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Abstract

This dissertation deals with a number of algorithmic problems motivated
by automated temporal planning and formal verification of reactive and finite
state systems. Particularly, we shall focus on game theoretical methods in
order to obtain improved complexity bounds and faster algorithms.

In the first paper we introduce Hyper Temporal Networks (HyTNs), a strict gen-
eralization of Simple Temporal Networks (STNs), to overcome the limitation of
considering only conjunctions of constraints but maintaining a practical effi-
ciency in the consistency check of the instances. STNs provide a powerful and
general tool for representing conjunctions of maximum delay constraints over
ordered pairs of temporal variables. HyTNs are meant as a light generalization
of STNs offering an interesting compromise. On one side, there exist practical
pseudo-polynomial time algorithms for checking consistency and computing
feasible schedules for HyTNs; the computational equivalence between check-
ing consistency in HyTNs and determining winning regions in Mean Payoff
Games (MPGs) is also pointed out. On the other side, HyTNs offer a more
powerful model accommodating natural constraints that cannot be expressed
by STNs like “Trigger off exactly δ min before (after) the occurrence of the first (last)
event in a set.”

Then, we turn our attention to the Conditional Simple Temporal Network
(CSTN) model, a constraint-based graph-formalism for conditional temporal
planning. Three notions of consistency arise for CSTNs: weak, strong, and
dynamic. Dynamic consistency is the most interesting notion, but it is also the
most challenging and it was conjectured to be hard to assess. CSTNs are an
extension of Simple Temporal Networks (STNs) [44]. In the second paper we
introduce and study the Conditional Hyper Temporal Network (CHyTN) model, a
natural extension and generalization of both the CSTN and the HyTN model,
obtained by blending them together. We show that deciding whether a CSTN
is dynamically-consistent is coNP-hard; and that deciding whether a CHyTN is
dynamically-consistent is PSPACE-hard, when the input instances are allowed
to include both multi-head and multi-tail hyperarcs. Then, we offer the first
deterministic (pseudo) singly-exponential time algorithm for the problem of
checking the dynamic consistency of such CHyTNs, also producing a dynamic
execution strategy whenever the input CHyTN is dynamically-consistent. The
presentation of such connection is mediated by the HyTN model. In order to
analyze the time complexity of the algorithm, we introduce a refined notion of
dynamic consistency, named ε-dynamic consistency, and present a sharp lower
bounding analysis on the critical value of the reaction time ε̂ where a CHyTN



transits from being, to not being, dynamically-consistent.
The ε-DC notion turns out to be interesting per se, and the proposed ε-DC-

Checking algorithm rests on the assumption that reaction-time satisfies ε > 0;
leaving unsolved the question of what happens when ε = 0. In the third paper,
we introduce and study π-DC, a sound notion of DC with an instantaneous
reaction-time (i.e., one in which the planner can react to any observation at the
same instant of time in which the observation is made). Firstly, we demon-
strate by a counter-example that π-DC is not equivalent to 0-DC, and that
0-DC is actually inadequate for modeling DC with an instantaneous reaction-
time. This shows that our previous results do not apply directly, as they were
formulated, to the case of ε = 0. Then, our previous tools are extended in order
to handle π-DC, and the notion of ps-tree is introduced, also pointing out a re-
lationship between π-DC and HyTN-Consistency. Thirdly, a simple reduction
from π-DC to DC is identified. This allows us to design and to analyze the
first sound-and-complete π-DC-Checking procedure, whose time complexity
remains (pseudo) singly-exponential in the number of propositional letters.

Next, an arena is a finite directed graph whose vertices are divided into
two classes, i.e., V = V� ∪V#; this forms the basic playground for a plethora of
2-player infinite pebble games. In the fourth paper, we introduce and study a re-
fined notion of reachability for arenas, named trap-reachability, where Player �
attempts to reach vertices without leaving a prescribed subset U ⊆ V, while
Player # works against. It is shown that every arena decomposes into strongly-
trap-connected components (STCCs). Our main result is a linear time algorithm
for computing this unique decomposition. This theory has direct applications
in solving Update Games (UGs) faster. Dinneen and Khoussainov showed in
1999 that deciding who’s the winner in a given UG costs O(mn) time, where
n is the number of vertices and m is that of the arcs. We solve that problem
in Θ(m + n) linear time. Finally, the polynomial-time complexity for deciding
Explicit McNaughton-Müller Games is also improved, from cubic to quadratic.

Then, in the fifth paper we offer a Θ(|V|2|E|W) pseudo-polynomial time
and Θ(|V|) space deterministic algorithm for solving the Value Problem and
Optimal Strategy Synthesis in Mean Payoff Games. This improves by a factor
log(|V|W) the best previously known pseudo-polynomial time upper bound
of Brim, et al. In the sixth paper we further strengthen the links between Mean
Payoff Games (MPGs) and Energy Games (EGs). We offer a faster O(|V|2|E|W)
pseudo-polynomial time and Θ(|V| + |E|) space deterministic algorithm for
solving the Value Problem and Optimal Strategy Synthesis in MPGs. This
improves significatly over our previous Θ(|V|2|E|W) time algorithm, also in
practice. Moreover, we study structural aspects concerning Optimal Positional
Strategies (OPSs) in MPGs. We observe a unique complete decomposition of the
space of all OPSs, optΓΣM

0 , in terms of so-called extremal-SEPMs in reweighted
Energy Games; this points out what we called the “Energy-Lattice X ∗Γ of
optΓΣM

0 ”. Lastly, it is offered a pseudo-polynomial total-time recursive proce-
dure for enumerating (w/o repetitions) all the elements of X ∗Γ and optΓΣM

0 .
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1 Introduction and Context
This dissertation provides further evidence that game theoretic arguments help
to study algorithmic problems in the area of automated temporal planning and
formal verification of finite state non-terminating systems.

Automated temporal planning [44, 59, 88] is a branch of Artificial Intelligence
(AI) that concerns the realization of temporal strategies or temporal action se-
quences, typically for execution by intelligent agents, autonomous robots and
unmanned vehicles. Unlike classical control and classification problems, the
solutions are complex and must be discovered and optimized in multidimen-
sional space. Planning is also related to decision theory. In known environ-
ments with available models, planning can be done offline; solutions can be
found and evaluated prior to execution. In dynamically unknown environ-
ments, the strategy often needs to be revised online; solutions usually resort
to iterative trial and error processes commonly seen in AI.

On the other hand, non-terminating computing systems involving multiple,
distributed, and interacting agents [106, 119] abound today and can be found
in environments as varied as household appliances, medical equipment, in-
dustrial control systems, flight control systems in airplanes, etc. In these con-
texts, failures caused by design faults may be very costly and they should
be avoided as much as possible. Behaviour of such systems is typically very
complex which makes their design and validation a challenge. Formal methods
try to address this challenge by developing formal models of such systems,
and methods to specify and reason about their properties. A formal method
is of particular interest if it offers not only a rigorous and unambiguous way
to describe systems and their intended behaviour, but also provides efficient
algorithms allowing to automate (parts of) the design and validation tasks.

We began our research by studying algorithmic problems in automated
temporal planning, particularly, our original motivation was the study of cer-
tain conditional temporal planning problems. At some point, we have identified
interesting connections between the algorithmics of these problems and that of
some fundamental tasks related to a specific family of infinite 2-player pebble
games that are played on finite graphs, i.e., the Mean Payoff Games (MPGs).
These games, in addition to being of an independent interest, are intimately
related to the semantics of a well-known model of calculus for formal verifica-
tion, e.g., the modal µ-calculus. In summary, it turned out that a game theoretic
formulation helps to abstract away from syntactic and semantic peculiarities of
modelling formalisms and makes the conditinal temporal constraints problems
in question more easily amendable to algorithmic and complexity analysis.

This led us, on one side, to adopt a game theoretic viewpoint for studying
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those conditional temporal planning problems, ultimately obtaining faster al-
gorithms and improved complexity bounds; and then, on the other side, these
first encouraging results have led us to deepen the study of algorithmic and
complexity issues in infinite games on finite graphs per se. In the end, we
obtained faster algorithms and improved complexity bounds for some of these
games, i.e., Update Games, Explicit McNaughton-Müller Games, and finally,
for Mean Payoff Games. Our contributions have thus an algorithmic nature, fo-
cused on improving state-of-the-art computational complexity upper bounds.

1.1 Contributions and Organization
This dissertation comprises an introductory chapter and then two major parts.
Chapter 1 provides context and background notions on the covered subjects,
plus an outline of the main contributions (see below).

Part I presents our contributions in automated temporal planning, it con-
tains a revised version of the following articles:

• Carlo Comin, Roberto Posenato, Romeo Rizzi. A Tractable General-
ization of Simple Temporal Networks and its relation to Mean Payoff
Games. Accepted in 21st International Symposium on Temporal Representa-
tion and Reasoning (TIME 2014). University of Verona, Verona, Italy. Septem-
ber 2014. [32]

• Carlo Comin, Roberto Posenato, Romeo Rizzi. Hyper Temporal Net-
works. Accepted in Constraints, an International Journal, Springer-US, pp
1-39. March 2016. [33]

• Carlo Comin, Romeo Rizzi. Dynamic Consistency of Conditional Sim-
ple Temporal Networks via Mean Payoff Games: a Singly-Exponential
Time DC-Checking. Accepted in 22nd International Symposium on Tempo-
ral Representation and Reasoning (TIME 2015), University of Kassel, Kassel,
Germany. September 2015. [34]

• Carlo Comin, Romeo Rizzi. Checking Dynamic Consistency of Con-
ditional Hyper Temporal Networks via Mean Payoff Games (Hardness
and pseudo-Singly-Exponential Time Algorithm). Accepted in Informa-
tion and Computation, Elsevier. (It will appear during 2017) [40]

• Massimo Cairo, Carlo Comin, Romeo Rizzi. Instantaneous Reaction-
Time in Dynamic-Consistency Checking of Conditional Simple Temporal
Networks. Accepted in 23rd International Symposium on Temporal Represen-
tation and Reasoning (TIME 2016), Technical Univeristy of Denmark (DTU),
Copenhagen, Denmark, October 2016. [17]

Part II presents our contributions concerning algorithmic and complexity
issues in infinite 2-player pebble games on graphs, it contains a revised version
of the following articles:
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• Carlo Comin, Romeo Rizzi. Linear Time Algorithm for Update Games
via Strongly-Trap-Connected Components (A 2-Player Infinite Pebble Game
Generalization of Strongly-Connected Components). Submitted. [39]

• Carlo Comin, Romeo Rizzi. Energy Structure and Improved Complexity
Upper Bound for Optimal Positional Strategies in Mean Payoff Games.
Accepted in 3rd International Workshop on Strategic Reasoning (SR 2015),
University of Oxford, Oxford, U.K., September 2015. [35]

• Carlo Comin, Romeo Rizzi. Improved Pseudo-Polynomial Bound for the
Value Problem and Optimal Strategy Synthesis in Mean Payoff Games.
Accepted in Algorithmica, Springer-US, pp 1-27, February 2016. [38]

• Carlo Comin, Romeo Rizzi. Faster O(|V|2|E|W)-Time Energy Algorithm
for Optimal Strategy Synthesis in Mean Payoff Games. Submitted. [37]

During the doctoral course, the author of this dissertation also co-authored
the following articles; which however do not belong to this dissertation, being
motivated by topics in computational biology.

• Carlo Comin, Anthony Labarre, Romeo Rizzi, Stéphane Vialette. Sorting
with Forbidden Intermediates. Accepted in 3rd International Conference
on Algorithms for Computational Biology (AlCoB 2016), Trujillo, Spain. June
2016 [31]. An extended version of this paper has been submitted to the
IEEE/ACM Transactions on Computational Biology and Bioinformatics.

• Carlo Comin, Romeo Rizzi. An Improved Upper Bound on Maximal
Clique Listing via Rectangular Fast Matrix Multiplication. Accepted in
Algorithmica, Springer-US. (It will appear during 2017) [36]

For completeness, we mention another published contribution related to
the theory of automata; but the result contained in the article below has not
been obtained during the doctoral course, it belongs to author’s MSc thesis.

• Carlo Comin. Algebraic Characterization of the Class of Languages Rec-
ognized by Measure Only Quantum Automata. Accepted in Fundamenta
Informaticae, Annales Societatis Mathematicae Polonae, IOS Press, 335–353,
vol 134, 2014. [29]

In summary, algorithmic game theory (especially, infinite two-player pebble-
games played on finite graphs) is the red thread that makes it possible to look
at the various contributions of this dissertation in a sufficiently coherent way.
In the following sections we provide some further information to better outline
the context in which our results can be placed.
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1.2 Constraint Satisfaction Problems
The notion of constraint is central to a number of human activities and dis-
parate processes. A constraint limits (or restricts) the field of possibilities in
a certain universe. For example, a school timetable that coordinates students,
teachers, lessons, rooms and time slots, must satisfy many constraints, i.e., not
all combinations are possible since the involved constraints may be numerous
and various. Besides school timetabling, constraint satisfaction problems arise
in many enterprise and industrial tasks, ranging from scheduling to configu-
ration, circuit design and molecular biology [78]. Also in Artificial Intelligence
(AI) and Operations Research (OR), constraint satisfaction is the process of find-
ing a solution to a set of constraints imposing conditions that the variables
must satisfy. A solution is therefore a set of values for the variables that sat-
isfies all the constraints – that is, a point in the feasible region. Formally, we
shall consider the following model:

Definition 1.1 ([101]). A constraint satisfaction problem (CSP) is a triplet,

Φ, (X,D,C),

where:

• X, {X1, X2, . . . , Xn} is a set of variables;

• D, {D1, D2, . . . , Dn} is a set of nonempty domains;

• C, {C1,C2, . . . ,Cm} is a set of constraints.

Each variable Xi will take on its value in the nonempty domain Di, i.e., Di is the
domain of possibles values of Xi. Each constraint Cj involves some subset of the
variables and specifies the allowable combination of values for that subset, i.e., Cj is in
turn a pair (Tj, Rj) where Tj ⊆ X is a subset of k variables and Rj is a k-ary relation
on the corresponding subset of domains. A state Ψ of the CSP Φ is defined by an
assignment of values to some or all of the variables, i.e.,

Ψ, {Xi = vi, Xj = vj, . . .}, for some vi ∈ Di,vj ∈ Dj, . . .

An assignment that doesn’t violate any constraint is consistent (or feasible), where
a constraint (Tj, Rj) is satisfied if the values assigned to the variables Tj satisfy the
relation Rj. A complete assignment is one in which every variable is mentioned, and
a solution to a CSP is a complete assignment that satisfies all the constraints.

Notable examples of problems that can be modeled as a CSP include the
eight queens puzzle.

Example 1.1. This is the problem of placing eight chess queens on an 8× 8 chessboard
so that no two queens threaten each other, where a solution requires that no two queens
share the same row, column, or diagonal. The problem can be recast as one in which
exactly one queen is assigned to each of the chessboard’s columns, and the solver needs
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to find out only which row each of these queens is going to be placed in. Thus we
have 8 variables X, {Q1, Q2, . . . , Q8}, each of which can assume the value within the
domain Di , {1, . . . ,8}. Given that a feasible solution is a configuration in which no
two queens can attack each other, we have the following constraints: horizontally, no
two queens should be in the same row, so:

Qi 6= Qj whenever i 6= j;

along any diagonal, they should not be the same number of columns apart as they are
rows apart, so:

|Qi −Qj| 6= |i− j| whenever i 6= j.

Thus there are 56 constraints. Of course the puzzle can be generalized, with n queens
on a chessboard of n× n squares (the reader is referred to e.g. [3] for a survey of known
results and research open problems concerning the n-queens puzzle).

The identification of CSPs as a general class is due to Ugo Montanari [88],
who also pointed out the notion of constraint network and propagation by path
consistency. Recall that a n-ary relation over the variables X1, X2, . . . , Xn is any
subset of the corresponding domains D,D1×D2× . . .×Dn. Let us denote by
Rij any binary relation between Xi and Xj, where we allow Rij 6= Rji generally.
Given i ∈ [n], the identity relation Iii exists, defined only between a variable Xi
and itself, as follows: Iii , {(d,d) | d ∈ Di}. Also, it is worth mentioning the
unit relation Uii , Di × Di. The formal definition of constraint network (i.e., a
network of binary constraints) goes as follows.

Definition 1.2 ([88]). A constraint network N , (D,{Ri,j}i,j) is made of a family
of sets,

D, {D1, D2, . . . , Dn},

plus a relation Rij from every set Di to every set Dj, for i, j ∈ {1,2, . . . ,n}.
Furthermore, Rii ⊆ Iii for every i.

A constraint network can be thought of as representing a n-ary relation
ρ, where the n-tuple a ∈ ρ iff its projections on all the two-dimensional sub-
spaces of D satisfy the binary constraints of N . A useful way of visualizing
a network is by a directed graph in which vertices v1,v2, . . . ,vn correspond to
sets D1, D2, . . . , Dn, and an arc (vi,vj) is present iff Rij 6= Uij (when i 6= j) or
Rii 6= Iii [88]. For instance,

Example 1.2. The following n-ary (n = 3) relation ρ is represented by the network in
Fig. 1.1; let Di = {xi1, xi2, xi3} for i = 1,2,3, then let:

ρ, {(x11, x21, x31), (x11, x21, x32), (x12, x23, x31)}.

As observed in [88], the class of n-ary relations representable by constraint
networks is much narrower than the class of all n-ary relations. The reader
is referred to [88] in order to get more details and fundamental properties
concerning constraint networks.
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v1

v3

v2

Figure 1.1: The constraint network ρ of Example 1.2.

1.2.1 Temporal Constraint Networks
In [44], network-based methods of constraint satisfaction are extended to in-
clude continuous variables, thus providing a framework for processing tem-
poral constraints.

Definition 1.3 ( [44]). A temporal constraint network (TN) Γ is a constraint
network involving a set of variables X , {X1, X2, . . . , Xn} having continuous (real-
valued) domains D , {D1, D2, . . . , Dn}; each variable represents a time point. Fur-
thermore, a set C of unary and binary constraints is involved. Each (unary or binary)
constraint Cj ∈ C is represented by a set of real intervals:

Cj , {I1, I2, . . . , Ik} =
{
[a1,b1], [a2,b2], . . . , [ak,bk]

}
.

Closed, open and semi-open intervals are generally allowed. The intended interpreta-
tion going as follows.

• A unary constraint Tii restricts the domain of variable Xi to the given set of
intervals; namely, it represents the disjunction:

k∨
q=1

(
aq ≤ Xi ≤ bq

)
.

• A binary constraint Tij constrains the permissible values for the distance Xj −
Xi; namely, it represents the disjunction:

k∨
q=1

(
aq ≤ Xj − Xi ≤ bq

)
.

Constraints are given in a canonical form where all intervals are pairwise disjoint.

A TN can be represented by a directed constraint graph, in much the same
way as we did above for constraint networks, where vertices represent vari-
ables and an arc (Xi, Xj) indicates that a proper constraint Tij is specified; but
for TN, in addition, the arc is labeled by the interval set. An example is shown
in Fig. 1.2.
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X1

X3

X2

[a1 ,b1 ], [a2 ,b2 ]

[c1 ,d
1 ], [c2 ,d

2 ]

[e 1,
f 1]

, [e 2,
f 2]

, [e 3,
f 3]

[g1, h1]

Figure 1.2: A Temporal Constraint Network.

Usually, a special time point Z (or X0) is employed to represent the begin-
ning of the world, i.e., for simplicity Z is always scheduled at time tZ = 0. All
other times are relative to Z; thus we may treat each unary constraint Tii as a
binary constraint T0i (having the same interval representation).

1.2.2 Simple Temporal Networks
Definition 1.4. A simple temporal problem (STP) (or simple temporal network
(STN)) is a TN in which all constraints specify a single interval; namely, for each
constraint Cj, there is an interval Ij such that Cj = {Ij}.

In STNs, each arc (Xi, Xj) is labeled by an interval [aij,bij], representing the
constraint:

aij ≤ Xj − Xi ≤ bij.

Alternatively, the same constraint can be expressed as a pair of inequalities:

Xj − Xi ≤ bij and Xi − Xj ≤ −aij

Notice that solving a STP/STN amounts to solving a set of linear inequalities
on the Xi, where each inequality involves exactly two variables; thus a shortest-
path algorithm on graphs, such as Bellman-Ford [4, 42, 55], can be applied.

Particularly, we shall consider graphs that are directed and weighted on
the arcs. Thus,

Definition 1.5. If G = (V, A) is a graph, then every arc a ∈ A is a triple (ta, ha,wa)
where ta ∈ V is the tail of a, ha ∈ V is the head of a, and wa ∈R is the weight of a.

Moreover, since we use graphs to represent distance constraints, they do not need
to have either loops (unary constraints are meaningless) or parallel arcs (two parallel
constraints represent two different distance constraints between the same pair of node:
only the most restrictive is meaningful). We also use the notations h(a) for ha, t(a)
for ta, and w(a) or w(ta, ha) for wa, when it helps.

The order and size of a graph G = (V, A) are denoted by

n, |V| and m, |A|,
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respectively. The size is a good measure for the encoding length of G.

Definition 1.6. A cycle of G is a set of arcs C⊆ A cyclically sequenced as a0, a1, . . . , a`−1
so that,

h(ai) = t(aj) ⇐⇒ j = (i + 1) mod `;

it is called a negative cycle if w(C) ≤ 0, where w(C) stands for ∑e∈C we.

Definition 1.7. A graph is called conservative when it contains no negative cycle.
A potential is a function p : V 7→ R. The reduced weight of an arc a = (u,v,wa)

with respect to a potential p is defined as

wp
a , wa − pv + pu.

A potential p of G = (V, A) is called feasible if wp
a ≥ 0 for every a ∈ A. Notice that,

for any cycle C, wp(C) = w(C). Therefore, the existence of a feasible potential implies
that the graph is conservative as w(C) = wp(C) ≥ 0 for every cycle C.

So, the Bellman-Ford algorithm [4,42,55] can be used to produce in O(nm)
time:

• either a proof that G is conservative in the form of a feasible potential;

• or a proof that G is not conservative in the form of a negative cycle C
in G.

When the graph is conservative, the smallest weight of a walk between two
nodes is well defined, and, fixed a root node r in G, the potentials returned by
the Bellman-Ford algorithm are, for each node v, the smallest weight of a walk
from r to v. Moreover, if all the arc weights are integral, then these potentials
are integral as well. Therefore, the Bellman-Ford algorithm provides a proof
to the following theorem.

Theorem 1.1 ([4, 42, 55]). A graph admits a feasible potential if and only if it is
conservative. Moreover, when all arc weights are integral, the feasible potential is an
integral function.

Thus an STN can be viewed as a weighted graph whose nodes are time-
points that must be placed on the real line and whose arcs express mutual
constraints on the allocations of their end points.

Definition 1.8. An STN G = (V, A) is called consistent if it admits a feasible
scheduling, i.e., a scheduling s : V 7→ R such that

s(v) ≤ s(u) + w(u,v), ∀ arc (u,v) of G.

Then we have the following characterization result for STN’s consistency
in terms of conservative graphs.

Corollary 1.1 ([4, 42, 44]). An STN G is consistent if and only if G is conservative.
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Proof. A feasible scheduling is just a feasible potential. Therefore, this corol-
lary is just a restatement of Theorem 1.1. 2

The reader is referred to [44] for further details and fundamental properties
concerning the theory of TNs and STNs.

1.3 Algorithmic Game Theory
As argued in [120], the birth of Algorithmic Game Theory (AGT) is often equated
with the following three seminal papers, cited in [56] for laying the foundation
of growth in AGT:

• Koutsoupias, Papadimitriou, Worst-case Equilibria. STACS 1999: 404-413 [74],
introduced the notion of “price of anarchy”, a measure of the extent to
which competition approximates cooperation, quantifying how much
utility is lost due to selfish behaviors on the Internet, which operates
without a system designer or monitor striving to achieve the social opti-
mum.

• Roughgarden, Tardos: How Bad is Selfish Routing? FOCS 2000: 93-102 [100],
studied the power and depth of the “price of anarchy” as it applies to
routing traffic in large-scale communications networks to optimize the
performance of a congested network.

• Nisan, Ronen: Algorithmic Mechanism Design. STOC 1999: 129-140 [91],
studied classical mechanism design from algorithmic and complexity-
theoretic perspectives.

However the study of algorithmic questions in combinatorial games goes back
a long time ago. Perphaps the first combinatorial game described in a math-
ematical form (in Europe) dates back to the beginning of the XVII century, to
the time when Bachet de Méziriac proposed in his “Problémes Plaisants” the fol-
lowing game: two players alternately choose numbers between 1 and 10; the
player, on whose move the sum attains exactly 100, is the winner. This kind
of game, whose natural generalization nowadays is known as Nim, was also
studied by Bouton (1901-2) [11] and it has an extensive literature [6]. In Nim,
under the normal play convention, the game is between two players and it is
played with n heaps (i.e., a pile of n counters) of any number of objects. The
two players alternate by taking (removing), at each turn, any number of objects
from any single one of the heaps at their choice. The winning condition is to
be the last to take an object. So, Nim can be played as a normal play game, i.e.,
one in which the player who makes the last move wins. Also, Nim is impartial
since the allowable moves depend only on the position and not on which of
the two players is currently moving, and the payoffs are symmetric; otherwise
stated, the only difference between Player 0 and Player 1 is that Player 0 goes
first. “Normal play Nim” is fundamental to the Sprague–Grundy Theorem [63],
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which asserts that every impartial game under the normal play convention is
equivalent to a nimber (i.e., the value of a Nim heap of a certain size) [41].

The nimbers are the ordinal numbers,

0, 1, 2, . . . , n, . . . , ω, ω+ 1, ω+ 2, . . . , ω · 2, ω · 2+ 1, ω · 2+ 2, . . . , ω2, . . . , ω3, . . . , ωω, . . . , ωωω
, . . .

endowed with a new nimber addition and nimber multiplication, which are dis-
tinct from ordinal addition and ordinal multiplication; see [41] for more de-
tails. Some other connections between positional games and the infinite soon
emerged in the literature.

1.3.1 Topological Banach-Mazur Games
The infinite positional games of perfect information were discovered and ini-
tially studied in Poland around the ’30s. In 1935 Stefan Banach started a note-
book, called the Scottish Book, where the mathematicians residing in or visiting
Lwów proposed various mathematical problems, or conjectures, and also in-
dicated their partial or complete solutions. In the same year Stanisław Mazur
proposed an infinite combinatorial game. The game is described in Problem
43 of the Scottish Book; its solution, given by Banach, is dated August 4, 1935.
Hence, the game became known as the Banach-Mazur Game. Mazur discovered
the game in 1928; however, later on, Ulam [114] gives the year 1935 for its com-
plete solution, referring to a conversation in the Scottisch Café, where “Mazur
proposed the first examples of infinite mathematical games”). Later on Ulam
prepared an English translation of the Scottish Book, see [115].

Definition 1.9 (Banach-Mazur Games on R). In a Banach-Mazur Game, played
on the real line, the winning condition is given by a set Win⊆R of real numbers; in
the first move, Player 0 selects an interval d0 on the real line, then Player 1 chooses an
interval d1 ( d0, then Player 0 chooses a further refinement d2 ( d1 and so on. Thus
a play forms an infinite (proper) chain sequence:

d0 ) d1 ) d2 ) · · · .

Player 0 wins iff the intersection of all intervals di contains a point of Win; namely,

Player 0 wins ⇐⇒
⋂

n∈N

dn ∩ Win 6= ∅.

A similar game can be played on a generic topological space X. Let V be a family of
subsets of X such that: each V ∈ V contains a nonempty open subset of X; and each
nonempty open subset of X contains an element V ∈ V. In the Banach-Mazur game
defined on (X,V) with winning condition W ⊆ X, the two players take turns to choose
sets V0 ) V1 ) V2 ) · · · in V, where Player 0 wins iff

⋂
n∈N Vn ∩ Win 6= ∅.

Definition 1.10 (Determinacy). A game is said to be determined if one or the other
of the players has a winning strategy, i.e., a selection of moves granting him the victory,
no matter how the opponent plays.
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Concerning the determinacy of these games, the original proof of Banach
never appeared. The first published proof is that of Oxtoby Theorem [94], which
characterizes determinacy of topological Banach-Mazur games in terms of topo-
logical properties of the winning condition. The term “topological game” was
introduced by Berge [5].

Observe that Banach-Mazur’s infinite game can also be played on graphs:

Definition 1.11 (Banach-Mazur Games on Graphs). It is given (G,vs), where G =
(V, A) is a directed graph and vs ∈ V is a distinguished initial vertex, it is assumed
that G has no sink vertices. A winning condition Win is any subset of infinitely long
paths in G, each starting at v, i.e., any Win ⊆ Paths(G,vs). The game (G,vs,Win)
starts at vertex vs with a move of Player 0 and the players strictly alternate. In a
move, after a sequence of moves p0, p1, . . . , pm−1 forming a finite path, p0 p1 · · · pm−1,
that has already been played, the corresponding Player (i mod 2) prolongs the path
by choosing another finite path pi whose initial vertex is the end vertex of pm−1. Thus,
a play results into an infinite path:

π , p0 p1 · · · pm · · · ∈ Paths(G,v),

the winning condition being that:

Player 0 wins ⇐⇒ π ∩ Win 6= ∅;

otherwise, Player 1 wins.

This reformulation shows that Banach-Mazur games are an interesting
starting point for the exploration of properties of infinite games on graphs.
Many infinite games on graphs and their determinacy properties find a natu-
ral place in a hierarchy known as the Borel Hierarchy, whereas the fundamen-
tal theorem concerning determinacy in infinite games is the Borel Determinacy
Theorem; the latter can be formulated in terms of Gale-Stewart Games which are
recalled in the next subsection.

1.3.2 Gale-Stewart Games
In 1953 David Gale and Frank Stewart introduced the following positional infi-
nite game of perfect informationin [57]. This allowed them to observe fruitful
connections between set theory and infinite games, particularly, this led to
important applications of the notion of determinacy in the foundations of set
theory [83, 90].

Definition 1.12 (Gale-Stewart Games). Let Σ be an alphabet, i.e., a finite nonempty
set of symbols. A Gale-Stewart game on Σ is a pair Γ , (Σ,Win), where Win ⊆ Σω

is called the winning condition. The two players alternate turns, and each player is
aware of all moves before making the next one. On each turn, Player i (for i = 0,1)
chooses a single element of Σ (i.e., a position) to play. But the same element may be
chosen more than once without restriction. The play continues ad infinitum, so that a
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single play of the game determines an infinite sequence:

π , (a0, a1, . . . , an, . . .) ∈ Σω.

At this point, Player 0 wins if π ∈ Win; otherwise, the winner is Player 1.

Definition 1.13 (Open Gale-Stewart Games). Given a word p ∈ Σ∗, the following
subset [p] ⊆ Σω is named a cone:

[p], {π ∈ Σω | p is a prefix of π}.

We say that,

U ⊆ Σω is open ⇐⇒ every π ∈U has a prefix p such that [p] ⊆U.

IfO is the family of all open subsets of Σω, then (Σω,O) is called the Cantor topology
on Σω. A Gale-Stewart game Γ, (Σ,Win) is called open (closed) whenever Win is
so in the Cantor topology on Σω.

The main result of Gale and Stewart [57] is dated 1953, going as follows.

Theorem 1.2 (Gale-Stewart Determinacy Theorem [57]). Every open or closed
Gale-Stewart game is determined.

In the next twenty years this result was extended to slightly higher levels
of the Borel hierarchy. At some point this led to the question of whether or
not the Gale-Stewart game is determined whenever the payoff set is Borel, as
recalled next.

1.3.3 Borel Determinacy Theorem
The question of whether Borel Gale-Stewart games are determined was an-
swered by Donald A. Martin [81] in 1975. Let us firstly recall some basic notions
from topology.

Definition 1.14. Let Γ be a topological space. A Borel set is any set in Γ that
can be formed from open sets through the operations of countable union, countable
intersection, and relative complement (set difference).

Notice that the collection of all Borel sets of Γ forms a σ-algebra; indeed,
the Borel sets are the smallest σ-algebra of subsets of Σω containing all open
sets in O.

At this point, Borel sets are classified in the “Borel Hierarchy” according
to how many times the operations of complement and countable union are
required to produce them from open sets.

Definition 1.15. In the Borel Hierarchy there are three classes for every countable
ordinal α > 0:

Σ0
α,Π0

α, and ∆0
α.

• A set S is in Σ0
1 iff S is open in (Σω,O).

16



• A set S is in Π0
α iff the complement of S is in Σ0

α.

• A set S is in Σ0
α for α > 1 iff there exists a sequence of sets A1, A2, . . . such that

each Ai is in Π0
αi

for some αi < α and A = ∪i≥1Ai.

• A set is in ∆0
α iff it is both in Σ0

α and Π0
α.

Definition 1.16. When Win is Borel, the Gale-Stewart game (Σ,Win) is called Borel.

The Borel Determinacy Theorem states that any Borel Gale-Stewart game is
determined, meaning that one of the two players will have a winning strategy
for the game.

Theorem 1.3 (Borel Determinacy Theorem [81, 82]). Every Borel Gale-Stewart
game is determined.

As already mentioned, this was proved by Martin [81] in 1975. The origi-
nal proof was quite complicated, the same author published a shorter purely
inductive proof in 1982 [82].

The Borel Determinacy Theorem provides a framework for the determinacy
question of a number of distinct but interrelated infinite game models.

Furthermore, the problem of verifying correctness and temporal aspects
of non-terminating computing systems involving multiple, distributed, and
interacting agents [106] soon led to the study of interesting model-checking
questions [22]. Some of these problems turned out to be equivalent to the de-
terminacy question for certain infinite games lying at a low level (3rd level) of
the Borel Hierarchy, e.g., the parity games [61,122]. Some of these developments
are mentioned in the next subsections.

1.4 Modal µ-calculus, ω-Regular and Mean-Payoff Games
1.4.1 Syntax and Semantics of the Modal µ-calculus
The modal µ-calculus is an extension of propositional modal logic, particularly,
it is a logic that combines simple modal operators with fixed point operators
to provide a form of recursion. The µ-calculus originates with Dana Scott [105]
and Jaco de Bakker [43], later on was further developed by Dexter Kozen [75]. It
can be viewed as a logic describing properties of transition systems, i.e., poten-
tially infinite graphs with labeled arcs (transitions) and vertices (states). Tran-
sitions are labeled with actions drawn from, A , {a,b, c, . . .}, and states are
labeled with sets of propositions, drawn from P , {p1, p2, . . .}.

Thus a transition system can be viewed as a tuple:

M,
(

S,{Ra}a∈A,{Pi}i∈N

)
,

where S is a set of states, Ra ⊆ S × S is a binary relation defining transi-
tions for every action a ∈ A, and there’s a set Pi ⊆ S for each proposition
pi ∈ P . A pair (s, s′) ∈ Ra is called a-transition, an a-path is a sequence of pairs
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(s0, s1), (s1, s2), . . . all lying in Ra. Actually, there is a great interest in efficient
solutions of the model-checking and the satisfiability problems of the modal
µ-calculus, see [13] for a survey. The syntax of modal µ-calculus is formally
recalled next.

Definition 1.17 (Syntax of the modal µ-calculus [13,75,105]). Let Var be a count-
able set of variables (whose meaning will be sets of states). A formula α of the modal
µ-calculus is defined by the following grammar Lµ:

Lµ , X
∣∣ p
∣∣ ¬p

∣∣ α ∧ β
∣∣ 〈a〉α ∣∣ [a]α ∣∣ µX.α

∣∣ νX.α;

where X ∈ Var, p ∈ P , a ∈ A, and α, β range over formulas of Lµ. The formulas
µX.α and νX.α are named fixpoint formulas; and the symbols µ and ν are the least
and greatest fixpoint operators, respectively. Disambiguating parentheses are added
when necessary, where [a] and 〈a〉 bind more tightly than boolean operators, µ and ν
bind loosely.

Example 1.3. The formula (sentence) νY.
(
µX.((p ∧ 〈a〉Y) ∨ 〈a〉X)

)
can be written

as:
νY.µX.(p ∧ 〈a〉Y) ∨ 〈a〉X.

One may adopt a series of syntactic tricks to simplify the notation: let us
write σX.α for µX.α or νX.α; also, to underline the dependency of the value
of a formula α on a variable X, σX.α(X) stands for σX.α; in any formula like
σX.α(X), we say that X is a bound variable; a variable X is free in a formula
α(X) if it is not bound; a sentence is a formula with no free variables occuring
in it; finally, by α[β/X] we denote the result of substituting β for every free
occurrence of X in α. Note one can always make sure that no variable has
at the same time a free and a bound occurrence in a formula, as clearly σX.α
is equivalent to σY.α[Y/X]; so, w.l.o.g., bound and free variables are always
different. Also, we can require that every variable is bound at most once in a
formula. A formula is well-named when both of the latter two conditions hold.
Moreover, we can even ensure that in every formula µX.α(X) the variable X
appears only once in α(X), as σX.σY.α(X,Y) is equivalent to σX.σX.α(X, X).

Let us proceed by recalling the notion of unfolding of a formula, which will
be useful in the reminder of this section: fix σ ∈ {µ,ν}, any fixpoint formula
σX.α(X) is equivalent to its unfolding, namely, α(σX.α(X)); indeed, this equiv-
alence follows directly from the definition of the fixpoint operators µ and ν.
Note that there is no negation operation in the syntax, just negations of propo-
sitions; however, the operation of the negation of a sentence will turn out to be
definable.

A meaning of a formula in a transition system is a set of states satisfying the
formula, the meaning of a variable will be also a set of states of the transition
system.

Definition 1.18 (Denotational Semantics of the modal µ-calculus [13, 75, 105]).
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Given a transition system,

M,
(

S,{Ra}a∈A,{Pi}i∈N

)
,

and a valuation,
V : Var→ 2S,

the meaning JαKMV of a formula α of Lµ is defined by induction on its structure:

• The meaning of any variable X ∈ Var is JXKMV , V(X);

• The meaning of a propositional constant pi ∈ P and its negation ¬pi ∈ P is
defined (respectively) by:

JpiKMV , Pi and J¬piKMV , S \ Pi.

• Conjunction is interpreted as set intersection:

Jα ∧ βKMV , JαKMV ∩ JβKMV .

• Disjunction is interpreted as set union:

Jα ∨ βKMV , JαKMV ∪ JβKMV .

• The meaning of 〈a〉α is:

JαKMV ,
{

s ∈ S | ∃s′∈S
(

Ra(s, s′) ∧ s′ ∈ JαKMV
)}

;

• The meaning of [a]α is:

JαKMV ,
{

s ∈ S | ∀s′∈S
(

Ra(s, s′)⇒ s′ ∈ JαKMV
)}

;

• The µ and ν constructs are interpreted as fixpoints of operators on sets of for-
mulas. A formula α(X) with free variable X can be seen as an operator on sets
of states, mapping a set S′ to the semantics of α when X is interpreted as S′,
namely,

S′ 7→ JαKMV [S′/X].

By definition this operator is monotonic, thus it has well defined least and great-
est fixpoints by Knaster-Tarski’s fixed point theorem [111].

Then, the meaning of µ and ν is defined (respectively) by:

JµX.αKMV ,
⋂{

S′ ⊆ S | JαKMV [S′/X] ⊆ S′
}

,

JνX.αKMV ,
⋃{

S′ ⊆ S | S′ ⊆ JαKMV [S′/X]

}
.
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Example 1.4. The formula νY.µX.(p ∧ 〈a〉Y) ∨ 〈a〉X means:

“p holds infinitely often on some a-path”.

Concerning the negation operator, as mentioned, it can be expressed within
Lµ in a meaningful way, by induction on the structure of the negated for-
mula [13]:

Definition 1.19 (Negation operator for the modal µ-calculus [13]).

¬(¬p), p ¬(¬X), X

¬(α ∨ β), ¬α ∧ ¬β ¬(α ∧ β), ¬α ∨ ¬β

¬〈a〉α, [a]¬α ¬[a]α, 〈a〉¬α

¬µX.α(X), νX.¬α(¬X) ¬νX.α(X), µX.¬α(¬X)

When applying this translation to a formula without free variables (i.e., to
a sentence), the final result has all variables occurring un-negated, because of
the two negations introduced when negating fixpoint expressions.

Thus, the following holds.

Theorem 1.4 ([13]). For every sentence α of Lµ, every transition systemM over the
set of states S, and every valuation V :

J¬αKMV = S \ JαKMV .

We should mention that in 1986 Niwiński [92] introduced a hierarchy of
fixpoint terms based on the number of alternations between least and greatest
fixpoint operators. Also, Emerson and Lei [54] defined a similar notion of alter-
nation depth of a formula. While most useful properties can be expressed with
few fixpoints, it is the nesting of the two types of fixpoints that is the source
of both expressive power and algorithmic difficulties; indeed, the modal µ-
calculus can encode most of the other logics used in verification and still the
algorithmics is not harder than the others [13].

Let α be a well-named formula, thus for every bound variable Y we have a
unique subformula σY.βY in α; let’s say that Y is a µ-variable or a ν-variable
depending on the binder σ. Then, alternation depth can be defined as follows.

Definition 1.20 (Alternation Depth for modal µ-calculus [13, 54, 92]). The de-
pendency order on bound variables of α is the smallest partial order such that
X ≤α Y if X occurs free in σY.βY. The alternation depth of a µ-variable X in a
formula α is the maximal length of a chain X1 ≤α · · · ≤α Xn, X = X1, where variables
X1, X3, . . . , X2i+1, . . . are µ-variables and variables X2, X4, . . . , X2i, . . . are ν-variables,
for i ≥ 1; and alternation depth of ν-variables is defined by interchanging the role of ν
and µ. The alternation depth of a formula α, denoted adepth(α), is the maximum
of alternation depths of variables bound in α, or zero if there are no fixpoints.
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Proposition 1.1 ([13,54,92]). Fix some σ ∈ {µ,ν}. A formula σX.β(X) has the same
alternation depth as its unfolding β(σX.β(X)).

The alternation depth will allow us to illustrate the game semantics of the
modal µ-calculus in terms of parity game conditions. These are introduced in
the remainder of this section.

Let us mention the complexity of the satisfiability problem for the modal µ-
calculus. Suppose that we want to decide if two given formulas of the modal
µ-calculus are equivalent, i.e., whether the two formulas are satisfied in the
same set of models. Formula equivalence is nothing else than the satisfiability
problem: deciding if there exists a model and a state where the formula is true.
The following complexity result holds.

Theorem 1.5 ([51,109]). The satisfiability problem for the modal µ-calculus is ExpTime-
complete.

Instead, the model-checking problem of the modal µ-calculus turns out to
lie within NP ∩ co-NP, being it equivalent to determining the winner in parity
games; which in turn belong to the family of ω-regular games. In the following
we shall recall these games and some of their basic properties.

1.4.2 ω-Regular Games
An ω-regular game (Γ,Win) is made of an arena Γ plus a winning condi-
tion Win. An arena is a tuple Γ = (V, E, 〈V0,V1〉) where GΓ , (V, E) is a fi-
nite directed graph and (V0,V1) is a partition of V into the set V0 of vertices
owned by Player 0 (a.k.a. Player �), and the set V1 of vertices owned by
Player 1 (a.k.a. Player #). A weighted arena is a tuple Γ = (V, E,w, 〈V0,V1〉)
where: (V, E, 〈V0,V1〉) is an arena, and GΓ , (V, E,w) is a finite weighted di-
rected graph. W.l.o.g. it can be assumed that GΓ has no sink, i.e., Nout(v) =
post(v) 6= ∅ for every v ∈ V. Still, we remark that GΓ is not required to be a
bipartite graph on colour classes V0 and V1. Fig. 1.3 depicts a simple example
of an arena Γ.
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Figure 1.3: An arena Γ.

In this context a game on Γ is played for infinitely many rounds by two
players moving a pebble along the arcs of GΓ. At the beginning of the game
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we find the pebble on some vertex vs ∈V, which is called the starting position of
the game. At each turn, assuming the pebble is currently on a vertex v ∈Vi (for
i = 0,1), Player i chooses an arc (v,v′) ∈ E and then the next turn starts with
the pebble on v′. Let V+ and Vω be the set of all finite and infinite sequences
on alphabet V, respectively. Given π ∈ Vω, let Inf(π) be the set of all and only
those vertices v ∈ V that appear infinitely often in π; namely,

Inf(π),
{

v ∈ V | ∀j∈N ∃k∈N such that k > j and vk = v
}

.

Generally, a winning condition is any Win ⊆ Vω. The pair (Γ,Win,vs) is called
a game, where it is given initial starting position vs ∈ V. A play is any infinite
path π in Γ:

π , v0v1 · · ·vn · · · ∈ Vω.

The alphabet Ξ(π) of a play π is the set of all vertices v ∈ V appearing in
π at least once. Player 0 is declared the winner of the play π iff π ∈ Win.
Generally, it is interesting to considering those winning conditions that reflect
the acceptance conditions in ω-automata [61]. We will not describe here the
theory of ω-automata, for which we refer the reader to the excellent reference
text [61], but we just recall the main – so called, ω-regular – winning conditions
which can be defined for infinite games on graphs:

• Müller condition: given a family of subsets F ⊆ 2V , then:

WinF , {π ∈ Vω | Inf(π) ∈ F};

• Rabin condition: given a family F , {(E0, F0), (E1, F1), . . . , (Em−1, Fm−1)},
where Ei, Fi ⊆ V for every i, then:

WinF , {π ∈ Vω | ∃k Inf(π) ∩ Ek = ∅ ∧ Inf(π) ∩ Fk 6= ∅};

• Street condition: given a family F , {(E0, F0), (E1, F1), . . . , (Em−1, Fm−1)},
where Ei, Fi ⊆ V for every i, then:

WinF , {π ∈ Vω | ∀k Inf(π) ∩ Ek 6= ∅ ∨ Inf(π) ∩ Fk = ∅};

• Rabin chain condition: given a family F , {(E0, F0), (E1, F1), . . . , (Em−1, Fm−1)},
where Ei, Fi ⊆ V for every i, and E0 ( F0 ( E1 ( F1 ( · · · ( Em−1 ( Fm−1,
then: it goes like the Rabin condition;

• Parity conditions: given a coloring function c : V → N on the vertices,
then:

min-parity condition: Winc , {π ∈ Vω |min(Inf(π)) is even};

max-parity condition: Winc , {π ∈ Vω |max(Inf(π)) is even};
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• Büchi condition: given F ⊆ V, then:

WinF , {π ∈ Vω | Inf(π) ∩ F 6= ∅};

As argued in [61], the winning conditions can be transformed into one
another, the transformations being exponential in the size of the transformed
arenas. Under this prospect, the main result says that it is enough to consider
the parity games (see Chapter 2, Subsection 2.4.2, Theorem 2.7 in [61]).

Concerning automata theory, let us just mention that the Müller condi-
tion plays a special role also in the theory of ω-automata, which are (roughly
speaking) finite-state automata taking ω-words as input (see [61] for more de-
tails). The usual definitions of deterministic and nondeterministic automata
are adapted to the case of ω-input-words by introducing new acceptance – so-
called, ω-regular acceptance – conditions. For this purpose one introduces an
acceptance component in the specification of the automaton, which may arise in
different formats. The acceptance component can be given as a set of states,
as a family of sets of states, or as a function from the set of states to a fi-
nite set of natural numbers. Indeed, for every ω-regular winning condition
as defined above there is a corresponding ω-regular acceptance condition which
leads to specific families of acceptance components. Then one may consider
Büchi, Müller, Rabin, Street and Parity ω-automata. A remarkable result of
McNaughton and Müller asserts:

Theorem 1.6 (Determinization of nondeterministic Büchi ω-automata [61,84]).
Every nondeterministic Büchi automaton with n states can be transformed into an
equivalent (i.e., one accepting the same ω-language) deterministic Müller automaton
with 2O(n logn) states.

Let us proceed by discussing the determinacy properties of ω-regular games.
To this end, we recall next the notions of forgetful and memoryless strategy.

Definition 1.21. For any i ∈ {0,1}, a strategy of Player i is any function,

σi : V∗ ×Vi→ V,

such that for every finite path p′v in GΓ, where p′ ∈ V∗ and v ∈ Vi, it holds that
(v,σi(p′,v)) ∈ E. A play v0v1 . . . vn . . . is consistent with a strategy σ ∈ Σi if vj+1 =
σ(v0v1 . . . vj) whenever vj ∈ Vi. A strategy σi ∈ Σi is said to be finite memory (or
forgetful) if there exists a finite set M, an element mI ∈ M, and two functions,

δ : V ×M→ M and g : V ×M→ V,

such that the following holds. When p = v0v1 · · ·vl−1 is a prefix of a play which
is consistent with σi and the sequence m0,m1, . . . ,ml is determined by m0 , mI and
mi+1 , δ(vi,mi), then it holds that:

σi(v0v1 · · ·vl−1,vl) = g(vl ,ml).
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A strategy σi of Player i is positional (or memoryless) if it doesn’t need any
memory at all; namely, if it is forgetful for some singleton M, one such that |M| = 1.
The set of all the positional (memoryless) strategies of Player i is denoted by ΣM

i .

Definition 1.22. Given a starting position vs ∈V, the outcome of strategies σ0 ∈ Σ0
and σ1 ∈ Σ1, denoted outcomeΓ(vs,σ0,σ1), is the unique play that starts at vs and is
consistent with both strategies σ0 ∈ Σ0 and σ1 ∈ Σ1.

Definition 1.23. Given a memoryless strategy σi ∈ ΣM
i of Player i in Γ, then GΓ

σi
=

(V, Eσi ,w) is the graph obtained from GΓ by removing all arcs (v,v′) ∈ E such that
v ∈ Vi and v′ 6= σi(v); we say that GΓ

σi
is obtained from GΓ by projection w.r.t. σi.
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Figure 1.4: An arena obtained by projection.

There are several questions to ask when one is confronted with a ω-regular
game as introduced above.

• One may ask whether the game is determined, i.e., whether or not one
of the players can move so that, regardless of how the other moves, the
outcome play will always be winning for him. In that case, one can
consider winning strategies and winning regions W0 and W1; where Wi
is the subset of vertices v ∈ V such that the Player i wins the game that
starts at vs = v;

• One may ask whether it is possible to effectively (and maybe efficiently)
compute which of the two players wins the game by starting from a given
position vs ∈ V;

• It is not only interesting to know who wins a game, but also how a
winning strategy looks like, i.e., one may ask to automatically synthesize
a winning strategy for the winning player.

It can be proved that, in every ω-regular game, both players win forget-
ful. This is called “forgetful (or finite memory) determinacy” of ω-regular games
(for a full proof see Chapter 2, Subsection 2.4.2, Corollary 2.15 in [61]). It is
also worth mentioning that in every Rabin game, Player 0 has a memoryless
winning strategy on his winning region. Symmetrically, in every Streett game,
Player 1 has a memoryless strategy on his winning region (this is Theorem 2.16
in Chapter 2, Subsection 2.4.2, in [61]).

But, in parity games, both players have a memoryless winning strategy on
their winning regions (see Chapter 6 in [61]). The following theorem holds.
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Theorem 1.7 (Determinacy of Parity Games [50, 122]). Parity Games, as well
as all of the other ω-regular games, lie at the third level of the Borel Hierarchy, i.e.,
∆0

3 = Σ0
3 ∩Π0

3. Hence, they are all determined by the Borel Determinacy Theorem.

Particularly, Parity Games are memoryless determined.

Proofs of memoryless determinacy of parity games can be found e.g., in [50,
122]. The determinacy and the memorylessness of parity games is exploited in
various areas. The word and emptiness problem for alternating tree automata
as well as model-checking in modal µ-calculus can be reduced to deciding the
winner of a parity game. In fact, model checking µ-calculus is equivalent via
linear time reduction to determining parity games (for a proof see [50, 53, 61,
118]). Also, parity games offers an elegant tool to simplify Rabin’s proof of the
decidability of the monadic second-order theory of the binary infinite tree (see
e.g., [16, 50, 99]). In summary, the following result holds.

Theorem 1.8 ([50, 53, 61, 118]). The model-checking problem of modal µ-calculus is
linear-time equivalent to the problem of deciding if Player 0 has a winning strategy
from a given starting position in a given parity game; the game constructed from a
transition system of size m and a formula of size n has size O(mn). Conversely, from
a given parity game one can construct an equivalent transition system and a formula;
the transition system is of the same size as the parity game.

1.4.3 From model-checking of Lµ to parity games

Let us provide a sketch of the construction from model-checking of modal
µ-calculus to determination of winning regions in parity games. Given a sen-
tence α of the modal µ-calculus, and a state s ∈ S of a given transition sys-
tem M =

(
S,{Ra}a∈A,{Pi}i∈N

)
, the model-checking problem asks to decide

whether α holds in s, i.e., M, s |= α. We aim at constructing a parity game
G(M,α) in which Player 0 admits a winning strategy from a starting position
corresponding to s iffM, s |= α. Actually, G(M,α) is needed also for formulas
α with free variables, so valuations V are also taken into account. So we are
going to define a parity game GV (M,α), where GV (M,α) = G(M,α) when
α is a sentence. To outline this construction, given a formula α, let us con-
sider the closure cl(α) of α, i.e., the smallest set containing α and closed under
subformulas and unfolding.

The game is defined as follows:

GV (M,α),
(

VGV (M,α), AGV (M,α), pGV (M,α), 〈V0GV (M,α),V1GV (M,α)〉
)

,

where the vertex set is:

VGV (M,α) ,
{
(s, β) | s is a state ofM and β ∈ cl(α)

}
,
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moreover, concerning V0GV (M,α) and V1GV (M,α):{
(s, p) | s ∈ S \ P} ∪

{
(s,¬p) | s ∈ S ∩ P} ⊆ V0GV (M,α){

(s, p) | s ∈ S ∩ P} ∪
{
(s,¬p) | s ∈ S \ P} ⊆ V1GV (M,α)

where the intended interpretation is that (s, p) ∈ S× P will be declared win-
ning for Player 0 (i.e., it will be a sink for Player 1) iff M, s |= p, i.e., s ∈ P;
otherwise, it will be winning for Player 1 and thus a sink vertex for Player 0.
Symmetrically for (s,¬p). Similarly, concerning variables, one prescribes that:{

(s, X) | s ∈ S \ V(X)} ⊆ V0GV (M,α),{
(s, X) | s ∈ S ∩ V(X)} ⊆ V1GV (M,α);

so that (s, X) ∈ S× Var will be declared winning for Player 0 (i.e., a sink for
Player 1) iffM, s |= X, i.e., s ∈ V(X); otherwise, it will be winning for Player 1
and thus a sink vertex for Player 0.

Also, for every s ∈ S and formulas α, β:

(s,α ∨ β) ∈ V0GV (M,α),

(s,α ∧ β) ∈ V1GV (M,α).

Finally, for every s ∈ S, for every a ∈ A and formula β:

(s, 〈a〉β) ∈ V0GV (M,α),

(s, [a]β) ∈ V1GV (M,α).

Concerning positions such as (s,σX.β(X)), since they will have exactly one
outgoing arc in AGV (M,α) (see below), they can be controlled by anyone of the
two players. The arc set AGV (M,α) is defined by induction on the structure of α:

• every position (s, p), (s,¬p) for s ∈ S and p ∈ P is a sink, i.e., Nout(s, p) =
Nout(s,¬p) = ∅ for every s ∈ S and p ∈ P ;

• similarly, every position (s, X) for s ∈ S and X ∈ Var is a sink;

• from positions (s,α∧ β), (s,α∨ β) there’s one arc to (s,α) and one to (s, β);

• from positions (s, 〈a〉β), (s, [a]β) there’s one to (t, β) whenever (s, t) ∈ Ra;

• fix σ ∈ {µ,ν}, from position (s,σX.β(X)) there’s one to (s, β(σX.β(X))).

The priorities, pGV (M,α) : VGV (M,α) →N, are assigned as follows. Here the
interesting formulas are the fixpoint formulas σX.β(X), the µ formulas will
have odd priority and the ν formulas will have it even. All of the others
formulas will have zero priority. The priorities of the fixpoint formulas can be
assigned by relying on the alternation depth.
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For any s ∈ S and any subformula β of α:

pGV (M,α)(s, β),


2 · badepth(X)

2 c if β is of the form νX.γ(X);
2 · badepth(X)

2 c+ 1 if β is of the form µX.γ(X);
0 otherwise.

Notice that the alternation depth of X is considered, not that of β, as this allows
one to assert a monotonicity property that is crucial for proving correctness of
the construction (see [13] for the proof). To determine the winner of the game,
the max-parity condition is adopted where the highest priority wins.

This concludes the description of GV (M,α). When α is a sentence, it is fine
to denote GV (M,α) = G(M,α). At this point, the following holds.

Theorem 1.9 ([13, 50]). For every sentence α of the modal µ-calculus, for every tran-
sition systemM =

(
S,{Ra}a∈A,{Pi}i∈N

)
, and for every state s ∈ S:

M, s |= α ⇐⇒ Player 0 has a winning strategy starting from (s,α) in G(M,α).

The problem of deciding the winner of a parity game belongs to the com-
plexity classes NP ∩ co-NP. Marcin Jurdzı́nski [70] proved a tighter UP ∩ co-UP
complexity bound and developed more efficient algorithms.

Definition 1.24. UP is the complexity class of decision problems solvable in poly-
nomial time on a unambiguous non-deterministic Turing Machine; namely, one in
which there is at most one accepting path for each input. Moreover, co-UP is the
complexity class of decision problems whose complement lies in UP.

In summary, the following result holds.

Theorem 1.10 (Complexity of model-checking [52, 54, 70]). The model-checking
problem of the modal µ-calculus lies in NP∩ co-NP; particularly, it lies in UP∩ co-UP.

1.4.4 Mean-payoff games
In turn, the problem of determining parity games turns out to be reducible
in polynomial-time to that of determining another family of infinite games on
graphs, which is now recalled.

Definition 1.25 (Mean Payoff Games). A Mean Payoff Game (MPG) [14, 49,
123] is a game played on some arena Γ for infinitely many rounds by two opponents,
Player 0 gains a payoff defined as the long-run average weight of the play, whereas
Player 1 loses that value. Formally, the Player 0’s payoff of a play v0v1 . . . vn . . . in Γ
is defined as follows:

MP0(v0v1 . . . vn . . .), liminf
n→∞

1
n

n−1

∑
i=0

w(vi,vi+1).

The value secured by a strategy σ0 ∈ Σ0 in a vertex v ∈ V is defined as:

valσ0(v), inf
σ1∈Σ1

MP0
(
outcomeΓ(v,σ0,σ1)

)
,
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Notice that payoffs and secured values can be defined symmetrically for the Player 1
(i.e., by interchanging the symbol 0 with 1 and inf with sup).

Ehrenfeucht and Mycielski [49] proved that each vertex v∈V admits a unique
value, denoted valΓ(v), which each player can secure by means of a memory-
less (or positional) strategy. Moreover, uniform positional optimal strategies do
exist for both players, in the sense that for each player there exist at least one
positional strategy which can be used to secure all the optimal values, inde-
pendently with respect to the starting position vs. Thus, for every MPG Γ:

∃σ0∈ΣM
0
∀v∈V

(
valσ0(v) ≥ valΓ(v)

)
,

and,
∃σ1∈ΣM

1
∀v∈V

(
valσ1(v) ≤ valΓ(v)

)
.

Indeed, the (optimal) value of a vertex v ∈ V in the MPG Γ is given [49, 123] by:

valΓ(v) = sup
σ0∈Σ0

valσ0(v) = inf
σ1∈Σ1

valσ1(v).

Definition 1.26 (Optimal and Winning Strategies in MPGs). A strategy σ0 ∈ Σ0
is optimal iff valσ0(v) = valΓ(v) for all v ∈ V. A strategy σ0 ∈ Σ0 is said to
be winning for Player 0 iff valσ0(v) ≥ 0, and σ1 ∈ Σ1 is winning for Player 1 iff
valσ1(v) < 0. Correspondingly, a vertex v ∈ V is a winning starting position for
Player 0 iff valΓ(v) ≥ 0; otherwise it is winning for Player 1.

1.4.5 From parity games to mean-payoff games
We are now in the position to recall the reduction from parity games to MPGs.

Theorem 1.11 (Reduction from Parity Games to Mean Payoff Games [70]). The
problem of deciding the winner in a Parity Game reduces in polynomial-time to the
problem of deciding the winner in a Mean-Payoff Game.

Basically, in such reduction, given a parity game Γ = (V, A, p, 〈V0,V1〉) with
coloring/priority function p : V →N, one constructs an MPG with the same
graph as Γ and where all arcs are weighted with the following weight function
(see [70]):

w(a), (−|V|)p(u), for every arc a = (u,v) ∈ A.

We shall study the problem of computing optimal values and optimal po-
sitional strategies in MPGs in Chapters 6 and 7, where it is offered an im-
proved pseudo-polynomial upper bound on the computational complexity of
that problems. Moreover, MPGs turn out to be the fundamental model un-
derpinning the results offered from Chapters 2 to 4 concerning automated
temporal planning and dynamic consistency checking of conditional temporal
networks.
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Part I

Temporal Constraint Networks
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2 Hyper Temporal Networks

Chapter Abstract

Simple Temporal Networks (STNs) provide a powerful and general tool for
representing conjunctions of maximum delay constraints over ordered pairs of
temporal variables. In this chapter we introduce Hyper Temporal Networks
(HyTNs), a strict generalization of STNs, to overcome the limitation of consid-
ering only conjunctions of constraints but maintaining a practical efficiency in
the consistency check of the instances. In a Hyper Temporal Network a single
temporal hyperarc constraint may be defined as a set of two or more maximum
delay constraints which is satisfied when at least one of these delay constraints
is satisfied. HyTNs are meant as a light generalization of STNs offering an
interesting compromise. On one side, there exist practical pseudo-polynomial
time algorithms for checking consistency and computing feasible schedules
for HyTNs. On the other side, HyTNs offer a more powerful model accommo-
dating natural constraints that cannot be expressed by STNs like “Trigger off
exactly δ min before (after) the occurrence of the first (last) event in a set.”, which are
used to represent synchronization events in some process aware information
systems/workflow models proposed in the literature.

This chapter is a revised version of [33].

v1

HA

v2

v3

tA

A,w A(
v1)

A,wA(v2)
A,w

A (v3 )

(a) Multi-Head Hyperarc
A = (tA, HA,wA).

v1

TA

v2

v3

hA

A,w
A (v1 )

A,wA(v2)

A,w A(
v3)

(b) Multi-Tail Hyperarc
A = (TA, hA,wA).

A graphical representation of the two kinds of hyperarcs.
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2.1 Introduction
In many areas of Artificial Intelligence (AI), including planning, scheduling
and workflow management systems, the representation and management of
quantitative temporal aspects is of crucial importance [7, 25,26, 48, 95, 107]. Ex-
amples of possible quantitative temporal aspects are: constraints on the earliest
start time and latest end time of activities, constraints over the minimum and
maximum temporal distance between activities, etc.

In many cases these constraints can be represented as an instance of a
Simple Temporal Network (STN) [44], a directed weighted graph where each
node represents a time-point variable (timepoint), usually corresponding to the
beginning or the end of an activity, and each arc specifies a binary constraint
on the scheduling times to be assigned to its endpoints. In [44], each arc
is labeled with a closed interval of real values: for example, the labeled arc

u
[x,y]−→ v encodes the binary constraint x≤ v− u≤ y over its endpoints u and v.

A more uniform and elementary representation of an STN is provided by its
distance graph1 [44], a graph having the same set of nodes as the original one,

but where each arc u
[x,y]−→ v is replaced by two arcs, each labeled with a single

real value: arc u
y−→ v to express the constraint v− u ≤ y, and arc v −x−→ u to

express the constraint u− v ≤ −x, i.e., x ≤ v− u.
An STN is said to be consistent if it is possible to assign a real value to

each timepoint so that all temporal constraints are satisfied. The consistency
property can be verified by searching for negative cycles in the distance graph
and it is well known that the consistency check and the determination of the
earliest/latest value for each timepoint can be done in polynomial time [44].

However, STNs do not allow the expression of constraints like “trigger off
an event exactly δ min after the occurrence of the last of its predecessors”, which
are a quite natural constraints to represent synchronization events in a pro-
cess aware information system plan/workflow schema [65]. This is because in
STNs, and in some of their natural extensions, (1) it is not possible to represent
a single constraint involving more than two timepoints and (2) all constraints
have to be satisfied in order to have the network consistent. On the contrary,
the above constraint about a synchronization event can be represented as a
set of distance constraints, each involving a different pair of timepoints, that
is considered satisfied when at least one of set components is satisfied. In
order to represent and analyze disjunctive constraints like the above one, it is
then necessary to consider models like Disjunctive Temporal Problem (DTP) [108]
where a constraint is a set of disjunctive difference constraints over the time-
points. The drawback of such model is that the consistency check problem is
NP-complete [108].

1Distance graph is also called constraint graph by other authors [42]. Moreover, Bellman [4]
was the first to describe the relation between shortest paths and difference constraints in a
constraint graph.
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2.1.1 Contribution
In this chapter we propose to generalize STN to Hyper Temporal Network (HyTN),
which allows also the expression of constraints like the above one regarding
synchronization events, but where the consistency check is amenable of effec-
tive solution algorithms.

Also, we show an interesting link between the consistency check of HyTNs
and resolution in Mean Payoff Games (MPG), a family of perfect information
infinite pebble games played on finite graphs by two opponents [49], for which
some pseudo-polynomial time algorithms for determining winning strategies
are known [14, 123].

A preliminary version of this chapter appeared in the proceedings of TIME
symposium [32]. Here, as in [33], we extend the presentation as follows: (1)
the definition of HyTN has been extended in order to allow the presence of
two kinds of hyperarcs; (2) the motivating example section has been revised
to show how the new kind of hyperarc can be used; (3) some further issues
and pertinent properties about HyTN have been introduced and proved; (4)
several proofs have been expanded and clarified; (5) the experimental analysis
of the consistency check algorithm has been improved considering more recent
algorithms [14] for finding winning strategies for MPGs. This has improved
the performances significantly.

2.1.2 Organization
The rest of the chapter is organized as follows. In Section 2.2 we present a mo-
tivating example from the domain of the workflow-based process management
to bring out HyTNs. Section 6.2 introduces some definitions and well-known
results for STNs and introduces some definitions about hypergraphs. The gen-
eralization of STNs into HyTNs and the definition of consistency problem for
HyTNs are presented in Section 2.4. In Section 2.5 we recall the main facts and
results about Mean Payoff Games which are useful for the following sections.
Section 2.6 presents the investigation into the link between the HyTN con-
sistency problem and Mean Payoff Games deriving pseudo-polynomial time
algorithms for checking the consistency of HyTNs and computing feasible
schedules whenever they exist. Some empirical evaluations of the proposed
algorithms are reported in Section 2.7. In Section 2.8, some related works are
presented and discussed with respect to our approach. Section 2.9 summarizes
the main facts brought to light in this chapter and presents a possible future
development of the work we are currently carrying on.

2.2 Motivating Examples
In the introduction we have briefly recalled a kind of constraint that cannot be
expressed within STNs. In this section, we describe in more detail two exam-
ples of temporal constraints that cannot be fully described in an STN in order
to introduce and motivate the new expressive capability of our model. As a
further motivation, at the end of the section we also spotlight how this new
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capability has been recently exploited to check the consistency of Conditional
Simple Temporal Networks (CSTNs) [113] in a more efficient way.

Let us consider an example in the domain of the workflow-based pro-
cess management, a domain concerned with the coordination and control
of business processes using information technology. A workflow is a rep-
resentation of a business process as the coordinated execution of activities
by human or automatic executors (agents). A Workflow management system
(WfMS) is a software system that supports the automatic execution of work-
flows [65]. In a WfMS, the management of temporal aspects is a critical com-
ponent and in the literature there are many proposals on how to extend a
workflow in order to represent and manage temporal constraints of a busi-
ness process [7, 20, 25–28, 47, 48, 60]. In particular, in [7, 20, 28, 47, 48] authors
show how to represent and manage some kinds of temporal constraints us-
ing specific algorithms, while in [25–27, 60] authors show how it is possible to
represent and manage a wider class of temporal constraints exploiting models
like Time Petri Nets [86] or STNs/STNUs [89].

In this chapter we consider an excerpt of the conceptual temporal model
proposed by Combi et al. [27], where the specification of a temporal workflow
is given by a workflow schema, a directed graph (also called workflow graph)
where nodes correspond to activities and arcs represent control flows that de-
fine activity dependencies on the order of execution. Both nodes and arcs may
be associated to temporal ranges to specify temporal constraints. There are two
different types of activity: tasks and connectors. Tasks represent elementary
work units that will be executed by external agents. Each task is graphically
represented by a box containing a name and a temporal range that specifies
the allowed temporal span for its execution. Connectors represent internal ac-
tivities executed by the WfMS to achieve a correct and coordinated execution
of tasks. They are graphically represented by diamonds and, as with tasks,
each of them has a temporal range that gives the temporal span allowed to
the WfMS for executing it. Every arc has a temporal property that gives the
allowed times that can be spent by the WfMS for possibly delaying the consid-
eration of the next activity after the end of the previous one. There are different
kinds of connector that allow one to modify a control flow. Split connectors
are nodes with one incoming arc and two or more outgoing arcs: after the ex-
ecution of the predecessor, (possibly) several successors have to be considered
for the execution. The set of nodes that can start their execution is given by the
kind of split connector. A split connector can be: Parallel, Alternative or Con-
ditional. Join connectors are nodes with two or more incoming arcs and one
outgoing arc only. The types of activities considered in [27] are a subset of the
possible activities specified by the Workflow Management Coalition [65, 116].

Fig. 2.1 shows a simple workflow schema where the Parallel connector 1
splits the flow into three parallel flows of execution (one for the sequence of
tasks T1 and T2, one for task T3, and one for task T4 and T5) that have to be
joined (synchronized) by the AND join connector 2 before continuing the
execution; all temporal ranges are in minutes.
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Figure 2.1: A simple workflow schema excerpt with three parallel flows of
execution.

Let us consider the connector 2; according to the recommendations from
the Workflow Management Coalition (WfMC) [65] and the temporal specifi-
cation from [27], the execution of this connector requires to wait all incoming
flows and, after the last incoming flow, to wait a time according to the con-
nector temporal range before following the outgoing arc. In other words, the
incoming flows can arrive at different instants but only when the last one ar-
rives, the connector has to be activated in order to continue with the execution.

Combi et al. [27] proposed a method to translate workflow schemata to
STNs/STNUs [89] in order to analyze and validate all temporal aspects in
a rigorous way. As already noted in [24] and [25], such translation cannot
specifically represent the behavior of an AND join connector, because the kind
of constraints in an STN/STNU is limited. Therefore, in [25], the authors pro-
posed an adjustment of the translation of an AND join connector introducing
for each incoming arc of the connector a buffer node connected with some de-
termined new arcs and assuming a reasonable but fixed execution algorithm
for the STN. In more detail, let us consider Fig. 2.2 that depicts the representa-
tion of workflow of Fig. 2.1 by means of an STN following partially the method
described in [25] (without loss of generality, here we convert task constraints
as STN arcs instead of STNU contingent ones because we are interested only
in the AND join conversion). Each activity of the workflow is represented
by two STN nodes, one to represent the begin timepoint, Bi, one for the end
one, Ei, and temporal ranges in the workflow are represented by STN arc la-
bels. Regarding the translation of the AND join node 2, nodes representing
the task endings on parallel flows, ET2 , ET3 , and ET5 , are connected to buffer
nodes b1, b2, and b3 that allow the parallel flows to complete their execution
following only their temporal constraints. Then, b1, b2, and b3 are connected to
node B

2
(which represents the begin instant of the AND join connector) by

temporal constraints [0, t1], [0, t2] and [0, t3], where the values t1, t2, and t3 are
determined during the workflow-to-STN conversion as explained in [25].

Now, let us consider a possible execution scenario. If b1, b2, and b3 occur all
together at instant 20, then, following the proposed temporal semantics [27],
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Figure 2.2: An STN representing temporal aspects of the workflow depicted
in Fig. 2.1. The dotted region emphasizes, within the workflow excerpt, the
connections to an AND join connector.

the only possible instant value for B
2

must be 20 while the updated STN
allows any value in the range [20,20 + min{t1, t2, t3}]. In [25], the authors
showed that the right value is always the lower bound of such extended range
and, therefore, it is sufficient to adopt an early execution strategy in order to
choose the right value for timepoint B

2
.

In other words, the proposed translation has two drawbacks: (1) it requires
some preliminary computations for determining t1, t2, and t3 values, and (2)
the resulting STN admits some solutions that are not admissible by the seman-
tics of the AND join connector.

To specifically represent the behavior of an AND join connector with re-
spect to its predecessor time points without auxiliary conditions or analysis,
it is necessary to introduce a new kind of constraint based on hyperarcs, as
shown in Fig. 2.3. In the figure the multi-tail hyperarc A consists of three
dashed arcs—called components—and replaces the arcs from bi (i = 1,2,3) to
B

2
of Fig. 2.2. We say that a multi-tail hyperarc is satisfied if at least one of

its components is satisfied. In Fig. 2.3 dashed arcs define the hyperarc A that
is satisfied if B

2
is 0 distant from at least one time point among b1,b2, and

b3. Since B
2

is constrained to occur at the same instant or after each time
point b1,b2, and b3 by the arcs between B

2
and bi, i = 1,2,3, the result is that

to satisfy A it is necessary that B
2

occurs at the same instant of the last time
point among b1,b2, and b3, as required originally. In more general, a multi-tail
hyperarc is defined as a set of distance constraints (components) between some
time points and a common end point.

The use of hyperarcs allows also the representation of temporal aspect of
other advanced connectors as, for example, the Structured Discriminator [116].
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Figure 2.3: An augmented STN, that we call HyTN, where dashed arcs repre-
sent components of hyperarcs, a new kind of constraint. This HyTN improves
the representation of the STN of Fig. 2.2. To emphasize the changes, here we
have summed all arcs outside the dotted region.

The Structured Discriminator connector provides a means of merging two or
more distinct flows in a workflow instance into a single subsequent. In par-
ticular, it triggers the subsequent flow as soon as the the first incoming flow
arrives. The arrival of other incoming flows thereafter have no effect on the
subsequent flow. As such, the Structured Discriminator provides a mechanism
for progressing the execution of a process once the first of a series of concurrent
tasks has completed and according to the connector temporal range. Fig. 2.4a
depicts an excerpt of a workflow schema containing a structured discriminator
connector, D , that joins three parallel flows.

At the best of our knowledge, currently there are no proposals for the repre-
sentation of temporal constraints of a discriminator connector in any temporal
workflow model or process-aware information system [77]. Even exploiting
the methodology proposed in [25], it is easy to verify that it is not possible to
represent such connector as an STN because in a consistent STN all constraints
have to be satisfied while here it is necessary to allow the possibility that only
one constraint of a set has to be satisfied in order to specifically represent a dis-
criminator connector. A possible way for specifically managing a discriminator
connector consists in following the approach suggested by [25] for representing
activities and considering a variant of the multi-tail hyperarc, called multi-head
hyperarc, for representing its temporal constraint, as depicted in Fig. 2.4b. In
the figure there is a multi-head hyperarc A that connects the node represent-
ing the beginning instant of the discriminator activity to all nodes representing
the end instant of the activities that precede the considered discriminator and
are directly connected to it. In general a multi-head hyperarc is defined as
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Figure 2.4: A structured discriminator connector and a possible representation
of its temporal aspects.

a set of distance constraints (components) between one time point and some
end points. We say that a multi-head hyperarc is satisfied if at least one of its
components is satisfied. In Fig. 2.4b, dashed arcs define the hyperarc A that is
satisfied if B

D
is at least 2 distant from ET1 or 1 distant from ET2 or 5 distant

from ET3 . It is sufficient that one of such previous nodes is executed and that
the delay represented in the corresponding connecting arc is passed to execute
B

D
, as required by the structured discriminator connector semantics.

HyTNs are not only suitable for better representing temporal constraints
originating from temporal workflow, but also for better representing more
general temporal constraint networks like Conditional Simple Temporal Net-
work [113].

A Conditional Simple Temporal Network (CSTN) is an enriched graph
for representing and reasoning about temporal constraints in domains where
some constraints may apply only in certain condition settings (scenarios). Each
condition in a CSTN is represented by a propositional letter whose truth value
is observed in real time as the outcome of the execution of an observation time-
point. An execution strategy for a CSTN has to determine an execution time for
each time-point guaranteeing that all temporal constrains that are significant
in the resulting scenario are satisfied. An execution strategy can be dynamic
in that its execution decisions can react to the information obtained from such
observations. The Conditional Simple Temporal Problem (CSTP) consists in
determining whether a given CSTN admits a dynamic execution strategy for
any possible combination of propositional outcomes happens to be observed
over time. If such a strategy exists, the CSTN is said to be dynamically consis-
tent (DC).
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Tsamardinos et al. [113] solved the CSTP by first encoding it as a meta-
level Disjunctive Temporal Problem (DTP), then feeding it to an off-the-shelf
DTP solver. Although of theoretical interest, this approach is not practical
because the CSTP-to-DTP encoding has exponential size, and the DTP solver
itself runs in exponential time. To our knowledge, this approach has never
been empirically evaluated [69].

In [34, 40] and in Chapter 3, we propose a novel representation of CSTNs
in terms of HyTNs allowing the determination of the first singly exponential-
time algorithm for checking the dynamic consistency of Conditional Simple
Temporal Networks. More precisely, a CSTN instance is represented as a suit-
able HyTN where each possible scenario is represented and connected to other
scenarios in an appropriate way and, then, such HyTN instance is solved in
pseudo-polynomial time by the algorithms analyzed in the present chapter.

In summary, HyTNs allow the representation of temporal constraints that
are more general of those represented in STNs [44], because they allow dis-
junctions involving more than two time points, but less general than those
represented in DTPs [108] because all disjunctions related to a multi-head(tail)
hyperarcs have to contain a common variable. Such kind of STN general-
ization not only allows the compact representation of some common tempo-
ral constraints in the domains like the workflow-based process management
but also allows the determination of new interesting algorithm for checking
dynamic-consistency in richer models like CSTN.

2.3 Background and Notation
The reader is referred to Subsection 1.2.2, Chapter 1, where we introduce some
definitions, notations and well-know results about graphs and conservative
graphs; moreover, where we recalled the relation between the consistency
property of STNs and the conservative property of weighted graphs.

In this chapter, we also deal with directed weighted hypergraphs.

Definition 2.1 (Hypergraph). A hypergraphH is a pair (V,A), where V is the set
of nodes, and A is the set of hyperarcs. Each hyperarc A ∈ A is either a multi-head
or a multi-tail hyperarc.

A multi-head hyperarc A = (tA, HA,wA) has a distinguished node tA, called the
tail of A, and a nonempty set HA ⊆V \ {tA} containing the heads of A; to each head
v ∈ HA is associated a weight wA(v) ∈ R. Fig. 2.5a depicts a possible representation
of a multi-head hyperarc: the tail is connected to each head by a dashed arc labeled by
the name of the hyperarc and the weight associated to the considered head.

A multi-tail hyperarc A = (TA, hA,wA) has a distinguished node hA, called the
head of A, and a nonempty set TA ⊆ V \ {hA} containing the tails of A; to each tail
v ∈ TA is associated a weight wA(v) ∈ R. Fig. 2.5b depicts a possible representation
of a multi-tail hyperarc: the head is connected to each tail by a dotted arc labeled by
the name of the hyperarc and the weight associated to the considered tail.

The cardinality of a hyperarc A ∈ A is given by |A| , |HA ∪ {tA}| if A is
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Figure 2.5: A graphical representation of the two kinds of hyperarcs.

multi-head, and |A|, |TA ∪{hA}| if A is multi-tail; if |A|= 2, then A = (u,v,w)
is a standard arc. The order and size of a hypergraph (V,A) are denoted by
n, |V| and m, ∑A∈A |A|, respectively.

