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Abstract

Even if packet networks have significantly evolved in the last decades, packets are still trans-
mitted from one hop to the next as unalterable pieces of data. Yet this fundamental paradigm
has recently been challenged by new techniques like network coding, which promises network
performance and reliability enhancements provided nodes can mix packets together.

Wireless networks are nowadays ubiquitous and rely on various network technologies such as
WiFi and LTE. They can however be unreliable due to obstacles, interferences, and these issues
are worsened in wireless mesh network topologies with potential network relays. In this work,
we focus on the application of intra-flow network coding to unicast flows in wireless networks.
The main objective is to enhance reliability of data transfers over wireless links, and discuss
deployment opportunities and performance.

First, we propose a redundancy lower bound and a distributed opportunistic algorithm, to
adapt coding to network conditions and allow reliable data delivery in a wireless mesh. We
believe that application requirements have also to be taken into account. Since network coding
operations introduce a non negligible cost in terms of processing and memory resources, we
extend the algorithm to consider the physical constraints of each node while still guaranteeing
data delivery at destination.

Then, we study the interactions of intra-flow coding with TCP and its multi-path extension
MPTCP. Network coding can indeed enhance the performances of TCP, which tends to perform
poorly over lossy wireless links. We investigate the pratical impact of fairness issues created
when running coded TCP flows besides legacy non-coded TCP flows. Finally, we explore two
different ways to enhance the performance of MPCTP in wireless environments: running it over
network coding, and implementing the coding process directly in MPTCP while keeping it fully
TCP-compatible.
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Chapter 1

Introduction

1.1 Context and objectives

Since the early 1960s computer networks and their usage have drastically changed, whereas
packet transmission principles have surprisingly stayed roughly the same.

Even if we nowadays use wireless access most of the time, packets are still transmitted from
one hop to the next as unalterable pieces of data in most situations. Yet this fundamental
paradigm has recently been challenged by new techniques like network coding, which promises
network performance enhancement given the assumption that nodes can mix packets together.

Wireless networks are widely used today with WiFi 802.11 and 3G/4G/LTE as predomi-
nant technologies connecting consumer mobile devices. In the future, mobile devices will need
connectivity from everywhere, smartphones will generate even more wireless traffic, everyday
objects will be connected to wireless networks, cars and drones will need reliable transmissions
with ground stations and between them.

Yet, wireless networks still suffer from high loss rates due to obstacles, interferences, or
movements. The link quality can drop and cause packet loss on the channel. MAC layer
protocols implement retransmissions in order to partially solve this issue, however, losses can
still happen at upper layers after a number of transmission retries.

These issues are worsened in wireless mesh network topologies with potential network re-
lays. The increased number of relays not only increases interferences, but the multiple wireless
hops lead to increased loss at destination. With these topologies, MAC layer protocols can be
inefficient at preventing a sufficient proportion of losses to make the network reliable enough
for most applications.

Network coding deployment for wireless networks has been subject to a growing attention
from researchers since its introduction in [1]. It has been acknowledged as a way to improve
capacity and reliability in computer networks.

In particular, wireless networks, thanks to their inherent broadcast nature and overhearing
capability, are considered as very suitable environments for applying network coding.

Network coding is a family of techniques based on the following principle: instead of for-
warding packets one by one, network nodes combine several original packets into one coded
packet, also called combination, before transmitting it. The process of combining the packets is
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referred to as coding, and the process of retrieving original packets from coded packets is called
decoding.

Depending on its applications, the benefits are multiple: thanks to network coding, the num-
ber of transmissions required to transmit data across a network can be substantially reduced,
packet loss can be prevented and flow reliability can be increased.

Network coding techniques can be divided in two complementary families:

• Inter-flow coding: the goal is to reach maximal network capacity in topologies where
conventional forwarding fails to do so, by coding together packets from different flows
going through a node.

• Intra-flow coding:

– For multicast flows: like inter-flow coding, the goal is to reach the maximal capacity
in the multicast tree compared to traditional multicast.

– For unicast flows: the goal is to enhance reliability of lossy networks by combining
packets from the same flow, network coding acts as a hop-by-hop erasure scheme.

In this work, we primarily focus on the application of intra-flow network coding to unicast
flows in wireless networks. The main objective is to consider network coding applications to
enhance reliability of data transfers over wireless links, and to discuss deployment opportunities
and performance.

One of the main features of intra-flow network coding is to prevent losses. With intra-flow
coding, the original packets can be decoded when enough combinations are received, whichever
combinations are actually received. It acts as a hop-by-hop erasure code, enabling to recover
packets in the presence of packet losses.

This property can also increase reliability in topologies where multiple potential paths are
available, for instance wireless meshes, since the end-to-end flow can be switched seamlessly to
the active paths when one of the paths fails.

When intra-flow network coding is deployed for unicast flows, it is necessary to guess the
number of combinations to generate at the source and at relays, in order for the destination
to be able to decode the original packets. The ratio between sent combinations and original
packets is called the redundancy factor, and it is therefore a crucial parameter for intra-flow
network coding.

If redundancy is too low, it is not sufficient to recover the losses. The flow might actually
perform worst than a flow running without coding, due to entire groups of packets being dis-
carded because they are not decodable, causing significant grouped losses. If redundancy is too
high, network overhead is increased and network tends to be congested for no benefit in terms
of application performance.

For intra-flow network coding to perform well, the redundancy factor should be tuned ac-
cording to network characteristics. In addition, adapting redundancy should be considered if
network conditions are subject to changes.

However, even when information on link quality is available, tuning the redundancy conse-
quently is not trivial, and several works rely on empirical formulas leading to over-redundancy
situations. In this work, we propose a redundancy model to easily evaluate a possible redun-
dancy bound.

12



We believe that choosing the redundancy value should take into account not only the network
characteristics, but also the application requirements and its tolerance in terms of loss rate.
Thus, we derive a recommended minimal redundancy value for a link taking into account the
maximum loss rate the application may tolerate.

We then extend the model to allow redundancy adaptation for a whole network. We propose
a distributed algorithm for each node in a wireless network to set the redundancy factor and
provide a reliable data delivery for the unicast flows. A distributed approach has the advantage
to be feasible in practice compared to a centralized approach.

Coding and decoding operations induce a noticeable processing overhead. They require
a noticeable amount of processing power and memory space compared to traditional packet
forwarding. For mobile nodes, it also means more battery consumption.

Therefore, the capacity of a node to contribute to the network coding process depends on
its hardware capabilities and on its current status. For instance, it is more optimal to have the
coding operations supported by a node connected to the mains power supply than by another
node operating on low battery.

The idea is, in a collaborative mesh network, to push traffic to the nodes which are the most
able to code. In our work, we propose to take nodes constraints into account in the distributed
redundancy estimation scheme.

As stated above, network coding is a promising approach for improving throughput, relia-
bility and robustness for wireless networks. However and despite its potential, we still seem far
from seeing widespread network coding implementations and deployments across networks.

Some authors argue that a major reason is that it is not clear how to naturally add network
coding to current network systems, how to incrementally deploy it, and how network coding
will behave in the wild.

The interaction of network coding with TCP is one of the current deployment issues, because
TCP is nowadays the predominant transport protocol in the Internet.

It is well documented that TCP performs poorly over lossy links, since it interprets packet
losses as congestion signals [2]. Link loss are extremely uncommon on wired channels, so tradi-
tionally, the only possible source of loss is network congestion.

Since intra-flow network coding is able to enhance flow reliability and performance, it seems
perfectly suited to run TCP on top to boost performance. Indeed, network coding allows to
mask link losses, preventing the need for retransmissions that TCP could interpret as congestion
signals and preventing useless congestion window decrease.

However, network coding deployment with TCP also raises concern related to flow fairness.
Normally, TCP flows share the available bandwidth thanks to their congestion control algo-
rithm. Yet, most of the time, the congestion signal is packet loss. Intra-flow coding hides losses
from TCP independently of their cause, so congestion losses are hidden just like link losses.
Therefore, TCP flows running over network coding could take an unfairly big part of the avail-
able bandwidth when running beside legacy non-coded flows. In the worst cases, non-coded
TCP flows could even starve and fail.

We address, in this work, the fairness issue between coded TCP flows and non-coded TCP
flows and define a new fairness index to study the implications of running parallel coded and
non coded TCP flows.
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Multi-path TCP (MPTCP) is a recently standardized TCP extension. It aims at spreading
a single TCP connection over several physical paths. Its interest has been demonstrated for data
centers, and also for mobile devices featuring multiple radio interfaces, like a smartphone with
WiFi and LTE. Indeed, it showcases several advantages: it improves connectivity and quality
of service, increases throughput by allowing the use of multiple interfaces for data transfer, and
seamlessly handles handover and traffic offload from congested radio access networks [3].

Since it is based on TCP and relying on the same mechanisms, MPTCP is also subject to
the similar drawbacks, especially sensitivity to link loss, which can be an issue in scenarios with
multiple radio interfaces. In this work, we study the benefits of running MPTCP over network
coding.

Moreover, we investigate a network coding based solution to the head-of-line blocking issue
for MP-TCP. The issue happens when the global MPTCP window cannot move forward since
packets scheduled on the failing path are missing. In this work, we propose a protocol sending
coded segments over TCP subflows. This approach allows to overcome head-of-line blocking
while keeping full TCP retro-compatibility.

1.2 Contributions

In this work, we propose the following contributions:

First, in chapter 3, we derive a minimal redundancy bound to set the network coding
redundancy according to the link quality and the targeted maximum application loss rate. We
then propose a distributed algorithm for redundancy adaptation and reliable data delivery. The
algorithm allows the data producer to opportunistically make use of multiple available paths
to route the coded packets to destination while offering on optimized redundancy control and
offering an overall reliable data delivery.

Since network coding operations can show a non-negligible cost in terms of computing,
storage and power consumption, we also present in chapter 4 an extension of the algorithm which
considers the capacity of each node to contribute to the encoding operations. The constraints
are taken into account when forwarding the packet combinations while guaranteeing decoding
at destination.

Then, we study the interaction of network coding with TCP and its extension MPTCP.

In chapter 5, we study the impact of fairness issues happening when non-coded TCP flows
run besides coded TCP flows. In order to evaluate fairness properly, we introduce a new fairness
index.

In the following chapters 6 and 7, we explore two different approaches to enhance MPTCP
performance with intra-flow network coding: first by running MPTCP over network coding,
then by implementing network coding directly in MPTCP.

Since it is based on TCP and relying on the same mechanisms, MPTCP is also subject from
similar drawbacks, especially sensitivity to link loss. Therefore, in chapter 6, we first study the
benefits of running MPTCP over network coding.

In order to go further in the investigation of network coding as a solution to the head-of-line
blocking issue, we designed a practical MPTCP extension, MultiPath Coded TCP (MPC-TCP),
exposed in chapter 7. The core idea is, rather than running MPTCP over network coding, to
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implement directly network coding in MPTCP, while keeping a strict retro-compatibility. This
aim is to increase resilience, improve overall performance, while still guaranteeing TCP retro-
compatibility for middleboxes traversal.
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Chapter 2

Background on network coding

This chapter presents basic concepts on network coding, especially linear network coding. Its
objective is not in any way to compile a comprehensive survey of the network coding field, but
rather to introduce the basic elements that are necessary to this work.

We will first define network coding and present related general concepts, in particular the
two different approaches: inter-flow coding and intra-flow coding.

Then, we will introduce opportunistic routing, a routing principle for wireless networks that
can benefit from the introduction of network coding.

2.1 Introduction to network coding

2.1.1 Definition and benefits

We can define network coding as follows [4]:

Definition 1. Network coding is a technique which allows network nodes to combine several
native packets into one coded packet for transmission instead of simply forwarding the original
packets one by one, in order to maximize network capacity.

In this definition, combining packets can refer to any method producing output packets from
a set of input packet, while still carrying part of the information. In practice, combining involves
bitwise XOR operations between packets, i.e., logical exclusive OR between corresponding bits,
or more generally linear combinations of packets.

Network coding can be seen as an alternative to packet forwarding in a network. It provides
two main benefits: enhancing throughput and enhancing reliability.

It has been proposed with the benefit of maximizing network capacity, i.e., the maximum
traffic the network can convey from sources to destinations. The well-known butterfly topology
(Fig. 2.1) typically illustrates a case where network coding clearly outperforms packet forward-
ing.

Let’s consider two source nodes transmitting two different flows A and B in a butterfly-
shaped network with three routes to two destination nodes. Each destination node wants to
receive both flows, and each link is assumed to have a capacity of one packet per time unit and
no loss.
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Figure 2.1: Butterfly topology without (left) and with (right) network coding

If classical forwarding of packets is used (left), only one packet can be transmitted on each
link per time unit. In particular, the central link would not be able to carry both flows A and
B at the same time, but only one packet of each flow per time unit. Therefore, the maximum
throughput for each flow is 1.5 packets per time unit, and network capacity is 3 packets per
time unit.

With network coding, the central link can perform bitwise XOR operations between packets
received from A and B. In this case, it is sufficient for the two destinations to decode both A
and B, simply by XORing the received packets again. Network coding allows to transmit 2
packets per time unit for each flow, enhancing network throughput to 4 packets per time unit.

In addition to this advantage for network throughput enhancement compared to traditional
packet forwarding, network coding can also enhance the reliability of unicast flows.

Indeed, network coding provides benefits over retransmissions. Conventional retransmission
mechanisms, e.g., Automatic Repeat reQuest (ARQ), require determining whether each packet
is properly received or lost, in order to perform a retransmission of this individual packet. With
network coding, the source can combine packets to transmit together, then, the destination
only has to get enough combinations to decode the information. Thus, the source does not care
about which specific pieces of data to retransmit.

Network coding also allows to send more combinations than original packets. The destination
only needs to get as many combinations as original packets to achieve decoding, therefore original
data can be recovered even if some packets are lost.

This advantage can be leveraged when overhearing nodes can perform opportunistic retrans-
missions. With simple forwarding, neighbor nodes would have to explicitly exchange informa-
tion to perform retransmission, because a missing packet at destination can only be fixed by
retransmitting this exact packet. Network coding can solve this problem transparently since
any innovative combination can be used to decode the original packets.

As stated above, this is however at the expense of an added decoding delay. In network
coding, there is obviously a tradeoff between the cost of coding operations and the performance
benefits the coding provides. The challenges when implementing applications based on network
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coding is to find a balance between the cost and benefits.

2.1.2 Linear Network coding

Most practical works on the subject make use of linear network coding. Linear coding uses
linear algebra to achieve packet coding: packets are considered as vectors and the combinations
of packets are linear combinations. It has been proven that linear coding is sufficient to achieve
the optimal throughput in multicast situations [5].

The coefficients chosen to compute combinations can be obtained in two manners:

• Deterministic linear coding: coefficients are deterministic and derived from a known algo-
rithm

• Random linear coding: coefficients are randomly or pseudo-randomly generated

It has been demonstrated that random coefficients for linear network coding nearly allow
to reach network capacity in broadcast transmission schemes like wireless networks using a
decentralized algorithm, provided the field size is sufficiently large [6].

The larger the field size, the higher the probability for the receiver to obtain linearly in-
dependent combinations. In practice, a field of 28 elements is used most of the time since it
is sufficient to achieve a good decoding probability, and it allows better performance. The en-
hanced performance comes from the fact that symbols in this field are actual bytes. This allows
to manipulate packet data directly without bit masks, and eases their manipulation as most
systems operate on byte basis and not bit basis.

2.2 Network coding approaches

Considering the flows from which the packets are coded together, we can distinguish two main
categories of approaches: inter-flow coding and intra-flow coding.

2.2.1 Inter-flow coding

Inter-flow network coding aims at maximizing network capacity by combining packets from
different unicast flows at relays.

Packets from different flows are combined together in order to send less packets and reduce
wireless transmission time. The idea is to to transmit only the necessary information accross
links. The spared transmission time is available for other flows. The result is an increased
throughput for each flow, and increased network capacity. The butterfly network presented in
the previous section (Fig. 2.1) shows a classic example of how the available throughput can be
increased.

One of the pioneering works for inter-flow network coding in wireless networks is COPE
[7]. Each node taking part in COPE opportunistically combines packets belonging to different
unicast flows. Like most inter-flow coding schemes, packet combinations are performed with
XOR operations. COPE infers coding opportunities, i.e., packets that can be coded together
and sent only once, from the knowledge of packets heard by each neighbor. The information is
gathered by listening transmissions from neighboring nodes.
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2.2.2 Intra-flow coding

Intra-flow network coding enables to increase flow reliability by combining packets from a single
flow together. The idea is to send combinations of outgoing packets from the same flow rather
than sending the packets themselves.

At destination, Gauss-Jordan elimination is performed and all packets can be recovered if
enough independent linear combinations have been received. Depending on the coding imple-
mentation, intermediary nodes can either recode packets by mixing forwarded combinations, or
just forward them.

To compensate losses, more combinations than original packets can be generated. At destina-
tion, original packets can be decoded, provided enough independent combinations are received.

2.3 Intra-flow coding applications

Intra-flow network coding can how interesting advantages for multicast or unicast flows.

2.3.1 Intra-flow coding and multicast traffic optimization

When a unique source use a multicast flow to reach multiple destinations, packets follow a
multicast tree. If branches of the tree have common nodes, intra-flow coding can enhance
the capacity along the tree in the same way inter-flow coding can enhance network capacity,
therefore increasing the possible multicast flow throughput.

To illustrate this benefit, let’s consider a source node multicasting in a butterfly-shaped
network with three routes to two destination nodes (Fig. 2.2). Each destination node wants to
receive the entire multicasted flow, and each link is assumed to have a capacity of one packet
per time unit and no loss.

If only classic forwarding of packets is allowed (left), only one packet can be transmitted
on each link per time unit. Therefore, the maximum throughput for the flow is 1.5 packets per
time unit to each destination, i.e., 3 packets per time unit in total.

With intra-flow network coding (right), similarly to the inter-flow butterfly topology case,
the total throughput can be enhanced to 4 packets per time unit.

2.3.2 Intra-flow coding and unicast flow reliability

In its common use case, intra-flow coding can enhance reliability of unicast flows on lossy
networks by coding packets from the same flow together. Since it allows generating a virtually
infinite number of combinations from a set of outgoing packets, it can be considered as a form
of fountain code, a class of erasure codes.

The fountain codes like Luby Transform code (LT code) [8] and the more efficient Raptor
code [9] are indeed well-known solutions to the problem of packet transmission over lossy links,
as they are the first practical realizations of fountain codes that achieve near-optimal erasure
correction.

However, typical usage cases of fountain codes are quite different. Fountain codes are indeed
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Figure 2.2: Multicast without (left) and with (right) network coding

designed to operate end-to-end only, contrary to network coding which allows to recoded on
relay nodes, and they imperatively need a feedback channel to notify the source that the entire
block of data has been decoded. Hop-by-hop network coding is clearly a better choice than
end-to-end coding to deal with link loss, since packet loss happen on each link.

Moreover, they aim at being light in terms of processing power rather than being efficient
in terms of coding. In pratice, their efficiency is random and the destination needs way more
coded packets than original packets to be able to decode.

2.4 Intra-flow coding implementation methods

2.4.1 Network coding redundancy

Intra-flow network coding allows to send more combinations than original packets in order to
increase flow reliability. Thus, a flow can sustain a number of packet loss while still conveying
the original data. The enforced ratio between sent combinations and original packets, called
the redundancy factor, is a critical parameter.

The redundancy factor should be large enough to compensate link losses and guarantee
enough combinations at reception to ensure the packets are decoded. However, setting it too
high can lead to useless overhead and network congestion.

For instance, if the sender has 3 packets to send, it may send 4 combinations in order
to protect the packets from loss (Fig. 2.3). In that case, the redundancy factor r is 4/3. If
any of the combinations is lost, the destination can still decode the original packets without
any difference. Note that if none of the combinations is lost, the destination simply ignores
the supernumerary combination because it doesn’t bring new information and is useless to the
decoding process. Such a combination is called non-innovative.
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Figure 2.3: Network coding redundancy example with 3 original packets and 4 combinations
(redundancy factor r = 4/3)

2.4.2 Generation-based coding

To implement a network coding system, it is necessary to identify which packets generated by
the source to code together. One of the most well-known approach is called generation-based
coding.

Computation needed for coding and, more particularly, decoding, primarily depends on how
many packets are coded together. Due to technical constraints, in practical implementations,
a common technique is to group packets in consecutive batches, called generations. Packets
belonging to the same generation are coded together.

The primary goal is to reduce processing time at the source, where per packet processing is
roughly in O(n), and even more at destination, where it is in O(n2) (Gauss-Jordan elimination
has complexity O(n3) to decode n packets). The secondary goal is to reduce buffering delays,
since packets of the same generation must be cached together.

Small generations allow to reduce processing time and delay. However, they also reduce
the efficiency of network coding. The main reason is obvious: the destination needs enough
packets from a specific generation to perform decoding of this generation. Therefore, smaller
generations tend to suffer from the same drawback as packet forwarding. Traditional forwarding
can be seen as a generation of size 1.

Considering they way the packet are coded together inside a generation we can distinguish
two kinds of methods:

2.4.2.1 Batch coding

In Batch coding, the source randomly combines packets of the same generation together (Fig. 2.4).

Definition 2. Batch coding Let m be the generation size and P1, ..., Pn the original packets,
then for each combination Cg,i in generation g, it exists ag,i,1, ..., ag,i,m such as

Cg,i =

m
∑

j=1

ag,i,jPmg+j

22



Sender Receiver

C1 = a1,1P1 + a1,2P2 + a1,3P3

C2 = a2,1P1 + a2,2P2 + a2,3P3

P1

P2

P3

P1, P2, P3

C3 = a3,1P1 + a3,2P2 + a3,3P3

C4 = a4,1P1 + a4,2P2 + a4,3P3

Figure 2.4: Batch coding principle with a generation size m = 3 and one redundant combination

2.4.2.2 Pipeline coding

Pipeline coding [10] is a generation-based network coding scheme developed for low-delay trans-
missions. It is particularly suitable for real-time interactive and multimedia sessions. Addition-
naly, it works well when combined with TCP protocol based applications. The reduced coding
delay avoids TCP congestion control timeouts to be trigged and the connection to be stall.

Pipeline coding encodes and decodes packets progressively. Its principle is to store outgoing
packets in a coding buffer and to send combinations from it as soon as possible. When a
new packet arrives from the application, it is added to the coding buffer and one or more
combinations (on average r, where r is the redundancy factor) is immediately sent (Fig. 2.5).

When the coding buffer is full, i.e., the number of packets reaches the generation size, it is
cleared for a new generation. A small generation size means less computation is required and
reduces decoding delays, making however the flow more sensitive to sudden increases in the loss
rate.

