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Résumé

Les interactions entre les approches bayésiennes et variationnelles ont con-
tribué au développement de méthodes qui combinent simulation stochas-
tique (ou approximation), et optimisation a�n de fournir des nouveaux algo-
rithmes e�caces pour la restauration des signaux. Cette thèse se place dans
cette direction prometteuse et a pour objectif le développement d'algorithmes
bayésiens dont l'e�cacité est améliorée par des outils issus de l'optimisation
déterministe.

Dans plusieurs domaines d'application en traitement du signal et des im-
ages, on se retrouve le plus souvent confronté au problème suivant: on n'a pas
accès directement aux paramètres d'intérêt mais seulement à des mesures in-
directes. On doit alors résoudre un problème inverse dont le but est d'estimer
les paramètres inconnus à partir de ces observations. Le chapitre 2 intro-
duit le lecteur aux approches bayésiennes pour la résolution des problèmes
inverses. Nous commençons par un bref aperçu des principaux problèmes
inverses rencontrés en traitement de signal et les di�érentes méthodes qui
permettent de les résoudre. Une attention particulière est accordée à la
modélisation bayésienne. Cette dernière est basée sur la loi a posteriori qui
utilise des informations a priori sur les paramètres inconnus à estimer ainsi
que des informations sur les observations, pour construire des estimateurs.
L'estimateur optimal au sens du coût quadratique est l'un des estimateurs
les plus couramment employés. Toutefois, un dé� majeur dans de telles
méthodes est le calcul de la loi a posteriori ou plus précisément son explo-
ration. En e�et, dans de nombreux domaines du traitement d'image tels que
la médecine, l'astronomie et la microscopie, il est assez courant de traiter
des données de grandes tailles avec des modèles de plus en plus sophistiqués.
Dans ces circonstances, même si la loi a priori et celle des observations sont
simples, la loi a posteriori est généralement compliquée dans le sens où elle
ne peut être connue qu'à une constante multiplicative près et/ou elle possède
une forme non usuelle ou son traitement nécessite des ressources informa-
tiques massives. A cet égard, plusieurs méthodes d'approximation ont été
proposées. D'une part, les algorithmes d'échantillonnage de Monte Carlo par
chaînes de Markov (MCMC) sont des outils bayésiens puissants pour explorer
des lois compliquées. Dans le but d'échantillonner suivant une certaine loi
de probabilité, l'idée sous-jacente aux algorithmes MCMC est de produire,
à partir d'une certaine loi de transition donnée, une chaîne de Markov qui
converge vers la loi cible. Une classe importante de méthodes MCMC est

ix



x Résumé

inspirée de l'algorithme Metropolis-Hastings (MH) où la loi de transition est
dé�nie par une loi de proposition dont l'échantillonnage est simple et une
règle d'acceptation-rejet assurant la réversibilité de la chaîne. Une tâche dif-
�cile lors de la mise en oeuvre de cette méthode est le choix de la densité de
proposition. Elle doit idéalement fournir une bonne approximation locale de
la densité cible avec un faible coût de calcul. On peut d'autre part recourir
à des approches basées sur des approximations bayésiennes variationnelles
(VBA). Au lieu de simuler à partir de la vraie loi a posteriori, les approches
VBA visent à l'approcher avec une autre loi plus simple à partir de laquelle
la moyenne a posteriori peut être facilement calculée. Ces méthodes peu-
vent généralement conduire à une complexité de calcul relativement faible
par rapport aux algorithmes basés sur l'échantillonnage.

Nos contributions s'orientent selon deux axes principaux: Dans une pre-
mière partie de la thèse, nous proposons des algorithmes de simulation
MCMC et nous fournissons des solutions pour contourner leurs limitations
dans les problèmes de grande dimension (chapitres 3 et 4). Dans une seconde
partie, nous proposons des approches VBA et, en particulier un algorithme
pour la restauration de signaux en présence d'un bruit non gaussien (chapitre
5). Dans chaque chapitre, nos contributions résident dans la conception de
nouveaux algorithmes et en la proposition de nouvelles solutions à des prob-
lèmes applicatifs issus de la restauration de signaux/images.

Dans le chapitre 3, nous nous intéressons aux algorithmes de MH basés
sur la di�usion de Langevin dé�nie pour les lois di�érentiables. Inspirées des
outils d'optimisation de type descente de gradient, ces méthodes exploitent
des informations sur la géométrie de la loi cible pour construire la densité de
proposition dans le but de guider la chaîne vers l'espace cible où la plupart des
échantillons doivent être concentrés. Pour ce faire, la composante direction-
nelle de la loi de proposition est choisie comme une itération d'un algorithme
de descente de gradient préconditionné. Le bruit est ensuite injecté dans
cette mise à jour de telle sorte que la trajectoire de la chaîne explore toute
la distribution a posteriori plutôt que de converger vers un mode. Ainsi, un
nouvel échantillon de cette loi de proposition est plus probablement accepté,
ce qui tend à accélérer la convergence de la chaîne vers la loi stationnaire.
Toutefois, l'échantillonnage devient di�cile quand la dimension du problème
augmente. Ces di�cultés sont principalement dues au coût élevé de chaque
itération et aux mauvaises propriétés de mélange de la chaîne lorsque la ma-
trice de préconditionnement est mal choisie. Notons que des problèmes sim-
ilaires sont aussi rencontrés dans les algorithmes d'optimisation de descente
de gradient préconditionnés. Dans ce travail de thèse, nous exploitons les
connexions entre les méthodes déterministes et les approches bayésiennes
stochastiques pour accélérer les algorithmes d'échantillonnage de type MH.
En s'inspirant des approches de Majoration-Minimisation, nous développons
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un algorithme de Langevin MH préconditionné par une matrice adaptative
construite à chaque itération à partir d'une fonction tangente majorante
quadratique de l'opposé du logarithme de la densité a posteriori. Nous pro-
posons di�érentes variantes de fonctions tangentes majorantes quadratiques
construites avec des matrices de courbure pleines, constantes ou diagonales
qui permettent d'adapter l'algorithme proposé à la grande dimension du
problème. Nous démontrons ensuite l'ergodicité géométrique de l'algorithme
d'échantillonnage proposé en nous basant sur des résultats théoriques concer-
nant les algorithmes de MH classiques. L'algorithme conçu est en�n validé
sur un problème de déconvolution de signal parcimonieux en adoptant une
loi a priori de Cauchy. Ce test nous permet d'étudier l'impact de la matrice
de préconditionnement sur la performance de l'algorithme. Les résultats ex-
périmentaux con�rment la rapidité de cette nouvelle approche par rapport
à l'échantillonneur usuel de Langevin.

Dans les problèmes de grande taille, la performance des algorithmes
d'échantillonnage stochastiques est très sensible aux dépendances entre les
paramètres. Par exemple, ce problème se pose lorsqu'on cherche à échan-
tillonner selon une loi gaussienne de grande dimension dont la matrice de
covariance ne présente pas de structure simple, (i.e., ni parcimonieuse, ni
circulante, ni Toeplitz, etc.) Dans ce contexte, il est usuel de recourir à des
méthodes de simulation basées sur le principe de Perturbation-Optimisation,
qui nécessitent de résoudre à chaque itération un problème de minimisation
avec un algorithme itératif, ce qui peut rendre le processus d'échantillonnage
prohibitif surtout lorsqu'il est intégré dans un échantillonneur de Gibbs. Un
autre dé� est la sélection de bonnes lois de propositions MH qui utilisent des
informations sur la géométrie locale de la densité cible a�n d'accélérer la con-
vergence et améliorer les propriétés de mélange dans l'espace des paramètres,
sans être trop coûteuses en termes de calcul. Ces deux problèmes sont prin-
cipalement liés à la présence de deux sources de dépendances hétérogènes
provenant soit du terme d'attache aux données, soit de la loi a priori, dans
le sens où les matrices de covariance associées ne peuvent pas être diago-
nalisées dans le même domaine. Pour pallier ces di�cultés, nous proposons
d'ajouter des variables auxiliaires au modèle dans le but de dissocier les deux
sources de dépendances. Dans le nouvel espace augmenté, une seule source
de corrélation reste directement liée aux paramètres cibles, les autres sources
de corrélations n'interviennent que par le biais des variables auxiliaires. No-
tons que cette stratégie est étroitement liée aux approches semi-quadratiques
très souvent utilisées dans les problèmes d'optimisation déterministes [Allain
et al., 2006]. Dans le chapitre 4, nous commençons par proposer une stratégie
pour ajouter des variables auxiliaires dans le cas d'une loi gaussienne puis,
nous l'étendons aux mélanges de gaussiennes. Une nouvelle étape est ajoutée
dans l'algorithme de Gibbs pour tirer des échantillons de la loi associée aux
variables auxiliaires. Nous considérons plusieurs stratégies pour e�ectuer
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cette tâche simplement en utilisant les propriétés de la matrice de covari-
ance liée aux variables auxiliaires. Nous étudions tout d'abord l'e�cacité
de l'approche proposée sur un problème de déconvolution d'images multi-
composantes où l'on dispose de plusieurs observations de la même scène,
acquises dans di�érentes bandes spectrales, qui sont dégradées par un �ou et
un bruit additif gaussien de variance connue. Le problème est abordé dans le
domaine des ondelettes. Une loi a priori multivariée est adoptée pour mod-
éliser le vecteur des coe�cients d'ondelettes situés à la même position spa-
tiale, à travers toutes les bandes spectrales, a�n d'exploiter l'intercorrélation
spectrale. Une stratégie de séparation est proposée pour estimer les hy-
perparamètres impliqués dans la loi a priori à partir de l'observation dé-
gradée de l'image à reconstruire. En ajoutant des variables auxiliaires dans
le terme d'attache aux données, la matrice d'observation n'est plus directe-
ment liée à l'image. Grâce à la propriété de séparation de la loi a pri-
ori (coe�cients d'ondelettes situés dans di�érentes positions spatiales, ori-
entations ou échelles, supposés indépendants), les vecteurs des coe�cients
d'ondelettes appartenant à di�érentes sous-bandes d'ondelettes peuvent être
échantillonnés indépendamment en parallèle. Dans le cas d'un grand nombre
de composantes spectrales, les performances de notre méthode peuvent être
améliorées en utilisant une architecture parallèle multi-coeurs. Nous mon-
trons aussi les bonnes performances de l'approche proposée pour résoudre
le problème d'échantillonnage de lois gaussiennes de grande dimension à
travers un exemple de restauration d'images dégradées par un mélange de
bruits gaussiens. Comme la loi a posteriori est gaussienne, les variables aux-
iliaires peuvent être ajoutées soit à la loi a priori soit au terme d'attache
aux données, soit au deux en même temps, en fonction des propriétés des
matrices de covariance qui leur sont associées. Les résultats expérimentaux
montrent la capacité de notre méthode à surmonter les di�cultés liées à la
présence de corrélations hétérogènes entre les coe�cients du signal.

Dans le chapitre 5, nous nous intéressons aux méthodes VBA. Le but de
ces méthodes est d'approcher la loi a posteriori d'un ensemble de paramètres
inconnus par une nouvelle loi séparable plus simple, qui est aussi proche
que possible de la vraie loi au sens de la divergence de Kullback-Leibler.
Dans de nombreux cas, les expressions analytiques de ces lois approchantes
sont inextricables, surtout lorsqu'il n'est pas possible de calculer directement
l'espérance du logarithme de la loi jointe par rapport à la loi approchante.
C'est le cas par exemple dans les problèmes impliquant des modèles de bruit
non gaussiens et dépendants du signal. En recourant à des stratégies de ma-
joration basées sur des approches semi-quadratiques, nous construisons une
borne inférieure pour la divergence de Kullback-Leibler que nous souhaitons
minimiser. Les lois approchantes sont alors obtenues en minimisant cette
borne. En particulier, la loi approchante de l'image est réduite à une loi
gaussienne, dont la matrice de covariance peut être approchée soit par une
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matrice diagonale soit par un estimateur de Monte Carlo basé sur un al-
gorithme de simulation stochastique. Nous illustrons les performances de
notre algorithme sur des exemples de restauration d'images dégradées par
un bruit mixte Poisson-gaussien. Les résultats expérimentaux con�rment
la bonne performance de la méthode proposée par rapport à des méthodes
supervisées de l'état de l'art.

Dans le chapitre 6, nous résumons nos principales contributions et nous
proposons plusieurs pistes pour de futurs travaux à court, moyen et long
termes.





Abstract

Bayesian approaches are widely used in signal processing applications. In
order to derive plausible estimates of original parameters from their distorted
observations, they rely on the posterior distribution that incorporates prior
knowledge about the unknown parameters as well as informations about the
observations. The posterior mean estimator is one of the most commonly
used inference rule. However, as the exact posterior distribution is very
often intractable, one has to resort to some Bayesian approximation tools
to approximate it. In this work, we are mainly interested in two particular
Bayesian methods, namely Markov Chain Monte Carlo (MCMC) sampling
algorithms and Variational Bayes approximations (VBA).

This thesis is made of two parts. The �rst one is dedicated to sampling al-
gorithms. First, a special attention is devoted to the improvement of MCMC
methods based on the discretization of the Langevin di�usion. We propose a
novel method for tuning the directional component of such algorithms using a
Majorization-Minimization strategy with guaranteed convergence properties.
Experimental results on the restoration of a sparse signal con�rm the perfor-
mance of this new approach compared with the standard Langevin sampler.
Second, a new sampling algorithm based on a Data Augmentation strategy,
is proposed to improve the convergence speed and the mixing properties of
standard MCMC sampling algorithms. Our methodological contributions
are validated on various applications in image processing showing the great
potentiality of the proposed method to manage problems with heterogeneous
correlations between the signal coe�cients.

In the second part, we propose to resort to VBA techniques to build a
fast estimation algorithm for restoring signals corrupted with non-Gaussian
noise. In order to circumvent the di�culties raised by the intricate form
of the true posterior distribution, a majorization technique is employed to
approximate either the data �delity term or the prior density. Thanks to
its �exibility, the proposed approach can be applied to a broad range of
data �delity terms allowing us to estimate the target signal jointly with the
associated regularization parameter. Illustration of this approach through
examples of image deconvolution in the presence of mixed Poisson-Gaussian
noise, show the good performance of the proposed algorithm compared with
state of the art supervised methods.
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Notations

Linear algebra

R, R+, R∗ : set of real numbers, positive real numbers and non-zero real
numbers respectively.

N : set of positive integers.

Rm×n : set of matrices of m rows and n columns.

s : scalars will be denoted by lowercase letters.

v : vectors will be denoted by lowercase bold letters.

M : matrices will be denoted by uppercase bold letters.

M⊤ : transposition of the matrix M.

M−1 : inverse of the matrix M.

Im : square identity matrix in Rm.

1m, 0m : vectors of Rm with all entries equal to 1 and 0 respectively.

vi : ith coe�cient of the vector v.

Mi,j : element in the ith row and jth column of the matrix M.

|s| : absolute value of the scalar s.

|M| : determinant of the matrix M.

∥v∥ : ℓ2 norm of the vector v.

∥v∥M : weighted norm equals to
√
v⊤Mv.

∥M∥ : ℓ2 norm of the matrix M.

diag(M) : vector constructed from the diagonal elements of the matrix M.

Diag(v) : diagonal matrix whose elements are given by v.

Spec(M) : set of eigenvalues of M.

Ker(M) : kernel of the matrix M.
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< : partial order on the set of Hermitian matrices, we writeA < B i� A−B
is positive semide�nite.

∇f(v) : gradient vector of the function f with respect to v.

∇2f(v) : Hessian matrix of the function f with respect to v.

∂f(v)

∂vi
: partial derivatives of the function f with respect to vi.

log : natural logarithm.

KL(f ||g) : Kullback-Leibler divergence between f and g.

1[a,b] : indicator function in interval [a, b].

δa : discrete measure concentrated at the value a.

Probability calculus

x(t) : the state of x at iteration t.

P(E) : probability of event E.

F. : probability distributions will be denoted by italic uppercase letters.
For example, N , ST , GMEP, G, U will denote respectively Gaussian,
Student't, Generalized multivariate exponential power, Gamma and
uniform distributions.

f(.) : probability density functions will be denoted by straight lowercase
letters. For example, n will denote the density function of a Gaussian
distribution.

p(x) : prior probability density function of x.

p(x|z) : conditional probability density function of x given z.

Px : prior probability of x.

Px|z : conditional probability of x given z.

Ex(ξ(x)) : expectation of the function ξ(x) with respect to Px.

Ex|z(ξ(x)) : expectation of the function ξ(x) with respect to Px|z.

J (x) : minus logarithm of p(x|z).

J (x|y) : minus logarithm of p(x|y, z).
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- Chapter 1 -

General introduction

� 1 Motivation

There has been an increasing need for building unsupervised methods where
all parameters of interest are automatically estimated on the �y avoiding
their manual tuning by the designer. In that respect, the Bayesian frame-
work is becoming an increasingly popular approach to perform such tasks.
Contrary to classical approaches, Bayesian modeling considers parameters
of interest as random variables rather than deterministic quantities. Hence,
this approach requires to specify a prior distribution that describes what is
known about those parameters before data are observed. Estimates are then
computed by reasoning on the resulting law that takes into account these
prior probabilities combined with information about observations via Baye's
formula. The aforementioned law is the so-called �Posterior distribution�
which constitutes the core of the Bayesian framework.

The use of Bayesian methods can be motivated from many di�erent view-
points. First, the Bayesian approach provides an elegant framework for mod-
eling uncertainty about the data and the target parameters via probabilities.
Second, unlike deterministic approaches that propose point estimators, the
outcome of Bayesian methods is the entire posterior distribution that de-
scribes the dispersion of the unknown parameters in the space given the
observed data. The posterior distribution can be useful to make decisions,
as well as to deduce point wise estimates of some statistics including the
mean, variance, higher order moments, quantiles and also to capture uncer-
tainty about the target parameters via con�dence intervals. Third, many
problems such as those involving hierarchical models [Damlen et al., 1999]
are often much easier to handle within a Bayesian framework than with
classical methods.

� 2 Challenges

A major challenge in Bayesian methods is the calculation of the posterior
distribution or more precisely, its exploration. In fact, we have reached a

1



2 Chapter 1. General introduction

time when it is common in many �elds such as medicine, astronomy and
microscopy, to handle large amounts of data with increasingly sophisticated
models. In these challenging settings, even if the prior and the observation
model are simple, the posterior law is almost always intractable in the sense
that it can only be known up to a multiplicative constant and/or has a
complicated form or requires massive computing resources to be handled.
Regarding the di�culty in directly dealing with the posterior distribution,
many methods have been proposed. This thesis is devoted to two particular
families of methods namely Markov chain Monte Carlo simulation based
techniques and Variational Bayesian methods and their application to large
scale signal processing problems.

2.1 MCMC simulation methods

Markov chain Monte Carlo (MCMC) methods are stochastic simulation meth-
ods that allow to approximate a given target distribution such as the pos-
terior law, by relying on Markov chain theory and Monte Carlo integration.
They proceed in two main steps. First, a Markov chain is built with a given
transition rule such that its stationary states follow the posterior law [Hast-
ings, 1970; Gamerman and Lopes, 2006]. Once the Markov chain has reached
its stationary distribution, Monte Carlo approximation is used to infer the
posterior characteristics. Because of the lack of knowledge about the poste-
rior distribution, the Markov chain often starts at a random point far from
the target high density regions. Then, if the MCMC algorithm is not run a
su�ciently long time, the resulting estimators are likely to be, highly biased
leading to unreliable inference and poor forecasts. Actually, MCMC algo-
rithms are only useful if the two following requirements are satis�ed. First,
the Markov chain should converge to its stationary distribution, namely the
posterior law, in a �nite time. This motivates the introduction of a burn-in
period also known as the transient phase, which should be long enough to
guarantee that the Markov chain has reached its stationary states without
being too long to avoid throwing away useful samples. Second, a su�cient
number of samples should be available in order to obtain accurate estimates
of the posterior law. The required number of states depends on how well the
MCMC algorithm is mixing the stationary space at convergence. Hence, in
the case of large scale problems, we are faced with two main challenges:

• The �rst challenge concerns the design of a suitable MCMC algorithm,
i.e., the choice of an appropriate transition kernel, with a low computa-
tional burden and limited memory requirements, such that the Markov
chain reaches stability in a �nite acceptable time.

• In order to produce consistent estimates in a �nite time, the Markov
chain should have good mixing properties in convergence. Otherwise,
the number of samples required for accurate estimates can be infeasibly
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large. The mixing behavior of the chain is generally related to how well
the transition rule of the Markov chain allows to approach globally or
locally the curvature of the target distribution.

In this thesis, a special attention is paid to Metropolis Hastings algorithms
whose transition kernel are de�ned based on a given proposal density and
a rejection-acceptance rule guaranteeing that the stationary distribution of
the Markov chain is the one of interest [Metropolis et al., 1953; Hastings,
1970]. Hence, the problem of setting the transition kernel is equivalent to
the problem of choosing a proposal density that allows large transitions over
the parameter space with low computational cost. In particular, we are
interested in adaptive algorithms that permit to self-adjust the proposal at
each iteration based on the information provided by earlier samples.

2.2 Variational Bayesian approximation methods

Variational Bayesian approximation (VBA) provides an alternative tool to
estimate complicated target distributions via deterministic approximations
[�mídl and Quinn, 2005]. Unlike stochastic simulation techniques, the goal
of VBA approaches is to seek for an additional distribution called the ap-
proximating distribution that should well approximate the target law while
being simpler to compute. To make this approximation as close as possi-
ble to the true one, we select, over the space of possible solutions, the one
which achieves the minimal distance to the target distribution. More speci�-
cally, this distance is measured in terms of Kullback-Leibler (KL) divergence.
To make this minimization tractable, additional assumptions about the ap-
proximating distribution such as independence between parameters are fur-
ther introduced. The minimization task is then performed by an iterative
coordinate-ascent algorithm: updating each component of the factorized ap-
proximating distribution while holding the others �xed. The advantage of
the VBA algorithm is that, instead of giving point estimates, it provides an
approximation of the entire posterior distribution while achieving almost the
same computational and implementation complexity as classical methods. It
is worth noting that, each step of the iterative algorithm ideally requires the
ability to integrate a sum of terms in the log joint likelihood using a factor-
ized approximating distribution which is the case for example for conjugate
exponential models. However, very often, these integrals do not have closed
forms especially when the observations statistic are far from the additive
Gaussian models and no longer independent from the target parameters.

� 3 Main contributions

The contribution of this thesis is developed along two main lines. First,
we contribute to MCMC simulation algorithms and we provide solutions to
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overcome their limitations in high dimensional problems (Chapters 3 and 4).
Second, we contribute to Variational Bayesian approximation approaches
and we propose a general methodology for dealing with signal recovery in
the presence of non-Gaussian noise (Chapter 5).

More speci�cally, our contributions in each part can be classi�ed into the
design of new algorithms and the proposition of novel solutions to applicative
problems. This is explained in more details below:

MCMC simulation methods

Proposed algorithms:

• Majorize-Minimize Metropolis Hastings algorithm: (Chapter 3) This
algorithm is a special case of Metropolis Hastings algorithms where
the proposal density is adjusted by resorting to some deterministic
optimization tools.

� We derive the proposal density from the Langevin stochastic dif-
ferentiable equation. The later o�ers a tool for constructing Metropo-
lis Hastings proposal densities that incorporate �rst order deriva-
tives information of the target law to guide the chain toward the
target space where most of the samples should be concentrated.
More precisely, the directional component of the proposed algo-
rithm is chosen to be one iteration of a preconditioned gradient de-
scent algorithm where the preconditioning matrix is constructed
using a Majorize-Minimize strategy. This allows us to push the
Markov chain in each iteration from the current state toward re-
gions with high probabilities values.

� We propose di�erent variants of the curvature metrics that may
be used as alternatives to replace costly matrices in large scale
problems.

� We demonstrate the geometric ergodicity of the proposed algo-
rithm using some theoretical works concerning the convergence
properties of Metropolis Hastings algorithms.

• Gibbs sampling algorithm with auxiliary variables: (Chapter 4) This
chapter addresses the problem of sampling from multivariable distri-
butions when the variables of interest are strongly correlated with het-
erogeneous sources of dependencies preventing the construction of ef-
�cient proposals in Metropolis Hastings algorithms. In particular, we
add additional variables to the model without changing the marginal
laws in such a way that simulation can be performed more e�ciently
in the new larger space.
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� We investigate the case of Gaussian models involving high dimen-
sional covariance matrices.

� We extend the proposed approach to scale mixture of Gaussian
models.

� We demonstrate the e�ciency of the proposed algorithm to sam-
pling from high dimensional Gaussian distributions.

� We propose some strategies allowing to sample the auxiliary vari-
ables with low computational cost.

Applications to multichannel image recovery:
In multichannel imaging, several observations of the same scene acquired in
di�erent spectral ranges are available. Very often, the spectral components
are degraded by a blur and an additive noise. In this thesis, we address
the problem of recovering the image components in a wavelet domain by
adopting a Bayesian approach. Our contribution is threefold.

• We take advantage of the inter-channels dependencies by jointly pro-
cessing the spectral components. Hence, we adopt a multivariate prior
model for the distribution of vectors composed of wavelet coe�cients
at the same spatial position in a given subband through all the chan-
nels. The proposed model is �exible enough as it allows us to consider
various levels of sparsity.

• We propose a methodology for estimating the prior scale matrices
within a Gibbs sampling algorithm by resorting to a separation strat-
egy.

• We address the challenging issue of computing estimates of the wavelet
coe�cients jointly with prior scale matrices using the Gibbs sampling
algorithm with auxiliary variables. The sampling step of the wavelet
coe�cients is performed using the Majorize-Minimize Metropolis Hast-
ings algorithm proposed in Chapter 3. The proposed algorithm is able
to exploit the potentials o�ered by multicore parallel system architec-
tures for a large number of channels.

Variational Bayesian approximation methods

Proposed algorithm:

• VBA algorithm for image restoration: (Chapter 5) We address the
problem of image recovery beyond additive Gaussian noise models.
Unlike classical approaches often adopted in the literature, the regu-
larization parameter is estimated throughout a VBA algorithm from
the observations. In order to address the problem of the intricate form
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of either the observation model or the prior distribution, we resort
to majorization techniques to construct a lower bound on the Kulback
divergence that we want to minimize. This bound takes additional vari-
ables which determine how tightly it approximates the true distance.
The approximating distribution are then derived by optimizing this
bound using an iterative scheme. Note that the proposed algorithm is
�exible as it can be applied to a wide range of prior distributions and
data �delity terms.

Applications to Poisson Gaussin image recovery:
We demonstrate the potential of the proposed VBA method in the context
of image recovery under Poisson Gaussian noise. Several tests are made us-
ing various approximations of the exact Poisson Gaussian data �delity term
as well as di�erent penalization strategies. Results show that the proposed
approach is e�cient and achieves performance comparable with other meth-
ods where the regularization parameter is manually tuned from the ground
truth.

� 4 Publications

Journal papers

• Y. Marnissi, Y. Zheng, E. Chouzenoux and J.-C. Pesquet. A Varia-
tional Bayesian Approach for Image Restoration. Application to Image
Deblurring with Poisson-Gaussian Noise. To appear in IEEE Transac-
tions on Computational imaging.

Conference papers:

• Y. Marnissi, E. Chouzenoux, J.-C. Pesquet and A. Benazza-Benyahiya.
An Auxiliary Variable Method for Langevin based MCMC algorithms.
In Proceedings of the IEEE Workshop on Statistical Signal Processing
(SSP 2016) pages 297-301, Palma of Mallorca, Spain, 26-29 June 2016.

• Y. Marnissi, Y. Zheng and J.-C. Pesquet. Fast Variational Bayesian
signal recovery in the presence of Poisson-Gaussian noise. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech ans
Signal Processing (ICASSP 2016), pages 5, Shanghai, China, 20-25
Mar. 2016.

• Y. Marnissi, E. Chouzenoux, A. Benazza-Benyahia, J.-C Pesquet and
L. Duval. Reconstruction de signaux parcimonieux à l'aide d'un algo-
rithme rapide d'échantil- lonnage stochastique. In Actes du 25e col-
loque GRETSI, Lyon, France, 8-11 Sep. 2015.
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• Y. Marnissi, A. Benazza-Benyahia, E. Chouzenoux and J.-C. Pesquet.
Majorize-Minimize adapted Metropolis Hastings algorithm. Applica-
tion to multichannel image recovery. In Proceedings of the European
Signal Processing Conference (EUSIPCO 2014), pages 1332-1336, Lis-
bon, Portugal, 1-5 Sep. 2014.

• M. A. Moussa,Y. Marnissi and Y. Ghamri Doudane. A Primal-Dual
algorithm for data gathering based on matrix completion for wireless
sensor networks . In Proceedings of the IEEE International Conference
on Communications (ICC 2016), pages 5, Kuala Lumpur, Malaysia,
23-27 May 2016.

• M. A. Moussa,Y. Marnissi and Y. Ghamri Doudane. Matrix Comple-
tion with Convex Constraints for Data Gathering in Wireless Sensor
Networks . In Proceedings of the IEEE Global Communications Con-
ference, (GLOBECOM 2016), pages 6, Washington, DC USA, 4-8 Dec.
2016.

Talks

• Schéma d'échantillonnage Metropolis-Hastings adapté par Majoration-
Minimisation. Journée GDR ISIS Sur le �ltrage Bayésien en grande
dimension par méthodes de Monte Carlo. Paris, France, 21 May. 2014.

• Majorize-Minimize adapted Metropolis-Hastings algorithm. Sustain
Image Processing SSOIP Workshop On high-dimensional stochastic
simulation and optimisation in image processing. Bristol, England,
27-29 Aug. 2014.

� 5 Outline

As stated earlier, the aim of this thesis is to design new approaches to over-
come the potential limitations of standard Bayesian methods, in order to
approximate complicated posterior distributions in high dimensional inverse
problems. The forthcoming chapters are organized as follows:

In the background chapter, we will begin with an introduction to the
topic of inverse problems. We present the Bayesian framework and the main
related algorithms.

In Chapter 3, we propose a new sampling algorithm which can be seen
as a preconditioned version of the standard Metropolis Hastings adapted
Langevin sampling algorithm using an adaptive matrix based on a Majorize-
Minimize strategy. A particular attention is paid to its convergence prop-
erties namely its geometric ergodicity in case of super-exponential distribu-
tions. The proposed algorithm is also validated over an illustrative example
for sparse seismic signal deconvolution with a Student't prior distribution.
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In Chapter 4, we propose a second approach for Bayesian sampling in
large scale problems using data augmentation type strategies allowing to
address the problem of standard sampling algorithms when applied to models
involving highly correlated variables. This idea is �rst discussed in the case
of Gaussian models and then extended to scale mixture of Gaussian ones.
The proposed algorithms are applied to the deconvolution of multispectral
images a�ected by blur and additive Gaussian noise. Furthermore, we show
the performance of the proposed approach for sampling from large scale
Gaussian distributions with an application to image recovery under two-
terms mixed Gaussian noise.

In Chapter 5, we focus on signal recovery beyond the standard additive
independent Gaussian noise model by resorting to VBA approaches. The
proposed method allows us to jointly estimate the original signal and the
required regularization parameter from the observed data by providing good
approximations of the MMSE estimators for the problem of interest. We
provide simulations results together with comparisons with state-of-the-art
methods in terms of image restoration performance and computation time
in the case of mixed Poisson Gaussian noise often encountered in microscopy
and astronomy imaging systems.

Finally, we draw some conclusions and perspectives in Chapter 6.



- Chapter 2 -

Background

In a wide range of real applications, we do not have access to the signal of
interest by direct measurements but only to a distorted version of this sig-
nal. These distortions may arise due to various phenomena which are often
unavoidable in practical situations. They may depend on the physics of the
studied phenomenon, on the process of signal formation, on the employed
acquisition system and also on the communication channel. In inverse prob-
lems, one tries to get some useful information from the observed data about
either the unknown signal itself or the value of some other unknown param-
eters (e.g., identi�cation of the distortion parameters). Among well known
�elds of applications of inverse problems, we can mention medical imaging
(MRI, CT scans, ultrasound imaging) [Fitzpatrick and Sonka, 2000], image
processing [Benvenuto et al., 2008; Murtagh et al., 1995; Oliveira et al., 2009],
geophysics [Parker, 1994], spectroscopy [Provencher, 1979], machine learn-
ing [Bach et al., 2012], video processing [Pizurica et al., 2004], astronomy
[Lantéri and Theys, 2005], microscopy [Dupé et al., 2009] etc.

Several researches have been focused on this topic and proposed some
methodologies to solve inverse problems. In this chapter, we review some of
them that are relevant to our studies. First, we provide the reader with an
introduction to inverse problems and to the associated mathematical model-
ing. Second, we present the Bayesian principle applied to inverse problems.
Finally, the related algorithms are presented while a special attention is de-
voted to stochastic simulation and approximation algorithms.

� 1 Inverse problems

The resolution of an inverse problem is the process of estimating an unknown
signal from measurements based on the direct model linking the target signal
to the observed one. However, the perfect direct model is generally not
satis�ed due to some random parasite signals that, once incorporated into
the direct model, alter the extraction of useful information. In this work, we
consider the following observation model:

z = D(Hx) (2.1)

9
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where x ∈ RQ denotes the target signal, z ∈ RN is the measured data,
H ∈ RN×Q is the observation matrix describing the linear degradation and D
is the model expressing nonlinear degradation and measurement errors called
noise. Such model arises in several signal processing applications (deblur-
ring, denoising, super resolution, reconstruction, segmentation, compressive
sensing, inpainting) with appropriate de�nitions of the operator H and the
model D.

For many applications such as optical remote sensing imaging and mi-
croscopy, acquisition sensors generally su�er from internal �uctuations re-
ferred to an electrical or thermal noise. This type of noise is additive, inde-
pendent of the signal of interest, and it can be modeled by a Gaussian dis-
tribution. Moreover, signals can be a�ected by blur resulting from a motion
between the scene and the camera, a defocus of an optical imaging system,
sensor imperfections and atmospheric conditions. Thereby, the observation
model (2.1) reduces to the following linear additive noise model:

z = Hx+w (2.2)

where w is an additive zero mean Gaussian noise and H is the blurring
operator. In such case, we say that we have to solve a restoration problem.
When H = IQ, it reduces to a denoising problem. Note that, in many
applications, the matrix H may not express a blur operator and it can model
for example a projection such as in transmission tomography [Shepp and
Vardi, 1982]. Then, (2.2) reduces to a reconstruction problem.

However, it has been experimentally proven that in many situations, the
signal of interest may su�er from noise with more complex characteristics
than the Gaussian one. In fact, many devices lead to measurements dis-
torted by heteroscedastic noise whose characteristics depend on that of the
unknown signal [Healey and Kondepudy, 1994; Tian et al., 2001; Janesick,
2007; Azzari and Foi, 2014; Liu et al., 2014; Chakrabarti and Zickler, 2012;
Boubchir et al., 2014]. For example, to better re�ect the physical proper-
ties of optical communication, the involved noise remains additive Gaussian
but its variance is assumed to be dependent on the unknown signal [Moser,
2012]. Signals can also be corrupted by multiplicative noise [Aubert and
Aujol, 2008; Buades et al., 2005; Dong and Zeng, 2013; Huang et al., 2009]
such as the speckle noise which commonly a�ects synthetic aperture radar
(SAR), medical ultrasound and optical coherence tomography images [Par-
rilli et al., 2012], or by impulsive noise [Cai et al., 2010]. A mixture of Gaus-
sian and impulsive noise has also been studied in [Xiao et al., 2011; Yan,
2013]. Furthermore, in applications such as astronomy, medicine, and �uo-
rescence microscopy where signals are acquired via photon counting devices,
like CMOS and CCD cameras, the number of collected photons is related
to some non-additive counting errors resulting in a shot noise [Boulanger
et al., 2015; Healey and Kondepudy, 1994; Tian et al., 2001; Janesick, 2007;
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Petropulu et al., 2000]. The latter is non-additive, signal-dependent and it
can be modeled by a Poisson distribution [Salmon et al., 2014; Setzer et al.,
2010; Jeong et al., 2013; Harizanov et al., 2013; Dupé et al., 2012] [Chaux
et al., 2009] [Bonettini and Prato, 2015; Anthoine et al., 2012; Bonettini
and Ruggiero, 2011; Altmann et al., 2016]. In this case, when the noise is
assumed to be Poisson distributed, the implicit assumption is that Poisson
noise dominates over all other noise kinds. Otherwise, the involved noise is a
combination of Poisson and Gaussian (PG) components [Roberts and Kings-
bury, 2014; Mäkitalo and Foi, 2014, 2012, 2013; Luisier et al., 2011; Li et al.,
2015; Lantéri and Theys, 2005; Jezierska et al., 2012, 2014; Foi et al., 2008;
Chouzenoux et al., 2015; Kittisuwan, 2016; Calatroni et al., 2016]. The in�u-
ence of blur and of Poisson and Gaussian noise is illustrated in the example
in Figure 2.1.

(a) Original image of
size 256 × 256 and
whose intensity values
range between 0 and
30.

(b) Blurred image with
a uniform blur kernel
of size 8× 8.

(c) Noisy image with
a centered Gaussian
noise of variance 4.

(d) Degraded image
with a uniform blur
kernel of size 8×8 and
Poisson noise.

(e) Degraded image
with a uniform blur
kernel of size 8 × 8
and additive zero mean
Gaussian noise of vari-
ance 4.

(f) Degraded image
with a uniform blur
kernel of size 8 × 8,
Poisson noise and ad-
ditive zero mean Gaus-
sian noise of variance
4.

Figure 2.1: In�uence of di�erent sources of degradation.

Solving the inverse problem de�ned by (2.1) amounts to �nding a solution
x̂ which is reasonably close to the signal of interest x from the observation z.
The observation matrix H and some parameters about the statistics of the
noise can also be unknown and have to be estimated either before or jointly
with the estimation of x. In such case, we say that we have to solve an un-
supervised or blind problem. In the context of non blind problems, the best
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known approach to solve (2.2) is certainly the least squares method that con-
sists in seeking to minimize the quadratic distance between the measurement
and the target signal as follows [Gauss, 1995]:

x̂ ∈ argmin
x∈RQ

∥z−Hx∥2. (2.3)

However, among the main di�culties encountered in the resolution of (2.3),
the inverse problem can be ill posed in the sense of Hadamard [Hadamard,
1902], which means that it does not satisfy one of the following conditions:

• a solution exists,

• the solution is unique,

• the solution is stable.

In particular, this problem arises when the whole measured data do not
allow the existence of a solution to the problem, which may occur for ex-
ample in many overdetermined problems where the number of parameters
to be estimated in the model is smaller than the number of collected data.
Furthermore, the solution may not be unique which is the case for example
of underdetermined problems where the number of collected data compared
to the number of the unknown parameters is insu�cient to �nd the exact
solution. The solution can be further highly unstable and sensitive to small
disturbance in the data when it is not continuous with respect to the data.
Moreover, when the statistics of the noise are far from the Gaussian hypoth-
esis, the least square mean criterion (2.3) fails generally to provide accurate
solutions. In this respect, many researches have been devoted to solve (2.1)
in a more reliable manner. In the following, we will concentrate on the
Bayesian methodology to solve such inverse problems.