2.4 HyTN and Consistency Property
We introduce now Hyper Temporal Networks (HyTNs), a strict generalization
of STNs to partially overcome the limitation of allowing only conjunctions of
constraints. Compared to STN distance graphs, which they naturally extend,
HyTNs allow a greater flexibility in the definition of temporal constraints.

A HyTN is a directed weighted hypergraph H = (V,A) where a node rep-
resents a time point variable (timepoint), and a multi-head/multi-tail hyperarc
represents a set of temporal distance constraints between the tail/head and the
heads/tails, respectively.

For example, the multi-tail hyperarc A = (TA, B
2
,wA) in Fig. 2.3, where

TA = {b1,b2,b3} and wA(bi) = 0 for i = 1,2,3, stands for the set of distance
constraints {B

2
− bi ≤ 0 | i = 1,2,3}.

In general, we say that a hyperarc is satisfied when at least one of its distance
constraints is satisfied. Then, we say that a HyTN is consistent when it is
possible to assign a value to each time-point variable so that all of its hyperarcs
are satisfied.

More formally, in the HyTN framework the consistency problem is defined
as the following decision problem.

Definition 2.2 (General-HyTN-Consistency). Given a HyTN H = (V,A), de-
cide whether there exists a scheduling s : V→ R such that, for every hyperarc A ∈ A,
the following holds:
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• if A = (t, h,w) is a standard arc, then

s(h)− s(t) ≤ w;

• if A = (tA, HA,wA) is a multi-head hyperarc, then

s(tA) ≥ min
v∈HA
{s(v)− wA(v)};

• if A = (TA, hA,wA) is a multi-tail hyperarc, then

s(hA) ≤max
v∈TA
{s(v) + wA(v)}.

Any such scheduling s : V→ R is called feasible. A HyTN that admits at
least one feasible scheduling is called consistent.

Comparing the consistency of HyTNs with the consistency of STNs, the
most important aspect of novelty is that, while in a distance graph of a STN
each arc represents a distance constraint and all such constraints have to be
satisfied by a feasible schedule, in a HyTN each hyperarc represents a set of
one or more distance constraints and a feasible scheduling has to satisfy at
least one such distance constraints for each hyperarc.

Let us show some interesting properties about the consistency problem for
HyTNs.

The first interesting property is that any integral-weighted HyTN admits
an integral feasible schedule when it is consistent, as proved in the following
lemma.

Lemma 2.1. Let H = (V,A) be an integral-weighted and consistent HyTN. Then
H admits an integral feasible scheduling:

s : V→ {−T,−T + 1, . . . , T − 1, T},

where T = ∑A∈A,v∈V |wA(v)|.

Proof. Since H is consistent, then there exists a feasible scheduling s̃ : V → R.
The idea in this proof is to project the HyTN H over a conservative graph GH,
by selecting for each hyperarc A ∈ A one standard arc that is feasible accord-
ing to s̃ (more details below); and then, in that setting, to exploit the integrality
properties of potentials as stated in Theorem 1.1. Note that GH is asked to re-
solve the non-determinism contained in the disjunctive nature of the hyperarcs
(i.e., which choices within the hyperarcs ofH, i.e., which standard arcs, should
be selected to construct GH?); in order to sort out such non-determinism, the
projection is built considering the given feasible scheduling s̃ as follows.

For each hyperarc A ∈ A, a weighted directed arc eA is defined as follows:

• if A = (u,v,w) is a standard arc, then eA , (u,v,w). Note that s̃(v) ≤
s̃(u) + w follows by the feasibility of s̃;

40



• if A = (tA, HA,wA) is a multi-head hyperarc, then

eA , (tA,vA,wA(v)) where vA = arg min
v∈HA
{s̃(v)− wA(v)}.

Here, s̃(vA) ≤ s̃(tA) + wA(v) follows by the feasibility of s̃;

• if A = (TA, hA,wA) is a multi-tail hyperarc, then

eA , (vA, hA,wA(v)) where vA = argmax
v∈TA
{s̃(v) + wA(v)}.

Here, s̃(hA) ≤ s̃(vA) + wA(v) follows by the feasibility of s̃.

Now, a weighted directed graph GH = (V, E) with E , {eA | A ∈ A} is de-
fined. G is integral-weighted and conservative graph since it admits s̃ as a
potential function. Therefore, G admits an integral potential function s : V→
{−T,−T + 1, . . . , T − 1, T}. Indeed, such a function s is obtained by applying
the Bellman-Ford algorithm on G. To conclude, we observe that s is also an
integral feasible scheduling for H. 2

The following theorem states that General-HyTN-Consistency is NP-complete.

Theorem 2.1. General-HyTN-Consistency is an NP-complete problem even if
input instancesH= (V,A) are restricted to satisfy wA(·)∈ {−1,0,1} and |HA|, |TA| ≤
2 for every A ∈ A.

Proof. If H = (V,A) is integral-weighted and consistent, then it admits an in-
tegral feasible scheduling s : V → {−T, . . . , T} by Lemma 2.1. Moreover, any
such feasible scheduling can be verified in polynomial time w.r.t. the size of
the input; hence, General-HyTN-Consistency is in NP.

To show that the problem is NP-hard, we describe a reduction from 3-SAT.
Let us consider a boolean 3-CNF formula with n ≥ 1 variables and m ≥ 1

clauses:

ϕ(x1, . . . , xn) =
m∧

i=1

(αi ∨ βi ∨ γi)

where Ci = (αi ∨ βi ∨ γi) is the i-th clause of ϕ and each αi, βi,γi ∈ {xj, xj | 1 ≤
j ≤ n} is either a positive or a negative literal.

We associate to ϕ a HyTN Hϕ = (V,A), where each boolean variable xi
occurring in ϕ is represented by two nodes, xi and xi. V also contains node
z that represents the reference initial node for the HyTN Hϕ, i.e., the first
node that has to be executed. For each pair xi and xi, Hϕ contains a pair of
hyperarc constraints as depicted in Fig. 2.6a: one with multi-head {xi, xi} and
tail in z and the other multi-tail {xi, xi} and head in z. If Hϕ is consistent,
the pair of hyperarcs associated to x,¬x assures that Hϕ admits a feasible
scheduling s such that s(xi) and s(xi) are coherently set with values in {0,1}
(see Lemma 2.1). In this way, s is forced to encode a truth assignment on
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Figure 2.6: Gadgets used in the reduction from 3-SAT to General-HyTN-
Consistency.

the xi’s. The HyTN Hϕ contains also a node Cj for each clause Cj of ϕ; each
node Cj is connected by a multi-tail hyperarc with head in Cj and tails over the
literals occurring in Cj and by two standard and opposite arcs with node z as
displayed in Fig. 3.6b. Such setting of arcs assures that if Hϕ admits a feasible
scheduling s, then s assigns value 1 at least to one of the node representing the
literals connected with the hyperarc.

More formally, Hϕ = (V,A) is defined as follows:

• V = {z} ∪ {xi | 1≤ i ≤ n} ∪ {xi | 1≤ i ≤ n} ∪ {Cj | 1≤ j ≤ m};

• A =
⋃n

i=1 Vari ∪
⋃m

j=1 Claj, where:

– Vari =
{
(z, xi,1), (xi,z,0), (z, xi,1), (xi,z,0),

({xi, xi},z, [w(xi),w(xi)] = [−1,−1]),

(z,{xi, xi}, [w(xi),w(xi)] = [0,0])
}

.
This defines the variable gadget for xi as depicted in Fig. 2.6a;

– Claj =
{
(z,Cj,1), (Cj,z,−1),

({αj, β j,γj},Cj, [w(αj),w(β j),w(γj)] = [0,0,0])
}

.

This defines the clause gadget for clause Cj = (αi ∨ βi ∨ γi) as de-
picted in Fig. 3.6b.

Notice that |V| = 1 + 2n + m = O(m + n) and mA = 8n + 5m = O(m + n);
therefore, the transformation is linearly bounded in time and space.

We next show that ϕ is satisfiable if and only if Hϕ is consistent.
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Any truth assignment ν : {x1, . . . , xn} → {true,false} satisfying ϕ can be
translated into a feasible scheduling s : V → Z of Hϕ as follows. For node z,
let s(z) = 0, and let s(Cj) = 1 for each j = 1, . . . ,m; then, for each i = 1, . . . ,n,
let s(xi) = 1 and s(xi) = 0 if the truth value of xi, ν(xi), is true, otherwise let
s(xi) = 0 and s(xi) = 1. It is easy to verify that, using this scheduling s, all
the constraints comprising each single gadget are satisfied and, therefore, the
network is consistent.

Vice versa, assume thatHϕ is consistent. Then, it admits an integral feasible
scheduling s by Lemma 2.1. After the translation s(v) = s(v) − s(z), we can
assume that s(z) = 0. Hence, s(Cj) = 1 for each j = 1, . . . ,m, as enforced by the
two standard arcs incident at Cj in the clause gadget, and {s(xi), s(xi)}= {0,1}
for each i = 1, . . . ,n, as enforced by the constraints comprising the variable
gadgets. Therefore, the feasible scheduling s can be translated into a truth
assignment ν : {x1, . . . , xn}→ {true,false} defined by ν(xi) = true if s(xi) =
1 (and s(xi) = 0); ν(xi) = false if s(xi) = 0 (and s(xi) = 1) for every i = 1, . . . ,n.

To conclude, we observe that any hyperarc A ∈ A of Hϕ has weights
wA(·) ∈ {−1,0,1} and size |A| ≤ 3. Since any hyperarc with three heads
(tails) can be replaced by two hyperarcs each having at most two heads (tails),
the consistency problem remains NP-Complete even if wA(·) ∈ {−1,0,1} and
|A| ≤ 2 for every A ∈ A. 2

Theorem 2.1 motivates the study of consistency problems on hypergraphs
having either only multi-head or only multi-tail hyperarcs. In the former case,
the consistency problem is called Head-HyTN-Consistency, while in the lat-
ter it is called Tail-HyTN-Consistency. In the following theorem we observe
that the two problems are inter-reducible, i.e., we can solve consistency for any
one of the two models in f (m,n,W) time whenever we have a f (m,n,W) time
procedure for solving consistency for the other one.

Theorem 2.2. Head-HyTN-Consistency and Tail-HyTN-Consistency are inter-
reducible by means of log-space, linear-time, local-replacement reductions.

Proof. We show the reduction from multi-tail to multi-head hypergraphs; the
other direction is symmetric. Informally, what we will do is to reverse all the
arcs (so that what was multi-tail becomes multi-head), and, contextually, we
invert the time-axis (to account for the inversion of the direction of all arcs).

Let H = (V,A) be a multi-tail hypergraph, we associate to H a multi-head
hypergraph H′ = (V,A′) by reversing all multi-tail hyperarcs. Formally, we
define

A′ = {(v,S,w) | (S,v,w) ∈ A}.

For example, a standard arc (t, h,w) ∈ A is transformed into a reversed stan-
dard arc (h, t,w) in A′ while a hyperarc with two weighted tails t1 and t2
becomes a hyperarc having t1 and t2 as its two weighted heads.

Now, H is consistent if and only if H′ is consistent. To prove it, we note
that each scheduling s forH can be associated, with a flip of the time direction,
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to the scheduling s′ ,−s. Then, it holds that s is feasible for H if and only if s′

is feasible for H′. Indeed, s satisfies the constraint represented by an hyperarc
A = (TA, hA,wA) ∈ A, namely

s(hA) ≤max
v∈TA
{s(v) + wA(v)},

or, equivalently
−s(hA) ≥min

v∈TA
{−s(v)− wA(v)},

if and only if s′ (that is, −s) satisfies the constraint represented by the reversed
hyperarc A′ = (hA, TA,wA), namely

s′(hA) ≥min
v∈TA
{s′(v)− wA′(v)}.

2

In the remainder of this work we shall adopt the multi-head hypergraph as
our reference model. Hence, when considering hypergraphs and HyTNs, we
will be implicitly referring to multi-head hyperarcs. Notably, we consider the
following specialized notion of consistency for HyTNs.

Definition 2.3 (Head-HyTN-Consistency). Given a (multi-head) HyTN, denoted
by H = (V,A), decide whether there exists a scheduling s : V→ R such that:

s(tA) ≥ min
v∈HA
{s(v)− wA(v)} ∀A ∈ A. (2.1)

Remark 2.1. Notice that this notion of consistency for HyTNs is a strict general-
ization of STN one. In general, the feasible schedules of an STN are the solutions of
a linear system and, therefore, they form a convex polytope. Since an STN may be
viewed as a HyTN, the space of feasible schedules of an STN can always be described
as the space of feasible schedules of a HyTN. The converse is not true because feasible
schedules for a HyTN do not form a convex polytope. Let us consider, for example,
a HyTN of just three nodes x1, x2, x3 and one single hyperarc with heads {x1, x2}
and tail x3 expressing the constraint x3 ≥ min{x1, x2}; (0,2,2) and (−2,0,2) are
both admissible schedules, but (1,1,0) = 1

2 (0,2,2)− 1
2 (−2,0,2) is not an admissible

schedule. In conclusion, the STN model is a special case of the Linear Programming
paradigm, whereas the HyTN model is not.

In the rest of this section, we extend the characterization of STN consistency
recalled in Section 6.2 to HyTNs.

Definition 2.4 (Reduced Slack Value wp
A(v)). With reference to a potential p : V→

R, we define, for every arc A ∈ A and every v ∈ HA, the reduced slack value wp
A(v)

as wA(v) + p(tA)− p(v) and the reduced slack wp
A as

wp
A ,max{wp

A(v) | v ∈ HA}.
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A potential p is said to be feasible if and only if wp
A ≥ 0 for every A ∈ A.

Again, as it was the case for STNs, a mapping f : V → R is a feasible po-
tential if and only if it is a feasible schedule. In order to better characterize
feasible schedules, we introduce a notion of negative cycle.

Definition 2.5 (Negative Cycle). Given a multi-head HyTN H = (V,A), a cycle is
a pair (S,C) with S ⊆ V and C ⊆ A such that:

1. S =
⋃

A∈C(HA ∪ {tA}) and S 6= ∅;

2. ∀v ∈ S there exists an unique A ∈ C such that tA = v.

Moreover, we let a(v) denote the unique arc A ∈ C with tA = v as required in previous
item 2. Every infinite path in a cycle (S,C) contains, at least, one finite cyclic sequence
vi,vi+1, . . . ,vi+p, where vi+p = vi is the only repeated node in the sequence. A cycle
(S,C) is negative if for any finite cyclic sequence v1,v2, . . . ,vp, it holds that

p−1

∑
t=1

wa(vt)(vt+1) < 0.

An example of a cycle (S,C) is shown in Fig. 2.7.
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Figure 2.7: A Cycle (S,C), where S = {v0, . . . ,v6} and C = {A0, . . . , A6}.

There are two results about negative cycles as stated in the following lem-
mas.

Lemma 2.2. A HyTN with a negative cycle admits no feasible schedule.

Proof. By contraposition. Let H be a consistent HyTN and let p be a feasible
potential for H. Also, let (S,C) be any cycle of H; we will show that (S,C) is
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not negative. For every A ∈ C, let hA be the head of A with maximum reduced
slack value:

hA , arg max
v∈HA
{wp

A(v)}.

Let us consider the infinite path in (S,C) built choosing, at each node vt,
ha(vt) as the following node. As already seen, such a path contains at least one
finite cyclic sequence vh,vh+1, . . . ,vk with vk = vh. The sum of weights of the
finite cyclic sequence is given by:

k−1

∑
t=h

wa(vt)(vt+1) =
k−1

∑
t=h

wp
a(vt)

(vt+1)

for every potential p; since p is feasible, all terms of the last sum are non-
negative. It follows that (S,C) is not negative. 2

At first sight, it may appear that checking whether (S,C) is a negative cycle
might take exponential time since one should check a possibly exponential
number of cyclic sequences. The next lemma shows instead that it is possible
to check the presence of negative cycle in polynomial time.

Lemma 2.3. Let (S,C) be a cycle in a HyTN. Then checking whether (S,C) is a
negative cycle can be done in polynomial time.

Proof. Consider the weighted graph G = (S,∪t∈S At) where each hyperarc a(t),
for every t ∈ S, is transformed into a set of standard arcs as follows:

a(t) ; At , {(t,v,−wa(t)(v)) | v ∈ Ha(t))}, ∀ t ∈ S.

Notice that G is thus an STN. Checking whether (S,C) is a negative cycle
amounts to check whether all cycles in G have strictly positive weight. To
do this, firstly, a potential function π for G is determined by Bellman-Ford
algorithm. If the algorithm returns a negative cycle instead of π, then there is
no negative cycle in (S,C) and the check ends.

Otherwise, since w(C) = wπ(C) ≥ 0 for every cycle C of G, it is necessary
to verify that no cycle in G has wπ(C) = 0. This check can be done by verifying
the acyclicity of the subgraph of G comprising only arcs a of G with wπ(a) = 0.
The check that a graph is acyclic can be done in linear time by a depth first
visit [42]. 2

A hypergraph H is called conservative when it contains no negative cycle.
In the next sections we will provide a pseudo-polynomial time algorithm that
always returns either a feasible scheduling or a negative cycle, thus extending
the validity of the classical good-characterization of STN consistency to general
HyTN consistency. Here, we anticipate the statement of the main result in
order to complete this general introduction of HyTNs.
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Theorem 2.3. A HyTN H is consistent if and only if it is conservative. Moreover,
when all weights are integral, then H admits an integral scheduling if and only if it is
conservative.

Proof. If H is consistent, then it is conservative by Lemma 2.2. If H is not
consistent, then there is a negative cycle as shown in Theorem 2.7-(3). The
existence of an integral scheduling when all weights are integral is guaranteed
by Lemma 2.1. 2

2.5 Mean Payoff Games
In this section, we propose an introduction to Mean Payoff Games (MPGs)
tailored to the needs of the present work. MPGs represent a well-studied
model for representing some kinds of two-player dynamics and we will show
in Section 6 that there is a substantial equivalence between the MPG and the
HyTN model, which will allow us to exploit some important algorithmic and
structural results.

An MPG is a weighted directed graph G = (V0 ∪· V1, E) whose node set V
is partitioned into two disjoint sets V0 and V1, where, for p = 0,1, the nodes
in Vp are those under control of Player p. Even with these graphs we have no
loops and no parallel arcs. It is also assumed that every node has at least one
outgoing arc. Notice that, in general, (V0,V1) does not need to be a bipartiton
of G, i.e., E may contain arcs with both endpoints in V0, or with both endpoints
in V1. An example is shown in Fig. 2.8, where nodes in V0 are white and those
in V1 are filled in black.

A B

CD

−1

−2

+1

+2 −1

−1

+1

+2

−9

Figure 2.8: An MPG Γ.

Each play starts with a pebble placed at some node v0 ∈V0∪· V1 and consists
in a sequence of moves. Move t begins with the pebble placed in node vt−1 and
is played by the Player p such that vt−1 ∈ Vp: the player chooses any arc e ∈ E
with tail te = vt−1 and moves the pebble along e; at the end of the move the
pebble is in node vt = he. The game ends as soon as vt = vt′ for some t > t′, i.e.,
when the pebble comes back to an already visited node vt′ . At this point, the
pebble has traversed a cyclic sequence of arcs et′+1, . . . , et and Player 0 “pays”
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to Player 1 the average weight of the visited cycle:

1
t− t′

t

∑
i=t′+1

w(ei).

If this amount is negative, then Player 0 wins the game, otherwise the winner
is Player 1.

A strategy for Player p is a mapping that, given all the previous visited
nodes and the current node, returns which node has to be visited in the next
move; a strategy is said to be positional (or memoryless) if it depends only on
the current position vt and does not take into account all the previous history.
If s ∈ V0 ∪V1 and Player p has a strategy leading him to win any possible play
starting at v0 = s, then we say that s is a winning start position for Player p. We
denote by Wp the set of winning start positions for Player p. A winning strategy
for Player p leads Player p to win every play started from any node in Wp.
Since these finite games are zero-sum, i.e., what won by a player is what lost
by the other one, then they admit a game value ν: for each start position s ∈ V
of the game, there exists a νs ∈ R such that Player 0 has a strategy ensuring
payoff at most νs, while Player 1 has a strategy ensuring payoff at least νs.

It is worthwhile to consider an infinite variant of the model, in which the
game does not stop, and continues for an infinite number of steps. In this
model, Player 1 wants to maximize the limit inferior of the average weight:

liminf
n→∞

1
n

n

∑
t=1

w(vt−1,vt)

Symmetrically, Player 0 wants to minimize the limit superior of the same aver-
age weight:

limsup
n→∞

1
n

n

∑
t=1

w(vt−1,vt)

In their Determinacy Theorem, Ehrenfeucht and Mycielski [49] proved that
any infinite game admits a value ν∞, and that this value equals the one of
the finite counterpart game on every start position, i.e., ν∞

s = νs for every s ∈
V0 ∪ V1. Moreover, they proved the existence of positional strategies which
are optimal for both variants of the model: when Player p limits himself to an
optimal strategy πp, i.e., when, for every v ∈Vp, he disregards all arcs with tail
in v except the one with head in πp(v), then he will secure himself the optimal
payoff ν in every play, finite or infinite, however the adversary plays. The
graph Gπp obtained from G by dropping all arcs with tail in Vp not prescribed
by πp is called the projection of the game G on πp, and is a solitaire game
whose value can be easily computed by means of a simple variant of Bellman-
Ford algorithm. Therefore, the Ehrenfeucht and Mycielski’s results are already
sufficient for determining a simple exponential time algorithm computing the
node values and the two optimal positional strategies in an MPG: the algorithm
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consists in evaluating each possible strategy for one of the two players as a
solitaire game for determining the optimal one. In the literature there are
many local search algorithms that explore this space in a more efficient way [9,
15, 103, 104] and some of them have been proven to be practically efficient
in many settings by experiments [15, 103]. Moreover, the global optimization
problem of computing the best strategies for one player, according to a given
metric, has been shown to have the property that every local optimum is also
a global one for many complete metrics [9].

As another line of research, Zwick and Paterson [123] proposed pseudo-
polynomial time algorithms for computing values of games, as well as po-
sitional optimal strategies. In particular, they considered the following four
algorithmic problems:

1. MPG-Decision(ν, s): given a real number ν and a start position s, decide
whether νs ≥ ν;

2. MPG-Threshold(T): given a real number T, determine for which nodes
s ∈ V it holds that νs ≥ T;

3. MPG-Value: compute the optimal values νs for all s ∈ V.

4. MPG-Synthesis: assuming νs ≥ 0 (νs < 0) for every s ∈ V, synthesize a
positional winning strategy for Player 1 (Player 0);

and they proved the following theorem:

Theorem 2.4 ([123]). Let G = (V, E) be a mean payoff game. Assume all weights are
integers and let W = maxe∈E |w(e)|. Then the following hold:

1. MPG-Threshold(T) can be solved in time O(|V|2|E|W) when T ∈Z, whereas
it can be solved in time O(|V|3|E|W) when T ∈ R;

2. MPG-Value can be solved in time O(|V|3|E|W);

3. MPG-Synthesis can be solved in time O(|V|4|E| log(|E|/|V|)W).

Then, they observed that MPG-Decision is the basic decision problem for
MPGs in the sense that several natural questions for MPGs, like evaluating
the value νs for every node s or constructing the optimal positional strategies,
may all be Turing-reduced to it. They also pointed out that the existential re-
sults of Ehrenfeucht and Mycielski [49] already implies that MPG−Decision ∈
NP ∩ coNP and asked whether there might exist a strongly polynomial time
decision procedure. Proving the existence of such algorithm is an open prob-
lem [14]. Finally, they showed how to reduce mean payoff games to other
important families of games on graphs, like discounted payoff games and sim-
ple stochastic games.

The complexity status of MPG-Decision has been since updated by proving
that it lays in UP∩ coUP by Jurdziński in [70].
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In recent years, some other interesting results have been proven. Notably,
in 2007 Lifshits, Pavlov [79] proposed a potential theory for MPGs and in 2011
Brim et al. [14] obtained faster algorithms exploiting results obtained in the
the fields of Energy Games and energy progress measures, which are intimately
related to the potentials studied in [79].

Their algorithmic results are summarized in the following theorem.

Theorem 2.5 ([14]). For MPGs in which all weights are integers and for T ∈Z, the
Value Iteration Algorithm [14] solves MPG-Threshold(T) and MPG-Synthesis in
time O(|V| |E|W), where W = maxe∈E |w(e)|.

We remark that both the algorithm of Paterson and Zwick [123] and the
Value Iteration Algorithm [14] prescribe well defined procedures even if the
weights on the arcs are real values. What is lost in running these algorithms
on real weights is only the pseudo-polynomial upper bound on their running
time.

For our purposes, the family of pseudo-polynomial algorithms for MPGs is
the best option. Indeed, in most of temporal workflow graphs all weights are
expressed by integers of relatively small magnitude with respect to the intrin-
sic temporal granularity of the considered workflow. For example, in a work-
flow containing temporal distance constraints of days, the commonly adopted
temporal granularity is the “minute” (m) and, therefore, all weights can be
assumed to be less than 104 as order of magnitude. In such circumstances,
Brim’s algorithm offers the guarantee to terminate within short computation
times. For these reasons we opted for integrating the procedures of Zwick
and Paterson, as well as the faster procedures of Brim et al. [14], in order to
efficiently solve instances of Head-HyTN-Consistency and compute feasible
schedules.

Furthermore, as will be discovered in the experimental section, if these al-
gorithms are suitably adapted—so as to allow them to terminate earlier as soon
as certain evidences of inconsistency have been collected—then their observed
behavior outperforms by orders of magnitude what predicted by their theoret-
ical pseudo-polynomial bounds even on input instances containing very large
integer values.

Based on these findings, we think that these pseudo-polynomial algorithms
are to be considered (and probably adopted) even for solving HyTN instances
where weights are floating point values whose magnitudes may differ in a
significant way. In case the running time results to be unacceptable for a real
application, one could then consider the possibility to round the weights to
integer values. This rounding would clearly require special care: a very accu-
rate approximation might lead to very high computation times while a gross
approximation might not represent the original instance in a correct way.
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2.6 The Reductions
This section presents the direct connection and the computational equivalence
between MPG-Threshold and Head-HyTN-Consistency. The equivalence is
formally proven by offering one reduction in each direction.

The reduction of Head-HyTN-Consistency to MPG-Threshold allows to
apply, in the context of HyTNs, any of the algorithms known for MPGs, in-
cluded the exponential and subexponential ones.

Vice versa, in consideration of the fact that the MPG− Decision
?
∈ p ques-

tion is an open problem [9, 14, 70, 103, 123], the reduction of MPG-Decision to
Head-HyTN-Consistency confirms that Head-HyTN-Consistency offers an
algorithmically more ambitious and mathematically steeper generalization of
STN-Consistency (see also Remark 2.1). Moreover, the reduction gives a fur-
ther evidence that, within STNs, a new algorithmic approach is necessary in
order to manage temporal aspects of event like the synchronization one pre-
sented in the Introduction.

Let us start considering the first reduction.

Theorem 2.6. There exists a log-space2, linear-time, local-replacement3 reduction
from Head-HyTN-Consistency to MPG-Threshold.

Since this reduction plays a main role in the algorithmic solutions proposed
in this chapter, we firstly describe how it works and, secondly, we prove its
correctness by means of two lemmas, Lemma 2.4 and Lemma 2.5.

The reduction goes as follows.
Let H = (V,A) be a HyTN. We assume that every v ∈ V is the tail of some

arc A ∈ A. This assumption is not a restriction since, if H contains a sink node
v, i.e., a node v with no arc A ∈ A having tail in it, then H is consistent if
and only if so is Hv, the HyTN obtained from H by removing node v and
every hyperarc having v as an head. Indeed, any feasible scheduling s : V 7→ R
for H, once projected onto V \ {v}, gives a feasible scheduling for Hv since
every constraint involving v has been dropped and no constraint has been
added; conversely, any feasible scheduling s for Hv can be easily extended to a
feasible scheduling s for H by exploiting the property of v being a sink node:
it is sufficient to set s(v),min{s(tA)− wA(v) | A ∈ A,v ∈ HA}.

Now, let us consider a mean payoff game GH = (V0 ∪· V1, E) where: (1)
V0 = V, V1 =A, nodes in V0 are colored by black while nodes in V1 are colored
by white, and (2) for each A ∈ A, the following weighted arcs are added to E:

• an arc of weight 0 from the black node ta to the white node A, i.e., arc
(tA, A,0);

• for each head node h ∈ HA, an arc of weight wA(h) from the white node
A to the black node h, i.e., arc (A, h,wA(h)).

2A strong and basic-form of reduction introduced by Papadimitriou in [96].
3A restricted kind of Karp reduction introduced in [58].
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Figure 2.9: The conversion of a hyperarc into a white node and its incident
arcs.

Algorithm 1: makeACorrespondingGame(H)

// a HyTN H = (V,A)
1 V0← V;
2 V1←A;
3 E← ∅;
4 foreach A ∈ A do
5 E← E ∪ (tA, A,0);
6 foreach h ∈ HA do
7 E← E ∪ (A, h,wA(h));

Output: The MPG GH = (V0 ∪· V1, E)

Algorithm 1: The algorithm implementing the reduction from a HyTN to the
corresponding MPG.

In short, GH = (V0 ∪· V1,A), with V0 = V, V1 = A, E = {(tA, A,0) | A ∈ A} ∪
{(A, h,wA(h)) | A ∈A, h ∈ HA}. Fig. 2.9 depicts how a hyperarc is transformed
into a MPG subnetwork while Algo. 1 reports a pseudocode for the whole
construction process, i.e., Algorithm 1.

GH has |V| + |A| nodes and O(m) arcs and can be constructed in linear
time. Moreover, GH is a bipartite graph with bipartition (V0,V1) and it has been
obtained from H by a simple local replacement rule: replace every hyperarc
A ∈ A by a claw subgraph as depicted in Fig. 2.9. For each single object, it is
necessary only to manage a constant number of indexes, each of them having
a polynomial size; thus the reduction is log-space. Fig. 2.10 depicts an MPG
obtained applying the reduction to the motivating example HyTN depicted
in Fig. 2.3; we remark that the MPG depicted in Fig. 2.10 has been obtained
by considering the (equivalent) multi-head HyTN transformation of the multi-
tail HyTN shown in Fig. 2.3, indeed, Theorem 2.2 allows us to consider both
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Figure 2.10: The MPG equivalent to the HyTN depicted in Fig. 2.3, obtained
by considering the (equivalent) multi-head HyTN transformation of the multi-
tail HyTN shown in Fig. 2.3. A winning positional strategy π1 for Player 1 is
highlighted by thick arcs. The dashed arcs are those not prescribed by strategy
π1, i.e., they are removed when projecting the MPG on π1.

the multi-head or the (equivalent) multi-tail HyTN without concerns w.r.t. the
consistency checking problem.

Now, let us introduce the formal proof of Theorem 2.6 by the following two
lemmas.

Lemma 2.4. If H is consistent then every node of GH is a winning start position for
Player 1.

Proof. Since H is consistent, there exists a feasible scheduling s : V→ R such
that, for each hyperarc A∈A, the reduced slack weight is non-negative ws

A≥ 0.
Consider the following positional strategy π1 for Player 1: for each A ∈ V1,

π1(A) = arg min
h∈HA
{s(h)− wA(h)}.

We claim that π1 ensures Player 1 the win, wherever node the game starts
from and however Player 0 moves. In order to show this, we prove that the
projection graph Gπ1 is conservative by exhibiting a feasible potential p. Let
p : V0 ∪V1→ R be defined as follows:

p(v),

{
s(v) if v ∈ V0,
s(t(v)) if v ∈ V1.

(2.2)
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Now, let a = (u,v,w) be any arc of Gπ1 :
Case 1: if v ∈ V1, then v is a hyperarc of H with t(v) = u and w = 0; therefore,
p(v) = s(t(v)) = s(u) = p(u) since u ∈ V0. Then wp(u,v) = w− p(v) + p(u) =
0≥ 0 follows;
Case 2: if v ∈ V0, then u ∈ V1 and w = wu(v). Moreover, v = π1(u), which
implies that v = argminh∈Hu{s(h)− wu(h)}. Therefore, recalling that ws

u ≥ 0,
i.e., s(t(u)) ≥minh∈Hu{s(h)− wu(h)}:

p(u) = s(t(u)) ≥ min
h∈Hu
{s(h)− wu(h)} = s(v)− wu(v) = p(v)− w.

Hence, wp(u,v) = w− p(v) + p(u) ≥ 0.
In conclusion, Gπ1 is conservative. Therefore, the positional strategy π1 certi-
fies that any node of GH is a winning start position for Player 1. 2

Lemma 2.5. If every node of GH is a winning start position for Player 1 then H is a
consistent HyTN.

Proof. If every node is a winning start position for Player 1, then there exists a
positional strategy π1 which is everywhere winning for Player 1. Notice that
Gπ1 must be conservative since Player 0 can clearly win any play starting from
a node located on a negative cycle. Let p : V0 ∪ V1→ R be a feasible potential
for Gπ1 . We claim that the restriction of p onto V0 is a feasible scheduling
for H. Indeed, for any hyperarc A of H, (tA, A,0) is an arc of Gπ1 , whence
p(A) ≤ p(tA). Moreover, (A,π1(A),wA(π1(A))) is also an arc of Gπ1 , whence
p(π1(A)) ≤ p(A) + wA(π1(A)). Since π1(A) ∈ HA, then the following holds:

p(tA) ≥ p(A) ≥ p(π1(A))− wA(π1(A))

≥ min
h∈HA
{s(h)− wA(h)}.

Hence, the restriction of p onto V0 is a feasible scheduling for H. Thus, H is
consistent. 2

In Fig. 2.11 the values under the nodes represent a feasible potential for the
projection of the MPG depicted in Fig. 2.10. By Lemma 2.5, the restriction of
such a feasible potential on the black nodes is also a feasible scheduling for
the corresponding HyTN depicted in Fig. 2.3. Now, we have all the necessary
results to prove the following theorem.

Theorem 2.7. Let H = (V,A) be an integral-weighted HyTN, m = ∑A∈A |A|, and
W = maxA∈A{maxh∈A |wA(h)|} the maximal weight value present in H. The fol-
lowing propositions hold:

1. There exists an O((|V|+ |A|)mW) pseudo-polynomial time algorithm deciding
Head-HyTN-Consistency for H;
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Figure 2.11: The integer labels under the nodes are a feasible potential for
the projection on π1 of the MPG depicted in Fig. 2.10. The restriction of this
potential on the black nodes (those in V0) is a feasible scheduling for the HyTN
depicted in Fig. 2.3 as explained in the proof of Lemma 2.5.

2. There exists an O((|V| + |A|)mW) pseudo-polynomial time algorithm such
that, given on input any consistent HyTN H, it returns as output a feasible
scheduling s : VH→Z of H;

3. There exists an O((|V| + |A|)mW) pseudo-polynomial time algorithm such
that, given on input any not-consistent HyTNH, it returns as output a negative
cycle (S,C) of H.

Proof. 1. The decision algorithm is sketched in Algo. 2. It takes in input a
HyTN H = (V,A) and, in line 1, constructs the corresponding MPG GH
as described in Theorem 2.6. This first step takes O(m) time and yields a
graph with |V|+ |A| nodes and O(m) arcs. Then, in line 2, the instance of
MPG-Threshold with T = 0 on graph GH is solved in O((|V|+ |A|)mW)
time by the Value Iteration Algorithm (see Theorem 2.5). The output
consists in a partition of GH nodes into two sets: W1 = {v ∈ V ∪A | νv ≥
0} and W0 = {v ∈ V ∪A | νv < 0}. If W0 is empty, then H is consistent by
Lemma 2.5, otherwise it is not consistent by Lemma 2.4.
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Algorithm 2: isConsistent(H)

// a HyTN H = (V,A) of unknown consistency state
1 GH← makeACorrespondingGame(H); // See Algorithm 1
2 (W0,W1)← solveMPG-Threshold(GH,0); // Brim’s algorithm, see Theorem 2.5
3 if (W0 = ∅) then Output: YES;
4 else Output: NO;

Algorithm 2: Pseudocode of the algorithm for deciding Head-HyTN-
Consistency.

Algorithm 3: computeAFeasibleSchedule(H)

// a consistent HyTN H = (V,A)
1 G← makeACorrespondingGame(H); // See Algorithm 1
2 π1← MPG-Synthesis (G); // Compute a positional winning strategy for Player 1;

see Theorem 2.5
3 Gπ1 ← compute the subgraph of G induced by π1;

// Recall Gπ1 = (V0 ∪· V1, E), where V0 = V and V1 =A.
4 s← a new node; // s 6∈ V0 ∪V1
5 Add s to V1 and add an arc (s,v,0) for each v ∈ V0;
6 p← Bellman-Ford(Gπ1 , s); // compute a potential function p

Output: the restriction of p onto V

Algorithm 3: Pseudocode of the algorithm for computing a feasible schedule.

2. In case W0 is empty, a feasible scheduling is obtained as shown in Al-
gorithm 3. First, in line 2, the algorithm computes a positional winning
strategy π1 for Player 1. This takes O((|V| + |A|)mW) time by Theo-
rem 2.5. Next, in line 3, it builds the graph Gπ1 which is conservative
since π1 is a positional winning strategy for Player 1. Then, in lines 4-
5, it adds a new node s to V1 and a new arc ev = (s,v,0) for each node
v ∈ V0 in Gπ1 . Let G′π1

= (V0 ∪· (V1 ∪ {s}), E′) the graph thus obtained.
Observe that every node of G′π1

is reachable from s. Indeed, every node
A ∈ V1 = A can be reached by traversing two arcs: from s to tA along
the arc etA = (s, tA,0), which belongs to G′π1

as tA ∈ V0, then from tA to
A along the arc (tA, A,0), which belongs to Gπ1 (and hence to G′π1

) since
tA ∈ V0.
Since the added node s is a source, then G′π1

is conservative too. There-
fore, in G′π1

, the set of distances from node s, computed calling the
Bellman-Ford algorithm in line 6, forms a feasible potential p : V0 ∪V1 ∪
{s} →Z and the restriction of p onto V0 = V is a feasible scheduling for
H.

3. In case W0 is not empty, a negative cycle is determined by Algorithm 4.
Let G[W0] be the subgraph of G induced by W0, i.e., the graph obtained
from G by removing all nodes not in W0 and all the arcs incident into
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Algorithm 4: computeANegativeCycle(H,W0)

// a HyTN H = (V,A) = (V0 ∪· V1,A) which is not consistent
// the non-empty set W0 = {v ∈ V | νv < 0}

1 G← makeACorrespondingGame(H); // See Algorithm 1
2 G[W0]← compute the subraph of G induced by W0;
3 π0← MPG-Synthesis (G[W0]); // Compute a positional winning strategy for

Player 0; see Theorem 2.5
4 W0←W0 ∩V0;
5 C ← {π0(v)}v∈W0

;
Output: (W0,C)

Algorithm 4: Pseudocode of the algorithm for computing a negative cycle.

them. Notice that every node v ∈ W0 is a winning start position for
Player 0 in game G[W0] because v is a winning start position for Player 0
in game G, and no winning strategy for Player 0 in G can prescribe a
move from a node in W0 to a node in W1; therefore, that same winning
strategy remains valid on G[W0]. This implies that, for every u ∈ W0,
there exists at least one arc (u,v) with v ∈W0. In particular, since (V0,V1)
is a bipartition of G, then W0 ,W0 ∩V0 6= ∅. In line 3, a positional win-
ning strategy π0 for Player 0 on G[W0] is determined. By Theorem 2.5,
this computation takes time O((|V|+ |A|)mW). Consider the set of hy-
perarcs C = {π0(v)}v∈W0

; the pair (W0,C) returned by the algorithm is
a negative cycle. Indeed, for any v ∈ W0, π0(v) ∈ V1 is a hyperarc of
H. Thus the head set Hπ0(v) ⊆ V0. Also, Hπ0(v) ⊆W0, since v is a win-
ning start position for Player 0 and π0 is a winning strategy for Player 0.
Combining, Hπ0(v) ⊆W0 determining that (W0,C) is a negative cycle.

2

Remark 2.2. In Theorem 2.7 Item 2), a set of feasible potentials may be obtained
without executing the Bellman-Ford algorithm. Actually, if the partition (W0,W1) is
computed by the Value Iteration Algorithm [14], then a feasible scheduling for H can
be directly derived from the progress measure computed within the algorithm. In
more detail, let G = (V0 ∪· V1, E) be an MPG weighted by w : E→ Z. An energy
progress measure is a function f : V0 ∪ V1 → N ∪ {+∞} such that: if v ∈ V0,
then for every (v,v′,w) ∈ E it holds f (v) ≥ f (v′)− w; otherwise, v ∈ V1 and there
exists (v,v′,w) ∈ E such that f (v) ≥ f (v′) − w. An energy progress measure f :
V0 ∪ V1→N ∪ {+∞} such that 0 ≤ f (v) < +∞ for every v ∈ V0 ∪ V1 is provided
by the resolution algorithm of Theorem 2.5 in time O((|V|+ |A|)mW).

The progress measure f is already a feasible scheduling for H: in fact, for every
hyperarc A ∈ A, it holds (tA, A,0) ∈ E and (A,v,wA(v)) ∈ E, for every v ∈ HA;
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Algorithm 5: computeAFeasibleSchedule-Remark2.2(H)

// a consistent HyTN H = (V,A) = (V0 ∪· V1,A)
// ref. Remark 2.2 and Theorem 2.5 [14]

1 G← makeACorrespondingGame(H); // ref. Algorithm 1
2 f ← Value-Iteration(G); // compute an energy progress measure for G as in

Theorem 2.5
Output: f

Algorithm 5: Pseudocode of the algorithm of Remark 2.2 for computing a
feasible schedule.

combining these two last facts, it follows that:

f (tA) ≥ f (A) ≥ min
v∈HA
{ f (v)− wA(v)},

i.e., f is a scheduling satisfying all constrains A ∈ A. This allow us to employ the
algorithm depicted in Algo. 5 instead of the one depicted in Algo. 3 in the case that
W1 = V.

The computational equivalence between MPG-Decision problem and Head-
HyTN-Consistency can be now determined by showing that also MPG-Decision
can be reduced to Head-HyTN-Consistency.

Theorem 2.8. There exists a log-space, linear-time, local-replacement reduction from
MPG-Decision to Head-HyTN-Consistency.

Proof. Let G = (V0 ∪· V1, E) be an MPG. For each node u ∈ V0 ∪ V1, let NG(u)
denote the outgoing neighborhood of u in G, i.e., NG(u), {v∈V0∪V1 | (u,v)∈
E}.

A corresponding HyTNH= (V,A), where V =V0∪· V1, is constructed from
G as follows. For every u ∈ V1, a hyperarc Au ∈ A is added to H, where:

Au , (u, NG(u),wAu),

with weight wAu(v), w(u,v) for every v ∈ NG(u). Moreover, for every u ∈ V0
and every v ∈ NG(u), a hyperarc Auv ∈ A is added to H, where:

Auv , (u,v,w(u,v)).

This construction requires a log-space and linear-time computation.
Now, we firstly prove that if H is consistent then every node of G is a

winning start position for Player 1.
Indeed, let s : V→ R be a feasible scheduling for H. Thus, ws

A ≥ 0 for every
hyperarc A ∈ A. Notice that, by construction, for each u ∈ V1 there exists a
unique hyperarc Au ∈A with tail tAu = u; moreover, it holds that HAu ,NG(u).
Hence, for each u ∈ V1, we can define a positional strategy π1 for Player 1 as
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follows:
π1(u), arg min

h∈HAu

{s(h)− wAu(h)}.

Now, consider the potential function p : V → R defined as: p(u) , s(u) for
every u ∈ V. We argue that p is a feasible potential for Gπ1 .

In fact, let a = (u,v,w) ∈ E be any arc of G:

Case 1: Assume that u ∈ V0. Then, by construction, a = Auv. Hence, from p , s
and the feasibility of s, we have:

p(u) = s(u) ≥ minh∈HAuv
{s(h)− wAuv(h)}

= s(v)− wAuv(v)
= p(v)− w

Hence, wp(u,v) = w− p(v) + p(u) ≥ 0;

Case 2: Assume that u ∈ V1. Then, by construction, A = (u, NG(u),wA), where
wA(z) = w(u,z) for every z ∈ NG(u); moreover, notice that v = π1(u) ∈
NG(u) = HA. Hence, from p, s, the feasibility of s, and the definition of
π1, we have:

p(u) = s(u) ≥ minh∈Hu{s(h)− wAu(h)}
= s(π1(u))− wAu(π1(u))
= s(v)− wAu(v)
= p(v)− w

Hence, wp(u,v) = w− p(v)− p(u) ≥ 0.

Thus, Gπ1 is conservative. This implies that every node of G is a winning start
for Player 1.

Secondly, we prove that if every node of G is a winning start position for
Player 1, then H is consistent.

Let π1 be a positional winning strategy for Player 1. It follows that Gπ1

is conservative and, therefore, it admits a feasible potential p : V → R. Now,
consider the scheduling function s : V → R for H defined as: s(u) , p(u) for
every u ∈ V. We argue that s is a feasible scheduling of H.

In fact, let A = (tA, HA,wA) ∈ A be any hyperarc of H:

Case 1: assume tA ∈V0. Then, by construction, A= (u,v,w) for some v∈NG(u),w∈
R and u = tA. Hence, from s, p and the feasibility of p, we have:

s(tA) = p(u) ≥ p(v)− w
= s(v)− wA(v)
= minh∈HA{s(h)− wA(h)}

Hence, s satisfies A, i.e., ws
A ≥ 0 ;

59



Case 2: assume tA ∈ V1. Then, by construction, A = (u, NG(u),wA) for u = tA
and wA(v) = w(u,v) ∈ R for every v ∈ NG(u); moreover, if v , π1(u),
then v ∈ NG(u) = HA. Hence, from s , p and the feasibility of p, we
have:

s(tA) = p(u) ≥ p(v)− w
= s(v)− wA(v)
≥ minh∈HA{s(h)− wA(h)}

Hence, s satisfies A, i.e., ws
A ≥ 0.

This proves that s satisfies every hyperarc A ∈ A. Then s is a feasible schedul-
ing of H, which is thus consistent. 2

2.7 Computational Experiments
This section describes our empirical evaluation of the proposed consistency
checking algorithms to evaluate the performances and the general applicabil-
ity of the proposed HyTN model. Both Algorithm 3 and Algorithm 4 consist of
one single call to Algorithm 2, plus some extra computation of lower asymp-
totic complexity. Since the cost of these further computations was confirmed
to be practically negligible in some preliminary experiments, we report on the
results of our experimental investigations only for Algorithm 2.

All algorithms and procedures employed in this empirical evaluation have
been implemented in C/C++ and executed on a Linux machine having the
following characteristics:

• 2 CPU AMD Opteron 4334;

• 64GB RAM;

• Ubuntu server 14.04.1 Operating System.

The source code and all HyTNs used in the experiments are freely avail-
able [30].

The main goal of this empirical evaluation was to determine the average
computation time of Algorithm 2, with respect to randomly-generated HyTNs
following different criteria, in order to give an idea of the practical behavior
of the algorithm. According to Theorem 2.7, the worst-case time complexity
of Algorithm 2 is O((n + m′)mW), where n = |V|, m′ = |A|, m = ∑A∈A |A|,
and W = maxA∈A{maxh∈A |wA(h)|}. Hence, we implemented different exper-
iments with respect to the parameters n,m′,m, and W. Here we propose a
summary of the obtained results presenting a brief report about four tests,
Test 1, Test 2, Test 3 and Test 4.

In Test 1 the average computation time was determined for different HyTN
orders n to emphasize the practical computation time dependency on n. In
Test 2 the average computation time was determined for different HyTN max-
imal edge-weights W to understand how much the practical computation time
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is dependent on W. In Test 3 we investigated how some execution times af-
fect the value of the standard deviation, with the goal to determine how many
instances require a significant greater computation time with respect to the
average time of a data set. Finally, in Test 4 the average computation time was
determined with respect to different values of the number of possible strate-
gies of Player 1 ∏A∈A |HA| in order to give an idea about the possible practical
relation between execution time and number of possible strategies.

The generation of random HyTN instances was carried out exploiting two
generators. The first generator was the random workflow schema generator
provided by ATAPIS toolset [76]: it produces random workflow graphs ac-
cording to different input parameters that allow to control the minimal and
maximal number of activities, probability for having parallel branches, the
minimal and maximal probability of inter-task temporal constraints, etc. on
the generated graphs. We verified that this tool allows the determination of
graphs that are not only a closer approximation to real-world examples, but
also more difficult to check than those generated at random without particular
criteria.

We generated benchmarks as follows:

1. First, temporal workflow graphs were generated by fixing the probability
for parallel branches to 10% and maximal value for each activity duration
or delay between activities to a value W, where W was chosen accord-
ingly to the test type;

2. Then, each workflow graph was translated into an equivalent HyTN H
by the simple transformation algorithm exemplified in Section 2.2.

It is worth noting that different random workflow graphs all having the same
number of activities may translate into HyTNs having different orders n be-
cause the original workflow graphs may have different number of connector
nodes. Considering the transformation algorithm exemplified in Section 2.2, it
is easy to verify that a workflow with N activities can translate into a CSTN
having between 2N + 2 nodes (when the workflow is a simple sequence) and
5N + 2 nodes (when the workflow is a sequence of groups of two parallel
activities).

ATAPIS toolset has been designed to generate graphs with strongly con-
nected components (Andreas Lanz, personal communication, October 6, 2015).
In particular, it has been optimized for small graphs with up to 50 activi-
ties. This design choice was motivated by the widely accepted seven process
modeling guidelines [85] which suggests to always “decompose a (workflow)
model with more than 50 elements (activities)”. Therefore, we used the tool
for generating random workflow graphs with 100 activities at maximum and,
consequently, obtaining HyTNs having 502 nodes at most.

In Table 2.1 we report the orders of the smallest and the largest HyTN
determined from each set of random generated workflow graphs having N
activities for N ∈ {10,20, . . . ,100}.
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Table 2.1: Orders of the smallest and biggest HyTN determined for each set of
random generated workflows having N activities.

N Order of smallest HyTN Order of biggest HyTN
10 26 50
20 48 94
30 78 138
40 104 196
50 136 236
60 164 268
70 196 306
80 222 350
90 262 394

100 292 410

Table 2.2: Comparison between different kinds of queue implementation in the
Value-Iteration procedure. All values are in seconds.

FIFO Queue LIFO Queue LIFO Queue
+ Stopping-Criterion

Max-Priority Queue

µ 90.55 11.77 6.98 184.69
σ 487.69 64.10 34.61 653.26

In order to study the scalability of the algorithm with respect to the number
of nodes, we had to rely on a second generator of random HyTN graphs. Our
choice has been to use the randomgame procedure of pgsolver suite [98],
that can produce parity games instances for any given number of nodes. In
particular, we exploited randomgame in the following way:

1. First, randomgame was used to generate random directed graphs with
out-degree fixed to 3;

2. Then, the resulting graphs were translated into MPGs by weighting each
arc with an integer randomly chosen in the interval [−W,W], where W
was chosen accordingly to the test type;

3. Finally, each MPG G was translated into a HyTN HG by the reduction al-
gorithm of Theorem 2.8. During the translation from MPG to HyTN, only
10% of the hyperarcs were maintained having multiple heads, while 90%
of hyperarcs were transformed into standard arcs. This 10%-rule stems
from the fact that we are considering workflow based applications where
the percentage of (multi-headed) hyperarcs is less than 10% compared to
standard arcs in general.

With such settings, the resulting HyTNs are characterized by m,m′ ∈ Θ(n).
Before presenting the summary of results, it is worthwhile to present some

implementation choices about Algorithm 2 that we had to adopt. The core of
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the algorithm consists of calls to the procedure makeACorrespondingGame(H),
that transforms the given HyTN H into a MPG GH, and to the procedure
solveMPG-Threshold(GH,0) (Value Iteration algorithm), that determines
for which game nodes s it holds that vs≥ 0. The makeACorrespondingGame()
implementation didn’t require significant choices thanks to the simple struc-
ture of the algorithm.

On the contrary, in the implementation of solveMPG-Threshold() we
introduced some further ideas in order to speed-up the algorithm and avoid
unnecessary computations. Particularly, it is not necessary for the procedure
solveMPG-Threshold() to continue to determine other potential value vs′

as soon as it determines a value vs < 0: at this point we can already conclude
that the network is not consistent and, with a lower computational cost, we can
yield a generalized negative circuit assessing this fact (Lemmas 2.4 and 2.5).

Moreover, we verified that there is an important data structure in the orig-
inal Value Iteration algorithm, a queue, that is not further specified by the au-
thors and that different implementations of it affect the performance of the al-
gorithm. Therefore, we decided to verify whether solveMPG-Threshold()
performance could be appreciably improved adding a suitable stopping cri-
terion and a proper queue implementation. Table 2.2 reports the obtained
results, mean execution time µ and its standard deviations σ, determined
running the following different versions of solveMPG-Threshold() on the
same data set of 103 not consistent HyTNs4 having |V| = 106 and W = 103:

1. FIFO Queue: the original queue is implemented as a FIFO queue;

2. LIFO Queue: the original queue is implemented as a a LIFO queue
(stack);

3. LIFO Queue+Stopping Criterion: the queue is implemented as stack
and the computation is halted either when all potential values are stable
or when any of them is negative;

4. Max-Priority Queue: the original queue is implemented as a Fibonacci’s
heap.

The results show that, in general, solveMPG-Threshold() performance
becomes better if the original queue is implemented as a stack and, in partic-
ular, a further improvement can be obtained if the stopping criterion is also
considered. Nevertheless, such improvements can only partially reduce the
statistics variability of the running time, as it is shown in the following exper-
imental results.

As mentioned above, the goal of Test 1 was to determine the average com-
putation time of Algorithm 2 implementation for different values of n to study
the practical computation time dependency on such parameter.

4We considered not consistent HyTNs because they practically required more time to be
solved.
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n µ (sec) σ

< 4 · 102 0.13 0.42
1 · 105 0.55 5.41
2 · 105 0.99 4.71
3 · 105 1.67 13.55
4 · 105 1.95 12.59
5 · 105 2.58 16.10
6 · 105 2.58 9.43
7 · 105 3.48 22.43
8 · 105 4.58 17.85
9 · 105 4.72 36.19

10 · 105 4.83 30.62
(a) Test 1 results.
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ones.

Figure 2.12: Results of Test 1: average execution times (µ) and relative standard
deviations (σ) over a range of different HyTN orders n. Times are in seconds.
Each data set comprised of 1600 HyTN instances of unknown consistency state.

The instances in Test 1 come from the randomgame generator, except those
for the first row of the table in Fig. 2.12a which have been built by the ATAPIS
workflow random generator. In particular, for each n ∈ {1 · 105,2 · 105, . . . ,10 ·
105}, 1600 HyTN instances with maximum weight W := 1000 and unknown
consistency state were generated by randomgame, whereas 1600 HyTNs of
unknown consistency state and order n around 400 were generated by AT-
APIS. The results of the test are summarized in Fig. 2.12, where each execution
mean time is depicted as a point with a vertical bar representing its confidence
interval determined according to its standard deviation.

The depicted function interpolating the mean values shows that the prac-
tical performance of the algorithms is definitely better than the theoretical
worst-case bound of O((n + m′)mW); in our case this last is O(n2) since in
the generated data sets W is constant and m,m′ ∈ Θ(n). Fig. 2.12c depicts the
interpolating function of experimental execution times and, in red, the func-
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N µ (sec) σ

10 6.42 · 10−5 1.22 · 10−5

20 1.05 · 10−4 4.85 · 10−5

30 1.50 · 10−4 5.7 · 10−5

40 2.43 · 10−4 1.04 · 10−4

50 3.20 · 10−4 1.78 · 10−4

60 3.77 · 10−4 1.38 · 10−4

70 4.77 · 10−4 1.28 · 10−4

80 5.73 · 10−4 1.80 · 10−4

90 6.82 · 10−4 2.79 · 10−4

100 8.89 · 10−4 4.10 · 10−4

(a) Average execution times for consis-
tent HyTNs obtained from workflow
graphs with N activities.
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(b) Interpolation of average execution
times of Table 2.13a.

N µ (sec) σ

10 4.45 · 10−4 1.38 · 10−3

20 1.50 · 10−3 5.10 · 10−3

30 4.04 · 10−3 1.48 · 10−2

40 1.10 · 10−2 3.62 · 10−2

50 1.64 · 10−2 8.42 · 10−2

60 4.36 · 10−2 1.20 · 10−1

70 8.08 · 10−2 2.71 · 10−1

80 1.31 · 10−1 4.20 · 10−1

90 1.59 · 10−1 5.22 · 10−1

100 2.59 · 10−1 8.46 · 10−1

(c) Average execution times for not con-
sistent HyTNs obtained from random
workflow graphs with N activities.
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(d) Interpolation of average execution
times of Table 2.13c.

Figure 2.13: Average execution times obtained in Test 1 calculated considering
samples of either all consistent or all not consistent HyTNs obtained from
workflow graphs.

tion n2/1010 as a reasonable surrogate for the worst-case execution time. The
comparison shows that the algorithm performs very well in real case execu-
tions.

However, since the standard deviation observed in the experiment is not
negligible, we further investigated the behavior of the algorithm and we dis-
covered that there is a correlation between the execution time of the algorithm
and the consistency state of the input HyTN. Therefore, µ and σ were recal-
culated considering two kind of HyTN sets: one having all consistent HyTNs,
and the other having all not consistent HyTNs.

Fig. 2.13 depicts average execution times obtained in Test 1 calculated con-
sidering samples of either all consistent or all not consistent HyTNs obtained
from workflow graphs. Fig. 2.14 offers the same view but for HyTNs obtained
from MPG graphs. In general, the mean execution times for consistent HyTNs
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n µ (sec) σ

1 · 105 0.16 0.04
2 · 105 0.35 0.07
3 · 105 0.56 0.01
4 · 105 0.75 0.02
5 · 105 0.96 0.02
6 · 105 1.18 0.03
7 · 105 1.38 0.03
8 · 105 1.59 0.04
9 · 105 1.86 0.06

10 · 105 2.07 0.08

(a) Average execution times for consis-
tent HyTNs obtained from MPGs.
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(b) Interpolation of average execution
times of Table 2.14a.

n µ (sec) σ

1 · 105 0.95 7.63
2 · 105 1.64 6.60
3 · 105 2.79 19.11
4 · 105 3.15 17.73
5 · 105 4.21 22.67
6 · 105 3.98 13.19
7 · 105 5.60 31.58
8 · 105 7.58 24.89
9 · 105 7.58 51.03

10 · 105 7.60 43.14

(c) Average execution times for not
consistent HyTNs obtained from
MPGs.
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(d) Interpolation of average execution
times of Table 2.14c.

Figure 2.14: Average execution times obtained in Test 1 calculated for samples
of either all consistent or all not consistent HyTNs obtained from MPG graphs.

are smaller than the corresponding ones for not consistent HyTNs; further-
more, they also exhibit a negligible standard deviation. However, for samples
of consistent HyTNs obtained from workflows, the standard deviation is not
negligible even for samples with size N = 20. Part of the reasons for this behav-
ior is given by the structure of the data sets: in each data set HyTNs can differ
a lot with respect to their order and, therefore, they may require very different
execution times. For example, the data set relating to workflow graphs with
20 activities contains HyTNs with order in range [48,94]. Since the number
of activities is usually considered as main parameter in workflow community,
we wanted to maintain such structure of data set and experiment results to
emphasize the dependency of execution time with respect to such number.

On the other side, for consistent HyTNs determined from MPGs, the ob-
served standard deviation σ is always less that the 10% of the average execu-
tion time µ with 99% level of confidence, while for not consistent HyTNs it
has not been possible to determine any confidence level because the observed
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Figure 2.15: Average execution times in Test 1 calculated considering samples
of either all consistent or all not consistent HyTNs.

standard deviation σ resulted to be always high due to some hard instances.
Even though procedure solveMPG-Threshold() could require up to

Θ(W) updates according to the theoretical worst-case bound, our experiments
suggest that, in practice, some kind of dependency of the running time on W is
appreciable only for a few MPG games, all associated to not consistent HyTN
instances.

The goal of Test 2 was to determine the average computation time of Al-
gorithm 2 for different values of W, in order to understand how much the
practical computation time is dependent on W. Therefore, we considered
three possible edge weight ranges, [102,103], [105,106], and [108,109], and for
each of them two data sets have been built using the randomgame genera-
tor, one comprising only consistent HyTNs, and the other only not consistent
ones. Each data set comprised of 800 HyTNs instances having |V|= 105 nodes,
m,m′ ∈ Θ(n) and edge weights in the corresponding weight range. Fig. 2.15
depicts the results on these six data sets. Applying the worst-case analysis for
these data sets, it results that the time complexity should be O(W) since n,
m and m′ are constants. On the contrary, the determined interpolation func-
tions representing the experimental execution times do not show any clear
dependence on W. This result suggests that, in practice, uniform random
weighted instances are decided very quickly with respect to the magnitude
of their weights and that the algorithm does not seem to exhibit the worst-
case pseudo-polynomial behavior predicted in the asymptotic analysis. More-
over, the average execution times for each data set comprising only consistent
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(b) Instance classification with respect
to solveMPG-Threshold() execution
time.

Figure 2.16: solveMPG-Threshold() execution times obtained in Test 3 de-
termined considering samples of all not consistent HyTN instances.

HyTNs are less than those for the corresponding data of only not consistent
HyTNs. Only for consistent HyTNs data sets the standard deviation was be-
low 7% than the average execution time with a confidence of 99%.

In order to better understand how some execution times affect the value
of the standard deviation, we conducted a third experiment, Test 3, with the
goal to visualize the distribution of the instances with computation times sig-
nificantly above the average. Procedure solveMPG-Threshold() has been
executed on 103 randomly generated not consistent HyTNs, each having order
n = 106 and W ≈ 103. The determined running times are depicted in Fig. 2.16a:
most of the instances are decided very quickly, i.e., in a time between 0 and 10
seconds, while a smaller portion of the HyTNs required a time between 10 and
500 seconds. In more details, in repeated tests we verified that, approximately,
1% of the HyTN instances required a time between 50 and 100 seconds to be
decided, 0.4% required a time between 100 and 500 seconds, and, finally, only
0.1% required more than 500 seconds. These results are shown in Fig. 2.16b.

Such behavior has been confirmed in other tests with different graph orders
and maximum edge weight values. In several experiments we conducted, we
observed that the maximum execution time of the algorithm keeps growing as
we enlarge the size of the dataset. This explains why the standard deviation
can’t be reduced. If we could characterize such hard instances in general,
we would be making a major progress in understanding the computational
complexity of MPGs. We didn’t find any pattern or property that characterizes
the found hard instance. Here we can only show a simple family of HyTNs
instances in which the execution time grows linearly with W. The family is
given by just one single HyTN graph where only W changes, as depicted in
Fig. 2.17a. The corresponding MPG is shown in Fig. 2.17b and provides a clear
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Figure 2.17: A HyTN which requires Θ(W) computation time by Algorithm 2.

example where Brim’s Value Iteration algorithm [14] performs poorly. It is
worth noting that in the context of MPGs this example can be reduced down
to 6 nodes.

Finally, in order to show how much the running time is dependent on the
number of different positional strategies of one player, in Test 4 the average
computation time has been calculated with respect to different values of the
product of the heads of hyperarcs (i.e., ∏A∈A |HA|) in a HyTN. In particular,
for each Π ∈ {1015,1030, . . . ,1065}, 2500 HyTNs instances (V,A) each having
|V|= 50 nodes, ∏A∈A |HA| ≈Π, and W = 103 have been generated by means of
randomgame generator. The results of the evaluation are depicted in Fig. 2.18,
where Π values are drawn in logarithmic scale. Analyzing the diagram in the
figure it is possible to say that, experimentally, the average execution time in-
creases only logarithmically with respect to the number of different positional
strategies of one player. This results is quite interesting because, considering
the HyTN in Fig. 2.17a, it is evident that the time for checking a HyTN is more
dependent on the edge weight magnitude than on the number of different
positional strategies of one player.
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Π µ (sec) σ

1.13 · 1015 3.02 · 10−4 1.36 · 10−3

1.27 · 1030 7.78 · 10−4 3.34 · 10−3

8.08 · 1038 3.45 · 10−3 2.15 · 10−2

1.43 · 1045 8.13 · 10−3 3.70 · 10−2

1.00 · 1050 1.63 · 10−2 6.15 · 10−2

9.10 · 1053 2.65 · 10−2 1.02 · 10−1

2.02 · 1057 3.46 · 10−2 1.05 · 10−1

1.61 · 1060 4.82 · 10−2 1.62 · 10−1

5.80 · 1062 7.44 · 10−2 2.63 · 10−1

1.13 · 1065 9.01 · 10−2 3.21 · 10−1

(a) Average execution times obtained for differ-
ent values of the product of the heads of hyper-
arcs Π.
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(b) Interpolation of average execution times in Ta-
ble 2.18a.

Figure 2.18: Average Execution Times obtained in Test 4.

2.8 Related Works
In the literature there are some extension proposals of the STN model to aug-
ment the capability to represent temporal constraints.

In the STN seminal paper [44], Dechter et al. firstly proposed to consider
the Temporal Constraint Satisfaction Problem (TCSP). A binary constraint in
a TCSP is represented using a set of intervals rather than a single interval
as in an STN. In particular, a binary constraint Cij = {[a1,b1], [a2,b2], . . . , [al ,bl ]}
between time points xi and xj represents the disjunction a1≤ xj− xi ≤ b1 ∨ a2≤
xj − xi ≤ b2 ∨ al ≤ xj − xi ≤ bl . The problem of verifying consistency of a TCSP
is NP-complete as the same authors showed in the paper; hence, they finally
propose to consider STNs as a tractable simplified model.

A similar kind of generalization considering disjunction of temporal dis-
tance constraints was proposed by Stergiou and Koubarakis [108] defining
the Disjunctive Temporal Problem (DTP). A DTP consists of a set of variables
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X = {x1, x2, . . . , xn} having continuous domains and representing time points
and a set of disjunctive difference constraints between the time points in the
form: a1 ≤ xi1 − xj1 ≤ b1 ∨ a2 ≤ xi2 − xj2 ≤ b2 ∨ . . . ∨ ak ≤ xik − xjk ≤ bk; where
xi1 , xj1 , . . . , xik , xjk are time points from X and a1,b1, . . . , ak,bk are real numbers. A
DTP is consistent if there exists an instantiation of variables X to real numbers
satisfying all the constraints. Since DTPs are a generalization of TCSPs, also
for DTPs the consistency check problem is NP-complete. In [108] the authors
presented some of the theoretical results characterizing the possible backtrack-
ing algorithms that solve the consistency problem in terms of search nodes
visited and consistency checks performed.

In 2005, Kumar proposed to consider a restricted class of DTP in order to
maintain some of the expressive power of DTPs but, at the same time, allowing
an efficient consistency check. In particular, in [102], RDTPs (restricted DTPs)
is defined as a disjunctive temporal problem where a constraint is one of the
following types: (Type 1) (l ≤ xi − xj ≤ u), (Type 2) (l1 ≤ xi ≤ u1) ∨ (l2 ≤ xi ≤
u2) . . . (lj≤ xi≤ uj), (Type3) (l1≤ xi≤ u1)∨ (l2≤ xj≤ u2), where xi and xj repre-
sent a timepoint variable, and li,ui real values. An RDTP instance can be solved
in strongly polynomial-time deterministic algorithm transforming it into a bi-
nary Constraint Satisfiability Problem (CSP) over meta variables representing
constraints of Type 2 or Type 3 and, then, showing that such binary constraints
are also connected row-convex (CRC) constraints, and, then, exploiting the prop-
erties of CRC constraints. An instantiation of a consistency check algorithm
for RDTPs that further exploits the structure of CRC constraints has a running
time complexity of O((|TP2| + |TP3|)3d2

max + (|TP2| + |TP3|)2(NM + d2
max)),

where TP2 is the set of Type 2 constraints, TP3 is the set of Type 3 ones, dmax is
the maximum number of disjuncts in any constraint, and N/M is the number
of the nodes/arcs of the instance, respectively. In the same paper, Kumar pre-
sented also a simpler and faster, but randomized, algorithm for the same class
RDTP.

An attempt to model some aspects of STNs similar to those addressed by
HyTNs was lead in [2], where fun-in and fun-out subgraphs much resembling
our multi-tail and multi-head hyperarcs were considered. However, since the
problem 1-in-3-SAT is NP-complete even when all the literals comprising the
clauses are positive, it readily follows that their models lead to NP-complete
problems even when fun-out subgraphs (or fun-in subgraphs) are banned. As
such, the opportunity for tractability spotlighted in this chapter is missed in
those models.

Another approach to extend STN is represented by the proposal of Khatib
et al. [71, 72]. They introduced the characterization of hard and soft constraints.
STNs are able to model just hard temporal constraints, i.e., they can represent
instances where all constraints have to be satisfied, and that the solutions of
a constraint are all equally satisfying. However, such assumption can be too
much restrictive in some real-life scenarios. For example, it may be that some
solutions are preferred with respect to others and, hence, the main problem
is to find a way to satisfy them optimally, according to the preferences spec-
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ified. To address these kind of problems, in [72] the authors introduced a
framework in which each temporal constraint is associated with a preference
function specifying the preference for each distance or duration; a soft sim-
ple temporal constraint is a 4-tuple 〈(X,Y), I, A, f 〉 consisting of (1) an ordered
pair of variables (X,Y) over the integers, called the scope of the constraint; (2)
an interval I = [a,b], where a and b are integers such that a ≤ b; (3) a set of
preferences A; (4) a preference function f , where f : [a,b] 7→ A is a mapping of
the elements belonging to interval I into preference values, taken from set A.
An assignment vx and vy to the variables X and Y is said to satisfy the con-
straint 〈(X,Y), I, A, f 〉 if and only if a ≤ vy − vx. In such a case, the preference
associated to the assignment by the constraint is f (vy − vx). Using soft simple
temporal constraint, a new model of temporal constraint network has been in-
troduce: the Simple Temporal Problem with Preferences (STPP). In general, each
solution of a STPP has a global preference value, obtained by combining in a
suitable way the preference levels at which the solution satisfies the constraints.
The optimal solutions of an STPP are those solutions which are not dominated
by any other solution in terms of global preference. It was shown in [72] that,
in general, STPPs belongs to the class of NP-hard problems. When the prefer-
ence functions are semi-convex and some other side conditions are observed,
then the problem to find an optimal solutions of an STPP is tractable [71].

Finally, another kind of possible extension is represented by the use of
6= operator instead of ≤ in the binary constrains of STNs. Koubarakis [73]
showed that if in a STN temporal constraints are used together with dise-
quations in the form x − y 6= r, where r is a real constant, then the problem
of deciding consistency is still tractable. This extension does not allow the
specification of alternative constraints but it is interesting because it allows to
exclude some solutions maintaining the consistency problem tractable.

2.9 Conclusion
In the literature, there are different frameworks and approaches aimed to ex-
tend the
STN model allowing the representation of disjunctive temporal constraints [44,
108], but at cost of an exponential-time consistency check procedure. The only
extension with a polynomial time consistency check procedure we are aware
of is the one of Kumar [102] mentioned in Section 2.8.

In this chapter, we proposed a novel extension, called Hyper Temporal
Network (HyTN), where it is possible to represent a new kind of disjunc-
tive constraint, hyper constraint, and to check the consistency of a network in
pseudo-polynomial time. A hyper constraint is a suitable set of
STN distance constraints and it is satisfied if at least one distance constraint is
satisfied. There could be two kinds of hyperarc: multi-head and multi-tail. In
a multi-head hyperarc, its distance constraints are between a common source
timepoint and different destination timepoints. In a multi-tail hyperarc, its
distance constraints are between different source timepoints and a common

72



destination timepoint.
A HyTN is said consistent if it is possible to determine an assignment for

all its timepoints such that all hyperarcs are satisfied. The computational com-
plexity of the consistency problem of a HyTN is NP-complete when instances
contain both kinds of hyperarc.

On instances containing either only multi-tail hyperarcs, or only multi-
head hyperarcs, the consistency problem can be solved by reducing it, in a very
efficient way, to the search of a winning strategy in an equivalent Mean Payoff
Game (MPG), and exploiting the known winning-strategy search algorithms
for MPGs.

Moreover, we presented an empirical analysis of the efficiency of the re-
sulting consistency check algorithm. The empirical analysis shows that the
proposed algorithm can be effectively used in real cases and confirms the gen-
eral robustess of our approach.

As future work we are investigating the frontier of practical efficient consis-
tency checking for possible generalizations of the HyTN model as, for example,
those including contingent constraints [117] or conditional ones [113].
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3 Checking Dynamic Consistency
of Conditional Hyper Tempo-
ral Networks via Mean Payoff
Games

Chapter Abstract

Conditional Simple Temporal Network (CSTN) is a constraint-based graph-
formalism for conditional temporal planning. It offers a more flexible formal-
ism than the equivalent CSTP model of Tsamardinos, et al. [113], from which
it was derived mainly as a sound formalization. Three notions of consistency
arise for CSTNs: weak, strong, and dynamic. Dynamic consistency is the
most interesting notion, but it is also the most challenging and it was conjec-
tured to be hard to assess. Tsamardinos, et al. [113] gave a doubly-exponential
time algorithm for checking dynamic consistency in CSTNs and to produce an
exponentially sized dynamic execution strategy whenever the input CSTN is
dynamically-consistent. CSTNs may be viewed as an extension of Simple Tem-
poral Networks (STNs) [44], directed weighted graphs where nodes represent
events to be scheduled in time and arcs represent temporal distance constraints
between pairs of events. Recently, STNs have been generalized into Hyper Tem-
poral Networks (HyTNs), by considering weighted directed hypergraphs where
each hyperarc models a disjunctive temporal constraint named hyperconstraint;
being directed, the hyperarcs can be either multi-head or multi-tail. The compu-
tational equivalence between checking consistency in HyTNs and determin-
ing winning regions in Mean Payoff Games (MPGs) was also pointed out;
MPGs are a family of 2-player infinite pebble games played on finite graphs,
which is well known for having applications in model-checking and formal
verification. In this work we introduce the Conditional Hyper Temporal Network
(CHyTN) model, a natural extension and generalization of both the CSTN and
the HyTN model which is obtained by blending them together. We show that
deciding whether a given CSTN or CHyTN is dynamically-consistent is coNP-
hard; and that deciding whether a given CHyTN is dynamically-consistent is
PSPACE-hard, provided that the input instances are allowed to include both
multi-head and multi-tail hyperarcs. In light of this, we continue our study
by focusing on CHyTNs that allow only multi-head hyperarcs, and we of-
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fer the first deterministic (pseudo) singly-exponential time algorithm for the
problem of checking the dynamic consistency of such CHyTNs, also produc-
ing a dynamic execution strategy whenever the input CHyTN is dynamically-
consistent. Since CSTNs are a special case of CHyTNs, as a byproduct this
provides the first sound-and-complete (pseudo) singly-exponential time algo-
rithm for checking dynamic consistency in CSTNs. The proposed algorithm
is based on a novel connection between CHyTNs and MPGs; due to the ex-
istence of efficient pseudo-polynomial time algorithms for MPGs, it is quite
promising to be competitive in practice. The presentation of such connection
is mediated by the HyTN model. In order to analyze the time complexity of
the algorithm, we introduce a refined notion of dynamic consistency, named
ε-dynamic consistency, and present a sharp lower bounding analysis on the
critical value of the reaction time ε̂ where a CHyTN transits from being, to not
being, dynamically-consistent. The proof technique introduced in this analy-
sis of ε̂ is applicable more generally when dealing with linear difference con-
straints which include strict inequalities.
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3.1 Introduction and Motivation
In many areas of Artificial Intelligence (AI), including temporal planning and
scheduling, the representation and management of quantitative temporal as-
pects is of crucial importance (see e.g., [7,25,26,48,95,107]). Examples of possi-
ble quantitative temporal aspects include constraints on the earliest start time
and latest end time of activities and constraints over the minimum and maxi-
mum temporal distance between activities. In many cases these constraints can
be represented by Simple Temporal Networks (STNs) [44], i.e., directed weighted
graphs where nodes represent events to be scheduled in time and arcs repre-
sent temporal distance constraints between pairs of events. In Chapter 2, STNs
have been generalized into Hyper Temporal Networks (HyTNs) [32, 33], a strict
generalization of STNs introduced to overcome the limitation of considering
only conjunctions of constraints, but maintaining a practical efficiency in the
consistency checking of the instances. In a HyTN a single temporal hyperarc
constraint is defined as a set of two or more maximum delay constraints which
is satisfied when at least one of these delay constraints is satisfied. HyTNs
are meant as a light generalization of STNs offering an interesting compro-
mise. On one side, there exist practical pseudo-polynomial time algorithms
for checking the consistency of HyTNs and computing feasible schedules for
them. On the other side, HyTNs offer a more powerful model accommo-
dating natural disjunctive constraints that cannot be expressed by STNs. In
particular, HyTNs are weighted directed hypergraphs where each hyperarc
models a disjunctive temporal constraint called hyperconstraint. The computa-
tional equivalence between checking consistency in HyTNs and determining
winning regions in Mean Payoff Games (MPGs) [14, 49, 123] was also pointed
out in [32, 33], where the approach was shown to be robust thanks to experi-
mental evaluations (also see [15]). MPGs are a family of 2-player infinite pebble
games played on finite graphs which is well known for having theoretical inter-
est in computational complexity, being one of the few natural problems lying
in NP ∩ coNP, as well as various applications in model checking and formal
verification [61].

However, in the representation of quantitative temporal aspects of systems,
conditional temporal constraints pose a serious challenge for conditional tem-
poral planning, where a planning agent has to determine whether a candidate
plan will satisfy the specified conditional temporal constraints. This can be
difficult, because the temporal assignments that satisfy the constraints asso-
ciated with one conditional branch may fail to satisfy the constraints along a
different branch (see, e.g., [113]). The present work unveils that HyTNs and
MPGs are a natural underlying combinatorial model for checking the consis-
tency of certain conditional temporal problems that are known in the literature
and that are useful in some practical applications of temporal planning, espe-
cially, for managing the temporal aspects of Workflow Management Systems
(WfMSs) [7,26] and for modeling Healthcare’s Clinical Pathways [25]. Thus we
focus on Conditional Simple Temporal Networks (CSTNs) [67, 113], a constraint-

76



based model for conditional temporal planning. The CSTN formalism extends
STNs in that: (1) some of the nodes are observation events, to each of them
is associated a boolean variable whose value is disclosed only at execution
time; (2) labels (i.e. conjunctions over the literals) are attached to all nodes and
constraints, to indicate the situations in which each of them is required. The
planning agent (or Planner) must schedule all the required nodes, meanwhile
respecting all the required temporal constraints among them. This extended
framework allows for the off-line construction of conditional plans that are
guaranteed to satisfy complex networks of temporal constraints. Importantly,
this can be achieved even while allowing for the decisions about the precise
timing of actions to be postponed until execution time, in a least-commitment
manner, thereby adding flexibility and making it possible to adapt the plan
dynamically, in response to the observations that are made during execution.
See [113] for further details and examples.

Three notions of consistency arise for CSTNs: weak, strong, and dynamic.
Dynamic consistency (DC) is the most interesting one; it requires the existence
of conditional plans where decisions about the precise timing of actions are
postponed until execution time, but it nonetheless guarantees that all the rel-
evant constraints will be ultimately satisfied. Still, it is the most challenging
and it was conjectured to be hard to assess by [113]. Indeed, to the best of
our knowledge, the tightest currently known upper bound on the time com-
plexity of deciding whether a given CSTN is dynamically-consistent is doubly-
exponential time [113]. It first builds an equivalent Disjunctive Temporal Prob-
lem (DTP) of size exponential in the input CSTN, and then applies to it an
exponential-time DTP solver to check its consistency. However, this approach
turns out to be quite limited in practice: experimental studies have already
shown that the resolution procedures, as well as the currently known heuris-
tics, for solving general DTPs become quite burdensome with 30 to 35 DTP
variables (see e.g., [87, 93, 112]), thus dampening the practical applicability of
the approach.