Definition 3. Pipeline coding Let m be the generation size and P1, ..., Pn the original packets,
then for each combination Cg,i in generation g, it exists ag,i,1, ..., ag,i,i such as

Cg,i =

i
∑

j=1

ag,i,jPmg+j
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Figure 2.5: Pipeline coding principle with a generation size m = 3 and one redundant combi-
nation
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2.4.3 Sliding-window coding

Sliding-window coding is an alternative to generation-based network coding. It allows to smooth
the coding and decoding process and perfectly suits protocols already using a transmission
window, for instance TCP (as in TCP/NC [11]), however it has the drawback of requiring a
form of feedback.

The principle is to use a sliding window to code packets together. The window moves forward
by removing old packets that are not to be included in the next combinations and adding new
packets generated by the upper layer.

The sliding-window coding scheme needs a feedback from the decoding process to remove
older packets. The packets that can be discarded from the coding process are packets that are
mot needed anymore in order to complete the decoding process.

More precisely, in the Gauss-Jordan Elimination algorithm used for decoding, they are the
packets that can be expressed only with more recent packets, called seen packets (Fig. 2.6).
Formally, a packet Pi is seen if and only if:

∃(αi+1, ..., αm) / Pi =
m
∑

k=i+1

αkCk

Seen packets are not necessary decodable, but since they can be expressed only in the form
of combinations of future packets, they will be decodable in the future even if they do not figure
in incoming combinations anymore. Of course, packets that are not yet seen are called unseen.
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Figure 2.6: Partial decoding highlighting seen packets

2.5 Network coding for opportunistic routing

Applications of intra-flow network coding are numerous, and wireless networks are a particularly
major field of application given the benefits network coding can offer in terms of capacity and
reliability. Specifically, network coding can improve performances of opportunisting routing.

In this section, we quickly present the core principles of opportunistic routing that will be
needed in our work.
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2.5.1 Definition of opportunistic routing

Opportunistic routing [12], contrary to traditional routing, takes advantage of the broadcast
nature of the wireless medium. The principle is that every neighbor can opportunistically serve
as a next hop. Such a routing method is particularly suited for mesh networks.

Intra-flow network coding is particularly adapted to opportunistic routing, since it solves
the issue of which packet to forward. Indeed with network coding, the only requirement for the
destination is to receive enough independant combinations.

The reliability is increased because every neighbor can transmit a packet it receives or hears
(Fig. 2.7). If a packet is not received successfully by a next hop, it can nevertheless be forwarded
by another one.

The gain comes at virtually no cost thanks to the broadcast nature of WiFi: a packet only
has to be transmitted once to have a chance to be received by any neighbor.

S D

R1

R2

Traditional path

Opportunistic path

Figure 2.7: Opportunistic routing principle: neighbor node R2 can also serve as a potential
relay, adding possible paths.

To highlight the reliability benefit of opportunistic routing, we take the following example:
The source node S wants to transmit a packet to a destination node D, and 3 potential relays
R1, R2 and R3 are available (Fig. 2.8). If we assume the loss rate to each relay is p = 0.1, with
traditional routing, S choses only one relay (e.g., R2), and the actual loss rate is 0.1. However,
with opportunistic routing, the packet is lost only if it is received by none of the relays, so the
actual loss rate becomes p3 = 0.001, which is negligible in comparison with traditional routing.

However, opportunistic routing present a non-negligible drawback. The destination needs
to receive every packet at least once, and forwarding a single packet multiple times is useless
and can lead to a waste of resources. Therefore, a form of synchronization between nodes is
needed to determine which packets to forward.

ExOR [13] can be considered as the first practical opportunistic routing system. To reduce
the coordination overhead between candidate relays, in ExOR the packets to be transmitted
are grouped into batches according to their destination node.

For each packet of the same batch, the source node selects a subset of optimal candidate
forwarders, which are prioritized by closeness to the destination. Nodes in ExOR employ the
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Figure 2.8: Opportunistic routing advantage: overall packet loss is reduced when multiple relays
are available

ETX [14] metric to define the shortest path from the source to the destination. The list of
selected forwarders, sorted by node priority, is added to the header of each packet broadcasted
by the source. Hence, each node receiving a packet knows whether it has to participate in the
forwarding process or not, and its position in the forwarding schedule.

The first practical system to combine intra-flow linear coding with opportunistic routing is
MORE [15]. In MORE, packets are grouped into batches, linear combinations of packets from
the same batch are sent to neighbor nodes. Upon opportunistically overhearing combinations,
potential relays may generate new combinations.

In parallel, to guarantee decoding at destination, MORE implements a Stop-and-Wait Au-
tomatic Repeat Query (ARQ) mechanism with explicit control messages: the source continues
generating new combinations from the same batch until it receives an acknowledgement from
the destination.

Two enhancements of MORE, CodeOR [16] and SlideOR [17], have been proposed to enhance
its performance. They aim at upgrading the potentially inefficient stop-and-Wait mechanism,
which can be inefficient in terms of bandwidth utilization when network delay is high.

Instead, CodeOR allows the source to transmit multiple batches, called segments, so that
more packets can be transferred. Moreover, intermediate nodes can start processing a new
segment if possible. Besides the end-to-end acknowledgement inherited from MORE, CodeOR
also deploys hop-by-hop acknowledgement which is generated by an intermediate node to inform
its upstream nodes that it have received a full segment and forward it to the destination without
any further assistance from the upstream.

SlideOR [17] an enhancement for CodeOR. In the manner of a sliding-window, multiple
segments in SlideOR can be overlapped and each receieved end-to-end acknowledgement con-
tributes to slide the segments.

In [18], the more MORE protocol has been successfully implemented and tested in real-
istic simulations with promising results, proving the gain of intra-flow network coding with
opportunistic routing in a wireless network.

OMNC [19] is a rate control and routing protocol that aims at improving the end-to-end
throughput of lossy wireless networks. OMNC uses multiple paths to push intra-flow coded
packets to the destination. In OMNC, the coding and broadcast rate are allocated to trans-
mitters through a distributed optimization algorithm that maximizes the advantage of path
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diversity while avoiding congestion. The coding and broadcast rate of each node are matched
with its channel status to avoid congestion.

2.6 Conclusion

In this work, we focus on linear intra-flow network coding for unicast flows. Intra-flow linear
coding has become a well investigated technique for reliable transfer over lossy networks. It
showcases two main benefits: it increases transmission reliability by preventing packet losses,
and it simplifies retransmissions, because there is no need to retransmit specific pieces from
original data.

Intra-flow network coding is particularly suited for wireless networks, especially for the ones
relying on opportunistic routing. Indeed, contrary to wired links, wireless links are characterized
by high packet loss rates, because packets might be lost during transmission on a link due to
interferences or obstacles.

With intra-flow coding, the source node generates random linear combinations for each batch
of outgoing packets. To compensate losses, more combinations than original packets may be
sent. Network coding allows to send more combinations than original packets.

The destination only needs to get as many combinations as orginal packets to achieve decod-
ing, therefore original data can be recovered even if some packets are lost. The ratio between
sent combinations and original packets is called redundancy factor. Adapting the redundancy
factor is critical so data is received properly and the overhead is kept low. We believe it should
be done by taking into account application requirements. That is what we are going to defend
in the next part.
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Part I

Redundancy adaptation
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Chapter 3

Dynamic redundancy

3.1 Objective and Motivations

One of the benefits of linear intra-flow network coding is to transparently recover from link
losses. To recover losses, the system only needs to ensure the destination gets enough innovative
combinations as any innovative combination can contribute to the decoding process.

Another main application of network coding is opportunistic routing that has emerged as an
interesting approach to resist losses in error-prone environments. In conventional networks, the
routing process chooses, for each packet, the next hop before any transmission. However, when
the links are lossy, the probability of packet transmission is very low, leading to performance
degradation. In contrast, opportunistic routing allows any node receiving packets to participate
into forwarding them to the destination.

Self-organized networks, used for instance by the army or by disaster response teams, often
have unplanned and variable topology, and are characterized by high packet loss. In such
environments, not only intra-flow network coding can perform well, the topology offers also a
interesting opportunities for opportunistic relaying. Using opportunistic routing is an additional
way to recover from link losses, and the routing can also benefit from intra-flow network coding.

When generating combinations at the source, or regenerating new combinations at nodes, it
is critical to make sure that the destination node can solve the system of equations corresponding
to the received combinations so that the original data can be decoded. This is possible only
if the rank of the system is sufficient, i.e., the destination gets at least the same number of
linearly independent combinations than original packets to decode.

Therefore, in lossy environments, nodes need to generate more outgoing coded combinations
than incoming packets to mitigate losses. The ratio between outgoing and incoming packets is
called redundancy.

Redundancy adaptation is a key issue for network coding. It directly influences application
loss, network overhead and congestion. It also indirectly affects, for instance, flow fairness,
as we will see in chapter 5. Using fixed code redundancy can lead to a waste of bandwidth
in case of over-redundancy or unsuccessful decoding due to an insufficient number of available
independent combinations.

In this chapter, after reviewing existing redundancy control mechanisms, we present our
first contribution. We derive a simple redundancy bound to set the network coding redundancy
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according to the link quality and the targeted maximum application loss rate.

Then, we propose a distributed scheme which allows each data producer to opportunistically
make use of multiple available paths in the network to route the coded packets to the destination
offering a reliable data delivery with an optimized redundancy control. We restrict the study
to only one destination node, even if the work could be extended to multiple receivers.

Finally, we discuss the operating mode of nodes, as they can either send combinations as
soon as possible or wait for a complete batch. Indeed, this behavior has a significant impact on
performance.

3.2 Redundancy control mechanisms

Various redundancy adaptation mechanisms have been proposed. Most of the time, they are
introduced as a simple feature of a full-featured network coding scheme. The majority of them
rely only on packet losses to adapt the redundancy with different methods.

Redundancy is a parameter of primary concern for network coding schemes in current net-
work systems, especially wireless environments. However, in the literature, most of the works
use simplistic methods to evaluate the redundancy, emphasizing on other aspects of their de-
velopments.

There are different approaches to adjust code redundancy:

• Static redundancy: the nodes generate combinations with a static redundancy ratio, with-
out considering network environment.

• Adaptive redundancy:

– Loss rate measurement: nodes estimate the necessary redundancy by measuring
packet loss over network links. the sender injects probe packets into the network.
Based on the number of received and lost probe packets, the sender can guess the
loss rate and adapt the sending rate.

– Explicit feedback: the receiver provides a direct feedback to the sender, i.e., the
number of lost packets. The sender can use the feedback directly or indirectly to
adjust the redundancy factor.

3.2.1 Static redundancy

The simplest method is to define a static redundancy. The redundancy factor is pre-set according
to the expected network characteristics and does not evolve over time. If it is set too high, it
generates useless traffic, wasting network resources, and if set too low, the receiver might not
be able to recover sent packets.

In the literature, some works have used static redundancy.

In CodeCast [20], network coding is used for intermittent multicast ad hoc networks. Its
aim is to show the potential of random linear coding in implementing path diversity and lo-
calized loss recovery for multicast video streaming scenarios. CodeCast successfully manages
to control packet loss while at the same time keep the latency of multimedia applications in
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check, yet it assumes fixed redundancy, which needs to be manually adapted for optimal network
performance.

TCP/NC [11] proposes to run a modified TCP stack over sliding-window coding. Its goal
is to enhance the TCP flow throughput by protecting TCP from random losses. Indeed, losses
are interpreted by TCP as congestion signals and TCP tend to reduces throughput uselessly
as a result. In the first version, the redundancy factor is static, and therefore should be tuned
manually according to network conditions.

3.2.2 Loss rate measurement

The first way to adapt the redundancy is to measure the loss rate. This can be done using
probe packets or performing measures on already sent packets.

3.2.2.1 Using probe packets to estimate loss rate

The first family of methods uses probe packets to estimate the loss rate. The sender injects
probe packets into the network, then, based on the number of received probe packets, it is able
to measure the loss rate and adapt the code redundancy. Another possibility is for the sender
to take advantage of previous traffic, since counting lost packets enables to estimate the current
loss rate.

In MORE [15] to resist random losses, the authors suggest sending probe packets to predict
the loss rate. MORE uses the Expected Transmission Count (ETX) metric to infer the number
of combinations a node should forward. The ETX metric for a link is defined as 1

1−p
, where p is

the link loss probability [14]. To estimate this probability, nodes rely on probe packets regularly
sent over each link.

CodeOR [16] and SlideOR [17] are enhancements of MORE. They use the same mechanism
to estimate the loss rate. They have been proposed to enhance MORE in terms of bandwidth
utilization.

In short, probing based loss measurement provides a simple solution to locally adapt the
redundancy factor, however, it introduces a non negligible overhead and may not reflect the
instantaneous link quality due to the changing network conditions.

3.2.2.2 Using sent packets to predict the loss rate

In other existing works, the loss rate is inferred through the number of sent packets, as in the
following works: Combo Coding [21] has been developed to enhance the performance of TCP
on wireless networks. To this end, it features a mix of intra-flow Pipeline Coding with adaptive
redundancy and inter-flow coding of TCP ACKs with TCP DATA. In this scheme, since the
integration with TCP is rather tight, code redundancy is adjusted using feedback messages
piggybacked by TCP acknowledgments, but to be sure to prevent under-redundancy, the way
of adjusting redundancy may possibly lead to over-redundancy situations in most cases.

CodeMP [22] an extended version of Combo Coding for TCP traffic in MANETs. It is
also based on Pipeline Coding and works with the same redundancy adaptation scheme, but,
contrary to Combo Coding, it features multi-path routing. It that has been shown to perform
particularly well in disruptive networks.
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In Combo Coding and CodeMP, to estimate per link loss rate, the number of coded packets
received in the current generation is piggybacked on TCP ACKs. Provided TCP ACKs are
routed on the same path as TCP DATA in the network, and knowing the number of generated
packets in the generation recorded locally, each node can obtain the loss rate p as a simple ratio
and smoothed with an exponential moving average. Then the redundancy is estimated as:

r = (K − 1) +
1

1− p
(3.1)

where K is the base redundancy that is needed at node i in the absence of losses. K is used to
introduce extra redundancy to compensate for local loss rate variations. In the tests, K = 1.4,
which potentially leads to a redundancy factor set way too high, leading to a huge overhead.

In I2NC [23], a scheme mixing inter-flow and intra-flow network coding, the intra-flow re-
dundancy factor is estimated according to the link loss rate at each hop. The link loss rate
is calculated at each intermediate node as one minus the ratio of correctly heard packets in a
generation, then broadcasted to neightbors, and averaged with a moving average.

Measurement based on sent packets tends to reflect the links quality better than using
probe packets. However, this requires acknowledgements at link level. It’s only possible to
piggyback on other protocols acknowledgements, like TCP ACKs, if the go through the same
links. Besides, this requires elaborate mechanisms to have relays cooperate.

3.2.3 Explicit feedback

Other methods to adapt redundancy are based on Automatic Repeat Query (ARQ) mechanisms.
They make use of explicit feedback with acknowledgements from the destination. Network
coding does not require selective acknowledgements, since the destination only need to inform
the source of the number of combinations to generate. The source reacts to the information in
two distinct manners:

• It resends enough combinations so that the receiver can decode the current generation.

• It updates its redundancy factor for future data, to allow the receiver to be able to decode
next generations without asking for more combinations.

The explicit feedback provides immediate reaction to present loss and adaptation to future
loss. It can work between source and destination only (end-to-end) or between each relay node
(hop-by-hop).

In the literature, several works rely on explicit feedback to adapt the redundancy. The first
version of TCP/NC [11], uses a form of intra-flow coding with static redundancy. Since this is
not flexible enough, Adaptive TCP/NC (ATCP/NC) [24] has been introduced afterward.

The main idea of ATCP/NC is to adjust dynamically r to an optimal rate based on the actual
network conditions, which can be detected by collecting the feedback information available.

To accomplish this objective, the authors make use of the TCP Vegas loss predictor to
detect when congestion is present in the network, in conjunction with the number of duplicate
ACKs generated by the receiver. The main goal is to address the inability of the standard TCP
protocol to distinguish between congestion losses and random packet losses happening when
transmitting over a lossy link.
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The authors implement the Vegas Loss Predictor at the NC layer to adjust the redundancy
factor R dynamically. The expected throughput is given by window

BaseRTT
, where window is the

difference between the SEQs of the newest and oldest byte involved in the coded packets in
transmission and BaseRTT is the RTT of a segment when the connection is not congested.

The measured throughput is given by windowAcked
RTT

, where windowAcked is the number of
bytes ACKed during the last RTT, and RTT is the sample RTT of the received segment. To
estimate the cause of the packet losses, the parameter qv is calculated as:

qv = (
window

BaseRTT
− windowAcked

RTT
)BaseRTT (3.2)

Given two thresholds α and β, if qv ≥ β, the network is too lossy. If qv ≤ α, random losses,
and finally if α < qv < β, the predictor assumes the network is stable. In pratice, α = 1 and
β = 3 are recommended values.

This redundancy control defines a loss differentiation scheme with the help of the Vegas
Loss Predictor. Basically, each time an ACK is received, qv is evaluated. If the value is below
the threshold, it indicates the transmitting channel is noisy and causes random losses. In these
situations, the correct approach is to increase r to mask the losses. Else, r is decreased, allowing
TCP to also reduce its rate.

CCACK [25] has been proposed as a scheme for opportunistic routing using intra-flow net-
work coding and featuring an elaborate acknowledgement system. To avoid network conges-
tion, in CCACK, downstream nodes to inform upstream nodes whatever is exactly stored in
their buffer in a Cummulative Coded Acknowledgement. The CCACK is a compressed version
of multiple single ACKs from downstream nodes to upstream nodes. Instead of every ACK
transmission to inform the upstream, the most idle downstream node can send the CCACK, its
neighbors can overhear and suppress sending the CCACK. This can help to reduce the overhead
and provide a good approach to resist the random losses.

In DynCod [26], the authors suggest an intra-flow network coding scheme with end-to-end
adaptive redundancy control inspired from TCP/NC. The main idea is for the destination to
inform the source about packet losses and about the decodability of the last data sent, via
acknowledgement packets. Particularly, the authors change the meaning of TCP ACKs: the
destination does not only acknowledge degrees of freedom, but also announces how many unseen
packets there are in the coding window at the destination. The principle is that unseen packets
in the decoding window at destination can be interpreted as losses on the transmission path. For
each packet requested to be sent by TCP, the source will generate one coded packet along with
a number of redundant traffic. The number of redundant packets to generate r is calculated
according to the number of losses, which can be inferred from the number of reported unseen
packets.

To conclude, with explicit feedback, loss rate is not taken into account in determining how
many packets are transmitted. Instead, data arrival at the destination is directly informed to
the source. If the protocol is not end-to-end, it requires control over acknowledgements routing
since information must be piggybacked for use by relays.
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3.2.4 Conclusion

Figure 3.1 sums up the different redundancy control mechanisms. Adaptive rendundancy can
be divided in two categories given the way information is obtained: loss measurement (through
probe packets or through sent packets), and explicit feedback. Feedback allows to keep track
of the decoding at destination, but the required end-to-end feedback with routing through the
same relays make deployment more complex.

Adaptive Fixed

Redundancy control

Loss rate measurement

Probe packets

Explicit feedback

Sent data Data arrival RTT-based

MORE
CodeOR
SlideOR

ComboCoding
CodeMP
CoMP

ATCP/NCCCACK
DynCod

Batch Coding
Pipeline
Coding
TCP/NC

Figure 3.1: Redundancy control for network coding taxonomy

3.3 Redundancy estimation

The first aim of our work is to find a proper way to derive the minimum amount of redundancy
given the network loss rate without relying on coarse average redundancy values. The redun-
dancy setting should offer a proper guarantee in terms of maximum tolerated application-level
loss.

Network coding is performed in batches of m packets, called generations. Redundancy must
be adapted in such a way the rate of undecodable generations caused by an insufficient number
of received combinations is kept bounded.

If the redundancy factor is too low, the destination could be unable to decode part of the
original data. If the redundancy factor is set too high, it leads to a network overhead that
impairs performance.

We believe redundancy is actually a compromise between network overhead and application
tolerance. Depending on the application, for instance file transfer or video streaming, the
tolerance to losses is vastly different.

Therefore, the redundancy adaptation algorithm should not only take into account network
characteristics, but also application requirements. When application requirements are available,
the redundancy factor should be tuned to be sufficient for the application, but not higher.
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3.3.1 Generation loss probability bound

In the following section, we are interested in deriving a minimal redundancy to send traffic over
a lossy link. We want this redundancy bound to take into account both link loss and application
requirements.

We consider a node sending packets to another node over a lossy link with uniform loss
rate p. The sender, in order to send m packets, applies the redundancy ratio r and transmits
n = ⌈rm⌉ combinations.

For the destination to decode the original packets successfully, it is necessary, but not suffi-
cient, that the network coding redundancy compensates link losses on average:

(1− p)r ≥ 1

Moreover, the value of r should not be considerably more than this minimal value, as it
should only be a bit more to compensate variations around the mean.

Therefore we have the constraints:

r ≥ rmin(p) =
1

1− p
and r ≃ rmin(p)

Let X be the random variable corresponding to the number of combinations lost during
transmission. Then the probability P (X > (r−1)m) of losing more than (r−1)m combinations,
i.e., the probability to lose a given generation, follows a cumulative binomial distribution. The
Chernoff bound method as stated in B.1 gives the inequality:

P (X > (r − 1)m) 6 exp (−prm(1− λ+ λ lnλ))

where λ = r−1
pr

L(m, p, r) = exp (−prm(1− λ+ λ lnλ))

= exp

(

−m
p

1− pλ
(1− λ+ λ lnλ)

)

Since r ≃ rmin(p), λ ≃ 1, ln(λ) = (λ− 1)− (λ−1)2

2 + o((λ− 1)2), and 1− λ+ λ lnλ ≃ (λ−1)2

2 ,
we have:

L(m, p, r) ≃ exp

(

−m

2

p

1− pλ
(λ− 1)2

)

= exp

(

−1

2
mpr

(

r − 1

pr
− 1

)2
)

We get the approximated generation loss probability upper bound:

P (X > (r − 1)m) 6 L(m, p, r)

L(m, p, r) ≃ exp

(

−1

2
mpr

(

r − 1

pr
− 1

)2
)

(3.3)
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This generation loss probability upper bound depends on the redundancy r, the loss p, and
the generation size m. As expected, the bound is lower when m is higher and thus a small
generation is lost more easily (figure 3.2). Especially for small generation sizes, the redundancy
should be higher than the minimal redundancy to guarantee low generation losses.
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Figure 3.2: Generation loss probability upper bound given the redundancy factor r for different
values of generation size m (p = 0.1)

3.3.2 Redundancy lower bound

Let τ be the maximum application loss rate. A sufficient condition for the generation loss
probability to be less than τ is L(m, p, r) ≤ τ .

exp

(

−1

2
mpr

(

r − 1

pr
− 1

)2
)

≤ τ

Using the approximation (3.3), we get, after solving the inequation:

r ≥ 1

1− p

(

1 + C

(

1 +

√

1 +
2

C

))

where C =
− ln τ

m

p

1− p

After the resolution and the approximation detailed in B, given the actual parameters values
(in particular p << 1), C << 1, so 1

C
>> 1 and 1 + 2

C
≃ 2

C
, and we get the following lower

bound for r:

r ≥ rbound(m, p, τ) =
1

1− p

(

1 + (1 +
√
2C)2

2

)

(3.4)

Note if
√

− ln τ
m

<< 1 (e.g. m = 64 and τ ≃ 0.01), as (1+
√
2C)2 = 1+2

√
2C + o(

√
2C), we

can use the following approximation:

r ≥ rbound(m, p, τ) ≃ 1

1− p

(

1 +
√
2C
)

(3.5)
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The redundancy lower bound can be calculated given a generation size m, a loss probability p
, and the targeted maximum application loss rate τ .
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Figure 3.3: Redundancy factor rbound given the generation loss probability upper bound τ for
different values of generation size m (p = 0.1)

3.3.3 Non-innovative combinations leading to intrinsic loss

When using random linear coding, combinations are generated with random coefficients. There-
fore, it might happen that several generated non redundant combinations are actually non-
innovative, i.e., linearly dependent. When this happens, the generated combination might be
useless at reception and discarded.