� 2 Bayesian methodology for solving inverse

problems

2.1 Bayesian framework

A standard statistical approach to solve the inverse problem (2.1) consists in
assuming that z and x are random variables with probability distributions
Pz|x and Px respectively instead of unknown constants. Let p(z|x) and p(x)
denote their associated densities hence assumed to exist. While p(z|x) is
the likelihood of the observations and whose expression is derived from the
direct model (2.1), p(x) describes some prior knowledge on x and should be
well designed to incorporate the desired characteristics of the solution. In
such case, we say that we are working in a Bayesian framework [Bernardo
and Smith, 2001; Robert, 2007].
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The common Bayesian procedure for signal estimation consists in com-
puting estimators from the posterior distribution Px|z that captures all in-
formations inferred about the target signal from the collected data. The
posterior density p(x|z) is derived from the likelihood and the prior density
using Bayes rules:

p(x|z) = p(x)p(z|x)
p(z)

(2.4)

where
p(z) =

∫
RQ

p(x, z) dx (2.5)

is the density of the distribution of z and which can be viewed as a normal-
izing constant of p(x|z). Note that even if the integral in (2.5) suggests that
all xi, 1 6 i 6 Q, are continuous random variables, discrete values could also
be considered by replacing the integral with a sum when required and using
discrete probabilities instead of densities.

Under this framework, given a cost function C(x̂−x) that measures the
quality of an estimator x̂ in comparison to the true signal x̄, we de�ne a
Bayesian estimator as the one with minimum expected cost:

x̂ ∈ argmin
RQ

Ex|z (C(x̂− x)) (2.6)

where
Ex|z (C(x̂− x)) =

∫
x∈RQ

C(x̂− x)p(x|z) dx. (2.7)

In particular, C(t) can be typically one of the following cost functions dis-
played in Figure 2.2:

• Hit-or-miss: C1(t) =

{
0, if |t| 6 δ

1, if |t| > δ

• Quadratic: C2(t) = t2

• Absolute: C3(t) = |t|

Note that these three cost functions are often preferred, because they
allow to �nd the minimum cost solution in a closed form. In fact, the so-
lution to (2.6), with C = C1 and δ ≪ 1, arises at the maximum of p(x|z).
Therefore, the estimator is the mode of the posterior density and is called
Maximum a Posteriori (MAP) estimator. Since the normalization constant
p(z) does not depend on x, the MAP estimator can be computed by maxi-
mizing only the numerator of (2.4) which is equivalent to solve

x̂ ∈ argmin
x∈RQ

− log p(z|x)− log p(x). (2.8)
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Figure 2.2: The three classical cost functions: quadratic (blue), absolute
(green) and Hit-or-miss for δ = 1 (purple).

In most applications, no closed-form solution is available to (2.8). In this
case, we resort to iterative optimization methods to compute numerically
the estimator.

Using the quadratic cost function C2, the Bayesian estimator reduces to
the posterior mean i.e.,

x̂ = Ex|z (x) =

∫
RQ

x p(x|z) dx. (2.9)

This estimator has the desired property of being optimal in terms of min-
imal average squared error. However, in general due to the involved high-
dimensional integral in (2.9), its computation is di�cult. Moreover, the pos-
terior distribution is generally known up only to some multiplicative constant
as the evaluation of the normalizing constant in (2.4) can be computation-
ally expensive, or even intractable in most real models. In the following,
we will refer to this estimator as the minimum mean square error (MMSE)
estimator or the posterior mean.

If we choose the absolute value as the cost function C3, the Bayesian
estimator reduces to the median of the posterior distribution i.e., the value
which splits the total probability into equal proportions. Note that if the
posterior probability density function is Gaussian, the three Bayesian esti-
mators coincide because the mean, the median and the mode of a normal
density are identical. However, in most case, as soon as the posterior density
is not symmetric, the MAP, the median and the MMSE produce di�erent
estimators. In that case, the best choice of the point estimator remains
an open problem and it highly depends on the properties of the posterior
distribution of interest. For example, when the posterior mean estimator
is misleading, this results in a high variance value [Kaipio and Somersalo,
2006, Chap. III, example 1]. In order to qualify the uncertainty on the ob-
tained solutions, one can further use posterior credible regions i.e., Bayesian
con�dence intervals [Robert, 2007].
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2.2 Link with penalized approaches

The optimization criterion of type (2.8), has been widely considered in energy
minimization approaches without an explicit reference to probabilities or
priors. Solutions to (2.1) are proposed to be the minimizers of some objective
function under the generic form:

x̂ ∈ argmin
x∈RQ

Φ(x) + Ψ(x) (2.10)

where Φ is the data �delity term whose role is to keep the reconstructed
signal close enough to the observation so that useful information will not
be discarded in the solution, while Ψ is the regularization term that pro-
motes solutions with some desired properties. At the �rst glance, penalized
approaches and Bayesian estimation seemingly have distinct ways of inter-
pretation of the di�erent terms that constitute the objective function and
the posterior law leading to a long lasting disconnection between the two
worlds in inverse problems. However, by a simple identi�cation, one can
�nd a strong connection between the two approaches. On the one hand, the
MAP estimate in (2.8) can be viewed as the solution to the penalized prob-
lem by setting Φ(x) = − log p(z|x) and Ψ(x) = − log p(x). On the other
hand, the solution to the problem in (2.10) has a statistical interpretation
as the MAP estimate under the prior p(x) ∝ exp(−Ψ(x)) and the likelihood
p(z|x) ∝ exp(−Φ(x)) provided that p(z|x) and p(x) obey the basic laws
of probability (positive, continuous and integrable with respect to x). This
result has a very interesting generalization by omitting the integrability con-
dition and allowing the use of some speci�c prior laws such as degenerate
distributions and improper laws [Balakrishnan and Nevzorov, 2004] (see Sec.
2.3), the latter being characterized by:∫

RQ

p(x) = +∞. (2.11)

However, the MAP estimate is only one of many possible Bayesian interpre-
tations of the solution in (2.10). In fact, the MMSE in (2.9), can also be
viewed as the solution to the optimization problem (2.10), for some regular-
ization term Ψ, in most case distinct from − log p(x). This interesting fact
stipulates that the optimal estimator in terms of quadratic distance coin-
cides with the MAP estimate with a modi�ed prior. Reciprocally, in some
cases, for a given regularization function Ψ(x), the solution in (2.10), can
be interpreted as the MMSE or the MAP estimate for two di�erent prior
distributions [Gribonval and Machart, 2013; Gribonval, 2011].

2.3 Choice of the prior

The Bayesian paradigm is founded on the subjective view regarding probabil-
ities. In this respect, the choice of the prior is highly correlated with personal
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belief and may di�er according to the requirement of the designer. This step
constitutes one of the important parts in the inference setup and it has been
widely discussed from a philosophical point of view in [Box and Tiao, 2011;
Irony and Singpurwalla, 1997]. However, regardless the arbitrariness in the
selection of the prior, several works have been devoted to provide formal
rules to set up the prior distribution. An interesting overview about the for-
mal rules in the selection of the prior can be found in [Kass and Wasserman,
1996]. In general, there are two key questions that should be addressed in
this respect:

1. what kind of information do we want to highlight?

2. what are the properties of the resulting posterior distribution?

Most of the theoretical work on prior distributions can be divided into two
classes. In the �rst class, e�orts have been made to design informative prior
distributions that re�ect some common desired properties that one aims to
incorporate in the Bayesian estimation such as sparsity in some transform
domain, spatial smoothness, dependencies between the signal coe�cients
etc. Moreover, other researchers have been interested in designing priors
which are said to be non-informative in order to remove subjectiveness in the
choice of the prior law and to address the problem of the lack of information
about the unknown signal. In the second class, conjugate priors have been
introduced for a large number of data �delity models in order to obtain
more tractable posterior distributions. Note that these two classes are highly
dependent since the prior distribution should achieve a good tradeo� between
the two following requirements: it should be well designed to incorporate the
wanted properties of the solution without inducing a high computational
burden for calculating the posterior distribution. In the following, we will
provide a non exhaustive enumeration of the common prior models used in
signal processing applications.

2.3.1 Regularization

In this part, we give some examples on how we can choose highly informative
models in Bayesian estimation that attempt to re�ect the prior knowledge
about the target parameters as fully as possible which is equivalent somehow
to the role of regularization terms in penalized approaches.

Tikhonov regularization: Perhaps, the most well known method is the
Tikhonov regularization which can be seen as a Gaussian prior whose loga-
rithm reads up to an additive constant as follows [Tikhonov, 1963]

log p(x) = −1

2
∥Γx∥2 (2.12)
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where Γ is a linear operator that promotes some desirable properties. Note
that if Γ is not injective, the prior is said to be a degenerate Gaussian [Patel
and Read, 1996]. When Γ = γIQ where γ > 0, we promote solutions with
smaller norms which leads to the so-called the ℓ22 regularization. Otherwise,
Γ can model a high-pass operator such as a Laplacian �lter or a di�erence
matrix giving preference to smooth solutions.

Promoting sparsity: A signal is said to be sparse if most of its coe�cients
are zero. A less strict de�nition is to qualify a signal as sparse when only a
few of its coe�cients have large magnitudes while the remaining ones take
values around zero. Several prior laws have been proposed to model sparse
signals. In the following, we will give some examples of prior distributions
that have been widely used in signal processing.

• Generalized Gaussian distributions: Zero mean Generalized Gaussian
(GG) distributions have the following expression of their density of
probability [Woods, 2013]:

(∀t ∈ R) gg(t;β, γ) =
γ

1
2β

2Γ(1 + 1/β)
exp

(
−γt2β

)
(2.13)

where Γ is the Gamma function, β > 0 is the shape parameter and
γ > 0 is the inverse scale parameter. It is a generalization of a family
of probability density functions called the generalized Gamma distri-
butions, �rst introduced in [Stacy, 1962]. Depending on the shape
parameter β, two kinds of distributions can be obtained. In particu-
lar, β = 1 yields the Gaussian distribution whereas β = 0.5 yields the
Laplace distribution. Generally, for 0 < β < 1, we have leptokurtic
distributions which are characterized by a thinner peak and heavier
tails compared to the Gaussian one. In contrast, for β > 1, a platykur-
tic distribution is obtained, which is characterized by a �atter peak
and thinner tails compared to the Gaussian one. For large values of
β, the GG tends to the uniform distribution. Figure 2.3 depicts the
probability density function of the GG for di�erent shape parameters
and for γ = 1.

• Student's t distributions: In order to promote the sparsity of the signal,
we can also use the Student's t (ST ) distribution whose density is given
by

(∀t ∈ R) st(t; ν, γ) =
Γ(ν+1

2 )γν
√
πν Γ(ν2 )

(
γ2 +

t2

ν

)− ν+1
2

(2.14)

where ν > 0 is the number of degrees of freedom determining the shape
of the distribution and γ > 0 is the scale parameter. Note that the
Cauchy distribution is a particular case when ν = 1. Small values of
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Figure 2.3: GG density plot for di�erent values of β and for γ = 1.

ν de�ne distributions with heavy tails while we approach the normal
distribution as ν increases. Figure 2.4 displays the probability density
function of the ST distribution for di�erent shape parameters and for
γ = 1.
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Figure 2.4: ST density plot for di�erent values of ν and for γ = 1.

• Scale mixtures of Gaussian distributions: A more general family of den-
sities can be constructed from scale mixtures of Gaussian distributions
(SMG). A discrete scale mixture of Gaussian can be made up using
S > 0 distinct Gaussian distributions as follows:

(∀t ∈ R) smg(t) =
S∑

s=1

wsn(t;µ, σ2s) (2.15)

where n(t;µ, σ2s) denotes the probability density of the Gaussian dis-
tribution of mean µ ∈ R and variance σ2s , and w1, . . . , wS are positive
weights called the mixing constants such that

∑S
s=1ws = 1. This type

of mixture, being a �nite sum, is referred to as a �nite mixture. In�nite
discrete mixture are covered by setting S = ∞. Note that the mixing
variables can be either constants or random. In the case of random
mixing variables, the probability of the mixing variables is referred to
as the mixing distribution. For example, the Bernoulli Gaussian dis-
tribution is a scale mixture of Gaussian distribution where the mixing
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law is the Bernoulli distribution. Furthermore, this de�nition can be
extended to continuous scale mixtures as follows:

(∀t ∈ R) smg(t) =
∫
R+

p(w)n(t;µ,wσ2)dw (2.16)

where p(w) denotes the density of the mixing distribution. Di�er-
ent laws for w lead to di�erent prior distributions. For instance, the
ST distribution is a particular case of SMG when p(w) is an inverse
Gamma distribution with both parameters equal to ν/2. The Laplace
distribution is also de�ned as SMG for Gamma mixing probability
[West, 1987]. More generally, the GG can be written as a scale mixture
of Gaussian provided that 0 < β 6 1 and the mixing distribution is
related to alpha-stable distributions [Wainwright and Simoncelli, 1999].

• Multivariate distributions: In many applications involving multivari-
ate data, the coe�cients of the target signal exhibit high correlations.
Then, it is usually preferable to estimate them jointly using their joint
distribution rather than their marginal ones. In this respect, multi-
variate distributions have been proposed to model multivariate ran-
dom variable. Elliptically contoured (EC) distribution class has par-
ticularly deserved considerable attention in the literature [Kai-Tai and
Yao-Ting, 1990; Kai-Tai et al., 1990; Kelker, 1970; Bartlett, 1934]. A
B-dimensional random vector is said to have an elliptical distribution
if its probability density is of the following form:(

∀u ∈ RB
)

ec(u;Σ,µ, g) = CB|Σ|−1/2g
(
(u− µ)⊤Σ−1(u− µ)

)
(2.17)

where g is the functional parameter, µ is the location vector, Σ is the
scale matrix and CB is a normalization constant [Zozor and Vignat,
2010]. These distributions owe their success to the fact that many
results holding for multivariate Gaussian vectors can remain valid for
a large number of elliptically symmetric distributions [Chmielewski,
1981]. In particular, this class is stable with linear combination (i.e.,
every linearly combined elliptical random vector is also elliptical) and
when passing to conditional laws (i.e., the conditional distributions of
EC random vectors remain EC). Another interesting property proven
in [Gómez-S-M. et al., 2006] is that a necessary and su�cient condition
for an EC distribution to be expressed as a scale mixture of multivari-
ate Gaussian distributions is the alternation of sign of the successive
derivatives of its functional parameter g i.e.,

(−1)kg(k)(t) > 0 , for k ∈ N and t > 0. (2.18)

This property is ful�lled by the multivariate exponential power distri-
bution MEP used in several applications in signal processing [Gómez-
S-M. et al., 2008; Khelil-Cherif and Benazza-Benyahia, 2004; Pizurica
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and Philips, 2006; Kwitt et al., 2009] and de�ned with the following
functional parameter:

(∀t > 0) g(t) = exp(−1

2
tβ) (2.19)

with β > 0. The normalization constant is de�ned by:

CB =
Γ(B2 )

π
B
2 Γ( B

2β )2
B
2β

. (2.20)

Note that the MEP can be seen as the extension of the GG to the
multivariate case. Thereby, MEP are also known as multivariate GG.
Similarly to the univariate case, we �nd the multivariate Laplace dis-
tribution for β = 0.5, and the multivariate Gaussian distribution for
β = 1 while leptokurtic distributions usually used to model sparse
random vectors are de�ned for 0 < β < 1.

In this thesis, we will also consider the Generalized MEP (GMEP)
model [Marnissi et al., 2013], which can be seen as a smooth extension
of the MEP distribution. It is de�ned as the EC distribution with the
following functional parameter

(∀t > 0) ϱg(t) = g(t+ δ) (2.21)

with δ > 0 and whose normalization constant is given by:

C−1
B =

2π
B
2

Γ(B2 )

∫ +∞

0
tB/2−1 exp

(
−1

2
(t+ δ)β

)
dt. (2.22)

Note that many standard multivariate distributions can be seen as
EC such as the multivariate ST distribution, the generalized Laplace
distribution, alpha-stable distributions etc. [Zozor and Vignat, 2010].

If the signal of interest is not sparse in the spatial domain, one can use an-
other representation of it where the signal can be represented only by few
relevant coe�cients. For example, the sinus signal is clearly not sparse in
the spatial domain but when we pass to the Fourier domain, the signal be-
comes extremely sparse. Sparsity can for example be achieved using the
discrete gradient transform or higher order di�erences. More generally, the
best sparsifying transform can be quali�ed as the one leading to the sparsest
representation with low complexity. Therein, linear transforms are the sim-
plest way for getting such representation. The coe�cients of the signal x in
the new representation denoted by c ∈ RM , are then given with respect to
a preassigned operator F ∈ RM×Q such that M > Q as follows:

c = Fx. (2.23)
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Perhaps, the Fourier and the cosine transforms are the most famous linear
representations [Ahmed et al., 1974]. However, their good frequency localiza-
tion properties are achieved at the expense of a poor spatial (or temporal)
localization. Many other transforms have been proposed in the literature
to achieve a better tradeo� between both the spatial (or temporal) and
frequency localizations such as wavelets [Mallat, 1999], curvelets [Candes
et al., 2006], bandlets [Le Pennec and Mallat, 2005] etc. Other approaches
have been also proposed to build representation dictionaries directly from
the data and adapted to their characteristics [Olshausen and Field, 1996;
Aharon et al., 2006]. In the following, we illustrate the sparsity concept
with some examples of linear operators often employed in inverse problems
of signal/image processing.

Example 2.1 Total variation:
Gradient operators are based on the di�erences between neighboring val-
ues for a given direction. In the context of image processing, we usually
consider both horizontal and vertical directions. In the following, ∆ =[
∆⊤

1 , . . . ,∆
⊤
Q

]⊤
will denote the discrete gradient operator having the fol-

lowing formula:

(∀i ∈ {1, . . . , Q}) ∆ix =

(
[∆hx]i
[∆vx]i

)
(2.24)

where ∆i is the gradient in location i and ∆h and ∆v are the discrete gradi-
ent computed along the horizontal and vertical directions. Figure 2.5 shows
an illustration of the gradient across horizontal and vertical directions in the
Barbara image. The local gradient at location i is given by the di�erences
between the intensity in i and one of its adjacent pixels. This results in
sparse gradient images where the relevant coe�cients are concentrated in
areas corresponding to edges in the original image. In energy minimization
approaches, the sparsity of the gradient is enforced using suitable regular-
ization functions Ψ describing the dynamics of the gradient images [Rudin
et al., 1992]. As the quadratic function tends to give over smoothed solutions,
many works have proposed to replace the quadratic regularization (ℓ22) with
the ℓ1 norm which result on the so called anisotropic total variation de�ned
by

Ψ(∆x) =

Q∑
i=1

(
|[∆hx]i|+ |[∆vx]i|

)
. (2.25)

In fact, the ℓ1 norm and the quadratic regularization are both concentrated
on zero to promote zero values but the ℓ1 norm has a curve that increases
linearly and thus is slower than the quadratic shape of the ℓ22 regularization
allowing the solution to take few high values. As such, edges in the image
corresponding to the relevant gradient values are less a�ected with the ℓ1
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(a) Original image.

Location i

(b) Fragment of the original
image. Green rectangles high-
light horizontal neighbors. Yel-
low rectangles highlight vertical
neighbors.

(c) Horizontal gradient. (d) Local horizontal direction in
the location i in green.

(e) Vertical gradient. (f) Local vertical direction in the
location i in yellow.

Figure 2.5: Illustration of concept of the gradient operator.

norm. This property holds for functions of the form f(t) = |t|p, with 0 6
p < 1 as it can be seen in Figure 2.6. In this case, the regularization function
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Figure 2.6: Plot of f(t) = |t|p for 0 6 p < 2.

reads:

Ψ(∆x) =

Q∑
i=1

(
|[∆hx]i|p + |[∆vx]i|p

)
. (2.26)

However, the ℓ1 norm is often preferred to other functions since it is consid-
ered as the sparsest convex regularization.
Isotropic total variation is used by applying non-separable functions, for
instance an ℓ2 norm on the vectors ∆ix, 1 6 i 6 Q. Then, the regularization
function has the following form:

Ψ(∆x) =

Q∑
i=1

√
[∆hx]2i + [∆vx]2i . (2.27)

Note that since we are interested in Bayesian modeling, we have to design
prior distributions and not only regularization functions. It remains possible
to de�ne the total variation prior distribution proportional to exp(−γΨ(∆x))
where γ > 0 is a positive regularization constant. In many Bayesian appli-
cations, we need to know the normalization constant of p(x) or at least the
constant that depends on γ. From [Pereyra et al., 2015], we can deduce that
for each total variation regularization de�ned above, we can associate a prior
distribution that has the following form:

p(x) = Cγ
Q
κ exp(−γΨ(∆x)) (2.28)

where C > 0 is a constant independent of γ, and κ > 0 is such that Ψ is
κ−homogenous. For instance, κ = 1 in (2.25) and (2.27), and κ = p in
(2.26). However, it is worth noting that the prior (2.28) may be improper in
the sense that C can be equal to in�nity if ∆ is not corrected in the border
of the image.

Example 2.2 Frame operators:
Over the past decade, Wavelet transform (WT) has achieved great success in
image processing tasks especially when performed recursively [Mallat, 1999].
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In fact, by decomposing the image with a set of multiscale bandpass ori-
ented �lters in a recursive manner, the two dimensional WT achieves good
frequency selectivity. This operation is known as multi-resolution analy-
sis and it results on two classes of coe�cients: details and approximations.
On the one hand, the subband of wavelet coe�cients resulting from high
(respectively low) horizontal frequency and low (respectively high) vertical
frequency matches the horizontal (respectively vertical) contours (or details)
whereas the wavelet coe�cients resulting from high frequency in both direc-
tions correspond to the diagonal details. On the other hand, the subband
of approximation coe�cients results from low frequencies in both directions
and can be seen as a rough approximation of the image satisfying its spa-
tial statistics. Therefore, we can further apply a WT to this subband to
obtain more horizontal, diagonal and vertical details. Figure 2.7 shows a
two levels decomposition of the Barbara image using Symmlet wavelet basis
of order 8. It can be noted that most of the energy in each of the details
subbands is concentrated in areas corresponding to edges in the original
image. Several researches have been devoted to improve the e�ciency of

Figure 2.7: Two decomposition levels of Barbara image using Symmlet
wavelet basis of order 8. (a) denotes appoximation subband, (b) and (e) are
the horizontal details, (c) and (f) are the diagonal details, (d) and (g) are
the vertical details.

WT towards geometric features of the image (namely textures and edges),
by proposing more general representations with a higher degree of redun-
dancy, as well as increased directional selectivity known as frames (M > Q).
The interest behind the use of frames is related to the e�ciency of these
overcomplete representations to capture local structures of the signal and
their quasi shift-invariance properties [Candes and Donoho, 2002; Fadili and
Starck, 2009; Han and Larson, 2000; Pustelnik et al., 2016].



2. Bayesian methodology for solving inverse problems 25

Many researchers have proposed to address image processing tasks such
as denoising in multiscale oriented representations by using probability mod-
els for the wavelet coe�cients [Pustelnik et al., 2016]. In this respect, reg-
ularization using such sparse representations in inverse problems, can be
divided into two classes:

• Regularization when using a synthesis frame.

• Regularization when using an analysis frame.

In the �rst class, regularization is applied directly to the sparse coe�cients.
Consequently, the observation model in (2.1) becomes:

z = D(HF∗c) (2.29)

where F∗ ∈ RQ×M is the synthesis operator such that x = F∗c. The objec-
tive is then to �nd the frame coe�cients ĉ that are as close as possible to
c. To this end, a prior distribution is associated with the frame coe�cients
having the following form:

p(c) ∝ exp(−Ψ(c)), (2.30)

and the reconstructed signal is then computed by x̂ = F∗ĉ. Speci�cally, the
marginal distributions of the wavelet detail coe�cients are highly leptokur-
tic. In fact, their histograms show a much higher peak around the mean
value, and fat tails at the extreme ends of the probability curve as it can be
seen in Figure 2.8. Then, their statistics can be well described using suitable
long-tailed distributions such as GG and ST distributions. Furthermore, re-
cent work has investigated multivariate models by taking into account the
dependencies between coe�cients. In fact, it has been observed that frame
coe�cients of similar position, orientation and scale may exhibit high corre-
lations [Portilla et al., 2003]. Moreover, when dealing with multicomponent
images, high correlations also exist between the frame coe�cients in the same
position through all the components [Marnissi et al., 2013]. In the second
class, regularization is applied indirectly to the sparse coe�cients through
the signal of interest x, and the density of distribution has generally the
following form:

p(x) ∝ exp(−Ψ(Fx)) (2.31)

where the frame coe�cients are given by c = Fx. For instance, a common
approach is to use ℓ1 norm regularization and then the prior distribution
has the same form as in (2.25). Ψ can also be the ℓ2 norm applied to a
vector gathering the wavelet coe�cients of similar positions through all the
subbands in each level of decomposition. In particular, a connection can be
uncovered between such regularization using undecimated wavelet transform
involving a Haar �lter and the total variation regularization. However, due
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Figure 2.8: Histograms of wavelet coe�cients.

to the �exibility o�ered by frames and their ability to generate multiscale
analyses, the use of the Haar transform may yield a better performance
than gradient operator for natural images [Kamilov et al., 2012]. Note that,
analysis and synthesis based regularizations are equivalent in the case of
orthonormal transforms.

2.3.2 Conjugate priors

In many situations, prior knowledge about the target parameters is limited
or not concrete enough to favor a speci�c prior probability distribution. Such
situations may arise for example in the estimation of the characteristics of
the noise or of the regularization parameters on which we have only some
general prior information as positivity and mean value but generally few
ideas about their statistics. In this case, we have some freedom in selecting
the prior distribution and we would rather select it in such a way to result
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in a tractable posterior distribution. In fact, for many observation models,
there exists a family of prior models for which when combined via Bayes rule,
the resulting posterior distribution has a closed form. This observation has
motivated the use of conjugate families [Joksch et al., 1964]. However, we
should pay attention to the fact that we cannot select any conjugate prior
that mathematically gives satisfactory results. The selected prior should
indeed be compatible with the available prior knowledge about the target
parameter. Hence, conjugate priors de�ne only the sub-class of conjugate
family models, that produce analytically tractable posterior distribution and
are �exible enough to model prior information about the parameters of in-
terest. A discussion on conjugate models can be found in [Fink, 1997]. In
the following, we will give some examples of conjugate priors often used in
Bayesian inferences.

Example 2.3 Conjugate prior for the parameters of the univariate Gaus-
sian model :
In many Bayesian applications, we have to use univariate Gaussian distri-
butions with unknown parameters. This is the case for example, in denoising
and deconvolution problems where the noise is assumed to be Gaussian and
uncorrelated.
Let us consider the generic problem of estimating the mean and the variance
of a Gaussian distribution given some independent observations z ∈ RN such
that

(∀i ∈ {1, . . . , N}) p(zi|µ, τ) =
1√
2πτ

exp

(
− 1

2τ
(zi − µ)2

)
(2.32)

where µ ∈ R and τ > 0. Let p(µ) and p(τ) be the conjugate prior densities
of µ and τ which will be de�ned later. The joint distribution of z, µ and τ
is then given by

p(z, µ, τ) = p(µ)p(τ)
N∏
i=1

p(zi|µ, τ). (2.33)

The density of the conditional posterior distribution of µ is given by:

p(µ|z, τ) ∝ exp

−N

2τ

(
µ−N−1

N∑
i=1

zi

)2
 p(µ). (2.34)

Then, by using a normal prior for µ i.e., µ ∼ N (µ0, σ
2
0), its posterior dis-

tribution remains Gaussian with variance σ2 =

(
N

τ
+

1

σ20

)−1

and mean

σ2(σ−2
0 µ0 + τ−1

∑N
i=1 zi).

The density of the conditional posterior distribution of τ is given by:

p(τ |z, µ) ∝ τ−N/2 exp

(
−1

τ

N∑
i=1

(µ− zi)
2

2

)
p(τ). (2.35)
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It can be noted that, if we choose the prior distribution for τ as the inverse
Gamma distribution with parameter a and b, the resulting posterior distribu-

tion is also an inverse Gamma with parameter a+N/2 and b+
N∑
i=1

(µ− zi)
2

2
.

Example 2.4 Conjugate prior for the covariance matrix of the multivariate
Gaussian model:
Let us consider the problem of estimating the covariance matrix of a zero
mean multivariate Gaussian distribution given some P independent obser-
vation vectors z1, . . . , zP ∈ RN where

(∀i ∈ {1, . . . , P}) p(zi|Σ) =
|Σ|−1/2

(
√
2π)N

exp

(
−1

2
∥Σ−1/2zi∥2

)
(2.36)

where Σ is the unknown positive de�nite matrix. Given a prior distribution
p(Σ), the posterior distribution reads:

p(Σ|z1, . . . , zP ) ∝ |Σ|−P/2 exp

(
−1

2
trace

(
Σ−1

P∑
i=1

ziz
⊤
i

))
p(Σ). (2.37)

Then, when p(Σ) is chosen to be the probability density of the inverse
Wishart distribution of parameters R > N and A, the posterior distribution
of Σ reduces to the inverse Wishart distribution of parameters R + P and
A +

∑P
i=1 ziz

⊤
i . Similarly, when considering instead the precision matrix

Λ = Σ−1, the conjugate prior for Λ is a Wishart distribution.

Example 2.5 Conjugate prior for the regularization parameter in the case
of a κ-homogenous regularization:
A common class of prior is derived from homogeneous regularizations such
as GG, total variation prior and more generally all those derived from norms
and compositions of norms with linear operators. In such case, the prior
density is written as follows:

p(x|γ) = Cγ
Q
κ exp(−γg(x)), (2.38)

where g is a positive κ-homogeneous function, γ > 0 is the regularization
parameter and C > 0 is a constant independent of γ [Pereyra et al., 2015].
Here, we are interested in the problem of estimating γ. Let p(γ) be the
density of probability of the regularization parameter. It follows that the
posterior distribution of γ is

p(γ|x) ∝ γ
Q
κ exp(−γg(x))p(γ). (2.39)

It can be noted that when using the Gamma prior with parameter a and b
for γ, p(γ|x) reduces to a Gamma prior of parameter a+Q/κ and b+ g(x).
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2.3.3 Non informative priors

In many applications, we have no su�cient prior information about the tar-
get parameters to be interpreted into a mathematical form as a probability
distribution. Then, it is not recommended to use a strict subjective prior
probability that may sway the inference process in a wrong direction. How-
ever, the Bayesian framework requires the presence of a prior distribution.
In such cases, the prior law is only used as a technical way of expressing
available information necessary to perform the Bayesian inference. Therein,
many works have been done in order to provide priors that impart as little
information as possible about the target parameters in order to allow the ob-
servations to have their maximal weight in the posterior distribution. These
priors are often called non-informative or objective [Kass and Wasserman,
1996] since they generally express some objective information such as, the
positiveness or the de�nition domain.

Certainly, the simplest and oldest rule to de�ne such prior is based on
the indi�erence principle that gives equal probabilities to all the domain
where the parameter is de�ned. Otherwise, a constant prior is assigned to
the target parameter x (i.e., p(x) = 1) which is known as the Laplace non-
informative prior [Laplace, 1820]. Otherwise, reference priors are among the
most commonly used non-informative priors in the literature. Their intro-
duction is mainly related to an attempt to �nd the prior that maximizes the
expected amount of information provided by the observations in the poste-
rior law. Such prior is found by maximizing I de�ned as follows [Bernardo,
1979]:

I(p(x)) =
∫
RN

p(z)KL (p(x|z)∥p(x)) dz (2.40)

where

KL (p(x|z)∥p(x)) =
∫
RQ

p(x|z) log
(
p(x|z)
p(x)

)
dx (2.41)

is the Kullback-Leibler divergence measuring the similarities between the
prior and the posterior densities. Reference priors are de�ned in the asymp-
totic case i.e., as the limit of the obtained solution in (2.40) when the number
of independent observations N tends to in�nity. In particular, for a �nite
discrete parameter space, the integral is replaced by a �nite sum and the
reference prior is shown to be the uniform distribution over all the possible
values [Bernardo, 1979]. For continuous variables, the reference prior is given
for several models satisfying some regularity conditions such as asymptotic
normality [Dawid, 1970; Lindley, 1961; Bernardo, 1979] by:

p(x) ∝ |Ω(x)|1/2 (2.42)

where Ω(x) is the Fisher information matrix de�ned by

(∀i, j ∈ {1, . . . , Q}) Ωi,j = −Ez

(
∂ log p(z|x)
∂xixj

)
(2.43)
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and |Ω(x)| is its determinant. This prior is known as the Je�reys' prior
[Je�reys, 1998]. In the following, we give examples of applications to inverse
problems where non-informative priors are commonly used.

Example 2.6 Je�rey priors for the parameters of a univariate Gaussian
model :
Let us reconsider Example 2.3 and assume that we have no prior infor-

mation about the unknown parameters (µ, τ). Then, we will instead use
non-informative priors. The minus of the log-likelihood is given by:

− log p(z|µ, τ) = N

2
log(2πτ) +

1

2τ

N∑
i=1

(zi − µ)2. (2.44)

Consequently, the Fisher matrix is given by:

Ω(µ, τ) = Ez


N

τ

1

τ2

N∑
i=1

(µ− zi)

1

τ2

N∑
i=1

(µ− zi) − N

2τ2
+

1

τ3

N∑
i=1

(zi − µ)2


=

Nτ 0

0
N

2τ2

 . (2.45)

It follows that the Je�rey's prior of (µ, τ) is

p(µ, τ) ∝ 1

τ3/2
. (2.46)

Note that, in general, due to the lack of information, µ and τ are supposed
to be independent i.e, the prior density is written as follows [Robert, 2007]

p(µ, τ) = p(µ)p(τ). (2.47)

Then, the Je�rey's priors are given by:

p(µ) = 1 (2.48)

and
p(τ) ∝ 1

τ
. (2.49)

In this case, the Je�rey's prior p(µ, τ) ∝ 1

τ
and the reference prior coincide

[Bernardo, 1979]. In particular, (2.49) can be seen as the inverse Gamma
distribution with both parameters equal to zero. The posterior distribution
for τ reduces to the inverse Gamma with shape parameter N/2 and rate

parameter
N∑
i=1

(µ− zi)
2

2
while the posterior distribution of µ is Gaussian

with variance
τ

N
and mean N−1

∑N
i=1 zi.
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Example 2.7 Je�rey prior for the regularization parameter in the case of a
κ-homogenous regularization:
Let us consider Example 2.4 and assume that we have no prior information
about γ and that we are not able to choose suitable values a and b for the
conjugate Gamma distribution. The Je�rey's prior is given by:

p(γ) ∝ 1

γ
(2.50)

which can be understood as the Gamma distribution with both parameters
equal to zero. p(γ|x) reduces to the density of a Gamma prior of parameters
Q/κ and g(x).

In practice, most improper priors of interest can be also interpreted as
limits of standard distributions (e.g., Gaussians of in�nite variance, Gamma
and inverse Gamma densities with both parameters equal to zero, uniform
densities on in�nite intervals). Note that, in most applications, even if the
prior density is improper, the resulting posterior distribution remains proper.

2.4 Hierarchical Bayesian modeling

In Bayesian inference, we often have more than one unknown variable to esti-
mate. Prior distributions are assigned to these variables either through their
joint distributions if the variables are supposed to be dependent or through
their marginal distributions if they are independent. The unknown variables
can be generally structured into di�erent groups (see Figure 2.9). First, we
have the main variables which include the target signal, the blurring operator
in the case of blind deconvolution, the noise statistics etc. Informative priors
(regularization or conjugate) are generally assigned to these variables when
prior knowledge is available. These informative priors may introduce some
new variables which are generally unknown (e.g., we assign to the target
image a total variation prior with unknown regularization parameter, to the
variance of the noise an inverse Gamma prior with unknown rate parameter,
to the signal of interest a scale mixture of Gaussian distributions which in-
volves unknown mixing variables etc.) These new variables de�ne the second
group and are usually called parameters. The latter are generally modeled
with conjugate or non-informative priors. Conjugate priors may also involve
new unknown variables called hyperparameters which are in most case mod-
eled by non-informative distributions. This structured model is referred to as
hierarchical Bayesian modeling which is at the core of Bayesian inference.

2.5 Algorithms for computing Bayesian estimates

Once the posterior distributions of these unknown variables are determined,
a Bayesian estimator is derived for each unknown variable using its posterior
distribution given the remaining ones. The common Bayesian point estimates
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Figure 2.9: Hierarchical Bayesian model.

used in the literature are the mean (MMSE) or the mode (MAP) of the
posterior distribution.

Algorithms for computing the MAP estimate: The MAP estimate
is computed by minimizing a cost function equal up to an additive con-
stant to the the minus logarithm of the posterior density. Based on the
properties of this cost function (di�erentiablility, convexity, continuity etc.),
several algorithms can be employed to solve this minimization problem.
Among the mostly used algorithms, we can mention descent algorithms such
as nonlinear conjugate gradient and quasi-Newton methods. Other algo-
rithms are based on majorize-minimize strategies [Chouzenoux et al., 2011]
such as half-quadratic approaches [Geman and Yang, 1995; Nikolova and
Ng, 2005; Charbonnier et al., 1994; Ciuciu and Idier, 2002], expectation-
maximization [Champagnat and Idier, 2004; Celeux and Diebolt, 1985]. For
non-di�erentiable objective functions, one may use primal proximal algo-
rithms [Combettes and Pesquet, 2011, 2007] and primal-dual methods [Esser
et al., 2010; Chambolle and Pock, 2011].

Note that, the parameters and the hyperparameters in the hierarchical
Bayesian model can be jointly estimated with the target signal using ei-
ther the MAP estimate or other approaches [Pereyra et al., 2015; Thompson
et al., 1991; Archer and Titterington, 1995; Molina et al., 1999; Almeida
and Figueiredo, 2013; Bardsley and Goldes, 2009; Bertero et al., 2010]. One
popular approach is based on the discrepancy principle proposed in order
to address the problem of selecting the regularization parameter in decon-
volution problems involving Gaussian noise [Thompson et al., 1991]. The
regularization parameter is chosen such that the variance of the residual (i.e,
the di�erence between the observed image and the blurred estimate) is equal
to the variance of the noise. This method has been also extended to other
data �delity terms such as the Poisson noise and the signal dependent Gaus-
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sian noise [Bertero et al., 2010; Bardsley and Goldes, 2009]. Among other
well known approaches, we can mention the generalized cross validation and
the L-curve [Golub et al., 1979; Hansen and O'Leary, 1993].

Algorithms for computing the MMSE estimate: While the MAP
estimate is computed by minimizing a cost function, the MMSE estimate
requires to calculate an integral which is almost intractable analytically as
the exact posterior density is generally known up to a multiplicative con-
stant. Moreover, when the problem dimension increases, basic numerical
integration methods fails to compute the involved integral. Given the di�-
culty in directly computing the MMSE estimate, several methods have been
proposed to address this issue. They can be divided into 2 classes:

• Stochastic simulation methods: In order to avoid analytically comput-
ing the integral, the Monte Carlo approach is a classical alternative
solution which consists of simulating a su�cient number of i.i.d. ran-
dom variables from the posterior distribution Px|z and approximating
the MMSE estimator by the empirical average over all these samples.
However, the target posterior is often complex as it does not present
a closed form, so that direct sampling is not always possible. To al-
leviate this di�culty, sampling algorithms have been developed to ex-
plore complicated distributions such as importance sampling, rejection
sampling and Monte Carlo Markov chain algorithms [Kong, 1992; Liu,
2001; Gilks et al., 1999; Gamerman and Lopes, 2006].

• Approximations methods: Instead of addressing the true posterior dis-
tribution, approximation methods search for a simpler distribution that
well approximates it and that is computationally tractable. The MMSE
estimator is then approximated with the help of this new distribution.
Various approximation strategies have been developed. In general, we
can distinguish two classes of methods. First, one can make use of
the MAP estimate and try to construct a local approximation of the
probability mass around it. This strategy seems attractive since the
MAP estimate can usually be computed in a straightforward manner.
Otherwise, one can compute the approximate density by maximizing
some criterion that expresses the similarity between the true and the
approximate law. A well common criterion is the Kullback-Leibler di-
vergence. In the �rst class of method, we can mention the Laplace
approximation [Kass and Raftery, 1995] while the second class is re-
lated to Variational Bayesian methods [Parisi, 1988].