3.1.1 Contribution
In this work we introduce and study the Conditional Hyper Temporal Network
(CHyTN) model, a natural extension and generalization of both the CSTN and
the HyTN model which is obtained by blending them together. One motiva-
tion for studying it is to transpose benefits and opportunities for application,
that have arisen from the introduction of HyTNs (see Chapter 2 and [32, 33]),
to the context of conditional temporal planning. In so doing, the main and per-
haps most important contribution is that to offer the first sound-and-complete
deterministic (pseudo) singly-exponential time algorithm for checking the dy-
namic consistency of CSTNs. After having formally introduced the CHyTN
model, we start by showing that deciding whether a given CSTN or CHyTN
is dynamically-consistent is coNP-hard. Then, we offer a proof that deciding
whether a given CHyTN is dynamically-consistent is PSPACE-hard, provided
that the input CHyTN instances are allowed to include both multi-head and
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multi-tail hyperarcs. In light of this, we focus on CHyTNs that allow only
multi-head hyperarcs. Concerning multi-head CHyTNs, perhaps most impor-
tantly, we unveil a connection between the problem of checking their dynamic
consistency and that of determining winning regions in MPGs (of a singly-
exponential size in the number of propositional variables of the input CHyTN),
thus providing the first sound-and-complete (pseudo) singly-exponential time
algorithm for this same task of deciding the dynamic consistency and yielding
a dynamic execution strategy for multi-head CHyTNs. The resulting worst-
case time complexity of the DC-Checking procedure is actually

O
(
23|P||V||A|mA + 24|P||V|2|A||P|+ 24|P||V|2mA + 25|P||V|3|P|

)
W,

where |P| is the number of propositional variables, |V| is the number of event
nodes, |A| is the number of hyperarcs, mA is the size (i.e., roughly, the encod-
ing length of A), and W is the maximum absolute integer value of the weights
of the input CHyTN. The algorithm is still based on representing a given
CHyTN instance on an exponentially sized network, as first suggested in [113].
The difference, however, is that we propose to map CSTNs and CHyTNs on
(exponentially sized) HyTNs/MPGs rather than on DTPs. This makes an im-
portant difference, because the consistency check for HyTNs can be reduced
to determining winning regions in MPGs, as shown in [32, 33], which admits
practical and effective pseudo-polynomial time algorithms (in some cases the
algorithms for determining winning regions in MPGs exhibit even a strongly
polynomial time behaviour, see e.g., [15, 19, 33, 121]). To summarize, we ob-
tain an improved upper bound on the theoretical time complexity of the DC-
checking of CSTNs (i.e., from 2-EXP to pseudo-E ∩NE ∩ coNE) together with
a faster DC-checking procedure, which can be used on CHyTNs with a larger
number of propositional variables and event nodes than before. At the heart of
the algorithm a suitable reduction to MPGs is mediated by the HyTN model,
i.e., the algorithm decides whether a CHyTNs is dynamically-consistent by
solving a carefully constructed MPG. In order to analyze the algorithm, we in-
troduce a novel and refined notion of dynamic consistency, named ε-dynamic
consistency (where ε ∈ R+), and present a sharp lower bounding analysis on
the critical value of the reaction time ε̂ where a CHyTNs transits from being, to
not being, dynamically-consistent. We believe that this contributes to clarifying
(w.r.t. some previous literature, e.g., [67, 113]) the role played by the reaction
time ε̂ in checking the dynamic consistency of CSTNs. Moreover, the proof
technique introduced in this analysis of ε̂ is applicable more generally when
dealing with linear difference constraints which include strict inequalities; thus
it may be useful in the analysis of other models of temporal constraints.

A preliminary version of this chapter appeared in the proceedings of the
TIME symposium [34]. Here, the presentation is extended as follows: (1) the
definition of CSTN has been extended and generalized to that of CHyTN in or-
der to allow the presence of hyperarcs as labeled temporal constraints already
in the input instances; (2) some further facts and pertinent properties about
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CSTNs and CHyTNs have been established; (3) for instance, the following
hardness result: deciding whether a given CHyTN is dynamically-consistent
is PSPACE-hard (the reduction goes from 3-CNF-TQBF), provided that the in-
put instances are allowed to include both multi-head and multi-tail hyperarcs;
(4) the proposed (pseudo) singly-exponential time algorithm is presented here
in its full generality, i.e., w.r.t. the CHyTN model; (5) several proofs have been
polished, expanded and clarified (e.g., those concerning the reaction time anal-
ysis of ε̂).

3.1.2 Organization
The rest of the chapter is organized as follows. Section 4.2 recalls the basic
formalism, terminology and known results on STNs and HyTNs. Particu-
larly, Subsection 3.2.1 deals with STNs; Subsection 3.2.2 deals with HyTNs,
its computational equivalence with MPGs and the related algorithmic results.
Section 3.3 surveys CSTNs and, then, it introduces CHyTNs, also presenting
some basic properties of the model. Section 4.3 tackles on the algorithmics of
dynamic consistency: firstly, we provide a coNP-hardness lower bound, then
we offer a PSPACE-hardness lower bound. Next, it is described the connection
with HyTNs/MPGs and it is devised a (pseudo) singly-exponential time DC-
checking algorithm. Section 3.5 offers a sharp lower bounding analysis on the
critical value of the reaction time ε̂ where the CSTN transits from being, to not
being, dynamically-consistent. In Section 4.4, related works are discussed. The
chapter concludes in Section 2.9.

3.2 Background and Notation
This section recalls some background notions concerning STNs and HyTNs,
necessary to follow the rest of the treatise. but the reader is referred back to
Chapter 2 for some of those concepts.

3.2.1 Simple Temporal Networks
The reader is referred to Subsection 1.2.2, Chapter 1, for the basic notions and
notation concerning STNs.

In this chapter, we also deal with directed weighted hypergraphs; see Def-
inition 2.1 in Chapter 2. Also, recall that the cardinality of a hyperarc A ∈ A
is given by |A| , |HA ∪ {tA}| if A is multi-head, and |A| , |TA ∪ {hA}| if A
is multi-tail; if |A| = 2, then A = (u,v,w) is a standard arc. The order and size
of a general hypergraph (V,A) are denoted by n , |V| and mA , ∑A∈A |A|,
respectively.

3.2.2 Hyper Temporal Networks
This subsection surveys the Hyper Temporal Network (HyTN) model, which is a
strict generalization of STNs, introduced to partially overcome the limitation
of allowing only conjunctions of constraints. HyTNs have been introduced
in [32, 33], the reader is referred there for an in-depth treatment of the subject.
Compared to STN distance graphs, which they naturally extend, HyTNs allow

79



for a greater flexibility in the definition of the temporal constraints.
A general HyTN is a directed weighted general hypergraph H = (V,A)

where a node represents a time-point variable (or event node), and where
a multi-head/multi-tail hyperarc stands for a set of temporal distance con-
straints between the tail/heads and the head/tails (respectively). Also, we
shall consider two special cases of the general HyTN model, one in which
all hyperarcs are only multi-head, and one where they’re only multi-tail. In
general, we say that a hyperarc is satisfied when at least one of its distance con-
straints is satisfied. Then, we say that a HyTN is consistent when it is possible
to assign a value to each time-point variable so that all of its hyperarcs are
satisfied.

More formally, in the HyTN framework the consistency problem is defined
as the General-HyTN-Consistency decision problem, see Definition 2.2 in
Chapter 2. Comparing the consistency of HyTNs with the consistency of STNs,
the most important aspect of novelty is that, while in a distance graph of a
STN each arc represents a distance constraint and all such constraints have to
be satisfied by any feasible schedule, in a HyTN each hyperarc represents a
disjunction of one or more distance constraints and a feasible schedule has to
satisfy at least one of such distance constraints for each hyperarc.

The reader is referred back to Chapter 2 for recalling interesting proper-
ties about the consistency problem for HyTNs, e.g., integrality (Lemma 2.1),
NP-hardness (Theorem 2.1), the existence of negative cycle certificates (Defini-
tion 2.5 and Theorem 2.3), pseudo-polynomial time algorithms (Theorem 2.7),
etc

In the rest of this work we shall adopt the multi-head hypergraph and the
Head-HyTN-Consistency (Definition 2.3) consistency problem as our refer-
ence model; but we will consider general hypergraphs again in the forthcom-
ing sections, when proving PSPACE-hardness. Let’s say that, when consider-
ing hypergraphs and HyTNs, we will be implicitly referring to the multi-head
variant unless it is explicitly specified otherwise.

In the forthcoming section we shall turn our attention to conditional tem-
poral planning, where we generalize Conditional Simple Temporal Networks
(CSTNs) by introducing Conditional Hyper Temporal Networks (CHyTNs).

3.3 Conditional Simple / Hyper Temporal Networks
In order to provide a formal support to the present work, this section recalls the
basic formalism, terminology and known results on CSTPs and CSTNs. Since
the forthcoming definitions concerning CSTNs are mostly inherited from the
literature, the reader is referred to [113] and [67] for an intuitive semantic dis-
cussion and for some clarifying examples of the very same CSTN model. [113]
introduced the Conditional Simple Temporal Problem (CSTP) as an extension of
standard temporal constraint-satisfaction models used in non-conditional tem-
poral planning. CSTPs augment STNs by including observation events, each one
having a boolean variable (or proposition) associated with it. When an observa-
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tion event is executed, the truth-value of its associated proposition becomes
known. In addition, each event node and each constraint has a label that re-
stricts the scenarios in which it plays a role. Although not included in the
formal definition, [113] discussed some supplementary assumptions that any
well-defined CSTP must satisfy. Subsequently, those conditions have been fur-
ther analyzed and formalized by [67], leading to the definition of Conditional
Simple Temporal Network (CSTN), which is now recalled.

Let P be a set of boolean variables, a label is any (possibly empty) conjunc-
tion of variables, or negations of variables, drawn from P. The empty label is
denoted by λ. The label universe P∗ is the set of all (possibly empty) labels
whose (positive or negative) literals are drawn from P. Two labels, `1 and `2,
are called consistent, denoted1 by Con(`1,`2), when `1 ∧ `2 is satisfiable. A label
`1 subsumes a label `2, denoted1 by Sub(`1,`2), when the implication `1 ⇒ `2
holds. Let us recall the formal definition of the CSTN model from [67, 113].

Definition 3.1 (CSTNs). A Conditional Simple Temporal Network (CSTN) is a
tuple 〈V, A, L,O,OV, P〉 where:

• V is a finite set of events; P = {p1, . . . , pq} (some q ∈ N) is a finite set of
boolean variables (or propositions);

• A is a set of labeled temporal constraints (LTCs) each having the form 〈v−
u ≤ w(u,v),`〉, where u,v ∈ V, w(u,v) ∈R, and ` ∈ P∗;

• L : V→ P∗ is a map that assigns a label to each event node in V; OV ⊆ V is a
finite set of observation events; O : P→OV is a bijection mapping a unique
observation event O(p) =Op to each p ∈ P;

• The following well definedness assumptions must hold:

(WD1) for any labeled constraint 〈v− u ≤ w,`〉 ∈ A the label ` is satisfiable
and subsumes both L(u) and L(v); i.e., whenever a constraint v − u ≤ w is
required to be satisfied, both of its endpoints u and v must be scheduled (sooner
or later) by the Planner;

(WD2) for each p ∈ P and each u ∈V such that either p or ¬p appears in L(u),
we require: Sub(L(u), L(Op)), and 〈Op− u≤−ε, L(u)〉 ∈ A for some (small)
real ε > 0; i.e., whenever a label L(u) of an event node u contains a proposition
p, and u gets eventually scheduled, the observation event Op must have been
scheduled strictly before u by the Planner.

(WD3) for each labeled constraint 〈v− u ≤ w,`〉 and p ∈ P, for which either
p or ¬p appears in `, it holds that Sub(`, L(Op)); i.e., assuming a required
constraint contains proposition p, the observation event Op must be scheduled
(sooner or later) by the Planner.

We are now in the position to introduce the Conditional Hyper Temporal Net-
work (CHyTN), a natural extension and generalization of both the CSTN and

1The notation Con(·, ·) and Sub(·, ·) is inherited from [67, 113].
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the HyTN model obtained by blending them together. Even though the orig-
inal STN and CSTN models allow for real weights, hereafter we shall restrict
ourselves to the integers in order to rely on Theorem 2.7. All of our CSTNs
and CHyTNs will be integer weighted from now on.

Definition 3.2 (CHyTNs). A general Conditional Hyper Temporal Network
(CHyTN) is a tuple 〈V,A, L,O,OV, P〉, where V, P, L,O and OV are defined as
in CSTNs (see Definition 3.1), and where A is a set of labeled temporal hyper
constraints (LTHCs), each having one of the following forms:

• A = (t, h,w,`), where (t, h,w) is a standard arc and ` ∈ P∗; in this case, A is
called a standard LTHC.

• A= (tA, HA,wA, LHA), where (tA, HA,wA) is a multi-head hyperarc and LHA :
HA → P∗ is a map sending each head h ∈ HA to a label `h in P∗; in this case,
A is called a multi-head LTHC.

• A = (TA, hA,wA, LTA), where A = (TA, hA,wA) is a multi-tail hyperarc and
LTA : TA→ P∗ is a map sending each tail t ∈ TA to a label `t in P∗; in this case,
A is called a multi-tail LTHC.

• The following well definedness assumptions must hold:

(WD1’) for any labeled constraint A:

– if A = (t, h,w,`) is a standard LTHC, the label ` is satisfiable and sub-
sumes both L(t) and L(h);

– if A = (tA, HA,wA, LHA) is a multi-head LTHC, for each h ∈ HA the label
LHA(h) is satisfiable and subsumes both L(tA) and L(h);

– if A = (TA, hA,wA, LTA) is a multi-tail LTHC, for each t ∈ TA the label
LTA(t) is satisfiable and subsumes both L(hA) and L(t);

(WD2) for each p ∈ P and each u ∈V such that either p or ¬p appears in L(u),
we require: Sub(L(u), L(Op)), and 〈Op− u≤−ε, L(u)〉 ∈ A for some (small)
real ε > 0; this is the same WD2 as defined for CSTNs.

(WD3’) for each labeled constraint A ∈ A and boolean variable p ∈ P:

– if A = (t, h,w,`) is a standard LTHC and p or ¬p appears in `, then
Sub(`, L(Op));

– if A = (tA, HA,wA, LHA) is a multi-head LTHC and either p or ¬p appears
in LHA(h) for some h ∈ HA, then Sub(LHA(h), L(Op));

– if A = (TA, hA,wA, LTA) is a multi-tail LTHC and either p or ¬p appears
in LTA(t) for some t ∈ TA, then Sub(LTA(t), L(Op));

Of course every CSTN is a CHyTN (i.e., one having only standard LTHCs).

We shall adopt the notation x
[a,b],`−→ y, where x,y∈V, a,b∈N, a < b and `∈ P∗, to
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compactly represent the pair 〈y− x ≤ b,`〉, 〈x− y≤−a,`〉 ∈ A; also, whenever
` = λ, we shall omit ` from the graphics, see e.g., Fig. 3.1a and Fig. 3.1b here
below.

Example 3.1. Fig. 3.1a depicts an example CSTN Γ0 = 〈V, A, L,O,OV, P〉 having
three event nodes A, B and C as well as two observation events Op and Oq. Formally,
V = {A, B,C,Op,Oq}, P = {p,q}, OV = {Op,Oq}, L(v) = λ for every v ∈ V \
{Oq} and L(Oq) = p, O(p) = Op,O(q) = Oq. Next, the set of LTCs is: A =
{〈C − A ≤ 10,λ〉, 〈A − C ≤ −10,λ〉, 〈B − A ≤ 3, p ∧ ¬q〉, 〈A − B ≤ 0,λ〉, 〈Op −
A ≤ 5,λ〉, 〈A−Op ≤ 0,λ〉, 〈Oq − A ≤ 9, p〉, 〈A−Oq ≤ 0, p〉, 〈C− B ≤ 2,q〉, 〈C−
Op ≤ 10,λ〉.

Fig. 3.1b depicts an example of a multi-head CHyTN Γ1 = 〈V,A, L,O,OV, P〉.
Notice that V, L,O,OV and P are the same as in the CSTN Γ0, whereasA is defined as
follows: A= A∪{α, (B,{C,Oq}, 〈wα(C),wα(Oq)〉= 〈2,−1〉, 〈Lα(C), Lα(Oq)〉=
〈λ, p〉)}, where A is the set of LTCs of the CSTN Γ0 and the additional constraint α
is a multi-head LTHC with tail tα = B and heads Hα = {C,Oq}.

Sometimes we will show the scheduling time of a node with a label in
boldface on the sidelines of the node itself, as for A in Fig. 3.1.

A0 B C

Op

p?

Oq

q?

p

[10,10]

3, p¬q
0

2,q

[0,5]

[0,9], p
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(a) A CSTN example Γ0.
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−1, p

(b) A CHyTN example Γ1

Figure 3.1: An example CSTN (a), and an example CHyTN (b).

In the following definitions we will implicitly refer to some CHyTN which
is denoted by Γ = 〈V,A, L,O,OV, P〉.
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Definition 3.3 (Scenario [67, 113]). A scenario over a subset U ⊆ P of boolean
variables is a truth assignment s : U→ {0,1}, i.e., s is a function that assigns a truth
value to each proposition p ∈U. When U ( P and s : U→ {0,1}, then s is said to be
a partial scenario; otherwise, when U = P, then s is said to be a (complete) scenario.
The set comprising all of the complete scenarios over P is denoted by ΣP. If s ∈ ΣP is a
scenario and ` ∈ P∗ is a label, then s(`) ∈ {0,1} denotes the truth value of ` induced
by s in the natural way.

Notice that any scenario s ∈ ΣP can be described by means of the label
`s, l1 ∧ · · · ∧ l|P| such that, for every 1≤ i≤ |P|, the literal li ∈ {pi,¬pi} satisfies
s(li) = 1.

Example 3.2. Consider the set of boolean variables P = {p,q}. The scenario s :
P→ {0,1} defined as s(p) = 1 and s(q) = 0 can be compactly described by the label
`s = p ∧ ¬q.

Definition 3.4 (Schedule [67, 113]). A schedule for a subset of events U ⊆ V is a
map φ : U → R that assigns a real number to each event node in U. The set of all
schedules over U is denoted by ΦU .

Definition 3.5 (Scenario Restriction). Let s ∈ ΣP be a scenario. The restriction of
V and A w.r.t. s are defined as:

V+
s ,

{
v∈V | s(L(v)) =>

}
;

A+
s ,

{
(u,v,w) | ∃(` ∈ P∗) s.t. (u,v,w,`) ∈ A and s(`) = >

}
∪

∪
{
(t, H′A,w′A) | ∃(HA ⊇ H′A; LHA : HA→ P∗;wA : HA→Z) s.t. (t, HA,wA, LHA) ∈ A,

w′A = wA |H′A
,∀(h ∈ HA) s(LHA(h)) = > ⇐⇒ h ∈ H′A

}
∪

∪
{
(T′A, h,w′A) | ∃(TA ⊇ T′A; LTA : TA→ P∗;wA : TA→Z) s.t. (TA, h,wA, LTA) ∈ A,

w′A = wA |T′A
,∀(t ∈ TA) s(LTA(t)) = > ⇐⇒ t ∈ T′A

}
.

The restriction of Γ w.r.t. s is defined as Γ+
s , 〈V+

s ,A+
s 〉.

Finally, it is worthwhile to introduce the notation V+
s1,s2
, V+

s1
∩V+

s2
.

Note that if Γ is a CHyTN, then Γ+
s is a HyTN; and if Γ is a CSTN, then Γ+

s
is an STN.

Example 3.3. Fig. 3.2 depicts the restriction STN Γ0
+
s of the CSTN Γ0, and the

restriction HyTN Γ1
+
s of the CHyTN Γ1 (see Example 3.1 and Fig. 3.1), w.r.t. the

scenario s(p) = s(q) = ⊥.

Definition 3.6 (Execution-Strategy [67, 113]). An Execution-Strategy (ES) for Γ
is a mapping σ : ΣP → ΦV+

s
such that, for any scenario s ∈ ΣP, the domain of the

schedule σ(s) is V+
s . The set of ESs of Γ is denoted by SΓ. The execution time of an

event v ∈ V+
s in the schedule σ(s) ∈ ΦV+

s
is denoted by [σ(s)]v.
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(a) The restriction STN Γ0
+
s of the CSTN Γ0 w.r.t.

s(p) = s(q) = ⊥

A0 B C

Op

[10,10]

0

[0,5] 10

2

(b) The restriction HyTN Γ1
+
s of the CHyTN Γ1

w.r.t. s(p) = s(q) = ⊥

Figure 3.2: The restriction Γ0
+
s (a), and the restriction Γ1

+
s (b), w.r.t. the scenario

s(p) = s(q) = ⊥

Definition 3.7 (History [67,113]). Let σ ∈ SΓ be any ES, let s ∈ ΣP be any scenario
and let τ ∈ R. The history Hst(τ, s,σ) of τ in the scenario s under strategy σ is
defined as: Hst(τ, s,σ),

{(
p, s(p)

)
∈ P× {0,1} | Op ∈ V+

s , [σ(s)]Op < τ
}

.

The scenario history can be compactly expressed by the conjunction of the
literals corresponding to the observations comprising it; thus, we may treat a
scenario history as though it were a label.

Definition 3.8 (Viable Execution Strategy [67, 113]). We say that σ ∈ SΓ is a
viable execution strategy whenever, for each scenario s ∈ ΣP, the schedule σ(s) ∈ ΦV
is feasible for the restriction HyTN (or STN) Γ+

s .

Definition 3.9 (Dynamic-Consistency [67,113]). An ES σ ∈ SΓ is called dynamic
if, for any s1, s2 ∈ ΣP and any v ∈ V+

s1,s2
, the following implication holds on τ ,

[σ(s1)]v:
Con(Hst(τ, s1,σ), s2)⇒ [σ(s2)]v = τ.

We say that Γ is dynamically-consistent (DC) if it admits σ ∈ SΓ which is both
viable and dynamic. The problem of checking whether a given CSTN is DC is named
DC-Checking.

Definition 3.10 (DC-Checking [67, 113]). The problem of checking whether a given
CHyTN (which allows both multi-head and multi-tail LTHCs) is dynamically-consistent
is named General-CHyTN-DC.

That of checking whether a given CHyTN, allowing only multi-head or only
multi-tail LTHCs, is dynamically-consistent is named CHyTN-DC. Checking whether
a given CSTN is dynamically-consistent is named DC.
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Example 3.4. Consider the CHyTN Γ1 of Fig. 3.1b, and let the scenarios s1, s2, s3, s4
be defined as: s1(p) = >, s1(q) = >; s2(p) = >, s2(q) = ⊥; s3(p) = ⊥, s3(q) = >;
s4(p) =⊥, s4(q) =⊥. The following defines an execution strategy σ∈ SΓ: [σ(si)]A =
0 for every i ∈ {1,2,3,4}; [σ(si)]B = 8 for every i ∈ {1,3,4} and [σ(s2)]B = 3;
[σ(si)]C = 10 for every i ∈ {1,2,3,4}; [σ(si)]Op = 1 for every i ∈ {1,2,3,4}. The
reader can check that σ is viable and dynamic. Indeed, σ admits the tree-like represen-
tation depicted in Fig 3.3.

[σ(s)]A = 0

[σ(s)]Op = 1

[σ(s)]B = 8

[σ(s)]C = 10

[σ(s)]Oq = 2

[σ(s)]B = 3

[σ(s)]C = 10

[σ(s)]B = 8

[σ(s)]C = 10

s(q) = > s(q) = ⊥

s(p) = > s(p) = ⊥

Figure 3.3: A tree-like representation of a dynamic execution strategy σ for
the CHyTN Γ1 of Fig. 3.1b, where s denotes scenarios and [σ(s)]X is the corre-
sponding schedule.

Next, we recall a crucial notion for studying the dynamic consistency of
CHyTNs: the difference set ∆(s1; s2).

Definition 3.11 (Difference-Set [67, 113]). Let s1, s2 ∈ ΣP be any two scenarios.
The set of observation events in OV+

s1
at which s1 and s2 differ is denoted by ∆(s1; s2).

Formally,
∆(s1; s2),

{
Op ∈ OV+

s1
| s1(p) 6= s2(p)

}
.

The various definitions of history and dynamic consistency that are used
by different authors [34,69,113] are equivalent. Notice that commutativity may
not hold (i.e., generally it may be the case that ∆(s1; s2) 6= ∆(s2; s1)).

Example 3.5. Consider the CSTN Γ0 of Fig. 3.1a and the scenarios s1, s2 defined as
follows: s1 , p ∧ q; s2 , ¬p ∧ ¬q.

Then, ∆(s1; s2) = {Op,Oq} and ∆(s2; s1) = {Op}.

The next lemma will be useful later on in Section 4.3, basically it is due
to [113]; here below we propose a full proof for the sake of completeness.

Lemma 3.1. Let s1, s2 ∈ ΣP and v ∈ V+
s1,s2

. Let σ ∈ SΓ be an execution strategy.
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Then, σ is dynamic if and only if the following implication holds for every s1, s2 ∈
ΣP and for every u ∈ V+

s1,s2
:( ∧

v∈∆(s1;s2)

[σ(s1)]u ≤ [σ(s1)]v
)
⇒ [σ(s1)]u = [σ(s2)]u (L3.1)

Proof. Notice that, by definition of Con(·, ·) and Hst(·, ·, ·), Con(Hst(τ, s1,σ), s2)
(for τ , [σ(s1)]u) holds if and only if there is no observation event v ∈ ∆(s1; s2)
which is scheduled by σ(s1) strictly before τ. Therefore,

Con(Hst(τ, s1,σ), s2) ⇐⇒
∧

v∈∆(s1;s2)

τ ≤ [σ(s1)]v.

At this point, substituting the Con(Hst(τ, s1,σ), s2) expression with the equiva-
lent formula

∧
v∈∆(s1;s2)[σ(s1)]u ≤ [σ(s1)]v inside the definition of dynamic exe-

cution strategy (see Definition 3.9), the thesis follows. 2

3.4 Algorithmics of Dynamic Consistency
Firstly, let us offer the following coNP-hardness result for DC; notice that, since
any CSTN is also a CHyTN, the same hardness result holds for CHyTNs.

Theorem 3.1. DC is coNP-hard even if the input instances Γ = 〈V, A, L,O,OV, P〉
are restricted to satisfy wA(·) ∈ {−1,0} and ` ∈ {p,¬p | p ∈ P} ∪ {λ} for every
(u,v,w,`) ∈ A.

Proof. We reduce 3-SAT to the complement of DC. Let ϕ be a boolean formula
in 3CNF. Let X be the set of variables and let C = {C0, . . . ,Cm−1} be the set of
clauses comprising ϕ =

∧m−1
j=0 Cj.

(1) Let Nϕ be the CSTN 〈Vϕ, Aϕ, Lϕ,Oϕ,OVϕ, Pϕ〉, where: Vϕ , X ∪ C,
and all the nodes are given an empty label, i.e., Lϕ(v) = λ for every v ∈ Vϕ;
each variable in X becomes an observation event and each clause in C a non-
observation, i.e., Pϕ , OVϕ , X, so, Oϕ is the identity map; moreover, all
observation events will be forced to be executed simultaneously before any of
the non-observation events, thus for every u,v ∈ OVϕ we have 〈u− v≤ 0,λ〉 ∈
Aϕ, and for every x ∈ X and C ∈ C we have 〈x − C ≤ −1,λ〉 ∈ Aϕ; finally,
there is a negative loop among all the C ∈ C which plays an important role in
the rest of the proof, particularly, for each j = 0, . . . ,m− 1 and for each literal
` ∈ Cj, we have 〈Cj − C(j+1)mod m ≤ −1,`〉 ∈ Aϕ. Notice that |Vϕ| = n + m and
|Aϕ| = n2 + nm + 3m.

(2) We show that, if ϕ is satisfiable, there must be an unavoidable neg-
ative circuit among all the Cj ∈ C. Assume that ϕ is satisfiable. Let ν be a
satisfying truth-assignment of ϕ. In order to prove that Nϕ is not dynamically-
consistent, observe that the restriction of Nϕ w.r.t. the scenario ν is an in-
consistent STN. Indeed, if for every j = 0, . . . ,m − 1 we pick a standard arc
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〈Cj−C(j+1)mod m ≤−1,`j〉 with `j being a literal in Cj such that ν(`j) =>, then
we obtain a negative circuit.

(3) We show that, if ϕ is unsatisfiable, there can’t be a negative circuit
among the Cj ∈ C because for each scenario, there will be at least one j such
that all three labels, αj, β j and γj will be false. Assume that ϕ is unsatisfiable.
In order to prove that Nϕ is dynamically-consistent, we exhibit a viable and
dynamic execution strategy σ for Nϕ. Firstly, schedule every x ∈ X at σ(x), 0.
Therefore, by time 1, the strategy has full knowledge of the observed scenario
ν. Since ϕ is unsatisfiable, there exists an index jν such that ν(Cjν) =⊥. At this
point, set σ(C(jν+k)mod m), k for each k = 1, . . . ,m. The reader can verify that σ
is viable and dynamic for Nϕ. 2

0C

0

Ox1

x1?

Oxn

xn?

ci ci+1c1 cm

[0,0] [0,0]

−1 −1 −1 −1

−1,αi

−1, βi

−1,γi

−1,γm

−1, βm
−1,αm

Figure 3.4: The CSTN Nϕ where ϕ(x1, . . . , xn) =
∧m

i=1 ci for ci = (αi ∨ βi ∨ γi).

An illustration of the CSTN Nϕ, which was constructed in the proof of The-
orem 3.1, is shown in Fig. 3.4; to ease the representation we have introduced
an additional non-observation event 0C in Fig. 3.4, which is executed at time
t = 0, together with all of the observation events in X.

Next, we show that when the input CHyTN instances are allowed to have
both multi-heads and multi-tail LTHCs then the DC-Checking problem becomes
PSPACE-hard.

Theorem 3.2. General-CHyTN-DC is PSPACE-hard, even if the input instances Γ =
〈V,A, L,O,OV, P〉 are restricted to satisfy the following two constraints:

– wa(·) ∈ [−n− 1,n + 1] ∩Z and `a ∈ {p,¬p | p ∈ P} ∪ {λ} for every weight
wa and label `a appearing in any standard LTHC a ∈ A;

– wA(·) ∈ {−1,0,1}, `A = λ and |A| ≤ 2 for every weight wA and label `A
appearing in any multi-tail/head LTHC A ∈ A.
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Proof. To show that General-CHyTN-DC is PSPACE-hard, we describe a re-
duction from the problem 3-CNF-TQBF (True Quantified Boolean Formula in
3-CNF).

Let us consider a 3-CNF quantified boolean formula with n ≥ 1 variables
and m ≥ 1 clauses:

ϕ(x1, . . . , xn) = Q1x1 . . . Qnxn

m∧
i=1

(αi ∨ βi ∨ γi),

where for every j ∈ [n] the symbol Qj is either ∃ or ∀, and where Ci = (αi ∨ βi ∨
γi) is the i-th clause of ϕ and each αi, βi,γi ∈ {xj,¬xj | 1 ≤ j ≤ n} is a positive
or negative literal. We also say that Q1x1 . . . Qnxn is the prefix of ϕ.

z0 txj

[j, j + 1]

(a) Gadget for a 3-CNF-TQBF
existentially quantified vari-
able ∃xj.

z
0

pxj

xj?

txj

[j− 1, j− 1]
[j + 1, j + 1], xj

[j, j],¬xj

(b) Gadget for a 3-CNF-TQBF universally quantified
variable ∀xj.

Figure 3.5: Gadgets for quantified variables used in the reduction from 3-CNF-
TQBF to General-CHyTN-DC.

Construction. We associate to ϕ a CHyTN Γϕ = 〈V,A, L,O,OV, P〉. In so
doing, our first goal is to simulate the interaction between two players: Player-
∃ (corresponding to the Planner in CHyTNs) and Player-∀ (corresponding to
the Nature in CHyTNs), which corresponds directly to the chain of alternating
quantifiers in the prefix of ϕ. Naturally, the Planner is going to control those
variables that are quantified existentially in ϕ, whereas the Nature is going to
control (by means of some observation events in OV) those variables that are
quantified universally in ϕ. Briefly, P contains one boolean variable for each
universally quantified variable of ϕ, and V contains the following: two special
events z and z′ to be executed at time 0 and n + 1, respectively; an observation
event pxj for each universally quantified variable ∀xj; a non-observation event
txj for each quantified variable xj; two non-observation events lxj and lxj for
each quantified variable xj, these will play (respectively) the role of positive
and negative literals of ϕ (i.e., the α, β and γ in each clause Ci); finally, a
non-observation event Ci for each clause.

89



Let us describe the low-level details of Γϕ. Let us define:

P, {xj | “∀xj” appears in the prefix of ϕ}.

Also, V contains a node z (i.e., the zero node to be executed at time t = 0).

Next, for each existential quantification ∃xj in the prefix of ϕ, V contains a
node named txj and A contains the following two standard LTHCs: (z, txj , j +
1,λ) and (txj ,z,−j,λ); the underlying intuition being that, during execution,
it will be the responsibility of the Planner to schedule txj either at time j (and
this means that the Planner chooses to set xj to false in ϕ) or at time j + 1
(and this means that he chooses to set xj to true in ϕ). See Fig. 3.5a for an
illustration of the ∃xj gadget.

Moreover, for each universal quantification ∀xj in the prefix of ϕ (i.e., for
each xj ∈ P), V contains two nodes named pxj and txj . Particularly, pxj is an
observation event (i.e., pxj ∈ OV) such that O(xj) = pxj ; hence, OV , {pxj |
xj ∈ P}. Also, for each ∀xj in ϕ’s prefix (i.e., for each xj ∈ P), A contains the
following six standard LTHCs: (z, pxj , j− 1,λ), (pxj ,z,−j+ 1,λ), (z, txj , j+ 1, xj),
(txj ,z,−j− 1, xj), (z, txj , j,¬xj) and (txj ,z,−j,¬xj); the underlying intuition be-
ing that the Nature must choose whether to schedule txj at time j (setting xj
to false in ϕ by controlling the observation event pxj ) or at time j + 1 (set-
ting xj to true in ϕ again, by controlling the observation event pxj ). Fig. 3.5b
illustrates the gadget for universally quantified variables ∀xj.

In both cases (existentially and universally quantified variables), the weights
of the involved standard temporal constraints depend on j in such a way that
their scheduling times and their corresponding propositional choices must oc-
cur one after the other in time. More precisely, for every j ∈ [n], txj is going
to be scheduled either at time j (if xj is true in ϕ) or at time j + 1 (when
instead xj is false in ϕ). In addition to this, when xj is quantified universally
in ϕ (i.e., when xj ∈ P), the observation event that determines its propositional
value (i.e., pxj ) is always scheduled at time j− 1 (and this leaves enough space
for the reaction time; actually, an entire unit of time between time j − 1 and
time j).

This concludes the description of our gadgets for simulating the chain of
alternating quantifiers in the prefix of ϕ.

At this point, we have an additional node in V, named z′, which is al-
ways scheduled at time n + 1; for this, A contains the following two stan-
dard LTHCs: (z,z′,n + 1,λ) and (z′,z,−n− 1,λ). Next, we shall describe two
additional gadgets (that make use of z′) for simulating the 3-CNF formula∧m

i=1(αi ∨ βi ∨ γi), one for the literals, and one for the clauses. We have a
gadget for the positive (i.e., xj) and the negative (i.e., ¬xj) literals. It goes as
follows: for each j ∈ [n], V contains two nodes named lxj (i.e., positive literal)
and lxj (i.e., negative literal). Moreover, A contains the following four standard
LTHCs, (z′, lxj ,1,λ), (lxj ,z

′,0,λ) and (z′, lxj ,1,λ), (lxj ,z
′,0,λ), plus the following
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multi-head LTHC,

Ah(lxj , lxj),
(

z′,{lxj , lxj}, 〈w(lxj),w(lxj)〉 = 〈0,0〉, 〈L(lxj), L(lxj)〉 = 〈λ,λ〉
)

,

and the following multi-tail LTHC,

At(lxj , lxj),
(
{lxj , lxj},z′, 〈w(lxj),w(lxj)〉 = 〈−1,−1〉, 〈L(lxj), L(lxj)〉 = 〈λ,λ〉

)
.

The idea here is that the standard LTHCs are going to force the scheduling
times of both lxj and lxj to fall within the real interval [n + 1,n + 2] (i.e., not
before z′ and at most 1 time unit after z′). Meanwhile, the multi-head con-
straint Ah(lxj , lxj) forces that at least one between lxj and lxj happen not later
than time n + 1 (i.e., not later than the scheduling time of z′); similarly, the
multi-tail constraint At(lxj , lxj) is going to force that at least one between lxj

and lxj happen not before time n + 2 (i.e., not before the scheduling time of z′

plus 1). Therefore, exactly one between lxj and lxj will be forced to happen at
time n + 1, and the other one at time n + 2.

Up to this point, the key idea is that, for every j ∈ [n], we can force the
scheduling time of each node lxj and lxj to be uniquely determined, according
to a suitable translation of the scheduling time of txj . Particularly, we want to
schedule at time n + 1 (i.e., at the same scheduling time of z′) the one node
between lxj and lxj whose corresponding literal was chosen to be false in
ϕ (that is lxj if txj was scheduled at time j, and lxj if txj was scheduled at
time j + 1); similarly, we want to schedule at time n + 2 (i.e., at the same
scheduling time of z′ plus 1 time unit) the one node between lxj and lxj whose
corresponding literal was chosen to be true (that is lxj if txj was scheduled at
time j + 1, and lxj if txj was scheduled at time j). In order to achieve this, for
each j ∈ [n], A contains the following two standard LTHCs: (txj , lxj ,n+ 1− j,λ)
and (lxj , txj ,−n − 1 + j,λ) (in Fig. 3.6a they are depicted with a unique arc

txj

[k,k],λ−→ lxj where k = n + 1− j); in this way, lxj is forced to happen at the same
time of txj plus n + 1− j units of time. Therefore, if txj was scheduled at time
j (i.e., xj is false in ϕ), then node lxj is scheduled at time j + n + 1 − j =
n + 1; otherwise, if txj was scheduled at time j + 1 (i.e., xj is true in ϕ),
then node lxj is scheduled at time j + 1 + n + 1− j = n + 2. At this point, the
scheduling time of the node lxj is determined uniquely thanks to the hyperarcs
Ah(lxj , lxj), At(lxj , lxj) and the standard constraints (z′, lxj ,1,λ), (lxj ,z

′,0,λ): if
the node lxj is scheduled at time n + 1 (i.e., if xj is false in ϕ), then lxj must
be scheduled at time n + 1 + 1 = n + 2 (i.e., if xj is true in ϕ) so that to satisfy
At(lxj , lxj) and (z′, lxj ,1,λ); otherwise, if lxj is scheduled at time n + 2 (i.e., if xj
is true in ϕ), then lxj must be scheduled at time n + 1 + 0 = n + 1 (i.e., if xj is
false in ϕ) so that to satisfy Ah(lxj , lxj) and (lxj ,z

′,0,λ). Notice that the literals
αi, βi,γi of ϕ are thus instances of the nodes lxi or lxi described in Fig. 3.6a.

Finally, we describe the gadget for the clauses: for each i ∈ [m], the CHyTN
Γϕ contains a node Ci for each clause Ci = (αi ∨ βi ∨ γi) of ϕ; also, each node Ci
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z′

lxjlxj

z

0

txj

1

0

0
−1

1

0

0
−1

[n + 1,n + 1]

. . .

. . .

[n + 1− j,n + 1− j]

(a) Gadget for 3-CNF-TQBF positive xj and negative ¬xj
literal.

Ci

n + 2

βiαi γi

z′

n + 1

+1

−1

0

0

0

(b) Gadget for 3-CNF-TQBF clause Ci =
(αi ∨ βi ∨ γi) where each αi, βi,γi is a pos-
itive or negative literal.

Figure 3.6: Gadgets used for variables and clauses in the reduction from 3-
CNF-TQBF to General-CHyTN-DC.

is connected by:
– a multi-tail hyperarc with head in Ci and tails over the literals αi, βi,γi

occurring in Ci and having weight 0 and label λ, i.e., by a multi-tail LTHC:

Ac(αi, βi,γi),
(
{αi, βi,γi},Ci, 〈w(αi),w(βi),

w(γ)i〉 = 〈0,0,0〉, 〈L(αi), L(βi), L(γ)i〉 = 〈λ,λ,λ〉
)

,

for some literals αi, βi,γi ∈ {lxj , lxj | 1≤ j ≤ n}.
– two standard and opposite LTHCs, (z′,Ci,1,λ) and (Ci,z′,−1,λ), with

node z′.
See Fig. 3.6b for an illustration of the clauses’ gadget; the dashed arrows

form the multi-head LTHCs and the dotted arrows form the multi-tail LTHCs.
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Every node of Γϕ has an empty label, i.e., L(v) = λ for every v ∈ V. The
rationale of the clauses’ gadget is that, for each i, at least one of the αi, βi,γi
must occur at the same time instant of Ci (i.e., at least one must occur at time
n + 2, because one of the literals must be true)

This concludes our description of Γϕ.
More formally and succinctly, the CHyTN Γϕ = 〈V,A, L,O,OV, P〉 is de-

fined as follows:

• P, {xj | “∀xj” appears in the prefix of ϕ};

• – V , {z,z′} ∪ {txj | 1≤ j ≤ n} ∪ {pxj | xj ∈ P} ∪
∪ {lxj | 1≤ j ≤ n} ∪ {lxj | 1≤ j ≤ n} ∪ {Ci | 1≤ i ≤ m};

– OV , {pxj | xj ∈ P} and O(xj) = pxj for every xj ∈ P;

– L(v) = λ for every v ∈ V;

• A,
⋃

j:“∃xj”∈ϕ

∃-Qntj ∪
⋃

j:“∀xj”∈ϕ

∀-Qntj ∪

∪
n⋃

j=1

Varj ∪
m⋃

i=1

Clai ∪
{
(z,z′,n + 1,λ), (z′,z,−n− 1,λ)

}
,

where:

– ∃-Qntj ,
{
(z, txj , j + 1,λ), (txj ,z,−j,λ)

}
;

This defines the existential quantifier gadget as depicted in Fig. 3.5a;

– ∀-Qntj ,
{
(z, pxj , j− 1,λ), (pxj ,z,−j + 1,λ),

(z, txj , j + 1, xj), (txj ,z,−j− 1, xj), (z, txj , j,¬xj), (txj ,z,−j,¬xj)
}

;
This defines the universal quantifier gadget as depicted in Fig. 3.5b;

– Varj =
{
(z′, lxj ,1,λ), (lxj ,z

′,0,λ), (z′, lxj ,1,λ), (lxj ,z
′,0,λ),

At
j ,
(
{lxj , lxj},z′, 〈wAt

j
(lxj),wAt

j
(lxj)〉 = 〈−1,−1〉,

〈LAt
j
(lxj), LAt

j
(lxj)〉 = 〈λ,λ〉

)
,

Ah
j ,

(
z′,{lxj , lxj}, 〈wAh

j
(lxj),wAh

j
(lxj)〉 = 〈0,0〉,

〈LAh
j
(lxj), LAh

j
(lxj)〉 = 〈λ,λ〉

)
,

(txj , lxj ,n + 1− j,λ), (lxj , txj ,−n− 1 + j,λ)
}

.
This defines the variable gadget for xj as depicted in Fig. 3.6a;

– Clai =
{
(z′,Cj,1), (Cj,z′,−1),

Ac
i ,

(
{αj, β j,γj},Cj, 〈wAc

i
(αj),wAc

i
(β j),wAc

i
(γj)〉 = 〈0,0,0〉,

〈LAc
i
(αj), LAc

i
(β j), LAc

i
(γj)〉 = 〈λ,λ,λ〉

)}
.

This defines the clause gadget for clause Cj = (αi ∨ βi ∨ γi) as de-
picted in Fig. 3.6b.
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Notice that |V| ≤ 1 + 4n + m = O(m + n) and mA ≤ 16n + 5m = O(m + n);
the transformation is thus linear.

Correctness. Let us show that ϕ is true if and only if Γϕ is dynamically-
consistent.

(⇒) Assume ϕ is true, so Player-∃ has a strategy to satisfy
∧m

i=1(αi ∨ βi ∨
γi) no matter how Player-∀ decides to assign the universally quantified vari-
ables of ϕ. Suppose that Player-∃ and Player-∀ alternate their choices by as-
signing a truth value to the variables of ϕ; we can construct a dynamic and
viable execution strategy σ ∈ SΓϕ for Γϕ by reflecting these choices, as follows.
The nodes z and z′ are scheduled at time 0 and n + 1 (respectively) under all
possible scenarios. For each j = 1, . . . ,n, the node txj is scheduled at time j if xj
is set to true in ϕ, either by Player-∃ or Player-∀, otherwise at time j + 1; and,
when xj is quantified universally in ϕ, the node pxj is scheduled at time j− 1
under all possible scenarios; also, the node lxj is scheduled at time n + 2 if xj is
set to true in ϕ, either by Player-∃ or Player-∀, otherwise at time n + 1; sym-
metrically, lxj is scheduled at time n + 1 if xj is true in ϕ, otherwise at time
n+ 2. Finally, for each i = 1, . . . ,m, the node Ci is scheduled at time n+ 2 under
all possible scenarios. It is easy to check that all LTHCs of Γϕ are satisfied by σ
under all possible scenarios, so σ is viable for Γϕ; moreover, since σ reflects the
alternating choices of Player-∃ and Player-∀, then σ is also dynamic. Therefore,
Γϕ is dynamically-consistent.

(⇐) Vice versa, assume that Γϕ is dynamically-consistent. Let σ ∈ SΓϕ be
a viable and dynamic execution strategy for Γϕ. Firstly, we argue that σ is
integer valued, i.e., that [σ(s)]v ∈Z for every v ∈ V and s ∈ ΣΓϕ . Indeed, since
σ is viable, it is easy to check that the scheduling time of z, z′, Ci (for every
i = 1, . . . ,m) and pxj (for every universally quantified variable xj in ϕ) is forced
to be 0, n+ 1, n+ 2 and j− 1 (respectively); also, for each universally quantified
variable xj in ϕ, the scheduling time of pxj is forced to be j− 1, and that of txj

is forced to be either j or j + 1 according to whether xj is true or false in
the current scenario. Still, for each existentially quantified variable xj in ϕ, the
two standard LTHCs (z, txj , j + 1,λ) and (txj ,z,−j,λ) allow txj to be scheduled
anywhere within [j, j + 1], i.e., even at non-integer values. However, on one
side, the scheduling time of lxj is forced to be that of txj plus n + 1 − j, on
the other side, lxj must be scheduled either at time n + 1 or n + 2 because of
the multi-head Ah(lxj , lxj) and multi-tail At(lxj , lxj) LTHCs (respectively). Thus,
for σ to be viable, txj must be scheduled either at time j or j + 1. Therefore,
σ is integer valued. Now, suppose to execute σ step-by-step over the integer
line; we can construct a strategy for Player-∃ by reflecting the integer choices
that the Planner makes to schedule the nodes of Γϕ, as follows. For each
existentially quantified variable xj in ϕ, Player-∃ sets xj to true if the Planner
schedules txj at time j + 1 (i.e., if lxj is scheduled at time n + 2, and lxj at time
n + 1), and to false otherwise (i.e., if txj is at time j, lxj at time n + 1 and lxj

at time n + 2). Then, since σ is viable, for each clause Ci of ϕ, at least one of
the literals αi, βi,γi must be true, thanks to the multi-tail LTHC Ac(αi, βi,γi);
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and since σ is also dynamic, then Player-∃ wins, so ϕ is true.
To conclude, notice that any LTHC A ∈ A of Γϕ has weights wA(·) ∈

{−1,0,1} and size |A| ≤ 3. Since any hyperarc with three heads (tails) can be
replaced by two hyperarcs each having at most two heads (tails), then General-
CHyTN-DC remains PSPACE-hard even if wA(·) ∈ {−1,0,1} and |A| ≤ 2 for
every multi-tail/head LTHC A∈A. Also notice that wa(·)∈ [−n− 1,n+ 1]∩Z

and `a ∈ {p,¬p | p ∈ P} ∪ {λ} holds for every weight wa and label `a appearing
in any standard LTHC a ∈ A. This concludes the proof. 2

Theorem 3.2 motivates the study of consistency problems on CHyTNs hav-
ing either only multi-head or only multi-tail hyperarcs. Since we are interested
in dynamic consistency, where time moves only forward of course, and the ex-
ecution strategy depends only on past observations, from now on we shall
consider only multi-head CHyTNs.

3.4.1 ε-Dynamic Consistency
In CHyTNs, decisions about the precise timing of actions are postponed until
execution time, when information gathered from the execution of the observa-
tion events can be taken into account. However, the Planner is allowed to factor
in an observation, and modify its strategy in response to it, only strictly after
the observation has been made (whence the strict inequality in Definition 3.7).
Notice that this definition does not take into account the actual reaction time,
which, in most applications, is non-negligible. In order to deliver algorithms
that can also deal with the reaction time ε of the Planner we now introduce
ε-dynamic consistency, a refined notion of dynamic consistency. The intu-
ition underlying Definition 4.1 is that to model a specific kind of disjunctive
constraint: given a small real number ε > 0, for any two scenarios s1, s2 ∈ ΣP
and any event u ∈ V+

s1,s2
, the scheduling time of u under s1 must be greater or

equal to either that of u under s2 or that of v under s2 plus ε for at least one
v ∈ ∆(s1; s2). Let us remind the fact that, from now on, our CHyTNs admit
only multi-head hyperarcs. The definition of ε-dynamic consistency follows
below.

Definition 3.12 (ε-dynamic consistency). Given any CHyTN 〈V,A, L,O,OV, P〉
and any real number ε ∈ (0,∞), an execution strategy σ ∈ SΓ is ε-dynamic if it
satisfies all the Hε-constraints, namely, for any two scenarios s1, s2 ∈ΣP and any event
u ∈ V+

s1,s2
, the execution strategy σ satisfies the following constraint Hε(s1; s2;u):

[σ(s1)]u ≥min
({

[σ(s2)]u
}
∪
{
[σ(s1)]v + ε | v ∈ ∆(s1; s2)

})
We say that a CHyTN Γ is ε-dynamically-consistent if it admits σ ∈ SΓ which is
both viable and ε-dynamic.

The problem of checking whether a given CHyTN is ε-dynamically-consistent is
named CHyTN-ε-DC.
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It follows directly from Definition 4.1 that, whenever σ ∈ SΓ satisfies some
Hε(s1; s2;u), then σ satisfies Hε′(s1; s2;u) for every ε′ ∈ (0,ε] as well. This proves
the following lemma.

Lemma 3.2. Let Γ be a CHyTN. If Γ is ε-dynamically-consistent for some real ε > 0,
then Γ is ε′-dynamically-consistent for every ε′ ∈ (0,ε].

Given any dynamically-consistent CHyTN, we may ask for the maximum
reaction time ε of the Planner beyond which the network is no longer dynamically-
consistent.

Definition 3.13 (Reaction time ε̂). Let Γ be a CHyTN. Let ε̂, ε̂(Γ) be the least up-
per bound of the set of all real numbers ε > 0 such that Γ is ε-dynamically-consistent,
i.e.,

ε̂, ε̂(Γ), sup{ε > 0 | Γ is ε-dynamically-consistent}.

Let us consider the (affinely) extended real numbers R , R ∪ {−∞,∞},
where every subset S of R has an infimum and a supremum. Particularly,
recall that sup∅ = −∞ and, if S is unbounded above, then supS = ∞.

If Γ is dynamically-consistent, then ε̂(Γ) exists and ε̂(Γ) 6= −∞ (i.e., the set
on which we have taken the supremum in Definition 3.13 is non-empty), as it
is now proved in Lemma 3.3.

Lemma 3.3. Let σ be a dynamic execution strategy for the CHyTN Γ. Then, there
exists a sufficiently small real number ε ∈ (0,∞) such that σ is ε-dynamic.

Proof. Let s1, s2 ∈ ΣP be two scenarios and let us consider any event u ∈ V+
s1,s2

.
Since σ is dynamic, then by Lemma 3.1 the following implication necessarily
holds: ( ∧

v∈∆(s1;s2)

[σ(s1)]u ≤ [σ(s1)]v
)
⇒ [σ(s1)]u ≥ [σ(s2)]u (*)

Notice that, w.r.t. Lemma 3.1, we have relaxed the equality [σ(s1)]u = [σ(s2)]u
in the implicand of (L3.1) by introducing the inequality [σ(s1)]u ≥ [σ(s2)]u. At
this point, we convert (∗) from implicative to disjunctive form, first by applying
the rule of material implication2, and then De Morgan’s law3, resulting in the
following equivalent expression:(

[σ(s1)]u ≥ [σ(s2)]u
)
∨
( ∨

v∈∆(s1;s2)

[σ(s1)]u > [σ(s1)]v
)

(**)

Then, we argue that there exists a real number ε ∈ (0,∞) such that the follow-
ing disjunction holds as well:(

[σ(s1)]u ≥ [σ(s2)]u
)
∨
( ∨

v∈∆(s1;s2)

[σ(s1)]u ≥ [σ(s1)]v + ε
)

.

2The rule of material implication: |= p⇒ q ⇐⇒ ¬p ∨ q.
3De Morgan’s law: |= ¬(p ∧ q) ⇐⇒ ¬p ∨ ¬q.
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In fact, since the disjunction (∗∗) necessarily holds, then one can pick the fol-
lowing real number ε > 0:

ε, min
〈s1,s2,u〉∈ΣP×ΣP×V+

s1,s2

ε(s1; s2;u),

where the values ε(s1; s2;u)∈ (0,∞) are defined as follows, for every 〈s1, s2,u〉 ∈
ΣP × ΣP ×V+

s1,s2
:

ε(s1; s2;u),


1, if [σ(s1)]u ≥ [σ(s2)]u;

min
{
[σ(s1)]u− [σ(s1)]v |

v ∈ ∆(s1; s2), [σ(s1)]u > [σ(s1)]v
}

, otherwise.

This implies that σ satisfies every Hε-constraint of Γ, thus σ is ε-dynamic. 2

Next, we prove a converse formulation of Lemma 3.3.

Lemma 3.4. Let σ be an ε-dynamic execution strategy for a CHyTN Γ, for some real
number ε ∈ (0,∞).

Then, σ is dynamic.

Proof. For the sake of contradiction, let us suppose that σ is not dynamic.
Let F be the set of all the triplets 〈u, s1, s2〉 ∈ V+

s1,s2
× ΣP × ΣP, for which the

implication (L3.1) given in Lemma 3.1 does not hold. Notice, F 6= ∅; indeed,
since σ is not dynamic, by Lemma 3.1 there exists at least one 〈u, s1, s2〉 for
which (L3.1) doesn’t hold. So, it holds that 〈u, s1, s2〉 ∈ F if and only if the
following two properties hold:

1. [σ(s1)]u ≤ [σ(s1)]v, for every v ∈ ∆(s1; s2);

2. [σ(s1)]u 6= [σ(s2)]u.

Let 〈û, ŝ1〉 be an event whose scheduling time [σ(ŝ1)]û is minimum and for
which (1) and (2) hold, namely, let:

〈û, ŝ1〉, argmin
{
[σ(s1)]u | ∃s2 〈u, s1, s2〉 ∈ F

}
.

Since 〈û, ŝ1〉 is minimum in [σ(ŝ1)]û, then [σ(ŝ1)]û ≤ [σ(s2)]û for every s2 ∈ ΣP
such that 〈û, ŝ1, s2〉 ∈ F; moreover, since 〈û, ŝ1, s2〉 ∈ F, then [σ(ŝ1)]û 6= [σ(s2)]û
holds by (2), so that [σ(ŝ1)]û < [σ(s2)]û. At this point, recall that σ is ε-dynamic
by hypothesis, hence [σ(ŝ1)]û < [σ(s2)]û implies that there exists v ∈ ∆(ŝ1; s2)
such that:

[σ(ŝ1)]û ≥ [σ(ŝ1)]v + ε > [σ(ŝ1)]v,

but this inequality contradicts item (1) above. Indeed, F = ∅ and σ is thus
dynamic. 2
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In Section 3.5, the following theorem is proved.

Theorem 3.3. For any dynamically-consistent CHyTN Γ, where V is the set of events
and ΣP is the set of scenarios, it holds that ε̂(Γ) ≥ |ΣP|−1|V|−1.

Y1

Y1?

X10

X1?

Z1
1, X1Y1

[2,2],¬X1 [2,2],¬Y1

(a) The CSTN Γ 1
2
.

[σ1(s)]X1 = 0

[σ1(s)]Y1 = 2

[σ1(s)]Z1 = 4

s(Y1) = > or s(Y1) = ⊥

[σ1(s)]Y1 =
1
2

[σ1(s)]Z1 =
5
2[σ1(s)]Z1 = 1

s(Y1) = > s(Y1) = ⊥

s(X1) = > s(X1) = ⊥

(b) A viable and ε-dynamic execution strategy for Γ 1
2
.

Figure 3.7: A dynamically-consistent CSTN whose viable and dynamic execu-
tion strategies are fractional.

Notice that one really needs to consider rational values for ε̂, as it is shown
in the following example.

Example 3.6. Consider the CSTN Γ 1
2

shown in Fig. 3.7a. The Planner needs to
schedule and to observe X1 at time 0 under all possible scenarios. But it is not viable
to schedule Y1 or Z1 at time 0, because X1 and Y1 may turn out to be ⊥; so Y1 and
Z1 both need to be scheduled strictly after 0. Next, assume that X1 turns out to be
> at time 0. Then, it is not viable to schedule Y1 at time 1, because Z1 needs to be
scheduled within time 1 if Y1 is > and strictly after otherwise, and the Planner can’t
react instantaneously to the observation made at Y1. Thus, if X1 is > at time 0, then
Y1 needs to be scheduled at time t ∈ (0,1), e.g., t = 1

2 . The corresponding execution
strategy is shown in Fig. 3.7b.

Also notice that, in Definition 3.9, dynamic consistency was defined by
strict-inequality and equality constraints. However, by Theorem 4.1, dynamic
consistency can also be defined in terms of Hε-constraints only (i.e., no strict-
inequalities are required).
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Theorem 3.4. Let Γ be a CHyTN. Let ε , |ΣP|−1|V|−1. Then, Γ is dynamically-
consistent if and only if Γ is ε-dynamically-consistent.

By Theorem 4.1, any algorithm for checking ε-dynamic consistency can be
used to check dynamic consistency.

3.4.2 A (pseudo) Singly-Exponential Time Algorithm for DC and
CHyTN-DC

In this section, we present a (pseudo) singly-exponential time algorithm for
solving DC and CHyTN-DC, also producing a dynamic execution strategy
whenever the input CHyTN is dynamically-consistent.

The main result of this chapter is summarized in the following theorem,
which is proven in the next Section 3.5.

Theorem 3.5. The following two algorithmic results hold for CHyTNs.

1. There exists an

O
(
|ΣP|2|A|mA + |ΣP|3|V||A||P|+ |ΣP|3|V|mA + |ΣP|4|V|2|P|

)
WD

time deterministic algorithm for deciding CHyTN-ε-DC on input 〈Γ,ε〉, for any
CHyTN Γ = 〈V,A, L,O,OV, P〉 and any rational number ε = N/D where
N, D ∈N+. Particularly, given any ε-dynamically-consistent CHyTN Γ, the
algorithm returns as output a viable and ε-dynamic execution strategy σ ∈ SΓ.

2. There exists an

O
(
|ΣP|3|V||A|mA + |ΣP|4|V|2|A||P|+ |ΣP|4|V|2mA + |ΣP|5|V|3|P|

)
W

time deterministic algorithm for checking CHyTN-DC on any input Γ. Particu-
larly, given any dynamically-consistent CHyTN Γ, it returns as output a viable
and dynamic execution strategy σ ∈ SΓ.

Here, W ,maxa∈A |wa|.

Since every CSTN is also a CHyTN, Theorem 4.2 holds for CSTNs as well.
We now present the reduction from CHyTN-DC to Head-HyTN-Consistency.

Again, since any CSTN is a CHyTN, the same argument reduces DC to Head-
HyTN-Consistency. Firstly, we argue that any CHyTN can be viewed as a
succinct representation which can be expanded into an exponentially sized
HyTN.

The Expansion of CSTNs is introduced below.

Definition 3.14 (Expansion 〈VEx
Γ ,ΛEx

Γ 〉). Let Γ = 〈V,A, L,O,OV, P〉 be a CHyTN.
Consider the family of distinct and disjoint HyTNs 〈Vs,As〉, one for each scenario
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s ∈ ΣP, which is defined as follows (where vs , (v, s) for every v ∈ V and s ∈ ΣP):

Vs , {vs | v ∈ V+
s },

As ,
{(

ts,{h(1)s , . . . , h(k)s }︸ ︷︷ ︸
heads labeled with s

, 〈w(h(1)s ), . . . ,w(h(k)s )〉︸ ︷︷ ︸
corresponding weights

) ∣∣∣
(

t︸︷︷︸
tail

,{h(1), . . . , h(k)}︸ ︷︷ ︸
heads

, 〈w(h(1)), . . . ,w(h(k))〉︸ ︷︷ ︸
corresponding weights

)
∈ A+

s

}
.

(Of course, in the above notation, k = 1 when Γ is a CSTN, whereas k ∈N+ when Γ
is a CHyTN.)

Next, we define the expansion 〈VEx
Γ ,ΛEx

Γ 〉 of Γ as follows:

〈VEx
Γ ,ΛEx

Γ 〉,
( ⋃

s∈ΣP

Vs,
⋃

s∈ΣP

As

)
.

Notice that Vs1 ∩Vs2 =∅ whenever s1 6= s2 and that 〈VEx
Γ ,ΛEx

Γ 〉 is an STN/HyTN
with at most |VEx

Γ | ≤ |ΣP| · |V| nodes and size at most |ΛEx
Γ | ≤ |ΣP| · |A|.

We now show that the expansion of a CHyTN can be enriched with some
(extra) multi-head hyperarcs in order to model ε-dynamic consistency, by
means of a particular HyTN which is denoted by Hε(Γ).

Definition 3.15 (HyTN Hε(Γ)). Let Γ = 〈V,A, L,O,OV, P〉 be a CHyTN. Given
any real number ε ∈ (0,∞), the HyTN Hε(Γ) is defined as follows:

• For every two scenarios s1, s2 ∈ ΣP and for every event node u ∈ V+
s1,s2

, define
a hyperarc α, αε(s1; s2;u) as follows (with the intention to model Hε(s1; s2;u)
from Def. 4.1):

αε(s1; s2;u),
(
tα, Hα,wα

)
, ∀ s1, s2 ∈ ΣP and u ∈ V+

s1,s2
.

where:

– tα , us1 is the tail of the (multi-head) hyperarc αε(s1; s2;u);

– Hα , {us2} ∪ ∆(s1; s2) is the set of the heads of αε(s1; s2;u);

– wα(us2), 0, and wα(v),−ε for each v ∈ ∆(s1; s2).

• Consider the expansion 〈VEx
Γ ,ΛEx

Γ 〉 of Γ. Then, Hε(Γ) is defined as Hε(Γ) ,(
VEx

Γ ,AHε

)
, where,

AHε , ΛEx
Γ ∪

⋃
s1,s2∈ΣP
u∈V+

s1,s2

αε(s1; s2;u).

Notice that each αε(s1; s2;u) has size |αε(s1; s2;u)| = 1 + ∆(s1; s2) ≤ 1 + |P|.
Here below, Algorithm 9 provides a pseudocode for constructing Hε(Γ).
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Algorithm 6: construct H(Γ,ε)

Input: a CHyTN Γ, 〈V,A, L,O,OV, P〉, a rational number ε > 0
1 foreach (s ∈ ΣP) do
2 Vs← {vs | v ∈ V+

s }; // see Def. 4.7
3 As← {as | a ∈ A+

s }; // see Def. 4.7

4 VEx
Γ ←∪s∈ΣP Vs;

5 ΛEx
Γ ←∪s∈ΣP As;

6 foreach (s1, s2 ∈ ΣP and u ∈ V+
s1,s2

) do
7 tα← us1 ;
8 Hα← {us2} ∪ ∆(s1; s2);
9 wα(us2)← 0;

10 foreach v ∈ ∆(s1; s2) do
11 wα(vs1)←−ε;

12 αε(s1; s2;u)←
(
tα, Hα,wα

)
;

13 AHε
← ΛEx

Γ ∪
⋃

s1,s2∈ΣP
u∈V+

s1,s2

αε(s1; s2;u);

14 Hε(Γ)←
(
VEx

Γ ,AHε

)
;

15 return Hε(Γ);

Algorithm 6: Constructing Hε(Γ).

Example 3.7. An excerpt of the HyTN Hε(Γ0) corresponding to the CSTN Γ0 of
Fig. 3.1a is depicted in Fig. 3.8; here, two scenarios s1 , p ∧ q and s4 , ¬p ∧ ¬q
are considered, on top we have Γ0

+
s1

, whereas Γ0
+
s4

is below, finally, the corresponding
hyperconstraints Hε(s1; s4;u) and Hε(s4; s1;u) are depicted as dashed hyperarcs.

The following establishes the connection between dynamic consistency of
CHyTNs and consistency of HyTNs.

Theorem 3.6. Given any CHyTN Γ = 〈V,A, L,O,OV, P〉, there exists a sufficiently
small real number ε ∈ (0,∞) such that the CHyTN Γ is dynamically-consistent if and
only if the HyTN Hε(Γ) is consistent.

Moreover, the HyTN Hε(Γ) has at most so many nodes:

|VHε
| ≤ |ΣP| · |V|,

so many hyperarcs:
|AHε

| = O(|ΣP| · |A|+ |ΣP|2|V|),

and it has size:
mAHε

= O(|ΣP| ·mA + |ΣP|2|V| |P|).

Proof. For any real number ε ∈ (0,∞), let Hε(Γ) = 〈VEx
Γ ,AHε〉 be the HyTN of

Definition 4.8.
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Figure 3.8: An excerpt of the HyTN Hε(Γ0) corresponding to the CSTN Γ0 of
Fig. 3.1a, in which two scenarios, s1 and s4, are considered.

(1) By Definitions 4.7 and 4.8,

|VHε
| = |VEx

Γ | ≤ |ΣP| · |V|;

also,

|AHε
| = |ΛEx

Γ |+
∣∣ ⋃

s1,s2∈ΣP;u∈V+
s1,s2

αε(s1; s2;u)
∣∣ = O(|ΣP||A|+ |ΣP|2|V|),

and since αε(s1; s2;u) has at most P heads, then mAHε
=O(|ΣP|mA+ |ΣP|2|V| |P|).

(2) We claim that, for any ε > 0, Hε(Γ) is consistent iff Γ is ε-dynamically-
consistent.

(⇒) Given any feasible schedule φ : VEx
Γ → R for the HyTN Hε(Γ), let

σφ(s) ∈ SΓ be the execution strategy defined as follows:

[σφ(s)]v , φ(vs), for every vs ∈ VE
Γ , where v ∈ V and s ∈ ΣP.

Notice that each hyperarc αε(s1; s2;u) is satisfied by φ if and only if the cor-
responding Hε-constraint Hε(s1; s2;u) is satisfied by σφ; moreover, recall that
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ΛEx
Γ ⊆ AHε , and that ΛEx

Γ contains all the original standard/hyper difference
constraints of Γ (i.e., those induced by A, by means of Def. 4.7). At this point,
since φ is feasible for the HyTN Hε(Γ), then σφ must be viable and ε-dynamic
for Γ (because it satisfies all the required constraints).

Therefore, Γ is ε-dynamically-consistent.
(⇐) Given any viable and ε-dynamic execution strategy σ ∈ SΓ, for some

real number ε ∈ (0,∞), let φσ : VEx
Γ → R be the schedule of the HyTN Hε(Γ)

defined as follows:

φσ(vs), [σ(s)]v for every vs ∈ VEx
Γ , where v ∈ V and s ∈ ΣP.

Also in this case, we have that ΛEx
Γ ⊆ AHε , and a moment’s reflection reveals

that each hyperarc αε(s1; s2;u) is satisfied by φσ if and only if Hε(s1; s2;u) is
satisfied by σ. At this point, since σ is viable and ε-dynamic for the CHyTN Γ,
then φσ must be feasible for Hε(Γ). Therefore, Hε(Γ) is consistent.

This proves that, for any ε ∈ (0,∞), Hε(Γ) is consistent if and only if Γ is
ε-dynamically-consistent.

(3) At this point, by composition with (1), Lemma 3.3 implies that there
exists a sufficiently small real number ε ∈ (0,∞) such that Γ is dynamically-
consistent if and only if Hε(Γ) is consistent. 2

At this point, we are in the position to show the pseudocode for checking
CHyTN-ε-DC, it is given in Algorithm 7:

Algorithm 7: check CHyTN-ε-DC(Γ,ε)

Input: a CHyTN Γ, 〈V,A, L,O,OV, P〉, a rational number ε, N/D, for
N, D ∈N+

1 Hε(Γ)← construct H(Γ,ε); // ref. Algorithm 9
2 foreach (A = 〈tA, HA,wA〉 ∈ AHε(Γ) and h ∈ HA) do
3 wA(h)← wA(h) · D; // scale all weights of Hε(Γ), from Q to Z

4 φ← check HEAD-HYTN-CONSISTENCY(Hε(Γ)); // ref. Thm 2.7
5 if (φ is a feasible schedule of Hε(Γ)) then
6 foreach (event node v ∈ VHε(Γ)) do
7 φ(v)← φ(v)/D; // re-scale back to size the scheduling time, from Z to Q,

w.r.t. ε

8 return 〈YES,φ〉;
9 else return NO ;

Algorithm 7: Checking CHyTN-ε-DC on input (Γ,ε).

whereas, the pseudocode for checking CHyTN-DC is provided in Algo-
rithm 8, here below:

Notice that the latter (Algorithm 8) invokes the former (Algorithm 7); more
details follow.
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Algorithm 8: check DC/CHyTN-DC(Γ)

Input: a CHyTN Γ, 〈V,A, L,O,OV, P〉
1 ε̂← |ΣP|−1|V|−1; // ref. Thm. 4.1
2 return check CHyTN-ε-DC(Γ, ε̂);

Algorithm 8: Checking CHyTN-DC on input Γ.

Description of Algorithm 8 Firstly, Algorithm 8 computes a sufficiently small
rational number ε ∈ (0,∞) ∩ Q, by relying on Theorem 4.1, i.e., it is set ε̂ ,
|ΣP|−1|V|−1 (line 1). Secondly, Algorithm 7 is invoked on input (Γ, ε̂). At this
point, Algorithm 7 firstly constructs Hε̂(Γ) (line 1 of Algorithm 7) by invoking
Algorithm 9, and then it scales every hyperarc’s weight, appearing in Hε̂(Γ),
from Q to Z (at lines 2-3). This is done by multiplying each weight by a factor
D (line 3), where D ∈N+ is the denominator of ε̂ (i.e., D = |ΣP| · |V|). Thirdly,
Hε̂(Γ) is solved with the Head-HyTN-Consistency-Checking algorithm un-
derlying Theorem 2.7 (at line 4), i.e., within the underlying algorithmic engine,
an instance of the Head-HyTN-Consistency problem is solved by reducing it
to the problem of determining winning regions in a carefully constructed MPG
(see [32, 33] for the details of such a reduction). At this point, if the Head-
HyTN-Consistency algorithm outputs YES, together with a feasible schedule
φ of Hε̂(Γ), then the time values of φ are scaled back to size w.r.t. ε̂, and then
〈YES,φ〉 is returned as output (lines 5-8); otherwise, the output is simply NO
(at line 9). Still, notice that, thanks to Item 3 of Theorem 2.7, we could also
return a negative certificate, because negative instances are well characterized
in terms of generalized negative cycles (see Definition 2.5).

Remark 3.1. The same algorithm, with essentially the same upper bound on its run-
ning time and space, works also in case we allow for arbitrary boolean formulae as
labels, rather than just conjunctions.

Remark 3.2. We remark that the HyTN/MPG algorithm that is at the heart of our
approach requires integer weights (i.e., it requires that w(u,v) ∈Z for every (u,v) ∈
A); somehow, we could not play it differently (see [32,33] for a discussion). Moreover,
the algorithm always computes an integer solution to HyTNs/MPGs and, therefore, it
always computes rational feasible schedules for the CHyTNs given as input. As such,
it seems to us that this “requirement“ actually turns out to be a plus in practice. It is
actually the integer assumption that allows us to analyze the algorithm quantitatively,
also presenting a sharp lower bounding analysis on the critical value of the reaction
time ε̂, where the CHyTN transits from being, to not being, dynamically-consistent.
We believe that these issues deserve much attention, and going into them required a
“discrete” approach to the notion of numbers.

The correctness and the time complexity of Algorithms 7 and 8 is analyzed
in Section 3.5.
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3.5 Bounding Analysis on the Reaction Time ε̂
In this section we present an asymptotically sharp lower bound for ε̂(Γ), that is
the critical value of reaction time where the CHyTN transits from being, to not
being, dynamically-consistent. The proof technique introduced in this analysis
is applicable more generally, when dealing with linear difference constraints
which include strict inequalities. This bound implies that Algorithm 8 is a
(pseudo) singly-exponential time algorithm for solving CHyTN-DC.

To begin, we are going to provide a proof of Theorem 3.3; for this, let us
firstly introduce some further notation.

Let Γ , 〈V,A, L,O,OV, P〉 be a dynamically-consistent CHyTN. By The-
orem 4.3, there exists ε > 0 such that the HyTN Hε(Γ) is consistent. Then,
let φ : VEx

Γ → R be a feasible schedule for Hε(Γ). For any hyperarc A =
〈tA, HA,wA〉 ∈ AHε

, define a standard arc aA as follows:

aA , 〈tA, ĥ,wA(ĥ)〉, where ĥ, arg min
h∈HA

(
φ(h)− wA(h)

)
.

Then, notice that the network Tφ
ε (Γ) , 〈VEx

Γ ,
⋃

A∈AHε
aA〉 is always an STN.

Moreover, a moment’s reflection reveals that, by definition of ĥ as above, then
φ is a feasible schedule for the STN Tφ

ε (Γ).
At this point, assuming v ∈ VEx

Γ , let us consider the fractional part rv of φv,
i.e.,

rv , φv − bφvc.

Then, let R , {rv}v∈VEx
Γ

be the set of all the fractional parts induced by VEx
Γ .

Sort R by the common ordering on R and assume that S , {r1, . . . ,rk} is the
resulting ordered set (without repetitions), i.e., |S| = k, S = R, r1 < . . . < rk.
Now, let pos(v) ∈ [k] be the (unique) index position such that:

rpos(v) = rv.

Then, we define a new fractional part r′v as follows:

r′v ,
pos(v)− 1
|ΣP| · |V|

, (NFP)

and a new schedule function as follows:

φ′v , bφvc+ r′v. (NSF)

Then the following holds.

Remark 3.3. Notice that (NFP) doesn’t alter the ordering relation among the frac-
tional parts, i.e.,

r′u < r′v ⇐⇒ ru < rv, for any u,v ∈ VEx
Γ .

Moreover, since
(
pos(v) − 1

)
< |ΣP| · |V|, observe that (NSF) doesn’t change the
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value of any integer part, i.e.,

bφ′uc = bφuc, for any u ∈ VEx
Γ .

We are now in the position to prove Theorem 3.3.

Proof of Theorem 3.3. Let Γ , 〈V,A, L,O,OV, P〉 be dynamically-consistent. By
Theorem 4.3 there exists ε′ > 0 such that Hε′(Γ) is consistent and it admits
some feasible schedule φ : VEx

Γ → R. As mentioned, φ is feasible for the STN
Tφ

ε′(Γ). Now, let ε̂ , |ΣP|−1|V|−1. Moreover, let Tφ
ε̂ (Γ) be the STN obtained

from Tφ
ε′(Γ) simply by replacing, in the weights of the arcs, each weight −ε′

with −ε̂. We argue that φ′ (as defined in (NSF) w.r.t. φ,V,ΣP), is a feasible
schedule for the STN Tφ

ε̂ (Γ). Indeed, every constraint of Tφ
ε̂ (Γ) has form φv −

φu ≤ w, for some w ∈Z or w = −ε̂.

• Consider the case w ∈ Z. Notice that φv − φu ≤ w holds because φ is
feasible for the STN Tφ

ε′(Γ). Then, it is not difficult to see that φ′v− φ′u ≤ w
holds as well, because of Remark 3.3.

• Consider the case w = −ε̂. Notice that φv − φu ≤ −ε′ holds because φ is
feasible for the STN Tφ

ε′(Γ).

Then, notice that the following implication always holds,

φv − φu ≤ −ε′ =⇒ φv 6= φu.

Hence, again by Remark 3.3, we can conclude that φ′v 6= φ′u. At this point,
we observe that the temporal distance between φ′u and φ′v is, therefore, at
least ε̂ by definition of (NSF) and (NFP), i.e.,

φ′u − φ′v ≥ |ΣP|−1|V|−1 = ε̂.

That is to say, φ′v − φ′u ≤ −ε̂.

This proves that φ′ is a feasible schedule also for the STN Tφ
ε̂ (Γ). Since Tφ

ε̂ (Γ)
is thus consistent, then, a moment’s reflection reveals that Hε̂(Γ) is consistent
as well thanks to the same schedule φ′.

Therefore, by Theorem 4.3, the CHyTN Γ is ε̂-dynamically-consistent, pro-
vided that ε̂, |ΣP|−1|V|−1. 2

The correctness proof and the time complexity of Algorithm 8 is given next.

Proof of Theorem 4.2. To begin, notice that some of the temporal constraints in-
troduced during the reduction step depend on a sufficiently small parameter
ε̂ ∈ (0,∞) ∩Q, whose magnitude turns out to depend on the size of the input
CHyTN. It is proved below that the time complexity of the algorithm depends
multiplicatively on D, where ε̂ = N/D for some N, D ∈N+. By Theorem 3.3,
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ε̂(Γ)≥ |ΣP|−1|V|−1; so line 1 of Algorithm 8 is correct. Therefore, as a corollary
of Theorem 4.3, we obtain that Algorithm 8 correctly decides DC.

Concerning its time complexity, the most time-expensive step of the algo-
rithm is clearly line 4 of Algorithm 7, which relies on Theorem 2.7 in order to
solve an instance of Head-HyTN-Consistency on input Hε(Γ). From Theo-
rem 4.3 we have an upper bound on the size ofHε(Γ), while Theorem 2.7 gives
us a pseudo-polynomial upper bound for the computation time. Also, recall
that we scale weights by a factor D at lines 2-3 of Algorithm 7, where ε̂ = N/D
for some N, D ∈N+. Thus, by composition, Algorithm 8 decides CHyTN-DC
in a time TAlgo3

Γ which is bounded as follows, where W , maxa∈A |wa| and
D ∈N+:

TAlgo3
Γ = O

((
|VHε(Γ)|+ |AHε(Γ)|

)
mAHε (Γ)

)
WD.

Whence, taking into account the upper bound on the size of Hε(Γ) give by
Theorem 4.3, the following holds:

TAlgo3
Γ = O

((
|ΣP||V|+ |ΣP||A|+ |ΣP|2|V|

)
(|ΣP|mA + |ΣP|2|V| |P|)

)
WD

= O
(
������
|ΣP|2|V|mA +�������

|ΣP|3|V|2|P| + |ΣP|2|A|mA + |ΣP|3|A||V||P|

+ |ΣP|3|V|mA + |ΣP|4|V|2|P|
)

WD

= O
(
|ΣP|2|A|mA + |ΣP|3|A||V||P|+ |ΣP|3|V|mA + |ΣP|4|V|2|P|

)
WD.

