 : point α = 0 α < 0 α > 0 Γ Γ Γ Γ Figure 4.8: 2d Situations case a : point case b : edge case c : triangle (face) case d : triangle (edge) case e : triangle (point) case f : triangle case g : quadrilater Γ Γ
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(5.32)

The result of the calculation depends on the form of the radiative entropy, but the most common is the Maxwell Boltzmann entropy, used in the Lagrangian defined by (5.16). More details about the calculations and other alternatives are available in [START_REF] Gerald N Minerbo | Maximum entropy eddington factors[END_REF], [START_REF] Gc Pomraning | Maximum entropy eddington factors and flux limited diffusion theory[END_REF], [START_REF] Cd Levermore | Relating eddington factors to flux limiters[END_REF] linked to the flux limited diffusion models described earlier, [START_REF] Am Anile | A thermodynamical approach to eddington factors[END_REF] with the point of view of the thermodynamic, [START_REF] Larecki | Entropic derivation of the spectral eddington factors[END_REF] for a derivation using entropy, and [START_REF] Cartierf | Geometric eddington factor for radiative transfer problems. Numerical Methods for Hyperbolic and Kinetic Problems: CEMRACS[END_REF] for a geometric determination. Finally, for the Maxwell-Boltzmann entropy, one gets

We note that all the non-linearity of the M 1 model is in (5.31) and (5.33). Some comments about the physical insight of the two contributions of the Eddington tensor can be given: term (1) can be viewed as an isotropic part of the radiative pressure, whereas term ( 2) is an anisotropic contribution in the direction of the normalized radiative flux f . Those two terms are balanced by the Eddington factor χ(f ), which is controlled by f , that can be viewed as a measure of the anisotropy of the radiation field. Moreover, this closure ensures the positivity of the energy and limitation of the radiative flux. The M 1 system renders the appropriate limits with respect to f : one can see that for f = 0, corresponding to the diffusion limit ( isotropy), one gets

and for the transport limit ( anisotropy in one direction), corresponding to f = 1, reads

We would like to point out that it is not straightforward to derive boundary conditions for the M 1 model from the ones used for the full Radiative Transfer Equation: in (5.1), the specific intensity is prescribed for the incoming flux only, whereas in the moment model, the full moment values must be assigned, even if the notion of "partial" moment It was observed that, since a relatively fine meshe is required to represent the interface, the resolution of Navier-Stokes equations require a very important time and computational ressources. To be consistent with the study performed in the last section, we started by performing a computation with the P 1 radiation model, with convection neglected. Here, one can see, the cross section of temperature in the xz at different time steps. Here, we took a time step ∆t = 2.5s. We also performed a computation with convection and P 1 radiation, of which a typical profile of streamlines and iso temperature are displayed below.

Parametrized Rayleigh and

Prandtl numbers for natural convection

The purpose of this appendix is to describe how to set the physical parameters to obtain desired Prandtl and Rayleigh numbers for natural convection problems under the Boussinesq approximation. This approach is inspired by the one depicted in: The temperatures T c and T h remain as free parameters. Other sets of fixed parameters could be considered, but we kept this one since it gave satisfactory results. This way of

Double line integral for the view

Factor Calculation: 8 points quadrature rule

In the method we chose to compute the view factor, one has to deal with integrals of type:

Using basic geometric arguments, the integrand ln(δ k,l ) can be expressed as an homegeneous second order polynom of two variables of which the coefficients are related to the geometric characteristics of the two edges of the considered segment. Moreover, with help of an appropriate change of variables, both line integrals can be performed on [0; 1].

Finally, one has to deal with integrals of type:

Such integral cannot be computed analytically in the general case, so one has to resort to numerical integration. To this end, we use a Gauss integration, but such quadrature are known to be exact only for polynoms ( the order being related to the order of integration). It was observed that a 5 points quadrature rule is not exact for that kind of function, so we made use of an 8 points quadrature rule, recalled in the table below since it is hard to find in literature. We use the notations This formula was verified on the following function Q(x, y) = (xy + 3) 2 , where the integral can be computed analytically Detailed calculations for the

SFEM formulation C.1 Calculation of the Jacobians

Let δ ij be the Kronecker delta associated to indexes i and j. Let also {e i } 1≤i≤d be the canonical basis of R d . A third order tensor is denoted by X, and its component are written as (X ijk ) 1≤i,j,k≤d .

Let us recall the definitions

The Jacobian matrixes of P r are defined by

Using (C.1), one can write

C.3 Algorithm for the proposed formulation

At this point, for the sake of clarity, we will make the difference with "time" right hand sides ( coming from discretization of terms 

r , J i E and J i F ; compute elementar matrix and "non linear" right hand side ; assemble a global matrix and a global "non linear" right hand side ; compute the global "total" right-hand side (with "time" and "non linear" contributions) ; solve the system → (F i+1 r , E i+1 r ); update F r and E r ; end at last non linear iteration i end , F n+1 r = F i end r and E n+1 r = E i end r ; Algorithm 2: algorithm for M 1 finite element method described above

C.4 Final Stabilized formulation

This section details all the stabilization terms appearing in the present formulation, for whoever may be interested to implement this formulation, even though the reader is invited to re-derive the formulation himself. For sake of clarity, let us write our problem in the following way, also valid for the previous formulation