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Abstract

Motion analysis, or the analysis of image sequences, is a natural extension of image
analysis to time series of images. Many methods for motion analysis have been
developed in the context of computer vision, including feature tracking, optical flow,
keypoint analysis, image registration, and so on. In this work, we propose a toolbox
of motion analysis techniques suitable for biomedical image sequence analysis. We
particularly study ciliated cells. These cells are covered with beating cilia. They are
present in humans in areas where fluid motion is necessary. In the lungs and the
upper respiratory tract, Cilia perform the clearance task, which means cleaning the
lungs of dust and other airborne contaminants. Ciliated cells are subject to genetic
or acquired diseases that can compromise clearance, and in turn cause problems
in their hosts. These diseases can be characterized by studying the motion of cilia
under a microscope and at high temporal resolution. We propose a number of
novel tools and techniques to perform such analyses automatically and with high
precision, both ex-vivo on biopsies, and in-vivo. We also illustrate our techniques
in the context of eco-toxicity by analysing the beating pattern of the heart of fish
embryo.

L’analyse du mouvement, ou l’analyse d’une séquence d’images, est l’extension
naturelle de l’analyse d’images à l’analyse de séries temporelles d’images. De
nombreuses méthodes d’analyse de mouvement ont été développées dans le contexe
de la vision par ordinateur, incluant le suivi de caracteristiques, le flot optique,
l’analyse de points-clef, le recalage d’image, etc. Dans ce manuscrit, nous proposons
une boite a outils de techniques d’analyse de mouvement adaptées à l’analyse de
séquences biomédicales. Nous avons en particulier travaillé sur les cellules ciliées
qui sont couvertes de cils qui battent. Elles sont présentes chez l’homme dans
les zones nécessitant des mouvements de fluide. Dans les poumons et les voies
respiratoires supérieures, les cils sont responsables de l’épuration muco-ciliaire,
qui permet d’évacuer des poumons la poussière et autres impuretés inhalées. Les
altérations de l’épuration mucociliaire peuvent être liées à des maladies touchant
les cils, pouvant être génétiques ou acquises et peuvent être handicapantes. Ces
maladies peuvent être caractérisées par l’analyse du mouvement des cils sous un
microscope avec une résolution temporelle importante. Nous avons développé



plusieurs outils et techniques pour réaliser ces analyses de manière automatiques
et avec une haute précision, à la fois sur des biopsies et in-vivo. Nous avons
aussi illustré nos techniques dans le contexte d’éco-toxicité en analysant le rythme
cardiaque d’embryons de poissons.



Contents

List of Figures xiii

I Introduction 1

1 Introduction 3
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of this manuscript . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications associated with this manuscript . . . . . . . . . . . . . 6

2 Ciliated cells analysis 9
2.1 Ciliated cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Context and state of the art . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Estimating cilia beating frequencies . . . . . . . . . . . . . . 13
2.2.2 Cilia beating characterization and diagnosis . . . . . . . . . 15
2.2.3 Estimating cilia behaviour in vivo . . . . . . . . . . . . . . . 16

3 Fish embryos and eco-toxicity 19
3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 The fish embryo model . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Image processing and fish studies . . . . . . . . . . . . . . . . . . . 21

II Technical contributions 25

4 Methodology essentials 27
4.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Sensor pattern removal . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Sequence stabilization . . . . . . . . . . . . . . . . . . . . . 29

4.2 Simple motion analysis . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Motion highlighting . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Motion segmentation by temporal gradient . . . . . . . . . . 30
4.2.3 Motion segmentation by temporal variance . . . . . . . . . . 31

ix



x Contents

4.2.4 Spurious motion elimination . . . . . . . . . . . . . . . . . . 31
4.2.5 Frequency estimation . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Complex motion analysis . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Feature-based region segmentation . . . . . . . . . . . . . . 32
4.3.2 Curvescan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Tools for motion analysis 35
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 2D+t sequences . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Basic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.1 Mathematical morphology . . . . . . . . . . . . . . . . . . . 36
5.2.2 Graph-based optimisation model . . . . . . . . . . . . . . . 41
5.2.3 Gaussian filter . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Bilateral filter . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.5 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.6 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.7 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Definition of motion . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 Sensor pattern removal . . . . . . . . . . . . . . . . . . . . . 50
5.3.3 Image stabilization . . . . . . . . . . . . . . . . . . . . . . . 51

6 Simple motion analysis 55
6.1 Motion enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Enhancement methodology . . . . . . . . . . . . . . . . . . . 56