By Theorem 3.3, it is sufficient to check ε-dynamic consistency for ε̂ =
|ΣP|−1|V|−1. Therefore, the following worst-case time bound holds on Algo-
rithm 8:

TAlgo3
Γ =O

(
|ΣP|3|V||A|mA+ |ΣP|4|A||V|2|P|+ |ΣP|4|V|2mA+ |ΣP|5|V|3|P|

)
W.

Since |ΣP| ≤ 2|P|, the (pseudo) singly-exponential time bound follows. 2

At this point, a natural question is whether the lower bound given by The-
orem 3.3 can be improved up to ε̂(Γ) = Ω(|V|−1). In turn, this would improve
the time complexity of Algorithm 8 by a factor |ΣP|. However, the follow-
ing theorem shows that this is not the case, by exhibiting a CSTN for which
ε̂(Γ) = 2−Ω(|P|). This proves that the lower bound given by Theorem 3.3 is
(almost) asymptotically sharp.

Theorem 3.7. For each n ∈N+ there exists a CSTN Γn such that:

ε̂(Γn) < 2−n+1 = 2−|P
n|/3+1,

where Pn is the set of boolean variables of Γn.
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Proof. For each n ∈N+, we define a CSTN Γn , 〈Vn, An, Ln,On,OVn, Pn〉 as
follows. See Fig. 3.9 for a clarifying illustration.

• Vn , {Xi,Yi, Zi | 1≤ i ≤ n};

• An , B ∪⋃n
i=1 Ci ∪

⋃n−1
i=1 Di

where:

– B, {〈X1 − v ≤ 0,λ〉 | v ∈ Vn} ∪ {〈Z1 − X1 ≤ 1, X1 ∧Y1〉};
– Ci , {〈Yi − Xi ≤ 2,¬Xi〉, 〈Xi −Yi ≤−2,¬Xi〉, 〈Zi −Yi ≤ 2,¬Yi〉, 〈Yi −

Zi ≤ −2,¬Yi〉};
– Di, {〈Xi+1−Xi≤ 5, Zi〉, 〈Xi−Xi+1≤−5, Zi〉, 〈Xi+1−Yi〉 ≤ 5,¬Zi〉, 〈Yi−

Xi+1≤−5,¬Zi〉, 〈Zi+1−Yi≤ 5, Zi ∧Xi+1∧Yi+1〉, 〈Yi−Zi+1≤−5, Zi ∧
Xi+1∧Yi+1〉, 〈Zi+1−Zi≤ 5,¬Zi ∧Xi+1∧Yi+1〉, 〈Zi−Zi+1≤−5,¬Zi ∧
Xi+1 ∧Yi+1〉};

• Ln(v) , λ for every v ∈ Vn; OVn , Vn; On(v) , v for every v ∈ OVn;
Pn , Vn.

We exhibit an execution strategy σn : ΣPn → ΦVn , which we will show is
dynamic and viable for Γn.

Let {δi}n
i=1 and {∆i}n

i=1 be two real valued sequences such that:

(1) ∆1 , 1; (2) 0 < δi < ∆i; (3) ∆i ,min(δi−1,∆i−1 − δi−1).

Then, the following also holds for every 1≤ i ≤ n:

(4) 0 < ∆i ≤ 2−i+1,

where the equality holds if and only if δi = ∆i/2.
Hereafter, provided that s ∈ ΣP and ` ∈ P∗, we will denote 1s(`), 1 if s(`) =

> and 1s(`) , 0 if s(`) = ⊥.
We are in the position to define σn(s) for any s ∈ ΣP:

• [σn(s)]X1 , 0;

• [σn(s)]Y1 , δ11s(X1) + 21s(¬X1);

• [σn(s)]Z1 , 1s(X1∧Y1) + (2 + [σn(s)]Y1)1s(¬X1∨¬Y1);

• [σn(s)]Xi , 5 + [σn(s)]Xi−11s(Zi−1) +
+ [σn(s)]Yi−11s(¬Zi−1), for any 2≤ i ≤ n;

• [σn(s)]Yi , [σn(s)]Xi + δi1s(Xi) + 21s(¬Xi), for any 2≤ i ≤ n;

• [σn(s)]Zi ,
(
5 + [σn(s)]Yi−11s(Zi−1) +

+ [σn(s)]Zi−11s(¬Zi−1)

)
1s(Xi∧Yi) +

+ (2 + [σn(s)]Yi)1s(¬Xi∨¬Yi), for any 2≤ i ≤ n;
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Y1

Y1?

X10

X1?

Z1

Z1?

Y2

Y2?

X2

X2?

Z2

Z2?

Yn

Yn?

Xn

Xn?

Zn

Zn?

1, X1Y1

[2,2],¬X1 [2,2],¬Y1

[5,5], Z1 [5,5],¬Z1X2Y2

[5,5],¬Z1 [5,5], Z1X2Y2

[2,2],¬X2 [2,2],¬Y2

[5,5],¬Z2 [5,5], Z2X3Y3

[5,5], Z2 [5,5],¬Z2X3Y3

[2,2],¬Xn [2,2],¬Yn

[5,5], Zn−1 [5,5],¬Zn−1XnYn

[5,5],¬Zn−1 [5,5], Zn−1XnYn

Figure 3.9: A CSTN Γn such that ε̂(Γn) = 2−Ω(|Pn|).
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Let us prove, by induction on n ≥ 1, that σn is viable and dynamic for Γn.

• Base case. Let n = 1. Notice that Γ1 almost coincides with the CSTN Γ 1
2

described in Example 3.6; so, it is really needed that 0 < δ1 < 1. Then,
by construction, σ1 leads to the schedule depicted in Figure 3.10. This
shows that σ1 is viable and dynamic for Γ1.

[σ1(s)]X1 = 0

[σ1(s)]Y1 = 2

[σ1(s)]Z1 = 4

s(Y1) = > or s(Y1) = ⊥

[σ1(s)]Y1 = δ1

[σ1(s)]Z1 = δ1 + 2[σ1(s)]Z1 = 1

s(Y1) = > s(Y1) = ⊥

s(X1) = > s(X1) = ⊥

Figure 3.10: A viable and dynamic execution strategy for the base case n = 1.

• Inductive step. Let us assume that σn−1 is viable and dynamic for Γn−1.
Then, by construction, [σn(s)]v = [σn−1(s)]v for every s ∈ ΣP and v ∈Vn−1.
Hence, by induction hypothesis, σn is viable and dynamic on Vn−1. More-
over, by construction, σn leads to the schedule depicted in Figure 3.11 and
Figure 3.12. This shows that σn is viable and dynamic even on Vn \Vn−1.
Thus, σn is viable and dynamic for Γn, i.e., Γn is dynamically-consistent.

[σn(s)]Zn−1 = [σn−1(s)]Zn−1

[σn(s)]Xn = [σn−1(s)]Xn−1 + 5

[σn(s)]Yn = [σn(s)]Xn + 2

[σn(s)]Zn = [σn(s)]Yn + 2

s(Yn) = > or s(Yn) = ⊥

[σn(s)]Yn = [σn(s)]Xn + δn

[σ1(s)]Zn = [σn(s)]Yn + 2[σ1(s)]Zn = [σn−1(s)]Yn−1 + 5

s(Yn) = > s(Yn) = ⊥

s(X1) = > s(Xn) = ⊥

s(Zn−1) = >

Figure 3.11: A viable and dynamic execution strategy for the inductive step
n− 1 ; n when s(Zn−1) = >.

We claim that ε̂(Γn) < 2−n+1 = 2−|P
n|/3+1 for every n ≥ 1. Consider the

following scenario ŝ for 1≤ i ≤ n:

ŝ(Xi), ŝ(Yi),>; ŝ(Zi),
{
>, if δi ≤ ∆i/2
⊥, if δi > ∆i/2
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[σn−1(s)]Zn−1 = [σn(s)]Zn−1

[σn(s)]Xn = [σn−1(s)]Yn−1 + 5

[σn(s)]Yn = [σn(s)]Xn + 2

[σn(s)]Zn = [σn(s)]Yn + 2

s(Yn) = > or s(Yn) = ⊥

[σn(s)]Yn = [σn(s)]Xn + δn

[σn(s)]Zn = [σn(s)]Yn + 2[σn(s)]Zn = [σn−1(s)]Zn−1 + 5

s(Yn) = > s(Yn) = ⊥

s(Xn) = > s(Xn) = ⊥

s(Zn−1) = ⊥

(a) An execution strategy for the inductive step n− 1 ; n when s(Zn−1) = ⊥

Yn−1

Yn−1?

Xn−1

Xn−1?

Zn−1

Zn−1?

Yn

Yn?

Xn

Xn?
Zn

Zn?

1, Xn−1Yn−1

[2,2],¬Xn−1 [2,2],¬Yn−1

[5,5], Zn−1 [5,5],¬Zn−1XnYn

[5,5],¬Zn−1 [5,5], Zn−1XnYn

[2,2],¬Xn [2,2],¬Yn

(b) An excerpt of Γn relevant to the inductive step n− 1 ; n.

Figure 3.12: The inductive step n− 1 ; n when s(Zn−1) = ⊥.

We shall assume that σ is an execution strategy for Γn and study necessary
conditions to ensure that σ is viable and dynamic, provided that the obser-
vations follow the scenario ŝ. First, σ must schedule X1 at time [σ(ŝ)]X1 = 0.
Then, since ŝ(X1) =>, we must have 0 < [σ(ŝ)]Y1 < 1, because of the constraint
(Z1 − X1 ≤ 1, X1 ∧Y1). Stated otherwise, it is necessary that:

0 < [σ(ŝ)]Y1 − [σ(ŝ)]X1 < ∆1.

After that, since ŝ(Y1) = >, then σ must schedule Z1 at time [σ(ŝ)]Z1 = 1 = ∆1.
A moment’s reflection reveals that almost identical necessary conditions now
recur for X2,Y2, Z2, with the crucial variation that it will be necessary to require:
0 < [σ(ŝ)]Y2 < ∆2. Indeed, by proceeding inductively, it will be necessary that
for every 1≤ i ≤ n and every n ∈N+:

0 < [σ(ŝ)]Yi − [σ(ŝ)]Xi < ∆i.
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As already observed in (4), 0 < ∆n ≤ 2−n+1. Thus, any viable and dynamic
execution strategy σ for Γn must satisfy:

0 < [σ(ŝ)]Yn − [σ(ŝ)]Xn <
1

2n−1 =
1

2|Pn|/3−1
.

Therefore, once the Planner has observed the outcome ŝ(Xn) = > from the
observation event Xn, then he must react by scheduling Yn within time 2−n+1 =
2−|P

n|/3+1 in the future w.r.t. [σ(ŝ)]Xn .
Therefore, ε̂(Γn) < 2−n+1 = 2−|P

n|/3+1 holds for every n ≥ 1. 2

3.6 Related Works
This section discusses of some alternative approaches offered by the current
literature. Recall that the article of [113] has already been discussed in the
introduction.

The work of [21] provided the first sound-and-complete algorithm for check-
ing the dynamic controllability of CSTNs with Uncertainty (CSTNU), and thus
it can be employed for checking the dynamic consistency of CSTNs as a spe-
cial case. The algorithm reduces the DC-Checking of CSTNUs to the problem
of solving Timed Game Automata (TGA). Nevertheless, no worst-case upper
bound on the time complexity of the procedure was provided in [21]. Still,
one may observe that solving TGAs is a problem of much higher complex-
ity than solving MPGs. Compare the following known facts: solving 1-player
TGAs is PSPACE-complete and solving 2-player TGAs is EXP-complete; on the
contrary, the problem of determining MPGs lies in NP ∩ coNP and it is cur-
rently an open problem to prove whether it is in P. Indeed, the algorithm
offered in [21] has not been proven to be singly-exponentially time bounded,
to the best of our knowledge it is still open whether singly-exponential time
TGA-based algorithms for DC do exist.

Next, a sound algorithm for checking the dynamic controllability of CST-
NUs was given by Combi, Hunsberger, Posenato in [23]. However, it was not
shown to be complete. To the best of our knowledge, it is currently open
whether or not it can be extended in order to prove completeness w.r.t. the
CSTNU model.

Regarding the particular CSTN model, [69] presented, at the same confer-
ence in which the preliminary version of this work appeared, a sound-and-
complete DC-checking algorithm for CSTNs. It is based on the propagation
of temporal constraints labeled by propositions. However, to the best of our
knowledge, the worst-case complexity of the algorithm is currently unsettled.
Also notice that the algorithm in [69] works on CSTNs only, regardless of
the CHyTN model. Indeed, we believe that our approach (based on tractable
games plus reaction-time ε̂) and the approach of [69] (based on the propaga-
tion of labeled temporal constraints) can benefit from each other; for instance,
recently [68] presented an alternative, equivalent semantics for ε-dynamic con-
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sistency, as well as a sound-and-complete ε-DC-checking algorithm based on
the propagation of labeled constraints.

Finally, in [17], it is introduced and studied π-DC, a sound notion of dy-
namic consistency with an instantaneous reaction time, i.e., one in which the
Planner is allowed to react to any observation at the same instant of time in
which the observation is made. It turns out that π-DC is not equivalent to
ε-DC with ε = 0, and that the latter is actually inadequate for modeling an
instantaneous reaction-time. Still, a simple reduction from π-DC-Checking
to DC-Checking is identified; combined with Theorem 4.2, this provides a
π-DC-Checking procedure whose time complexity remains (pseudo) singly-
exponential in the number of propositional variables.
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4 Instantaneous Reaction-Time in
Dynamic Consistency Check-
ing of Conditional Simple Tem-
poral Networks

Chapter Abstract

In order to address the DC-Checking problem, in Chapter 3 we introduced
ε-DC (a refined, more realistic, notion of DC), and provided an algorithmic so-
lution to it. Given that DC implies ε-DC for some sufficiently small ε > 0, and
that for every ε > 0 it holds that ε-DC implies DC, we offered a sharp lower
bounding analysis on the critical value of the reaction-time ε̂ under which the
two notions coincide. This delivered the first (pseudo) singly-exponential time
algorithm for the DC-Checking of CSTNs. However, the ε-DC notion is inter-
esting per se, and the ε-DC-Checking algorithm in Chapter 3 [34] rests on the
assumption that the reaction-time satisfies ε > 0; leaving unsolved the question
of what happens when ε = 0. In this chapter, we introduce and study π-DC, a
sound notion of DC with an instantaneous reaction-time (i.e., one in which the
planner can react to any observation at the same instant of time in which the
observation is made). Firstly, we demonstrate by a counter-example that π-DC
is not equivalent to 0-DC, and that 0-DC is actually inadequate for modeling
DC with an instantaneous reaction-time. This shows that the main results ob-
tained in Chapter 3 do not apply directly, as they were formulated, to the case
of ε = 0. Motivated by this observation, as a second contribution, our previous
tools are extended in order to handle π-DC, and the notion of ps-tree is intro-
duced, also pointing out a relationship between π-DC and HyTN-Consistency.
Thirdly, a simple reduction from π-DC to DC is identified. This allows us to de-
sign and to analyze the first sound-and-complete π-DC-Checking procedure.
Remarkably, the time complexity of the proposed algorithm remains (pseudo)
singly-exponential in the number of propositional letters.
This chapter is a revised version of [17].
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4.1 Introduction and Motivation
In Chapter 2, it was unveiled that HyTNs and MPGs are a natural underly-
ing combinatorial model for the DC-Checking of CSTNs [34]. Indeed, STNs
have been recently generalized into Hyper Temporal Networks (HyTNs) [32, 33],
by considering weighted directed hypergraphs, where each hyperarc models
a disjunctive temporal constraint called hyper-constraint. Also in Chapter 2,
the computational equivalence between checking the consistency of HyTNs
and determining the winning regions in Mean Payoff Games (MPGs) was also
pointed out [32,33]. The approach was shown to be viable and robust thanks to
some extensive experimental evaluations [33]. MPGs [14, 49, 123] are a family
of two-player infinite games played on finite graphs, with direct and impor-
tant applications in model-checking and formal verification [61], and they are
known for having theoretical interest in computational complexity for their
special place among the few (natural) problems lying in NP∩ coNP.

All this combined, in Chapter 3 it was provided the first (pseudo) singly-
exponential time algorithm for the DC-Checking problem, also producing a
dynamic execution strategy whenever the input CSTN is DC [34]. For this,
it was introduced ε-DC (a refined, more realistic, notion of DC), and pro-
vided the first algorithmic solution to it. Next, given that DC implies ε-DC
for some sufficiently small ε > 0, and that for every ε > 0 it holds that ε-DC im-
plies DC, it was offered a sharp lower bounding analysis on the critical value
of the reaction-time ε̂ under which the two notions coincide. This delivered
the first (pseudo) singly-exponential time algorithm for the DC-Checking of
CSTN. However, the ε-DC notion is interesting per se, and the ε-DC-Checking
algorithm in [34] rests on the assumption that the reaction-time satisfies ε > 0;
leaving unsolved the question of what happens when ε = 0.

4.1.1 Contribution
In this chapter we introduce and study π-DC, a sound notion of DC with
an instantaneous reaction-time (i.e., one in which the planner can react to any
observation at the same instant of time in which the observation is made).
Firstly, we provide a counter-example showing that π-DC is not just the ε = 0
special case of ε-DC. This implies that the algorithmic results obtained in [34]
do not apply directly to the study of those situation where the planner is
allowed to react instantaneously. Motivated by this observation, as a second
contribution, we extend the previous formulation to capture a sound notion
of DC with an instantaneous reaction-time, i.e., π-DC. Basically, it turns out
that π-DC needs to consider an additional internal ordering among all the
observation nodes that occur at the same time instant. Next, the notion of ps-
tree is introduced to reflect the ordered structure of π-DC, also pointing out a
relationship between π-DC and HyTN-Consistency. Thirdly, a simple reduction
from π-DC to DC is identified. This allows us to design and to analyze the first
sound-and-complete π-DC-Checking procedure. The time complexity of the
proposed algorithm remains (pseudo) singly-exponential in the number |P| of
propositional letters.
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4.2 Background and Notation
Recall that Simple Temporal Networks (STNs) [44] have been detailed in Sub-
section 3.2.1, Chapter 2. The Hyper Temporal Network (HyTN) model has been
introduced in Section 2.4, Chapter 2. Also, we shall refer to the CSTN model [34,
67,113] detailed in Definition 3.1, Section 3.3, Chapter 3. In all of the following
definitions we implicitly refer to some CSTN Γ = 〈V, A, L,O,OV, P〉.

4.2.1 ε-Dynamic-Consistency
In CSTNs, decisions about the precise timing of actions are postponed un-
til execution time, when informations meanwhile gathered at the observation
nodes can be taken into account. However, the planner is allowed to factor
in an outcome, and differentiate its strategy according to it, only strictly after
the outcome has been observed (whence the strict inequality in Definition 3.7).
Notice that this definition does not take into account the reaction-time, which,
in most applications, is non-negligible. In order to deliver algorithms that can
also deal with the reaction-time ε > 0 of the planner, we introduced in Chap-
ter 3 [17, 34] a refined notion of DC.

Definition 4.1 (ε-Dynamic-Consistency). Given any CSTN 〈V, A, L,O,OV, P〉
and any real number ε ∈ (0,+∞), an ES σ ∈ SΓ is ε-dynamic if it satisfies all of the
Hε-constraints, namely, for any two scenarios s1, s2 ∈ ΣP and any event u ∈V+

s1,s2
, the

ES σ satisfies the following constraint, which is denoted by Hε(s1; s2;u):

[σ(s1)]u ≥min
(
{[σ(s2)]u} ∪ {[σ(s1)]v + ε | v ∈ ∆(s1; s2)}

)
We say that a CSTN Γ is ε-dynamically-consistent (ε-DC) if it admits σ ∈ SΓ which
is both viable and ε-dynamic.

v1

v2us1

us2

s1

s2

A,−ε

A,−ε

A
,0

Figure 4.1: An Hε(s1; s2;u) constraint, modeled as a hyperarc.

As shown in Chapter 3 [17, 34], ε-DC can be modeled in terms of Head-
HyTN-Consistency. Fig. 4.1 depicts an illustration of an Hε(s1; s2;u) con-
straint, modeled as an hyperarc.

Also, in [34] we proved that DC coincides with ε̂-DC, provided that ε̂ ,
|ΣP|−1|V|−1.
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Theorem 4.1. Let ε̂, |ΣP|−1|V|−1. Then, Γ is DC if and only if Γ is ε̂-DC. Moreover,
if Γ is ε-DC for some ε > 0, then Γ is ε′-DC for every ε′ ∈ (0, ε].

Then, the main result offered in [34] is a (pseudo) singly-exponential time
DC-checking procedure (based on HyTNs).

Theorem 4.2. There exists an:

O
(
|ΣP|3|A|2|V|+ |ΣP|4|A||V|2|P|+ |ΣP|5|V|3|P|

)
W

time algorithm for checking DC on any input CSTN Γ = 〈V, A, L,O,OV, P〉. In
particular, given any dynamically-consistent CSTN Γ, the algorithm returns a viable
and dynamic ES for Γ. Here, W ,maxa∈A |wa|.

4.3 DC with Instantaneous Reaction-Time
Theorem 4.1 points out the equivalence between ε-DC and DC, that arises for
a sufficiently small ε > 0. However, Definition 4.1 makes sense even if ε = 0,
so a natural question is what happens to the above mentioned relationship
between DC and ε-DC when ε = 0. In this section we first show that 0-DC
doesn’t imply DC, and, moreover, that 0-DC is in itself too weak to capture an
adequate notion of DC with an instantaneous reaction-time. In light of this we
will introduce a stronger notion, which is named ordered-Dynamic-Consistency
(π-DC); this will turn out to be a suitable notion of DC with an instantaneous
reaction-time.

Example 4.1 (CSTN Γ2). Consider the following CSTN:

Γ2 = (V2, A2, L2,O2,OV2, P2);

see Fig. 4.2 for an illustration.
– V2 = {⊥,>, A, B,C};
– A2 = {(>−⊥≤ 1,λ), (⊥−>≤−1,λ), (>− A≤ 0,b∧¬c), (>− B≤ 0, a∧

c), (> − C ≤ 0,¬a ∧ ¬b), (⊥ − A ≤ 0,λ), (A − ⊥ ≤ 0,¬b), (A − ⊥ ≤ 0, c), (⊥ −
B ≤ 0,λ), (B−⊥ ≤ 0,¬a), (A−⊥ ≤ 0,¬c), (⊥− C ≤ 0,λ), (C −⊥ ≤ 0, a), (C −
⊥ ≤ 0,b)};

– L2(A) = L2(B) = L2(C) = L2(⊥) = L2(>) = λ;
– O2(a) = A, O2(b) = B, O2(c) = C;
– OV2 = {A, B,C};
– P2 = {a,b, c}.

Proposition 4.1. The CSTN Γ2 (Example 4.1, Fig. 4.2) is 0-DC.

Proof. Consider the execution strategy σ2 : ΣP2 → ΨV2 :
– [σ2(s)]A , s(a ∧ b ∧ ¬c) + s(¬a ∧ b ∧ ¬c);
– [σ2(s)]B , s(a ∧ b ∧ c) + s(a ∧ ¬b ∧ c);
– [σ2(s)]C , s(¬a ∧ ¬b ∧ ¬c) + s(¬a ∧ ¬b ∧ c);
– [σ2(s)]⊥ , 0 and [σ2(s)]> , 1, for every s ∈ ΣP.
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Figure 4.2: A CSTN Γ2 which is 0-DC but not DC.

An illustration of σ2 is offered in Fig 4.3. Three cubical graphs are de-
picted in which every node is labelled as vs for some (v, s) ∈ V2 × ΣP2 : an
edge connects v1s1

and v2s2 if and only if: (i) v1 = v2 and (ii) the Hamming
distance between s1 and s2 is unitary; each scenario s ∈ ΣP2 is represented as
s = αβγ for α, β,γ ∈ {0,1}, where s(a) = α, s(b) = β, s(c) = γ; moreover, each
node vs = (v, s) ∈ V2 × ΣP2 is filled in black if [σ2(s)]v = 0, and in white if
[σ2(s)]v = 1. So all three 3-cubes own both black and white nodes, but each
of them, in its own dimension, decomposes into two identically colored 2-
cubes. Fig. 4.4 offers another visualization of σ2 in which every component

A000 A010

A011A001

A100 A110

A111A101

B000 B010

B011B001

B100 B110

B111B101

C000 C010

C011C001

C100 C110

C111C101

Figure 4.3: The ES σ2 for the CSTN Γ2.

of the depicted graph corresponds to a restriction STN Γ+
2 s for some s ∈ ΣP2 ,

where si, sj ∈ ΣP2 are grouped together whenever Γ+
2 si

= Γ+
2 sj

. It is easy to see
from Fig. 4.4 that σ2 is viable for Γ2. In order to check that σ2 is 0-dynamic,
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look again at Fig. 4.4, and notice that for every si, sj ∈ Σ2, where si 6= sj, there
exists an event node X ∈ {A, B,C} such that [σ2(si)]X = 0 = [σ2(sj)]X and
si(X) 6= sj(X). With this in mind it is easy to check that all of the H0 con-
straints are thus satisfied by σ2. Therefore, the CSTN Γ2 is 0-DC. 2
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Figure 4.4: The restrictions Γ+
2 s for s ∈ ΣP2 , where the execution times

[σ2(s)]v ∈ {0,1} are depicted in bold face.

Proposition 4.2. The CSTN Γ2 is not DC.

Proof. Let σ be a viable ES for Γ2. Then, σ must be the ES σ2 depicted in
Fig. 4.4, there is no other choice here. Let ŝ∈ ΣP2 . Then, it is easy to check from
Fig. 4.4 that: (i) [σ2(ŝ)]⊥ = 0, [σ2(ŝ)]> = 1, and it holds [σ2(ŝ)]X ∈ {0,1} for ev-
ery X ∈ {A, B,C}; (ii) there exists at least two observation events X ∈ {A, B,C}
such that [σ(ŝ)]X = 0; still, (iii) there is no X ∈ {A, B,C} such that [σ(s)]X = 0
for every s ∈ ΣP2 , i.e., no observation event is executed first at all possible sce-
narios. Therefore, the ES σ2 is not dynamic. 2

We now introduce a stronger notion of dynamic consistency; it is named
ordered-Dynamic-Consistency (π-DC), and it takes explicitly into account an ad-

119



ditional ordering between the observation events scheduled at the same exe-
cution time.

Definition 4.2 (π-Execution-Strategy). An ordered-Execution-Strategy (π-ES)
for Γ is a mapping:

σ : s 7→ ([σ(s)]t, [σ(s)]π),

where s∈ΣP, [σ(s)]t ∈ΦV , and finally, [σ(s)]π :OV+
s 
 {1, . . . , |OV+

s |} is bijective.
The set of π-ES of Γ is denoted by SΓ. For any s ∈ ΣP, the execution time of an event
v ∈ V+

s in the schedule [σ(s)]t ∈ ΦV+
s

is denoted by [σ(s)]tv ∈ R; the position of an
observation Op ∈OV+

s in σ(s) is [σ(s)]πOp
. We require positions to be coherent w.r.t.

execution times, i.e.,

∀(Op,Oq ∈ OV+
s ) if [σ(s)]tOp

< [σ(s)]tOq
, then [σ(s)]πOp

< [σ(s)]πOq
.

In addition, it is worth adopting the notation:

[σ(s)]πv , |OV|+ 1, whenever v ∈ V+
s \ OV.

Definition 4.3 (π-History). Let σ ∈ SΓ, s ∈ ΣP, and let τ ∈R and ψ ∈ {1, . . . , |V|}.
The ordered-history π-Hst(τ,ψ, s,σ) of τ and ψ in the scenario s, under the π-ES
σ, is defined as:

π-Hst(τ,ψ, s,σ),
{(

p, s(p)
)
∈ P× {0,1} |

Op ∈ OV+
s , [σ(s)]tOp

≤ τ, [σ(s)]πOp
< ψ

}
.

We are finally in the position to define π-DC.

Definition 4.4 (π-Dynamic-Consistency). Any σ ∈ SΓ is called π-dynamic when,
for any two scenarios s1, s2 ∈ ΣP and any event v ∈ V+

s1,s2
, if τ , [σ(s1)]

t
v and ψ ,

[σ(s1)]
π
v , then:

Con(π-Hst(τ,ψ, s1,σ), s2)⇒ [σ(s2)]
t
v = τ, [σ(s2)]

π
v = ψ.

We say that Γ is π-dynamically-consistent (π-DC) if it admits σ ∈ SΓ which is both
viable and π-dynamic. The problem of checking whether a given CSTN is π-DC is
named π-DC-Checking.

Remark 4.1. It is easy to see that, due to the strict inequality “[σ(s)]πOp
< ψ” in the

definition of π-Hst(·) (Definition 4.3), in a π-dynamic π-ES, there must be exactly
one Op′ ∈ OV, for some p′ ∈ P, which is executed at first (w.r.t. both execution time
and position) under all possible scenarios s ∈ ΣP.

Proposition 4.3. The CSTN Γ2 is not π-DC.

Proof. The proof goes almost in the same way as that of Proposition 4.2. In
particular, no observation event is executed first (i.e., at time t = 0 and posi-
tion ψ = 1) in all possible scenarios. Since there is no first-in-time observation
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event, then, the ES σ is not π-dynamic. 2

We provide next a CSTN which is π-DC but not DC.

Example 4.2. Define Γπ = (Vπ, Aπ,Oπ,OVπ, Pπ) as follows. Vπ = {Op, X,>},
Aπ = {(> − Op ≤ 1,λ), (Op − > ≤ −1,λ), (X − Op ≤ 0, p), (> − X ≤ 0,¬p)},
Oπ(p) =Op, OVπ = {Op}, Pπ = {p}. Fig. 4.5 depicts the CSTN Γπ.

Op

p?

X

>
1

−1

0, p 0,¬p

Figure 4.5: The CSTN Γπ.

Proposition 4.4. The CSTN Γπ is π-DC, but it is not DC.

Proof. Let s1, s2 ∈ ΣPπ be two scenarios such that s1(p) = 1 and s2(p) = 0. Con-
sider the π-ES σ defined as follows: [σ(s1)]

t
Op

= [σ(s1)]
t
X = 0, [σ(s1)]

t
> = 1; and

[σ(s2)]tOp
= 0, [σ(s2)]tX = [σ(s2)]t>= 1; finally, [σ(s)]πOp

= 1, [σ(s)]πX = [σ(s)]π>= 2,
for all s ∈ {s1, s2}. Then, σ is viable and π-dynamic for Γπ. To see that Γπ is not
DC, pick any ε > 0. Notice that any viable ES must schedule X either at t = 0
or t = 1, depending on the outcome of Op, which in turn happens at t = 0;
however, in any ε-dynamic strategy, the planner can’t react to the outcome of
Op before time t = ε > 0. This implies that Γπ is not ε-DC. Since ε was chosen
arbitrarily (ε > 0), then Γπ can’t be DC by Theorem 4.1. 2

So Γπ is ε-DC for ε = 0 but for no ε > 0. In summary, the following chain of
implications holds on the various DCs:

[ε-DC, ∀ε ∈ (0, ε̂]]⇔ DC
6⇐⇒ π-DC

6⇐⇒ [ε-DC, for ε = 0]

where ε̂, |ΣP|−1 · |V|−1 as in Theorem 4.1.

4.3.1 The ps-tree: “skeleton” structure for π-dynamic π-ESs
In this subsection we introduce a labelled tree data structure, named the ps-
tree, which turns out to capture the “skeleton” ordered structure of π-dynamic
π-ESs.

Definition 4.5 (PS-Tree). Let P be any set of boolean variables. A permutation-
scenario tree (ps-tree) πT over P is an outward (non-empty) rooted binary tree such
that:
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• Each node u of πT is labelled with a letter pu ∈ P;

• All the nodes that lie along a path leading from the root to a leaf are labelled with
distinct letters from P.

• Each arc (u,v) of πT is labelled by some b(u,v) ∈ {0,1};

• The two arcs (u,vl) and (u,vr) exiting a same node u have opposite labels, i.e.,
b(u,vl) 6= b(u,vr).

Fig. 4.6 depicts an example of a ps-tree.

a

b
c

c
d

d

c
d

b
d

d

0

0

1
0

1

1 0

1
0

1

Figure 4.6: An example of a ps-tree over P = {a,b, c,d}.

Definition 4.6 (πs, si, Coherent-PS-Tree). Let πT be a ps-tree over P, let r be the
root and s be any leaf. Let (r,v2, . . . , s) be the sequence of the nodes encountered along
the path going from r down to s in πT. Then:

• The sequence of labels πs = (pr, pv2 , . . . , ps) is a permutation of the subset of
letters {pr, pv2 , . . . , ps} ⊆ P.

• Each sequence of bits (b(r,v2), . . . ,b(vi ,vi+1)), for each i ∈ {1,2, . . . ,ks − 1} (where
v1 , r and vks , s), can be seen as a partial scenario si over P; i.e., define
si(vj), b(vj,vj+1), for every j ∈ {1, . . . , i}.

• πT is coherent (c-ps-tree) with Γ if, for every leaf s of πT,

{Opr ,Opv2
, . . . ,Ops} =OV+

s′

holds for every complete scenario s′ ∈ ΣP such that Sub(s′, sks−1).

It is not difficult to see that a π-dynamic π-ES induces one and only one
c-ps-tree πT. So, the existence of a suitable c-ps-tree is a necessary condition
for a π-ES to be π-dynamic. One may ask whether a π-dynamic π-ES can
be reconstructed from its c-ps-tree; the following subsection answers affirma-
tively.
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4.3.2 Verifying a c-ps-tree.
This subsection builds on the notion of c-ps-tree to work out the details of
the relationship between π-DC and HyTN-Consistency. Once this picture is in
place, it will be easy to reduce to HyTN-Consistency the problem of deciding
whether a given CSTN admits a valid π-dynamic π-ES with a given c-ps-tree.
This easy result already provides a first combinatorial algorithm for π-DC,
though of doubly exponential complexity in |P|; a bound to be improved in
later subsections, but that can help sizing the sheer dimensionality and depth
of the problem.

Firstly, the notion of Expansion of CSTNs is recalled [34].

Definition 4.7 (Expansion 〈VEx
Γ ,ΛEx

Γ 〉). Consider a CSTN Γ = (V, A, L,O,OV, P).
Consider the family of all (distinct) STNs (Vs, As), one for each scenario s ∈ ΣP,
defined as follows:

Vs , {vs | v ∈ V+
s } and As , {(us,vs,w) | (u,v,w) ∈ A+

s }.

The expansion 〈VEx
Γ ,ΛEx

Γ 〉 of the CSTN Γ is defined as follows:

〈VEx
Γ ,ΛEx

Γ 〉,
( ⋃

s∈ΣP

Vs,
⋃

s∈ΣP

As

)
.

Notice, (VEx
Γ ,ΛEx

Γ ) is an STN with at most |VEx
Γ | ≤ |ΣP| · |V| nodes and at

most |ΛEx
Γ | ≤ |ΣP| · |A| standard arcs.

We now show that the expansion of a CSTN can be enriched with some
standard arcs and some hyperarcs in order to model the π-DC property, by
means of an HyTN denoted HπT

0 (Γ).

Definition 4.8 (HyTN HπT
0 (Γ)). Let Γ = (V, A, L,O,OV, P) be a given CSTN. Let

πT be a given c-ps-tree over P.
Then, the HyTN HπT

0 (Γ) is defined as follows:

• For every scenarios s1, s2 ∈ ΣP and u ∈ V+
s1,s2
\ OV, define a hyperarc α =

α0(s1; s2;u) as follows (with the intention to model H0(s1; s2;u), see Defini-
tion 4.1):

α = α0(s1; s2;u), 〈tα, Hα,wα〉,

where:

– tα , us1 is the tail of the hyperarc α;

– Hα , {us2} ∪ ∆(s1; s2) is the set of the heads;

– wα(us2), 0; ∀(v ∈ ∆(s1; s2)) wα(v), 0.

Now, consider the expansion of the CSTN Γ 〈VEx
Γ ,ΛEx

Γ 〉=
(⋃

s∈ΣP
Vs,
⋃

s∈ΣP
As
)

(as in Definition 4.7). Then:

• For each internal node x of πT, A′x is a set of (additional) standard arcs defined
as follows. Let πx = (r, . . . , x′) be the sequence of all and only the nodes along
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the path going from the root r to the parent x′ of x in πT (where we can assume
r′ = r). Let Px ⊆ P be the corresponding literals, px excluded, i.e., Px , {pz ∈
P | z appears in πx and pz is the label of z in πT} \ {px}. Let sx be the partial
scenario defined as follows:

sx : Px→ {0,1} :
{

λ , if x = r;
pz 7→ b(z,z′), if x 6= r.

where z′ is the unique child of z in πT lying on πx. Let x0 (x1) be the unique
child of x in πT such that bx,x0 = 0 (bx,x1 = 1). For every complete s′x ∈ ΣP such
that Sub(s′x, sx), we define:

B′s′x ,
{ {〈

(Opx0
)s′x , (Opx)s′x ,0

〉}
, if s′x(x) = 0;{〈

(Opx1
)s′x , (Opx)s′x ,0

〉}
, if s′x(x) = 1.

Also, for every complete s′x, s′′x ∈ ΣP such that Sub(s′x, sx) and Sub(s′′x , sx),
where s′x 6= s′′x , we define: C′s′x ,s′′x

,
{〈

(Opx)s′x , (Opx)s′′x ,0
〉}

.

Finally,
A′x ,

⋃
s′x∈ΣP : Sub(s′x ,sx)

B′s′x ∪
⋃

s′x, s′′x ∈ ΣP : s′x 6= s′′x ,
Sub(s′x, sx),Sub(s′′x , sx)

C′s′x ,s′′x
.

• Then, Hπ
0 (Γ) is defined as Hπ

0 (Γ), 〈VEx
Γ ,AHπ

0 (Γ)
〉, where,

AHπ
0 (Γ)
, ΛEx

Γ ∪
⋃

s1,s2∈ΣP
u∈V+

s1,s2

αε(s1; s2;u) ∪
⋃

x : internal
node of πT

A′x.

Notice that the following holds: each αε(s1; s2;u) has size:

|αε(s1; s2;u)| = |∆(s1; s2)|+ 1≤ |P|+ 1.

The following theorem establishes the connection between the π-DC of
CSTNs and the consistency of HyTNs.

Theorem 4.3. Given any CSTN Γ = 〈V, A, L,O,OV, P〉, it holds that the CSTN
Γ is π-DC if and only if there exists a c-ps-tree πT such that the HyTN HπT

0 (Γ) is
consistent.

Moreover, HπT
0 (Γ) has at most so many nodes:

|VHπT
0 (Γ)| ≤ |ΣP| · |V|,

so many hyperarcs:

|AHπT
0 (Γ)| = O(|ΣP| · |A|+ |ΣP|2|V|),
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and it has size at most:

mA
HπT

0 (Γ)
= O(|ΣP| · |A|+ |ΣP|2|V| · |P|).

Proof. (1) Firstly, we prove that the CSTN Γ is π-DC if and only if there exists
a c-ps-tree πT such that the HyTN HπT

0 (Γ) is consistent.
(⇒) Let σ ∈ SΓ be a given viable and π-dynamic execution strategy for the

CSTN Γ. Since σ is π-dynamic, then for any two s1, s2 ∈ΣP and any v∈V+
s1,s2

the
following holds on the execution time τ , [σ(s1)]

t
v and position ψ, [σ(s1)]

π
v :

Con(π-Hst(τ,ψ, s1,σ), s2)⇒ [σ(s2)]
t
v = τ, [σ(s2)]

π
v = ψ.

It is easy to see that this induces one and only one c-ps-tree πT: indeed, due
to Remark 4.1, there must be exactly one Op′ ∈ OV, for some p′ ∈ P, which is
executed at first (w.r.t. to both execution time and position) under all possible
scenarios; then, depending on the boolean result of p′, a second observation
p′′ can be differentiated, and it can occur at the same or at a subsequent time
instant, but still at a subsequent position; again, by Remark 4.1, there is exactly
one Op′′ ∈ OV which comes first under all possible scenarios that agree on p′;
and so on and so forth, thus forming a tree structure over P, rooted at p′,
which is captured exactly by our notion of c-ps-tree. Then, let φσ : VEx

Γ →R be
the schedule of HπT

0 (Γ) defined as: φσ(vs) , [σ(s)]tv for every vs ∈ VEx
Γ , where

s ∈ ΣP and v ∈V+
s . It is not difficult to check from the definitions, at this point,

that all of the standard arc and hyperarc constraints of HπT
0 (Γ) are satisfied

by φσ, that is to say that φσ must be feasible for HπT
0 (Γ). Hence, HπT

0 (Γ) is
consistent.

(⇐) Assume that there exists a c-ps-tree πT such that the HyTN HπT
0 (Γ)

is consistent, and let φ : VEx
Γ → R be a feasible schedule for HπT

0 (Γ). Then, let
σφ,πT (s) ∈ SΓ be the execution strategy defined as follows:

• [σφ,πT (s)]
t
v , φ(vs), ∀ vs ∈ VEx

Γ , s ∈ ΣP, v ∈ V+
s ;

• Let s′ ∈ ΣP be any complete scenario. Then, s′ induces exactly one path
in πT, in a natural way, i.e., by going from the root r down to some
leaf s. Notice that the sequence of labels (pr, pv2 , . . . , ps) can be seen as
a bijection, i.e., πs : OV+

s′ 
 {1, . . . , |OV+
s′ |}. Then, for any s′ ∈ ΣP and

v ∈ OV+
s′ , define [σφ,πT (s

′)]πv , πs(v).

It is not difficult to check from the definitions, at this point, that since φ is
feasible for HπT

0 (Γ), then σφ,πT must be viable and π-dynamic for the CSTN Γ.
Hence, the CSTN Γ is π-DC.

(2) The size bounds for HπT
0 (Γ) follow from Definition 4.8. 2

In Algo. 10, it is offered the pseudocode for constructing the HyTNHπT
0 (Γ),

as prescribed by Definition 4.8.
If Γ is π-DC, there is an integer weighted π-dynamic π-ES, as below.
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Algorithm 9: construct H(Γ,πT)

Input: a CSTN Γ, 〈V, A, L,O,OV, P〉, a c-ps-tree πT coherent with Γ.
1 foreach (s ∈ ΣP) do
2 Vs← {vs | v ∈ V+

s };
3 As← {as | a ∈ A+

s };
4 VEx

Γ ←∪s∈ΣP Vs;
5 ΛEx

Γ ←∪s∈ΣP As;
6 foreach (s1, s2 ∈ ΣP, s1 6= s2) do
7 foreach (u ∈ V+

s1,s2
\ OV) do

8 tα← us1 ;
9 Hα← {us2} ∪ (∆(s1; s2));

10 wα(us2)← 0;
11 foreach v ∈ ∆(s1; s2) do
12 wα(vs1)← 0;

13 α0(s1; s2;u)← 〈tα, Hα,wα〉;

14 foreach (x : internal node of πT) do
15 A′x← as defined in Definition 4.8;

16 AHπT
0 (Γ)← ΛEx

Γ ∪
⋃

s1,s2∈ΣP
u∈V+

s1,s2

α0(s1; s2;u) ∪
⋃

x : internal
node of πT

A′x;

17 HπT
0 (Γ)← 〈VEx

Γ ,AHπT
0 (Γ)〉;

18 return HπT
0 (Γ);

Algorithm 9: Constructing the HyTN HπT
0 (Γ).

Proposition 4.5. Assume Γ = 〈V, A, L,O,OV, P〉 to be π-DC. Then, there is some
π-ES σ ∈ SΓ which is viable, π-dynamic, and integer weighted, namely, for every
s ∈ ΣP and every v ∈ V+

s , the following property holds:

[σ(s)]tv ∈
{

0,1,2, . . . ,MΓ
}
⊆N,

whereMΓ ,
(
|ΣP||V|+ |ΣP||A|+ |ΣP|2|V|

)
W.

Proof. By Theorem 4.3, since Γ is π-DC, there exists some c-ps-tree πT such
that the HyTN HπT

0 (Γ) is consistent; moreover, by Theorem 4.3 again, HπT
0 (Γ)

has |VHπT
0 (Γ)| ≤ |ΣP| |V| nodes and |AHπT

0 (Γ)| ≤ |ΣP| |A| + |ΣP|2|V| hyperarcs.

Since HπT
0 (Γ) is consistent, it follows from Theorem 4.3 [also see Lemma 1

and Theorem 8 in [33]] that HπT
0 (Γ) admits an integer weighted and feasible

schedule φ such that:

φ : VHπT
0 (Γ)→

{
0,1,2, . . . ,MΓ

}
,

whereMΓ ≤ (|VHπT
0 (Γ)|+ |AHπT

0 (Γ)|)W.

Therefore, it holds thatMΓ ≤ (|ΣP| |V|+ |ΣP| |A|+ |ΣP|2|V|)W. 2

126



Given a CSTN Γ and some c-ps-tree πT, it is thus easy to check whether
there exists some π-ES for Γ whose ordering relations are exactly the same as
those prescribed by πT. Indeed, it is sufficient to construct HπT

0 (Γ) with Al-
gorithm 9, then checking the consistency of HπT

0 (Γ) with the algorithm men-
tioned in Theorem 2.7. This results into Algorithm 10. The corresponding time
complexity is also that of Theorem 2.7.

Algorithm 10: check π-DC on c-ps-tree(Γ,πT)

Input: a CSTN Γ, 〈V, A, L,O,OV, P〉, a c-ps-tree πT coherent with Γ.
1 HπT

0 (Γ)← construct H(Γ,πT); // ref. Algorithm 9

2 φ← check HEAD-HYTN-CONSISTENCY(HπT
0 (Γ)); // ref. Thm 2.7

3 if (φ is a feasible schedule of HπT
0 (Γ)) then

4 return 〈YES,φ,πT〉;
5 return NO;

Algorithm 10: Checking π-DC given a c-ps-tree πT, by reduction to Head-
HyTN-Consistency.

Notice that, in principle, one could generate all of the possible c-ps-trees πT
given P, one by one, meanwhile checking for the consistency state of HπT

0 (Γ)
with Algorithm 10. However, it is not difficult to see that, in general, the
total number f|P| of possible c-ps-trees over P is not singly-exponential in |P|.
Indeed, a moment’s reflection revelas that for every n > 1 it holds that fn =
n · f 2

n−1, and f1 = 1. So, any algorithm based on the exhaustive exploration of
the whole space comprising all of the possible c-ps-trees over P would not have
a (pseudo) singly-exponential time complexity in |P|. Nevertheless, we have
identified another solution, that allows us to provide a sound-and-complete
(pseudo) singly-exponential time π-DC-Checking procedure: it is a simple and
self-contained reduction from π-DC-Checking to DC-Checking. This allows us
to provide the first sound-and-complete (pseudo) singly-exponential time π-
DC-Checking algorithm which employs our previous DC-Checking algorithm
(i.e., that underlying Theorem 4.2) in a direct manner, as a black box, thus
avoiding a more fundamental restructuring of it.

4.3.3 A Singly-Exponential Time π-DC-Checking Algorithm
This section presents a sound-and-complete (pseudo) singly-exponential time
algorithm for solving π-DC, also producing a viable and π-dynamic π-ES
whenever the input CSTN is really π-DC. The main result of this section goes
as follows.

Theorem 4.4. There exists an algorithm for checking π-DC on any input given CSTN
Γ = (V, A, L,O,OV, P) with the following (pseudo) singly-exponential time complex-

127



ity:
O
(
|ΣP|4|A|2|V|3 + |ΣP|5|A||V|4|P|+ |ΣP|6|V|5|P|

)
W.

Moreover, when Γ is π-DC, the algorithm also returns a viable and π-dynamic π-ES
for Γ. Here, W ,maxa∈A |wa|.

The algorithm mentioned in Theorem 4.4 consits of a simple reduction from
π-DC to (classical) DC in CSTNs.

Basically, the idea is to give a small margin γ so that the planner can actu-
ally do before, in the sense of the time value [σ(s)]v, what he did “before” in
the ordering π. Given any ES in the relaxed network, the planner would then
turn it into a π-ES for the original network (which has some more stringent
constraints), by rounding-down each time value [σ(s)]v to the largest integer
less than or equal to it, i.e.,

⌊
[σ(s)]v

⌋
. The problem is that one may (possibly)

violate some constraints when there is a “leap” in the rounding (i.e., a differ-
ence of one unit, in the rounded value, w.r.t. what one would have wanted).
Anyhow, we have identified a technique that allows us to get around this sub-
tle case, provided that γ is exponentially small.

Definition 4.9. Relaxed CSTN Γ′. Let Γ = 〈V, A, L,O,OV, P〉 be any CSTN with
integer constraints. Let γ ∈ (0,1) be a real. Define Γ′γ , 〈V, A′γ, L,O,OV, P〉 to
be a CSTN that differs from Γ only in the numbers appearing in the constraints.
Specifically, each constraint 〈u− v ≤ δ,`〉 ∈ A is replaced in Γ′γ by a slightly relaxed
constraint, 〈u− v ≤ δ′γ,`〉 ∈ A′γ, where:

δ′γ , δ + |V| · γ.

The following two lemmata hold for any CSTN Γ.

Lemma 4.1. Let γ be any real in (0, |V|−1).
If Γ is π-DC, then Γ′γ is DC.

Proof. Since Γ is π-DC, by Proposition 4.5, there exists an integer weighted,
viable and π-dynamic, π-ES σ for Γ. Let us fix some real γ ∈ (0, |V|−1). Define
the ES σ′γ ∈ SΓ′γ as follows, for every s ∈ ΣP and v ∈ V+

s :

[σ′γ(s)]v , [σ(s)]tv + [σ(s)]πv · γ.

Since [σ(s)]πv ≤ |V|, then:

[σ(s)]πv · γ < |V| · |V|−1 = 1,

and so the total ordering of the values [σ′γ(s)]v, for a given s ∈ ΣP, coincides
with [σ(s)]π. Hence, the fact that σ′γ is dynamic follows directly from the π-
dynamicity of σ. Moreover, no LTC (u − v ≤ δ′γ,`) of Γ′γ is violated in any
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scenario s ∈ ΣP since, if ∆′γ,u,v , [σ′γ(s)]u − [σ′γ(s)]v then:

∆′γ,u,v =
(
[σ(s)]tu + [σ(s)]πu · γ

)
−
(
[σ(s)]tv + [σ(s)]πv · γ

)
≤ [σ(s)]tu − [σ(s)]tv + |V| · γ
≤ δ + |V| · γ = δ′.

So, σ′γ is viable. Since σ′γ is also dynamic, then Γ′γ is DC. 2

The next lemma shows that the converse direction holds as well, but for
(exponentially) smaller values of γ.

Lemma 4.2. Let γ be any real in (0, |ΣP|−1 · |V|−2).
If Γ′γ is DC, then Γ is π-DC.

Proof. Let σ′γ ∈ SΓ′γ be some viable and dynamic ES for Γ′γ.
Firstly, we aim at showing that, w.l.o.g., the following lower bound holds:

[σ′γ(s)]v −
⌊
[σ′γ(s)]v

⌋
≥ |V| · γ, for all s ∈ ΣP and v ∈ V+

s . (LB)

This will allow us to simplify the rest of the proof. In order to prove it, let
us pick any η ∈ [0,1) such that:

[σ′γ(s)]v − η − k ∈ [0, |V| · γ), for no v ∈ V, s ∈ ΣP, k ∈Z.

Observe that such a value η exists. Indeed, there are only |ΣP| · |V| choices
of pairs (s,v) ∈ ΣP ×V and each pair rules out a (circular) semi-open interval
of length |V| · γ in [0,1), so the total measure of invalid values for η in the
semi-open real interval [0,1) is at most |ΣP| · |V| · |V| · γ < 1. So η exists.

See Fig. 4.7 for an intuitive illustration of this fact.

[0 1)γ 2γ 3γ · · · jγ

η

(j + 1)γ · · · 1− γ

|V| · γ

Figure 4.7: An illustration of the proof of Lemma 4.2.

By subtracting η to all time values {[σ′γ(s)]v}v∈V,s∈ΣP we can assume w.l.o.g.
that η = 0 holds for the rest of this proof; and thus, that (LB) holds. Now, define
[σ(s)]tv ,

⌊
[σ′γ(s)]v

⌋
, and let [σ(s)]π be the ordering induced by σ′γ(s). Observe

that σ is a well-defined π-ES (i.e., that [σ(s)]π is coherent w.r.t. [σ(s)]t), thanks
to the fact that b·c is a monotone operator. Since the ordering [σ(s)]π is the
same as that of σ′γ(s), then σ is π-dynamic.
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It remains to prove that σ is viable. For this, take any constraint (u− v ≤
δ,`) ∈ A in Γ, and suppose that:

[σ′γ(s)]u − [σ′γ(s)]v ≤ δ′γ = δ + |V| · γ. (A)

If [σ′γ(s)]u − [σ′γ(s)]v ≤ δ, then clearly [σ(s)]tu − [σ(s)]tv ≤ δ. So, the interesting
case that we really need to check is when:

0 < [σ′γ(s)]u − [σ′γ(s)]v − δ ≤ |V| · γ.

For this, we observe that the following (∗) holds by (LB):⌊
[σ′γ(s)]u

⌋
≤ [σ′γ(s)]u − |V| · γ. (∗)

Also, it is clear that: ⌊
[σ′γ(s)]v

⌋
> [σ′γ(s)]v − 1. (∗∗)

Then,

[σ(s)]tu − [σ(s)]tv =
⌊
[σ′γ(s)]u

⌋
−
⌊
[σ′γ(s)]v

⌋
(by def. of [σ(s)]tx, x ∈ {u,v})

< ([σ′γ(s)]u − |V| · γ)− ([σ′γ(s)]v − 1) (by (∗) and (∗∗))
≤ ([σ′γ(s)]u − [σ′γ(s)]v)− |V| · γ + 1 (by rewriting)

≤ δ′γ − |V| · γ + 1 (by (A))

≤ δ + 1. (by δ′γ = δ + |V| · γ)

Now, since we have the strict inequality [σ(s)]tu − [σ(s)]tv < δ + 1, and since
[σ(s)]tu − [σ(s)]tv ∈ Z, then [σ(s)]tu − [σ(s)]tv ≤ δ, as desired. So, σ is viable.
Since σ is both viable and π-dynamic, then Γ is π-DC. 2

Fig. 4.7 illustrates the proof of Lemma 4.2, in which a family of (circu-
lar) semi-open intervals of length |V| · γ are depicted as shaded rectangles.
Lemma 4.2 ensures that at least one chunk on length lγ ≥ 1− |ΣP| · |V|2 · γ
is not covered by the union of those (circular) semi-open intervals, and it is
therefore free to host η; in Fig. 4.7, this is represented by the blue interval, and
η = j · γ for some j ∈ [0,γ−1). Also notice that γ can be fixed as follows:

γ,
1

|ΣP| · |V|2 + 1
;

then, lγ ≥ |ΣP|−1 · |V|−2.
In summary, Lemma 4.1 and Lemma 4.2 imply Theorem 4.5.

Theorem 4.5. Let Γ be a CSTN and let γ ∈ (0, |ΣP|−1 · |V|−2).
Then, Γ is π-DC if and only if Γ′γ is DC.
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This allows us to design a simple algorithm for solving π-DC-Checking, by
reduction to DC-Checking, which is named Check-π-DC() (Algorithm 11).
Its pseudocode follows below.

Algorithm 11: Check-π-DC(Γ)

Input: a CSTN Γ, 〈V, A, L,O,OV, P〉
1 γ← 1

|ΣP |·|V|2+1 ;

2 A′γ←
{
〈u− v ≤ δ + |V| · γ,`〉 | 〈u− v ≤ δ,`〉 ∈ A

}
;

3 Γ′γ← 〈V, A′γ, L,O,OV, P〉;
4 σ′γ← check DC(Γ′γ); // see Theorem 4.2

5 if σ′γ is a viable and dynamic ES for Γ′γ then
6 η← pick η ∈ [0,1) as in the proof of Lemma 4.2;
7 foreach (s,v) ∈ ΣP ×V+

s do
8 [σ′γ(s)]v← [σ′γ(s)]v − η; // shift by η;

9 let σ ∈ ΣΓ be constructed as follows;
10 foreach s ∈ ΣP do
11 foreach v ∈ V+

s do

12 [σ(s)]tv←
⌊
[σ′γ(s)]v

⌋
;

13 [σ(s)]π ← the ordering on P induced by σ′γ(s);

14 return 〈YES,σ〉;
15 return NO;

Algorithm 11: Checking π-DC by reduction to DC-Checking.

Description of Algorithm 11 It takes in input a CSTN Γ. When Γ is π-DC, it
aims at returning 〈YES,σ〉, where σ ∈ SΓ is a viable and π-dynamic π-ES for Γ.
Otherwise, if Γ is not π-DC, then Check-π-DC() (Algorithm 11) returns NO.
Of course the algorithm implements the reduction described in Definition 4.9,
whereas the π-ES is computed as prescribed by Lemma 4.2. At line 1, we
set γ← 1

|ΣP|·|V|2+1 . Then, at lines 2-3, Γ′γ is constructed as in Definition 4.9,

i.e., Γ′γ ← 〈V, A′γ, L,O,OV, P〉, where A′γ ←
{
〈u− v ≤ δ + |V| · γ,`〉 | 〈u− v ≤

δ,`〉 ∈ A
}

. At this point, at line 5, the DC-Checking algorithm of Theorem 4.2 is
invoked on input Γ′γ. Let σ′γ be its output. If Γ′γ is not DC, then Check-π-DC()
(Algorithm 11) returns NO at line 15. When σ′γ is a viable and dynamic ES
for Γ′γ at line 5, then Check-π-DC() (Algorithm 11) proceeds as follows. At
line 6, some η ∈ [0,1) is computed as in the proof of Lemma 4.2, i.e., such
that [σ′γ(s)]v − η − k ∈ [0, |V| · γ) holds for no v ∈ V, s ∈ ΣP,k ∈ Z. Notice that
it is easy to find such η in practice. Indeed, one may view the real semi-
open interval [0,1) as if it was partitioned into chunks (i.e., smaller semi-open
intervals) of length γ; as observed in the proof of Lemma 4.2, there are only
|ΣP| · |V| choices of pairs (s,v) ∈ ΣP × V, and each pair rules out a (circular)
semi-open interval of length |V| · γ; therefore, there is at least one chunk of
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length lγ ≥ |ΣP|−1 · |V|−2, within [0,1), where η can be placed, and we can
easily find it just by inspecting (exhaustively) the pairs (s,v) ∈ ΣP ×V. In fact,
the algorithm underlying Theorem 4.2 always deliver an earliest-ES (i.e., one
in which the time values are the smallest possible, in the space of all consistent
ESs), so that for each interval of length |V| · γ, the only time values that we
really need to check and rule out are |V| multiples of γ. Therefore, at line 6, η
exists and it can be easily found in time O(|ΣP| · |V|2). So, at line 7, for each
s ∈ ΣP and v ∈ V+

s , the value [σ′γ(s)]v is shifted to the left by setting [σ′γ(s)]v←
[σ′γ(s)]v − η. Then, the following π-ES σ ∈ SΓ is constructed at lines 9-13: for
each s ∈ ΣP and v ∈ V+

s , the execution-time is set [σ(s)]tv←
⌊
[σ′γ(s)]v

⌋
, and the

ordering [σ(s)]π follows the ordering on P that is induced by σ′γ(s). Finally,
〈YES,σ〉 is returned to output at line 14.

To conclude, we can prove the main result of this section.

Proof of Theorem 4.4. The correctness of Algorithm 11 follows directly from The-
orems 4.5 and 4.2, plus the fact that η ∈ [0,1) can be computed easily, at line 6,
as we have already mentioned above. The (pseudo) singly-exponential time
complexity of Algorithm 11 follows from that of Theorem 4.2 plus the fact that
all the integer weights in Γ are scaled-up by a factor 1/γ = |ΣP| · |V|2 + 1 in Γ′γ;
also notice that η ∈ [0,1) can be computed in time O(|ΣP| · |V|2), as we have al-
ready mentioned. Therefore, all in, the time complexity stated in Theorem 4.2
increases by a factor 1/γ = |ΣP| · |V|2 + 1. 2

4.4 Related Works
This section discusses of some related approaches offered in the current litera-
ture. The article of Tsamardinos, et al. [113] introduced DC for CSTNs. Subse-
quently, this notion has been analyzed and further formalized in [67], finally
leading to a sound notion of DC for CSTNs. However, neither of these two
works takes into account an instantaneous reaction-time. Cimatti, et al. [21]
provided the first sound-and-complete procedure for checking the Dynamic-
Controllability of CSTNs with Uncertainty (CSTNUs) and this algorithm can
be employed for checking DC on CSTNs as a special case. Their approach
is based on reducing the problem to solving Timed Game Automata (TGA).
However, solving TGAs is a problem of much higher complexity than solving
MPGs. Indeed, no upper bound is given in [21] on the time complexity of their
solution. Moreover, neither ε-DC nor any other notion of DC with an instanta-
neous reaction-time are dealt with in that work. The first work to approach a
notion of DC with an instantaneous reaction-time is [69]; its aim was to offer
a sound-and-complete propagation-based DC-checking algorithm for CSTNs.
The subsequent work [68] extended and amended [69] so that to check ε-DC,
both for ε > 0 and for ε = 0. However, to the best of our knowledge, the worst-
case complexity of those algorithms is currently unsettled. Moreover, it is not
clear to us how one variant of the algorithm offered in [68, 69] (i.e., the one
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that aims at checking DC with an instantaneous reaction-time) can adequately
handle cases like the CSTN counter-example Γ2 that we have provided in Ex-
ample 4.1. In summary, we believe that the present work can possibly help
in clarifying DC with an instantaneous reaction-time also when the perspec-
tive had to be that of providing sound-and-complete algorithms based on the
propagation of labelled temporal constraints.

4.5 Conclusion
The notion of ε-DC has been introduced and analysed in [34] where an al-
gorithm was also given to check whether a CSTN is ε-DC. By the interplay
between ε-DC and the standard notion of DC, also disclosed in [34], this de-
livered the first (pseudo) singly-exponential time algorithm checking whether
a CSTN is DC (essentially, DC-Checking reduces to ε-DC-Checking for a suit-
able value of ε). In this chapter, we proposed and formally defined π-DC, a
natural and sound notion of DC for CSTNs in which the planner is allowed to
react instantaneously to the observations that are made during the execution.
A neat counter-example shows that π-DC with instantaneous reaction-time is
not just the special case of ε-DC with ε = 0. Therefore, to conclude, we offer
the first sound-and-complete π-DC-Checking algorithm for CSTNs. The time
complexity of the procedure is still (pseudo) singly-exponential in |P|. The
solution is based on a simple reduction from π-DC-Checking to DC-Checking
of CSTNs.
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Part II

Infinite Games on Graphs

134



5 Linear Time Algorithm for Up-
date Games via Strongly-Trap-
Connected Components

Chapter Abstract

An arena is a finite directed graph whose vertices are divided into two classes,
i.e., V = V� ∪ V#; this forms the basic playground for a plethora of 2-player
infinite pebble games. In this chapter, we introduce and study a refined notion
of reachability for arenas, named trap-reachability, where Player � attempts to
reach vertices without leaving a prescribed subset U⊆V, while Player # works
against. It is shown that every arena decomposes into strongly-trap-connected
components (STCCs). Our main result is a linear time algorithm for comput-
ing this unique decomposition. Both the graph structures and the algorithm
generalize the classical decomposition of a directed graph into its strongly-
connected components (SCCs). The algorithm builds on a generalization of the
depth-first search (DFS), taking inspiration from Tarjan’s SCCs classical algo-
rithm. The structures of palm-trees and jungles described in Tarjan’s original
paper need to be revisited and generalized (i.e., tr-palm-trees and tr-jungles)
in order to handle the 2-player infinite pebble game’s setting.

This theory has direct applications in solving Update Games (UGs) faster.
Dinneen and Khoussainov showed in 1999 that deciding who’s the winner
in a given UG costs O(mn) time, where n is the number of vertices and m
is that of arcs. We solve that problem in Θ(m + n) linear time. The result is
obtained by observing that the UG is a win for Player � if and only if the arena
comprises one single STCC. It is also observed that the tr-palm-tree returned
by the algorithm encodes routing information that an Θ(n)-space agent can
consult to win the UG in O(1) time per move. Finally, the polynomial-time
complexity for deciding Explicit McNaughton-Müller Games is also improved,
from cubic to quadratic.
This chapter is a revised version of [39].
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5.1 Introduction

In the construction of reactive systems, like communication protocols or con-
trol systems, a central aim is to put the development of hardware and software
on a mathematical basis which is both firm and practical. A characteristic
feature of such systems is their perpetual interaction with the environment
as well as their non-terminating behaviour. The theory of infinite duration
games offers many appealing results under this prospect [61]. For instance,
consider the following communication network problem. Suppose we have
data stored on each node of a network and we want to continuously update
all nodes with consistent data: often one requirement is to share key informa-
tion between all nodes of a network, this can be done by having a data packet
of current information continuously going through all nodes. Unfortunately
not all routing choices are always under our control, some of them may be
controlled by the network environment, which could play against us. This is
essentially an infinite 2-player pebble game played on an arena, i.e., a finite di-
rected simple graph in which the vertices are divided into two classes, i.e., V�
and V#, where Player � wants to visit all vertices infinitely often by moving
the pebble on them, while Player # works against. This is called Update Game
(UG) in [10,45,46]. Dinneen and Khoussainov [45] showed that deciding who’s
the winner in a given UG costs O(mn) time, where n is the number of vertices
and m is that of the arcs.

Contribution and Organization. In Section 5.6, as a main result, the same
problem of deciding who’s the winner in a given UG is solved in Θ(m + n)
linear time; it is also observed that the graph structure returned by the algo-
rithm encodes routing information that an Θ(n)-space agent can consult to
win the UG in O(1) time per move. For this, in Section 5.2, we introduce
and study a refined notion of reachability for arenas, named trap-reachability,
where Player � attempts to reach vertices without leaving a prescribed subset
U ⊆ V, while Player # works against. In Section 5.3, it is shown that every
arena decomposes into strongly-trap-connected components (STCCs), and a linear
time algorithm for computing this unique decomposition is offered in Sec-
tion 5.5. Both the graph structures and the STCCs algorithm generalize the
classical decomposition of a directed graph into its strongly-connected compo-
nents (SCCs) [110]. The algorithm builds on a generalization of the depth-first
search (DFS), taking inspiration from Tarjan’s SCCs classical algorithm, the
structures of palm-trees and jungles described in Tarjan’s original paper [110]
need to be revisited and generalized (i.e., tr-palm-trees and tr-jungles) in order
to handle the 2-player infinite pebble game’s setting, this is done in Section 5.4.
With this, in Section 5.7, the polynomial-time complexity for deciding Explicit
McNaughton-Müller Games is also improved, from cubic to quadratic.
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5.1.1 Background and Notation
An arena is a tuple A, (V, A, (V�,V#)) where GA , (V, A) is a finite directed
simple graph (i.e., there are no loops nor parallel arcs) and (V�,V#) is a parti-
tion of V into the set V� of vertices owned by Player �, and the set V# of those
owned by Player #. Still GA is not required to be a bipartite graph on colour
classes V� and V#. The ingoing and outgoing neighbourhoods of u ∈ V are
Nin
A (u) , {v ∈ V | (v,u) ∈ A} and Nout

A (u) , {v ∈ V | (u,v) ∈ A}, respectively.
Disjoint-union is denoted by ∪· , e.g., V = V� ∪· V#.

A game onA is played for infinitely many rounds by moving a pebble along
the arcs, from one vertex to an adjacent one. Initially the pebble is located
on some vs ∈ V, this is the starting position. At each round, if the pebble is
currently on v ∈Vi, for some i ∈ {�,#}, Player i chooses an arc (v,v′) ∈ A; and
then the next round starts with the pebble on v′.

A finite (or infinite) path in GA is a sequence v0v1 . . . vn . . . ∈V∗ (or Vω) such
that ∀j≥0 (vj,vj+1) ∈ A; the length of v0v1 . . . vn is n. A play on A is any infinite
path in GA. A strategy for Player i, where i ∈ {�,#}, is a map σi : V∗ ×Vi→ V
such that for every finite path p′v in GA, where p′ ∈V∗ and v ∈Vi, it holds that
(v,σi(p′,v)) ∈ A. The set of all strategies of Player i in A is denoted by ΣAi . A
play v0v1 . . . vn . . . is consistent with some σ∈ΣAi if vj+1 = σ(v0v1 . . . vj) whenever
vj ∈ Vi. Given two strategies σ� ∈ ΣA� and σ# ∈ ΣA#, and some vs ∈ V, the
outcome play ρA(vs,σ�,σ#) is the (unique) play that starts at vs and is consistent
with both σ� and σ#. For any v ∈V, we denote by ρA(vs,σ�,σ#,v) the (unique)
prefix of ρA(vs,σ�,σ#) which ends at the first occurence of v, if any; otherwise,
ρA(vs,σ�,σ#,v) , ρA(vs,σ�,σ#). For any finite (or infinite) path p ∈ V∗ (or
p ∈ Vω), the alphabet of p is Ξ(p), {v ∈ V | v appears in p}.

Let T , (VT, AT) be an inward directed tree, rooted at rT ∈ VT. We simply
write u ∈ T for u ∈VT. For each u ∈ T, there is only one path pu going from u to
rT; the depth d(u) of u is the length of pu. An ancestor of u ∈ T is any v ∈ Ξ(pu);
it’s a proper ancestor if v 6= u, and it’s the parent πT(u) of u if (u,v) ∈ AT. The
children of u ∈ T are all the v ∈ T such that πT(v) = u. A descendant of u ∈ T
is any v ∈ T such that u ∈ Ξ(pv); it’s a proper descendant if v 6= u. A leaf of T
is any u ∈ T having no children, i.e., Nin

T (u) = ∅. The lowest common ancestor
(LCA) of a subset of vertices S ⊆ T is

γS , argmax
{

d(γ) | γ ∈ T and ∀s∈S s is a descendant of γ in T
}

.

The subtree of T that is rooted at u ∈ T is denoted by Tu. Given a LIFO stack
St containing some element v ∈ St, we denote by St(v) the set of all elements
u ∈ St going from the top of St down ’til the first occurence of v, extremes
included.

5.2 Trap-Reachability
Recalling palm-trees and jungles. In a seminal work of Tarjan [110] some
foundamental properties and applications of the depth-first search (DFS) were
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analyzed. Particularly, specific graph structures underlying the DFS were dis-
cussed in detail, namely palm-trees and jungles. This allowed the author to
provide a linear time procedure, nowadays known as Tarjan’s SCCs algorithm,
for computing strongly-connected components (SCCs) in finite directed simple
graphs.

Following [110], assume G is a finite directed simple graph that we wish
to explore. Initially all the vertices of G are unexplored. We start from some
vertex of G and choose an outgoing arc to follow. At each step, we select an
unexplored arc (leading from a vertex already reached) and explore (traverse)
that arc. When selecting an arc to explore, we always choose an arc emanating
from the vertex most recently reached which still has unexplored arcs. Travers-
ing the selected arc leads to some vertex, either new or already reached; if
already reached, we backtrack and select another unexplored arc. Whenever
we run out of arcs leading from old vertices, we choose some unreached ver-
tex, if any exists, and begin a new exploration from this point. Eventually, the
procedure will traverse all the arcs of G, each exactly once. This is a depth-first
search (DFS) of G; one may call it fwd-DFS, because at each step the chosen arc
is outgoing.

Recalling palm-trees from [110], consider in more detail what happens when
a DFS is performed on G. The set of arcs leading to an unexplored vertex,
when traversed during the search, forms an outward directed tree T. The
other arcs fall into four categories: (i) some arcs are running from ancestors
to descendants in T, these may well be ignored as they do not affect the SCCs
of G; still, (ii) some other arcs run from descendants to ancestors in T, these
are quite relevant instead, they are called fronds; (iii) other arcs run from one
subtree to another within the same tree T, these are internal cross-links; (iv)
suppose to continue the DFS until all arcs are explored, the process creates
a family of trees which contains all vertices of G, i.e., a spanning forest F of
G, plus sets of (fronds and) cross-links which may also connect two different
trees in F; these are external cross-links. It is easy to see that if the vertices of
G are numbered in the order in which they are reached during the search,
e.g., by idx : V→ {1, . . . , |V|}, then any (internal or external) cross-link (u,v)
always has idx[u] > idx[v]. Any tree T of F, comprising fronds and internal
cross-links, it is called palm-tree.

A directed graph consisting of a spanning forest, plus fronds and cross-
links, it is named jungle, i.e., a family of palm-trees plus external cross-links,
which is a natural representation of the graph-reachability structure of the
input graph G.

Rev-DFS, rev-palm-trees and rev-jungles. In this work we need to impose
an opposite direction w.r.t. that in which the arcs are traversed, so at each step
of the DFS one actually chooses an ingoing arc to follow instead of an outgoing
one. In this way, the corresponding search algorithm may be called rev-DFS. A
moment’s reflection reveals that this symmetric twist doesn’t affect the basic
properties of the DFS. For instance, if the vertices are numbered in the order
in which they are reached during the rev-DFS, e.g., by idx : V→ {1, . . . , |V|},
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exploration.

Figure 5.1: An arena (a), and a rev-palm-tree (b), generated by rev-DFS (c).

now a cross-link (u,v) always has idx[u] < idx[v]. So, a family of rev-palm-
trees is constructed during rev-DFS. Let us call rev-jungle the graph structure
underlying a rev-DFS, that is a family of rev-palm-trees comprising fronds and
cross-links.

Trap-Reachability. A trivial graph-reachability property holds in any rev-
palm-tree T = (VT, AT): for any u,v ∈ T such that v is an ancestor of u in T,
there exists a simple path from u to v in T, i.e., v is graph-reachable from u
in T. With this in mind, let’s explore an arena A = (V, A, (V�,V#)) by a rev-
DFS. Let JA be the resulting rev-jungle, and let TA be any rev-palm-tree of
JA. An example is depicted in Fig. 5.1a and the corresponding rev-palm-tree
TA is in Fig. 5.1b; notice, TA is still an arena. So, let’s consider reachability on
arenas, which is most relevant to 2-player infinite pebble games: given A, and
any two u,v ∈ V, we say that v is reachable from u in A if and only if there
is some σ� ∈ ΣA� (i.e., σ� = σ�(u,v)) such that for every σ# ∈ ΣA#, it holds v ∈
Ξ
(
ρA(u,σ�,σ#)

)
. Then, the rev-palm-tree TA, constructed as above, doesn’t

respect reachability: consider the two vertices F, B ∈ V� in the rev-palm-tree
TA shown in Fig. 5.1b; starting from F, Player � admits no strategy which
allows him to reach B, even though B is an ancestor of F in T; indeed, any play
starting from F must first reach D, at that point, if Player � plays (D, G) then
Player # can go back to F by playing (G, F), otherwise, if Player� plays (D,C),
then Player # can play (C, H) thus reaching H, and notice that once on H the
continuation of the play must reach D back again. So, starting from F, Player #
can prevent Player � to reach B. Thus we now aim at generalizing the classical
DFS, palm-trees and jungles, from directed graphs to arenas, in such a way as
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to preserve reachability within the (suitably adapted) palm-trees. Particularly,
a desirable “DFS on arenas” should maintain the following basic property: for
any (suitably adapted) palm-tree T, if u,v ∈ T and v is an ancestor of u in T,
there exists σ� ∈ ΣA� which allows Player � to eventually reach v starting from
u, without leaving T at the same time, no matter which σ# ∈ ΣA# is chosen by
Player #.

This is the genesis of trap-reachability.

Definition 5.1. Given an arena A on vertex set V, let U ⊆ V and u,v ∈ U. We say
that v is U-trap-reachable from u when there exists σ� ∈ ΣA� (i.e., σ� = σ�(u,v))
such that for every σ# ∈ ΣA#:

[reachability] v ∈ Ξ
(
ρA(u,σ�,σ#)

)
; and,

[entrapment] Ξ
(
ρA(u,σ�,σ#,v)

)
⊆U.

In this case, we denote σ� : u U; v, or u U; v when σ� is implicit; if U = V, σ� : u ; v
and u ; v will be enough notation.

Remark: Notice that any u ∈ U is always U-trap-reachable from itself, for
every U ⊆ V.

5.3 Strongly-Trap-Connectedness
In the rest of this work, A = (V, A, (V�,V#)) denotes the generic arena taken
as input.

Definition 5.2. We say that U ⊆ V is strongly-trap-connected when for every
(u,v) ∈U ×U there exists some σ� ∈ ΣA� (i.e., σ� = σ�(u,v)) such that:

σ� : u U; v.

Notice, ∅ and {v} are strongly-trap-connected for any v ∈ V.

Definition 5.3. A strongly-trap-connected component (STCC) is a maximal strongly-
trap-connected C ⊆ V (i.e., such that if C ⊆ C ′ and C ′ is strongly-trap-connected, then
C = C ′).

Next, we observe the following property concerning strongly-trap-connectedness.

Lemma 5.1. Let V1,V2 ⊆ V be strongly-trap-connected.
If V1 ∩V2 6= ∅, then V1 ∪V2 is strongly-trap-connected.

Proof. Pick some u,v ∈ V1 ∪ V2 and z ∈ V1 ∩ V2, arbitrarily. Since {u,z} ⊆ V1,
and since V1 is strongly-trap-connected, there exists some σ�(u,z) ∈ ΣA� such

that σ�(u,z) : u V1; z; similarly, there is σ�(z,v) ∈ ΣA� such that σ�(z,v) : z V2; v.
Then, consider the following σ�(u,v) ∈ ΣA� :

σ�(u,v),
{

(1) Starting from u, play σ�(u,z) until z is first reached; then,
(2) once on z, play σ�(z,v) until v is finally reached.
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Clearly, σ�(u,v) : u V1∪V2; v. Since u and v were chosen arbitrarily, then V1 ∪V2
is strongly-trap-connected. 2

Lemma 5.1 allows us to define and study an equivalence relation, i.e., ∼stc⊆
V ×V; it will turn out that the STCCs of A are the equivalence classes of ∼stc.

Definition 5.4. The binary relation ∼stc on V is defined as follows:

∼stc,
{
(u,v)∈V×V | ∃U⊆V such that U is strongly-trap-connected and {u,v}⊆U

}
.

Lemma 5.2. It holds that ∼stc is an equivalence relation on V.
So, let {Ci}k

i=1 be the distinct equivalence classes of ∼stc, for some k ∈N. Then,
the following holds.