Note that, unlike optimization methods that give point wise estimates of the
target variables, these Bayesian algorithms provide a good summary (respec-
tively approximation) of the whole posterior distribution via the generated
samples (respectively the approximate distribution). Thus, these algorithms
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are not just proposed to compute the MMSE estimator but they can also
be used to estimate others statistics such as the variance and the median.
Moreover, in some cases, point wise estimates may not be a good representa-
tive of the posterior law and thus we can use these methods to quantify the
uncertainty in the computed solution which is known as the credible regions
[Robert, 2007].
In the following, we give a review on some stochastic simulation algorithms
and approximation methods.

� 3 Stochastic simulations methods

Monte Carlo integration is a powerful method for computing numerical in-
tegration using random variables. It estimates the expectation of a function
ζ under the probability distribution Px|z as follows:

Ex|z(ζ(x)) =

∫
RQ

ζ(x)p(x|z)dx ≃ 1

P

P∑
i=1

ζ(x(i)) (2.51)

where x(1), . . . ,x(P ) are P samples following the distribution Px|z. Note that,
thanks to the law of large numbers, the Monte Carlo estimate is unbiased
when P tends to in�nity. Most importantly, the more numerous the samples
are, the more accurate and reliable the Monte Carlo estimates are. In general,
the number of needed samples for achieving good estimates depends on both
the dimension of x and the properties of the generated samples. This method
is useful to compute the posterior statistics such as the posterior mean for
ζ(x) = x and the standard deviation for ζ(x) = (x − Ex|z(x))

2. Since
direct simulation from the posterior distribution is not always possible, an
alternative is to resort to sampling methods.

3.1 Importance sampling

The idea behind importance sampling, is that, when Px|z is di�cult to sam-
ple from, one can still write the integral in (2.51) as follows [Glynn and
Iglehart, 1989]:

Ex|z(ζ(x)) =

∫
RQ

ζ(x)π(x)
p(x|z)
π(x)

dx (2.52)

where π is a density of probability that one can easily sample from in a direct
manner. Hence, it is su�cient to use samples from the auxiliary distribution
associated with the density π and then compute the estimate Ex|z(ζ(x)) by
weighting these generated samples according to

Ex|z(ζ(x)) =
1

P

P∑
i=1

ϖ(i)ζ(x(i)) (2.53)
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where for every i ∈ {1, . . . , P}, x(i) are random variables following the dis-

tribution of density π and ϖ(i) =
p(x(i)|z)
π(x(i))

are known as the importance

weights. Note that, this estimate is also unbiased like in (2.51) for su�cient
large values of P . In situations when the posterior distribution can be com-
puted only up to a multiplicative constant, one can still use the importance
sampling approach as follows:

Ex|z(ζ(x)) =
1

P

P∑
i=1

ϖ(i)ζ(x(i))

P∑
i=1

ϖ(i)

(2.54)

with ϖ(i) =
p̃(x(i)|z)
π̃(x(i))

where p̃(x|z) and π̃(x) are equal to p(x|z) and π(x) up

to multiplicative constants. It is worth noting that, in this case, this estimate
is no longer unbiased. The choice of the auxiliary distribution with density π
is important to control this error [Kong, 1992; Rubinstein and Kroese, 2013;
Quang et al., 2012]. Moreover, although the importance sampling method
is simple to implement, the estimate can often have very high variance. In
fact, even for simple models, the variance can be unbounded [Geweke, 1989].
In order to alleviate the shortcomings of importance sampling related to
the choice of importance weights, methods based on acceptance-rejection
principle have been proposed.

3.2 Rejection sampling

Similarly to importance sampling idea, rejection sampling strategies make
use of an auxiliary density π. However, the latter should be selected such
that [Gilks and Wild, 1992](

∀x ∈ RQ
)

p(x|z) 6 cπ(x) (2.55)

where c is a positive constant. In other words, cπ(x) should majorize the
probability density p(x|z). Samples are obtained from Px|z by generating
samples from the distribution with density π(x) and accept or reject them
stochastically according to Algorithm 1. Note that the generated samples are
i.i.d. according to the target distribution. The number of iterations needed
to successfully generate each sample is also a random number following a
geometric distribution with success probability

p = P

(
u 6 Ex̃

(
p(x̃|z)
cπ(x̃)

))
. (2.56)

Thus, we need on average, 1/p iterations to generate one sample. As u

is a uniform random number, we have then p = Ex̃

(
p(x̃|z)
cπ(x̃)

)
. By recall-

ing that x̃ follows the distribution with density π, we deduce that p =



36 Chapter 2. Background

Algorithm 1 Rejection sampling

1: for t = 1, . . . , P do

2: Generate x̃(t) from the auxiliary probability distribution of density
π(x) satisfying (2.55)

3: Acceptance-Rejection:

4: Generate u ∼ U(0, 1)
5: Compute

α(x̃(t)) =
p(x̃(t)|z)
cπ(x̃(t))

6: if u < α(x̃(t)) then

7: Accept: x(t) = x̃(t)

8: else

9: Reject: Go to 2
10: end if

11: end for

∫
RQ

p(x̃|z)
cπ(x̃) π(x̃)dx̃ = 1/c. Then, the smaller c is, the faster is the sampling al-

gorithm. In the following, we show an example of application of the rejection
sampling algorithm.

Example 3.1 Sampling from a Beta distribution (B) using rejection sam-
pling algorithm:
The density of the B distribution is de�ned as follows:

(∀t ∈ [0, 1]) bet(t; a, b) =
(1− t)a−1tb−1

β(a, b)
(2.57)

where a and b are positive and β(a, b) is the beta function. Assume that

a > 1 and b > 1. The mean of this distribution is
b

a+ b
and the mode is

b− 1

a+ b− 2
. Let π be the density of the uniform distribution on [0, 1], we have:

c = sup
06t61

bet(t; a, b)
π(t)

= bet
(

b− 1

a+ b− 2
; a, b

)
=

(a− 1)a−1(b− 1)b−1

β(a, b)(a+ b− 2)a+b−2
.

(2.58)
We propose to use the uniform distribution as auxiliary distribution. In
particular, for a = b, the expected value is equal to 1/2 as for the uni-
form distribution and the average of the acceptance rate is p = β(a, a)4a−1.
However, for large values of a, this algorithm is not e�cient since the accep-
tance rate becomes very small (i.e., for a = 10, p = 0.28 and for a = 100,
p = 0.08). Consequently, we need more time to generate the desired samples.
This seems logical since in this case the two densities are not very similar.
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In particular, unlike the uniform distribution, the variance of the B distribu-
tion decreases as 1/a when a increases and then the samples should be more
concentrated around the mode of the distribution.

In general, the rejection sampling algorithm is also of limited interest
in practical applications for large scale problems and with complicated dis-
tribution. In fact, it is generally di�cult to �nd an appropriate auxiliary
distribution satisfying (2.55) with c small enough to achieve reasonable val-
ues of acceptance rate across the whole high dimensional space.

3.3 Markov chain Monte Carlo methods

3.3.1 Theory of Markov chains

De�nition 3.2 Markov chain
A Markov chain is a sequence of random variables x(t), t > 0 belonging to
some set D ⊂ RQ called the state space such that the conditional distribution
of x(t+1) given x(t), . . . ,x(0) depends only on x(t), that is

(∀t > 0,A ⊂ D) P(x(t+1) ∈ A|x(t), . . . ,x(0)) = P(x(t+1) ∈ A|x(t)). (2.59)

The conditional distribution in (2.59) is called the transition probability. The
latter controls the moves between the possible states of the Markov chain
and will be denoted by Tt:

(∀t > 0,A ⊂ D) Tt(A|x(t−1)) = P(x(t) ∈ A|x(t−1)). (2.60)

Thus, a Markov chain is described by its initial state x(0) and the transition
probabilities Tt, t > 0. The chain is said to be homogeneous if the transition
probability does not depend on t that is, for all t > 0, Tt = T . The transition
density de�ning the density of probability of moving from x to y for all x,
y ∈ D, will be denoted by t(y|x). Furthermore, T (t)(.|x(0)) will denote the
conditional distribution of x(t) when the chain starts at x(0) that is

(∀t > 0,A ⊂ D) T (t)(A|x(0)) = P(x(t) ∈ A|x(0)). (2.61)

De�nition 3.3 Invariant distribution
An homogeneous Markov chain with transition probability T has invariant
(or stationary) distribution F∗ of density f∗ if

(∀y ∈ D) f∗(y) =

∫
D
t(y|x)f∗(x)dx. (2.62)

Then, the invariance property means that, if the marginal distribution of the
initial state is F∗, all subsequent states of the Markov chain are distributed
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according to F∗. If we suppose that the direct sampling from F∗ is compli-
cated, the objective is to �nd conditions on the transition probability, under
which, from an initial arbitrary state x(0) there exists t0 > 0 such that the
state x(t0) follows F∗ that is the invariant distribution F∗ is the equilibrium
distribution of the Markov chain i.e.,

(∀A ⊂ D) lim
t→+∞

T (t)(A|x(0)) = Px|z(A) (2.63)

for Px|z almost all x(0) [Tierney, 1994]. In such cases, the chain is said to be
ergodic.

Proposition 3.4 Reversibility and invariance [Tierney, 1994]
An homogeneous Markov chain with transition probability T of density t is
reversible if there exists a distribution F with density f such that

(∀x,y ∈ D) f(x)t(y|x) = f(y)t(x|y). (2.64)

In this case, F is an invariant distribution of the Markov chain.

Application to Monte Carlo integration: Markov Chain Monte Carlo
(MCMC) methods are other extensions of importance sampling algorithms
when i.i.d. simulation is too costly or when the selection of an appropriate
auxiliary density is not a trivial task [Hastings, 1970; Liu, 2001; Gilks et al.,
1999; Gamerman and Lopes, 2006]. The general idea of such methods can be
formalized as follows: even if it is di�cult to draw directly independent sam-
ples from a complicated distribution, one can often �nd a way of constructing
a Markov chain whose stationary distribution is the target law so that, after
a su�cient number of iterations, the samples drawn by the MCMC algorithm
follow the distribution of interest. In the context of Bayesian estimation, the
problem reduces to exploring the space from an initial state x(0) according
to a well chosen transition probability T such that the Markov chain admits
the posterior law as the unique equilibrium distribution. In that respect, the
transition probability should obey the following additional conditions:

• Positive recurrence: There is a non-zero probability that we will return
to any state x(t) for all t > 0 an in�nite number of times.

• Irreducibility : For any state of the Markov chain, there is a positive
probability of visiting all other states. Formally, a Markov chain is
said to be π -irreducible if, for all x ∈ D such that π(x) > 0, we have
t(x|y) > 0 for every y ∈ D. In particular, if π is the target invariant
density, the chain is also positive recurrent.

• Aperiodicity : The chain should not get trapped into cycles.
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Under these assumptions, it has been shown that for Px|z almost all x(0)

[Jarner and Hansen, 2000; Tierney, 1994; Meyn and Tweedie, 2012]

lim
t→+∞

∥T (t)(.|x(0))−Px|z(.)∥TV = 0 (2.65)

where ∥.∥TV is the total variation distance de�ned for any signed measures
µ1 and µ2 by:

∥µ1 − µ2∥TV = 2sup
A⊂D

|µ1(A)− µ2(A)|. (2.66)

It is worth noting that a considerable attention has also been paid to
the convergence rate which determines the speed at which the Markov chain
approaches its equilibrium distribution [Gibbs, 2000; Barndor�-Nielsen and
Kluppelberg, 2000; Mengersen and Tweedie, 1996; Brooks and Roberts, 1998;
Roberts and Tweedie, 1996; Roberts et al., 1997; Jarner and Hansen, 2000].
This convergence rate depends on both the target distribution and the choice
of the transition probability. In particular, a Markov chain that converges
to its invariant distribution at a geometric rate is said to be geometrically
ergodic [Kendall, 2004].

In the following, for every positive function V : D → [1,+∞[, we de�ne
the V -norm for any function f as follows

|f |V = sup
x∈D

|f(x)|
V (x)

. (2.67)

The V - distance between two measures µ1 and µ2 is given by:

∥µ1 − µ2∥V = sup
f :|f |V 61

|µ1(f)− µ2(f)| (2.68)

where, for every signed measure µ, µ(f) =
∫
RQ f(y)µ(dy). It can be noted

that the V - distance coincides with the TV distance for V = 1.

De�nition 3.5 Geometric ergodicity [Mengersen and Tweedie, 1996]
The Markov chain with transition probability T and stationary distribution
Px|z is geometrically ergodic if there exist two �nite constants R > 0 and
ρ ∈ (0, 1) and a positive �nite function V : D → [1,+∞[ such that

( ∀t > 0) sup
x(0)∈D

∥T (t)(.|x(0))−Px|z(.)∥V
V (x)

6 Rρt. (2.69)

The main interest in geometric ergodicity is related to the 3 following
facts at least:

• A geometrically ergodic Markov chain allows to achieve accurate sim-
ulation results in �nite time [Johnson, 2009],

• It enables to approach e�ciently integrals by a suitable empirical av-
erage, by relying on the central limit theorem [Jones, 2004],
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• It is required for consistent estimation of Monte Carlo standard errors
[Flegal et al., 2008; Hobert et al., 2002; Jones et al., 2006].

To establish geometric ergodicity, it is common to use Foster-Lyapunov
drift conditions.

De�nition 3.6 Geometric drift
T is said to have geometric drift towards a set S if there exists a function
V : D → [1,+∞[ and constants λ < 1 and β such that

(∀x ∈ D) T V (x) 6 λV (x) + β1S(x) (2.70)

where
(∀x ∈ D) T V (x) =

∫
RQ

t(y|x)V (y)dy. (2.71)

In order to prove the geometric ergodicity, we need the notion of small
sets.

De�nition 3.7 Small sets
A set S ⊂ D is µ-small if there exists a probability measure µ such that:

(∀x ∈ S)(∀B ⊂ D) T (B|x) > µ(B). (2.72)

Theorem 3.8 [Mengersen and Tweedie, 1996]
We assume that T is a π-irreducible, aperiodic transition probability with
invariant distribution Px|z. Then, if T has geometric drift towards a small
set S with drift �nite function V satisfying (2.70) then V satis�es (2.69) i.e.,
the Markov chain with transition probability T is geometrically ergodic.

Convergence inspection of MCMC methods: It can be noted that
a practical issue concerning the use of MCMC methods is the convergence
inspection to determine when we can stop the MCMC run and be certain
that the obtained samples follow the target distribution. Generally, in prac-
tice, we throw away some iterations at the beginning of an MCMC run
which corresponds to the burn-in period. Then, if the latter is long enough
and if the Markov chain is ensured to converge theoretically, all generated
samples after the burn-in period should follow the target distribution. More-
over, other various convergence diagnoses may also be used to test whether
the Markov chain is exploring the target law after the burn-in period [Gel-
man and Shirley, 2011; Cowles and Carlin, 1996; Brooks and Gelman, 1998;
Brooks and Roberts, 1998]. For example, we can rely on the visual conver-
gence inspection such as the trace plots analysis to detect stability which is
known as �the times series plots". Rather than just the values of the target
signal, we can consider the running mean, that is, we compute the mean
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of samples x(iT+1), . . . ,x((i+1)T ) drawn in each period of time T . A time
series plot of the running mean can in many cases be more informative and
consistent than simply the plots of the values of the target parameters. The
convergence is detected when the running means are stabilized at the pos-
terior mean [Smith, 2005]. Others diagnoses are based on the comparison
of samples obtained from the MCMC algorithms for di�erent independent
runs. In this case, convergence is attained when the di�erence between the
statistics such as the mean and the variance of the obtained samples from
these di�erent runs is negligible [Gelman and Rubin, 1992]. It is worthwhile
to note that these diagnostics are only reliably used to detect a lack of con-
vergence but not to prove convergence [Cowles and Carlin, 1996; Brooks,
1996].

After having obtained a set of P samples following the target stationary
distribution at convergence, one may wonder about how much information
we actually have about the target distribution from these samples. In fact, if
there are some correlation between the successive states of the Markov chain,
one may expect that the generated samples do not reveal as much informa-
tion of the posterior distribution as independent samples could provide. In
that respect, it is also recommended to evaluate the quality of the Markov
chain in terms of correlation at convergence. For instance, one can use the
integrated autocorrelation time (ACT) that represents the e�ective number
of dependent samples that is equivalent to a single independent sample. It
is de�ned as follows:

ACT = 1 + 2
+∞∑
i=1

γ(i) (2.73)

where γ(i) is the lag i autocorrelation which de�nes the correlation between
states of the samples distant by i [Geyer, 1992]. Thus, the smaller the ACT,
the better the mixing properties of the chain are. In particular, the e�ective
sample size de�ned by:

ESS =
P

ACT
(2.74)

gives an idea about the number of independent samples that yields the same
estimation than the P generated correlated samples. Note that, for a given
MCMC run, the ACT may di�er from one parameter to another. Alter-
natively, the Mean Squared Jump (MSJ) distance is another indicator of
how well the Markov chain is mixing within the target posterior probability
distribution. It is computed over all the parameters as follows:

MSJ =
(
Ex|z

(
∥x(t+1) − x(t)∥2

))1/2
. (2.75)

Note that maximizing the MSJ is equivalent to minimizing a weighted sum
of the lag 1 autocorrelations [Sherlock et al., 2010].

In the following, we will give two examples of the most commonly used
MCMC methods namely Metropolis Hastings and Gibbs algorithms.
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3.3.2 Metropolis Hastings algorithm

This algorithm has been �rstly introduced by [Metropolis et al., 1953] and
then generalized to a more statistical setting by [Hastings, 1970]. In order
to draw a sample from a target distribution p(x|z), a sample is generated
according to some proposal distribution of density g(.|x(t)) that may depend
on the current state x(t) at each iteration t and should be easy to simulate.
The proposed variable is then accepted or rejected according to an acceptance
probability. The main steps of this method are summarized in Algorithm 2.
Note that, the probability density of moving from a state x to another state

Algorithm 2 Metropolis Hastings algorithm

Initialize: x(0) ∈ RQ

1: for t = 0, 1, . . . , do
2: Generate x̃(t) from the proposal distribution of density g(·|x(t))
3: Acceptance-Rejection:

4: Generate u ∼ U(0, 1)
5: Compute

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)g(x̃(t)|x(t))

p(x(t)|z)g(x(t)|x̃(t))

)

6: if u < α(x(t), x̃(t)) then

7: Accept: x(t+1) = x̃(t)

8: else

9: Reject: x(t+1) = x(t)

10: end if

11: end for

y is given by
m(x,y) = g(y|x)α(x,y) (2.76)

and the probability density of remaining in the same state x is given by:

r(x) =

∫
RQ

g(y|x) (1− α(x,y)) dy. (2.77)

Then, the transition density has the following expression:(
∀ (x,y) ∈ (RQ)2

)
t(y|x) = m(x,y) + r(x)δ(x− y). (2.78)

Thanks to the accept-reject step, the transition probability of density (2.78)
is reversible. Then, Px|z is an invariant distribution of the MH Markov
chain. Furthermore, if the support of the proposal density is large enough
to explore all the domain of the target density (i.e., for every x and y in RQ

such that p(x|z) > 0 and p(y|z) > 0, we have g(x|y) > 0 ), the Markov chain
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is also Px|z-irreducible. Moreover, if there exist x and y in RQ satisfying
p(x|z) > 0 and p(y|z) > 0 such that g(x|y) > 0 and α(x,y) < 1, then there
exists a positive probability such that the chain remains in the state x (i.e.,
r(x) > 0 ). It follows that the Markov chain is also aperiodic [Mengersen and
Tweedie, 1996]. Thereby, samples generated by the MH algorithm follow, at
equilibrium, the distribution of interest.

Similarly to rejection sampling, the target distribution is also needed
to be only known up to a multiplicative factor. However, unlike rejection
sampling, MH algorithms o�er more �exibility on the choice of the proposal
distribution. The only theoretical requirement is that we should be able to
compute the ratio p(x|z)/g(y|x) for all x and y in RQ up to a multiplica-
tive constant. For instance, it is feasible theoretically, to select the proposal
distribution such that p(x|z)/g(y|x) is not bounded. However, when this is
true, the performance of the MH algorithm may be degraded in practice, as
detailed in [Casella et al., 2004]. In particular, independent proposals can be
used where the proposal density does not depend on the past states of the
chain i.e., g(y|x) = g(y), for all x and y in RQ. In this case, MH algorithm
appears as a straightforward generalization of the rejection sampling method
when the independent proposal density is the same as the auxiliary density in
the rejection method. However, the generated samples by the MH algorithm
will involve repeated occurrences of the same value corresponding to the re-
jected states on the chain which results on correlated samples. Reciprocally,
another well common approach for the practical construction of the proposal
is to take the current value of the chain into account to generate the next
state. This amounts to considering a local exploration of the space around
the current state. Thus, at each iteration t, we propose a value according to
the following scheme

x̃(t) = x(t) + ω(t) (2.79)

where ω(t) is a random perturbation independent of x(t). For instance, it
can be drawn from a uniform or Gaussian distribution. In this case, the
proposal density is symmetric and the MH algorithm is referred to as the
random walk [Roberts et al., 1997]. The acceptance probability reads

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)
p(x(t)|z)

)
. (2.80)

It follows that, every move to a more probable state is accepted with prob-
ability 1 while moves to less probable states are accepted with a probability
p(x̃(t)|z)
p(x(t)|z) < 1. In order to increase the acceptance probability and then de-
crease the number of rejected values, one should propose small moves at
each iteration. However, as the newly accepted value depends on the previ-
ous state in the chain through the proposal density, one may instead prefer
high moves in order to have a good mixing behavior and then a fast explo-
ration of the space. The perturbation in the random walk algorithm should
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then be set to �nd the ideal tradeo� between obtaining a large acceptance
probability and good mixing properties of the chain. In the following, we
give an example of applications of MH algorithms.

Example 3.9 Sampling from a B distribution using MH algorithm:
Let us consider Example 3.1. For illustration purposes, we set a = b = 5
and, we propose to use the independent MH sampling algorithm with a uni-
form distribution over [0, 1], which means that the proposal density does not
depend on the past values of the chain. We run the MH algorithm for 6, 000
iterations and discard the �rst 1, 000 as burn-in period. The average accep-
tance probability is 0.49. For the rejection sampling, the acceptance rate is
p = 0.40. In Figure 2.10, we display the trace plot of the last 300 generated
samples by both algorithms, the resulting histograms computed over 5, 000
samples and the autocorrelation function of the samples. It can be noted
that, in this setting, the independent MH algorithm performs very similarly
to the rejection algorithm since both histograms properly approximate the
target density. The only di�erence is that, the generated samples are now
correlated. This correlation originates from the rejected states in the MH
algorithm as there are multiple occurrences of the same value in the sample.

As it has already been discussed in Example 3.1, for a = b = 100, the
rejection algorithm is slow since the acceptance rate is very small (we need
around 11 iterations of the rejection sampling to generate one sample). Sim-
ilarly, when using MH algorithm with uniform proposal over [0, 1], we obtain
an acceptance probability of around 0.11 (which is close to the acceptance
rate of rejection sampling). Therein, we propose to employ random walk
methods with two di�erent proposals. First, we use a uniform distribution
centered on the current value. In this case, a new value is proposed at each it-
eration according to x̃(t) ∼ U

(
x(t) − δ,x(t) + δ

)
where δ > 0. Second, we use

a Gaussian distribution centered on the current state i.e, x̃(t) ∼ N (x(t), ε2)
where ε > 0. We set δ = 0.1 and ε = 0.06 which correspond to an acceptance
probability around 0.5. Figure 2.11 shows that the two proposal distribu-
tions achieve similar results and that the generated samples �t the target
distribution.

In order to study the in�uence of the proposal on the e�ciency of the
sampling process, we compare the samples of the Gaussian random walk run
with two other di�erent values of the tuning parameters ε = (0.001, 0.5) that
achieve acceptance probabilities around (0.99, 0.08) respectively. Figure 2.12
shows the di�erence in the produced chains: Too small or too large moves
(that is, a small or a large value of ε) result in higher correlation and slower
convergence. In fact, in the former case, the Markov chain moves at each
iteration but very slowly, while in the latter, it remains constant over long
periods of time.
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Figure 2.10: Trace Sample, histograms and sample autocorrelation. The
left column corresponds to the Rejection Sampling algorithm, the right one
to independent MH algorithm with Uniform proposal.

As it has been highlighted in Example (3.9), the performance of the MH
algorithm is obviously strongly related to the choice of the proposal distri-
bution. This issue becomes especially critical in large scale problems. In
general, when selecting a proposal in MH algorithms, one should consider
two issues. First, whilst MH algorithms are guaranteed to yield samples
from the target distribution after a su�cient burn-in period, the number
of iterations required to reach convergence can be infeasibly large. Second,
unlike rejection sampling algorithms, the generated samples in convergence
are correlated. This correlation originates from two main sources: the corre-
lation introduced by retaining the same value because the newly generated
value has been rejected and the correlation between successive samples for
non-independent proposals. A poorly mixed chain tends to generate samples
that are highly correlated which lead to an incomplete summary of the tar-
get distribution and highly biased estimators. Consequently, we need more
samples to achieve the same precision as i.i.d methods. In [Roberts and
Rosenthal, 2001], the e�ciency of MH algorithms is discussed with respect
to the acceptance probability. In general, a good proposal should be a good
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Figure 2.11: Trace Sample, histograms and sample autocorrelation using
a random walk. The left column corresponds to the uniform proposal with
δ = 0.1, the right one to the Gaussian proposal with ε = 0.5.

approximation or good local approximation of the target density without
being costly to sample from. In particular, it should re�ect the dependence
structure of the target distribution for large scale problems. In this respect,
a large amount of works has been devoted to construct proposals in MH algo-
rithms in attempt to meet these requirements [Roberts and Tweedie, 1996;
Roberts and Rosenthal, 2009; Stuart et al., 2004; Roberts and Rosenthal,
1998; Vacar et al., 2011; Girolami and Calderhead, 2011; Zhang and Sutton,
2011; Martin et al., 2012; Pillai et al., 2012].

3.3.3 Gibbs sampler

Suppose that, we can decompose x ∈ RQ, into variables or blocks of variables
xi ∈ RQi, 1 6 i 6 R, where

∑R
i=1Qi = Q so that the conditional distribution

of each xi given z and the remaining variables xj , j ̸= i is simple to sample
from. This strategy often leads to important e�ciency gains, particularly if
the involved conditional densities are simpler than the joint density, in the
sense that it is computationally straightforward to draw samples from these
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Figure 2.12: Trace Sample, histograms and sample autocorrelation using
Gaussian Random Walk. The left column corresponds to ε = 0.001, the right
one ε = 0.06.

conditional distributions rather than from the joint law. In this case, the
Gibbs algorithm is a MCMC technique suitable for this task [Casella and
George, 1992; Geman and Geman, 1984]. The idea behind Gibbs sampling
is to generate posterior samples by sweeping through each of these variables
xi ∈ RQi and to sample from its conditional distribution while keeping the
remaining variables �xed to their current values. The main steps are given
in Algorithm 3. The generated Markov chain resulting from concatenating
all these variables admits Px|z as invariant distribution, and thus the sam-
ples produced by the Gibbs sampler follow the desired distribution after a
su�cient burn-in period [Robert, 2013]. MH steps can also be added to this
algorithm. That is, when the full conditional distributions are available and
belong to the family of standard distributions (Gamma, Gaussian, etc.), we
can draw the new samples directly. Otherwise, we can draw samples using
MH steps embedded within the Gibbs algorithm [Gilks et al., 1995]. This is
known as the Hybrid Gibbs sampler. The convergence of the Markov chain
to the desired invariant distribution is also guaranteed [Gilks et al., 1999].
However, this may result in a deterioration of the algorithm convergence
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Algorithm 3 Gibbs Sampler

Initialize: x(0) ∈ RQ

for t = 0, 1, . . . , do

Generate x
(t+1)
1 ∼ P

x1|z,x(t)
2 ,...,x

(t)
R

.

Generate x
(t+1)
2 ∼ P

x2|z,x(t+1)
1 ,x

(t)
3 ,...,x

(t)
R

.
...

Generate x
(t+1)
R ∼ P

xR|z,x(t+1)
1 ,...,x

(t+1)
R−1

.

end for

rate. Note that the Gibbs sampler algorithm is well adapted to hierarchical
Bayesian models where we have more than one unknown variable to be es-
timated (as acquisition parameters, prior parameters and hyperparameters)
[Damlen et al., 1999].

� 4 Approximation methods

4.1 Laplace approximation

This method is based on a local approximation of the target distribution
by a Gaussian distribution around the MAP estimate. Let x̂MAP denotes a
mode of the true posterior distribution. The Laplace approximation is given
by the Gaussian distribution of mode x̂MAP and whose covariance matrix
is given by the inverse of the Hessian matrix of posterior distribution minus
logarithm computed at x̂MAP .

This approximation has several shortcomings. First, the approximate
density requires the computation of the derivatives of the posterior density
logarithm and the inversion of a high dimensional matrix which may become
burdensome for large scale problems. Besides, the second derivatives them-
selves may be intractable to compute. Second, the Gaussian assumption may
not be suitable for example to bounded, constrained, or positive parameters
and multimodal distributions. Furthermore, even if the exact posterior is
unimodal, the approximate distribution may fail to well represent the whole
probability density, as the approximation is only made up locally around the
maximum. The asymptotic error of this approximation was studied in [Kass
and Raftery, 1995].

4.2 Variational Bayes approximation

The variational Bayes approximation (VBA) approach has been �rst intro-
duced in physics [Parisi, 1988]. The idea behind it is to approximate the true
posterior density p(x|z) with another distribution density denoted by q(x)
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which is as close as possible to p(x|z), by minimizing the Kullback-Leibler
divergence between them [�mídl and Quinn, 2005; Pustelnik et al., 2016;
Pereyra et al., 2016; Grimmer, 2010]:

qopt = argmin
q(x)∈Q

KL
(
q(x)∥p(x|z)

)
(2.81)

where Q is a subset of valid densities on x and

KL
(
q(x)∥p(x|z)

)
=

∫
RQ

q(x) log
q(x)

p(x|z)
dx. (2.82)

Since the true posterior density is almost known up to a multiplicative con-
stant, the KL divergence is commonly decomposed as follows:

KL
(
q(x)∥p(x|z)

)
= E(q(x)) + log p(z) (2.83)

where

E(q(x)) =
∫
RQ

q(x) log
q(x)

p(x, z)
dx (2.84)

is known as the Gibbs free energy or variational free energy. Here above,
log p(z) can be seen as a constant that does not depend on q(x). Thus,
the minimization of KL

(
q(x)∥p(x|z)

)
can be replaced by the minimization

of E(q(x)) whose expression only depends on p(x, z) = p(z|x)p(x) without
requiring the computation of the normalization constant, that is

qopt(x) = argmin
q(x)∈Q

E(q(x)). (2.85)

Furthermore, since KL
(
q(x)∥p(x|z)

)
is positive we have:

− log p(z) = E(q(x))−KL
(
q(x)∥p(x|z)

)
6 E(q(x)). (2.86)

It follows that, E(q(x)) is an upper bound of the negative log of the marginal
density of the observation. Thus, in convergence when KL

(
q(x)∥p(x|z)

)
is

nearly zero, E(q(x)) can approximate − log p(z).
Note that KL

(
q(x)∥p(x|z)

)
is positive and it reaches its minimum at

zero for q(x) = p(x|z). However, this is not particularly helpful because the
posterior is generally intractable. Hence, we introduce additional assump-
tions on the approximating density q(x) in order to make inference tractable
while also providing a close approximation to the true density. Note that
one of the main di�culties in the minimization of either (2.81) or (2.85) is
the mutual dependence between di�erent unknowns. In particular, solutions
of such problems become tractable if a suitable factorization structure of
q(x) is assumed. Therefore, the true posterior needs to be approximated by
a separable distribution which facilitates the calculation of the estimators.
That is, we assume that q(x) =

∏R
i=1 qXi(xi) with R 6 Q. When Q = R,
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we have a total separability, otherwise, the separability is partial. Hence,
the optimal density approximation qoptXi

(xi) for each variable xi, is obtained
by minimizing the KL divergence while holding the remaining densities with
the rest of variables �xed. In this case, there exists an optimal solution to
the optimization problem (2.81) for each density (qXi(xi))1≤i≤R, given by
the exponential of the expectation of the joint density with respect to the
distribution of all the unknown parameters except the one of interest i.e.,

(∀i∈{1, . . . , R}) qoptXi
(xi)∝exp

(
⟨log p(z,x)⟩∏

j ̸=i q
opt
Xj

(xj)

)
(2.87)

where
⟨ · ⟩∏

j ̸=i qXj
(xj) =

∫
·
∏
j ̸=i

qXj (xj)dxj . (2.88)

Due to the implicit relationships existing between
(
qoptXi

(xi)
)
1≤i≤R

, an an-

alytical expression of qopt(x) generally does not exist. Usually, these distri-
butions are determined in an iterative way, by updating one of the separable
components (qXi(xi))1≤i≤R while �xing the others [�mídl and Quinn, 2005].
Applications of classical VBA approaches can be found in [Drémeau et al.,
2012; Babacan et al., 2011; Chen et al., 2014; Tramel et al., 2016; McGrory
and Titterington, 2009; Forbes and Fort, 2007] while improved VBA algo-
rithms have been proposed in [Fraysse and Rodet, 2014; Zheng et al., 2015].
Once the approximate distributions are computed, the unknown parame-
ters are then estimated by the means of the obtained distributions. In the
following, we give an example of application of VBA.

Example 4.1 VBA method for the separable approximation of a Gaussian
posterior distribution
Consider the observation model in (2.2), where w = (w)16i6N is Gaussian
noise of unknown variance τ . Then,

p(z|x, τ) = (2πτ)−
N
2 exp

(
− 1

2τ
∥Hx− z∥2

)
. (2.89)

We also suppose that the prior density of x reads:

p(x) = Cγ−
Q
2 exp

(
−γ
2
∥Λx∥2

)
(2.90)

where γ > 0 is the unknown regularization parameter and C > 0 is a constant
independent of γ. We also use a non-informative prior for the unknown
parameters that is,

p(γ) =
1

γ
(2.91)

and
p(τ) =

1

τ
. (2.92)
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It follows that the joint posterior density of x, γ, τ is proportional to

p(x, γ, τ, z) = exp
(
−γ
2
∥Λx∥2

)
exp

(
− 1

2τ
∥Hx− z∥2

)
τ−

N
2
−1γ

Q
2
−1. (2.93)

Let us approximate this true posterior density via VBA method using partial
or total separability.

VBA method using partial separability: We approximate p(x, γ, τ |z)
with another density q(x, γ, τ) such that:

q(x, γ, τ) = qX(x)qΓ(γ)qT (τ). (2.94)

Using (2.87), the density q
(k+1)
X (x) at the iteration k + 1 of the algorithm is

given by

q
(k+1)
X (x) ∝ exp

(
⟨log p(x, γ, τ, z)⟩

q
(k)
Γ (γ)q

(k)
T (τ)

)
∝ exp

(
−⟨τ−1⟩(k)

2
∥Hx− z∥2 − ⟨γ⟩(k)

2
∥Λx∥2

)
(2.95)

where ⟨τ−1⟩(k) =
∫
R τ

−1q
(k)
T (τ)dτ and ⟨γ⟩(k) =

∫
R γq

(k)
Γ (γ)dγ. Then, q(k+1)

X (x)

is the density of a Gaussian distribution with mean m(k+1) and covariance
matrix Σ(k+1) given by

m(k+1) = Σ(k+1)⟨τ−1⟩(k)H⊤z (2.96)

and (
Σ(k+1)

)−1
= ⟨τ−1⟩(k)H⊤H+ ⟨γ⟩(k)Λ⊤Λ. (2.97)

The density q
(k+1)
Γ (γ) is given by

q
(k+1)
Γ (γ) ∝ exp

(
⟨log p(x, γ, τ, z)⟩

q
(k+1)
X (x)q

(k)
T (τ)

)
∝ γ

Q
2
−1 exp

(
−γ
2

⟨
∥Λx∥2

⟩(k+1)
)

(2.98)

where ⟨
∥Λx∥2

⟩(k+1)
=

∫
RQ

∥Λx∥2q(k+1)
X (x)dx

= ∥Λm(k+1)∥2 + trace(Σ(k+1)Λ⊤Λ). (2.99)

(2.98) can be seen as the density of the Gamma distribution of parameters

aγ =
Q

2
(2.100)
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and

b(k+1)
γ =

1

2

(
∥Λm(k+1)∥2 + trace(Σ(k+1)Λ⊤Λ)

)
. (2.101)

It follows that

⟨γ⟩(k+1) =
aγ

b
(k+1)
γ

. (2.102)

Similarly, we have

q
(k+1)
T (τ) ∝ exp

(
⟨log p(x, γ, τ, z)⟩

q
(k+1)
X (x)q

(k+1)
Γ (γ)

)
∝ τ−

N
2
−1 exp

(
− 1

2τ

⟨
∥Hx− z∥2

⟩(k+1)
)

(2.103)

where

⟨
∥Hx− z∥2

⟩(k+1)
=

∫
RQ

∥Hx− z∥2q(k+1)
X (x)dx

= ∥Hm(k+1) − z∥2 + trace(Σ(k+1)H⊤H). (2.104)

(2.103) can be seen as the density of the inverse Gamma distribution of
parameters

aτ =
N

2
(2.105)

and

b(k+1)
τ =

1

2

(
∥Hm(k+1) − z∥2 + trace(Σ(k+1)H⊤H)

)
. (2.106)

It follows that

⟨τ−1⟩(k+1) =
aτ

b
(k+1)
τ

. (2.107)

Note that the parameters of the densities q(k+1)
Γ (γ) and q

(k+1)
T (τ) depend

on the parameters of q(k+1)
X (x). At each iteration, the computation of the

mean of the Gaussian distribution of density q
(k+1)
X (x) can be ful�lled using

an iterative method for solving(
Σ(k+1)

)−1
m(k+1) = ⟨τ−1⟩(k)H⊤z. (2.108)

However, the problem remains in the computation of the covariance matrix.
In [Babacan et al., 2011], the authors propose to approximate it with a
diagonal matrix whose elements are given by the inverse of the diagonal of(
Σ(k+1)

)−1
. However, this may induce errors on the estimation.
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VBA method using total separability: We now assume that

q(x, γ, τ) = qΓ(γ)qT (τ)qX(x) = qΓ(γ)qT (τ)

Q∏
i=1

qXi(xi). (2.109)

Similarly to the partial separability, we can show that by using (2.87), the
approximate distribution of density qXi(xi), for every i ∈ {1, . . . , Q} is a
Gaussian distribution with mean m(k+1)

i and variance (σ2i )
(k+1) given by

m
(k+1)
i = (σ2i )

(k+1)⟨τ−1⟩(k)
([

H⊤z
]
i
−
[
H⊤Hm̃(k+1)

]
i
+ diag

(
H⊤H

)
i
m̃

(k+1)
i

)
− (σ2i )

(k+1)⟨γ⟩(k)
([

Λ⊤Λm̃(k+1)
]
− diag

(
Λ⊤Λ

)
i
m̃

(k+1)
i

)
(2.110)

and

(σ−2
i )(k+1) = ⟨τ−1⟩(k)diag

(
H⊤H

)
+ ⟨γ⟩(k)diag

(
Λ⊤Λ

)
(2.111)

where m̃(k+1) =
[
m

(k+1)
1 , . . . ,m

(k+1)
i−1 ,m

(k)
i ,m

(k)
Q

]⊤
. The optimization of den-

sities qΓ(γ) and qT (τ) is the same as for the partial separability. Since the
covariance matrix of qX(x) is now diagonal, its manipulation is easier than
in the �rst case. However, the total separability approximation may be in-
appropriate when the coe�cients x exhibit high correlation.

