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Résumé

Les interactions entre les approches bayésiennes et variationnelles ont contribué au développement de méthodes qui combinent simulation stochastique (ou approximation), et optimisation an de fournir des nouveaux algorithmes ecaces pour la restauration des signaux. Cette thèse se place dans cette direction prometteuse et a pour objectif le développement d'algorithmes bayésiens dont l'ecacité est améliorée par des outils issus de l'optimisation déterministe.

Dans plusieurs domaines d'application en traitement du signal et des images, on se retrouve le plus souvent confronté au problème suivant: on n'a pas accès directement aux paramètres d'intérêt mais seulement à des mesures indirectes. On doit alors résoudre un problème inverse dont le but est d'estimer les paramètres inconnus à partir de ces observations. Le chapitre 2 introduit le lecteur aux approches bayésiennes pour la résolution des problèmes inverses. Nous commençons par un bref aperçu des principaux problèmes inverses rencontrés en traitement de signal et les diérentes méthodes qui permettent de les résoudre. Une attention particulière est accordée à la modélisation bayésienne. Cette dernière est basée sur la loi a posteriori qui utilise des informations a priori sur les paramètres inconnus à estimer ainsi que des informations sur les observations, pour construire des estimateurs.

L'estimateur optimal au sens du coût quadratique est l'un des estimateurs les plus couramment employés. Toutefois, un dé majeur dans de telles méthodes est le calcul de la loi a posteriori ou plus précisément son exploration. En eet, dans de nombreux domaines du traitement d'image tels que la médecine, l'astronomie et la microscopie, il est assez courant de traiter des données de grandes tailles avec des modèles de plus en plus sophistiqués.

Dans ces circonstances, même si la loi a priori et celle des observations sont simples, la loi a posteriori est généralement compliquée dans le sens où elle ne peut être connue qu'à une constante multiplicative près et/ou elle possède une forme non usuelle ou son traitement nécessite des ressources informatiques massives. A cet égard, plusieurs méthodes d'approximation ont été proposées. D'une part, les algorithmes d'échantillonnage de Monte Carlo par chaînes de Markov (MCMC) sont des outils bayésiens puissants pour explorer des lois compliquées. Dans le but d'échantillonner suivant une certaine loi de probabilité, l'idée sous-jacente aux algorithmes MCMC est de produire, à partir d'une certaine loi de transition donnée, une chaîne de Markov qui converge vers la loi cible. Une classe importante de méthodes MCMC est ix x Résumé inspirée de l'algorithme Metropolis-Hastings (MH) où la loi de transition est dénie par une loi de proposition dont l'échantillonnage est simple et une règle d'acceptation-rejet assurant la réversibilité de la chaîne. Une tâche difcile lors de la mise en oeuvre de cette méthode est le choix de la densité de proposition. Elle doit idéalement fournir une bonne approximation locale de la densité cible avec un faible coût de calcul. On peut d'autre part recourir à des approches basées sur des approximations bayésiennes variationnelles (VBA). Au lieu de simuler à partir de la vraie loi a posteriori, les approches VBA visent à l'approcher avec une autre loi plus simple à partir de laquelle la moyenne a posteriori peut être facilement calculée. Ces méthodes peuvent généralement conduire à une complexité de calcul relativement faible par rapport aux algorithmes basés sur l'échantillonnage.

Nos contributions s'orientent selon deux axes principaux: Dans une première partie de la thèse, nous proposons des algorithmes de simulation MCMC et nous fournissons des solutions pour contourner leurs limitations dans les problèmes de grande dimension (chapitres 3 et 4). Dans une seconde partie, nous proposons des approches VBA et, en particulier un algorithme pour la restauration de signaux en présence d'un bruit non gaussien (chapitre 5). Dans chaque chapitre, nos contributions résident dans la conception de nouveaux algorithmes et en la proposition de nouvelles solutions à des problèmes applicatifs issus de la restauration de signaux/images. Dans le chapitre 3, nous nous intéressons aux algorithmes de MH basés sur la diusion de Langevin dénie pour les lois diérentiables. Inspirées des outils d'optimisation de type descente de gradient, ces méthodes exploitent des informations sur la géométrie de la loi cible pour construire la densité de proposition dans le but de guider la chaîne vers l'espace cible où la plupart des échantillons doivent être concentrés. Pour ce faire, la composante directionnelle de la loi de proposition est choisie comme une itération d'un algorithme de descente de gradient préconditionné. Le bruit est ensuite injecté dans cette mise à jour de telle sorte que la trajectoire de la chaîne explore toute la distribution a posteriori plutôt que de converger vers un mode. Ainsi, un nouvel échantillon de cette loi de proposition est plus probablement accepté, ce qui tend à accélérer la convergence de la chaîne vers la loi stationnaire.

Toutefois, l'échantillonnage devient dicile quand la dimension du problème augmente. Ces dicultés sont principalement dues au coût élevé de chaque itération et aux mauvaises propriétés de mélange de la chaîne lorsque la matrice de préconditionnement est mal choisie. Notons que des problèmes similaires sont aussi rencontrés dans les algorithmes d'optimisation de descente de gradient préconditionnés. Dans ce travail de thèse, nous exploitons les connexions entre les méthodes déterministes et les approches bayésiennes stochastiques pour accélérer les algorithmes d'échantillonnage de type MH.

En s'inspirant des approches de Majoration-Minimisation, nous développons Résumé xi un algorithme de Langevin MH préconditionné par une matrice adaptative construite à chaque itération à partir d'une fonction tangente majorante quadratique de l'opposé du logarithme de la densité a posteriori. Nous proposons diérentes variantes de fonctions tangentes majorantes quadratiques construites avec des matrices de courbure pleines, constantes ou diagonales qui permettent d'adapter l'algorithme proposé à la grande dimension du problème. Nous démontrons ensuite l'ergodicité géométrique de l'algorithme d'échantillonnage proposé en nous basant sur des résultats théoriques concernant les algorithmes de MH classiques. L'algorithme conçu est enn validé sur un problème de déconvolution de signal parcimonieux en adoptant une loi a priori de Cauchy. Ce test nous permet d'étudier l'impact de la matrice de préconditionnement sur la performance de l'algorithme. Les résultats expérimentaux conrment la rapidité de cette nouvelle approche par rapport à l'échantillonneur usuel de Langevin.

Dans les problèmes de grande taille, la performance des algorithmes d'échantillonnage stochastiques est très sensible aux dépendances entre les paramètres. Par exemple, ce problème se pose lorsqu'on cherche à échantillonner selon une loi gaussienne de grande dimension dont la matrice de covariance ne présente pas de structure simple, (i.e., ni parcimonieuse, ni circulante, ni Toeplitz, etc.) Dans ce contexte, il est usuel de recourir à des méthodes de simulation basées sur le principe de Perturbation-Optimisation, qui nécessitent de résoudre à chaque itération un problème de minimisation avec un algorithme itératif, ce qui peut rendre le processus d'échantillonnage prohibitif surtout lorsqu'il est intégré dans un échantillonneur de Gibbs. Un autre dé est la sélection de bonnes lois de propositions MH qui utilisent des informations sur la géométrie locale de la densité cible an d'accélérer la convergence et améliorer les propriétés de mélange dans l'espace des paramètres, sans être trop coûteuses en termes de calcul. Ces deux problèmes sont principalement liés à la présence de deux sources de dépendances hétérogènes provenant soit du terme d'attache aux données, soit de la loi a priori, dans le sens où les matrices de covariance associées ne peuvent pas être diagonalisées dans le même domaine. Pour pallier ces dicultés, nous proposons d'ajouter des variables auxiliaires au modèle dans le but de dissocier les deux sources de dépendances. Dans le nouvel espace augmenté, une seule source de corrélation reste directement liée aux paramètres cibles, les autres sources de corrélations n'interviennent que par le biais des variables auxiliaires. Notons que cette stratégie est étroitement liée aux approches semi-quadratiques très souvent utilisées dans les problèmes d'optimisation déterministes [START_REF] Allain | On global and local convergence of half-quadratic algorithms[END_REF]. Dans le chapitre 4, nous commençons par proposer une stratégie pour ajouter des variables auxiliaires dans le cas d'une loi gaussienne puis, nous l'étendons aux mélanges de gaussiennes. Une nouvelle étape est ajoutée dans l'algorithme de Gibbs pour tirer des échantillons de la loi associée aux variables auxiliaires. Nous considérons plusieurs stratégies pour eectuer xii Résumé cette tâche simplement en utilisant les propriétés de la matrice de covariance liée aux variables auxiliaires. Nous étudions tout d'abord l'ecacité de l'approche proposée sur un problème de déconvolution d'images multicomposantes où l'on dispose de plusieurs observations de la même scène, acquises dans diérentes bandes spectrales, qui sont dégradées par un ou et un bruit additif gaussien de variance connue. Le problème est abordé dans le domaine des ondelettes. Une loi a priori multivariée est adoptée pour modéliser le vecteur des coecients d'ondelettes situés à la même position spatiale, à travers toutes les bandes spectrales, an d'exploiter l'intercorrélation spectrale. Une stratégie de séparation est proposée pour estimer les hyperparamètres impliqués dans la loi a priori à partir de l'observation dégradée de l'image à reconstruire. En ajoutant des variables auxiliaires dans le terme d'attache aux données, la matrice d'observation n'est plus directement liée à l'image. Grâce à la propriété de séparation de la loi a priori (coecients d'ondelettes situés dans diérentes positions spatiales, orientations ou échelles, supposés indépendants), les vecteurs des coecients d'ondelettes appartenant à diérentes sous-bandes d'ondelettes peuvent être échantillonnés indépendamment en parallèle. Dans le cas d'un grand nombre de composantes spectrales, les performances de notre méthode peuvent être améliorées en utilisant une architecture parallèle multi-coeurs. Nous montrons aussi les bonnes performances de l'approche proposée pour résoudre le problème d'échantillonnage de lois gaussiennes de grande dimension à travers un exemple de restauration d'images dégradées par un mélange de bruits gaussiens. Comme la loi a posteriori est gaussienne, les variables auxiliaires peuvent être ajoutées soit à la loi a priori soit au terme d'attache aux données, soit au deux en même temps, en fonction des propriétés des matrices de covariance qui leur sont associées. Les résultats expérimentaux montrent la capacité de notre méthode à surmonter les dicultés liées à la présence de corrélations hétérogènes entre les coecients du signal.

Dans le chapitre 5, nous nous intéressons aux méthodes VBA. Le but de ces méthodes est d'approcher la loi a posteriori d'un ensemble de paramètres inconnus par une nouvelle loi séparable plus simple, qui est aussi proche que possible de la vraie loi au sens de la divergence de Kullback-Leibler. Dans de nombreux cas, les expressions analytiques de ces lois approchantes sont inextricables, surtout lorsqu'il n'est pas possible de calculer directement l'espérance du logarithme de la loi jointe par rapport à la loi approchante.

C'est le cas par exemple dans les problèmes impliquant des modèles de bruit non gaussiens et dépendants du signal. En recourant à des stratégies de majoration basées sur des approches semi-quadratiques, nous construisons une borne inférieure pour la divergence de Kullback-Leibler que nous souhaitons minimiser. Les lois approchantes sont alors obtenues en minimisant cette borne. En particulier, la loi approchante de l'image est réduite à une loi gaussienne, dont la matrice de covariance peut être approchée soit par une -Chapter -

General introduction 1 Motivation

There has been an increasing need for building unsupervised methods where all parameters of interest are automatically estimated on the y avoiding their manual tuning by the designer. In that respect, the Bayesian framework is becoming an increasingly popular approach to perform such tasks.

Contrary to classical approaches, Bayesian modeling considers parameters of interest as random variables rather than deterministic quantities. Hence, this approach requires to specify a prior distribution that describes what is known about those parameters before data are observed. Estimates are then computed by reasoning on the resulting law that takes into account these prior probabilities combined with information about observations via Baye's formula. The aforementioned law is the so-called Posterior distribution which constitutes the core of the Bayesian framework.

The use of Bayesian methods can be motivated from many dierent viewpoints. First, the Bayesian approach provides an elegant framework for modeling uncertainty about the data and the target parameters via probabilities.

Second, unlike deterministic approaches that propose point estimators, the outcome of Bayesian methods is the entire posterior distribution that describes the dispersion of the unknown parameters in the space given the observed data. The posterior distribution can be useful to make decisions, as well as to deduce point wise estimates of some statistics including the mean, variance, higher order moments, quantiles and also to capture uncertainty about the target parameters via condence intervals. Third, many problems such as those involving hierarchical models [START_REF] Damlen | Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables[END_REF] are often much easier to handle within a Bayesian framework than with classical methods.

Challenges

A major challenge in Bayesian methods is the calculation of the posterior distribution or more precisely, its exploration. In fact, we have reached a 1 time when it is common in many elds such as medicine, astronomy and microscopy, to handle large amounts of data with increasingly sophisticated models. In these challenging settings, even if the prior and the observation model are simple, the posterior law is almost always intractable in the sense that it can only be known up to a multiplicative constant and/or has a complicated form or requires massive computing resources to be handled.

Regarding the diculty in directly dealing with the posterior distribution, many methods have been proposed. This thesis is devoted to two particular families of methods namely Markov chain Monte Carlo simulation based techniques and Variational Bayesian methods and their application to large scale signal processing problems.

MCMC simulation methods

Markov chain Monte Carlo (MCMC) methods are stochastic simulation methods that allow to approximate a given target distribution such as the posterior law, by relying on Markov chain theory and Monte Carlo integration. They proceed in two main steps. First, a Markov chain is built with a given transition rule such that its stationary states follow the posterior law [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF][START_REF] Gamerman | Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference[END_REF]. Once the Markov chain has reached its stationary distribution, Monte Carlo approximation is used to infer the posterior characteristics. Because of the lack of knowledge about the posterior distribution, the Markov chain often starts at a random point far from the target high density regions. Then, if the MCMC algorithm is not run a suciently long time, the resulting estimators are likely to be, highly biased leading to unreliable inference and poor forecasts. Actually, MCMC algorithms are only useful if the two following requirements are satised. First, the Markov chain should converge to its stationary distribution, namely the posterior law, in a nite time. This motivates the introduction of a burn-in period also known as the transient phase, which should be long enough to guarantee that the Markov chain has reached its stationary states without being too long to avoid throwing away useful samples. Second, a sucient number of samples should be available in order to obtain accurate estimates of the posterior law. The required number of states depends on how well the MCMC algorithm is mixing the stationary space at convergence. Hence, in the case of large scale problems, we are faced with two main challenges:

• The rst challenge concerns the design of a suitable MCMC algorithm, i.e., the choice of an appropriate transition kernel, with a low computational burden and limited memory requirements, such that the Markov chain reaches stability in a nite acceptable time.

• In order to produce consistent estimates in a nite time, the Markov chain should have good mixing properties in convergence. Otherwise, the number of samples required for accurate estimates can be infeasibly large. The mixing behavior of the chain is generally related to how well the transition rule of the Markov chain allows to approach globally or locally the curvature of the target distribution.

In this thesis, a special attention is paid to Metropolis Hastings algorithms whose transition kernel are dened based on a given proposal density and a rejection-acceptance rule guaranteeing that the stationary distribution of the Markov chain is the one of interest [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF][START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF]. Hence, the problem of setting the transition kernel is equivalent to the problem of choosing a proposal density that allows large transitions over the parameter space with low computational cost. In particular, we are interested in adaptive algorithms that permit to self-adjust the proposal at each iteration based on the information provided by earlier samples.

Variational Bayesian approximation methods

Variational Bayesian approximation (VBA) provides an alternative tool to estimate complicated target distributions via deterministic approximations [START_REF] Quinn | The Variational Bayes Method in Signal Processing[END_REF]. Unlike stochastic simulation techniques, the goal of VBA approaches is to seek for an additional distribution called the approximating distribution that should well approximate the target law while being simpler to compute. To make this approximation as close as possible to the true one, we select, over the space of possible solutions, the one which achieves the minimal distance to the target distribution. More specically, this distance is measured in terms of Kullback-Leibler (KL) divergence.

To make this minimization tractable, additional assumptions about the approximating distribution such as independence between parameters are further introduced. The minimization task is then performed by an iterative coordinate-ascent algorithm: updating each component of the factorized approximating distribution while holding the others xed. The advantage of the VBA algorithm is that, instead of giving point estimates, it provides an approximation of the entire posterior distribution while achieving almost the same computational and implementation complexity as classical methods. It is worth noting that, each step of the iterative algorithm ideally requires the ability to integrate a sum of terms in the log joint likelihood using a factorized approximating distribution which is the case for example for conjugate exponential models. However, very often, these integrals do not have closed forms especially when the observations statistic are far from the additive Gaussian models and no longer independent from the target parameters.

Main contributions

The contribution of this thesis is developed along two main lines. First, we contribute to MCMC simulation algorithms and we provide solutions to overcome their limitations in high dimensional problems (Chapters 3 and 4).

Second, we contribute to Variational Bayesian approximation approaches and we propose a general methodology for dealing with signal recovery in the presence of non-Gaussian noise (Chapter 5).

More specically, our contributions in each part can be classied into the design of new algorithms and the proposition of novel solutions to applicative problems. This is explained in more details below:

MCMC simulation methods

Proposed algorithms:

• Majorize-Minimize Metropolis Hastings algorithm: (Chapter 3) This algorithm is a special case of Metropolis Hastings algorithms where the proposal density is adjusted by resorting to some deterministic optimization tools.

We derive the proposal density from the Langevin stochastic differentiable equation. The later oers a tool for constructing Metropolis Hastings proposal densities that incorporate rst order derivatives information of the target law to guide the chain toward the target space where most of the samples should be concentrated.

More precisely, the directional component of the proposed algorithm is chosen to be one iteration of a preconditioned gradient descent algorithm where the preconditioning matrix is constructed using a Majorize-Minimize strategy. This allows us to push the Markov chain in each iteration from the current state toward regions with high probabilities values.

We propose dierent variants of the curvature metrics that may be used as alternatives to replace costly matrices in large scale problems.

We demonstrate the geometric ergodicity of the proposed algorithm using some theoretical works concerning the convergence properties of Metropolis Hastings algorithms.

• Gibbs sampling algorithm with auxiliary variables: (Chapter 4) This chapter addresses the problem of sampling from multivariable distributions when the variables of interest are strongly correlated with heterogeneous sources of dependencies preventing the construction of efcient proposals in Metropolis Hastings algorithms. In particular, we add additional variables to the model without changing the marginal laws in such a way that simulation can be performed more eciently in the new larger space.

We investigate the case of Gaussian models involving high dimensional covariance matrices.

We extend the proposed approach to scale mixture of Gaussian models.

We demonstrate the eciency of the proposed algorithm to sampling from high dimensional Gaussian distributions.

We propose some strategies allowing to sample the auxiliary variables with low computational cost.

Applications to multichannel image recovery:

In multichannel imaging, several observations of the same scene acquired in dierent spectral ranges are available. Very often, the spectral components are degraded by a blur and an additive noise. In this thesis, we address the problem of recovering the image components in a wavelet domain by adopting a Bayesian approach. Our contribution is threefold.

• We take advantage of the inter-channels dependencies by jointly processing the spectral components. Hence, we adopt a multivariate prior model for the distribution of vectors composed of wavelet coecients at the same spatial position in a given subband through all the channels. The proposed model is exible enough as it allows us to consider various levels of sparsity.

• We propose a methodology for estimating the prior scale matrices within a Gibbs sampling algorithm by resorting to a separation strategy.

• We address the challenging issue of computing estimates of the wavelet coecients jointly with prior scale matrices using the Gibbs sampling algorithm with auxiliary variables. The sampling step of the wavelet coecients is performed using the Majorize-Minimize Metropolis Hastings algorithm proposed in Chapter 3. The proposed algorithm is able to exploit the potentials oered by multicore parallel system architectures for a large number of channels.

Variational Bayesian approximation methods

Proposed algorithm:

• VBA algorithm for image restoration: (Chapter 5) We address the problem of image recovery beyond additive Gaussian noise models.

Unlike classical approaches often adopted in the literature, the regularization parameter is estimated throughout a VBA algorithm from the observations. In order to address the problem of the intricate form of either the observation model or the prior distribution, we resort to majorization techniques to construct a lower bound on the Kulback divergence that we want to minimize. This bound takes additional variables which determine how tightly it approximates the true distance.

The approximating distribution are then derived by optimizing this bound using an iterative scheme. Note that the proposed algorithm is exible as it can be applied to a wide range of prior distributions and data delity terms.

Applications to Poisson Gaussin image recovery:

We demonstrate the potential of the proposed VBA method in the context of image recovery under Poisson Gaussian noise. Several tests are made using various approximations of the exact Poisson Gaussian data delity term as well as dierent penalization strategies. Results show that the proposed approach is ecient and achieves performance comparable with other methods where the regularization parameter is manually tuned from the ground truth. 

Outline

As stated earlier, the aim of this thesis is to design new approaches to overcome the potential limitations of standard Bayesian methods, in order to approximate complicated posterior distributions in high dimensional inverse problems. The forthcoming chapters are organized as follows:

In the background chapter, we will begin with an introduction to the topic of inverse problems. We present the Bayesian framework and the main related algorithms.

In Chapter 3, we propose a new sampling algorithm which can be seen as a preconditioned version of the standard Metropolis Hastings adapted Langevin sampling algorithm using an adaptive matrix based on a Majorize-Minimize strategy. A particular attention is paid to its convergence properties namely its geometric ergodicity in case of super-exponential distributions. The proposed algorithm is also validated over an illustrative example for sparse seismic signal deconvolution with a Student't prior distribution.

In Chapter 4, we propose a second approach for Bayesian sampling in large scale problems using data augmentation type strategies allowing to address the problem of standard sampling algorithms when applied to models involving highly correlated variables. This idea is rst discussed in the case of Gaussian models and then extended to scale mixture of Gaussian ones.

The proposed algorithms are applied to the deconvolution of multispectral images aected by blur and additive Gaussian noise. Furthermore, we show the performance of the proposed approach for sampling from large scale

Gaussian distributions with an application to image recovery under twoterms mixed Gaussian noise.

In Chapter Finally, we draw some conclusions and perspectives in Chapter 6.

-Chapter -

Background

In a wide range of real applications, we do not have access to the signal of interest by direct measurements but only to a distorted version of this signal. These distortions may arise due to various phenomena which are often unavoidable in practical situations. They may depend on the physics of the studied phenomenon, on the process of signal formation, on the employed acquisition system and also on the communication channel. In inverse problems, one tries to get some useful information from the observed data about either the unknown signal itself or the value of some other unknown parameters (e.g., identication of the distortion parameters). Among well known elds of applications of inverse problems, we can mention medical imaging (MRI, CT scans, ultrasound imaging) [START_REF] Fitzpatrick | Medical Image Processing and Analysis[END_REF], image processing [START_REF] Benvenuto | The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise[END_REF][START_REF] Murtagh | Image restoration with noise suppression using a multiresolution support[END_REF][START_REF] Oliveira | Adaptive total variation image deblurring: a majorizationminimization approach[END_REF],

geophysics [START_REF] Parker | Geophysical inverse theory[END_REF], spectroscopy [START_REF] Provencher | Inverse problems in polymer characterization: direct analysis of polydispersity with photon correlation spectroscopy[END_REF], machine learning [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], video processing [START_REF] Pizurica | Noise reduction in video sequences using wavelet-domain and temporal ltering[END_REF], astronomy [START_REF] Lantéri | Restoration of astrophysical images -the case of Poisson data with additive Gaussian noise[END_REF], microscopy [START_REF] Dupé | A proximal iteration for deconvolving Poisson noisy images using sparse representations[END_REF] etc.

Several researches have been focused on this topic and proposed some methodologies to solve inverse problems. In this chapter, we review some of them that are relevant to our studies. First, we provide the reader with an introduction to inverse problems and to the associated mathematical modeling. Second, we present the Bayesian principle applied to inverse problems.

Finally, the related algorithms are presented while a special attention is devoted to stochastic simulation and approximation algorithms.

Inverse problems

The resolution of an inverse problem is the process of estimating an unknown signal from measurements based on the direct model linking the target signal to the observed one. However, the perfect direct model is generally not satised due to some random parasite signals that, once incorporated into the direct model, alter the extraction of useful information. In this work, we consider the following observation model: 

z = D(Hx) (2.1) 9 where x ∈ R Q denotes the target signal, z ∈ R N is the measured data, H ∈ R N ×Q
z = Hx + w (2.2)
where w is an additive zero mean Gaussian noise and H is the blurring operator. In such case, we say that we have to solve a restoration problem.

When H = I Q , it reduces to a denoising problem. Note that, in many applications, the matrix H may not express a blur operator and it can model for example a projection such as in transmission tomography [START_REF] Shepp | Maximum likelihood reconstruction for emission tomography[END_REF]. Then, (2.2) reduces to a reconstruction problem.

However, it has been experimentally proven that in many situations, the signal of interest may suer from noise with more complex characteristics than the Gaussian one. In fact, many devices lead to measurements distorted by heteroscedastic noise whose characteristics depend on that of the unknown signal [START_REF] Healey | Radiometric CCD camera calibration and noise estimation[END_REF][START_REF] Tian | Analysis of temporal noise in CMOS photodiode active pixel sensor[END_REF][START_REF] Janesick | Photon transfer[END_REF][START_REF] Azzari | Gaussian-Cauchy mixture modeling for robust signal-dependent noise estimation[END_REF][START_REF] Liu | Practical signal-dependent noise parameter estimation from a single noisy image[END_REF][START_REF] Chakrabarti | Image restoration with signaldependent camera noise[END_REF][START_REF] Boubchir | Undecimated wavelet-based Bayesian denoising in mixed Poisson-Gaussian noise with application on medical and biological images[END_REF]. For example, to better reect the physical properties of optical communication, the involved noise remains additive Gaussian but its variance is assumed to be dependent on the unknown signal [START_REF] Moser | Capacity results of an optical intensity channel with input-dependent Gaussian noise[END_REF]. Signals can also be corrupted by multiplicative noise [START_REF] Aujol | A variational approach to removing multiplicative noise[END_REF][START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Dong | A convex variational model for restoring blurred images with multiplicative noise[END_REF][START_REF] Huang | A new total variation method for multiplicative noise removal[END_REF] such as the speckle noise which commonly aects synthetic aperture radar (SAR), medical ultrasound and optical coherence tomography images [START_REF] Parrilli | A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[END_REF], or by impulsive noise [START_REF] Cai | Fast two-phase image deblurring under impulse noise[END_REF]. A mixture of Gaussian and impulsive noise has also been studied in [START_REF] Xiao | Restoration of images corrupted by mixed gaussian-impulse noise via ℓ 1 -ℓ 0 minimization[END_REF][START_REF] Yan | Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting[END_REF]. Furthermore, in applications such as astronomy, medicine, and uorescence microscopy where signals are acquired via photon counting devices, like CMOS and CCD cameras, the number of collected photons is related to some non-additive counting errors resulting in a shot noise [START_REF] Boulanger | Nonsmooth convex optimization for structured illumination microscopy image reconstruction[END_REF][START_REF] Healey | Radiometric CCD camera calibration and noise estimation[END_REF][START_REF] Tian | Analysis of temporal noise in CMOS photodiode active pixel sensor[END_REF][START_REF] Janesick | Photon transfer[END_REF][START_REF] Petropulu | Power-law shot noise and its relationship to long-memory α-stable processes[END_REF]. The latter is non-additive, signal-dependent and it can be modeled by a Poisson distribution [START_REF] Salmon | Poisson noise reduction with non-local PCA[END_REF][START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF][START_REF] Jeong | Frame-based Poisson image restoration using a proximal linearized alternating direction method[END_REF][START_REF] Harizanov | Epigraphical projection for solving least squares Anscombe transformed constrained optimization problems[END_REF][START_REF] Dupé | Deconvolution under Poisson noise using exact data delity and synthesis or analysis sparsity priors[END_REF]] [Chaux et al., 2009[START_REF] Bonettini | New convergence results for the scaled gradient projection method[END_REF][START_REF] Anthoine | Some proximal methods for Poisson intensity CBCT and PET[END_REF][START_REF] Bonettini | An alternating extragradient method for total variation-based image restoration from Poisson data[END_REF][START_REF] Altmann | Lidar waveform-based analysis of depth images constructed using sparse single-photon data[END_REF]. In this case, when the noise is assumed to be Poisson distributed, the implicit assumption is that Poisson noise dominates over all other noise kinds. Otherwise, the involved noise is a combination of Poisson and Gaussian (PG) components [START_REF] Roberts | Bayesian denoising/deblurring of Poisson-Gaussian corrupted data using complex wavelets[END_REF][START_REF] Mäkitalo | Noise parameter mismatch in variance stabilization, with an application to PoissonGaussian noise estimation[END_REF], 2012, 2013;[START_REF] Luisier | Image denoising in mixed Poisson-Gaussian noise[END_REF][START_REF] Li | A reweighted ℓ 2 method for image restoration with Poisson and mixed Poisson-Gaussian noise[END_REF][START_REF] Lantéri | Restoration of astrophysical images -the case of Poisson data with additive Gaussian noise[END_REF][START_REF] Jezierska | A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise[END_REF][START_REF] Jezierska | An EM approach for time-variant Poisson-Gaussian model parameter estimation[END_REF][START_REF] Foi | Practical Poissonian-Gaussian noise modeling and tting for single-image raw-data[END_REF][START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF][START_REF] Kittisuwan | Medical image denoising using simple form of MMSE estimation in PoissonGaussian noise model[END_REF][START_REF] Calatroni | Bilevel approaches for learning of variational imaging models[END_REF] Solving the inverse problem dened by (2.1) amounts to nding a solution

x which is reasonably close to the signal of interest x from the observation z.

The observation matrix H and some parameters about the statistics of the noise can also be unknown and have to be estimated either before or jointly with the estimation of x. In such case, we say that we have to solve an unsupervised or blind problem. In the context of non blind problems, the best known approach to solve (2.2) is certainly the least squares method that consists in seeking to minimize the quadratic distance between the measurement and the target signal as follows [START_REF] Gauss | Theory of the Combination of Observations Least Subject to Error: Part One, Part Two[END_REF]:

x ∈ argmin x∈R Q ∥z -Hx∥ 2 .
(2.3)

However, among the main diculties encountered in the resolution of (2.3),

the inverse problem can be ill posed in the sense of Hadamard [START_REF] Hadamard | Sur les problèmes aux dérivées partielles et leur signication physique[END_REF], which means that it does not satisfy one of the following conditions:

• a solution exists,

• the solution is unique,

• the solution is stable.

In particular, this problem arises when the whole measured data do not allow the existence of a solution to the problem, which may occur for example in many overdetermined problems where the number of parameters to be estimated in the model is smaller than the number of collected data.

Furthermore, the solution may not be unique which is the case for example of underdetermined problems where the number of collected data compared to the number of the unknown parameters is insucient to nd the exact solution. The solution can be further highly unstable and sensitive to small disturbance in the data when it is not continuous with respect to the data.

Moreover, when the statistics of the noise are far from the Gaussian hypothesis, the least square mean criterion (2.3) fails generally to provide accurate solutions. In this respect, many researches have been devoted to solve (2.1) in a more reliable manner. In the following, we will concentrate on the Bayesian methodology to solve such inverse problems.

2 Bayesian methodology for solving inverse problems

Bayesian framework

A standard statistical approach to solve the inverse problem (2.1) consists in assuming that z and x are random variables with probability distributions P z|x and P x respectively instead of unknown constants. Let p(z|x) and p(x) denote their associated densities hence assumed to exist. While p(z|x) is the likelihood of the observations and whose expression is derived from the direct model (2.1), p(x) describes some prior knowledge on x and should be well designed to incorporate the desired characteristics of the solution. In such case, we say that we are working in a Bayesian framework [START_REF] Bernardo | Bayesian theory[END_REF][START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF].

The common Bayesian procedure for signal estimation consists in computing estimators from the posterior distribution P x|z that captures all informations inferred about the target signal from the collected data. The posterior density p(x|z) is derived from the likelihood and the prior density using Bayes rules:

p(x|z) = p(x)p(z|x) p(z) (2.4)
where

p(z) = ∫ R Q p(x, z) dx (2.5)
is the density of the distribution of z and which can be viewed as a normalizing constant of p(x|z). Note that even if the integral in (2.5) suggests that all x i , 1 i Q, are continuous random variables, discrete values could also be considered by replacing the integral with a sum when required and using discrete probabilities instead of densities.

Under this framework, given a cost function C(x -x) that measures the quality of an estimator x in comparison to the true signal x, we dene a Bayesian estimator as the one with minimum expected cost:

x ∈ argmin R Q E x|z (C(x -x)) (2.6) where E x|z (C(x -x)) = ∫ x∈R Q C(x -x)p(x|z) dx.
(2.7)

In particular, C(t) can be typically one of the following cost functions displayed in Figure 2.2:

• Hit-or-miss: C 1 (t) = { 0, if |t| δ 1, if |t| > δ • Quadratic: C 2 (t) = t 2 • Absolute: C 3 (t) = |t|
Note that these three cost functions are often preferred, because they allow to nd the minimum cost solution in a closed form. In fact, the solution to (2.6), with C = C 1 and δ ≪ 1, arises at the maximum of p(x|z).

Therefore, the estimator is the mode of the posterior density and is called Maximum a Posteriori (MAP) estimator. Since the normalization constant p(z) does not depend on x, the MAP estimator can be computed by maximizing only the numerator of (2.4) which is equivalent to solve

x ∈ argmin x∈R Q -log p(z|x) -log p(x).

(2.8) In most applications, no closed-form solution is available to (2.8). In this case, we resort to iterative optimization methods to compute numerically the estimator.

Using the quadratic cost function C 2 , the Bayesian estimator reduces to the posterior mean i.e.,

x = E x|z (x) = ∫ R Q x p(x|z) dx. (2.9)
This estimator has the desired property of being optimal in terms of minimal average squared error. However, in general due to the involved highdimensional integral in (2.9), its computation is dicult. Moreover, the posterior distribution is generally known up only to some multiplicative constant as the evaluation of the normalizing constant in (2.4) can be computationally expensive, or even intractable in most real models. In the following, we will refer to this estimator as the minimum mean square error (MMSE) estimator or the posterior mean.

If we choose the absolute value as the cost function C 3 , the Bayesian estimator reduces to the median of the posterior distribution i.e., the value which splits the total probability into equal proportions. Note that if the posterior probability density function is Gaussian, the three Bayesian estimators coincide because the mean, the median and the mode of a normal density are identical. However, in most case, as soon as the posterior density is not symmetric, the MAP, the median and the MMSE produce dierent estimators. In that case, the best choice of the point estimator remains an open problem and it highly depends on the properties of the posterior distribution of interest. For example, when the posterior mean estimator is misleading, this results in a high variance value [Kaipio and Somersalo, 2006, Chap. III, example 1]. In order to qualify the uncertainty on the obtained solutions, one can further use posterior credible regions i.e., Bayesian condence intervals [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF].

Link with penalized approaches

The optimization criterion of type (2.8), has been widely considered in energy minimization approaches without an explicit reference to probabilities or priors. Solutions to (2.1) are proposed to be the minimizers of some objective function under the generic form:

x ∈ argmin x∈R Q Φ(x) + Ψ(x) (2.10)
where Φ is the data delity term whose role is to keep the reconstructed signal close enough to the observation so that useful information will not be discarded in the solution, while Ψ is the regularization term that promotes solutions with some desired properties. At the rst glance, penalized approaches and Bayesian estimation seemingly have distinct ways of interpretation of the dierent terms that constitute the objective function and the posterior law leading to a long lasting disconnection between the two worlds in inverse problems. However, by a simple identication, one can nd a strong connection between the two approaches. On the one hand, the MAP estimate in (2.8) can be viewed as the solution to the penalized problem by setting Φ(x) = -log p(z|x) and Ψ(x) = -log p(x). On the other hand, the solution to the problem in (2.10) has a statistical interpretation as the MAP estimate under the prior p(x) ∝ exp(-Ψ(x)) and the likelihood p(z|x) ∝ exp(-Φ(x)) provided that p(z|x) and p(x) obey the basic laws of probability (positive, continuous and integrable with respect to x). This result has a very interesting generalization by omitting the integrability condition and allowing the use of some specic prior laws such as degenerate distributions and improper laws [START_REF] Balakrishnan | A primer on statistical distributions[END_REF]] (see Sec.

2.3), the latter being characterized by

: ∫ R Q p(x) = +∞.
(2.11) However, the MAP estimate is only one of many possible Bayesian interpretations of the solution in (2.10). In fact, the MMSE in (2.9), can also be viewed as the solution to the optimization problem (2.10), for some regularization term Ψ, in most case distinct from -log p(x). This interesting fact stipulates that the optimal estimator in terms of quadratic distance coincides with the MAP estimate with a modied prior. Reciprocally, in some cases, for a given regularization function Ψ(x), the solution in (2.10), can be interpreted as the MMSE or the MAP estimate for two dierent prior distributions [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF][START_REF] Gribonval | Should penalized least squares regression be interpreted as maximum a posteriori estimation?[END_REF].

Choice of the prior

The Bayesian paradigm is founded on the subjective view regarding probabilities. In this respect, the choice of the prior is highly correlated with personal belief and may dier according to the requirement of the designer. This step constitutes one of the important parts in the inference setup and it has been widely discussed from a philosophical point of view in [START_REF] Box | Bayesian inference in statistical analysis[END_REF][START_REF] Irony | Non-informative priors do not exist A dialogue with José M. Bernardo[END_REF]. However, regardless the arbitrariness in the selection of the prior, several works have been devoted to provide formal rules to set up the prior distribution. An interesting overview about the formal rules in the selection of the prior can be found in [START_REF] Kass | The selection of prior distributions by formal rules[END_REF]. In general, there are two key questions that should be addressed in this respect:

1. what kind of information do we want to highlight?

2. what are the properties of the resulting posterior distribution?