1. If U ⊆ V is strongly-trap-connected and U ∩ Ci 6= ∅, then U ⊆ Ci;

2. Ci is strongly-trap-connected for each i ∈ [k];

3. Let U ⊆ V be strongly-trap-connected. Then, Ci ( U for no i ∈ [k].

Proof of (∼stc is an equivalence relation on V). To begin, (i) ∼stc is reflexive: for

any u∈V, let U, {u}; then, u U; u, so U is strongly-trap-connected; this shows
u∼stc u. (ii) ∼stc is symmetric, (actually, by definition): for any u,v ∈ V, assume
u ∼stc v; then, there exists some U ⊆ V which is strongly-trap-connected and
u,v ∈ U; so, the same set U certifies v ∼stc u. (iii) ∼stc is transitive: indeed,
for any a,b, c ∈ V, assume a ∼stc b and b ∼stc c. Since a ∼stc b, there exists
V1 which is strongly-trap-connected and such that a,b ∈ V1; similarly, there
exists V2 which is strongly-trap-connected and such that b, c ∈ V2. Consider
U,V1∪V2. Since b∈V1∩V2, and V1,V2 are both strongly-trap-connected, then
U is strongly-trap-connected by Lemma 5.1. Moreover, a, c ∈U. So, a ∼stc c. 2

Proof of (1). Since U ∩ Ci 6= ∅, let z ∈ U ∩ Ci. Let v ∈ U, arbitrarily. Since U is
strongly-trap-connected and z,v ∈ U, then v ∼stc z. Therefore, v ∈ Ci (because
z ∈ Ci, which is an equivalence class of ∼stc). 2

Proof of (2). Let u,v ∈ Ci, arbitrarily. Then, u∼stc v. So, there exists some U ⊆V
which is strongly-trap-connected and such that u,v ∈ U. Thus, u U; v. Notice,

u,v ∈ U ∩ Ci 6= ∅. Then, by Item 1 of Lemma 5.2, U ⊆ Ci. Since u U; v and

U ⊆ Ci, then u Ci; v. So, Ci is strongly-trap-connected. 2

Proof of (3). Assume that Ci ⊆ U, for some i ∈ [k], and some U ⊆ V which is
strongly-trap-connected. Then, since U ∩ Ci = Ci 6= ∅, by Item 1 of Lemma 5.2
we have U ⊆ Ci. So, Ci = U. 2
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Proposition 5.1. Let C ⊆ V, and consider the ∼stc relation on V. It holds that C is a
STCC of A if and only if C is an equivalence class of ∼stc.

Proof. (⇒) If C is a STCC of A, then C is strongly-trap-connected. So, u ∼stc v
for every u,v ∈ C. Then, C ⊆ C ′ holds for some equivalence class C ′ of ∼stc. By
Item 2 of Lemma 5.2, C ′ is strongly-trap-connected. Thus, by maximality, C is
not a proper subset of C ′. Therefore, C = C ′.

(⇐) If C is an equivalence class of ∼stc, then: C is strongly-trap-connected
by Item 2 of Lemma 5.2; and C is maximal by Item 3 of Lemma 5.2. Therefore,
C is a STCC of A. 2

5.4 TR-Depth-First-Search
In this section, a DFS algorithm for the exploration on arenas is designed. Its
rationale is that a new node u∈V is attached to the rT-rooted DFS-tree T under
formation as soon as trap-reachability of rT from u, within T itself, is already
guaranteed (rather than requiring the weaker graph-reachability of rT from u,
like rev-DFS would do on graphs). The algorithm is called Trap-Reachability-
Depth-First-Search (tr-DFS). The pseudo-code of tr-DFS() is given in Algo. 12,
and that of subprocedure tr-DFS-visit() is in Proc. 1.

Given A, tr-DFS(A) explores A so to construct another arena JA, like
rev-DFS constructs a jungle. The tr-DFS(A) (Algo. 12) is a generalization of
rev-DFS, in the sense that, if V# = ∅, it works as rev-DFS and JA coincides
with a Tarjan’s jungle. So, JA comprises a forest of trees, called tr-palm-trees,
with fronds and cross-links. Initially, four sets of arcs Atree, Afrond, Apetiole, Across
are initialized to ∅, then some arcs will be added to them during tr-DFS(A);
when tr-DFS(A) will halt, A′ ← Atree ∪· Afrond ∪· Apetiole ∪· Across will be the
arc set of JA. Let’s say u ∈ V joins JA precisely when (u,v) is added to Atree,
for some v ∈ V.

An index idx : V→ {1, . . . , |V|} numbers the vertices in the order in which
they join JA; initially, ∀u∈V idx[u]← +∞. Let’s say u ∈ V is visited if idx[u] <
+∞, and unvisited if idx[u] = +∞. Any u ∈ V� joins JA as soon as it is visited
by the search (see lines 6-8 of tr-DFS-visit(), Proc. 1); but the V#-rule (i.e.,
that allowing u∈V# to join JA) is more involved: any u∈V# joins JA as soon as
all u′ ∈ Nout

A (u) have already did it; and when u∈V# joins some tr-palm-tree P
of JA, with parent π (i.e., when u ∈ V# and (u,π) ∈ Atree for some π ∈ V), then
all arcs going out of u are tagged petiole-arcs; and π is the LCA of Nout

A (u) in P .
In fact, besides fronds and cross-links, tr-palm-trees have an additional class
of arcs, the petiole-arcs: these are those arcs thanks to which u ∈ V# can join
JA. By considering LCAs the V#-rule allows us to preserve trap-reachability,
as shown in Proposition 5.4. To implement the V#-rule, an additional counter
cnt : V#→N is employed, and the following invariant is maintained:

∀u∈V# cnt[u] =
∣∣{v ∈ Nout

A (u) | idx[v] = +∞}
∣∣, (Icnt)
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Algorithm 12: tr-Depth-First Search
Procedure tr-DFS(A)

input : An arena A = (V, A, (V#,V�)).
output: A tr-jungle JA.

1 Atree, Afrond, Apetiole, Across← ∅;
2 foreach u ∈ V do
3 idx[u]← +∞;
4 active[u]← false;
5 ready St[u]← ∅;
6 if u ∈ V# then
7 cnt[u]← |Nout

A (u)|;

8 next idx← 1;
9 foreach u ∈ V� do

10 if idx[u] = +∞ then
11 tr-DFS-visit(u,A);

12 foreach u ∈ V# do
13 if idx[u] = +∞ then
14 idx[u]← next idx;
15 next idx← next idx+ 1;

16 A′← Atree ∪· Afrond ∪· Apetiole ∪· Across;
17 return JA← (V, A′, (V�,V#));

Algorithm 12: The Trap-Reachability-Depth-First Search.
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also, for each u ∈ V, there’s a LIFO stack of vertices named ready St[u].

SubProcedure 1: tr-DFS-visit
Procedure tr-DFS-visit(v,A)

input : One vertex v ∈ V of A.
1 active[v]← true;
2 idx[v]← next idx;
3 next idx← next idx+ 1;

// Check the in-neighbourhood of v
4 foreach u ∈ Nin

A (v) do
5 if idx[u] = +∞ then
6 if u ∈ V� then
7 add (u,v) to Atree;
8 tr-DFS-visit(u,A);
9 else

10 cnt[u]← cnt[u]− 1;
11 if cnt[u] = 0 and ∃(LCA of Nout

A (u) in (V, Atree)) then
12 γ← the LCA of Nout

A (u) in (V, Atree);
13 ready St[γ].push(u);

14 else if active[u] = true then
15 add (u,v) to Afrond;
16 else add (u,v) to Across;

// Check the ready-stack of v, i.e., ready St[v]
17 while ready St[v] 6= ∅ do
18 u← ready St[v].pop(); // u ∈ V#
19 add (u,v) to Atree;
20 for each t ∈ Nout

A (u) do add (u, t) to Apetiole;
21 tr-DFS-visit(u,A);
22 active[v]← false;

Procedure 1: The TR-DFS Visit Procedure.

Initially, ∀u∈V ready St[u]← ∅ and ∀u∈V# cnt[u]← |Nout
A (u)| (lines 5-

7); then, cnt[u] is decremented whenever some v ∈ Nout
A (u) is visited. When

cnt[u] = 0 (at line 11 of tr-DFS-visit(v,A), Proc. 1), all v ∈ Nout
A (u) have

already joined JA: notice, if any two vertices in Nout
A (u) belong to two distinct

tr-palm-trees in JA, there would be no way to preserve trap-reachability, in case
u already joined JA, because Player # can always choose to move from u to any
of the two shafts, and the LCA γ of Nout

A (u) in (V, Atree) is undefined; still, if
all vertices in Nout

A (u) belong to the same tr-palm-tree, the LCA γ of Nout
A (u) in

(V, Atree) does exist; so, firstly we seek for the LCA γ, and if it exists, push u on
top of ready St[γ] (lines 11-13 of tr-DFS-visit(), Proc. 1). So doing, u ∈
V# joins JA as soon as tr-DFS-visit() backtracks, from the last v ∈ Nout

A (u)
that has been visited, up to γ (possibly γ = v): at that point, ready St[γ]
will be checked and emptied (lines 17-21), and u will be found there inside, so
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(u,γ) will be added to Atree (line 19); also, for each t ∈ Nout
A (u) the arc (u, t)

will be added to Apetiole, and tr-DFS-visit(u,A) will be invoked.
To classify the remaining arcs into fronds or cross-links, an additional

flag active : V → {true,false} is employed; initially, ∀u∈V active[u]←
false; then, active[u] is set to true when u is visited by the subproce-
dure tr-DFS-visit(u,A) (line 1), finally, active[u] is set back to false
when tr-DFS-visit(u,A) ends. During tr-DFS-visit(v,A), when some
u ∈ Nin

A (v) such that idx[u] 6=+∞ is explored, if active[u] = true then (u,v)
is added to Afrond, otherwise to Across.

There’s still one point which is worth mentioning. During tr-DFS(),
firstly, all u ∈ V� are considered, see lines 9-11 of tr-DFS() (Algo. 12); so,
for each unvisited u ∈ V�, tr-DFS-visit(u,A) is invoked; after that, for
each u ∈ V# which is still unvisited, it is assigned idx[u] incrementally, and
tr-DFS-visit(u,A) is not invoked anymore. Indeed, w.l.o.g we can assume
that ∀v∈V |Nout

A (v)| ≥ 2 holds, by pre-processing A as follows: for any v ∈ V, if
Nout
A (v) = ∅, remove v and all of its ingoing arcs; if Nout

A (v) = {v′}, add (u,v′)
to A for each u ∈ Nin

A (v), finally remove v and all of its arcs. So doing, even if
tr-DFS-visit(v,A) would’ve been invoked for some v ∈ V#, say at line 14
of tr-DFS(), there would’ve been no u ∈ V such that (u,v) ∈ Atree: consider
tr-DFS-visit() (Proc. 1), notice (u,v) could not have been added to Atree
neither at line 7 (because all u ∈ V� would’ve been already visited before at
that time) nor at line 19 (since ∀v∈V# |Nout

A (v)| ≥ 2, there would’ve been no way
for “∃ LCA of Nout

A (u) in (V, Atree)” at line 11). So, this way of going is fine.
Let us now analyze the complexity of tr-DFS() (Algo. 12).

Proposition 5.2. Given A, the tr-DFS(A) (Algo. 12) halts in time Θ
(
|V|+ |A|+

Time[LCA]
)
, and it works with space Θ

(
|V|+ |A|+ Space[LCA]

)
, where Time[LCA]

(Space[LCA]) is the aggregate total time (space) taken by all of the LCA computations
at lines 11-12 of tr-DFS-visit() (Proc. 1). Moreover, each v ∈ V is numbered by
idx exactly once.

Proof. Firstly notice that the init-phase (lines 1-7 of Algo. 12) takes Θ(|V| +
|A|) time. Secondly, Algo. 12 basically performs a sequence of invocations
to tr-DFS-visit(v,A) (Proc. 1), each one is for some v ∈ V. Any such
tr-DFS-visit(v,A) is invoked iff idx[v] = +∞, and then idx[v] is set to
some non-zero value at line 2. Thus, the total number of invocations of
tr-DFS-visit() (Proc. 1) is at most |V|; actually, by line 9 of tr-DFS()
(Algo. 12), it is exactly |V|; so, each vertex v ∈ V is numbered by idx : V →
{1, . . . , |V|} exactly once. Concerning time complexity, each invocation of the
subprocedure tr-DFS-visit(v,A) explores Nin

A (v) as follows: for each u ∈
Nin
A (v), the LCA of Nout

A (u) is computed at lines 11-12. Also, at the end of
tr-DFS-visit(v,A), the stack ready St[v] is emptied; still, due to the con-
dition cnt[u] = 0 that is checked at line 11 of tr-DFS-visit(), any u ∈ V#
can be pushed on ready St[v] at most once and for at most one v ∈ V. There-
fore, the Θ

(
|V|+ |A|+ Time[LCA]

)
time bound holds. Concerning space com-

plexity, a similar argument shows that the aggregate total space for storing
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{ready St[v]}v∈V is only O(|V|). Also, the total size of idx, active and
cnt is Θ(|V|), and that of A′ is Θ(|A|) (see line 16 of tr-DFS(), Algo. 12).
So, the working space is Θ

(
|V|+ |A|+ Space[LCA]

)
. 2

Next, we analyze the structure of the arena JA which is constructed by
tr-DFS(A) (Algo. 12).

Let’s start by formally defining tr-palm-trees. Some examples are shown in
Fig. 5.2 and Fig. 5.3.

Definition 5.5. A tr-palm-tree is a pair (P ,idx), where:
(i) P , (V, A, (V�,V#)) is an arena, where:

V , V� ∪· V# and A, Atree ∪· Afrond ∪· Apetiole ∪· Across;

(ii) idx : V→ {1 + j, . . . , |V|+ j}, for some fixed j ∈N, is a labelling of V;
(iii) the following four main properties hold:

(tr-pt-1) TP , (V, Atree) is an inward directed rooted tree such that:

(a) the root rTP of TP is controlled by Player �, i.e., rTP ∈ V�;

(b) idx[u] > idx[v] if (u,v) ∈ Atree;

(tr-pt-2) Each (u,v)∈ Afrond connects some u∈V� to one of its proper descendants v∈V
in TP ;

(tr-pt-3) Each (u,v) ∈ Apetiole connects some u ∈ V# to one of the descendants v of its
parent πTP (u) (i.e., possibly to πTP (u)); in particular, given any u ∈ V#, the
following hold:

(a) {v ∈ V | (u,v) ∈ Apetiole} ∪· {πTP (u)} = Nout
P (u);

(b) πTP (u) is the LCA of {v ∈ V | (u,v) ∈ Apetiole} in TP ;

(c) idx[u] > idx[v] for every v ∈ Nout
P (u).

(tr-pt-4) Each arc (u,v) ∈ Across connects some u ∈ V� to some v ∈ V such that:

(a) v is not a descendant of u in TP ;

(b) either v is a proper ancestor of u in TP or idx[u] < idx[v].

Definition 5.6. A tr-jungle is any arena J , (V, A, (V�,V#)) comprising a family
of tr-palm-trees {P i}k

i=1, for some k ∈N, and satisfying the following properties:
(tr-jn-1) ∀i∈[k] P i , (Vi, Ai, (Vi

�,Vi
#)), where Vi

� ⊆ V�,Vi
# ⊆ V#, Ai ⊆ A;

(tr-jn-2) ∀i,j∈[k] Vi ∩V j = ∅ if i 6= j;
(tr-jn-3) If (u,v) ∈ A for some u ∈ Vi and v ∈ V j such that i 6= j, then:

u ∈ Vi
� and i < j;

(tr-jn-4) If v ∈ V \⋃k
i=1 Vi, then v ∈ V# and Nout

J (v) ⊆ Vi for no i ∈ [k].
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(c) The order of arcs’
exploration.

Figure 5.2: An arena (a), and a tr-palm-tree (b), generated by tr-DFS (c).

Definition 5.7. Given a tr-palm-tree (P ,idx), for P = (V, A, (V�,V#)), A= Atree∪·
Afrond ∪· Apetiole ∪· Across, the support of P is the arena P∗, (V, A∗, (V�,V#)), where:
A∗ ,

{
(u,v) ∈ A | u ∈ V�

}
∪· Apetiole.

Notice that A∗ = A \
{
(u,v) ∈ Atree | u ∈ V#

}
holds by (tr-pt-3).

Given any tr-jungle J with tr-palm-trees’s family {P i}k
i=1, for some k ∈N, let

V ,V \⋃k
i=1 Vi (where Vi is the vertex set of P i). The support of J is the arena J∗

which is obtained from J by replacing P i with its support P i
∗, for every i ∈ [k], and

by leaving intact all the vertices in V and all the arcs (u,v) of J such that: either, (i)
u ∈ Vi and v ∈ V j for some i 6= j; or, (ii) u ∈ V or v ∈ V (possibly both of them).

Proposition 5.3. Let A = (V, A, (V�,V#)) be an arena. The following two proposi-
tions hold.

1. Let J be the arena constructed by tr-DFS(A) (Algo. 12). Then, J is a tr-jungle.

2. Let J be a tr-jungle with support J∗. Then, tr-DFS(J∗) (Algo. 12) constructs J

147



C B

AG

H D

EF

(a) An arena A.

A
1∗

B 2

C

n.a.

D n.a.

E 3

F
n.a.

G4

tree tree

tree

(b) The tr-palm-tree gener-
ated by a tr-DFS rooted at
A, with indices of vertices
and labelled arcs.

1.(B, A)

2.(D, B)

3.(E, A)

4.(F, E)

5.(G, A)

6.(C, G)

(c) The or-
der of arcs’
exploration.

A
1∗

B 2

C

n.a.

H

5∗

D n.a.

E 3

F n.a.

G4

tree tree

tree

(d) The tr-palm-tree gener-
ated by a tr-DFS rooted at
H.
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8.(D, H)

9.(F, H)

(e) The or-
der of arcs’
exploration.

A
1∗
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tree tree

tree

(f) The tr-palm-trees gener-
ated by an tr-DFS rooted at
C, D, F.

10.(B,C)

11.(E, D)

12.(G, F)

(g) The or-
der of arcs’
exploration.

A
1∗

B 2

C

6∗

H

5∗

D 7∗

E 3

F 8∗

G4

tree tree

tree

(h) The resulting tr-jungle,
which is generated by
multiple tr-DFSs rooted at
A, H,C, D and F.

Figure 5.3: An arena (a), and the construction of a tr-jungle (b-h).

itself, i.e., JJ∗ = J.

Proof of (1). Recall, tr-DFS(A) performs a sequence of invocations to the sub-
procedure tr-DFS-visit(·,A); by Proposition 5.2, each v ∈ V is numbered
by idx exactly once. Let k be the number of times that the subprocedure
tr-DFS-visit(ui,A) is invoked at line 11 of tr-DFS() (Algo. 12). For each
i = 1,2, . . . ,k, it holds ui ∈V� by line 9, then, let Vi ⊆V be the set of vertices that
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are numbered by idx during tr-DFS-visit(ui,A), recursive calls included.
Let Ai be the set of arcs that are added to any of Atree, Afrond, Apetiole, Across

during that same tr-DFS-visit(ui,A), and let Ai
t , {(a,b) ∈ Ai | a,b ∈ Vi}

and Ai
c , Ai \ Ai

t. Let P i , (Vi, Ai
t, (V� ∩Vi,V# ∩Vi)), and let idxi be the re-

striction of idx to Vi. It is not difficult to see that (P i,idxi) is a tr-palm-tree:
indeed, for each i ∈ [k], (P i,idxi) is constructed by tr-DFS-visit(ui,A) and
thus it satisfies (tr-pt-1) to (tr-pt-4), where any u ∈ V# joins P i according to: (i)
the checking of the cnt[u] = 0 condition at line 11, (ii) the LCA computation
at lines 11-12, (iii) the emptying of ready St[v] at lines 17-21; also recall that,
for every u ∈ V#, cnt[u] was initialized to |Nout

A (u)| at line 7 of tr-DFS()
(Algo. 12), and then cnt[u] is decremented at line 10 of tr-DFS-visit(v,A)
each time some v ∈ Nout

A (u) is visited; with this in mind, it is easy to check
that (tr-pt-1) to (tr-pt-4) are satisfied. Next, we claim that J is a tr-jungle with
tr-palm-tree family {P i}i∈[k]. Indeed, (tr-jn-1) and (tr-jn-2) clearly hold. Con-
cerning (tr-jn-3), let (u,v) ∈ A for some u ∈ Vi and v ∈ V j such that i 6= j; then
u ∈ Vi

�, because P i is a tr-palm-tree so that (tr-pt-3) holds for V#; also, i < j
since otherwise u would’ve joined P i at lines 6-8 of tr-DFS-visit(). Con-
cerning (tr-jn-4), let v ∈ V \ ⋃k

i=1 Vi, then v ∈ V# by lines 9-15 of tr-DFS();
also, Nout

J (v) ⊆ Vi holds for no i ∈ [k], otherwise v would’ve joined P i thanks
to lines 9-13 and 17-21 of tr-DFS-visit(). So J is a tr-jungle. 2

Proof of (2). Notice that J∗ is obtained from J simply by removing from the
tr-palm-trees of J all the arcs (u,v) ∈ Atree such that u ∈ V#. Consider the or-
dering <idx on V induced by the labelling idx of J, i.e., ∀a,b∈V a <idx b ⇐⇒
idx[a]< idx[b]. Construct an adjacency list of J∗ such that: (i) the main list of
vertices is ordered according to <idx; (ii) for each u ∈V, also Nin

J (u) is ordered
according to <idx. So doing, since J satisfies (tr-jn-1) to (tr-jn-4) and their tr-
palm-trees satisfy (tr-pt-1) to (tr-pt-4), then tr-DFS(J∗) (Algo. 12) reconstructs
J itself, i.e., that JJ∗ = J. 2

The next proposition shows that tr-jungles do respect trap-reachability.

Proposition 5.4. Let J be a tr-jungle with family of tr-palm-trees {P i}k
i=1, for some

k ∈N, assume that P i = (Vi, Ai, (Vi
�,Vi

#)) holds for each i ∈ [k]. There exists σ� ∈
ΣJ� (i.e., σ� = σ�(i)) such that, for any two vertices u,v ∈ Vi, if u is a descendant of

v in TP i , then: σ� : u Vi
; v.

Proof. By lines 9-11 of tr-DFS(), for every u ∈ V� there exists some iu ∈ [k]
such that u ∈ Viu .

Then, consider the strategy σ� ∈ ΣJ� (i.e., σ� = σ�(i)) defined as follows:

∀u∈V� σ�(u),
{

πTP iu
(u), if u is not the root of TP iu ;

any u′ ∈ Nout
J (u), if u is the root of TP iu .
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Let i ∈ [k] and u,v ∈Vi be fixed, arbitrarily. Recall that, by (tr-pt-1), the vertices
of TP i are numbered by idx so that idx[v]< idx[u] if v is a proper ancestor of
u in TP i . To prove the thesis, we argue by induction on the value of idx[u]. Let
z,minx∈Vi idx[x]. Assume idx[u] = z. Then, u = rTP i is the root of TP i . Since
u,v ∈ Vi and u is a descendant of v in TP i , then v = u; so, the thesis trivially
holds. Instead, assume idx[u]> z. Again, if u = v the claim holds trivially. So,
let u 6= v. Assume the thesis holds for every x ∈ Vi which is still a descendant
of v in TP i and such that idx[v] ≤ idx[x] < idx[u].

We have two cases to analyze, either u ∈ V� or u ∈ V#.
(i) If u ∈ V�, then σ�(u) = πTP i (u). By (tr-pt-1), idx[πTP i (u)] < idx[u].

Since πTP i (u) is the parent of u in TP i and u 6= v, then πTP i (u) is still a descen-

dant of v; thus, by induction hypothesis: σ� : πTP i (u)
Vi
; v. Therefore, since

σ� : u Vi
; πTP i (u) and σ� : πTP i (u)

Vi
; v, the thesis holds.

(ii) If u ∈ V#, firstly recall that by (tr-pt-3), πTP i (u) is the LCA of Λi(u) ,
{u′ ∈ V | (u,u′) ∈ Ai

petiole}; notice that Λi(u) = Nout
J∗ (u), where J∗ is the sup-

port of J . Fix u′ ∈ Nout
J∗ (u), arbitrarily. It holds that u′ is still a descendant of

πTP i (u) in TP i , because πTP i (u) is the LCA of Nout
J∗ (u). Thus, since πTP i (u) is a

descendant of v in TP i , then u′ is also a descendant of v in TP i . And, by item

(c) of (tr-pt-3), idx[u′] < idx[u]. Thus, by induction hypothesis, σ� : u′ Vi
; v.

Since u′ was chosen arbitrarily, then σ� : u Vi
; v. This concludes the inductive

step of the proof. So, in any case, σ� : u Vi
; v. 2

Still it remains to be seen how to perform the LCAs computations that
are needed at lines 11-12 of tr-DFS() (Proc. 1). In the next paragraph, we
suggest to adopt a disjoint-set forest data structure with non-ranked Union()
and path-compression Find().

LCAs by Disjoint-Set Forest. A disjoint-set forest (DSF) data structure, hereby
denoted by D, also called union-find data structure or merge-find set, is a data
structure that keeps track of a set of elements partitioned into a number of
disjoint (non-overlapping) subsets, each of which is represented by a tree.

It supports the following operations:
D.MakeSet(·), D.Union(·, ·) and D.Find(·), such that:
(dsf-1) The representative element of each set is the root of that set’s tree;
(dsf-2) MakeSet(v) initializes the parent of a vertex v ∈ V to be v itself;
(dsf-3) Union(u,v) combines two trees, T1 rooted at u and T2 rooted at v,

into a new tree T3 still rooted at v, i.e., by adding u as a child of v (non-ranked
union).

(dsf-4) Find(v), starting from v, it traverses the ancestors of v until the
root r of the tree containing v is finally reached. While doing this, it changes
each ancestor’s parent reference to point to r (path-compression); the resulting
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tree is much flatter, speeding up future operations, not only on these traversed
elements but also on those referencing them.

We can now describe how to perform the LCAs computations at lines 11-12
of tr-DFS-visit() (Proc. 1). We refer to the following procedure as to the
“DSF-based tr-DFS()”. We have a global DSF data structure named D. The
init-phase is almost the same as Algo. 12, the only additions being that, for
each v ∈ V:

(dsf-init-1) D.MakeSet(v) is executed;
(dsf-init-2) If v ∈ V#, an array low ready : V→N∪ {+∞} is initialized as

low ready[v]← +∞. Given A in input, the DSF-based tr-DFS(A) is going
to keep the following invariant property:

∀v∈V# low ready[v] = min
{
idx[u] | u ∈ Nout

A (v)
}

. (Ilow)

Next, the visit-phase begins as at lines 9-15 of tr-DFS() (Algo. 12): for each
v ∈ V�, if v is still unvisited (i.e., if idx[v] = +∞) then tr-DFS-visit(v,A)
is invoked. As soon as all V� vertices have been visited, then, all v ∈ V# that
are still unvisited are handled as at lines 12-15 of tr-DFS() (Algo. 12).

Also, the halting-phase is the same as before, see lines 16-17 of tr-DFS()
(Algo. 12).

Let us now describe the distinctive features of the DSF-based tr-DFS().
Let v ∈ V, then:

(dsf-visit-1) Whenever the DSF-based tr-DFS-visit(v,A) makes a recur-
sive call on some input vertex u ∈ Nin

A (v) ∪ ready St[v] (see lines 8 and 21 of
Proc. 1), soon after that, it is executed D.Union(u,v).

(dsf-visit-2) Suppose that the DSF-based tr-DFS-visit(v,A) is currently
exploring some v ∈ V, and that it comes to consider some u ∈ Nin

A (v) ∩V# (at
line 4 and 9). Then, low ready is updated as follows:

low ready[u]←min(low ready[u],idx[v]);

this aims at satisfying the Ilow invariant. Next, cnt[u] is decremented (as at
line 10 of Proc. 1).

If the condition cnt[u] = 0 holds (line 11 of Proc. 1), the following is done:
(a) It is assigned:

low v← “the unique x ∈ Nout
A (u) such that idx[x] = low ready[u]”;

(b) Then, it is computed γ←D.Find(low v);
(c) Then, if active[γ] = true, it is executed ready St[γ].push(u); in-

deed, in that case, we can prove (see Proposition 5.5) that the LCA of Nout
A (u)

in (V, Atree) does exist, and it is really γ.
The rest of the DSF-based tr-DFS-visit() is the same as Proc. 1.
This concludes the description of the DSF-based tr-DFS().
At this point we shall prove that the above mentioned property concerning

γ and LCAs holds.
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Proposition 5.5. Suppose that tr-DFS-visit(v,A) (DSF-based) is invoked, for
some v ∈ V, and that it comes to consider some u ∈ Nin

A (v) ∩ V# (at line 4 and 9).
Assume that idx[u] = +∞ at line 5 and that cnt[u] = 0 at line 11. Let γ be the
vertex returned by D.find(low v), where low v is the unique x ∈ V such that
idx[x] = low ready[u]. If active[γ] = true holds, then the LCA of Nout

A (u) in
(V, Atree) is γ.

Proof. Firstly, during the execution of the DSF-based tr-DFS(A), the (V, Atree)
still grows as a forest. Indeed, if a new arc (u,v) is added to Atree it holds
that idx[u] = +∞ (by line 5 of tr-DFS-visit()) and that idx[v] < +∞ (by
line 2 of tr-DFS-visit(v,A)); so, no cycle can be formed. Thus, when
tr-DFS-visit(v,A) is invoked for v ∈ V, we can consider the unique max-
imal tree T v in (V, Atree) which contains v (constructed up to that point). Let
pv be the path in T v going from v to the root rT v . By (dsf-visit-1), by definition
of low v, and since γ = D.find(low v) and active[γ] = true, then γ lies
on pv. Thus, γ is the LCA of low v and v in T v (possibly γ = low v). Next,
we argue that Nout

A (u)⊆ T v
γ , where T v

γ is the subtree of T v comprising all and
only the descendants of γ (i.e., the subtree of T v rooted at γ). Indeed, by
(dsf-visit-2), it holds that:

idx[low v] = min
{
idx[x] | x ∈ Nout

A (u)
}

.

So, when cnt[u] = 0 holds at line 11 of tr-DFS-visit(v,A), and since γ is
an ancestor of low v, then:

∀x∈Nout
A (u)idx[γ] ≤ idx[low v] ≤ idx[x] < +∞.

Notice that all vertices in T v which are not descendants of γ still have a smaller
idx than γ (i.e., they were all visited before γ), and all those which are proper
descendants of γ have a greater idx than γ. All these combined, it follows
Nout
A (u) ⊆ T v

γ . So, γ is a common ancestor of Nout
A (u) in T v; but γ is also the

LCA of {low v,v} ⊆ Nout
A (u), therefore, γ is really the LCA of Nout

A (u) in T v. 2

By Proposition 5.5, then, Proposition 5.3 holds even for the DSF-based
tr-DFS(). Concerning complexity, by relying on the result offered in [80],
we now show that the DSF-based tr-DFS() halts in linear time.

Definition 5.8 ( [80]). Let T = (V, A) be any rooted tree. Let u1, . . . ,uk be a path in
T listed from a leaf u1 in the direction towards the root of T (i.e., uk is some ancestor
of u1). The path compression C = (u1, . . . ,uk) is an operation that modifies T as
follows:

(i) It deletes from T all the arcs (ui,ui+1), for i = 1, . . . ,k− 1;

(ii) It makes each of the vertices ui, for i = 1, . . . ,k− 1, a new son of uk;

(iii) It deletes all new sons of uk of degree 1 which may occur (particularly, u1 is
deleted).

152



The vertex uk is called the root of C. We also say that C starts from u1. The length
of C is |C|, k− 1.

Any sequence S = (C1, . . . ,Cn) of path compressions on a tree T is called a strong
postorder path compression system (SPPCS) if and only if the following four prop-
erties hold:

(i) Each Ci is a path compression on the tree Ti obtained from T after that the path
compressions C1, . . . ,Ci−1 have been executed (where T1 = T);

(ii) Each leaf of T is a starting point of exactly one path compression of S;

(iii) (1,2, . . . ,n) is a linear ordering of all the n leaves of T induced by a fixed pos-
torder of T;

(iv) Let the root of a compression Ci, for any 2≤ i≤ n, be some vertex u of T. Then,
all the compressions Cj such that j < i and j ∈ Tu have roots in a descendant of
u in T.

The length of S is defined as |S|, ∑n
i=1 |Ci|.

Theorem 5.1 ( [80]). Let S be a SPPCS on a tree T with n leaves. Then, |S| ≤ 5 · n.

Proposition 5.6. Given A, assume that the DSF-based tr-DFS(A) is invoked.
Then, it halts in Θ

(
|V|+ |A|

)
time.

Proof. Recall that during the tr-DFS(), the graph (V, Atree) grows as a forest.
By (dsf-visit-1), that forest coincides with the DSF that is constructed by means
of the D.Union(·, ·) operations.

So, in order to rely on Theorem 5.1, let us consider the following directed
rooted tree T∗ , (VT∗ , AT∗):

VT∗ ,V ∪·
{

rT∗
}
∪·
{

l(u,v) | (u,v) ∈ A,u ∈ V#
}

;

AT∗ ,Atree ∪·
{
(rT ,rT∗) | T is a tree in (V, Atree) and rT is its root

}
∪·
{
(l(u,v),v) | l(u,v) ∈ VT∗

}
.

where rT∗ , l(u,v) 6∈ V for every l(u,v) ∈ VT∗ . Notice that rT∗ is the root of T∗ and
{l(u,v) ∈VT∗} is a subset of the leaves of T∗; so, for each u ∈V# and v ∈ Nout

A (u),
there is a new leaf l(u,v) attached to v in T∗. Also notice that |VT∗ | = 1 + |V|+
|{(u,v) ∈ A,u ∈ V#}| ≤ 1 + |V|+ |A| and |AT∗ |= |VT∗ | − 1. Now, observe that
each D.Find() operation, that is possibly made by tr-DFS(A), it is made only
by tr-DFS-visit(v,A) (for some v ∈ V) as prescribed by items (a) and (b) of
(dsf-visit-2) and only if cnt[u] = 0 holds at line 11, i.e., γ← D.Find(low v),
where low v is the unique x ∈ Nout

A (u) such that idx[x] = low ready[u], and
u ∈ V# ∩ Nin

A (v) at lines 9-10. Each of these D.Find() operations acts in a
natural manner on T∗: indeed, D.Find(low v) induces a path compression
Clow v on T∗, if we assume that Clow v starts at the leaf l(u,low v) and that it ter-
minates at γ (i.e., γ is the root of Clow v). Since γ←D.Find(low v) is executed
only if cnt[u] = 0 holds at line 11 of the subprocedure tr-DFS-visit(v,A),
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then each path compression on T∗ starts from a distinct leaf l(u,low v). It is
safe to assume that each leaf of T∗ is a starting point of exactly one path com-
pression, because for each leaf l′ of T∗ that has not been the starting point of
any path compression, we can impose a void path compression, i.e., one that
starts and terminates at l′. Then, we argue that the family of all path com-
pressions on T∗ that are induced by the whole execution of tr-DFS(A) is a
SPPCS: indeed, during the search, T∗ is (implicitly) visited in a post-ordering;
when some v ∈ V is visited, and some u ∈ Nin

A (v) ∩ V# is considered at line 4
of tr-DFS-visit(v,A), then the root γ of the path compression Clow v is
the LCA of {v,low v} in T∗ (as shown in Proposition 5.5). Thus, we argue
that (sppcs-4) holds. Assume some path compression Clow v′ was done before
Clow v and that low v′ ∈ T∗γ . So, idx[γ] < idx[low v′]. Also, by (dsf-visit-2),
Clow v′ was induced during tr-DFS-visit(v′,A), for some v′ ∈ V. Thus,
since Clow v′ was done before Clow v, then idx[v′] < idx[v]; and by definition
of low v′, then idx[low v′]< idx[v′]. Therefore, idx[γ]< idx[v′]< idx[v]<
+∞ holds when Clow v′ is performed. This means that v′ ∈ T∗γ . Since the root
γ′ of Clow v′ is the LCA of {v′,low v′} in T∗ (as shown in Proposition 5.5),
and since {v′,low v} ⊆ T∗γ , then γ′ ∈ T∗γ ; so, (sppcs-4) holds. At this point,
by Theorem 5.1, the total length of all path compressions that are induced by
tr-DFS() on T∗ is O(|VT∗ |) = O(|V|+ |A|). It is clear that the space required
for storing D is Θ(|V|+ |A|). So, also by Proposition 5.2, the complexity of the
DSF-based tr-DFS() is Θ(|V|+ |A|). 2

5.5 Linear Time Algorithm for STCCs
Lemma 5.3. Let C0, . . . ,Ck−1 ⊆ V be some STCCs of A, for some k ≥ 2. For each
i ∈ {0, . . . ,k − 1} fix some ui ∈ Ci, arbitrarily; and let i′ , (i + 1) mod k. As-
sume that the following tr-cycle (i.e., cyclic trap-reachability relation) holds for some
{σ�(ui,ui′)}k−1

i=0 ⊆ ΣA� :

σ�(ui,ui′) : ui
Ci∪{ui′}; ui′ , for each i = 0, . . . ,k− 1.

Then, Ci = Ci′ for every i ∈ {0, . . . ,k− 1}.

Proof. Let C∗ , ∪k−1
i=0 Ci. We argue that C∗ is strongly-trap-connected. Let x,y ∈

C∗ be fixed arbitrarily, where x ∈ Cix and y ∈ Ciy , for some ix, iy ∈ {0, . . . ,k− 1}.
If ix = iy, the following holds for some σ�(x,y) ∈ ΣA� (because Cix = Ciy is
strongly-trap-connected):

σ�(x,y) : x
Cix=Ciy

; y.

Otherwise, ix 6= iy. Then, σ�(x,uix) : x
Cix; uix for some σ�(x,uix) ∈ ΣA� (because

Cix is strongly-trap-connected). Next, this holds for each i = iix , iix + 1, . . . ,k−
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1,0,1, . . . , iy − 1 and for i′ , (i + 1) mod k:

σ�(ui,ui′) : ui
Ci∪{ui′}; ui′ .

Finally, σ�(uiy ,y) : uiy

Ciy
; y for some σ�(uiy ,y) ∈ ΣA� (because Ciy is strongly-

trap-connected). Therefore, by composition, there exists σ�(x,y) ∈ ΣA� such

that σ�(x,y) : x C∗; y; so C∗ is strongly-trap-connected. At this point, for every
i ∈ {0, . . . ,k− 1}, since Ci ⊆ C∗, since C∗ is strongly-trap-connected, and since
Ci is a STCC of A (so the maximality property mentioned in Def. 5.3 holds),
then, Ci = C∗. 2

Proposition 5.7. Let JA be the tr-jungle constructed by tr-DFS(A) (Algo. 12) (see
Proposition 5.3). Let {P i}k

i=1 be the tr-palm-tree’s family of JA, for some k ∈ N,
where P i , (Vi, Ai, (V� ∩ Vi,V# ∩ Vi)) and Ai , Ai

tree ∪· Ai
frond ∪· Ai

petiole ∪· Ai
cross;

also, F , (V,
⋃k

i=0 Ai
tree) is a forest by Defs. 5.5-5.6. Let C ⊆ V be any STCC of A.

Then, C induces a subtree TC in F (i.e., F[C] is an inward directed rooted tree).

Proof. By Proposition 5.2, each v ∈ V is numbered by idx exactly once. Let
v∗ , argminx∈C idx[x] be the first vertex v∗ ∈ C that is visited during the in-
vocation of tr-DFS(A) (Algo. 12). By Proposition 5.3 and Defs. 5.5-5.6, the
set of all vertices that are visited during the whole (i.e., including recursive
calls) execution of the subprocedure tr-DFS-visit(v∗,A) induces a subtree
Tv∗ , (VTv∗ , ATv∗ ) of F which is rooted at v∗; so, v∗ ∈ C ∩ Tv∗ 6= ∅.

Fact-1: C ⊆ Tv∗ . For the sake of contradiction, suppose C \ Tv∗ 6= ∅. Then,
since C is strongly-trap-connected, there exists û ∈ C \ Tv∗ such that one of the
following two holds: either (i) û ∈ V� and there exists u′ ∈ Nout

A (û) such that
u′ ∈ C ∩ Tv∗ ; or (ii) û ∈ V# and for all u′ ∈ Nout

A (û) it holds that u′ ∈ C ∩ Tv∗ .
Also notice, since v∗ , argminx∈C idx[x], then idx[v∗] < idx[û]; thus û was
not visited before v∗. All these combined, by definition of tr-DFS-visit()
(Proc. 2) and since T∗v is a subtree of F, it must be that û is visited and that
it joins F during the execution of tr-DFS-visit(v∗,A); so, û ∈ Tv∗ . But this
contradicts our assumption û ∈ C \ Tv∗ . Therefore, C \ Tv∗ = ∅; so, C ⊆ Tv∗ .

Fact-2: If u ∈ C \ {v∗} and u′ , πTv∗ (u), then u′ ∈ C. Indeed, since u ∈ C
and C ⊆ Tv∗ , then u is a descendant of v∗ in Tv∗ . Since u 6= v∗, then u′ is also
a descendant of v∗ in Tv∗ . Thus, by Proposition 5.4, there exists some σ� ∈ ΣA�
such that:

σ� : u
Tv∗; u′ and σ� : u′

Tv∗; v∗;

thus, since u,v∗ ∈ C and C is a STCC, then u′ ∈ C holds by Lemma 5.3.
By (fact-1) and (fact-2), C induces a tree TC in F (i.e., TC is a subtree of Tv∗

still rooted at v∗). 2

Definition 5.9. The root v∗ of the tree TC (as in the proof of Proposition 5.7) is the
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root of the STCC C.

The problem of computing the STCCs of any arena A reduces to that of
finding the roots of the STCCs; just as the classical problem of finding the
SCCs of a directed graph reduced to that of finding the roots of the SCCs. We
have identified a simple test to determine if a vertex is the root of a STCC. It
is based on a lowlink indexing, generalizing the lowlink calculation performed
by Tarjan’s SCC algorithm [110].

Definition 5.10. Let JA be the tr-jungle constructed by tr-DFS(A) (Algo. 12).
Let idx : V→ {1, . . . , |V|} be the indexing computed during that execution, and let
{P i}k

i=1 be the tr-palm-tree’s family of JA, for some k ∈N, where P i , (Vi, Ai, (V� ∩
Vi,V# ∩Vi)) and Ai , Ai

tree ∪· Ai
frond ∪· Ai

petiole ∪· Ai
cross; also, F, (V,

⋃k
i=0 Ai

tree) is a
forest by Defs. 5.5-5.6.

Given any v ∈ V, the tr-lowlink : V→N is defined as follows:

tr-lowlink(v),min
({

idx[v]
}
∪·

∪·
{
idx[u] | u ∈ V \ {v} and ∃i∈[k] such that the following two hold:

(tr-ll-1) ∃t≥1∃(u,v1,...,vt−1,(vt=v))∈(Vi)+such that:

(a) (u,v1) ∈ Afrond ∪· Across;

(b) if t ≥ 2,∀j∈{1,...,t−1} it holds (vj,vj+1) ∈ Atree.

(tr-ll-2) ∃γ∈Vi such that:

(a) γ is a common ancestor of u and v in (Vi, Ai
tree);

(b) γ and u are in the same STCC of A.})
.

If v ∈ V, Nin
A,LCA(v), {u ∈ Nin

A (v) | the LCA γ of {u,v} in F exists and γ ∈ Cu}.

Let us prove some useful properties of tr-lowlink() and Nin
A,LCA.

Proposition 5.8. Let A,idx, F and tr-lowlink() be as in Def. 5.10. Given any v ∈ V:

1. If tr-lowlink(v) = idx[u] for some u ∈ V \ {v} such that (tr-ll-1) and (tr-ll-2)
hold, then u ∈ V�.

2. tr-lowlink(v) = min
{
idx[v]

}
∪·
{
idx[u] | u ∈ Nin

A,LCA(v)
}
∪·

∪·
{

tr-lowlink(u) | u is a child of v in F
}

.

Proof of (1). By Item (a) of (tr-ll-1), it holds (u,v1) ∈ Afrond ∪· Across. Recall that
(u,v1) can be added to Afrond ∪· Across only at lines 15-16 of the subprocedure
tr-DFS-visit(v1,A) (Proc. 1). So, u was visited before v1. Still, u ∈ Nin

A (v1)
by Item (a) of (tr-ll-1); then, it is not possible that u ∈ V#, because any x ∈ V#
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can join F only if cnt[x] = 0 holds at line 11 of tr-DFS-visit() (Proc. 1),
and u was visited before v1 and yet it joined F. Therefore, u ∈ V�. 2

Proof of (2). Assume that tr-lowlink(v) = idx[u] for some u ∈V \ {v} such that
(tr-ll-1) and (tr-ll-2) hold. Then, ∃t≥1∃(u,v1,...,vt−1,(vt=v))∈(Vi)+ as in Def. 5.10. If
t = 1, then v1 = v; so, u ∈ Nin

A,LCA(v) (it is easy to see that, if (tr-ll-2) holds
for some common ancestor of {u,v} in F, then it holds for the LCA). If t > 1,
then v1 is a proper descendant of v in F. At this point, it is easy to check
tr-lowlink(v) = idx[u] = tr-lowlink(v1) = tr-lowlink(c) holds for some child c
of v in F, indeed, this follows from Def. 5.10 and Proposition 5.7. 2

Similarly to Tarjan’s lowlink based algorithm [110], the tr-lowlink(v) is thus
the smallest index of any vertex u which is in the same STCC as v and such
that u can reach v by traversing: at most one frond (i.e., Ai

frond) or cross-link
(i.e., Ai

cross) arc by item (a) of (tr-ll-1), then, zero or more tree (i.e., Ai
tree) arcs by

item (b) of (tr-ll-1).
What follows is of a pivotal importance for computing STCCs by relying

on tr-lowlinks.

Proposition 5.9. Let JA be the tr-jungle constructed by tr-DFS(A) (Algo. 12), and
let idx : V→{1, . . . , |V|} be the indexing constructed during that execution. Finally,
let tr-lowlink : V→N be as in Def. 5.10.

For any v ∈ V, it holds that v is the root of some STCC of A if and only if
tr-lowlink(v) = idx[v].

Proof. Let v ∈ V. By Proposition 5.7, the STCC Cv induces a subtree TCv in F.
Let v∗ be the root of TCv .

(⇒) Assume v = v∗. Then, we argue there can be no u ∈ V \ {v} such that
tr-lowlink(v) = idx[v], i.e., such that idx[u] < idx[v] and both (tr-ll-1) and
(tr-ll-2) (see Def. 5.10) hold on u. For the sake of contradiction, assume the
existence of such an u. Then, since idx[u] < idx[v] and v is the root of TCv , it
would be u 6∈ Cv. By (tr-ll-1) (Def. 5.10), there exists a path 〈u,v1, . . . ,vt−1, (vt =
v)〉 in A, for some t ≥ 1, such that (u,v1) ∈ Afrond ∪· Across and, if t ≥ 2,
∀j∈{1,...,t−1} it holds that (vj,vj+1) ∈ Atree. Also, by (tr-ll-2) (Def. 5.10), there
exists a common ancestor γ of u and v in (V, Atree), and γ ∈ Cu. All these
combined, by Proposition 5.4 and Lemma 5.3 (applied to the tr-cycle vγuv), it
would be Cv = Cu. This is absurd, because u ∈ Cu and u 6∈ Cv. Indeed, there is
no such u. Therefore, tr-lowlink(v) = idx[v].

(⇐) Assume v 6= v∗. Since Cv is strongly-trap-connected and v,v∗ ∈ Cv, then
v∗; v. Let Tv be the subtree of TCv that is rooted at v. Since v∗; v, there exists
some u∈V \VTv (possibly, u = v∗) and some v1 ∈ Tv (possibly, v1 = v) such that:
(i) v∗; u and u ; v1; plus, (ii) (u,v1)∈ Afrond ∪· Across. Since u 6∈ Tv and v1 ∈ Tv,
and since (u,v1) ∈ Afrond ∪· Across, then u ∈ V� and idx[u]< idx[v]. Moreover,
since v∗ ; u ; v1 ; v, and finally (by Proposition 5.4) v ; v∗, then u is in the
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same STCC as {v∗,v1,v} (by Lemma 5.3, applied to the tr-cycle v∗uv1vv∗); i.e.,
u ∈ Cv. Thus, u satisfies both (tr-ll-1), (tr-ll-2), so tr-lowlink(v) ≤ idx[u]; and
since idx[u] < idx[v], then tr-lowlink(v) < idx[v]. 2

When tr-lowlink(v) = idx[v] holds, as in Proposition 5.9, we say that v
is a fixpoint of tr-lowlink(); so, given any arena A, the roots of the STCCs of A
are exactly the fixpoints of tr-lowlink().

Our algorithm for decomposing A into STCCs is described next, it is based
on the DSF-based tr-DFS() (see Algo. 12); still, it has some additional and
distinctive features:

(1) All vertices that have already been reached during the tr-DFS(), but
whose STCC has not yet been completely identified, are stored on a stack St;

(2) The stack St is (partially) emptied, and a brand new STCC C is com-
pletely identified, when the tr-lowlink’s fixpoint condition tr-lowlink(v) =
idx[v] is met (see Proposition 5.9).

(3) The STCC algorithm does not build any tr-jungle’s forest F explicitly
(i.e., there is no real need to keep track of Atree, Afrond, Apetiole, Across); still, a
tr-jungle’s forest F is defined implicitly, by the sequence of vertices that are
visited and backtracked during the search process.

It will be convenient to consider this tr-jumgle during the proof of correct-
ness, so let us refer to the corresponding (implicitly constructed) F as to the
STCC forest (recall that it would have been F , (V, Atree) in Algo. 12).

The STCCs main procedure is called compute-STCCs(), it takes in input
an arena A, and it aims at printing out all the STCCs C1, . . . ,Ck of A (w/o
repetitions). A procedure named STCCs-visit() is also employed. The
pseudo-code is given in Algo. 13 and Proc. 2, respectively.

The initialization phase goes from line 1 to 9 of Algo. 13. The visit-phase
starts by setting next idx← 1 and St← ∅ (lines 10-18 of Algo. 13). Firstly,
V� is considered: for each unvisited u ∈ V�, STCCs-visit(u,A) is invoked.
Then, all the u ∈ V# which are still unvisited are handled as in Algo. 12.

Consider STCCs-visit(v,A) (Proc. 2), for v ∈ V. This is similar to the
DSF-based implementation of tr-DFS-visit() (Proc. 1), the significant changes
going as follows. Initially, v is pushed on top of St and on Stack[v]← true
is set (lines 4-5).

Then, each time STCCs-visit(u,A) is invoked recursively (line 9 and 25),
for some u ∈ Nin

A (v):

tr-lowlink[v]←min(tr-lowlink[v],tr-lowlink[u])

is updated and D.Union(u,v) is executed.
When exploring Nin

A (v) (line 6): If u∈Nin
A (v)∩V# is unvisited (i.e., idx[u] =

+∞), and if cnt[u] = 0 holds, we seek for the LCA γ of Nout
A (u) in F, as in

the DSF-based implementation of tr-DFS-visit(); but then u is pushed on
ready St[γ] if and only if on Stack[γ] = true (i.e., there’s no active array
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Algorithm 13: Computing STCCs
Procedure compute-STCCs(A)

input : An arena A = (V, A, (V#,V�)).
output: The STCCs of A.

1 foreach u ∈ V do
2 idx[u]← +∞;
3 tr-lowlink[u]← +∞;
4 on Stack[u]← false;
5 D.make set(u);
6 ready St[u]← ∅;
7 if u ∈ V# then
8 low ready[u]← +∞;
9 cnt[u]← |Nout

A (u)|;

10 next idx← 1; St← ∅;
11 foreach u ∈ V� do
12 if idx[u] = +∞ then
13 STCCs-visit(u,A);

14 foreach u ∈ V# do
15 if idx[u] = +∞ then
16 idx[u]← next idx;
17 next idx← next idx+ 1;
18 ta lowlink[u]← idx[u];

Algorithm 13: Computing STCCs
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to make this decision anymore). Else, if u ∈ Nin
A (v) has been already visited

(i.e., if idx[u] 6= +∞), and if on Stack[u] = true, then tr-lowlink[v]←
min(tr-lowlink[v],idx[u]) is updated (lines 20-21).

After that, anyway, ready St[v] is emptied and checked as in the DSF-
based tr-DFS-visit() (see lines 22-27). Finally, if tr-lowlink[v] = idx[v]
(see Proposition 5.9), a new STCC C is constructed: so, yet another vertex u is
removed from St and added to C, until u = v; soon after that, C is printed out.
This concludes the description of the STCCs algorithm (Algo. 13).

SubProcedure 2: The STCCs-visit() procedure.
Procedure STCCs-visit(v,A)

input : A vertex v ∈ V.
1 idx[v]← next idx;
2 tr-lowlink[v]← next idx;
3 next idx← next idx+ 1;
4 St.push(v);
5 on Stack[v]← true

// Check the in-neighbourhood of v
6 foreach u ∈ Nin

A (v) do
7 if idx[u] = +∞ then
8 if u ∈ V� then
9 STCCs-visit(u,A);

10 tr-lowlink[v]←min(tr-lowlink[v],tr-lowlink[u]);
11 D.Union(u,v);

12 else
13 low ready[u]←min(low ready[u],idx[v]);
14 cnt[u]← cnt[u]− 1;
15 if cnt[u] = 0 then
16 low v← the unique x such that idx[x] = low ready[u];
17 γ←D.find(low v);
18 if on Stack[γ] = true then
19 ready St[γ].push(u);

20 else if on Stack[u] = true then
21 tr-lowlink[v]←min(tr-lowlink[v],idx[u]);

// Check the ready-stack of v, i.e., ready St[v]
22 while ready St[v] 6= ∅ do
23 u← ready St[v].pop(); // u ∈ V#
24 if ∀(x ∈ Nout

A (u))on Stack[x] = true then
25 SCCs-visit(u,A);
26 tr-lowlink[v]←min(tr-lowlink[v],tr-lowlink[u]);
27 D.union(u,v);

// Check whether a new STCC has to be constructed and printed to output
28 if tr-lowlink[v] = idx[v] then
29 C ← ∅;
30 repeat
31 u← St.pop();
32 on Stack[u]← false;
33 add u to C;
34 until u = v
35 output(C);
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5.5.1 Proof of Correctness of Algo. 13
Firstly, we need to prove that Algo. 13 computes tr-lowlink() correctly.

Proposition 5.10. Assume compute-STCCs(A) (Algo. 13) is invoked.
When it halts, it holds that ∀v∈V tr-lowlink[v] = tr-lowlink(v).

Proof. Let us say that v is active from when STCCs-visit(v,A) is invoked ’til
it halts; and from when STCCs-visit(v,A) finally halts hereafter, we say that
v is deactivated. So, let (v1, . . . ,vi, . . . ,v|V|) be the order in which the vertices in
V are deactivated during compute-STCCs(A) (Algo. 13).

For every v ∈ V, let’s define:

Nin
A,St(v),

{
u ∈ Nin

A (v) | u ∈ St at line 22 of STCCs-visit(v,A) (Proc. 2)
}

.

The proof proceeds by induction on i = 1, . . . , |V|. Let F be the corresponding
STCC forest.

Base Case: i = 1. Notice that v1 is a leaf of some tr-palm-tree in F. In this
case, tr-lowlink[v1] can be assigned only at line 21 of STCCs-visit(v1,A),
particularly, as follows:

tr-lowlink[v1] = min{idx[v1]} ∪ {idx[u] | u ∈ Nin
A,St(v1)}. (eq. 1)

Since v1 is the first vertex in V which is ever deactivated (particularly, v1 is a
leaf in F), then:

Nin
A,St(v1) =

{
u ∈ Nin

A (v1) | u is a proper ancestor of v1 in F
}

, (eq. 2)

for the same reason, plus Item 1 of Proposition 5.8, it holds that:

tr-lowlink(v1) = min
{
idx[v1]} ∪· {idx[u] | u ∈ Nin

A (v1) ∩ Cv1 ∩V�
}

. (eq. 3)

Observe, since v1 is a leaf of F, and by (eq. 2) plus lines 8-11 of STCCs-visit(v1,A)
(Proc. 2), it holds that Nin

A (v1) ∩ Cv1 ∩ V� ⊆ Nin
A,St(v1); also, by (eq. 2) and

Proposition 5.4, Nin
A,St(v1) ⊆ Nin

A (v1) ∩ Cv1 ∩ V�. Then, Nin
A (v1) ∩ Cv1 ∩ V� =

Nin
A,St(v1). Therefore, by (eq. 1) and (eq. 3), tr-lowlink[v1] = tr-lowlink(v1).

Inductive Step: i > 1. In this case, tr-lowlink[vi] can be assigned either at
line 2 or 10 or 21 or 26 of STCCs-visit(vi,A), particularly, as follows:

tr-lowlink[vi] = min
{
idx[v1]

}
∪·
{
idx[u] | u ∈ Nin

A,St(v)
}
∪·

∪·
{
tr-lowlink[u] | u is a child of v in F

}
.

On the other side, let:

Nin
A,LCA(vi), {u ∈ Nin

A (vi) | the LCA γ of {u,vi} in F exists and γ ∈ Cu},
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then the following holds by Item 2 of Proposition 5.8:

tr-lowlink(vi) = min
{
idx[vi]

}
∪·
{
idx[u] | u ∈ Nin

A,LCA(vi)
}

∪·
{

tr-lowlink(u) | u is a child of vi in F
}

.

Notice that, if u is a child of vi in F, then compute-STCCs(A) deactivates
u before vi. Thus, by induction hypothesis, tr-lowlink[u] = tr-lowlink(u)
holds for every child u of vi in F that is considered either at line 10 or 26 of
STCCs-visit(vi,A). To finish the proof, we need to show that Nin

A,St(vi) =

Nin
A,LCA(vi). For this, let’s recall the following facts. (i) Any vertex v ∈ V can

be added to St only at line 4 of STCCs-visit(v,A). (ii) Any vertex can be
removed from St only at line 31 of STCCs-visit(v,A), for some v ∈ V, and
only if tr-lowlink[v] = idx[v] at line 28; this (possibly) happens only after
that Nin

A (v) has been fully explored at lines 6-21. With this in mind, we can
proceed.

• Firstly, we show Nin
A,St(vi) ⊆ Nin

A,LCA(vi). Let u ∈ Nin
A,St(vi). Then, u and

vi lie within the same tr-palm-tree in F: this is easily seen by induction
on the number of tr-palm-trees of F. Then u is a proper ancestor of vi
in F, i.e., γ = u; thus, γ ∈ Cu. So, the LCA γ of {u,vi} in F exists if
u is still active at line 22 of STCCs-visit(vi,A). Otherwise, u has al-
ready been deactivated when STCCs-visit(vi,A) reaches line 22 (so,
γ 6= u); in this case, also every ancestor of u that is a proper descendant
of γ in F has already been deactivated before. So, by induction hypothe-
sis, tr-lowlink[v̂] = tr-lowlink(v̂) for every ancestor v̂ of u that is also
proper descendant of γ in F. On the other hand, since u ∈ St at line 22
of STCCs-visit(vi,A), all those v̂ (including u) can’t be already been
removed from St when STCCs-visit(vi,A) reaches line 22. There-
fore, by lines 28-33 of STCCs-visit(), by Proposition 5.9, and since
tr-lowlink[v̂] = tr-lowlink(v̂) for all of those v̂, then none of those v̂
can be the root of some STCC of A. Thus, γ ∈ Cu. So, u ∈ Nin

A,LCA(vi).

• Secondly, we show Nin
A,LCA(vi) ⊆ Nin

A,St(vi). Let u ∈ Nin
A,LCA(vi), and

let γ ∈ Cu be the LCA of {u,vi} in F. If u is still active at line 22 of
STCCs-visit(vi,A), u is a proper ancestor of vi in F (i.e., γ = u); so, u ∈
Nin
A,St(vi). Otherwise, u has already been deactivated when STCCs-visit(vi,A)

reaches line 22 (so, γ 6= u); also, in this case, every ancestor of u that is
also a proper descendant of γ in F has already been deactivated before.
So, by induction hypothesis, tr-lowlink[v̂] = tr-lowlink(v̂) for every
ancestor v̂ of u that is also proper descendant of γ in F; but, then, since
γ ∈ Cu, all those v̂ (including u) can’t be already been removed from St
when STCCs-visit(vi,A) reaches line 22. Therefore, u ∈ Nin

A,St(vi).

So, Nin
A,St(vi) = Nin

A,LCA(vi). 2
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Proposition 5.11. Assume that compute-STCCs(A) (Algo. 13) is invoked, and
that STCCs-visit(v,A) (Proc. 2) outputs C ⊆ V at line 35, for some v ∈ V. Then,
C = Cv.

Proof. Notice that STCCs-visit(v,A) outputs C at line 35 if and only if
tr-lowlink[v] = idx[v] holds at line 28; assume such a condition holds.
Recall tr-lowlink[u] = tr-lowlink(u) for every u ∈ V, by Proposition 5.10.
We argue that C = Cv. Indeed, C = St(v) by lines 28-33 of STCCs-visit(v,A)
(Proc. 2). Firstly, Cv ⊆ St(v): in fact, by Proposition 5.7, Cv induces a subtree
TCv in F (i.e., the STCC forest) which is rooted at v, so all vertices in Cv must
have been inserted into St at this point; and notice no vertex of Cv could have
been removed earlier, as removals happen only at the root v of TCv (by Propo-
sition 5.9 and lines 28-33 of STCCs-visit()). Secondly, St(v) ⊆ Cv: indeed,
assume u 6∈ Cv has been inserted into St after v, then u is a descendant of v
in F, and since Cu induces a subtree TCu in F, then u must have been removed
from St when the root of TCu was visited, i.e., before that STCCs-visit(v,A)
reaches line 28. Therefore, St(v) = Cv; and since C = St(v), then C = Cv. 2

Proposition 5.12. Let C ⊆ V be some STCC of A. Then, compute-STCCs(A)
(Algo. 13) eventually outputs C at line 35.

Proof. By Proposition 5.7, C induces a sub-tree TC in F; then, let v∗ be its root.
When STCCs-visit(v∗,A) is invoked, then:

tr-lowlink[v∗] = tr-lowlink(v∗) = idx[v∗]

holds at line 28 by Propositions 5.9 and 5.10.
Then, Cv∗ is outputted at line 35, by lines 28-33 and Proposition 5.12. 2

In summary, we obtain the following result.

Theorem 5.2. Let A be an arena, compute-STCCs(A) (Algo. 13) outputs all and
only the STCCs of A.

5.6 Application to Update Games
An Update Game (UG) [10,45,46] is played on an arena A for an infinite number
of rounds, a play is thus an infinite path p = v0v1v2 . . .∈Vω such that (vi,vi+1)∈
A for every i ∈N. Let Inf(π) be the set of all and only those vertices v ∈ V
that appear infinitely often in π; namely,

Inf(π),
{

v ∈ V | ∀j∈N ∃k∈N such that k > j and vk = v
}

.

Player � wins the UG A iff there exists σ� ∈ ΣA� such that, for every σ# ∈ ΣA#,
every vertex is visited infinitely often in the play consistent with σ� and σ#,
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independently w.r.t. the starting position vs ∈ V; namely,

∀vs∈V Inf
(
ρA(vs,σ�,σ#)

)
= V;

otherwise, Player # wins. When Player � wins an UG A, we say that A is an
Update Network (UN) [10, 45, 46].

Proposition 5.13. An UG A is UN if and only if V is strongly-trap-connected.

Proof. If A is UN, then V is strongly-trap-connected (it follows directly from
definitions). Let i′ , (i + 1) mod |V| for every i ∈ {0, . . . , |V| − 1}. Conversely,
if V = {vi}|V|−1

i=0 is strongly-trap-connected, for every i there exists σ�(i) ∈ ΣM
�

such that σ�(i) : vi ; vi′ . Starting from any vi, Player � can visit infinitely
often all vertices in V simply by playing σ�(i),σ�(i′),σ�((i′)′), . . . in cascade;
therefore, A is UN. 2

So, we obtain the following main result.

Theorem 5.3. Deciding whether a given UG A is UN takes Θ(|V|+ |A|) time.

Proof. On input A, invoke compute-STCCs(A) (Algorithm 13), and return
YES if A has only one STCC; otherwise, A has at least two STCCs, so return
NO. By Theorem 5.2 and Proposition 5.13, this correctly decides whether A is
UN. By Proposition 5.6, the decision is made in Θ(|V|+ |A|) time. 2

Also, when the input UG is UN, Algorithm 13 is able to provide a winning
strategy as shown next.

Theorem 5.4. Algorithm 13 can be implemented so that, when compute-STCCs(A)
halts, and if the UG A is UN, it is returned a tr-palm-tree encoding routing infor-
mation that an O(|V|)-space agent can consult to win the UG A in O(1) time per
move.

Proof. During the execution of compute-STCCs(A) (Algorithm 13), construct
the STCC forest F = (VF, AF) explicitly, as follows: VF =V; wheneverD.Union(u,v)
is executed at line 11 or line 27 of STCCs-visit(v,A), add (u,v) to AF (tree-
arcs); also, if on Stack[u] = true holds at line 20 of STCCs-visit(v,A), add
(u,v) to AF (cross-links). Define σ� ∈ Σ� as follows: for each u ∈ V�, the arcs
(u,v) ∈ AF exiting from u are selected one at a time, one after the other; and
when they have all been traversed once, the selection starts again, cyclically.
Since A is UN, then A has only one single STCC by Proposition 5.13, so F
comprises only one single tr-palm-tree TF. We argue that, if A is UN, then σ�
allows Player � to win the UG A. Let vs be any starting position. For any
σ# ∈ Σ# and I , Inf

(
ρA(vs,σ�,σ#)

)
, it is not possible that I ( V: there can be

no tree-arc nor cross-link going from some vertex u ∈ I ∩V� to some vertex in
V \ I (otherwise such an arc would have eventually been selected by σ�); and
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there can be no u ∈ I ∩V# such that Nout
A (u)⊆ V \ I. Thus, all vertices in V \ I

are descendants in TF of some of those in I; but, since they are all descendants,
there must be at least one cross-link going from I to in V \ I (because A has
only one single STCC), which is a contradiction. Therefore, I = V. Notice the
size of TF is |TF| = |VTF | + |ATF | = O(|V|), and σ� can be implemented with
O(|V|) additional memory (the total number of cross-links in TF is less than
|V|); so, σ� can be implemented with O(|V|) space. By handling pointers in a
suitable way, the time spent for each single move of σ� is O(1). 2

5.7 Application to Explicit McNaughton-Müller Games
McNaughton-Müller Games (MGs) provide a useful model for the synthesis of
controllers in reactive systems, but their complexity depends on the represen-
tation of the winning conditions [66]. The most straightforward way to rep-
resent a (regular; see [66]) winning condition F ⊆ 2V is to provide an explicit
list of subsets of vertices, i.e., F = {Fi ⊆ V | 1≤ i≤ `}, for some ` ∈N. A play
ρ ∈ Vω is winning for Player � if and only if Inf(ρ) ∈ F . So, Explicit MGs (E-
MGs) can be solved in polynomial time, where an effective algorithm is given
in [66]. Concerning time complexity, given an input arena A and explicit win-
ning condition F , there are at most |F | loops in a run of that algorithm, and
the most time consuming operation at each iteration is to decide an UG of size
at most |A|+ |F |. By Theorem 5.3, we can decide such an UG in Θ(|A|+ |F |)
time. So the E-MG algorithm given in [66] is improved by a factor |A|+ |F |
(i.e., from cubic to quadratic time). In summary, we obtain the following result.

Theorem 5.5. Deciding the winner in a given E-MG (A,F ) takes time:

O
(
|F | · (|A|+ |F |)

)
.

5.8 Conclusion
This work presented an algorithm for solving Update Games in linear time.
With this, also the polynomial-time complexity of deciding Explicit McNaughton-
Müller Games improves, from cubic to quadratic. The result was obtained
by: (a) introducing a refined notion of reachability for arenas, named trap-
reachability; (b) showing that every arena decomposes into strongly-trap-connected
components (STCCs); (c) devising a linear time algorithm for computing this
unique decomposition.

We expect that trap-reachability, and the corresponding linear time STCCs’
decomposition, can play a role for speeding up computations in other prob-
lems concerning infinite 2-player pebble games.

Future works will likely investigate further on this way.
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6 Improved Pseudo-Polynomial
Upper Bound for the Value Prob-
lem and Optimal Strategy Syn-
thesis in Mean Payoff Games

Chapter Abstract

In this chapter we offer a Θ(|V|2|E|W) pseudo-polynomial time and Θ(|V|)
space deterministic algorithm for solving the Value Problem and Optimal
Strategy Synthesis in Mean Payoff Games. This improves by a factor log(|V|W)
the best previously known pseudo-polynomial time upper bound due to Brim, et
al. The improvement hinges on a suitable characterization of values, and a de-
scription of optimal positional strategies, in terms of reweighted Energy Games
and Small Energy-Progress Measures.

start

v
?
∈W0(Γprev(i,j)) ∩W1(Γi,j)

w−W,1 w−W,2 w−W,3 · · · wprev(i,j) wi,j · · ·
· · ·

wW−1,s−1 wW,1

An illustration of the main MPG algorithm presented in Chapter 6.

This chapter is a revised version of [35, 38].
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6.1 Introduction
A Mean Payoff Game (MPG) is a two-player infinite game Γ, (V, E,w, 〈V0,V1〉),
played on a finite weighted directed graph, denoted GΓ, (V, E,w), the vertices
of which are partitioned into two classes, V0 and V1, according to the player
to which they belong. It is assumed that GΓ has no sink vertex and that the
weights of the arcs are integers, i.e., w : E→ {−W, . . . ,0, . . . ,W} for some W ∈
N.

At the beginning of the game a pebble is placed on some vertex vs ∈ V,
and then the two players, named Player 0 and Player 1, move the pebble ad
infinitum along the arcs. Assuming the pebble is currently on Player 0’s vertex
v, then he chooses an arc (v,v′) ∈ E going out of v and moves the pebble to the
destination vertex v′. Similarly, assuming the pebble is currently on Player 1’s
vertex, then it is her turn to choose an outgoing arc. The infinite sequence
vs,v,v′ . . . of all the encountered vertices is a play. In order to play well, Player 0
wants to maximize the limit inferior of the long-run average weight of the tra-
versed arcs, i.e., to maximize liminfn→∞

1
n ∑n−1

i=0 w(vi,vi+1), whereas Player 1
wants to minimize the limsupn→∞

1
n ∑n−1

i=0 w(vi,vi+1). Ehrenfeucht and Myciel-
ski [49] proved that each vertex v admits a value, denoted valΓ(v), which each
player can secure by means of a memoryless (or positional) strategy, i.e., a strat-
egy that depends only on the current vertex position and not on the previous
choices.

Solving an MPG consists in computing the values of all vertices (Value Prob-
lem) and, for each player, a positional strategy that secures such values to that
player (Optimal Strategy Synthesis). The corresponding decision problem lies in
NP ∩ coNP [123] and it was later shown by Jurdziński [70] to be recognizable
with unambiguous polynomial time non-deterministic Turing Machines, thus
falling within the UP∩ coUP complexity class.

The problem of devising efficient algorithms for solving MPGs has been
studied extensively in the literature. The first milestone was that of Gurvich,
Karzanov and Khachiyan [64], in which they offered an exponential time al-
gorithm for solving a slightly wider class of MPGs called Cyclic Games. Af-
terwards, Zwick and Paterson [123] devised the first deterministic procedure
for computing values in MPGs, and optimal strategies securing them, within
a pseudo-polynomial time and polynomial space. In particular, Zwick and Pa-
terson established an O(|V|3|E|W) upper bound for the time complexity of
the Value Problem, as well as O(|V|4|E|W log(|E|/|V|)) for that of Optimal
Strategy Synthesis [123].

Recently, several research efforts have been spent in studying quantitative
extensions of infinite games for modeling quantitative aspects of reactive sys-
tems [12, 14, 18]. In this context quantities may represent, for example, the
power usage of an embedded component, or the buffer size of a network-
ing element. These studies have brought to light interesting connections with
MPGs. Remarkably, they have recently led to the design of faster procedures
for solving them. particularly, Brim, et al. [14] devised faster deterministic algo-
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rithms for solving the Value Problem and Optimal Strategy Synthesis in MPGs
in O(|V|2|E|W log(|V|W)) pseudo-polynomial time and polynomial space.

To the best of our knowledge, this is the tightest pseudo-polynomial upper
bound on the time complexity of MPGs which is currently known.

Indeed, a wide spectrum of different approaches have been investigated
in the literature. For instance, Andersson and Vorobyov [1] provided a fast
sub-exponential time randomized algorithm for solving MPGs, whose time com-

plexity can be bounded as O(|V|2|E| exp(2
√
|V| ln(|E|/

√
|V|) + O(

√
|V| +

ln |E|))). Furthermore, Lifshits and Pavlov [79] devised an O(2|V| |V| |E| logW)
singly-exponential time deterministic procedure by considering the potential the-
ory of MPGs.

These results are summarized in Table 7.1.

Table 6.1: Complexity of the main Algorithms for solving MPGs.

Algorithm Value Problem
Optimal
Strategy
Synthesis

Note

This work Θ(|V|2|E|W) Θ(|V|2|E|W) Determ.

[14] O(|V|2|E|W log(|V|W)) O(|V|2|E|W log(|V|W)) Determ.

[123] Θ(|V|3|E|W) Θ(|V|4|E|W log |E||V| ) Determ.

[79] O(2|V| |V| |E| logW) n/a Determ.

[1] O
(
|V|2|E| e

2
√
|V| ln

(
|E|√
|V|

)
+O(
√
|V|+ln |E|))

same complexity Random.

6.1.1 Contribution
The main contribution of this chapter is to provide a Θ(|V|2|E|W) pseudo-
polynomial time and Θ(|V|) space deterministic algorithm for solving the Value
Problem and Optimal Strategy Synthesis in MPGs. As already mentioned in
the introduction, the best previously known procedure has a deterministic time
complexity of O(|V|2|E|W log(|V|W)), which is due to Brim, et al. [14]. In this
way we improve the best previously known pseudo-polynomial time upper
bound by a factor log(|V|W). This result is summarized in the following
theorem.

Theorem 6.1. There exists a deterministic algorithm for solving the Value Problem
and Optimal Strategy Synthesis of MPGs within Θ(|V|2|E|W) time and Θ(|V|)
space, on any input MPG Γ = (V, E,w, 〈V0,V1〉). Here, W = maxe∈E |we|.

In order to prove Theorem 6.1, this work points out a novel and suitable
characterization of values, and a description of optimal positional strategies,
in terms of certain reweighting operations that we will introduce later on in
Section 6.2.
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In particular, we will show that the optimal value valΓ(v) of any vertex v
is the unique rational number ν for which v “transits” from the winning region
of Player 0 to that of Player 1, with respect to reweightings of the form w− ν.
This intuition will be clarified later on in Section 6.3, where Theorem 6.3 is
formally proved.

Concerning strategies, we will show that an optimal positional strategy
for each vertex v ∈ V0 is given by any arc (v,v′) ∈ E which is compatible
with certain Small Energy-Progress Measures (SEPMs) of the above mentioned
reweighted arenas. This fact is formally proved in Theorem 6.4 of Section 6.3.

These novel observations are smooth, simple, and their proofs rely on ele-
mentary arguments. We believe that they contribute to clarifying the interest-
ing relationship between values, optimal strategies and reweighting operations
(with respect to some previous literature, see e.g. [14, 79]). Indeed, they will
allow us to prove Theorem 6.1.

6.1.2 Organization
This chapter is organized as follows. In Section 6.2, we introduce some nota-
tion and provide the required background on infinite two-player games and
related algorithmic results. In Section 6.3, a suitable relation between values,
optimal strategies, and certain reweighting operations is investigated. In Sec-
tion 6.4, a Θ(|V|2|E|W) pseudo-polynomial time and Θ(|V|) space algorithm,
for solving the Value Problem and Optimal Strategies Synthesis in MPGs, is
designed and analyzed by relying on the results presented in Section 6.3. In
this manner, Section 6.4 actually provides a proof of Theorem 6.1 which is our
main result in this work.

6.2 Background and Notation
We denote by N, Z, Q the set of natural, integer, and rational numbers (re-
spectively). It will be sufficient to consider integral intervals, e.g., [a,b], {z ∈
Z | a ≤ z ≤ b} and [a,b), {z ∈Z | a ≤ z < b} for any a,b ∈Z.

Weighted Graphs. Our graphs are directed and weighted on the arcs. Thus,
if G = (V, E,w) is a graph, then every arc e ∈ E is a triplet e = (u,v,we), where
we = w(u,v) ∈ Z is the weight of e. The maximum absolute weight is W ,
maxe∈E |we|. Given a vertex u∈V, the set of its successors is post(u) = {v∈V |
(u,v) ∈ E}, whereas the set of its predecessors is pre(u) = {v ∈ V | (v,u) ∈ E}.
A path is a sequence of vertices v0v1 . . . vn . . . such that (vi,vi+1) ∈ E for every
i. We denote by V∗ the set of all (possibly empty) finite paths. A simple path
is a finite path v0v1 . . . vn having no repetitions, i.e., for any i, j ∈ [0,n] it holds
vi 6= vj whenever i 6= j. The length of a simple path ρ = v0v1 . . . vn equals n
and it is denoted by |ρ|. A cycle is a path v0v1 . . . vn−1vn such that v0 . . . vn−1
is simple and vn = v0. The length of a cycle C = v0v1 . . . vn equals n and it
is denoted by |C|. The average weight of a cycle v0 . . . vn is 1

n ∑n−1
i=0 w(vi,vi+1).

A cycle C = v0v1 . . . vn is reachable from v in G if there exists a simple path
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p = vu1 . . . um in G such that p ∩ C 6= ∅.

Arenas. The reader is referred to Chapter 1, section 1.4, in order to recall
the notion of arena. Here, that of reweighting (or reweighted arena) is formal-
ized, as follows. For any weight function w,w′ : E → Z, the reweighting of
Γ = (V, E,w, 〈V0,V1〉) w.r.t. w′ is the arena Γw′ = (V, E,w′, 〈V0,V1〉). Also, for
w : E→Z and any ν ∈Z, we denote by w + ν the weight function w′ defined
as w′e , we + ν for every e ∈ E. Indeed, we shall consider reweighted games
of the form Γw−q, for some q ∈ Q. Notice that the corresponding weight func-
tion w′ : E→ Q : e 7→ we − q is rational, while we required the weights of the
arcs to be always integers. To overcome this issue, it is sufficient to re-define
Γw−q by scaling all the weights by a factor equal to the denominator of q ∈ Q,
namely, to re-define: Γw−q , ΓD·w−N , where N, D ∈N are such that q = N/D
and gcd(N, D) = 1. This re-scaling will not change the winning regions of the
corresponding games, and it has the significant advantage of allowing for a
discussion (and an algorithmics) which is strictly based on integer weights.

Mean Payoff Games. A Mean Payoff Game (MPG) [14,49,123] is a game played
on some arena Γ for infinitely many rounds by two opponents, Player 0 gains
a payoff defined as the long-run average weight of the play, whereas Player 1
loses that value. Formally, the Player 0’s payoff of a play v0v1 . . . vn . . . in Γ is
defined as follows:

MP0(v0v1 . . . vn . . .), liminf
n→∞

1
n

n−1

∑
i=0

w(vi,vi+1).

The value secured by a strategy σ0 ∈ Σ0 in a vertex v is defined as:

valσ0(v), inf
σ1∈Σ1

MP0
(
outcomeΓ(v,σ0,σ1)

)
,

Notice that payoffs and secured values can be defined symmetrically for the
Player 1 (i.e., by interchanging the symbol 0 with 1 and inf with sup).

Ehrenfeucht and Mycielski [49] proved that each vertex v ∈ V admits a
unique value, denoted valΓ(v), which each player can secure by means of a
memoryless (or positional) strategy. Moreover, uniform positional optimal strate-
gies do exist for both players, in the sense that for each player there exist at
least one positional strategy which can be used to secure all the optimal val-
ues, independently with respect to the starting position vs. Thus, for every
MPG Γ, there exists a strategy σ0 ∈ ΣM

0 such that valσ0(v)≥ valΓ(v) for every
v ∈ V, and there exists a strategy σ1 ∈ ΣM

1 such that valσ1(v) ≤ valΓ(v) for
every v ∈ V. Indeed, the (optimal) value of a vertex v ∈ V in the MPG Γ is given
by:

valΓ(v) = sup
σ0∈Σ0

valσ0(v) = inf
σ1∈Σ1

valσ1(v).