It can be noted that VBA methods constitute a powerful tool to com-
pute the MMSE estimator for complicated models by imposing additional
properties to approximate them, in order to make the estimation tractable.
However, very rough approximation of the posterior density may result on
a deterioration of the quality of estimation. Moreover, the VBA procedure
cannot be easily implemented for more complicated priors and likelihood
models since the direct optimization of non standard distributions is not
generally a trivial task.

Conclusion

In this chapter, we have provided an overview of the Bayesian framework
for the resolution of inverse problems in signal processing. In such frame-
work, the unknown signal and the observations are both modeled by two
random variables. The distribution of the observations is related to the di-
rect observation model whereas the prior distribution of the unknown signal
is chosen by the designer. Depending on the amount of information and the
properties of the observation law, the prior distribution can be chosen to be
highly informative, conjugate or non-informative. The posterior distribution
is derived from the prior and the observation models using the Bayes rule.
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Bayesian estimators are then computed from this posterior by minimizing a
given cost function. Among well known Bayesian estimators, we can men-
tion the MAP and the MMSE estimators. While the MAP can be computed
using deterministic minimization algorithms, the derivation of the MMSE
estimator requires to calculate an integral that is in most case intractable.
Therein, stochastic and approximation methods have been proposed to com-
pute such estimator. Table 2.1 summarizes the advantages/drawbacks of the
various methods that we have presented.

Table 2.1: Comparison of the presented Bayesian methods to compute the
MMSE estimator.

Stochastic simulation methods
(in particular MCMC algorithms)

Approximation methods
(in particular VBA algorithm)

• Construct a Markov chain whose
stationary distribution is the pos-
terior law.

• Find a tractable approximation
of the true posterior distribution
that is maximally similar to it.

• Derive inferences via empirical
estimates computed over the sam-
ples in convergence.

• Derive inferences using the ap-
proximate distribution.

7 Computationally expensive. X Relatively faster.

X Asymptotically exact. 7 Approximation errors.

X Flexibility of application. 7 Tractable only for speci�c laws.
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Majorize-Minimize adapted Metropolis

Hastings algorithm

Metropolis Hastings (MH) algorithms are currently the most popular sim-
ulation techniques for producing samples from posterior probabilities when
direct sampling is not trivial. They consist of building a Markov chain de-
�ned by a proposal density and a rejection-acceptance rule whose stationary
distribution is the desired posterior law. The asymptotic states of the con-
structed chain are then considered as samples from the target distribution.
However, the choice of the proposal distribution is crucial as it impacts the
statistical properties of the resulting Markov chain especially for complicated
and high-dimensional target distributions. The proposal density should ide-
ally provide an accurate approximation of the target density with a low
computational cost. This problem is often tackled in an empirical manner.
However, it is also possible to determine theoretically an optimal proposal
scaling [Roberts and Rosenthal, 2001] or to use adaptive algorithms in order
to �nd local approximation of the target distribution automatically [Atchadé,
2006]. One typical algorithm is the Random Walk (RW) algorithm whose
adaptive proposal law takes the form of a Gaussian distribution centered at
the current state [Roberts et al., 1997]. The popularity of this algorithm is
mainly related to its simplicity of implementation. However, the RW usually
takes too many steps to reach stability for high dimensional models. Fur-
thermore, slow convergence together with bad mixing behavior could make
the Markov chain more likely to get trapped into some regions and thus fail
to explore e�ciently the whole target space.

As the dimension and the complexity of inference problems have dra-
matically increased, the design of improved proposal scheme providing large
proposal transitions that are accepted with high probability, is required. In-
tuitively, the proposal density should take advantage of the local properties
of the target distribution to accelerate the exploration of regions with high
probability values. In this work, we are interested in proposals based on the
Euler discretization of the Langevin stochastic di�erential equation where
the drift term accounts for the slope and curvature of the target law. In
particular, we propose a preconditioned version of the standard Metropolis
Hastings adapted Langevin algorithm using an adaptive matrix based on a
Majorize-Minimize strategy.

55
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This chapter is organized as follows: In Section 1, we formulate the
problem and we give a brief overview of the Langevin di�usion process. In
Section 2, we describe the new Majorize-Minimize adapted MH algorithm.
In section 3, a particular attention is paid to the convergence proof of the
proposed algorithm. Section 4 is devoted to experimental results.

� 1 Problem statement and related work

1.1 Langevin di�usion

A Q-dimensional Langevin di�usion is a continuous time Markov process
(x(t))t∈R+

with values in RQ de�ned as the solution of the following stochas-
tic di�erential equation [Roberts and Stramer, 2002]:

dx(t) = b(x(t))dt+V(x(t))dB(t), x(0) = x(0) (3.1)

whereV(x(t)) ∈ RQ×Q is the volatility matrix, (B(t))t>0 ∈ RQ is a Brownian
motion and b(x) = (bi(x))

Q
i=1 is the drift term, de�ned as follows:

(∀i ∈ {1, . . . , Q}) bi(x) =
1

2

Q∑
j=1

Aij(x)
∂ log π(x)

∂xj

+ |A(x)|
1
2

Q∑
j=1

∂

∂xj

(
Aij(x)|A(x)|−

1
2

)
(3.2)

whereA(x) = V(x)V(x)⊤ is a symmetric de�nite positive matrix and |A(x)|
denotes its determinant. Note that the process is stationary and π is the den-
sity of the stationary distribution of the di�usion i.e., if a state x(t0) follows
the distribution of density π, all subsequent states x(t0 + τ), τ > 0 also fol-
low this same distribution. Thereby, when π(.) = p(.|z), one can construct
a Langevin Markov chain whose stationary law is the target posterior dis-
tribution. In the following, we set π(.) = p(.|z) which amounts to assuming
that the posterior density is di�erentiable with respect to x.

The Langevin di�usion describes a dynamic in time, as a continuous
variable. However, one can still approximate this equation by discretizing
time. This is done by splitting the time interval into a series of smaller
intervals of length ∆t = ε2. The smaller the value of ε is, the closer the
approximation to the dynamic in continuous time. There are numerous
procedures that have been developed for time discretization. We focus here
on the Euler 's discretization. Then, the Langevin di�usion reads

(∀t ∈ N) x(t+1) = x(t) + ε2b(x(t)) + εA1/2(x(t))ω(t+1) (3.3)

where ε > 0 is the stepsize resulting from the Euler's discretization and
ω(t) ∈ RQ is a realization of zero-mean white noise with covariance matrix
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IQ. The scheme (3.3) is referred to as the Unadjusted Langevin Algorithm
(ULA) [Roberts and Tweedie, 1996]. Due to the discretization error, the
Markov chain following the ULA scheme may behave di�erently from the
di�usion process resulting from (3.2). In particular, it may sway away from
the target stationary distribution as pointed out in [Roberts and Tweedie,
1996; Girolami and Calderhead, 2011]. This discrepancy can be corrected by
adding a Metropolis acceptance probability at each iteration to guarantee
the reversibility of the chain with respect to the posterior distribution. The
resulting sampler can be seen as a MH algorithm where g(.|x(t)) is the density
of a Gaussian distribution with mean x(t) + ε2b(x(t)) and covariance matrix
ε2A(x(t)). Note that the convergence properties have been also studied for
some variants of ULA in [Roberts and Tweedie, 1996; Durmus and Moulines,
2015; Durmus et al., 2016].

It is worth noting that two scale parameters play an important role: ε
determines the length of the proposed jumps whereas the scale matrix A
controls the direction. Various classes of algorithms have been developed
from this di�usion model depending on the choice of A.

1.2 Choice of the scale matrix

The standard Metropolis adjusted Langevin algorithm (MALA) is the sim-
plest form of di�usion (3.3) when A equals IQ [Roberts and Tweedie, 1996]:

(∀t ∈ N) x(t+1) = x(t) +
ε2

2
∇ log p(x(t)|z) + εω(t+1). (3.4)

It can be proved that the MALA sampling algorithm has Px|z as its station-
ary distribution and is more likely to accept proposed values than a standard
RW. Indeed, the gradient information of the target distribution allows the
chain to be guided toward regions of higher probability, where most of the
samples should lie and hence, it enables to achieve high acceptance rates.
As a consequence, the MALA algorithm explores the invariant distribution
much faster than the standard RW [Roberts and Rosenthal, 2001; Breyer
et al., 2004]. Moreover, it should be noted that a bad adjustment of ε
can signi�cantly a�ect the convergence rate especially for high dimensional
problems [Pillai et al., 2012]. For this reason, many methods have focused
on how to choose a suitable stepsize such that the asymptotic average ac-
ceptance rate is bounded away from zero for high dimensions [Pillai et al.,
2012; Roberts and Rosenthal, 1998]. Despite these improvements, when the
variables of interest are strongly correlated with widely di�ering variances,
MALA algorithm fails to explore e�ciently the target space. In fact, since
the third term of the MALA algorithm is an isotropic Brownian motion, the
discretization stepsize ε in such parameter space, is generally constrained
to take very small values in order to promote the directions with smallest
variances which results in a slow convergence of the algorithm, poor mixing
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of the chain and highly correlated samples [Girolami and Calderhead, 2011].
The performance of MALA algorithm may be improved by introducing a
scale matrix A [Roberts and Stramer, 2002]. Some approaches have been
proposed to accelerate the algorithm by preconditioning the proposal density
with a constant scale matrix [Stuart et al., 2004]. Such algorithms propose
samples according to the following scheme:

(∀t ∈ N) x(t+1) = x(t) +
ε2

2
A∇ log p(x(t)|z) + εA1/2ω(t+1). (3.5)

Whereas the step size ε can easily be tuned with respect to the asymptotic
acceptance rate, there is no clear guiding strategies for the selection of the
constant matrix in the absence of some knowledge about the moments of the
target density which are supposed to be unknown. Furthermore, the use of
the same preconditioning matrix in the whole algorithm may be ine�cient
since optimal scaling of the burn-in period may di�er from that of the sta-
tionary phase [Christensen et al., 2005]. Therefore, rather than employing a
�xed global scale matrix in the proposal density, a position dependent ma-
trix should be employed to take into account the local structure of the target
density at each state of the Markov chain. In that respect, many algorithms
[Atchadé, 2006; Martin et al., 2012; Zhang and Sutton, 2011; Bui-Thanh
and Ghatas, 2012; Girolami and Calderhead, 2011; Vacar et al., 2011] rely
on adaptive procedures whereA is tuned automatically according to the past
behavior of the Markov chain resorting to some deterministic optimization
tools. For example, when setting A to the inverse of the Hessian matrix of
− log p(x|z) and, assuming a locally constant curvature, the term involving
the derivatives of the scale matrix in (3.2) reduces to zero. Consequently, a
new sample is drawn from:

(∀t ∈ N) x(t+1) = x(t)+
ε2

2
A(x(t))∇ log p(x(t)|z)+εA1/2(x(t))ω(t+1) (3.6)

where A−1(x) = −∇2 log p(x|z) that is for all i ∈ {1, . . . , Q}, for all j ∈

{1, . . . , Q},
[
A−1

]
i,j

(x) = −∂
2 log p(x|z)
∂xi∂xj

. Consequently, the computation

of the drift term b becomes a scaled Newton step for minimizing − log p(x|z).
Thus, a new sample of the Newton-based MCMC is more likely drawn from a
highly probable region and then more likely accepted, which can speed up the
convergence of the sampling process [Martin et al., 2012; Zhang and Sutton,
2011; Bui-Thanh and Ghatas, 2012]. Note that, in practice, this method has
a high computational load since it requires the computation of the full Hes-
sian matrix and its inverse at each iteration. This is particularly critical for
large scale problems and/or when the Hessian matrix is not positive de�nite.
One appealing solution is to replace the Hessian by a scale matrix that pro-
vides similar information than the Hessian with a lower computational cost.
In particular, many methods have proposed the Fisher information matrix
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as a preconditioning matrix in the Langevin di�usion [Girolami and Calder-
head, 2011; Vacar et al., 2011] which can be interpreted as the discretization
of the MALA algorithm directly on the natural Riemannian manifold where
the parameters live. In this work, we propose a new approach where the scale
matrix of the Langevin di�usion is chosen according to a Majorize-Minimize
strategy.

� 2 Proposed algorithm

2.1 Majorize-Minimize Framework

The majorization-minimization (MM) principle is a powerful tool for design-
ing algorithms to solve optimization problems. The idea behind the MM
approach is to replace a complicated minimization problem with successive
minimizations of some well chosen surrogate functions [Hunter and Lange,
2004]. These functions are called tangent majorants.

De�nition 2.1 Tangent majorant
Let x′ ∈ RQ. A function f is said to be a tangent majorant function of J
at x′ provided that{

P1 : f(x
′,x′) = J (x′),

P2 : f(x
′,x) > J (x) (∀x ∈ RQ).

(3.7)

Let x(0) be an arbitrary initial value and
(
x(t)
)
t∈N the sequence constructed

according to:
x(t+1) = argmin

x∈RQ

f(x(t),x). (3.8)

According to the majorization properties (3.7), the scheme (3.8) will produce
a monotically decreasing sequence (J (x(t)))t∈N that converges to a local
minimum of J . In fact, we have

J (x(t)) =
(a)
f(x(t),x(t)) >

(b)
f(x(t),x(t+1)) >

(c)
J (x(t+1)) (3.9)

where (a) holds from the tangency property P1, (b) from the minimization
step (3.8) and (c) from the majorization property P2 (see Figure 3.1).

The performance of the MM algorithm depends crucially on the surrogate
function f . In particular, it has to be chosen so that its minimizer is easy
to compute. A simple choice is a quadratic function. Let us assume the
existence, for every x′ ∈ RQ, of a positive de�nite matrix Q(x′) ∈ RQ×Q

such that the following quadratic function, de�ned for every x ∈ RQ, by

f(x′,x) = J (x′) + (x− x′)⊤∇J (x′) +
1

2
(x− x′)⊤Q(x′)(x− x′), (3.10)
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Figure 3.1: MM algorithm: the new iterate x(t+1) is the minimizer of the
tangent majorant f(x(t), .) of J in x(t).

is a tangent majorant of J at x′. Then, the MM optimization algorithm
reduces to building a sequence (x(t))t∈N through the following scheme:

(∀t ∈ N) x(t+1) = x(t) − ε2

2
Q−1(x(t))∇J (x(t)) (3.11)

with ε ∈ (0,
√
2] is a relaxation stepsize. Note that (3.11) implies that

inequality (b) in (3.9) is satis�ed, remarking that 2ε−2Q(x′) ≽ Q(x′), for
every x′ ∈ RQ and every ε ∈ (0,

√
2].

2.2 Proposed sampling algorithm

In this work, we propose to extend the idea behind the MM strategy to
the context of sampling algorithms. More speci�cally, the idea is to push
the proposal distribution of the MH algorithm at each iteration from the
current state to a region with high density value. Contrary to the RW
where the proposal is centered on the current state, we propose to pick
the mean of the proposal density using a step of an MM search with form
(3.11) and then to explore the space around this center according to the
MM curvature matrix Q(xt) that should well describe the local curvature of
the target distribution. This results in a preconditioned Langevin proposal
where the scale matrixA in (3.2), equal to the inverse of the curvature matrix
Q(xt), is constructed from the MM strategy. Similarly to Newton-based
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MCMC methods, the drift term, when assuming zero curvature changes,
proposes, from a current state x(t), a state with a higher value of log p(x|z),
resulting from an iteration of MM algorithmminimizing J (x) = − log p(x|z).
Consequently, the obtained proposal reduces to a noisy version of an MM
iteration for minimizing − log p(x|z). The proposed sample is then subjected
to the accept/reject rule of the MH algorithm. The resulting 3MH sampler
is described by Algorithm 4.

Algorithm 4 Majorize-Minimize adapted Metropolis�Hastings algorithm

Initialize: x(0) ∈ RQ, ε ∈ (0,
√
2]

1: for t = 0, 1, . . . do
2: Generate

x̃(t) ∼ N
(
x(t) +

ε2

2
Q−1(x(t))∇ log p(x(t)|z), ε2Q−1(x(t))

)

3: Acceptance-Rejection:

4: Generate u ∼ U(0, 1)
5: Compute

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)g(x̃(t)|x(t))

p(x(t)|z)g(x(t)|x̃(t))

)

where g(.|v) ∝ |Q(v)|
1
2 exp

(
− 1

2ε2
∥.− v − ε2

2 Q
−1(v)∇ log p(v|z)∥2Q(v)

)
6: if u < α(x(t), x̃(t)) then

7: Accept: x(t+1) = x̃(t)

8: else

9: Reject: x(t+1) = x(t)

10: end if

11: end for

Recall that the metric Q is the precision matrix of the Gaussian proposal
distribution which makes the choice of Q crucial for the e�ciency of the
sampling algorithm. The matrix Q(x(t)) at each iteration t should be chosen
such that (3.10) is a tangent majorant to the minus logarithm of the posterior
density at the current state x(t), that is it should satisfy the properties in
(3.7). Furthermore, it should provide a good approximation of the local
curvature of the posterior distribution. Let x′ ∈ RQ. Any symmetric positive
de�nite matrix verifying for every x ∈ RQ, Q(x′) ≽ −∇2 log p(x|z), de�nes
the curvature of a quadratic tangent majorant of − log p(x|z) at x′. In the
following, we propose a general procedure for building such a set of suitable
preconditioning matrices {Q(x)}x∈RQ under some mild conditions about the
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posterior distribution.

2.3 Construction of the tangent majorant

We focus on the case when minus-log of the target density function J (x) =
− log p(x|z) can be expressed up to an additive constant as:

(∀x ∈ RQ) J (x) = Φ(Hx− z) + Ψ(Vx) (3.12)

where z ∈ RN , H ̸= 0N×Q ∈ RN×Q and

Ψ(Vx) =
S∑

s=1

ψs(∥Vsx− cs∥) (3.13)

with V = [V⊤
1 , . . . ,V

⊤
S ]

⊤ and (∀s ∈ {1, ..., S}) Vs ∈ RPs×Q, cs ∈ RPs and
(ψs)16s6S is a set of nonnegative continuous functions. Note that this form
of posterior density is frequently encountered in inverse problems where z is
the observation, Φ is the data �delity term and Ψ is the minus logarithm
of the prior density de�ned according to some linear operators V1, . . . ,VS .
For instance, V may be a matrix computing the horizontal and vertical dis-
crete gradient (or higher order di�erences) between neighboring pixels useful
for edge preserving in image restoration problems. In this case, by setting
Ps = 1 and ψs(.) = |.|, we recover the anisotopic total variation while for
Ps = 2 and ψs equals to ℓ2 norm, we obtain the isotropic total variation
(see chapter 2). Another important choice, is the analysis frame regular-
ization where V is a frame of RQ. For example, V1 may be the operator
that computes low frequency wavelet coe�cients and ψ1 a function enforcing
smooth solutions while the remaining operators give the high frequency ones
that can be well described using suitable heavy tailed functions ψs such as
the ℓpp penalties for p < 1, the Cauchy or the Bernoulli-Gaussian models.
As Langevin based algorithms require the use of di�erentiable regulariza-
tions, one can use smoothed approximations of these functions that have
a quadratic behavior near 0 [Allain et al., 2006; Charbonnier et al., 1997;
Lange, 1990; Zibulevsky and Elad, 2010].

We further make the following assumptions:

1. Φ is a continuous coercive di�erentiable function with an L-Lipschitzian
gradient, that is(

∀u ∈ RN
) (

∀v ∈ RN
)

∥∇Φ(u)−∇Φ(v)∥ 6 L∥u− v∥, (3.14)

2. (∀s ∈ {1, ..., S}) ψs is a di�erentiable function,

3. (∀s ∈ {1, ..., S}) ψs(
√
·) is concave over R+,



2. Proposed algorithm 63

4. (∀s ∈ {1, ..., S}) (∃ ω̄s > 0) such that (∀u > 0) 0 6 ψ̇s(u) 6 ω̄su and
lim
u→0

ψ̇s(u)/u <∞.

The �rst requirement holds for a large number of data �delity terms. This
includes for example the Gaussian noise model, the Huber function which has
shown its e�ciency compared to the quadratic one for limiting the in�uence
of outliers encountered in some observed data [Huber, 2011], the Cauchy
model [Antoniadis et al., 2002], and the signal-dependent Gaussian model
generally used as a second order approximation of mixed Poisson-Gaussian
noise [Repetti et al., 2012] as well as the exact Poisson-Gaussian likelihood
[Chouzenoux et al., 2015]. More examples can be found in [Chouzenoux
et al., 2013]. Furthermore, Assumptions 2-4 are satis�ed for several com-
monly used prior models such as ST , SMG, GMEP distributions (see Chap-
ter 2) as well as smoothed approximation of ℓpp regularization functions for
p 6 2 and ℓ2−ℓ0 penalties (asymptotically constant with a quadratic behav-
ior near 0) used to approximate the ℓ0 pseudo-norm [Veksler, 1999; Ganan
and McClure, 1985; Dennis Jr and Welsch, 1978; Chouzenoux et al., 2013].1

Under Assumptions 1-4, convex quadratic tangent majorants of (3.12)
can be obtained by setting [Chouzenoux et al., 2013]

(∀x ∈ RQ) Q1(x) = µH⊤H+V⊤Diag{ω(x)}V + ζ IQ (3.15)

where µ ∈ [L,+∞[, V =
[
V⊤

1 , . . . ,V
⊤
S

]⊤ and ω = [ω1, . . . , ωP ]
⊤ is such

that, for all s ∈ {1, . . . , S}, p ∈ {1, . . . , Ps}

ωP1+P2+...+Ps−1+p(x) =
ψ̇s(∥Vsx− cs∥)
∥Vsx− cs∥

. (3.16)

Moreover, ζ > 0 is a constant that ensures the invertibility of Q1(x) for
every x ∈ RQ.

The numerical e�ciency of the proposed algorithm relies on the use of
quadratic majorants that provide tight approximations of the target density
but also whose curvature matrices are simple to compute. However, sampling
from the proposal constructed by the MM strategy when using the curvature
matrix (3.15) is often very di�cult because of the high computational cost of
each iteration and/or the memory limitations. In fact, similarly to Newton
MCMC samplers, the main computational cost is related to the computation
of the inverse of (3.15) and sampling from the associated high-dimensional
Gaussian distribution at each iteration. In the following, we will propose
alternative choices of the curvature matrix, when the manipulation of matrix
(3.15) is intractable.

1Again, improper prior laws are tolerated provided that the resulting posterior distri-
bution is proper.
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Constant curvature matrix: We can resort to the following constant
curvature matrix which can be seen as a constant majorant of (3.15) with
respect to x:

(∀x ∈ RQ) Q2(x) = µH⊤H+ max
16s6S

(ω̄s)V
⊤V + ζIQ. (3.17)

It can be noted that in the special case, when H is circulant and V⊤V = IQ
which is the case for example when V is a tight frame analysis operator,
then Q2 is easily invertible in the Fourier domain. More generally, when H
and V can be diagonalized in the same domain, the inverse and the square
root decomposition of (3.17) can be easily performed in this domain.

Diagonal curvature matrix: We also propose the following alternative
choice described in [Chouzenoux et al., 2014], which can be understood as a
diagonal approximation of (3.15):

(∀x ∈ RQ) Q3(x) = (µ∥H∥2 + ζ)IQ +Diag
(
P⊤ω(x)

)
(3.18)

where P ∈ RP×Q, with P =
∑

s Ps, is the matrix whose elements are given
by

(∀i ∈ {1, . . . , P})(∀j ∈ {1, . . . , Q}) Pi,j = |Vi,j |
Q∑

k=1

|Vi,k|. (3.19)

� 3 Convergence analysis

In this section, we address the convergence properties of the proposed al-
gorithm. Similarly to [Atchadé, 2006], we will make the following technical
assumption about the drift term:

b(x) =
ε2

2
Q−1(x)D(x) (3.20)

where D(x) is the truncated gradient de�ned by

D(x) =
d

max(d, ∥∇ log p(x|z)∥)
∇ log p(x|z) (3.21)

with d > 0. Note that, the drift term (3.20) is equivalent to the one in
Algorithm 4 for large values of d.

We further make the following assumptions:

Assumption 3.1 p(.|z) is continuous and p(x|z) > 0, for every x ∈ RQ.
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Remark 3.1 If (ψs)s∈{1,...,S} and Φ are continuous and take �nite values,
then Assumption 3.1 holds.

Assumption 3.2 p(x|z) is the density of a super-exponential distribution
that is p(x|z) is positive and has continuous �rst derivatives such that

lim
∥x∥→+∞

⟨
x

∥x∥
, ∇ log p(x|z)

⟩
= −∞. (3.22)

Assumption 3.3 We have

lim
∥x∥→

sup
+∞

⟨
x

∥x∥
,

∇ log p(x|z)
∥∇ log p(x|z)∥

⟩
< 0. (3.23)

Remark 3.2 In the particular case when Φ(.) = ∥.∥2 in (3.12), Assumptions
3.2 and 3.3 are satis�ed if one of the following properties holds:

• H is injective, for example H = IQ which is the case for denoising
problems,

• There exists s0 ∈ {1, . . . , S} such that

� Ker(H) ∩Ker(Vs0) = {0Q},
� lim

t→+∞
ψ̇s0(t) = +∞,

� for every s ∈ {1, . . . , S} \ {s0}, we have lim
t→+∞

ψ̇s(t)

ψ̇s0(t)
< +∞.

Proof. Let x ∈ RQ. We have

∇J (x) = H⊤ (Hx− z) +
S∑

s=1

V⊤
s (Vsx− cs)

ψ̇s(∥Vsx− cs∥)
∥Vsx− cs∥

. (3.24)

Then

∥∇J (x)∥ 6 ∥H∥∥Hx− z∥+
S∑

s=1

∥Vs∥ψ̇s(∥Vsx− cs∥) (3.25)

6 ∥H∥∥Hx− z∥+
S∑

s=1

ω̄s∥Vs∥∥Vsx− cs∥. (3.26)

We have

x⊤∇J (x) = ∥Hx∥2 +
S∑

s=1

∥Vsx∥2
ψ̇s(∥Vsx− cs∥)
∥Vsx− cs∥

+ h(x) (3.27)
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where

h(x) = −x⊤

(
H⊤z+

S∑
s=1

V⊤
s cs

ψ̇s(∥Vsx− cs∥)
∥Vsx− cs∥

)
. (3.28)

Assume that H is injective. According to (3.24), we have

x⊤∇J (x)

∥x∥
> ∥Hx∥2

∥x∥
+
h(x)

∥x∥

=
∥Hx∥2

∥x∥
+O(1). (3.29)

Then, Assumption 3.2 is satis�ed. Moreover, using (3.26), we have

x⊤∇J (x)

∥x∥∥∇J (x)∥
> ∥Hx∥2 + h(x)

∥x∥
(
∥H∥∥Hx− z∥+

S∑
s=1

ω̄s∥Vs∥∥Vsx− cs∥
)

=
∥Hx∥2

∥x∥
(
∥H∥∥Hx− z∥+

S∑
s=1

ω̄s∥Vs∥∥Vsx− cs∥
) + o(1).

(3.30)

So that, Assumption 3.3 also holds.
Similar arguments allow to derive the results in the case when H is not

injective.

Assumption 3.4 For every x ∈ RQ, the preconditionning matrix Q(x) has
a bounded spectrum i.e., there exist two constants νmin > 0 and νmax > 0
independent of x such that(

∀x ∈ RQ
)
νmaxIQ ≽ Q(x) ≽ νminIQ. (3.31)

Remark 3.3 Assumption 3.4 holds for all curvature matrices proposed in
Section 2.3 provided that ζ > 0. Furthermore, Assumption 3.4 together with
(3.21), imply that the drift term b is bounded that is:

(
∀x ∈ RQ

)
∥b(x)∥ 6 ε2

2
ν−1
mind. (3.32)
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Subsequently, under Assumptions 3.1-3.4 and using the expression in
(3.21), we address the geometric ergodicity of the proposed algorithm based
on the results concerning RW in [Jarner and Hansen, 2000] and by adapting
the proofs in [Roberts and Tweedie, 1996; Atchadé, 2006; Schreck et al.,
2016]. Since the algorithm appears as a special case of the MH algorithm, the
chain

(
x(t)
)
t∈N constructed by the 3MH algorithm has Px|z as an invariant

distribution that is (2.62) is satis�ed for f∗(.) = p(.|z) and t(.|z) equals to
(2.78). The �rst important step of the proof of geometric ergodicity is to
compare the proposal density g to Gaussian proposals.

Proposition 3.4 There exist (k1, k2, σ1, σ2) ∈ (R∗
+)

4 such that(
∀(x,y) ∈ (RQ)2

)
k1n(y;x, σ

2
1IQ) 6

(a)
g(x|y) 6

(b)
k2n(y;x, σ

2
2IQ) (3.33)

where n(.;x, σ2i IQ), is the density of the Gaussian distribution of mean x and
variance σ2i IQ, i ∈ {1, 2}.

Proof. Let x ∈ RQ and µ(x) = x+
ε2

2
Q−1(x)D(x) , we have

− log g(x|y) = 1

2ε2
∥y − µ(x)∥2Q(x) −

1

2
log |Q(x)|+ Q

2
log(2πε2). (3.34)

From Assumption 3.4, we obtain

νmin∥y − µ(x)∥2 6 ∥y − µ(x)∥2Q(x) 6 νmax∥y − µ(x)∥2, (3.35)

and
νQmin 6 |Q(x)| 6 νQmax. (3.36)

On the other hand, by using (3.21) and the triangle inequality, we have

∥y − x∥ 6 ∥y − µ(x)∥+ ∥µ(x)− x∥,

6 ∥y − µ(x)∥+ ε2

2
ν−1
mind. (3.37)

By using Jensen inequality, it follows that

∥y − x∥2 6 2

(
∥y − µ(x)∥2 + ε4

4
ν−2
mind

2

)
. (3.38)

Similarly, we have

∥y − µ(x)∥ 6 ∥y − x∥+ ∥µ(x)− x∥,

6 ∥y − x∥+ ϵ2

2
ν−1
mind. (3.39)
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Then

∥y − µ(x)∥2 6 2

(
∥y − x∥2 + ε4

4
ν−2
mind

2

)
. (3.40)

It follows from (3.35), (3.38) and (3.40) that

νmin

4ε2
∥y − x∥2 − ε2d2

8νmin
6 1

2ε2
∥y − µ(x)∥2Q(x) 6

νmax

ε2
∥y − x∥2 + ε2νmaxd

2

4ν2min

.

(3.41)
Then, using (3.34), (3.36) and (3.41), Proposition 3.4(a) holds for

k1 =

(
νmin

2νmax

)Q
2

exp

(
−ε

2νmaxd
2

4ν2min

)
σ21 =

ε2

2νmax

and Proposition 3.4(b) is satis�ed for

k2 =

(
2νmax

νmin

)Q
2

exp

(
ε2d2

8νmin

)
σ22 =

2ε2

νmin
.

Corollary 3.5 For every (x,y) ∈ (RQ)2, we have g(x|y) > 0 and g(y|x) >
0.

Theorem 3.6 Under Assumption (3.1)-(3.4), the Markov chain de�ned by
the 3MH algorithm using the truncated gradient (3.21) is geometrically er-
godic with stationary distribution Px|z.

Proof. From Algorithm 4 and Corollary 3.5, g is positive and continuous.
Since p(.|z) is also positive and continuous, we can deduce that the chain is
aperiodic and p(x|z)- irreducible with unique invariant distribution Px|z.

Assumptions 3.2 and 3.3 have already been introduced in [Jarner and
Hansen, 2000] as su�cient conditions for the geometric ergodicity of the RW
algorithm. It has also been shown that under these assumptions, the MALA
algorithm with truncated gradient (3.21) is geometrically ergodic [Atchadé,
2006]. Since the drift term of the proposed algorithm is bounded with a
truncated gradient, the geometric ergodicity property can be deduced by a
straightforward adaptation of the proof in [Atchadé, 2006] for MALA algo-
rithm with truncated drift. Note that this convergence proof is valid for any
preconditioned MALA algorithm provided that the preconditioning metric
has a bounded spectrum.
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� 4 Experimental results

We are interested in the deconvolution of a seismic signal x̄ of length Q =
784. This sparse signal is composed of a sequence of spikes called primary
re�ection coe�cients [Walden and Hosken, 1986; Repetti et al., 2015] as
depicted in Figure 3.3. These coe�cients give information about the travel
time of seismic waves between two seismic re�ectors, and the amplitude of the
seismic events re�ected back to the sensor. The signal is degraded according
to the observation model de�ned in (2.2) where H is a circulant blur matrix
and w is a Gaussian noise of variance σ2.
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Figure 3.2: Original signal.

4.1 Prior and posterior distributions

In order to promote the signal sparsity, we suppose that its coe�cients are in-
dependent and identically distributed according to a ST distribution. Then,
we can identify the following functions:

Φ(Hx− z) =
1

2σ2
∥Hx− z∥2 (3.42)

and

Ψ(x) =
ν + 1

2

Q∑
i=1

log

(
γ2 +

(xi − µ)2

ν

)
(3.43)

where ν > 0 is the number of degrees of freedom determining the shape of the
distribution, µ is the position parameter and γ > 0 is the scale parameter.
Note that the Cauchy distribution is a particular case when ν = 1. The
ST distribution has been often used in image reconstruction to model the
distribution of the wavelet coe�cients [Chantas et al., 2008]. This penalty
has already been introduced in [Hebert and Leahy, 1989] as a compromise
between the ℓ2 norm and the non-convex approximation of the semi-norm ℓ0
presented in [Geman and McClure, 1987] to enforce the sparsity of the signal
and better preserve discontinuities. Recall that the ST distribution can be
written as a scale mixture of normal distribution where the hidden variable
follows a gamma distribution with both parameters equal to ν/2. In most
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Bayesian methods, it is generally used in this form: the unknown signal x
and the hidden variable are estimated from their posterior joint distribution.
In this work, we propose to directly use the expression de�ned in (3.43).

In the following, we assume that ν is known, but we have only few prior
information about the others parameters. Therefore, we use uniform distri-
butions for µ and γ de�ned in [−µm, µM ] and [γm, γM ] respectively where
µm, µM , γm et γM are positive constants. Thus, the posterior distributions
of the parameters are given by

p(µ|x, γ) ∝
Q∏
i=1

(
γ2 +

(xi − µ)2

ν

)− ν+1
2

1[−µm,µM ](µ),

p(γ|x, µ) ∝ γQν
Q∏
i=1

(
γ2 +

(xi − µ)2

ν

)− ν+1
2

1[γm,γM ](γ).

Since Φ and Ψ satisfy the properties in Section 2.3, we propose to use
3MH algorithm to sample from the posterior distribution of x. More specif-
ically, we aim to test the performance of 3MH algorithms using the di�erent
proposed curvature matrices namely Q1, the constant circulant matrix Q2

and the diagonal matrix Q3 de�ned in this application by

(∀x ∈ RQ) Q1(x) =
1

σ2
H⊤H+ diag{ω(x)}+ ζIQ, (3.44)

Q2 =
1

σ2
H⊤H+

ν + 1

νγ2
IQ, (3.45)

(∀x ∈ RQ) Q3(x) = Diag
(

1

σ2
P⊤1Q + ω(x)

)
, (3.46)

such that ω(x) = (ωi(x))1≤i≤Q where

(∀i ∈ {1, . . . , Q}) ωi(x) =
ν + 1

νγ2 + (xi − µ)2
(3.47)

and

(∀i ∈ {1, . . . , N}) (∀j ∈ {1, . . . , Q}) Pi,j = |Hi,j |
N∑
k=1

|Hk,j |. (3.48)

Note that ζ > 0 is a constant added to ensure the positive de�niteness of
the matrix Q1. It is worth noting that if H is injective, the 3MH algorithm
is geometrically ergodic.

The posterior laws of the ST prior parameters do not have usual forms.
Then, it is not easy to directly generate samples of µ and γ. We propose
therefore to estimate them using a RW algorithm whose scale parameter is
tuned automatically during the burn-in period so as to reach an acceptance
probability equals 0.33.
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4.2 Results

The test signal is arti�cially degraded by a band-pass �lter of size 41 with
a frequency spectrum concentrated between 10 and 40 Hz and an additive
Gaussian noise of variance σ2 = 2.5 × 10−3 (see Figure 3.3). The initial
signal-to-noise ratio (SNR) is −4.58 dB. We �x ν = 1 which corresponds to
the special case of the Cauchy prior. Figure 3.4 shows the error between the
original signal and the degraded one as well as the error between the original
signal and the restored one using the MMSE estimator which correspond to
an SNR equal to 8.24 dB.
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Figure 3.3: Degraded signal (top). Blurring kernel (bottom).
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Figure 3.4: Error x̄− z (top). Error x̄− x̂ (bottom).
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We propose to compare the convergence speed of 3MH algorithm us-
ing the di�erent curvatures matrices Q1, Q2, and Q3 with the standard
MALA algorithm. Thus, we run these algorithms until convergence. The
discretization stepsize ε is adjusted for all these algorithms during the burn-
in period to correspond to an acceptance probability between 0.3 and 0.6.
Note that in order to reduce the complexity of each iteration when using
Q = Q1, the inversion of the curvature matrix is replaced by a conjugate
gradient algorithm and the generation of random variables according to the
proposal is ensured using the sampling method from [Orieux et al., 2012].
Figure 3.5 shows the evolution of J with respect to time. Following [Atchadé,
2006], we also compare the di�erent methods in terms of the mean square
jump (MSJ) in stationarity de�ned in (2.75) which indicates how much the
Markov chain is exploring the whole target space in convergence. Note that
MSJ has been estimated with an empirical average over P = 5, 000 samples
x(t0+1), . . . ,x(t0+P ) generated after the burn-in period as follows

MSJ =

(
1

P − 1

P−1∑
t=1

∥x(t0+t) − x(t0+t+1)∥2
)1/2

. (3.49)

In Table 3.1, we show estimates of the mean square jump per second in
stationarity which is de�ned as the ratio of the mean square jump and the
computational time per iteration. We also compare the statistical e�ciency
of the di�erent samplers with respect to MALA de�ned as the mean square
jump per second of each sampler over the mean square jump per second of
MALA.
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Figure 3.5: Convergence speed of MALA, 3MH - Q1, 3MH - Q2 and 3MH - Q3.

One can notice that the behavior of 3MH algorithm using the constant
curvature matrix Q2 is close to that of MALA in terms of convergence speed
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Table 3.1: Mixing results for the di�erent proposed algorithms. First row:
Estimates of the mean square jump in stationarity. Second row: Time per
iteration in stationarity. Third row: Estimates of the mean square jump per
second in stationarity. Fourth row: E�ciency relatively to MALA.

MALA 3MH-Q1 3MH-Q2 3MH-Q3

MSJ 1.40 e-5 8.14 e-5 1.39 e-5 2.32 e-5
T (s.) 3.88 e-4 9.40 e-2 1.19 e-3 5.95 e-4
MSJ/T 3.60 e-2 8.65 e-4 1.17 e-2 3.89 e-2
E�ciency 1 0.02 0.32 1.08

and MSJ. This can be explained by the low dispersion of the eigenvalues of
Q2 in this example. The addition of an adaptive preconditioning matrix in
MALA allows us to reach areas of high probability in fewer number of it-
erations and increase the MSJ which indicates better mixing of the Markov
chain in convergence. Nevertheless, the use of the matrix Q1 at each it-
eration becomes more expensive as the problem dimension increases which
deteriorates the e�ciency of the algorithm. Thus, the choice of the diagonal
adaptive matrix Q3 appears to achieve the best compromise between these
di�erent algorithms due to the low complexity that it induces at each itera-
tion. It allows to reach stability much faster than the other algorithms while
achieving mixing properties comparable to MALA at convergence.