The common method to solve this issue is to keep track of generated combinations and
prevent the generation of non-innovative combinations by checking linear dependency of each
new combination. However, this technique, besides being more costly in terms of resources, is not
applicable with opportunistic routing and multiple relays because a relay could not realistically
keep track of all combinations generated by its neighbors in order to check for linear dependency.

Here we consider this phenomenon as an additional source of loss to be corrected through
redundancy. To estimate the equivalent loss, let us focus on the decoder receiving a new
combination: the situation where it is the most probable that the combination turns to be
linearly dependent happens when the rank is m− 1 and only one more combination is missing,
i.e., the decoder already processed m− 1 combinations. Each of them can be used to eliminate
one component from the incoming combination, and it is linearly dependent if and only if this
also zeros the last component, which happens with probability pint =

1
|GF (28)|−1

since coefficients

are nonzero and uniformly distributed.

Therefore, to compensate for generated non-innovative combinations, we add pint =
1

255 ≃
0.004 to the loss rate.

39



3.4 Distributed adaptive redundancy control

Now that we defined a redundancy bound for a link, we want to derivate a distributed algo-
rithm. Deploying a centralized algorithm to adapt redundancy in a whole network is more
straightforward but prevents scaling and practical deployment.

In this section, we aim at defining a distributed intra-flow network coding scheme with
adaptive redundancy control for reliable data delivery.

The scheme requires no signaling and relies on opportunistic routing: each node can overhear
coded packets sent by its neighbors and thus can participate in forwarding the coded packets
to the destination. The redundancy bound previously defined allows optimizing the number of
redundant combinations a node has to generate towards its neighbors.

More precisely, when a node i overhears a combination sent by a node k to final destination
j (figure 3.4), it executes the following steps:

• Node i decides if it should forward the traffic. To do so, it compares its distance from j to
the distance of k from j. If k is nearest, the packet is dropped, else, the packet is buffered
with the already received packets of the same flow and proceeds to the second step.

• Node i computes the necessary redundancy for this flow using link transmission qualities of
its neighbors and the redundancy estimation presented above. Finally, i generates coded
packets according to r and sends them.

k i j

Figure 3.4: Node i overhears a combination from k and sends a new combination.

3.4.1 Network model

We model the network as an oriented graph: node i has a link to node j if and only if node j
can receive packets from node i with a non-negligible probability.

We assume that every node i has knowledge of the transmission probabilities in the whole
network.

We expect this information to be available through a Link-State routing protocol like OSPF
or OLSR. Indeed, link transmission probabilities can easily be measured and piggybacked on
the routing protocol’s Link State Update messages. However, this is a strong assumption since
transmission probabilities can change rather often so the resulting signaling traffic could be
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unbearable in pratice. This particular issue is tackled in the enhancement proposed in the next
chapter .

We use the following notations:

• m: Network coding generation size

• τ : Maximum tolerated application loss for the flow

• Vi: Set of neighbors of node i, i.e. nodes which can receive packets from i

• dij : Distance in hops between nodes i and j in the graph

• pij : Link loss probability, i.e. loss probability for a packet transmission from i to j

• qij : Link transmission probability, as measured by node j (qij = 1− pij)

For any pair of nodes (i, j), j ∈ Vi if and only if qij > ε, where ε << 1 is a link transmission
probability under which the link contribution is considered negligible.

Finally, let Q = [qij ]i,j≤N be the transmission quality matrix at 1-hop distance, i.e., the
probability of hearing a packet between neighbors.

Q =











0 q1,2 · · · q1,N
q2,1 0 · · · q2,N
...

...
. . .

...
qN,1 qN,2 · · · 0











3.4.2 Algorithm at relays

As mentioned previously, upon overhearing from k a combination to destination j, i runs the
following algorithm:

3.4.2.1 Forward or drop

Node i checks if it is one of the next hops, that is if no strictly shorter path exists from k to j,
i.e., if:

(Qd(i,j)−1)kj < ε with ε << 1

If i is a next hop, it proceeds to the next step, else the packet is dropped.

3.4.2.2 Redundancy estimation

We expect the network to transmit σ =
∑

v∈Nkj
qiv combinations for each combination sent by

k, where Nkj is the set of neighbors from k to j computed by i:

Nkj = {v ∈ Vk/(Q
dkj−1)vj ≥ ε}

i has to send on average 1
σ
combinations for each combination sent by k.
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However, we want enough innovative combinations to go through, this means that every
combination should be received by at least one of the neighbors of i. If it is not the case, too
few independent combinations would be forwarded by the network and the destination would
be unable to decode.

The probability of one combination to be received by none of the neighbors, i.e., lost, is
∏

v∈Nij
1− qiv, where Nij is the subset of neighbors for destination j:

Nij = {v ∈ Vi/(Q
dij−1)vj ≥ ε}

Therefore, using the redundancy bound previously defined, we get:

r =
1

σ
rbound(m,

∏

v∈Nij

1− qiv, τ
′)

We set τ ′ as the goal link loss in order to guarantee the end-to-end loss τ , which means it

has to verify (1 − τ ′)dsj > 1 − τ , i.e., τ ′ 6 1 − (1 − τ)
1

dij . Since dsj 6 dsi + dij , where s is the
source node, we use:

τ ′ = 1− (1− τ)
1

dsi+dij ≃ τ

dsi + dij

Eventually, i has to send with the redundancy:

r =
1

σ
rbound(m,

∏

v∈Nij

1− qiv,
τ

dsi + dij
)

Note that r allows to determine the number of redundant packets to generate, at the same
time, it aims at preventing useless redundancy while keeping the advantage of multipath in
forwarding the packets to the destination.

The r value, calculated in a node, could be less than 1 in certain situations where the number
of neighbors is large. In this case, a node may not add redundant packets locally, however, the
optimized number of redundant packets is achieved globally through the neighboring nodes.

3.4.3 Redundancy at the source

The above coding redundancy estimation is applicable for network nodes. If a node i is the
source of a flow, it executes only the second step with σ = 1, so i has to send with the
redundancy:

r = rbound(m,
∏

v∈Nij

1− qiv,
τ

dsi + dij
)

3.4.4 On-the-fly recoding vs delayed recoding

In several schemes based on Pipeline coding [10] [22], relays use on-the-fly recoding.

With on-the-fly recoding, when a relay gets an innovative combination from a neighbor,
it adds the combination to locally cached packets of the same flow and generation, and new
combinations are generated and sent immediately. This technique can help reduce transmission
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delays, however, it comes at the cost of a major drawback, as it strongly increases the risk of
generating non-innovative combinations.

By comparison, with delayed recoding, when a node receives an innovative combination,
it stores it, but it does not immediately generate new combinations. Instead, it recodes new
combinations with redundancy r only if the generation is complete or if no other combination
is following for a short while.

We use this approach in our tests to generate less non-innovative combinations and therefore
increase the effectiveness of network coding.

3.5 Simulation results

In the following sections, we evaluate our model through comprehensive simulation analysis. To
this end we have developed a custom program in C++ that implements the proposed algorithm.
The program simulates packet transmissions, link loss, coding and decoding operations.

3.5.1 Loss bound evaluation

The first step of our evaluation consists in verifying the generation loss rate bound we derived in
the first part of the paper. The setup is simple: we consider a coding node sending combinations
to a decoding node through a link with uniform loss p, with generation size m and redundancy
r, and we measure the generation loss rate on the decoder side.

0

0.02

0.04

0.06

0.08

0.1

1.2 1.3 1.4 1.5 1.6 1.7

G
en

er
at
io
n
lo
ss

ra
te

Redundancy

m = 8
m = 16
m = 32
m = 64

Figure 3.5: Measured generation loss probability given the redundancy factor r for different
values of generation size m (p = 0.1)

Figure 3.5 shows clearly that the average redundancy designed to compensate for link loss,
here rmin = 1

1−p
≃ 1.11, is not adequate in practice since it would lead to a generation loss even

higher than link loss p, thus defying the purpose of network coding to protect from link errors.

By comparing figure 3.5 with figure 3.2, one easily verifies that measured generation loss
rates are below the upper bounds. However, in this case, with a rather high value of p, the
bound tends to be too loose for small generation sizes. The bound is tighter for lower loss p
and for larger generation size.
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3.5.2 Distributed adaptive redundancy evaluation

We evaluate the redundancy estimation algorithm against three schemes (see bellow) in three
different corridor topologies, with respectively one, two and three parallel lines of relays (fig-
ure 3.6). Transmissions between relays experience uniform link loss p to simulate interference
in the network.

link loss p

S D

DS

S D

1 line

2 lines 3 lines

Figure 3.6: Topologies with different numbers of lines of relays with link loss p between relays

Two parameters are measured: loss at destination, and relative overhead which is calculated
as follows:

relative overhead =
# packets sent

# nodes×# original packets

We run transmissions from source to destination using generation size m = 32 with our
redundancy adaptation scheme (τ = 0.01), and the following schemes:

• Average, where each node sends with redundancy 1
1−p

• Static, where each node sends with a predefined constant redundancy factor r

• CodeMP-like, where each node sends with redundancy 1
1−p

+ K. The K constant is
predefined and needs to be set high enough for this scheme to work, however a too large
value leads to over-redundancy situations. CodeMP [22] uses this scheme with K = 0.8,
which produces an extremely high redundancy.

With only one line of relays, only our scheme achieves near-zero loss at destination (fig-
ure 3.7), however, this requires a more overhead than the other schemes (figure 3.8). As
expected, the average redundancy performs badly even with low link losses along the path,
contrary to the other schemes using added static redundancy.

With more than one line of relays, overhearing and opportunistic relaying is sufficient for all
the schemes to achieve near-zero loss at destination. However, the overhead is much lower with
our algorithm, since it doesn’t greedily use network resources (figure 3.9). This is even more
visible with three lines of relays (figure 3.10).

3.5.3 Resilience to coding/no coding nodes

A given node in the network could choose to simply forward packet without coding. In such a
case, the node must remember the previously forwarded packet sequence numbers in order to
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Figure 3.7: Generation loss at destination given relay loss p with one line of relay nodes
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Figure 3.8: Relative overhead given relay loss p with one line of relay nodes

suppress duplicates. A node does not code for many possible reasons, for example, when a relay
does not have adequate processing power or sufficient battery reserve, or cannot be trusted.

Forwarding saves resources, but has two drawbacks: it does not allow to balance redundancy,
and it degrades performance if too few nodes recode. The problem arises in situations where
multiple upstream paths with only non recoding nodes exist for the same downstream node.

Figure 3.12 shows the effect on overhead of non coding nodes. The results are counter-
intuitive. At first, the more non coding nodes, the more network overhead then after a plateau,
the overhead decreases again. Note we use the reference value of 1 for network load in the
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Figure 3.9: Relative overhead given network relay loss p with two lines of relay nodes
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Figure 3.10: Relative overhead given relay loss p with three lines of relay nodes

hypothetic conditions where there is no link loss and every node is in forward-only mode and
transmits opportunistically every packet it overhears.

This is due to the behavior of forwarding (i.e., non recoding) nodes: they are able to drop
duplicate packets that have already been routed once, but they are unable to detect innovative
combinations, so they forward everything without discrimination. This means that initially, as
the number of forwarding agents increases, the redundancy added by coding nodes on the links
floods the network even more than it would do without coding nodes.

3.5.4 Impact of delayed recoding

On-the-fly recoding, where new combinations are generated upon receiving an innovative combi-
nation, is a common mechanism motivated by the need to reduce delays. This practice, however,
tends to dramatically hurt performance as shown in the experiment below.

Our results show that, even in the 1-line topology (figure 3.13), on-the-fly recoding per-
forms very poorly compared to delayed recoding, especially with growing number of relays.
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Figure 3.11: Generation loss at destination in different topologies given the fraction of non-
coding nodes

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

R
el
at
iv
e
ov
er
h
ea
d

Fraction of non-coding nodes

Line 5 nodes
Line 10 nodes
Line 15 nodes
Line 20 nodes
Line 25 nodes

Grid 5x5 nodes

Figure 3.12: Network overhead in different topologies given the fraction of non-coding nodes

Redundancy is exactly the same in the two cases.

As expected, delayed recoding attains less than the required tolerated loss after decoding
τ = 0.1%. In contrast, on-the-fly recoding is far off the mark, with the gap growing with the
number of relays, since every hop tends to lose more information by generating suboptimal
combinations.

Using on-the-fly coding can reduce delays in certain cases, for instance [10], however, it is
inefficient and forces to transmit more coded packets to get the same result, therefore leading
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Figure 3.13: Measured generation loss probability for on-the-fly and delayed recoding given the
number of hops on the path between source and destination (p = 0.1, τ = 0.1%)

to more coding overhead.

3.6 Conclusion

In this chapter, we explained that in our opinion, network coding redundancy is dictated by
the tradeoff between application performance requirements and network overhead introduced
by coding redundancy.

To address this problem, we first presented a redundancy bound taking into account, not
only link loss rate, but also an target application-tolerated loss. Then, we have proposed
a practically-deployable redundancy adaptation algorithm, targeted to wireless meshes, that
guarantees a minimum decoding ratio at destination, while keeping the overhead relatively low.

The evaluations we have conducted show that our scheme outperforms static, average and
CodeMP-like adaption schemes.

In the next chapter, we will extent ths model to tackle the issue of nodes having different
capacities to perform network coding operations. We will also reduce the requirements in terms
of knowledge of the network graph, since knowing the near-realtime link qualities for the whole
network can be unfeasible in pratice du to the necessary signaling traffic.
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Chapter 4

Taking constraints into account

4.1 Introduction

Network coding implies a non-negligible cost in terms of computing, storage and power con-
sumption. Especially if the network coding is, for instance, protected against pollution by
cryptographic mechanisms, like homomorphic signature schemes, the processing cost can be
increased by 100 times compared to network coding without protection [27].

Choosing which nodes to use to perform coding operations is a central issue when deploying
network coding in wireless mesh networks. It consists in choosing the nodes which perform cod-
ing in the network graph, and how much they contribute to it by generating new combinations.

In practice, nodes are typically more or less constrained depending on their physical capa-
bilities and their current status, e.g. battery powered or plugged into the mains, the flow should
be optimized while enforcing constraints to reduce computing cost especially on the less able
nodes.

In wireless mesh networks, nodes often have strong constraints regarding energy consumption
and processing power. In such a case, coding and transmitting might represent costly operations.
One way to reduce coding costs is to distribute coding operations on a limited number of nodes
while trying to optimize specific performance gains. It could be interesting to assign coding
operations in priority to nodes with the less constraints, e.g., the less battery-constrained nodes.

4.2 Taking constraints into account

Self-organized field networks, used for instance by the army or by disaster response teams,
often have unplanned topology and significant device diversity. For instance, some devices
can be handheld, and others attached to cars, leading to widely different hardware capacities.
Moreover, implementing network coding rather than simply forwarding packets comes at a cost
in terms of battery power. Nodes in reality also have widely different available battery capacities:
handled devices have limited battery capacity, whereas car devices can have virtually unlimited
battery capacity.

To address this challenge, our aim is to propose a constraint awareness distributed algorithm
which takes into account the capacity of each network node to contribute to the encoding oper-
ations. Each node defines its relative contribution to the network coded transmission depending
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on its own constraints. This preference is taken into account when forwarding the packet com-
binations through the network nodes, while guaranteeing decoding at destination and providing
a reliable data delivery.

The remainder of this chapter is organized as follows. First, we provide a selection of
existing work related to our proposal. Then, we provide details on our distributed constraint-
aware network coding algorithm. Finally, we evaluate the performance of our algorithm through
simulation and analyse its effect on network traffic distribution and coding redundancy overhead.

4.3 State of the art

Choosing which nodes to use for coding operations is an interesting issue when deploying network
coding in wireless mesh networks. It consists of selecting the nodes which perform coding in
the network, and how much they contribute to it by generating new combinations. In practice,
nodes are typically more or less constrained depending on their physical capabilities and their
current status, e.g., battery powered or plugged into the mains. The flow should be forwarded
across the network while enforcing constraints to reduce computing cost especially on the less
capable nodes.

The authors of [28] suggest to choose specific nodes of the network to perform the coding
operations rather than having every intermediate node performing it. To this end, they propose
a modified version of Ford-Fulkerson algorithm to maximize the multicast flow in the network
graph. The authors address the problem for multicast traffic with the goal of enhancing network
capacity through inter-flow network coding. In our work, we consider intra-flow network coding
for unicast traffic with the aim of providing reliability transmission.

The authors of [29] propose a social reputation based system to provide network coding
incentives in MANETs. They consider three different possible behaviors for nodes, i.e. network
coded forwarding, simple forwarding and dropping, and they prove the convergence of the
described incentive system using games theory.

The INPAC scheme [30] [31] aims at being more practical. It is an incentive scheme for
network coding in wireless mesh networks whose convergence has been proven by games theory.
Based on MORE [15], it is designed to be deployed on real networks.

In the above schemes, the authors consider selfish nodes which need incentives to participate
in the encoding process. In our work, we define collaborative nodes: each node indicates its
relative contribution to the network coded transmission and according to the nodes capabilities
the coding redundancy is adapted to ensure decoding at destination.

4.4 Constraint-aware Network Coding Model

We consider a unicast network-coded flow running over a wireless mesh network with one source
node and one sink node, called destination in the following. All the other nodes can serve as
opportunistic forwarders: for a given flow, each node can overhear coded packets sent by its
neighbors and thus can participate in recombining received combinations of the flow and in
forwarding them closer to the destination.

Additionally, each node is characterized by a contribution factor α ∈]0, 1] which indicates its
relative contribution to the network coded transmission. The nodes set their factor themselves
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depending on their own constraints. The flow’s combinations are forwarded in the network with
the constraint of decoding at destination, while keeping each node’s contribution relatively to
its neighbors proportional to its α factor.

For instance, a node with an α factor ten times higher than its neighbors will tend to gen-
erate and send ten times more combinations. This mechanism allows to have the combinations
generated and sent in priority by nodes possessing the actual capabilities of doing so (Fig. 4.1).

Note that, each node, to ensure decoding at destination, adapts dynamically the amount of
redundant packets according to the application loss rate requirements.

k

i

j

αk
i’

αi < αi′

αi′ > αi

j can decode

Figure 4.1: Nodes i and i′ relay traffic with different contributions.

4.4.1 General principle

Each node performing network coding operations can overhear combinations sent by its neigh-
bors. When node i overhears an innovative combination from k for a flow with destination j
(Fig. 3.4), the algorithm consists in different steps:

• Node i decides if it should forward the traffic. To do so, it compares its distance, (i.e.,
hop count) from j to the distance of k from j. If k is nearest, the packet is dropped.

• Node i checks if the received combination is innovative. If so, the packet is buffered with
the already received packets of the same flow and i proceeds to the next step, else the
packet is dropped.

• Node i estimates the actual contribution for this flow according to its contribution factors
αi and link transmission qualities of its neighbors.

• Node i computes the redundancy it has to add to this flow to guarantee decoding at
destination.

• Finally, node i generates coded packets according to its contribution αi and the redun-
dancy calculated as described in the following, and sends them.

4.4.2 Redundancy Selection Algorithm

Similarly to the previous chapter 3.4.1, we model the network as an oriented graph and we use
the same notations.

• m: Network coding generation size
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• τ : Maximum tolerated application loss for the flow

• Vi: Set of neighbors of node i, i.e. nodes which can receive packets from i

• dij : Distance in hops between nodes i and j in the graph

• pij : Link loss probability, i.e. loss probability for a packet transmission from i to j

• qij : Link transmission probability, as measured by node j (qij = 1− pij)

Moreover, we define the following:

• A: Adjancency matrix of the network graph, i.e. Aij = 1 if and only if j ∈ Vi

• αi: Contribution factor of node i, 0 < αi ≤ 1

Contrary to the model in the previous chapter, we assume that every node has knowledge of
the global adjacency matrix A, and so of the distances dij , but knows the transmission proba-
bilities qij and contribution factors αi only for its neighbors at two hops (i.e., the transmission
probabilities between its neighbors and their neighbors, and the contribution factors for its
neighbors and for their neighbors).

It is reasonable to assume this information is available through the Link-State routing pro-
tocol, since link transmission probabilities can easily be piggybacked on the routing protocol’s
Hello messages in practice.

4.4.3 Algorithm at relays

Upon overhearing a combination from k, i runs the algorithm detailed below. We note the flow
destination j and the flow source s.

Checking if it is a next hop First, node i checks if it is one of the potential next hops, that
is if no strictly shorter path exists from k to j, i.e., if:

(Adij−1)kj = 0

If i is not a potential next hop, it continues to the next step. If not, the packet is dropped.

Checking if the combination is innovative i then check if the combination is innovative,
i.e., if it is linearly independent of the combinations it has already received and buffered. If it
is, i continues to the next step. If not, the packet is dropped.

Estimating the actual contribution Then, node i estimates how many packets it has to
generate for each incoming combination, compared with the other next hops.

For each combination sent by k, each neighbor v will receive it with probability qkv, and its
contribution will be weighted by the factor αv, meaning the non-normalized contribution of v
is αvqkv. The normalization factor for combinations from k to j is:

σ =
∑

v∈Nkj

αvqkv
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where Nkj is the subset of next hops in Vk for destination j, i.e. neighbors of k that are one
step closer to node j:

Nkj = {v ∈ Vk/(A
dkj−1)vj = 1}

Therefore, for each combination sent by k, i will receive it with probability qki, and for each
received combination it has to generate on average αi

σ
combinations.

Computing the redundancy We want enough innovative combinations to go through the
network. For this reason, every combination should be received by at least one next hops of
i which will produce new combinations as a result. If it is not the case, too few independent
combinations would be forwarded across the network and the destination might be unable to
decode.