Thus, a strategy σ0 ∈ Σ0 is optimal if valσ0(v) = valΓ(v) for all v ∈ V. A
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strategy σ0 ∈ Σ0 is said to be winning for Player 0 if valσ0(v) ≥ 0, and σ1 ∈ Σ1
is winning for Player 1 if valσ1(v) < 0. Correspondingly, a vertex v ∈ V is a
winning starting position for Player 0 if valΓ(v)≥ 0, otherwise it is winning for
Player 1. The set of all winning starting positions of Player i is denoted by Wi
for i ∈ {0,1}.
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Figure 6.1: An MPG on Γ, played from left to right, whose payoff equals −1+1
2 =

0.

A finite variant of MPGs is well-known in the literature [14, 49, 123]. Here,
the game stops as soon as a cyclic sequence of vertices is traversed (i.e., as
soon as one of the two players moves the pebble into a previously visited
vertex). It turns out that this finite variant is equivalent to the infinite one [49].
Specifically, the values of an MPG are in relationship with the average weights
of its cycles, as stated in the next lemma.

Lemma 6.1 (Brim, et al. [14]). Let Γ = (V, E,w, 〈V0,V1〉) be an MPG. For all ν ∈Q,
for all positional strategies σ0 ∈ ΣM

0 of Player 0, and for all vertices v ∈ V, the value
valσ0(v) is greater than ν if and only if all cycles C reachable from v in the projection
graph GΓ

σ0
have an average weight w(C)/|C| greater than ν.

The proof of Lemma 6.1 follows from the memoryless determinacy of
MPGs. We remark that a proposition which is symmetric to Lemma 6.1 holds
for Player 1 as well: for all ν ∈ Q, for all positional strategies σ1 ∈ ΣM

1 of
Player 1, and for all vertices v ∈ V, the value valσ1(v) is less than ν if and only
if all cycles reachable from v in GΓ

σ1
have an average weight less than ν.

Also, it is well-known [14, 49] that each value valΓ(v) is contained within
the following set of rational numbers:

SΓ =

{
N
D

∣∣∣∣ D ∈ [1, |V|], N ∈ [−D W, D W]

}
.

Notice that |SΓ| ≤ |V|2W.
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This chapter tackles on the algorithmics of the following two classical prob-
lems:

• Value Problem. Compute valΓ(v) for each v ∈ V.

• Optimal Strategy Synthesis. Compute an optimal σ0 ∈ ΣM
0 .

Previously, the asymptotically fastest pseudo-polynomial time algorithm
for solving both problems was a deterministic procedure whose time com-
plexity has been bounded as O(|V|2|E|W log(|V|W)) [14]. This result has
been achieved by devising a binary-search procedure that ultimately reduces
the Value Problem and Optimal Strategy Synthesis to the resolution of yet an-
other family of games known as the Energy Games. Even though we do not
rely on binary-search in the present work, and thus we will introduce some
truly novel ideas that diverge from the previous solutions, still, we will reduce
to solving multiple instances of Energy Games. For this reason, the Energy
Games are recalled in the next paragraph.

Energy Games and Small Energy-Progress Measures. An Energy Game (EG)
is a game that is played on an arena Γ for infinitely many rounds by two op-
ponents, where the goal of Player 0 is to construct an infinite play v0v1 . . . vn . . .
such that for some initial credit c ∈N the following holds:

c +
j

∑
i=0

w(vi,vi+1) ≥ 0, for all j ≥ 0. (6.1)

Given a credit c ∈N, a play v0v1 . . . vn . . . is winning for Player 0 if it satisfies
(1), otherwise it is winning for Player 1. A vertex v ∈ V is a winning starting
position for Player 0 if there exists an initial credit c ∈N and a strategy σ0 ∈ Σ0
such that, for every strategy σ1 ∈ Σ1, the play outcomeΓ(v,σ0,σ1) is winning
for Player 0. As in the case of MPGs, the EGs are memoryless determined [14],
i.e., for every v ∈V, either v is winning for Player 0 or v is winning for Player 1,
and (uniform) memoryless strategies are sufficient to win the game. In fact,
as shown in the next lemma, the decision problems of MPGs and EGs are
intimately related.

Lemma 6.2 (Brim, et al. [14]). Let Γ = (V, E,w, 〈V0,V1〉) be an arena. For all thresh-
old ν ∈ Q, for all vertices v ∈ V, Player 0 has a strategy in the MPG Γ that secures
value at least ν from v if and only if, for some initial credit c ∈N, Player 0 has a
winning strategy from v in the reweighted EG Γw−ν.

In this work we are especially interested in the Minimum Credit Problem
(MCP) for EGs: for each winning starting position v, compute the minimum
initial credit c∗ = c∗(v) such that there exists a winning strategy σ0 ∈ ΣM

0 for
Player 0 starting from v. A fast pseudo-polynomial time deterministic proce-
dure for solving MCPs comes from [14].
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Theorem 6.2 (Brim, et al. [14]). There exists a deterministic algorithm for solving the
MCP within O(|V| |E|W) pseudo-polynomial time, on any input EG (V, E,w, 〈V0,V1〉).

The algorithm mentioned in Theorem 6.2 is the Value-Iteration algorithm an-
alyzed by Brim, et al. in [14]. Its rationale relies on the notion of Small Energy-
Progress Measures (SEPMs). These are bounded, non-negative and integer-
valued functions that impose local conditions to ensure global properties on
the arena, in particular, witnessing that Player 0 has a way to enforce conserva-
tivity (i.e., non-negativity of cycles) in the resulting game’s graph. Recovering
standard notation, see e.g. [14], let us denote CΓ = {n ∈N | n ≤ |V|W} ∪ {>}
and let � be the total order on CΓ defined as x � y if and only if either y = >
or x,y ∈N and x ≤ y.

In order to cast the minus operation to range over CΓ, let us consider an
operator 	 : CΓ ×Z→ CΓ defined as follows:

a	 b,
{

max(0, a− b) , if a 6= > and a− b ≤ |V|W;
a	 b = > , otherwise.

Given an EG Γ on vertex set V =V0∪V1, a function f : V→CΓ is a Small Energy-
Progress Measure (SEPM) for Γ if and only if the following two conditions are
met:

1. if v ∈ V0, then f (v) � f (v′)	 w(v,v′) for some (v,v′) ∈ E;

2. if v ∈ V1, then f (v) � f (v′)	 w(v,v′) for all (v,v′) ∈ E.

The values of a SEPM, i.e., the elements of the image f (V),are called the
energy levels of f . It is worth to denote by Vf = {v ∈ V | f (v) 6= >} the set
of vertices having finite energy. Given a SEPM f and a vertex v ∈ V0, an
arc (v,v′) ∈ E is said to be compatible with f whenever f (v) � f (v′)	 w(v,v′);
moreover, a positional strategy σ

f
0 ∈ ΣM

0 is said to be compatible with f whenever
for all v ∈ V0, if σ

f
0 (v) = v′ then (v,v′) ∈ E is compatible with f . Notice that,

as mentioned in [14], if f and g are SEPMs, then so is the minimum function
defined as: h(v) = min{ f (v), g(v)} for every v ∈ V. This fact allows one to
consider the least SEPM, namely, the unique SEPM f ∗ : V→ CΓ such that, for
any other SEPM g : V→ CΓ, the following holds: f ∗(v)� g(v) for every v ∈ V.
Also concerning SEPMs, we shall rely on the following lemmata. The first one
relates SEPMs to the winning regionW0 of Player 0 in EGs.

Lemma 6.3 (Brim, et al. [14]). Let Γ = (V, E,w, 〈V0,V1〉) be an EG.

1. If f is any SEPM of the EG Γ and v ∈ Vf , then v is a winning starting position
for Player 0 in the EG Γ. Stated otherwise, Vf ⊆W0;

2. If f ∗ is the least SEPM of the EG Γ, and v is a winning starting position for
Player 0 in the EG Γ, then v ∈ Vf ∗ . Thus, Vf ∗ =W0.

Also notice that the following bound holds on the energy levels of any
SEPM (actually by definition of CΓ).
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Lemma 6.4. Let Γ = (V, E,w, 〈V0,V1〉) be an EG. Let f be any SEPM of Γ. Then,
for every v ∈ V either f (v) = > or 0≤ f (v) ≤ |V|W.

Value-Iteration Algorithm. The algorithm devised by Brim, et al. for solving
the MCP in EGs is known as Value-Iteration [14]. Given an EG Γ as input, the
Value-Iteration aims to compute the least SEPM f ∗ of Γ. This simple procedure
basically relies on a lifting operator δ. Given v ∈ V, the lifting operator δ(·,v) :
[V→ CΓ]→ [V→ CΓ] is defined by δ( f ,v) = g, where:

g(u) =


f (u) if u 6= v
min{ f (v′)	 w(v,v′) | v′ ∈ post(v)} if u = v ∈ V0
max{ f (v′)	 w(v,v′) | v′ ∈ post(v)} if u = v ∈ V1

We also need the following definition. Given a function f : V→ CΓ, we say
that f is inconsistent in v whenever one of the following two holds:

1. v ∈ V0 and for all v′ ∈ post(v) it holds f (v) ≺ f (v′)	 w(v,v′);

2. v ∈ V1 and there exists v′ ∈ post(v) such that f (v) ≺ f (v′)	 w(v,v′).

To start with, the Value-Iteration algorithm initializes f to the constant zero
function, i.e., f (v) = 0 for every v ∈V. Furthermore, the procedure maintains a
list L of vertices in order to witness the inconsistencies of f . Initially, v ∈V0 ∩ L
if and only if all arcs going out of v are negative, while v ∈ V1 ∩ L if and only
if v is the source of at least one negative arc. Notice that checking the above
conditions takes time O(|E|).

As long as the list L is nonempty, the algorithm picks a vertex v from L and
performs the following:

1. Apply the lifting operator δ( f ,v) to f in order to resolve the inconsistency
of f in v;

2. Insert into L all vertices u ∈ pre(v) \ L witnessing a new inconsistency
due to the increase of f (v).

(The same vertex can’t occur twice in L, i.e., there are no duplicate ver-
tices in L.)

The algorithm terminates when L is empty. This concludes the description of
the Value-Iteration algorithm.

As shown in [14], the update of L following an application of the lifting
operator δ( f ,v) requires O(|pre(v)|) time. Moreover, a single application of
the lifting operator δ(·,v) takes O(|post(v)|) time at most. This implies that the
algorithm can be implemented so that it will always halt within O(|V| |E|W)
time (the reader is referred to [14] in order to grasp all the details of the proof
of correctness and complexity).
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Remark. The Value-Iteration procedure lends itself to the following basic
generalization, which turns out to be of a pivotal importance in order to best
suit our technical needs. Let f ∗ be the least SEPM of the EG Γ. Recall that, as
a first step, the Value-Iteration algorithm initializes f to be the constant zero
function. Here, we remark that it is not necessary to do that really. Indeed, it
is sufficient to initialize f to be any function f0 which bounds f ∗ from below,
that is to say, to initialize f to any f0 : V→CΓ such that f0(v)� f ∗(v) for every
v ∈ V. Soon after, L can be initialized in a natural way: just insert v into L if
and only if f0 is inconsistent at v. This initialization still requires O(|E|) time
and it doesn’t affect the correctness of the procedure.

So, in the rest of this work we shall assume to have at our disposal a
procedure named Value-Iteration(), which takes as input an EG Γ =
(V, E,w, 〈V0,V1〉) and an initial function f0 that bounds from below the least
SEPM f ∗ of the EG Γ (i.e., such that f0(v) � f ∗(v) for every v ∈ V). Then,
Value-Iteration() outputs the least SEPM f ∗ of the EG Γ within O(|V| |E|W)
time, working with Θ(|V|) space.

6.3 Values and Optimal Positional Strategies from Reweight-
ings

This section aims to show that values and optimal positional strategies of
MPGs admit a suitable description in terms of reweighted arenas, a crux step
for solving the Value Problem and Optimal Strategy Synthesis in Θ(|V|2|E|W)
time.

6.3.1 On Optimal Values
A simple representation of values in terms of Farey sequences is now observed,
then, a characterization of values in terms of reweighted arenas is provided.

Optimal values and Farey sequences. Recall that each value valΓ(v) is con-
tained within the following set of rational numbers:

SΓ =

{
N
D

∣∣∣∣ D ∈ [1, |V|], N ∈ [−DW, DW]

}
.

Let us introduce some notation in order to handle SΓ in a way that is suitable
for our purposes. Firstly, we write every ν ∈ SΓ as ν = i + F, where i = iν = bνc
is the integral and F = Fν = {ν} = ν − i is the fractional part. Notice that
i ∈ [−W,W] and that F is a non-negative rational number having denominator
at most |V|.

As a consequence, it is worthwhile to consider the Farey sequence Fn of
order n = |V|. This is the increasing sequence of all irreducible fractions from
the (rational) interval [0,1] with denominators less than or equal to n. In the
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rest of this chapter, Fn denotes the following sorted set:

Fn =

{
N
D

∣∣∣∣ 0≤ N ≤ D ≤ n,gcd(N, D) = 1
}

.

Farey sequences have numerous and interesting properties, in particular,
many algorithms for generating the entire sequence Fn in time O(n2) are
known in the literature [62], and these rely on Stern-Brocot trees and mediant
properties. Notice that the above mentioned quadratic running time is optimal,
as it is well-known that the sequence Fn has s(n) = 3n2

π2 + O(n lnn) = Θ(n2)
terms.

Throughout the article, we shall assume that F0, . . . , Fs−1 is an increasing
ordering of Fn, so that Fn = {Fj}s−1

j=0 and Fj < Fj+1 for every j.
Also notice that F0 = 0 and Fs−1 = 1.
For example, F5 = {0, 1

5 , 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 4

5 ,1}.
At this point, SΓ can be represented as follows:

SΓ = [−W,W) +F|V| =
{

i + Fj
∣∣ i ∈ [−W,W), j ∈ [0, s− 1]

}
.

The above representation of SΓ will be convenient in a while.

Optimal values and reweightings. Two introductory lemmata are shown be-
low, then, a characterization of optimal values in terms of reweightings is pro-
vided.

Lemma 6.5. Let Γ = (V, E,w, 〈V0,V1〉) be an MPG and let q ∈ Q be a rational
number having denominator D ∈N.

Then, valΓ(v) = 1
Dval

Γw+q
(v)− q holds for every v ∈ V.

Proof. Let us consider the play outcomeΓw+q
(v,σ0,σ1) = v0v1 . . . vn . . . By the def-

inition of valΓ(v), and by that of reweighting Γw+q (= ΓD·w+N), the following
holds:

valΓw+q
(v) = supσ0∈Σ0

infσ1∈Σ1 MP0(outcomeΓw+q
(v,σ0,σ1))

= supσ0∈Σ0
infσ1∈Σ1 liminfn→∞

1
n ∑n−1

i=0 (D · w(vi,vi+1) + N) (if q = N/D)

= D · supσ0∈Σ0
infσ1∈Σ1 MP0(outcomeΓ(v,σ0,σ1)) + N

= D · valΓ(v) + N.

Then, valΓ(v) = 1
Dval

Γw+q
(v)− N

D = 1
Dval

Γw+q
(v)− q holds for every v ∈ V.

2
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Lemma 6.6. Given an MPG Γ = (V, E,w, 〈V0,V1〉), let us consider the reweightings:

Γi,j = Γw−i−Fj , for any i ∈ [−W,W] and j ∈ [0, s− 1],

where s = |F|V|| and Fj is the j-th term of the Farey sequence F|V|.
Then, the following propositions hold:

1. For any i ∈ [−W,W] and j ∈ [0, s− 1], we have:

v ∈W0(Γi,j) if and only if valΓ(v) ≥ i + Fj;

2. For any i ∈ [−W,W] and j ∈ [1, s− 1], we have:

v ∈W1(Γi,j) if and only if valΓ(v) ≤ i + Fj−1.

Proof.

1. Let us fix arbitrarily some i ∈ [−W,W] and j ∈ [0, s− 1].

Assume that Fj = Nj/Dj for some Nj, Dj ∈N.

Since
Γi,j = (V, E, Dj(w− i)− Nj, 〈V0,V1〉),

then by Lemma 6.5 (applyed to q = −i− Fj) we have:

valΓ(v) =
1

Dj
valΓi,j(v) + i + Fj.

Recall that v ∈W0(Γi,j) if and only if valΓi,j(v) ≥ 0.

Hence, we have v ∈W0(Γi,j) if and only if the following inequality holds:

valΓ(v) =
1

Dj
valΓi,j(v) + i + Fj

≥ i + Fj.

This proves Item 1.

2. The argument is symmetric to that of Item 1, but with some further ob-
servations. Let us fix arbitrarily some i ∈ [−W,W] and j ∈ [1, s− 1]. As-
sume that Fj = Nj/Dj for some Nj, Dj ∈N. Since Γi,j = (V, E, Dj(w− i)−
Nj, 〈V0,V1〉), then by Lemma 6.5 we have

valΓ(v) =
1

Dj
valΓi,j(v) + i + Fj.

Recall that v ∈W1(Γi,j) if and only if valΓi,j(v) < 0.
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Hence, we have v ∈W1(Γi,j) if and only if the following inequality holds:

valΓ(v) =
1

Dj
valΓi,j(v) + i + Fj

< i + Fj.

Now, recall from Section 6.2 that valΓ(v) ∈ SΓ, where

SΓ = {i + Fj | i ∈ [−W,W), j ∈ [0, s− 1]}.

By hypothesis we have:

j ≥ 1 and 0≤ Fj−1 < Fj,

thus, at this point, v ∈W1(Γi,j) if and only if valΓ(v) ≤ i + Fj−1.

This proves Item 2.

2

We are now in the position to provide a simple characterization of values
in terms of reweightings.

Theorem 6.3. Given an MPG Γ = (V, E,w, 〈V0,V1〉), let us consider the reweight-
ings:

Γi,j = Γw−i−Fj , for any i ∈ [−W,W] and j ∈ [1, s− 1],

where s = |F|V|| and Fj is the j-th term of the Farey sequence F|V|.
Then, the following holds:

valΓ(v) = i + Fj−1 if and only if v ∈W0(Γi,j−1) ∩W1(Γi,j).

Proof. Let us fix arbitrarily some i ∈ [−W,W] and j ∈ [1, s− 1].
By Item 1 of Lemma 6.6, we have v ∈ W0(Γi,j−1) if and only if valΓ(v) ≥

i + Fj−1. Symmetrically, by Item 2 of Lemma 6.6, we have v ∈ W1(Γi,j) if and
only if valΓ(v) ≤ i + Fj−1. Whence, by composition, v ∈W0(Γi,j−1) ∩W1(Γi,j)

if and only if valΓ(v) = i + Fj−1. 2

6.3.2 On Optimal Positional Strategies
The present subsections aims to provide a suitable description of optimal po-
sitional strategies in terms of reweighted arenas. An introductory lemma is
shown next.

Lemma 6.7. Let Γ = (V, E,w, 〈V0,V1〉) be an MPG, the following hold:

1. If v ∈ V0, let v′ ∈ post(v). Then valΓ(v′) ≤ valΓ(v) holds.
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2. If v ∈ V1, let v′ ∈ post(v). Then valΓ(v′) ≥ valΓ(v) holds.

3. Given any v ∈ V0, consider the reweighted EG Γv = Γw−valΓ(v).

Let fv : V→CΓv be any SEPM of the EG Γv such that v ∈Vfv (i.e., fv(v) 6=>).
Let v′fv

∈ V be any vertex such that (v,v′fv
) ∈ E is compatible with fv in Γv.

Then, valΓ(v′fv
) = valΓ(v).

Proof. 1. It is sufficient to construct a strategy σv
0 ∈ ΣM

0 securing to Player 0
a payoff at least valΓ(v′) from v in the MPG Γ. Let σv′

0 ∈ ΣM
0 be a strategy

securing payoff at least valΓ(v′) from v′ in Γ. Then, let σv
0 be defined as

follows:

σv
0 (u) =


σv′

0 (u) , if u ∈ V0 \ {v};
σv′

0 (v) , if u = v and v is reachable from v′ in GΓ
σv′

0
;

v′ , if u = v and v is not reachable from v′ in GΓ
σv′

0
.

We argue that σv
0 secures payoff at least valΓ(v′) from v in Γ. First notice

that, by Lemma 6.1 (applied to v′), all cycles C that are reachable from v′

in Γ satisfy:
w(C)
|C| ≥ valΓ(v′).

The fact is that any cycle reachable from v in GΓ
σv

0
is also reachable from

v′ in GΓ
σv′

0
(by definition of σv

0 ), therefore, the same inequality holds for

all cycles reachable from v. At this point, the thesis follows again by
Lemma 6.1 (applied to v, in the inverse direction). This proves Item 1.

2. The proof of Item 2 is symmetric to that of Item 1.

3. Firstly, notice that valΓ(v′fv
)≤ valΓ(v) holds by Item 1. To conclude the

proof it is sufficient to show valΓ(v′fv
)≥ valΓ(v). Recall that (v,v′fv

) ∈ E
is compatible with fv in Γv by hypothesis, that is:

fv(v) � fv(v′fv
)	

(
w(v,v′fv

)− valΓ(v)
)
.

This, together with the fact that v ∈ Vfv (i.e., fv(v) 6= >) also holds by
hypothesis, implies that v′fv

∈ Vf (i.e., fv(v′fv
) 6= >). Thus, by Item 1 of

Lemma 6.3, v′fv
is a winning starting position of Player 0 in the EG Γv.

Whence, by Lemma 6.2, it holds that valΓ(v′fv
) ≥ valΓ(v). This proves

Item 3.
2

We are now in position to provide a sufficient condition, for a positional
strategy to be optimal, which is expressed in terms of reweighted EGs and
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their SEPMs.

Theorem 6.4. Let Γ = (V, E,w, 〈V0,V1〉) be an MPG.For each v ∈ V, consider the
reweighted EG Γv = Γw−valΓ(v). Let fv : V→CΓv be any SEPM of Γv such that v∈Vfv

(i.e., fv(v) 6= >). Moreover, assume: fv1 = fv2 whenever valΓ(v1) = valΓ(v2).
When v∈V0, let v′fv

∈V be any vertex out of v such that (v,v′fv
)∈ E is compatible

with fv in the EG Γv, and consider the positional strategy σ∗0 ∈ ΣM
0 defined as follows:

σ∗0 (v) = v′fv
, for every v ∈ V0.

Then, σ∗0 is an optimal positional strategy for Player 0 in the MPG Γ.

Proof. Let us consider the projection graph GΓ
σ∗0

= (V, Eσ∗0
,w). Let v ∈ V be any

vertex. In order to prove that σ∗0 is optimal, it is sufficient (by Lemma 6.1) to
show that every cycle C that is reachable from v in GΓ

σ∗0
satisfies w(C)

|C| ≥ val
Γ(v).

• Preliminaries. Let v ∈ V and let C be any cycle of length |C| ≥ 1 that is
reachable from v in GΓ

σ∗0
. Then, there exists a path ρ of length |ρ| ≥ 1 in

GΓ
σ∗0

and such that: if |ρ| = 1, then ρ = ρ0ρ1 = vv; otherwise, if |ρ| > 1,
then:

ρ = ρ0 . . . ρ|ρ| = vv1v2 . . . vku1u2 . . . u|C|u1,

where vv1 . . . vk is a simple path, for some k ≥ 0 and u1 . . . u|C|u1 = C.

GΓ
σ∗0

Cv

v1 vk

u1

u2

u3

u4

u|C|

Figure 6.2: A cycle C that is reachable from v through v1 · · ·vk in GΓ
σ∗0

.

• Fact 1. It holds valΓ(ρi) ≤ valΓ(ρi+1) for every i ∈ [0, |ρ|).

Proof of Fact 1. If ρi ∈V0 then valΓ(ρi) =valΓ(ρi+1) by Item 3 of Lemma 6.7;
otherwise, if ρi ∈V1, then valΓ(ρi)≤ valΓ(ρi+1) by Item 2 of Lemma 6.7.
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This proves Fact 1. In particular, notice that valΓ(v) ≤ valΓ(u1) when
|ρ| > 1. 2

• Fact 2. Assume C = u1 . . . u|C|u1, then:

valΓ(ui) = valΓ(u1) for every i ∈ [0, |C|].

Proof of Fact 2. By Fact 1, valΓ(ui−1) ≤ valΓ(ui) for every i ∈ [2, |C|], as
well as valΓ(u|C|) ≤ valΓ(u1). Then, the following chain of inequalities
holds:

valΓ(u1) ≤ valΓ(u2) ≤ . . . ≤ valΓ(u|C|) ≤ valΓ(u1).

Since the first and the last value of the chain are actually the same, i.e.,
valΓ(u1), then, all these inequalities are indeed equalities. This proves
Fact 2. 2

• Fact 3. The following holds for every i ∈ [0, |ρ|):

fρi(ρi), fρi(ρi+1) 6= > and fρi(ρi) ≥ fρi(ρi+1)− w(ρi,ρi+1) + valΓ(ρi).

Proof of Fact 3. Firstly, we argue that any arc (ρi,ρi+1) ∈ E is compatible
with fρi in Γρi . Indeed, if ρi ∈ V0, then (ρi,ρi+1) is compatible with fρi

in Γρi because ρi+1 = σ∗0 (ρi) by hypothesis; otherwise, if ρi ∈ V1, then
(ρi, x) is compatible with fρi in Γρi for every x ∈ post(ρi), in particular
for x = ρi+1, by definition of SEPM.

At this point, since (ρi,ρi+1) is compatible with fρi in Γρi , then:

fρi(ρi) � fρi(ρi+1)	
(
w(ρi,ρi+1)− valΓ(ρi)

)
.

Now, recall that ρi ∈ Vfρi
(i.e., fρi(ρi) 6= >) holds for every ρi by hypoth-

esis. Since fρi(ρi) 6= > and the above inequality holds, then we have
fρi(ρi+1) 6= >. Thus, we can safely write:

fρi(ρi) ≥ fρi(ρi+1)− w(ρi,ρi+1) + valΓ(ρi).

This proves Fact 3. 2

• Fact 4. Assume that the cycle C = u1 . . . u|C|u1 is such that:

valΓ(ui) = valΓ(u1) ≥ valΓ(v), for every i ∈ [1, |C|].
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Then, provided that u|C|+1 = u1, the following holds for every i ∈ [1, |C|]:

fu1(u1), fui+1(ui+1) 6= > and

fu1(u1) ≥ fui+1(ui+1)−
i

∑
j=1

w(uj,uj+1) + i · valΓ(v).

Proof of Fact 4. Firstly, notice that fu1(u1), fui+1(ui+1) 6= > holds by hy-
pothesis.

The proof proceeds by induction on i ∈ [1, |C|].

– Base Case. Assume that |C| = 1, so that C = u1u1. Then fu1(u1) ≥
fu1(u1)− w(u1,u1) + valΓ(u1) follows by Fact 3. Since valΓ(u1) ≥
valΓ(v) by hypothesis, then the thesis follows.

– Inductive Step. Assume by induction hypothesis that the following
holds:

fu1(u1) ≥ fui(ui)−
i−1

∑
j=1

w(uj,uj+1) + (i− 1) · valΓ(v).

By Fact 3, we have:

fui(ui) ≥ fui(ui+1)− w(ui,ui+1) + valΓ(ui).

Since valΓ(ui+1) = valΓ(ui) holds by hypothesis, then we have
fui+1 = fui . Recall that valΓ(ui) ≥ valΓ(v) also holds by hypoth-
esis.
Thus, we obtain the following:

fu1(u1) ≥ fui+1(ui+1)−
i

∑
j=1

w(uj,uj+1) + i · valΓ(v).

This proves Fact 4.

2

• We are now in position to show that every cycle C that is reachable from
v in GΓ

σ∗0
satisfies w(C)/|C| ≥ valΓ(v). By Fact 1 and Fact 2, we have

valΓ(v) ≤ valΓ(u1) = valΓ(ui) for every i ∈ [1, |C|]. At this point, we
apply Fact 4. Consider the specialization of Fact 4 when i = |C| and also
recall that u|C|+1 = u1. Then, we have the following:

fu1(u1) ≥ fu1(u1)−
|C|

∑
j=1

w(uj,uj+1) + |C| · valΓ(v).
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As a consequence, the following lower bound holds on the average weight
of C:

w(C)
|C| =

1
|C|

|C|

∑
j=1

w(uj,uj+1) ≥ valΓ(v),

which concludes the proof.

2

Remark 6.1. Notice that Theorem 6.4 holds, in particular, when fv is the least SEPM
f ∗v of the reweighted EG Γv. This follows because v ∈ Vf ∗v always holds for the least
SEPM f ∗v of the EG Γv, as shown next: by Lemma 6.2 and by definition of Γv, then v
is a winning starting position for Player 0 in the EG Γv (for some initial credit); now,
since f ∗v is the least SEPM of the EG Γv, then v ∈ Vf ∗v follows by Item 2 of Lemma 6.3.

6.4 A Θ(|V|2|E|W) time Algorithm for solving the Value
Problem and Optimal Strategy Synthesis in MPGs

This section offers a deterministic algorithm for solving the Value Problem
and Optimal Strategy Synthesis of MPGs within Θ(|V|2|E|W) time and Θ(|V|)
space, on any input MPG Γ = (V, E,w, 〈V0,V1〉).

Let us now recall some notation in order to describe the algorithm in a suit-
able way. Given an MPG Γ = (V, E,w, 〈V0,V1〉), consider again the following
reweightings:

Γi,j = Γw−i−Fj , for any i ∈ [−W,W] and j ∈ [0, s− 1],

where s = |F|V|| and Fj is the j-th term of F|V|.
Assuming Fj = Nj/Dj for some Nj, Dj ∈ N, we focus on the following

weights:

wi,j =w− i− Fj = w− i−
Nj

Dj
;

w′i,j =Dj wi,j = Dj (w− i)− Nj.

Recall that Γi,j is defined as Γi,j, Γw′i,j , which is an arena having integer weights.
Also notice that, since F0 < . . . < Fs−1 is monotone increasing, then the corre-
sponding weight functions wi,j can be ordered in a natural way, i.e., w−W,1 >
w−W,2 > . . . > wW−1,s−1 > . . . > wW,s−1. In the rest of this section, we denote by
f ∗w′i,j : V→CΓi,j the least SEPM of the reweighted EG Γi,j. Moreover, the function

f ∗i,j : V→ Q, defined as f ∗i,j(v),
1

Dj
f ∗w′i,j(v) for every v ∈ V, is called the rational

scaling of f ∗w′i,j .
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6.4.1 Description of the Algorithm
In this section we shall describe a procedure whose pseudo-code is given below
in Algorithm 16. It takes as input an arena Γ = (V, E,w, 〈V0,V1〉), and it aims
to return a tuple (W0,W1,ν,σ∗0 ) such that: W0 andW1 are the winning regions
of Player 0 and Player 1 in the MPG Γ (respectively), ν : V → SΓ is a map
sending each starting position v ∈ V to its optimal value, i.e., ν(v) = valΓ(v),
and finally, σ∗0 : V0 → V is an optimal positional strategy for Player 0 in the
MPG Γ.

The intuition underlying Algorithm 16 is that of considering the following
sequence of weights:

w−W,1 >w−W,2 > . . .>w−W,s−1 >w−W+1,1 >w−W+1,2 > . . .>wW−1,s−1 > . . .>wW,s−1

where the key idea is that to rely on Theorem 6.3 at each one of these steps,
testing whether a transition of winning regions has occurred. Stated otherwise,

start
v

?
∈W0(Γprev(i,j)) ∩W1(Γi,j)

w−W,1 w−W,2 w−W,3 · · · wprev(i,j) wi,j · · ·
· · ·

wW−1,s−1 wW,1

Figure 6.3: An illustration of Algorithm 16.

the idea is to check, for each vertex v ∈ V, whether v is winning for Player 1
with respect to the current weight wi,j, meanwhile recalling whether v was win-
ning for Player 0 with respect to the immediately preceding element wprev(i,j)
in the weight sequence above.

If such a transition occurs, say for some v̂ ∈ W0(Γprev(i,j)) ∩W1(Γi,j), then
one can easily compute valΓ(v̂) by relying on Theorem 6.3; Also, at that point,
it is easy to compute an optimal positional strategy, provided that v̂ ∈ V0, by
relying on Theorem 6.4 and Remark 6.1 in that case.

Each one of these phases, in which one looks at transitions of winning
regions, is named Scan Phase. A graphical intuition of Algorithm 16 is given in
Fig. 7.2.

An in-depth description of the algorithm and of its pseudo-code now fol-
lows.

• Initialization Phase. To start with, the algorithm performs an initializa-
tion phase. At line 1, Algorithm 16 initializes the output variables W0
and W1 to be empty sets. Notice that, within the pseudo-code, the vari-
ablesW0 andW1 represent the winning regions of Player 0 and Player 1,
respectively; also, the variable ν represents the optimal values of the in-
put MPG Γ, and σ∗0 represents an optimal positional strategy for Player 0
in the input MPG Γ. Secondly, at line 2, an array variable f : V → CΓ
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Algorithm 14: Solving Value Problem and Strategy Synthesis in MPGs.
Procedure solve MPG(Γ)

input : an MPG Γ = (V, E,w, 〈V0,V1〉).
output: a tuple (W0,W1,ν,σ∗0 ) such that: W0 andW1 are the winning

regions of Player 0 and Player 1 (respectively) in the MPG Γ;
ν : V→ SΓ is a map sending each starting position v ∈ V to its
corresponding optimal value, i.e., ν(v) = valΓ(v); and σ∗0 : V0→ V
is an optimal positional strategy for Player 0 in the MPG Γ.

// Init Phase
1 W0← ∅;W1← ∅;
2 f (v)← 0, ∀ v ∈ V;
3 W←maxe∈E |we|; w′← w + W; D← 1;
4 s← compute the size |F|V|| of F|V|; // with the algorithm of [97]

// Scan Phases
5 for i = −W to W do
6 F← 0;
7 for j = 1 to s− 1 do
8 prev f ← f ;
9 prev w← 1

D w′;
10 prev F← F;
11 F← generate the j-th term of F|V|; // with the algorithm of [97]
12 N← numerator of F;
13 D← denominator of F;
14 w′← D (w− i)− N;
15 f ← 1

D Value-Iteration(Γw′ ,dD prev f e);
16 for v ∈ V do
17 if prev f (v) 6= > and f (v) = > then
18 ν(v)← i + prev F; // set optimal value ν
19 if ν(v) ≥ 0 then
20 W0←W0 ∪ {v}; // v is winning for Player 0

21 else
22 W1←W1 ∪ {v}; // v is winning for Player 1

23 if v ∈ V0 then
24 for u ∈ post(v) do
25 if prev f (v) � prev f (u)	 prev w(v,u) then
26 σ∗0 (v)← u; break;

27 return (W0,W1,ν,σ∗0 )

Algorithm 14: The MPG algorithm.
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is initialized to f (v) = 0 for every v ∈ V; throughout the computation,
the variable f represents a SEPM. Next, at line 3, the greatest absolute
weight W is assigned as W = maxe∈E |we|, an auxiliary weight function w′

is initialized as w′ = w + W, and a “denominator” variable is initialized
as D = 1. Concluding the initialization phase, at line 4 the size (i.e., the
total number of terms) of F|V| is computed and assigned to the variable
s. This size can be computed very efficiently with the algorithm devised
by Pawlewicz and Pătraşcu [97].

• Scan Phases. After initialization, the procedure performs multiple Scan
Phases. Each one of these is indexed by a pair of integers (i, j), where
i ∈ [−W,W] (at line 6) and j ∈ [1, s− 1] (at line 7). Thus, the index i goes
from −W to W, and for each i, the index j goes from 1 to s− 1.

At each step, we say that the algorithm goes through the (i, j)-th scan
phase. For each scan phase, we also need to consider the previous scan
phase, so that the previous index prev(i, j) shall be defined as follows:
the predecessor of the first index is prev(−W,1) , (−W,0); if j > 1,
then prev(i, j) , (i, j− 1); finally, if j = 1 and i > −W, then prev(i, j) ,
(i− 1, s− 1).

At the (i, j)-th scan phase, the algorithm considers the rational number
zi,j ∈ SΓ defined as:

zi,j , i + F[j],

where F[j] = Nj/Dj is the j-th term of F|V|. For each j, F[j] can be com-
puted very efficiently, on the fly, with the algorithm of Pawlewicz and
Pătraşcu [97]. Notice that, since F[0] < . . . < F[s− 1] is monotonically in-
creasing, then the values zi,j are scanned in increasing order as well. At
this point, the procedure aims to compute the rational scaling f ∗i,j of the
least SEPM f ∗w′i,j , i.e.,

f , f ∗i,j =
1

Dj
f ∗w′i,j .

This computation is really at the heart of the algorithm and it goes from
line 8 to line 13. To start with, at line 8 and line 9, the previous rational
scaling f ∗prev(i,j) and the previous weight function wprev(i,j) (i.e., those
considered during the previous scan phase) are saved into the auxiliary
variables prev f and prev w.

Remark. Since the values zi,j are scanned in increasing order of magni-
tude, then prev f = f ∗prev(i,j) bounds from below f ∗i,j. That is, it holds for
every v ∈ V that:

prev f (v) = f ∗prev(i,j)(v) � f ∗i,j.

The underlying intuition, at this point, is that of computing the energy
levels of f = f ∗i,j firstly by initializing them to the energy levels of the
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previous scan phase, i.e., to prev f = f ∗prev(i,j), and then to update them
monotonically upwards by executing the Value-Iteration algorithm for
EGs.

Further details of this pivotal step now follow. Firstly, since the Value-
Iteration has been designed to work with integer numerical weights only [14],
then the weights wi,j = w− zi,j have to be scaled from Q to Z: this is per-
formed in the standard way, from line 10 to line 13, by considering the
numerator Nj and the denominator Dj of F[j], and then by setting:

w′i,j(e), Dj
(
w(e)− i

)
− Nj, for every e ∈ E.

The initial energy levels are also scaled up from Q to Z by considering
the values: dDjprev f (v)e, for every v ∈ V (line 13). At this point the

least SEPM of Γw′i,j is computed, at line 13, by invoking:

Value-Iteration(Γw′i,j ,dDjprev f e),

that is, by executing on input Γw′i,j the Value-Iteration with initial energy
levels given by: dDjprev f (v)e for every v ∈ V. Soon after that, the
energy levels have to be scaled back from Z to Q, so that, in summary,
at line 13 they becomes:

f = f ∗i,j =
1

Dj
Value-Iteration(Γw′i,j ,dDjprev f e).

The correctness of lines 12-13 will be proved in Lemma 6.8.

Here, let us provide a sketch of the argument:

1. Since F0 < . . . < Fs−1 is monotone increasing, then the sequence
{w′i,j}(i,j) is monotone decreasing, i.e., for every i, j and e∈ E, w′prev(i,j)(e)>
w′i,j(e). Whence, the sequence of rational scalings { f ∗i,j}i,j is mono-
tone increasing, i.e., f ∗i,j � f ∗prev(i,j) holds at the (i, j)-th step. The
proof is in Lemma 6.8.

2. At the (i, j)-th iteration of line 8, it holds that prev f = f ∗prev(i,j).

This invariant property is also proved as part of Lemma 6.8.

3. Since prev f = f ∗prev(i,j), then prev f � f ∗i,j.

Thus, one can prove that Djprev f� f ∗w′i,j .

4. Since w′i,j(e) ∈Z for every e ∈ E, then f ∗w′i,j(v) ∈Z for every v ∈ V, so

that
dDjprev f(v)e � f ∗w′i,j(v)

holds for every v ∈ V as well.
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5. This implies that it is correct to execute the Value-Iteration, on input
Γw′i,j , with initial energy levels given by: dDjprev f (v)e for every
v ∈ V.

Back to us, once f = f ∗i,j has been determined, then for each v ∈ V the
condition:

v
?
∈W0(Γprev(i,j)) ∩W1(Γi,j),

is checked at line 17: it is not difficult to show that, for this, it is sufficient
to test whether both prev f(v) 6= > and f (v) = > hold on v (it follows
by Lemma 6.8).

If v ∈ W0(Γprev(i,j)) ∩W1(Γi,j) holds, then the algorithm relies on Theo-
rem 6.3 in order to assign the optimal value as follows: ν(v), valΓ(v) =
zprev(i,j) (line 18). If ν(v) ≥ 0, then v is added to the winning region W0
at line 20. Otherwise, ν(v) < 0 and v is added toW1 at line 22.

To conclude, from line 23 to line 27, the algorithm proceeds as follows: if
v ∈ V0, then it computes an optimal positional strategy σ∗0 (v) for Player 0
in Γ: this is done by testing for each u ∈ post(v) whether (v,u) ∈ E is an
arc compatible with prev f in Γprev(i,j); namely, whether the following
holds for some u ∈ post(v):

prev f (v)
?
� prev f (u)	 prev w(v,u).

If (v,u) ∈ E is found to be compatible with prev f at that point, then
σ∗0 (v) , u gets assigned and the arc (v,u) becomes part of the optimal
positional strategy returned to output. Indeed, the correctness of such
an assignment relies on Theorem 6.4 and Remark 6.1.

This concludes the description of the scan phases and also that of Algo-
rithm 16.

6.4.2 Proof of Correctness
Now we formally prove the correctness of Algorithm 16. The following lemma
shows some basic invariants that are maintained throughout the computation.

Lemma 6.8. Algorithm 16 keeps the following invariants throughout the computation:

1. For every i ∈ [−W,W] and every j ∈ [1, s− 1], it holds that:

f ∗prev(i,j)(v) � f ∗i,j(v), for every v ∈ V;

2. At the (i, j)-th iteration of line 8, it holds that: prev f = f ∗prev(i,j);

3. At the (i, j)-th iteration of line 8, it holds that: dDjprev f e � f ∗w′i,j ;
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4. At the (i, j)-th iteration of line 13, it holds that:

1
Dj
Value-Iteration(Γw′i,j ,dDjprev f e) = f ∗i,j.

Proof of Item 1. Recall that wi,j , w− i− Fj. Since F0 < . . . < Fs−1 is monotone
increasing, then: wi,j(e) < wprev(i,j)(e) holds for every e ∈ E.

In order to prove the thesis, consider the following function:

g : V→Q ∪ {>} : v 7→min
(

f ∗prev(i,j)(v), f ∗i,j(v)
)
.

We show that Dprev(i,j) g is a SEPM of Γw′prev(i,j) . There are four cases, according
to whether v ∈ V0 or v ∈ V1, and g(v) = f ∗prev(i,j)(v) or g(v) = f ∗i,j(v).

Case: v ∈ V0. Then, the following holds for some u ∈ post(v):
SubCase: g(v) = f ∗prev(i,j)(v):

Dprev(i,j) g(v) = Dprev(i,j) f ∗prev(i,j)(v) [by g(v) = f ∗prev(i,j)(v)]

= f ∗w′
prev(i,j)

(v) [by Dprev(i,j) f ∗prev(i,j) = f ∗w′
prev(i,j)

]

� f ∗w′
prev(i,j)

(v)	 w′prev(i,j)(v,u) [ f ∗w′
prev(i,j)

is SEPM of Γw′prev(i,j)]

= Dprev(i,j) f ∗prev(i,j)(u)	 w′prev(i,j)(v,u) [by f ∗w′
prev(i,j)

= Dprev(i,j) f ∗prev(i,j)]

� Dprev(i,j) g(u)	 w′prev(i,j)(v,u) [by definition of g(u)]

SubCase: g(v) = f ∗i,j(v):

Dprev(i,j) g(v) = Dprev(i,j) f ∗i,j(v) [by g(v) = f ∗i,j(v)]

=
Dprev(i,j)

Di,j
f ∗w′i,j(v) [by f ∗i,j = f ∗w′i,j /Di,j]

�
Dprev(i,j)

Di,j
f ∗w′i,j(u)	

Dprev(i,j)

Di,j
w′i,j(v,u) [ f ∗w′i,j is SEPM of Γw′i,j ]

= Dprev(i,j) f ∗i,j(u)	
Dprev(i,j)

Di,j
w′i,j(v,u) [by f ∗i,j = f ∗w′i,j /Di,j]

= Dprev(i,j) f ∗i,j(u)	 Dprev(i,j)wi,j(v,u) [by wi,j(v,u) = w′i,j(v,u)/Di,j]

� Dprev(i,j) f ∗i,j(u)	 Dprev(i,j) wprev(i,j)(v,u) [by wi,j < wprev(i,j)]

= Dprev(i,j) f ∗i,j(u)	 w′prev(i,j)(v,u) [by Dprev(i,j)wprev(i,j) = w′prev(i,j)]

� Dprev(i,j)g(u)	 w′prev(i,j)(v,u) [by definition of g(u)]

This means that (v,u) is an arc compatible with Dprev(i,j)g in Γw′prev(i,j) .
Case: v ∈ V1. The same argument shows that (v,u) ∈ E is compatible with

Dprev(i,j)g in Γw′prev(i,j) , but it holds for all u ∈ post(v) in this case.
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This proves that Dprev(i,j) g is a SEPM of Γw′prev(i,j) .

Now, since f ∗w′
prev(i,j)

is the least SEPM of Γw′prev(i,j) , then:

f ∗w′
prev(i,j)

(v) � Dprev(i,j) g(v), for every v ∈ V.

Since f ∗w′
prev(i,j)

= Dprev(i,j) f ∗prev(i,j) and g = min( f ∗prev(i,j), f ∗i,j), then:

Dprev(i,j) f ∗prev(i,j) � Dprev(i,j) min( f ∗prev(i,j), f ∗i,j).

Whence f ∗prev(i,j) = min( f ∗prev(i,j), f ∗i,j).
This proves that f ∗prev(i,j)(v) � f ∗i,j(v) holds for every v ∈ V. 2

Next, we prove that:
Fact 1. If Item 2 holds at the (i, j)-th scan phase, then both Item 3 and Item 4

hold at the (i, j)-th scan phase as well.

Proof of Fact 1. Assume that Item 2 holds. Let us prove Item 3 first. Since
f ∗prev(i,j) � f ∗i,j holds by Item 1, and since prev f = f ∗prev(i,j) holds by hy-
pothesis, then prev f (v) � f ∗i,j(v) holds for every v ∈ V. Since w′i,j = Dj wi,j

and f ∗w′i,j = Dj f ∗i,j, then Djprev f(v) � f ∗w′i,j(v) holds for every v ∈ V. Since

w′i,j(e) ∈Z for every e ∈ E, then f ∗w′i,j(v) ∈Z for every v ∈ V, so that

dDjprev f(v)e � f ∗w′i,j(v)

holds for every v ∈ V as well. This proves Item 3.
We show Item 4 now. Since Item 3 holds, at line 13 it is correct to initial-

ize the starting energy levels of Value-Iteration() to dDjprev f (v)e for

every v ∈ V, in order to execute the Value-Iteration on input Γw′i,j .
This implies the following:

Value-Iteration(Γw′i,j ,dDjprev f e) = f ∗w′i,j .

But we also know that 1
Dj

f ∗w′i,j = f ∗i,j.

This proves that Item 4 holds and concludes the proof of Fact 1. 2

Fact 2. We now prove that Item 2 holds at each iteration of line 8.

Proof of Fact 2. The proof proceeds by induction on (i, j).
Base Case. Let us consider the first iteration of line 8; i.e., the iteration

indexed by i = −W and j = 1. Recall that, at line 2 of Algorithm 16, the
function f is initialized as f (v) = 0 for every v ∈ V. Notice that f is really the
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least SEPM f ∗−W,0 of Γ−W,0 = Γw+W , because every arc e ∈ E has a non-negative
weight in Γw+W , i.e., we + W ≥ 0 for every e ∈ E.

Hence, at the first iteration of line 8, the following holds:

prev f = 0 = f ∗−W,0 = f ∗prev(−W,1).

Inductive Step. Let us assume that Item 2 holds for the prev(i, j)-th itera-
tion, and let us prove it for the (i, j)-th one. Hereafter, let us denote (ip, jp) =
prev(i, j) for convenience. Since Item 2 holds for the (ip, jp)-th iteration by
induction hypothesis, then, by Fact 1, the following holds at the (ip, jp)-th iter-
ation of line 13:

1
Djp

Value-Iteration(Γw′ip ,jp ,dDjp prev f e) = f = f ∗ip,jp
.

Thus, at the (i, j)-th iteration of line 8:

prev f = f = f ∗ip,jp
= f ∗prev(i,j).

This concludes the proof of Fact 2. 2

At this point, by Fact 1 and Fact 2, Lemma 6.8 follows.
We are now in the position to show that Algorithm 16 is correct.

Proposition 6.1. Assume that Algorithm 16 is invoked on input Γ= (V, E,w, 〈V0,V1〉)
and, whence, that it returns (W0,W1,ν,σ0) as output.

Then,W0 andW1 are the winning sets of Player 0 and Player 1 in Γ (respectively),
ν : V→ S is such that ν(v) = valΓ(v) for every v ∈V, and σ0 : V0→V is an optimal
positional strategy for Player 0 in the MPG Γ.

Proof. At the (i, j)-th iteration of line 17, the following holds by Lemma 6.8:

prev f = f ∗prev(i,j) and f = f ∗i,j.

Our aim now is that to apply Theorem 6.3. For this, firstly observe that one
can safely write prev f = f ∗i,j−1. In fact, since F0 = 0 and Fs−1 = 1, then:

wprev(i,1) = wi−1,s−1 = w− i = wi,0, for every i ∈ [−W,W].

This implies that wprev(i,j) = wi,j−1 for every i ∈ [−W,W] and j ∈ [1, s− 1].
Whence, prev f= f ∗prev(i,j) = f ∗i,j−1.
So, at the (i, j)-th iteration of line 17, the following holds for every v ∈ V:

prev f (v) 6= > and f (v) = > iff f ∗i,j−1(v) 6= > and f ∗i,j(v) = > [by Lemma 6.8]

iff v ∈W0(Γi,j−1) ∩W1(Γi,j) [by Item 1-2 of Lemma 6.3]

iff valΓ(v) = i + Fj−1 [by Theorem 6.3]
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This implies that, at the (i, j)-th iteration of line 18, Algorithm 16 correctly
assigns the value ν(v) = i + F[j− 1] = i + Fj−1 to the vertex v.

Since for every vertex v ∈ V we have valΓ(v) ∈ SΓ (recall that SΓ admits
the following representation SΓ =

{
i + Fj

∣∣ i ∈ [−W,W), j ∈ [0, s− 1]
}

), then, as
soon as Algorithm 16 halts, ν(v) = valΓ(v) correctly holds for every v ∈ V.
In turn, at line 20 and at line 22, the winning sets W0 and W1 are correctly
assigned as well.

Now, let us assume that ν(v) = i + Fj−1 holds at the (i, j)-th iteration of
line 18, for some v ∈ V. Then, the following holds on prev w at line 9:

prev w = wprev(i,j) = wi,j−1 = w− i− Fj−1 = w− ν(v) = w− valΓ(v).

Thus, at the (i, j)-th iteration of line 25, for every v ∈ V0 and u ∈ post(v):

prev f (v) � prev f (u)	 prev w(v,u) iff f ∗prev(i,j)(v) � f ∗prev(i,j)(u)	
(
w− valΓ(v)

)
iff (v,u) is compatible with f ∗prev(i,j) in Γw−valΓ(v)

Recall that f ∗prev(i,j) is the least SEPM of Γw−valΓ(v), thus by Theorem 6.4 the

following implication holds: if (v,u) is compatible with f ∗prev(i,j) in Γw−valΓ(v),
then σ0(v) = u is an optimal positional strategy for Player 0, at v, in the MPG
Γ.

This implies that line 26 of Algorithm 16 is correct and concludes the proof.
2

6.4.3 Complexity Analysis
The present section aims to show that Algorithm 16 always halts in Θ(|V|2|E|W)
time. This upper bound is established in the next proposition.

Proposition 6.2. Algorithm 16 always halts within Θ(|V|2|E|W) time and it works
with Θ(|V|) space, on any input MPG Γ= (V, E,w, 〈V0,V1〉). Here, W =maxe∈E |we|.

Proof. (Time Complexity of the Init Phase) The initialization of W0,W1,ν,σ0 (at
line 1) and that of f (at line 2) takes time O(|V|). The initialization of W at line 3
takes O(|E|) time. To conclude, the size s = |F|V|| of the Farey sequence (i.e.,
its total number of terms) can be computed in O(n2/3 log1/3 n) time as shown
by Pawlewicz and Pătraşcu in [97]. Whence, the Init phase of Algorithm 16
takes O(|E|) time overall.

(Time Complexity of the Scan Phases) To begin, notice that there are O(|V|2W)
scan phases overall. In fact, at line 6 the index i goes from −W to W, while at
line 7 the index j goes from 0 to s− 1 where s = |F|V||= Θ(|V|2). Observe that,
at each iteration, it takes O(|E|) time to go from line 8 to line 12 and then from
line 14 to line 27. In particular, at line 5, the j-th term Fj of the Farey sequence
F|V| can be computed in O(n2/3 log4/3 n) time as shown by Pawlewicz and
Pătraşcu in [97].
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Now, let us denote by T13
i,j the time taken by the (i, j)-th iteration of line 13,

that is the time it takes to execute the Value-Iteration algorithm on input Γw′i,j

with initial energy levels: dDj f ∗prev(i,j)e. Then, the (i, j)-th scan phase always

completes within the following time bound: O(|E|) + T13
i,j .

We now focus on T13
i,j and argue that the (aggregate) total cost ∑i,j T13

i,j of
executing the Value-Iteration algorithm for EGs at line 13 (throughout all scan
phases) is only Θ(|V|2|E|W). Stated otherwise, we aim to show that the amor-
tized cost of executing the (i, j)-th scan phase is only O(|E|).

Recall that the Value-Iteration algorithm for EGs consists, as a first step,
into an initialization (which takes O(|E|) time) and, then, in the continuous
iteration of the following two operations: (1) the application of the lifting op-
erator δ( f ,v) (which takes O(|post(v)|) time) in order to resolve the incon-
sistency of f in v, where f (v) represents the current energy level and v ∈ V
is any vertex at which f is inconsistent; and (2) the update of the list L (which
takes O(|pre(v)|) time), in order to keep track of all the vertices that witness
an inconsistency. Recall that L contains no duplicates.

At this point, since at the (i, j)-th iteration of line 13 the Value-Iteration is
executed on input Γw′i,j , then a scaling factor on the maximum absolute weight
W must be taken into account. Indeed, it holds that:

W ′ ,max
{
|w′i,j(e)|

∣∣∣ e ∈ E, i ∈ [−W,W], j ∈ [0, s− 1]
}
= O(|V|W).

Remark. Actually, since w′i,j , Dj(w− i)− Nj (where Nj/Dj = Fj ∈ F|V|), then
the scaling factor Dj changes from iteration to iteration. Still, Dj ≤ |V| holds for
every j.

At each application of the lifting operator δ( f ,v) the energy level f (v) in-
creases by at least one unit with respect to the scaled-up maximum absolute
weight W ′. Stated otherwise, at each application of δ( f ,v), the energy level
f (v) increases by at least 1/|V| units with respect to the original weight W.

Throughout the whole computation, the rational scalings of the energy
levels never decrease by Lemma 6.8: in fact, at the (i, j)-th scan phase, Algo-
rithm 16 executes the Value-Iteration with initial energy levels: dDj f ∗prev(i,j)e.
Whence, at line 13, the (i, j)-th execution of the Value-Iteration starts from
the (carefully scaled-up) energy levels of the prev(i, j)-th execution; roughly
speaking, no energy gets ever lost during this process. Then, by Lemma 6.4,
each energy level f (v) can be lifted-up at most |V|W ′ = O(|V|2 W) times.

The above observations imply that the (aggregate) total cost of executing
the Value-Iteration at line 13 (throughout all scan phases) can be bounded as
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follows:

∑
−W≤i≤W
1≤j≤s−1

T13
i,j =

 ∑
−W≤i≤W
1≤j≤s−1

O(|E|)︸ ︷︷ ︸
init cost

+

∑
v∈V

O
(
|post(v)|︸ ︷︷ ︸

lifting δ

+ |pre(v)|︸ ︷︷ ︸
update L

)
O(|V|W ′)︸ ︷︷ ︸

Lemma 6.4


= Θ(|V|2|E|W) + O(|V|2W) ∑

v∈V
O
(
|post(v)|+ |pre(v)|

)
= Θ(|V|2|E|W)

Whence, Algorithm 16 always halts within the following time bound:

Time

(
solve MPG

(
Γ
))

= ∑
−W≤i≤W
1≤j≤s−1

(
O(E) + T13

i,j

)
= Θ(|V|2|E|W).

This concludes the proof of the time complexity bound.
We now turn our attention to the space complexity.
(Space Complexity) First of all, although the Farey sequence F|V| has |F|V||=

Θ(|V|2) many elements, still, Algorithm 16 works fine assuming that every
next element of the sequence is generated on the fly at line 5. This computation
can be computed in O(|V|2/3 log4/3 |V|) sub-linear time and space as shown by
Pawlewicz and Pătraşcu [97]. Secondly, given i and j, it is not necessary to
actually store all weights w′i,j(e) , Dj(w(e) − i) − Nj for every e ∈ E, as one
can compute them on the fly provided that Nj, Dj, w and e are given. Fi-
nally, Algorithm 16 needs to store in memory the two SEPMs f and old f ,
but this requires only Θ(|V|) space. Finally, at line 13, the Value-Iteration al-
gorithm employs only Θ(|V|) space. In fact the list L, which it maintains in
order to keep track of the inconsistencies, doesn’t contain duplicate vertices
and, therefore, its length is at most |L| ≤ |V|. These facts imply altogether that
Algorithm 16 works with O(|V|) space. 2

6.5 Conclusions
In this work we proved an O(|V|2|E|W) pseudo-polynomial time upper bound
for the Value Problem and Optimal Strategy Synthesis in Mean Payoff Games.
The result was achieved by providing a suitable description of values and
positional strategies in terms of reweighted Energy Games and Small Energy-
Progress Measures.

On this way we ask whether further improvements are not too far away.
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7 Faster O(|V|2|E|W)-Time Energy
Algorithm for Optimal Strat-
egy Synthesis in Mean Payoff
Games

Chapter Abstract

In this chapter we further strengthen the links between Mean Payoff Games
(MPGs) and Energy Games (EGs). We offer a faster O(|V|2|E|W) pseudo-
polynomial time and Θ(|V| + |E|) space deterministic algorithm for solving
the Value Problem and Optimal Strategy Synthesis in MPGs. This improves
the estimates on the pseudo-polynomial time complexity to:

O(|E| log |V|) + Θ
(

∑
v∈V

degΓ(v) · `Γ(v)
)
= O(|V|2|E|W),

where `Γ(v) counts the number of times that an energy-lifting operator δ(·,v) is
applied to any v∈V, along a certain sequence of Value-Iterations on reweighted
EGs; and degΓ(v) is the degree of v. This improves significantly over the
pseudo-polynomial time bound shown in Chapter 6 [35,38], i.e., Θ

(
|V|2|E|W +

∑v∈V degΓ(v) · `Γ(v)
)
=Θ(|V|2|E|W), as the pseudo-polynomiality is now con-

fined to depend solely on `Γ. The actual improvement in performance is also
confirmed experimentally.

start

Jump

v
?
∈W0(Γprev

ρJ (i,j)) ∩W1(Γi,j)

wW−,1 wW−,2 wW−,3 · · · wprev
ρJ (i,j) wi,j · · ·

· · ·
wW+−1,s−1 wW+,1

Figure 7.1: An illustration of the MPG algorithm offered in Chapter 7.

This chapter is a revised version of [37].
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7.1 Introduction
As already seen in Chapter 6, a Mean Payoff Game (MPG) is a 2-player infinite
game Γ , (V, E,w, 〈V0,V1〉) played on a finite weighted directed graph. Some
other related models have been studied widely in the literature. For instance,
several research efforts have been spent in studying quantitative extensions of
infinite games for modeling quantitative aspects of reactive systems, like En-
ergy Games (EGs) [12, 14, 18]. In this context quantities may represent, e.g., the
power usage of an embedded component, or the buffer size of a networking
element. These studies unveiled interesting connections with MPGs, and they
have recently led to the design of faster procedures for solving them. In partic-
ular, [14] devised a faster deterministic algorithm for solving the Value Prob-
lem and Optimal Strategy Synthesis in MPGs within O

(
|V|2|E|W log(|V|W)

)
pseudo-polynomial time and polynomial space. Essentially, a binary search
is directed by the resolution of multiple reweighted EGs. The determination
of EGs comes from repeated applications of energy-lifting operators δ(·,v) for
v ∈ V. These are all monotone functions defined on a complete lattice (the
Energy-Lattice of a reweighted EG), so the correct termination is ensured by
the Knaster–Tarski’s fixed point theorem [111].

In Chapter 6, the worst-case time complexity of the Value Problem and
Optimal Strategy Synthesis was given an improved pseudo-polynomial upper
bound [35, 38]. That chapter focused on offering a simple proof of the im-
proved time complexity bound. The algorithm there proposed, Algorithm 16,
had the advantage of being very simple; its existence made it possible to dis-
cover and to analyze some of the underlying fundamental ideas, that ulti-
mately led to the improved upper bound, more directly; it was shown appro-
priate to supersede (at least in the perspective of obtaining sharpened bounds)
the above mentioned binary search by sort of a linear search that succeeds at
amortizing all the energy-liftings throughout the computation. However, its
running time turns out to be also Ω(|V|2|E|W), the actual time complexity be-
ing Θ

(
|V|2|E|W +∑v∈V degΓ(v) · `0

Γ(v)
)
, where `0

Γ(v)≤ (|V| − 1)|V|W denotes
the total number of times that the energy-lifting operator δ(·,v) is applied to
any v ∈ V by Algorithm 16. After the appearance of those works, a way to
overcome this issue was found.

7.1.1 Contribution
This chapter aims at further strenghtening the relationship between MPGs and EGs.

Our results are summarized as follows.

Faster O(|V|2|E|W)-Time Algorithm for MPGs by Jumping through
Reweighted EGs.

We introduce a novel algorithmic scheme, named Jumping (Algorithm 15),
which tackles on some further regularities of the problem, thus reducing the
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estimate on the pseudo-polynomial time complexity of MPGs to:

O(|E| log |V|) + Θ
(

∑
v∈V

degΓ(v) · `1
Γ(v)

)
,

where `1
Γ(v) is the total number of applications of δ(·,v) to v ∈V that are made

by Algorithm 1; `1
Γ ≤ (|V| − 1)|V|W (worst-case; but experimentally, `1

Γ� `0
Γ),

and the working space is Θ(|V| + |E|). Overall the worst-case complexity is
still O(|V|2|E|W), but the pseudo-polynomiality is now confined to depend
solely on the total number `1

Γ of required energy-liftings; this is not known
to be Ω(|V|2|E|W) generally, and future theoretical or practical advancements
concerning the Value-Iteration framework for EGs could help reducing this
metric. Under this perspective, the computational equivalence between MPGs
and EGs seems now like a bit more unfolded and subtle. In practice, Algo-
rithm 15 allows us to reduce the magnitude of `Γ considerably, w.r.t. [35, 38],
and therefore the actual running time; our experiments suggest that `1

Γ � `0
Γ

holds for wide families of MPGs (see SubSection 7.3.4).

In summary, the present work offers a faster pseudo-polynomial time algo-
rithm; theoretically the pseudo-polynomiality now depends only on `1

Γ, and in
practice the actual performance also improves considerably w.r.t. [35,38]. With
hindsight, Algorithm 16 turned out to be a high-level description and the tip
of a more technical and efficient underlying procedure. This is the first truly
O(|V|2|E|W) time deterministic algorithm, for solving the Value Problem and
Optimal Strategy Synthesis in MPGs, that can be effectively applied in prac-
tice (optionally, in interleaving with some other known sub-exponential time
algorithms).

Indeed, a wide spectrum of different approaches have been investigated in
the literature. For instance, [1] provided a fast randomized algorithm for solving

MPGs in sub-exponential time O
(
|V|2|E| exp

(
2
√
|V| ln(|E|/

√
|V|)+O(

√
|V|+

ln |E|)
))

. [79] devised a deterministic O(2|V| |V| |E| logW) singly-exponential
time procedure by considering a so called potential-theory of MPGs, that is
akin to EGs.

Table 7.1 offers a summary of past and present results.

7.1.2 Organization

In Section 7.2, we introduce some notation and provide the required back-
ground on infinite 2-player pebble games and related algorithmic results. In
Section 7.3, it is presented an O(|E| log |V|)+Θ

(
∑v∈V degΓ(v) · `1

Γ(v)
)
=O(|V|2|E|W)

pseudo-polynomial time and Θ(|V| + |E|) space deterministic algorithm for
solving the Value Problem and Optimal Strategy Synthesis in MPGs; Sub-
Section 7.3.4 offers an experimental comparison between Algorithm 15 and
Algorithm 16 [35, 38].
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Table 7.1: Time Complexity of the main Algorithms for solving MPGs.

Algorithm Optimal Strategy Synthesis Value Problem

This work O(|E| log |V|) + Θ
(

∑v∈V degΓ(v) · `1
Γ(v)

)
same complexity

CRStrat15-16 Θ
(
|V|2|E|W + ∑v∈V degΓ(v) · `0

Γ(v)
)

same complexity

BC11 O(|V|2|E|W log(|V|W)) same complexity

LP07 n/a O(|V||E|2|V| logW)

AV06 O
(
|V|2|E| e

2
√
|V| ln

(
|E|√
|V|

)
+O(
√
|V|+ln |E|))

same complexity

ZP96 Θ(|V|4|E|W log |E||V| ) Θ(|V|3|E|W)

7.2 Background and Notation
We refer the reader to Section 6.2 of Chapter 6 for the background notation
on MPGs. Also recall that the Farey sequence Fn is the increasing sequence of
all irreducible fractions from the (rational) interval [0,1] with denominators
less than or equal to n. In Section 6.4 we will be interested in generating the
Farey sequence F0, . . . , Fs−1, one term after another, iteratively and efficiently.
As mentioned in [97], combining several properties satisfied by the Farey se-
quence, one can get a trivial iterative algorithm, which generates the next term
Fj = Nj/Dj of Fn based on the previous two:

Nj←
⌊

Dj−2 + n
Dj−1

⌋
· Nj−1 − Nj−1; Dj←

⌊
Dj−2 + n

Dj−1

⌋
· Dj−1 − Dj−1.

Given Fj−2, Fj−1 as input, this computes Fj in O(1) time and space.

7.3 A Faster O(|V|2|E|W)-Time Algorithm for MPGs by
Jumping through Reweighted EGs

This section offers an O(|E| log |V|) + Θ
(

∑v∈V degΓ(v) · `1
Γ(v)

)
= O(|V|2|E|W)

time algorithm for solving the Value Problem and Optimal Strategy Synthesis
in MPGs Γ = (V, E,w, 〈V0,V1〉), where W ,maxe∈E |we|; it works with Θ(|V|+
|E|) space. Its name is Algorithm 15.

In order to describe it in a suitable way, let us firstly recall some notation.
Given an MPG Γ, we shall consider the following reweightings:

Γi,j
∼= Γw−i−Fj , for any i ∈ [−W,W] and j ∈ [1, s− 1],

where s, |F|V||, and Fj is the j-th term of F|V|.
Assuming Fj = Nj/Dj for some (co-prime) Nj, Dj ∈N, we work with the
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following weights:

wi,j , w− i− Fj = w− i− Nj/Dj; w′i,j , Dj wi,j = Dj (w− i)− Nj.

Recall Γi,j , Γw′i,j and ∀e∈Ew′i,j(e) ∈ Z. Notice, since F1 < . . . < Fs−1 is mono-
tone increasing, {wi,j}i,j can be ordered (inverse)-lexicographically w.r.t. (i, j);
i.e., w(i,j) > w(i′,j′) iff either: i < i′, or i = i′ and j < j′; e.g., wW−,1 > wW−,2 >
. . . > wW−,s−1 > . . . > wW+−1,s−1 > wW+,s−1. Also, we denote the least-SEPM of
the reweighted EG Γi,j by f ∗w′i,j : V→ CΓi,j . In addition, f ∗i,j : V→ Q denotes the

rational-scaling of f ∗w′i,j , which is defined as: ∀v∈V f ∗i,j(v),
1

Dj
· f ∗w′i,j(v). Finally, if f

is any SEPM of the EG Γi,j, then Inc( f , i, j), {v∈V | v is inconsistent w.r.t. f in Γi,j}.

7.3.1 Description of Algorithm 15
Outline. Given an input arena Γ = (V, E,w, 〈V0,V1〉), Algorithm 15 aims at
returning a tuple (W0,W1,ν,σ∗0 ) where: W0 is the winning set of Player 0 in
the MPG Γ, and W1 is that of Player 1; ν : V→ SΓ maps each starting position
vs ∈ V to valΓ(vs); finally, σ∗0 : V0 → V is an optimal positional strategy for
Player 0 in the MPG Γ.

Let W− ,mine∈E we and W+ ,maxe∈E we. The first aspect underlying Al-
gorithm 15 is that of ordering [W−,W+]× [1, s− 1] lexicographically, by con-
sidering the already mentioned (decreasing) sequence of weights:

ρ : [W−,W+]× [1, s− 1]→ZE : (i, j) 7→ wi,j,

ρ : wW−,1 >wW−,2 > . . .>wW−,s−1 >wW−+1,1 >wW−+1,2 > . . .>wW+−1,s−1 > . . .>wW+,s−1,

then, to rely on Theorem 6.3, at each step of ρ, testing whether some transition
of winning regions occurs. At the generic (i, j)-th step of ρ, we run a Value-
Iteration [14] in order to compute the least-SEPM of Γi,j, and then we check for
every v ∈ V whether v is winning for Player 1 w.r.t. the current weight wi,j (i.e.,
w.r.t. Γi,j), meanwhile recalling whether v was winning for Player 0 w.r.t. the
(immediately, inverse-lex) previous weight wprevρ(i,j) (i.e., w.r.t. Γprevρ(i,j)). This
step relies on Lemma 6.3, as in fact W0(Γprevρ(i,j)) = Vf ∗

prevρ(i,j)
and W1(Γi,j) =

V \Vf ∗i,j .

If a transition occurs, say for some v̂∈W0(Γprevρ(i,j))∩W1(Γi,j), then valΓ(v̂)
can be computed easily by relying on Theorem 6.3, i.e., ν(v̂)← i + F[j − 1];
also, an optimal positional strategy can be extracted from f ∗prevρ(i,j)

thanks to
Theorem 6.4 and Remark 6.1, provided that v̂ ∈ V0.

Each phase, in which one does a Value-Iteration and looks at transitions of
winning regions, it is named Scan-Phase. Remarkably, for every i ∈ [W−,W+]
and j ∈ [1, s− 1], the (i, j)-th Scan-Phase performs a Value-Iteration [14] on the
reweighted EG Γi,j by initializing all the energy-levels to those computed by
the previous Scan-Phase (subject to a suitable re-scaling and a rounding-up,
i.e., dDj · f ∗prevρ(i,j)

e). As described in [38], the main step of computation that is
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start

Jump

v
?
∈W0(Γprev

ρJ (i,j)) ∩W1(Γi,j)

wW−,1 wW−,2 wW−,3 · · · wprev
ρJ (i,j) wi,j · · ·

· · ·
wW+−1,s−1 wW+,1

Figure 7.2: An illustration of Algorithm 15.

carried on at the (i, j)-th Scan-Phase goes therefore as follows:

fi,j←
1

Dj
Value-Iteration

(
Γi,j,

⌈
Dj · f ∗prevρ(i,j)

⌉)
,

where Dj is the denominator of Fj. Then, one can prove that ∀(i, j) fi,j = f ∗i,j
(see Chapter 6, Lemma 6.8, Item 4). Indeed, by Lemma 6.2 and Lemma 6.3,
W0(Γprevρ(i,j)) = Vf ∗

prevρ(i,j)
and W1(Γi,j) = V \ Vf ∗i,j . And since ρ is monotone

decreasing, the sequence of energy-levels ψρ : (i, j) 7→ f ∗i,j is monotone non-
decreasing (see Chapter 6, Lemma 6.8, Item 1):

ψρ : f ∗W−,1� f ∗W−,2� . . .� f ∗W−,s−1� f ∗W−+1,1� f ∗W−+1,2� . . .� f ∗W+−1,s−1� . . .� f ∗W+,s−1;

Our algorithm will succeed at amortizing the cost of the corresponding se-
quence of Value-Iterations for computing ψρ. Recall that a similar amortization
takes place already in Algorithm 16. However, Algorithm 16 performs exactly
one Scan-Phase (i.e., one Value-Iteration, plus the tests v ∈? W0(Γprevρ(i,j)) ∩
W1(Γi,j)) for each term of ρ –without making any Jump in ρ–. Thus, Algo-
rithm 16 performs Θ(|V|2W) Scan-Phases overall, each one costing Ω(|E|)
time (i.e., the cost of initializing the Value-Iteration as in [14]). This brings an
overall Ω(|V|2|E|W) time complexity, which turns out to be also O(|V|2|E|W);
leading us to an improved pseudo-polynomial time upper bound for solving
MPGs [35, 38].

The present work shows that it is instead possible, and actually very con-
venient, to perform many Jumps in ρ; thus introducing “gaps” between the
weights that are considered along the sequence of Scan-Phases. The corre-
sponding sequence of weights is denoted by ρJ . This is Algorithm 15. In
Fig. 7.2, a graphical intuition of Algorithm 15 and ρJ is given, in which a Jump
is depicted with an arc going from wW−,2 to wprev

ρJ (i,j), e.g., wprev
ρJ (prevρJ (i,j)) =

wW−,2.
Two distinct kinds of Jumps are employed: Energy-Increasing-Jumps (EI-

Jumps) and Unitary-Advance-Jumps (UA-Jumps). Briefly, EI-Jumps allow us to
satisfy a suitable invariant:

[Inv-EI] Whenever a Scan-Phase is executed (each time that a Value-Iteration
is invoked), an energy-level f (v) strictly increases for at least one v ∈ V. There
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will be no vain Scan-Phase (i.e., such that all the energy-levels stand still); so, δ
will be applied (successfully) at least once per Scan-Phase. Therefore, ψρJ will
be monotone increasing (except at the steps of backtracking introduced next,
but there will be at most |V| of them). 2

Indeed, the UA-Jumps are employed so to scroll through F|V| only when
and where it is really necessary. Consider the following facts.

– Suppose that Algorithm 15 came at the end of the (i, s− 1)-th Scan-Phase,
for some i ∈ [W−,W+]; recall that Fs−1 = 1, so wi,s−1 = w′i,s−1 is integral. Then,
Algorithm 16 would scroll through F|V| entirely, by invoking one Scan-Phase
per each term, going from the (i + 1,1)-th to the (i + 1, s− 1)-th, meanwhile
testing whether a transition of winning regions occurs; notice, wi+1,s−1 is inte-
gral again. Instead, to UA-Jump means to jump in advance (proactively) from
wi,s−1 to wi+1,s−1, by making a Scan-Phase on input Γi+1,s−1, thus skipping
all those from the (i + 1,1)-th to the (i + 1, s − 2)-th one. After that, Algo-
rithm 15 needs to backtrack to wi,s−1, and to scroll through F|V|, if and only if
W0(Γwi,s−1) ∩W1(Γwi+1,s−1) 6= ∅. Otherwise, it is safe to keep the search going
on, from wi+1,s−1 on out, making another UA-Jump to wi+2,s−1. The backtrack-
ing step may happen at most |V| times overall, because some value ν(v) is
assigned to some v ∈ V at each time. So, Algorithm 15 scrolls entirely through
F|V| at most |V| times; i.e., only when it is really necessary.

– Remarkably, when scrolling through F|V|, soon after the above mentioned
backtracking step, the corresponding sequence of Value-Iterations really need
to lift-up again (more slowly) only the energy-levels of the sub-arena of Γ that is
induced by S,W0(Γwi,s−1) ∩W1(Γwi+1,s−1). All the energy-levels of the vertices
in V \ S can be confirmed and left unchanged during the UA-Jump’s back-
tracking step; and they will all stand still, during the forthcoming sequence of
Value-Iterations (at least, until a new EI-Jump will occur), as they were com-
puted just before the occurence of the UA-Jump’s backtracking step. This is
why Algorithm 15 scrolls through F|V| only where it is really necessary.

– Also, Algorithm 15 succeeds at interleaving EI-Jumps and UA-Jumps, thus
making only one single pass through ρJ (plus the backtracking steps).

Altogether these facts are going to reduce the running time considerably.

Definition 7.1 (`1
Γ). Given an input MPG Γ, let `1

Γ(v) be the total number of times
that the energy-lifting operator δ(·,v) is applied to any v ∈ V by Algorithm 15 (notice
that it will be applied only at line 3 of J-VI(), see SubProcedure 6).

Then, the following remark holds on Algorithm 15.

Remark 7.1. Jumping is not heuristic, the theoretical running time of the procedure
improves exactly, from:

Θ(|V|2|E|W + ∑
v∈V

degΓ(v) · `0
Γ(v)) (Algorithm 16)

to:
O(|E| log |V|) + Θ

(
∑

v∈V
degΓ(v) · `1

Γ(v)
)

(Algorithm 15),
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where `1
Γ ≤ (|V| − 1)|V|W; which is still O(|V|2|E|W) in the worst-case, but it isn’t

known to be Ω(|V|2|E|W) generally. In practice, this reduces the magnitude of `Γ
significantly, i.e., `1

Γ� `0
Γ is observed in our experiments (see SubSection 7.3.4).

To achieve this, we have to overcome some subtle technical issues. Firstly,
we show that it is unnecessary to re-initialize the Value-Iteration at each Scan-
Phase (this would cost Ω(|E|) each time otherwise), even when making wide
jumps in ρ. Instead, it will be sufficient to perform an initialization phase only
at the beginning, paying only O(|E| log |V|) total time and a linear space in
pre-processing. For this, we will provide a suitable readjustment of the Value-
Iteration; it is named J-VI() (SubProcedure 6). Briefly, the Value-Iteration
of [14] employs an array of counters, cnt : V0→N, in order to check in time
O(|Nin

Γ (v)|) which vertices u ∈ Nin
Γ (v) ∩V0 have become inconsistent (soon af-

ter that the energy-level f (v) was increased by applying δ( f ,v) to some v ∈V),
and should therefore be added to the list Linc of inconsistent vertices. One sub-
tle issue here is that, when going from the prevρJ (i, j)-th to the (i, j)-th Scan-
Phase, the coherency of cnt can break (i.e., cnt may provide false-positives,
thus classifying a vertex as consistent when it isn’t really so). This may happen
when wprev

ρJ (i,j) > w(i,j) (which is always the case, except for the UA-Jump’s
backtracking steps). This is even amplified by the EI-Jumps, as they may lead
to wide jumps in ρ. The algorithm in [38] recalculates cnt from scratch, at the
beginning of each Scan-Phase, thus paying Ω(|E|) time per each. In this work,
we show how to keep cnt coherent throughout the Jumping Scan-Phases, ef-
ficiently. Actually, even in Algorithm 15 the coherency of cnt can possibly
break, but Algorithm 15 succeeds at repairing all the incoherencies that may
happen during the whole computation in Θ(|E|) total time – just by paying
O(|E| log |V|) time in pre-processing. This is a very convenient trade-off. At
this point we should begin entering into the details of Algorithm 15.

Jumper. We employ a container data-structure, which is denoted by J. It
comprises a bunch of arrays, maps, plus an integer variable J.i. Concerning
maps, the key universe is V or E; i.e., keys are restricted to a narrow range of
integers ([1, |V|] or [1, |E|], depending on the particular case).