6.2 Motion segmentation by temporal gradient . . . . . . . . . . . . . . 56
6.3 Motion segmentation by temporal variance . . . . . . . . . . . . . . 58
6.4 False motion elimination . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Frequency estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5.1 Semi-automatic grey-level intensity based frequency estimation 62
6.5.2 Automatic optical flow based frequency estimation . . . . . 62



Contents xi

7 Complex motion identification 65
7.1 Feature-based region segmentation . . . . . . . . . . . . . . . . . . 66

7.1.1 Graph-based optimisation model . . . . . . . . . . . . . . . 66
7.1.2 Descriptors and weights . . . . . . . . . . . . . . . . . . . . 66

7.2 Pattern extraction: Curvescan . . . . . . . . . . . . . . . . . . . . . 70
7.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.2 Linescan definition . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 72

III Application: cilia motility evaluation 75

8 Cilia Beating Analysis 77
8.1 Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2 Details of the methodology: common parts . . . . . . . . . . . . . . 78
8.3 Methodology for frequency estimation . . . . . . . . . . . . . . . . . 82

8.3.1 Methodology after the segmentation . . . . . . . . . . . . . 82
8.3.2 Results and Validation. . . . . . . . . . . . . . . . . . . . . . 82

8.4 Methodology for cilia beating characterization . . . . . . . . . . . . 83
8.4.1 Methodology after the segmentation . . . . . . . . . . . . . 83
8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.5.2 Comparison of the two methods . . . . . . . . . . . . . . . . 87

9 In vivo assessment of cilia motility evaluation 95
9.1 Existing tools and solutions proposed . . . . . . . . . . . . . . . . . 96
9.2 The Cellvizio properties . . . . . . . . . . . . . . . . . . . . . . . . 96
9.3 Experimental runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.4 Results ans analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

IV Application: fish embryo based assays 103

10 Fish embryo mortality evaluation 105
10.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3 Details of the methodology . . . . . . . . . . . . . . . . . . . . . . . 107
10.4 Results and validation . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.5 Pipeline improvements for enhanced automation. . . . . . . . . . . 112
10.6 Modifications : details . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xii Contents

11 Heart frequency estimation 129
11.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.2 Details of the methodology . . . . . . . . . . . . . . . . . . . . . . . 130
11.3 Results and validations . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.4 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

V Conclusion 141

12 Conclusion 143
12.1 Contribution of this work . . . . . . . . . . . . . . . . . . . . . . . . 144
12.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

References 149



List of Figures

2.1 Ciliated cells in the body . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Structure of cilia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Illustration of beating issue according to the loss. . . . . . . . . . . 11
2.4 Measures needed by practitioners . . . . . . . . . . . . . . . . . . . 12
2.5 Illustration of a kymography procedure . . . . . . . . . . . . . . . . 14
2.6 Screenshot of the software used for cinematic analysis . . . . . . . . 15
2.7 Four examples of ciliated cells, showing the large variability in our

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Anatomy of a Zebrafish larva and Medaka malformation . . . . . . 22
3.2 Workflow for fish analysis procedure . . . . . . . . . . . . . . . . . . 23

4.1 Distance Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Illustration of connexity. . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Structuring elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Erosion and Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Opening and Closing . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Geodesic reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Illustration of the h-maxima operator . . . . . . . . . . . . . . . . . 40
5.7 Representation of the watershed procedure in 3D . . . . . . . . . . 41
5.8 Illustration of 3 markers on the image . . . . . . . . . . . . . . . . . 42
5.9 Illustration of the adjacence matrix. . . . . . . . . . . . . . . . . . . 44
5.10 Effect of a Gaussian filter . . . . . . . . . . . . . . . . . . . . . . . 46
5.11 Example of Bilateral filter . . . . . . . . . . . . . . . . . . . . . . . 47
5.12 One frame of the Yosemite sequence and the corresponding true

velocity field (subsampled), from [80] . . . . . . . . . . . . . . . . . 48
5.13 Example of key points extraction and matching by pair of corre-

sponding points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.14 Removing sensor pattern from the acquisition. . . . . . . . . . . . 54

6.1 Detecting the moving motion components of an artifact-free sequence. 57
6.2 Illustration of the sequence of operation for our motion-based seg-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



xiv List of Figures

6.3 Sequence of operations for segmentation. . . . . . . . . . . . . . . 60
6.4 False color rendering of the temporal variance. . . . . . . . . . . . . 61
6.5 Segmentation of cyclic motion from C. . . . . . . . . . . . . . . . . 62
6.6 Grey level average intensity variation . . . . . . . . . . . . . . . . . 63
6.7 Representation of optical flow . . . . . . . . . . . . . . . . . . . . . 64