Conclusion

In this work, we have proposed a new MCMC algorithm that can be consid-
ered as a scaled MALA where the scale matrix is adapted at each iteration
with a MM strategy. We have shown that the geometric ergodicity property
of the standard Langevin MH algorithms is maintained by introducing this
scale matrix for the class of sub-exponential distributions. We have then
applied this algorithm to compute the MMSE estimator of a sparse signal
from its blurred version using a ST prior distribution. Experimental results
indicate the satisfactory performance of this new MCMC method compared
to the standard MALA algorithm. Note that another example, maybe more
striking, of the good performance o�ered by the 3MH algorithm, will be
provided in Section 3 in Chapter 4.





- Chapter 4 -

An Auxiliary Variable Method for MCMC

algorithms

High dimensional models, often encountered in inverse problems, present a
challenging task for Bayesian inferences. While many popular MCMC sam-
pling algorithms have been widely used to �t complex multivariable models
in small dimensional spaces, they generally fail to explore the target distri-
bution e�ciently when applied to large scale problems. This is mainly due
to the poor mixing properties of the Markov chain or to the high cost of each
iteration.

In this chapter, we propose a method for Bayesian sampling in large
scale problems. Our approach is a special case of data augmentation type
strategies [Van Dyk and Meng, 2012] allowing to overcome the limitations
of standard sampling algorithms.

The remainder of this chapter is organized as follows. In Section 1, we
discuss the main di�culties encountered in standard sampling algorithms for
large scale problems and how adding auxiliary variables to the model can
alleviate these issues. The core of our contribution is detailed in Section 2.
We �rst give a complete description of the proposed approach in the case of a
Gaussian noise and we study its extension to scale mixture of Gaussian mod-
els. Furthermore, we demonstrate how the proposed approach can facilitate
sampling from Gaussian distributions in Gibbs algorithms. Then, some com-
putational issues, arising in the proposed Bayesian approach, are discussed.
Sections 3 and 4 are devoted to the experimental validation of our method.
First, we show the advantages of the proposed approach in dealing with high
dimensional models involving highly correlated variables over a dataset of
multispectral images a�ected by blur and additive Gaussian noise. Second,
we test the performance of our method in sampling from large scale Gaussian
distributions with an application to image recovery under two-terms mixed
Gaussian noise.

75
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� 1 Motivation

1.1 Sampling issues in high dimensional space

MCMC sampling methods may face two main di�culties when applied to
large scale inverse problems. First, the structure of the observation model
that links the unknown signal to the observations can make the evaluation
of the parameters of the posterior distribution very expensive mainly be-
cause of the observation matrix. Second, even with common models, the
resulting posterior distribution may be di�cult to sample from directly or to
explore e�ciently using standard sampling algorithms. As speci�c cases, this
problem emerges either in high dimensional Gaussian distribution sampling
or in MH algorithms especially when constructing e�cient proposals that
cope with both the high dimensionality and the strong correlation existing
between the target parameters.

Sampling from high dimensional Gaussian distribution: Suppose
that we are interested in sampling from a multivariate Gaussian distribu-
tion with a given precision matrix G ∈ RQ×Q. This problem emerges in
many applications such as linear inverse problems involving Gaussian or hi-
erarchical Gaussian models. In fact, let us consider the linear model in
(2.2) and assume that conditionally to some latent variables, w and x are
drawn from Gaussian distributions N (0N ,Λ

−1) and N (mx,G
−1
x ) respec-

tively where mx ∈ RQ and Λ ∈ RN×N and Gx ∈ RQ×Q are semi-de�nite
positive matrices.1 The parameters of these Gaussian distributions may be
either �xed or unknown i.e., involving some unknown hyperparameters such
as regularization or acquisition parameters. It follows that the posterior dis-
tribution of x is Gaussian with mean m and precision matrix G where m
and G are de�ned as follows:

G = H⊤ΛH+Gx (4.1)

m = G−1
(
H⊤Λz+Gxmx

)
. (4.2)

A common solution is to use the Cholesky factorization of the covariance
or the precision matrix [Rue, 2001]. However, when implemented through a
Gibbs sampler, this method is of a limited interest. First, the precision ma-
trix G may depend on the unknown parameters of the model and may thus
take di�erent values along the algorithm. Thereby, spending such computa-
tional time at each iteration of the Gibbs sampler to compute the Cholesky
decomposition of the updated matrix may reduce the convergence speed of

1In the following, when not mentioned, the Gaussian law can be degenerate that is,
the precision matrix is semi-de�nite positive but not full rank. In this case, (···)−1 denotes
the pseudo inverse.
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the Gibbs sampler. Another concern is that, when dealing with high di-
mensional problems, we have generally to face not only computational com-
plexity issues but also memory limitations. Such problems can be alleviated
when the matrix presents some speci�c structures (e.g., circulant [Geman
and Yang, 1995; Chellappa and Chatterjee, 1985] or sparse [Rue and Held,
2005]). However, for more complicated structures, the problem remains crit-
ical especially when H⊤ΛH and Gx cannot be diagonalized in the same do-
main. Other recently proposed algorithms are based on two-step approaches
named Perturbation-Optimization [Bardsley, 2012; Papandreou and Yuille,
2010; Orieux et al., 2012; Gilavert et al., 2015; Parker, 2012; Féron et al.,
2016], which can be summarized as follows

• Perturbation: Draw a Gaussian random vector n1 ∼ N (0Q,G).

• Optimization: Solve the linear system Gn2 = n1 +H⊤Λz+Gxmx.

The solution to the linear system can be computed using iterative meth-
ods such as conjugate gradient algorithms leading to an approximate sample
[Papandreou and Yuille, 2010; Orieux et al., 2012]. This issue has been con-
sidered in [Gilavert et al., 2015] by adding a Metropolis step in the sampling
algorithm. In [Parker, 2012; Féron et al., 2016], the authors propose to re-
duce the computational cost by sampling along mutually conjugate directions
instead of the initial high dimensional space.

Designing e�cient proposals in MH algorithms: Non-Gaussian mod-
els arise in numerous applications in inverse problems [Lasanen, 2012; Bach
et al., 2012; Kamilov et al., 2012; Kolehmainen et al., 2012]. In this context,
the posterior distribution is non-Gaussian and does not generally belong to
common probability models. In this respect, MH algorithms are good tools
for exploring such posteriors and hence for drawing inferences about models
and parameters. However, the challenge for the MH algorithm is to construct
a proposal density that simultaneously provides a good approximation of
the target density while being inexpensive to manipulate. Typically, in large
scale problems, the proposal distribution takes the form of a random walk,
that is, at each iteration, the proposal density g(.|x(t)) is a Gaussian centered
at the current state x(t) and with covariance matrix Q(x(t)). Other sampling
algorithms are improved by incorporating information about the derivative
of the logarithm of the target distribution to guide the Markov chain to-
ward the target space where most of samples should be concentrated. For
example, in Langevin-based algorithms, the mean of the Gaussian proposal
density is replaced with one iteration of a preconditioned gradient descent
algorithm. However, it is worth noting that the choice of the scale matrix
Q may deeply a�ect the e�ciency of these algorithms. In fact, an inappro-
priate choice of Q may alter the quality of the Markov chain leading to very
correlated samples and thereby biased estimates. Moreover, computationally
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cheap matrices are also preferred especially in high dimensional spaces. In
contrast, in the case of low dimensional problems and when the coe�cients
of the signal are not highly correlated, the standard RW and MALA algo-
rithms de�ned for Q ≡ IQ achieve generally good results. For instance, in
the context of denoising problems with uncorrelated Gaussian noise, when
the coe�cients of the signal are assumed to be statistically independent in
the prior law, they can be either sampled independently using RW or jointly
by resorting to MALA. However, these algorithms may be not accurate for
large scale problems especially when the coe�cients of the signal exhibit high
correlations. In this case, the design of a good proposal often requires consid-
ering the curvature of the target distribution. More sophisticated (and thus
more computationally intensive) scale matrices should be chosen to guide
the chain in the directions that re�ect the dependence structure. Optimally,
the curvature matrix should be chosen such as it adequately captures two
kinds of dependencies: correlation over the observations speci�ed by the ob-
servation model and, correlation between di�erent coe�cients of the target
signal speci�ed by the prior law. When the minus-log of the target density
can be expressed as in (3.12), good candidates of the curvature matrix take
the following form:

Q = H⊤ΛH+V⊤ΩV (4.3)

where Λ and Ω are semi-de�nite positive matrices. Feasible numerical fac-
torization of Q can be ensured if H⊤ΛH and V⊤ΩV are diagonalizable in
the same domain. Otherwise, the use of such matrix remains generally of
limited interest especially for large scale problems where the manipulation of
the resulting proposal generally induces a high computational complexity at
the expense of the convergence speed. Alternatively, under mild conditions
about the posterior density, MM strategy o�ers a large �exibility for building
curvatures matrices with a lower computational cost (e.g., diagonal matri-
ces, bloc-diagonal matrices, circulant...) as it has already been presented in
Chapter 3. However, MH algorithms with too simple preconditioning matri-
ces resulted from rough approximations of the posterior density may fail to
explore the target space e�ciently. Therefore, the scale matrix Q should be
adjusted to achieve a good tradeo� between the computational complexity it
induced in the algorithm and the accuracy and the closeness of the proposal
to the true distribution.

It can be noted that the main di�culty arising in the last two sampling
problems is mainly related to the presence of heterogeneous types of depen-
dencies between the coe�cients of the signal. These dependencies may come
either from the likelihood or from the prior information. In fact, the operator
H in the likelihood may cause high dependencies between coe�cients in a
very wide neighborhood even if the coe�cients of the signal are supposed to
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be statistically independent in the prior law. The problem can be treated
in another domain where H can be easily diagonalized i.e., the coe�cients
of the signal become uncorrelated in the likelihood. However, when we take
into account the prior dependencies, this strategy becomes ine�cient espe-
cially when the prior covariance matrix cannot be diagonalized in the same
domain as H which is the case of most real problems. One should therefore
treat these two sources of correlations separately. One appealing idea is to
eliminate one of these sources of correlation directly related to x by adding
some auxiliary variables.

1.2 Auxiliary variables and data augmentation strategies

Indeed, to improve the mixing of sampling algorithms, many works have
proposed to add some auxiliary variables to the initial model with a given
conditional distribution such that simulation can be performed in a sim-
pler way in the new larger space. Instead of simulating directly from the
initial distribution, a Markov chain is constructed by alternately drawing
samples from the conditional distribution of each variable which reduces to
a Gibbs sampler in the new space. This technique has been used in two
di�erent statistical literatures: data augmentation [Tanner and Wong, 1987]
and, auxiliary variables strategies [Mira and Tierney, 1997]. It is worthwhile
to note that the two methods are equivalent in their general formulation
and the main di�erence is often related to the statistical interpretation of
the auxiliary variable (unobserved data or latent variable) [Van Dyk and
Meng, 2012]. In the following, we will use the term Data Augmentation
(DA) to refer to any method that constructs sampling algorithms via in-
troducing auxiliary variables. Some DA algorithms have been proposed in
[Robert, 2013; Doucet et al., 2005; Févotte et al., 2011; Giovannelli, 2008;
David, 1997; Hurn, 1997; Damlen et al., 1999]. A speci�c attention has been
turned towards the Hamiltonian MCMC (HMC) approach [Duane et al.,
1987; Girolami and Calderhead, 2011], that de�nes auxiliary variables based
on physically inspired dynamics.

In the following, we propose to alleviate the problem of heterogeneous
dependencies by resorting to DA strategy. More speci�cally, we propose
to add some auxiliary variables u ∈ RJ to the model with a prede�ned
conditional distribution of density p(u|x, z) = p(u|x) such that the minus
logarithm of the joint distribution density p(x,u|z) can be written as follows:

J (x,u) = J (u|x) + J (x) (4.4)

where J (u|x) = − log p(u|x) up to an additive constant. Hence, two condi-
tions should be satis�ed by p(x,u|z) as requirements for the DA strategy:

1-
∫
RJ p(x,u|z) du = p(x|z);

2-
∫
RQ p(x,u|z) dx = p(u|z),
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where p(u|z) should de�ne a valid probability density function (positive and
with integral with respect to x equal to 1). In fact, the importance of the
�rst condition is obvious because the latent variable is only introduced for
computational purposes and should not alter the considered initial model.
The need of the second requirement stems from the fact that p(x,u|z) should
de�ne the density of a proper distribution. Note that the �rst condition is
satis�ed thanks to the de�nition of the joint distribution in (4.4) provided
that p(u|x, z) is a density of a proper distribution (positive and with integral
with respect to u equal to 1). For the second condition, it is su�cient
to choose p(u|x, z) such that p(x|u, z) remains a valid probability density
function.

Instead of simulating directly from Px|z, we now draw alternatively sam-
ples from the conditional distributions of the two variables x and u of densi-
ties Px|u,z and Pu|x,z in an arbitrary order. This simply reduces to a special
case of an hybrid Gibbs sampler algorithm with two variables where each
iteration t is composed of two sampling steps which can be expressed as
follows:

• Sample u(t+1) from Pu|x(t),z;

• Sample x(t+1) from Px|u(t+1),z.

Under the required conditions [Geman and Geman, 1984; Gilks et al., 1999],
the constructed chain

(
x(t),u(t)

)
t>0

has as stationary distribution Px,u|z.
The usefulness of DA strategy is mainly related to the fact that with an

appropriate choice of p(u|x, z), drawing samples from the obtained condi-
tional distribution Px|u,z and Pu|x,z is much easier than sampling directly
from the initial distribution Px|z. Moreover, the manipulation of p(u|x, z)
must not induce a high computation cost in the algorithm. In this work,
we propose to add auxiliary variables u to the model such that the depen-
dencies resulting from the likelihood and the prior will be separated, that
is, J (u|x) is chosen in such a way that only one source of correlations re-
mains related directly to x in p(x,u|z), the other sources of correlations
will only intervene through the auxiliary variable u and z. Note that, half
quadratic approaches [Idier, 2001; Ciuciu and Idier, 2002; Geman and Yang,
1995; Geman and Reynolds, 1992; Champagnat and Idier, 2004; Nikolova
and Ng, 2005] had already motivated the introduction of auxiliary variables
in optimization or sampling algorithms. For instance, a similar approach
had already been proposed in [Bect et al., 2004] in the case of uncorrelated
Gaussian noise with covariance matrix σ2IN and was used in some varia-
tional applications for image restoration. Moreover, this technique has been
adopted to facilitate sampling using classical MH algorithm and Gibbs sam-
pler in the maximum likelihood estimation approach proposed in [Cavicchioli
et al., 2013]. Similarly, in [Ciuciu, 2000], the prior distribution has been re-
placed with a new one involving additional variables based on half-quadratic
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formulation and inferences have been deduced according to the new resulting
posterior distribution.

In this work, we propose a new formulation of the method introduced in
[Bect et al., 2004] and we extend it to more general models and sampling
algorithms. In the following, we will consider some examples and discuss
how this approach can be applied.

� 2 Proposed approach

2.1 Correlated Gaussian noise

We consider the linear observation model in (2.2) and we focus on the case
when the noise w is additive, independent from the signal and Gaussian
that is w ∼ N (0N ,Λ

−1) where Λ ∈ RN×N is a known semi-de�nite positive
precision matrix.

Hence, the minus logarithm of the posterior density has typically the
following form:

J (x) =
1

2
(Hx− z)⊤Λ (Hx− z) + Ψ(Vx) (4.5)

where Ψ(Vx) = − log p(x) and V is a linear transform operator that can
correspond for example to a frame analysis or to a discrete gradient matrix
(see Chapter 2).

Simulating directly from this distribution is generally not possible and
standard MCMC methods may fail to explore it e�ciently due to the de-
pendencies between signal coe�cients [Girolami and Calderhead, 2011]. In
particular, the coupling induced by the matrix H⊤ΛH may hinder the con-
struction of suitable proposals when using MH algorithms. For example,
when V = IQ and Ψ(x) =

∑Q
i=1 ψi(xi), MALA and RW algorithms may

behave poorly as they do not take into account data �delity dependencies
while Langevin algorithms with complicated curvature matrices may have
high computational load due the presence of heterogeneous dependencies
[Marnissi et al., 2015] (See Chapter 3).

In the following, we propose to eliminate the coupling induced by hetero-
geneous operators by adding auxiliary variables. As the data �delity term
is Gaussian, a natural choice of p(u|x, z) is the Gaussian distribution with
mean Ax and covariance matrix C:

p(u|x, z) = det(C)−1/2

(2π)J/2
exp

(
−1

2
∥C−1/2 (u−Ax) ∥2

)
(4.6)

where C ∈ RJ×J is a positive de�nite covariance matrix and A ∈ RJ×Q.
Note that, since p(x|z) is positive and integrable with respect to x and
p(u|x, z) is bounded with respect to x, the product p(u|x, z) p(x|z) remains
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integrable with respect to x. Then, the joint distribution satis�es the two
conditions de�ned in Section 1 and its minus logarithm has the following
expression:

J (x,u) =
1

2
x⊤
(
H⊤ΛH+A⊤C−1A

)
x

+
1

2

(
z⊤Λz+ u⊤C−1u− 2x⊤

(
H⊤Λz+A⊤C−1u

))
+Ψ(Vx). (4.7)

From (4.7), we can identify two sources of correlations directly related to
the target signal. The �rst one comes from the �rst term through H⊤ΛH+
A⊤C−1A and the second one comes from the prior information through the
operator V (and possibly additional correlation related for example to the
non-separability of Ψ).

Let us de�ne
Y = H⊤ΛH+A⊤C−1A. (4.8)

The key point is to set A and C such that Y has a simple structure. Note
also that Y−H⊤ΛH = A⊤C−1A should be a semi-de�nite positive matrix.
Actually, the choice of the auxiliary variable and, hence, Y is subjective and
is related to specifying the source of heterogeneous dependencies that one
wants to eliminate in the target distribution with respect to the properties of
H, Λ, V and Ψ. More speci�cally, one should identify if the main di�culty
comes either from the matrix H⊤ΛH or only from the precision matrix Λ.

Alternative I: Eliminate the coupling induced by Λ
This problem is encountered for example for Model (4.1) with circulant

matricesH andGx and with Λ ̸= IN which induces further correlation when
passing to the Fourier domain. Hence, one can eliminate the correlations
induced by Λ by setting

Y =
1

µ
H⊤H (4.9)

where µ > 0 is such that µ∥Λ∥ < 1. This is equivalent to choosing A and C
such that

A⊤C−1A = H⊤
(
1

µ
IN −Λ

)
H. (4.10)

Hence, the minus logarithm of the conditional distribution of x given z and
u reads up to an additive constant:

J (x|u) = 1

2µ
∥Hx∥2 − x⊤

(
H⊤Λz+A⊤C−1u

)
+Ψ(Vx). (4.11)

In addition, it can be noted that we do not need to compute directly the
auxiliary variable u as it is not the variable of interest. In the Gibbs sampling
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algorithm, the auxiliary variable u(t) at each iteration t only intervenes in
the product A⊤C−1u(t) in (4.11). According to (4.6), we have:

A⊤C−1u(t) = A⊤C−1Ax(t) +A⊤C−1/2n(t) (4.12)

where n(t) ∼ N (0J , IJ). Since A and C satisfy (4.10), we obtain

A⊤C−1u(t) = H⊤
(
1

µ
IN −Λ

)
Hx(t) +A⊤C−1/2n(t). (4.13)

Note that A⊤C−1/2n(t) follows the centered Gaussian distribution with co-

variance matrix H⊤
(
1

µ
IN −Λ

)
H. Let Γ =

1

µ
IN −Λ. It follows that

A⊤C−1u(t) = H⊤v(t) (4.14)

where
v(t) ∼ N

(
ΓHx(t),Γ

)
. (4.15)

Then, the minus logarithm of the conditional distribution of x given z and
the new auxiliary variable v is given by

J (x|v) = 1

2µ
∥Hx− µ (Λz+ v) ∥2 +Ψ(Vx). (4.16)

The main steps of the proposed Gibbs sampling algorithm are given in Algo-
rithm 5. The appealing advantage of this algorithm with respect to a Gibbs
sampler which would be applied directly to Model (4.1) when H and Gx are
diagonalizable in the same domain, is that it allows to easily handle the case
when Λ is not equal to a diagonal matrix having identical diagonal elements.

Algorithm 5 Gibbs sampler with auxiliary variables in order to eliminate
the coupling induced by Λ.

Initialize: x(0) ∈ RQ, v(0) ∈ RN , µ > 0 such that µ∥Λ∥ < 1
1: for t = 0, 1, . . . do
2: Generate v(t+1) ∼ N

(
ΓHx(t),Γ

)
where

Γ =
1

µ
IN −Λ

3: Generate x(t+1) ∼ Px|v(t+1),z

4: end for

Note that, minimizing (4.16) can be seen as a restoration problem with
an uncorrelated noise of variance µ. Step 3 in Algorithm 5 can be more easily
implemented in the transform domain where H and V are diagonalized (see
Section 4 for example).
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Alternative II: Eliminate the coupling induced by H⊤ΛH
In most real problems, H andV have di�erent properties. WhileH almost

represents a blur, a projection or a decimation matrix, V may model a
wavelet transform, discrete di�erences, which makes the posterior covariance
matrix have a complicated form. In such cases, one can eliminate the source

of correlations related to x throughH⊤ΛH+A⊤C−1A, by settingY =
1

µ
IQ,

so that A and C satisfy

A⊤C−1A =
1

µ
IQ −H⊤ΛH (4.17)

where µ > 0 is such that µ∥H⊤ΛH∥ < 1.
It follows that the minus logarithm of the conditional distribution of x

given z and u is de�ned up to an additive constant as follows:

J (x|u) = 1

2µ
∥x∥2 − x⊤

(
H⊤Λz+A⊤C−1u

)
+Ψ(Vx). (4.18)

Similarly, we propose to use the following change of variables:

v(t) = A⊤C−1u(t).

According to (4.17), we obtain

v(t) =

(
1

µ
IQ −H⊤ΛH

)
x(t) +A⊤C−1/2n(t) (4.19)

where n(t) ∼ N (0J , IJ). Let Γ =
1

µ
IQ−H⊤ΛH. Since A⊤C−1/2n(t) follows

a zero-mean Gaussian distribution with covariance matrix Γ, then

v(t) ∼ N
(
Γx(t),Γ

)
(4.20)

and the new target conditional distribution reads

J (x|v) = 1

2µ
∥x− µ

(
v +H⊤Λz

)
∥2 +Ψ(Vx). (4.21)

The proposed Gibbs sampling algorithm in this case is summarized in Algo-
rithm 6.

Note that in (4.21), the two operators re�ecting the correlation between
the coe�cients of the target signal induced from the likelihood and the prior
are now dissociated. Correlations from the likelihood are no longer related
directly to the target signal but to the auxiliary variable v and the observa-
tion z. The original problem reduces to solving a denoising problem where
the variance of the Gaussian noise is µ. Thereby, the new target distribution
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Algorithm 6 Gibbs sampler with auxiliary variables in order to eliminate
the coupling induced by H⊤ΛH.

Initialize: x(0) ∈ RQ, v(0) ∈ RQ, µ > 0 such that µ∥H⊤ΛH∥ < 1
1: for t = 0, 1, . . . do
2: Generate v(t+1) ∼ N

(
Γx(t),Γ

)
where

Γ =
1

µ
IQ −H⊤ΛH

3: Generate x(t+1) ∼ Px|v(t+1),z

4: end for

(4.21) is generally simpler to sample from compared to the initial one. In
the particular case when the coe�cients of the signal are uncorrelated in
the prior law, one can sample them independently. Otherwise, when Ψ is
a smooth function, one can use a Langevin-based MCMC algorithm. For
instance, it is possible to construct an e�cient curvature matrix that takes
into account the prior correlation and that can be easily manipulated.

It is worth noting that the auxiliary variable can be introduced in the
data �delity term as well as in the prior information. The derivation of
the proposed method in (4.7) allows us to identify classes of models for
which our approach can be extended. Obviously, the key requirement is
that the term which should be simpli�ed can be written as a quadratic
function with respect to some variables. Hence, without completely relaxing
the Gaussian requirement, we can extend the proposed method to Gaussian
models in which some hidden variables control the mean and/or the variance.
This includes for example scale mixture of Gaussian models [Andrews and
Mallows, 1974; West, 1987] such as the alpha-stable family (including the
Cauchy distribution), the Bernoulli Gaussian model and the Generalized
Gaussian distributions, and also Gaussian Markov random �elds [Geman and
Geman, 1984]. In Section 2.2, we will investigate the case of scale mixture
of Gaussian models.

In particular, when both the likelihood and the prior distribution are
Gaussian conditionally to some parameters, the proposed method can be
applied to each term. In Section 2.3, we will propose a Gibbs algorithm to
address the problem of sampling from high dimensional Gaussian distribu-
tions.

Note that another step should be added to the Gibbs algorithm to sample
the auxiliary variable v. In Algorithm 5, it su�ces to sample from the

Gaussian distribution with covariance matrix
(
1

µ
IN −Λ

)
. In Algorithm 6,

we should be able to sample from the Gaussian distribution whose covariance
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matrix is of the form
(
1

µ
IQ −H⊤ΛH

)
, which is possible for a large class

of observation models as it will be discussed in Section 2.4.

2.2 Scale mixture of Gaussian noise

2.2.1 Problem formulation

Let us consider the following observation model:

(∀i ∈ {1, . . . , N}) zi = [Hx]i + wi (4.22)

such that, for every i ∈ {1, . . . , N},{
wi = 0 if σi = 0

wi ∼ N (0, σ2i ) if σi > 0
(4.23)

where (σ1, . . . , σN ) are independent realizations of a random variable in R+

distributed according to Pσ. Di�erent forms of the mixing distribution Pσ

lead to di�erent noise statistics. In particular, the Cauchy noise is obtained
when σ21, . . . , σ

2
N are realizations of a random variable following an inverse

Gamma distribution. Let σ = [σ1, . . . , σN ]⊤. The joint posterior density of
x and σ is given by:

p(x,σ|z) = p(x|σ, z)p(σ). (4.24)

In such a Bayesian inverse problem, a Gibbs sampling algorithm is generally
adopted to sample alternatively from the distributions Px|σ,z and Pσ|x,z.

In the following, we assume that the set S0 = {σ1 = σ2 = . . . = σN = 0}
has a zero probability given the vector of observations z, i.e.,

∫
S0

N∏
i=1

p(σi|zi)dσi = 0. (4.25)

Note that by imposing (4.25), we ensure that, at each iteration t of the Gibbs
algorithm, σ(t) ̸= 0N .

Since sampling from Px|σ,z is supposed to be intractable, we propose to
add auxiliary variables v ∈ RJ that may depend on the variables of interest
x and σ according to a given conditional distribution density p(v|x,σ, z) =
p(v|x,σ) which satis�es the following conditions:

1-
∫
RJ p(x,σ,v|z)dv = p(x,σ|z).

2-
∫
RQ

∫
RN p(x,σ,v|z) dxdσ = p(v|z),
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where p(v|z) should be a valid probability density function.
The �rst property is satis�ed since p(x,σ,v|z) = p(x,σ|z)p(v|x,σ, z)

provided that p(v|x,σ, z) is a density of a proper distribution (positive and
with integral with respect to v equal to 1). The second property means
that P(x,σ|v, z) should de�ne a proper distribution, that is, p(x,σ,v|z)
has to be integrable with respect to x and σ. It follows that the initial two
step-Gibbs iteration is replaced by the following three sampling steps. First,
sample v(t+1) from Pv|x(t),σ(t),z then sample x(t+1) from Px|σ(t),v(t+1),z and
�nally sample σ(t+1) from Pσ|x(t+1),v(t+1),z.

2.2.2 Proposed algorithms

At each iteration t of the Gibbs sampler, let D(t) be the diagonal matrix
whose elements are given by:

(∀i ∈ {1, . . . , N}) D
(t)
ii =

 0 if σ(t)i = 0(
σ
(t)
i

)−2
if σ(t)i > 0.

(4.26)

Note that from (4.25), we have:

∥D(t)∥ > 0. (4.27)

• Suppose �rst that there exists a constant ν > 0 such that

(∀t > 0) (∀i ∈ {1, . . . , N}) ν 6 σ
(t)
i . (4.28)

Then, results in Section 2.1 with a Gaussian noise can be extended to
scale mixture of Gaussian noise by setting at each iteration t, Λ = D(t),
µ < ν2 in Algorithm 5 and µ∥H⊤H∥ < ν2 in Algorithm 6. The only
di�erence is that an additional step must be added to the Gibbs algorithm
to draw samples of the mixing variables σ1, . . . , σN from their conditional
distributions given x, v and z.

• Otherwise, when ν > 0 satisfying (4.28) does not exist, results in Section
2.1 remain also valid when, at each iteration t, for a given value of σ(t), we
replace Λ by D(t). There are two di�erences. The �rst di�erence is that µ
depends on the value of the mixing variable σ(t) and hence takes di�erent
values throughout the algorithm. Subsequently, µ(t) will denote the value
of µ in each iteration t of the Gibbs sampler. The second di�erence is
that another step is added to sample the mixing variables σ1, . . . , σN from
their distributions conditioned to x, v and z.

Alternative I: Eliminate the coupling induced by D(t).

At each iteration, µ(t) > 0 is chosen such that µ(t)∥D(t)∥ < 1 and the
auxiliary variable is drawn from

v(t) ∼ N
(
Γ(t)Hx(t+1),Γ(t)

)
(4.29)
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where Γ(t) =
1

µ(t)
IN −D(t).

The minus logarithm of the posterior density p(x|σ,v, z) is given by

J (x|σ,v) = 1

2µ
∥Hx− µ (v +Dz) ∥2 +Ψ(Vx), (4.30)

where µ and D are related to σ.

Alternative II: Eliminate the coupling induced by H⊤D(t)H
Similarly, in order to eliminate the coupling induced by the matrixH⊤D(t)H

, µ(t) is chosen at each iteration t so as to satisfy µ(t)∥H⊤D(t)H∥ < 1. Then,
the auxiliary variable is drawn from

v(t) ∼ N
(
Γ(t)x(t+1),Γ(t)

)
(4.31)

where Γ(t) =
1

µ(t)
IQ −H⊤D(t)H.

The minus logarithm of the posterior density p(x|σ,v, z) is given by

J (x|σ,v) = 1

2µ
∥x− µ

(
v +H⊤Dz

)
∥2 +Ψ(Vx). (4.32)

It is worth noting that in (4.29) and (4.31), the mixing variable σ(t)

at each iteration t is presented implicitly through D(t) and also µ(t) which
makes σ and v two random variables dependent conditionally to x and z. In
the following, we will give a su�cient condition on the choice of µ(t), under
which, p(x,σ,v|z) still de�nes the density of a proper distribution.

Proposition 2.1 Suppose that, at each iteration t, the auxiliary variable fol-
lows (4.29) with µ(t) = ϵ∥D(t)∥−1 (respectively (4.31) with µ(t) = ϵ

∥H∥2∥D(t)∥)

where ϵ is a constant chosen such that 0 < ϵ < 1. Then, p(x,σ,v|z) is
integrable with respect to x and σ.

Proof. We focus on the general case when the auxiliary variable follows
(4.31). We have then

p(x,σ,v|z) = p(v|x,σ, z)p(x,σ|z). (4.33)

Since the matrix H⊤DH is positive, the spectrum of
1

µ
IQ−H⊤DH satis�es

Spec
(
1

µ
IQ −H⊤DH

)
⊂ [a, b] (4.34)

where
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a =
1

µ
− ∥H∥2∥D∥ =

(
1

ϵ
− 1

)
∥H∥2∥D(t)∥

and
b =

1

µ
.

We have

∥D∥ =

(
min(σi) 16i6N

s.t. σi>0

)−2

. (4.35)

Note that the existence of min(σi) 16i6N
s.t. σi>0

in (4.35) follows from (4.25).

As p(v|x,σ) is the density of a proper Gaussian distribution, we can
show that

p(v|x,σ) 6 (2π)−Q/2 det
(
1

µ
IQ −H⊤DH

)−1/2

6 (2πa)−Q/2

= C

(
min(σi) 16i6N

s.t. σi>0

)Q

(4.36)

where C is a positive constant that only depends on H and ϵ (i.e., indepen-
dent of v, x and σ).

Then,∫
RN

∫
RQ

p(x,σ,v|z)dxdσ 6 C

∫
RN

(
min(σi) 16i6N

s.t. σi>0

)Q ∫
RQ

p(x,σ|z)dxdσ

= C

∫
RN

(
min(σi) 16i6N

s.t. σi>0

)Q N∏
i=1

p(σi|zi)dσi

= CEσ|z

[(
min(σi) 16i6N

s.t. σi>0

)Q
]

6 CEσ|z

[(
min(σi) 16i6N

s.t. σi>0

)]Q
. (4.37)

Since the moments of the posterior distribution p(σ|z) are assumed to be
�nite, then Proposition 2.1 holds.

The resulting Gibbs samplers are summarized in Algorithms 7 and 8.

2.2.3 Partially collapsed Gibbs sampling

It can be noted that it is generally complicated to sample from Pσ|x,v,z
due to the presence of µ and D in the conditional distribution of v. One
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Algorithm 7 Gibbs sampler with auxiliary variables in order to eliminate
the coupling induced by D in the case of a scale mixture of Gaussian noise.

Initialize: x(0) ∈ RQ, v(0) ∈ RN , σ(0) ∈ RN
+ , 0 < ϵ < 1,

µ(0) = ϵ

(
min(σ

(0)
i ) 16i6N

s.t. σ
(0)
i >0

)2

1: for t = 0, 1, . . . do
2: Generate

v(t+1) ∼ N
(
Γ(t)Hx(t),Γ(t)

)
where Γ(t) =

1

µ(t)
IN − D(t)

3: Generate x(t+1) ∼ Px|v(t+1),σ(t),z

4: For all i ∈ {1, . . . , N}, generate σ(t+1)
i ∼ Pσi|x(t+1),v(t+1),z

5: Set µ(t+1) = ϵ∥D(t+1)∥−1

6: end for

Algorithm 8 Gibbs sampler with auxiliary variables in order to eliminate
the coupling induced by H⊤DH in the case of a scale mixture of Gaussian
noise.

Initialize: x(0) ∈ RQ, v(0) ∈ RQ, σ(0) ∈ RN
+ , 0 < ϵ < 1,

µ(0) = ϵ ∥H∥−2

(
min(σ

(0)
i ) 16i6N

s.t. σ
(0)
i >0

)2

1: for t = 0, 1, . . . do
2: Generate

v(t+1) ∼ N
(
Γ(t)x(t),Γ(t)

)
where Γ(t) =

1

µ(t)
IQ − H⊤D(t)H

3: Generate x(t+1) ∼ Px|v(t+1),σ(t),z

4: For all i ∈ {1, . . . , N}, generate σ(t+1)
i ∼ Pσi|x(t+1),v(t+1),z

5: Set µ(t+1) = ϵ∥H⊤H∥−1∥D(t+1)∥−1

6: end for

may replace this step by sampling from Pσ|x,z, that is directly sampling σ
from its marginal posterior distribution with respect to v and condition-
ally to x and z. In this case, we say that we are partially collapsing v in
the Gibbs sampler. However, as σ is sampled independently from v, the
constructed Markov chain

(
x(t),σ(t),v(t)

)
t>0

may have a transition kernel
with an unknown stationary distribution [Van Dyk and Park, 2008]. This
problem can also be encountered when the auxiliary variable v depends on
other unknown hyperparameters changing along the algorithm such as prior
covariance matrix or regularization parameter when the auxiliary variable is
added to the prior instead of the likelihood. However, there exist some rules
based on marginalization, permutation and trimming, that allow to replace
the conditional distributions in the standard Gibbs sampler with conditional
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distributions marginalized according to some variables while ensuring that
the target stationary distribution of the Markov chain is maintained. The re-
sulting algorithm is known as the Partially Collapsed Gibbs Sampler (PCGS)
[Van Dyk and Park, 2008]. Although this strategy can signi�cantly decrease
the complexity of the sampling process, it must be implemented with care
to be sure that the desired stationary distribution is preserved. Applications
of PCGS algorithms can be found in [Park and van Dyk, 2009; Costa et al.,
2016; Kail et al., 2012].

Assume that, in addition to x, σ, v, we have a set of unknown parameters
Θ ∈ RP to be sampled. Note that, p(x,σ,Θ,v|z) should be integrable with
respect to all the variables. Following [Van Dyk and Park, 2008], we propose
to use a PCGS algorithm that allows us to replace the full conditional distri-
bution Pσ|x,v,Θ,z with its conditional distribution Pσ|x,Θ,z without a�ecting
the convergence of the algorithm to the target stationary law. Algorithm 9
shows the main steps of the proposed sampler. More details can be found in
Appendix A. However, it should be noted that, unlike the standard Gibbs
algorithm, permuting the steps of this sampler may result in a Markov chain
with an unknown stationary distribution.

Algorithm 9 PCGS in the case of a scale mixture of Gaussian noise

Initialize: x(0) ∈ RQ, σ(0) ∈ RN
+ , Θ

(0) ∈ RP , v(0), µ(0)

1: for t = 0, 1, . . . do

2: For all i ∈ {1, . . . , N}, generate σ(t+1)
i ∼ Pσi|x(t),Θ(t),z

3: Generate Θ(t+1) ∼ PΘ|x(t),σ(t+1),z.
4: Set µ(t+1) and generate v(t+1) ∼ Pv|x(t),σ(t+1),Θ(t+1),z

5: Generate x(t+1) ∼ Px|v(t+1),σ(t+1),Θ(t+1),z

6: end for

2.3 High dimensional Gaussian distribution

The proposed method can be applied to the problem of drawing random
variables from a high dimensional Gaussian distribution with parameters m
and G as de�ned in (4.1) and (4.2).

In the following, we will give some examples where the introduction of
auxiliary variables facilitates the sampling process.

• If the prior precision matrix Gx and the observation matrix H can be
diagonalized in the same domain, we introduce the auxiliary variable v1

in the data �delity term. Following Algorithm 5, let µ1 > 0 such that
µ1∥Λ∥ < 1 and

v1 ∼ N
((

1

µ1
IN −Λ

)
Hx,

1

µ1
IN −Λ

)
. (4.38)
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The resulting conditional distribution of the target signal x given the aux-
iliary variable v1 and the vector of observation z is a Gaussian distribution
with the following parameters:

G̃ =
1

µ1
H⊤H+Gx. (4.39)

m̃ = G̃−1
(
H⊤Λz+Gxmx +H⊤v1

)
. (4.40)

Then, sampling from the target signal can be performed by passing to
the transform domain where H and Gx are diagonalizable (a.e., Fourier
domain when H and Gx are circulant) .
Similarly, if it is possible to write Gx = V⊤ΩV, so as H and V can be
diagonalized in the same domain, we introduce an extra auxiliary variable
in the prior term to eliminate the coupling introduced by Ω when passing
to the transform domain. Let µ2 > 0 such that µ2∥D∥ < 1 and

v2 ∼ N
((

1

µ2
IN −Ω

)
Vx,

1

µ2
IN −Ω

)
. (4.41)

Then, the posterior distribution of x given v1 and v2 is Gaussian with the
following parameters:

G̃ =
1

µ1
H⊤H+

1

µ2
V⊤V (4.42)

and
m̃ = G̃−1

(
H⊤Λz+Gxmx +H⊤v1 +V⊤v2

)
. (4.43)

• If Gx and H are not diagonalizable in the same domain, the introduction
of an auxiliary variable either in the data �delity term or the prior allows
to eliminate the coupling between the two heterogeneous operators. Let
µ1 > 0 such that µ1∥H⊤ΛH∥ < 1 and

v1 ∼ N
((

1

µ1
IQ −H⊤ΛH

)
x,

1

µ1
IQ −H⊤ΛH

)
. (4.44)

Then, the parameters of the Gaussian posterior distribution of x given v1

read:
G̃ =

1

µ1
IQ +Gx. (4.45)

m̃ = G̃−1
(
H⊤Λz+Gxmx + v1

)
. (4.46)

Note that if Gx has some simple structure (e.g,. diagonal, block diagonal,
sparse, circulant,...), the precision matrix (4.45) will inherit this simple
structure.
Otherwise, if Gx does not present any speci�c structure, we can apply the
proposed method to both data �delity and prior terms. Additionally to
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the auxiliary variable v1 in (4.44), we introduce an extra auxiliary variable
v2 in the prior law. Let µ2 > 0 such that µ2∥Gx∥ < 1 and

v2 ∼ N
((

1

µ2
IQ −Gx

)
x,

1

µ2
IQ −Gx

)
. (4.47)

The joint distribution of the unknown parameters is given by

p(x,v1,v2|z) = p(x|z)p(v1|x, z)p(v2|x, z). (4.48)

It follows that the minus logarithm of the conditional distribution of x
given z, v1 and v2 is Gaussian with parameters:

G̃ =
1

µ
IQ (4.49)

and
m̃ = µ

(
v1 + v2 +H⊤Λz+Gxmx

)
(4.50)

where
µ =

µ1µ2
µ1 + µ2

. (4.51)

Note that the sampling steps of x, v1 and v2 can be merged to an equiv-
alent but more direct step as follows:

x(t+1) = x(t) + µG(m− x(t)) + µn (4.52)

where

n ∼ N
(
0Q,

2

µ
IQ −G

)
. (4.53)

2.4 Sampling the auxiliary variable

It is clear that the main issue in the implementation of the proposed Gibbs
algorithms is the sampling of the auxiliary variable v from a multivariate

Gaussian distribution with covariance matrix of the form Γ =
1

µ
IQ−H⊤ΛH

where µ > 0 is chosen to satisfy µ∥H⊤ΛH∥ < 1.