Most of the theoretical work on prior distributions can be divided into two classes. In the rst class, eorts have been made to design informative prior distributions that reect some common desired properties that one aims to incorporate in the Bayesian estimation such as sparsity in some transform domain, spatial smoothness, dependencies between the signal coecients etc. Moreover, other researchers have been interested in designing priors which are said to be non-informative in order to remove subjectiveness in the choice of the prior law and to address the problem of the lack of information about the unknown signal. In the second class, conjugate priors have been introduced for a large number of data delity models in order to obtain more tractable posterior distributions. Note that these two classes are highly dependent since the prior distribution should achieve a good tradeo between the two following requirements: it should be well designed to incorporate the wanted properties of the solution without inducing a high computational burden for calculating the posterior distribution. In the following, we will provide a non exhaustive enumeration of the common prior models used in signal processing applications.

Regularization

In this part, we give some examples on how we can choose highly informative models in Bayesian estimation that attempt to reect the prior knowledge about the target parameters as fully as possible which is equivalent somehow to the role of regularization terms in penalized approaches.

Tikhonov regularization: Perhaps, the most well known method is the Tikhonov regularization which can be seen as a Gaussian prior whose logarithm reads up to an additive constant as follows [START_REF] Tikhonov | Regularization of incorrectly posed problems[END_REF] 

log p(x) = - 1 2 ∥Γx∥ 2 (2.12)
where Γ is a linear operator that promotes some desirable properties. Note that if Γ is not injective, the prior is said to be a degenerate Gaussian [START_REF] Patel | Handbook of the normal distribution[END_REF]. When Γ = γI Q where γ > 0, we promote solutions with smaller norms which leads to the so-called the ℓ 2 2 regularization. Otherwise, Γ can model a high-pass operator such as a Laplacian lter or a dierence matrix giving preference to smooth solutions.

Promoting sparsity: A signal is said to be sparse if most of its coecients are zero. A less strict denition is to qualify a signal as sparse when only a few of its coecients have large magnitudes while the remaining ones take values around zero. Several prior laws have been proposed to model sparse signals.

In the following, we will give some examples of prior distributions that have been widely used in signal processing.

• Generalized Gaussian distributions: Zero mean Generalized Gaussian (GG) distributions have the following expression of their density of probability [START_REF] Woods | Subband image coding[END_REF]:

(∀t ∈ R) gg(t; β, γ) = γ 1 2β 2Γ(1 + 1/β) exp ( -γt 2β ) (2.13)
where Γ is the Gamma function, β > 0 is the shape parameter and γ > 0 is the inverse scale parameter. It is a generalization of a family of probability density functions called the generalized Gamma distributions, rst introduced in [START_REF] Stacy | A generalization of the gamma distribution[END_REF]. Depending on the shape parameter β, two kinds of distributions can be obtained. In particular, β = 1 yields the Gaussian distribution whereas β = 0.5 yields the Laplace distribution. Generally, for 0 < β < 1, we have leptokurtic distributions which are characterized by a thinner peak and heavier tails compared to the Gaussian one. In contrast, for β > 1, a platykurtic distribution is obtained, which is characterized by a atter peak and thinner tails compared to the Gaussian one. For large values of β, the GG tends to the uniform distribution. Figure 2.3 depicts the probability density function of the GG for dierent shape parameters and for γ = 1.

• Student's t distributions: In order to promote the sparsity of the signal, we can also use the Student's t (S T ) distribution whose density is given by

(∀t ∈ R) st(t; ν, γ) = Γ( ν+1 2 )γ ν √ πν Γ( ν 2 ) ( γ 2 + t 2 ν ) -ν+1 2 (2.14)
where ν > 0 is the number of degrees of freedom determining the shape of the distribution and γ > 0 is the scale parameter. Note that the Cauchy distribution is a particular case when ν = 1. ν dene distributions with heavy tails while we approach the normal distribution as ν increases. Figure 2.4 displays the probability density function of the ST distribution for dierent shape parameters and for γ = 1. • Scale mixtures of Gaussian distributions: A more general family of densities can be constructed from scale mixtures of Gaussian distributions (S MG). A discrete scale mixture of Gaussian can be made up using S > 0 distinct Gaussian distributions as follows:

β = 0.5 β = 0.7 β = 1 β = 2 β = 5
(∀t ∈ R) smg(t) = S ∑ s=1 w s n(t; µ, σ 2 s ) (2.15)
where n(t; µ, σ 2 s ) denotes the probability density of the Gaussian distribution of mean µ ∈ R and variance σ 2 s , and w 1 , . . . , w S are positive weights called the mixing constants such that ∑ S s=1 w s = 1. This type of mixture, being a nite sum, is referred to as a nite mixture. Innite discrete mixture are covered by setting S = ∞. Note that the mixing variables can be either constants or random. In the case of random mixing variables, the probability of the mixing variables is referred to as the mixing distribution. For example, the Bernoulli Gaussian distribution is a scale mixture of Gaussian distribution where the mixing law is the Bernoulli distribution. Furthermore, this denition can be extended to continuous scale mixtures as follows:

(∀t ∈ R) smg(t) = ∫ R +
p(w)n(t; µ, wσ 2 )dw (2.16) where p(w) denotes the density of the mixing distribution. Dierent laws for w lead to dierent prior distributions. For instance, the ST distribution is a particular case of SMG when p(w) is an inverse Gamma distribution with both parameters equal to ν/2. The Laplace distribution is also dened as SMG for Gamma mixing probability [START_REF] West | On scale mixtures of normal distributions[END_REF]. More generally, the GG can be written as a scale mixture of Gaussian provided that 0 < β 1 and the mixing distribution is related to alpha-stable distributions [START_REF] Wainwright | Scale mixtures of Gaussians and the statistics of natural images[END_REF].

• Multivariate distributions: In many applications involving multivariate data, the coecients of the target signal exhibit high correlations.

Then, it is usually preferable to estimate them jointly using their joint distribution rather than their marginal ones. In this respect, multivariate distributions have been proposed to model multivariate random variable. Elliptically contoured (E C) distribution class has particularly deserved considerable attention in the literature [START_REF] Kai-Tai | Generalized multivariate analysis[END_REF]Kai-Tai et al., 1990;[START_REF] Kelker | Distribution theory of spherical distributions and a location-scale parameter generalization[END_REF][START_REF] Bartlett | The vector representation of a sample[END_REF]. A B-dimensional random vector is said to have an elliptical distribution if its probability density is of the following form:

( ∀u ∈ R B ) ec(u; Σ, µ, g) = C B |Σ| -1/2 g ( (u -µ) ⊤ Σ -1 (u -µ) ) (2.17)
where g is the functional parameter, µ is the location vector, Σ is the scale matrix and C B is a normalization constant [START_REF] Zozor | Some results on the denoising problem in the elliptically distributed context[END_REF]. These distributions owe their success to the fact that many results holding for multivariate Gaussian vectors can remain valid for a large number of elliptically symmetric distributions [START_REF] Chmielewski | Elliptically symmetric distributions: a review and bibliography[END_REF]. In particular, this class is stable with linear combination (i.e., every linearly combined elliptical random vector is also elliptical) and when passing to conditional laws (i.e., the conditional distributions of EC random vectors remain EC). Another interesting property proven in [START_REF] Gómez-Villegas | Sequences of elliptical distributions and mixtures of normal distributions[END_REF] is that a necessary and sucient condition for an EC distribution to be expressed as a scale mixture of multivariate Gaussian distributions is the alternation of sign of the successive derivatives of its functional parameter g i.e., (-1) k g (k) (t) 0 , for k ∈ N and t > 0.

( 2.18) This property is fullled by the multivariate exponential power distribution MEP used in several applications in signal processing [START_REF] Gómez-Villegas | Multivariate exponential power distributions as mixtures of normal distributions with bayesian applications[END_REF][START_REF] Khelil-Cherif | Wavelet-based multivariate approach for multispectral image indexing[END_REF][START_REF] Pizurica | Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising[END_REF][START_REF] Kwitt | Color-image watermarking using multivariate power-exponential distribution[END_REF] and dened with the following functional parameter:

(∀t 0) g(t) = exp(- 1 2 t β ) (2.19)
with β > 0. The normalization constant is dened by:

C B = Γ( B 2 ) π B 2 Γ( B 2β )2 B 2β
.

(2.20)

Note that the MEP can be seen as the extension of the GG to the multivariate case. Thereby, MEP are also known as multivariate GG.

Similarly to the univariate case, we nd the multivariate Laplace distribution for β = 0.5, and the multivariate Gaussian distribution for β = 1 while leptokurtic distributions usually used to model sparse random vectors are dened for 0 < β < 1.

In this thesis, we will also consider the Generalized MEP (GME P)

model [START_REF] Marnissi | Generalized multivariate exponential power prior for wavelet-based multichannel image restoration[END_REF], which can be seen as a smooth extension of the MEP distribution. It is dened as the EC distribution with the following functional parameter

(∀t 0) ϱ g (t) = g(t + δ) (2.21)
with δ > 0 and whose normalization constant is given by:

C -1 B = 2π B 2 Γ( B 2 ) ∫ +∞ 0 t B/2-1 exp ( - 1 2 (t + δ) β
) dt.

(2.22)

Note that many standard multivariate distributions can be seen as EC such as the multivariate ST distribution, the generalized Laplace distribution, alpha-stable distributions etc. [START_REF] Zozor | Some results on the denoising problem in the elliptically distributed context[END_REF].

If the signal of interest is not sparse in the spatial domain, one can use another representation of it where the signal can be represented only by few relevant coecients. For example, the sinus signal is clearly not sparse in the spatial domain but when we pass to the Fourier domain, the signal becomes extremely sparse. Sparsity can for example be achieved using the discrete gradient transform or higher order dierences. More generally, the best sparsifying transform can be qualied as the one leading to the sparsest representation with low complexity. Therein, linear transforms are the simplest way for getting such representation. The coecients of the signal x in the new representation denoted by c ∈ R M , are then given with respect to a preassigned operator F ∈ R M ×Q such that M Q as follows: c = Fx.

(2.23)

Perhaps, the Fourier and the cosine transforms are the most famous linear representations [START_REF] Ahmed | Discrete cosine transform[END_REF]. However, their good frequency localization properties are achieved at the expense of a poor spatial (or temporal) localization. Many other transforms have been proposed in the literature to achieve a better tradeo between both the spatial (or temporal) and frequency localizations such as wavelets [START_REF] Mallat | A wavelet tour of signal processing[END_REF], curvelets [START_REF] Candes | Fast discrete curvelet transforms[END_REF], bandlets [START_REF] Le Pennec | Sparse geometric image representations with bandelets[END_REF] etc. Other approaches have been also proposed to build representation dictionaries directly from the data and adapted to their characteristics [START_REF] Olshausen | Emergence of simple-cell receptive eld properties by learning a sparse code for natural images[END_REF][START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]]. In the following, we illustrate the sparsity concept

with some examples of linear operators often employed in inverse problems of signal/image processing.

Example 2.1 Total variation:

Gradient operators are based on the dierences between neighboring values for a given direction. In the context of image processing, we usually consider both horizontal and vertical directions. In the following, ∆ =

[ ∆ ⊤ 1 , . . . , ∆ ⊤ Q ] ⊤
will denote the discrete gradient operator having the following formula:

(∀i ∈ {1, . . . , Q}) ∆ i x = ( [∆ h x] i [∆ v x] i ) (2.24)
where ∆ i is the gradient in location i and ∆ h and ∆ v are the discrete gradient computed along the horizontal and vertical directions. Figure 2.5 shows an illustration of the gradient across horizontal and vertical directions in the Barbara image. The local gradient at location i is given by the dierences between the intensity in i and one of its adjacent pixels. This results in sparse gradient images where the relevant coecients are concentrated in areas corresponding to edges in the original image. In energy minimization approaches, the sparsity of the gradient is enforced using suitable regularization functions Ψ describing the dynamics of the gradient images [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. As the quadratic function tends to give over smoothed solutions, many works have proposed to replace the quadratic regularization (ℓ 2 2 ) with the ℓ 1 norm which result on the so called anisotropic total variation dened by

Ψ(∆x) = Q ∑ i=1 ( |[∆ h x] i | + |[∆ v x] i |
) .

(2.25)

In fact, the ℓ 1 norm and the quadratic regularization are both concentrated on zero to promote zero values but the ℓ 1 norm has a curve that increases linearly and thus is slower than the quadratic shape of the ℓ 2 ? Horizontal gradient. @ Local horizontal direction in the location i in green.

A Vertical gradient. B Local vertical direction in the location i in yellow. norm. This property holds for functions of the form f (t) = |t| p , with 0 p < 1 as it can be seen in Figure 2.6. In this case, the regularization function 

Ψ(∆x) = Q ∑ i=1 ( |[∆ h x] i | p + |[∆ v x] i | p
) .

(2.26)

However, the ℓ 1 norm is often preferred to other functions since it is considered as the sparsest convex regularization.

Isotropic total variation is used by applying non-separable functions, for instance an ℓ 2 norm on the vectors ∆ i x, 1 i Q. Then, the regularization function has the following form:

Ψ(∆x) = Q ∑ i=1 √ [∆ h x] 2 i + [∆ v x] 2 i .
(2.27)

Note that since we are interested in Bayesian modeling, we have to design prior distributions and not only regularization functions. It remains possible to dene the total variation prior distribution proportional to exp(-γΨ(∆x))

where γ > 0 is a positive regularization constant. In many Bayesian applications, we need to know the normalization constant of p(x) or at least the constant that depends on γ. From [START_REF] Pereyra | Maximuma-posteriori estimation with unknown regularisation parameters[END_REF], we can deduce that for each total variation regularization dened above, we can associate a prior distribution that has the following form:

p(x) = Cγ Q κ exp(-γΨ(∆x)) (2.28)
where C > 0 is a constant independent of γ, and κ > 0 is such that Ψ is κ-homogenous. Over the past decade, Wavelet transform (WT) has achieved great success in image processing tasks especially when performed recursively [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

In fact, by decomposing the image with a set of multiscale bandpass oriented lters in a recursive manner, the two dimensional WT achieves good frequency selectivity. This operation is known as multi-resolution analysis and it results on two classes of coecients: details and approximations.

On the one hand, the subband of wavelet coecients resulting from high (respectively low) horizontal frequency and low (respectively high) vertical frequency matches the horizontal (respectively vertical) contours (or details)

whereas the wavelet coecients resulting from high frequency in both directions correspond to the diagonal details. On the other hand, the subband of approximation coecients results from low frequencies in both directions and can be seen as a rough approximation of the image satisfying its spatial statistics. Therefore, we can further apply a WT to this subband to obtain more horizontal, diagonal and vertical details. WT towards geometric features of the image (namely textures and edges), by proposing more general representations with a higher degree of redundancy, as well as increased directional selectivity known as frames (M > Q).

The interest behind the use of frames is related to the eciency of these overcomplete representations to capture local structures of the signal and their quasi shift-invariance properties [START_REF] Candes | Recovering edges in ill-posed inverse problems: Optimality of curvelet frames[END_REF][START_REF] Fadili | Curvelets and ridgelets[END_REF][START_REF] Han | Frames, bases and group representations[END_REF][START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF].

Many researchers have proposed to address image processing tasks such as denoising in multiscale oriented representations by using probability models for the wavelet coecients [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF]. In this respect, regularization using such sparse representations in inverse problems, can be divided into two classes:

• Regularization when using a synthesis frame.

• Regularization when using an analysis frame.

In the rst class, regularization is applied directly to the sparse coecients.

Consequently, the observation model in (2.1) becomes: z = D(HF * c) (2.29) where F * ∈ R Q×M is the synthesis operator such that x = F * c. The objective is then to nd the frame coecients ĉ that are as close as possible to c. To this end, a prior distribution is associated with the frame coecients having the following form:

p(c) ∝ exp(-Ψ(c)), (2.30) 
and the reconstructed signal is then computed by x = F * ĉ. Specically, the marginal distributions of the wavelet detail coecients are highly leptokurtic. In fact, their histograms show a much higher peak around the mean value, and fat tails at the extreme ends of the probability curve as it can be seen in Figure 2.8. Then, their statistics can be well described using suitable long-tailed distributions such as GG and ST distributions. Furthermore, recent work has investigated multivariate models by taking into account the dependencies between coecients. In fact, it has been observed that frame coecients of similar position, orientation and scale may exhibit high correlations [START_REF] Portilla | Image denoising using scale mixtures of gaussians in the wavelet domain[END_REF]. Moreover, when dealing with multicomponent images, high correlations also exist between the frame coecients in the same position through all the components [START_REF] Marnissi | Generalized multivariate exponential power prior for wavelet-based multichannel image restoration[END_REF]. In the second class, regularization is applied indirectly to the sparse coecients through the signal of interest x, and the density of distribution has generally the following form:

p(x) ∝ exp(-Ψ(Fx)) (2.31)
where the frame coecients are given by c = Fx. For instance, a common approach is to use ℓ 1 norm regularization and then the prior distribution has the same form as in (2.25). Ψ can also be the ℓ 2 norm applied to a vector gathering the wavelet coecients of similar positions through all the subbands in each level of decomposition. In particular, a connection can be uncovered between such regularization using undecimated wavelet transform involving a Haar lter and the total variation regularization. However, due to the exibility oered by frames and their ability to generate multiscale analyses, the use of the Haar transform may yield a better performance than gradient operator for natural images [START_REF] Kamilov | Generalized total variation denoising via augmented Lagrangian cycle spinning with Haar wavelets[END_REF]. Note that, analysis and synthesis based regularizations are equivalent in the case of orthonormal transforms.

Conjugate priors

In many situations, prior knowledge about the target parameters is limited or not concrete enough to favor a specic prior probability distribution. Such situations may arise for example in the estimation of the characteristics of the noise or of the regularization parameters on which we have only some general prior information as positivity and mean value but generally few ideas about their statistics. In this case, we have some freedom in selecting the prior distribution and we would rather select it in such a way to result in a tractable posterior distribution. In fact, for many observation models, there exists a family of prior models for which when combined via Bayes rule, the resulting posterior distribution has a closed form. This observation has motivated the use of conjugate families [START_REF] Joksch | Applied statistical decision theory[END_REF]. However, we should pay attention to the fact that we cannot select any conjugate prior that mathematically gives satisfactory results. The selected prior should indeed be compatible with the available prior knowledge about the target parameter. Hence, conjugate priors dene only the sub-class of conjugate family models, that produce analytically tractable posterior distribution and are exible enough to model prior information about the parameters of interest. A discussion on conjugate models can be found in [START_REF] Fink | A compendium of conjugate priors[END_REF]. In the following, we will give some examples of conjugate priors often used in Bayesian inferences. Example 2.3 Conjugate prior for the parameters of the univariate Gaussian model :

In many Bayesian applications, we have to use univariate Gaussian distributions with unknown parameters. This is the case for example, in denoising and deconvolution problems where the noise is assumed to be Gaussian and uncorrelated.

Let us consider the generic problem of estimating the mean and the variance of a Gaussian distribution given some independent observations z ∈ R N such that

(∀i ∈ {1, . . . , N }) p(z i |µ, τ ) = 1 √ 2πτ exp ( - 1 2τ (z i -µ) 2 ) (2.32)
where µ ∈ R and τ > 0. Let p(µ) and p(τ ) be the conjugate prior densities of µ and τ which will be dened later. The joint distribution of z, µ and τ is then given by p(z, µ, τ ) = p(µ)p(τ

) N ∏ i=1 p(z i |µ, τ ).
(2.33)

The density of the conditional posterior distribution of µ is given by:

p(µ|z, τ ) ∝ exp   - N 2τ ( µ -N -1 N ∑ i=1 z i ) 2   p(µ).
(2.34)

Then, by using a normal prior for µ i.e., µ ∼ N (µ 0 , σ 2 0 ), its posterior distribution remains Gaussian with variance σ 2 =

( N τ + 1 σ 2 0 ) -1 and mean σ 2 (σ -2 0 µ 0 + τ -1 ∑ N i=1 z i ).
The density of the conditional posterior distribution of τ is given by:

p(τ |z, µ) ∝ τ -N/2 exp ( - 1 τ N ∑ i=1 (µ -z i ) 2 2 
) p(τ ).

( 2.35) It can be noted that, if we choose the prior distribution for τ as the inverse Gamma distribution with parameter a and b, the resulting posterior distribution is also an inverse Gamma with parameter a + N/2 and b 

+ N ∑ i=1 (µ -z i ) 2 2 
(∀i ∈ {1, . . . , P }) p(z i |Σ) = |Σ| -1/2 ( √ 2π) N exp ( - 1 2 ∥Σ -1/2 z i ∥ 2 ) (2.36)
where Σ is the unknown positive denite matrix. Given a prior distribution p(Σ), the posterior distribution reads:

p(Σ|z 1 , . . . , z P ) ∝ |Σ| -P/2 exp ( - 1 2 trace ( Σ -1 P ∑ i=1 z i z ⊤ i ))
p(Σ). (2.37) Then, when p(Σ) is chosen to be the probability density of the inverse Wishart distribution of parameters R > N and A, the posterior distribution of Σ reduces to the inverse Wishart distribution of parameters R + P and A + ∑ P i=1 z i z ⊤ i . Similarly, when considering instead the precision matrix Λ = Σ -1 , the conjugate prior for Λ is a Wishart distribution.

Example 2.5 Conjugate prior for the regularization parameter in the case of a κ-homogenous regularization:

A common class of prior is derived from homogeneous regularizations such as GG, total variation prior and more generally all those derived from norms and compositions of norms with linear operators. In such case, the prior density is written as follows:

p(x|γ) = Cγ Q κ exp(-γg(x)), (2.38)
where g is a positive κ-homogeneous function, γ > 0 is the regularization parameter and C > 0 is a constant independent of γ [START_REF] Pereyra | Maximuma-posteriori estimation with unknown regularisation parameters[END_REF].

Here, we are interested in the problem of estimating γ. Let p(γ) be the density of probability of the regularization parameter. It follows that the

posterior distribution of γ is p(γ|x) ∝ γ Q κ exp(-γg(x))p(γ).
(2.39)

It can be noted that when using the Gamma prior with parameter a and b for γ, p(γ|x) reduces to a Gamma prior of parameter a + Q/κ and b + g(x).

Non informative priors

In many applications, we have no sucient prior information about the target parameters to be interpreted into a mathematical form as a probability distribution. Then, it is not recommended to use a strict subjective prior probability that may sway the inference process in a wrong direction. However, the Bayesian framework requires the presence of a prior distribution.

In such cases, the prior law is only used as a technical way of expressing available information necessary to perform the Bayesian inference. Therein, many works have been done in order to provide priors that impart as little information as possible about the target parameters in order to allow the observations to have their maximal weight in the posterior distribution. These priors are often called non-informative or objective [START_REF] Kass | The selection of prior distributions by formal rules[END_REF] since they generally express some objective information such as, the positiveness or the denition domain.

Certainly, the simplest and oldest rule to dene such prior is based on the indierence principle that gives equal probabilities to all the domain where the parameter is dened. Otherwise, a constant prior is assigned to the target parameter x (i.e., p(x) = 1) which is known as the Laplace noninformative prior [START_REF] Laplace | Théorie analytique des probabilités[END_REF]. Otherwise, reference priors are among the most commonly used non-informative priors in the literature. Their introduction is mainly related to an attempt to nd the prior that maximizes the expected amount of information provided by the observations in the posterior law. Such prior is found by maximizing I dened as follows [START_REF] Bernardo | Reference posterior distributions for Bayesian inference[END_REF]:

I(p(x)) = ∫ R N p(z)KL (p(x|z)∥p(x)) dz (2.40)
where

KL (p(x|z)∥p(x)) = ∫ R Q p(x|z) log ( p(x|z) p(x)
) dx (2.41) is the Kullback-Leibler divergence measuring the similarities between the prior and the posterior densities. Reference priors are dened in the asymptotic case i.e., as the limit of the obtained solution in (2.40) when the number of independent observations N tends to innity. In particular, for a nite discrete parameter space, the integral is replaced by a nite sum and the reference prior is shown to be the uniform distribution over all the possible values [START_REF] Bernardo | Reference posterior distributions for Bayesian inference[END_REF]. For continuous variables, the reference prior is given for several models satisfying some regularity conditions such as asymptotic normality [START_REF] Dawid | On the limiting normality of posterior distributions[END_REF][START_REF] Lindley | The use of prior probability distributions in statistical inference and decision[END_REF][START_REF] Bernardo | Reference posterior distributions for Bayesian inference[END_REF] by: p(x) ∝ |Ω(x)| 1/2 (2.42) where Ω(x) is the Fisher information matrix dened by .43) and |Ω(x)| is its determinant. This prior is known as the Jereys' prior [START_REF] Jereys | The theory of probability[END_REF] 

(∀i, j ∈ {1, . . . , Q}) Ω i,j = -E z ( ∂ log p(z|x) ∂x i x j ) ( 2 
-log p(z|µ, τ ) = N 2 log(2πτ ) + 1 2τ N ∑ i=1 (z i -µ) 2 .
(2.44)

Consequently, the Fisher matrix is given by:

Ω(µ, τ ) = E z     N τ 1 τ 2 N ∑ i=1 (µ -z i ) 1 τ 2 N ∑ i=1 (µ -z i ) - N 2τ 2 + 1 τ 3 N ∑ i=1 (z i -µ) 2     =    N τ 0 0 N 2τ 2    .
(2.45)

It follows that the Jerey's prior of (µ, τ ) is p(µ, τ ) ∝ 1 τ 3/2 . (2.46) Note that, in general, due to the lack of information, µ and τ are supposed to be independent i.e, the prior density is written as follows [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF] p(µ, τ ) = p(µ)p(τ ). (2.47) Then, the Jerey's priors are given by: p(µ) = 1 (2.49)

In this case, the Jerey's prior p(µ, τ ) ∝ 1 τ

and the reference prior coincide [START_REF] Bernardo | Reference posterior distributions for Bayesian inference[END_REF]. In particular, (2.49) 

p(γ) ∝ 1 γ (2.50)
which can be understood as the Gamma distribution with both parameters equal to zero. p(γ|x) reduces to the density of a Gamma prior of parameters Q/κ and g(x).

In practice, most improper priors of interest can be also interpreted as limits of standard distributions (e.g., Gaussians of innite variance, Gamma and inverse Gamma densities with both parameters equal to zero, uniform densities on innite intervals). Note that, in most applications, even if the prior density is improper, the resulting posterior distribution remains proper.

Hierarchical Bayesian modeling

In Bayesian inference, we often have more than one unknown variable to estimate. Prior distributions are assigned to these variables either through their joint distributions if the variables are supposed to be dependent or through their marginal distributions if they are independent. The unknown variables can be generally structured into dierent groups (see Figure 2.9). First, we have the main variables which include the target signal, the blurring operator in the case of blind deconvolution, the noise statistics etc. Informative priors (regularization or conjugate) are generally assigned to these variables when prior knowledge is available. These informative priors may introduce some new variables which are generally unknown (e.g., we assign to the target image a total variation prior with unknown regularization parameter, to the variance of the noise an inverse Gamma prior with unknown rate parameter, to the signal of interest a scale mixture of Gaussian distributions which involves unknown mixing variables etc.) These new variables dene the second group and are usually called parameters. The latter are generally modeled with conjugate or non-informative priors. Conjugate priors may also involve new unknown variables called hyperparameters which are in most case modeled by non-informative distributions. This structured model is referred to as hierarchical Bayesian modeling which is at the core of Bayesian inference.

Algorithms for computing Bayesian estimates

Once the posterior distributions of these unknown variables are determined, a Bayesian estimator is derived for each unknown variable using its posterior distribution given the remaining ones. The common Bayesian point estimates Algorithms for computing the MAP estimate: The MAP estimate is computed by minimizing a cost function equal up to an additive constant to the the minus logarithm of the posterior density. Based on the properties of this cost function (dierentiablility, convexity, continuity etc.), several algorithms can be employed to solve this minimization problem.

Among the mostly used algorithms, we can mention descent algorithms such as nonlinear conjugate gradient and quasi-Newton methods. Other algorithms are based on majorize-minimize strategies [START_REF] Chouzenoux | A majorizeminimize strategy for subspace optimization applied to image restoration[END_REF] such as half-quadratic approaches [START_REF] Geman | Nonlinear image recovery with halfquadratic regularization[END_REF][START_REF] Nikolova | Analysis of half-quadratic minimization methods for signal and image recovery[END_REF][START_REF] Charbonnier | Two deterministic half-quadratic regularization algorithms for computed imaging[END_REF][START_REF] Ciuciu | A half-quadratic block-coordinate descent method for spectral estimation[END_REF], expectationmaximization [START_REF] Champagnat | A connection between half-quadratic criteria and EM algorithms[END_REF][START_REF] Celeux | The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problems[END_REF]. For non-dierentiable objective functions, one may use primal proximal algorithms [Combettes andPesquet, 2011, 2007] and primal-dual methods [START_REF] Esser | A general framework for a class of rst order primal-dual algorithms for convex optimization in imaging science[END_REF][START_REF] Chambolle | A rst-order primal-dual algorithm for convex problems with applications to imaging[END_REF].

Note that, the parameters and the hyperparameters in the hierarchical Bayesian model can be jointly estimated with the target signal using either the MAP estimate or other approaches [START_REF] Pereyra | Maximuma-posteriori estimation with unknown regularisation parameters[END_REF][START_REF] Thompson | A study of methods of choosing the smoothing parameter in image restoration by regularization[END_REF][START_REF] Archer | An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift[END_REF][START_REF] Molina | Bayesian and regularization methods for hyperparameter estimation in image restoration[END_REF][START_REF] Almeida | Parameter estimation for blind and non-blind deblurring using residual whiteness measures[END_REF][START_REF] Bardsley | Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation[END_REF][START_REF] Bertero | A discrepancy principle for Poisson data[END_REF]. One popular approach is based on the discrepancy principle proposed in order to address the problem of selecting the regularization parameter in deconvolution problems involving Gaussian noise [START_REF] Thompson | A study of methods of choosing the smoothing parameter in image restoration by regularization[END_REF]. The regularization parameter is chosen such that the variance of the residual (i.e, the dierence between the observed image and the blurred estimate) is equal to the variance of the noise. This method has been also extended to other data delity terms such as the Poisson noise and the signal dependent Gaus-sian noise [START_REF] Bertero | A discrepancy principle for Poisson data[END_REF][START_REF] Bardsley | Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation[END_REF]. Among other well known approaches, we can mention the generalized cross validation and the L-curve [START_REF] Golub | Generalized crossvalidation as a method for choosing a good ridge parameter[END_REF][START_REF] Hansen | The use of the L-curve in the regularization of discrete ill-posed problems[END_REF].

Algorithms for computing the MMSE estimate: While the MAP estimate is computed by minimizing a cost function, the MMSE estimate requires to calculate an integral which is almost intractable analytically as the exact posterior density is generally known up to a multiplicative constant. Moreover, when the problem dimension increases, basic numerical integration methods fails to compute the involved integral. Given the diculty in directly computing the MMSE estimate, several methods have been proposed to address this issue. They can be divided into 2 classes:

• Stochastic simulation methods: In order to avoid analytically computing the integral, the Monte Carlo approach is a classical alternative solution which consists of simulating a sucient number of i.i.d. random variables from the posterior distribution P x|z and approximating the MMSE estimator by the empirical average over all these samples.

However, the target posterior is often complex as it does not present a closed form, so that direct sampling is not always possible. To alleviate this diculty, sampling algorithms have been developed to explore complicated distributions such as importance sampling, rejection sampling and Monte Carlo Markov chain algorithms [START_REF] Kong | A note on importance sampling using standardized weights[END_REF][START_REF] Liu | Monte Carlo strategies in scientic computing[END_REF][START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF][START_REF] Gamerman | Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference[END_REF]].

• Approximations methods: Instead of addressing the true posterior distribution, approximation methods search for a simpler distribution that well approximates it and that is computationally tractable. The MMSE estimator is then approximated with the help of this new distribution.

Various approximation strategies have been developed. In general, we can distinguish two classes of methods. First, one can make use of the MAP estimate and try to construct a local approximation of the probability mass around it. This strategy seems attractive since the MAP estimate can usually be computed in a straightforward manner.

Otherwise, one can compute the approximate density by maximizing some criterion that expresses the similarity between the true and the approximate law. A well common criterion is the Kullback-Leibler divergence. In the rst class of method, we can mention the Laplace approximation [START_REF] Kass | Bayes factors[END_REF] while the second class is related to Variational Bayesian methods [START_REF] Parisi | Statistical Field Theory[END_REF].

Note that, unlike optimization methods that give point wise estimates of the target variables, these Bayesian algorithms provide a good summary (respectively approximation) of the whole posterior distribution via the generated samples (respectively the approximate distribution). Thus, these algorithms are not just proposed to compute the MMSE estimator but they can also be used to estimate others statistics such as the variance and the median.

Moreover, in some cases, point wise estimates may not be a good representative of the posterior law and thus we can use these methods to quantify the uncertainty in the computed solution which is known as the credible regions [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF].

In the following, we give a review on some stochastic simulation algorithms and approximation methods.

Stochastic simulations methods

Monte Carlo integration is a powerful method for computing numerical integration using random variables. It estimates the expectation of a function ζ under the probability distribution P x|z as follows:

E x|z (ζ(x)) = ∫ R Q ζ(x)p(x|z)dx ≃ 1 P P ∑ i=1 ζ(x (i) ) (2.51)
where x (1) , . . . , x (P ) are P samples following the distribution P x|z . Note that, thanks to the law of large numbers, the Monte Carlo estimate is unbiased when P tends to innity. Most importantly, the more numerous the samples are, the more accurate and reliable the Monte Carlo estimates are. In general, the number of needed samples for achieving good estimates depends on both the dimension of x and the properties of the generated samples. This method is useful to compute the posterior statistics such as the posterior mean for ζ(x) = x and the standard deviation for ζ(x) = (x -E x|z (x)) 2 . Since direct simulation from the posterior distribution is not always possible, an alternative is to resort to sampling methods.

Importance sampling

The idea behind importance sampling, is that, when P x|z is dicult to sample from, one can still write the integral in (2.51) as follows [START_REF] Glynn | Importance sampling for stochastic simulations[END_REF]]:

E x|z (ζ(x)) = ∫ R Q ζ(x)π(x) p(x|z) π(x) dx (2.52)
where π is a density of probability that one can easily sample from in a direct manner. Hence, it is sucient to use samples from the auxiliary distribution associated with the density π and then compute the estimate E x|z (ζ(x)) by weighting these generated samples according to

E x|z (ζ(x)) = 1 P P ∑ i=1 ϖ (i) ζ(x (i) ) (2.53)
where for every i ∈ {1, . . . , P }, x (i) are random variables following the distribution of density π and ϖ

(i) = p(x (i) |z) π(x (i) )
are known as the importance weights. Note that, this estimate is also unbiased like in (2.51) for sucient large values of P . In situations when the posterior distribution can be computed only up to a multiplicative constant, one can still use the importance sampling approach as follows:

E x|z (ζ(x)) = 1 P P ∑ i=1 ϖ (i) ζ(x (i) ) P ∑ i=1 ϖ (i) (2.54) with ϖ (i) = p(x (i) |z) π(x (i) )
where p(x|z) and π(x) are equal to p(x|z) and π(x) up to multiplicative constants. It is worth noting that, in this case, this estimate is no longer unbiased. The choice of the auxiliary distribution with density π is important to control this error [START_REF] Kong | A note on importance sampling using standardized weights[END_REF][START_REF] Rubinstein | The cross-entropy method: a unied approach to combinatorial optimization, Monte-Carlo simulation and machine learning[END_REF][START_REF] Quang | Multidimensional Laplace formulas for nonlinear Bayesian estimation[END_REF]. Moreover, although the importance sampling method is simple to implement, the estimate can often have very high variance. In fact, even for simple models, the variance can be unbounded [START_REF] Geweke | Bayesian inference in econometric models using monte carlo integration[END_REF].

In order to alleviate the shortcomings of importance sampling related to the choice of importance weights, methods based on acceptance-rejection principle have been proposed.

Rejection sampling

Similarly to importance sampling idea, rejection sampling strategies make use of an auxiliary density π. However, the latter should be selected such that [START_REF] Gilks | Adaptive rejection sampling for Gibbs sampling[END_REF]]

( ∀x ∈ R Q ) p(x|z) cπ(x) (2.55)
where c is a positive constant. In other words, cπ(x) should majorize the probability density p(x|z). Samples are obtained from P x|z by generating samples from the distribution with density π(x) and accept or reject them stochastically according to Algorithm 1. Note that the generated samples are i.i.d. according to the target distribution. The number of iterations needed to successfully generate each sample is also a random number following a geometric distribution with success probability

p = P ( u E x ( p(x|z) cπ(x)
)) .

(2.56) Thus, we need on average, 1/p iterations to generate one sample. As u is a uniform random number, we have then p = E x ( p(x|z) cπ( x)

)
. By recalling that x follows the distribution with density π, we deduce that p = Algorithm 1 Rejection sampling 1: for t = 1, . . . , P do 2:

Generate x(t) from the auxiliary probability distribution of density π(x) satisfying (2.55)

3:

Acceptance-Rejection:

4:

Generate u ∼ U(0, 1)

5: Compute α(x (t) ) = p(x (t) |z) cπ(x (t) ) 6: if u < α(x (t) ) then 7:
Accept:

x (t) = x(t) 8: else 9:
Reject: Go to 2 10: 

end if 11: end for ∫ R Q p(x|z) cπ(x) π(x)dx = 1/c.
(∀t ∈ [0, 1]) bet(t; a, b) = (1 -t) a-1 t b-1 β(a, b) (2.
-1 a + b -2
. Let π be the density of the uniform distribution on [0, 1], we have:

c = sup 0 t 1 bet(t; a, b) π(t) = bet ( b -1 a + b -2 ; a, b ) = (a -1) a-1 (b -1) b-1 β(a, b)(a + b -2) a+b-2 . (2.58)
We propose to use the uniform distribution as auxiliary distribution. In particular, for a = b, the expected value is equal to 1/2 as for the uniform distribution and the average of the acceptance rate is p = β(a, a)4 a-1 . However, for large values of a, this algorithm is not ecient since the acceptance rate becomes very small (i.e., for a = 10, p = 0.28 and for a = 100, p = 0.08). Consequently, we need more time to generate the desired samples. This seems logical since in this case the two densities are not very similar.