The probability of one combination to be received by one neighbor v is qiv, so if each neighbor
had equal contributions, the probability not to be received and transmitted further by any next
hop would be:

P (Nij) =
∏

v∈Nij

(1− qiv)

where Nij is the subset of next hops in Vi for destination j, i.e., neighbors of i that are one step
closer to node j:

Nij = {v ∈ Vi/(A
dij−1)vj = 1}

However, nodes will have different contributions when generating new combinations. By
definition of alpha, we express the contribution of each node v relative to its neighbors as the
ratio between the contribution of the node and the maximum contribution of neighbor nodes

αvqiv
maxu∈Nij

αuqiu
, then the probability becomes:

P (Nij) =
∏

v∈Nij

(1− αvqiv
maxu∈Nij

αuqiu
× qiv)

=
∏

v∈Nij

(1− αvq
2
iv

maxu∈Nij
αuqiu

)

In chapter 3 and as detailed in appendix B, we derived rbound(m, p, τ) as a minimal redun-
dancy, for generation size m and network loss probability p, to guarantee decoding at reception
with the maximum application-level loss τ :

rbound(m, p, τ) =
1

1− p

(

1 +

√

−2 ln τ

m

p

1− p

)

Therefore, in our context, the minimal redundancy becomes:

rbound(m,P (Nij), τ
′)

We set τ ′ as the goal link loss in order to guarantee the end-to-end loss τ , which means it

has to verify (1 − τ ′)dsj > 1 − τ , i.e., τ ′ 6 1 − (1 − τ)
1

dij . Since dsj 6 dsi + dij , where s is the
source node, we use:

τ ′ = 1− (1− τ)
1

dsi+dij ≃ τ

dsi + dij
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Generating combinations Eventually, for each incoming combination of this flow, i has to
generate and send on average r combinations:

r =
αi

σ
rbound

(

m,
∏

v∈Nij

(1− αvq
2
iv

maxu∈Nij
αuqiu

),
τ

dsi + dij

)

where σ =
∑

v∈Nkj

αvqkv

4.4.4 Special case of the source

If node i is the source of the flow, it generates combinations with σ = 1 and without taking αi

into account, so it has to send, for every original packet, r combinations:

r = rbound

(

m,
∏

v∈Nij

(1− αvq
2
iv

maxu∈Nij
αuqiu

),
τ

dsi + dij

)

4.4.5 Special case of neighbors of the destination

Neighbors of the destination j take αj = 1 even if j announced a different α.

4.5 Simulation results

In the following sections, we evaluate our model through comprehensive simulation analysis. To
this end we have developed a custom program in C++ that implements the proposed algorithm.
The program simulates packet transmissions, uniform link loss, coding and decoding operations.
The application maximum loss is set to τ = 0.01 and the link loss to p = 0.1.

4.5.1 Effect of the contribution factor

The contribution factor α allows to balance traffic between a node and its neighbors. We
showcase the effect in a topology with multiple lines (Fig. 4.2) by reducing α on the nodes in
the first line.

Other things equal, when multiple nodes overhear packets from the same flow, their respec-
tive relative contribution will be proprotionnal to their α factor. For instance, a next hop with
α = 0.5 will tend to generate half the number of combinations than a next hop with α = 1,
thus allowing it to save some power if necessary.

As expected, lowering the α factor on the first line has the effect of diverting the traffic to
the other lines where the nodes have α set to 1, in particular to the second one (Fig. 4.3).

We measure the overhead relatively, with the value of 1 corresponding to network flooding,
i.e. if every node forwards every combination once. Therefore, a value less than 1 shows the
scheme prevents useless flooding even when guaranteeing decoding at destination.

Changing the α factor has a limited cost in terms of overhead, since the traffic is mainly
only moved across the network (Fig. 4.4) as nodes with higher contribution factors generate a
bigger part of the combinations.
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Figure 4.3: Effect of α factor on first line

The slight increase of network overhead for lower values of α for the first line comes from
the fact that less possible paths are available. Indeed, redundancy is added to be sure every
independent combination has been received and processed by at least one next hop, therefore,
less available next hops means more redundancy has to be added to keep the same guarantee
and have enough independent combinations at destination, leading to more overhead.

4.5.2 Impact of nodes with lower contribution factors

The induced network overhead is expected to raise with the number of nodes with a low α factor
in the network. We measure it with randomized patterns of nodes with α = 0.1 among nodes
with α = 1 in a variable-size grid setup (Fig. 4.5).

As with the previous overhead measures, we notice the overhead does not vary a lot depend-

55



0

0.5

1

0 0.2 0.4 0.6 0.8 1

R
el
at
iv
e
ov
er
h
ea
d

Contribution factor α for first line

2 lines 3 lines

Figure 4.4: Relative overhead given α factor on first line
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Figure 4.5: Grid topology with n×m nodes

ing on the contribution factors, since the traffic is merely just moved in the network (Fig. 4.6).
The overhead first increases with the fraction of nodes with α = 0.1 then decreases until it
reaches for every node with α = 0.1 the same value as every node with α = 1.

This is due to the fact that contribution factors are relative. Having every node in the
network with α = 0.1 produces the same result as having every node with α = 1: in each case,
contributions of nodes are considered equal. The slight increase is linked to lower path diversity
in the network, forcing to send more redundant combinations to achieve the same reliability.

4.6 Conclusion

To handle the issue of the cost of coding, we proposed an extension of the redundancy algorithm
algorithm presented in chapter 3.

The algorithm still works in accordance with link loss and application-tolerated loss, but it
also takes into account the reported capacities of each node. Redundancy is added to guarantee
a maximum applicative loss during decoding at destination, while trying to move the coding
operations in priority to nodes reporting the capacity to handle them.

The evaluation we have conducted shows that the coding operations are moved across the
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network as expected while the overhead is kept low.
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Part II

Network coding and TCP
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Chapter 5

Fairness and interaction between
network coding and TCP

5.1 Objectives

The Transmission Control Protocol (TCP) performs poorly over lossy links because most im-
plementations interpret packet losses as congestion signals [2]. Wireless links can be subject to
obstacles or interferences that result in packet losses, leading to reduced TCP performances.

New approaches using network coding have emerged to deal with losses in wireless networks,
like Pipeline Coding [10] or TCP/NC [11]. As a form of erasure code, they aim at masking
link losses from TCP, in particular by adding redundancy. Thus, they allow to improve its
performance.

In parallel, inter-flow coding can combine data and acknowledgements. When a TCP flow
transmits data in one direction, acknowledgements flow in the other direction. In a wireless
half-duplex network, e.g. like WiFi, this behaviour is inefficient since acknowledgements reduce
network capacity available for the data flow.

Inter-flow network coding can be used to opportunistically combine TCP segments with
TCP segments from the same flow but in the reverse direction, such in Combo Coding [21].
This reduces the auto-interference phenomenon and allows to increase the capacity available to
the data flow, hence increasing its throughput.

As adding a network coding layer tends, by design, to conceal network characteristics from
TCP, unwanted side effects can appear. TCP uses the well-known AIMD congestion control
algorithm which, in most implementations, uses packet losses as a congestion signal. However,
intra-flow network coding, like pipeline coding [10] [11], is a good way to mask link losses but
potentially also congestion losses from the upper layer, and thus making TCP flows over network
coding greedier.

5.2 TCP and fairness considerations

Since TCP is by far the most widely used transport protocol on the Internet, several works have
naturally focused on its interation with network coding.
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TCP/NC [11] introduces a layer between IP and TCP that implements network coding over
IP and tricks TCP mechanisms to produce desired results. The source sends linear combinations
of all packets in the congestion window, in a pipeline coding way, and the receiver does not
actually acknowledge decoded packets but only degrees of freedom in the form of seen packets.

TCP/NC translate random losses as longer RTT, therefore the losses are masked and the
lossy behaviour of the link appears to both ends as a virtual queueing delay, thus interacting
well with TCP Vegas. It has been demonstrated TCP/NC is able to react properly to congestion
because congestion losses are not independant but correlated, as shown in its model [32]. The
solution is technically elegant, however, it breaks compatibility with plain TCP and suffers
from middleboxes traversal issues. In particular, it is unable to go through middleboxes that
interpret TCP flows, such as transparent proxies, WAN optimizers or firewalls performing Deep
Packet Inspection, and this may prevent its widespread deployment.

These protocols have been proven fair when two coded flows of the same type are competing,
but the possible fairness issue when competing with non-coded flows, caused by coded flows
being less sensitive to losses, has been more or less left aside.

The underlying issue here is the complex problem of distinguishing link losses and congestion
losses. Different approaches have been attempted to solve the problem in the case of non-coded
flows. An estimation of RTT can be directly used like in Non-Congestion Packet Loss Detection
(NCPLD) [33], with a threshold to assume congestion loss. TCP NewReno-LP [34] and Veno
[35] and TCP Vegas’s mechanism to estimate queue size, and assume congestion when queue
size is high enough. Packet jitter also carries information about congestion state. Jitter-based
TCP (JTCP) [36] computes the average of the inter arrival jitter during one RTT, which is
proportional to the queueing speed. When 3 duplicate ACKs are received, if the estimated
queueing speed is less than the sending speed, then congestion is assumed.

For coded flows, an enhancement of TCP/NC [37] has been proposed to weaken the re-
dundancy when congestion is probable using a loss differentiation scheme based on the Vegas
algorithm. CTCP [38] takes a different approach by introducing a whole new coded transport
protocol, with its own new coding-aware block-based congestion control based on RTT: the
higher the RTT, the more the coding window is decreased when a loss occur. This radical
approach comes at the cost of a difficult deployment, as it aims at replacing TCP.

5.3 Sensitivity to losses and unfairness

When running TCP over Pipeline coding, the coding layer acts as a transparent Forward Error
Correction (FEC) to TCP 6.4, effectively hiding losses to the TCP layer.

Coding

Decoded TCP segment

Coding node Decoding node

Generation buffer

Decoding

buffer

Incoming 

TCP segment

Combination

IP packet

Figure 5.1: TCP over pipeline coding
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5.3.1 Link and congestion losses

Since losses are indistinctively hidden from TCP by pipeline coding, chances are some part of the
congestion losses do not actually trigger TCP window reducing mechanism. This situation get
worse when the code redundancy factor increases. Verifying this claim is pretty simple. After
setting up a simple bottleneck topolgy with 4 nodes and no link losses (Fig. 5.2) in the ns-3
network simulator, we monitor packet drops on queue overflow, which correspond to congestion
losses.

Then, we compare the window evolution between TCP NewReno without coding and TCP
NewReno over coding in an extreme situation, with generation size g = 64 and redundancy
ratio r = 1.25. In our implementation, all intermediary nodes drop redundant packets and
recode innovative ones with redundancy r, so on each link the actual code redundancy is r,
independently of the loss rate on preceding links.

E R
100 Mbps
d = 1ms

100 Mbps
d = 1ms

10 Mbps
d = 1ms

Figure 5.2: Simulated bottleneck topology

On Fig. 5.3 are represented the evolutions of congestion windows, and vertical bars mark the
times when a packet is dropped because of queue overflow, i.e. when a congestion loss occurs.
The observable behaviour of TCP congestion control mechanisms is radically different between
the coded case and the non-coded case.

Whereas TCP without coding only need one congestion loss to detect the congestion (by
receiving duplicated ACKs) and to react by dividing its window, it needs dozens of them to
react over coding, as losses are masked from TCP, therefore congestion detection needs an entire
coding generation to be lost, and it can happen only when more than (r− 1)g = 16 packets are
lost. For this reason, overcoded flows are slower to react to congestion than non-coded ones.

One issue is that some overcoding is required, as redundancy should not be set as low as
rmin = 1

1−p
(where p is the average measured loss rate) in order to compensate the losses on aver-

age, some more redundancy is necessary to avoid losing generations that statistically encounter
more losses or to accommodate a slight decrease in link quality. For instance, ComboCoding’s
authors use in their redundancy adaptation algorithm a ratio r = 1.4 + 1

1−p
[21]. A higher

redundancy value can lead to coded TCP not reacting well to congestion.

5.3.2 Case of competing flows

Let’s consider two flows competing for the bandwidth on a network. The first one is TCP running
over pipeline coding, and the second one is a not coded TCP flow. Two different factors hinder
the non-coded flow and prevent it from using its whole share of available throughput:

• Link losses are hidden from the coded flow but not from the non-coded one. Threrefore,
the congestion control of the second flow interprets them as congestion losses : random
losses on a link also result in duplicated ACKs or timeouts, as a result the TCP sender
adjusts its window size as if a congestion was present on the network. TCP over coding
does not suffer from those losses, so it keeps a larger part of the available throughput.
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Figure 5.3: Congestion window with (top) and without (bottom) coding

• Some congestion losses are hidden from the coded flow, but none of them are hidden from
the non-coded one, so the second flow is more sensitive to actual congestion in the network
and reacts faster, leading to a larger part of the throughput for the first flow.

The first mechanism is desired, as it is a simple result of TCP working better over coding,
but the second one is clearly undesired. We want to measure which part from the better
performance of a coded flow comes from its lower sensibility to link loss and which part comes
from higher sensibility of concurrent flows to congestion.

We simulate a simple cross topology (Fig. 5.4) with the simulator ns-3.

With a uniform loss probability p = 1%, we run data transfer across two TCP flows, one
with coding and one without. Note in this section, the loss probability p is not expressed at a
physical level, but after retransmissions on the MAC layer, so p is the actual average loss rate
experienced by TCP without coding.

The average throughput over 10 minutes is recorded for each of the two flows in situations
with a different coding ratio r for pipeline coding. The generation size is constant n = 16.
Note we measure the throughput at application level, so measured values represent in reality
the goodput.

Results on Fig. 5.5 show the performance with coding is actually worse than without, when
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Figure 5.4: Simulated bottleneck topology. All links have 1 ms delay and uniform loss with
probabilty p.

r is very low this can be explained simply : when the flow has not enough redundancy it tends
to lose entire generations, causing TCP to timeout rather than detecting a loss by receiving
duplicated ACKs. The difference increase between flows as r increases, the coded flow taking
gradually the largest part of the available bandwidth.

However, there seems to be a limit and the coded flow does not take it all, even with
relatively high coding ratios like r = 1.5. It means the correlation of congestion is sufficent to
make the coded flow react at some point.

Yet, the behaviour does not depend on generation size, as shown on Fig. 5.6. Whereas
generation size is a key parameter, since it should be set higher enough to not be sensitive to
statistically localised losses but low enough to reduce then computational overhead, it is not
relevant to flow fairness.
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Figure 5.5: Goodput comparison between concurrent flows, one with coding at different coding
redundancy factors and one without (p = 1%)

Running the two flows over different loss rates (Fig. 5.7) shows without surprise the through-
put for the non-coded flow decreases when losses increase whereas the one of the coded flow
reach a maximum as the other flow’s throughput decreases. We can see that at a low loss
rate, the coded flow leaves some room to the other one. However, it is not clear if part of its
throughput is taken at the expense of the non-coded one.
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Figure 5.7: Goodput comparison between concurrent flows at different loss rates (g = 16,
r = 1.25)

5.4 Measuring fairness

Our goal is to obtain a measure that is sensitive to the throughput that coded flows unfairly take
at the expense of not coded ones, but not sensitive to coded flows performing better without
impacting not coded ones.

Figure 5.8 shows graphically in a simple case with two flows the part of throughput we
consider as unfairly taken : in the second case, with two non-coded flows, the whole capacity
is not used because links are too lossy, whereas in the first case, the coded flow may get more
bandwidth by using the whole capacity, but what is taken from the first non-coded flow is
considered unfair.

To solve this issue, we introduce a simple modified fairness index taking into account the
better performance of coded flows over non-coded ones.
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Figure 5.8: Comparison of capacity utilization on a lossy link between a first case with a non-
coded and a coded flow, and a second case with two non-coded flows

5.4.1 Jain’s fairness index

Let’s consider n flows, xi being the throughput of the ith flow. Jain’s fairness index J [39] rates
the fairness of this allocation with a value between 1

n
(worst case) and 1 (best case, all users

receive the same allocation).

J(x1, ..., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

The best case for J corresponds to a uniform allocation, but a uniform allocation is not
neccessarily optimal with coded and non-coded flows. The index reflects the actual throughput
difference and does not take into account the potentially better performance of coded flows.
Therefore, we need to define an ideal fair allocation taking into account that coded flows can
perform better without impacting non-coded ones.

5.4.2 Fair allocation with coded and non-coded flows

For a given set of flows, we define a fair allocation as an allocation where :

• The allocation for the subset of coded flows is fair according to Jain’s index.

• The allocation for the subset of non-coded flows is fair according to Jain’s index.

• No non-coded flow can get less throughput than it would get if coded flows were replaced
with non-coded ones.

Intuitively, a fair allocation as defined previously is not necessarily fair according to Jain’s
index, as a coded flow can get more throughput than a non-coded one, but in a fair allocation,
no coded flow can get more throughput at the expense of non-coded ones.

5.4.3 Formalization

Let A be an allocation with n flows competing on a lossy path, the first k ones are coded and
the n− k others are not coded (k > 0). xi is the throughput the flow i get in the allocation A.

67



Let A′ be an allocation with the same characteristics but where all coded flows are replaced
with non-coded ones. x′i is the throughput the flow i get in the allocation A′ (Fig. 5.4.3).

codednot coded

not codednot coded

unusedunfair

Allocation A

Allocation A’

link capacity c

(n− k)x′ kx′

c− (n− k)x′

Figure 5.9: Formalization of capacity utilization on a lossy link between allocation A and
allocation A′ where coded flow are replaced with non-coded ones

The capacity c is used in the allocation A. We assume here that the presence of at least one
coded flow means more bandwidth is used compared to the allocation A′, as coded flows should
perform better on lossy links.

c =

n
∑

i=1

xi >

n
∑

i=1

x′i

Let yi be the throughput the flow i should get in a fair allocation according to 5.4.2.

A non-coded flow can get less throughput than a coded flow, but it remains fair if every
non-coded one gets the same absolute throughput as it would if coded flows were replaced with
non-coded flows. It means ∀i ∈ {k + 1, ..., n} yi = x′i.

Because of the fairness of TCP congestion control, as we consider identical network charas-
teristics for every flow (RTT, losses...), we get :

J(x′1, ..., x
′
n) = 1

∀i ∈ {1, ..., n} x′i = x′

So the share of every non-coded flow in the fair allocation should be:

∀i ∈ {k + 1, ..., n} yi = x′i = x′

Coded flows should get the same share of the fair allocation :

∀i ∈ {1, ..., k} yi = y

The whole available capacity should be used :

n
∑

i=1

yi = ky + (n− k)x′ = c
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So the share of every coded flow in the fair allocation should be:

∀i ∈ {1, ..., k} yi = y =
1

k
(c− (n− k)x′)

In particular if n = 2 and k = 1, it simply means the coded flow should use the whole
bandwith that would remain if it was not coded:

y1 = c− x′

y2 = x′

5.4.4 Modified fairness index

We have seen in the previous paragraph that, in a fair allocation, a coded flow should get
1
k
(c − (n − k)x′) when a non-coded flow should get x′, x′ being the average throughput a flow

would get in the same situation if coded flows where not coded.

Let’s define λ the ratio between the throughput of a non-coded flow and the one of a coded
flow in a fair allocation :

λ =
kx′

c− (n− k)x′

If we multiply the throughputs y1, ..., yk of the coded flows by a factor λ, Jain’s index for
the fair allocation becomes 1 :

J(λy1, ..., λyk, yk+1, ..., yn) = 1

So we introduce a modified fairness index J ′ taking this correction into account, i.e. the
throughputs x1, ..., xk are multiplied by λ :

J ′(x1, ..., xn) =
(λ
∑k

i=1 xi +
∑n

i=k+1 xi)
2

n(λ2
∑k

i=1 x
2
i +

∑n
i=k+1 x

2
i )

This modified fairness index has the same properties as Jain’s fairness index, but the best
case corresponds to a fair allocation as defined in 5.4.2 and not a uniform allocation. It rates
the fairness with a value between 1

n
(worst case) and 1 (best case, the allocation is fair).

In particular if n = 2 and k = 1:

λ =
x′

c− x′

J ′(x1, x2) =
(λx1 + x2)

2

2(λx1)2 + 2x22

For instance, let’s consider a coded flow competing with a non-coded flow on a lossy link.
The measured throughputs are x1 = 7 Mbps for the coded flow and x2 = 3 Mbps for the non-
coded flow, so c = 10 Mbps. A similar experiment but with 2 identical non-coded flows give us
x′1 = 4 Mbps and x′2 = 4 Mbps, so x′ = 4 Mbps and λ = 2

3 . We eventually get J ′(x1, x2) ≃ 0.95
(nearly fair) whereas J(x1, x2) ≃ 0.86.
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Applying this new index to the previously measured throughputs gives us a more precise
idea of the actual flow fairness. Note computing this index also requires running non-coded
TCP flows in the same configuration, as their average throughput is required to compute λ.

Figure 5.10 highlights the allocation is actually fairer in reality than what Jain’s index shows,
as the coded flow takes a part of the resource the non-coded flow could not take anyway. As
a side effect, the maximum fairness is displaced to higher redundancy (here roughly from 1.05
to 1.1). In the case of higher loss rate (Fig. 5.11), the two indices give rather different results.
This is caused by Jain’s index not taking into account the very poor performance of TCP at
important loss rates, whereas the modified index does. We can see that at some point, when
losses are too important, the non-coded flow performs so badly that it is actually fair for the
coded flow to take an overwhelming part of the throughput.

When the redundancy factor r approaches higher values, fairness does not drop and stays
relatively high around 0.85. This is a good sign, as it indicates even with too much redundancy,
coded TCP flows do not starve non-coded ones. It means congestion losses are correlated enough
to trigger a generation loss and TCP congestion control algorithm.

It is interesting to note that the maximum fairness is achieved when R = 1.1, and it corre-
sponds to the session giving maximum cumulated throughput. This is logical in the sense that
fairness is achieved when the two flows give simultaneously the best possible performance. A
maximum fairness is achieved for R = 1.25 near p = 0.02 for similar reasons.
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Figure 5.10: Jain’s index at different coding factors for a coded and a non-coded flow (p = 1%)

5.5 Conclusion

In this chapter, we highlighted the fairness issue raised by the implementation of intra-flow
network coding with TCP flows. The issue arises because concealing link losses interferes with
TCP congestion control, since it also conceals congestion losses.

To evaluate the impact of pipeline coding on fairness, we indroduced a simple specific index
taking into account the better performance of coded flows on lossy links.

Our results show that unfairness exists but its impact is relatively limited, because even
with high redundancy factors a coded flow does not starve a non-coded one, indicating that
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Figure 5.11: Jain’s index at different loss rates for a coded (g = 16, R = 1.25) and a non-coded
flow

congestion losses are correlated enough to cause the coding to fail and TCP to react to the
congestion.
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Chapter 6

Increasing reliability of MPTCP
over network coding

6.1 Objectives

Multi-path TCP (MPTCP) is a recent TCP extension standardized in RFC 6824 [40] by the
IETF. It aims at spreading a single TCP connection over several paths with different addresses,
yet it hides the involved complexity from the upper layer by keeping the standard TCP socket
API. It aims at optimizing network resource usage and providing better throughput and ro-
bustness.