Let µ > 0 and β > 0 be such that

µ∥H∥2 < β <
1

∥Λ∥
. (4.54)

For example, we can set µ 6 ϵ

∥H∥2∥Λ∥
and β =

√
ϵ

∥Λ∥
where 0 < ϵ < 1.

We have then 0 < µ∥H⊤ΛH∥ < 1 and

1

µ
IQ −H⊤ΛH =

1

β

(
β

µ
IQ −H⊤H

)
+H⊤

(
1

β
IN −Λ

)
H. (4.55)

As a result, the sampling step of the auxiliary variable in all the previously
proposed algorithms can be replaced by the three following steps:
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1. Generate n(t+1) ∼ N
(
0N ,

1

β
IN −Λ

)
.

2. Generate y(t+1) ∼ N
(
0Q,

1

λ
IQ −H⊤H

)
with λ =

µ

β
6

√
ϵ

∥H∥2
.

3. Compute

v(t+1) =

(
1

µ
IQ −H⊤ΛH

)
x(t+1) +

1√
β
y(t+1) +H⊤n(t+1).

Hereabove, y(t+1) and n(t+1) are independent random variables. Then, the
sampling problem of the auxiliary variables is separated into two independent
subproblems. When Λ is diagonal (e.g., when the model is a scale mixture
of Gaussian variables), coe�cients n(t+1)

i , i ∈ {1, . . . , N}, can be drawn
separately. Note that, Λ has often a simple structure even when it is not
diagonal. Then, direct sampling from the centered Gaussian distribution

with covariance matrix
1

β
IN −Λ is usually often easy. In the following, we

address the problem of sampling from the zero mean Gaussian distribution

with covariance matrix
1

λ
IQ −H⊤H.

• In the particular case when H is circulant, sampling can be performed
in the Fourier domain. More generally, when H⊤H is diagonalizable
in a known domain i.e, there exists an orthogonal matrix N such that
NH⊤HN⊤ is a diagonal matrix with positive elements, sampling from

the Gaussian distribution with covariance matrix
1

λ
IQ−H⊤H can be ful-

�lled easily in the transform domain de�ned by the matrix N.
• Suppose that H satis�es HH⊤ = νIN with ν > 0, which is the case for
example for tight frame synthesis operators and decimation matrices. Note
that νλ 6 √

ϵ < 1. We have then:

1

λ
IQ −H⊤H =

(
1√
λ
IQ −

√
λH⊤H

)2

+ (1− λν)H⊤H. (4.56)

It follows that a sample from the Gaussian distribution with covariance

matrix
1

λ
IQ −H⊤H can be obtained as follows:

y(t+1) =

(
1√
λ
IQ −

√
λH⊤H

)
y
(t+1)
1 +

√
1− λνH⊤y

(t+1)
2 (4.57)

where y
(t+1)
1 ∈ RQ and y

(t+1)
2 ∈ RN are independent random vectors

following Gaussian distribution with covariance matrix equals to IQ and
IN respectively.



3. Application to multichannel image recovery in the presence of Gaussian
noise 95

• Suppose that H = MP with M ∈ RN×K and M ∈ RK×Q. Hence, we
propose to set λ > 0 and λ̃ > 0 such that

λ∥P∥2 < λ̃ <
1

∥M∥2
. (4.58)

For example, for µ =
ϵ

∥P∥2∥M∥2∥Λ∥
, we have λ =

√
ϵ

∥P∥2∥M∥2
. Then, we

can set λ̃ =
ϵ1/4

∥M∥2
. It follows that

1

λ
IQ −H⊤H =

1

λ̃

(
λ̃

λ
IQ −P⊤P

)
+P⊤

(
1

λ̃
IK −M⊤M

)
P. (4.59)

It appears that, if it is possible to draw simply random vectors y(t+1)
1 and

y
(t+1)
2 from the Gaussian distributions with covariance matrices

λ̃

λ
IQ −P⊤P

and
1

λ̃
IK −M⊤M respectively (for example when P is a tight frame syn-

thesis operator and M is blur matrix with periodic boundary condition), a

sample from the Gaussian distribution with covariance matrix
1

λ
IQ−H⊤H

can be obtained as follows:

y(t+1) =
1√
λ̃
y
(t+1)
1 +P⊤y

(t+1)
2 . (4.60)

� 3 Application to multichannel image recovery

in the presence of Gaussian noise

Multichannel Images (MCI) are widely used in many application areas such
as medical imaging and remote sensing. The multiple components are ob-
tained by imaging a single scene by sensors operating in di�erent spectral
ranges. For instance, about a dozen of radiometers may be on-board remote
sensing satellites. Most of times, MCI are corrupted with noise and blurred
during the acquisition process and transmission steps. Therefore, restoring
MCI is of primary importance for several applications such as classi�cation,
segmentation and object recognition [Delp and Mitchell, 1979]. In this work,
we propose a Bayesian method for MCI recovery in the wavelet domain by
jointly processing the spectral components.

3.1 Problem formulation

We are interested in the recovery of a multicomponent image with B compo-
nents ȳ1, . . . , ȳB in RR (the images being columnwise reshaped) from some
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observations z1, . . . , zB which have been degraded by spatially invariant blur-
ring operators B1, . . . ,BB and corrupted by a zero-mean additive Gaussian
noise with known variance σ2. We address the problem in a transform do-
main where the target images are assumed to have a sparse representation.
Let us introduce a set of tight frame synthesis operators F∗

1, . . . ,F
∗
B such as

(∀b ∈ {1, . . . , B}) ȳb = F∗
b x̄b (4.61)

where F∗
b is a linear operator from RK to RR with K > R and x̄b is the

vector of frame coe�cients of the image ȳb. Note that, each frame transform
operator decomposes the image into M oriented subbands at multiple scales
with sizes Km, m ∈ {1, . . . ,M} such that

∑M
m=1Km = K. We have

(∀b ∈ {1, . . . , B}) x̄b = (x̄b,1,1, . . . , x̄b,1,K1 , . . . ,
x̄b,m,1, . . . , x̄b,m,Km , . . . ,
x̄b,M,1, . . . , x̄b,M,KM

)⊤.
(4.62)

Then, the problem can be formulated as in (2.2), that is:

z = Hx+w (4.63)

where w ∼ N (0N , σ
2IN ), x = [x⊤

1 , . . . ,x
⊤
B]

⊤ ∈ RQ, z = [z⊤1 , . . . , z
⊤
B]

⊤ ∈ RN

and H = BF∗ ∈ RN×Q with N = BR, Q = K B and

F∗ =


F∗
1 0 . . . 0

0 F∗
2 0 0

. . . . . . . . . . . .
0 0 0 F∗

B

 (4.64)

and

B =


B1 0 . . . 0
0 B2 0 0
. . . . . . . . . . . .
0 0 0 BB

 . (4.65)

In this work, we propose to exploit the cross-component similarities by
estimating jointly the frame coe�cients of a speci�c orientation and scale
through all the components B. In this respect, for all m ∈ {1, . . . ,M}, for
all k ∈ {1, . . . ,Km}, let xm,k = (xb,m,k)16b6B ∈ RB be the vector of frame
coe�cients for a given wavelet subband m at a spatial position k through
all the B components (see Figure 4.1). Note that such vector can be easily
obtained as follows xm,k = Pm,kx where Pm,k ∈ RB×Q is a sparse matrix
containing B lines of a permutation matrix. To promote the sparsity of the
wavelet coe�cients and the inter-component dependency, following [Marnissi
et al., 2013], we assume that for every m ∈ {1, . . . ,M}, the vectors xm,1, . . .,
xm,Km are realizations of a random vector following a GMEP distribution
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...

...

...

...

xm,k =

xb,m,k

B

Figure 4.1: Vector of wavelet coe�cients in a multiscale wavelet basis de-
composition.

(see Chapter 2, Section 2.3.1) with scale matrix Σm, shape parameter βm
and smoothing parameter δm. Thus, the minus-log of the prior likelihood is
given up to an additive constant by

− log p(x|Σ1, . . . ,ΣM ) =

M∑
m=1

Km∑
k=1

ψm(∥Σ−1/2
m (Pm,kx− am)∥) (4.66)

where, for every m ∈ {1, . . . ,M}, am ∈ RB and for all t ∈ R, ψm(t) =
1
2 (t2 + δm)βm .

In this work, we aim to compute the posterior mean estimate of the tar-
get image as well as the unknown regularization parameters using MCMC
sampling algorithms. In the following, we denote by Θ the set of the un-
known regularization parameters to be estimated jointly with x in the Gibbs
algorithm.

3.2 Sampling from the posterior distribution of the wavelet

coe�cients

We can expect that the standard sampling algorithms may fail to explore e�-
ciently the target posterior not only because of the high dimensionality of the
problem but also because of the anisotropic nature of the wavelet coe�cients.
In fact, the coe�cients belonging to di�erent scales are assumed to follow
GMEP priors with di�erent shapes βm, m ∈ {1, . . . ,M}. For instance, coef-
�cients belonging to the low resolution subband are generally assumed to be
driven from a Gaussian distribution (i.e., βm = 1) while GMEP priors with

very small shapes (i.e., βm 6 1

2
) are generally assigned to high resolution

subbands at the �rst level of decomposition in order to promote sparsity.
Therein, one can better explore the directions of interest separately by using
di�erent amplitudes than sampling them jointly. However, the observation
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matrix causes high spatial dependencies between the coe�cients and thus
hinders processing the di�erent wavelet subbands independently.

Note that for every m ∈ {1, . . . ,M}, the function ψm is di�erentiable,
and t 7→ ψm(

√
t) is concave on R+ provided that βm 6 1. Thus, we propose

to use 3MH algorithms to generate samples according to the posterior law.
The sampling performance can be improved by adding a curvature matrix.
The resulting proposal better strides the support of the target distribution by
taking into account the correlation existing between the coe�cients coming
either from the likelihood or the prior law.

The curvature matrix is ideally the sum of two matrices (see Chapter 3).
While the �rst matrix is related to the data �delity term and addresses the
spatial correlation between the coe�cients belonging to the same spectral
channel, the second one is related to the prior and deals with the spectral
correlation existing between coe�cients at the same spatial position and be-
longing to di�erent spectral channels. Nevertheless, the manipulation of such
high dimensional full curvature matrix may induce a high computational bur-
den in the algorithm. One can use instead diagonal curvature matrices which
result on rough local approximations of the posterior law. However, even if
the computational cost of each iteration is reduced, the mixing properties of
the chain may be deteriorated compared to the full curvature matrix.

We propose to tackle this preconditioning problem by adding auxiliary
variables to the data �delity term. More speci�cally, following Algorithm 6,
we propose to introduce an auxiliary variable v ∈ RQ such that:

v ∼ N
(

1

σ2

(
1

µ
IQ −H⊤H

)
x,

1

σ2

(
1

µ
IQ −H⊤H

))
(4.67)

where µ∥B∥2∥F∥2 < 1.
Since the set of hyperparameters Θ is independent of the auxiliary vari-

able v when conditioned to x, each iteration t of the proposed Gibbs sampling
algorithm contains the following steps:

1) Sample v(t+1) from Pv|x(t),z.

2) Sample x(t+1) from Px|v(t+1),Θ(t),z.

3) Sample Θ(t+1) from PΘ|x(t+1),z.

If B is circulant (by assuming periodic boundary conditions of the blur
kernel), the �rst sampling step can be easily done by passing to the Fourier
domain. In particular, if F is orthonormal that is FF∗ = F∗F = IQ, samples
of the auxiliary variables can be obtained by �rst drawing Gaussian random
variables in the Fourier domain and then passing to the wavelet domain.
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Otherwise, if F is a non orthonormal tight frame transform, sampling can
be performed using results in (4.57) and (4.60).

Note that, in the new augmented space, the restoration problem reduces
to a denoising problem with zero-mean Gaussian noise of variance µ and the
posterior density reads:

p(x|z,v,Θ) ∝
M∏

m=1

Km∏
k=1

exp (−Jm,k(Pm,kx|v)) (4.68)

where

(∀c ∈ RB) Jm,k(c|v) =
1

2µσ2
∥c− µPm,kv − µ

σ2
Pm,kH

⊤z∥2

+ ψm(∥Σ−1/2
m (c− am)∥). (4.69)

It follows that we can draw samples of vectors xm,k, m ∈ {1, . . . ,M},
k ∈ {1, . . . ,Km}, in an independent manner. Thus, the resolution of the
initial high dimensional problem of size Q = KB reduces to the resolution
of K parallel subproblems of size B. Note that we have generally K ≫ B.

The advantage of the proposed method is twofold. First, instead of pro-
cessing all the di�erent wavelet coe�cients at the same time, each subprob-
lem can be ful�lled independently. This avoids sampling problems related
to the heterogeneous prior distribution. Di�erent sampling algorithms may
be chosen according to the properties of the target distribution in each sub-
problem. Speci�cally, for each sampling subproblem, we propose to use
the 3MH algorithm with a curvature matrix constructed for each subband
m ∈ {1, . . . ,M} using a MM strategy, which has the following form:

(∀c ∈ RB) Qm(c) =
1

µ
IB +Σ−1

m ψ
′
m

(
∥Σ−1/2

m (c− am)∥
)
. (4.70)

The second advantage is that, since the problem dimension is reduced, we
may expect that the discretization stepsize in the 3MH algorithm takes larger
values compared with standard algorithms without auxiliary variables so that
the chain makes larger moves and explores the target space faster and more
e�ciently.

In the following, we discuss the practical implementation of the third
step of the Gibbs algorithm namely sampling from the posterior distribution
of Θ.

3.3 Hyperparameters estimation

Separation strategy: For every m ∈ {1, . . . ,M}, βm controls the shape
of the GMEP distribution allowing for heavier tails than the Laplace distri-
bution (βm < 0.5) and approaching the normal distribution when βm tends
to 1. In this work, we assume that, for every m ∈ {1, . . . ,M}, βm and δm
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are �xed. Actually, the shape parameter may take di�erent values with re-
spect to the resolution level, spanning from very small values (βm < 0.5) in
order to enforce sparsity in the detail subbands belonging to the �rst level of
decomposition to relatively higher values (0.5 < βm < 1) for details subband
in higher resolution levels, whereas a Gaussian distribution is generally as-
signed to the low frequency subband. Furthermore, we set δm to a positive
small value ensuring that (4.66) is di�erentiable. We propose to estimate the
scale matrices Σm. Let PΣm be the prior distribution of the scale matrix for
each subband m ∈ {1, . . . ,M} and let p(Σm) be the related density. Then,
its posterior density reads:

p(Σm|x) ∝ p(Σm)det(Σm)−Km/2

× exp

(
−

Km∑
k=1

ψm(∥Σ−1/2
m (Pm,kx− am)∥)

)
. (4.71)

When βm = 1, the GMEP prior reduces to a Gaussian distribution. In
such case, a common choice of PΣm is an inverse Wishart distribution and
(4.71) is also an inverse Wishart distribution [Murphy, 2007]. However,
when 0 < βm < 1, (4.71) does not belong to classical families of matrix
distributions. In that respect, rather than estimating the scale matrices
directly, we resort to a separation strategy. More speci�cally, we propose
to estimate the standard deviations and the correlations independently. Let
us decompose the scale matrix for each subband m ∈ {1, . . . ,M} as follows
[Barnard et al., 2000]:

Σm = Cβm,δmDiag(sm)−1RmDiag(sm)−1 (4.72)

where Rm ∈ RB×B is the correlation matrix (whose diagonal elements are
equal to 1 and the remaining ones de�ne the correlation between the coe�-
cients and have absolute value smaller than 1), sm ∈ RB is a vector formed
by the square root of the precision parameters ( the inverse of standard devi-
ations) and Cβm,δm is a multiplicative constant that depends on βm and δm
[Marnissi et al., 2013]. The advantage of such factorization can be explained
by the fact that the estimation of the correlation matrix will not alter the
estimation of the variances. For every m ∈ {1, . . . ,M}, we decompose the
precision vector as follows:

sm = γ1/(2βm)
m nm (4.73)

where γm is positive and nm ∈ RB is a vector of positive coe�cients whose
sum is equal to 1. Then, nm can be seen as the vector containing positive
normalized weights of all the B components in the subband m.

Let us assume that the di�erent components of the image have the same
correlation and weights in all subbands i.e., R = Rm and nm = n for all
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m ∈ {1, . . . ,M}. Furthermore, let us suppose that n is known. We have
then

Θ = {R, γ1, . . . , γM}. (4.74)

Prior and posterior distribution of the hyperparameters: One can
construct the correlation matrix R by sampling from an inverse Wishart
distribution. Speci�cally, let C ∼ IW(A, c) where A is an appropriate
positive de�nite matrix of RB×B and c > 0. Then, we can write R = ∆C∆

where ∆ is the diagonal matrix whose elements are given by: ∆ii = C
−1/2
ii ,

for every i ∈ {1, . . . , B}. Following [Barnard et al., 2000], we can show that
the prior density of R reads:

p(R) ∝ det(R)−
1
2
(B+1+c)

B∏
i=1

(R−1A)
− ν

2
ii . (4.75)

In the following, we will use the notation R ∼ SS(A, c) to denote this
prior. In particular, when A = IB, individual correlations have the marginal
density p(ρij) = (1 − ρ2ij)

c−B−1
2 for all i, j ∈ {1, . . . , B} such that i ̸= j,

which can be seen as a rectangular Beta distribution on the interval [−1, 1]
with both parameters equal to (c − B + 1)/2. For c = B + 1, we obtain
marginally uniformly distributed correlations, whereas, by setting B 6 c <
B + 1 (or B + 1 < c), we get marginal priors with heavier (or lighter) tails
than the uniform distribution that is, distributions that promote either high
correlation values around the extremity of the intervals (or near zero values),
respectively [Barnard et al., 2000]. Thus, the posterior distribution of R is
given by

p(R|x, γ1, . . . , γM ) ∝ det(R)−
1
2
(B+1+c+Q) exp (−Ψ(x))

×
B∏
i=1

(R−1A)
− c

2
ii . (4.76)

In this work, we propose to sample from (4.76) at each iteration t using a MH
algorithm with proposal SS(Ã, c̃) where Ã is set to the current value of R
at iteration t and c̃ is chosen to achieve reasonable acceptance probabilities.

For every m ∈ {1, . . . ,M}, we assume a Gamma prior for γm that is
γm ∼ G(aγm , bγm) where aγm > 0 and bγm > 0 [Fink, 1997]. Then, the
posterior distribution of γm is given by:

p(γm|x,R) ∝ γ
aγm+KmB

2βm
−1

m exp (−bγmγm)

× exp

(
−1

2

Km∑
k=1

(
γ

1
βm
m C−1

βm,δm
∥R− 1

2Diag(n)(Pm,kx− am)∥2 + δm

)βm
)
.

(4.77)
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Remark that if δm = 0, (4.77) reduces to a Gamma distribution of parame-
ters:

ãγm = aγm +
KmB

2βm
, (4.78)

ãγm = bγm + C−βm

βm,δm

1

2

Km∑
k

∥R− 1
2N(Pm,kx− am)∥2βm . (4.79)

When δm > 0, sampling from (4.77) can be performed using an indepen-
dent Metropolis Hastings algorithm with a Gamma proposal of parameters
(4.78) and (4.79).

Initialization: We propose to set the prior distributions of R, γ1, . . . , γM ,
using empirical estimators from the degraded image. In particular, a rough
estimator of R can be computed from the subband containing the low reso-
lution wavelet coe�cients at the highest level of decomposition. In the case
when F is orthonormal, the variance of wavelet coe�cients of the original
image in a given channel b and a subband m are approximately related to
those of the degraded image through:

var([Fbzb]m) = αmvar([xb]m) + σ2 (4.80)

where [.]m denotes the wavelet coe�cients belonging to the subband m and
αm is a positive constant that depend on m (the scale and the orientation
corresponding to m) and on the blur matrix. Expression (4.80) is derived
from the considered observation model (4.63) by assuming a constant approx-
imation of the impulse response of the blur �lter in each wavelet subband.
Note that αm can be calculated beforehand as follows: For given noisy-free
data, we compute the original empirical variance for each wavelet subband.
Then, we calculate again the new variances of the subbands when the data
is blurred using the blur matrix B. The coe�cients αm are �nally estimated
for each wavelet subband by computing the ratio of the two variances by a
linear regression. When αm is not too small, estimators of var([xb]m) can
be reliably computed from αm and var([Fbzb]m) using (4.80). In this work,
we propose to use this method to compute estimators of the variances in
subbands corresponding to the highest levels of decomposition and then de-
duce the variances of the remaining subbands by using some properties of
multiresolution wavelet decompositions. Note that each detail subband m,
corresponds to a given orientation l (horizontal, vertical, diagonal) and a
given scale j (related resolution level). Actually, the variances of the detail
subbands follow a power law with respect to the scale of the subband which
can be expressed as follows [Flandrin, 1992]:

log var([xb]m) = ϱlj +ϖl (4.81)
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where ϱl and ϖl are constants depending on the orientation l of the subband
m. Once the variances of subbands in the two highest levels of decomposi-
tion have been computed using (4.80), we can calculate ϱl and ϖl for each
orientation l using the slope and the intercept of these variances from a log
plot with respect to the scale j. The remaining variances are then estimated
using (4.81).

We can then deduce from these variances an empirical estimator of n.
Moreover, we can set the parameters of the prior distributions of γ1, . . . , γM .

3.4 Experimental results

In these experiments, we consider the Hydice hyperspectral2 composed of 191
components in the 0.4 to 2.4 µm region of the visible and infrared spectrum.
The test image is constructed by taking only a portion of size 256× 256 and
B = 6 of Hydice using the channels 52, 67, 82, 97, 112 and 127. Hence,
the problem dimension is N = 393, 216. The original image is arti�cially
degraded by a uniform blur of size 5 × 5 and an additive zero-mean white
Gaussian noise with variance σ2 = 9 so that the initial signal-to-noise ratio
(SNR) is 11.16 dB. We perform an orthonormal wavelet decomposition using
the Symlet wavelet of depth 3, and three resolution levels, hence M = 10
and Q = N . For the subband corresponding to the approximation coe�-
cients (m = 10), we choose a Gaussian prior (i.e., βm = 2, δm = 0). For the
remaining subbands (m ∈ {1, . . . ,M − 1}), we set δm = 0.0001. Moreover,
we set βm = 0.2 for the subbands corresponding to the lower level of decom-
position, βm = 0.4 for the second level of decomposition and βm = 0.5 for
the third level of decomposition.

We run the Gibbs sampling algorithm 6 for a su�cient number of iter-
ations to reach stability. The obtained samples of the wavelet coe�cients
after the burn-in period are then used to compute the empirical MMSE es-
timator for the original image. Table 4.1 reports the results obtained for the
di�erent components in terms of SNR, PSNR, BSNR and SSIM. It can be
noted that the MMSE estimator yields good numerical results. This can also
be observed in Figure 4.2 showing the visual improvements for the di�erent
components of the multichannel image.

We propose to compare the performance of the Gibbs sampler with aux-
iliary variables when the posterior law of the wavelet coe�cients is explored
using either RW or MALA instead of 3MH algorithm. We also compare the
speed of our proposed approaches with standard RW, MALA and 3MH al-
gorithms without use of auxiliary variables. Figures 4.3 shows the evolution,
with respect to the computational time, of the scale parameter γm in the
horizontal subband for the �rst level of decomposition using the di�erent
algorithms. The results associated with the proposed algorithms appear in

2 https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Table 4.1: Restoration results.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 Average

In
it
ia
l BSNR 24.27 30.28 31.73 28.92 26.93 22.97 27.52

PSNR 25.47 21.18 19.79 22.36 23.01 26.93 23.12
SNR 11.65 13.23 13.32 13.06 11.81 11.77 12.47
SSIM 0.6203 0.5697 0.5692 0.5844 0.5558 0.6256 0.5875

M
M
S
E BSNR 32.04 38.33 39.21 38.33 35.15 34.28 36.22

PSNR 28.63 25.39 23.98 26.90 27.25 31.47 27.27
SNR 14.82 17.50 17.60 17.66 16.12 16.38 16.68
SSIM 0.7756 0.8226 0.8156 0.8367 0.8210 0.8632 0.8225

(a) (b = 2). (b) (b = 4). (c) (b = 6).

(d) (b = 2). (e) (b = 4). (f) (b = 6).

(g) (b = 2). (h) (b = 4). (i) (b = 6).

Figure 4.2: From top to bottom: Original images-Degraded images-Restored
images.

solid lines while those associated with standard algorithms without use of
auxiliary variables are in dashed lines. It can be observed that the proposed
algorithms reach stability much faster than the standard methods. Indeed,
since the problem dimension is large, the stepsize ε in standard algorithms is
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constrained to take very small values to allow appropriate acceptance prob-
abilities whereas in the new augmented space, the subproblems dimension
is smaller allowing large moves to be accepted with high probability values.
Note that 3MH algorithm with auxiliary variables exhibits the best perfor-
mance in terms of convergence speed. We summarize the obtained samples
using the proposed algorithms by showing the marginal means and standard
deviations of the hyperparameters in Table 4.2. It can be noted that all
proposed algorithms provide similar estimation results.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

10
0

Time (s.)

γ
(t

)
1

 

 

RW

MALA

3MH

RW

MALA

3MH

Figure 4.3: Trace plot of the scale parameter in subband m = 1 as time
(horizontal subband in the �rst level of decomposition).

Following [Atchadé, 2006], we also compare the di�erent proposed meth-
ods in terms of mixing properties based on the mean square jump in station-
arity (MSJ) de�ned in (2.75). More precisely, MSJ is estimated as in (3.49),
using P = 20.000 samples generated after the burn-in period. In Table 4.3,
we show estimates of the mean square jump per second in stationarity which
is de�ned as the ratio of the mean square jump and the computational time
per iteration. We also compare the statistical e�ciency of the di�erent sam-
plers with respect to RW de�ned as the mean square jump per second of
each sampler over the mean square jump per second of RW. It can be noted
that 3MH algorithm achieves the best results in terms of mixing properties
whereas RW yields the poorest ones. A huge improvement in the e�ciency
of Langevin based algorithms is particularly observed when introducing the
curvature matrix (4.70).
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Table 4.2: Mean and variance estimates of hyperparameters.

RW MALA 3MH
γ̂1

(γ1=0.71)
Mean 0.67 0.67 0.67
Std. (1.63 e-3) (1.29 e-3) (1.48 e-3)

γ̂2
(γ2=0.99)

Mean 0.83 0.83 0.83
Std. (1.92 e-3) (2.39 e-3) (2.01 e-3)

γ̂3
(γ3=0.72)

Mean 0.62 0.61 0.61
Std. (1.33 e-3) (1.23 e-3) (1.28 e-3)

γ̂4
(γ4=0.0.24)

Mean 0.24 0.24 0.24
Std. (1.30 e-3) (1.39 e-3) (1.34 e-3)

γ̂5
(γ5=0.40)

Mean 0.37 0.37 0.37
Std. (2.10 e-3) (2.42 e-3) (2.35 e-3)

γ̂6
(γ6=0.22)

Mean 0.21 0.21 0.21
Std. (1.19 e-3) (1.25 e-3) (1.20 e-3)

γ̂7
(γ7=0.0.07)

Mean 0.08 0.08 0.08
Std. (0.91 e-3) (1.08 e-3) (1 e-3)

γ̂8
(γ8=0.13)

Mean 0.13 0.13 0.13
Std. (1.60 e-3) (1.64 e-3) (1.62 e-3)

γ̂9
(γ9=0.07)

Mean 0.07 0.07 0.07
Std. (0.83 e-3) (1 e-3) (0.88 e-3)

ˆγ10
(γ10=7.44 e-4)

Mean 7.80 e-4 7.87 e-4 7.86 e-4
Std. (1.34 e-5) (2.12 e-5) (1.66 e-5)

det(R̂)

det(R)= 5.79 e-8
Mean 1.89 e-8 2.10 e-8 2.08 e-8
Std. (9.96 e-10) ( 2.24 e-9) ( 1.72 e-9)

Table 4.3: Results for the di�erent proposed algorithms. First row: Es-
timates of the mean square jump in stationarity. Second row: Time per
iteration. Third row: Estimates of the mean square jump per second in sta-
tionarity. Fourth row: Relative e�ciency compared to RW.

RW MALA 3MH

MSJ 0.74 1.14 2.19
T (s.) 0.16 0.18 0.22
MSJ/T 4.65 6.01 9.85
E�ciency 1 1.29 2.11

It is worth noting that for larger dimensional problems (i.e., larger values
of B), one could further improve the e�ciency of the proposed algorithm by
exploiting the parallel structure of the sampling tasks.
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� 4 Application to image recovery in the pres-

ence of two terms mixed Gaussian noise

4.1 Problem formulation

In this second experiment, we consider the observation problem de�ned in
(4.22) whereH corresponds to a spatially invariant blur with periodic bound-
ary conditions and the noise is a two-terms mixed Gaussian variable i.e., for
every i ∈ {1, . . . , N}, wi ∼ N (0, σ2i ) such that

σi ∼ (1− β)δκ1 + βδκ2 (4.82)

where κ1, κ2 are positive, 0 < β < 1 is the probability that the variance of the
noise σi equals κ2 and δκ1 and δκ2 denote the discrete measures concentrated
at the values κ1 and κ2 respectively. Model (4.82) can approximate for
example mixed impulse Gaussian noise arising in radar, acoustic, and mobile
radio applications [Velayudhan and Paul, 2016; Chang et al., 2016]. In this
case, the impulse noise is approximated with a Gaussian one with a large
variance κ2 ≫ κ1 and β represents the probability of occurrence of the
impulse noise. In the following, we assume without loss of generality that
κ2 > κ1. We address the problem of estimating x, σ, β, κ1 and κ2 from the
observations z.

Prior distributions: We propose to use conjugate priors for the unknown
variances namely inverse Gamma distributions i.e., κ2i ∼ IG(ai, bi), i ∈ {1, 2}
where ai and bi are positive constants. Here, a1, a2, b1, and b2 are set
in practice to small values to ensure weakly informative priors. For the
occurrence probability β, we choose a uniform prior distribution i.e., β ∼
U(0, 1). Furthermore, the target image is assumed to follow a zero-mean
Gaussian prior with a covariance matrix G−1

x = γ−1
(
L⊤L

)−1 known up to
a precision parameter γ > 0, i.e.,

p(x|γ) ∝ γ−Q/2 exp
(
−γ
2
∥Lx∥2

)
. (4.83)

Di�erent covariance matrices may be chosen depending on which properties
one wants to impose on the estimated image. In this example, we propose to
enforce smoothness by setting L = δIQ−∇ where ∇ is the circulant convolu-
tion matrix associated with a Laplacian �lter and δ > 0 is a small constant
that aims at ensuring the positive de�niteness of the posterior covariance
matrix. We further assume that the regularization parameter γ follows an
inverse Gamma prior with parameters aγ > 0 and bγ > 0. The resulting
hierarchical model is displayed in Figure 4.4.
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z

x σ

γ κ1 κ2 β

Figure 4.4: Hierarchical model for image deblurring under two term mixed
Gaussian noise.

Posterior distributions: Given the observation model and the prior dis-
tribution, we can deduce that the posterior distribution of the target signal
given σ, β, κ21, κ

2
2, γ and z is also Gaussian with mean m and precision

matrix G given by:

G = H⊤DH+ γL⊤L, (4.84)

m = G−1H⊤Dy, (4.85)

where D is the diagonal matrix de�ned by Dii = σ−2
i .

The posterior distribution of the remaining unknown parameters are
given by:

• (∀i ∈ {1, . . . , N}) σi|x, β, κ21, κ22, z ∼ (1 − pi)δκ1 + piδκ2 where pi =
ηi

1 + ηi
such that

ηi =
β

1− β
exp

(
−1

2

(
κ−2
2 − κ−2

1

)
([Hx]i − zi)

2

)
κ1
κ2
, (4.86)

• β|x, z,σ, κ21, κ22 ∼ B (n2 + 1, n1 + 1), where B is the Beta distribution
and n1 and n2 are the cardinals of the sets {i ∈ {1, . . . , N}, | σi = κ1, }
and {i ∈ {1, . . . , N}, | σi = κ2, } respectively so that n1 + n2 = N ,

• κ21|x,σ, β, z ∼ IG

(
a1 +

n1
2 , b1 +

∑
i|σi=κ1

([Hx]i − zi)
2

2

)
,

• κ22|x,σ, β, z ∼ IG

(
a2 +

n2
2 , b2 +

∑
i|σi=κ2

([Hx]i − zi)
2

2

)
,

• γ|x ∼ G
(
Q

2
+ aγ ,

1

2
∥Lx∥2 + bγ

)
.
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4.2 Sampling from the posterior distribution of x

In the Gibbs algorithm, we need to draw samples from the multivariate
Gaussian distribution of parameters (4.84) and (4.85) changing along the
sampling iterations. In particular, even if H and L are circulant matrices,
sampling cannot be done in the Fourier domain because of the presence of
D. In the sequel, we will use the proposed method in Section 2.3 to sample
from this multivariate Gaussian distribution. More speci�cally, we will test
two variants. In the �rst variant, we take advantage of the fact that L and H
are diagonalizable in the Fourier domain and we propose to add the auxiliary
variable to the data �delity term in order to get rid of the coupling caused by
D when passing to the Fourier domain. In the second variant, we introduce
auxiliary variables for both the data �delity and the prior terms in order to
eliminate the coupling e�ects induced by all linear operators in the posterior
distribution of the target image.

First method: We introduce the variable v whose conditional distribution
given the set of main parameters of the problem, is the Gaussian distribution

of mean
(
1

µ
IN −D

)
Hx and covariance matrix

(
1

µ
IN −D

)
where µ =

ϵ∥D∥−1 and 0 < ϵ < 1. In practice, we set ϵ = 0.99.

It follows that the new conditional distribution of the target signal is

x|σ, β, κ21, κ22, γ,v, z ∼ N (m̃, G̃−1) (4.87)

where m̃ and G̃ are de�ned as follows:

G̃ =
1

µ
H⊤H+ γL⊤L, (4.88)

m̃ = G̃−1H⊤
(
H⊤Dz+ v

)
. (4.89)

It is worth noting that the auxiliary variable v depends on x and also on
σ through µ and D and does not depend on β, κ1, κ2, γ when conditioned
to x, σ and z. In this work, we propose to use the partially collapsed Gibbs
sampling algorithm in order to collapse the auxiliary variables in the sam-
pling step of σ. At each iteration, the proposed algorithm goes through the
following steps in an ordered manner:
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1) Sample (κ21)
(t+1) from Pκ2

1|x(t),σ(t),β(t),z.

2) Sample (κ22)
(t+1) from Pκ2

2|x(t),σ(t),β(t),z.

3) Sample β(t+1) from Pβ|x(t),σ(t),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

4) Sample γ(t+1) from Pγ|x(t),z.

5) Sample σ(t+1) from Pσ|x(t),β(t+1),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

6) Set µ(t+1) = ϵmin
(
σ
(t+1)
i

)−2

16i6N
and sample v(t+1) from

Pv|x(t),σ(t+1),z.

7) Sample x(t+1) from Px|σ(t+1),γ(t+1),v(t+1),z.

In the following, this algorithm will be denoted as AuxV1.

Second method: We introduce two independent auxiliary variables v1

and v2 in RQ following Gaussian distributions of means Γ1x and Γ2x and
covariance matrices Γ1 and Γ2 respectively where

Γ1 =
1

µ1
−H⊤DH (4.90)

and
Γ2 =

1

µ2
− L⊤L. (4.91)

In practice, we set µ1 = ϵ∥H∥−2∥D∥−1 and µ2 = ϵ∥LL∥−2 where ϵ = 0.99.
Then, the posterior distribution of x conditioned to σ, β, κ21, κ

2
2, γ, v1, v2

and z is Gaussian with mean m̃ and precision matrix G̃ de�ned by:

G̃ =

(
γ

µ2
+

1

µ1

)
IQ (4.92)

and
m̃ = µ1µ2 (γµ1 + µ2)

−1H⊤ (Dy + v1 +
√
γv2) . (4.93)

The auxiliary variable v1 depends implicitly of σ through D and µ but
does not depend on the remaining parameters when conditioned to x, σ and
z. Similarly, v2 does not depend on σ, β, κ21, κ

2
2, v1, γ when conditioned

to x and z. We propose a PCGS algorithm that allows to collapse v1 in
the sampling step of σ. Each iteration t of the proposed PCGS algorithm is



4. Application to image recovery in the presence of two terms mixed
Gaussian noise 111

composed of the following arranged sampling steps.

1) Sample (κ21)
(t+1) from Pκ2

1|x(t),σ(t),β(t),z.

2) Sample (κ22)
(t+1) from Pκ2

2|x(t),σ(t),β(t),z.

3) Sample β(t+1) from Pβ|x(t),σ(t),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

4) Sample γ(t+1) from Pγ|x(t),z.

5) Sample σ(t+1) from Pσ|x(t),β(t+1),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

6) Sample v
(t+1)
2 from Pv2|x(t),z.

7) Set µ
(t+1)
1 = ϵmin

(
σ
(t+1)
i

)−2

16i6N
and sample v

(t+1)
1 from

Pv1|x(t),σ(t+1),z.

8) Sample x(t+1) from P
x|σ(t+1),γ(t+1),v

(t+1)
1 ,v

(t+1)
2 ,z

.

In the following, this algorithm will be denoted by AuxV2.
Note that, since H and L are circulant matrices and D is diagonal, sam-

pling the auxiliary variables in the proposed methods can be easily performed
following Section 2.4.

4.3 Experimental results

We consider a set of three test images denoted by x̄1, x̄2 and x̄3, of size
512 × 512. These images are arti�cially degraded by a spatially invariant
blur with point spread function h and further corrupted with mixed Gaussian
noise. The Gibbs algorithms are run for 6,000 iterations and a burn-in period
of 4,000 iterations is considered. Estimators of the unknown parameters are
then computed using the empirical mean over the 2,000 obtained samples.
Visual results are displayed in Figure 4.5 as well as estimates of hyper-
parameters using AuxV1.