In particular, unlike the uniform distribution, the variance of the B distribution decreases as 1/a when a increases and then the samples should be more concentrated around the mode of the distribution.

In general, the rejection sampling algorithm is also of limited interest in practical applications for large scale problems and with complicated distribution. In fact, it is generally dicult to nd an appropriate auxiliary distribution satisfying (2.55) with c small enough to achieve reasonable values of acceptance rate across the whole high dimensional space.

Markov chain Monte Carlo methods

Theory of Markov chains Denition 3.2 Markov chain

A Markov chain is a sequence of random variables x (t) , t > 0 belonging to some set D ⊂ R Q called the state space such that the conditional distribution of x (t+1) given x (t) , . . . , x (0) depends only on x (t) , that is

(∀t 0, A ⊂ D) P(x (t+1) ∈ A|x (t) , . . . , x (0) ) = P(x (t+1) ∈ A|x (t) ). (2.59)
The conditional distribution in (2.59) is called the transition probability. The latter controls the moves between the possible states of the Markov chain and will be denoted by T t :

(∀t > 0, A ⊂ D) T t (A|x (t-1) ) = P(x (t) ∈ A|x (t-1) ).

(2.60) Thus, a Markov chain is described by its initial state x (0) and the transition probabilities T t , t 0. The chain is said to be homogeneous if the transition probability does not depend on t that is, for all t 0, T t = T . The transition density dening the density of probability of moving from x to y for all x, y ∈ D, will be denoted by t(y|x). Furthermore, T (t) (.|x (0) ) will denote the conditional distribution of x (t) when the chain starts at x (0) that is 

(∀t 0, A ⊂ D) T (t) (A|x (0) ) = P(x (t) ∈ A|x (0) ).
(∀y ∈ D) f * (y) = ∫ D t(y|x)f * (x)dx. (2.62)
Then, the invariance property means that, if the marginal distribution of the initial state is F * , all subsequent states of the Markov chain are distributed according to F * . If we suppose that the direct sampling from F * is complicated, the objective is to nd conditions on the transition probability, under which, from an initial arbitrary state x (0) there exists t 0 > 0 such that the state x (t 0 ) follows F * that is the invariant distribution F * is the equilibrium distribution of the Markov chain i.e.,

(∀A ⊂ D) lim t→+∞ T (t) (A|x (0) ) = P x|z (A) (2.63)
for P x|z almost all x (0) [START_REF] Tierney | Markov chains for exploring posterior distributions[END_REF]. In such cases, the chain is said to be ergodic. Proposition 3.4 Reversibility and invariance [START_REF] Tierney | Markov chains for exploring posterior distributions[END_REF] An homogeneous Markov chain with transition probability T of density t is reversible if there exists a distribution F with density f such that

(∀x, y ∈ D) f(x)t(y|x) = f (y)t(x|y).
( 2.64) In this case, F is an invariant distribution of the Markov chain.

Application to Monte Carlo integration: Markov Chain Monte Carlo (MCMC) methods are other extensions of importance sampling algorithms when i.i.d. simulation is too costly or when the selection of an appropriate auxiliary density is not a trivial task [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF][START_REF] Liu | Monte Carlo strategies in scientic computing[END_REF][START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF][START_REF] Gamerman | Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference[END_REF]. The general idea of such methods can be formalized as follows: even if it is dicult to draw directly independent samples from a complicated distribution, one can often nd a way of constructing a Markov chain whose stationary distribution is the target law so that, after a sucient number of iterations, the samples drawn by the MCMC algorithm follow the distribution of interest. In the context of Bayesian estimation, the problem reduces to exploring the space from an initial state x (0) according to a well chosen transition probability T such that the Markov chain admits the posterior law as the unique equilibrium distribution. In that respect, the transition probability should obey the following additional conditions:

• Positive recurrence: There is a non-zero probability that we will return to any state x (t) for all t 0 an innite number of times.

• Irreducibility: For any state of the Markov chain, there is a positive probability of visiting all other states. Formally, a Markov chain is said to be π -irreducible if, for all x ∈ D such that π(x) > 0, we have t(x|y) > 0 for every y ∈ D. In particular, if π is the target invariant density, the chain is also positive recurrent.

• Aperiodicity: The chain should not get trapped into cycles.

Under these assumptions, it has been shown that for P x|z almost all x (0) [START_REF] Jarner | Geometric ergodicity of metropolis algorithms[END_REF][START_REF] Tierney | Markov chains for exploring posterior distributions[END_REF][START_REF] Meyn | Markov chains and stochastic stability[END_REF] lim t→+∞

∥T (t) (.|x (0) ) -P x|z (.)∥ T V = 0 (2.65)
where ∥.∥ T V is the total variation distance dened for any signed measures µ 1 and µ 2 by: ∥µ

1 -µ 2 ∥ T V = 2 sup A⊂D |µ 1 (A) -µ 2 (A)|.
(2.66)

It is worth noting that a considerable attention has also been paid to the convergence rate which determines the speed at which the Markov chain approaches its equilibrium distribution [START_REF] Gibbs | Convergence of Markov Chain Monte Carlo algorithms with applications to image restoration[END_REF][START_REF] Barndor-Nielsen | Complex stochastic systems[END_REF][START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF][START_REF] Brooks | Assessing convergence of Markov chain Monte Carlo algorithms[END_REF][START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF][START_REF] Roberts | Weak convergence and optimal scaling or random walk Metropolis algorithms[END_REF][START_REF] Jarner | Geometric ergodicity of metropolis algorithms[END_REF].

This convergence rate depends on both the target distribution and the choice of the transition probability. In particular, a Markov chain that converges to its invariant distribution at a geometric rate is said to be geometrically ergodic [START_REF] Kendall | Geometric ergodicity and perfect simulation[END_REF].

In the following, for every positive function

V : D → [1, +∞[, we dene the V -norm for any function f as follows |f | V = sup x∈D |f (x)| V (x)
.

(2.67)

The V -distance between two measures µ 1 and µ 2 is given by:

∥µ 1 -µ 2 ∥ V = sup f :|f | V 1 |µ 1 (f ) -µ 2 (f )| (2.68)
where, for every signed measure µ, µ(f

) = ∫ R Q f (y)µ(dy).
It can be noted that the V -distance coincides with the TV distance for V = 1. Denition 3.5 Geometric ergodicity [START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF] The Markov chain with transition probability T and stationary distribution P x|z is geometrically ergodic if there exist two nite constants R > 0 and ρ ∈ (0, 1) and a positive nite function

V : D → [1, +∞[ such that ( ∀t 0) sup x (0) ∈D ∥T (t) (.|x (0) ) -P x|z (.)∥ V V (x) Rρ t .
(2.69)

The main interest in geometric ergodicity is related to the 3 following facts at least:

• A geometrically ergodic Markov chain allows to achieve accurate simulation results in nite time [START_REF] Johnson | Geometric ergodicity of Gibbs samplers[END_REF],

• It enables to approach eciently integrals by a suitable empirical average, by relying on the central limit theorem [START_REF] Jones | On the Markov chain central limit theorem[END_REF],

• It is required for consistent estimation of Monte Carlo standard errors [START_REF] Flegal | Markov chain Monte Carlo: Can we trust the third signicant gure? Statistical Science[END_REF][START_REF] Hobert | On the applicability of regenerative simulation in Markov chain Monte Carlo[END_REF][START_REF] Jones | Fixed-width output analysis for Markov chain Monte Carlo[END_REF].

To establish geometric ergodicity, it is common to use Foster-Lyapunov drift conditions.

Denition 3.6 Geometric drift

T is said to have geometric drift towards a set S if there exists a function V : D → [1, +∞[ and constants λ < 1 and β such that

(∀x ∈ D) T V (x) λV (x) + β1 S (x) (2.70)
where

(∀x ∈ D) T V (x) = ∫ R Q t(y|x)V (y)dy.
(2.71)

In order to prove the geometric ergodicity, we need the notion of small sets.

Denition 3.7 Small sets

A set S ⊂ D is µ-small if there exists a probability measure µ such that:

(∀x ∈ S)(∀B ⊂ D) T (B|x) µ(B).
(2.72) Theorem 3.8 [START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF] We assume that T is a π-irreducible, aperiodic transition probability with invariant distribution P x|z . Then, if T has geometric drift towards a small set S with drift nite function V satisfying (2.70) then V satises (2.69) i.e., the Markov chain with transition probability T is geometrically ergodic.

Convergence inspection of MCMC methods: It can be noted that a practical issue concerning the use of MCMC methods is the convergence inspection to determine when we can stop the MCMC run and be certain that the obtained samples follow the target distribution. Generally, in practice, we throw away some iterations at the beginning of an MCMC run which corresponds to the burn-in period. Then, if the latter is long enough and if the Markov chain is ensured to converge theoretically, all generated samples after the burn-in period should follow the target distribution. Moreover, other various convergence diagnoses may also be used to test whether the Markov chain is exploring the target law after the burn-in period [START_REF] Gelman | Inference from simulations and monitoring convergence[END_REF][START_REF] Cowles | Markov chain Monte Carlo convergence diagnostics: a comparative review[END_REF][START_REF] Brooks | General methods for monitoring convergence of iterative simulations[END_REF][START_REF] Brooks | Assessing convergence of Markov chain Monte Carlo algorithms[END_REF]. For example, we can rely on the visual convergence inspection such as the trace plots analysis to detect stability which is known as the times series plots". Rather than just the values of the target signal, we can consider the running mean, that is, we compute the mean of samples x (iT +1) , . . . , x ((i+1)T ) drawn in each period of time T . A time series plot of the running mean can in many cases be more informative and consistent than simply the plots of the values of the target parameters. The convergence is detected when the running means are stabilized at the posterior mean [START_REF] Smith | Bayesian output analysis program (BOA) version 1.1 user's manual[END_REF]. Others diagnoses are based on the comparison of samples obtained from the MCMC algorithms for dierent independent runs. In this case, convergence is attained when the dierence between the statistics such as the mean and the variance of the obtained samples from these dierent runs is negligible [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF]. It is worthwhile to note that these diagnostics are only reliably used to detect a lack of convergence but not to prove convergence [START_REF] Cowles | Markov chain Monte Carlo convergence diagnostics: a comparative review[END_REF][START_REF] Brooks | Convergence diagnostics for Markov Chain Monte Carlo[END_REF].

After having obtained a set of P samples following the target stationary distribution at convergence, one may wonder about how much information we actually have about the target distribution from these samples. In fact, if there are some correlation between the successive states of the Markov chain, one may expect that the generated samples do not reveal as much information of the posterior distribution as independent samples could provide. In that respect, it is also recommended to evaluate the quality of the Markov chain in terms of correlation at convergence. For instance, one can use the integrated autocorrelation time (ACT) that represents the eective number of dependent samples that is equivalent to a single independent sample. It is dened as follows:

ACT = 1 + 2 +∞ ∑ i=1 γ(i) (2.73)
where γ(i) is the lag i autocorrelation which denes the correlation between states of the samples distant by i [START_REF] Geyer | Practical Markov chain Monte Carlo[END_REF]. Thus, the smaller the ACT, the better the mixing properties of the chain are. In particular, the eective sample size dened by:

ESS = P ACT (2.74)
gives an idea about the number of independent samples that yields the same estimation than the P generated correlated samples. Note that, for a given MCMC run, the ACT may dier from one parameter to another. Alternatively, the Mean Squared Jump (MSJ) distance is another indicator of how well the Markov chain is mixing within the target posterior probability distribution. It is computed over all the parameters as follows:

MSJ = ( E x|z ( ∥x (t+1) -x (t) ∥ 2
)) 1/2 .

(2.75)

Note that maximizing the MSJ is equivalent to minimizing a weighted sum of the lag 1 autocorrelations [START_REF] Sherlock | The random walk Metropolis: linking theory and practice through a case study[END_REF].

In the following, we will give two examples of the most commonly used MCMC methods namely Metropolis Hastings and Gibbs algorithms.

Metropolis Hastings algorithm

This algorithm has been rstly introduced by [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] and then generalized to a more statistical setting by [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF]. In order to draw a sample from a target distribution p(x|z), a sample is generated according to some proposal distribution of density g(.|x (t) ) that may depend on the current state x (t) at each iteration t and should be easy to simulate.

The proposed variable is then accepted or rejected according to an acceptance probability. The main steps of this method are summarized in Algorithm 2.

Note that, the probability density of moving from a state x to another state Algorithm 2 Metropolis Hastings algorithm Initialize:

x (0) ∈ R Q 1: for t = 0, 1, . . . , do 2:
Generate x(t) from the proposal distribution of density g(•|x (t) )

3:

Acceptance-Rejection:

4:

Generate u ∼ U(0, 1)

5: Compute α(x (t) , x(t) ) = min ( 1, p(x (t) |z)g(x (t) |x (t) ) p(x (t) |z)g(x (t) |x (t) ) ) 6:
if u < α(x (t) , x(t) ) then 7:

Accept: x (t+1) = x(t) 8: else 9:

Reject: x (t+1) = x (t) 10:

end if 11: end for y is given by m(x, y) = g(y|x)α(x, y) (2.76) and the probability density of remaining in the same state x is given by:

r(x) = ∫ R Q g(y|x) (1 -α(x, y)) dy.
(2.77)

Then, the transition density has the following expression:

( ∀ (x, y) ∈ (R Q ) 2 ) t(y|x) = m(x, y) + r(x)δ(x -y).
(2.78)

Thanks to the accept-reject step, the transition probability of density (2.78) is reversible. Then, P x|z is an invariant distribution of the MH Markov chain. Furthermore, if the support of the proposal density is large enough to explore all the domain of the target density (i.e., for every x and y in R Q such that p(x|z) > 0 and p(y|z) > 0, we have g(x|y) > 0 ), the Markov chain is also P x|z -irreducible. Moreover, if there exist x and y in R Q satisfying p(x|z) > 0 and p(y|z) > 0 such that g(x|y) > 0 and α(x, y) < 1, then there exists a positive probability such that the chain remains in the state x (i.e., r(x) > 0 ). It follows that the Markov chain is also aperiodic [START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF]. Thereby, samples generated by the MH algorithm follow, at equilibrium, the distribution of interest.

Similarly to rejection sampling, the target distribution is also needed to be only known up to a multiplicative factor. However, unlike rejection sampling, MH algorithms oer more exibility on the choice of the proposal distribution. The only theoretical requirement is that we should be able to compute the ratio p(x|z)/g(y|x) for all x and y in R Q up to a multiplicative constant. For instance, it is feasible theoretically, to select the proposal distribution such that p(x|z)/g(y|x) is not bounded. However, when this is true, the performance of the MH algorithm may be degraded in practice, as detailed in [START_REF] Casella | Mixture models, latent variables and partitioned importance sampling[END_REF]. In particular, independent proposals can be used where the proposal density does not depend on the past states of the chain i.e., g(y|x) = g(y), for all x and y in R Q . In this case, MH algorithm appears as a straightforward generalization of the rejection sampling method when the independent proposal density is the same as the auxiliary density in the rejection method. However, the generated samples by the MH algorithm will involve repeated occurrences of the same value corresponding to the rejected states on the chain which results on correlated samples. Reciprocally, another well common approach for the practical construction of the proposal is to take the current value of the chain into account to generate the next state. This amounts to considering a local exploration of the space around the current state. Thus, at each iteration t, we propose a value according to the following scheme

x(t) = x (t) + ω (t) (2.79)
where ω (t) is a random perturbation independent of x (t) . For instance, it can be drawn from a uniform or Gaussian distribution. In this case, the proposal density is symmetric and the MH algorithm is referred to as the random walk [START_REF] Roberts | Weak convergence and optimal scaling or random walk Metropolis algorithms[END_REF]. The acceptance probability reads

α(x (t) , x(t) ) = min ( 1, p(x (t) |z) p(x (t) |z)
) .

(2.80)

It follows that, every move to a more probable state is accepted with probability 1 while moves to less probable states are accepted with a probability

p(x (t) |z) p(x (t) |z) < 1.
In order to increase the acceptance probability and then decrease the number of rejected values, one should propose small moves at each iteration. However, as the newly accepted value depends on the previous state in the chain through the proposal density, one may instead prefer high moves in order to have a good mixing behavior and then a fast exploration of the space. The perturbation in the random walk algorithm should then be set to nd the ideal tradeo between obtaining a large acceptance probability and good mixing properties of the chain. In the following, we

give an example of applications of MH algorithms.

Example 3.9 Sampling from a B distribution using MH algorithm:

Let us consider Example 3.1. For illustration purposes, we set a = b = 5

and, we propose to use the independent MH sampling algorithm with a uniform distribution over [0, 1], which means that the proposal density does not depend on the past values of the chain. We run the MH algorithm for 6, 000 iterations and discard the rst 1, 000 as burn-in period. The average acceptance probability is 0.49. For the rejection sampling, the acceptance rate is p = 0.40. In Figure 2.10, we display the trace plot of the last 300 generated samples by both algorithms, the resulting histograms computed over 5, 000

samples and the autocorrelation function of the samples. It can be noted that, in this setting, the independent MH algorithm performs very similarly to the rejection algorithm since both histograms properly approximate the target density. The only dierence is that, the generated samples are now correlated. This correlation originates from the rejected states in the MH algorithm as there are multiple occurrences of the same value in the sample.

As it has already been discussed in Example 3.1, for a = b = 100, the rejection algorithm is slow since the acceptance rate is very small (we need around 11 iterations of the rejection sampling to generate one sample). Similarly, when using MH algorithm with uniform proposal over [0, 1], we obtain an acceptance probability of around 0.11 (which is close to the acceptance rate of rejection sampling). Therein, we propose to employ random walk methods with two dierent proposals. First, we use a uniform distribution centered on the current value. In this case, a new value is proposed at each it-

eration according to x(t) ∼ U ( x (t) -δ, x (t) + δ )
where δ > 0. Second, we use a Gaussian distribution centered on the current state i.e, x(t) ∼ N (x (t) , ε 2 ) where ε > 0. We set δ = 0.1 and ε = 0.06 which correspond to an acceptance probability around 0.5. Figure 2.11 shows that the two proposal distributions achieve similar results and that the generated samples t the target distribution.

In order to study the inuence of the proposal on the eciency of the sampling process, we compare the samples of the Gaussian random walk run with two other dierent values of the tuning parameters ε = (0.001, 0.5) that achieve acceptance probabilities around (0.99, 0.08) respectively. Figure 2.12 shows the dierence in the produced chains: Too small or too large moves (that is, a small or a large value of ε) result in higher correlation and slower convergence. In fact, in the former case, the Markov chain moves at each iteration but very slowly, while in the latter, it remains constant over long periods of time. As it has been highlighted in Example (3.9), the performance of the MH algorithm is obviously strongly related to the choice of the proposal distribution. This issue becomes especially critical in large scale problems. In general, when selecting a proposal in MH algorithms, one should consider two issues. First, whilst MH algorithms are guaranteed to yield samples from the target distribution after a sucient burn-in period, the number of iterations required to reach convergence can be infeasibly large. Second, unlike rejection sampling algorithms, the generated samples in convergence are correlated. This correlation originates from two main sources: the correlation introduced by retaining the same value because the newly generated value has been rejected and the correlation between successive samples for non-independent proposals. A poorly mixed chain tends to generate samples that are highly correlated which lead to an incomplete summary of the target distribution and highly biased estimators. Consequently, we need more samples to achieve the same precision as i.i.d methods. In [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF], the eciency of MH algorithms is discussed with respect to the acceptance probability. In general, a good proposal should be a good approximation or good local approximation of the target density without being costly to sample from. In particular, it should reect the dependence structure of the target distribution for large scale problems. In this respect, a large amount of works has been devoted to construct proposals in MH algorithms in attempt to meet these requirements [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF][START_REF] Roberts | Examples of adaptive MCMC[END_REF][START_REF] Stuart | Conditional path sampling of SDEs and the Langevin MCMC method[END_REF][START_REF] Roberts | Optimal scaling of discrete approximations to Langevin diusions[END_REF][START_REF] Vacar | Langevin and Hessian with Fisher approximation stochastic sampling for parameter estimation of structured covariance[END_REF][START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF][START_REF] Zhang | Quasi-Newton methods for Markov chain Monte Carlo[END_REF][START_REF] Martin | A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion[END_REF][START_REF] Pillai | Optimal scaling and diusion limits for the Langevin algorithm in high dimensions[END_REF].

Gibbs sampler

Suppose that, we can decompose x ∈ R Q , into variables or blocks of variables

x i ∈ R Qi , 1 i R, where ∑ R i=1 Q i = Q so that
the conditional distribution of each x i given z and the remaining variables x j , j ̸ = i is simple to sample from. This strategy often leads to important eciency gains, particularly if the involved conditional densities are simpler than the joint density, in the sense that it is computationally straightforward to draw samples from these conditional distributions rather than from the joint law. In this case, the Gibbs algorithm is a MCMC technique suitable for this task [START_REF] Casella | Explaining the Gibbs sampler[END_REF][START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF]. The idea behind Gibbs sampling is to generate posterior samples by sweeping through each of these variables x i ∈ R Qi and to sample from its conditional distribution while keeping the remaining variables xed to their current values. The main steps are given in Algorithm 3. The generated Markov chain resulting from concatenating all these variables admits P x|z as invariant distribution, and thus the samples produced by the Gibbs sampler follow the desired distribution after a sucient burn-in period [START_REF] Robert | Monte Carlo statistical methods[END_REF]. MH steps can also be added to this algorithm. That is, when the full conditional distributions are available and belong to the family of standard distributions (Gamma, Gaussian, etc.), we can draw the new samples directly. Otherwise, we can draw samples using MH steps embedded within the Gibbs algorithm [START_REF] Gilks | Adaptive rejection Metropolis sampling within Gibbs sampling[END_REF]. This is known as the Hybrid Gibbs sampler. The convergence of the Markov chain to the desired invariant distribution is also guaranteed [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF].

However, this may result in a deterioration of the algorithm convergence Algorithm 3 Gibbs Sampler Initialize:

x (0) ∈ R Q for t = 0, 1, . . . , do Generate x (t+1) 1 ∼ P x 1 |z,x (t) 2 ,...,x (t) R . Generate x (t+1) 2 ∼ P x 2 |z,x (t+1) 1 ,x (t) 3 ,...,x (t) R . . . . Generate x (t+1) R ∼ P x R |z,x (t+1) 1 ,...,x (t+1) R-1
.

end for rate. Note that the Gibbs sampler algorithm is well adapted to hierarchical

Bayesian models where we have more than one unknown variable to be estimated (as acquisition parameters, prior parameters and hyperparameters) [START_REF] Damlen | Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables[END_REF].

4 Approximation methods

Laplace approximation

This method is based on a local approximation of the target distribution by a Gaussian distribution around the MAP estimate. Let xMAP denotes a mode of the true posterior distribution. The Laplace approximation is given by the Gaussian distribution of mode xMAP and whose covariance matrix is given by the inverse of the Hessian matrix of posterior distribution minus logarithm computed at xMAP . This approximation has several shortcomings. First, the approximate density requires the computation of the derivatives of the posterior density logarithm and the inversion of a high dimensional matrix which may become burdensome for large scale problems. Besides, the second derivatives themselves may be intractable to compute. Second, the Gaussian assumption may not be suitable for example to bounded, constrained, or positive parameters and multimodal distributions. Furthermore, even if the exact posterior is unimodal, the approximate distribution may fail to well represent the whole probability density, as the approximation is only made up locally around the maximum. The asymptotic error of this approximation was studied in [START_REF] Kass | Bayes factors[END_REF].

Variational Bayes approximation

The variational Bayes approximation (VBA) approach has been rst introduced in physics [START_REF] Parisi | Statistical Field Theory[END_REF]. The idea behind it is to approximate the true posterior density p(x|z) with another distribution density denoted by q(x) which is as close as possible to p(x|z), by minimizing the Kullback-Leibler divergence between them [mídl and [START_REF] Quinn | The Variational Bayes Method in Signal Processing[END_REF][START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF][START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF][START_REF] Grimmer | An introduction to Bayesian inference via variational approximations[END_REF]:

q opt = argmin q(x)∈Q KL ( q(x)∥p(x|z) ) (2.81)
where Q is a subset of valid densities on x and

KL ( q(x)∥p(x|z) ) = ∫ R Q q(x) log q(x) p(x|z) dx.
(2.82)

Since the true posterior density is almost known up to a multiplicative constant, the KL divergence is commonly decomposed as follows:

KL ( q(x)∥p(x|z) ) = E(q(x)) + log p(z) (2.83)
where

E(q(x)) = ∫ R Q q(x) log q(x) p(x, z) dx (2.84)
is known as the Gibbs free energy or variational free energy. Here above, log p(z) can be seen as a constant that does not depend on q(x). Thus, the minimization of KL ( q(x)∥p(x|z) )

can be replaced by the minimization of E(q(x)) whose expression only depends on p(x, z) = p(z|x)p(x) without requiring the computation of the normalization constant, that is q opt (x) = argmin q(x)∈Q E(q(x)).

(2.85) Furthermore, since KL ( q(x)∥p(x|z) )

is positive we have:

-log p(z) = E(q(x)) -KL ( q(x)∥p(x|z) ) E(q(x)).
(2.86)

It follows that, E(q(x)) is an upper bound of the negative log of the marginal density of the observation. Thus, in convergence when KL

( q(x)∥p(x|z) ) is nearly zero, E(q(x)) can approximate -log p(z). Note that KL ( q(x)∥p(x|z) )
is positive and it reaches its minimum at zero for q(x) = p(x|z). However, this is not particularly helpful because the posterior is generally intractable. Hence, we introduce additional assumptions on the approximating density q(x) in order to make inference tractable while also providing a close approximation to the true density. Note that one of the main diculties in the minimization of either (2.81) or (2.85) is the mutual dependence between dierent unknowns. In particular, solutions of such problems become tractable if a suitable factorization structure of q(x) is assumed. Therefore, the true posterior needs to be approximated by a separable distribution which facilitates the calculation of the estimators.

That is, we assume that q

(x) = ∏ R i=1 q X i (x i ) with R Q. When Q = R,
we have a total separability, otherwise, the separability is partial. Hence, the optimal density approximation q opt X i (x i ) for each variable x i , is obtained by minimizing the KL divergence while holding the remaining densities with the rest of variables xed. In this case, there exists an optimal solution to the optimization problem (2.81) for each density (q X i (x i )) 1≤i≤R , given by the exponential of the expectation of the joint density with respect to the distribution of all the unknown parameters except the one of interest i.e.,

(∀i ∈ {1, . . . , R}) q opt X i (x i ) ∝ exp ( ⟨log p(z, x)⟩ ∏ j̸ =i q opt X j (x j ) ) (2.87)
where

⟨ • ⟩ ∏ j̸ =i q X j (x j ) = ∫ • ∏ j̸ =i q X j (x j )dx j .
(2.88)

Due to the implicit relationships existing between

( q opt X i (x i ) ) 1≤i≤R
, an analytical expression of q opt (x) generally does not exist. Usually, these distributions are determined in an iterative way, by updating one of the separable components (q X i (x i )) 1≤i≤R while xing the others [mídl and [START_REF] Quinn | The Variational Bayes Method in Signal Processing[END_REF].

Applications of classical VBA approaches can be found in [START_REF] Drémeau | Boltzmann machine and mean-eld approximation for structured sparse decompositions[END_REF][START_REF] Babacan | Variational Bayesian super resolution[END_REF][START_REF] Chen | Variational Bayesian methods for multimedia problems[END_REF][START_REF] Tramel | Approximate message passing with restricted Boltzmann machine priors[END_REF][START_REF] Mcgrory | Variational Bayesian analysis for hidden Markov models[END_REF][START_REF] Forbes | Combining Monte Carlo and mean-eldlike methods for inference in hidden Markov random elds[END_REF] while improved VBA algorithms have been proposed in [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF][START_REF] Zheng | Ecient variational Bayesian approximation method based on subspace optimization[END_REF].

Once the approximate distributions are computed, the unknown parameters are then estimated by the means of the obtained distributions. In the following, we give an example of application of VBA.

Example 4.1 VBA method for the separable approximation of a Gaussian posterior distribution Consider the observation model in (2.2), where w = (w)

1 i N is Gaussian noise of unknown variance τ . Then, p(z|x, τ ) = (2πτ ) -N 2 exp ( - 1 2τ ∥Hx -z∥ 2
) .

(2.89)

We also suppose that the prior density of x reads:

p(x) = Cγ -Q 2 exp ( - γ 2 ∥Λx∥ 2 ) (2.90)
where γ > 0 is the unknown regularization parameter and C > 0 is a constant independent of γ. We also use a non-informative prior for the unknown parameters that is, (2.92)

p(γ) = 1 γ (2.
It follows that the joint posterior density of x, γ, τ is proportional to

p(x, γ, τ, z) = exp ( - γ 2 ∥Λx∥ 2 ) exp ( - 1 2τ ∥Hx -z∥ 2 ) τ -N 2 -1 γ Q 2 -1 . (2.93)
Let us approximate this true posterior density via VBA method using partial or total separability.

VBA method using partial separability: We approximate p(x, γ, τ |z)

with another density q(x, γ, τ ) such that:

q(x, γ, τ ) = q X (x)q Γ (γ)q T (τ ).

(2.94) Using (2.87), the density q (k+1) X

(x) at the iteration k + 1 of the algorithm is given by

q (k+1) X (x) ∝ exp ( ⟨log p(x, γ, τ, z)⟩ q (k) Γ (γ)q (k) T (τ ) ) ∝ exp ( - ⟨τ -1 ⟩ (k) 2 ∥Hx -z∥ 2 - ⟨γ⟩ (k) 2 ∥Λx∥ 2 ) (2.95) where ⟨τ -1 ⟩ (k) = ∫ R τ -1 q (k) T (τ )dτ and ⟨γ⟩ (k) = ∫ R γq (k) Γ (γ)dγ. Then, q (k+1) X (x)
is the density of a Gaussian distribution with mean m (k+1) and covariance matrix Σ (k+1) given by

m (k+1) = Σ (k+1) ⟨τ -1 ⟩ (k) H ⊤ z (2.96) and ( Σ (k+1) ) -1 = ⟨τ -1 ⟩ (k) H ⊤ H + ⟨γ⟩ (k) Λ ⊤ Λ.
(2.97)

The density q

(k+1) Γ (γ) is given by q (k+1) Γ (γ) ∝ exp ( ⟨log p(x, γ, τ, z)⟩ q (k+1) X (x)q (k) T (τ ) ) ∝ γ Q 2 -1 exp ( - γ 2 ⟨ ∥Λx∥ 2 ⟩ (k+1) ) (2.98)
where

⟨ ∥Λx∥ 2 ⟩ (k+1) = ∫ R Q ∥Λx∥ 2 q (k+1) X (x)dx = ∥Λm (k+1) ∥ 2 + trace(Σ (k+1) Λ ⊤ Λ).
(2.99)

(2.98) can be seen as the density of the Gamma distribution of parameters

a γ = Q 2 (2.100) and b (k+1) γ = 1 2 ( ∥Λm (k+1) ∥ 2 + trace(Σ (k+1) Λ ⊤ Λ)
) .

(2.101)

It follows that

⟨γ⟩ (k+1) = a γ b (k+1) γ .
(2.102)

Similarly, we have

q (k+1) T (τ ) ∝ exp ( ⟨log p(x, γ, τ, z)⟩ q (k+1) X (x)q (k+1) Γ (γ) ) ∝ τ -N 2 -1 exp ( - 1 2τ ⟨ ∥Hx -z∥ 2 ⟩ (k+1) ) (2.103)
where

⟨ ∥Hx -z∥ 2 ⟩ (k+1) = ∫ R Q ∥Hx -z∥ 2 q (k+1) X (x)dx = ∥Hm (k+1) -z∥ 2 + trace(Σ (k+1) H ⊤ H).
(2.104)

(2.103) can be seen as the density of the inverse Gamma distribution of parameters

a τ = N 2 (2.105) and b (k+1) τ = 1 2 ( ∥Hm (k+1) -z∥ 2 + trace(Σ (k+1) H ⊤ H)
) .

(2.106)

It follows that ⟨τ -1 ⟩ (k+1) = a τ b (k+1) τ . (2.107)
Note that the parameters of the densities q (k+1) Γ

(γ) and q (k+1) T (τ ) depend on the parameters of q (k+1) X (x). At each iteration, the computation of the mean of the Gaussian distribution of density q (k+1) X (x) can be fullled using an iterative method for solving

( Σ (k+1) ) -1 m (k+1) = ⟨τ -1 ⟩ (k) H ⊤ z.
(2.108)

However, the problem remains in the computation of the covariance matrix.

In [START_REF] Babacan | Variational Bayesian super resolution[END_REF], the authors propose to approximate it with a diagonal matrix whose elements are given by the inverse of the diagonal of

( Σ (k+1) ) -1
. However, this may induce errors on the estimation.

VBA method using total separability: We now assume that q(x, γ, τ ) = q Γ (γ)q T (τ )q X (x) = q Γ (γ)q T (τ )

Q ∏ i=1 q X i (x i ).
(2.109)

Similarly to the partial separability, we can show that by using (2.87), the approximate distribution of density q X i (x i ), for every i ∈ {1, . . . , Q} is a Gaussian distribution with mean m

(k+1) i and variance (σ 2 i ) (k+1) given by m (k+1) i = (σ 2 i ) (k+1) ⟨τ -1 ⟩ (k) ([ H ⊤ z ] i - [ H ⊤ H m(k+1) ] i + diag ( H ⊤ H ) i m(k+1) i ) -(σ 2 i ) (k+1) ⟨γ⟩ (k) ([ Λ ⊤ Λ m(k+1) ] -diag ( Λ ⊤ Λ ) i m(k+1) i ) (2.110) and (σ -2 i ) (k+1) = ⟨τ -1 ⟩ (k) diag ( H ⊤ H ) + ⟨γ⟩ (k) diag ( Λ ⊤ Λ ) (2.111) where m(k+1) = [ m (k+1) 1 , . . . , m (k+1) i-1 , m (k) i , m (k) Q ] ⊤
. The optimization of densities q Γ (γ) and q T (τ ) is the same as for the partial separability. Since the covariance matrix of q X (x) is now diagonal, its manipulation is easier than in the rst case. However, the total separability approximation may be inappropriate when the coecients x exhibit high correlation.

It can be noted that VBA methods constitute a powerful tool to compute the MMSE estimator for complicated models by imposing additional properties to approximate them, in order to make the estimation tractable.

However, very rough approximation of the posterior density may result on a deterioration of the quality of estimation. Moreover, the VBA procedure cannot be easily implemented for more complicated priors and likelihood models since the direct optimization of non standard distributions is not generally a trivial task.

Conclusion

In this chapter, we have provided an overview of the Bayesian framework for the resolution of inverse problems in signal processing. In such framework, the unknown signal and the observations are both modeled by two random variables. The distribution of the observations is related to the direct observation model whereas the prior distribution of the unknown signal is chosen by the designer. Depending on the amount of information and the properties of the observation law, the prior distribution can be chosen to be highly informative, conjugate or non-informative. The posterior distribution is derived from the prior and the observation models using the Bayes rule.

Bayesian estimators are then computed from this posterior by minimizing a given cost function. Among well known Bayesian estimators, we can mention the MAP and the MMSE estimators. While the MAP can be computed using deterministic minimization algorithms, the derivation of the MMSE estimator requires to calculate an integral that is in most case intractable.

Therein, stochastic and approximation methods have been proposed to compute such estimator. Table 2.1 summarizes the advantages/drawbacks of the various methods that we have presented. • Construct a Markov chain whose stationary distribution is the posterior law.

• Find a tractable approximation of the true posterior distribution that is maximally similar to it.

• Derive inferences via empirical estimates computed over the samples in convergence.

• Derive inferences using the approximate distribution.

Computationally expensive.

Relatively faster.

Asymptotically exact.

Approximation errors.

Flexibility of application.

Tractable only for specic laws.
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Majorize-Minimize adapted Metropolis

Hastings algorithm

Metropolis Hastings (MH) algorithms are currently the most popular simulation techniques for producing samples from posterior probabilities when direct sampling is not trivial. They consist of building a Markov chain dened by a proposal density and a rejection-acceptance rule whose stationary distribution is the desired posterior law. The asymptotic states of the constructed chain are then considered as samples from the target distribution.

However, the choice of the proposal distribution is crucial as it impacts the statistical properties of the resulting Markov chain especially for complicated and high-dimensional target distributions. The proposal density should ideally provide an accurate approximation of the target density with a low computational cost. This problem is often tackled in an empirical manner.

However, it is also possible to determine theoretically an optimal proposal scaling [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF] or to use adaptive algorithms in order to nd local approximation of the target distribution automatically [Atchadé, 2006]. One typical algorithm is the Random Walk (RW) algorithm whose adaptive proposal law takes the form of a Gaussian distribution centered at the current state [START_REF] Roberts | Weak convergence and optimal scaling or random walk Metropolis algorithms[END_REF]. The popularity of this algorithm is mainly related to its simplicity of implementation. However, the RW usually takes too many steps to reach stability for high dimensional models. Furthermore, slow convergence together with bad mixing behavior could make the Markov chain more likely to get trapped into some regions and thus fail to explore eciently the whole target space.

As the dimension and the complexity of inference problems have dramatically increased, the design of improved proposal scheme providing large proposal transitions that are accepted with high probability, is required. Intuitively, the proposal density should take advantage of the local properties This chapter is organized as follows: In Section 1, we formulate the problem and we give a brief overview of the Langevin diusion process. In Section 2, we describe the new Majorize-Minimize adapted MH algorithm.