MPTCP was at first designed to provide performance benefits when deployed in datacenter
environments. Typically, MPTCP targets multihomed hosts in data centers for the purpose of
increasing inter-datacenter bandwidth.

Recently, its interest has been demonstrated for mobile devices featuring multiple radios.
For instance, smartphones connected to both WiFi and LTE can take advantage of it to provide
stable network performances in spite of intermittent degradations or failures on either channel
and to enhance handover when switching between WiFi and LTE. Indeed, it showcases several
advantages: it improves connectivity and quality of service, increases throughput by allowing
the use of multiple interfaces for data transfer, and seamlessly handles handover and traffic
offload from congested radio access networks [3].

From a network point of view, MPTCP runs fully TCP-compatible sub-flows for different
pairs of IP addresses, on which the original application data flow is mapped. This complete
retro-compatibility allows MPTCP to be deployed without middlebox traversal issues.

In the same way that TCP is sensitive to link loss, MPTCP suffers from performance degra-
dation when used over paths experiencing random losses. Not only lost packets must be re-
transmitted, but the congestion control algorithm tends to misinterpret link losses as congestion
signals [41], leading to a uselessly reduced congestion window and a lower throughput.

In this section, we study the impact of pipeline coding on MPTCP performance. We im-
plemented an experiment using the MPTCP reference implementation [42] and developed a
network coding layer at IP level. We believe that using network coding at IP level is a relevant
approach as it provides TCP retro-compatibility and avoids middlebox traversal issues. The
network coding layer allows to compensate for link losses preventing both congestion windows
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reduction and head-of-line blocking issues at the scheduler. We conducted a performance evalu-
ation of coded MPTCP on a realistic emulated network. A comparison of MPTCP performance
with and without coding is provided.

6.2 Multi-path TCP over network coding

TCP performs poorly over lossy links because it interprets packet losses as congestion signals
[2]. As MPTCP relies on the same mechanisms. it suffers from the same issue.

Intra-flow network coding is an interesting solution for reliable transfer over lossy networks.
The idea behind intra-flow network coding is to send random linear combinations of outgoing
packets. To compensate losses, more combinations than original packets are generated. The
redundancy factor i.e., the enforced ratio between sent combinations and original packets, is a
critical parameter. It should be large enough to compensate link losses and guarantee enough
combinations at reception to ensure the packets are decoded. However, setting it too high can
lead to useless overhead and network congestion.

Therefore, the idea is to have MPTCP subflows running over pipeline coding, as shown on
figure 6.1.

Coding

Generation buffer

Decoding buffer

Combination

IP packet

TCP subflow

Coding

Generation buffer

Decoding buffer

Combination

IP packet

TCP subflow

TCP subflow

TCP subflow

MPTCP

MPTCP

Figure 6.1: MPTCP with two subflows running over intra-flow pipeline coding

The principle is to keep the MPTCP stack untampered and to run every subflow on a pipeline
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coding session. Packets from each subflow are put in a generation buffer and new combinations
are sent on every incoming packet, using the progressive coding of pipeline coding. When the
generation buffer reaches the generation size, the buffer is cleared to start a new generation.

On the receiver side, packets from each subflow are decoded independently. When a packet
can be decoded, it is immediately passed to MPTCP.

The redundancy ratio, i.e., the number of combinations for every original packet, is ad-
justable, which will allow to observe its impact on performance.

Network coding should have a positive impact on MPTCP when running over lossy links,
because it not only protects the TCP subflows from link losses, but it also prevents scheduling
issues when react to losses on subflows by retransmitting on another link.

6.3 Emulated network setup

We conducted our tests on the MPTCP reference implementation for the Linux kernel developed
by Université Catholique de Louvain, version 0.90. In our setup, this real-world implementation
runs over emulated links i.e. in realtime. Network emulation is achieved with ns-3 simulator
running in realtime mode. Two User-Mode Linux (UML) virtual machines, one for the client
and one for the server, are installed on the host alongside the simulator. Traffic from the
interfaces of the two virtual machines is routed to the corresponding nodes in ns-3. When a
file transfer is run between the machines, subflows are opened across the emulated network
(figure 6.2).
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Figure 6.2: Network emulation setup with ns-3 and two User-Mode Linux virtual machines

The emulated network consists of four nodes: two nodes as wireless access points, one for
the server and one for the client with two interfaces. The client and server nodes use ns-3 tap
bridge feature to make their interfaces available from the Linux host, and traffic is routed to and
from the corresponding virtual machines with specific routing tables on the host. Independent
wireless links are emulated between the client node and the access points (figure 6.3).
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Figure 6.3: ns-3 emulation internal details

Wireless access points implement pipeline coding, and the client independently implements
decoding on both its wireless interfaces. Pipeline coding is implemented at IP level with specific
coding and decoding buffers 6.4.

Coding

Decoded TCP segment

Coding node Decoding node

Generation buffer

Decoding

buffer

Incoming 

TCP segment

Combination

IP packet

Figure 6.4: Pipeline coding as implemented in ns-3 nodes

6.4 Performance evaluation

6.4.1 Influence of loss rate and redundancy

Figure 6.5 shows the application goodput for an MPTCP flow running on two links with and
without coding for different loss rates and with RTT 100ms. Flows are run for 60 seconds for
each link quality and values are averaged over 10 experiments. As loss rate increases, the flow
without coding collapses whereas the one with network coding is protected, offering constant
goodput until high loss rates.

We also note that due to the redundant coded packets, the coding shows an overhead in
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Figure 6.5: Application goodput for MPTCP on two links given loss rate p with 100ms RTT
(generation size 8)

terms of capacity when link loss rate is near zero. Redundancy is a critical parameter for
intra-flow network coding, it represents a serious tradeoff in terms of performance. Higher the
redundancy, higher the overhead, but better the protection against random losses.

Figure 6.6 compares the application goodput for different redundancy factors r. Increasing
redundancy makes the maximum loss rate before the goodput collapses increase. As redundancy
increases, the overhead increases and less capacity is available for the application. The goodput
at lower link loss rates is lower with higher redundancy factors.
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Figure 6.6: Application goodput given loss rate comparison given redundancy factor r (gener-
ation size 16)

However, in terms of goodput, it is better to have ”over-redundancy” than ”under-redundancy”.
Figure 6.7 shows the evolution of goodput given the chosen redundancy factor at constant loss
rate p = 0.1. When the redundancy is too low, not enough losses are corrected and MPTCP con-
gestion control tends to be triggered uselessly, and this proves very harmful to the flow. Setting
it too high simply creates more overhead without a notable benefit on congestion control, creat-
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ing overhead and reducing the useful flow capacity. However, we notice that ”over-redundancy”
does not have an impact as critical as ”under-redundancy”.
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Figure 6.7: Application goodput given redundancy factors r for loss rate p = 0.1 (generation
size 8)

6.4.2 Influence of generation size

Apart from code redundancy, code generation size also has an impact on performance. Figure 6.8
measures goodput using generation sizes 8 and 16. High generation sizes tend to cause more
overhead because of longer decoding delays, but they have the benefit of performing more
reliably when loss rate is just sufficient to compensate link loss, because they are less sensitive
to local loss rate variations. Overall, small generations seem more adapted to MPTCP.
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Figure 6.8: Application goodput for MPTCP given loss rate p for different generation sizes
(RTT = 100ms, r = 1.50)
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6.4.3 Influence of Round-Trip Time

The benefit of coding is even more visible as RTT raises, since TCP takes more time to recover
from losses. Without coding, higher RTTs worsen the loss issue and the goodput collapses even
faster. The flows using network coding show a performance virtually independent of RTT at
low losses, even if it is sligthly affected at higher loss rates (figure 6.9 and figure 6.10).
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Figure 6.9: Application goodput for MPTCP without coding given loss rate p according to RTT
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Figure 6.10: Application goodput for MPTCP with coding given loss rate p according to RTT
(r = 1.5)

6.5 Conclusion

In this chapter, we proposed an enhanced MPTCP solution using network coding. Our goal is
to increase MPTCP reliability without tampering with the MPTCP stack, maintaining TCP
retro-compatibility and avoiding middlebox traversal issues.

The tests carried out on our network emulation setup show that the MPTCP goodput is
significantly improved when running on top of pipeline coding. Besides, the results show the
impact of the redundancy factor on performance. Redundancy is indeed a tradeoff between
reliability and overhead, and a correct value should be chosen to get optimal performance, even
if the tests show that over-redundancy is less harmful than under-estimated redundancy.

This works allowed to create an emulation platform that will be useful for our research
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team to carry out tests on MPTCP. In particular, the platform will allow extensive tests with
MPTCP running in more realistic conditions.

80



Chapter 7

Integration of network coding in the
MPTCP protocol

7.1 Objectives

In this chapter, we investigate network coding as a potential solution to the head-of-line blocking
issue. Indeed, MPTCP uses a global window that is mapped to the windows of the subflows,
and a common issue encountered with this approach, especially with unreliable wireless links,
is head-of-line blocking.

It happens when a link suddenly flickers or experiences delays: the global MPTCP window
cannot move forward because packets scheduled on the failing link are missing (Fig. 7.1). Until
those packets eventually get through or are reinjected on working links, the connection is locked
even if other TCP subflow links show good performance. For instance, this scenario can happen
when a user is downloading a video stream from both WiFi and LTE moves away from the WiFi
acces point. The degradation of the WiFi link quality due to the increased distance, leading to
a flickering link, could delay the entire MPTCP data flow and freeze the video.
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Figure 7.1: Head-of-line blocking issue encountered with MPTCP

Our goal is to increase the resilience and improve the overall performance of MPTCP by
solving the head-of-line blocking issue.
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To this end, we define and test a practical MPTCP extension, MultiPath Coded TCP (MPC-
TCP), that enables the TCP source to transmit linear combinations of packets rather than
data packets over TCP subflows. On the receiver side, data can be decoded as soon as enough
combinations are available, no matter the subflows that were used to transmit them (Fig. 7.2).
This scheme offers three advantages: MPTCP retrocompatibility, full TCP compatibility for
middleboxes and NAT traversal, and implementation simplicity.

Feedback

Coding Decoding

Figure 7.2: Simplified principle of coding over MPTCP

We developped our own implementation in the Linux kernel based on the MPTCP reference
implementation v0.90 from Université Catholique de Louvain [42].

Evaluations have been carried out with an emulated network in ns-3 to measuse the capacity
of network coding to solve the blocking issue. In this chapter, we only focus on solving head-
of-line blocking issues, and kept fully TCP-compatible subflows, preferring retrocompatibility
over maximum performance on lossy links.

While in most other implementations, technical constraints are not discussed, practical
implementation and compatibility is one of our main concerns.

7.2 Network coding integration in MPTCP

TCP performs poorly over lossy links because it interprets packet losses as congestion signals
[2]. As MPTCP relies on the same mechanisms. it suffers from the same issue. Not only lost
packets must be retransmitted, but the congestion control algorithm [41] tends to misinterpret
lost packets due to link loss as a congestion signal, leading to a uselessly reduced congestion
window and a lower throughput. Network coding can solve this problem by adding redundancy
to the flow, as a form of forward error correction, improving reliability. Since in our case,
combinations are transmitted over reliable TCP flows, we don’t address this issue.

Another issue is head-of-line blocking (Fig. 7.3). If packets scheduled on one of the paths
are delayed or lost, the entire flow at reception is also delayed. Network coding allows to
decorellate the flows, as receiving combinations from any subflow carries new information with
high probability and thus allows to continue decoding (Fig. 7.4).

Recently, several works have been developed to integrate network coding in MPTCP flows,
in order to benefit from protection against link loss and as a solution to head-of-line blocking
issues caused by flow segments scheduling on the different available paths.

In MPTCP/NC [43] a modified TCP stack is proposed to solve both issues. Namely, the
subflows, instead of running on standard TCP, run over TCP/NC, hence it can be seen as a
multi-path extension of the TCP/NC protocol mentioned previously. The protocol has been
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Figure 7.4: Head-of-line blocking solution with network coding

developed to allow better subflow performance in the face of link loss as intra-flow redundancy
can be added to compensate for link loss. However, MPTCP/NC presents the same drawback
as TCP/NC when it comes to ease of deployment, since the lack of retrocompatibility with TCP
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may cause compatibility issues with middleboxes, barring widespread adoption.

In NC-MPTCP [44], coded subflows run in parallel to regular subflows, which is an inter-
esting feature but forces to implement a specifically-designed scheduling algorithm, increasing
complexity. The scheme make use of a form of batch, since the decoding process is performed
after the decoding matrix has completed to decode the entire generation as a batch, poten-
tially adding unnecessary jitter from the application point of view. The coded subflows are not
TCP compatible, which can cause issues with firewalls or middleboxes on restrictive network
environments as corporate networks.

Approches trying to use network coding to help head-of-line blocking in multipath transfers
exist for other protocols, like SCTP. An inclusive proposition is presented in [45]. The scheme
showcases bandwidth, loss and RTT estimators to compute code redundancy and perform data
distribution across flows.

The SCTP-CMT protocol in [46] proposes an innovative way to solve receiver buffer blocking
for SCTP-based Concurrent Multipath Transfer using network coding and machine learning.
Random linear coding is used to decorellate the flows and make the receiver insensitive to packet
reordering, whereas a Q-learning algorithm enforces coding redundancy at the sender side to
make sure data is decodable at the receiver side.

Even if SCTP provides huge benefits for various kind of applications, it’s far for widely
deployed, apart as transport protocol for Signaling System #7 (SS7) implementations. For in-
stance, nearly no consumer application make use of it, moslty because it’s often poorly handled
by middleboxes, especially consumer-grade routers, and because popular operating systems like
Microsoft Windows were lacking out-of-the-box support until recently. SCTP-based network
coding implementations will undoubtedly inherit this drawback, preventing practical deploy-
ment.

7.3 Principle

The principle of the proposed protocol is to keep the main architecture of MPTCP and replace
the global sending and receiving buffers with random linear coding and decoding windows.
The TCP subflows carry combinations rather than data segments but work as normal TCP
flows, for compatibility with middleboxes. The MPTCP global acknowledgement mechanism
is modified to acknowledge components that shouldn’t be part of the coding process anymore
(seen components) rather than received segments, and the sender uses this information to move
its coding window forward (Fig. 7.5).

In MPTCP, the head-of-line blocking issue happens when one of the subflows stops working.
In this case, the data mapped to this subflow must be rescheduled at some point, but during
the time period, transmission might be blocked because the data is missing at the receiver side
and thus the window is prevented from moving forward.

With random linear combinations, the goal is to become independant from the subflows :
every received combination adds more information about the data to be transmitted, issues
like missing chuncks cannot arise. So, the implementation only has to push combinations in
the available subflows without bothering about subflow performance, since every combination
that goes through in time should allow the receiver to decode more data. Note global feedback
always works because it is piggybacked on the acknowledgements of every subflow.
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Figure 7.5: Overview of the coding/decoding principle with two subflows

Apart some precise points that will be highlighted in the following, the implementation is
exactly the same as MPTCP as defined in RFC 6824 [40]. In particular, no modifications are
made to the fields defined for headers and options. Subflows are standard TCP flows, therefore
full compatiblity with middleboxes and NATs is guaranteed.

Since we use TCP flows to transmit the combinations, sending redundancy over a flow does
not make sense, since flows are reliable and do not experience loss or reordering at coding level.
However, we have to deal with TCP delays due to retransmissions.

The proposed protocol MPC-TCP is extensively compatible with MPTCP as defined in [40]
and need as little modifications as necessary, since nearly no changes are made to the headers
and options. Moreover, the subflows are never coded on a network level and always appear as
normal TCP flows from an external point of view. This is the main departure from previous
schemes that also attempted to add coding to MPTCP by modifying the TCP subflows. Our
approach yields better backward compatibility and easier incremental deployment, particularly
with restrictive middleboxes and firewalls. Moreover, the use of MPC-TCP is negotiated during
the MPTCP handshake, allowing easy fallback to vanilla MPTCP if necessary. Finally, the use
of linear packet combinations makes the complicated mapping and packet bookkeeping system
handled by MPTCP unnecessary, so the actual implementation is a lot simplified.

7.3.1 Activation

MPTCP uses a special MP CAPABLE option during TCP handshake to advertise the avail-
ability of the protocol. We define a new flag in this option to advertise the availability of
MPTCP.

In pratice, the flag C = 0x20, which was affected to cryptographic algorithm negotiation
but was unused, is now set to 1 to indicates that coding is available, and after receiving an
MP CAPABLE option with the C flag set to 1, an implementation can use MPC-TCP rather
than vanilla MPTCP.
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7.3.2 Coding

Coding is achieved by sending in subflows linear combinations of segments from the global
window rather than mapping portions of it to subflows. The global window W is segmented in
chunks of maximum size min(MSS) − 1, each segment Pi in the window is called a component
and has an incremental sequence number i, called component number.

The components are padded with ISO/IEC 7816-4 padding (mandatory first byte is 0x80,
optional next bytes are 0x00) to be the same size before coding. This means the combinations
are one-byte larger than the largest outgoing segment, so segments are one byte less than the
minimum MSS for efficiency, and the MSS advertised to the upper layer must be reduced by
one.

When a TCP subflow has sufficient window space available and W is not empty, the sender
has the opportunity to push a new combination, and it may generate a new one. However, no
more than one combination per component should be sent per subflow at once, because doing
so would generate useless redundant combinations.

MPTCP transmits global window mapping information in TCP data packets with an option
called Data Sequence Signal (DSS). This option is not modified but the fields Data ACK and
Data sequence number are interpreted differently, since we don’t need to map data with MPC-
TCP. A new flag C = 0x20 is added using the rightmost bit of the reserved field, set to 1 to
indicate the mapped data is a coded combination.

The MPTCP Data sequence number field is now used to store the Combination Identifier

Sn,k,N . It is now always 64 bits long and contains an identifier describing the vector of coef-
ficients used to compute the linear combination corresponding to the mapped data. The low
order 32 bits correspond to the first component number n in the combination, the next 16 bits
correspond to the combination length (i.e. components count) |W | = k and the highest order
16 bits are a unique nonce N .

W = (Pn, Pn+1, ...Pn+k−1)

Sn,k,N = identifier(n, k,N)

The nonce N must be repeated as infrequently as possible on a single MPTCP connection.
It should be set at an initial random value and incremented by 1 for each generated combination.

Sn,k,N can be used to retrieve the first component number n and the combination length k.
These values alone give the number of each component in the vector, since the components are
contiguous. Then, Sn,k,N serves as a seed for Donald Knuth’s MMIX 64-bits linear congruential
generator, whose output non-null 8 most significant bits serve as coefficients. This way, the
complete combination coefficients vector can be derivated unambiguously from Sn,k,N .

(cn,N , cn+1,N , ...cn+k−1,N ) = coefficients(Sn,k,N , k)

Then the linear combination Cn,k,N is computed with the coefficients. Each component is
treated as a vector over the finite field GF (28).

Cn,k,N = cn,N ⊗ Pn ⊕ ...⊕ cn+k−1,N ⊗ Pn+k−1

The combination is sent as a MPTCPmapped data chunk with Sn,k,N in place of the MPTCP
connection-level data sequence. Note the subflows are normal TCP flows with unmodified
windows, acknowledgements and retransmissions.
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7.3.3 Decoding

When Cn,k,N is received as a MPTCP mapped data chunk from one of the subflows, n and k
are extracted from Sn,k,N and Sn,k,N is used to derivate the k coefficients.

(n, k) = extractnk(Sn,k,N )

(cn,N , cn+1,N , ...cn+k−1,N ) = coefficients(Sn,k,N , k)

The receiver stores the combination with the previously received ones, and attempts to solve
(even partially) the resulting system with k unknowns (Pn, Pn+1, ...Pn+k−1) using Gaussian
elimination. If one of the Pi can be expressed as the combination of components with a higher
number, i.e. Pi =

∑

j>i Pj , then the component Pi is seen. The number s such as s − 1 is the
highest seen component number is called the next seen number. Each time a new combination
(supposed independant) is received, a new component is seen and s is updated in consequence.

The decoding matrix size and delay must be kept under control, however seeing a component
only indicates it will be decodable at one point in the future, but the delay is actually unbounded.
For this reason, the receiver should not acknowledge every change of s to the sender. For
exemple, we can imagine a simplified critical scenario with a coding window W of size 2: the
receiver gets P1⊕P2, P1 is seen, so it acknowledges s = 2. The sender removes P1 from its coding
window, adds P3, and sends P2 ⊕ P3. The receiver gets P2 ⊕ P3, P2 is seen, so it acknowledges
s = 3. The process repeats while the sender has new data available, and the receiving buffer
grows whereas no chuck can be decoded.

To solve this issue, as a security, the receiver infers the size of the coding windows M from
received combination lengths. s is acknowledged to the sender in the the MPTCP connection-
level data ACK field if and only if the number of undecoded combinations m in the receiving
buffer is less than M . If m ≥ M , then s+M −m− 1 is acknowledged instead.

If components can be decoded in order after a reception event, the size of each one is
read, the padding is removed and the data is copied to a receiving buffer then passed to the
upper layer. These decoded components must be kept in memory to decode the next incoming
combinations. However, the components that are decoded and not present in the incoming
combinations anymore can be forgotten. The receiver must then pay attention to drop older
(for instance delayed) combinations it will not be able to decode.

7.3.4 Feedback mechanism

The MPTCP Data ACK field performing global window acknowledgements now stores the Next
Seen Component Number. It is now always 32 bits long and contains the next packet to be seen
by the decoder. The sender gets the next seen number s from the receiver and removes the
segments Pi where i < s. This feedback mechanism allows the coding window to move forward.

Note TCP ACKs mechanism at subflow level is kept unchanged.

7.4 Implementation details

We implemented an MPC-TCP in the Linux kernel by modifing the MPTCP reference imple-
mentation [42]. The main reason for chosing to develop a real-world implementation rather than
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doing simulation is the impact of the cost of coding. Taking into account the delays induced by
coding and decoding time in a network simulator is indeed a difficult task when implementing
the protocol in a simulator, whereas it is obviously no concern with a real implementation.

The way adresses are advertised, subflows are created and destroyed is the same as MPTCP
as defined in RFC 6824 [40]. However, four main modifications are made to the behaviour of
MPTCP stack:

• The scheduler does not select the next segment from the window, instead, it calls a function
to combine segments in the window.

• Combinations are always sent as a new mapping, requiring a new DSS option for each
combination.

• At reception, received combinations are pushed to a decoding buffer implementing the
gaussian elimination algorithm, and decoded segments are transmitted to the upper layer.

• The acknownledgements correspond to seen components rather than received segments.

To properly implement these modifications, we have to make a few changes to the headers.