We consider the image x̄1 and we propose to compare the two variants
of our proposed method with the Reversible Jump Perturbation Optimiza-
tion (RJPO) algorithm [Gilavert et al., 2015]. For this method, we use the
conjugate gradient algorithm as linear solver at each iteration whose max-
imal number of iterations and tolerance are adjusted to corresponds to an
acceptance probability of around 0.9. We use the same initialization for all
compared algorithms. Figures 4.6-4.9 display samples of hyperparameters
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(a) x̄1 (512× 512) (b) x̄2 (512× 512) (c) x̄3 (512× 512)

(d) z1: SNR=13.46 dB
κ1 = 13, κ2 = 40,
β = 0.35
h: Gaussian 39× 39 std. 4

(e) z2(SNR=8.50 dB)
κ1 = 5, κ2 = 100,
β = 0.25, h: Uniform 5×5
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(f) z3(SNR=7.37 dB)
κ1 = 12, κ2 = 70, β = 0.4
h: Gaussian 15 × 15 std.
1.8

(g) x̂1(SNR=19.35 dB)
κ̂1 = 12.98, κ̂2 = 39.80
β̂ = 0.35, γ̂ = 4.8e-3

(h) x̂2(SNR=22 dB)
κ̂1 = 5.10, κ̂2 = 100.13
β̂ = 0.25, γ̂ = 1.8e-3

(i) x̂3(SNR=18.74 dB)
κ̂1 = 12.08, κ̂2 = 69.89
β̂ = 0.39, γ̂ = 4.7e-3

Figure 4.5: Visual results. From top to bottom: Original images. Degraded
images. Restored images.

as a function of iteration or time. Table 4.4 shows the marginal posterior
mean and standard deviation of β, κ1, κ2, γ and the value of one randomly
chosen pixel xi in the reconstructed images. Figures 4.6-4.9 show that all the
tested algorithms reach the same stationary distribution. In particular, it
can be noted from Table 4.4 that β, κ1 and κ2 are correctly estimated by all
the algorithms and the remaining parameters have similar estimators. While
RJPO and AuxV1 have similar behavior, AuxV2 needs more iterations to
reach stability. However, the proposed algorithms need less time to converge
compared to the RJPO algorithm since the cost of each iteration is highly
reduced.
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Table 4.4: Mean and variance estimates.

RJPO AuxV1 AuxV2
γ̂

(γ =5.30 e-3)
Mean 4.78 e-3 4.84 e-3 4.90 e-3
Std. (1.39 e-4) (1.25 e-4) (9.01 e-5)

κ̂1
(κ1=13)

Mean 12.97 12.98 12.98
Std. ( 4.49 e-2) (4.82 e-2) (4.91 e-2)

κ̂2
(κ1=40)

Mean 39.78 39.77 39.80
Std. (0.13) (0.14) (0.13)

β̂
(β=0.35)

Mean 0.35 0.35 0.35
Std. (2.40 e-3) (2.71 e-3) ( 2.72 e-3)

x̂i
(xi=140)

Mean 143.44 143.19 145.91
Std. (10.72) (11.29) (9.92)
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Figure 4.6: Chains of γ as iteration/time.
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Figure 4.7: Chains of β as iteration/time.

Similarly to Section 3, we also report comparisons in terms of mixing
properties in convergence. Table 4.5 shows comparisons results in terms
of time per iteration after the burn-in period (time needed to produce one
sample), mean square jump in stationarity, and e�ciency with respect to
RJPO.

The speed improvement of the proposed algorithms comes with a deterio-
ration of the quality of the generated samples due to the correlation existing
between successive samples. For instance, RJPO algorithm gives the best
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Figure 4.8: Chains of κ1 as iteration/time.
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Figure 4.9: Chains of κ2 as iteration/time.

Table 4.5: Mixing results for the di�erent proposed algorithms. First row:
Time per iteration. Second row: Estimates of the mean square jump in
stationarity. Third row: Estimates of the mean square jump per second in
stationarity. Fourth row: Relative e�ciency to RJPO.

RJPO AuxV1 AuxV2

T (s.) 5.27 0.13 0.12
MSJ 15.41 14.83 4.84
MSJ/T 2.92 114.07 40.33
E�ciency 1 39 13.79

results in terms of mean square jump in stationary. However, the generation
of every sample is costly which deteriorates the e�ciency of the algorithm
for large scale problems compared with AuxV2. The best trade-o� between
convergence speed and mixing properties of the chain is achieved by the
proposed algorithm AuxV1.

Conclusion

In this chapter, we have proposed a method that addresses sampling from
distributions in large scale problems. By adding some auxiliary variables
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to the model, we succeeded in addressing separately the di�erent sources of
correlations in the target posterior density. In the �rst experiment, we have
shown the good performance of this new approach in terms of convergence
speed and mixing properties when applied to the recovery of multispectral
images from their blurred version. In the new augmented space, the resulting
model makes sampling much easier since the coe�cients of the target image
are no longer updated jointly but in a parallel manner. In the second set of
experiments, we have applied the proposed method to the recovery of signals
corrupted with mixed Gaussian noise. When compared to state-of-the-art
methods for sampling from high dimensional scale Gaussian distributions,
the proposed algorithms achieve a good tradeo� between the convergence
speed and the mixing properties of the Markov chain even if the generated
samples are not independent.

Note that the proposed method can be applied to a wide class of applica-
tions in inverse problems, in particular, those including conditional Gaussian
models either for the noise or the target signal.
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noise

Noise arising in real signal processing problems may originate from vari-
ous sources. In particular, the signal of interest may su�er from noise
with complex characteristics where signal-independent additive Gaussian
hypothesis fails to properly describe it. For example, noise may be signal-
dependent [Moser, 2012], multiplicative [Aubert and Aujol, 2008] and with
non-Gaussian characteristics [Salmon et al., 2014; Altmann et al., 2016].
However, most of the existing denoising methods only consider the noise as
independent Gaussian, mainly because of the di�culties raised in handling
other noise sources than the Gaussian one.

In this work, we focus on signal recovery beyond the standard addi-
tive independent Gaussian noise assumption. We propose to resort to VBA
methods to restore signals degraded by an arbitrary linear operator and cor-
rupted with non-Gaussian noise. One of the main advantages of our proposed
method is that it allows us to jointly estimate the original signal and the re-
quired regularization parameter from the observed data by providing good
approximations of the MMSE estimators for the problem of interest.

This chapter is organized as follows. In Section 1, we formulate the
considered signal recovery problem in the Bayesian framework and we present
a short overview on the state-of-the-art methods. In Section 2, we present
our proposed estimation method based on VBA. Finally, in Section 3, we
provide simulation results together with comparisons with state-of-the-art
methods in terms of image restoration performance and computation time.

� 1 Problem statement

1.1 Model

In this chapter, we consider a wide range of applications where the degrada-
tion model can be formulated as an inverse possibly ill-posed problem as in
(2.1). We further assume that the coe�cients of the vector of observations

117
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z = (zi)16i6N ∈ RN are independents, then the observation model in (2.1)
reads:

(∀i ∈ {1, . . . , N}) , zi = D([Hx]i) (5.1)

where [Hx]i denotes the i-th component of Hx and D is the noise model
that may depend on the signal of interest x. The objective is to �nd an
estimator x̂ of x from H and z. The neg-log-likelihood ϕ of the observations
reads

(∀x ∈ RQ) Φ(x) = − log p(z|x) =
N∑
i=1

ϕi([Hx]i ; zi). (5.2)

Depending on the noise statistical model D, ϕi may take various forms
[Janesick, 2007; Mäkitalo and Foi, 2012; Cai et al., 2010; Yan, 2013]. In
particular, it reduces to a least squares function for additive Gaussian noise.

1.2 Related work

Most of the existing strategies in the literature propose to tackle the problem
of restoration for signals corrupted with non-Gaussian noise using minimiza-
tion approaches. As pointed out in Chapter 2, the cost function is the sum of
two terms: the neg-log-likelihood related to the noise statistics and the reg-
ularization term that incorporates prior information about the target signal
so as to ensure the stability of the solution [Demoment, 1989]. For example,
in [Repetti et al., 2012], a method is proposed to restore signals degraded
by a linear operator and corrupted with an additive Gaussian noise hav-
ing a signal-dependent variance. An early work in [Snyder et al., 1993] and
more recent developments in [Lantéri and Theys, 2005; Benvenuto et al.,
2008; Jezierska et al., 2012; Li et al., 2015; Roberts and Kingsbury, 2014;
Chouzenoux et al., 2015; Baji¢ et al., 2016] have proposed to restore sig-
nals corrupted with mixed PG noise using di�erent approximations of the
PG data �delity term. In all these approaches, the regularization param-
eter allows a tradeo� to be performed between �delity to the observations
and the prior information. Too small values of this parameter may lead to
noisy estimates while too large values yield oversmoothed solutions. Conse-
quently, the problem of setting a proper value of the regularization parameter
should be addressed carefully and may depend on both the properties of the
observations and the statistics of the target signal. When ground truth is
available, one can choose the value of the regularization parameter that gives
the minimal residual error evaluated through some suitable metric. However,
in real-world applications where no ground truth is available, the problem
of selecting the regularization parameter remains an open issue especially in
situations where the images are acquired under poor conditions i.e., when
the noise level is very high. Among existing approaches dealing with regu-
larization parameter estimation, the works in [Ramani et al., 2008; Eldar,
2009; Pesquet et al., 2009; Deledalle et al., 2014; Giryes et al., 2011; Almeida
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and Figueiredo, 2013; Hansen et al., 2006] have to be mentioned. However,
most of the presented methods were developed under the assumption of a
Gaussian noise and their extension to the context of non-Gaussian noise is
tricky. One can however mention the works in [Luisier et al., 2011; Mäkitalo
and Foi, 2012] proposing e�cient estimators in the context of denoising i.e.,
problems that do not involve linear degradation. Other approaches can be
found in [Bertero et al., 2010; Zanni et al., 2015] proposing e�cient estimates
in the speci�c case of a Poisson likelihood. To address the shortcomings of
these methods, one may resort to the Bayesian framework where regulariza-
tion is applied by assigning a prior distribution to the data x to be recov-
ered. In particular, Bayesian estimation methods based on MCMC sampling
algorithms have been recently extended to inverse problems involving non-
Gaussian noise [Ying et al., 2012; Altmann et al., 2015; Murphy and Godsill,
2011; Chaâri et al., 2013]. However, despite good estimation performance
that has been obtained, such methods remain computationally expensive for
large scale problems. In this chapter, we propose to tackle this problem by
resorting to VBA approaches.

1.3 Bayesian formulation

We propose to adopt the following �exible expression of the prior density of
x:

p(x|γ) = τγ
Q
2κ exp

(
− γ

J∑
j=1

∥Djx∥2κ
)

(5.3)

where κ is a constant in (0, 1], ∥ · ∥ denotes the ℓ2-norm and (Dj)16j6J ∈
(RS×Q)J where D = [D⊤

1 , . . . ,D
⊤
J ]

⊤ is a linear operator. For instance, D
may be a matrix computing the horizontal and vertical discrete di�erence
between neighboring pixels so that J = Q and S = 2. A sparsity prior in
an analysis frame can also be modeled by setting S = 1 and D equals to a
frame operator with decomposition size J > Q [Pustelnik et al., 2016]. Other
examples will be given in Section 3. Note that the constant γ ∈ (0,+∞)
can be viewed as a regularization parameter that plays a prominent role
in the restoration process and τ ∈ (0,+∞) is a constant independent of
γ. The form of the partition function for such a prior distribution, i.e. the
normalizing factor τγQ/2k, follows from the fact that the associated potential
is 2κ-homogeneous [Pereyra et al., 2015].

Generally, κ is the shape parameter of the prior law which determines
the type of prior information introduced by the user and hence can be �xed
according to the prior knowledge while γ expresses the compromise between
data �delity and prior information. In this work, we aim at estimating
parameter γ together with x. To this end, we choose a Gamma prior for
γ i.e., p(γ) ∝ γα−1 exp(−βγ) where α and β are positive constants (set in
practice to small values to ensure a weakly informative prior).
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Using the Bayes' rule, we can obtain the posterior distribution of the set
of unknown variables Θ = (x, γ) given the vector of observations z:

p(Θ|z) ∝ p(z|x)p(x|γ)p(γ). (5.4)

However, this distribution has an intricate form. In particular, its normal-
ization constant does not have a closed form expression. To cope with this
problem, we resort to the variational Bayesian framework. The rationale of
this work is to �nd a simple approximation to the true posterior distortion,
leading to a tractable computation of the posterior mean estimate.

� 2 Proposed approach

In this work, we assume the following separable form for q:

q(Θ) = qX(x)qΓ(γ). (5.5)

Unfortunately, by using directly (2.87), we cannot obtain an explicit expres-
sion of qX(x) due to the intricate form of both the prior distribution and the
likelihood when the statistics of the noise are no longer Gaussian. In this
work, we propose to use deterministic methods to construct quadratic upper
bounds for the negative logarithms of both the likelihood and the prior den-
sity [Seeger and Bouchard, 2012]. This allows us to derive an upper bound
of the desired cost function in (2.81) as will be described in the following.

2.1 Construction of the majorizing approximation

2.1.1 Likelihood

One popular approach in signal recovery is the half-quadratic formulation
[Geman and Yang, 1995]. Under some mild assumptions and by introducing
some auxiliary variables, a complicated criterion can be written as the in�-
mum of a surrogate half-quadratic function i.e., the latter is quadratic with
respect to the original variables and the auxiliary variables appear decou-
pled. This half-quadratic criterion can be then e�ciently minimized using
classical optimization algorithms. Furthermore, we have recently extended
this technique to sampling algorithms [Marnissi et al., 2016a]. The initial
intractable posterior distribution to sample from is replaced by the condi-
tional distribution of the target signal given the auxiliary variables. The
obtained distribution has been shown to be much simpler to explore by us-
ing standard sampling algorithms. This formulation has been widely used in
energy-minimization approaches [Idier, 2001; Nikolova and Ng, 2005; Cham-
pagnat and Idier, 2004] where the initial optimization problem is replaced
by the minimization of the constructed surrogate function. In this work, we
propose to use half-quadratic approaches to construct an upper bound for
the objective function in (2.81).
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Table 5.1: Examples of di�erentiable functions satisfying Assumption 2.1. The Anscombe transform provides a di�erentiable ap-
proximation of the exact Poisson data �delity term, while the three last functions can be employed to approximate the exact mixed
Poisson-Gaussian log-likelihood. Note that alternative expressions for the Anscombe-based approaches can be found in [Mäkitalo and Foi,
2011, 2013]. ϕ′i denotes the �rst derivative of function ϕi and βi(zi) is the Lipschitz constant of ϕ

′
i (for functions in lines 3-6, we assume

that ϕi is replaced on R− by its quadratic extension (5.7).) The expression for the Lipschitz constant of the gradient of the weighted least
squares likelihood was established in [Repetti, 2015, Chap. IV].

Name ϕi(v; zi) ϕ′i(v; zi) βi(zi) Domain of validity Noise model

Gaussian
1

2σ2
(v − zi)

2 1

σ2
(v − zi)

1

σ2
zi ∈ R, σ > 0 Gaussian

Cauchy ln

(
1 +

(v − zi)
2

σ2

)
2(v − zi)

σ2 + (v − zi)2
2

σ2
zi ∈ R, σ > 0 Cauchy

Anscombe transform 2
(√

zi +
3
8 −

√
v + 3

8

)2
2−

2
√
zi +

3
8√

v + 3
8

(
3

8

)−3/2√
zi +

3
8 zi > −3

8
Poisson

Generalized Anscombe
transform 2

(√
zi + σ2 + 3

8 −
√
v + σ2 + 3

8

)2
2−

2
√
zi +

3
8 + σ2√

v + 3
8 + σ2

(
3
8 + σ2

)−3/2
√
zi +

3
8 + σ2 zi > −3

8
− σ2 Poisson-Gaussian

Shifted Poisson (v + σ2)− (zi + σ2) ln(v + σ2) 1− zi + σ2

v + σ2
zi + σ2

σ4
zi > −σ2, σ > 0 Poisson-Gaussian

Weighted least squares
(zi − v)2

2(σ2 + v)
+

1

2
ln(σ2 + v)

1

2
− (zi + σ2)2

2(v + σ2)2
+

1

2(σ2 + v)
max

{
(zi + σ2)2

σ6
− 1

2σ4
,

1

54(zi + σ2)4

}
zi ∈ R\{−σ2}, σ > 0 Poisson-Gaussian
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We assume that the likelihood satis�es the following property:

Assumption 2.1 For every i ∈ {1, . . . , N}, ϕi is di�erentiable on R and
there exists µi(zi) > 0 such that the function de�ned by v 7→ v2

2 − ϕi(v;zi)
µi(zi)

is
convex on R.

In particular, this assumption is satis�ed when, for every i ∈ {1, . . . , N}, ϕi
is βi(zi)-Lipschitz di�erentiable on R, i.e.,

(∀u ∈ R) (∀v ∈ R) |ϕ′
i(v; zi)− ϕ

′
i(u; zi)| 6 βi(zi)|v − u| (5.6)

as soon as µi(zi) > βi(zi).
Table 5.1 shows some examples of useful functions satisfying the desired

property (up to an additive constant). Note that, since the functions in lines
3-6 of Table 5.1 are βi(zi)-Lipschitz di�erentiable only on R+, we propose to
use on R− a quadratic extension of them de�ned as follows:

(∀v ∈ R−) ϕi(v; zi) = ϕi(0; zi) + ϕ
′
i(0; zi)v +

1

2
βi(zi)v

2 (5.7)

so that the extended version of ϕi(.; zi) is now di�erentiable on R with
βi(zi)-Lipschitzian gradient.

For every i ∈ {1, . . . , N} and v ∈ R, let us de�ne the following function:

ςi(v; zi) = sup
t∈R

(
−1

2
(v − t)2 +

ϕi(t; zi)

µi(zi)

)
. (5.8)

Then, the following property holds:

Proposition 2.1 Upper bound for minus log likelihood
For every i ∈ {1, . . . , N},

(∀v ∈ R) ϕi(v; zi) = inf
wi∈R

Ti(v, wi; zi) (5.9)

where, for every v ∈ R,

Ti(v, wi; zi) = µi(zi)

(
1

2
(v − wi)

2 + ςi(wi; zi)

)
. (5.10)

Moreover, the unique minimizer of wi 7→ Ti(v, wi; zi) reads

ŵi(v) = v − 1

µi(zi)
ϕ′i(v; zi). (5.11)
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Proof. See Appendix B.

It follows from this result that(
∀x ∈ RQ

)
ϕ(x; z) = inf

w∈RN
T (x,w; z) (5.12)

where T (x,w; z) =
N∑
i=1

Ti([Hx]i , wi; zi).

Note that (5.9) shows that, for every i ∈ {1, . . . , N}, ϕi(·; zi) is a so-
called Moreau envelope of the function µi(zi)ςi(·; zi). A more direct proof
of Proposition 2.1 can thus be derived from the properties of the proximity
operator [Combettes and Pesquet, 2010] when the functions (ϕi)16i6N are
convex. The proof we provide in the appendix however does not make such
a restrictive assumption.

2.1.2 Prior

Similarly, we construct a surrogate function for the prior distribution. More
precisely, we follow the same idea as in [Chen et al., 2014] and we use the
following convexity inequality to derive a majorant for the ℓκ-norm with
κ ∈ (0, 1]:

(∀ν > 0)(∀υ > 0) υκ 6 (1− κ)νκ + κνκ−1υ.

Hence, we obtain the following majorant function for the negative loga-
rithm of the prior distribution:

γ

J∑
j=1

∥Djx∥2κ 6 γ

J∑
j=1

κ∥Djx∥2 + (1− κ)λj

λ1−κ
j

. (5.13)

where (λj)16j6J are positive variables. In the following, we will denote by

Q(x,λ; γ) =
J∑

j=1
Qj(Djx, λj ; γ), the function in the right-hand side of the

above inequality where, for every j∈{1, . . . , J},

Qj(Djx, λj ; γ) = γ
κ∥Djx∥2 + (1− κ)λj

λ1−κ
j

. (5.14)

2.1.3 Proposed majorant

Thus, we can derive the following lower bound for the posterior distribution:

p(Θ | z) > L(Θ|z;w,λ), (5.15)

where function L is de�ned as

L(Θ|z;w,λ) = C(z) exp [−T (x,w; z)−Q(x,λ; γ)] p(γ)
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with C(z) = p(z)−1(2π)−N/2τγ
Q
2κ . The minorization of the distribution

leads to an upper bound for the KL divergence:

KL(q(Θ)∥p(Θ | z)) 6 KL(q(Θ)∥L(Θ|z;w,λ)). (5.16)

Note that, although the constructed lower bound in (5.15) is tangent to the
posterior distribution i.e.

p(Θ | z) = sup
w∈RN ,λ∈RJ

L(Θ|z;w,λ),

the tangency property may not be generally satis�ed in (5.16). Thus, the
tightness of the constructed majorant of the KL divergence may have a
signi�cant impact on the accuracy of the method. By minimizing the con-
structed bound (5.16) with respect to w and λ, we make this bound as
tight as possible. Note that, for every i ∈ {1, . . . , N} and j ∈ {1, . . . , J},
λj 7→ KL(q(Θ)∥L(Θ|z;w,λ)) and wi 7→ KL(q(Θ)∥L(Θ|z;w,λ)) can be
minimized separately. Hence, Problem (2.81) can be solved by the following
four-step alternating optimization scheme:

• Minimizing the upper bound in (5.16) w.r.t. qX(x);

• Updating the auxiliary variables wi in order to minimize
KL(q(Θ)∥L(Θ|z;w,λ)), for every i ∈ {1, . . . , N};

• Updating the auxiliary variable λj in order to minimize
KL(q(Θ)∥L(Θ|z;w,λ)), for every j ∈ {1, . . . , J};

• Mimimizing the upper bound in (5.16) w.r.t. qΓ(γ).

The main bene�t of this majorization strategy is to guarantee that the opti-
mal approximate posterior distribution for x belongs to the Gaussian family
and the optimal approximate posterior distribution for γ belongs to the
Gamma one, i.e.

qX(x) ≡ N (m,Σ), qΓ(γ) ≡ G(a, b).

Therefore, the distribution updates can be performed by updating their pa-
rameters, namely m, Σ, a, and b.

2.2 Iterative algorithm

Subsequently, at a given iteration k of the proposed algorithm, the corre-
sponding estimated variables will be indexed by k.
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2.2.1 Updating qX(x)

Because of the majorization step, we need to minimize the upper bound on
the KL divergence. The standard solution (2.87) can still be used by replac-
ing the joint distribution by a lower bound L(Θ, z;w,λ) chosen proportional
to L(Θ|z;w,λ):

q
(k+1)
X (x) ∝ exp

(⟨
logL(x, γ, z;w(k),λ(k))

⟩
q
(k)
Γ (γ)

)
∝ exp

(∫
logL(x, γ, z;w(k),λ(k))q

(k)
Γ (γ)dγ

)
∝ exp

(
−

N∑
i=1

1

2
µi(zi)

(
[Hx]i − w

(k)
i

)2
− ak
bk

J∑
j=1

κ∥Djx∥2 + (1− κ)λ
(k)
j

(λ
(k)
j )1−κ

)
. (5.17)

The above distribution can be identi�ed as a multivariate Gaussian dis-
tribution whose covariance matrix and mean parameter are given by

Σ−1
k+1 = H⊤Diag(µ(z))H+ 2

ak
bk

D⊤Λ(k)D, (5.18)

mk+1 = Σk+1H
⊤u, (5.19)

where µ(z) = [µ1(z1), . . . , µM (zN )]⊤, u is a N × 1 vector whose i-th compo-
nent is given by ui = µi(zi)w

(k)
i and Λ is the diagonal matrix whose diagonal

elements are
(
κ(λ

(k)
j )κ−1IS

)
16j6J

.

2.2.2 Updating w

The auxiliary variable w is determined by minimizing the upper bound of
KL divergence with respect to this variable:

w(k+1) = argminw

∫
q
(k+1)
X (x)q

(k)
Γ (γ) log

q
(k+1)
X (x)q

(k)
Γ (γ)

L(Θ|z;w,λ(k))
dxdγ

= argminw

∫
q
(k+1)
X (x)q

(k)
Γ (γ)

(
− logL(Θ|z;w,λ(k))

)
dxdγ

= argminw

∫
q
(k+1)
X (x)

N∑
i=1

Ti([Hx]i , wi; zi)dx (5.20)

= argminw

N∑
i=1

Ti([Hmk+1]i , wi; zi), (5.21)
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where the equality in (5.20) follows from the expression in (5.10). Interest-
ingly, it follows from Property 2.1 that

w
(k+1)
i = argminwiTi([Hmk+1]i , wi; zi)

= [Hmk+1]i −
1

µi(zi)
ϕ

′
i([Hmk+1]i ; zi). (5.22)

2.2.3 Updating λ

The variable λ is determined in a similar way: for every j ∈ {1, . . . , J},

λ
(k+1)
j = argminλj ∈ [0,+∞)KL(q(k+1)

X

(
x)q

(k)
Γ (γ)∥L(Θ|z;w(k+1),λ)

)
= argminλj ∈ [0,+∞)

Q∑
i=1

∫
q
(k+1)
X (x)q

(k)
Γ (γ)Qi(Dix, λi; γ)dxdγ

= argminλj ∈ [0,+∞)

∫
q
(k+1)
X (x)q

(k)
Γ (γ)Qj(Djx, λj ; γ)dxdγ

= argminλj ∈ [0,+∞)

∫
q
(k+1)
X (x)q

(k)
Γ (γ)

× γ
κ∥Djx∥2 + (1− κ)λj

λ1−κ
j

dxdγ

= argminλj ∈ [0,+∞)
κE

q
(k+1)
X (x)

[
∥Djx∥2

]
+ (1− κ)λj

λ1−κ
j

. (5.23)

The minimum is achieved at

λ
(k+1)
j =E

q
(k+1)
X (x)

[
∥Djx∥2

]
= ∥Djmk+1∥2 + trace

[
D⊤

j DjΣk+1

]
. (5.24)

2.2.4 Updating qΓ(γ)

Using (2.87) where the joint distribution is replaced by its lower bound func-
tion, we obtain

q
(k+1)
Γ (γ) ∝ exp

(⟨
logL(x, γ, z;w(k+1),λ(k+1))

⟩
q
(k+1)
X (x)

)
∝ exp

(∫
logL(x, γ, z;w(k+1),λ(k+1))q

(k+1)
X (x)dx

)
∝γ

Q
2κ

+α−1 exp(−βγ)

× exp

(
− γ

J∑
j=1

κE
q
(k+1)
X (x)

[
∥Djx∥2

]
+ (1− κ)λ

(k+1)
j

(λ
(k+1)
j )1−κ

)
≡G(ak+1, bk+1). (5.25)
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Using (5.24), one can recognize that the above distribution is a Gamma
one with parameters

ak+1 =
Q

2κ
+ α = a, bk+1 =

J∑
j=1

(λ
(k+1)
j )κ + β. (5.26)

2.2.5 Resulting algorithm

The proposed method is outlined in Algorithm 10. It alternates between
the update of the auxiliary variables and the distribution of the unknown
parameters.

Algorithm 10 VBA approach for recovery of signals corrupted with non-
Gaussian noise.

Initialize: w(0),λ(0), b0. Compute a with (5.26).
1: for k = 0, 1, . . . do

2: Update parameters Σk+1 and mk+1 of q(k+1)
X (x) using (5.18) and

(5.19).
3: Update w(k+1) using (5.22).
4: Update λ(k+1) using (5.24).
5: Update parameter bk+1 of q(k+1)

Γ (γ) using (5.26).
6: end for

2.3 Implementation issues

An additional di�culty arising in the implementation of Algorithm 10 is
that the determination of Σk+1 requires inverting the matrix given by (5.18),
which is computationally expensive in high dimension. To bypass this op-
eration, we propose to compare two approaches. The �rst one follows the
idea in [Babacan et al., 2011]: we make use of the linear conjugate gradient
method to approximate mk+1 iteratively and in (5.24), where an explicit
form of Σk+1 cannot be sidestepped, this matrix is approximated by a di-
agonal one whose diagonal entries are equal to the inverse of the diagonal
elements of Σ−1

k+1. The second technique uses Monte-Carlo sample aver-

aging to approximate mk+1 and λ
(k+1)
j : speci�cally, we generate samples

(ns)16s6Ns from Gaussian distribution with mean mk+1 and covariance ma-
trix Σk+1 using [Orieux et al., 2012], as summarized in Algorithm 11. This
estimator has two desirable properties. First, its accuracy is independent of
the problem size, its relative error only depends on the number of samples
and it decays as

√
2/Ns (only Ns = 2/ρ2 samples are required to reach a

desired relative error ρ) [Papandreou and Yuille, 2010]. Second, for the sim-
ulation of Ns independent Gaussian samples, one can take advantage of a
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multiprocessor architecture by resorting to parallel implementation allowing
us to reduce the computation time.

Algorithm 11 Stochastic approach for computing the parameters of q(x).

1: for s = 1, 2, . . . , Ns do

2: Perturbation: Generate

νs ∼ N
(
u,
(
Diag

(
µ(z)

))1/2)
ηs ∼ N

(
0,

√
2γ(k)Λ

1/2
k

)
with γ(k) = ak/bk.

3: Optimization: Compute ns as the minimizer of

J (v) = ∥νs−Diag
(
µ(z)

)
Hv∥2

(Diag(µ(z)))−1+
1

2γ(k)
∥ηs−2γ(k)ΛkDv∥2

Λ−1
k

which is equivalent to minimizing

J̃ (v) = v⊤Σ−1
k+1v − 2v⊤zs

where
zs = H⊤νs +D⊤ηs.

The minimizer is computed using the conjugate gradient algorithm.
4: end for

5: Update

mk+1 =
1

Ns

Ns∑
s=1

ns.

(∀j ∈ {1, . . . , J}) λ
(k+1)
j =

1

Ns

Ns∑
s=1

∥Djns∥2.

� 3 Application to PG image restoration

Let us now illustrate the usefulness of our algorithm via experiments in
the context of image restoration when the noise follows a mixed PG model.
Recently, there has been a growing interest for the PG noise model as it arises
in many real imaging systems in astronomy [Benvenuto et al., 2008; Snyder
et al., 1993], medicine [Nichols et al., 2002], photography [Julliand et al.,
2015], and biology [Delpretti et al., 2008]. Numerous e�cient restoration
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methods exist in the limit case when one neglects either the Poisson or the
Gaussian component. However, such approximation may be rough, and lead
to poor restoration results, especially in the context of low count imaging
and/or high level electronic noise. On the opposite, restoration methods
that speci�cally address mixed PG noise remain scarce, especially when the
observation operator H di�ers from identity. The aim of this section is to
show the applicability of the proposed VBA method in this context.

3.1 Problem formulation

The vector of observations z = (zi)1≤i≤N ∈ RN is related to the original
image x through

z = y +w, (5.27)

where z and w are assumed to be mutually independent random vectors and

y | x ∼ P(Hx), w ∼ N (0N , σ
2IN ),

P denoting the independent Poisson distribution, and σ > 0. When w = 0N
(i.e., σ = 0), the model reduces to a pure Poisson image recovery. Otherwise,
when σ > 0, the noise is a mixture of Poisson and Gaussian noise and the
associated likelihood function reads [Chouzenoux et al., 2015]:

p(z | x) =
N∏
i=1

(
+∞∑
n=1

e−[Hx]i ([Hx]i)
n

n!

e−
1

2σ2 (zi−n)2

√
2πσ2

)
. (5.28)

The expression of the PG likelihood (5.28) involves an in�nite sum which
makes its exact computation impossible in practice. In [Chouzenoux et al.,
2015], the in�nite sum was replaced by a �nite summation with bounds
depending on the current estimate of x̄. However, this strategy implies a
higher computational burden in the reconstruction process when compared
with other likelihoods proposed in the literature as accurate approximations
of (5.28). In [Marnissi et al., 2016b], we have applied VBA inference tech-
niques to the restoration of data corrupted with PG noise using the gener-
alized Anscombe transform (GAST) likelihood [Murtagh et al., 1995; Starck
and Murtagh, 1998; Mäkitalo and Foi, 2013, 2012]. Following these promis-
ing preliminary results, we will consider here the GAST approximation, as
well as the shifted Poisson (SPoiss) [Chakrabarti and Zickler, 2012] and the
weighted least squares (WL2) [Benvenuto et al., 2008; Li et al., 2015; Repetti
et al., 2012] approximations, de�ned respectively in lines 4, 5 and 6 of Table
5.1. In order to satisfy Assumption 2.1, we will use µi(zi) ≡ max {βi(zi), ε}
where ε > 0 for the GAST and the SPoiss approximations. For the WL2
approximation, we set µi(zi) = max

{
(zi + σ2)2/σ6, ε

}
. Note that in all our

experiments, a data truncation is performed as a pre-processing step on the
observed image y in order to satisfy the domain condition given in the �fth
column of Table 5.1.
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3.2 Numerical results

(a) Image x1

(256× 256)
(b) Image x2

(190× 190)

(c) Image x3

(257× 256)
(d) Image x4

(350× 350)

(e) Image x5

(128× 128)
(f) Image x6

(256× 256)

Figure 5.1: Original images.

We evaluate the performance of the proposed approach for the restora-
tion of images degraded by both blur and PG noise. We consider six test
images, displayed in Figure 5.1, whose intensities have been rescaled so that
pixel values belong to a chosen interval [0, x+]. Images x1 and x6 are HST
astronomical images while images x2, x3, x4 and x5 correspond to the set of
confocal microscopy images considered in [Chouzenoux et al., 2015]. These
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images are then arti�cially degraded by an operator H modeling spatially
invariant blur with point spread function h and by PG noise with variance
σ2.

3.2.1 Comparison with MAP approaches

In this �rst set of experiments, we choose a standard total variation prior, i.e.
κ = 1/2 and for every pixel j ∈ {1, . . . , Q}, Djx =

[
[∇hx]j , [∇vx]j

]⊤ ∈ R2

where ∇h and ∇v are the discrete gradients computed in the horizontal and
vertical directions. As a result, J = Q and S = 2. The goal of our
experiments is twofold. First, for each likelihood, we compare the accuracy
of the two proposed approximations of the covariance matrix described in
Section 2.3 namely the diagonal approximation (denoted as approximation 1)
and the Monte Carlo averaging strategy (designated as approximation 2)
with di�erent number of samples Ns, namely Ns = 160 or 640. Second, the
proposed method is compared with state-of-the-art algorithms that compute
the MAP estimate for the considered likelihoods. More speci�cally, as GAST
and SPoiss data �delity terms are convex and Lipschitz di�erentiable, we
use the method presented in [Chouzenoux et al., 2015] where a primal-dual
splitting algorithm was proposed to minimize convex penalized criteria in the
context of Poisson-Gaussian image restoration. For the WL2 approximation,
the corresponding data �delity function is not convex so the previous method
could not be applied anymore. We thus consider the variable metric forward-
backward algorithm proposed in [Repetti et al., 2012] for the minimization
of penalized WL2 functionals. For the aforementioned MAP approaches, it
is necessary to set the regularization parameter γ that balances the �delity
to the observation model and the considered prior. In this respect, we test
two variants. In the �rst variant, we estimate the regularization parameter
using an approach based on the discrepancy principle [Bardsley and Goldes,
2009; Bertero et al., 2010; Zanni et al., 2015]. In the second variant, γ is
adjusted empirically to achieve the maximum SNR value, which requires the
availability of the true image.

Tables 5.2-5.7 report the results obtained with the di�erent images in
terms of SNR, SSIM [Wang et al., 2004], and approximate computation time
needed for convergence. For each likelihood, we emphasize in bold the ap-
proximation of the covariance matrix that achieves the best quantitative
result in the shortest computational time. Simulations were performed on
an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz, using a Matlab7 implemen-
tation. All tested methods were initialized with the degraded image. More-
over, the initial value of the regularization parameter results from a maxi-
mum likelihood estimation performed on the degraded image. The Monte
Carlo averaging approximation was computed using parallel implementation
with 16 cores by means of the command PARFOR of the Matlab R⃝ Parallel
Computing ToolboxTM. The iterations of VBA were run until the following
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(Ns = 640)

Figure 5.2: Evolution of SNR with respect to time for image x̄5 using
di�erent data-�delity terms and covariance approximations.

stopping criterion is satis�ed:
∥x(t+1) − x(t)∥

∥x(t)∥
6 ε. We have set ε = 10−6,

as it was observed to lead to a practical stabilization in terms of restoration
quality. This can be checked by inspecting Figure 5.2 illustrating the evolu-
tion of the SNR of the restored image along time, until the achievement of
the stopping criterion, in the test case from Table 5.6. For the MAP-based
approaches, the computational time includes the search of the regularization
parameter.

One can observe that in most studied situations (see Tables 5.4-5.7), the
diagonal approximation of the covariance matrix appears to give satisfactory
qualitative results after a small computation time. However, in few other
situations (see Tables 5.2 and 5.3), it fails to capture the real qualitative
structures of the covariance matrix leading to a poorer performance. The
latter issue is well alleviated by using the Monte Carlo approximation where
good results, in terms of image quality, are achieved withinNs = 160 samples
which is equivalent to a relative approximation error equal to 11%. A few
improvements are observed by decreasing the approximation error to 5%
using Ns = 640 samples.

We also notice that the GAST approximation does not seem to be suit-
able for very low count images (see Tables 5.2 and 5.3), whereas, the other
likelihoods lead to competitive results in all the experiments. The best trade-
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Table 5.2: Restoration results for image x1 with x+ = 10 and σ2 = 4.
Uniform kernel with size 5× 5. Initial SNR= -2.55 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 8.13 9.36 9.90

SSIM 0.3987 0.4790 0.5140

Time (s.) 55 62 67

Approx. 2

Ns = 160

SNR 9.57 10.17 10.22

SSIM 0.5260 0.6017 0.6058

Time (s.) 688 601 1011

Approx. 2

Ns = 640

SNR 9.61 10.20 10.27

SSIM 0.5308 0.6088 0.6112

Time (s.) 3606 3507 3510

MAP

Discrepancy

principle

SNR -1.13 5.24 10.17

SSIM 0.0980 0.2961 0.6131

Time (s.) 3326 2215 3053

Best
parameter

SNR 9.46 10.40 10.39

SSIM 0.5078 0.6029 0.5920

Time (s.) 4380 2560 13740

Table 5.3: Restoration results for the image x2, x
+ = 12 and σ2 = 9.