In section 3, a particular attention is paid to the convergence proof of the proposed algorithm. Section 4 is devoted to experimental results.

1 Problem statement and related work

Langevin diusion

A Q-dimensional Langevin diusion is a continuous time Markov process (x(t)) t∈R + with values in R Q dened as the solution of the following stochastic dierential equation [START_REF] Roberts | Langevin diusions and Metropolis-Hastings algorithms[END_REF]:

dx(t) = b(x(t))dt + V(x(t))dB(t), x(0) = x (0) (3.1)
where V(x(t)) ∈ R Q×Q is the volatility matrix, (B(t

)) t 0 ∈ R Q is a Brownian motion and b(x) = (b i (x)) Q
i=1 is the drift term, dened as follows:

(∀i ∈ {1, . . . , Q}) b i (x) = 1 2 Q ∑ j=1 A ij (x) ∂ log π(x) ∂x j + |A(x)| 1 2 Q ∑ j=1 ∂ ∂x j ( A ij (x)|A(x)| -1 2 ) (3.2)
where A(x) = V(x)V(x) ⊤ is a symmetric denite positive matrix and |A(x)| denotes its determinant. Note that the process is stationary and π is the density of the stationary distribution of the diusion i.e., if a state x(t 0 ) follows the distribution of density π, all subsequent states x(t 0 + τ ), τ > 0 also follow this same distribution. Thereby, when π(.) = p(.|z), one can construct a Langevin Markov chain whose stationary law is the target posterior distribution. In the following, we set π(.) = p(.|z) which amounts to assuming that the posterior density is dierentiable with respect to x.

The Langevin diusion describes a dynamic in time, as a continuous variable. However, one can still approximate this equation by discretizing time. This is done by splitting the time interval into a series of smaller intervals of length ∆t = ε 2 . The smaller the value of ε is, the closer the approximation to the dynamic in continuous time. There are numerous procedures that have been developed for time discretization. We focus here on the Euler 's discretization. Then, the Langevin diusion reads

(∀t ∈ N) x (t+1) = x (t) + ε 2 b(x (t) ) + εA 1/2 (x (t) )ω (t+1) (3.3)
where ε > 0 is the stepsize resulting from the Euler's discretization and ω (t) ∈ R Q is a realization of zero-mean white noise with covariance matrix I Q . The scheme (3.3) is referred to as the Unadjusted Langevin Algorithm (ULA) [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF]. Due to the discretization error, the Markov chain following the ULA scheme may behave dierently from the diusion process resulting from (3.2). In particular, it may sway away from the target stationary distribution as pointed out in [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF][START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF]. This discrepancy can be corrected by adding a Metropolis acceptance probability at each iteration to guarantee the reversibility of the chain with respect to the posterior distribution. The resulting sampler can be seen as a MH algorithm where g(.|x (t) ) is the density of a Gaussian distribution with mean x (t) + ε 2 b(x (t) ) and covariance matrix ε 2 A(x (t) ). Note that the convergence properties have been also studied for some variants of ULA in [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF][START_REF] Durmus | Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm[END_REF][START_REF] Durmus | Ecient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau[END_REF].

It is worth noting that two scale parameters play an important role: ε determines the length of the proposed jumps whereas the scale matrix A controls the direction. Various classes of algorithms have been developed from this diusion model depending on the choice of A.

Choice of the scale matrix

The standard Metropolis adjusted Langevin algorithm (MALA) is the simplest form of diusion (3.3) when A equals I Q [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF]: t+1) .

(∀t ∈ N) x (t+1) = x (t) + ε 2 2 ∇ log p(x (t) |z) + εω (
(3.4)

It can be proved that the MALA sampling algorithm has P x|z as its stationary distribution and is more likely to accept proposed values than a standard RW. Indeed, the gradient information of the target distribution allows the chain to be guided toward regions of higher probability, where most of the samples should lie and hence, it enables to achieve high acceptance rates.

As a consequence, the MALA algorithm explores the invariant distribution much faster than the standard RW [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF][START_REF] Breyer | Optimal scaling of MALA for nonlinear regression[END_REF]. Moreover, it should be noted that a bad adjustment of ε can signicantly aect the convergence rate especially for high dimensional problems [START_REF] Pillai | Optimal scaling and diusion limits for the Langevin algorithm in high dimensions[END_REF]. For this reason, many methods have focused on how to choose a suitable stepsize such that the asymptotic average acceptance rate is bounded away from zero for high dimensions [START_REF] Pillai | Optimal scaling and diusion limits for the Langevin algorithm in high dimensions[END_REF][START_REF] Roberts | Optimal scaling of discrete approximations to Langevin diusions[END_REF]]. Despite these improvements, when the variables of interest are strongly correlated with widely diering variances, MALA algorithm fails to explore eciently the target space. In fact, since the third term of the MALA algorithm is an isotropic Brownian motion, the discretization stepsize ε in such parameter space, is generally constrained to take very small values in order to promote the directions with smallest variances which results in a slow convergence of the algorithm, poor mixing t+1) .

(∀t ∈ N) x (t+1) = x (t) + ε 2 2 A∇ log p(x (t) |z) + εA 1/2 ω (
(3.5)

Whereas the step size ε can easily be tuned with respect to the asymptotic acceptance rate, there is no clear guiding strategies for the selection of the constant matrix in the absence of some knowledge about the moments of the target density which are supposed to be unknown. Furthermore, the use of the same preconditioning matrix in the whole algorithm may be inecient since optimal scaling of the burn-in period may dier from that of the stationary phase [START_REF] Christensen | Scaling limits for the transient phase of local MetropolisHastings algorithms[END_REF]. Therefore, rather than employing a xed global scale matrix in the proposal density, a position dependent matrix should be employed to take into account the local structure of the target density at each state of the Markov chain. In that respect, many algorithms [Atchadé, 2006;[START_REF] Martin | A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion[END_REF][START_REF] Zhang | Quasi-Newton methods for Markov chain Monte Carlo[END_REF][START_REF] Bui-Thanh | A scaled stochastic Newton algorithm for Markov chain Monte Carlo simulations[END_REF][START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF][START_REF] Vacar | Langevin and Hessian with Fisher approximation stochastic sampling for parameter estimation of structured covariance[END_REF] rely on adaptive procedures where A is tuned automatically according to the past behavior of the Markov chain resorting to some deterministic optimization tools. For example, when setting A to the inverse of the Hessian matrix of -log p(x|z) and, assuming a locally constant curvature, the term involving the derivatives of the scale matrix in (3.2) reduces to zero. Consequently, a new sample is drawn from:

(∀t ∈ N) x (t+1) = x (t) + ε 2 2 A(x (t) )∇ log p(x (t) |z)+εA 1/2 (x (t) )ω (t+1) (3.6)
where A -1 (x) = -∇ 2 log p(x|z) that is for all i ∈ {1, . . . , Q}, for all j ∈ {1, . . . , Q},

[ A -1 ] i,j (x) = - ∂ 2 log p(x|z) ∂x i ∂x j
. Consequently, the computation of the drift term b becomes a scaled Newton step for minimizing -log p(x|z).

Thus, a new sample of the Newton-based MCMC is more likely drawn from a highly probable region and then more likely accepted, which can speed up the convergence of the sampling process [START_REF] Martin | A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion[END_REF][START_REF] Zhang | Quasi-Newton methods for Markov chain Monte Carlo[END_REF][START_REF] Bui-Thanh | A scaled stochastic Newton algorithm for Markov chain Monte Carlo simulations[END_REF]. Note that, in practice, this method has a high computational load since it requires the computation of the full Hessian matrix and its inverse at each iteration. This is particularly critical for large scale problems and/or when the Hessian matrix is not positive denite.

One appealing solution is to replace the Hessian by a scale matrix that provides similar information than the Hessian with a lower computational cost.

In particular, many methods have proposed the Fisher information matrix as a preconditioning matrix in the Langevin diusion [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF][START_REF] Vacar | Langevin and Hessian with Fisher approximation stochastic sampling for parameter estimation of structured covariance[END_REF] which can be interpreted as the discretization of the MALA algorithm directly on the natural Riemannian manifold where the parameters live. In this work, we propose a new approach where the scale matrix of the Langevin diusion is chosen according to a Majorize-Minimize strategy.

2 Proposed algorithm

Majorize-Minimize Framework

The majorization-minimization (MM) principle is a powerful tool for designing algorithms to solve optimization problems. The idea behind the MM approach is to replace a complicated minimization problem with successive minimizations of some well chosen surrogate functions [START_REF] Hunter | A tutorial on MM algorithms[END_REF]. These functions are called tangent majorants.

Denition 2.1 Tangent majorant

Let x ′ ∈ R Q . A function f is said to be a tangent majorant function of J at x ′ provided that { P 1 : f (x ′ , x ′ ) = J (x ′ ), P 2 : f (x ′ , x) J (x) (∀x ∈ R Q ).
(3.7)

Let x (0) be an arbitrary initial value and

( x (t) )
t∈N the sequence constructed according to:

x (t+1) = argmin x∈R Q f (x (t) , x).
(3.8)

According to the majorization properties (3.7), the scheme (3.8) will produce a monotically decreasing sequence (J (x (t) )) t∈N that converges to a local minimum of J . In fact, we have

J (x (t) ) = (a) f (x (t) , x (t) ) (b) f (x (t) , x (t+1) ) (c) J (x (t+1) ) (3.9)
where (a) holds from the tangency property P 1 , (b) from the minimization step (3.8) and (c) from the majorization property P 2 (see Figure 3.1).

The performance of the MM algorithm depends crucially on the surrogate function f . In particular, it has to be chosen so that its minimizer is easy to compute. A simple choice is a quadratic function. Let us assume the existence, for every x ′ ∈ R Q , of a positive denite matrix Q(x ′ ) ∈ R Q×Q such that the following quadratic function, dened for every x ∈ R Q , by

f (x ′ , x) = J (x ′ ) + (x -x ′ ) ⊤ ∇J (x ′ ) + 1 2 (x -x ′ ) ⊤ Q(x ′ )(x -x ′ ), (3.10) 
Figure 3.1: MM algorithm: the new iterate x (t+1) is the minimizer of the tangent majorant f (x (t) , .) of J in x (t) .

is a tangent majorant of J at x ′ . Then, the MM optimization algorithm reduces to building a sequence (x (t) ) t∈N through the following scheme:

(∀t ∈ N) x (t+1) = x (t) - ε 2 2 Q -1 (x (t) )∇J (x (t) ) (3.11) with ε ∈ (0, √ 2] is a relaxation stepsize. Note that (3.11) implies that inequality (b) in (3.9) is satised, remarking that 2ε -2 Q(x ′ ) ≽ Q(x ′ ), for every x ′ ∈ R Q and every ε ∈ (0, √ 2].

Proposed sampling algorithm

In this work, we propose to extend the idea behind the MM strategy to the context of sampling algorithms. More specically, the idea is to push the proposal distribution of the MH algorithm at each iteration from the current state to a region with high density value. Contrary to the RW where the proposal is centered on the current state, we propose to pick the mean of the proposal density using a step of an MM search with form (3.11) and then to explore the space around this center according to the MM curvature matrix Q(x t ) that should well describe the local curvature of the target distribution. This results in a preconditioned Langevin proposal where the scale matrix A in (3.2), equal to the inverse of the curvature matrix Q(x t ), is constructed from the MM strategy. Similarly to Newton-based MCMC methods, the drift term, when assuming zero curvature changes, proposes, from a current state x (t) , a state with a higher value of log p(x|z), resulting from an iteration of MM algorithm minimizing J (x) = -log p(x|z).

Consequently, the obtained proposal reduces to a noisy version of an MM iteration for minimizing -log p(x|z). The proposed sample is then subjected to the accept/reject rule of the MH algorithm. The resulting 3MH sampler is described by Algorithm 4.

Algorithm 4 Majorize-Minimize adapted MetropolisHastings algorithm Initialize:

x (0) ∈ R Q , ε ∈ (0, √ 2]
1: for t = 0, 1, . . . do 2:

Generate

x(t) ∼ N ( x (t) + ε 2 2 Q -1 (x (t) )∇ log p(x (t) |z), ε 2 Q -1 (x (t) ) ) 3:
Acceptance-Rejection:

4:

Generate u ∼ U(0, 1)

5: Compute α(x (t) , x(t) ) = min ( 1, p(x (t) |z)g(x (t) |x (t) ) p(x (t) |z)g(x (t) |x (t) )
)

where g(.|v) ∝ |Q(v)| 1 2 exp ( - 1 2ε 2 ∥. -v -ε 2 2 Q -1 (v)∇ log p(v|z)∥ 2 Q(v)
)

6:

if u < α(x (t) , x(t) ) then 7:

Accept: x (t+1) = x(t) 8: else 9:

Reject: x (t+1) = x (t) 10:

end if 11: end for Recall that the metric Q is the precision matrix of the Gaussian proposal distribution which makes the choice of Q crucial for the eciency of the sampling algorithm. The matrix Q(x (t) ) at each iteration t should be chosen such that (3.10) is a tangent majorant to the minus logarithm of the posterior density at the current state x (t) , that is it should satisfy the properties in (3.7). Furthermore, it should provide a good approximation of the local curvature of the posterior distribution. Let x ′ ∈ R Q . Any symmetric positive denite matrix verifying for every x ∈ R Q , Q(x ′ ) ≽ -∇ 2 log p(x|z), denes the curvature of a quadratic tangent majorant of -log p(x|z) at x ′ . In the following, we propose a general procedure for building such a set of suitable preconditioning matrices {Q(x)} x∈R Q under some mild conditions about the posterior distribution.

Construction of the tangent majorant

We focus on the case when minus-log of the target density function J (x) = -log p(x|z) can be expressed up to an additive constant as:

(∀x ∈ R Q ) J (x) = Φ(Hx -z) + Ψ(Vx) (3.12) where z ∈ R N , H ̸ = 0 N ×Q ∈ R N ×Q and Ψ(Vx) = S ∑ s=1 ψ s (∥V s x -c s ∥) (3.13) with V = [V ⊤ 1 , . . . , V ⊤ S ] ⊤ and (∀s ∈ {1, ..., S}) V s ∈ R Ps×Q , c s ∈ R
Ps and (ψ s ) 1 s S is a set of nonnegative continuous functions. Note that this form of posterior density is frequently encountered in inverse problems where z is the observation, Φ is the data delity term and Ψ is the minus logarithm of the prior density dened according to some linear operators V 1 , . . . , V S . For instance, V may be a matrix computing the horizontal and vertical discrete gradient (or higher order dierences) between neighboring pixels useful for edge preserving in image restoration problems. In this case, by setting P s = 1 and ψ s (.) = |.|, we recover the anisotopic total variation while for P s = 2 and ψ s equals to ℓ 2 norm, we obtain the isotropic total variation (see chapter 2). Another important choice, is the analysis frame regularization where V is a frame of R Q . For example, V 1 may be the operator that computes low frequency wavelet coecients and ψ 1 a function enforcing smooth solutions while the remaining operators give the high frequency ones that can be well described using suitable heavy tailed functions ψ s such as the ℓ p p penalties for p < 1, the Cauchy or the Bernoulli-Gaussian models.

As Langevin based algorithms require the use of dierentiable regularizations, one can use smoothed approximations of these functions that have a quadratic behavior near 0 [START_REF] Allain | On global and local convergence of half-quadratic algorithms[END_REF][START_REF] Charbonnier | Deterministic edge-preserving regularization in computed imaging[END_REF][START_REF] Lange | Convergence of EM image reconstruction algorithms with Gibbs smoothing[END_REF][START_REF] Zibulevsky | ℓ 1 ℓ 2 optimization in signal and image processing[END_REF].

We further make the following assumptions:

1. Φ is a continuous coercive dierentiable function with an L-Lipschitzian gradient, that is 4. (∀s ∈ {1, ..., S}) (∃ ωs > 0) such that (∀u > 0) 0 ψs (u) ωs u and lim u→0 ψs (u)/u < ∞.

( ∀u ∈ R N ) ( ∀v ∈ R N ) ∥∇Φ(u) -∇Φ(v)∥ L∥u -v∥, (3.14) 2. (∀s ∈ {1, ..., S}) ψ s is a dierentiable function, 3. (∀s ∈ {1, ..., S}) ψ s ( √ •) is concave over R + ,
The rst requirement holds for a large number of data delity terms. This includes for example the Gaussian noise model, the Huber function which has shown its eciency compared to the quadratic one for limiting the inuence of outliers encountered in some observed data [START_REF] Huber | Robust statistics[END_REF], the Cauchy model [START_REF] Antoniadis | Wavelet thresholding for some classes of nonGaussian noise[END_REF], and the signal-dependent Gaussian model generally used as a second order approximation of mixed Poisson-Gaussian noise [START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signaldependent noise[END_REF] as well as the exact Poisson-Gaussian likelihood [START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF]. More examples can be found in [START_REF] Chouzenoux | A majorize-minimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF]. Furthermore, Assumptions 2-4 are satised for several commonly used prior models such as ST , SMG, GMEP distributions (see Chapter 2) as well as smoothed approximation of ℓ p p regularization functions for p 2 and ℓ 2 -ℓ 0 penalties (asymptotically constant with a quadratic behavior near 0) used to approximate the ℓ 0 pseudo-norm [Veksler, 1999; Ganan and McClure, 1985; Dennis Jr and Welsch, 1978; Chouzenoux et al., 2013]. 1

Under Assumptions 1-4, convex quadratic tangent majorants of (3.12) can be obtained by setting [START_REF] Chouzenoux | A majorize-minimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF] 

(∀x ∈ R Q ) Q 1 (x) = µH ⊤ H + V ⊤ Diag{ω(x)}V + ζ I Q (3.15) where µ ∈ [L, +∞[, V = [ V ⊤ 1 , . . . , V ⊤ S ] ⊤
and ω = [ω 1 , . . . , ω P ] ⊤ is such that, for all s ∈ {1, . . . , S}, p ∈ {1, . . . , P s }

ω P 1 +P 2 +...+P s-1 +p (x) = ψs (∥V s x -c s ∥) ∥V s x -c s ∥ . (3.16)
Moreover, ζ 0 is a constant that ensures the invertibility of Q 1 (x) for every x ∈ R Q .

The numerical eciency of the proposed algorithm relies on the use of quadratic majorants that provide tight approximations of the target density but also whose curvature matrices are simple to compute. However, sampling from the proposal constructed by the MM strategy when using the curvature matrix (3.15) is often very dicult because of the high computational cost of each iteration and/or the memory limitations. In fact, similarly to Newton MCMC samplers, the main computational cost is related to the computation of the inverse of (3.15) and sampling from the associated high-dimensional Gaussian distribution at each iteration. In the following, we will propose alternative choices of the curvature matrix, when the manipulation of matrix (3.15) is intractable.

Constant curvature matrix: We can resort to the following constant curvature matrix which can be seen as a constant majorant of (3.15) with respect to x:

(∀x ∈ R Q ) Q 2 (x) = µH ⊤ H + max 1 s S (ω s ) V ⊤ V + ζI Q . (3.17)
It can be noted that in the special case, when H is circulant and V ⊤ V = I Q which is the case for example when V is a tight frame analysis operator, then Q 2 is easily invertible in the Fourier domain. More generally, when H and V can be diagonalized in the same domain, the inverse and the square root decomposition of (3.17) can be easily performed in this domain.

Diagonal curvature matrix: We also propose the following alternative choice described in [START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a dierentiable function and a convex function[END_REF], which can be understood as a diagonal approximation of (3.15):

(∀x ∈ R Q ) Q 3 (x) = (µ∥H∥ 2 + ζ)I Q + Diag ( P ⊤ ω(x) ) (3.18)
where P ∈ R P ×Q , with P = ∑ s P s , is the matrix whose elements are given by (∀i ∈ {1, . . . , P })(∀j ∈ {1, . . . , Q})

P i,j = |V i,j | Q ∑ k=1 |V i,k |. (3.19)
3 Convergence analysis

In this section, we address the convergence properties of the proposed algorithm. Similarly to [Atchadé, 2006], we will make the following technical assumption about the drift term:

b(x) = ε 2 2 Q -1 (x)D(x) (3.20)
where D(x) is the truncated gradient dened by

D(x) = d max(d, ∥∇ log p(x|z)∥) ∇ log p(x|z) (3.21)
with d > 0. Note that, the drift term (3.20) is equivalent to the one in Algorithm 4 for large values of d.

We further make the following assumptions: Proof. Let x ∈ R Q . We have

∇J (x) = H ⊤ (Hx -z) + S ∑ s=1 V ⊤ s (V s x -c s ) ψs (∥V s x -c s ∥) ∥V s x -c s ∥ . (3.24) Then ∥∇J (x)∥ ∥H∥∥Hx -z∥ + S ∑ s=1 ∥V s ∥ ψs (∥V s x -c s ∥) (3.25) ∥H∥∥Hx -z∥ + S ∑ s=1 ωs ∥V s ∥∥V s x -c s ∥. (3.26)
We have

x ⊤ ∇J (x) = ∥Hx∥ 2 + S ∑ s=1 ∥V s x∥ 2 ψs (∥V s x -c s ∥) ∥V s x -c s ∥ + h(x) (3.27) where h(x) = -x ⊤ ( H ⊤ z + S ∑ s=1 V ⊤ s c s ψs (∥V s x -c s ∥) ∥V s x -c s ∥
) .

(3.28)

Assume that H is injective. According to (3.24), we have 1).

x ⊤ ∇J (x) ∥x∥ ∥Hx∥ 2 ∥x∥ + h(x) ∥x∥ = ∥Hx∥ 2 ∥x∥ + O(
(3.29)

Then, Assumption 3.2 is satised. Moreover, using (3.26), we have 1).

x ⊤ ∇J (x) ∥x∥∥∇J (x)∥ ∥Hx∥ 2 + h(x) ∥x∥ ( ∥H∥∥Hx -z∥ + S ∑ s=1 ωs ∥V s ∥∥V s x -c s ∥ ) = ∥Hx∥ 2 ∥x∥ ( ∥H∥∥Hx -z∥ + S ∑ s=1 ωs ∥V s ∥∥V s x -c s ∥ ) + o(
(3.30)

So that, Assumption 3.3 also holds.

Similar arguments allow to derive the results in the case when H is not injective. Assumption 3.4 For every x ∈ R Q , the preconditionning matrix Q(x) has a bounded spectrum i.e., there exist two constants ν min > 0 and ν max > 0 independent of x such that

( ∀x ∈ R Q ) ν max I Q ≽ Q(x) ≽ ν min I Q . (3.31)
Remark 3.3 Assumption 3.4 holds for all curvature matrices proposed in Section 2.3 provided that ζ > 0. Furthermore, Assumption 3.4 together with (3.21), imply that the drift term b is bounded that is:

( ∀x ∈ R Q ) ∥b(x)∥ ε 2 2 ν -1 min d. (3.32)
Subsequently, under Assumptions 3.1-3.4 and using the expression in (3.21), we address the geometric ergodicity of the proposed algorithm based on the results concerning RW in [START_REF] Jarner | Geometric ergodicity of metropolis algorithms[END_REF] and by adapting the proofs in [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF]Atchadé, 2006;[START_REF] Schreck | A shrinkagethresholding Metropolis adjusted Langevin algorithm for Bayesian variable selection[END_REF]. Since the algorithm appears as a special case of the MH algorithm, the chain ( x (t) ) t∈N constructed by the 3MH algorithm has P x|z as an invariant distribution that is (2.62) is satised for f * (.) = p(.|z) and t(.|z) equals to (2.78). The rst important step of the proof of geometric ergodicity is to compare the proposal density g to Gaussian proposals. Proposition 3.4 There exist

(k 1 , k 2 , σ 1 , σ 2 ) ∈ (R * + ) 4 such that ( ∀(x, y) ∈ (R Q ) 2 ) k 1 n(y; x, σ 2 1 I Q ) (a) g(x|y) (b) k 2 n(y; x, σ 2 2 I Q ) (3.33)
where n(.; x, σ 2 i I Q ), is the density of the Gaussian distribution of mean x and variance 

σ 2 i I Q , i ∈ {1, 2}. Proof. Let x ∈ R Q and µ(x) = x + ε 2 2 Q -1 (x)D(x) , we have -log g(x|y) = 1 2ε 2 ∥y -µ(x)∥ 2 Q(x) - 1 2 log |Q(x)| + Q 2 log(2πε 2 ).
( ∥y -µ(x)∥ 2 + ε 4 4 ν -2 min d 2
) . ) . 

ε 2 d 2 8ν min 1 2ε 2 ∥y -µ(x)∥ 2 Q(x) ν max ε 2 ∥y -x∥ 2 + ε 2 ν max d 2
k 1 = ( ν min 2ν max ) Q 2 exp ( - ε 2 ν max d 2 4ν 2 min ) σ 2 1 = ε 2 2ν max and Proposition 3.4(b) is satised for k 2 = ( 2ν max ν min ) Q 2 exp ( ε 2 d 2 8ν min ) σ 2 2 = 2ε 2 ν min .
Corollary 3.5 For every (x, y) ∈ (R Q ) 2 , we have g(x|y) > 0 and g(y|x) > 0.

Theorem 

Experimental results

We are interested in the deconvolution of a seismic signal x of length Q = 784. This sparse signal is composed of a sequence of spikes called primary reection coecients [START_REF] Walden | The nature of the non-Gaussianity of primary reection coecients and its signicance for deconvolution[END_REF][START_REF] Repetti | Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed ℓ 1 -ℓ 2 Regularization[END_REF] 

Prior and posterior distributions

In order to promote the signal sparsity, we suppose that its coecients are independent and identically distributed according to a ST distribution. Then, we can identify the following functions:

Φ(Hx -z) = 1 2σ 2 ∥Hx -z∥ 2 (3.42) and Ψ(x) = ν + 1 2 Q ∑ i=1 log ( γ 2 + (x i -µ) 2 ν ) (3.43)
where ν > 0 is the number of degrees of freedom determining the shape of the distribution, µ is the position parameter and γ > 0 is the scale parameter. Note that the Cauchy distribution is a particular case when ν = 1. The ST distribution has been often used in image reconstruction to model the distribution of the wavelet coecients [START_REF] Chantas | Variational Bayesian image restoration based on a product of t-distributions image prior[END_REF]. This penalty has already been introduced in [START_REF] Hebert | A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors[END_REF]] as a compromise between the ℓ 2 norm and the non-convex approximation of the semi-norm ℓ 0 presented in [START_REF] Geman | Statistical methods for tomographic image reconstruction[END_REF] to enforce the sparsity of the signal and better preserve discontinuities. Recall that the ST distribution can be written as a scale mixture of normal distribution where the hidden variable follows a gamma distribution with both parameters equal to ν/2. In most Bayesian methods, it is generally used in this form: the unknown signal x and the hidden variable are estimated from their posterior joint distribution.

In this work, we propose to directly use the expression dened in (3.43).

In the following, we assume that ν is known, but we have only few prior information about the others parameters. Therefore, we use uniform distributions for µ and γ dened in [-µ m , µ M ] and [γ m , γ M ] respectively where µ m , µ M , γ m et γ M are positive constants. Thus, the posterior distributions of the parameters are given by p(µ|x, γ)

∝ Q ∏ i=1 ( γ 2 + (x i -µ) 2 ν ) -ν+1 2 1 [-µm,µ M ] (µ), p(γ|x, µ) ∝ γ Qν Q ∏ i=1 ( γ 2 + (x i -µ) 2 ν ) -ν+1 2 1 [γm,γ M ] (γ).
Since Φ and Ψ satisfy the properties in Section 2.3, we propose to use 3MH algorithm to sample from the posterior distribution of x. More specifically, we aim to test the performance of 3MH algorithms using the dierent proposed curvature matrices namely Q 1 , the constant circulant matrix Q 2 and the diagonal matrix Q 3 dened in this application by

(∀x ∈ R Q ) Q 1 (x) = 1 σ 2 H ⊤ H + diag{ω(x)} + ζI Q , (3.44) Q 2 = 1 σ 2 H ⊤ H + ν + 1 νγ 2 I Q , (3.45) (∀x ∈ R Q ) Q 3 (x) = Diag ( 1 σ 2 P ⊤ 1 Q + ω(x)
) , (3.46) such that ω(x) = (ω i (x)) 1≤i≤Q where

(∀i ∈ {1, . . . , Q}) ω i (x) = ν + 1 νγ 2 + (x i -µ) 2 (3.47) and (∀i ∈ {1, . . . , N }) (∀j ∈ {1, . . . , Q}) P i,j = |H i,j | N ∑ k=1 |H k,j |. (3.48) Note that ζ
0 is a constant added to ensure the positive deniteness of the matrix Q 1 . It is worth noting that if H is injective, the 3MH algorithm is geometrically ergodic.

The posterior laws of the ST prior parameters do not have usual forms. Then, it is not easy to directly generate samples of µ and γ. We propose therefore to estimate them using a RW algorithm whose scale parameter is tuned automatically during the burn-in period so as to reach an acceptance probability equals 0.33.

Results

The test signal is articially degraded by a band-pass lter of size 41 with a frequency spectrum concentrated between 10 and 40 Hz and an additive Gaussian noise of variance σ 2 = 2.5 × 10 -3 (see Figure 3.3). The initial signal-to-noise ratio (SNR) is -4.58 dB. We x ν = 1 which corresponds to the special case of the Cauchy prior. We propose to compare the convergence speed of 3MH algorithm using the dierent curvatures matrices Q 1 , Q 2 , and Q 3 with the standard MALA algorithm. Thus, we run these algorithms until convergence. The discretization stepsize ε is adjusted for all these algorithms during the burnin period to correspond to an acceptance probability between 0.3 and 0.6.

Note that in order to reduce the complexity of each iteration when using Q = Q 1 , the inversion of the curvature matrix is replaced by a conjugate gradient algorithm and the generation of random variables according to the proposal is ensured using the sampling method from [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF]. Figure 3.5 shows the evolution of J with respect to time. Following [Atchadé, 2006], we also compare the dierent methods in terms of the mean square jump (MSJ) in stationarity dened in (2.75) which indicates how much the Markov chain is exploring the whole target space in convergence. Note that MSJ has been estimated with an empirical average over P = 5, 000 samples x (t 0 +1) , . . . , x (t 0 +P ) generated after the burn-in period as follows

M SJ = ( 1 P -1 P -1 ∑ t=1 ∥x (t 0 +t) -x (t 0 +t+1) ∥ 2 ) 1/2 . (3.49)
In Table 3.1, we show estimates of the mean square jump per second in stationarity which is dened as the ratio of the mean square jump and the computational time per iteration. We also compare the statistical eciency of the dierent samplers with respect to MALA dened as the mean square jump per second of each sampler over the mean square jump per second of MALA. One can notice that the behavior of 3MH algorithm using the constant curvature matrix Q 2 is close to that of MALA in terms of convergence speed 

Conclusion

In this work, we have proposed a new MCMC algorithm that can be considered as a scaled MALA where the scale matrix is adapted at each iteration with a MM strategy. We have shown that the geometric ergodicity property of the standard Langevin MH algorithms is maintained by introducing this scale matrix for the class of sub-exponential distributions. We have then applied this algorithm to compute the MMSE estimator of a sparse signal from its blurred version using a ST prior distribution. Experimental results indicate the satisfactory performance of this new MCMC method compared to the standard MALA algorithm. Note that another example, maybe more striking, of the good performance oered by the 3MH algorithm, will be provided in Section 3 in Chapter 4.

-Chapter " -An Auxiliary Variable Method for MCMC algorithms High dimensional models, often encountered in inverse problems, present a challenging task for Bayesian inferences. While many popular MCMC sampling algorithms have been widely used to t complex multivariable models in small dimensional spaces, they generally fail to explore the target distribution eciently when applied to large scale problems. This is mainly due to the poor mixing properties of the Markov chain or to the high cost of each iteration.

In this chapter, we propose a method for Bayesian sampling in large scale problems. Our approach is a special case of data augmentation type strategies [START_REF] Van Dyk | The art of data augmentation[END_REF] allowing to overcome the limitations of standard sampling algorithms.

The remainder of this chapter is organized as follows. In Section 1, we discuss the main diculties encountered in standard sampling algorithms for large scale problems and how adding auxiliary variables to the model can alleviate these issues. The core of our contribution is detailed in Section 2.

We rst give a complete description of the proposed approach in the case of a

Gaussian noise and we study its extension to scale mixture of Gaussian models. Furthermore, we demonstrate how the proposed approach can facilitate sampling from Gaussian distributions in Gibbs algorithms. Then, some computational issues, arising in the proposed Bayesian approach, are discussed.

Sections 3 and 4 are devoted to the experimental validation of our method.

First, we show the advantages of the proposed approach in dealing with high dimensional models involving highly correlated variables over a dataset of multispectral images aected by blur and additive Gaussian noise. Second, we test the performance of our method in sampling from large scale Gaussian distributions with an application to image recovery under two-terms mixed Gaussian noise.

1 Motivation 1.1 Sampling issues in high dimensional space MCMC sampling methods may face two main diculties when applied to large scale inverse problems. First, the structure of the observation model that links the unknown signal to the observations can make the evaluation of the parameters of the posterior distribution very expensive mainly because of the observation matrix. Second, even with common models, the resulting posterior distribution may be dicult to sample from directly or to explore eciently using standard sampling algorithms. As specic cases, this problem emerges either in high dimensional Gaussian distribution sampling or in MH algorithms especially when constructing ecient proposals that cope with both the high dimensionality and the strong correlation existing between the target parameters.

Sampling from high dimensional Gaussian distribution: Suppose that we are interested in sampling from a multivariate Gaussian distribution with a given precision matrix G ∈ R Q×Q . This problem emerges in many applications such as linear inverse problems involving Gaussian or hierarchical Gaussian models. In fact, let us consider the linear model in (2.2) and assume that conditionally to some latent variables, w and x are drawn from Gaussian distributions N (0 N , Λ -1 ) and N (m x , G -1 x ) respectively where m x ∈ R Q and Λ ∈ R N ×N and G x ∈ R Q×Q are semi-denite positive matrices.

1 The parameters of these Gaussian distributions may be either xed or unknown i.e., involving some unknown hyperparameters such as regularization or acquisition parameters. It follows that the posterior distribution of x is Gaussian with mean m and precision matrix G where m and G are dened as follows:

G = H ⊤ ΛH + G x (4.1) m = G -1 ( H ⊤ Λz + G x m x ) . (4.2)
A common solution is to use the Cholesky factorization of the covariance or the precision matrix [START_REF] Rue | Fast sampling of Gaussian Markov random elds[END_REF]. However, when implemented through a Gibbs sampler, this method is of a limited interest. First, the precision matrix G may depend on the unknown parameters of the model and may thus take dierent values along the algorithm. Thereby, spending such computational time at each iteration of the Gibbs sampler to compute the Cholesky decomposition of the updated matrix may reduce the convergence speed of the Gibbs sampler. Another concern is that, when dealing with high dimensional problems, we have generally to face not only computational complexity issues but also memory limitations. Such problems can be alleviated when the matrix presents some specic structures (e.g., circulant [START_REF] Geman | Nonlinear image recovery with halfquadratic regularization[END_REF][START_REF] Chellappa | Classication of textures using Gaussian Markov random elds[END_REF] or sparse [START_REF] Rue | Gaussian Markov random elds: theory and applications[END_REF]). However, for more complicated structures, the problem remains critical especially when H ⊤ ΛH and G x cannot be diagonalized in the same domain. Other recently proposed algorithms are based on two-step approaches named Perturbation-Optimization [START_REF] Bardsley | MCMC-based image reconstruction with uncertainty quantication[END_REF][START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF][START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF][START_REF] Gilavert | Ecient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF][START_REF] Parker | Sampling Gaussian distributions in Krylov spaces with conjugate gradients[END_REF][START_REF] Féron | Gradient Scan Gibbs Sampler: an ecient algorithm for high-dimensional Gaussian distributions[END_REF], which can be summarized as follows

• Perturbation: Draw a Gaussian random vector n 1 ∼ N (0 Q , G).

• Optimization: Solve the linear system Gn

2 = n 1 + H ⊤ Λz + G x m x .
The solution to the linear system can be computed using iterative methods such as conjugate gradient algorithms leading to an approximate sample [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF][START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF]. This issue has been considered in [START_REF] Gilavert | Ecient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF] by adding a Metropolis step in the sampling algorithm. In [START_REF] Parker | Sampling Gaussian distributions in Krylov spaces with conjugate gradients[END_REF][START_REF] Féron | Gradient Scan Gibbs Sampler: an ecient algorithm for high-dimensional Gaussian distributions[END_REF], the authors propose to reduce the computational cost by sampling along mutually conjugate directions instead of the initial high dimensional space.