7.4.1 Data Sequence Signal (DSS) option

The Data Sequence Signal (DSS) TCP option defined in MPTCP is not modified but the fields
Data ACK and Data sequence number are interpreted differently. For consistency with MPTCP
DSS option format, flag 0x02 must always be set to 0 and flag 0x08 must always be set to 1.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Kind | Length | Subtype | ( r e s e rved ) | 1 |F | 1 |M| 0 |A |
+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Next seen component number (4 o c t e t s ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Combination sequence i d e n t i f i e r (8 o c t e t s ) |
| |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Subflow Sequence Number (4 o c t e t s ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Data−Level Length (2 o c t e t s ) | Checksum (2 o c t e t s ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Figure 7.6: Reinterpreted Data Sequence Signal (DSS) option

7.4.1.1 Combination sequence identifier

The MPTCP Data sequence number field is now the Combination sequence identifier. It is now
always 64 bits long and contains an identifier describing the vector of coefficients used to compute
the linear combination delivered in the TCP segment. The low order 32 bits correspond to the
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first component number in the combination, the next 16 bits correspond to the combination
length (i.e. components count) and the highest order 16 bits are a unique nonce. Figure 7.7
shows the structure in visual format.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Nonce (2 o c t e t s ) | Combination l ength (2 o c t e t s ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| F i r s t component number (4 o c t e t s ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Figure 7.7: Combination sequence identifier structure

The nonce must be repeated as infrequently as possible on a single MPTCP connection. It
should be set at an initial random value and incremented by 1 for each generated combination.

The sequence identifier can be used to retrieve the first component number and the com-
bination length. This unambiguously gives the number of each component in the vector, since
the components are contiguous. Then, it serves as a seed for Donald Knuth’s MMIX 64-bits
linear congruential generator to generate the coefficient for each component.

x0 = sequence identifier

xi+1 = axi + c mod 264

where a = 6364136223846793005 and c = 1442695040888963407

The successive coefficients are given by the 8 most significant bits of each xi (i > 0) where
these bits are not all null. Figure 7.8 shows a C implementation example.

u i n t 64 t s t a t e = sequence ;

u i n t 8 t n e x t c o e f f i c i e n t (void )
{

while ( t rue )
{

s t a t e = s t a t e ∗6364136223846793005ULL + 1442695040888963407ULL;
u i n t 8 t va lue = ( u i n t 8 t ) ( s t a t e >> 56 ) ;
i f ( va lue ) return value ;

}
}

Figure 7.8: MMIX 64-bits linear congruential generator adapted for Coded MPTCP

7.4.1.2 Next seen component number

The MPTCP Data ACK field is now the Next seen component number. It is now always 32 bits
long and contains the next packet to be seen by the decoder.
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Even if TCP ACKs mechanism at subflow level is kept unchanged, we have modified the
acknowledgement system at global level to keep track of seen packets. The sender side can the
remove seen packets from its coding window, allowing to move it forward.

7.4.2 Component size

Components in the coding buffer are padded with zeros before coding. Before padding, the
actual data chunk size is prepended as a 16-bit network byte order (big endian) unsigned
integer. This 2-octet header is treated as the rest of the data during coding.

The decoder reads this integer once the component is decoded, then reads the data chunk
according to its actual size, and deliver it to the upper layer.

7.5 Performance evaluation

7.5.1 Scenario

We evaluate the protocol in a typical head-of-line blocking scenario. Two links are set up with
ns-3 emulation between two MPTCP-enabled virtual machines (Fig. 7.9). The client establishes
a 2-path MPTCP connection (vanilla or coded) to the server, which then push data as fast as
possible, and goodput is measured on the client at application level. Our actual setup is made
of two User Mode Linux virtual machines with MPTCP and MPC-TCP kernel implementation
whose traffic is routed through ns-3 running in realtime mode. For our tests, MPTCP is
configured to use the round-robin scheduler.

Server

eth0

tap bridge

ethernet

tap bridge

wifi 1

tap bridge

wifi 2

ethernet ethernet

wifi 1 wifi 2

N2

N0
N1

N3

Client

eth0 eth1 Linux

host

ns-3

VM 1VM 2

  delay

Figure 7.9: Emulated network for test scenario

On the second links, we change the token bucket capacity to zero repetetively to simulate
an unreliable and flickering path, therefore the path is blocked for a fraction of the time. The
link goes through cycles of 10s duration, and on each cycle, the link is working during the first
part and blocked during the second part. For instance, if the loss blocking rate is 10%, the link
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is working for 9s, then blocked for 1s, then the process repeats. Each transfer lasts 60s, and we
report the average goodput over 10 runs.

7.5.2 Results

We create head-of-line blocking events by repetetively having a the second link dropping all
traffic for 1 second intervals. We measure throughput given the period between these events. A
fixed 100ms delay is added on server-side at link-level.

Figure 7.10 shows that MPC-TCP performs better than vanilla MPTCP when the sec-
ond path becomes heavily unreliable, but worse when it works properly. Upon investigation,
the worse performance comes from an overhead introduced by the coding scheme which tends
to transmit redundant combinations, indicating the current feedback mechanism could be en-
hanced.

However, the really interesting aspect is that the goodput doesn’t collapse even when the
second path is blocked 50% of the time. It shows MPC-TCP is not affected by head-of-line
blocking, as it can use the second path when it works, and is not affected when it stops working.
On the contrary, with MPTCP vanilla, the second subflow prevent the other subflow from
working properly as packets must be reinjected, so the working subflow is actualy not used at
full capacity.
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Figure 7.10: Goodput comparison given period of head-of-line-blocking events

7.6 Conclusion

In this section, we have addressed the issue of head-of-line blocking in MPTCP, and proposed
MPC-TCP to solve it. In parallel, we demonstrate the feasibility of a simple and practical
network coding implementation in MPTCP compatible with vanilla MPTCP and restrictive
middleboxes.

As expected, it solves the head-of-line blocking problem by removing mapping issues at the
price of added overhead, because of the simplistic feedback mechanism. We plan to fix it in
order to make MPC-TCP a fully functional alternative for MPTCP, one approach to do so could
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be dynamically switching the coding on or off depending on network circumstances to always
get the best possible throughput.
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Chapter 8

Conclusion

Intra-flow network coding is an interesting solution to enhance transmission reliability. Con-
trary to traditional forwarding where nodes transmit original packets without tampering with
them, the core idea of intra-flow network coding is to forward combinations of the packets from
the same flow rather than the packets themselves. Even if network coding seems to induce a
tradeoff in terms of processing power as of today, this problem will easily be solved in the future
with dedicated hardware.

In this work, we presented different contributions to show the potentials of intra-flow network
coding to enhance reliability of data transfers over wireless networks.

Our first contribution concerns redundancy adaptation. We have derived a minimal re-
dundancy bound to set the network coding redundancy according to the link quality and the
targeted maximum application loss rate, indeed, we believe that a balance should be kept be-
tween application requirements and network overhead.

Based on this work, we proposed a distributed algorithm for redundancy adaptation in mesh
networks. The algorithm enables to opportunistically make use of multiple available paths to
route the coded packets to destination while offering optimized redundancy control, balancing
network overhead and application needs.

We performed evaluations in order to compare this mechanism to common redundancy adap-
tation schemes. Our benchmark shows that our solution outperforms these schemes, particularly
thanks to the possibility of controlling redundancy according to the application requirements.

We then extended this algorithm to take into account nodes willingness to take part in net-
work coding operations. Since network coding involves a trade-off between network performance
enhancement and coding operations cost, we allow each node to define its contributions to the
coding operations. The node constraints are taken into account when forwarding the packet
combinations while guaranteeing decoding at destination.

We evaluated the extended model as we did for its original version. The evaluation highlights
how the coding operations are moved across the network while data delivery at destination is still
guaranteed. If the actual number of coding nodes is low, this can result in a slightly increased
overhead since more redundancy is necessary to offer the same guaranty, but the overhead is
kept low enough.

Then, in our next contributions, we studied the interaction of network coding with TCP
and its multipath extension MPTCP.
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Network coding deployment with TCP raises concern about flow fairness. Indeed, TCP
flows share the available bandwidth thanks to their congestion control algorithm, and mostly,
the congestion signal is due to packet loss. Intra-flow coding hides losses independently of their
cause, so congestion losses are hided from TCP, which can lead to unfairness situations.

We studied the impact of intra-flow network coding on fairness between coded TCP flows
and non-coded TCP flows. To this end, we defined a dedicated fairness index to study the im-
plications of running parallel coded and non coded TCP flows. The results show that unfairness
happens in favor of coded flows but its impact is limited, because even with high redundancy
factors a coded flow never starves a non-coded one. This encouraging observation indicates that
congestion losses are correlated enough to cause decoding to fail and TCP to react properly to
the congestion.

Then, we attempted two approaches to enhance MPTCP performance with intra-flow net-
work coding. First, we investigated running MPTCP over network coding and then we imple-
mented network coding directly in MPTCP.

We built an emulation setup to study the benefits of running MPTCP over network coding.
Since MPTCP is based on TCP and relies on the same mechanisms, it is also subject to similar
drawbacks, especially sensitivity to link loss. The tests carried out on our emulation system show
that MPTCP goodput is significantly improved when running on pipeline coding, in particular,
if intra-flow redundancy factor is properly tuned. This showcases the importance of redundancy
adaptation, a challenge we addressed in the first part of this thesis.

MPTCP is specifically subject to head-of-line blocking. This happens when the destination
is unable to accept data from one path because it is waiting data from another path and its
buffer is full. Since network coding can help to solve this issue, we designed a practical MPTCP
extension, MultiPath Coded TCP (MPC-TCP). The idea is, rather than running MPTCP over
network coding, to implement network coding directly in MPTCP, while keeping a strict network
retro-compatibility with TCP.

As expected, the solution solves the head-of-line blocking problem by removing mapping
issues. However, the overhead is non-negligible, probably because of the current feedback
mechanism. This should be fixed in a future work to make MPC-TCP a viable alternative
to MPTCP. A potential solution could be to dynamically switch the coding on or off depending
on network conditions when ensuring the best possible throughput.

The emulation platforms and tools that we developed for this work will be useful for our
research team to carry out the investigations on network coding performances. In particular, it
will allow to benchmark MPTCP in more realistic environments.

The platform should also serve to continue the work related to the integration of network
coding with MPTCP. Some work is indeed still to be carried out to make MultiPath Coded
TCP a viable alternative to MPTCP in realistic environments.

As a summary, this work allowed to explore the potential of intra-flow network coding through
multiple issues. It has been the occasion to design network coding systems for different plat-
forms, which has been very enriching, even if it has also been very time-consuming, since required
implementations ranged from ns-3 emulation to Linux kernel. Even if inter-flow coding was not
the focus of this work, it was still very interesting to learn the concepts of it, and its different
applications.

Moreover, it has been the occasion to work with different teams, in particular within the
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framework of the OPUS project. Collaboration with people from the industry has been really
interesting, and the project provided a good opportunity to learn about different domains,
such as video services, and to investigate possible deployments for Unmanned Aerial Vehicules
(UAV), which need communication systems between them and with the ground.

Working with the Network Research Lab at UCLA has also been a great opportunity. The
different encounters sharpened my interest in promising applications like autonomous cars,
raising new challenges that can be adressed with network coding.

Since network coding implementations are not common and MPTCP is not yet implemented
in simulators, this research has requiered an important work of implementation and testbed
construction. For now, results are limited and should therefore be extented using the developped
infrastructure.

Our adaptation algorithm can be applied to enhance video transmission in wireless mesh
networks. It can be adapted to more specifically to provide variable content protection to video
data. With SVC (Scalable Video Coding), video can be divided in subset bitstreams, which
can be transported using an expanding window algorithm and intra-flow network coding, each
window having a different protection using our redundancy bound.

To push the study further, investigating security issues linked to network coding would be
particularly interesting. Network coding is indeed sensitive to pollution, because an invalid com-
bination can corrupt entire groups of packets. More specifically, if a single invalid combination
is present, generated combinations will all be invalid, and decoding will be impossible. Homo-
morphic signatures are a potential solution to this issues, but, even if enhancements such as Null
keys exist, their very high cost can be prohibitive in most applications. For instance, using a
smart algorithm for decoding, network nodes could take advantage of redundant combinations,
which are normally useless, to detect pollution, and maybe eliminate it: when the system is
inconsistent during decoding, a node could try to find the minimum set of combinations to
remove, given the proper hypotheses.

Network coding could also be interesting as a tool to enhance distributed caching or storage.
Nowadays, data storage is a growing challenge, so it would be very interesting to continue
working in this direction.
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Appendix A

Publications

A.1 Collaborations

During the course of this work, I had the great opportunity to visit the Network Research Lab
at UCLA. I was invited by Mario Gerla to work with his team about issues related to network
coding, from january 2014 to april 2014 and from november 2014 to february 2015. This was
the opportunity for a very interesting collaborative work, in particular about MPTCP.

It has also been the occasion to take part in the OPUS research project with industrial
partners: Thales Communications, Vitec, and the startup Green Communications. The OPUS
project focuses on network coding to enhance real-time video communications over wireless
networks. It has been an opportunity to learn a lot on video processing, but also to present this
work and exchange with people from the industry, which is really welcome in a research work.

A.2 Articles

1. Paul-Louis Ageneau, Nadia Boukhatem and Mario Gerla, Fairness Evaluation of Pipeline
Coded and Non Coded TCP Flows, IEEE International Conference on Communications
(ICC), 2014

2. Paul-Louis Ageneau, Chuchu Wu, Nadia Boukhatem and Mario Gerla, Redundancy Adap-
tation for Multi-Path Intra-Flow Network Coding in Wireless Mesh Networks, IEEE Ve-
hicular Technology Conference (VTC2016-Fall), 2016

3. Paul-Louis Ageneau and Nadia Boukhatem, Multipath TCP over Network Coding for
Wireless Networks, IEEE Annual Consumer Communications and Networking Conference
(CCNC), 2017

4. Paul-Louis Ageneau, Nadia Boukhatem and Mario Gerla, Practical Random Linear Coding
for MultiPath TCP: MPC-TCP, International Conference on Telecommunications (ICT)
2017

5. Paul-Louis Ageneau, Nadia Boukhatem and Mario Gerla, Constraint-Aware Multi-Path
Intra-Flow Network Coding in Wireless Mesh Networks, International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), 2017
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6. Hana Baccouch, Paul-Louis Ageneau, Nicolas Tizon, Nadia Boukhatem, Prioritized Net-
work Coding Scheme For Multi-Layer Video Streaming, 7th International Conference On
Network Of the Future, 2016

7. Hana Baccouch, Paul-Louis Ageneau, Nicolas Tizon and Nadia Boukhatem, Prioritized
Network Coding Scheme For Multi-Layer Video Streaming, IEEE Annual Consumer Com-
munications and Networking Conference (CCNC), 2017

8. Hana Baccouch, Paul-Louis Ageneau, Nicolas Tizon and Nadia Boukhatem, Network Cod-
ing Schemes For Multi-Layer Video Streaming On Multi-Hop Wireless Networks, IEEE
Wireless Communications and Networking Conference (WCNC), 2017

9. Hana Baccouch, Paul-Louis Ageneau, Nicolas Tizon, Nadia Boukhatem and Thi-Mai-
Trang Nguyen, Bounded Network Coding Redundancy for Multi-Layer Video Streaming,
International Wireless Communications and Mobile Computing Conference (IWCMC),
2017

A.3 Deliverables

1. Paul-Louis Ageneau, Thuong Van Vu, Nadia Boukhatem, Michel Bourdellès, Alexandre
Laube, Khaldoun Al Agha, OPUS L2.1: Methods for optimizing network communications

2. Hana Baccouch, Paul-Louis Ageneau, Nadia Boukhatem, Michel Bourdellès and Khaldoun
Al Agha, OPUS L2.3: First results of communications optimization simulations
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Appendix B

Redundancy bound derivation

B.1 Chernoff bound

We use the Chernoff bound method to get an upper bound on the relative error for the binomal
distribution X =

∑n
k=1Xk with ∀k ∈ {1, ..., n}, Xk ∈ {0, 1} and P (Xk = 1) = p, i.e. a bound

to P (X > λµ) with µ = E[X] and λ > 1. The moment-generating function of Xk is, for t > 0:

MXk
(t) = E[etXi ] = pet + (1− p)e0 = 1 + p(et − 1)

So we get the following bound:

MXk
(t) 6 ep(e

t−1)

And, for the moment-generating function of X:

MX(t) =

n
∏

k=1

MXk
(t) 6

n
∏

k=1

ep(e
t−1)

MX(t) 6 exp

(

n
∑

k=1

p(et − 1)

)

= e(e
t−1)E[X] = e(e

t−1)µ

Let’s introduce λ > 1 and compute the probability for the number of losses to be more than
λµ:

P (X > λµ) = P (etX > etλµ)

As a reminder, Markov’s inequality for any positive random variable Y states:

∀a > 0 P (Y > a) 6
E[Y ]

a

Applying Markov’s inequality for Y = etX gives us:

P (X > λµ) 6
E[etX ]

etλµ
=

MX(t)

etλµ
6

e(e
t−1)µ

etλµ

Let’s choose t = lnλ > 0, we eventually get the following Chernoff bound:

P (X > λµ) 6

(

eλ−1

λλ

)µ
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Given this inequality is trivially true for λ = 1, it can be extended to λ > 1.

If we choose λ = r−1
pr

, λ > 1 since r > rmin(p) =
1

1−p
we have:

λµ =
r − 1

pr
× prm = (r − 1)m

And we eventually get the following upper bound for the probability to lose a given gener-
ation:

P (X > (r − 1)m) 6 exp (−prm(1− λ+ λ lnλ))

B.2 Bound on r

The redundancy r must verify:

exp

(

−1

2
mpr

(

r − 1

pr
− 1

)2
)

≤ τ

This gives, with K = − ln τ
m

:

pr

(

r − 1

pr
− 1

)2

≥ 2K

(1− p)2r2 − 2 ((1− p) +Kp) r + 1 ≥ 0

∆ = 4Kp(Kp+ 2(1− p)) > 0

With the constraint r ≥ rmin = 1
1−p

, the solution of the inequation is:

r ≥ r0 =
(1− p) +Kp+

√
Kp
√

Kp+ 2(1− p)

(1− p)2

=
1

1− p

(

1 +
Kp

1− p

(

1 +

√

1 + 2
1− p

Kp

))

We finally obtain the redundancy lower bound:

r ≥ 1

1− p

(

1 + C

(

1 +

√

1 +
2

C

))

where C =
Kp

1− p

Given the actual parameters values (in particular p << 1), C << 1, so 1
C

>> 1 and
1 + 2

C
≃ 2

C
, and we get the approximation:

r ≥ rbound(m, p, τ) =
1

1− p

(

1 + (1 +
√
2C)2

2

)

where C =
− ln τ

m

p

1− p
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Résumé

1 Introduction

Depuis le début des années 1960, les réseaux informatiques, ainsi que leurs usages, ont
drastiquement évolués, alors que les principes de transmission de paquets sont restés fondamen-
talement les mêmes.

Bien qu’aujourd’hui la majorité des accès se fassent par des technologies sans fil, les paquets
sont en général toujours transmis d’un nœud à l’autre comme des blocs de données inaltérables.
Cependant, ce paradigme fondamental a récemment été remis en question par de nouvelles
techniques comme le codage réseau, qui promet des améliorations conséquentes des performances
pour peu que les nœuds puissent mixer les paquets ensemble.

Les réseaux sans fil sont très répandus aujourd’hui, en particulier depuis que les normes WiFi
802.11 et 3G/4G/LTE sont devenus les principales technologies de connexion des appareils
auprès du grand public. À l’avenir, les appareils mobiles auront besoin de se connecter de
partout, les smartphones génèreront davantage de trafic, beaucoup d’objets de la vie courante
seront raccordés aux réseaux mobiles, les voitures et les drones auront besoin de communications
de bonne qualité entre eux et avec des stations de base.

Cependant, les réseaux sans fil souffrent de taux de perte de paquets importants à cause
des obstacles, des interférences et des mouvements. La qualité d’un lien peut se dégrader ra-
pidement et causer des pertes de paquets. Les protocoles de la couche MAC implémentent des
retransmissions pour pallier en partie ce problème, mais des pertes peuvent toujours avoir lieu
pour les couches protocolaires plus hautes après un certain nombre de retransmissions échouées.

Ces problèmes tendent à empirer dans le cas des réseaux sans fil de type maillé avec des
nœuds jouant le rôle de relais. L’augmentation du nombre de relais non seulement augmente les
interférences, mais le nombre de sauts à franchir augmente aussi la perte subie à destination.
Dans de telles topologies, les protocoles MAC peuvent s’avérer insuffisants pour empêcher des
pertes potentielles et ainsi garantir une fiabilité suffisante pour la plupart des applications.
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2 Contexte et définitions

2.1 Définitions et bénéfices du codage réseau

Le déploiement du codage réseau dans les réseaux sans fil est le sujet d’une attention crois-
sance de la part de chercheurs depuis son introduction. Le codage réseau permet d’améliorer
le débit et la fiabilité des transmissions. De plus, les réseaux sans fil, du fait de leur trans-
mission par diffusion et des possibilités d’écoute, sont considérés comme des environnements
particulièrement adaptés son application.

Le codage réseau désigne une famille de techniques basées sur un principe fondamental : au
lieu de transmettre les paquets un par un , les nœuds du réseau peuvent combiner plusieurs
paquets pour créer un paquet codé, aussi appelé combinaison, avant de la transmettre. Ce
processus de combinaison de paquets est appelé codage, et le processus permettant de retrouver
les paquets originaux à partir des paquets codés est appelé décodage.

Ces techniques peuvent être considérées comme une alternative à la transmission tradition-
nelle des paquets dans un réseau. En fonction des applications, les bénéfices sont multiples :
le nombre de transmissions nécessaires pour transmettre des données dans un réseau peut être
réduit, les pertes de paquets peuvent être prévenues et la fiabilité des flux peut être améliorée.

Par exemple, le codage réseau a été proposé pour maximiser la capacité du réseau, c’est-à-dire
le trafic maximal que le réseau peut transmettre des sources vers les destinations. La topologie
de type “papillon” (figure 1) illustre un cas où le codage réseau fonctionne nettement mieux
que la retransmission de paquets. Elle consiste en deux noeuds source transmettant deux flux A
et B à travers un réseau avec trois chemins vers deux noeuds de destination. Chaque noeud de
destination souhaite recevoir les deux flux, et chaque lien a une capacité d’un paquet par unité
de temps. La capacité du réseau est de 3 paquets par unité de temps avec la retransmission
traditionnelle, mais de 4 paquets par unité de temps avec le codage réseau.