We suggest direct addressing: the value binded to a key v ∈ V (or (u,v) ∈
E) is stored at A[v] (resp., A[(u,v)]); if there is no binding for key v (resp.,
(u,v)), the cell stores a sentinel, i.e., A[v] = ⊥. Also, we would need to iterate
efficiently through A (i.e., without having to scroll entirely through A). This is
easy to implement by handling pointers in a suitable way; one may also keep
a list LA associated to A, explicitly, storing one element for each (k,v) 6= ⊥ of
A; every time that an item is added to or removed from A, then LA is updated
accordingly, in time O(1) (by handling pointers). The last entry inserted into
A (the key of which isn’t already binded at insertion time) goes in front of
LA. We say that L , (A, LA) is an array-list, and we dispose of the following
operations: insert((k,val), L), which binds val to k by inserting (k,val)
into L (if any (k,val′) is already in L, then val′ gets overwritten by val);
remove(k, L) deletes an entry (k,val) from L; pop front(L), removes from
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L the last (k,val) that was inserted (and whose key was not already binded at
the time of the insertion, i.e., the front) also returning it; for each

(
(k,val) ∈

L
)

iterates through the entries of L efficiently (i.e., skipping the sentinels).
Notice, any sequence of insert and pop front on L implements a LIFO
policy.

So, J comprises: an integer variable J.i; an array J. f : V → Q; an array
J.cnt : V0 → N; an array J.cmp : {(u,v) ∈ E | u ∈ V0} → {T,F}; a bunch of
array-lists, L f : V→N, and Linc, Linc

nxt, Linc
cpy, L> : V→{∗}; finally, a special array-

list Lω indexed by {we | e ∈ E}, whose values are in turn (classical, linked) lists
of arcs, denoted Lα; Lω is filled in pre-processing as follows: (ŵ, Lα) ∈ Lω iff
Lα = {e ∈ E | we = ŵ}. The subprocedure init jumper() (SubProcedure 3)
takes care of initializing J.

SubProcedure 3: Init Jumper J
SubProcedure init jumper(J,Γ)

input : Jumper J, an MPG Γ.
1 L f , Linc, Linc

nxt, Linc
cpy, L>, Lω ← ∅;

2 foreach v ∈ V do
3 J. f [v]← 0;
4 if v ∈ V0 then
5 J.cnt[v]← |Nout

Γ (v)|;

6 foreach (u,v,w) ∈ E do
7 if v ∈ V0 then
8 J.cmp[(u,v)]← T;

9 if Lω [w] = ⊥ then
10 insert

(
(w,∅), Lω)

)
;

11 insert
(
(u,v), Lω [w]

)
;

12 Sort Lω in increasing order w.r.t. the keys w;

At the beginning, all array-lists are empty (line 1). For every v ∈ V (line 2),
we set J. f [u] = 0 and, if v∈V0, then J.cnt[v]← |Nout

Γ (v)| (lines 3-5). Then, each
arc (u,v,w) ∈ E is flagged as compatible, i.e., J.cmp[(u,v)]← T (lines 6-8); also,
if Lω doesn’t contain an entry already binded to w(u,v), then an empty list of
arcs is inserted into Lω as an entry (w,∅) (lines 9-10); then, in any case, the arc
(u,v) is added to the unique Lα which is binded to w = w(u,v) in Lω (line 11).
At the end (line 12), all the elements of Lω are sorted in increasing order
w.r.t. their weight keys, we for e ∈ E (e.g., (W−, Lα) goes in front of Lω). This
concludes the initialization of J; it takes O(|E| log |V|) time and Θ(|V|+ |E|)
space.

Main Procedure: solve MPG(). The main procedure of Algorithm 15 is
organized as follows. Firstly, the algorithm performs an initialization phase;
which includes init jumper(J,Γ).

The variablesW0,W1,ν,σ∗0 are initially empty (line 1). Also, W−←mine∈E we,
W+ ← maxe∈E we (line 2). And F is a reference to the Farey’s terms, say
{F[j] | j ∈ [0, s − 1]} = F|V|, and s← |F|V|| (line 3). At line 4, J is initialized
by init jumper(J,Γ) (SubProcedure 3).

Then the Scan-Phases start.
After setting i←W− − 1, j← 1 (line 5), Algorithm 15 enters into a while
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loop (line 6), which lasts until both ei-jump(i, J) = T at line 7, and Linc = ∅
at line 8, hold; in which case (W0,W1,ν,σ∗0 ) is returned (line 8) and Algo-
rithm 15 halts. Inside the while loop, ei-jump(i, J) (SubProcedure 8) is in-
voked (line 7). This checks whether or not to make an EI-Jump; if so, the
ending point of the EI-Jump (the new value of i) is stored into J.i. This will be
the starting point for making a sequence of UA-Jumps, which begins by invok-
ing ua-jumps(J.i, s, F, J,Γ) at line 9. When the ua-jumps() halts, it returns
(î,S), where: î is the new value of i (line 9), for some î ≥ J.i; and S is a set of
vertices such that S =W0(Γwî−1,s−1

) ∩W1(Γwî,s−1
).

Algorithm 15: Main Procedure
Procedure solve MPG(Γ)

input : An MPG Γ = (V, E,w, 〈V0,V1〉).
output: (W0,W1,ν,σ∗0 ).

1 W0,W1,ν,σ∗0 ← ∅; /*Init Phase*/
2 W−←mine∈E we; W+←maxe∈E we;
3 F← reference to F|V|; s← |F|V||;
4 init jumper(J,Γ);
5 i←W− − 1; j← 1; /*Jumping Scan-Phases*/
6 while T do
7 if ei-jump(i, J) then
8 if Linc = ∅ then return (W0,W1,ν,σ∗0 );
9 (i,S)← ua-jumps(J.i, s, F, J,Γ);

10 j← 1;

11 J-VI(i, j, F, J,Γ[S]);
12 set vars(W0,W1,ν,σ∗0 , i, j, F, J,Γ[S]);
13 scl back f (j, F, J);
14 j← j + 1;

Next, j← 1 is set (line 10), as Algorithm 15 is now completing the back-
tracking from wî,s−1 to wî,1, in order to begin scrolling through F|V| by running
a sequence of J-VI() at line 11. Such a sequence of J-VI()s will last until the
occurence of another EI-Jump at line 7, that in turn will lead to another se-
quence of UA-Jumps at line 9, and so on. So, a J-VI() (SubProcedure 6)
is executed on input (î, j, F, J,Γ[S]) at line 11. We remark that, during the
J-VI(i, j, F, J,Γ[S]), the energy-levels are scaled up, from Q to N; actually, from
J. f to dDj · J. f e, where Dj is the denominator of Fj. Also, J-VI(i, j, F, J,Γ[S])
(SubProcedure 6) is designed so that, when it halts, L> = W0(Γprev

ρJ (i,j)) ∩
W1(Γi,j). Then, set vars() is invoked on input (W0,W1,ν,σ∗0 , i, j, F, J,Γ[S])
(line 12): this checks whether some value and optimal strategy needs to be as-
signed to ν and σ∗0 (respectively). Next, all of the energy-levels are scaled back,
from N to Q, and stored back into J. f : this is done by invoking scl back f (j, F, J)
(line 13). Finally, j← j + 1 (line 14) is assigned (to step through the sequence
F|V| during the while loop at line 7). This concludes solve MPG(), which is
the main procedure of Algorithm 15.

Set Values and Optimal Strategy. Let us provide the details of set vars()
(SubProcedure 4). It takes (W0,W1,ν,σ∗0 , i, j, F,Γ) in input, where i ∈ [W−,W+]
and j ∈ [1, s− 1]. At line 1, D = Dj−1 is the denominator of Fj−1. Then, all of
the following operations are repeated while L> 6= ∅ (line 2). Firstly, the front
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element u of L> is popped (line 3); recall, it will turn out that u ∈W0(Γi,j−1) ∩
W1(Γi,j), thanks to the specs of J-VI() (SubProcedure 6). For this reason, the
optimal value of u in the MPG Γ is set to ν(u)← i + F[j − 1] (line 4); and,
if ν(u) ≥ 0, u is added to the winning region W0; else, to W1 (line 5). The
correctness of lines 4-5 relies on Theorem 6.3. If u ∈ V0 (line 6), it is searched
an arc (u,v) ∈ E that is compatible w.r.t. Dj−1 · J. f in Γi,j−1 (line 8), i.e., it is
searched some v ∈ Nout

Γ (u) such that:

(D · J. f [u]) � (D · J. f [v])	 get scl w
(
w(u,v), i, j− 1, F

)
(line 8);

By Theorem 6.4, setting σ∗0 (u)← v (line 9) brings an optimal positional strategy
for Player 0 in the MPG Γ. Here, get scl w

(
w, i, j− 1, F

)
simply returns Dj−1 ·

(w(u,v) − i) − Nj−1, where: Nj−1 is the numerator of Fj−1, and Dj−1 is its
denominator. Thanks to how J-VI() (SubProcedure 6) is designed, at this
point J. f still stores the energy-levels as they were just before the last invocation
of J-VI() made at line 11 of Algorithm 15; instead, the new energy-levels,
those lifted-up during that same J-VI(), are stored into L f . So, at this point,
it will turn out that ∀u∈V J. f [u] = f ∗i,j−1(u).

SubProcedure 4: Set Values and Optimal Strategy
Procedure set vars(W0,W1,ν,σ∗0 , i, j, F, J,Γ)

input : Winning setsW0,W1, values ν, opt. strategy σ∗0 , i ∈ [W−,W+], j ∈ [1, s− 1], ref. F to
F|V|, MPG Γ

1 D← denominator of F[j− 1];
2 while L> 6= ∅ do
3 u← pop front(L>);
4 ν(u)← i + F[j− 1];
5 if ν(u) ≥ 0 then W0←W0 ∪ {v}; elseW1←W1 ∪ {v};
6 if u ∈ V0 then
7 for v ∈ Nout

Γ (u) do
8 if (D · J. f [u]) � (D · J. f [v])	 get scl w

(
w(u,v), i, j− 1, F

)
then

9 σ∗0 (u)← v; break;

This actually concludes the description of set vars() (SubProcedure 4).
Indeed, the role of L f is precisely that to allow the J-VI() to lift-up the

energy-levels during the (i, j)-th Scan-Phase, meanwhile preserving (inside J. f )
those computed at the (i, j − 1)-th one (because set vars() needs them in
order to rely on Theorem 6.4). As mentioned, when set vars() halts, all the
energy-levels are scaled back, from N to Q, and stored back from L f into J. f
(at line 13 of Algorithm 15, see scl back f () in SubProcedure 5).

We remark at this point that all the arithmetics of Algorithm 15 can be done
in Z.

Now, let us detail the remaining subprocedures, those governing the Jumps
and those concerning the energy-levels and the J-VI(). Since the details of the
former rely significantly on those of the latter two, we proceed by discussing
firstly how the energy-levels are handled by the J-VI() (see SubProcedure 6
and 5).

J-Value-Iteration. J-VI() is similar to the Value-Iteration of [14]. Still,
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there are some distinctive features. The J-VI() takes in input two indices
i ∈ [W−,W+] and j ∈ [1, s− 1], a reference F to F|V|, (a reference to) the Jumper
J, (a reference to) the input arena Γ. Basically, J-VI(i, j, F, J,Γ) aims at comput-
ing the least-SEPM of the reweighted EG Γi,j. For this, it relies on a (slightly
revisited) energy-lifting operator δ : [V → CΓ] × V → [V → CΓ]. The array-list
employed to keep track of the inconsistent vertices is Linc. It is assumed, as
a pre-condition, that Linc is already initialized when J-VI() starts. We will
show that this pre-condition holds thanks to how Linc

nxt is managed. Recall,
Algorithm 15 is going to perform a sequence of invocations to J-VI(). Dur-
ing the execution of any such invocation of J-VI(), the role of Linc

nxt is precisely
that of collecting, in advance, the initial list of inconsistent vertices for the next1

J-VI(). Rephrasing, the k-th invocation of J-VI() takes care of initializing Linc

for the k + 1-th invocation of J-VI(), and this is done thanks to Linc
nxt.

Also, the energy-levels are managed in a special way. The inital energy-
levels are stored inside J. f (as a pre-condition). Again, the k-th invocation of
J-VI() takes care of initializing the initial energy-levels for the k + 1-th one:
actually, those computed at the end of the k-th J-VI() will become the initial
energy-levels for the k + 1-th one (subject to a rescaling). In this way, Algo-
rithm 15 will succeed at amortizing the cost of all invocations of J-VI(). As
mentioned, since J. f stores rational-scalings, and Γi,j is weighted in Z, the
J-VI() needs to scale everything up, from Q to N, when it reads the energy-
levels out from J. f . So, J. f is accessed read-only during the J-VI(): we want
to update the energy-levels by applying δ, but still we need a back-up copy
of the initial energy-levels (because they are needed at line 8 of set vars(),
SubProcedure 4). Therefore, a special subprocedure is employed for access-
ing energy-levels during J-VI(), it is named get scl f () (SubProcedure 5);
moreover, an array-list L f is employed, whose aim is that to store the cur-
rent energy-levels, those lifted-up during the J-VI(). SubProcedure 5 shows
get scl f (), it takes: u ∈ V, some j ∈ [1, s− 1], a reference F to F|V|, and (a
reference to) J.

get scl f () goes as follows. If L f [u] =⊥ (line 1), the denominator D of Fj
is taken (line 2), and f ← dD · J. f [u]e is computed (line 3); a (new) entry (v, f )
is inserted into L f (line 4). Finally, in any case, L f [v] is returned (line 5).

1i.e., the subsequent invocation (in the above mentioned sequence of J-VI()) that will be
performed, either at line 12 of solve MPG() (Algorithm 15), or at line 3 of ua-jumps() (Sub-
Procedure 9).
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SubProcedure 5: Energy-Levels
SubProcedure get scl f (v, j, F, J)

input: v ∈ V, j ∈ [1, s− 1],
F is a ref. to F|V|, J is Jumper.

1 if L f [v] = ⊥ then
2 D← denominator of F[j];
3 f ← dD · J. f [v]e;
4 insert

(
(v, f ), L f

)
;

5 return L f [v];

SubProcedure scl back f (j, F, J)
input: j ∈ [0, s− 1], F is a ref. to Farey’s terms,

J is Jumper.
1 D← denominator of F[j];
2 while L f 6= ∅ do
3 (v, f )← pop front(L f );
4 J. f [v]← f /D;

As mentioned, at line 13 of Algorithm 15, J. f will be overwritten by scaling
back the values that are stored in L f . This is done by scl back f () (SubProce-
dure 5): at line 1, D is the denominator of Fj; then, L f is emptied, one element
at a time (line 2); for each (v, f ) ∈ L f (line 3), the rational f /D is stored back
to J. f [v] (line 4). This concludes scl back f ().

Next, J-VI() takes in input: i ∈ [W−,W+], j ∈ [1, s − 1], a reference F to
F|V|, (a reference to) the Jumper J, and (a reference to) the input MPG Γ. At
line 1, J-VI() enters into a while loop which lasts while Linc 6= ∅. The front
vertex v← pop front(Linc) is popped from Linc (line 2). Next, the energy-
lifting operator δ is applied to v by invoking apply δ(v, i, j, F, J,Γ) (line 3).

There inside (at line 1 of apply δ()), the energy-level of v is lifted-up as
follows:

fv←
{

min
{
get scl f

(
v′, j, F, J

)
	 get scl w

(
w(v,v′), i, j, F

)
| v′ ∈ Nout

Γ (v)
}

, if v ∈ V0;
max

{
get scl f

(
v′, j, F, J

)
	 get scl w

(
w(v,v′), i, j, F

)
| v′ ∈ Nout

Γ (v)
}

, if v ∈ V1.

Then, fv is stored inside L f (notice, not in J. f ), where it is binded to the
key v (line 2). The control turns back to J-VI(). The current energy-level of
v is retrieved by fv ← get scl f (v, j, F, J) (line 4). If fv 6= > (line 5), then v
is inserted into Linc

nxt (if it isn’t already in there) (line 6); moreover, if v ∈ V0,
then J.cnt[v] and {J.cmp[(v,v′)] | v′ ∈ Nout

Γ (v)} are recalculated from scratch,
by invoking init cnt cmp(v, i, j, F, J,Γ) (line 7, see SubProcedure 7). Else, if
fv = > (line 8), then v is stored into L> (line 9); and if Linc

nxt[v] 6= ⊥ in addition,
then v is removed from Linc

nxt (line 10).

At this point it is worth introducing the following notation concerning
energy-levels.

Definition 7.2. For any step of execution ι and for any variable x of Algorithm 15,
the state of x at step ι is denoted by xι. Then, the current energy-levels at step ι are
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defined as follows:

∀v∈V f c:ι(v),
{

Lι
f [v], if Lι

f [v] 6= ⊥;⌈
Djι · J. f ι[v]

⌉
, otherwise.

where Djι is the denominator of Fjι . If ι is implicit, the current energy-levels are
denoted by f c.

SubProcedure 6: J-Value-Iteration
Procedure J-VI(i, j, F, J,Γ)

input : i ∈ [W−,W+] and j ∈ [1, s− 1], F is a ref. to Farey’s terms, J is Jumper, Γ is an MPG.
1 while Linc 6= ∅ do
2 v← pop front(Linc);
3 apply δ(v, i, j, F, J,Γ);
4 fv← get scl f (v, j, F, J);
5 if fv 6= > then
6 if Linc

nxt[v] = ⊥ then insert(v, Linc
nxt);

7 if v ∈ V0 then init cnt cmp(v, i, j, F, J,Γ);

8 else
9 insert(v, L>);

10 if Linc
nxt[v] 6= ⊥ then remove(v, Linc

nxt);

11 foreach u ∈ Nin
Γ (v) do

12 fu← get scl f (u, j, F, J);
13 ∆u,v← fv 	 get scl w(w(u,v), i, j, F);
14 if Linc[u] = ⊥ and fu < ∆u,v then
15 if u ∈ V0 and J.cmp[(u,v)] = T then
16 J.cnt[u]← J.cnt[u]− 1;
17 J.cmp[(u,v)]← F;

18 if u ∈ V1 OR J.cnt[u] = 0 then insert(u, Linc);

19 swap(Linc, Linc
nxt);

SubProcedure apply δ(v, i, j, F, J,Γ)
input : v ∈ V, i ∈ [W−,W+], j ∈ [1, s− 1], F is a ref. to Farey, J is Jumper, Γ is an MPG.

1 fv←
{

min
{
get scl f

(
v′, j, F, J

)
	 get scl w

(
w(v,v′), i, j, F

)
| v′ ∈ Nout

Γ (v)
}

, if v ∈ V0;
max

{
get scl f

(
v′, j, F, J

)
	 get scl w

(
w(v,v′), i, j, F

)
| v′ ∈ Nout

Γ (v)
}

, if v ∈ V1.
2 insert

(
(v, fv), L f

)
;

Remark 7.2. Recall, the role of Linc
nxt and that of the swap() (line 19) is precisely that

of initializing, in advance, the list of inconsistent vertices Linc for the next J-VI();
because the J-VI() assumes a correct initialization of Linc as a pre-condition.

We argue in Proposition 7.2 and Lemma 7.1 that, when J-VI() halts –say at step
h– it is necessary to initialize J.Linc for the next J-VI() by including (at least) all the
v ∈ V such that: 0 < f c:h(v) 6= >.

Notice, if Linc
nxt = ∅ holds just before the swap() at line 19, then Linc =

∅ holds soon after; therefore, in that case yet another EI-Jump will occur (at
line 7 of Algorithm 15) and eventually some other vertices will be inserted
into Linc (see the details of SubProcedure 8). We shall provide the details of
init cnt inc(v, i, j, F, J) (line 7) hereafter. But let us first discuss the role
played by J.cnt and J.cmp during J-VI().
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SubProcedure 7: Counters and Cmp Flags
SubProcedure init cnt cmp(u, i, j, F, J,Γ)

input : u ∈ V0, i ∈ [W−,W+], j ∈ [1, s− 1], F is a ref. to Farey, J is Jumper, Γ is an MPG.
1 cu← 0;
2 foreach v ∈ Nout

Γ (u) do
3 fu← get scl f (u, j, F, J);
4 fv← get scl f (v, j, F, J);
5 if fu � fv 	 get scl w

(
w(u,v), i, j, F

)
then

6 cu← cu + 1;
7 J.cmp[(u,v)]← T;

8 else J.cmp[(u,v)]← F;

9 J.cnt[u]← cu;

From line 11 to line 18, J-VI() explores Nin
Γ (v) in order to find all the

u ∈ Nin
Γ (v) that may have become inconsistent soon after the energy-lifting δ

that was applied to v (before, at line 3). For each u ∈ Nin
Γ (v) (line 11), the

energy-level fu← get scl f (u, j, F, J) is considered (line 12), also, ∆u,v← fv	
w′i,j(u,v) is computed (line 13), where fv ← get scl f (v, j, F, J); if fu < ∆u,v

(i.e., in case (u,v) is now incompatible w.r.t. f c in Γi,j) and Linc[u] = ⊥ holds
(line 14), then:

– If u∈V0 and (u,v) was not already incompatible before (i.e., if J.cmp[(u,v)] =
T at line 15, then: J.cnt[u] is decremented (line 16), and J.cmp[(u,v)]← F is
assigned (line 17). (This is the role of the J.cnt and J.cmp flags).

– After that, if u ∈ V1 or J.cnt[u] = 0, then u is inserted into Linc (line 18).
When the while loop (at line 1) ends, the (references to) Linc and Linc

nxt are
swapped (line 19) (one is assigned to reference the other and vice-versa, in O(1)
time by interchanging pointers).

The details of init cnt cmp(u, i, j, F, J,Γ) (line 7), where u ∈ V0, are given
in SubProcedure 7. At line 1, cu ← 0 is initialized. For each v ∈ Nout

Γ (u)
(line 2), it is checked whether (u,v) is compatible with respect to the cur-
rent energy-levels; i.e., whether or not fu � fv 	 w′i,j(u,v), holds for fu ←
get scl f (u, j, F, J) = f c(u) and fv ← get scl f (v, j, F, J) = f c(v) (lines 3-
5); if (u,v) is found to be compatible, then cu is incremented (line 6) and
J.cmp[(u,v)]← T is assigned (line 7); otherwise, (cu stands still and) it is set
J.cmp[(u,v)]← F (line 8). At the very end, it is finally set J.cnt[u]← cu (line 9).

Concerning J.cmp and J.cnt, it is now worth defining a formal notion of
coherency.

Definition 7.3. Let ι be any step of execution of Algorithm 15. Let i ∈ [W−,W+],
j ∈ [0, s− 1], u ∈ V0 and v ∈ Nout

Γ (u). We say that J.cmpι[(u,v)] is coherent w.r.t.
f c:ι in Γi,j when it holds:

J.cmpι[(u,v)] = T iff f c:ι(u) � f c:ι(v)	 w′i,j(u,v).

Also, we say that J.cntι[u] is coherent w.r.t. f c:ι in Γi,j when:

J.cntι[u] =
∣∣{(u,v) ∈ E | f c:ι(u) � f c:ι(v)	 w′i,j(u,v)

}∣∣.
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We say that J.cmpι is coherent when ∀ (u∈V0 \ Lincι
) ∀ (v∈ Nout

Γ (u)) J.cmpι[(u,v)]
is coherent;

and we say that J.cntι is coherent when ∀(u ∈ V0 \ Lincι
) J.cntι[u] is coherent.

Finally, when something is not coherent, it is incoherent. Remark: the step ι can
be implicit.

Remark 7.3. In the Value-Iteration [14], the consistency checking of (u,v)∈ E (line 14)
is explicit: an inequality like “ f (u)� f (v)	w(u,v)” is tested; thus, neither the cmp
flags nor an explicit notion of coherency are needed. So, why we introduced cmp flags
and coherency? Observe, at line 14 of J-VI(), it doesn’t make much sense to check
“ f (u) � f (v)	 w(u,v)” in our setting. Consider the following facts: (1) of course
the values of w′i,j depend on the index (i, j) of the current Scan-Phase; (2) therefore,
going from one Scan-Phase to the next one (possibly, by Jumping), some counters may
become incoherent, because wi′,j′ < wi,j if (i′, j′)> (i, j); but in the Value-Iteration [14]
the only possible source of incoherency was the application of δ(·,v); in Algorithm 15,
going from one Scan-Phase to the next, we have an additional source of incoherency.
(3) still, J-VI() can’t afford to re-initialize cnt : V→N each time that it is needed,
as this would cost Ω(|E|). So, if (u,v) ∈ E is found incompatible (at line 14 of
J-VI()) after the application of δ(·,v) (line 3), how do we know whether or not (u,v)
was already incompatible before the (last) application of δ(·,v)? We suggest to adopt
the cmp flags, one bit per arc is enough.

To show correctness and complexity, we firstly assume that whenever J-VI(i, j, F, J,Γ)
is invoked the following three pre-conditions are satisfied:

(PC-1) L f = ∅ and ∀v∈V f c(v) � f ∗w′i,j(v);

(PC-2) Linc = Inc( f c, i, j);

(PC-3) J.cnt and J.cmp are coherent w.r.t. f c in Γi,j.

After having described the internals of the EI-Jumps, we’ll show how to
ensure (a slightly weaker, but still sufficient formulation of) (PC-1), (PC-2),
(PC-3).

Assuming the pre-conditions, similar arguments as in [ [14], Theorem 4]
show that J-VI() computes the least-SEPM of the EG Γi,j in time O(|V|2|E|W)
and linear space.

Proposition 7.1. Assume that J-VI() is invoked on input (i, j, F, J,Γ), and that (PC-
1), (PC-2), (PC-3) hold at invocation time. Then, J-VI() halts within the following
time bound:

Θ
(

∑
v∈V

degΓ(v) · `1
Γi,j
(v)
)
= O

(
|V|2|E|W

)
,

where 0 ≤ `1
Γi,j
(v) ≤ (|V| − 1)|V|W is the number of times that the energy-lifting

operator δ is applied to any v ∈ V, at line 3 of J-VI() on input (i, j, F, J,Γ). The
working space is Θ(|V|+ |E|).

When J-VI() halts, f c coincides with the least-SEPM of the reweighted EG Γi,j.
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Proof. The argument is very similar to that of [ [14], Theorem 4], but there are
some subtle differences between the J-VI() and the Value-Iteration of Brim,
et al.:

(1) J-VI() employs J. f and L f to manage the energy-levels; however, one
can safely argue by always referring to the current energy-levels f c.

(2) J-VI() has no initialization phase; however, notice that the pre-conditions
(PC-1), (PC-2), (PC-3) ensure a correct initialization of it.

(3) J-VI() employs J.cmp in order to test the consistency state of the arcs
(see line 15 and 17 of J-VI()); but it is easy to see that, assuming (PC-3), this
is a correct way to go.

Let us provide a sketch of the proof of correctness. As already observed
in [ [14], Lemma 7], the energy-lifting operator δ is v-monotone (i.e., δ( f ,v) v
δ(g,v) for all f v g). Next, the following invariant is maintained by J-VI()
(Subprocedure 6) at line 1.

Inv-JVI. ∀(iteration ι of line 1 of J-VI(i, j, F, J,Γ)) ∀(u ∈ V \ J.Lincι
) ∀(v ∈

Nout
Γ (u)):

(i) δ( f c:ι,u) = f c:ι;
(ii) if u∈V0 \ J.Lincι, then J.cntι[u] and J.cmpι[(u,v)] are both coherent w.r.t.

f c:ι in Γi,j.
It is not difficult to prove that Inv-JVI holds. The argument is almost the

same as in [ [14], Lemma 8]; the only noticeable variations are: (a) the J-VI()
employs J.cmp in order to flag the compatibility status of the arcs; (b) the
reference energy-level is f c; (c) at the first iteration of line 1 of J-VI(), the
Inv-JVI holds thanks to (PC-2) and (PC-3).

Termination is enforced by three facts: (i) every application of the energy-
lifting operator (line 3) strictly increases the energy-level of one vertex v; (ii)
the co-domain of SEPMs is finite.

Correctness follows by applying the Knaster-Tarski’s fixed point theorem [111].
Indeed, at halting time, since δ is v-monotone, and since (PC-1) and Inv-JVI
hold, then we can apply Knaster-Tarski’s fixed point theorem [111] to conclude
that, when J-VI() halts at step h (say), then f c:h is the unique least fixpoint of
(simultaneously) all operators δ(·,v) for all v ∈ V, i.e., f c:h is the least-SEPM of
the EG Γi,j.

So, when J-VI() halts, it holds that ∀v∈V f c:h(v) = f ∗w′i,j(v).

Concerning the time and space complexity, δ(·,v) can be computed in
time O(|Nout

Γ (v)|) (line 3) (see apply δ() in SubProcedure 6); the updating of
J.cnt and J.cmp, which is performed by init cnt cmp() (line 7), also takes
O(|Nout

Γ (v)|) time. Soon after that δ(·,v) has been applied to v ∈ V (line 3),
the whole Nin

Γ (v) is explored for repairing incoherencies and for finding new
inconsistent vertices (which is done from line 11 to line 18): this process takes
O(|Nin

Γ (v)|) time. Therefore, if δ(·,v) is applied `1
Γi,j
(v) times to (any) v ∈ V

during the J-VI(i, j, F, J,Γ), the total time is Θ
(

∑v∈V degΓ(v) · `1
Γi,j
(v)
)
. The

codomain of any SEPM of Γi,j is at most (|V| − 1)W ′, for W ′ = DjW ≤ |V|W,
where the additional factor Dj≤ |V| comes from the scaled weights of Γi,j; thus,
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∀v∈V0≤ `1
Γi,j
(v)≤ (|V| − 1)DjW≤ (|V| − 1)|V|W. As already mentioned in Sec-

tion 6.3, the Farey’s term F[j] can be computed at the beginning of J-VI() in
O(1) time and space, from F[j − 1] and F[j − 2]. Since ∑v∈V degΓ(v) = 2|E|,
the running time is also O(|V|2|E|W). We check that J-VI() works with
Θ(|V|+ |E|) space: Linc, Linc

nxt, L f , and L> contain no duplicates, so they take
Θ(|V|) space; the size of J. f and J.cnt is |V|, that of J.cmp plus Lω is Θ(|E|). 2

Indeed, the J-VI() keeps track of two additional array-lists, Linc
nxt and L⊥.

The role of Linc
nxt is to ensure (a slightly weaker formulation of) (PC-2): during

the execution of Algorithm 15, the prevρJ (i, j)-th invocation of J-VI() handles
Linc

nxt so to ensure that (a slightly weaker, but still sufficient form of) (PC-2) holds
for the (i, j)-th invocation. However, the way in which this happens also relies
on the internals of the EI-Jumps. Also, the EI-Jumps take care of repairing
J.cnt and J.cmp so to ensure (a weaker) (PC-3). The weaker formulation of
(PC-2), (PC-3) is discussed in SubSection 7.3.2. From this perspective, the
functioning of J-VI() and that of the EI-Jumps is quite braided. In order
to detail these aspects, we need to observe the following fact.

Proposition 7.2. Let i ∈ [W−,W+] and j ∈ [1, s− 1]. Assume that J-VI(i, j, F, J,Γ)
is invoked at some step ι, suppose that J.Linc

nxt
ι
= ∅, and that (PC-1), (PC-2), (PC-3)

hold at step ι. Then, the following two facts hold:

1. At each step ι̂≥ ι of J-VI() that is done before the swap() at line 19, it holds
that: J.Linc ι̂ ⊆ Inc( f c:ι̂, i, j).

2. When J-VI() halts, after the swap() at line 19, say at step h, then:

J.Linch
= {v ∈ V | 0 < f c:h(v) 6= >}.

Proof of (1) When J-VI() is invoked, Item 1 holds by (PC-2). Then, J-VI()
can insert any u ∈ V into Linc only at line 18, when exploring Nin

Γ (v) (from
line 11 to line 18), for some v ∈ V. At line 18, u ∈ V is inserted into Linc iff
fu < ∆u,v (line 14) and either u ∈ V1 or J.cnt[u] = 0; i.e., iff u is inconsistent
w.r.t. f c in Γi,j (indeed, J.cnt is coherent by (PC-3) and the fact that lines 15-17
of J-VI() preserve coherency). As f c(u) stands still while u is inside Linc, and
f c(v) for any v ∈ Nout

Γ (u) can only increase during the J-VI(), then Item 1
holds. 2

Proof of (2) Let us focus on the state of Linc
nxt. Initially, Linc

nxt = ∅ by hypothesis.
During the J-VI(), Linc

nxt is modified only at line 6 or 10: some v∈V is inserted
into Linc

nxt, say at step ι̂, (line 6) iff fv 6= > (where fv is the energy-level of v at
the time of the insertion ι̂). We argue that fv > 0 holds at ι̂ (line 6): since v was
extracted from Linc (line 2), and since all vertices in Linc are inconsistent w.r.t.
f c:ι̂ in Γi,j by Item 1, then δ(·,v) had really increased f c(v) (at line 3); thus, it
really holds fv > 0 at ι̂. After the insertion, in case f c(v) becomes > at some
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subsequent execution of line 3, v is removed from Linc
nxt (and inserted into L>),

see lines 8-10. Finally, at line 19 of J-VI(), Linc
nxt and Linc are swapped (line 19).

Therefore, at that point, Item 2 holds. 2

When J-VI() halts, it is necessary to initialize Linc for the next J-VI() by
including all the v ∈ V such that 0 < f c(v) 6= >, because they are all inconsis-
tent; this is shown by Lemma 7.1.

Lemma 7.1. Let i ∈ [W−,W+] and j ∈ [1, s − 1], where s , |F|V||. Assume that
J-VI() is invoked on input (i, j, F, J,Γ), and that all the pre-conditions (PC-1), (PC-
2), (PC-3) are satisfied. Assume that J-VI(i, j, F, J,Γ) halts at step h. Let i′ ∈
[W−,W+] and j′ ∈ [1, s − 1] be any two indices such that (i′, j′) > (i, j). If v ∈ V
satisfies 0 < f c:h(v) 6= >, then v ∈ Inc( f c:h, i′, j′).

Proof. Let v̂ ∈ V be any vertex such that 0 < f c:h(v̂) 6= >. By Proposition 7.1,
∀v∈V f c:h(v) = f ∗w′i,j(v) . Being them monotonic, all operators {δ(·,v)}v∈V have

least fixed point by Knaster-Tarski’s theorem [111]. Since f ∗w′i,j(v̂) is the least-

SEPM of Γi,j, then it is the unique least fixed point of simultaneously all oper-
ators {δ(·,v)}v∈V ; therefore, the following holds:

f c:h(v̂) = f ∗w′i,j(v̂) =

{
min{ f ∗w′i,j(v

′)	 w′i,j(v̂,v′) | v′ ∈ Nout
Γ (v̂)}, if v̂ ∈ V0

max{ f ∗w′i,j(v
′)	 w′i,j(v̂,v′) | v′ ∈ Nout

Γ (v̂)}, if v̂ ∈ V1

Since 0 < f c:h(v̂) 6=>, it is safe to discard the 	 operator in the equality above.
Moreover, since (i′, j′) > (i, j), then w′i,j > w′i′,j′ . Therefore, the following in-
equality holds:

f c:h(v̂) =

{
min{ f c:h(v′)− w′i,j(v̂,v′) | v′ ∈ Nout

Γ (v̂)}, if v̂ ∈ V0

max{ f c:h(v′)− w′i,j(v̂,v′) | v′ ∈ Nout
Γ (v̂)}, if v̂ ∈ V1

<

{
min{ f c:h(v′)− w′i′,j′(v̂,v′) | v′ ∈ Nout

Γ (v̂)}, if v̂ ∈ V0

max{ f c:h(v′)− w′i′,j′(v̂,v′) | v′ ∈ Nout
Γ (v̂)}, if v̂ ∈ V1

So, restoring the 	 operator, we have:

f c:h(v̂) ≺
{

f c:h(v′)	 w′i′,j′(v̂,v′) for all v′ ∈ Nout
Γ (v̂), if v̂ ∈ V0

f c:h(v′)	 w′i′,j′(v̂,v′) for some v′ ∈ Nout
Γ (v̂), if v̂ ∈ V1

Therefore, v ∈ Inc( f c:h, i′, j′). 2

Although, when the prevρJ (i, j)-th J-VI() halts, it is correct –and necessary–
to initialize Linc for the (i, j)-th J-VI() by including all those v ∈ V such that
0< f c(v) 6=> (because they are all inconsistent w.r.t. to f c in Γi,j by Lemma 7.1),

213



still, we observe that this is not sufficient. Indeed, consider the following two
facts (I-1) and (I-2):

(I-1) It may be that, when the prevρJ (i, j)-th J-VI() halts, it holds for all
v ∈ V that either f c(v) = 0 or f c(v) = >. In that case, Linc would be empty (if
nothing more than what prescribed by Proposition 7.2 is done). We need to
prevent this from happening, so to avoid vain Scan-Phases.

(I-2) When going, say, from the (i− 1, j)-th to the (i,1)-th Scan-Phase, there
might be some (u,v) ∈ E such that: f c(u) = 0 = f c(v) and w(u,v) = i; those
(u,v) may become incompatible w.r.t. f c in Γi,1 (because i − 1 had been in-
creased to i), possibly breaking the compatibility (and thus the coherency) of
(u,v). These incompatible arcs are not taken into account by Proposition 7.2,
nor by Lemma 7.1. Thus a special care is needed in order to handle them.

Energy-Increasing-Jumps. To resolve the issues raised in I-1 and I-2, the EI-
Jumps will come into play. The pseudocode of the EI-Jumps is provided in Sub-
Procedure 8. The ei-jump(i, J) really makes a jump only when Linc = ∅ holds
invocation. Basically, if Linc = ∅ (line 1) we aim at avoiding vain Scan-Phases,
i.e., (I-1); still, we need to take care of some additional (possibly) incompati-
ble arcs, i.e., (I-2). Recall, Linc is initialized by the J-VI() itself according to
Proposition 7.2. Therefore, at line 1, Linc = ∅ iff either J. f (v) = 0 or J. f (v) =>
for every v ∈ V.

SubProcedure 8: EI-Jump
Procedure ei-jump(i, J)

input : Jumper J.
output: T if an EI-Jump occurs; else, F.

1 if Linc = ∅ then
2 Linc← Linc

cpy; Linc
cpy← ∅ ;

3 J.i← i + 1;
4 if Lω 6= ∅ then
5 (w, Lα)← read front(Lω);
6 if w = J.i then
7 pop front(Lω);
8 repair(Lα, J);

9 while Linc = ∅ and Lω 6= ∅ do
10 (w, Lα)← pop front(Lω);
11 J.i← w;
12 repair(Lα, J);

13 return T;

14 else return F;

SubProcedure repair(Lα, J)
input : A list of arcs Lα, reference to Jumper J.

1 foreach (u,v) ∈ Lα do
2 if J. f [u] = 0 and J. f [v] = 0 and Linc[u] = ⊥ then
3 if u ∈ V0 then
4 J.cnt[u]← J.cnt[u]− 1;
5 J.cmp

[
(u,v)

]
← F;

6 if J.cnt[u] = 0 then
7 insert(u, Linc);

8 if u ∈ V1 then insert(u, Linc);
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To begin with, if Linc = ∅ (line 1), copy Linc ← Linc
cpy, then, erase Linc

cpy ← ∅
(line 2): this is related to the steps of backtracking that are performed by the
UA-Jumps, we will give more details on this later on. Next, we increment i
to J.i← i + 1 (line 3). Then, if Lω 6= ∅ at line 4, we read (read-only) the front
entry (ŵ, Lα̂) of Lω (line 5); only if ŵ = J.i (line 6), we pop (ŵ, Lα̂) out of Lω

(line 7), and we invoke repair(Lα̂, J) (line 8) to repair the coherency state of
all those arcs (i.e., all and only those in Lα̂) that we mentioned in (I-2). We
will detail repair() shortly, now let us proceed with ei-jump(). At line 9,
while Linc = ∅ and Lω 6= ∅: the front (w̄, Lᾱ) is popped from Lω (line 10) and
J.i← w̄ is assigned (line 11). The ending-point of the EI-Jump will now reach
w̄ (at least). A moment’s reflection reveals that, jumping up to w̄, some arcs
(u,v) ∈ E such that f c(u) = 0 = f c(v) (which were compatible w.r.t. the (i, j)-
th Scan-Phase, just before the jump) may become incompatible for the (w̄,1)-th
Scan-Phase (which is now candidate to happen), because w̄ > i. What are these
new incompatible arcs? Since Lω was sorted in increasing order, they’re all and
only those of weight w(u,v) = w̄ = J.i; i.e., those in the Lᾱ that is binded to w̄ in
Lω. To repair coherency, repair(Lᾱ, J) (line 12) is invoked. This repeats until
Linc 6= ∅ or Lω = ∅. Then, ei-jump() returns T (at line 13).

If Linc 6= ∅ at line 1, then F is returned (line 14); so, in that case, no EI-Jump
will occur.

Let us detail the repair(Lα, J). On input (Lα, J), for each arc (u,v) ∈ Lα

(line 1), if J. f [u] = 0 = J. f [v] and Linc[u] = ⊥ (line 2), the following happens.
If u ∈ V1, then u is promptly inserted (in front of) Linc (line 8); else, if u ∈ V0,
J.cnt[u] is decremented by one unit (line 4); also, it is flagged J.cmp[(u,v)]← F
(line 5). After that, if J.cnt[u] = 0 (line 6), then u is inserted in front of Linc

(line 7). The following proposition holds for the ei-jump() (SubProcedure 8).

Proposition 7.3. The ei-jump() (SubProcedure 8) halts in finite time. The total
time spent for all invocations of ei-jump() (that are made, at line 7, during the
main while loop of Algorithm 15) is Θ(t`7 + |E|), where t`7 is the total number
of iterations of line 7 that are made by Algorithm 15. The ei-jump() works with
Θ(|V|+ |E|) space.

Proof. The for-each loop in repair() is bounded: each arc (u,v) of Lα is vis-
ited exactly once, spending O(1) time per each. The while loop in ei-jump()
(lines 9-12) is also bounded: it consumes the elements (w, Lα) of Lω, spending
O(|Lα|) time per cycle. There are no other loops in ei-jump(), so it halts
in finite time. Now, consider the following three facts: (i) ei-jump() is in-
voked by solve MPG() (Algorithm 15) once per each iteration of the main
while loop at line 7. Assume there are t`7 such iterations overall. (ii) either
ei-jump() returns immediately or it visits k arcs (u,v) ∈ E in time Θ(k), for
some 1≤ k ≤ |E|; (iii) each arc (u,v) ∈ E is visited by ei-jump() at most once
during the whole execution of Algorithm 15, because the elements of Lω are
consumed and there are no duplicates in there. Altogether, (i), (ii) and (iii)
imply the Θ(t`7 + |E|) total running time. Moreover, ei-jump() works with
Θ(|V|+ |E|) space. Indeed Linc contains no duplicated vertices, so: |Linc| ≤ |V|,
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|Lω|= |E|, the size of J. f and that of J.cnt is |V|, and the size of J.cmp is |E|. 2

The description of Algorithm 15 ends by detailing the UA-Jumps.
Unitary-Advance-Jumps. Recall, UA-Jumps are adopted so to scroll through

F|V| only when (and where) it is really necessary; that is only |V| times at most,
because each time at least one vertex will take a value. The pseudocode is
shown in Fig. 9.

SubProcedure 9: UA-Jumps
SubProcedure ua-jumps(i, s, F, J,Γ)

input : i ∈ [W−,W+], s = |F|V||, F is a ref. to F|V|, Jump J, input MPG Γ.
1 repeat
2 J-VI(i, s− 1, F, J,Γ); /* UA-Jump */
3 if L> = ∅ then
4 i← i + 1;
5 rejoin ua-jump(i, s, F, J);

6 until L> 6= ∅
7 S← backtrack ua-jump(i, s, F, J,Γ);
8 return (i,S);

SubProcedure rejoin ua-jump(i, s, F, J)
input : i ∈ [W−,W+], F is a ref. to F|V|, Jump J.

1 scl back f (s− 1, F, J);
2 if Lω 6= ∅ then
3 (w, Lα)← read front(Lω);
4 if w = i then
5 pop front(Lω);
6 repair(Lα, J); // see SubProc. 8

SubProcedure backtrack ua-jump(i, s, F, J,Γ)
input : i ∈ [W−,W+], s = |F|V||, Jump J, MPG Γ.

1 Linc
cpy← Linc; Linc← ∅;

2 L f [u]←
{
⊥ , if u ∈ L>;
L f [u] , if u ∈ V \ L>.

3 scl back f (s− 1, F, J);
4 S← L>;
5 while L> 6= ∅ do
6 u← pop front(L>)
7 if u ∈ V0 then
8 init cnt cmp(u, i,1, F, J,Γ[S]);
9 if J.cnt[u] = 0 then

10 insert(u, Linc);

11 if u ∈ V1 then
12 foreach v ∈ Nout

Γ[S](u) do
13 fu← get scl f (u,1, F, J);
14 fv← get scl f (v,1, F, J);
15 w′← get scl w(w(u,v), i,1, F);
16 if fu ≺ fv 	 w′ then
17 insert(u, Linc); break;

18 return S ;

The UA-Jumps begin soon after that ei-jump() returns T at line 8 of
Algorithm 15. The starting point of the UA-Jumps (i.e., the initial value of
i) is provided by ei-jump() (line 7 of Algorithm 15): it is stored into J.i
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and passed in input to ua-jumps(J.i, s, F, J,Γ) (at line 9 of Algorithm 15).
Starting from i = J.i, basically the ua-jumps() repeats a sequence of invo-
cations to J-VI(), on input (i, s − 1), (i + 1, s − 1), (i + 2, s − 1), · · · , (î, s − 1);
until L> ,W0(Γî−1,s−1) ∩W1(Γî,s−1) 6= ∅ holds for some î ≥ i. When L> 6= ∅,
the ua-jumps() backtracks the Scan-Phases from the (î, s− 1)-th to the (î,1)-th
one, by invoking backtrack ua-jump(i, s, F, J,Γ), and then it halts; soon after,
Algorithm 15 will begin scrolling through F|V| by invoking another sequence
of J-VI() (this time at line 11 of Algorithm 15) on input (î,1), (î,2), (î,3), . . .
(which is controlled by the while loop at line 6 of Algorithm 15). More de-
tails concerning the UA-Jumps now follow.

So, ua-jumps() (SubProcedure 9) performs a sequence of UA-Jumps (ac-
tually, at least one). The invocation to J-VI(î, s − 1, F, J,Γ) repeats for î ≥ i
(lines 1-2), until L> 6= ∅ (line 6). There, L> contains all and only those v ∈
V whose energy-level became f (v) = > during the last performed J-VI()
(line 2); so, at line 3, it is L> = W0(Γî−1,s−1) ∩ W1(Γî,s−1). At this point,
if L> = ∅ (line 3), the procedure prepares itself to make another UA-Jump:
î← î + 1 is set (line 4), and then rejoin ua-jump(î, s, F, J) is invoked (line 5).
Else, if L> 6= ∅ (line 6), it is invoked backtrack ua-jump(î, s, F, J,Γ) (line 7),
and then (i,S) is returned (line 8), where S , L> =W0(Γî−1,s−1) ∩W1(Γî,s−1)
was assigned at line 4 of backtrack ua-jump().

The rejoin ua-jump(i, s, F, J) firstly copies the energy-levels stored in L f
back to J. f , by invoking scl back f (s− 1, F, J) (line 1). Secondly, at lines 4-6,
by operating in the same way as ei-jump() does (see lines 4-8 of ei-jump(),
SubProcedure 8), it repairs the coherency state of J.cnt and J.cmp w.r.t. all
those arcs (u,v) ∈ E such that w(u,v) = i and J. f [u] = 0 = J. f [v].

Let us detail the backtrack ua-jump(). Basically, it aims at preparing a
correct state so to allow Algorithm 15 to step through F|V|. Stepping through
F|V| essentially means to execute a sequence of J-VI() at line 11 of Algo-
rithm 15, until Linc = ∅. A moment’s reflection reveals that this sequence
of J-VI() can run just on the sub-arena of Γ that is induced by S , L> =
W0(Γi−1,s−1) ∩W1(Γi,s−1) (see line 4 of backtrack ua-jump()); there is no
real need to lift-up again (actually, slowly than before) all the energy-levels of
the component induced by V \ L>: those energy-levels can all be confirmed
now that the UA-Jumps are finishing, and they can all stand still while Algo-
rithm 15 is stepping through F|V| at line 11, until another EI-Jump occurs.

For this reason, backtrack ua-jump(î, s, F, J,Γ) works as follows.
Firstly, we copy Linc

cpy ← Linc, then we erase Linc ← ∅ (line 1). This is sort
of a back-up copy, notice that Linc

cpy will be restored back to Linc at line 2 of
ei-jump() (SubProcedure 8): when Algorithm 15 will finish to step through
F|V|, it will hold Linc = ∅ at line 1 of ei-jump() (SubProcedure 8), so at that
point the state of Linc will need to be restored by including (at least) all those
vertices that are now assigned to Linc

cpy at line 1 of backtrack ua-jump().
Next, all the energy-levels of V \ L> are confirmed and saved back to J. f ; this
is done: (i) by setting,
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L f [u]←
{
⊥ , if u ∈ L>;
L f [u] , if u ∈ V \ L>. (line 2)

and (ii) by invoking scl back f (s− 1, F, J) (line 3). The energy-levels of
all v ∈ L> are thus restored as they were at the end of the (î − 1, s − 1)-th
invocation of J-VI() at line 2 of ua-jumps(). Next, it is assigned S← L> at
line 4. Then, backtrack ua-jump() takes care of preparing a correct state of
Linc, J.cnt, J.cmp for letting Algorithm 15 stepping through F|V|.

While L> 6=∅ (line 5), we pop the front element of L>, i.e., u←pop front(L>)
(line 6):

– If u∈V0 (line 7), then we compute J.cnt[u] and we also compute for every
v∈Nout

Γ[S](u) a coherent J.cmp[(u,v)] w.r.t. f c in Γ[S]î,1, by init cnt cmp(u, î,1, F, J,Γ[S])
(line 8); finally, if J.cnt[u] = 0 (line 9), we insert u into Linc (line 10).

– Else, if u∈V1 (line 11), we explore Nout
Γ[S](u) looking for some incompatible

arc (lines 12-17). For each v ∈ Nout
Γ[S](u) (line 12), if fu ≺ fv 	 w′

î,1
(u,v) (i.e., if

(u,v) is incompatible w.r.t. f c in Γî,1), where fu ← get scl f (u,1, F, J) and
fv ← get scl f (v,1, F, J), then, we insert u into Linc at line 17 (also breaking
the for-each cycle).

This concludes the description of the UA-Jumps. Algorithm 15 is com-
pleted.

7.3.2 Correctness of Algorithm 15
This subsection presents the proof of correctness for Algorithm 15. It is orga-
nized as follows. Firstly, we show that J-VI() (SubProcedure 6) works fine
even when assuming a relaxed form of the pre-conditions (PC-2) and (PC-
3). Secondly, we identify an additional set of pre-conditions under which the
ei-jump() (SubProcedure 8) is correct. Thirdly, we prove that under these
pre-conditions ua-jumps() (SubProcedure 9) is also correct. Finally, we show
that these pre-conditions are all satisfied during the execution of Algorithm 15,
and that the latter is thus correct.

Correctness of J-VI() (SubProcedure 6)

To prove the correctness of J-VI(), the (PC-1), (PC-2), (PC-3) have been as-
sumed in Lemma 7.1. It would be fine if they were met whenever Algorithm 16
invokes J-VI(). Unfortunately, (PC-2) and (PC-3) may not hold. Still, we shall
observe that a weaker formulation of them, denoted by (w-PC-2) and (w-PC-3),
really hold; and these will turn out to be enough for proving correctness.

Definition 7.4. Let i ∈ [W−,W+] and j ∈ [1, s− 1]. Fix some step of execution ι of
Algorithm 15.

The pre-conditions (w-PC-2) and (w-PC-3) are defined at step ι as follows.

(w-PC-2) Lincι ⊆ Inc( f c:ι, i, j).

(w-PC-3) ∀(u ∈ V \ Lincι
) ∀(v ∈ Nout

Γ (u)):

If u ∈ V0, the following three properties hold on J.cntι and J.cmpι:
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1. If J.cmpι[(u,v)] = F, then (u,v) is incompatible w.r.t. f c in Γi,j;
2. If J.cmpι[(u,v)] = T and (u,v) is incompatible w.r.t. f c in Γi,j, then

v ∈ Lincι.
3. J.cntι[u] =

∣∣{v ∈ Nout
Γ (u) | J.cmpι[(u,v)] = T

}∣∣ and J.cntι[u]> 0.

If u ∈ V1, and (u,v) ∈ E is incompatible w.r.t. f c in Γi,j, then v ∈ Lincι.

If (w-PC-3) holds on J.cntι and J.cmpι, they are said weak-coherent w.r.t. f c

in Γi,j.

We will also need the following Lemma 7.2, it asserts that ψρ : (i, j)→ f ∗i,j
is monotone non-decreasing; the proof already appears in [ [38], Lemma 8,
Item 1].

Lemma 7.2. Let i, i′ ∈ [W−,W+] and j, j′ ∈ [1, s− 1] be any two indices such that
(i, j) < (i′, j′).

Then, ∀v∈V f ∗i,j(v) � f ∗i′,j′(v).

Proposition 7.4 shows that (PC-1), (w-PC-2), (w-PC-3) suffices for the cor-
rectness of J-VI().

Proposition 7.4. The J-VI() (SubProcedure 6) is correct (i.e., Propositions 7.1 and
7.2 still hold) even if (PC-1), (w-PC-2), (w-PC-3) are assumed instead of (PC-1), (PC-
2), (PC-3).

In particular, suppose that J-VI() is invoked on input (i, j, F, J,Γ), say at step
ι, and that all of the pre-conditions (PC-1), (w-PC-2), (w-PC-3) hold at ι. When
J-VI(i, j, F, J,Γ) halts, say at step h, then all of the following four propositions hold:

1. f c:h is the least-SEPM of the EG Γi,j;

2. J.cnth, J.cmph are both coherent w.r.t. f c:h in Γi,j;

3. Linch
= {v ∈ V | 0 < f c:h(v) 6= >};

4. Lh
> = Vf c:ι ∩V \Vf c:h .

Proof. Basically, we want to prove that Propositions 7.1 and 7.2 still hold.
Suppose Lincι

= ∅. Let u ∈ V0. By (w-PC-3) and Lincι
= ∅, for every v ∈

Nout
Γ (u), J.cmpι[(u,v)] is coherent w.r.t. f ι in Γi,j; thus, J.cntι[u] is also coherent

w.r.t. f c:ι in Γi,j. Therefore, (PC-3) holds. Now, let u ∈ V1. By (w-PC-3) and
Lincι

= ∅, for every v ∈ Nout
Γ (u) it holds that (u,v) is compatible w.r.t. f c:ι in Γi,j;

thus, u is consistent w.r.t. f c:ι in Γi,j. In addition, by (w-PC-3) again, J.cntι[u]>
0 holds for every u ∈ V0. Therefore, every u ∈ V is consistent w.r.t. f c:ι in Γi,j;
so, (PC-2) holds. Since (PC-1,2,3) hold, then Propositions 7.1 and 7.2 hold.

Now, suppose Lincι 6= ∅. Since J.cntι and J.cmpι may be incoherent – at
time ι –, there might be some û ∈ V \ Lincι which is already inconsistent w.r.t.
f c:ι in Γi,j (i.e., even if u 6∈ Lincι).
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Still, we claim that, during J-VI()’s execution (say at some steps ι′, ι′′, i.e.,
eventually), for every u∈V0 and v∈ Nout

Γ (u), both J.cmpι′ [(u,v)] and J.cntι′′ [u]
will become coherent (at ι′, ι′′ respectively); and we also claim that any u ∈ V1
which was inconsistent at ι will be (eventually, say at step ι′′′) inserted into
Linc. Indeed, at that point (say, at ι̂ = max{ι′, ι′′, ι′′′}), all (and only those) û ∈ V
that were already inconsistent at invocation time ι, or that became inconsistent
during J-VI()’s execution (until step ι̂), they will be really inserted into Linc.

To prove it, let û ∈V \ Lincι and v̂ ∈ Nout
Γ (û) be any two (fixed) vertices such

that either:

û ∈ V0 and J.cmpι[(û, v̂)] = F: Then, by (w-PC-3), (û, v̂) is incompatible w.r.t. f c:ι

in Γi,j.

û ∈ V0 and J.cmpι[(û, v̂)] = T but (û, v̂) is incompatible w.r.t. f c:ι in Γi,j:

Then, by (w-PC-3), v̂ ∈ Lincι. Since J-VI() aims precisely at emptying

Linc, v̂ is popped from Lincι′ (line 2 of SubProcedure 6) – say at some step
ι′ of J-VI()’s execution. Soon after that, Nin

Γ (v̂) is explored (lines 11-18
of SubProcedure 6); so û is visited, then (û, v̂) is found incompatible (i.e.,

fû < ∆û,v̂ at line 14, after ι′). Since û ∈ V0 \ Lincι′ , and J.cmpι′ [(û, v̂)] = T,
then at some step ι′′ > ι′ the counter J.cntι′′ is decremented by one unit
and therefore J.cmpι′′ [(u,v)]← F is assigned (at lines 16-17). This proves
that J.cmp[(û, v̂)] becomes coherent eventually (i.e., at ι′′). Now, given
û, the same argument holds for any other v ∈ Nout

Γ (û); therefore, when
J.cmp[(û,v)] will finally become coherent for every v ∈ Nout

Γ (û), then
J.cnt[û] will be coherent as well by (w-PC-3). Thus, by (w-PC-3), co-
herency of both J.cnt and J.cmp holds eventually, say at ι̂. At that point,
all u ∈ V0 that were inconsistent at ι, or that have become inconsistent
during the execution (up to ι̂), they necessarily have had to be inserted
into Linc (at line 18 of J-VI(), SubProcedure 6), because their (coherent)
counter J.cnt[u] must reach 0 (at ι̂), which allows J-VI() to recognize
u as inconsistent at lines 14-18. Notice that the coherency of J.cnt and
J.cmp is kept satisfied from ι̂ onwards: when some v∈V is popped out of
Linc (line 2), then J.cnt and J.cmp are recalculated from scratch (line 7),
and it is easy to check that init cnt cmp() (SubProcedure 7) is correct;
then J.cnt, J.cmp may be modified subsequently, at lines 16-17 (SubPro-
cedure 6), but it’s easy to check that lines 14-17 preserve coherency; so,
coherency will be preserved until J-VI() halts.

û ∈ V1 and (û, v̂) is incompatible w.r.t. f c:ι in Γi,j:

Then, by (w-PC-3), v̂ ∈ Lincι. As before, since the J-VI() aims precisely
at emptying Linc, v̂ is popped from Linc (line 2 of SubProcedure 6); at
some step of J-VI()’s execution. Soon after that, Nin

Γ (v̂) is explored
(lines 11-18 of SubProcedure 6). As soon as û is visited, (û, v̂) is found
incompatible (i.e., fû < ∆û,v̂ at line 14). Since û ∈ V1 \ Linc, then û is
promptly inserted into Linc (line 18). In this way, all those u ∈ V1 that
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were inconsistent at the time of J-VI()’s invocation, or that become in-
consistent during the execution, they necessarily have had to be inserted
into Linc (line 18 of SubProcedure 6).

This analysis is already sufficient for asserting that Proposition 7.1 holds, even
assuming only (PC-1), (w-PC-3): indeed, the Inv-JVI invariant mentioned
in its proof will hold, eventually, and then the Knaster-Tarski’s fixed point
theorem applies. This also proves Items (1) and (2).

Moreover, by (w-PC-2) and by arguments above, at each step ῑ of J-VI(),
if v ∈ Linc ῑ then v is really inconsistent w.r.t. f c:ῑ in Γi,j, i.e., Linc ῑ ⊆ Inc( f c:ῑ, i, j).
Thus, every time that some v is popped from Linc at line 2, then δ( f c,v) re-
ally increases f c(v) at line 3; therefore, f c(v) > 0 holds whenever v is inserted
into Linc

nxt at line 6 of J-VI() (SubProcedure 6); this implies that Proposition 7.2
holds, assuming (PC-1), (w-PC-2), (w-PC-3), and proves Item (3). To conclude,
we show Item (4). Notice, L> is modified only at line 9 of J-VI() (SubPro-
cedure 6); in particular, some v ∈ V is inserted into L> at line 9, say at step
ι̂, if and only if f c:ι̂(v) = >. Since the energy-levels can only increase during
the execution of J-VI(), then Lh

> ⊆ V \ Vf c:h = {u ∈ V | f c:h(u) = >}. Since at

each step ῑ of J-VI() it holds Linc ῑ ⊆ Inc( f c:ῑ, i, j), then whenever some v ∈ V
is inserted into L> at line 9, it must be that f c:ι(v) < > where ι is the in-
vocation time (otherwise, v would not have been inconsistent at step ῑ); thus,
Lh
>⊆Vf c:ι = {v∈V | f c:ι(v)<>}. Therefore, Lh

>⊆Vf c:ι ∩V \Vf c:h . Vice versa, let
v ∈Vf c:ι ∩V \Vf c:h ; the only way in which J-VI() can increase the energy-level
of v from step ι to step h is by applying δ( f c,v) at line 3; as soon as f c(v) = >
(and this will happen, eventually, since v ∈ Vf c:ι ∩ V \ Vf c:h ), then v is inserted
into L> at line 9. Thus, Vf c:ι ∩ V \ Vf c:h ⊆ Lh

>. Therefore, Lh
> = Vf c:ι ∩ V \ Vf c:h ;

and this proves Item (4). 2

Correctness of EI-Jump (SubProcedure 8)

To begin, it is worth asserting some preliminary properties of ei-jump() (Sub-
Procedure 8).

Lemma 7.3. Assume ei-jump(i, J) (SubProcedure 8) is invoked by Algorithm 15 at
line 7, say at step ι, and for some i ∈ [W−− 1,W+] (i.e., for i = iι). Assume Lincι

= ∅
and Lι

ω 6= ∅; and say that ei-jump(i, J) halts at step h. Then, the following two
properties hold.

1. The front element (w̄, Lα) of Lι
ω satisfies w̄ = min{we | e ∈ E,we > i};

2. It holds that J.ih ≥ w̄ > i.

Proof. At the first invocation of ei-jump(i, J) (SubProcedure 8), made at line 7
of Algorithm 15, it holds i =W−− 1 (by line 5 of Algorithm 15). Since Lincι

= ∅,
then ei-jump() first assigns J.i← i + 1 = W− at line 3. Since Lw was sorted in
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increasing order at line 12 of init jumper() (SubProcedure 3), the front entry
of Lw has key w = W−, and all of the subsequent entries of Lw are binded to
greater keys. Actually, ei-jump() consumes the front entry (W−, Lα) of Lw at
line 7; and W− is assigned to J.i (line 3). These observations imply both Item 1
and Item 2. Now, consider any invocation of ei-jump(i, J) (SubProcedure 8)
which is not the first, but any subsequent one. Let us check that the front
element (w̄, Lα) of Lι

w satisfies w̄ = min{we | e ∈ E,we > iι}. Consider each line
of Algorithm 15 at which the value iι could have ever been assigned to i; this
may happen only as follows:

– At line 3 of ei-jump() (SubProcedure 8), i.e., J.i← i + 1 (= iι). But then
the front element (ŵ, Lα) of Lw is also checked at lines 5-6 (because Lw 6= ∅):
and ŵ is popped from Lw at line 7, in case ŵ = J.i (= iι) holds at line 6.

– The same happens at lines 2-5 of rejoin ua-jump() (SubProcedure 9);
just notice that in that case i was incremented just before at line 4 of ua-jumps()
(SubProcedure 9).

– At lines 9-10 of ei-jump() (SubProcedure 8), whenever the front element
(ŵ, Lα) of Lw is popped, then J.i← ŵ is assigned.

Therefore, in any case, the following holds:
When the variable i got any of its possible values, say î (including iι), the

front entry (ŵ, Lα) of Lw had always been checked, and then popped from Lw
if ŵ = î.

Recall, Lw was sorted in increasing order at line 12 of init jumper()
(SubProcedure 3).

Therefore, when ei-jump(iι, J) is invoked at step ι, all of the entries (w, Lα)
of Lw such that w ≤ iι must already have been popped from Lw before step ι.

Therefore, w̄ = min{we | e ∈ E,we > iι}, if w̄ is the key (weight) of the front
entry of Lι

w.
Next, since Lincι

=∅ and Lι
w 6=∅ by hypothesis, and by line 9 of ei-jump(),

at least one further element (w, Lα) of Lw must be popped from Lι
w, either at

line 7 or line 10 of ei-jump(), soon after ι. Consider the last element, say w′,
which is popped after ι and before h. Then, J.ih←w′ is assigned either at line 3
or line 11 of ei-jump(). Notice, w′ ≥ w̄ > iι. Thus, J.ih ≥ w̄ > iι. 2

The following proposition essentially asserts that ei-jump() (SubProce-
dure 8) is correct. To begin, notice that, when ei-jump(i, J) is invoked at
line 7 of Algorithm 15, then i ∈ [W− − 1,W+]. Also recall that any invocation
of ei-jump(i, J) halts in finite time by Proposition 7.3.

Proposition 7.5. Consider any invocation of ei-jump(i, J) (SubProcedure 8) that is
made at line 7 of Algorithm 15, say at step ι, and for some i ∈ [W− − 1,W+]. Further
assume that Lincι

= ∅ and that ei-jump() halts at step h.
Suppose the following pre-conditions are all satisfied at invocation time ι, for s =

|F|V||:

(eij-PC-1) f c:ι is the least-SEPM of Γi,s−1; thus, Inc( f c:ι, i, s− 1) = ∅. Also, Lι
f = ∅.
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(eij-PC-2) {v ∈ V | 0 < f c:ι(v) 6= >} = ∅;

(eij-PC-3) Linc
cpy

ι ⊆ Inc( f c:ι, i′, j′) for every (i′, j′) > (i, s− 1);

(eij-PC-4) J.cntι and J.cmpι are both coherent w.r.t. f c:ι in Γi,s−1.

Finally, let i′ ∈ [W−,W+], j′ ∈ [1, s − 1] be any indices such that (i, s − 1) <
(i′, j′) ≤ (J.ih,1). Then, the following holds.

1. Suppose that Lι
w 6= ∅. Let (ŵ, Lα̂) be any entry of Lι

w such that ŵ = J.iι′ = i′

holds either at line 6 or line 11 of ei-jump(i, J), for some step ι′ > ι. When the
repair(Lα̂, J) halts soon after, either at line 8 or 12 (respectively), say at some
step ι′′ > ι′, both J.cntι′′ and J.cmpι′′ are coherent w.r.t. f c:ι′′ (= f c:ι) in Γi′,j′ .

2. If (i′, j′) < (J.ih,1), then Inc( f c:ι, i′, j′) = ∅;

3. It holds that either Linch 6= ∅ or both Linch
= ∅ and Lh

ω = ∅.

Anyway, Linch
= Inc( f c:h, ih,1).

Notice that f c stands still during ei-jump() (SubProcedure 8), i.e., f c:ι =
f c:ι′ = f c:ι′′ = f c:h, for steps ι, ι′, ι′′, h defined as in Proposition 7.5. In the proofs
below, we can simply refer to f c.

Proof of Item (1). Let u ∈ V0 and v ∈ Nout
Γ (u), let i′, j′ be fixed indices such that

(i, s− 1) < (i′, j′) ≤ (J.ih,1). By (eij-PC-2), either f c(u) = > or f c(u) = 0, either
f c(v) = > or f c(v) = 0.

• If f c(u) =>, then (u,v)∈ E is compatible w.r.t. f c in Γi,s−1. So, J.cmpι[(u,v)] =
T holds by (eij-PC-4). Since f c(u) =>, ei-jump() can’t modify J.cmp[(u,v)];
see line 2 of repair() (SubProcedure 8). So, J.cmpι′′ [(u,v)] = T is still
coherent w.r.t. f c in Γi′,j′ .

• If f c(u) = 0 and f c(v) = >, then (u,v) ∈ E is incompatible w.r.t. f c in
Γi,s−1. So, J.cmpι[(u,v)] = F holds by (eij-PC-4); and it will hold for the
whole execution of ei-jump(), because ei-jump() never changes J.cmp
from F to T. Thus, J.cmpι′′ [(u,v)] = F is still coherent w.r.t. f c in Γi′,j′ .

• Assume f c(u) = 0 and f c(v) = 0.

Again, J.cmpι[(u,v)] is coherent w.r.t. f c in Γi,s−1 by (eij-PC-4). We have
two cases:

– If J.cmpι[(u,v)] = F, then (u,v) is incompatible w.r.t. f c in Γi,s−1, i.e.,
f c(u) < f c(v) − (w(u,v) − i − Fs−1). Since f c(u) = f c(v) = 0 and
Fs−1 = 1, then:

0 = f c(u) < f c(v)− w(u,v) + i + Fs−1 = −w(u,v) + i + 1.
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Therefore, w(u,v) ≤ i, because w(u,v) ∈ Z. Since (i, s− 1) < (i′, j′),
then i < i′, so w(u,v) < i′; this means that (u,v) is still incom-
patible w.r.t. f c in Γi′,j′ . Meanwhile, J.cmp[(u,v)] = F stands still
(because ei-jump() never changes J.cmp from F to T), therefore,
J.cmpι′′ [(u,v)] = F.

– If J.cmpι[(u,v)] = T, then (u,v) is compatible w.r.t. f c in Γi,s−1 by
(eij-PC-4). So,

∗ If (u,v) is compatible w.r.t. f c in Γi′,j′ , i.e., f c(u)≥ f c(v)− (w(u,v)−
i′ − Fj′), then, since f c(u) = f c(v) = 0, we have:

0 = f c(u) ≥ f c(v)− w(u,v) + i′ + Fj′ = −w(u,v) + i′ + Fj′ .

Then, w(u,v)> i′, because j′ ∈ [1, s− 1] (so, Fj′ > 0) and w(u,v)∈
Z. Consider what happens in ei-jump() at ι′. Since Lw was
sorted in increasing order, and since w(u,v) > i′, then the entry
(w(u,v), Lα) is still inside Lw at ι′ (indeed, at step ι′, the front
entry of Lw has key value i′ by hypothesis). Therefore, nei-
ther the subsequent invocation of repair() (line 8 or line 12 of
ei-jump()), nor any of the previous invocations of repair()
(before ι′), can alter the state of J.cmp([u,v]) from T to F, just
because (u,v) ∈ Lα is still inside Lw at ι′; so, J.cmp([u,v]) = T
stands still, thus, J.cmpι′′ [(u,v)] = T.
∗ If (u,v) ∈ E is incompatible w.r.t. f c in Γi′,j′ , i.e., f c(u)< f c(v)−
(w(u,v)− i′ − Fj′), then, since f c(u) = f c(v) = 0, we have:

0 = f c(u) < f c(v)− w(u,v) + i′ + Fj′ = −w(u,v) + i′ + Fj′ .

Thus, w(u,v)≤ i′, because f c(u) = f c(v) = 0 and j′ ∈ [1, s− 1] (so
Fj′ > 0). On the other side, since (u,v) ∈ E is compatible w.r.t. f c

in Γi,s−1, at this point the reader can check that w(u,v)> i. Then,
by Item 1 of Lemma 7.3, and since Lw was sorted in increasing
order, the entry (w(u,v), Lα) is still inside Lw at ι. Therefore,
since w(u,v)≤ i′, there must be some step ι̂ (such that ι < ι̂≤ ι′)
at which the entry (w(u,v), Lα) must have been considered, ei-
ther at line 5 or line 10 of ei-jump(i, J), and thus popped from
Lw. Soon after ι̂, the subsequent invocation of repair() (ei-
ther at line 8 or line 12 of ei-jump()) changes the state of
J.cmpι̂[(u,v)] from T to F (line 5 of repair()), and it decrements
J.cntι̂[(u,v)] by one unit (line 4 of repair()). Thus J.cmp gets
repaired so that to be coherent w.r.t. f c in Γw(u,v),j′ . Now, by
Item 2 of Lemma 7.3, J.i can only increase during the execution
of ei-jump(). So, from that point on, (u,v) remains incompat-
ible w.r.t. f c in ΓJ.i,j′ for every w(u,v) ≤ J.i ≤ i′. On the other
hand, J.cmpι̂[(u,v)] = F stands still, since ei-jump() (SubPro-
cedure 8) never changes it from F to T. So, J.cmpι′′ [(u,v)] = F.
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This proves that, in any case, J.cmpι′′ [(u,v)] is coherent w.r.t. f c in
Γi′,j′ .

This also proves that J.cntι′′ is coherent w.r.t. f c in Γi′,j′ : indeed, J.cntι

was coherent w.r.t. f c in Γi,s−1 by (eij-PC-4); then J.cnt was decremented
by one unit (line 4 of repair()) each time that J.cmp was repaired (line 5
of repair()), as described above; therefore, at step ι′′, the coherency of
J.cntι′′ follows by that of J.cmpι′′ .

2

Proof of Item (2). Let u∈V. We want to prove that u is consistent w.r.t. f c in Γi′,j′

for every i′ ∈ [W−,W+] and j′ ∈ [1, s− 1] such that (i, s− 1) < (i′, j′) < (J.ih,1)
(if any).

By (eij-PC-2), either f c(u) = 0 or f c(u) = >. If f c(u) = >, the claim holds
trivially. Assume f c(u) = 0. By (eij-PC-1), u is consistent w.r.t. f c in Γi,s−1.
Assume ŵ = J.iι′ = i′, either at line 6 or line 11 of ei-jump(i, J), for some step
ι′ > ι. Assume repair(Lα̂, J) halts soon after at line 8 or 12 (respectively), for
some step ι′′ where ι′′ > ι′. We claim u is consistent w.r.t. f c in Γi′,j′ .

If u ∈ V0, By (eij-PC-4), J.cntι[u] is coherent w.r.t. f c in Γi,s−1. Thus, since u is
consistent w.r.t. f c in Γi,s−1, it holds that J.cntι[u]> 0. Now, since (i′, j′)<
(J.ih,1), then i′< J.ih, thus Lincι′′

= ∅. Therefore, J.cntι′′ [u]> 0 (otherwise
u would have been inserted into Linc within ι′′ at line 7 of repair()). By
Item 1 of Proposition 7.5, J.cntι′′ [u] is coherent w.r.t. f c in Γi′,j′ . Since
J.cntι′′ [u] > 0 and J.cnt[u]ι

′′
is coherent, u is consistent w.r.t. f c in Γi′,j′ .

If u ∈ V1, Since (i′, j′) < (J.ih, i), then i′ < J.ih, thus Lincι′′
= ∅. Let v ∈ Nout

Γ (u). By
(eij-PC-2), either f c(v) = 0 or f c(v) = >. Since f c(u) = 0 by assumption,
u ∈ V1, and u is consistent w.r.t. f c in Γi,s−1 by (eij-PC-1), then f c(v) = 0.

Now, we argue that w(u,v) > i′.

Assume, for the sake of contradiction, that w(u,v) ≤ i′. On one side,
since u is consistent w.r.t. f c in Γi,s−1 and since f c(u) = f c(v) = 0, then:

0 = f c(u) ≥ f c(v)− w(u,v) + i + Fs−1 = −w(u,v) + i + 1.

Thus, w(u,v)≥ i + 1 > i. Therefore, by Lemma 7.3, the entry (w(u,v), Lα)
is still inside Lw at step ι. On the other side, since w(u,v) ≤ i′, it is
easy to see at this point that within (or soon after) step ι′ the entry
(w(u,v), Lα′) must have been popped from Lw either at line 7 or at line 10
of ei-jump() (SubProcedure 8). So, (w(u,v), Lα′) must have been popped
from Lw after ι and within ι′ (or soon after ι′ at line 7). But soon after
that, since u ∈ V1, the subsequent invocation of repair() would insert
u into Linc at line 8, because f c(u) = f c(v) = 0 and Linc[u] = ∅ at line 2.
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Therefore Lincι′′ 6= ∅, which is a contradiction. Therefore, w(u,v) > i′.
Since v ∈ Nout

Γ (u) was chosen arbitrarily, ∀v∈Nout
Γ (u) w(u,v) > i′.

Since ∀v∈Nout
Γ (u) w(u,v) > i′ and f c(u) = f c(v) = 0, then u is consistent

w.r.t. f c in Γi′,j′ .

So, u is consistent w.r.t. f c in Γi′,j′ . Since u ∈ V was chosen arbitrarily, then
Inc( f c:ι, i′, j′) = ∅. 2

Proof of Item (3). By line 9 of ei-jump() (SubProcedure 8), when the while
loop at lines 9-12 halts, then ei-jump() halts soon after at line 13, say at step
h, and it must be that either Linch 6= ∅ or both Linch

= ∅ and Lh
w = ∅. Now, we

want to prove that Linch
= Inc( f c, J.ih,1).

• Firstly, Linch ⊆ Inc( f c, J.ih,1):

Assume u ∈ Linch. We have three cases to check:
– If u ∈ Linc

cpy
ι, notice that J.ih > i by Lemma 7.3, then u ∈ Inc( f c, J.ih,1) holds

by (eij-PC-3);
– If u ∈ V0 \ Linc

cpy
ι, then J.cnth[u] = 0 by lines 6-7 of repair() (SubProce-

dure 8). By Item 1 of Proposition 7.5, J.cnth[u] is coherent w.r.t. f c in ΓJ.ih,1.
Therefore, u ∈ Inc( f c, J.ih,1).

– If u ∈ V1 \ Linc
cpy

ι, then ∃v∈Nout
Γ (u) f c(u) = f c(v) = 0 and w(u,v) = J.ih by

lines 2-8 of repair(). Therefore, u ∈ Inc( f c, J.ih,1).
This proves, Linch ⊆ Inc( f c, J.ih,1).

• Secondly, Linch ⊇ Inc( f c, J.ih,1):

Let u ∈ Inc( f c, J.ih,1). By (eij-PC-2), either f c(u) = 0 or f c(u) = >. Since u ∈
Inc( f c, J.ih,1), then f c(u) = 0. Now, by (eij-PC-1), u is consistent w.r.t. f c in
Γi,s−1. So, let (u, v̂) ∈ E be any arc which is compatible w.r.t. f c in Γi,s−1.

If u ∈ V0, then, at least one such a compatible v̂ ∈ Nout
Γ (u) exists (because u ∈ V0 is

consistent w.r.t. f c in Γi,s−1). By (eij-PC-2), either f c(v̂) = 0 or f c(v̂) = >.
Since f c(u) = 0 and (u, v̂) is compatible w.r.t. f c in Γi,s−1, then f c(v̂) = 0.
Since f c(u) = f c(v̂) = 0 and u ∈ Inc( f c, J.ih,1), then w(u, v̂) ≤ J.ih.

We claim that at some step of execution of line 7 or line 10 in ei-jump()
(SubProcedure 8), say at step ι′ for ι < ι′ < h, the entry (w(u, v̂), Lα) is
popped from Lw.

Since f c(u) = f c(v̂) = 0, and (u, v̂) is compatible w.r.t. f c in Γi,s−1, then
w(u, v̂) > i. Thus, by Lemma 7.3, when ei-jump() is invoked (i.e., at
step ι), the front entry (w̄, Lᾱ) of Lι

w satisfies w̄ = min{we | e ∈ E,we >
i} ≤ w(u, v̂). So, w̄≤ w(u, v̂)≤ J.ih. Thus, at some step of execution ι′ for
ι < ι′ < h, the entry (w(u, v̂), Lα) must be popped from Lw.
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Soon after that, repair(Lα, J) is invoked: there, since f c(u) = f c(v̂) =
0 and u ∈ V0, then J.cnt[u] is decremented by one unit at line 4 of
repair().

Indeed, this happens (after ι but before h), for every v ∈ Nout
Γ (u) such that

(u,v) ∈ E is compatible w.r.t. f c in Γi,s−1. Thus, eventually and before h,
it will hold J.cnt[u] = 0. At that point, u will be inserted into Linc at
line 7 of repair(); and soon after, ei-jump() halts (since Linc 6= ∅ at
line 9). So, u ∈ Linch. This holds for every u ∈ Inc( f c, J.ih,1) ∩ V0. Thus,
Inc( f c, J.ih,1) ∩V0 ⊆ Linch.