Designing ecient proposals in MH algorithms: Non-Gaussian models arise in numerous applications in inverse problems [START_REF] Lasanen | Non-Gaussian statistical inverse problems[END_REF][START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF][START_REF] Kamilov | Generalized total variation denoising via augmented Lagrangian cycle spinning with Haar wavelets[END_REF][START_REF] Kolehmainen | Sparsity-promoting Bayesian inversion[END_REF]. In this context, the posterior distribution is non-Gaussian and does not generally belong to common probability models. In this respect, MH algorithms are good tools for exploring such posteriors and hence for drawing inferences about models and parameters. However, the challenge for the MH algorithm is to construct a proposal density that simultaneously provides a good approximation of the target density while being inexpensive to manipulate. Typically, in large scale problems, the proposal distribution takes the form of a random walk, that is, at each iteration, the proposal density g(.|x (t) ) is a Gaussian centered at the current state x (t) and with covariance matrix Q(x (t) ). Other sampling algorithms are improved by incorporating information about the derivative of the logarithm of the target distribution to guide the Markov chain toward the target space where most of samples should be concentrated. For example, in Langevin-based algorithms, the mean of the Gaussian proposal density is replaced with one iteration of a preconditioned gradient descent algorithm. However, it is worth noting that the choice of the scale matrix Q may deeply aect the eciency of these algorithms. In fact, an inappropriate choice of Q may alter the quality of the Markov chain leading to very correlated samples and thereby biased estimates. Moreover, computationally cheap matrices are also preferred especially in high dimensional spaces. In contrast, in the case of low dimensional problems and when the coecients of the signal are not highly correlated, the standard RW and MALA algorithms dened for Q ≡ I Q achieve generally good results. For instance, in the context of denoising problems with uncorrelated Gaussian noise, when the coecients of the signal are assumed to be statistically independent in the prior law, they can be either sampled independently using RW or jointly by resorting to MALA. However, these algorithms may be not accurate for large scale problems especially when the coecients of the signal exhibit high correlations. In this case, the design of a good proposal often requires considering the curvature of the target distribution. More sophisticated (and thus more computationally intensive) scale matrices should be chosen to guide the chain in the directions that reect the dependence structure. Optimally, the curvature matrix should be chosen such as it adequately captures two kinds of dependencies: correlation over the observations specied by the observation model and, correlation between dierent coecients of the target signal specied by the prior law. When the minus-log of the target density can be expressed as in (3.12), good candidates of the curvature matrix take the following form:

Q = H ⊤ ΛH + V ⊤ ΩV (4.3)
where Λ and Ω are semi-denite positive matrices. Feasible numerical factorization of Q can be ensured if H ⊤ ΛH and V ⊤ ΩV are diagonalizable in the same domain. Otherwise, the use of such matrix remains generally of limited interest especially for large scale problems where the manipulation of the resulting proposal generally induces a high computational complexity at the expense of the convergence speed. Alternatively, under mild conditions about the posterior density, MM strategy oers a large exibility for building curvatures matrices with a lower computational cost (e.g., diagonal matrices, bloc-diagonal matrices, circulant...) as it has already been presented in Chapter 3. However, MH algorithms with too simple preconditioning matrices resulted from rough approximations of the posterior density may fail to explore the target space eciently. Therefore, the scale matrix Q should be adjusted to achieve a good tradeo between the computational complexity it induced in the algorithm and the accuracy and the closeness of the proposal to the true distribution.

It can be noted that the main diculty arising in the last two sampling problems is mainly related to the presence of heterogeneous types of dependencies between the coecients of the signal. These dependencies may come either from the likelihood or from the prior information. In fact, the operator H in the likelihood may cause high dependencies between coecients in a very wide neighborhood even if the coecients of the signal are supposed to be statistically independent in the prior law. The problem can be treated in another domain where H can be easily diagonalized i.e., the coecients of the signal become uncorrelated in the likelihood. However, when we take into account the prior dependencies, this strategy becomes inecient especially when the prior covariance matrix cannot be diagonalized in the same domain as H which is the case of most real problems. One should therefore treat these two sources of correlations separately. One appealing idea is to eliminate one of these sources of correlation directly related to x by adding some auxiliary variables.

Auxiliary variables and data augmentation strategies

Indeed, to improve the mixing of sampling algorithms, many works have proposed to add some auxiliary variables to the initial model with a given conditional distribution such that simulation can be performed in a simpler way in the new larger space. Instead of simulating directly from the initial distribution, a Markov chain is constructed by alternately drawing samples from the conditional distribution of each variable which reduces to a Gibbs sampler in the new space. This technique has been used in two dierent statistical literatures: data augmentation [START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF] and, auxiliary variables strategies [START_REF] Mira | On the use of auxiliary variables in Markov chain Monte Carlo sampling[END_REF]. It is worthwhile to note that the two methods are equivalent in their general formulation and the main dierence is often related to the statistical interpretation of the auxiliary variable (unobserved data or latent variable) [START_REF] Van Dyk | The art of data augmentation[END_REF]]. In the following, we will use the term Data Augmentation (DA) to refer to any method that constructs sampling algorithms via introducing auxiliary variables. Some DA algorithms have been proposed in [START_REF] Robert | Monte Carlo statistical methods[END_REF][START_REF] Doucet | Space alternating data augmentation: Application to nite mixture of gaussians and speaker recognition[END_REF][START_REF] Févotte | Ecient Markov chain Monte Carlo inference in composite models with space alternating data augmentation[END_REF][START_REF] Giovannelli | Unsupervised Bayesian convex deconvolution based on a eld with an explicit partition function[END_REF][START_REF] David | Auxiliary variable methods for Markov Chain Monte Carlo with applications[END_REF][START_REF] Hurn | Diculties in the use of auxiliary variables in Markov chain Monte Carlo methods[END_REF][START_REF] Damlen | Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables[END_REF]. A specic attention has been turned towards the Hamiltonian MCMC (HMC) approach [START_REF] Duane | Hybrid Monte Carlo[END_REF][START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF], that denes auxiliary variables based on physically inspired dynamics.

In the following, we propose to alleviate the problem of heterogeneous dependencies by resorting to DA strategy. More specically, we propose to add some auxiliary variables u ∈ R J to the model with a predened conditional distribution of density p(u|x, z) = p(u|x) such that the minus logarithm of the joint distribution density p(x, u|z) can be written as follows:

J (x, u) = J (u|x) + J (x) (4.4) where J (u|x) = -log p(u|x) up to an additive constant. Hence, two conditions should be satised by p(x, u|z) as requirements for the DA strategy:

1- ∫ R J p(x, u|z) du = p(x|z); 2- ∫ R Q p(x, u|z) dx = p(u|z),
where p(u|z) should dene a valid probability density function (positive and with integral with respect to x equal to 1). In fact, the importance of the rst condition is obvious because the latent variable is only introduced for computational purposes and should not alter the considered initial model.

The need of the second requirement stems from the fact that p(x, u|z) should dene the density of a proper distribution. Note that the rst condition is satised thanks to the denition of the joint distribution in (4.4) provided that p(u|x, z) is a density of a proper distribution (positive and with integral with respect to u equal to 1). For the second condition, it is sucient to choose p(u|x, z) such that p(x|u, z) remains a valid probability density function.

Instead of simulating directly from P x|z , we now draw alternatively samples from the conditional distributions of the two variables x and u of densities P x|u,z and P u|x,z in an arbitrary order. This simply reduces to a special case of an hybrid Gibbs sampler algorithm with two variables where each iteration t is composed of two sampling steps which can be expressed as follows:

• Sample u (t+1) from P u|x (t) ,z ;

• Sample x (t+1) from P x|u (t+1) ,z .

Under the required conditions [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF][START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF], the constructed chain ( x (t) , u (t) ) t 0 has as stationary distribution P x,u|z .

The usefulness of DA strategy is mainly related to the fact that with an appropriate choice of p(u|x, z), drawing samples from the obtained conditional distribution P x|u,z and P u|x,z is much easier than sampling directly from the initial distribution P x|z . Moreover, the manipulation of p(u|x, z)

must not induce a high computation cost in the algorithm. In this work, we propose to add auxiliary variables u to the model such that the dependencies resulting from the likelihood and the prior will be separated, that is, J (u|x) is chosen in such a way that only one source of correlations remains related directly to x in p(x, u|z), the other sources of correlations will only intervene through the auxiliary variable u and z. Note that, half quadratic approaches [START_REF] Idier | Convex half-quadratic criteria and interacting auxiliary variables for image restoration[END_REF][START_REF] Ciuciu | A half-quadratic block-coordinate descent method for spectral estimation[END_REF][START_REF] Geman | Nonlinear image recovery with halfquadratic regularization[END_REF][START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF][START_REF] Champagnat | A connection between half-quadratic criteria and EM algorithms[END_REF][START_REF] Nikolova | Analysis of half-quadratic minimization methods for signal and image recovery[END_REF] had already motivated the introduction of auxiliary variables in optimization or sampling algorithms. For instance, a similar approach had already been proposed in [START_REF] Bect | A l1unied variational framework for image restoration[END_REF] in the case of uncorrelated Gaussian noise with covariance matrix σ 2 I N and was used in some variational applications for image restoration. Moreover, this technique has been adopted to facilitate sampling using classical MH algorithm and Gibbs sampler in the maximum likelihood estimation approach proposed in [START_REF] Cavicchioli | ML estimation of wavelet regularization hyperparameters in inverse problems[END_REF]. Similarly, in [START_REF] Ciuciu | Méthodes Markoviennes en estimation spectrale non paramétriques[END_REF], the prior distribution has been replaced with a new one involving additional variables based on half-quadratic formulation and inferences have been deduced according to the new resulting posterior distribution.

In this work, we propose a new formulation of the method introduced in [START_REF] Bect | A l1unied variational framework for image restoration[END_REF] and we extend it to more general models and sampling algorithms. In the following, we will consider some examples and discuss how this approach can be applied.

2 Proposed approach

Correlated Gaussian noise

We consider the linear observation model in (2.2) and we focus on the case when the noise w is additive, independent from the signal and Gaussian that is w ∼ N (0 N , Λ -1 ) where Λ ∈ R N ×N is a known semi-denite positive precision matrix.

Hence, the minus logarithm of the posterior density has typically the following form:

J (x) = 1 2 (Hx -z) ⊤ Λ (Hx -z) + Ψ(Vx) (4.5)
where Ψ(Vx) = -log p(x) and V is a linear transform operator that can correspond for example to a frame analysis or to a discrete gradient matrix (see Chapter 2).

Simulating directly from this distribution is generally not possible and standard MCMC methods may fail to explore it eciently due to the dependencies between signal coecients [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF]. In particular, the coupling induced by the matrix H ⊤ ΛH may hinder the construction of suitable proposals when using MH algorithms. For example, when V = I Q and Ψ(x) = ∑ Q i=1 ψ i (x i ), MALA and RW algorithms may behave poorly as they do not take into account data delity dependencies while Langevin algorithms with complicated curvature matrices may have high computational load due the presence of heterogeneous dependencies [START_REF] Marnissi | Reconstruction de signaux parcimonieux à l'aide d'un algorithme rapide d'échantillonnage stochastique[END_REF] (See Chapter 3).

In the following, we propose to eliminate the coupling induced by heterogeneous operators by adding auxiliary variables. As the data delity term is Gaussian, a natural choice of p(u|x, z) is the Gaussian distribution with mean Ax and covariance matrix C:

p(u|x, z) = det(C) -1/2 (2π) J/2 exp ( - 1 2 ∥C -1/2 (u -Ax) ∥ 2 ) (4.6)
where C ∈ R J×J is a positive denite covariance matrix and A ∈ R J×Q . Note that, since p(x|z) is positive and integrable with respect to x and p(u|x, z) is bounded with respect to x, the product p(u|x, z) p(x|z) remains integrable with respect to x. Then, the joint distribution satises the two conditions dened in Section 1 and its minus logarithm has the following expression:

J (x, u) = 1 2 x ⊤ ( H ⊤ ΛH + A ⊤ C -1 A ) x + 1 2 
( z ⊤ Λz + u ⊤ C -1 u -2x ⊤ ( H ⊤ Λz + A ⊤ C -1 u
))

+ Ψ(Vx).

(4.7)

From ( 4.7), we can identify two sources of correlations directly related to the target signal. The rst one comes from the rst term through H ⊤ ΛH + A ⊤ C -1 A and the second one comes from the prior information through the operator V (and possibly additional correlation related for example to the non-separability of Ψ).

Let us dene

Y = H ⊤ ΛH + A ⊤ C -1 A. (4.8)
The key point is to set A and C such that Y has a simple structure. Note also that Y - where µ > 0 is such that µ∥Λ∥ < 1. This is equivalent to choosing A and C such that

H ⊤ ΛH = A ⊤ C -1 A
A ⊤ C -1 A = H ⊤ ( 1 µ I N -Λ ) H. (4.10)
Hence, the minus logarithm of the conditional distribution of x given z and u reads up to an additive constant: In addition, it can be noted that we do not need to compute directly the auxiliary variable u as it is not the variable of interest. In the Gibbs sampling algorithm, the auxiliary variable u (t) at each iteration t only intervenes in the product A ⊤ C -1 u (t) in (4.11). According to (4.6), we have:

J (x|u) = 1 2µ ∥Hx∥ 2 -x ⊤ ( H ⊤ Λz + A ⊤ C -1 u ) + Ψ(Vx).
A ⊤ C -1 u (t) = A ⊤ C -1 Ax (t) + A ⊤ C -1/2 n (t) (4.12)
where n (t) ∼ N (0 J , I J ). Since A and C satisfy (4.10), we obtain

A ⊤ C -1 u (t) = H ⊤ ( 1 µ I N -Λ ) Hx (t) + A ⊤ C -1/2 n (t) . ( 4 

.13)

Note that A ⊤ C -1/2 n (t) follows the centered Gaussian distribution with co-

variance matrix H ⊤ ( 1 µ I N -Λ ) H. Let Γ = 1 µ I N -Λ. It follows that A ⊤ C -1 u (t) = H ⊤ v (t) (4.14)
where

v (t) ∼ N ( ΓHx (t) , Γ
) .

(4.15)

Then, the minus logarithm of the conditional distribution of x given z and the new auxiliary variable v is given by

J (x|v) = 1 2µ ∥Hx -µ (Λz + v) ∥ 2 + Ψ(Vx). (4.16)
The main steps of the proposed Gibbs sampling algorithm are given in Algorithm 5. The appealing advantage of this algorithm with respect to a Gibbs sampler which would be applied directly to Model (4.1) when H and G x are diagonalizable in the same domain, is that it allows to easily handle the case when Λ is not equal to a diagonal matrix having identical diagonal elements.

Algorithm 5 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by Λ.

Initialize: t) , Γ )

x (0) ∈ R Q , v (0) ∈ R N , µ > 0 such that µ∥Λ∥ < 1 1: for t = 0, 1, . . . do 2: Generate v (t+1) ∼ N ( ΓHx ( 
where 

Γ = 1 µ I N -Λ 3: Generate x (t+1
A ⊤ C -1 A = 1 µ I Q -H ⊤ ΛH (4.17)
where µ > 0 is such that µ∥H ⊤ ΛH∥ < 1.

It follows that the minus logarithm of the conditional distribution of x given z and u is dened up to an additive constant as follows:

J (x|u) = 1 2µ ∥x∥ 2 -x ⊤ ( H ⊤ Λz + A ⊤ C -1 u ) + Ψ(Vx). (4.18)
Similarly, we propose to use the following change of variables:

v (t) = A ⊤ C -1 u (t) .
According to (4.17), we obtain

v (t) = ( 1 µ I Q -H ⊤ ΛH ) x (t) + A ⊤ C -1/2 n (t) (4.19)
where n (t) ∼ N (0

J , I J ). Let Γ = 1 µ I Q -H ⊤ ΛH. Since A ⊤ C -1/2 n (t) follows
a zero-mean Gaussian distribution with covariance matrix Γ, then

v (t) ∼ N ( Γx (t) , Γ ) (4.20)
and the new target conditional distribution reads

J (x|v) = 1 2µ ∥x -µ ( v + H ⊤ Λz ) ∥ 2 + Ψ(Vx). (4.21)
The proposed Gibbs sampling algorithm in this case is summarized in Algorithm 6.

Note that in (4.21), the two operators reecting the correlation between the coecients of the target signal induced from the likelihood and the prior are now dissociated. Correlations from the likelihood are no longer related directly to the target signal but to the auxiliary variable v and the observation z. The original problem reduces to solving a denoising problem where the variance of the Gaussian noise is µ. Thereby, the new target distribution Algorithm 6 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by H ⊤ ΛH.

Initialize: t) , Γ )

x (0) ∈ R Q , v (0) ∈ R Q , µ > 0 such that µ∥H ⊤ ΛH∥ < 1 1: for t = 0, 1, . . . do 2: Generate v (t+1) ∼ N ( Γx ( 
where

Γ = 1 µ I Q -H ⊤ ΛH 3: Generate x (t+1) ∼ P x|v (t+1) ,z
4: end for (4.21) is generally simpler to sample from compared to the initial one. In the particular case when the coecients of the signal are uncorrelated in the prior law, one can sample them independently. Otherwise, when Ψ is a smooth function, one can use a Langevin-based MCMC algorithm. For instance, it is possible to construct an ecient curvature matrix that takes into account the prior correlation and that can be easily manipulated.

It is worth noting that the auxiliary variable can be introduced in the data delity term as well as in the prior information. The derivation of the proposed method in (4.7) allows us to identify classes of models for which our approach can be extended. Obviously, the key requirement is that the term which should be simplied can be written as a quadratic function with respect to some variables. Hence, without completely relaxing the Gaussian requirement, we can extend the proposed method to Gaussian models in which some hidden variables control the mean and/or the variance.

This includes for example scale mixture of Gaussian models [START_REF] Andrews | Scale mixtures of normal distributions[END_REF][START_REF] West | On scale mixtures of normal distributions[END_REF] such as the alpha-stable family (including the Cauchy distribution), the Bernoulli Gaussian model and the Generalized Gaussian distributions, and also Gaussian Markov random elds [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF]. In Section 2.2, we will investigate the case of scale mixture of Gaussian models.

In particular, when both the likelihood and the prior distribution are Gaussian conditionally to some parameters, the proposed method can be applied to each term. In Section 2.3, we will propose a Gibbs algorithm to address the problem of sampling from high dimensional Gaussian distributions.

Note that another step should be added to the Gibbs algorithm to sample the auxiliary variable v. In Algorithm 5, it suces to sample from the Gaussian distribution with covariance matrix

( 1 µ I N -Λ ) . In Algorithm 6,
we should be able to sample from the Gaussian distribution whose covariance matrix is of the form

( 1 µ I Q -H ⊤ ΛH )
, which is possible for a large class of observation models as it will be discussed in Section 2.4.

2.2 Scale mixture of Gaussian noise

Problem formulation

Let us consider the following observation model:

(∀i ∈ {1, . . . , N }) z i = [Hx] i + w i (4.22) such that, for every i ∈ {1, . . . , N }, { w i = 0 if σ i = 0 w i ∼ N (0, σ 2 i ) if σ i > 0 (4.23)
where (σ 1 , . . . , σ N ) are independent realizations of a random variable in R + distributed according to P σ . Dierent forms of the mixing distribution P σ lead to dierent noise statistics. In particular, the Cauchy noise is obtained when σ 2 1 , . . . , σ 2

N are realizations of a random variable following an inverse Gamma distribution. Let σ = [σ 1 , . . . , σ N ] ⊤ . The joint posterior density of x and σ is given by: p(x, σ|z) = p(x|σ, z)p(σ). (4.24) In such a Bayesian inverse problem, a Gibbs sampling algorithm is generally adopted to sample alternatively from the distributions P x|σ,z and P σ|x,z .

In the following, we assume that the set S 0 = {σ 1 = σ 2 = . . . = σ N = 0 } has a zero probability given the vector of observations z, i.e.,

∫ S 0 N ∏ i=1 p(σ i |z i )dσ i = 0. (4.25)
Note that by imposing (4.25), we ensure that, at each iteration t of the Gibbs algorithm, σ (t) ̸ = 0 N .

Since sampling from P x|σ,z is supposed to be intractable, we propose to add auxiliary variables v ∈ R J that may depend on the variables of interest x and σ according to a given conditional distribution density p(v|x, σ, z) = p(v|x, σ) which satises the following conditions:

1- ∫ R J p(x, σ, v|z)dv = p(x, σ|z). 2- ∫ R Q ∫ R N p(x, σ, v|z) dxdσ = p(v|z),
where p(v|z) should be a valid probability density function.

The rst property is satised since p(x, σ, v|z) = p(x, σ|z)p(v|x, σ, z) provided that p(v|x, σ, z) is a density of a proper distribution (positive and with integral with respect to v equal to 1). The second property means that P(x, σ|v, z) should dene a proper distribution, that is, p(x, σ, v|z) has to be integrable with respect to x and σ. It follows that the initial two step-Gibbs iteration is replaced by the following three sampling steps. First, sample v (t+1) from P v|x (t) ,σ (t) ,z then sample x (t+1) from P x|σ (t) ,v (t+1) ,z and nally sample σ (t+1) from P σ|x (t+1) ,v (t+1) ,z .

Proposed algorithms

At each iteration t of the Gibbs sampler, let D (t) be the diagonal matrix whose elements are given by:

(∀i ∈ {1, . . . , N }) D (t) ii =    0 if σ (t) i = 0 ( σ (t) i ) -2 if σ (t) i > 0. (4.26)
Note that from (4.25), we have:

∥D (t) ∥ > 0.
(4.27)

• Suppose rst that there exists a constant ν > 0 such that

(∀t 0) (∀i ∈ {1, . . . , N }) ν σ (t)
i .

(4.28)

Then, results in Section 2.1 with a Gaussian noise can be extended to scale mixture of Gaussian noise by setting at each iteration t, Λ = D (t) , µ < ν 2 in Algorithm 5 and µ∥H ⊤ H∥ < ν 2 in Algorithm 6. The only dierence is that an additional step must be added to the Gibbs algorithm to draw samples of the mixing variables σ 1 , . . . , σ N from their conditional distributions given x, v and z. • Otherwise, when ν > 0 satisfying (4.28) does not exist, results in Section 2.1 remain also valid when, at each iteration t, for a given value of σ (t) , we replace Λ by D (t) . There are two dierences. The rst dierence is that µ depends on the value of the mixing variable σ (t) and hence takes dierent values throughout the algorithm. Subsequently, µ (t) will denote the value of µ in each iteration t of the Gibbs sampler. The second dierence is that another step is added to sample the mixing variables σ 1 , . . . , σ N from their distributions conditioned to x, v and z.

Alternative I: Eliminate the coupling induced by D (t) .

At each iteration, µ (t) > 0 is chosen such that µ (t) ∥D (t) ∥ < 1 and the auxiliary variable is drawn from

v (t) ∼ N ( Γ (t) Hx (t+1) , Γ (t) ) (4.29)
where Γ (t) = 1 µ (t) I N -D (t) . The minus logarithm of the posterior density p(x|σ, v, z) is given by 4.30) where µ and D are related to σ.

J (x|σ, v) = 1 2µ ∥Hx -µ (v + Dz) ∥ 2 + Ψ(Vx), ( 
Alternative II: Eliminate the coupling induced by

H ⊤ D (t) H
Similarly, in order to eliminate the coupling induced by the matrix H ⊤ D (t) H , µ (t) is chosen at each iteration t so as to satisfy µ (t) ∥H ⊤ D (t) H∥ < 1. Then, the auxiliary variable is drawn from

v (t) ∼ N ( Γ (t) x (t+1) , Γ (t) ) (4.31)
where

Γ (t) = 1 µ (t) I Q -H ⊤ D (t)
H. The minus logarithm of the posterior density p(x|σ, v, z) is given by

J (x|σ, v) = 1 2µ ∥x -µ ( v + H ⊤ Dz ) ∥ 2 + Ψ(Vx). (4.32)
It is worth noting that in (4.29) and (4.31), the mixing variable σ (t) at each iteration t is presented implicitly through D (t) and also µ (t) which makes σ and v two random variables dependent conditionally to x and z. In the following, we will give a sucient condition on the choice of µ (t) , under which, p(x, σ, v|z) still denes the density of a proper distribution. Proposition 2.1 Suppose that, at each iteration t, the auxiliary variable follows (4.29) with µ (t) = ϵ∥D (t) ∥ -1 (respectively (4.31) with

µ (t) = ϵ ∥H∥ 2 ∥D (t) ∥ )
where ϵ is a constant chosen such that 0 < ϵ < 1. Then, p(x, σ, v|z) is integrable with respect to x and σ.

Proof. We focus on the general case when the auxiliary variable follows (4.31). We have then p(x, σ, v|z) = p(v|x, σ, z)p(x, σ|z). (4.33) Since the matrix H ⊤ DH is positive, the spectrum of

1 µ I Q -H ⊤ DH satises Spec ( 1 µ I Q -H ⊤ DH ) ⊂ [a, b] (4.34)
where

a = 1 µ -∥H∥ 2 ∥D∥ = ( 1 ϵ -1 ) ∥H∥ 2 ∥D (t) ∥ and b = 1 µ .
We have

∥D∥ = ( min(σ i ) 1 i N s.t. σ i >0
) -2 .

(4.35)

Note that the existence of min(σ i

) 1 i N s.t. σ i >0
in (4.35) follows from (4.25).

As p(v|x, σ) is the density of a proper Gaussian distribution, we can

show that p(v|x, σ) (2π) -Q/2 det ( 1 µ I Q -H ⊤ DH ) -1/2 (2πa) -Q/2 = C ( min(σ i ) 1 i N s.t. σ i >0 ) Q (4.36)
where C is a positive constant that only depends on H and ϵ (i.e., independent of v, x and σ).

Then, ∫ R N ∫ R Q p(x, σ, v|z)dxdσ C ∫ R N ( min(σ i ) 1 i N s.t. σ i >0 ) Q ∫ R Q p(x, σ|z)dxdσ = C ∫ R N ( min(σ i ) 1 i N s.t. σ i >0 ) Q N ∏ i=1 p(σ i |z i )dσ i = CE σ|z [ ( min(σ i ) 1 i N s.t. σ i >0 ) Q ] CE σ|z [( min(σ i ) 1 i N s.t. σ i >0 )] Q . (4.37)
Since the moments of the posterior distribution p(σ|z) are assumed to be nite, then Proposition 2.1 holds.

The resulting Gibbs samplers are summarized in Algorithms 7 and 8.

Partially collapsed Gibbs sampling

It can be noted that it is generally complicated to sample from P σ|x,v,z due to the presence of µ and D in the conditional distribution of v. One Algorithm 7 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by D in the case of a scale mixture of Gaussian noise.

Initialize:

x (0) ∈ R Q , v (0) ∈ R N , σ (0) ∈ R N + , 0 < ϵ < 1, µ (0) = ϵ ( min(σ (0) i ) 1 i N s.t. σ (0) i >0
) 2

1: for t = 0, 1, . . . do 2:

Generate

v (t+1) ∼ N ( Γ (t) Hx (t) , Γ (t) )
where

Γ (t) = 1 µ (t) I N -D (t)
3:

Generate x (t+1) ∼ P x|v (t+1) ,σ (t) ,z

4:

For all i ∈ {1, . . . , N }, generate σ

(t+1) i ∼ P σ i |x (t+1) ,v (t+1) ,z 5: Set µ (t+1) = ϵ∥D (t+1) ∥ -1
6: end for Algorithm 8 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by H ⊤ DH in the case of a scale mixture of Gaussian noise.

Initialize:

x (0) ∈ R Q , v (0) ∈ R Q , σ (0) ∈ R N + , 0 < ϵ < 1, µ (0) = ϵ ∥H∥ -2 ( min(σ (0) i ) 1 i N s.t. σ (0) i >0
) 2

1: for t = 0, 1, . . . do

2:

Generate v (t+1) ∼ N ( Γ (t) x (t) , Γ (t) )

where

Γ (t) = 1 µ (t) I Q -H ⊤ D (t) H 3:
Generate x (t+1) ∼ P x|v (t+1) ,σ (t) ,z

4:

For all i ∈ {1, . . . , N }, generate σ

(t+1) i ∼ P σ i |x (t+1) ,v (t+1) ,z 5: Set µ (t+1) = ϵ∥H ⊤ H∥ -1 ∥D (t+1) ∥ -1
6: end for may replace this step by sampling from P σ|x,z , that is directly sampling σ from its marginal posterior distribution with respect to v and conditionally to x and z. In this case, we say that we are partially collapsing v in the Gibbs sampler. However, as σ is sampled independently from v, the constructed Markov chain ( x (t) , σ (t) , v (t) )

t 0 may have a transition kernel with an unknown stationary distribution [START_REF] Van Dyk | Partially collapsed gibbs samplers: Theory and methods[END_REF]. This problem can also be encountered when the auxiliary variable v depends on other unknown hyperparameters changing along the algorithm such as prior covariance matrix or regularization parameter when the auxiliary variable is added to the prior instead of the likelihood. However, there exist some rules based on marginalization, permutation and trimming, that allow to replace the conditional distributions in the standard Gibbs sampler with conditional distributions marginalized according to some variables while ensuring that the target stationary distribution of the Markov chain is maintained. The resulting algorithm is known as the Partially Collapsed Gibbs Sampler (PCGS) [START_REF] Van Dyk | Partially collapsed gibbs samplers: Theory and methods[END_REF]. Although this strategy can signicantly decrease the complexity of the sampling process, it must be implemented with care to be sure that the desired stationary distribution is preserved. Applications of PCGS algorithms can be found in [START_REF] Park | Partially collapsed Gibbs samplers: Illustrations and applications[END_REF][START_REF] Costa | A partially collapsed Gibbs sampler with accelerated convergence for EEG source localization[END_REF][START_REF] Kail | Blind deconvolution of sparse pulse sequences under a minimum distance constraint: A partially collapsed Gibbs sampler method[END_REF].

Assume that, in addition to x, σ, v, we have a set of unknown parameters Θ ∈ R P to be sampled. Note that, p(x, σ, Θ, v|z) should be integrable with respect to all the variables. Following [START_REF] Van Dyk | Partially collapsed gibbs samplers: Theory and methods[END_REF], we propose to use a PCGS algorithm that allows us to replace the full conditional distribution P σ|x,v,Θ,z with its conditional distribution P σ|x,Θ,z without aecting the convergence of the algorithm to the target stationary law. Algorithm 9

shows the main steps of the proposed sampler. More details can be found in Appendix A. However, it should be noted that, unlike the standard Gibbs algorithm, permuting the steps of this sampler may result in a Markov chain with an unknown stationary distribution. Algorithm 9 PCGS in the case of a scale mixture of Gaussian noise Initialize:

x (0) ∈ R Q , σ (0) ∈ R N + , Θ (0) ∈ R P , v (0) , µ (0)
1: for t = 0, 1, . . . do

2:

For all i ∈ {1, . . . , N }, generate σ (t+1) i ∼ P σ i |x (t) ,Θ (t) ,z

3:

Generate Θ (t+1) ∼ P Θ|x (t) ,σ (t+1) ,z .

4:

Set µ (t+1) and generate v (t+1) ∼ P v|x (t) ,σ (t+1) ,Θ (t+1) ,z

5:

Generate x (t+1) ∼ P x|v (t+1) ,σ (t+1) ,Θ (t+1) ,z 6: end for

High dimensional Gaussian distribution

The proposed method can be applied to the problem of drawing random variables from a high dimensional Gaussian distribution with parameters m and G as dened in (4.1) and (4.2).

In the following, we will give some examples where the introduction of auxiliary variables facilitates the sampling process.

• If the prior precision matrix G x and the observation matrix H can be diagonalized in the same domain, we introduce the auxiliary variable v 1 in the data delity term. Following Algorithm 5, let µ 1 > 0 such that µ 1 ∥Λ∥ < 1 and

v 1 ∼ N (( 1 
µ 1 I N -Λ ) Hx, 1 µ 1 I N -Λ
) .

(4.38)

The resulting conditional distribution of the target signal x given the auxiliary variable v 1 and the vector of observation z is a Gaussian distribution with the following parameters:

G = 1 µ 1 H ⊤ H + G x . (4.39) m = G-1 ( H ⊤ Λz + G x m x + H ⊤ v 1
) .

( 

v 2 ∼ N (( 1 
µ 2 I N -Ω ) Vx, 1 µ 2 I N -Ω
) .

(4.41)

Then, the posterior distribution of x given v 1 and v 2 is Gaussian with the following parameters:

G = 1 µ 1 H ⊤ H + 1 µ 2 V ⊤ V (4.42)
and m = G-1

( H ⊤ Λz + G x m x + H ⊤ v 1 + V ⊤ v 2
) .

(4.43)

• If G x and H are not diagonalizable in the same domain, the introduction of an auxiliary variable either in the data delity term or the prior allows to eliminate the coupling between the two heterogeneous operators. Let

µ 1 > 0 such that µ 1 ∥H ⊤ ΛH∥ < 1 and v 1 ∼ N (( 1 
µ 1 I Q -H ⊤ ΛH ) x, 1 µ 1 I Q -H ⊤ ΛH
) .

(4.44)

Then, the parameters of the Gaussian posterior distribution of x given v 1 read:

G = 1 µ 1 I Q + G x . (4.45) m = G-1 ( H ⊤ Λz + G x m x + v 1
) . (4.46) Note that if G x has some simple structure (e.g,. diagonal, block diagonal, sparse, circulant,...), the precision matrix (4.45) will inherit this simple structure.

Otherwise, if G x does not present any specic structure, we can apply the proposed method to both data delity and prior terms. Additionally to the auxiliary variable v 1 in (4.44), we introduce an extra auxiliary variable v 2 in the prior law. Let µ 2 > 0 such that µ 2 ∥G x ∥ < 1 and

v 2 ∼ N (( 1 
µ 2 I Q -G x ) x, 1 µ 2 I Q -G x
) .

(4.47)

The joint distribution of the unknown parameters is given by

p(x, v 1 , v 2 |z) = p(x|z)p(v 1 |x, z)p(v 2 |x, z). (4.48)
It follows that the minus logarithm of the conditional distribution of x given z, v 1 and v 2 is Gaussian with parameters:

G = 1 µ I Q (4.49)
and m = µ

( v 1 + v 2 + H ⊤ Λz + G x m x ) (4.50)
where

µ = µ 1 µ 2 µ 1 + µ 2 .
(4.51)

Note that the sampling steps of x, v 1 and v 2 can be merged to an equivalent but more direct step as follows:

x (t+1) = x (t) + µG(m -x (t) ) + µn (4.52) where

n ∼ N ( 0 Q , 2 µ I Q -G
) .

(4.53)

Sampling the auxiliary variable

It is clear that the main issue in the implementation of the proposed Gibbs algorithms is the sampling of the auxiliary variable v from a multivariate Gaussian distribution with covariance matrix of the form Γ

= 1 µ I Q -H ⊤ ΛH
where µ > 0 is chosen to satisfy µ∥H ⊤ ΛH∥ < 1.

Let µ > 0 and β > 0 be such that

µ∥H∥ 2 < β < 1 ∥Λ∥ . (4.54)
For example, we can set µ ϵ ∥H∥ 2 ∥Λ∥ and β = √ ϵ ∥Λ∥ where 0 < ϵ < 1.

We have then 0 < µ∥H ⊤ ΛH∥ < 1 and

1 µ I Q -H ⊤ ΛH = 1 β ( β µ I Q -H ⊤ H ) + H ⊤ ( 1 β I N -Λ ) H. (4.55)
As a result, the sampling step of the auxiliary variable in all the previously proposed algorithms can be replaced by the three following steps:

1. Generate n (t+1) ∼ N ( 0 N , 1 β I N -Λ ) . 2. Generate y (t+1) ∼ N ( 0 Q , 1 λ I Q -H ⊤ H ) with λ = µ β √ ϵ ∥H∥ 2 . 3. Compute v (t+1) = ( 1 µ I Q -H ⊤ ΛH ) x (t+1) + 1 √ β y (t+1) + H ⊤ n (t+1) .
Hereabove, y (t+1) and n (t+1) are independent random variables. Then, the sampling problem of the auxiliary variables is separated into two independent subproblems. When Λ is diagonal (e.g., when the model is a scale mixture of Gaussian variables), coecients n (t+1) i

, i ∈ {1, . . . , N }, can be drawn separately. Note that, Λ has often a simple structure even when it is not diagonal. Then, direct sampling from the centered Gaussian distribution with covariance matrix

1 β
I N -Λ is usually often easy. In the following, we address the problem of sampling from the zero mean Gaussian distribution with covariance matrix

1 λ I Q -H ⊤ H.
• In the particular case when H is circulant, sampling can be performed in the Fourier domain.

More generally, when H ⊤ H is diagonalizable in a known domain i.e, there exists an orthogonal matrix N such that NH ⊤ HN ⊤ is a diagonal matrix with positive elements, sampling from the Gaussian distribution with covariance matrix

1 λ I Q -H ⊤ H can be ful-
lled easily in the transform domain dened by the matrix N. • Suppose that H satises HH ⊤ = νI N with ν > 0, which is the case for example for tight frame synthesis operators and decimation matrices. Note that νλ √ ϵ < 1. We have then:

1 λ I Q -H ⊤ H = ( 1 √ λ I Q - √ λH ⊤ H ) 2 + (1 -λν) H ⊤ H. (4.56)
It follows that a sample from the Gaussian distribution with covariance matrix 1 λ I Q -H ⊤ H can be obtained as follows:

y (t+1) = ( 1 √ λ I Q - √ λH ⊤ H ) y (t+1) 1 + √ 1 -λνH ⊤ y (t+1) 2 (4.57)
where y

(t+1) 1 ∈ R Q and y (t+1) 2
∈ R N are independent random vectors following Gaussian distribution with covariance matrix equals to I Q and I N respectively.

• Suppose that H = MP with M ∈ R N ×K and M ∈ R K×Q . Hence, we propose to set λ > 0 and λ > 0 such that

λ∥P∥ 2 < λ < 1 ∥M∥ 2 . (4.58) For example, for µ = ϵ ∥P∥ 2 ∥M∥ 2 ∥Λ∥ , we have λ = √ ϵ ∥P∥ 2 ∥M∥ 2 . Then, we can set λ = ϵ 1/4 ∥M∥ 2 . It follows that 1 λ I Q -H ⊤ H = 1 λ ( λ λ I Q -P ⊤ P ) + P ⊤ ( 1 λ I K -M ⊤ M ) P. (4.59)
It appears that, if it is possible to draw simply random vectors y (t+1) 1 and y (t+1) 2

from the Gaussian distributions with covariance matrices λ λ I Q -P ⊤ P and 1 λ I K -M ⊤ M respectively (for example when P is a tight frame synthesis operator and M is blur matrix with periodic boundary condition), a sample from the Gaussian distribution with covariance matrix

1 λ I Q -H ⊤ H
can be obtained as follows: MCI is of primary importance for several applications such as classication, segmentation and object recognition [START_REF] Delp | Image compression using block truncation coding[END_REF]. In this work, we propose a Bayesian method for MCI recovery in the wavelet domain by jointly processing the spectral components.

y (t+1) = 1 √ λ y (t+1) 1 + P ⊤ y (t+1) 2 . 