A B

BA+B

A+B A+B

A B

A

A B

BA

B A

A B

A, B

B

A, B A, B A, B

A

Figure 1 – Topologie de type “papillon” sans (à gauche) et avec codage réseau (à droite)
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2.2 Le codage réseau linéaire

La grande majorité des travaux appliqués sur le sujet utilisent le codage réseau linéaire. Le
codage linéaire utilise l’algèbre linéaire pour obtenir le codage des paquets : les paquets sont
considérés comme des vecteurs et les combinaisons de paquets sont des combinaisons linéaires. Il
a été prouvé que le codage linéaire est suffisant pour obtenir un débit optimal dans les situations
de multidiffusion.

Les coefficients utilisés pour calculer les combinaisons peuvent être obtenus de manière
déterministe ou aléatoire. Il a été démontré que les coefficients aléatoires pour le codage réseau
linéaire permettent presque d’atteindre la capacité du réseau dans les systèmes de transmission
de diffusion comme les réseaux sans fil en utilisant un algorithme décentralisé, à condition que
la taille du champ soit suffisamment grande.

Plus la taille du champ est grande, plus la probabilité pour le récepteur est d’obtenir des
combinaisons linéairement indépendantes. En pratique, un champ de 28 éléments est utilisé la
plupart du temps car il suffit d’obtenir une bonne probabilité de décodage, et il permet de
meilleures performances, car les symboles sont alors des octets.

2.3 Approches du codage réseau

Compte tenu des flux à partir desquels les paquets sont codés ensemble, nous pouvons
distinguer deux catégories de techniques du codage réseau : le codage inter-flux et le codage
intra-flux. Le codage inter-flux a pour objectif d’atteindre la capacité maximale du réseau dans
les topologies où la transmission conventionnelle de paquets ne le permet pas, en codant ensemble
les paquets de différents flux passant à travers un même nœud. Le codage intra-flux peut soit
servir à atteindre la capacité maximale pour les flux multicasts, soit à augmenter la fiabilité des
flux unicast sur des réseaux non fiables, en combinant des paquets appartenant au même flux.

2.3.1 Codage inter-flux

Le codage réseau inter-flux vise à maximiser la capacité du réseau en combinant des paquets
provenant de différents flux unicast dans les relais.

Les paquets provenant de différents flux sont combinés afin d’envoyer moins de paquets et
de réduire le temps de transmission sans fil. L’idée est de ne transmettre que les informations
nécessaires. Le temps de transmission économisé est disponible pour d’autres flux. Il en résulte
un débit accru pour chaque flux et une capacité de réseau accrue. Le réseau de papillons présenté
dans la section précédente (figure 1) montre un exemple classique de la façon dont le débit
disponible peut être augmenté.

2.3.2 Codage intra-flux

Le codage réseau intra-flux, sujet principal de ce travail, permet d’augmenter la fiabilité
d’un flux en combinant les paquets de celui-ci ensemble. L’idée est d’envoyer des combinaisons
de paquets sortants à partir du même flux plutôt que d’envoyer les paquets eux-mêmes.

En effet, le codage réseau fournit des avantages par rapport aux retransmissions. Les mécanismes
de retransmission conventionnels, par exemple Automatic Repeat Query (ARQ), nécessitent de
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déterminer si chaque paquet est correctement reçu ou perdu, afin d’effectuer une retransmis-
sion de ce paquet particulier. Avec le codage réseau, la source peut combiner les paquets à
transmettre ensemble, alors la destination doit uniquement avoir des combinaisons suffisantes
pour décoder les informations. Ainsi, la source ne se préoccupe pas des données spécifiques à
retransmettre.

À destination, un pivot de Gauss permet de récupérer tous les paquets pourvu qu’as-
sez de combinaisons linéaires indépendantes aient été reçues. Selon la mise en œuvre du co-
dage, les noeuds intermédiaires peuvent soit recoder les paquets en combinant les combinaisons
transférées, soit simplement les transférer.

Pour compenser les pertes, plus de combinaisons que les paquets d’origine peuvent être
générées. À destination, les paquets d’origine peuvent être décodés, à condition que des com-
binaisons indépendantes soient reçues. Les données d’origine peuvent être récupérées même si
certains paquets sont perdus.

De plus, cette technique peut être avantageusement exploitée lorsque les noeuds peuvent
écouter les paquets qui ne leur sont pas destinés et effectuer des retransmissions opportunistes.
Avec des retransmissions traditionnelles, les nœuds voisins devraient échanger des informations
explicitement pour effectuer une retransmission, car un paquet manquant à destination ne peut
être récupéré qu’en retransmettant ce même paquet. Le codage réseau peut résoudre ce problème
de manière transparente car toute combinaison innovante peut être utilisée pour décoder les
paquets d’origine.

2.4 Méthodes de mise en œuvre du codage intra-flux

2.4.1 Redondance du codage réseau

Le codage réseau intra-flux permet d’envoyer plus de combinaisons que les paquets d’origine
afin d’accrôıtre la fiabilité du flux. Ainsi, un flux peut supporter un certain nombre de pertes de
paquets tout en transmettant les données d’origine. Le rapport entre le nombre de combinaisons
envoyées et le nombre de paquets originaux, appelé facteur de redondance, est un paramètre
critique.

Le facteur de redondance devrait être suffisamment grand pour compenser les pertes de liens
et garantir la réception de suffisamment de combinaisons à la réception pour s’assurer que les
paquets sont décodés. Cependant, une valeur trop élevé peut entrâıner une surcharge inutile du
réseau.

Par exemple, si l’expéditeur veut envoyer 3 paquets, il peut envoyer 4 combinaisons afin
de protéger les paquets d’éventuelles pertes (figure 2). Dans ce cas, le facteur de redondance
r est de 4/3. Si l’une des combinaisons est perdue, la destination peut encore décoder les
paquets d’origine sans aucune différence. Notez que si aucune des combinaisons n’est perdue, la
destination ignore simplement la combinaison surnuméraire car elle n’apporte pas de nouvelles
informations et est inutile pour le processus de décodage. Une telle combinaison s’appelle non-

innovant.

2.4.2 Codage à générations

Pour implémenter le codage réseau, il est nécessaire d’identifier quels paquets coder ensemble.
L’une des approches les plus connues s’appelle le codage à générations.
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Sender Receiver

C1 = a1,1P1 + a1,2P2 + a1,3P3

C2 = a2,1P1 + a2,2P2 + a2,3P3

P1

P2

P3 C3 = a3,1P1 + a3,2P2 + a3,3P3

C4 = a4,1P1 + a4,2P2 + a4,3P3

C1

C2

C4

P1

P2

P3

Redundant

Lost

Figure 2 – Exemple de redondance du codage réseau avec 3 paquets d’origine et 4 combinaisons
(facteur de redondance r = 4/3)

La quantité de calculs nécessaire au codage et, plus particulièrement, au décodage, dépend
principalement du nombre de paquets codés ensemble. En raison de contraintes techniques, dans
les implémentations pratiques, une technique commune consiste à grouper des paquets dans des
lots consécutifs appelés générations. Les paquets appartenant à la même génération sont codés
ensemble.

Les petites générations permettent de réduire le temps et le délai de traitement. Cependant,
ils réduisent également l’efficacité du codage réseau. La raison principale est évidente : la desti-
nation nécessite suffisamment de paquets d’une génération spécifique pour effectuer le décodage
de cette génération. Par conséquent, les générations plus petites ont tendance à souffrir du
même inconvénient que le transfert de paquets. L’expédition traditionnelle peut être considérée
comme une génération de taille 1.

Selon la manière dont les packets sont codés ensembles dans une génération, on peut distin-
guer deux types de méthodes.

Dans le Batch coding, ou codage par lots, la source combine les paquets de la même
génération ensemble (figure 3).

Sender Receiver

C1 = a1,1P1 + a1,2P2 + a1,3P3

C2 = a2,1P1 + a2,2P2 + a2,3P3

P1

P2

P3

P1, P2, P3

C3 = a3,1P1 + a3,2P2 + a3,3P3

C4 = a4,1P1 + a4,2P2 + a4,3P3

Figure 3 – Principe du Batch coding avec une taille de génération m = 3 et une combinaison
redondante

À l’inverse, le Pipeline coding est un système du codage réseau à générations permettant
un délai plus faible. Il est particulièrement adapté aux sessions interactives et multimédias en
temps réel. En outre, il fonctionne bien lorsqu’il est combiné avec des applications basées sur
protocole TCP. Le Pipeline coding code et décode les paquets progressivement. Son principe est
de stocker les paquets sortants dans un tampon de codage et d’en envoyer des combinaisons dès
que possible. Lorsqu’un nouveau paquet arrive à partir de l’application, il est ajouté au tampon
de codage et une ou plusieurs combinaisons (en moyenne r, où r est le facteur de redondance)
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est immédiatement envoyé (figure 4).

Sender Receiver

C1 = a1,1P1

C2 = a2,1P1 + a2,2P2

P1

P2

P1

P2

P3

P3

C3 = a3,1P1 + a3,2P2 + a3,3P3

C4 = a4,1P1 + a4,2P2 + a4,3P3

Figure 4 – Principe de Pipeline coding avec une taille de génération m = 3 et une combinaison
redondante

2.4.3 Codage à fenêtre glissante

Le codage à fenêtre glissante est une alternative au codage réseau à générations. Il permet
de lisser le processus de codage et de décodage et convient parfaitement aux protocoles qui
utilisent déjà une fenêtre de transmission, par exemple TCP (comme dans TCP/NC), mais il
présente l’inconvénient d’exiger une forme de retour.

Le principe est d’utiliser une fenêtre coulissante pour coder des paquets ensemble. La fenêtre
avance en supprimant les anciens paquets qui ne doivent plus être inclus dans les combinaisons
suivantes et en ajoutant de nouveaux paquets générés par la couche supérieure, ce qui nécessite
un retour d’information depuis le processus de décodage. Les paquets qui peuvent être éliminés
du processus de codage sont les paquets qui ne sont plus nécessaires pour compléter le processus
de décodage. Plus précisément, ce sont les paquets qui peuvent être exprimés uniquement avec
des paquets plus récents, appelés paquets vus, ou seen (figure 5). Les paquets vus ne sont pas
nécessairement décodables, mais comme ils peuvent être exprimés sous forme de combinaisons
de paquets futurs uniquement, ils seront décodables à l’avenir, même si ils ne font plus partie
des combinaisons entrantes.

Seen Unseen

C1

P1 P2 P3 P4 P5 P6

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 a

c

b

d

C2

C3

C4

Decoded

Figure 5 – Décodage partiel mettant en évidence les paquets vus (seen)
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3 Adaptation de redondance

Un des avantages principaux du codage intra-flux est de prévenir les pertes. En utilisant
celui-ci, les paquets originaux peuvent être décodés dès qu’un nombre suffisant de combinaisons
ont été reçues, et ce quelque soient les combinaisons reçues. Il fonctionne à la manière d’un code
à effacement (erasure code) d’un nœud à l’autre et permet de récupérer l’ensemble des paquets
originaux en présence de pertes sur le trajet.

Il est aussi possible de tirer profit de cette propriété pour améliorer la fiabilité dans des
topologies où de multiples chemins potentiels sont disponibles, par exemple les réseaux de type
maillage sans fil, car les flux de bout-en bout peuvent alors transiter de manière transparente
d’un chemin à l’autre selon le fonctionnement des liens.

Quand le codage réseau est déployé pour un flux unicast, il est nécessaire de deviner le
nombre de combinaisons à générer au niveau de la source et des relais, afin que la destination
soit en mesure de décoder les paquets.

Si la redondance est trop faible, elle peut devenir insuffisante pour compenser les pertes.
Dans ce cas, le flux peut en pratique montrer des performances inférieures, à cause de groupes
entiers de paquets consécutifs qui ni peuvent pas être décodés. À l’inverse, si la redondance est
trop élevée, le surcoût en termes de charge pour le réseau augmente sans aucun bénéfice pour
les performances d’un point de vue applicatif.

Nous pensons que la redondance est en fait un compromis entre la charge du réseau et la
tolérance des applications. Selon l’application, par exemple le transfert de fichiers ou la diffusion
vidéo, la tolérance aux pertes est très différente. Il est donc nécessaire de régler le facteur de
redondance pour le faire correspondre aux caractéristiques du réseau. De plus, il est nécessaire
d’adapter dynamiquement ce facteur si les caractéristiques du réseau changent avec le temps.

Cependant, même si des informations relatives à la qualité des liens est disponible, adapter
le facteur de redondance en conséquence n’est pas une opération triviale, et plusieurs travaux
reposent sur des formules empiriques menant potentiellement à des situations de sur-redondance.
Nous proposons donc un modèle de redondance pour facilement évaluer une borne de redondance
acceptable.

3.1 Estimation de la redundance

Le premier objectif de notre travail est de trouver un moyen approprié de calculer le facteur
de redondance minimal à appliquer compte tenu du taux de perte du réseau, et ce de manière
plus précise que la redondance moyennes. Le paramètre de redondance doit offrir une garantie
correcte en termes de perte maximale tolérée au niveau de l’application.

Pour cela, la redondance doit non seulement tenir compte des caractéristiques du réseau, mais
également des exigences de l’application. Lorsque les exigences de l’application sont disponibles,
le facteur de redondance doit être modifié pour être suffisant pour celle-ci, mais pas plus élevé.

3.1.1 Borne inférieure pour la redondance

Nous nous intéressons tout d’abord à l’obtention d’un facteur de redondance minimale pour
envoyer du trafic sur un lien à perte en utilisant le codage réseau. Nous voulons que cette
redondance tienne compte à la fois de la perte du lien et des exigences de l’application.
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Nous considérons un nœud en train d’envoyer des paquets à un autre nœud à travers un lien
caractérisé par un taux de perte uniforme p. L’expéditeur, pour envoyer une génération de m
paquets, applique le taux de redondance r et transmet donc n = ⌈rm⌉ combinaisons.

Soit τ le taux de perte maximum toléré par l’application. On obtient la borne inférieure
suivante pour r, qui peut être calculée à partir de τ , de la taille de générationm, de la probabilité
de perte p :

r ≥ rbound(m, p, τ) =
1

1− p

(

1 + (1 +
√
2C)2

2

)

≃ 1

1− p

(
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√
2C
)
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Figure 6 – Facteur de redondance minimal rbound étant donné le taux de perte toléré τ pour
différentes valeurs de la taille de génération m (p = 0.1)

3.1.2 Contrôle adaptatif distribué de la redondance

Maintenant que nous avons défini une redondance liée à un lien, nous voulons dériver un
algorithme distribué. Le déploiement d’un algorithme centralisé pour l’adaptation de la redon-
dance dans un réseau entier est plus simple par certains aspects mais empêche la mise à l’échelle
et le déploiement pratique.

Dans cette section, nous cherchons à définir un système de codage réseau intra-flux distribué
avec un contrôle de redondance adaptatif pour une transmission de données fiable.

Le système ne nécessite pas de signalisation et repose sur un routage opportuniste : chaque
nœud peut entendre les paquets codés envoyés par ses voisins et peut donc participer à la
transmission des paquets codés vers la destination. La redondance liée définie précédemment
permet d’optimiser le nombre de combinaisons redondantes qu’un noeud doit générer vers ses
voisins.

Plus précisément, lorsqu’un nœud i entend une combinaison envoyée par un nœud k à la
destination finale j (figure 7), il exécute les étapes suivantes :

— Le nœud i décide s’il doit transférer le trafic. Pour ce faire, il compare sa distance à
j à la distance de k à j. Si k est plus proche, le paquet est supprimé, sinon le paquet
est conservé en mémoire avec les paquets déjà reçus du même flux, puis on passe à la
seconde étape.
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— Le nœud i calcule la redondance nécessaire pour ce flux en utilisant les qualités de
transmission de lien de ses voisins et l’estimation de redondance présentée ci-dessus.
Enfin, i génère des paquets codés selon r et les envoie.

k i j

Figure 7 – Le nœud i entend une combinaison de k et envoie une nouvelle combinaison.

3.1.3 Résultats de la simulation

Nous évaluons ensuite notre modèle grâce à des simulations. À cette fin, nous avons développé
un programme en C++ qui simule l’algorithme proposé. Le programme simule les transmissions
par paquets, la perte de liens, ainsi que les opérations de codage et de décodage.

Nous évaluons l’algorithme d’estimation de la redondance dans trois topologies différentes
avec une, deux et trois lignes de relais parallèles (figure 8). Les transmissions entre relais
présentent une perte de lien uniforme p pour simuler les interférences dans le réseau.

link loss p

S D

DS

S D

1 line

2 lines 3 lines

Figure 8 – Topologies avec différents nombres de lignes de relais avec perte de lien p entre
relais

Deux paramètres sont mesurés : la perte à destination et l’overhead relatif calculé comme
suit :

relative overhead =
# paquets envoyés

# nodes×# paquets originaux

Nous transmettons des données depuis la source vers la destination en utilisant la taille de
génération m = 32 avec notre algorithme d’adaptation de redondance (τ = 0.01) et les autres
mécanismes suivants :

— Average, où chaque nœud envoie avec la redondance 1

1−p

— Static, où chaque nœud envoie avec un facteur de redondance constant prédéfini r
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— CodeMP-like, où chaque nœud envoie avec la redondance 1

1−p
+K. La constante K est

prédéfinie et doit être suffisamment élevée pour que ce schéma fonctionne, mais une
valeur trop élevée entrâıne des situations de sur-redondance.

Avec une seule ligne de relais, seul notre algorithme réalise une perte proche de zéro à la
destination (figure 9), mais il résulte en plus d’overhead que les autres (figure 10). Comme
prévu, la redondance moyenne se comporte mal même avec de faibles pertes, contrairement aux
autres systèmes utilisant une redondance statique supplémentaire.
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Figure 9 – Perte de génération à destination selon la perte p avec une ligne de nœud de relais
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Figure 10 – Overhead relatif selon la perte p avec une ligne de nœud de relais

Avec plus d’une ligne de relais, le relais opportuniste est suffisants pour que les différents
mécanismes atteignent une perte presque nulle à destination. Cependant, l’overhead est beau-
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coup plus bas avec notre algorithme, puisqu’il n’innonde pas le réseau (figure 11). Ceci est encore
plus visible avec trois lignes de relais (figure 12).
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Figure 11 – Overhead relatif selon la perte p avec deux lignes de nœud de relais
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Figure 12 – Overhead relatif selon la perte p avec trois lignes de nœud de relais
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3.2 Prise en compte des contraintes

Dans les réseaux sans fil maillés, les nœuds ont souvent de fortes contraintes en matière de
consommation d’énergie et de puissance de traitement. Dans ce cas, le codage et la transmission
peuvent représenter des opérations coûteuses. Une façon de réduire le coût du codage consiste à
distribuer les opérations de codage sur un nombre limité de noeuds tout en essayant d’optimiser
le gains en termes de performances.

Pour répondre à ce défi, notre objectif est de proposer un algorithme distribué qui prend en
compte la capacité de chaque nœud de réseau à contribuer aux opérations de codage. Chaque
nœud définit sa contribution relative en fonction de ses propres contraintes. Celle-ci est prise
en compte lors de la transmission des combinaisons de paquets via les noeuds du réseau, tout
en garantissant le décodage à destination.

3.2.1 General principle

Chaque nœud i peut définir un facteur de contribution αi ∈]0, 1] qui indique sa contribution
relative à la transmission par le réseau. Les nœuds définissent leur facteur en fonction de leurs
propres contraintes, et chaque nœud diffuse son facteur et celui de chacun de ses voisins. Les
combinaisons sont transmises dans le réseau avec la contrainte de décodage à destination, tout
en gardant la contribution de chaque nœud par rapport à ses voisins proportionnelle à son
facteur αi.

Par exemple, un nœud avec un facteur α dix fois plus élevé que ses voisins générerera et
enverra en moyenne dix fois plus de combinaisons. Ce mécanisme permet de faire en sorte que
les combinaisons soient générées en priorité par des nœuds possédant les capacités de le faire
(figure 13).

k

i

j

αk
i’

αi < αi′

αi′ > αi

j can decode

Figure 13 – Nodes i et i′ relaient le traffic avec différentes contributions.

3.2.2 Résultats de simulation

Le facteur de contribution α permet d’équilibrer le trafic entre un nœud et ses voisins. Nous
montrons son effet dans une topologie avec plusieurs lignes (figure 14) en réduisant α sur les
nœuds dans la première ligne.

Lorsque plusieurs nœuds peuvent retransmettre les paquets du même flux, leur contribution
relative respective sera proportionnelle à leur facteur α. Par exemple, un nœud avec α = 0.5
aura tendance à générer la moitié du nombre de combinaisons d’un nœud avec α = 1, ce qui lui
permet d’économiser de l’énergie si nécessaire.
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Figure 14 – Topologies simulées avec 2 ou 3 lignes

Comme prévu, abaisser le facteur α sur la première ligne a pour effet de détourner le trafic
vers les autres lignes où les nœuds ont α égal à 1, en particulier à la seconde (figure 15).
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4 Interaction entre le codage réseau et TCP

Plusieurs auteurs supposent que l’obstacle majeur au déploiement du codage réseau est que
la manière d’intégrer naturellement cette technique aux réseaux existants n’est pour l’instant
pas évidente. En particulier, un déploiement incrémental est difficile et il est difficile du prédire
comment le codage réseau va se comporter une fois déployé en situation réelle.

L’interaction du codage réseau avec le protocole TCP est l’un des problèmes majeurs, puisque
TCP est aujourd’hui le protocole de transport prédominant sur Internet.

Il est bien documenté que TCP fonctionne mal au dessus de liens présentant des pertes de
paquets, parce qu’il interprète les pertes comme des signaux de congestion. En effet, les pertes de
paquets sont extrêmement peu communes sur les liens filiaires, c’est pourquoi traditionnellement,
la seule cause de pertes de paquets est la congestion du réseau entrâınant des pertes au niveau
d’un nœud.

Comme le codage réseau intra-flux est capable d’améliorer la fiabilité et la performance des
flux, il semble tout à fait adapté pour corriger le fonctionnement de TCP. En effet, il permet
de cacher les pertes de lien, rendant inutiles les retransmissions de segments et les réductions
inutiles de la fenêtre de congestion de TCP.

Cependant, le déploiement du codage réseau conjointement à TCP pose un problème vis-à-
vis de l’équité entre flux. En conditions normales, les flux TCP partagent la capacité disponible
grâce à leur algorithme de contrôle de congestion de type augmentation additive/retrait multi-
plicatif (AIMD). Cependant, la plupart du temps, le signal de congestion est la perte de paquets.
Le codage réseau intra-flux cache les pertes aux flux TCP indépendemment de leur cause, les
pertes de congestion sont donc cachées comme le sont les pertes de lien. Pour cette raison, les
flux TCP fonctionnant au-dessus du codage réseau pourraient prendre une part inéquitablement
important de la capacité disponible lorsqu’il sont en concurrence avec des flux non codés. Dans
les pires cas, il se pourrait que les flux non codés s’arrêtent de transmettre.