If u ∈ V1, then, all v̂ ∈ Nout
Γ (u) are such that (u, v̂) is compatible w.r.t. f c in Γi,s−1,

because u ∈ V1 is consistent w.r.t. f c in Γi,s−1 by (eij-PC-1). The argu-
ment proceeds almost in the same way as before. By (eij-PC-2), either
f c(v̂) = 0 or f c(v̂) =>. Since f c(u) = 0 and (u, v̂) is compatible w.r.t. f c in
Γi,s−1, then f c(v̂) = 0. Since f c(u) = f c(v̂) = 0 and u ∈ Inc( f c, J.ih,1), then
w(u, v̂)≤ J.ih. By arguing as above, we see that at some step of execution
of line 3 in (the considered invocation of) ei-jump() (SubProcedure 8),
say at step ι′ for ι < ι′ < h, the entry (w(u, v̂), Lα) is popped from Lw.
Soon after that, repair(Lα, J) is invoked: there, since f c(u) = f c(v̂) = 0
and u ∈V1, then u is inserted into Linc; soon after, ei-jump() halts (since
Linc 6= ∅); so, u ∈ Linch. This holds for every u ∈ Inc( f c, J.ih,1) ∩ V1; so,
Inc( f c, J.ih,1) ∩V1 ⊆ Linch.

Therefore, Inc( f c, J.ih,1) = Linch. 2

Correctness of ua-jumps() (SubProcedure 9)

Proposition 7.6. Consider any invocation of ei-jump() (SubProcedure 8) that is
made at line 7 of Algorithm 15. Assume that the pre-conditions (eij-PC-1), (eij-PC-
2), (eij-PC-3), (eij-PC-4), are all satisfied at invocation time. Further assume that
Linc 6= ∅ at line 8 of Algorithm 15, so that ua-jumps() is invoked soon after at
line 9. Then, consider any invocation of J-VI(i, s− 1, F, J,Γ) (SubProcedure 6) that
is made at line 2 of ua-jumps() (SubProcedure 9), for some i ∈ [W−,W+], where
s = |F|V||. Then, the following properties hold.

1. The (PC-1), (w-PC-2), (w-PC-3) are all satisfied by that invocation of J-VI(i, s−
1, F, J,Γ).

2. When the J-VI(i, s− 1, F, J,Γ) halts, say at step h, then the following holds:

Lh
> =W0(Γi−1,s−1) ∩W1(Γi,s−1).

3. Assume that backtrack ua-jumps(i, s, F, J,Γ) is invoked at line 7 of ua-jumps(),
say at step ι, and assume that it halts at step h.
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(a) At line 1 of backtrack ua-jumps(i, s, F, J,Γ), it holds:

Linc
cpy = {v ∈ V | 0 < f c:ι(v) 6= >}.

(b) Consider the two induced games Γ[Lι
>] and Γ[V \ Lι

>]. The following
holds:

i. ∀(v ∈ Lι
>) f c:h(v) = f ∗w′i−1,s−1

(v);

ii. ∀(v ∈ V \ Lι
>) f c:h(v) = f ∗w′i,s−1

(v);

iii. ∀(u ∈ Lι
> ∩V0)∀(v ∈ Nout

Γ[Lι
>]
(u)) J.cmph(u,v) is coherent w.r.t. f c:h

in Γ[Lι
>]i,1;

iv. ∀(v ∈ Lι
> ∩V0) J.cnth(v) is coherent w.r.t. f c:h in Γ[Lι

>]i,1;
v. ∀(j′ ∈ [1, s− 1]) Inc( f c:h, i, j′) \ Lι

> = ∅.

4. Any invocation of ua-jumps() (SubProcedure 9) (line 7, Algorithm 15) halts
in finite time.

Proof of Item (1). By induction on the number k ∈N of invocations of J-VI()
that are made at line 2 of ua-jumps().

Base Case: k = 1. Consider the first invocation of J-VI() at line 2 of
ua-jumps(), say it happens at step ι. Just before step ι, Algorithm 15 invoked
ei-jump() at line 7. By hypothesis, (eij-PC-1), (eij-PC-2), (eij-PC-3), (eij-PC-4)
are all satisfied at that time. Then:

– (PC-1): It is easy to check from the definitions that (eij-PC-1) directly
implies (PC-1).

– (w-PC-2): By Item 3 of Proposition 7.5, it holds that Lincι
= Inc( f c:ι, i,1).

Since Inc( f c:ι, i,1) ⊆ Inc( f c:ι, i, s− 1), then (w-PC-2) holds.
– (w-PC-3): Let u ∈ V \ Lincι and v ∈ Nout

Γ (u). We need to check the follow-
ing two cases.

If u ∈ V0, by Item 1 of Proposition 7.5, both J.cmpι and J.cntι are coherent w.r.t.
f c:ι in Γi,1. Therefore, (w-PC-3) holds when u ∈ V0.

If u ∈ V1 and (u,v) is incompatible w.r.t. f c:ι in Γi,1, then, u∈ Inc( f c:ι, i,1). By Item 3
of Proposition 7.5, Inc( f c:ι, i,1) = Lincι. Thus, u ∈ Lincι, so (w-PC-3) holds
when u ∈ V1.

Therefore, (w-PC-3) holds when k = 1.
Inductive Step: k > 1. Consider the k-th invocation of J-VI() for k > 1,

at line 2 of ua-jumps(). Say it happens at step ι. Since k > 1, just before
step ι, Algorithm 15 performed the (k − 1)-th invocation of J-VI() at line 2
of ua-jumps(). Say it happened at step ι0. By induction hypothesis, at step
ι0 the (PC-1), (w-PC-2), (w-PC-3) were all satisfied. Therefore, the (k − 1)-th
invocation of J-VI() at line 2 halted in a correct manner, as prescribed by
Proposition 7.4. Soon after that, Algorithm 15 invoked rejoin ua-jump() at
line 5 of ua-jumps().
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(?) The key is that rejoin ua-jump(), apart from copying the energy-
levels of L f back to J. f (with scl back f (s − 1, F, J) at line 1), it takes care
of repairing (at line 6) the coherency state of J.cnt[u] and J.cmp[(u,v)] for all
those (u,v) ∈ E such that: u ∈ V0, w(u,v) = i and J. f [u] = J. f [v] = 0 (if any);
moreover, it checks the compatibility state of all those arcs (u,v) ∈ E such that:
u∈V1, w(u,v) = i and J. f [u] = J. f [v] = 0 (if any). In doing so, if any u∈V \ Linc

is recognized to be inconsistent w.r.t. f c in Γi,s−1, then u is (correctly) inserted
into Linc. See the pseudo-code of repair() in SubProcedure 8.

With (?) in mind, we can check that (PC-1), (w-PC-2), (w-PC-3) are all satis-
fied at step ι.

– (PC-1). Since rejoin ua-jump() empties L f (by scl back f () at line 1),
then Lι

f = ∅. Next, we argue f c � f ∗w′i,s−1
. By induction hypothesis, when the

(k− 1)-th invocation of J-VI() at line 2 of ua-jumps() halts, Proposition 7.4
holds, therefore, f c = f ∗w′i−1,s−1

. Since Fs−1 = 1, then w′i−1,s−1 = wi−1,s−1 and

w′i,s−1 = wi,s−1. Therefore, the following holds for every v ∈ V:

f c(v) = f ∗w′i−1,s−1
(v) [by induction hypothesis and Proposition 7.4]

= f ∗i−1,s−1(v) [by w′i−1,s−1 = wi−1,s−1]

� f ∗i,s−1(v) [by wi−1,s−1 > wi,s−1 and Lemma 7.2]

= f ∗w′i,s−1
(v) [by wi,s−1 = w′i,s−1]

In summary, ∀v∈V f c(v) � f ∗w′i,s−1
(v). This proves (PC-1).

– (w-PC-2). By induction hypothesis and Proposition 7.2, all vertices that
were already inside Linc at the end of the (k − 1)-th invocation of J-VI(), at
line 2 of ua-jumps(), they were all inconsistent w.r.t. J. f c in Γi−1,s−1, so they
are still inconsistent w.r.t. J. f c in Γi,s−1, because w′i,s−1 < w′i−1,s−1. In addition,
the repairing process performed by rejoin ua-jumps(), as mentioned in (?),
can only add inconsistent vertices to Linc. Therefore, (w-PC-2) holds.

– (w-PC-3). Let u ∈ V \ Lincι and v ∈ Nout
Γ (u). We need to check the follow-

ing two cases.

Case u ∈ V0. In order to prove Item 1 of (w-PC-3), we need to check three cases.

1. If J.cmpι[u,v] = F, we argue that (u,v) ∈ E is incompatible w.r.t. f c

in Γi,s−1.
Indeed, one of the following two cases (i) or (ii) holds:
(i) J.cmp[(u,v)] = F was already so at the end of the (k− 1)-th invo-
cation of J-VI(). By induction hypothesis and by Item 2 of Propo-
sition 7.4, then (u,v) was incompatible w.r.t. f c in Γi−1,s−1. So, (u,v)
is incompatible w.r.t. f c in Γi,s−1 (as w′i,s−1 < w′i−1,s−1).
(ii) at the end of the (k− 1)-th invocation of J-VI(), it was J.cmp[(u,v)] =
T. But then, rejoin ua-jump(i, s, F, J) repaired it by setting J.cmp[(u,v)] =
F at line 5 of repair(); notice that this (correctly) happens iff w(u,v) =
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i and J. f [u] = J. f [v] = 0, so that (u,v) is really incompatible w.r.t. f c

in Γi,s−1.
Therefore, in any case, Item 1 of (w-PC-3) holds.

2. If J.cmpι[(u,v)] = T, we argue that either (u,v) is compatible w.r.t.
f c in Γi,s−1 or v ∈ Lincι. Indeed, assume J.cmpι[(u,v)] = T and that
(u,v) is incompatible w.r.t. f c in Γi,s−1. Since J.cmpι[(u,v)] = T, then
it was as such even when the (k− 1)-th invocation of J-VI() halted
at line 2 of ua-jumps(). By induction hypothesis and by Item 2 of
Proposition 7.4, (u,v) was compatible w.r.t. f c in Γi−1,s−1. But (u,v)
is now incompatible w.r.t. f c in Γi,s−1, and still J.cmpι[(u,v)] = T.
Thus, the last invocation of repair(), within the last rejoin ua-jump(),
has not recognized (u,v) as incompatible (otherwise, it would be
J.cmpι[(u,v)] = F). Therefore, it must be that f c(u)> 0 or f c(v)> 0:
otherwise, if f c(u) = f c(v) = 0, since (u,v) is compatible w.r.t. f c in
Γi−1,s−1 but incompatible in Γi,s−1, and w(u,v) ∈Z, then w(u,v) = i
(contradicting the fact that the last invocation of repair() has not
recognized (u,v) as incompatible). Moreover, since (u,v) is incom-
patible w.r.t. f c in Γi,s−1, then f c(u) 6= >; and since (u,v) was com-
patible w.r.t. f c in Γi−1,s−1 and f c(u) 6= >, then f c(v) 6= >. Now,
when the (k− 1)-th invocation of J-VI() halts, Linc = {q ∈ V | 0 <
f c(q) 6= >} holds by induction hypothesis and Item 3 of Propo-
sition 7.4. Since u 6∈ Lincι and f c(u) 6= >, then f c(u) = 0. Thus,
since either f c(u) > 0 or f c(v) > 0, it holds that f c(v) > 0. So, it is
0 < f c(v) 6= >. Therefore, v ∈ Lincι.

3. By induction hypothesis and by Proposition 7.4, when the (k− 1)-th
invocation of J-VI() halts at line 2 of ua-jumps(), say at step ι0,
f c is the least-SEPM of the EG Γi−1,s−1 and J.cntι0 , J.cmpι0 are both
coherent w.r.t. f c in Γi−1,s−1. Therefore,

J.cntι0 [u] =
∣∣{v ∈ Nout

Γ (u) | f c(u) � f c(v)	 w′i−1,s−1(u,v)
}∣∣ [by coherency of J.cntι0 ]

=
∣∣{v ∈ Nout

Γ (u) | J.cmpι0 [(u,v)] = T
}∣∣. [by coherency of J.cmpι0 ]

Moreover, since f c is least-SEPM of Γi−1,s−1, then u is consistent
w.r.t. f c in Γi−1,s−1; thus J.cntι0 [u] > 0. Then, after ι0 and before
ι, ua-jumps() increments i by one unit at line 4 and it invokes
rejoin ua-jump() at line 5. There, repair() can (possibly) alter
the state of both J.cnt and J.cmp at lines 4-5. Whenever the state
of J.cmp is modified from T to F, then J.cnt is decremented by
one unit; moreover, whenever J.cnt[u] = 0, then repair() takes
care of inserting u into Linc. Therefore, J.cntι[u] =

∣∣{v ∈ Nout
Γ (u) |

J.cmpι[(u,v)] = T
}∣∣; since u 6∈ Lincι, then J.cntι[u] > 0.

Case u ∈ V1. Let v ∈ Nout
Γ (u) be such that (u,v) is incompatible w.r.t. f c in Γi,j. We

claim v ∈ Lincι. By induction hypothesis and by Proposition 7.4, when
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the (k − 1)-th invocation of J-VI() halts at line 2 of ua-jumps(), say
at step ι0, f c is the least-SEPM of the EG Γi−1,s−1 and Lincι0 = {q ∈ V |
0 < f c(q) 6= >}. Thus, since u ∈ V1, the arc (u,v) is compatible w.r.t. f c

in Γi−1,s−1. Moreover, since u 6∈ Lincι by hypothesis, then u 6∈ Lincι0 , thus
f c(u) = 0 or f c(u) = >; but since u is incompatible w.r.t. f c in Γi,j, it is
f c(u) = 0. Now, if 0 < f c(v) 6= >, then v ∈ Lincι0 ⊆ Lincι, so we are done.
Otherwise, since (u,v) is compatible w.r.t. f c in Γi−1,s−1 and f c(u) = 0,
then f c(v) 6= >. So, f c(v) = 0. Since f c(u) = f c(v) = 0 and (u,v) is
compatible w.r.t. f c in Γi−1,s−1, but incompatible w.r.t. f c in Γi,s−1, and
w(u,v) ∈ Z, then w(u,v) = i. Whence, soon after ι0, when ua-jumps()
invokes rejoin ua-jump() at line 5; there inside, repair() takes care
of inserting v into Linc. Therefore, v ∈ Lincι.

This concludes the inductive step, and thus the proof of Item 1 of Proposi-
tion 7.6. 2

Proof of Item (2). Consider the first invocation of J-VI() at line 2 of ua-jumps(),
say it happens at step ι. Notice that, just before step ι, the ei-jump() was
invoked by Algorithm 15 at line 7, say at step ι0. By hypothesis, (eij-PC-
1), (eij-PC-2), (eij-PC-3), (eij-PC-4) were all satisfied at step ι0. By (eij-PC-
1) and Item 2 of Proposition 7.5, f c:ι0 is the least-SEPM of Γi−1,s−1; there-
fore, Vf c:ι0 = W0(Γi−1,s−1) by Lemma 6.3. By Item 1 of Proposition 7.6 and
Item 1 of Proposition 7.4, when the first invocation of J-VI() halts, say at
step h, then f c:h is the least-SEPM of Γi,s−1; therefore, V \ Vf c:h =W1(Γi,s−1)

by Lemma 6.3. Moreover, by Item 4 of Proposition 7.4, Lh
> = Vf c:ι ∩ V \ Vf c:h .

Therefore, Lh
> =W0(Γi−1,s−1) ∩W1(Γi,s−1).

Next, consider the k-th invocation of J-VI(), for k > 1, at line 2 of ua-jumps().
By Item 1 of Proposition 7.6 and Item 1 of Proposition 7.4, the following
two hold: (i) when the (k − 1)-th invocation of J-VI() halts, at line 2 of
ua-jumps(), say at step ι, then f c:ι is the least-SEPM of Γi−1,s−1; and Vf c:ι =
W0(Γi−1,s−1) by Lemma 6.3. (ii) when the k-th invocation of J-VI() halts, at
line 2 of ua-jumps(), say at step h, then f c:h is the least-SEPM of Γi,s−1; and
V \ Vf c:h =W1(Γi,s−1) by Lemma 6.3. Notice that, when the k-th invocation of
J-VI() takes place, soon after ι, the current energy-levels are still f c:ι (i.e., they
are not modified by rejoin ua-jumps() at line 5 of ua-jumps()). Moreover,
by Item 4 of Proposition 7.4, Lh

> = Vf c:ι ∩ V \ Vf c:h . Therefore, by (i) and (ii), it
holds Lh

> =W0(Γi−1,s−1) ∩W1(Γi,s−1). 2

Proof of Item (3). We need to check the following two items (a) and (b).

(a) Consider the state of Linc
cpy at line 1 of backtrack ua-jumps(i, s, F, J,Γ).

By Item 1 of Proposition 7.6, and by Item 3 of Proposition 7.4, when the
last invocation of J-VI() halts at line 2 of ua-jumps(), say at step h0, it
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holds J.Linch0 = {v∈V | 0 < f c:h0(v) 6=>}. By the copy operation which is
performed at line 1 of backtrack ua-jumps(), then J.Linc

cpy = J.Linch0 =

{v ∈ V | 0 < f c:h0(v) 6= >}. This proves (a).

(b) Let us focus on the two induced games Γ[Lι
>] and Γ[V \ Lι

>].

i. ∀(v ∈ Lι
>) f c:h(v) = f ∗w′i−1,s−1

(v): indeed, by arguing similarly as in

the proof of Item 2 of Proposition 7.6, we obtain ∀v∈V J. f ι[v] =
f ∗w′i−1,s−1

(v).

Notice that backtrack ua-jump() modifies the energy-levels only
at lines 2-3, where the following assignment is performed:

Lh
f [u]←

{ ⊥ , if u ∈ Lι
>;

Lι
f [u] , if u ∈ V \ Lι

>.

and scl back f () is invoked. Since ∀(v ∈ Lι
>) Lh

f [u] =⊥, soon after
the invocation of scl back f () at line 3, it must be that ∀(v ∈ Lι

>) f c:h(v) =
J. f ι[v] = f ∗w′i−1,s−1

(v). This proves (i).

ii. ∀(v ∈ V \ Lι
>) f c:h(v) = f ∗w′i,s−1

(v): indeed, by Item 1 of Proposition 7.6

and Item 1 of Proposition 7.4, ∀(v ∈ V) f c:ι(v) = f ∗w′i,s−1
(v). As men-

tioned, backtrack ua-jump() modifies the energy-levels only at
lines 2-3, where Lh

f [u] is assigned (as above in (i)). Since ∀(v ∈ V \ Lι
>)

(Lh
f [u] = Lι

f [u] and f c:ι(v) = f ∗w′i,s−1
(v)), then (ii) holds.

iii. ∀(u ∈ Lι
> ∩V0)∀(v ∈ Nout

Γ[Lι
>]
(u)) J.cmph(u,v) is coherent w.r.t. f c:h in

Γ[Lι
>]i,1: indeed, at lines 4-7 of backtrack ua-jump(), for each u∈

Lι
> ∩ V0, it is invoked the init cnt cmp(u, i,1, F, J,Γ[Lι

>]) (line 7).
Therefore, (iii) holds.

iv. ∀(v ∈ Lι
> ∩V0) J.cnth(v) is coherent w.r.t. f c:h in Γ[Lι

>]i,1: same ar-
gument as in (iii).

v. ∀(j′ ∈ [1, s − 1]) Inc( f c:h, i, j′) \ Lι
> = ∅: indeed, let u ∈ V \ Lι

> and
let j′ ∈ [1, s − 1] be fixed arbitrarily. We want to show that u 6∈
Inc( f c:h, i, j′). Since f ∗w′i,s−1

is the least-SEPM of Γi,s−1, then u 6∈ Inc( f ∗w′i,s−1
, i, s−

1). We have two cases.

Case u ∈ V0 \ Lι
> Since u ∈ V0 \ Inc( f ∗w′i,s−1

, i, s − 1), for some v ∈ Nout
Γ (u) it holds

that:
f ∗w′i,s−1

(u) � f ∗w′i,s−1
(v)	 w′i,s−1(u,v). (∗0)

By Item (i) of Proposition 7.6, it holds that ∀(v ∈ Lι
>) f c:h(v) =

f ∗w′i−1,s−1
(v). By Item (ii) of Proposition 7.6, it holds that ∀(v ∈ V \ Lι

>) f c:h(v) =

f ∗w′i,s−1
(v); so f c:h(u) = f ∗w′i,s−1

(u). By Lemma 7.2, f ∗w′i−1,s−1
� f ∗w′i,s−1

.
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Then, since f c:h(u) = f ∗w′i,s−1
(u), since f c:h(v)∈ { f ∗w′i−1,s−1

(v), f ∗w′i,s−1
(v)}

and f ∗w′i−1,s−1
� f ∗w′i,s−1

, from (∗0) we obtain the following inequal-
ity:

f c:h(u) � f c:h(v)	 w′i,s−1(u,v).

Now, since w′i,j′(u,v)≥w′i,s−1(u,v), it also holds f c:h(u)� f c:h(v)	
w′i,j′(u,v). This proves that u 6∈ Inc( f c:h, i, j′).

Case u ∈ V1 \ Lι
> Since u ∈ V1 \ Inc( f ∗w′i,s−1

, i, s− 1), for all v ∈ Nout
Γ (u) it holds that:

f ∗w′i,s−1
(u) � f ∗w′i,s−1

(v)	 w′i,s−1(u,v).

By arguing as in the previous case, we obtain that for every
v ∈ Nout

Γ (u) the following holds: f c:h(u) � f c:h(v)	 w′i,s−1(u,v).
This proves that u 6∈ Inc( f c:h, i, j′).

2

Proof of Item (4). The fact that ua-jumps() halts in finite time follows directly
from Item 1 of Proposition 7.6 and the definition of the subprocedure rejoin ua-jump()
and that of backtrack ua-jump(). 2

Correctness of solve MPG() (Algorithm 15)

As shown next, it turns out that (PC-1), (w-PC-2), (w-PC-3) are all satisfied by
Algorithm 15.

Proposition 7.7. Let i ∈ [W− − 1,W+] and j ∈ [1, s− 1]. The following two propo-
sitions hold.

1. Consider any invocation of ei-jump(i, J) (SubProcedure 8) at line 7 of Algo-
rithm 15 such that Linc = ∅. Then, (eij-PC-1), (eij-PC-2), (eij-PC-3), (eij-PC-4)
are all satisfied w.r.t. Γ.

2. Consider any invocation of J-VI(i, j, F, J,Γ[S]) at line 11 of Algorithm 15.
Then, (PC-1), (w-PC-2), (w-PC-3) are all satisfied w.r.t. the sub-arena Γ[S].

Proof. We prove Item 1 and 2 jointly, arguing by induction on the number k1
of invocations of ei-jump() at line 7 of Algorithm 15 and the number k2 of
invocations of J-VI() at line 11.

Base Case: k1 = 1 and k2 = 0. So, the first subprocedure to be invoked
is ei-jump(i, J) at line 7 of Algorithm 15, say at step ι. Notice that: iι =
W−− 1; ∀(v∈V) f c:ι(v) = 0; ∀(v∈V0) J.cntι[v] = |Nout

Γ (v)| and ∀(u∈V0)∀(v∈
Nout

Γ (u)) J.cmpι[u,v] = T; Lι
f = Lincι

= Linc
cpy

ι
= ∅. Also notice that for every

u ∈ V and v ∈ Nout
Γ (u) the following holds:

w′iι,s−1(u,v) = w′W−−1,s−1(u,v) = w(u,v)−W− ≥ 0.
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With this, it is straightforward to check that (eij-PC-1), (eij-PC-2), (eij-PC-3),
(eij-PC-4) hold.

Inductive Step: k1 = 1 and k2 ≥ 1, or k1 > 1. We need to check three cases.

1. Assume that J-VI(i, j, F, J,Γ[S]) is invoked at line 11 of Algorithm 15, say
at step ι1, soon after that ua-jumps() halted at line 9 of Algorithm 15.
So, we aim at showing Item 2.

Notice that: jι1 = 1 holds (by line 10 of Algorithm 15). Let us check the
(PC-1), (w-PC-2), (w-PC-3) w.r.t. Γ[S]. By line 4 of backtrack ua-jump(),
S = Lι

> for some step ι < ι1.

– PC-1: By line 2 of backtrack ua-jump(), it holds ∀(u ∈ Lι
>) Lι

f [u] =
⊥. By Item [3, (b), (i)] of Proposition 7.6, ∀(v ∈ Lι

>) f c:ι1(v) = f ∗w′i−1,s−1
(v).

By Lemma 7.2, f ∗w′i−1,s−1
� f ∗w′

i,jι1
. Therefore, ∀(v ∈ Lι

>) f c:ι1(v) � f ∗w′
i,jι1

(v).

This proves that (PC-1) holds w.r.t. Γ[Lι
>] = Γ[S].

– w-PC-2: By lines 5-17 of backtrack ua-jumps(), and since init cnt cmp()
is correct, Lincι1 ⊆ Inc( f c:ι1 , i,1). Since jι1 = 1, then (w-PC-2) holds w.r.t.
Γ[Lι
>] = Γ[S].

– w-PC-3: By induction hypothesis and by Item [3, (b), (iii) and (iv)] of
Proposition 7.6, J.cntι1 and J.cmpι1 are coherent w.r.t. f c:ι1 in Γ[Lι

>]i,1;
also, if u ∈ V1 ∩ Lι

> and u ∈ Inc( f c:ι1 , i,1), then u ∈ Lincι1 by lines 11-17 of
backtrack ua-jump(). Since jι1 = 1, this proves that (PC-3) holds w.r.t.
Γ[Lι
>] = Γ[S], so (w-PC-3) holds as well.

2. Assume that J-VI(i, j, F, J,Γ[S]) is invoked at line 11 of Algorithm 15, say
at step ι2, soon after that a previous invocation of J-VI(i, j− 1, F, J,Γ[S])
halted at line 11 say at step ι1. Notice that j ∈ [2, s− 1] in that case. Let us
check (PC-1), (w-PC-2), (w-PC-3) w.r.t. Γ[S]. By line 4 of backtrack ua-jump(),
S = Lι

> for some step ι < ι1.

– (PC-1): By lines 2-3 of scl back() (which was executed at line 13 of
Algorithm 15, just before ι2), it holds ∀(u ∈ Lι

>) Lι1
f [u] = ⊥. By induction

hypothesis and by Item 1 of Proposition 7.4, the following holds:

∀(v ∈ Lι
>) f c:ι2(v) = f ∗w′

i,jι1
(v) = f ∗w′

i,jι2−1
(v).

By Lemma 7.2, f ∗w′
i,jι2−1

� f ∗w′
i,jι2

. Therefore, ∀(v ∈ Lι
>) f c:ι2(v) � f ∗w′

i,jι2
(v).

Whence, (PC-1) holds w.r.t. Γ[Lι
>] = Γ[S].

– (w-PC-2): By induction hypothesis and by Item 3 of Proposition 7.4,
then:

Lincι2 = {v ∈ V | 0 < f c:ι2(v) 6= >}.

Thus, by Lemma 7.1, Lincι2 ⊆ Inc( f c:ι2 , i, jι2). So, (w-PC-2) holds w.r.t.
Γ[Lι
>] = Γ[S].

– (w-PC-3): Let u ∈ V \ Lincι2 , and let v ∈ Nout
Γ[Lι
>]
(v).
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If u ∈ V0, we need to check the state of J.cmpι2 [(u,v)] and J.cntι2 [u].

1. If J.cmpι2 [u,v] = F, we argue that (u,v) ∈ E is incompatible w.r.t. f c:ι2

in Γ[S]i,j. Indeed, it was already J.cmpι2 [(u,v)] = F when the previous
J-VI() (that invoked at step ι1) halted. Then, by induction hypothe-
sis and by Item 3 of Proposition 7.4, (u,v) is incompatible w.r.t. f c:ι2 in
Γ[S]i,j−1. Thus, (u,v) is incompatible w.r.t. f c:ι2 also in Γ[S]i,j (because
w′i,j < w′i,j−1). So, J.cmpι2 [(u,v)] is coherent w.r.t. f c:ι2 in Γ[S]i,j.

2. If J.cmpι2 [(u,v)] = T, we argue that either (u,v) is compatible w.r.t. f c:ι2

in Γ[S]i,j or it holds that v ∈ Lincι2 . Indeed, assume that J.cmpι2 [(u,v)] = T
and that (u,v) is incompatible w.r.t. f c:ι2 in Γ[S]i,j. Since J.cmpι2 [(u,v)] =
T, then it was as such even when the previous J-VI() (that invoked at
step ι1) halted. So, (u,v) was compatible w.r.t. f c:ι2 in Γ[S]i,j−1. Since
u 6∈ Lincι2 , then f c:ι2(u) = 0 (indeed, if f c:ι2(u) =>, then (u,v) would have
been compatible). Therefore, it is not possible that f c:ι2(v) = 0; since,
otherwise, from the fact that f c:ι2(u) = f c:ι2(v) = 0 and (u,v) is compatible
w.r.t. f c:ι2 in Γ[S]i,j−1, it would be w′(u,v)i,j−1 ≥ 0; and since w(u,v) ∈ Z

and 0 < Fj−1 < Fj ≤ 1 where j ∈ [2, s− 1], it would be w′i,j(u,v)≥ 0 as well,
so (u,v) would be compatible w.r.t. f c in Γ[S]i,j. Also, it is not possible
that f c:ι2(v) = >, since otherwise (u,v) would have been incompatible
w.r.t. f c:ι2 in Γ[S]i,j−1 (because f c:ι2(u) = 0). Therefore, 0 < f c:ι2(v) < >.
Then, induction hypothesis and by Item 3 of Proposition 7.4, v ∈ Lincι2 .

3. By induction hypothesis and by Proposition 7.4, f c:ι2 is the least-SEPM
of Γ[S]i,j−1 and J.cntι2 , J.cmpι2 are both coherent w.r.t. f c:ι2 in Γ[S]i,j−1.
Therefore,

J.cntι2 [u] =
∣∣{v ∈ Nout

Γ[S](u) | f c:ι2(u) � f c:ι2(v)	 w′i,j−1(u,v)
}∣∣ [by coherency of J.cntι2 ]

=
∣∣{v ∈ Nout

Γ[S](u) | J.cmpι2 [(u,v)] = T
}∣∣. [by coherency of J.cmpι2 ]

Moreover, since f c:ι2 is least-SEPM of Γ[S]i,j−1, then u is consistent w.r.t.
f c:ι2 in Γ[S]i,j−1, thus J.cntι2 [u] > 0.

If u ∈ V1, assume (u,v) is incompatible w.r.t. f c:ι2 in Γ[S]i,j, for some v∈Nout
Γ[S](u).

We want to prove v ∈ Lincι2 . By induction hypothesis and by Propo-
sition 7.4, f c:ι2 is the least-SEPM of Γ[S]i,j−1 and Lincι2 = {q ∈ V | 0 <
f c:ι2(q) 6=>}. Thus, since v∈V1, (u,v) is compatible w.r.t. f c:ι2 in Γ[S]i,j−1.
Moreover, since u 6∈ Lincι2 by hypothesis, then f c:ι2(u) = 0 or f c(u) = >;
but since (u,v) is incompatible w.r.t. f c:ι2 in Γ[S]i,j, it is f c:ι2(u) = 0. There-
fore, it is not possible that f c:ι2(v) = 0; since, otherwise, from the fact that
f c:ι2(u) = f c:ι2(v) = 0 and (u,v) is compatible w.r.t. f c:ι2 in Γ[S]i,j−1, it
would be:

w′(u,v)i,j−1 = w(u,v)− i− Fj−1 ≥ 0,
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since w(u,v) ∈ Z and 0 < Fj−1 < Fj ≤ 1 where j ∈ [2, s− 1], it would be
w′i,j(u,v) ≥ 0, so (u,v) would have been compatible w.r.t. f c in Γ[S]i,j.
Also, it is not possible that f c:ι2(v) =>, since otherwise (u,v) would have
been incompatible w.r.t. f c:ι2 in Γ[S]i,j (because f c:ι2(u) = 0). Therefore,
0 < f c:ι2(v) < >. Then, induction hypothesis and by Item 3 of Proposi-
tion 7.4, v ∈ Lincι2 .

3. Assume that ei-jump(i, J) is invoked at line 7 of Algorithm 15, say at
step ι1, and that Lincι1 = ∅. Then, the following properties hold.

– (eij-PC-1) f c:ι1 is the least-SEPM of Γi,s−1: indeed, consider the previous
invocation J-VI(i, jι0 , F, J,Γ[Sι0 ]) at line 11 of Algorithm 15, say it was
invoked at step ι0 before ι1. By induction hypothesis and by Item 1 of
Proposition 7.4, f c:ι1 is the least-SEPM of Γ[Sι0 ]i,jι0 . Since Lincι1 = ∅ by
assumption, by induction hypothesis and Item 3 of Proposition 7.4, then
{v ∈ Sι0 | 0 < f c:ι1(v) 6=>}= Lincι1 = ∅. We claim that ∀(u ∈ Sι0) f c:ι1(u) =
>. Indeed, the following holds.

If u ∈ V0, since f c:ι1 is the least-SEPM of Γ[Sι0 ]i,jι0 , there exists v ∈ Nout
Γ[Sι0 ](u)

such that (u,v) is compatible w.r.t. f c:ι1 in Γ[Sι0 ]i,jι0 . So, it is not
possible that f c:ι1(u) = 0: otherwise, it would be f c:ι1(v) = 0 as well
(because either f c:ι1(v) = 0 or f c:ι1(v) = >), and since w(u,v) ∈ Z

and 0 < Fjι0 ≤ 1 where jι0 ∈ [1, s− 1], then (u,v) would be compatible
w.r.t. f c:ι1 even in Γ[Sι0 ]i,s−1, thus f ∗w′i,s−1

(u) = 0. But this contradicts
the fact that, by induction hypothesis, Item 1 of Proposition 7.6 and
Item 1 of Proposition 7.4, f ∗w′i,s−1

(u) = >. Therefore, f c:ι1(u) = >.

If u ∈ V1, since f c:ι1 is the least-SEPM of Γ[Sι0 ]i,jι0 , for every v ∈ Nout
Γ[Sι0 ](u), the

arc (u,v) is compatible w.r.t. f c:ι1 in Γ[Sι0 ]i,jι0 . Now, by arguing as in
the previous case (i.e., u ∈ V0), it holds that ∀(u ∈ Sι0) f c:ι1(u) = >.

Thus, ∀(u ∈ Sι0) f c:ι1(u) = > = f ∗i,s−1(u). By induction hypothesis and
Item [3, (b), (ii)] of Proposition 7.6, ∀(u ∈ V \ Sι0) f c:ι1(u) = f ∗w′i,s−1

(u). So,
f c:ι1 = f ∗w′i,s−1

.

– (eij-PC-2) Lincι1 = {v ∈ Sι0 | 0 < f c:ι1(v) 6= >}: this holds by induction
hypothesis and by Item 3 of Proposition 7.4.

– (eij-PC-3) Linc
cpy

ι ⊆ Inc( f c:ι, i′, j′) for every (i′, j′)> (i, s− 1): this holds by
induction hypothesis plus Item [3, (a)] of Proposition 7.6 and Lemma 7.1.

– (eij-PC-4): consider the previous invocation of J-VI(i, jι0 , F, J,Γ[Sι0 ]) at
line 11 of Algorithm 15, say at step ι0, just before ι1. By induction hy-
pothesis and by Item 2 of Proposition 7.4, for every u∈V0 ∩ Sι0 , J.cntι1 [u]
and J.cmpι1 [(u, ·)] are both coherent w.r.t. f c:ι1 in Γ[Sι0 ]i,jι0 ; also, for every
u ∈ V0 \ Sι0 , J.cntι1 [u] and J.cmpι1 [(u, ·)] are both coherent w.r.t. f ∗w′i,s−1

in
Γi,s−1. Since (eij-PC-1) holds, then f c:ι1 = f ∗w′i,s−1

. So, (eij-PC-4) holds.
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2

Lemma 7.4. Let v̂ ∈ V, assume valΓ(v̂) = î − Fĵ−1, for some î ∈ [W−,W+] and
ĵ ∈ [1, s− 1].

Then, eventually, Algorithm 15 invokes J-VI(î, ĵ, F, J,Γ[S]) at line 11, for some
S ⊆ V.

Proof. For the sake of contradiction, for any S⊆V, assume that J-VI(î, ĵ, F, J,Γ[S])
is never invoked at line 11 of Algorithm 15. At each iteration of the main
while loop of Algorithm 15 (lines 6-14), j is incremented (line 14); mean-
while, the value of i stands still until (eventually) ei-jump() and (possibly)
ua-jumps() increase it (also resetting j← 1). Therefore, since J-VI(î, ĵ, F, J,Γ[S])
is never invoked at line 11, there are i0 ∈ [W−,W+] and j0 ∈ [1, s − 1], where
(i0, j0) < (î, ĵ), such that one of the following two hold:

• Either ei-jump(i0, J) (line 7) is invoked and, when it halts say at step h,
it holds J.ih > î.

In that case, by Item 1 of Proposition 7.7 and Item 2 of Proposition 7.5,
f ∗
î, ĵ−1

(v̂) = f ∗
î, ĵ
(v̂). On the other hand, since valΓ(v̂) = î− Fĵ−1, then v̂ ∈

W0(Γî, ĵ−1) ∩W1(Γî, ĵ) by Theorem 6.3; so, by Lemma 6.3, f ∗
î, ĵ−1

(v̂) 6= >
and f ∗

î, ĵ
(v̂) = >. So, > 6= f ∗

î, ĵ−1
(v̂) = >; this is absurd.

• Or ua-jumps(i0, s, F, J,Γ) (line 9) is invoked and, when it halts say at
step h, J.ih > î.

In that case, during the execution of ua-jumps(i0, s, F, J,Γ), at some step
ι̂, it is invoked J-VI(î, s − 1, F, J,Γ) (line 2 of ua-jumps()); and when
it halts, say at step ι̂h, by Item 2 of Proposition 7.6 and by line 6 of
ua-jumps(), then Lι̂h

> =W0(Γî−1,s−1) ∩W1(Γî,s−1) = ∅. Still, valΓ(v̂) =
î− Fĵ−1, then v̂ ∈W0(Γî, ĵ−1)∩W1(Γî, ĵ) by Theorem 6.3. Since ρ = {wi,j}i,j

is monotone decreasing, then W0(Γî, ĵ−1) ⊆ W0(Γî−1,s−1) and W1(Γî, ĵ) ⊆
W1(Γî,s−1). Then, v̂∈W0(Γî, ĵ−1)∩W1(Γî, ĵ)⊆W0(Γî−1,s−1)∩W1(Γî,s−1) =

∅, but this is absurd.

In either case, we arrive at some contradiction.
Therefore, eventually, Algorithm 15 invokes J-VI() at line 11 on input

(î, ĵ). 2

Theorem 7.1. Given any input MPG Γ = (V, E,w, 〈V0,V1〉), Algorithm 15 halts in
finite time.

If (W0,W1,ν,σ∗0 ) is returned, then: W0 is the winning set of Player 0 in Γ, W1
is that of Player 1, ∀v∈Vν(v) = valΓ(v), σ∗0 is an optimal positional strategy for
Player 0 in Γ.
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Proof. Firstly, we argue that Algorithm 15 halts in finite time. Recall, by Propo-
sitions [7.4, 7.5, 7.6, 7.7], it holds that any invocation of J-VI(), ei-jump(),
ua-jumps() (respectively) halts in finite time. It is easy to check at this
point that (by lines 14 of Algorithm 15, line 4 and 8 of ei-jump(), line 5 of
ua-jumps(), and since Lω was sorted in increasing order), whenever J-VI()
is invoked at line 11 of Algorithm 15 – at any two consequential steps ι0, ι1
(i.e., such that ι0 < ι1) – then (iι0 , jι0) < (iι1 , jι1). Also, by Propositions 7.4-7.7,
whenever J-VI() is invoked at line 11 of Algorithm 15, if it halts say at step
ιh, then f c:ιh is the least-SEPM of Γiιh ,jιh ; so, eventually, say when (iι̂h , jι̂h) are
sufficiently large, then ∀u∈V f c:ι̂h(u) = >; and, by Item 3 of Proposition 7.4,
Linc ι̂h = {v ∈ V | 0 < f c:ι̂h 6= >}, so, Linc ι̂h = ∅. Consider the first invocation
of ei-jump() (line 7 of Algorithm 15) that is made soon after this ι̂h, and
say it halts at step h. By Item 3 of Proposition 7.5, Linch

= Inc( f c:h, J.ih,1).
Since ∀u∈V f c:ι̂h(u) = f c:h(u) =>, then Inc( f c:h, J.ih,1) = ∅. Therefore, Linch

= ∅.
Therefore, Algorithm 15 halts at line 8 soon after h.

Secondly, we argue that Algorithm 15 returns (W0,W1,ν,σ∗0 ) correctly.
On one side, W0,W1,ν,σ∗0 are accessed only when set vars() is invoked

(line 12 of Algorithm 15). Just before that, at line 11, some J-VI() must have
been invoked; say it halts at step h. By Items 1 and 2 of Proposition 7.6, Lh

> =
W0(Γih,jh−1)∩W1(Γih,jh). Therefore, by Theorem 6.3, ν is assigned correctly; so,
W0,W1 are also assigned correctly. At this point, by Theorem 6.4, also σ∗0 is
assigned correctly.

Conversely, let v̂ ∈V and assume valΓ(v) = î− Fĵ−1 for some î ∈ [W−,W+]

and ĵ∈ [1, s− 1]. By Lemma 7.4, eventually, Algorithm 15 invokes J-VI(î, ĵ, F, J,Γ)
at line 11. By Items 1 and 2 of Proposition 7.6, when J-VI(î, ĵ, F, J,Γ) halts, say
at step h, it holds that Lh

> = W0(Γî, ĵ−1) ∩ W1(Γî, ĵ). Therefore, soon after at
line 12, set vars() assigns toW0,W1,ν,σ∗0 a correct state. 2

7.3.3 Complexity of Algorithm 15
The complexity of Algorithm 15 follows, essentially, from the fact that [Inv-EI]
is satisfed.

Proposition 7.8. Algorithm 15 satisfies [Inv-EI]: whenever a Scan-Phase is executed
(each time that a Value-Iteration is invoked), an energy-level f (v) strictly increases for
at least one v ∈ V. So, the energy-lifting operator δ is applied (successfully) at least
once per each J-VI().

Proof. By lines 1 and 9 of ei-jump() (SubProcedure 8), lines 1-6 of ua-jumps(),
and line 8 of Algorithm 15, whenever J-VI() is invoked either at line 11 of Al-
gorithm 15 or at line 2 of ua-jumps() (SubProcedure 9), say at step ι, then
Lincι 6= ∅. Moreover, by Proposition 7.7, by Item 3 of Propositions 7.4 and
Lemma 7.1, Lincι ⊆ Inc( f c:ι, iι, jι). Therefore, during each J-VI() that is possi-
bly invoked by Algorithm 15, at least one application of δ is performed (line 2-3
of J-VI()) (because Lincι 6= ∅) and every single application of δ( f c,v) that is
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made during J-VI(), say at step ι̂, for any v ∈ V, really increases f c:ι̂(v) (be-
cause Linc ι̂ ⊆ Inc( f c:ι̂, iι̂, jι̂)). 2

Theorem 7.2. Given an input MPG Γ = (V, E,w, 〈V0,V1〉), Algorithm 15 halts
within the following time bound:

O(|E| log |V|) + Θ
(

∑
v∈V

degΓ(v) · `1
Γ(v)

)
= O(|V|2|E|W),

The working space is Θ(|V|+ |E|).

Proof. The initialization of Lω takes O(|E| log |V|) time, i.e., the cost for sort-
ing {we | e ∈W}. Each single application of δ, which is possibly done during
any execution of J-VI() throughout Algorithm 15, it takes time Θ(degΓ(v)).
Indeed, by Proposition 7.1, the total aggregate time spent for all applications
of δ in Algorithm 15 is Θ

(
∑v∈V degΓ(v) · `1

Γ(v)
)
. It is not difficult to check

from the description of Algorithm 15, at this point, that the time spent be-
tween any two subsequent applications of δ can increase the total time amount
∑v∈V degΓ(v) · `1

Γ(v) of Algorithm 15 only by a constant factor. Notice that the
aggregate total cost of all the invocations of repair() is O(|E|). In Section 6.3
it was shown how to generate F|V| iteratively, one term after another, in O(1)
time-delay and O(1) total space, as in [97]. It is also easy to check, at this point,
that Algorithm 15 works with Θ(|V|+ |E|) space. 2

7.3.4 An Experimental Evaluation of Algorithm 15
This section describes an empirical evaluation of Algorithm 15. All algorithms
and procedures employed in this practical evaluation have been implemented
in C/C++ and executed on a Linux machine having the following characteris-
tics:

– Intel Core i5-4278U CPU @ 2.60GHz x2;
– 3.8GB RAM;
– Ubuntu 15.10 Operating System.
The main goal of this experiment was: (i) to determine the average com-

putation time of Algorithm 15, with respect to randomly-generated MPGs, in
order to give an idea of the practical behavior it; (ii) to offer an experimental
comparison between Algorithm 15 and the algorithm which is offered in [38],
i.e., Algorithm 16, in order to give evidence and experimental confirmation of
the algorithmic improvements made over [38]. Here we propose a summary
of the obtained results presenting a brief report about, Test 1, Test 2.

In all of our tests, in order to generate a suitable dataset of MPGs, our
choice has been to use the randomgame procedure of pgsolver suite [98],
that can produce random arenas instances for any given number of nodes. We
exploited randomgame as follows:
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|V| µ (sec) σ

20 0.69 0.21
25 1.69 0.43
30 4.37 1.47
35 8.77 3.79
40 19.95 6.99
45 35.06 12.0
50 57.10 18.9
(a) Test 1, µ, Algo-0.

|V| µ (sec) σ

20 0.09 0.05
25 0.13 0.07
30 0.30 0.24
35 0.52 0.39
40 1.18 0.77
45 1.83 1.37
50 2.56 2.59
60 5.30 6.08
70 9.57 8.83
(b) Test 1, µ, Algo-1.
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Figure 7.3: Results of Test 1 on Average Execution Time

1. First, randomgame was used to generate random directed graphs, with
out-degree taken uniformly at random in [1, |V|] ;

2. Then, the resulting graphs were translated into MPGs by weighting each
arc with an integer randomly chosen in the interval [−W,W], where W
was chosen accordingly to the test type;

With such settings, the resulting MPGs are characterized by |V| and W.
In Test 1 the average computation time was determined for different orders

of |V|. For each n∈ {20,25,30,35,40,45,50}, 25 MPGs instances with maximum
weight W = 100 were generated by randomgame. Each instance had been
solved both with Algorithm 16 and Algorithm 1. In addition, to experiment a
little further on Algorithm 15, for each n ∈ {60,70}, 25 MPGs instances with
maximum weight (fixed to) W = 100 were also generated by randomgame
and solved only with Algorithm 1. The results of the test are summarized in
Fig. 7.3, where each execution mean time is depicted as a point with a vertical
bar representing its confidence interval determined according to its std-dev.
As shown by Fig. 7.3, Test 1 gives experimental evidence of the supremacy
of Algorithm 15 over Algorithm 16. In order to provide a better insight on
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|V| µ (`0
Γ) σ

20 3.71E+06 1.05E+06
25 7.67E+06 2.09E+06
30 1.69E+07 5.35E+06
35 2.62E+07 9.52E+06
40 5.22E+07 1.84E+07
45 8.12E+07 3.16E+07
50 1.07E+08 2.99E+07

(a) Test 1, `0
Γ, Algo-0.

|V| µ (`1
Γ) σ

20 3.53E+05 2.04E+05
25 4.45E+05 2.17E+05
30 7.92E+05 5.83E+05
35 9.91E+05 7.53E+05
40 2.13E+06 1.34E+06
45 2.88E+06 1.98E+06
50 3.08E+06 2.72E+06
60 5.28E+06 5.82E+06
70 8.66E+06 7.71E+06

(b) Test 1, `1
Γ, Algo-1.
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Avg `0
Γ of Algo. 0

Avg. `1
Γ of Algo. 1

(c) Interpolation of avgerage values of
`0

Γ,`1
Γ in Test 1 for Algo-0 (orange,

mark=o) and Algo-1 (cyan, mark=x).

Figure 7.4: Results of Test 1 on `0
Γ,`1

Γ

the behavior of the algorithms, a comparison between the values of `0
Γ and `1

Γ
is offered in Fig. 7.4. Test 1 confirms that `1

Γ � `0
Γ (by a factor ≥ 102 when

|V| ≥ 50) on randomly generated MPGs. The numerical results of Table 7.3a-
7.3b suggest that the std-dev of both the avgerage running time of Algorithm 1
and of `1

Γ is greater (in proportion) than that of Algorithm 16 and `0
Γ; but

thinking about it this actually turns out to be a benefit: as a certain proportion
of MPGs instances can now exhibit quite a smaller value of `1

Γ, then the running
time improves, but the std-dev fluctuates more meanwhile.

In Test 2 the average computation time was determined for different orders
of W. For each W ∈ {50,100,150,200,250,300,350}, 25 MPGs instances with
maximum weight W, and |V| = 25 (fixed), were generated by randomgame.
Each instance had been solved both with Algorithm 16 and Algorithm 1. The
results of the test are summarized in Fig. 7.5 and Fig. 7.6, where each execution
mean time and `0,1

Γ is depicted as a point with a vertical bar representing its
confidence interval determined according to its std-dev.

In summary our experiments suggest that, even in practice, Algorithm 15
is significantly faster than the Algorithm 16 devised in [35, 38].
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W µ (sec) σ

50 0.97 0.33
100 1.93 0.72
150 2.66 0.80
200 3.77 1.11
250 5.00 1.55
300 5.63 1.53
350 7.38 2.34

(a) Test 2, µ, Algo-0.

W µ (sec) σ

50 0.09 0.07
100 0.22 0.18
150 0.23 0.12
200 0.31 0.16
250 0.50 0.36
300 0.42 0.30
350 0.55 0.34

(b) Test 2, µ, Algo-1.
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(c) Interpolation of average exe-
cution times in Test 2 for Algo-
0 (red, mark=o) and Algo-1 (blue,
mark=x).

Figure 7.5: Results of Test 2 on Average Execution Time

7.4 Conclusion
We offered a faster O(|E| log |V|)+Θ(∑v∈V degΓ(v) · `(v)) =O(|V|2|E|W) time
energy algorithm for the Value Problem and Optimal Strategy Synthesis in
MPGs. The result was achieved by introducing a novel algorithmic scheme
based on so-called EI and UA Jumps.

We ask whether the least-SEPM of reweighted EGs of the kind Γw−q, for
q ∈ SΓ, can be computed in o(|V|2|E|W) time: this could lead to an improved
time complexity upper bound for MPGs (hopefully matching the time spent
for solving EGs). To conclude, it would be interesting to adapt Algorithm 16
so that to work within the strategy-improvement framework, instead of value-
iteration, because the former seems to exhibit a faster converge in practice.

Many questions remain open on this way.
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W µ (`0
Γ) σ

50 4.24E+06 1.18E+06
100 8.05E+06 2.77E+06
150 1.28E+07 3.57E+06
200 1.81E+07 4.98E+06
250 2.35E+07 7.13E+06
300 2.77E+07 6.29E+06
350 3.54E+07 1.22E+07

(a) Test 2, `0
Γ, Algo-0.

W µ (`1
Γ) σ

50 2.84E+05 2.02E+05
100 6.21E+05 4.62E+05
150 7.75E+05 4.24E+05
200 1.08E+06 5.22E+05
250 1.62E+06 1.10E+06
300 1.38E+06 8.07E+05
350 1.84E+06 1.09E+06

(b) Test 2, `1
Γ, Algo-1.
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(c) Interpolation of avgerage values of
`0

Γ,`1
Γ in Test 2 for Algo-0 (orange,

mark=o) and Algo-1 (cyan, mark=x).

Figure 7.6: Results of Test 2 on `0
Γ,`1

Γ

8 The Energy Structure of Op-
timal Positional Strategies in
MPGs

Chapter Abstract

This chapter studies structural aspects concerning Optimal Positional Strate-
gies (OPSs) in Mean Payoff Games (MPGs), it’s a contribution to understand-
ing the relationship between OPSs in MPGs and Small Energy-Progress Mea-
sures (SEPMs) in reweighted Energy Games (EGs). Firstly, it is observed that
the space of all OPSs, optΓΣM

0 , admits a unique complete decomposition in terms
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of so-called extremal-SEPMs in reweighted EGs; this points out what we called
the “Energy-Lattice X ∗Γ of optΓΣM

0 ”. Secondly, it is offered a pseudo-polynomial
total-time recursive procedure for enumerating (w/o repetitions) all the ele-
ments of X ∗Γ , and for computing the corresponding partitioning of optΓΣM

0 .
It is observed that the corresponding recursion tree defines an additional lat-
tice B∗Γ, whose elements are certain subgames Γ′ ⊆ Γ that we call basic sub-
games. The extremal-SEPMs of a given MPG Γ coincide with the least-SEPMs
of the basic subgames of Γ; so, X ∗Γ is the energy-lattice comprising all and
only the least-SEPMs of the basic subgames of Γ. The complexity of the pro-
posed enumeration for both B∗Γ and X ∗Γ is O(|V|3|E|W|B∗Γ|) total time and
O(|V||E|) + Θ

(
|E||B∗Γ|

)
working space. Finally, it is constructed an MPG Γ for

which |B∗Γ| > |X ∗Γ |, this shows that B∗Γ and X ∗Γ are not isomorphic.
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Figure 8.1: An MPG Γd for which |B∗Γ| > |X ∗Γ |.

This chapter is a revised version of [35].
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8.1 Introduction
This chapter studies the relationship between Optimal Positional Strategies
(OPSs) in MPGs and Small Energy-Progress Measures (SEPMs) in reweighted
EGs. Actually this is an extended and revised version of Section 5 in [35].

8.1.1 Contribution
This chapter contributes in the following way.

1. An Energy-Lattice Decomposition of the Space of Optimal Positional Strategies
in MPGs.

Let’s denote by optΓΣM
0 the space of all the optimal positional strategies in a

given MPG Γ. What allows the algorithms given in [35, 37, 38] to compute at
least one σ∗0 ∈ optΓΣM

0 is a compatibility relation that links optimal arcs in MPGs
to arcs that are compatible w.r.t. least-SEPMs in reweighted EGs. The family EΓ
of all SEPMs of a given EG Γ forms a complete finite lattice, the Energy-Lattice
of the EG Γ. Firstly, we observe that even though compatibility w.r.t. least-
SEPMs in reweighted EGs implies optimality of positional strategies in MPGs
(see Theorem 6.4), the converse doesn’t hold generally (see Proposition 8.1).
Thus a natural question was whether compatibility w.r.t. SEPMs was really
appropriate to capture (e.g., to provide a recursive enumeration of) the whole
optΓΣM

0 and not just a proper subset of it. Partially motivated by this question
we explored on the relationship between optΓΣM

0 and EΓ. In Theorem 8.2, it
is observed a unique complete decomposition of optΓΣM

0 which is expressed
in terms of so called extremal-SEPMs in reweighted EGs. This points out what
we called the “Energy-Lattice X ∗Γ associated to optΓΣM

0 ”, the family of all the
extremal-SEPMs of a given MPG Γ. So, compatibility w.r.t. SEPMs actually
turns out to be appropriate for constructing the whole optΓΣM

0 ; but an entire
lattice X ∗Γ of extremal-SEPMs then arises (and not just the least-SEPM, which
turns out to account only for the join/top component of optΓΣM

0 ).

2. A Recursive Enumeration of Extremal-SEPMs and Optimal Positional Strate-
gies in MPGs.

It is offered a pseudo-polynomial total time recursive procedure for enumerat-
ing (w/o repetitions) all the elements of X ∗Γ , and for computing the associated
partitioning of optΓΣM

0 . This shows that the above mentioned compatibility
relation is appropriate so to extend the algorithm given in [37], recursively, in
order to compute the whole optΓΣM

0 and X ∗Γ . It is observed that the corre-
sponding recursion tree actually defines an additional lattice B∗Γ, whose ele-
ments are certain subgames Γ′ ⊆ Γ that we call basic subgames. The extremal-
SEPMs of a given Γ coincide with the least-SEPMs of the basic subgames of Γ;
so, X ∗Γ is the energy-lattice comprising all and only the least-SEPMs of the basic
subgames of Γ. The total time complexity of the proposed enumeration for
both B∗Γ and X ∗Γ is O(|V|3|E|W|B∗Γ|), it works in space O(|V||E|) + Θ

(
|E||B∗Γ|

)
.

An example of MPG Γ for which |B∗Γ| > |X ∗Γ | ends this chapter.
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8.1.2 Organization
The following Section 6.2 introduces some notation and provides the required
background on infinite 2-player pebble games and related algorithmic results.
In Section 6.3, a suitable relation between values, optimal strategies, and cer-
tain reweighting operations is recalled from [35,38]. Section 8.2 offers a unique
and complete energy-lattice decomposition of optΓΣM

0 . Finally, Section 8.3
provides a recursive enumeration of X ∗Γ and the corresponding partitioning of
optΓΣM

0 .

8.2 An Energy-Lattice Decomposition of optΓΣM
0

Consider the example arena Γex shown in Fig. 8.2.

EC

B

A

D

F G
0

0

0

0
+3 +3

−5−5

−5

+3

Figure 8.2: An arena Γex = 〈V,E,w, (V0,V1)〉. Here, V =
{A, B,C, D, E, F, G} and E = {(A, B,+3), (B,C,+3), (C, D,−5),
(D, A,−5), (E, A,0), (E,C,0), (E, F,0), (E, G,0), (F, G,−5), (G, F,+3)}. Also,
V0 = {B, D, E, G} is colored in red, while V1 = {A,C, F} is filled in blue.

It is easy to see that ∀v∈VvalΓex(v) = −1. Indeed, Γex contains only two
cycles, i.e., CL = [A, B,C, D] and CR = [F, G], also notice that w(CL)/CL =
w(CR)/CR = −1. The least-SEPM f ∗ of the reweighted EG Γw+1

ex can be com-
puted by running a Value Iteration [14]. Taking into account the reweighting
w ; w+ 1, as in Fig. 8.3: f ∗(A) = f ∗(E) = f ∗(G) = 0, f ∗(B) = f ∗(D) = f ∗(F) =
4, and f ∗(C) = 8.
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Figure 8.3: The least-SEPM f ∗ of Γw+1
ex (energy-levels are depicted in circled

boldface). All and only those arcs of Player 0 that are compatible with f ∗ are
(B,C), (D, A), (E, A), (E, G), (G, F) (thick red arcs).

So, Γex (Fig. 8.3) implies the following.

Proposition 8.1. The converse statement of Theorem 6.4 doesn’t hold; there exist
infinitely many MPGs Γ having at least one σ0 ∈ optΓΣM

0 which is not compatible
with the least-SEPM of Γ.
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Proof. Consider the Γex of Fig. 8.3, and the least-SEPM f ∗ of the EG Γw+1
ex . The

only vertex at which Player 0 really has a choice is E. Every arc going out of
E is optimal in the MPG Γex: whatever arc (E, X) ∈ E (for any X ∈ {A,C, F, G})
Player 0 chooses at E, the resulting payoff equals valΓex(E) = −1. Let f ∗ be
the least-SEPM of f ∗ in Γw+1

ex . Observe, (E,C) and (E, F) are not compatible
with f ∗ in Γw+1

ex , only (E, A) and (E, G) are. For instance, the positional strat-
egy σ0 ∈ ΣM

0 defined as σ0(E), F, σ0(B), C, σ0(D), A, σ0(G), F ensures a
payoff ∀v∈VvalΓex(v) = −1, but it is not compatible with the least-SEPM f ∗ of
Γw+1

ex (because f ∗(E) = 0 < 3 = f ∗(F)	 w(E, F)). It is easy to turn the Γex of
Fig. 8.3 into a family on infinitely many similar examples. 2

We now aim at strengthening the relationship between optΓΣM
0 and the

Energy-Lattice EΓ. For this, we assume wlog ∃ν∈Q∀v∈VvalΓ(v) = ν; this fol-
lows from Theorem 8.1, i.e., a refined formulation of the determinacy theorem
offered in [8].

Theorem 8.1 ( [8]). Let Γ be an MPG and let {Ci}m
i=1 be a partition (called ergodic)

of its vertices into m ≥ 1 classes each one having the same optimal value νi ∈ Q.
Formally, V =

⊔m
i=1 Ci and ∀i∈[m]∀v∈CivalΓi(v) = νi, where Γi , Γ|Ci

.
Then, Player 0 has no vertices with outgoing arcs leading from Ci to Cj whenever

νi < νj, and Player 1 has no vertices with outgoing arcs leading from Ci to Cj whenever
νi > νj; moreover, there exist σ0 ∈ ΣM

0 and σ1 ∈ ΣM
1 such that:

– If the game starts from any vertex in Ci, then σ0 secures a gain at least νi to
Player 0 and σ1 secures a loss at most νi to Player 1;

– Any play that starts from Ci always stays in Ci, if it is consistent with both
strategies σ0,σ1, i.e., if Player 0 plays according to σ0, and Player 1 according to σ1.

By Theorem 8.1 we can study optΓi Σ
M
0 , independently w.r.t. optΓj Σ

M
0 for

j 6= i.
We say that an MPG Γ is ν-valued if and only if ∃ν∈Q∀v∈VvalΓ(v) = ν.
Given an MPG Γ and σ0 ∈ ΣM

0 (Γ), recall, G(Γ,σ0) , (V, E′,w′) is obtained
from GΓ by deleting all and only those arcs that are not part of σ0, i.e.,

E′ ,
{
(u,v) ∈ E | u ∈ V0 and v = σ0(u)

}
∪
{
(u,v) ∈ E | u ∈ V1

}
,

where each e ∈ E′ is weighted as in Γ, i.e., w′ : E′→Z : e 7→ we.
When G = (V, E,w) is a weighted directed graph, a feasible-potential (FP) for

G is any map π : V→CG s.t. ∀u∈V∀v∈Nout(u)π(u)� π(v)	w(u,v). The least-FP
π∗ = π∗G is the (unique) FP s.t., for any other FP π, it holds ∀v∈Vπ∗(v)� π(v).
Given G, the Bellman-Ford algorithm can be used to produce π∗G in O(|V||E|)
time. Let π∗G(Γ,σ0)

be the least-FP of G(Γ,σ0). Notice, for every σ0 ∈ ΣM
0 , the

least-FP π∗G(Γ,σ0)
is actually a SEPM for the EG Γ; still it can differ from the

least-SEPM of Γ, due to σ0. We consider the following family of strategies.

Definition 8.1 (∆M
0 ( f ,Γ)-Strategies). Let Γ = 〈V, E,w, (V0,V1)〉 and let f : V→CΓ

be a SEPM for the EG Γ. Let ∆M
0 ( f ,Γ) ⊆ ΣM

0 (Γ) be the family of all and only those
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positional strategies of Player 0 in Γ s.t. π∗G(Γ,σ0)
coincides with f pointwisely, i.e.,

∆M
0 ( f ,Γ),

{
σ0 ∈ ΣM

0 (Γ) | ∀v∈V π∗G(Γ,σ0)
(v) = f (v)

}
.

We now aim at exploring further on the relationship between EΓ and optΓΣM
0 .

Definition 8.2 (The Energy-Lattice of optΓΣM
0 ). Let Γ be a ν-valued MPG. Let

X ⊆ EΓw−ν be a sublattice of SEPMs of the reweighted EG Γw−ν.
We say that X is an “Energy-Lattice of optΓΣM

0 ” iff ∀ f∈X∆M
0 ( f ,Γw−ν) 6= ∅

and the following disjoint-set decomposition holds:

optΓΣM
0 =

⊔
f∈X

∆M
0 ( f ,Γw−ν).

Lemma 8.1. Let Γ be a ν-valued MPG, and let σ∗0 ∈ optΓΣM
0 . Then, G(Γw−ν,σ∗0 ) is

conservative (i.e., it contains no negative cycle).

Proof. Let C , (v1 . . . ,vk,v1) by any cycle in G(Γw−ν,σ∗0 ). Since we have σ∗0 ∈
optΓΣM

0 and ∀v∈VvalΓ(v) = ν, thus by Lemma 6.1:

w(C)/k =
1
k

k

∑
i=1

w(vi,vi+1) ≥ ν(for vk+1 , v1),

so that, assuming w′ , w− ν, then:

w′(C)/k =
1
k

k

∑
i=1

(
w(vi,vi+1)− ν

)
= w(C)/k− ν ≥ ν− ν = 0.

2

Some aspects of the following Proposition 8.2 rely heavily on Theorem 6.4:
the compatibility relation comes again into play. Moreover, we observe that
Proposition 8.2 is equivalent to the following fact, which provides a sufficient
condition for a positional strategy to be optimal. Consider a ν-valued MPG Γ,
for some ν ∈ Q, and let σ∗0 ∈ optΓΣM

0 . Let σ̂0 ∈ ΣM
0 (Γ) be any (not necessarily

optimal) positional strategy for Player 0 in the MPG Γ. Suppose the following
holds:

∀v∈Vπ∗G(Γw−ν,σ̂0)
(v) = π∗G(Γw−ν,σ∗0 )

(v).

Then, by Proposition 8.2, σ̂0 is an optimal positional strategy for Player 0 in the
MPG Γ.

We are thus relying on the same compatibility relation between ΣM
0 and

SEPMs in reweighted EGs which was at the base of Theorem 6.4, aiming at
extending Theorem 6.4 so to describe the whole optΓΣM

0 (and not just the
join/top component of it).
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Proposition 8.2. Let the MPG Γ be ν-valued, for some ν ∈Q.
There is at least one Energy-Lattice of optΓΣM

0 :

X ∗Γ , {π∗G(Γw−ν,σ0)
| σ0 ∈ optΓΣM

0 }.

Proof. The only non-trivial point to check being:
⊔

f∈X ∗Γ ∆M
0 ( f ,Γw−ν)⊆optΓΣM

0 .
For this, we shall rely on Theorem 6.4. Let f̂ ∈ X ∗Γ and σ̂0 ∈ ∆M

0 ( f̂ ,Γw−ν) be
fixed (arbitrarily). Since f̂ ∈ X ∗Γ , then f̂ = π∗G(Γw−ν,σ∗0 )

for some σ∗0 ∈ optΓΣM
0 .

Therefore, the following holds:

π∗G(Γw−ν,σ̂0)
= f̂ = π∗G(Γw−ν,σ∗0 )

.

Clearly, σ̂0 is compatible with f̂ in the EG Γw−ν, because f̂ = π∗G(Γw−ν,σ̂0)
. By

Lemma 8.1, since σ∗0 is optimal, then G(Γw−ν,σ∗0 ) is conservative. Therefore:

Vf̂ = Vπ∗
G(Γw−ν ,σ∗0 )

= V.

Notice, σ̂0 satisfies exactly the hypotheses required by Theorem 6.4. Therefore,
σ̂0 ∈ optΓΣM

0 . This proves (*).This also shows optΓΣM
0 =

⊔
f∈X ∗Γ ∆M

0 ( f ,Γw−ν),
and concludes the proof. 2

Proposition 8.3. Let the MPG Γ be ν-valued, for some ν ∈ Q. Let X ∗Γ 1 and X ∗Γ 2 be
two Energy-Lattices for optΓΣM

0 . Then, X ∗Γ 1 = X ∗Γ 2.

Proof. By symmetry, it is sufficient to prove that X ∗Γ 1 ⊆ X ∗Γ 2. Let f1 ∈ X ∗Γ 1
be fixed (arbitrarily). Then, f1 = π∗G(Γw−ν,σ̂0)

for some σ̂0 ∈ optΓΣM
0 . Since

σ̂0 ∈ optΓΣM
0 and since X ∗Γ 2 is an Energy-Lattices, there exists f2 ∈ X ∗Γ 2 s.t.

σ̂0 ∈ ∆M
0 ( f2,Γw−ν), which implies π∗G(Γw−ν,σ̂0)

= f2. Thus, f1 = π∗G(Γw−ν,σ̂0)
= f2.

This implies f1 ∈ X ∗Γ 2. 2

The next theorem summarizes the main point of this section.

Theorem 8.2. Let Γ be a ν-valued MPG, for some ν ∈Q. Then, X ∗Γ , {π∗G(Γw−ν,σ0)
|

σ0 ∈ optΓΣM
0 } is the unique Energy-Lattice of optΓΣM

0 .

Proof. By Proposition 8.2 and Proposition 8.3. 2

Example 8.1. Consider the MPG Γex, as defined in Fig. 8.2. Then, X ∗Γex = { f ∗, f1, f2},
where f ∗ is the least-SEPM of the reweighted EG Γw+1

ex , and where the following
holds: f1(A) = f2(A) = f ∗(A) = 0; f1(B) = f2(B) = f ∗(B) = 4; f1(C) = f2(C) =
f ∗(C) = 8; f1(D) = f2(D) = f ∗(D) = 4; f1(F) = f2(F) = f ∗(F) = 4; f1(G) =
f2(G) = f ∗(G) = 0; finally, f ∗(E) = 0, f1(E) = 3, f2(E) = 7. An illustration of
f1 is offered in Fig. 8.4a (energy-levels are depicted in circled boldface). whereas f2 is
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depicted in Fig. 8.4b. Notice that f ∗(v)≤ f1(v)≤ f2(v) for every v ∈ V, as shown in
Fig. 8.4.
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(a) The extremal-SEPM f1 of Γw+1
ex
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(b) The extremal-SEPM f2 of Γw+1
ex .

Definition 8.3. Each element f ∈ X ∗Γ is called extremal-SEPM.

The next lemma is the converse of Lemma 8.1.

Lemma 8.2. Let the MPG Γ be ν-valued, for some ν ∈Q. Consider any σ0 ∈ ΣM
0 (Γ),

and assume that G(Γw−ν,σ0) is conservative. Then, σ0 ∈ optΓΣM
0 .

Proof. Let C = (v1, . . . ,v`v1) any cycle in G(Γ,σ0). Then, the following holds (if

v`+1 = v1): w(C)
` = 1

` ∑`
i=1 w(vi,vi+1) = ν + 1

` ∑`
i=1

(
w(vi,vi+1) − ν

)
≥ ν, where

1
` ∑`

i=1
(
w(vi,vi+1)− ν

)
≥ 0 holds because G(Γw−ν,σ0) is conservative. By Lemma 6.1,

since w(C)/` ≥ ν for every cycle C in GΓ
σ0

, then σ0 ∈ optΓΣM
0 . 2

The following proposition asserts some properties of the extremal-SEPMs.

Proposition 8.4. Let the MPG Γ be ν-valued, for some ν ∈Q. Let X ∗Γ be the Energy-
Lattice of optΓΣM

0 . Moreover, let f : V→CΓ be a SEPM for the reweighted EG Γw−ν.
Then, the following three properties are equivalent:

1. f ∈ X ∗Γ ;

2. There exists σ0 ∈ optΓΣM
0 s.t. π∗G(Γw−ν,σ0)

(v) = f (v) for every v ∈ V.

3. Vf =W0(Γw−ν) = V and ∆M
0 ( f ,Γw−ν) 6= ∅;

Proof of (1 ⇐⇒ 2). Indeed, X ∗Γ = {π∗G(Γw−ν,σ0)
| σ0 ∈ optΓΣM

0 }. 2

Proof of (1⇒ 3). Assume f ∈ X ∗Γ . Since (1 ⇐⇒ 2), there exist σ0 ∈ optΓΣM
0

s.t. π∗G(Γw−ν,σ0)
= f . Thus, σ0 ∈ ∆M

0 ( f ,Γw−ν), so that ∆M
0 ( f ,Γw−ν) 6= ∅. We

claim Vf =W0(Γw−ν) = V. Since ∀(v ∈ V)valΓ(v) = ν, thenW0(Γw−ν) = V by
Lemma 6.2. Next, G(Γw−ν,σ0) is conservative by Lemma 8.1. Since G(Γw−ν,σ0)
is conservative and f = π∗G(Γw−ν,σ0)

, then Vf = V. Therefore, Vf =W0(Γw−ν) =

V. 2
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Figure 8.4: The decomposition of optΓΣM
0 (right), for the MPG Γex, which cor-

responds to the Energy-Lattice X ∗Γex
= { f ∗, f1, f2} (center) (as in Example 8.1).

Here, f ∗ ≤ f1 ≤ f2. This brings a lattice D∗Γex
of 3 basic subgames of Γex (left).

Proof of (1⇐ 3). Since ∆M
0 ( f ,Γw−ν) 6= ∅, pick some σ0 ∈ ∆M

0 ( f ,Γw−ν); so, f =
π∗G(Γw−ν,σ0)

. Since Vf = V and f = π∗G(Γw−ν,σ0)
, then G(Γw−ν,σ0) is conserva-

tive. Since G(Γw−ν,σ0) is conservative, then σ0 ∈ optΓΣM
0 by Lemma 8.2. Since

f = π∗G∗ and σ0 ∈ optΓΣM
0 , then f ∈ X ∗Γ because 2⇒ 1. 2

8.3 A Recursive Enumeration of X ∗Γ and optΓΣM
0

An enumeration algorithm for a set S provides an exhaustive listing of all the
elements of S (without repetitions). As mentioned in Section 8.2, by Theo-
rem 8.1, no loss of generality occurs if we assume Γ to be ν-valued for some
ν ∈ Q. One run of the algorithm given in [37] allows one to partition an MPG
Γ, into several domains Γi each one being νi-valued for νi ∈ SΓ; in O(|V|2|E|W)
time and linear space. Still, by Proposition 8.1, Theorem 6.4 is not sufficient for
enumerating the whole optΓΣM

0 ; it is enough only for ∆M
0 ( f ∗ν ,Γw−ν) where f ∗ν

is the least-SEPM of Γw−ν, which is just the join/top component of optΓΣM
0 .

However, thanks to Theorem 8.2, we now have a refined description of optΓΣM
0
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in terms X ∗Γ .
We offer a recursive enumeration of all the extremal-SEPMs, i.e., X ∗Γ , and

for computing the corresponding partitioning of optΓ
(
ΣM

0

)
. In order to avoid

duplicate elements in the enumeration, the algorithm needs to store a lattice
B∗Γ of subgames of Γ, which is related to X ∗Γ . We assume to have a data-
structure TΓ supporting the following operations, given a subarena Γ′ of Γ:
insert(Γ′, TΓ) stores Γ′ into TΓ; contains(Γ′, TΓ) returns T if and only if Γ′

is in TΓ, and F otherwise. A simple implementation of TΓ goes by index-
ing Nout

Γ′ (v) for each v ∈ V (e.g., with a trie data-structure). This runs in
O(|E| log |V|) time, consuming O(|E|) space per stored item. Similarly, one
can index SEPMs in O(|V| log(|V|W)) time and O(|V|) space per stored item.
The listing procedure is named enum(), it takes a ν-valued MPG Γ as input
and goes as follows.

1. Compute the least-SEPM f ∗ of Γ, and print Γ to output. Theorem 6.4
can be employed at this stage for enumerating ∆M

0 ( f ∗,Γw−ν): indeed,
these are all and only those positional strategies lying in the Cartesian
product of all arcs (u,v) ∈ E compatible with f ∗ in Γw−ν (because f ∗ is the
least-SEPM of Γ).

2. Let St← ∅ be an empty stack of vertices.

3. For each û ∈ V0, do the following:

• Compute Eû← {(û,v) ∈ E | f ∗(û) ≺ f ∗(v)	 (w(û,v)− ν)};
• If Eû 6= ∅, then:

– Let E′← Eû ∪ {(u,v) ∈ E | u 6= û} and Γ′← (V, E′,w, 〈V0,V1〉).
– If contains(Γ′, TΓ) = F, do the following:
∗ Compute the least-SEPM f ′∗ of Γ′w−ν;
∗ If Vf ′∗ = V:

– Push û on top of St and insert(Γ′, TΓ).
– If contains( f ′∗, TΓ) =F, then insert( f ′∗, TΓ) and print f ′∗.

4. While St 6= ∅:

• pop û from St; Let Eû←{(û,v) ∈ E | f ∗(û)≺ f ∗(v)	 (w(û,v)− ν)},
and E′← Eû ∪ {(u,v) ∈ E | u 6= û}, and Γ′← (V, E′,w, 〈V0,V1〉);
• Make a recursive call to enum() on input Γ′.

Down the recursion tree, when computing least-SEPMs, the children Value-
Iterations can amortize by starting from the energy-levels of the parent. The
lattice of subgames B∗Γ comprises all and only those subgames Γ′ ⊆ Γ that are
eventually inserted into TΓ at Step (3) of enum(); these are called the basic
subgames of Γ. The correctness of enum() follows by Theorem 8.2 and Theo-
rem 6.4. In summary, we obtain the following result.
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Theorem 8.3. There exists a recursive algorithm for enumerating (w/o repetitions)
all elements of B∗Γ with time-delay1 O(|V|3|E|W), on any input MPG Γ; moreover,
the algorithm works with O(|V||E|) + Θ

(
|E||B∗Γ|)

)
space. So, it enumerates X ∗Γ (w/o

repetitions) in O
(
|V|3|E|W|B∗Γ|

)
total time, and O(|V||E|) + Θ

(
|E||B∗Γ|

)
space.

To conclude we observe that B∗Γ and X ∗Γ are not isomorphic as lattices, not
even as sets (the cardinality of B∗Γ can be greater that that of X ∗Γ ). Indeed, there
is a surjective antitone mapping ϕΓ from B∗Γ onto X ∗Γ , (i.e., ϕΓ sends Γ′ ∈ B∗Γ
to its least-SEPM f ∗Γ′ ∈ X ∗Γ ); still, we can construct instances of MPGs such that
|B∗Γ| > |X ∗Γ |, i.e., ϕΓ is not into and B∗Γ, X ∗Γ are not isomorphic. That would be
a case of degeneracy, and an example MPG Γd is given in Fig. 8.5.
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Figure 8.5: An MPG Γd for which |B∗Γ| > |X ∗Γ |.
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Figure 8.6: Two basic subgames Γ1
d 6= Γ2

d of Γd, having the same least-SEPM
f ∗1 = f ∗2 .

In the MPG Γd, Player 0 has to decide how to move only at u3,v3 and t; the
remaining moves are forced. The least-SEPM f ∗ of Γd is: f ∗(u3) = 1, f ∗(v3) =
1, f ∗(t) = 0, and ∀x∈VΓd

\{u3,v3,t} f ∗(x) = 0; leading to the following memory-
less strategy: σ∗0 (u3) = t, σ∗0 (v3) = t, σ∗0 (t) = v4. Then, consider the lattice of

1A listing algorithm has O( f (n)) time-delay when the time spent between any two consecu-
tives is O( f (n)).
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subgames B∗Γd
; particularly, consider the following two basic subgames Γ1

d, Γ2
d:

let Γ′d be the arena obtained by removing the arc (t,v4) from Γd; let Γ1
d be the

arena obtained by removing the arc (u3, t) from Γ′d; let Γ2
d be the arena obtained

by removing the arc (v3, t) from Γ′d. See Fig. 8.6 for an illustration. Next, let
f ∗1 , f ∗2 be the least-SEPMs of Γ1

d and Γ2
d, respectively; then, f ∗1 (u3) = f ∗2 (u3) = 2,

f ∗1 (v3) = f ∗2 (v3) = 2, f ∗1 (t) = f ∗2 (t) = 10, and ∀x∈VΓd
\{u3,v3,t} f ∗1 (x) = f ∗2 (x) = 0.

Thus, Γ1
d 6= Γ2

d, but f ∗1 = f ∗2 ; this proves that Γd is degenerate and that B∗Γ, X ∗Γ are
not isomorphic.
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