Problem formulation

We are interested in the recovery of a multicomponent image with B components ȳ1 , . . . , ȳB in R R (the images being columnwise reshaped) from some observations z 1 , . . . , z B which have been degraded by spatially invariant blurring operators B 1 , . . . , B B and corrupted by a zero-mean additive Gaussian noise with known variance σ 2 . We address the problem in a transform domain where the target images are assumed to have a sparse representation.

Let us introduce a set of tight frame synthesis operators F * 1 , . . . , F * B such as

(∀b ∈ {1, . . . , B}) ȳb = F * b xb (4.61)
where F * b is a linear operator from R K to R R with K R and xb is the vector of frame coecients of the image ȳb . Note that, each frame transform operator decomposes the image into M oriented subbands at multiple scales with sizes K m , m ∈ {1, . . . , M } such that ∑ M m=1 K m = K. We have

(∀b ∈ {1, . . . , B}) xb = (x b,1,1 , . . . , xb,1,K 1 , . . . , xb,m,1 , . . . , xb,m,Km , . . . , xb,M,1 , . . . , xb,M,K M ) ⊤ . (4.62)
Then, the problem can be formulated as in (2.2), that is:

z = Hx + w (4.63) 
where w ∼ N (0

N , σ 2 I N ), x = [x ⊤ 1 , . . . , x ⊤ B ] ⊤ ∈ R Q , z = [z ⊤ 1 , . . . , z ⊤ B ] ⊤ ∈ R N and H = BF * ∈ R N ×Q with N = BR, Q = K B and F * =      F * 1 0 . . . 0 0 F * 2 0 0 . . . . . . . . . . . . 0 0 0 F * B      (4.64) 
and

B =      B 1 0 . . . 0 0 B 2 0 0 . . . . . . . . . . . . 0 0 0 B B      . (4.65)
In this work, we propose to exploit the cross-component similarities by estimating jointly the frame coecients of a specic orientation and scale through all the components B. In this respect, for all m ∈ {1, . . . , M }, for all k ∈ {1, . . . , K m }, let x m,k = (x b,m,k ) 1 b B ∈ R B be the vector of frame coecients for a given wavelet subband m at a spatial position k through all the B components (see Figure 4.1). Note that such vector can be easily obtained as follows x m,k = P m,k x where P m,k ∈ R B×Q is a sparse matrix containing B lines of a permutation matrix. To promote the sparsity of the wavelet coecients and the inter-component dependency, following [START_REF] Marnissi | Generalized multivariate exponential power prior for wavelet-based multichannel image restoration[END_REF], we assume that for every m ∈ {1, . . . , M }, the vectors x m,1 , . . ., x m,Km are realizations of a random vector following a GMEP distribution (see Chapter 2, Section 2.3.1) with scale matrix Σ m , shape parameter β m and smoothing parameter δ m . Thus, the minus-log of the prior likelihood is given up to an additive constant by

-log p(x|Σ 1 , . . . , Σ M ) = M ∑ m=1 Km ∑ k=1 ψ m (∥Σ -1/2 m (P m,k x -a m )∥) (4.66) 
where, for every m ∈ {1, . . . , M }, a m ∈ R B and for all t ∈ R, ψ m (t) =

1 2 (t 2 + δ m ) βm .
In this work, we aim to compute the posterior mean estimate of the target image as well as the unknown regularization parameters using MCMC sampling algorithms. In the following, we denote by Θ the set of the unknown regularization parameters to be estimated jointly with x in the Gibbs algorithm.

Sampling from the posterior distribution of the wavelet coecients

We can expect that the standard sampling algorithms may fail to explore eciently the target posterior not only because of the high dimensionality of the problem but also because of the anisotropic nature of the wavelet coecients.

In fact, the coecients belonging to dierent scales are assumed to follow GMEP priors with dierent shapes β m , m ∈ {1, . . . , M }. For instance, coefcients belonging to the low resolution subband are generally assumed to be driven from a Gaussian distribution (i.e., β m = 1) while GMEP priors with very small shapes (i.e., β m 1 2

) are generally assigned to high resolution subbands at the rst level of decomposition in order to promote sparsity.

Therein, one can better explore the directions of interest separately by using dierent amplitudes than sampling them jointly. However, the observation matrix causes high spatial dependencies between the coecients and thus hinders processing the dierent wavelet subbands independently.

Note that for every m ∈ {1, . . . , M }, the function ψ m is dierentiable, and t → ψ m ( √ t) is concave on R + provided that β m 1. Thus, we propose to use 3MH algorithms to generate samples according to the posterior law.

The sampling performance can be improved by adding a curvature matrix.

The resulting proposal better strides the support of the target distribution by taking into account the correlation existing between the coecients coming either from the likelihood or the prior law.

The curvature matrix is ideally the sum of two matrices (see Chapter 3).

While the rst matrix is related to the data delity term and addresses the spatial correlation between the coecients belonging to the same spectral channel, the second one is related to the prior and deals with the spectral correlation existing between coecients at the same spatial position and belonging to dierent spectral channels. Nevertheless, the manipulation of such high dimensional full curvature matrix may induce a high computational burden in the algorithm. One can use instead diagonal curvature matrices which result on rough local approximations of the posterior law. However, even if the computational cost of each iteration is reduced, the mixing properties of the chain may be deteriorated compared to the full curvature matrix.

We propose to tackle this preconditioning problem by adding auxiliary variables to the data delity term. More specically, following Algorithm 6, we propose to introduce an auxiliary variable v ∈ R Q such that:

v ∼ N ( 1 σ 2 ( 1 µ I Q -H ⊤ H ) x, 1 σ 2 ( 1 µ I Q -H ⊤ H )) (4.67)
where µ∥B∥ 2 ∥F∥ 2 < 1.

Since the set of hyperparameters Θ is independent of the auxiliary variable v when conditioned to x, each iteration t of the proposed Gibbs sampling algorithm contains the following steps:

1) Sample v (t+1) from P v|x (t) ,z . 2) Sample x (t+1) from P x|v (t+1) ,Θ (t) ,z . 3) Sample Θ (t+1) from P Θ|x (t+1) ,z .
If B is circulant (by assuming periodic boundary conditions of the blur kernel), the rst sampling step can be easily done by passing to the Fourier domain. In particular, if F is orthonormal that is FF * = F * F = I Q , samples of the auxiliary variables can be obtained by rst drawing Gaussian random variables in the Fourier domain and then passing to the wavelet domain.
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Otherwise, if F is a non orthonormal tight frame transform, sampling can be performed using results in (4.57) and (4.60).

Note that, in the new augmented space, the restoration problem reduces to a denoising problem with zero-mean Gaussian noise of variance µ and the posterior density reads:

p(x|z, v, Θ) ∝ M ∏ m=1 Km ∏ k=1 exp (-J m,k (P m,k x|v)) (4.68) 
where

(∀c ∈ R B ) J m,k (c|v) = 1 2µσ 2 ∥c -µP m,k v - µ σ 2 P m,k H ⊤ z∥ 2 + ψ m (∥Σ -1/2 m (c -a m )∥). (4.69)
It follows that we can draw samples of vectors x m,k , m ∈ {1, . . . , M }, k ∈ {1, . . . , K m }, in an independent manner. Thus, the resolution of the initial high dimensional problem of size Q = KB reduces to the resolution of K parallel subproblems of size B. Note that we have generally K ≫ B.

The advantage of the proposed method is twofold. First, instead of processing all the dierent wavelet coecients at the same time, each subproblem can be fullled independently. This avoids sampling problems related to the heterogeneous prior distribution. Dierent sampling algorithms may be chosen according to the properties of the target distribution in each subproblem. Specically, for each sampling subproblem, we propose to use the 3MH algorithm with a curvature matrix constructed for each subband m ∈ {1, . . . , M } using a MM strategy, which has the following form:

(∀c ∈ R B ) Q m (c) = 1 µ I B + Σ -1 m ψ ′ m ( ∥Σ -1/2 m (c -a m )∥
) .

(4.70)

The second advantage is that, since the problem dimension is reduced, we may expect that the discretization stepsize in the 3MH algorithm takes larger values compared with standard algorithms without auxiliary variables so that the chain makes larger moves and explores the target space faster and more eciently.

In the following, we discuss the practical implementation of the third step of the Gibbs algorithm namely sampling from the posterior distribution of Θ.

Hyperparameters estimation

Separation strategy: For every m ∈ {1, . . . , M }, β m controls the shape of the GMEP distribution allowing for heavier tails than the Laplace distribution (β m < 0.5) and approaching the normal distribution when β m tends to 1. In this work, we assume that, for every m ∈ {1, . . . , M }, β m and δ m are xed. Actually, the shape parameter may take dierent values with respect to the resolution level, spanning from very small values (β m < 0.5) in order to enforce sparsity in the detail subbands belonging to the rst level of decomposition to relatively higher values (0.5 < β m < 1) for details subband in higher resolution levels, whereas a Gaussian distribution is generally assigned to the low frequency subband. Furthermore, we set δ m to a positive small value ensuring that (4.66) is dierentiable. We propose to estimate the scale matrices Σ m . Let P Σm be the prior distribution of the scale matrix for each subband m ∈ {1, . . . , M } and let p(Σ m ) be the related density. Then, its posterior density reads:

p(Σ m |x) ∝ p(Σ m )det(Σ m ) -Km/2 × exp ( - Km ∑ k=1 ψ m (∥Σ -1/2 m (P m,k x -a m )∥)
) .

(4.71)

When β m = 1, the GMEP prior reduces to a Gaussian distribution. In such case, a common choice of P Σm is an inverse Wishart distribution and (4.71) is also an inverse Wishart distribution [START_REF] Murphy | Conjugate Bayesian analysis of the Gaussian distribution[END_REF]. However, when 0 < β m < 1, (4.71) does not belong to classical families of matrix distributions. In that respect, rather than estimating the scale matrices directly, we resort to a separation strategy. More specically, we propose to estimate the standard deviations and the correlations independently. Let us decompose the scale matrix for each subband m ∈ {1, . . . , M } as follows [START_REF] Barnard | Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage[END_REF]:

Σ m = C βm,δm Diag(s m ) -1 R m Diag(s m ) -1 (4.72)
where R m ∈ R B×B is the correlation matrix (whose diagonal elements are equal to 1 and the remaining ones dene the correlation between the coecients and have absolute value smaller than 1), s m ∈ R B is a vector formed by the square root of the precision parameters ( the inverse of standard deviations) and C βm,δm is a multiplicative constant that depends on β m and δ m [START_REF] Marnissi | Generalized multivariate exponential power prior for wavelet-based multichannel image restoration[END_REF]. The advantage of such factorization can be explained by the fact that the estimation of the correlation matrix will not alter the estimation of the variances. For every m ∈ {1, . . . , M }, we decompose the precision vector as follows:

s m = γ 1/(2βm) m n m (4.73)
where γ m is positive and n m ∈ R B is a vector of positive coecients whose sum is equal to 1. Then, n m can be seen as the vector containing positive normalized weights of all the B components in the subband m.

Let us assume that the dierent components of the image have the same Prior and posterior distribution of the hyperparameters: One can construct the correlation matrix R by sampling from an inverse Wishart distribution. Specically, let C ∼ IW(A, c) where A is an appropriate positive denite matrix of R B×B and c > 0. Then, we can write R = ∆C∆ where ∆ is the diagonal matrix whose elements are given by:

∆ ii = C -1/2 ii ,
for every i ∈ {1, . . . , B}. Following [Barnard et al., 2000], we can show that the prior density of R reads:

p(R) ∝ det(R) -1 2 (B+1+c) B ∏ i=1 (R -1 A) -ν 2
ii .

(4.75)

In the following, we will use the notation R ∼ SS(A, c) to denote this prior. In particular, when

A = I B , individual correlations have the marginal density p(ρ ij ) = (1 -ρ 2 ij ) c-B-1 2
for all i, j ∈ {1, . . . , B} such that i ̸ = j, which can be seen as a rectangular Beta distribution on the interval [-1, 1] with both parameters equal to (c -B + 1)/2. For c = B + 1, we obtain marginally uniformly distributed correlations, whereas, by setting B c < B + 1 (or B + 1 < c), we get marginal priors with heavier (or lighter) tails than the uniform distribution that is, distributions that promote either high correlation values around the extremity of the intervals (or near zero values), respectively [Barnard et al., 2000]. Thus, the posterior distribution of R is given by

p(R|x, γ 1 , . . . , γ M ) ∝ det(R) -1 2 (B+1+c+Q) exp (-Ψ(x)) × B ∏ i=1 (R -1 A) -c 2 ii . ( 4.76) 
In this work, we propose to sample from (4.76) at each iteration t using a MH algorithm with proposal SS( Ã, c) where à is set to the current value of R at iteration t and c is chosen to achieve reasonable acceptance probabilities.

For every m ∈ {1, . . . , M }, we assume a Gamma prior for γ m that is γ m ∼ G(a γm , b γm ) where a γm > 0 and b γm > 0 [START_REF] Fink | A compendium of conjugate priors[END_REF]. Then, the posterior distribution of γ m is given by:

p(γ m |x, R) ∝ γ aγ m + KmB 2βm -1 m exp (-b γm γ m ) × exp ( - 1 2 Km ∑ k=1 ( γ 1 βm m C -1 βm,δm ∥R -1 2 Diag(n)(P m,k x -a m )∥ 2 + δ m ) βm ) . ( 4.77) 
Remark that if δ m = 0, (4.77) reduces to a Gamma distribution of parameters:

ãγm = a γm + K m B 2β m , (4.78) ãγm = b γm + C -βm βm,δm 1 2 Km ∑ k ∥R -1 2 N(P m,k x -a m )∥ 2βm . (4.79)
When δ m > 0, sampling from (4.77) can be performed using an independent Metropolis Hastings algorithm with a Gamma proposal of parameters (4.78) and (4.79).

Initialization: We propose to set the prior distributions of R, γ 1 , . . . , γ M , using empirical estimators from the degraded image. In particular, a rough estimator of R can be computed from the subband containing the low resolution wavelet coecients at the highest level of decomposition. In the case when F is orthonormal, the variance of wavelet coecients of the original image in a given channel b and a subband m are approximately related to those of the degraded image through:

var([F b z b ] m ) = α m var([x b ] m ) + σ 2 (4.80) 
where [.] m denotes the wavelet coecients belonging to the subband m and α m is a positive constant that depend on m (the scale and the orientation corresponding to m) and on the blur matrix. Expression (4.80) is derived from the considered observation model (4.63) by assuming a constant approximation of the impulse response of the blur lter in each wavelet subband.

Note that α m can be calculated beforehand as follows: For given noisy-free data, we compute the original empirical variance for each wavelet subband.

Then, we calculate again the new variances of the subbands when the data is blurred using the blur matrix B. The coecients α m are nally estimated for each wavelet subband by computing the ratio of the two variances by a linear regression. When α m is not too small, estimators of var([x b ] m ) can be reliably computed from α m and var([F b z b ] m ) using (4.80). In this work, we propose to use this method to compute estimators of the variances in subbands corresponding to the highest levels of decomposition and then deduce the variances of the remaining subbands by using some properties of multiresolution wavelet decompositions. Note that each detail subband m, corresponds to a given orientation l (horizontal, vertical, diagonal) and a given scale j (related resolution level). Actually, the variances of the detail subbands follow a power law with respect to the scale of the subband which can be expressed as follows [START_REF] Flandrin | Wavelet analysis and synthesis of fractional brownian motion[END_REF]: where ϱ l and ϖ l are constants depending on the orientation l of the subband m. Once the variances of subbands in the two highest levels of decomposition have been computed using (4.80), we can calculate ϱ l and ϖ l for each orientation l using the slope and the intercept of these variances from a log plot with respect to the scale j. The remaining variances are then estimated using (4.81).

log var([x b ] m ) = ϱ l j + ϖ l
We can then deduce from these variances an empirical estimator of n. Moreover, we can set the parameters of the prior distributions of γ 1 , . . . , γ M .

Experimental results

In these experiments, we consider the Hydice hyperspectral2 composed of 191 components in the 0.4 to 2.4 µm region of the visible and infrared spectrum. The test image is constructed by taking only a portion of size 256 × 256 and B = 6 of Hydice using the channels 52, 67, 82, 97, 112 and 127. Hence, the problem dimension is N = 393, 216. The original image is articially degraded by a uniform blur of size 5 × 5 and an additive zero-mean white Gaussian noise with variance σ 2 = 9 so that the initial signal-to-noise ratio (SNR) is 11.16 dB. We perform an orthonormal wavelet decomposition using the Symlet wavelet of depth 3, and three resolution levels, hence M = 10 and Q = N . For the subband corresponding to the approximation coecients (m = 10), we choose a Gaussian prior (i.e., β m = 2, δ m = 0). For the remaining subbands (m ∈ {1, . . . , M -1}), we set δ m = 0.0001. Moreover, we set β m = 0.2 for the subbands corresponding to the lower level of decomposition, β m = 0.4 for the second level of decomposition and β m = 0.5 for the third level of decomposition.

We run the Gibbs sampling algorithm 6 for a sucient number of iterations to reach stability. The obtained samples of the wavelet coecients after the burn-in period are then used to compute the empirical MMSE estimator for the original image. Table 4.1 reports the results obtained for the dierent components in terms of SNR, PSNR, BSNR and SSIM. It can be noted that the MMSE estimator yields good numerical results. This can also be observed in Figure 4.2 showing the visual improvements for the dierent components of the multichannel image.

We propose to compare the performance of the Gibbs sampler with auxiliary variables when the posterior law of the wavelet coecients is explored using either RW or MALA instead of 3MH algorithm. We also compare the speed of our proposed approaches with standard RW, MALA and 3MH algorithms without use of auxiliary variables. Figures 4.3 shows the evolution, with respect to the computational time, of the scale parameter γ m in the horizontal subband for the rst level of decomposition using the dierent algorithms. The results associated with the proposed algorithms appear in constrained to take very small values to allow appropriate acceptance probabilities whereas in the new augmented space, the subproblems dimension is smaller allowing large moves to be accepted with high probability values.
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Note that 3MH algorithm with auxiliary variables exhibits the best performance in terms of convergence speed. We summarize the obtained samples using the proposed algorithms by showing the marginal means and standard deviations of the hyperparameters in Table 4.2. It can be noted that all proposed algorithms provide similar estimation results. Following [Atchadé, 2006], we also compare the dierent proposed methods in terms of mixing properties based on the mean square jump in stationarity (MSJ) dened in (2.75). More precisely, MSJ is estimated as in (3.49), using P = 20.000 samples generated after the burn-in period. In Table 4.3, we show estimates of the mean square jump per second in stationarity which is dened as the ratio of the mean square jump and the computational time per iteration. We also compare the statistical eciency of the dierent samplers with respect to RW dened as the mean square jump per second of each sampler over the mean square jump per second of RW. It can be noted that 3MH algorithm achieves the best results in terms of mixing properties whereas RW yields the poorest ones. A huge improvement in the eciency of Langevin based algorithms is particularly observed when introducing the curvature matrix (4.70). In this second experiment, we consider the observation problem dened in (4.22) where H corresponds to a spatially invariant blur with periodic boundary conditions and the noise is a two-terms mixed Gaussian variable i.e., for

every i ∈ {1, . . . , N }, w i ∼ N (0, σ 2 i ) such that σ i ∼ (1 -β)δ κ 1 + βδ κ 2 (4.82)
where κ 1 , κ 2 are positive, 0 < β < 1 is the probability that the variance of the noise σ i equals κ 2 and δ κ 1 and δ κ 2 denote the discrete measures concentrated at the values κ 1 and κ 2 respectively. Model (4.82) can approximate for example mixed impulse Gaussian noise arising in radar, acoustic, and mobile radio applications [START_REF] Velayudhan | Two-phase approach for recovering images corrupted by Gaussian-plus-impulse noise[END_REF][START_REF] Chang | A denoising algorithm for remote sensing images with impulse noise[END_REF]. In this case, the impulse noise is approximated with a Gaussian one with a large variance κ 2 ≫ κ 1 and β represents the probability of occurrence of the impulse noise. In the following, we assume without loss of generality that κ 2 κ 1 . We address the problem of estimating x, σ, β, κ 1 and κ 2 from the observations z.

Prior distributions: We propose to use conjugate priors for the unknown variances namely inverse Gamma distributions i.e., κ 2 i ∼ IG(a i , b i ), i ∈ {1, 2} where a i and b i are positive constants. Here, a 1 , a 2 , b 1 , and b 2 are set in practice to small values to ensure weakly informative priors. For the occurrence probability β, we choose a uniform prior distribution i.e., β ∼ U(0, 1). Furthermore, the target image is assumed to follow a zero-mean Gaussian prior with a covariance matrix G -1

x = γ -1 ( L ⊤ L ) -1 known up to a precision parameter γ > 0, i.e., p(x|γ) ∝ γ -Q/2 exp ( - γ 2 ∥Lx∥ 2
) . Posterior distributions: Given the observation model and the prior distribution, we can deduce that the posterior distribution of the target signal given σ, β, κ 2 1 , κ 2 2 , γ and z is also Gaussian with mean m and precision matrix G given by: G = H ⊤ DH + γL ⊤ L, (4.84)

m = G -1 H ⊤ Dy, (4.85) 
where D is the diagonal matrix dened by

D ii = σ -2 i .
The posterior distribution of the remaining unknown parameters are given by:

• (∀i ∈ {1, . . . , N }) σ i |x, β, κ 2 1 , κ 2 2 , z ∼ (1 -p i )δ κ 1 + p i δ κ 2 where p i = η i 1 + η i such that η i = β 1 -β exp ( - 1 2 
( κ -2 2 -κ -2 1 ) ([Hx] i -z i ) 2 ) κ 1 κ 2 , (4.86) • β|x, z, σ, κ 2 1 , κ 2 2 ∼ B (n 2 + 1, n 1 + 1)
, where B is the Beta distribution and n 1 and n 2 are the cardinals of the sets {i ∈ {1, . . . , N }, | where m and G are dened as follows:

σ i = κ 1 , } and {i ∈ {1, . . . , N }, | σ i = κ 2 , } respectively so that n 1 + n 2 = N , • κ 2 1 |x, σ, β, z ∼ IG ( a 1 + n 1 2 , b 1 + ∑ i|σ i =κ 1 ([Hx] i -z i ) 2 2 
) , • κ 2 2 |x, σ, β, z ∼ IG ( a 2 + n 2 2 , b 2 + ∑ i|σ i =κ 2 ([Hx] i -z i ) 2 2 
) , • γ|x ∼ G ( Q 2 + a γ , 1 2 ∥Lx∥ 2 + b γ
G = 1 µ H ⊤ H + γL ⊤ L, (4.88) m = G-1 H ⊤ ( H ⊤ Dz + v
) .

(4.89)

It is worth noting that the auxiliary variable v depends on x and also on σ through µ and D and does not depend on β, κ 1 , κ 2 , γ when conditioned to x, σ and z. In this work, we propose to use the partially collapsed Gibbs as a function of iteration or time. Table 4.4 shows the marginal posterior mean and standard deviation of β, κ 1 , κ 2 , γ and the value of one randomly chosen pixel x i in the reconstructed images. show that all the tested algorithms reach the same stationary distribution. In particular, it can be noted from Table 4.4 that β, κ 1 and κ 2 are correctly estimated by all the algorithms and the remaining parameters have similar estimators. While RJPO and AuxV1 have similar behavior, AuxV2 needs more iterations to reach stability. However, the proposed algorithms need less time to converge compared to the RJPO algorithm since the cost of each iteration is highly reduced. 

Conclusion

In this chapter, we have proposed a method that addresses sampling from distributions in large scale problems. By adding some auxiliary variables to the model, we succeeded in addressing separately the dierent sources of correlations in the target posterior density. In the rst experiment, we have shown the good performance of this new approach in terms of convergence speed and mixing properties when applied to the recovery of multispectral images from their blurred version. In the new augmented space, the resulting model makes sampling much easier since the coecients of the target image are no longer updated jointly but in a parallel manner. In the second set of experiments, we have applied the proposed method to the recovery of signals corrupted with mixed Gaussian noise. When compared to state-of-the-art methods for sampling from high dimensional scale Gaussian distributions, the proposed algorithms achieve a good tradeo between the convergence speed and the mixing properties of the Markov chain even if the generated samples are not independent.

Note that the proposed method can be applied to a wide class of applications in inverse problems, in particular, those including conditional Gaussian models either for the noise or the target signal.

-Chapter # -A variational Bayesian approach for restoring data corrupted with non-Gaussian noise Noise arising in real signal processing problems may originate from various sources.

In particular, the signal of interest may suer from noise with complex characteristics where signal-independent additive Gaussian hypothesis fails to properly describe it. For example, noise may be signaldependent [START_REF] Moser | Capacity results of an optical intensity channel with input-dependent Gaussian noise[END_REF], multiplicative [START_REF] Aujol | A variational approach to removing multiplicative noise[END_REF] and with non-Gaussian characteristics [START_REF] Salmon | Poisson noise reduction with non-local PCA[END_REF][START_REF] Altmann | Lidar waveform-based analysis of depth images constructed using sparse single-photon data[END_REF].

However, most of the existing denoising methods only consider the noise as independent Gaussian, mainly because of the diculties raised in handling other noise sources than the Gaussian one.

In this work, we focus on signal recovery beyond the standard additive independent Gaussian noise assumption. We propose to resort to VBA methods to restore signals degraded by an arbitrary linear operator and corrupted with non-Gaussian noise. One of the main advantages of our proposed method is that it allows us to jointly estimate the original signal and the required regularization parameter from the observed data by providing good approximations of the MMSE estimators for the problem of interest.

This chapter is organized as follows. In Section 1, we formulate the considered signal recovery problem in the Bayesian framework and we present a short overview on the state-of-the-art methods. In Section 2, we present our proposed estimation method based on VBA. Finally, in Section 3, we provide simulation results together with comparisons with state-of-the-art methods in terms of image restoration performance and computation time.

1 Problem statement

Model

In this chapter, we consider a wide range of applications where the degradation model can be formulated as an inverse possibly ill-posed problem as in (2.1). We further assume that the coecients of the vector of observations 117 with non-Gaussian noise z = (z i ) 1 i N ∈ R N are independents, then the observation model in (2.1) reads:

(∀i ∈ {1, . . . , N }) , z i = D([Hx] i ) (5.1)
where [Hx] i denotes the i-th component of Hx and D is the noise model that may depend on the signal of interest x. The objective is to nd an estimator x of x from H and z. The neg-log-likelihood ϕ of the observations reads

(∀x ∈ R Q ) Φ(x) = -log p(z|x) = N ∑ i=1 ϕ i ([Hx] i ; z i ).
(5.2)

Depending on the noise statistical model D, ϕ i may take various forms [START_REF] Janesick | Photon transfer[END_REF][START_REF] Mäkitalo | Poisson-Gaussian denoising using the exact unbiased inverse of the generalized Anscombe transformation[END_REF][START_REF] Cai | Fast two-phase image deblurring under impulse noise[END_REF][START_REF] Yan | Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting[END_REF]. In particular, it reduces to a least squares function for additive Gaussian noise.

Related work

Most of the existing strategies in the literature propose to tackle the problem of restoration for signals corrupted with non-Gaussian noise using minimization approaches. As pointed out in Chapter 2, the cost function is the sum of two terms: the neg-log-likelihood related to the noise statistics and the regularization term that incorporates prior information about the target signal so as to ensure the stability of the solution [START_REF] Demoment | Image reconstruction and restoration: Overview of common estimation structures and problems[END_REF]. For example, in [START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signaldependent noise[END_REF], a method is proposed to restore signals degraded by a linear operator and corrupted with an additive Gaussian noise having a signal-dependent variance. An early work in [START_REF] Snyder | Image recovery from data acquired with a charge-coupled-device camera[END_REF] and more recent developments in [START_REF] Lantéri | Restoration of astrophysical images -the case of Poisson data with additive Gaussian noise[END_REF][START_REF] Benvenuto | The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise[END_REF][START_REF] Jezierska | A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise[END_REF][START_REF] Li | A reweighted ℓ 2 method for image restoration with Poisson and mixed Poisson-Gaussian noise[END_REF][START_REF] Roberts | Bayesian denoising/deblurring of Poisson-Gaussian corrupted data using complex wavelets[END_REF][START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF][START_REF] Baji¢ | Blind restoration of images degraded with mixed Poisson-Gaussian noise with application in transmission electron microscopy[END_REF] have proposed to restore signals corrupted with mixed PG noise using dierent approximations of the PG data delity term. In all these approaches, the regularization parameter allows a tradeo to be performed between delity to the observations and the prior information. Too small values of this parameter may lead to noisy estimates while too large values yield oversmoothed solutions. Consequently, the problem of setting a proper value of the regularization parameter should be addressed carefully and may depend on both the properties of the observations and the statistics of the target signal. When ground truth is available, one can choose the value of the regularization parameter that gives the minimal residual error evaluated through some suitable metric. However, in real-world applications where no ground truth is available, the problem of selecting the regularization parameter remains an open issue especially in situations where the images are acquired under poor conditions i.e., when the noise level is very high. Among existing approaches dealing with regularization parameter estimation, the works in [START_REF] Ramani | Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms[END_REF][START_REF] Eldar | Generalized SURE for exponential families: Applications to regularization[END_REF][START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF][START_REF] Deledalle | Stein unbiased gradient estimator of the risk (SUGAR) for multiple parameter selection[END_REF][START_REF] Giryes | The projected GSURE for automatic parameter tuning in iterative shrinkage methods[END_REF][START_REF] Almeida | Parameter estimation for blind and non-blind deblurring using residual whiteness measures[END_REF][START_REF] Hansen | Exploiting residual information in the parameter choice for discrete ill-posed problems[END_REF] have to be mentioned. However, most of the presented methods were developed under the assumption of a

Gaussian noise and their extension to the context of non-Gaussian noise is tricky. One can however mention the works in [START_REF] Luisier | Image denoising in mixed Poisson-Gaussian noise[END_REF][START_REF] Mäkitalo | Poisson-Gaussian denoising using the exact unbiased inverse of the generalized Anscombe transformation[END_REF] proposing ecient estimators in the context of denoising i.e., problems that do not involve linear degradation. Other approaches can be found in [START_REF] Bertero | A discrepancy principle for Poisson data[END_REF][START_REF] Zanni | Numerical methods for parameter estimation in Poisson data inversion[END_REF] proposing ecient estimates in the specic case of a Poisson likelihood. To address the shortcomings of these methods, one may resort to the Bayesian framework where regularization is applied by assigning a prior distribution to the data x to be recovered. In particular, Bayesian estimation methods based on MCMC sampling algorithms have been recently extended to inverse problems involving non-Gaussian noise [START_REF] Ying | A blind receiver with multiple antennas in impulsive noise with Gaussian mixtures through MCMC approaches[END_REF][START_REF] Altmann | Spectral unmixing of multispectral Lidar signals[END_REF][START_REF] Murphy | Joint Bayesian removal of impulse and background noise[END_REF][START_REF] Chaâri | Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach[END_REF]. However, despite good estimation performance that has been obtained, such methods remain computationally expensive for large scale problems. In this chapter, we propose to tackle this problem by resorting to VBA approaches.

Bayesian formulation

We propose to adopt the following exible expression of the prior density of

x:

p(x|γ) = τ γ Q 2κ exp ( -γ J ∑ j=1 ∥D j x∥ 2κ ) (5.3)
where κ is a constant in (0, 1], ∥ • ∥ denotes the ℓ 2 -norm and (D j ) 1 j J ∈ (R S×Q ) J where D = [D ⊤ 1 , . . . , D ⊤ J ] ⊤ is a linear operator. For instance, D may be a matrix computing the horizontal and vertical discrete dierence between neighboring pixels so that J = Q and S = 2. A sparsity prior in an analysis frame can also be modeled by setting S = 1 and D equals to a frame operator with decomposition size J Q [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF]. Other examples will be given in Section 3. Note that the constant γ ∈ (0, +∞) can be viewed as a regularization parameter that plays a prominent role in the restoration process and τ ∈ (0, +∞) is a constant independent of γ. The form of the partition function for such a prior distribution, i.e. the normalizing factor τ γ Q/2k , follows from the fact that the associated potential is 2κ-homogeneous [START_REF] Pereyra | Maximuma-posteriori estimation with unknown regularisation parameters[END_REF]. Generally, κ is the shape parameter of the prior law which determines the type of prior information introduced by the user and hence can be xed according to the prior knowledge while γ expresses the compromise between data delity and prior information. In this work, we aim at estimating parameter γ together with x. To this end, we choose a Gamma prior for γ i.e., p(γ) ∝ γ α-1 exp(-βγ) where α and β are positive constants (set in practice to small values to ensure a weakly informative prior).

with non-Gaussian noise

Using the Bayes' rule, we can obtain the posterior distribution of the set of unknown variables Θ = (x, γ) given the vector of observations z: p(Θ|z) ∝ p(z|x)p(x|γ)p(γ).

(5.4)

However, this distribution has an intricate form. In particular, its normalization constant does not have a closed form expression. To cope with this problem, we resort to the variational Bayesian framework. The rationale of this work is to nd a simple approximation to the true posterior distortion, leading to a tractable computation of the posterior mean estimate.

Proposed approach

In this work, we assume the following separable form for q: q(Θ) = q X (x)q Γ (γ).

(5.5)

Unfortunately, by using directly (2.87), we cannot obtain an explicit expression of q X (x) due to the intricate form of both the prior distribution and the likelihood when the statistics of the noise are no longer Gaussian. In this work, we propose to use deterministic methods to construct quadratic upper bounds for the negative logarithms of both the likelihood and the prior density [START_REF] Seeger | Fast variational Bayesian inference for non-conjugate matrix factorization models[END_REF]. This allows us to derive an upper bound of the desired cost function in (2.81) as will be described in the following.

2.1 Construction of the majorizing approximation

Likelihood

One popular approach in signal recovery is the half-quadratic formulation [START_REF] Geman | Nonlinear image recovery with halfquadratic regularization[END_REF]. Under some mild assumptions and by introducing some auxiliary variables, a complicated criterion can be written as the inmum of a surrogate half-quadratic function i.e., the latter is quadratic with respect to the original variables and the auxiliary variables appear decoupled. This half-quadratic criterion can be then eciently minimized using classical optimization algorithms. Furthermore, we have recently extended this technique to sampling algorithms [Marnissi et al., 2016a]. The initial intractable posterior distribution to sample from is replaced by the conditional distribution of the target signal given the auxiliary variables. The obtained distribution has been shown to be much simpler to explore by using standard sampling algorithms. This formulation has been widely used in energy-minimization approaches [START_REF] Idier | Convex half-quadratic criteria and interacting auxiliary variables for image restoration[END_REF][START_REF] Nikolova | Analysis of half-quadratic minimization methods for signal and image recovery[END_REF][START_REF] Champagnat | A connection between half-quadratic criteria and EM algorithms[END_REF] where the initial optimization problem is replaced by the minimization of the constructed surrogate function. In this work, we propose to use half-quadratic approaches to construct an upper bound for the objective function in (2.81).

Table 5.1: Examples of dierentiable functions satisfying Assumption 2.1. The Anscombe transform provides a dierentiable approximation of the exact Poisson data delity term, while the three last functions can be employed to approximate the exact mixed Poisson-Gaussian log-likelihood. Note that alternative expressions for the Anscombe-based approaches can be found in [Mäkitalo andFoi, 2011, 2013]. ϕ ′ i denotes the rst derivative of function ϕ i and β i (z i ) is the Lipschitz constant of ϕ ′ i (for functions in lines 3-6, we assume that ϕ i is replaced on R -by its quadratic extension (5.7).) The expression for the Lipschitz constant of the gradient of the weighted least squares likelihood was established in [Repetti, 2015, Chap. IV].

Name ϕ i (v; z i ) ϕ ′ i (v; z i ) β i (z i ) Domain of validity Noise model Gaussian 1 2σ 2 (v -z i ) 2 1 σ 2 (v -z i ) 1 σ 2 z i ∈ R, σ > 0 Gaussian Cauchy ln ( 1 + (v -z i ) 2 σ 2 ) 2(v -z i ) σ 2 + (v -z i ) 2 2 σ 2 z i ∈ R, σ > 0 Cauchy Anscombe transform 2 (√ z i + 3 8 - √ v + 3 8 ) 2 2 - 2 √ z i + 3 8 √ v + 3 8 ( 3 
) -3/2 √ z i + 3 8 z i - 3 8 Poisson Generalized Anscombe transform 2 (√ z i + σ 2 + 3 8 - √ v + σ 2 + 3 8 ) 2 2 - 2 √ z i + 3 8 + σ 2 √ v + 3 8 + σ 2 ( 3 8 + σ 2 ) -3/2 √ z i + 3 8 + σ 2 z i - 3 8 -σ 2 Poisson-Gaussian Shifted Poisson (v + σ 2 ) -(z i + σ 2 ) ln(v + σ 2 ) 1 - z i + σ 2 v + σ 2 z i + σ 2 σ 4 z i -σ 2 , σ > 0 Poisson-Gaussian Weighted least squares (z i -v) 2 2(σ 2 + v) + 1 2 ln(σ 2 + v) 1 2 - (z i + σ 2 ) 2 2(v + σ 2 ) 2 + 1 2(σ 2 + v) max { (z i + σ 2 ) 2 σ 6 - 1 2σ 4 , 1 54(z i + σ 2 ) 4 } z i ∈ R\{-σ 2 }, σ > 0 Poisson-Gaussian 8 
with non-Gaussian noise

We assume that the likelihood satises the following property:

Assumption 2.1 For every i ∈ {1, . . . , N }, ϕ i is dierentiable on R and there exists µ i (z i ) > 0 such that the function dened by v → v 2 2 -ϕ i (v;z i )

µ i (z i ) is convex on R.
In particular, this assumption is satised when, for every i ∈ {1, . . . , N },

ϕ i is β i (z i )-Lipschitz dierentiable on R, i.e., (∀u ∈ R) (∀v ∈ R) |ϕ ′ i (v; z i ) -ϕ ′ i (u; z i )| β i (z i )|v -u| (5.6)
as soon as µ i (z i ) β i (z i ).