Étant donné que TCP est de loin le protocole de transport le plus utilisé sur Internet,
plusieurs travaux se sont naturellement concentrés sur son interaction avec le codage réseau.
Par exemple, TCP/NC, qui introduit une couche de codage réseau entre IP et TCP a été testé
avec deux flux codés concurrents du même type, mais le problème d’équité demeure en cas de
concurrence avec des flux non codés.

Dans ce travail, nous discutons de ce problème d’équité entre flux codés et flux non codés
et nous définissons une nouvelle mesure d’équité pour déterminer les implications du fonction-
nement de flux codés en parallèle de flux non codés.

4.1 Sensibilité aux pertes et inéquité

Lors de l’exécution de TCP sur le Pipeline coding, la couche de codage agit comme une
couche de Forward Error Correction (FEC) transparente (figure 16), dissimulant efficacement
les pertes de la couche TCP.

4.1.1 Pertes de liens et pertes de congestion

Étant donné que les pertes sont indistinctement cachées par TCP par Pipeline coding, il est
probable que le mécanisme de réduction de fenêtre TCP ne soit pas déclenché comme il devrait.
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Figure 16 – TCP sur Pipeline coding

De plus, cette situation s’aggrave lorsque le facteur de redondance du code augmente.

Pour vérifier cela, après avoir configuré une topologie de goulot d’étranglement et aucune
perte de lien dans le simulateur réseau ns-3, nous surveillons les paquets perdus du fait du
débordement de la file d’attente au niveau du routeur en amont du goulot d’étranglement, qui
correspondent aux pertes de congestion.

Ensuite, nous comparons l’évolution de la fenêtre entre TCP NewReno sans codage et TCP
NewReno avec codage dans une situation extrême, avec la taille de génération g = 64 et le taux
de redondance R = 1, 25. Dans notre implémentation, tous les noeuds intermédiaires suppriment
les paquets redondants et recodent les innovants avec la redondance R, de sorte que sur chaque
lien, la redondance du code réel est de R, indépendamment du taux de perte sur les liens
précédents.

Sur la figure 17 sont représentées les évolutions des fenêtres de congestion, et les barres
verticales marquent les heures où un paquet est supprimé en raison du débordement de la file
d’attente, c’est-à-dire lorsque survient une perte de congestion. Le comportement observable
des mécanismes de contrôle de la congestion TCP est radicalement différent entre le cas codé
et le cas non codé.

Alors que TCP sans codage nécessite seulement une perte de congestion pour détecter la
congestion (en recevant des ACK dupliqués) et pour réagir en divisant sa fenêtre, il faut que des
dizaines d’entre eux réagissent par rapport au codage, car la détection de congestion nécessite
de perdre une génération, et cela ne peut se produire que lorsque plus de (r− 1)g = 16 paquets
sont perdus. Pour cette raison, les flux surcodés sont plus lents à réagir à la congestion que ceux
non codés.

L’un des problèmes est qu’un peu de surcodage est nécessaire, et la redondance ne doit pas
être définie aussi basse que Rmin = 1

1−p
(où p est le taux moyen de perte mesurée), et ce afin de

compenser les pertes en moyenne, une redondance supplémentaire est nécessaire pour éviter de
perdre des générations qui rencontrent plus de pertes statistiquement ou de réduire légèrement
la qualité des liaisons.

4.1.2 Cas de flux concurrents

Si on considère maintenant deux flux TCP concurrents dans ce même goulot d’étranglement,
le premier codé et le second non codé, deux facteurs différents empêchent le flux non codé
d’utiliser toute sa part de débit disponible :

— Les pertes de lien sont cachées au flux codé, mais pas à celui non codé. Par conséquent,
le contrôle de congestion du flux non codé les interprète comme des pertes de congestion,
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Figure 17 – Fenêtre de congestion avec (haut) et sans codage (en bas)

par conséquent, l’expéditeur TCP ajuste sa taille de fenêtre comme si le réseau était
congestionné. Le flux codé ne souffre pas de ces pertes, de sorte qu’il peut prendre une
plus grande partie de la capacité disponible.

— Certaines pertes de congestion sont cachées au flux codé, mais aucune n’est cachée au
flux non codé, de sorte que ce dernier est plus sensible à la congestion réelle dans le
réseau et réagit plus rapidement, laissant une plus grande partie de la capacité au flux
codé.

Le premier mécanisme est souhaitable, car c’est un simple résultat du fait que TCP fonc-
tionne mieux avec le codage, mais le second est clairement indésirable. Nous voulons mesurer
quelle partie de la meilleure performance d’un flux codé provient de sa sensibilité réduite aux
pertes de lien et quelle partie provient d’une sensibilité plus élevée des flux concurrents à la
congestion.

Dans nos résultats (figure 18), nous constatons une augmentation de la différence de débit
entre les flux à mesure que la redondance r augmente, le débit du flux codé codé prenant
graduellement la plus grande partie de la capacité disponible. Cependant, il semble y avoir une
limite et le flux codé ne prend jamais toute la capacité, même avec des taux de redondance
relativement élevés comme r = 1, 5. Cela signifie que la corrélation des pertes de congestion est
suffisante pour que le flux codé réagisse à un moment donné.
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Figure 18 – Comparaison de débit entre des flux concurrents, un avec codage à différents
facteurs de redondance et un sans (p = 1%)

4.1.3 Mesurer l’équité

Notre objectif est d’obtenir une mesure qui est sensible au débit que les flux codés prennent
injustement au détriment des codes non codés, mais pas sensible au fait que les flux codés
fonctionnent mieux indépendamment des flux non codé.

Soit une allocation de débit pour n flux concurrents pour un capacité c sur un chemin à
perte (x0, ..., xn). Les premiers k flux sont codés et les autres n− k ne sont pas codés (k > 0).
Soit x′ le débit moyen qu’obtiendrait un flux dans la même allocation si les flux codés n’étaient
pas codés. Alors, on définit λ comme le ratio entre le débit, dans une allocation équitable, d’un
flux non codé (égal à x′) et celui d’un flux non codé :

λ =
kx′

c− (n− k)x′

Nous introduisons un nouvel indice d’équité J ′, dérivé de l’indice de Jain et prenant en compte
cette correction :

J ′(x1, ..., xn) =
(λ
∑k

i=1
xi +

∑n
i=k+1

xi)
2

N(λ2
∑k

i=1
x2i +

∑n
i=k+1

x2i )

Cet indice d’équité modifié a les mêmes propriétés que l’indice de Jain, mais le meilleur cas
correspond à une répartition équitable telle que voulue dans notre cas et non à une allocation
uniforme. Il note l’équité avec une valeur comprise entre 1

n
(pire des cas) et 1 (le meilleur des

cas, l’allocation est équitable).

En particulier si n = 2 et k = 1 :

λ =
x′

c− x′

J ′(x1, x2) =
(λx1 + x2)

2

2(λx1)2 + 2x22

La figure 19 souligne que l’allocation est en réalité plus juste que ce que l’on pouvait croire,
car le flux codé prend une partie de la ressource dont le flux non codé ne pouvait pas prendre
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de toute façon. Lorsque la redondance r s’approche de valeurs plus élevées, l’équité ne baisse
pas et reste relativement élevée autour de 0, 85. Cela indique même avec trop de redondance,
les flux TCP codés n’écrasent pas les flux non codés. Cela signifie que les pertes de congestion
sont assez corrélées pour déclencher une perte de génération et donc le contrôle de congestion
de TCP.
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Figure 19 – Comparaison des indices à différents facteurs de redondance pour un flux codé et
un non codé (p = 1%)

4.2 Multi-Path TCP sur codage réseau

Multi-path TCP (MPTCP) est une extension TCP récente standardisée dans RFC 6824 par
l’IETF. Il permet de répartir une unique connexion TCP sur plusieurs chemins avec des adresses
différentes, mais il cache la complexité à la couche supérieure en gardant l’API de socket TCP
standard. Il vise à optimiser l’utilisation des ressources réseau et à offrir un meilleur débit et
une meilleure robustesse.

MPTCP a d’abord été conçu pour fournir de meilleurs performances dans des centres de
données. En règle générale, MPTCP cible les hôtes multihomés dans les centres de données afin
d’augmenter la bande passante inter-datacenter.

Récemment, son intérêt a été démontré pour les appareils mobiles dotés de radios multiples.
Par exemple, les smartphones connectés à la fois WiFi et LTE peuvent en profiter pour aug-
menter les débits, améliorer la commutation entre WiFi et LTE, et fournir des performances
stables malgré des dégradations ou des pannes intermittentes sur l’un ou l’autre canal.

Du point de vue du réseau, MPTCP utilise des sous-flux entièrement compatibles TCP pour
différentes paires d’adresses IP, sur lesquelles le flux de données original est mappé. Cette rétro-
compatibilité complète permet de déployer MPTCP sans problèmes de traversée de middlebox,
appareils qui interprètent le trafic TCP.

De la même manière que TCP est sensible aux pertes de lien, MPTCP souffre de dégradations
de performances lorsqu’il est utilisé sur des chemins subissant des pertes aléatoires. Non seule-
ment les paquets perdus doivent être retransmis, mais l’algorithme de contrôle de congestion
tend à mal interpréter les pertes de liens car les signaux de congestion, conduisant à une fenêtre
de congestion inutilement réduite et à un débit trop faible.
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Dans cette partie, nous étudions l’impact du Pipeline coding sur les performances de MPTCP.
Nous avons mis en œuvre une expérience en utilisant l’implémentation MPTCP de référence
de l’Université Catholique de Louvain, et en ajoutant une couche du codage réseau au niveau
IP. Nous croyons que l’utilisation du codage réseau au niveau IP est une approche pertinente
puisqu’elle fournit une rétro-compatibilité TCP et évite les problèmes de traversée de middle-

box. La couche du codage réseau permet de compenser les pertes de liens empêchant à la fois
la réduction des fenêtres de congestion et les problèmes de blocage de ligne de ligne au pla-
nificateur. Nous avons effectué une évaluation de performance de MPTCP codé sur un réseau
émulé relativement réaliste. Une comparaison des performances MPTCP avec et sans codage
est fournie.

Le principe est de garder la pile MPTCP non modifiée et de faire fonctionner chaque sous-
flux sur une session de Pipeline coding (figure 20).

Coding

Generation buffer

Decoding buffer

Combination

IP packet

TCP subflow

Coding

Generation buffer

Decoding buffer

Combination

IP packet

TCP subflow

TCP subflow

TCP subflow

MPTCP

MPTCP

Figure 20 – MPTCP avec deux sous-flux sur le Pipeline coding intra-flux

Du côté du récepteur, les paquets de chaque sous flux sont décodés indépendamment. Lors-
qu’un paquet peut être décodé, il passe immédiatement à MPTCP. Le taux de redondance,
c’est-à-dire, le nombre de combinaisons pour chaque paquet d’origine, est réglable, ce qui per-
mettra d’observer son impact sur les performances.

Le codage réseau devrait avoir un impact positif sur MPTCP lors de l’exécution sur des liens
à perte, car il protège non seulement les sous-flux TCP des pertes de liens, mais aussi empêche
les problèmes de planification lorsqu’ils réagissent aux pertes sur les sous-flux en retransmettant
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sur un autre lien.

4.2.1 Configuration réseau émulée

Nous avons mené des tests sur l’implémentation de référence MPTCP pour le noyau Linux
développé par l’Université Catholique de Louvain, version 0.90. L’émulation de réseau est réalisée
avec le simulateur ns-3 fonctionnant en mode temps réel. Deux machines virtuelles UML (User-
Mode Linux ), une pour le client et une pour le serveur, sont installées sur l’hôte parallèlement
au simulateur. Le trafic à partir des interfaces des deux machines virtuelles est acheminé vers les
nœuds correspondants dans ns-3. Lorsqu’un transfert de fichier est exécuté entre les machines,
les sous-flux sont ouverts sur le réseau émulé (figure 21).
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Figure 21 – Configuration d’émulation de réseau avec ns-3 et deux machines virtuelles User-

Mode Linux

Le réseau émulé se compose de quatre nœuds : deux nœuds comme points d’accès sans fil, un
pour le serveur et un pour le client avec deux interfaces. Les nœuds clients et serveurs utilisent
la fonction pont ns-3 pour rendre leurs interfaces disponibles à partir de l’hôte Linux et le trafic
est acheminé vers et à partir des machines virtuelles correspondantes avec des tables de routage
spécifiques sur l’hôte. Les liens sans fil indépendants sont imités entre le nœud client et les
points d’accès (figure 22).

La figure 23 montre le bénéfice du codage réseau pour le débit de MPTCP. Au fur et à
mesure que le taux de perte augmente, le débit applicatif sans codage s’effondre alors que celui
avec le codage est protégé, offrant un gain constant jusqu’à des taux de perte élevés.

La figure 24 compare le débit applicatif pour différents facteurs de redondance r. L’augmen-
tation de la redondance augmente le taux de perte maximal à partir duquel le débit s’effondre,
mais augmente aussi l’overhead.
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Figure 22 – Détails internes de l’émulation avec ns-3
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Figure 23 – Débit applicatif pour MPTCP avec et sans Pipeline coding sur deux liens selon le
taux de perte p

4.3 Intégration du codage réseau dans MPTCP

Dans cette dernière partie, nous proposons une méthode alternative pour intégrer le codage
réseau dans MPTCP, un protocole pour envoyer des segments codés au dessus des sous-flux
TCP. Cette approche permet potentiellement de pallier les phénomènes de blocage tout en
garder une retro-compatibilité complète avec TCP pour la traversée de pare-feux ou de réseaux
restrictifs.

En effet, MPTCP utilise une fenêtre globale mappée aux fenêtres des sous-flux, et un
problème commun rencontré avec cette approche, en particulier avec des liens sans fil peu
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Figure 24 – Débit applicatif pour MPTCP avec Pipeline coding selon la redondance r

fiables, est le blocage de la tête de ligne (ou head-of-line blocking).

Il se produit lorsqu’un lien se dégrade soudainement : la fenêtre globale MPTCP ne peut pas
avancer parce que les paquets programmés sur le lien défaillant sont manquants à destination
(figure 25). Jusqu’à ce que ces paquets finissent par être reçus ou soient réinjectés sur des autres
liens, la connexion peut être bloquée, même si d’autres sous-flux fonctionnent bien. Par exemple,
ce scénario peut se produire lorsqu’un utilisateur qui télécharge un flux vidéo en WiFi et LTE à
la fois s’éloigne du point d’accès WiFi. La dégradation de la qualité de la liaison WiFi en raison
de la distance pourrait retarder l’intégralité du flux de données MPTCP et geler la vidéo.
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Figure 25 – Problème de head-of-line blocking rencontré avec MPTCP

Notre objectif est d’accrôıtre la résilience de MPTCP en résolvant le problème du head-of-

line blocking. À cette fin, nous définissons et testons une extension MPTCP pratique, MultiPath
Coded TCP (MPC-TCP), qui permet à la source TCP de transmettre des combinaisons linéaires
de segments plutôt que des segments de données sur des sous-flux TCP. Du côté du récepteur,
les données peuvent être décodées dès que suffisamment de combinaisons sont disponibles, peu
importe les sous-flux utilisés pour les transmettre (figure 26). Ce système offre trois avantages :
la rétrocompatibilité MPTCP, la compatibilité TCP complète pour la traversée de réseaux
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restrictifs, et la simplicité d’implémentation.

Feedback

Coding Decoding

Figure 26 – Principe simplifié de MultiPath Coded TCP (MPC-TCP)

Nous avons développé notre propre implémentation dans le noyau Linux à partir de l’implémentation
de référence MPTCP v0.90 de l’Université Catholique de Louvain.

Les évaluations ont été effectuées avec un réseau émulé dans ns-3 pour mesurer la capacité
du codage réseau pour résoudre le problème de blocage. Dans ce chapitre, nous nous concen-
trons uniquement sur la résolution des problèmes de blocage de la tête de ligne et nous avons
conservé des sous-flux entièrement compatibles TCP, préférant une rétrocompatibilité sur les
performances maximales sur les liens à perte de poids.

Dans la plupart des autres implémentations, les contraintes techniques ne sont que peu ou
pas discutées, ici, à l’inverse, la mise en œuvre pratique et la compatibilité sont nos principales
préoccupations.
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5 Conclusion et résumé des contributions

Dans ce travail, nous nous sommes concentrés tout particulièrement sur l’application du
codage intra-flux aux flux unicasts sur des réseaux sans fil. Le principal objectif est d’améliorer
la fiabilité des transferts de données sur des liens sans fil, et de discuter des opportunités de
deploiement et des performances.

Dans une première partie de ce travail, nous avons dérivé une borne minimale pour la
redondance du codage pour estimer celle-ci selon la qualité de lien et le taux maximum de
pertes tolérable par l’application. Nous proposons ensuite un algorithme distribué dans un
réseau collaboratif pour adapter la redondance et permettre un réception fiable des données.
L’algorithme permet à l’émetteur d’utiliser de manière opportuniste plusieurs chemins à travers
le réseau pour router les paquets jusqu’à la destination tout en offrant un contrôle de redondance
optimisé et une réception suffisamment fiable.

Comme les opérations du codage réseau sont coûteuses en termes de calcul, de stockage et
d’énergie, nous avons ensuite présenté une amélioration de l’algorithme précédent qui considère
la capacité de chaque nœud à contribuer au processus de codage. Les contraintes sont prises
en compte pendant la transmission des combinaisons à travers le réseau tout en garantissant le
décodage à destination.

Dans une seconde partie, nous avons étudié l’interaction du codage réseau avec TCP et son
extension MPTCP. L’objectif de notre étude a tout d’abord été l’impact des problèmes d’équité
qui se posent lorsque des flux TCP non codés partagent un goulet d’étranglement avec des flux
TCP codés. Pour évaluer correctement l’équité dans ce cas spécifique, nous avons introduit un
nouvel indice d’équité.

Ensuite, nous avons exploré deux approches différentes pour améliorer les performances de
MPTCP avec l’introduction du codage intra-flux. Tout d’abord, MPTCP étant fondé sur les
mêmes mécanismes que TCP, il est sujet aux mêmes défauts, en particulier en ce qui concerne
la sensibilité aux pertes de lien. Pour cette raison, nous avons tout d’abord étudié les bénéfices
de faire fonctionner TCP au dessus du codage réseau.

Dans un dernier temps, nous avons envisagé la possibilité d’utiliser le codage réseau pour
résoudre le problème de blocage en tête de file de MPTCP. Pour cela, nous avons conçu et
développé une extension de MPTCP appelée MultiPath Coded TCP (MPC-TCP) à partir de
l’implémentation de référence pour Linux. L’idée fondamentale est d’implémenter le codage
réseau directement au dessus de MPTCP plutôt qu’en dessous, afin d’augmenter la résilience
de ce dernier tout en garantissant une retro-compatibilité stricte avec TCP, et permettre de
franchir les envionnements réseau les plus restrictifs (notamment en présence de systèmes qui
réinterprètent le trafic).

Étant donné que les implémentations du codage réseau sont encore rares et que MPTCP n’est
pas encore implémenté dans les simulateurs, cette recherche a nécessité un travail important de
mise en œuvre et de construction de bancs de tests logiciels. Pour l’instant, les résultats sont
limités et devront donc être étendus à l’aide de l’infrastructure développée.
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Fiabilité et problèmes de déploiement du codage réseau
dans les réseaux sans fil

Paul-Louis AGENEAU

RÉSUMÉ : Même si les réseaux de données ont beaucoup évolué au cours des dernières décennies, les paquets sont

presque toujours transmis d’un nœud à l’autre comme des blocs de données inaltérables. Cependant, ce paradigme

fondamental est aujourd’hui remis en question par des techniques novatrices comme le codage réseau, qui promet des

améliorations de performance et de fiabilité si les nœuds sont autorisés à mixer des paquets entre eux.

Les réseaux sans fil manquent de fiabilité en raison des obstacles ou interférences que subissent les liens sans fil,

et ces problèmes peuvent empirer dans des topologies maillées avec de multiples relais potentiels. Dans ce travail,

nous nous concentrons sur l’application du codage réseau intra-flux aux flux unicast dans les réseaux sans fil, avec

pour objectif d’améliorer la fiabilité des transferts de données et de discuter des opportunités de déploiement et des

performances.

Tout d’abord, nous proposons une borne inférieure pour la redondance, puis un algorithme opportuniste distribué,

pour adapter le codage aux conditions du réseau et permettre la livraison fiable des données dans un réseau sans fil

maillé, tout en prenant en compte les besoins de l’application. En outre, puisque les opérations requises pour le codage

réseau sont coûteuses en termes de calcul et de mémoire, nous étendons cet algorithme pour s’adapter aux contraintes

physiques de chaque nœud.

Ensuite, nous étudions les interactions du codage intra-flux avec TCP et son extension MPTCP. Le codage réseau peut

en effet améliorer les performances de TCP, qui ont tendance à être plus faibles sur les liens sans fil, moins fiables.

Nous observons l’impact des problèmes d’équité qui se posent quand des flux codés fonctionnent en parallèle avec

des flux traditionnels non codés. Pour finir, nous explorons deux manières différentes d’améliorer les performances de

MPTCP dans les environnements sans fil : le faire fonctionner sur du codage réseau, et implémenter directement le

codage directement dans le protocole MPTCP tout en préservant sa compatibilité avec TCP.

MOTS-CLEFS : codage réseau, intra-flux, réseau sans fil, réseau maillé, routage opportuniste, redondance, fiabilité,

équité, TCP, MPTCP

ABSTRACT : Even if packet networks have significantly evolved in the last decades, packets are

still transmitted from one hop to the next as unalterable pieces of data. Yet this fundamental para-

digm has recently been challenged by new techniques like network coding, which promises network

performance and reliability enhancements provided nodes can mix packets together.

Wireless networks rely on various network technologies such as WiFi and LTE. They can however be

unreliable due to obstacles, interferences, and these issues are worsened in wireless mesh network

topologies with potential network relays. In this work, we focus on the application of intra-flow net-

work coding to unicast flows in wireless networks. The main objective is to enhance reliability of data

transfers over wireless links, and discuss deployment opportunities and performance.

First, we propose a redundancy lower bound and a distributed opportunistic algorithm, to adapt coding

to network conditions and allow reliable data delivery in a wireless mesh. We believe that application

requirements have also to be taken into account. Since network coding operations introduce a non

negligible cost in terms of processing and memory resources, we extend the algorithm to consider the

physical constraints of each node.

Then, we study the interactions of intra-flow coding with TCP and its extension MPTCP. Network co-

ding can indeed enhance the performances of TCP, which tends to perform poorly over lossy wireless

links. We investigate the pratical impact of fairness issues created when running coded TCP flows

besides legacy non-coded TCP flows. Finally, we explore two different ways to enhance the perfor-

mance of MPCTP in wireless environments : running it over network coding, and implementing the

coding process directly in MPTCP while keeping it fully TCP-compatible.

KEYWORDS : network coding, intra-flow, batch coding, pipeline coding, wireless network, mesh

network, opportunist routing, redundancy, reliability, fairness, TCP, MPTCP