Gaussian kernel with size 25× 25, std 1.6. Initial SNR= 2.21 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 13.97 15.19 16.41

SSIM 0.3544 0.4167 0.4959

Time (s.) 58 64 70

Approx. 2

Ns = 160

SNR 18.05 19.07 19.11

SSIM 0.6664 0.6930 0.7066

Time (s.) 524 498 491

Approx. 2

Ns = 640

SNR 18.11 19.12 19.13

SSIM 0.6778 0.7034 0.7152

Time (s.) 2048 1828 1735

MAP

Discrepancy

principle

SNR 16.52 17.41 18.09

SSIM 0.5484 0.7570 0.6732

Time (s.) 594 583 2286

Best
parameter

SNR 17.83 18.73 19.09

SSIM 0.6519 0.6646 0.6702

Time (s.) 674 705 4164

o� between restoration quality and small computational time seems to be
achieved by the WL2 approximation.
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Table 5.4: Restoration results for the image x3 with x+ = 15 and σ2 = 9.
Uniform kernel with size 5× 5. Initial SNR= 3.14 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 11.42 11.94 12.25

SSIM 0.4184 0.4403 0.4588

Time (s.) 45 47 53

Approx. 2

Ns = 160

SNR 12.04 12.31 12.28

SSIM 0.4555 0.4624 0.4627

Time (s.) 328 332 396

Approx.2

Ns = 640

SNR 12.09 12.36 12.33

SSIM 0.4617 0.4684 0.4683

Time (s.) 1965 2051 2019

MAP

Discrepancy

principle

SNR 12.08 12.38 12.08

SSIM 0.4523 0.4582 0.4314

Time (s.) 6252 3865 1929

Best
parameter

SNR 12.17 12.45 12.37

SSIM 0.4531 0.4576 0.4565

Time (s.) 3348 2441 2525

Table 5.5: Restoration results for the image x4 with x+ = 20 and σ2 = 9.
Uniform kernel with size 5× 5. Initial SNR= 7.64 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 13.80 13.90 13.66

SSIM 0.5752 0.5769 0.5582

Time (s.) 29 34 88

Approx. 2

Ns = 160

SNR 13.72 13.76 13.56

SSIM 0.5667 0.5641 0.5491

Time (s.) 555 580 757

Approx. 2

Ns = 640

SNR 13.78 13.81 13.61

SSIM 0.5715 0.5687 0.5534

Time (s.) 1897 2170 2719

MAP

Discrepancy

principle

SNR 13.48 13.60 13.39

SSIM 0.5348 0.5393 0.5103

Time (s.) 3049 769 2644

Best
parameter

SNR 13.60 13.71 13.75

SSIM 0.5568 0.5605 0.5602

Time (s.) 8390 8477 2397

Finally, it can be observed that, in Tables 5.2 and 5.4, our VBA method
yields comparable performance in terms of SNR to the MAP estimate when
the latter is computed with the optimal regularization parameter, while our
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Table 5.6: Restoration results for image x5 with x+ = 20 and σ2 = 9.
Gaussian kernel with size 7× 7, std 1. Initial SNR= 8.55 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 19.5 20.23 20.71

SSIM 0.6649 0.7135 0.7793

Time (s.) 16 17 34

Approx. 2

Ns = 160

SNR 20.27 20.59 20.56

SSIM 0.7473 0.7660 0.7877

Time (s.) 61 64 94

Approx.2

Ns = 640

SNR 20.35 20.67 20.64

SSIM 0.7563 0.7798 0.7989

Time (s.) 195 197 272

MAP

Discrepancy

principle

SNR 19.39 19.50 18.70

SSIM 0.7458 0.7550 0.7448

Time (s.) 717 1201 1087

Best
parameter

SNR 20.15 20.41 20.44

SSIM 0.7535 0.7594 0.7628

Time (s.) 559 125 253

Table 5.7: Restoration results for the image x6 with x
+ = 100 and σ2 = 36.

Uniform kernel with size 3× 3. Initial SNR= 10.68 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 14.17 14.13 13.90

SSIM 0.7655 0.7647 0.7569

Time (s.) 9 8 26

Approx.2

Ns = 160

SNR 14.1 14.13 14.09

SSIM 0.7605 0.7619 0.7620

Time (s.) 104 148 246

Approx. 2

Ns = 640

SNR 14.16 14.19 14.16

SSIM 0.7639 0.7650 0.7658

Time (s.) 332 479 913

MAP

Discrepancy

principle

SNR 13.23 13.29 13.32

SSIM 0.7104 0.7126 0.7117

Time (s.) 2796 4900 1045

Best
parameter

SNR 13.77 13.79 13.84

SSIM 0.7565 0.7570 0.7591

Time (s.) 10084 10005 821

approach requires less time to converge. In the other experiments, our ap-
proach leads to the best qualitative results. For instance, in Table 5.3, the
gain in terms of SNR reaches up to 0.2 dB compared with the MAP estimator
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using the best regularization parameter, but our approach needs more time
to converge. In Tables 5.5, 5.6 and 5.7, we achieve both the best quantita-
tive results and the smallest computational time. It should be noted that for
most tested scenarii, discrepancy based approaches perform relatively poorly
compared with the other methods, especially in the case of low count images
(see Table 5.2).

In Figures 5.3 - 5.8, we show some examples of visual results obtained
with the di�erent approaches, when the best approximation strategy for the
covariance matrix is retained in the VBA method. It can be noticed that,
unlike the other methods, the reconstructed images with the proposed VBA
algorithm exhibit very few artifacts, without over-smoothed regions.

(a) Degraded image with SNR= -2.55
dB (Uniform kernel 5 × 5, x+ = 10
and σ2 = 4).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with 640 samples: SNR=
10.27 dB

(c) Restored image with discrepancy
principle: SNR= 10.17 dB

(d) Restored image with best parame-
ter: SNR= 10.39 dB

Figure 5.3: Restoration results for image x̄1 using WL2 approximation.

It should be emphasized that the problem of setting the regularization
parameter for MAP-based algorithms must be carefully addressed as it highly
impacts the quality of the restored image. The main advantage of our ap-
proach is that this parameter is tuned automatically without the need of the
ground truth, while also often being the most competitive in terms of com-
putation time. Furthermore, the performance of the proposed method could
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(a) Degraded image with SNR= 2.21
dB (Gaussian kernel 25× 25, std 1.6,
x+ = 12 and σ2 = 9).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with 640 samples: SNR=
19.12 dB

(c) Restored image with discrepancy
principle: SNR= 17.41 dB

(d) Restored image with best parame-
ter: SNR= 18.73 dB

Figure 5.4: Restoration results for image x̄2 using SPoiss approximation.

be further improved by using parallel implementation with more than 16
cores for the Monte Carlo approximation of the covariance matrix allowing
either generating a higher number of samples (i.e. an improved estimation
error) or a reduction of the computation time.

Comparisons with image deblurring methods dedicated to a pure Poisson
noise model have also been conducted. However, in our examples, they were
observed to lead to poor results in terms of restoration quality, and to present
a high computational time. For instance, the application of the proximal
method from [Pustelnik et al., 2011] using a TV prior and an empirical
search for the regularization parameter, leads to an image with SNR equal
to 12.88 dB (computation time: 3489 s.) on the test problem from Table
5.5, and a SNR of 18.37 dB (computation time: 986 s.) for the example
from Table 5.6. The Plug and Play ADMM strategy from [Rond et al., 2016]
also leads to unsatisfactory results with a �nal SNR of 9.11 dB (computation
time: 1618 s.) and 10.31 dB (computation time: 204 s.) for the examples
from Table 5.5 and Table 5.6, respectively. These numerical tests clearly
highlight that image restoration in the presence of Poisson-Gaussian noise
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(a) Degraded image with SNR= 3.14
dB (Uniform kernel 5 × 5, x+ = 15
and σ2 = 9).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with 640 samples: SNR=
12.36 dB

(c) Restored image with discrepancy
principle: SNR= 12.38 dB

(d) Restored image with best parame-
ter: SNR= 12.45 dB

Figure 5.5: Restoration results for image x̄3 using SPoiss approximation.

is challenging, and should be treated with speci�c methods that take into
account the mixed noise model in an explicit manner.

3.2.2 In�uence of the regularization term

The versatility of the proposed VBA method allows us to consider a large
variety of regularization strategies, by de�ning appropriate prior operators
D. In the previous experiments, the TV prior has led to satisfactory re-
sults in terms of SNR, but a visual inspection of the restored versions of
images x̄4 and x̄6 shows an undesirable starcasing e�ect. In this new set
of experiments, we propose to compare these TV-based restoration results
to those obtained with priors that have been recently shown to better pre-
serve the natural features in images. Namely, we will consider the Hessian-
based penalization [Lefkimmiatis et al., 2012], the semi-local total variation
(SLTV) [Condat, 2014], and the non-local total variation (NLTV) [Gilboa
and Osher, 2008; Chierchia et al., 2014]. The Hessian prior operator is given,
for every j ∈ {1, . . . , Q}, by Djx =

[
[∇hhx]j ,

√
2[∇hvx]j , [∇vvx]j

]⊤ ∈ R3
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(a) Degraded image with SNR=7.64
dB (Uniform kernel 5 × 5, x+ = 20
and σ2 = 9).

(b) Restored image with VBA ap-
proach using the diagonal approxima-
tion: SNR= 13.80 dB

(c) Restored image with discrepancy
principle: SNR= 13.48 dB

(d) Restored image with best parame-
ter: SNR= 13.60 dB

Figure 5.6: Restoration results for image x̄4 using GAST approximation.

where ∇hh, ∇hv and ∇vv model the second-order �nite di�erence operators
between neighbooring pixels, so that S = 3 and J = Q. The SLTV is based
on di�erences of neighboring gradient values and is computed here using a
6-pixels neighborhood, hence S = 12 and J = Q. The NLTV prior operator
is de�ned at every pixel position by a collection of weighted discrete gradi-
ent di�erences operators across a large set of directions, the weights being
calculated according to a rough estimate of the target image. In our experi-
ments, 49 di�erent directions are chosen and the corresponding weights are
precomputed from the restored images using VBA with the TV prior and
the diagonal approximation of the covariance matrix. As a result, S = 98
and J = Q in that case. The SPoiss likelihood is chosen for the data �delity
term as it was observed to lead to the best tradeo� in terms of image quality
and computational time in the previous set of tests. Table 5.8 summarizes
the obtained results for all the six test images, using the di�erent consid-
ered priors. Complementary to these numerical results, Figures 5.9 and 5.10
show the visual improvements resulting from the di�erent priors. One can
observe that the NLTV prior gives in most experiments the best results in
terms of SNR while the other priors perform quite similarly. In particular,
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(a) Degraded image with
SNR= 8.55 dB (Gaussian ker-
nel 7 × 7, std 1. x+ = 20 and
σ2 = 9).

(b) Restored image with VBA ap-
proach using the diagonal approxima-
tion: SNR= 20.71 dB

(c) Restored image with discrepancy
principle: SNR= 18.70 dB

(d) Restored image with best parame-
ter: SNR= 20.44 dB

Figure 5.7: Restoration results for image x̄5 using WL2 approximation.

Table 5.8: Restoration results for the considered test images using the
SPoiss likelihood and di�erent regularization functions.

x1 x2 x3 x4 x5 x6

TV

SNR 10.20 19.12 12.36 13.90 20.67 14.19

SSIM 0.6088 0.6930 0.4684 0.5769 0.7790 0.7650

Time (s.) 3507 1828 2051 34 184 479

Hessian

SNR 10.17 19.41 12.21 13.56 20.57 14.05

SSIM 0.6016 0.7300 0.4618 0.5501 0.8392 0.7643

Time (s.) 8600 5404 6974 5058 744 1332

SLTV

SNR 10.32 19.26 12.26 13.53 20.62 13.93

SSIM 0.6006 0.7189 0.4656 0.5478 0.8368 0.7578

Time (s.) 6359 2923 3497 1003 375 738

NLTV

SNR 10.35 19.10 12.46 14.09 22.89 13.95

SSIM 0.4644 0.7075 0.4704 0.5812 0.7972 0.7530

Time (s.) 7821 338 4602 8595 807 1547

for the image x5, the gain in terms of SNR exceeds 2 dB when using the
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(a) Degraded image with
SNR= 10.68 dB (Uniform ker-
nel 3× 3, x+ = 100 and σ2 = 36).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with 640 samples: SNR=
14.16 dB

(c) Restored image with discrepancy
principle: SNR= 13.32 dB

(d) Restored image with best parame-
ter: SNR= 13.84 dB

Figure 5.8: Restoration results for image x̄6 using WL2 approximation.

NLTV prior, compared to the other regularization strategies. Note that de-
spite small di�erences in SNR between the results obtained with the TV,
SLTV and the Hessian regularizers, the Hessian and the SLTV appear to
o�er good alternatives in terms of visual quality to the TV prior for images
that consist mostly of ridges and smooth transition of intensities. Indeed,
it can be seen in Figure 5.10 that the smooth piecewise constant areas are
better reconstructed and the sharpness of edges is better maintained using
these two priors. For textured images, Figure 5.9 shows that the NLTV prior
gives rise to less blurry images than the SLTV and Hessian priors and seems
to reduce again the undesired staircase e�ect arising from TV regularization.
However, as shown in Table 5.8, the approaches based on Hessian, SLTV and
NLTV take much more computation time than the TV based approach in
most test cases. Our suggestion would be to use the VBA approach with the
TV prior and the diagonal approximation of the covariance matrix to ob-
tain a satisfactory result in a low computational cost, and to use VBA with
NLTV prior, using the former TV-based result to approximate the NLTV
weights, in order to further improve the visual quality of the restored image.
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(a) Restored image with a TV prior:
SNR= 13.90 dB

(b) Restored image with a Hessian
prior: SNR= 13.56 dB

(c) Restored image with a SLTV
prior: SNR= 13.53 dB

(d) Restored image with a NLTV
prior: SNR= 14.09 dB

Figure 5.9: Restoration results for image x̄4 using SPoiss likelihood and
di�erent regularization functions.

3.2.3 VBA performance in the case of pure Poisson noise

We now consider two test problems where the image is degraded by pure Pois-
son noise (i.e., σ = 0). Since the exact expression of the Poisson likelihood is
not di�erentiable, we have ran our VBA method using its Anscombe-based
approximation de�ned in line 3 of Table 5.1. The NLTV prior with weights
precomputed from images restored using VBA with the TV prior, was em-
ployed as regularization term. We consider the test images x2 and x5 whose
intensities are rescaled to achieve di�erent intensity levels. The observed
images are then generated by degrading the clean ones with a Gaussian blur
of size 7 × 7 and variance 1 with symmetric boundary conditions and then
by applying Poisson noise. Comparisons have been conducted between our
VBA method, the Plug-and-Play scheme [Rond et al., 2016] and the varia-
tional approach using the Parallel Proximal algorithm (PPXA-TV) with a
TV regularization [Pustelnik et al., 2011]. The regularization parameters for
these two variational methods have been either �xed empirically to achieve
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(a) Restored image with a TV prior:
SNR= 20.67 dB

(b) Restored image with a Hessian
prior: SNR= 20.57 dB

(c) Restored image with a SLTV
prior: SNR= 20.62 dB

(d) Restored image with a NLTV
prior: SNR= 22.89 dB

Figure 5.10: Restoration results for image x̄5 using SPoiss likelihood and
di�erent regularization functions.

the best numerical results in terms of SNR or estimated using the discrep-
ancy principle for Poisson likelihood [Bertero et al., 2010]. Results are shown
in Tables 5.9 and 5.10. While the PPXA-TV yields very competitive results,
the Plug-and-Play is quite e�cient for very low count images (x+ < 5) but
its e�ciency highly deteriorates for moderate values of x+. The proposed
method achieves the best restoration results for (x+ > 5) but at the price of
a larger computational cost.
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Table 5.9: Restoration results for the test image x2 under pure Poisson noise (Anscombe transform likelihood and NLTV
prior).

Plug-and-Play PPXA-TV Proposed

Discrepancy principle Best parameter Discrepancy principle Best parameter

x+ = 3
Initial SNR=1.37 dB

SNR 15.75 19.96 17.36 17.43 14.24

SSIM 0.4789 0.7247 0.6090 0.6242 0.7121

Time 1883 1172 7430 4421 24135

x+ = 5
Initial SNR=3.58 dB

SNR 16.21 20.56 18.05 18.06 16.44

SSIM 0.4632 0.7491 0.6440 0.6486 0.7372

Time 2251 961 7824 4103 12629

x+ = 10
Initial SNR=6.96 dB

SNR 16.97 17.03 10.39 19.13 18.40

SSIM 0.7430 0.7434 0.5775 0.6739 0.7522

Time 3217 316 14857 2603 11349

x+ = 15
Initial SNR=8.57 dB

SNR 14.33 14.65 15.84 20.00 19.79

SSIM 0.7620 0.7607 0.6705 0.6949 0.7634

Time 1959 1238 7824 2676 21499

x+ = 20
Initial SNR=9.76 dB

SNR 11.83 12.40 18.15 20.13 20.24

SSIM 0.7612 0.7538 0.6992 0.7073 0.7696

Time 1557 558 3718 2158 30885

x+ = 30
Initial SNR=11.44 dB

SNR 10.04 10.10 19.95 20.66 21.08

SSIM 0.6661 0.7320 0.7247 0.7212 0.8709

Time 6211 568 6121 2233 55284
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Table 5.10: Restoration results for the test image x5 under pure Poisson noise (Anscombe transform likelihood and NLTV
prior).

Plug-and-Play PPXA-TV Proposed

Discrepancy principle Best parameter Discrepancy principle Best parameter

x+ = 3
Initial SNR=3.14 dB

SNR 17.36 19.71 14.91 16.47 14.89

SSIM 0.7307 0.7749 0.5993 0.6201 0.7940

Time 1101 782 7529 1617 3223

x+ = 5
Initial SNR=5.27 dB

SNR 19.62 19.94 17.06 17.28 17.21

SSIM 0.7952 0.7930 0.6650 0.6555 0.8172

Time 950 518 6861 1707 3021

x+ = 10
Initial SNR=8.52 dB

SNR 12.30 14.05 12.44 18.64 20.9

SSIM 0.7703 0.7553 0.6123 0.6842 0.8406

Time 996 316 2482 922 5523

x+ = 15
Initial SNR=11.23 dB

SNR 11.68 12.00 15.43 19.03 21.06

SSIM 0.7834 0.7950 0.6887 0.7256 0.8626

Time 926 242 1120 1230 9423

x+ = 20
Initial SNR=12.23 dB

SNR 9.24 10.25 18.27 19.66 21.90

SSIM 0.7303 0.7405 0.7363 0.7419 0.8553

Time 1228 203 1106 920 12459

x+ = 30
Initial SNR=13.66 dB

SNR 8.20 10.10 19.74 19.85 22.76

SSIM 0.7363 0.7320 0.7586 0.7555 0.8709

Time 1271 568 1601 938 22888
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Conclusion

In this chapter, we have proposed a variational Bayesian approach for solv-
ing signal recovery problems in the presence of non-Gaussian noise. Our ap-
proach has two main advantages. First, the regularization parameter is tuned
automatically during the recovery process. Second, the designed method is
applicable to a wide range of prior distributions and data �delity terms. As
the posterior density of the unknown parameters is analytically intractable,
the estimation problem is derived in a variational Bayesian framework where
the goal is to provide a good approximation to the posterior distribution in
order to compute posterior mean estimates. Moreover, a majorization tech-
nique is employed to circumvent the di�culties raised by the intricate forms
of the non-Gaussian likelihood and of the prior density. Simulations carried
out on various images corrupted with mixed Poisson-Gaussian noise show-
case the good performance of our approach compared with methods using
the discrepancy principle for estimating the regularization parameter. More-
over, we propose variants of our method leading to a signi�cant reduction of
the computational cost while maintaining a satisfactory restoration quality.
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Conclusion

The signal processing community has embraced the challenge to shed light
on the interesting overlap existing between deterministic optimization ap-
proaches and Bayesian framework, being for a long time divergent. Inter-
actions between these two classes of approaches have contributed to the
development of algorithms that make use of stochastic simulation, approx-
imation and optimization in order to provide novel e�cient methods for
signal restoration. Following this promising direction, this PhD thesis has
contributed to the development of Bayesian algorithms whose e�ciency is
improved using deterministic optimization tools.

� 1 Contributions

In the �rst part of this thesis, we have investigated the problem of sampling
from intractable target distribution in high dimensional spaces. In the sec-
ond part, we have proposed an image recovery algorithm using a VBA frame-
work. Validation of the proposed approaches has been conducted through
applications of signal and image recovery.

Majorize-Minimize adapted Metropolis Hastings: We have been in-
terested on Langevin Metropolis Hastings algorithms de�ned for di�er-
entiable laws. Inspired from gradient descent optimization tools, such
methods incorporate directional information about the target distri-
bution in the proposal density in order to guide the chain towards
the target space where most samples should be concentrated. To this
end, the directional component is chosen as one iteration of a pre-
conditioned gradient descent algorithm. Noise is then injected to the
update in such a way that the trajectory of the chain converges to the
full posterior distribution rather to a posterior mode. Hence, a new
sample of such proposal is more likely localized in a region with high
probability values and is then more likely accepted, which may speed
up the convergence of the chain to the stationary distribution. How-
ever, as the Markov chain is very sensitive to the dependencies between
the signal coe�cients, sampling in large scale problems remains a chal-
lenging task because of the high cost at each iteration or because of
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poor mixing properties of the chain when the preconditioning matrix
is not well chosen. These issues are similar to problems encountered in
deterministic preconditioned gradient descent optimization techniques.
This dissertation led us to develop a sampling algorithm which exploits
natural connections between the deterministic inverse problem and the
Bayesian statistical inverse problem to accelerate statistical sampling
methods:

• Inspired from Majorize-Minimize approaches frequently used in
the deterministic framework, we have proposed a preconditioned
version of the Langevin Metropolis Hastings algorithm that uses
adaptive preconditioning matrices derived from a quadratic tan-
gent majorant function of the negative logarithm of the posterior
distribution.

• We have proposed di�erent variants of tangent majorant functions
involving full, constant and diagonal curvature matrices which al-
lows the scalability of the proposed algorithms to large size prob-
lems.

• We have demonstrated the geometric ergodicity of the proposed
sampling algorithm for the class of super-exponential distribu-
tions.

• The proposed algorithm has been validated on a sparse signal
deconvolution problem with a Cauchy prior. This experiment
allowed us to study the impact of the preconditioning matrix on
the performance of the sampling process. Results have shown
that, similarly to preconditioning in optimization, using an exact
full matrix is often computationally expensive in high-dimensional
settings which deteriorates the e�ciency of the algorithm. The
diagonal matrix has given the best tradeo� between convergence
speed and mixing properties due to the minimal cost per iteration
it induces.

Gibbs sampler with auxiliary variables: When the parameter space is
high dimensional, the performance of stochastic sampling algorithms
is very sensitive to dependencies between parameters. For instance,
this problem emerges when one aims to sample from a high dimen-
sional Gaussian distribution whose covariance matrix does not present
simple structure i.e., it is neither sparse, nor circulant, nor Toeplitz
etc. In this context, we often resort to sampling algorithms based on
Perturbation-Optimization rule that requires to solve at each iteration
a cost function using an iterative algorithm [Orieux et al., 2012] which
makes the sampling process prohibitive especially when used within a
Gibbs sampler. Another challenge is the design of MH proposals that
make use of information about the local geometry of the target density
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in order to speed up the convergence and improve mixing in the pa-
rameter space without being too computationally expensive. These two
issues are mainly related to the presence of two heterogeneous sources
of dependencies coming either from the prior or the likelihood in the
sense that the related covariances matrices can not be diagonalized in
the same domain. To overcome these di�culties, we have proposed
to add auxiliary variables to the model in order to dissociate the two
sources of dependencies. In the new augmented space, only one source
of correlation remains directly related to the target parameters, the
other sources of correlations will only intervene through the auxiliary
variables. Note that this strategy is highly related to half-quadratic
approaches often used in optimization problems [Allain et al., 2006].

• We have described a strategy for adding auxiliary variables in a
Gaussian distribution and we have extended it to scale mixture
of Gaussian models.

• In the new augmented space, the Gibbs sampler needs to draw
samples from the conditional distribution of the auxiliary vari-
ables at each iteration. We have therefore given some strategies
to perform this task directly depending on the properties of the
covariance matrix related to the auxiliary variables.

• We have studied the e�ciency of the proposed approach on a
problem of multichannel image recovery from its blurred and noisy
version, the noise being assumed Gaussian with known variance.
The problem has been addressed in the wavelet domain, where a
multivariable GMEP prior has been adopted to model the wavelet
coe�cients at the same spatial position through all the channels
allowing to exploit the spectral-intercorrelation. A separation
strategy has been proposed to estimate the hyper-parameters in-
volved in the GMEP regularization from the degraded observation
of the image to be reconstructed. By adding auxiliary variables
in the Gaussian data �delity term, the observation matrix is no
longer related directly to the image. Thanks to the separability
property of the prior law (wavelets coe�cients belonging to dif-
ferent spatial positions, orientation or scales are supposed to be
independent), vectors of wavelet coe�cients belonging to di�erent
wavelet subbands have been sampled independently in a parallel
manner.

• We have shown the good performance of the proposed data aug-
mentation approach when dealing with the problem of sampling
from high-dimensional Gaussian distribution. Auxiliary variables
can be added either to the prior model or the data �delity term
or to both of them depending on the properties of the related
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covariance matrices. The experimental results illustrate, through
an example of an image recovery problem under mixed Gaus-
sian noise, the e�ectiveness of our proposed methods compared
to Perturbation-Optimization approaches combined with a Gibbs
sampling algorithm.

VBA approach for image recovery: The goal of VBA is to infer the
posterior distribution of a set of parameters given observed data by
seeking for a separable approximating distribution which is as close as
possible to the true posterior distribution in terms of Kullback-Leibler
divergence. In many instances, expressions of these approximate dis-
tributions are analytically intractable, especially when it is not pos-
sible to directly calculate expectation of the log joint likelihood with
respect to the factorized approximate distribution. This is the case
for example of non-Gaussian and signal dependent noise models. By
resorting to majorization strategies based on half-quadratic tools, we
have constructed a lower bound on the Kullback-Leibler divergence
that we want to minimize. Approximate distribution has been derived
by making this lower-bound as close as possible to the Kullback-Leibler
divergence using a coordinate-ascent iterative algorithm. In particu-
lar, the approximate distribution of the target image is a Gaussian one,
whose covariance matrix has been approximated either with a diagonal
one or with a Monte Carlo estimate using a Perturbation-Optimization
simulation algorithm. We have illustrated the usefulness of our algo-
rithm via experiments in the context of image restoration when the
noise follows a mixed Poisson-Gaussian model.

• Results have shown that, in most studied situations, the diagonal
approximation of the covariance matrix gives satisfactory results.
The Monte Carlo estimate ensures a better approximation of the
covariance matrix but at the expense of a higher computational
time. One can decrease the cost of each iteration by using a
higher number of cores to perform the Perturbation-Optimization
simulation tasks in a parallel manner

• We have compared the restoration results of our VBA algorithm
to those obtained by optimization algorithms computing the MAP
estimate where the regularization parameter is either estimated
using a discrepancy principle or �xed manually according to the
ground truth. Results have shown that for most tested scenarii,
discrepancy based approaches perform relatively poorly compared
with the other methods, especially in the case of low count images.
The VBA method and the MAP approach with the best regular-
ization parameter achieve competitive results while the proposed
algorithm has the advantage to automatically tuning the regular-
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ization parameter from observations.

• When applied to image recovery with pure Poisson noise, the pro-
posed VBA approach has yielded the best restoration results for
moderate count images compared to the state of the art-methods
but at the price of a larger computational cost.

� 2 Perspectives

As a future work, this PhD opens several perspectives both from a method-
ological and application viewpoints. In this section, we give di�erent ongo-
ing works and promising ideas that could complete or improve the proposed
methods in this thesis.

2.1 Short-term extensions

Comparisons of VBA and MCMC approaches: In this thesis, we have
evaluated the proposed VBA and MCMC algorithms through signal
and image recovery problems. An ongoing work is to compare the
performance of VBA and MCMC approaches, for all the experiments
throughout this thesis. On the one hand, it is well known that approx-
imating distribution within the VBA framework is tractable when the
target distribution is Gaussian conditioned to some hidden variables.
Hence, VBA can be e�ciently applied to the restoration of the sparse
signal with ST prior presented in Chapter 3 by expressing ST as a
scale mixture of Gaussian with an inverse Gamma mixing distribu-
tion [Gharsalli et al., 2012]. Similarly, multichannel image restoration
problem presented in Chapter 4 can also be performed using VBA ap-
proach since the GMEP distribution can be written as a scale mixture
of Gaussian where the mixing law is related to alpha stable distribu-
tions [Gómez-S-M. et al., 2008]. On the other hand, Poisson-Gaussian
image restoration with total variation prior could be accomplished us-
ing proximal type MCMC sampling algorithm proposed in [Pereyra,
2016].

Other applications of the proposed methods: The proposed algorithms
in this thesis have great generality and can be applied to a wide class of
problems. The advantage of all these methods relies on their ability to
jointly estimate the target signal of interest together with the unknown
regularization and acquisition parameters. For instance, signal/image
blind deconvolution can be further investigated using MCMC and VBA
algorithms proposed in Chapters 5 and 3 respectively by assigning a
prior probability to the blur kernel to be estimated [Babacan et al.,
2012] and simulating from (respectively approximating) the resulting
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conditional distribution. Moreover, the Gibbs sampling algorithms
with auxiliary variables proposed in Chapter 4, can also be applied
to super-resolution problems involving tight/sparse decimation matri-
ces [Orieux et al., 2012], image processing using redundant tight frames
[Pustelnik et al., 2016], image segmentation [Ayasso and Mohammad-
Djafari, 2010], image reconstruction etc.

Advanced VBA approaches: The objective of VBA approaches is to �nd
a tractable probability density function achieving the minimal Kullback-
Leibler divergence according to the true density which reduces to solv-
ing a convex in�nite-dimensional optimization problem. The proposed
VBA algorithm in Chapter 5 computes the solution of this problem
using a coordinate ascent iterative algorithm which updates at each
iteration one component of the separable distribution while holding
the remaining ones �xed. However, other optimization algorithms have
been recently proposed by extending gradient-type iterative algorithms
into the space of probability densities involved in the VBA methodol-
ogy [Fraysse and Rodet, 2014; Zheng et al., 2015]. In future work, we
would like to improve the algorithm proposed in Chapter 5 by using
these advanced iterative algorithms which may speed up their conver-
gence and bring signi�cant computational savings when tackling large
dimensional problems. Furthermore, the majorization technique that
we have proposed to address the problem of the intricate form of the
prior law could be further applied to VBA methods based on Bethe
approaches [Yedidia et al., 2005].

Preconditioned MCMC algorithms: The proposed preconditioning strat-
egy in Chapter 3 can be generalized to other sampling algorithms
that are based on �rst order derivative information for di�erentiable
laws. For instance, Hamiltonian Monte Carlo (HMC) are alternatives
to Langevin type algorithms that propose samples based on physical
interpretation of the target distribution. In addition to the variables
of interest, they introduce independent auxiliary variables p ∈ RQ,
that follow a zero-mean Gaussian distribution with covariance matrix
M. In HMC algorithms, the minus logarithm of the joint posterior
distribution J (x,p) is interpreted as the total energy of the system
with position variable x and momentum variables p [Neal, 2011]. This
sampling algorithm is then derived using the analogy with the kinetic
energy conservation in physics and the leapfrog discretization method
[Leimkuhler and Reich, 2004; Neal, 2011]. Trajectories incorporating
information from the target distribution can be simulated by choosing a
position dependent mass matrix i.e, M = M(x) that takes into account
the geometry of the target density [Betancourt, 2013]. Standard choices
include the Hessian matrix proposed in [Zhang and Sutton, 2011] and
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the Fisher matrix proposed in [Girolami and Calderhead, 2011]. Al-
ternatively, we propose to use the curvature matrix constructed by
Majorize-Minimize strategy as the mass matrix in HMC algorithms.

2.2 Future works and open problems

For tighter proposals and cheaper metrics calculations: The compu-
tational cost and the accuracy of the proposed algorithm in Chapter
3 depend on the curvature matrix of the Gaussian proposal density.
In this context, there are two possible directions for future works.
From the theoretical viewpoint, an interesting perspective is to see
how to build new quadratic tangent majorant functions using scale
matrices that provide tighter local approximations of the target law
curvature than the diagonal matrix, while being simple to manipulate.
Some cheap forms may be investigated such as, block diagonal, sparse,
toeplitz matrices etc. In the second direction, rather than �xing the
same proposal in the whole algorithm, methods for automatic selection
of the curvature matrix form based on the local curvature of the target
law in each iteration, need to be developed.

Heavy tailed MH proposals: MH algorithms with Gaussian proposals
based on local moves such as the Gaussian RandomWalk and Langevin-
type algorithms often exhibit poor performance on certain types of
target distributions. For instance, their geometric ergodicity has been
only demonstrated for super-exponential laws [Jarner and Hansen,
2000; Mengersen and Tweedie, 1996; Roberts and Stramer, 2002; Schreck
et al., 2016]. Hence, when the target distribution are heavy-tailed,
these algorithms show some di�culties to reach convergence at �nite
time, and/or to explore e�ciently the tails of the target distribution.
In fact, in such challenging frameworks, a Gaussian proposal is not a
judicious choice due to its short tails. To overcome these problems, one
may resort instead to proposals that have heavier tails than Gaussian.
This approach has been already investigated in [Jarner and Roberts,
2007]. In future work, one appealing idea would be the selection of
heavy tailed proposals based on non-quadratic Majorize-Minimize ap-
proaches.

More sophisticated prior models: The choice of more sophisticated prior
distributions could greatly improve the restoration quality in practice.
For example, it would be preferable to design models that enforce not
only the spectral correlation of multispectral images but also other im-
portant structural properties such as spatial image correlation, depen-
dencies between multiscale subbands with same orientation etc. One
goal could be to extend the proposed algorithms in Chapter 4 to man-
age the di�erent correlations presented in the same prior distribution,
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i.e., dissociate the inter-spectral, inter-scale and the spatial correlation
by including additional auxiliary variables.

Extension to non-Gaussian models: The Gibbs sampling algorithms pro-
posed in Chapter 4 address sampling problems from high-dimensional
distribution by adding auxiliary variables provided that either the data
�delity term or the prior is Gaussian conditioned to some hidden vari-
ables. A challenging task could be to enlarge the �eld of applications of
the proposed algorithms to deal with problems involving non-Gaussian
models.
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PCGS algorithm in the case of a scale

mixture of Gaussian noise

• Parent Gibbs sampler: Each iteration t of the Gibbs sampling al-
gorithm is composed of 4 sampling steps:

1) Sample v(t+1) from Pv|x(t),σ(t),Θ(t),z.

2) Sample x(t+1) from Px|σ(t),Θ(t),v(t+1),z.

3) Sample σ(t+1) from Pσ|x(t+1),Θ(t),v(t+1),z.

4) Sample Θ(t+1) from PΘ|x(t+1),σ(t+1),v(t+1),z).

• Marginalization: Rather than sampling only a variable at each sam-
pling step of the Gibbs iteration, some other variables may be sampled
along with instead of being conditioned upon without a�ecting the con-
vergence eof the Gibbs algorithm to the desired distribution [Van Dyk
and Park, 2008]. For instance, we can sample σ jointly with v in the
third step, for example by �rst sampling from Pσ|x,Θ,z and then from
Pv|x,σ,Θ,z. Similarly, we can sample Θ jointly with v in the fourth
step, by �rst sampling from PΘ|x,σ,z and then from Pv|x,σ,Θ,z. In each
step, we sample the variables of interest conditioning to the most re-
cently sampled value of v before the current step (e.g., in Step 2, x is
sampled conditioning to the value of v sampled in Step 1). Note that,
at each iteration of the Gibbs sampler, the output for each variable is
the most recently sampled, that is x is sampled in Step 2, σ in Step 3
and �nally Θ and v in Step 4.
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noise

1) Sample v(t+ 1
3
) from Pv|x(t),σ(t),Θ(t),z.

2) Sample x(t+1) from P
x|σ(t),v(t+1

3 ),Θ(t),z
.

3) Sample
(
σ(t+1),v(t+ 2

3
)
)
from Pσ,v|x(t+1),Θ(t),z.

4) Sample
(
Θ(t+1),v(t+1)

)
from PΘ,v|x(t+1),σ(t+1),z.

The last Gibbs sampler may be ine�cient since v is drawn many times
at each iteration. However, we can not remove arbitrarily redundant
samplers of v. For instance, samples of v in Step 1 and 4 cannot be
dropped from the respective sampling distribution since v(t+ 1

3
) is con-

ditioned upon in Step 2 and v(t+1) belongs to the output of the Gibbs
iteration. We can remove instead unused intermediate values namely
v(t+ 2

3
) since it is never conditioned upon and does not belong to the

output of the Gibbs iteration. Such procedure is called trimming. Note
that it remains possible to permute some steps of this Gibbs sampler
without altering the convergence of the algorithm to the desired dis-
tribution. Hence, it is reasonable to use a good sampling order such
that trimming can be performed to a maximum extent.

• Permutation: In the following permuted Gibbs iteration, the redun-
dant samples of v in Step 1 and 2 give intermediate variables. Thus,
they can be removed from the algorithm.

1) Sample
(
σ(t+1),v(t+ 1

3
)
)
from Pσ,v|x(t),Θ(t),z).

2) Sample
(
Θ(t+1),v(t+ 2

3
)
)
from PΘ,v|x(t),σ(t+1),z.

3) Sample v(t+1) from Pv|x(t),σ(t+1),Θ(t+1),z.

4) Sample x(t+1) from Px|σ(t+1),Θ(t+1),v(t+1),z.

• Trimming: This step means removing the redundant variables from
the last Gibbs algorithm. The resulted Gibbs sampler has the same
stationary distribution as the parent Gibbs sampler.
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1) Sample σ(t+1) from Pσ|x(t),Θ(t),z.

2) Sample Θ(t+1) from PΘ|x(t),σ(t+1),z.

3) Sample v(t+1) from Pv|x(t),σ(t+1),Θ(t+1),z.

4) Sample x(t+1) from Px|σ(t+1),Θ(t+1),v(t+1),z.





- Appendix B -

Proof of Proposition 2.1

Let i ∈ {1, . . . , N}. Let us de�ne gi : R → R such that

(∀v ∈ R) gi(v) =
v2

2
− ϕi(v; zi)

µi(zi)
. (B.1)

According to Assumption 2.1, gi is convex, proper and lower semi-continuous
(lsc). Its conjugate function [Bauschke and Combettes, 2011, Chapter 13]
reads:

(∀w ∈ R) g∗i (w) = sup
v∈R

(vw − gi(v)) (B.2)

= sup
v∈R

(
vw +

ϕi(v; zi)

µi(zi)
− v2

2

)
(B.3)

= sup
v∈R

(
−1

2
(v − w)2 +

ϕi(v; zi)

µi(zi)

)
+
w2

2
. (B.4)

According to De�nition (5.8),

(∀w ∈ R) g∗i (w) = ςi(w; zi) +
w2

2
. (B.5)

The conjugate of g∗i is

(∀v ∈ R) g∗∗i (v) = sup
w∈R

(
vw − g∗i (w)

)
(B.6)

= sup
w∈R

(
vw − w2

2
− ςi(w; zi)

)
= sup

w∈R

(
−1

2
(v − w)2 − ςi(w; zi)

)
+
v2

2

= − inf
w∈R

(
1

2
(v − w)2 + ςi(w; zi)

)
+
v2

2
. (B.7)

Since gi is convex, proper and lsc [Bauschke and Combettes, 2011, Theorem
13.32], gi = g∗∗i so that

(∀v ∈ R) − ϕi(v; zi)

µi(zi)
= − inf

w∈R

(
1

2
(v − w)2 + ςi(w; zi)

)
(B.8)
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which is equivalent to

(∀v ∈ R) ϕi(v; zi) = µi(zi) inf
w∈R

(
1

2
(v − w)2 + ςi(w; zi)

)
, (B.9)

so that (5.9) holds.
For every v ∈ R, let

ŵi(v) = g′i(v). (B.10)

The function gi being convex, proper and lsc, according to [Bauschke and
Combettes, 2011, Corollary 16.24], the above relation can be reexpressed by
making use of the subdi�erential ∂g∗i of the convex function g

∗
i (see [Bauschke

and Combettes, 2011, Chapter 16] for more details). More precisely, (B.10)
is equivalent to

v ∈ ∂g∗i
(
ŵi(v)

)
. (B.11)

According to Fermat's rule [Bauschke and Combettes, 2011, Theorem 16.2],
(B.11) is a necessary and su�cient condition for ŵi(v) to be a minimizer of
the convex function w 7→ g∗i (w)− vw.

This minimizer is unique since ŵi(v) is uniquely de�ned by (B.10). We
have therefore established that

ŵi(v) = argmaxw ∈ R
(
vw − g∗i (w)

)
. (B.12)

The de�nition of gi in (B.1) shows that (B.10) also reads

ŵi(v) = v − 1

µi(zi)
ϕ′i(v; zi). (B.13)

According to (B.6), it is straightforward that ŵi(v) also reaches the in�mum
in (B.9). Hence the result by using (B.13) and (5.10).
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