Table 5.1 shows some examples of useful functions satisfying the desired property (up to an additive constant). Note that, since the functions in lines 3-6 of Table 5.1 are β i (z i )-Lipschitz dierentiable only on R + , we propose to use on R -a quadratic extension of them dened as follows:

(∀v ∈ R -) ϕ i (v; z i ) = ϕ i (0; z i ) + ϕ ′ i (0; z i )v + 1 2 β i (z i )v 2
(5.7) so that the extended version of ϕ i (.; z i ) is now dierentiable on R with β i (z i )-Lipschitzian gradient.

For every i ∈ {1, . . . , N } and v ∈ R, let us dene the following function:

ς i (v; z i ) = sup t∈R ( - 1 2 (v -t) 2 + ϕ i (t; z i ) µ i (z i )
) .

(5.8)

Then, the following property holds:

Proposition 2.1 Upper bound for minus log likelihood For every i ∈ {1, . . . , N },

(∀v ∈ R) ϕ i (v; z i ) = inf w i ∈R T i (v, w i ; z i ) (5.9)
where, for every v ∈ R,

T i (v, w i ; z i ) = µ i (z i ) ( 1 2 (v -w i ) 2 + ς i (w i ; z i )
) .

(5.10)

Moreover, the unique minimizer of

w i → T i (v, w i ; z i ) reads w i (v) = v - 1 µ i (z i ) ϕ ′ i (v; z i ).
( .11) Proof. See Appendix B.

It follows from this result that

( ∀x ∈ R Q ) ϕ(x; z) = inf w∈R N
T (x, w; z) (5.12) where T (x, w; z)

= N ∑ i=1 T i ([Hx] i , w i ; z i ).
Note that (5.9) shows that, for every i ∈ {1, . . . , N }, ϕ i (•; z i ) is a socalled Moreau envelope of the function µ i (z i )ς i (•; z i ). A more direct proof of Proposition 2.1 can thus be derived from the properties of the proximity operator [Combettes and Pesquet, 2010] when the functions (ϕ i ) 1 i N are convex. The proof we provide in the appendix however does not make such a restrictive assumption.

Prior

Similarly, we construct a surrogate function for the prior distribution. More precisely, we follow the same idea as in [START_REF] Chen | Variational Bayesian methods for multimedia problems[END_REF] and we use the following convexity inequality to derive a majorant for the ℓ κ -norm with κ ∈ (0, 1]:

(∀ν > 0)(∀υ 0) υ κ (1 -κ)ν κ + κν κ-1 υ.

Hence, we obtain the following majorant function for the negative logarithm of the prior distribution: .13) where (λ j ) 1 j J are positive variables. In the following, we will denote by

γ J ∑ j=1 ∥D j x∥ 2κ γ J ∑ j=1 κ∥D j x∥ 2 + (1 -κ)λ j λ 1-κ j . ( 5 
Q(x, λ; γ) = J ∑ j=1
Q j (D j x, λ j ; γ), the function in the right-hand side of the above inequality where, for every j ∈ {1, . . . , J},

Q j (D j x, λ j ; γ) = γ κ∥D j x∥ 2 + (1 -κ)λ j λ 1-κ j .
(5.14)

Proposed majorant

Thus, we can derive the following lower bound for the posterior distribution:

p(Θ | z) L(Θ|z; w, λ), (5.15) where function L is dened as

L(Θ|z; w, λ) = C(z) exp [-T (x, w; z) -Q(x, λ; γ)] p(γ) with non-Gaussian noise with C(z) = p(z) -1 (2π) -N/2 τ γ Q 2κ .
The minorization of the distribution leads to an upper bound for the KL divergence:

KL(q(Θ)∥p(Θ | z)) KL(q(Θ)∥L(Θ|z; w, λ)). (5.16) Note that, although the constructed lower bound in (5.15) is tangent to the posterior distribution i.e.

p(Θ

| z) = sup w∈R N ,λ∈R J L(Θ|z; w, λ),
the tangency property may not be generally satised in (5.16). Thus, the tightness of the constructed majorant of the KL divergence may have a signicant impact on the accuracy of the method. By minimizing the constructed bound (5.16) with respect to w and λ, we make this bound as tight as possible. Note that, for every i ∈ {1, . . . , N } and j ∈ {1, . . . , J}, λ j → KL(q(Θ)∥L(Θ|z; w, λ)) and w i → KL(q(Θ)∥L(Θ|z; w, λ)) can be minimized separately. Hence, Problem (2.81) can be solved by the following four-step alternating optimization scheme:

• Minimizing the upper bound in (5.16) w.r.t. q X (x);

• Updating the auxiliary variables w i in order to minimize KL(q(Θ)∥L(Θ|z; w, λ)), for every i ∈ {1, . . . , N };

• Updating the auxiliary variable λ j in order to minimize KL(q(Θ)∥L(Θ|z; w, λ)), for every j ∈ {1, . . . , J};

• Mimimizing the upper bound in (5.16) w.r.t. q Γ (γ).

The main benet of this majorization strategy is to guarantee that the optimal approximate posterior distribution for x belongs to the Gaussian family and the optimal approximate posterior distribution for γ belongs to the Gamma one, i.e.

q X (x) ≡ N (m, Σ), q Γ (γ) ≡ G(a, b).

Therefore, the distribution updates can be performed by updating their parameters, namely m, Σ, a, and b.

Iterative algorithm

Subsequently, at a given iteration k of the proposed algorithm, the corresponding estimated variables will be indexed by k.

2.2.1 Updating q X (x)

Because of the majorization step, we need to minimize the upper bound on the KL divergence. The standard solution (2.87) can still be used by replacing the joint distribution by a lower bound L(Θ, z; w, λ) chosen proportional to L(Θ|z; w, λ):

q (k+1) X (x) ∝ exp ( ⟨ log L(x, γ, z; w (k) , λ (k) ) ⟩ q (k) Γ (γ) ) ∝ exp (∫ log L(x, γ, z; w (k) , λ (k) )q (k) Γ (γ)dγ ) ∝ exp ( - N ∑ i=1 1 2 µ i (z i ) ( [Hx] i -w (k) i ) 2 - a k b k J ∑ j=1 κ∥D j x∥ 2 + (1 -κ)λ (k) j (λ (k) j ) 1-κ
) .

(5.17)

The above distribution can be identied as a multivariate Gaussian distribution whose covariance matrix and mean parameter are given by 5.18) m k+1 = Σ k+1 H ⊤ u, (5.19) where µ(z) = [µ 1 (z 1 ), . . . , µ M (z N )] ⊤ , u is a N × 1 vector whose i-th component is given by u

Σ -1 k+1 = H ⊤ Diag(µ(z))H + 2 a k b k D ⊤ Λ (k) D, ( 
i = µ i (z i )w (k) i
and Λ is the diagonal matrix whose diagonal elements are

( κ(λ (k) j ) κ-1 I S ) 1 j J .

Updating w

The auxiliary variable w is determined by minimizing the upper bound of KL divergence with respect to this variable:

w (k+1) = arg min w ∫ q (k+1) X (x)q (k) Γ (γ) log q (k+1) X (x)q (k) Γ (γ) L(Θ|z; w, λ (k) ) dxdγ = arg min w ∫ q (k+1) X (x)q (k) Γ (γ) ( -log L(Θ|z; w, λ (k) ) ) dxdγ = arg min w ∫ q (k+1) X (x) N ∑ i=1 T i ([Hx] i , w i ; z i )dx (5.20) = arg min w N ∑ i=1 T i ([Hm k+1 ] i , w i ; z i ), (5.21) 
with non-Gaussian noise where the equality in (5.20) follows from the expression in (5.10). Interestingly, it follows from Property 2.1 that

w (k+1) i = arg min w i T i ([Hm k+1 ] i , w i ; z i ) = [Hm k+1 ] i - 1 µ i (z i ) ϕ ′ i ([Hm k+1 ] i ; z i ).
(5.22)

Updating λ

The variable λ is determined in a similar way: for every j ∈ {1, . . . , J}, λ

(k+1) j = arg min λ j ∈ [0, +∞)KL(q (k+1) X ( x)q (k) Γ (γ)∥L(Θ|z; w (k+1) , λ) ) = arg min λ j ∈ [0, +∞) Q ∑ i=1 ∫ q (k+1) X (x)q (k) Γ (γ)Q i (D i x, λ i ; γ)dxdγ = arg min λ j ∈ [0, +∞) ∫ q (k+1) X (x)q (k) Γ (γ)Q j (D j x, λ j ; γ)dxdγ = arg min λ j ∈ [0, +∞) ∫ q (k+1) X (x)q (k) Γ (γ) × γ κ∥D j x∥ 2 + (1 -κ)λ j λ 1-κ j dxdγ = arg min λ j ∈ [0, +∞) κ E q (k+1) X (x) [ ∥D j x∥ 2 ] + (1 -κ)λ j λ 1-κ j .
(5.23)

The minimum is achieved at

λ (k+1) j = E q (k+1) X (x) [ ∥D j x∥ 2 ] = ∥D j m k+1 ∥ 2 + trace [ D ⊤ j D j Σ k+1
] .

(5.24)

2.2.4 Updating q Γ (γ)

Using (2.87) where the joint distribution is replaced by its lower bound function, we obtain

q (k+1) Γ (γ) ∝ exp ( ⟨ log L(x, γ, z; w (k+1) , λ (k+1) ) ⟩ q (k+1) X (x) ) ∝ exp (∫ log L(x, γ, z; w (k+1) , λ (k+1) )q (k+1) X (x)dx ) ∝γ Q 2κ +α-1 exp(-βγ) × exp ( -γ J ∑ j=1 κE q (k+1) X (x) [ ∥D j x∥ 2 ] + (1 -κ)λ (k+1) j (λ (k+1) j ) 1-κ
) ≡G(a k+1 , b k+1 ).

(5.25)

Using (5.24), one can recognize that the above distribution is a Gamma one with parameters

a k+1 = Q 2κ + α = a, b k+1 = J ∑ j=1 (λ (k+1) j 
) κ + β.

(5.26)

Resulting algorithm

The proposed method is outlined in Algorithm 10. It alternates between the update of the auxiliary variables and the distribution of the unknown parameters.

Algorithm 10 VBA approach for recovery of signals corrupted with non-Gaussian noise.

Initialize: w (0) , λ (0) , b 0 . Compute a with (5.26).

1: for k = 0, 1, . . . do 2:

Update parameters Σ k+1 and m k+1 of q (k+1) X (x) using ( 5.18) and

(5.19).

3:

Update w (k+1) using (5.22).

4:

Update λ (k+1) using (5.24).

5:

Update parameter b k+1 of q (k+1) Γ (γ) using (5.26).

6: end for

Implementation issues

An additional diculty arising in the implementation of Algorithm 10 is that the determination of Σ k+1 requires inverting the matrix given by (5.18), which is computationally expensive in high dimension. To bypass this operation, we propose to compare two approaches. The rst one follows the idea in [START_REF] Babacan | Variational Bayesian super resolution[END_REF]: we make use of the linear conjugate gradient method to approximate m k+1 iteratively and in (5.24), where an explicit form of Σ k+1 cannot be sidestepped, this matrix is approximated by a diagonal one whose diagonal entries are equal to the inverse of the diagonal elements of Σ -1 k+1 . The second technique uses Monte-Carlo sample aver- aging to approximate m k+1 and λ (k+1) j

: specically, we generate samples (n s ) 1 s Ns from Gaussian distribution with mean m k+1 and covariance matrix Σ k+1 using [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF], as summarized in Algorithm 11. This estimator has two desirable properties. First, its accuracy is independent of the problem size, its relative error only depends on the number of samples and it decays as √ 2/N s (only N s = 2/ρ 2 samples are required to reach a desired relative error ρ) [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF]. Second, for the sim- ulation of N s independent Gaussian samples, one can take advantage of a with non-Gaussian noise multiprocessor architecture by resorting to parallel implementation allowing us to reduce the computation time.

Algorithm 11 Stochastic approach for computing the parameters of q(x).

1: for s = 1, 2, . . . , N s do 2:

Perturbation: Generate

ν s ∼ N ( u, ( Diag ( µ(z) )) 1/2 ) η s ∼ N ( 0, √ 2γ (k) Λ 1/2 k ) with γ (k) = a k /b k .

3:

Optimization: Compute n s as the minimizer of

J (v) = ∥ν s -Diag ( µ(z) ) Hv∥ 2 (Diag(µ(z))) -1 + 1 2γ (k) ∥η s -2γ (k) Λ k Dv∥ 2 Λ -1 k which is equivalent to minimizing J (v) = v ⊤ Σ -1 k+1 v -2v ⊤ z s where z s = H ⊤ ν s + D ⊤ η s .
The minimizer is computed using the conjugate gradient algorithm. (∀j ∈ {1, . . . , J}) λ

(k+1) j = 1 N s Ns ∑ s=1 ∥D j n s ∥ 2 .

Application to PG image restoration

Let us now illustrate the usefulness of our algorithm via experiments in the context of image restoration when the noise follows a mixed PG model.

Recently, there has been a growing interest for the PG noise model as it arises in many real imaging systems in astronomy [START_REF] Benvenuto | The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise[END_REF][START_REF] Snyder | Image recovery from data acquired with a charge-coupled-device camera[END_REF], medicine [START_REF] Nichols | Spatiotemporal reconstruction of list-mode PET data[END_REF], photography [START_REF] Julliand | Image noise and digital image forensics[END_REF], and biology [START_REF] Delpretti | Multiframe sure-let denoising of timelapse uorescence microscopy images[END_REF]. Numerous ecient restoration methods exist in the limit case when one neglects either the Poisson or the Gaussian component. However, such approximation may be rough, and lead to poor restoration results, especially in the context of low count imaging and/or high level electronic noise. On the opposite, restoration methods that specically address mixed PG noise remain scarce, especially when the observation operator H diers from identity. The aim of this section is to show the applicability of the proposed VBA method in this context.

Problem formulation

The vector of observations z = (z i ) 1≤i≤N ∈ R N is related to the original image x through z = y + w, (5.27) where z and w are assumed to be mutually independent random vectors and y | x ∼ P(Hx), w ∼ N (0 N , σ 2 I N ), P denoting the independent Poisson distribution, and σ 0. When w = 0 N (i.e., σ = 0), the model reduces to a pure Poisson image recovery. Otherwise, when σ > 0, the noise is a mixture of Poisson and Gaussian noise and the associated likelihood function reads [START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF]:

p(z | x) = N ∏ i=1 ( +∞ ∑ n=1 e -[Hx] i ([Hx] i ) n n! e -1 2σ 2 (z i -n) 2 √ 2πσ 2 
) .

(5.28)

The expression of the PG likelihood (5.28) involves an innite sum which makes its exact computation impossible in practice. In [START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF], the innite sum was replaced by a nite summation with bounds depending on the current estimate of x. However, this strategy implies a higher computational burden in the reconstruction process when compared with other likelihoods proposed in the literature as accurate approximations of (5.28). In [START_REF] Marnissi | Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian noise[END_REF], we have applied VBA inference techniques to the restoration of data corrupted with PG noise using the generalized Anscombe transform (GAST) likelihood [START_REF] Murtagh | Image restoration with noise suppression using a multiresolution support[END_REF][START_REF] Starck | Automatic noise estimation from the multiresolution support[END_REF]Mäkitalo andFoi, 2013, 2012]. Following these promising preliminary results, we will consider here the GAST approximation, as well as the shifted Poisson (SPoiss) [START_REF] Chakrabarti | Image restoration with signaldependent camera noise[END_REF] and the weighted least squares (WL2) [START_REF] Benvenuto | The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise[END_REF][START_REF] Li | A reweighted ℓ 2 method for image restoration with Poisson and mixed Poisson-Gaussian noise[END_REF][START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signaldependent noise[END_REF] approximations, dened respectively in lines 4, 5 and 6 of Table 5.1. In order to satisfy Assumption 2.1, we will use µ i (z i ) ≡ max {β i (z i ), ε} where ε > 0 for the GAST and the SPoiss approximations. For the WL2 approximation, we set µ i (z i ) = max

{ (z i + σ 2 ) 2 /σ 6 , ε }
. Note that in all our experiments, a data truncation is performed as a pre-processing step on the observed image y in order to satisfy the domain condition given in the fth column of We evaluate the performance of the proposed approach for the restoration of images degraded by both blur and PG noise. We consider six test images, displayed in Figure 5.1, whose intensities have been rescaled so that pixel values belong to a chosen interval [0, x + ]. Images x 1 and x 6 are HST astronomical images while images x 2 , x 3 , x 4 and x 5 correspond to the set of confocal microscopy images considered in [START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF]. These images are then articially degraded by an operator H modeling spatially invariant blur with point spread function h and by PG noise with variance σ 2 .

Comparison with MAP approaches

In this rst set of experiments, we choose a standard total variation prior, i.e. κ = 1/2 and for every pixel j ∈ {1, . . . , Q},

D j x = [ [∇ h x] j , [∇ v x] j ] ⊤ ∈ R 2
where ∇ h and ∇ v are the discrete gradients computed in the horizontal and vertical directions. As a result, J = Q and S = 2.

The goal of our experiments is twofold. First, for each likelihood, we compare the accuracy of the two proposed approximations of the covariance matrix described in Section 2.3 namely the diagonal approximation (denoted as approximation 1)

and the Monte Carlo averaging strategy (designated as approximation 2)

with dierent number of samples N s , namely N s = 160 or 640. Second, the proposed method is compared with state-of-the-art algorithms that compute the MAP estimate for the considered likelihoods. More specically, as GAST and SPoiss data delity terms are convex and Lipschitz dierentiable, we use the method presented in [START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF] where a primal-dual splitting algorithm was proposed to minimize convex penalized criteria in the context of Poisson-Gaussian image restoration. For the WL2 approximation, the corresponding data delity function is not convex so the previous method could not be applied anymore. We thus consider the variable metric forwardbackward algorithm proposed in [START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signaldependent noise[END_REF] for the minimization of penalized WL2 functionals. For the aforementioned MAP approaches, it is necessary to set the regularization parameter γ that balances the delity to the observation model and the considered prior. In this respect, we test two variants. In the rst variant, we estimate the regularization parameter using an approach based on the discrepancy principle [START_REF] Bardsley | Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation[END_REF][START_REF] Bertero | A discrepancy principle for Poisson data[END_REF][START_REF] Zanni | Numerical methods for parameter estimation in Poisson data inversion[END_REF]. In the second variant, γ is adjusted empirically to achieve the maximum SNR value, which requires the availability of the true image. stopping criterion is satised:

∥x (t+1) -x (t) ∥ ∥x (t) ∥ ε.
We have set ε = 10 -6 , as it was observed to lead to a practical stabilization in terms of restoration quality. This can be checked by inspecting Figure 5.2 illustrating the evolution of the SNR of the restored image along time, until the achievement of the stopping criterion, in the test case from Table 5.6. For the MAP-based approaches, the computational time includes the search of the regularization parameter.

One can observe that in most studied situations (see Tables 5.4-5.7), the diagonal approximation of the covariance matrix appears to give satisfactory qualitative results after a small computation time. However, in few other situations (see Tables 5.2 and5.3), it fails to capture the real qualitative structures of the covariance matrix leading to a poorer performance. The latter issue is well alleviated by using the Monte Carlo approximation where good results, in terms of image quality, are achieved within N s = 160 samples which is equivalent to a relative approximation error equal to 11%. A few improvements are observed by decreasing the approximation error to 5% using N s = 640 samples.

We also notice that the GAST approximation does not seem to be suitable for very low count images (see Tables 5.2 and 5.3), whereas, the other likelihoods lead to competitive results in all the experiments. The best trade- o between restoration quality and small computational time seems to be achieved by the WL2 approximation.

with non-Gaussian noise Finally, it can be observed that, in Tables 5.2 and 5.4, our VBA method yields comparable performance in terms of SNR to the MAP estimate when the latter is computed with the optimal regularization parameter, while our is challenging, and should be treated with specic methods that take into account the mixed noise model in an explicit manner.

Inuence of the regularization term

The versatility of the proposed VBA method allows us to consider a large variety of regularization strategies, by dening appropriate prior operators D. In the previous experiments, the TV prior has led to satisfactory results in terms of SNR, but a visual inspection of the restored versions of images x4 and x6 shows an undesirable starcasing eect. In this new set of experiments, we propose to compare these TV-based restoration results

to those obtained with priors that have been recently shown to better preserve the natural features in images. Namely, we will consider the Hessianbased penalization [START_REF] Lefkimmiatis | Hessian-based norm regularization for image restoration with biomedical applications[END_REF], the semi-local total variation (SLTV) [START_REF] Condat | Semi-local total variation for regularization of inverse problems[END_REF], and the non-local total variation (NLTV) [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF][START_REF] Chierchia | A nonlocal structure tensor based approach for multicomponent image recovery problems[END_REF]. The Hessian prior operator is given, for every j ∈ {1, . . . , Q}, by D j x = where ∇ hh , ∇ hv and ∇ vv model the second-order nite dierence operators between neighbooring pixels, so that S = 3 and J = Q. The SLTV is based on dierences of neighboring gradient values and is computed here using a 6-pixels neighborhood, hence S = 12 and J = Q. The NLTV prior operator is dened at every pixel position by a collection of weighted discrete gradient dierences operators across a large set of directions, the weights being calculated according to a rough estimate of the target image. In our experiments, 49 dierent directions are chosen and the corresponding weights are precomputed from the restored images using VBA with the TV prior and the diagonal approximation of the covariance matrix. As a result, S = 98 and J = Q in that case. The SPoiss likelihood is chosen for the data delity term as it was observed to lead to the best tradeo in terms of image quality and computational time in the previous set of tests. Table 5.8 summarizes the obtained results for all the six test images, using the dierent considered priors. Complementary to these numerical results, Figures 5.9 NLTV prior, compared to the other regularization strategies. Note that despite small dierences in SNR between the results obtained with the TV, SLTV and the Hessian regularizers, the Hessian and the SLTV appear to oer good alternatives in terms of visual quality to the TV prior for images that consist mostly of ridges and smooth transition of intensities. Indeed, it can be seen in Figure 5.10 that the smooth piecewise constant areas are better reconstructed and the sharpness of edges is better maintained using these two priors. For textured images, Figure 5.9 shows that the NLTV prior gives rise to less blurry images than the SLTV and Hessian priors and seems to reduce again the undesired staircase eect arising from TV regularization.

However, as shown in Table 5.8, the approaches based on Hessian, SLTV and NLTV take much more computation time than the TV based approach in most test cases. Our suggestion would be to use the VBA approach with the TV prior and the diagonal approximation of the covariance matrix to obtain a satisfactory result in a low computational cost, and to use VBA with NLTV prior, using the former TV-based result to approximate the NLTV weights, in order to further improve the visual quality of the restored image.

Chapter 5. A variational Bayesian approach for restoring data corrupted with non-Gaussian noise 

Conclusion

In this chapter, we have proposed a variational Bayesian approach for solving signal recovery problems in the presence of non-Gaussian noise. Our approach has two main advantages. First, the regularization parameter is tuned automatically during the recovery process. Second, the designed method is applicable to a wide range of prior distributions and data delity terms. As the posterior density of the unknown parameters is analytically intractable, the estimation problem is derived in a variational Bayesian framework where the goal is to provide a good approximation to the posterior distribution in order to compute posterior mean estimates. Moreover, a majorization technique is employed to circumvent the diculties raised by the intricate forms of the non-Gaussian likelihood and of the prior density. Simulations carried out on various images corrupted with mixed Poisson-Gaussian noise showcase the good performance of our approach compared with methods using the discrepancy principle for estimating the regularization parameter. Moreover, we propose variants of our method leading to a signicant reduction of the computational cost while maintaining a satisfactory restoration quality.

poor mixing properties of the chain when the preconditioning matrix is not well chosen. These issues are similar to problems encountered in deterministic preconditioned gradient descent optimization techniques.

This dissertation led us to develop a sampling algorithm which exploits natural connections between the deterministic inverse problem and the Bayesian statistical inverse problem to accelerate statistical sampling methods:

• Inspired from Majorize-Minimize approaches frequently used in the deterministic framework, we have proposed a preconditioned version of the Langevin Metropolis Hastings algorithm that uses adaptive preconditioning matrices derived from a quadratic tangent majorant function of the negative logarithm of the posterior distribution.

• We have proposed dierent variants of tangent majorant functions involving full, constant and diagonal curvature matrices which allows the scalability of the proposed algorithms to large size problems.

• We have demonstrated the geometric ergodicity of the proposed sampling algorithm for the class of super-exponential distributions.

• The proposed algorithm has been validated on a sparse signal deconvolution problem with a Cauchy prior. This experiment allowed us to study the impact of the preconditioning matrix on the performance of the sampling process. Results have shown that, similarly to preconditioning in optimization, using an exact full matrix is often computationally expensive in high-dimensional settings which deteriorates the eciency of the algorithm. The diagonal matrix has given the best tradeo between convergence speed and mixing properties due to the minimal cost per iteration it induces.

Gibbs sampler with auxiliary variables: When the parameter space is high dimensional, the performance of stochastic sampling algorithms is very sensitive to dependencies between parameters. For instance, this problem emerges when one aims to sample from a high dimensional Gaussian distribution whose covariance matrix does not present simple structure i.e., it is neither sparse, nor circulant, nor Toeplitz etc. In this context, we often resort to sampling algorithms based on Perturbation-Optimization rule that requires to solve at each iteration a cost function using an iterative algorithm [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF] which makes the sampling process prohibitive especially when used within a Gibbs sampler. Another challenge is the design of MH proposals that make use of information about the local geometry of the target density in order to speed up the convergence and improve mixing in the parameter space without being too computationally expensive. These two issues are mainly related to the presence of two heterogeneous sources of dependencies coming either from the prior or the likelihood in the sense that the related covariances matrices can not be diagonalized in the same domain. To overcome these diculties, we have proposed to add auxiliary variables to the model in order to dissociate the two sources of dependencies. In the new augmented space, only one source of correlation remains directly related to the target parameters, the other sources of correlations will only intervene through the auxiliary variables. Note that this strategy is highly related to half-quadratic approaches often used in optimization problems [START_REF] Allain | On global and local convergence of half-quadratic algorithms[END_REF]].

• We have described a strategy for adding auxiliary variables in a

Gaussian distribution and we have extended it to scale mixture of Gaussian models.

• In the new augmented space, the Gibbs sampler needs to draw samples from the conditional distribution of the auxiliary variables at each iteration. We have therefore given some strategies to perform this task directly depending on the properties of the covariance matrix related to the auxiliary variables.

• We have studied the eciency of the proposed approach on a problem of multichannel image recovery from its blurred and noisy version, the noise being assumed Gaussian with known variance.

The problem has been addressed in the wavelet domain, where a multivariable GMEP prior has been adopted to model the wavelet coecients at the same spatial position through all the channels allowing to exploit the spectral-intercorrelation. A separation strategy has been proposed to estimate the hyper-parameters involved in the GMEP regularization from the degraded observation of the image to be reconstructed. By adding auxiliary variables in the Gaussian data delity term, the observation matrix is no longer related directly to the image. Thanks to the separability property of the prior law (wavelets coecients belonging to different spatial positions, orientation or scales are supposed to be independent), vectors of wavelet coecients belonging to dierent wavelet subbands have been sampled independently in a parallel manner.

• We have shown the good performance of the proposed data augmentation approach when dealing with the problem of sampling • Results have shown that, in most studied situations, the diagonal approximation of the covariance matrix gives satisfactory results.

The Monte Carlo estimate ensures a better approximation of the covariance matrix but at the expense of a higher computational time. One can decrease the cost of each iteration by using a higher number of cores to perform the Perturbation-Optimization simulation tasks in a parallel manner The VBA method and the MAP approach with the best regularization parameter achieve competitive results while the proposed algorithm has the advantage to automatically tuning the regular-ization parameter from observations.

• When applied to image recovery with pure Poisson noise, the proposed VBA approach has yielded the best restoration results for moderate count images compared to the state of the art-methods but at the price of a larger computational cost.

Perspectives

As a future work, this PhD opens several perspectives both from a methodological and application viewpoints. In this section, we give dierent ongoing works and promising ideas that could complete or improve the proposed methods in this thesis.

Short-term extensions

Comparisons of VBA and MCMC approaches: In this thesis, we have evaluated the proposed VBA and MCMC algorithms through signal and image recovery problems. An ongoing work is to compare the performance of VBA and MCMC approaches, for all the experiments throughout this thesis. On the one hand, it is well known that approximating distribution within the VBA framework is tractable when the target distribution is Gaussian conditioned to some hidden variables.

Hence, VBA can be eciently applied to the restoration of the sparse signal with ST prior presented in Chapter 3 by expressing ST as a scale mixture of Gaussian with an inverse Gamma mixing distribution [START_REF] Gharsalli | Variational Bayesian approximation with scale mixture prior: a comparison between three algorithms[END_REF]. Similarly, multichannel image restoration problem presented in Chapter 4 can also be performed using VBA approach since the GMEP distribution can be written as a scale mixture of Gaussian where the mixing law is related to alpha stable distributions [START_REF] Gómez-Villegas | Multivariate exponential power distributions as mixtures of normal distributions with bayesian applications[END_REF]. On the other hand, Poisson-Gaussian image restoration with total variation prior could be accomplished using proximal type MCMC sampling algorithm proposed in [START_REF] Pereyra | Proximal Markov chain Monte Carlo algorithms[END_REF].

Other applications of the proposed methods: The proposed algorithms in this thesis have great generality and can be applied to a wide class of problems. The advantage of all these methods relies on their ability to jointly estimate the target signal of interest together with the unknown regularization and acquisition parameters. For instance, signal/image blind deconvolution can be further investigated using MCMC and VBA algorithms proposed in Chapters 5 and 3 respectively by assigning a prior probability to the blur kernel to be estimated [START_REF] Babacan | Bayesian blind deconvolution with general sparse image priors[END_REF] and simulating from (respectively approximating) the resulting conditional distribution. Moreover, the Gibbs sampling algorithms with auxiliary variables proposed in Chapter 4, can also be applied to super-resolution problems involving tight/sparse decimation matrices [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF], image processing using redundant tight frames [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF], image segmentation [START_REF] Ayasso | Joint NDT image restoration and segmentation using GaussMarkovPotts prior models and variational Bayesian computation[END_REF], image reconstruction etc.

Advanced VBA approaches: The objective of VBA approaches is to nd ogy [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF][START_REF] Zheng | Ecient variational Bayesian approximation method based on subspace optimization[END_REF]. In future work, we would like to improve the algorithm proposed in Chapter 5 by using these advanced iterative algorithms which may speed up their convergence and bring signicant computational savings when tackling large dimensional problems. Furthermore, the majorization technique that we have proposed to address the problem of the intricate form of the prior law could be further applied to VBA methods based on Bethe approaches [START_REF] Yedidia | Constructing freeenergy approximations and generalized belief propagation algorithms[END_REF].

Preconditioned MCMC algorithms: The proposed preconditioning strategy in Chapter 3 can be generalized to other sampling algorithms that are based on rst order derivative information for dierentiable laws. For instance, Hamiltonian Monte Carlo (HMC) are alternatives to Langevin type algorithms that propose samples based on physical interpretation of the target distribution. In addition to the variables of interest, they introduce independent auxiliary variables p ∈ R Q , that follow a zero-mean Gaussian distribution with covariance matrix M. In HMC algorithms, the minus logarithm of the joint posterior distribution J (x, p) is interpreted as the total energy of the system with position variable x and momentum variables p [START_REF] Neal | MCMC using Hamiltonian dynamics[END_REF]. This sampling algorithm is then derived using the analogy with the kinetic energy conservation in physics and the leapfrog discretization method [START_REF] Leimkuhler | Simulating Hamiltonian dynamics[END_REF][START_REF] Neal | MCMC using Hamiltonian dynamics[END_REF]. Trajectories incorporating information from the target distribution can be simulated by choosing a position dependent mass matrix i.e, M = M(x) that takes into account the geometry of the target density [START_REF] Betancourt | A general metric for Riemannian manifold Hamiltonian Monte Carlo[END_REF]. Standard choices include the Hessian matrix proposed in [START_REF] Zhang | Quasi-Newton methods for Markov chain Monte Carlo[END_REF] and the Fisher matrix proposed in [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF]. Alternatively, we propose to use the curvature matrix constructed by Majorize-Minimize strategy as the mass matrix in HMC algorithms.

Future works and open problems

For tighter proposals and cheaper metrics calculations: The computational cost and the accuracy of the proposed algorithm in Chapter 3 depend on the curvature matrix of the Gaussian proposal density.

In this context, there are two possible directions for future works.

From the theoretical viewpoint, an interesting perspective is to see how to build new quadratic tangent majorant functions using scale matrices that provide tighter local approximations of the target law curvature than the diagonal matrix, while being simple to manipulate.

Some cheap forms may be investigated such as, block diagonal, sparse, toeplitz matrices etc. In the second direction, rather than xing the same proposal in the whole algorithm, methods for automatic selection of the curvature matrix form based on the local curvature of the target law in each iteration, need to be developed.

Heavy tailed MH proposals: MH algorithms with Gaussian proposals based on local moves such as the Gaussian Random Walk and Langevintype algorithms often exhibit poor performance on certain types of target distributions. For instance, their geometric ergodicity has been only demonstrated for super-exponential laws [START_REF] Jarner | Geometric ergodicity of metropolis algorithms[END_REF][START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF][START_REF] Roberts | Langevin diusions and Metropolis-Hastings algorithms[END_REF][START_REF] Schreck | A shrinkagethresholding Metropolis adjusted Langevin algorithm for Bayesian variable selection[END_REF]. Hence, when the target distribution are heavy-tailed, these algorithms show some diculties to reach convergence at nite time, and/or to explore eciently the tails of the target distribution.

In fact, in such challenging frameworks, a Gaussian proposal is not a judicious choice due to its short tails. To overcome these problems, one may resort instead to proposals that have heavier tails than Gaussian.

This approach has been already investigated in [START_REF] Jarner | Convergence of Heavy-tailed Monte Carlo Markov Chain Algorithms[END_REF]. In future work, one appealing idea would be the selection of heavy tailed proposals based on non-quadratic Majorize-Minimize approaches.

More sophisticated prior models: The choice of more sophisticated prior distributions could greatly improve the restoration quality in practice.

For example, it would be preferable to design models that enforce not only the spectral correlation of multispectral images but also other important structural properties such as spatial image correlation, dependencies between multiscale subbands with same orientation etc. One goal could be to extend the proposed algorithms in Chapter 4 to manage the dierent correlations presented in the same prior distribution,
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 21 Figure 2.1: Inuence of dierent sources of degradation.
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 22 Figure 2.2: The three classical cost functions: quadratic (blue), absolute (green) and Hit-or-miss for δ = 1 (purple).
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 23 Figure 2.3: GG density plot for dierent values of β and for γ = 1.

Figure 2 . 4 :

 24 Figure 2.4: ST density plot for dierent values of ν and for γ = 1.
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 21 regularization allowing the solution to take few high values. As such, edges in the image corresponding to the relevant gradient values are less aected with the ℓ Original image. Location i > Fragment of the original image. Green rectangles highlight horizontal neighbors. Yellow rectangles highlight vertical neighbors.
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 25 Figure 2.5: Illustration of concept of the gradient operator.
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 26 Figure 2.6: Plot of f (t) = |t| p for 0 p < 2.

  Figure 2.7 shows a two levels decomposition of the Barbara image using Symmlet wavelet basis of order 8. It can be noted that most of the energy in each of the details subbands is concentrated in areas corresponding to edges in the original image. Several researches have been devoted to improve the eciency of
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 27 Figure 2.7: Two decomposition levels of Barbara image using Symmlet wavelet basis of order 8. (a) denotes appoximation subband, (b) and (e) are the horizontal details, (c) and (f ) are the diagonal details, (d) and (g) are the vertical details.
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 28 Figure 2.8: Histograms of wavelet coecients.
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 29 Figure 2.9: Hierarchical Bayesian model.

  Then, the smaller c is, the faster is the sampling algorithm. In the following, we show an example of application of the rejection sampling algorithm.Example 3.1 Sampling from a Beta distribution (B) using rejection sampling algorithm:The density of the B distribution is dened as follows:

  57) where a and b are positive and β(a, b) is the beta function. Assume that a > 1 and b > 1. The mean of this distribution is b a + b and the mode is b

  chain with transition probability T has invariant (or stationary) distribution F * of density f * if
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 210 Figure 2.10: Trace Sample, histograms and sample autocorrelation. The left column corresponds to the Rejection Sampling algorithm, the right one to independent MH algorithm with Uniform proposal.
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 2 Figure 2.11: Trace Sample, histograms and sample autocorrelation using a random walk. The left column corresponds to the uniform proposal with δ = 0.1, the right one to the Gaussian proposal with ε = 0.5.

Figure 2 .

 2 Figure 2.12: Trace Sample, histograms and sample autocorrelation using Gaussian Random Walk. The left column corresponds to ε = 0.001, the right one ε = 0.06.

  of the target distribution to accelerate the exploration of regions with high probability values. In this work, we are interested in proposals based on the Euler discretization of the Langevin stochastic dierential equation where the drift term accounts for the slope and curvature of the target law. In particular, we propose a preconditioned version of the standard Metropolis Hastings adapted Langevin algorithm using an adaptive matrix based on a Majorize-Minimize strategy.

  hand, by using(3.21) and the triangle inequality, we have ∥y -x∥ ∥y -µ(x)∥ + ∥µ(x) -x∥,

as depicted in Figure 3 . 3 .Figure 3 . 2 :

 3332 Figure 3.2: Original signal.
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 333 Figure 3.3: Degraded signal (top). Blurring kernel (bottom).
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 34 Figure 3.4: Error xz (top). Error xx (bottom).
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 35 Figure 3.5: Convergence speed of MALA, 3MH -Q 1 , 3MH -Q 2 and 3MH -Q 3 .
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 2 in this example. The addition of an adaptive preconditioning matrix in MALA allows us to reach areas of high probability in fewer number of iterations and increase the MSJ which indicates better mixing of the Markov chain in convergence. Nevertheless, the use of the matrix Q 1 at each iteration becomes more expensive as the problem dimension increases which deteriorates the eciency of the algorithm. Thus, the choice of the diagonal adaptive matrix Q 3 appears to achieve the best compromise between these dierent algorithms due to the low complexity that it induces at each iteration. It allows to reach stability much faster than the other algorithms while achieving mixing properties comparable to MALA at convergence.

  multichannel image recovery in the presence of Gaussian noise Multichannel Images (MCI) are widely used in many application areas such as medical imaging and remote sensing. The multiple components are obtained by imaging a single scene by sensors operating in dierent spectral ranges. For instance, about a dozen of radiometers may be on-board remote sensing satellites. Most of times, MCI are corrupted with noise and blurred during the acquisition process and transmission steps. Therefore, restoring
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 341 Figure 4.1: Vector of wavelet coecients in a multiscale wavelet basis decomposition.

  correlation and weights in all subbands i.e., R = R m and n m = n for all 3. Application to multichannel image recovery in the presence of Gaussian noise 101 m ∈ {1, . . . , M }. Furthermore, let us suppose that n is known. We have then Θ = {R, γ 1 , . . . , γ M }.
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 42 Figure 4.2: From top to bottom: Original images-Degraded images-Restored images.
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 43 Figure 4.3: Trace plot of the scale parameter in subband m = 1 as time (horizontal subband in the rst level of decomposition).
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  Application to image recovery in the presence of two terms mixed Gaussian noise 4.1 Problem formulation

Figure 4 . 4 :

 44 Figure 4.4: Hierarchical model for image deblurring under two term mixed Gaussian noise.
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 421 Sampling from the posterior distribution of xIn the Gibbs algorithm, we need to draw samples from the multivariate Gaussian distribution of parameters (4.84) and (4.85) changing along the sampling iterations. In particular, even if H and L are circulant matrices, sampling cannot be done in the Fourier domain because of the presence of D. In the sequel, we will use the proposed method in Section 2.3 to sample from this multivariate Gaussian distribution. More specically, we will test two variants. In the rst variant, we take advantage of the fact that L and H are diagonalizable in the Fourier domain and we propose to add the auxiliary variable to the data delity term in order to get rid of the coupling caused by D when passing to the Fourier domain. In the second variant, we introduce auxiliary variables for both the data delity and the prior terms in order to eliminate the coupling eects induced by all linear operators in the posterior distribution of the target image.First method: We introduce the variable v whose conditional distribution given the set of main parameters of the problem, is the Gaussian and 0 < ϵ < 1. In practice, we set ϵ = 0.99.It follows that the new conditional distribution of the target signal is
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 45 Figure 4.5: Visual results. From top to bottom: Original images. Degraded images. Restored images.
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 49 Figure 4.9: Chains of κ 2 as iteration/time.
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 51 Figure 5.1: Original images.
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 552 Figure 5.2: Evolution of SNR with respect to time for image x5 using dierent data-delity terms and covariance approximations.
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 55 Figure 5.5: Restoration results for image x3 using SPoiss approximation.
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 3 Figure 5.6: Restoration results for image x4 using GAST approximation.

  Figure 5.7: Restoration results for image x5 using WL2 approximation.

  Figure 5.8: Restoration results for image x6 using WL2 approximation.

  from high-dimensional Gaussian distribution. Auxiliary variables can be added either to the prior model or the data delity term or to both of them depending on the properties of the related covariance matrices. The experimental results illustrate, through an example of an image recovery problem under mixed Gaussian noise, the eectiveness of our proposed methods compared to Perturbation-Optimization approaches combined with a Gibbs sampling algorithm.VBA approach for image recovery: The goal of VBA is to infer the posterior distribution of a set of parameters given observed data by seeking for a separable approximating distribution which is as close as possible to the true posterior distribution in terms of Kullback-Leibler divergence. In many instances, expressions of these approximate distributions are analytically intractable, especially when it is not possible to directly calculate expectation of the log joint likelihood with respect to the factorized approximate distribution. This is the case for example of non-Gaussian and signal dependent noise models. By resorting to majorization strategies based on half-quadratic tools, we have constructed a lower bound on the Kullback-Leibler divergence that we want to minimize. Approximate distribution has been derived by making this lower-bound as close as possible to the Kullback-Leibler divergence using a coordinate-ascent iterative algorithm. In particular, the approximate distribution of the target image is a Gaussian one, whose covariance matrix has been approximated either with a diagonal one or with a Monte Carlo estimate using a Perturbation-Optimization simulation algorithm. We have illustrated the usefulness of our algorithm via experiments in the context of image restoration when the noise follows a mixed Poisson-Gaussian model.

•

  We have compared the restoration results of our VBA algorithm to those obtained by optimization algorithms computing the MAP estimate where the regularization parameter is either estimated using a discrepancy principle or xed manually according to the ground truth. Results have shown that for most tested scenarii, discrepancy based approaches perform relatively poorly compared with the other methods, especially in the case of low count images.

a

  tractable probability density function achieving the minimal Kullback-Leibler divergence according to the true density which reduces to solving a convex innite-dimensional optimization problem. The proposed VBA algorithm in Chapter 5 computes the solution of this problem using a coordinate ascent iterative algorithm which updates at each iteration one component of the separable distribution while holding the remaining ones xed. However, other optimization algorithms have been recently proposed by extending gradient-type iterative algorithms into the space of probability densities involved in the VBA methodol-
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  is the observation matrix describing the linear degradation and D

	is the model expressing nonlinear degradation and measurement errors called
	noise. Such model arises in several signal processing applications (deblur-
	ring, denoising, super resolution, reconstruction, segmentation, compressive
	sensing, inpainting) with appropriate denitions of the operator H and the
	model D.
	For many applications such as optical remote sensing imaging and mi-
	croscopy, acquisition sensors generally suer from internal uctuations re-
	ferred to an electrical or thermal noise. This type of noise is additive, inde-
	pendent of the signal of interest, and it can be modeled by a Gaussian dis-

tribution. Moreover, signals can be aected by blur resulting from a motion between the scene and the camera, a defocus of an optical imaging system, sensor imperfections and atmospheric conditions. Thereby, the observation model (2.1) reduces to the following linear additive noise model:

Table 2 .

 2 1: Comparison of the presented Bayesian methods to compute the MMSE estimator.

	Stochastic simulation methods	Approximation methods
	(in particular MCMC algorithms)	(in particular VBA algorithm)

  Remark 3.1 If (ψ s ) s∈{1,...,S} and Φ are continuous and take nite values,

	then Assumption 3.1 holds.						
	Assumption 3.2 p(x|z) is the density of a super-exponential distribution
	that is p(x|z) is positive and has continuous rst derivatives such that
	lim ∥x∥→+∞	⟨	x ∥x∥	⟩ , ∇ log p(x|z)	= -∞.	(3.22)
	Assumption 3.3 We have						
	lim ∥x∥→	sup +∞	⟨	x ∥x∥	,	∇ log p(x|z) ∥∇ log p(x|z)∥	⟩	< 0.

Assumption 3.1 p(.|z) is continuous and p(x|z) > 0, for every x ∈ R Q .

(3.23) Remark 3.2 In the particular case when Φ(.) = ∥.∥ 2 in (3.12), Assumptions 3.2 and 3.3 are satised if one of the following properties holds: • H is injective, for example H = I Q which is the case for denoising problems, • There exists s 0 ∈ {1, . . . , S} such that Ker(H) ∩ Ker(V s 0 ) = {0 Q }, lim t→+∞ ψs 0 (t) = +∞, for every s ∈ {1, . . . , S} \ {s 0 }, we have lim t→+∞ ψs (t) ψs 0 (t) < +∞.
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 3 1: Mixing results for the dierent proposed algorithms. First row:

	Estimates of the mean square jump in stationarity. Second row: Time per
	iteration in stationarity. Third row: Estimates of the mean square jump per
	second in stationarity. Fourth row: Eciency relatively to MALA.
		MALA	3MH-Q 1	3MH-Q 2	3MH-Q 3
	M SJ	1.40 e-5	8.14 e-5	1.39 e-5	2.32 e-5
	T (s.)	3.88 e-4	9.40 e-2	1.19 e-3	5.95 e-4
	M SJ/T	3.60 e-2	8.65 e-4	1.17 e-2	3.89 e-2
	Eciency	1	0.02	0.32	1.08
	and MSJ. This can be explained by the low dispersion of the eigenvalues of

  Step 3 in Algorithm 5 can be more easily implemented in the transform domain where H and V are diagonalized (see Section 4 for example).Alternative II: Eliminate the coupling induced by H ⊤ ΛHIn most real problems, H and V have dierent properties. While H almost represents a blur, a projection or a decimation matrix, V may model a wavelet transform, discrete dierences, which makes the posterior covariance matrix have a complicated form. In such cases, one can eliminate the source of correlations related to x through H ⊤ ΛH+A ⊤ C -1 A, by setting Y =

	) ∼ P x|v (t+1) ,z Note that, minimizing (4.16) can be seen as a restoration problem with 4: end for µ I Q , an uncorrelated noise of variance µ. 1 so that A and C satisfy

  .40) Then, sampling from the target signal can be performed by passing to the transform domain where H and G x are diagonalizable (a.e., Fourier domain when H and G x are circulant) . Similarly, if it is possible to write G x = V ⊤ ΩV, so as H and V can be diagonalized in the same domain, we introduce an extra auxiliary variable in the prior term to eliminate the coupling introduced by Ω when passing to the transform domain. Let µ 2 > 0 such that µ 2 ∥D∥ < 1 and

Table 4 .

 4 1: Restoration results.

			b = 1	b = 2	b = 3	b = 4	b = 5	b = 6	Average
	Initial	BSNR PSNR SNR	24.27 25.47 11.65	30.28 21.18 13.23	31.73 19.79 13.32	28.92 22.36 13.06	26.93 23.01 11.81	22.97 26.93 11.77	27.52 23.12 12.47
		SSIM	0.6203	0.5697	0.5692	0.5844	0.5558	0.6256	0.5875
	MMSE	BSNR PSNR SNR	32.04 28.63 14.82	38.33 25.39 17.50	39.21 23.98 17.60	38.33 26.90 17.66	35.15 27.25 16.12	34.28 31.47 16.38	36.22 27.27 16.68
		SSIM	0.7756	0.8226	0.8156	0.8367	0.8210	0.8632	0.8225

Table 4 .

 4 2: Mean and variance estimates of hyperparameters.

			RW	MALA	3MH
	γ1	Mean	0.67	0.67	0.67
	(γ 1 =0.71)	Std.	(1.63 e-3)	(1.29 e-3)	(1.48 e-3)
	γ2	Mean	0.83	0.83	0.83
	(γ 2 =0.99)	Std.	(1.92 e-3)	(2.39 e-3)	(2.01 e-3)
	γ3	Mean	0.62	0.61	0.61
	(γ 3 =0.72)	Std.	(1.33 e-3)	(1.23 e-3)	(1.28 e-3)
	γ4	Mean	0.24	0.24	0.24
	(γ 4 =0.0.24)	Std.	(1.30 e-3)	(1.39 e-3)	(1.34 e-3)
	γ5	Mean	0.37	0.37	0.37
	(γ 5 =0.40)	Std.	(2.10 e-3)	(2.42 e-3)	(2.35 e-3)
	γ6	Mean	0.21	0.21	0.21
	(γ 6 =0.22)	Std.	(1.19 e-3)	(1.25 e-3)	(1.20 e-3)
	γ7	Mean	0.08	0.08	0.08
	(γ 7 =0.0.07)	Std.	(0.91 e-3)	(1.08 e-3)	(1 e-3)
	γ8	Mean	0.13	0.13	0.13
	(γ 8 =0.13)	Std.	(1.60 e-3)	(1.64 e-3)	(1.62 e-3)
	γ9	Mean	0.07	0.07	0.07
	(γ 9 =0.07)	Std.	(0.83 e-3)	(1 e-3)	(0.88 e-3)
	γ 1 0	Mean	7.80 e-4	7.87 e-4	7.86 e-4
	(γ 10 =7.44 e-4)	Std.	(1.34 e-5)	(2.12 e-5)	(1.66 e-5)
	det( R)	Mean	1.89 e-8	2.10 e-8	2.08 e-8
	det(R)= 5.79 e-8	Std.	(9.96 e-10)	( 2.24 e-9)	( 1.72 e-9)

Table 4 . 3 :

 43 Results for the dierent proposed algorithms. First row: Estimates of the mean square jump in stationarity. Second row: Time per iteration. Third row: Estimates of the mean square jump per second in stationarity. Fourth row: Relative eciency compared to RW.

		RW	MALA	3MH
	M SJ	0.74	1.14	2.19
	T (s.)	0.16	0.18	0.22
	M SJ/T	4.65	6.01	9.85
	Eciency	1	1.29	2.11
	It is worth noting that for larger dimensional problems (i.e., larger values
	of B), one could further improve the eciency of the proposed algorithm by
	exploiting the parallel structure of the sampling tasks.

Table 4 .

 4 4: Mean and variance estimates.

									RJPO				AuxV1		AuxV2
					γ		Mean	4.78 e-3			4.84 e-3		4.90 e-3
		(γ =5.30 e-3)	Std.	(1.39 e-4)			(1.25 e-4)	(9.01 e-5)
					κ1		Mean	12.97					12.98			12.98
				(κ 1 =13)	Std.	( 4.49 e-2)		(4.82 e-2)	(4.91 e-2)
					κ2		Mean	39.78					39.77			39.80
				(κ 1 =40)	Std.	(0.13)					(0.14)		(0.13)
					β		Mean	0.35					0.35			0.35
				(β=0.35)	Std.	(2.40 e-3)			(2.71 e-3)	( 2.72 e-3)
					xi		Mean	143.44					143.19		145.91
				(x i =140)	Std.	(10.72)				(11.29)		(9.92)
			6	x 10 -3							6	x 10 -3					
			5								5						
			4								4						
	γ (t)	3					RJPO	γ (t)	3							RJPO
								AuxV1										AuxV1
			2					AuxV2			2							AuxV2
			1								1						
			0	0	1000	2000	3000	4000	5000		0	0	500	1000	1500	2000	2500	3000	3500	4000
						Iterations								Time (s.)	
					Figure 4.6: Chains of γ as iteration/time.
		0.5							0.5						
		0.48							0.48						
		0.46							0.46						
		0.44					RJPO		0.44						
	β (t)	0.4 0.42					AuxV1 AuxV2	β (t)	0.42 0.4							RJPO AuxV1
		0.38							0.38							AuxV2
		0.36							0.36						
		0.34	0	500		1000		1500	0.34	0	100	200	300	400	500	600	700	800
						Iterations								Time (s.)	
					Figure 4.7: Chains of β as iteration/time.
	Similarly to Section 3, we also report comparisons in terms of mixing
	properties in convergence. Table 4.5 shows comparisons results in terms
	of time per iteration after the burn-in period (time needed to produce one
	sample), mean square jump in stationarity, and eciency with respect to
	RJPO.																
	The speed improvement of the proposed algorithms comes with a deterio-
	ration of the quality of the generated samples due to the correlation existing
	between successive samples. For instance, RJPO algorithm gives the best

Table 4 .

 4 5: Mixing results for the dierent proposed algorithms. First row:

	Time per iteration. Second row: Estimates of the mean square jump in
	stationarity. Third row: Estimates of the mean square jump per second in
	stationarity. Fourth row: Relative eciency to RJPO.
		RJPO	AuxV1	AuxV2
	T (s.)	5.27	0.13	0.12
	M SJ	15.41	14.83	4.84
	M SJ/T	2.92	114.07	40.33
	Eciency	1	39	13.79
	results in terms of mean square jump in stationary. However, the generation
	of every sample is costly which deteriorates the eciency of the algorithm
	for large scale problems compared with AuxV2. The best trade-o between
	convergence speed and mixing properties of the chain is achieved by the
	proposed algorithm AuxV1.			
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 5 2: Restoration results for image x 1 with x + = 10 and σ 2 = 4.

	Uniform kernel with size 5 × 5. Initial SNR= -2.55 dB.	
				GAST	SPoiss	WL2
			SNR	8.13	9.36	9.90
		Approx. 1	SSIM	0.3987	0.4790	0.5140
			Time (s.)	55	62	67
	VBA	Approx. 2 N s = 160	SNR SSIM Time (s.)	9.57 0.5260 688	10.17 0.6017 601	10.22 0.6058 1011
		Approx. 2 N s = 640	SNR SSIM Time (s.)	9.61 0.5308 3606	10.20 0.6088 3507	10.27 0.6112 3510
	MAP	Discrepancy principle Best parameter	SNR SSIM Time (s.) SNR SSIM	-1.13 0.0980 3326 9.46 0.5078	5.24 0.2961 2215 10.40 0.6029	10.17 0.6131 3053 10.39 0.5920
			Time (s.)	4380	2560	13740

Table 5 .

 5 3: Restoration results for the image x 2 , x + = 12 and σ 2 = 9.

	Gaussian kernel with size 25 × 25, std 1.6. Initial SNR= 2.21 dB.
				GAST	SPoiss	WL2
			SNR	13.97	15.19	16.41
		Approx. 1	SSIM	0.3544	0.4167	0.4959
			Time (s.)	58	64	70
	VBA	Approx. 2 N s = 160	SNR SSIM Time (s.)	18.05 0.6664 524	19.07 0.6930 498	19.11 0.7066 491
		Approx. 2 N s = 640	SNR SSIM Time (s.)	18.11 0.6778 2048	19.12 0.7034 1828	19.13 0.7152 1735
	MAP	Discrepancy principle Best parameter	SNR SSIM Time (s.) SNR SSIM	16.52 0.5484 594 17.83 0.6519	17.41 0.7570 583 18.73 0.6646	18.09 0.6732 2286 19.09 0.6702
			Time (s.)	674	705	4164

Table 5 .

 5 4: Restoration results for the image x 3 with x + = 15 and σ 2 = 9.

	Uniform kernel with size 5 × 5. Initial SNR= 3.14 dB.	
				GAST	SPoiss	WL2
			SNR	11.42	11.94	12.25
		Approx. 1	SSIM	0.4184	0.4403	0.4588
			Time (s.)	45	47	53
	VBA	Approx. 2 N s = 160	SNR SSIM Time (s.)	12.04 0.4555 328	12.31 0.4624 332	12.28 0.4627 396
		Approx.2 N s = 640	SNR SSIM Time (s.)	12.09 0.4617 1965	12.36 0.4684 2051	12.33 0.4683 2019
	MAP	Discrepancy principle Best parameter	SNR SSIM Time (s.) SNR SSIM	12.08 0.4523 6252 12.17 0.4531	12.38 0.4582 3865 12.45 0.4576	12.08 0.4314 1929 12.37 0.4565
			Time (s.)	3348	2441	2525

Table 5 .

 5 5: Restoration results for the image x 4 with x + = 20 and σ 2 = 9.Uniform kernel with size 5 × 5. Initial SNR= 7.64 dB.

	GAST	SPoiss	WL2

Table 5 .

 5 6: Restoration results for image x 5 with x + = 20 and σ 2 = 9.

	Gaussian kernel with size 7 × 7, std 1. Initial SNR= 8.55 dB.	
				GAST	SPoiss	WL2
			SNR	19.5	20.23	20.71
		Approx. 1	SSIM	0.6649	0.7135	0.7793
			Time (s.)	16	17	34
	VBA	Approx. 2 N s = 160	SNR SSIM Time (s.)	20.27 0.7473 61	20.59 0.7660 64	20.56 0.7877 94
		Approx.2 N s = 640	SNR SSIM Time (s.)	20.35 0.7563 195	20.67 0.7798 197	20.64 0.7989 272
	MAP	Discrepancy principle Best parameter	SNR SSIM Time (s.) SNR SSIM	19.39 0.7458 717 20.15 0.7535	19.50 0.7550 1201 20.41 0.7594	18.70 0.7448 1087 20.44 0.7628
			Time (s.)	559	125	253

Table 5 .

 5 7: Restoration results for the image x 6 with x + = 100 and σ 2 = 36.Comparisons with image deblurring methods dedicated to a pure Poisson noise model have also been conducted. However, in our examples, they were observed to lead to poor results in terms of restoration quality, and to present a high computational time. For instance, the application of the proximal method from[START_REF] Pustelnik | Parallel proximal algorithm for image restoration using hybrid regularization[END_REF] using a TV prior and an empirical search for the regularization parameter, leads to an image with SNR equal to 12.88 dB (computation time: 3489 s.) on the test problem from Table5.5, and a SNR of 18.37 dB (computation time: 986 s.) for the example from Table5.6. The Plug and Play ADMM strategy from[START_REF] Rond | Poisson inverse problems by the Plug-and-Play scheme[END_REF] also leads to unsatisfactory results with a nal SNR of 9.11 dB (computation time: 1618 s.) and 10.31 dB (computation time: 204 s.) for the examples from Table5.5 and Table 5.6, respectively. These numerical tests clearly highlight that image restoration in the presence of Poisson-Gaussian noise with non-Gaussian noise = Degraded image with SNR= 3.14 dB (Uniform kernel 5 × 5, x + = 15 and σ 2 = 9). > Restored image with VBA approach using the Monte Carlo approximation with 640 samples: SNR= 12.36 dB

	Uniform kernel with size 3 × 3. Initial SNR= 10.68 dB.	
				GAST	SPoiss	WL2
			SNR	14.17	14.13	13.90
		Approx. 1	SSIM	0.7655	0.7647	0.7569
			Time (s.)	9	8	26
	VBA	Approx.2 N s = 160	SNR SSIM Time (s.)	14.1 0.7605 104	14.13 0.7619 148	14.09 0.7620 246
		Approx. 2 N s = 640	SNR SSIM Time (s.)	14.16 0.7639 332	14.19 0.7650 479	14.16 0.7658 913
	MAP	Discrepancy principle Best parameter	SNR SSIM Time (s.) SNR SSIM	13.23 0.7104 2796 13.77 0.7565	13.29 0.7126 4900 13.79 0.7570	13.32 0.7117 1045 13.84 0.7591
			Time (s.)	10084	10005	821
	approach requires less time to converge. In the other experiments, our ap-

proach leads to the best qualitative results. For instance, in Table

5

.3, the gain in terms of SNR reaches up to 0.2 dB compared with the MAP estimator = Degraded image with SNR= 2.21 dB (Gaussian kernel 25 × 25, std 1.6, x + = 12 and σ 2 = 9). > Restored image with VBA approach using the Monte Carlo approximation with 640 samples: SNR= 19.12 dB ? Restored image with discrepancy principle: SNR= 17.41 dB @ Restored image with best parameter: SNR= 18.73 dB Figure 5.4: Restoration results for image x2 using SPoiss approximation. be further improved by using parallel implementation with more than 16 cores for the Monte Carlo approximation of the covariance matrix allowing either generating a higher number of samples (i.e. an improved estimation error) or a reduction of the computation time. ? Restored image with discrepancy principle: SNR= 12.38 dB @ Restored image with best parameter: SNR= 12.45 dB

Table 5 .

 5 8: Restoration results for the considered test images using the SPoiss likelihood and dierent regularization functions.

			x 1	x 2	x 3	x 4	x 5	x 6
		SNR	10.20	19.12	12.36	13.90	20.67	14.19
	TV	SSIM	0.6088	0.6930	0.4684	0.5769	0.7790	0.7650
		Time (s.)	3507	1828	2051	34	184	479
		SNR	10.17	19.41	12.21	13.56	20.57	14.05
	Hessian	SSIM	0.6016	0.7300	0.4618	0.5501	0.8392	0.7643
		Time (s.)	8600	5404	6974	5058	744	1332
		SNR	10.32	19.26	12.26	13.53	20.62	13.93
	SLTV	SSIM	0.6006	0.7189	0.4656	0.5478	0.8368	0.7578
		Time (s.)	6359	2923	3497	1003	375	738
		SNR	10.35	19.10	12.46	14.09	22.89	13.95
	NLTV	SSIM	0.4644	0.7075	0.4704	0.5812	0.7972	0.7530
		Time (s.)						

Table 5 .

 5 9: Restoration results for the test image x 2 under pure Poisson noise (Anscombe transform likelihood and NLTV prior).

			Plug-and-Play	PPXA-TV	Proposed
			Discrepancy principle	Best parameter	Discrepancy principle	Best parameter	
		SNR	15.75	19.96	17.36	17.43	14.24
	x + = 3 Initial SNR=1.37 dB	SSIM	0.4789	0.7247	0.6090	0.6242	0.7121
		Time	1883	1172	7430	4421	24135
		SNR	16.21	20.56	18.05	18.06	16.44
	x + = 5 Initial SNR=3.58 dB	SSIM	0.4632	0.7491	0.6440	0.6486	0.7372
		Time	2251	961	7824	4103	12629
		SNR	16.97	17.03	10.39	19.13	18.40
	x + = 10 Initial SNR=6.96 dB	SSIM	0.7430	0.7434	0.5775	0.6739	0.7522
		Time	3217	316	14857	2603	11349
		SNR	14.33	14.65	15.84	20.00	19.79
	x + = 15 Initial SNR=8.57 dB	SSIM	0.7620	0.7607	0.6705	0.6949	0.7634
		Time	1959	1238	7824	2676	21499
		SNR	11.83	12.40	18.15	20.13	20.24
	x + = 20 Initial SNR=9.76 dB	SSIM	0.7612	0.7538	0.6992	0.7073	0.7696
		Time	1557	558	3718	2158	30885
		SNR	10.04	10.10	19.95	20.66	21.08
	x + = 30 Initial SNR=11.44 dB	SSIM	0.6661	0.7320	0.7247	0.7212	0.8709
		Time	6211	568	6121	2233	55284

Table 5 .

 5 10: Restoration results for the test image x 5 under pure Poisson noise (Anscombe transform likelihood and NLTV prior).

			Plug-and-Play	PPXA-TV	Proposed
			Discrepancy principle	Best parameter	Discrepancy principle	Best parameter	
		SNR	17.36	19.71	14.91	16.47	14.89
	x + = 3 Initial SNR=3.14 dB	SSIM	0.7307	0.7749	0.5993	0.6201	0.7940
		Time	1101	782	7529	1617	3223
		SNR	19.62	19.94	17.06	17.28	17.21
	x + = 5 Initial SNR=5.27 dB	SSIM	0.7952	0.7930	0.6650	0.6555	0.8172
		Time	950	518	6861	1707	3021
		SNR	12.30	14.05	12.44	18.64	20.9
	x + = 10 Initial SNR=8.52 dB	SSIM	0.7703	0.7553	0.6123	0.6842	0.8406
		Time	996	316	2482	922	5523
		SNR	11.68	12.00	15.43	19.03	21.06
	x + = 15 Initial SNR=11.23 dB	SSIM	0.7834	0.7950	0.6887	0.7256	0.8626
		Time	926	242	1120	1230	9423
		SNR	9.24	10.25	18.27	19.66	21.90
	x + = 20 Initial SNR=12.23 dB	SSIM	0.7303	0.7405	0.7363	0.7419	0.8553
		Time	1228	203	1106	920	12459
		SNR	8.20	10.10	19.74	19.85	22.76
	x + = 30 Initial SNR=13.66 dB	SSIM	0.7363	0.7320	0.7586	0.7555	0.8709
		Time	1271	568	1601	938	22888

Again, improper prior laws are tolerated provided that the resulting posterior distribution is proper.

In the following, when not mentioned, the Gaussian law can be degenerate that is, the precision matrix is semi-denite positive but not full rank. In this case, (• • •) -1 denotes the pseudo inverse.

https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html

of the chain and highly correlated samples [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF].

The performance of MALA algorithm may be improved by introducing a scale matrix A [START_REF] Roberts | Langevin diusions and Metropolis-Hastings algorithms[END_REF]. Some approaches have been proposed to accelerate the algorithm by preconditioning the proposal density with a constant scale matrix [START_REF] Stuart | Conditional path sampling of SDEs and the Langevin MCMC method[END_REF]. Such algorithms propose samples according to the following scheme:

1) Sample (κ 21 ) (t+1) from P κ 2 1 |x (t) ,σ (t) ,β (t) ,z .

2) Sample (κ 2 2 ) (t+1) from P κ 2 2 |x (t) ,σ (t) ,β (t) ,z .

3) Sample β (t+1) from P β|x (t) ,σ (t) ,(κ 2 1 ) (t+1) ,(κ 22 ) (t+1) ,z .

4) Sample γ (t+1) from P γ|x (t) ,z .

5) Sample σ (t+1) from P σ|x (t) ,β (t+1) ,(κ 2 1 ) (t+1) ,(κ 22 ) (t+1) ,z .

6) Set µ (t+1) = ϵ min ( σ

and sample v (t+1) from P v|x (t) ,σ (t+1) ,z . 7) Sample x (t+1) from P x|σ (t+1) ,γ (t+1) ,v (t+1) ,z .

In the following, this algorithm will be denoted as AuxV1.

Second method: We introduce two independent auxiliary variables v 1 and v 2 in R Q following Gaussian distributions of means Γ 1 x and Γ 2 x and covariance matrices Γ 1 and Γ 2 respectively where (4.90) and Γ 2 = 1 µ 2 -L ⊤ L. (4.91) In practice, we set µ 1 = ϵ∥H∥ -2 ∥D∥ -1 and µ 2 = ϵ∥LL∥ -2 where ϵ = 0.99.

Then, the posterior distribution of x conditioned to σ, β, κ 2 1 , κ 2 2 , γ, v 1 , v 2 and z is Gaussian with mean m and precision matrix G dened by: G =

(4.93)

The auxiliary variable v 1 depends implicitly of σ through D and µ but does not depend on the remaining parameters when conditioned to x, σ and z. Similarly, v 2 does not depend on σ, β, κ 2 1 , κ 2 2 , v 1 , γ when conditioned to x and z. We propose a PCGS algorithm that allows to collapse v 1 in the sampling step of σ. Each iteration t of the proposed PCGS algorithm is 4. Application to image recovery in the presence of two terms mixed Gaussian noise 111 composed of the following arranged sampling steps.

1) Sample (κ 2 1 ) (t+1) from P κ 2 1 |x (t) ,σ (t) ,β (t) ,z .

2) Sample (κ 2 2 ) (t+1) from P κ 2 2 |x (t) ,σ (t) ,β (t) ,z .

3

In the following, this algorithm will be denoted by AuxV2.

Note that, since H and L are circulant matrices and D is diagonal, sampling the auxiliary variables in the proposed methods can be easily performed following Section 2.4.

Experimental results

We consider a set of three test images denoted by x1 , x2 and x3 , of size 512 × 512. These images are articially degraded by a spatially invariant blur with point spread function h and further corrupted with mixed Gaussian noise. The Gibbs algorithms are run for 6,000 iterations and a burn-in period of 4,000 iterations is considered. Estimators of the unknown parameters are then computed using the empirical mean over the 2,000 obtained samples.

Visual results are displayed in Figure 4.5 as well as estimates of hyperparameters using AuxV1.

We consider the image x1 and we propose to compare the two variants of our proposed method with the Reversible Jump Perturbation Optimization (RJPO) algorithm [START_REF] Gilavert | Ecient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF]. For this method, we use the conjugate gradient algorithm as linear solver at each iteration whose maximal number of iterations and tolerance are adjusted to corresponds to an acceptance probability of around 0.9. We use the same initialization for all compared algorithms. Figures 4.6-4.9 display samples of hyperparameters Chapter 5. A variational Bayesian approach for restoring data corrupted with non-Gaussian noise using the best regularization parameter, but our approach needs more time to converge. In Tables 5.5, 5.6 and5.7, we achieve both the best quantitative results and the smallest computational time. It should be noted that for most tested scenarii, discrepancy based approaches perform relatively poorly compared with the other methods, especially in the case of low count images (see Table 5.2).

In Figures 5.3 

VBA performance in the case of pure Poisson noise

We now consider two test problems where the image is degraded by pure Poisson noise (i.e., σ = 0). Since the exact expression of the Poisson likelihood is not dierentiable, we have ran our VBA method using its Anscombe-based approximation dened in line 3 of Table 5.1. The NLTV prior with weights precomputed from images restored using VBA with the TV prior, was employed as regularization term. We consider the test images x 2 and x 5 whose intensities are rescaled to achieve dierent intensity levels. The observed images are then generated by degrading the clean ones with a Gaussian blur of size 7 × 7 and variance 1 with symmetric boundary conditions and then by applying Poisson noise. Comparisons have been conducted between our VBA method, the Plug-and-Play scheme [START_REF] Rond | Poisson inverse problems by the Plug-and-Play scheme[END_REF] and the variational approach using the Parallel Proximal algorithm (PPXA-TV) with a

TV regularization [START_REF] Pustelnik | Parallel proximal algorithm for image restoration using hybrid regularization[END_REF]. The regularization parameters for Extension to non-Gaussian models: The Gibbs sampling algorithms proposed in Chapter 4 address sampling problems from high-dimensional distribution by adding auxiliary variables provided that either the data delity term or the prior is Gaussian conditioned to some hidden variables. A challenging task could be to enlarge the eld of applications of the proposed algorithms to deal with problems involving non-Gaussian models.

-Appendix ) -PCGS algorithm in the case of a scale mixture of Gaussian noise

• Parent Gibbs sampler: Each iteration t of the Gibbs sampling algorithm is composed of 4 sampling steps:

1) Sample v (t+1) from P v|x (t) ,σ (t) ,Θ (t) ,z .

2) Sample x (t+1) from P x|σ (t) ,Θ (t) ,v (t+1) ,z .

3) Sample σ (t+1) from P σ|x (t+1) ,Θ (t) ,v (t+1) ,z .

4) Sample Θ (t+1) from P Θ|x (t+1) ,σ (t+1) ,v (t+1) ,z) .

• Marginalization: Rather than sampling only a variable at each sampling step of the Gibbs iteration, some other variables may be sampled along with instead of being conditioned upon without aecting the convergence eof the Gibbs algorithm to the desired distribution [START_REF] Van Dyk | Partially collapsed gibbs samplers: Theory and methods[END_REF]. For instance, we can sample σ jointly with v in the third step, for example by rst sampling from P σ|x,Θ,z and then from P v|x,σ,Θ,z . Similarly, we can sample Θ jointly with v in the fourth step, by rst sampling from P Θ|x,σ,z and then from P v|x,σ,Θ,z . In each 2) Sample x (t+1) from P x|σ (t) ,v (t+ 1 3 ) ,Θ (t) ,z

.

3) Sample ( σ (t+1) , v (t+ 2

3

) t+1) , v (t+1) ) from P Θ,v|x (t+1) ,σ (t+1) ,z .

The last Gibbs sampler may be inecient since v is drawn many times at each iteration. However, we can not remove arbitrarily redundant samplers of v. For instance, samples of v in Step 1 and 4 cannot be dropped from the respective sampling distribution since v (t+ 13 ) is con- ditioned upon in Step 2 and v (t+1) belongs to the output of the Gibbs iteration. We can remove instead unused intermediate values namely

3 ) since it is never conditioned upon and does not belong to the output of the Gibbs iteration. Such procedure is called trimming. Note that it remains possible to permute some steps of this Gibbs sampler without altering the convergence of the algorithm to the desired distribution. Hence, it is reasonable to use a good sampling order such that trimming can be performed to a maximum extent.

• Permutation: In the following permuted Gibbs iteration, the redundant samples of v in Step 1 and 2 give intermediate variables. Thus, they can be removed from the algorithm.

1) Sample

( σ (t+1) , v (t+ 1

3 )

)

• Trimming: This step means removing the redundant variables from the last Gibbs algorithm. The resulted Gibbs sampler has the same stationary distribution as the parent Gibbs sampler.

Proof of Proposition 2.1

Let i ∈ {1, . . . , N }. Let us dene g i : R → R such that

According to Assumption 2.1, g i is convex, proper and lower semi-continuous (lsc). Its conjugate function [Bauschke and Combettes, 2011, Chapter 13] reads:

According to Denition (5.8),

Since g i is convex, proper and lsc [Bauschke and Combettes, 2011, Theorem 13.32], g i = g * * i so that

which is equivalent to

) , (B.9) so that (5.9) holds.

For every v ∈ R, let

(B.10)

The function g i being convex, proper and lsc, according to [Bauschke and Combettes, 2011, Corollary 16.24], the above relation can be reexpressed by making use of the subdierential ∂g * i of the convex function g * i (see [Bauschke and Combettes, 2011, Chapter 16] for more details). More precisely, (B. 10)

) .

( B.11) According to Fermat's rule [Bauschke and Combettes, 2011, Theorem 16.2],

(B.11) is a necessary and sucient condition for ŵi (v) to be a minimizer of the convex function w → g * i (w) -vw. This minimizer is unique since w i (v) is uniquely dened by (B.10). We have therefore established that

) .

(B.12)

The denition of g i in (B.1) shows that (B.10) also reads

List of Tables [Mäkitalo andFoi, 2011, 2013]. ϕ ′ i denotes the rst derivative of function ϕ i and β i (z i ) is the Lipschitz constant of ϕ ′ i (for functions in lines 3-6, we assume that ϕ i is replaced on R -by its quadratic extension (5.7).) The expression for the Lipschitz constant of the gradient of the weighted least squares likelihood was established in [Repetti, 2015, Chap. IV]. . . . . . .
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