7.1 Illustration of neighbors centroids with their associated areas. . . . 67
7.2 Decomposition of spectrum . . . . . . . . . . . . . . . . . . . . . . 67
7.3 Decomposition of the FFT spectrum in 30 components for Vp . . . . 68
7.4 non-centered gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Validation of k-means procedure . . . . . . . . . . . . . . . . . . . . 70
7.6 Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.7 Result of segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.8 Illustration on linescan. . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.9 Extraction of level lines . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.10 Example of grey level extraction. . . . . . . . . . . . . . . . . . . . 74

8.1 Flowchart of our cilia beating frequency estimation. . . . . . . . . . 78
8.2 Flowchart of our cilia beating characterization steps. . . . . . . . . 79
8.3 Removal of sensor pattern. . . . . . . . . . . . . . . . . . . . . . . . 81
8.4 Sequence of operations for segmentation. . . . . . . . . . . . . . . 88
8.5 Fourier analysis of speed variation for one of the sample yields to a

frequency of 12.10 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.6 Correlation between our measurements and the ground truth . . . . 89
8.7 Bland-Altman plots show the consistency between our proposed

approach vs. cinematic analyis and kymography. . . . . . . . . . . . 90
8.8 Ilustration of curvescan and parameters, on synthetic image where

we can see two patterns. . . . . . . . . . . . . . . . . . . . . . . . . 90
8.9 Adaptative curvescan. . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.10 Example of grey level extraction. . . . . . . . . . . . . . . . . . . . 91
8.11 Power spectra examples . . . . . . . . . . . . . . . . . . . . . . . . 92
8.12 Validations of our method for frequency estimation. . . . . . . . . . 92
8.13 Validations of our method for cilia length measurement. . . . . . . . 93

9.1 Experimental apparatus. . . . . . . . . . . . . . . . . . . . . . . . . 98
9.2 Images of samples acquiered with Cellvizio . . . . . . . . . . . . . . 99
9.3 Variation of pixel intensity and Fourier Transform. . . . . . . . . . 100
9.4 Correlations between software measurement and ground truth. . . 100
9.5 Probe specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.1 Flowchart of our embryo mortality image processing assay. . . . . . 106



List of Figures xv

10.2 Schematization of our acquisition procedure . . . . . . . . . . . . . 107
10.3 Segmentation of the initial frame to locate and the embryo in the well.108
10.4 Inner parts segmentation on two embryos. . . . . . . . . . . . . . . 110
10.5 False color rendering of the temporal variance. . . . . . . . . . . . . 110
10.6 Segmentation of cyclic motion detection on embryos. . . . . . . . . 111
10.7 Specific segmentations . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.8 Flowchart of our embryo mortality image processing assay 2. . . . . 123
10.9 Bottom-hat application. . . . . . . . . . . . . . . . . . . . . . . . . 124
10.10Segmentation of the inner part of the well. . . . . . . . . . . . . . 124
10.11Segmentation of the well and location of the embryo. . . . . . . . . 125
10.12Segmentation of the embryo. . . . . . . . . . . . . . . . . . . . . . . 125
10.13Segmentation of the initial frame to locate the thorax of the alevin. 126
10.14Inner parts segmentation on two alevins and two eggs. . . . . . . . 126
10.15False color rending of the temporal variance. . . . . . . . . . . . . 126
10.16Heart segmentation in the presence of malformations. . . . . . . . 126
10.17Incorrect segmentations due to fluttering. . . . . . . . . . . . . . . . 127

11.1 Flowchart of our Heart frequency estimation. . . . . . . . . . . . . . 130
11.2 Removing sensor pattern from the acquisition. . . . . . . . . . . . . 131
11.3 Detecting the moving areas of the sequence. . . . . . . . . . . . . . 133
11.4 Sequence of operations for segmentation. . . . . . . . . . . . . . . 134
11.5 Speed analysis on a sequence. . . . . . . . . . . . . . . . . . . . . . 136
11.6 Speed frequency analysis on a sequence. . . . . . . . . . . . . . . . 137
11.7 Correlation between heart and arteries sequences . . . . . . . . . . 138
11.8 Comparison with the method of [51] in the ideal single-vessel case. . 138

12.1 Ciliated cells images from brain sequences (a) and from zebrafish
nasal cavity (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



xvi



Part I

Introduction

1





1
Introduction

Motion analysis is a well studied topic in computer vision. In this thesis, our
objective is to develop motion analysis tools for medical and bio-medical
applications. To this end, we adapt a large variety of known image processing,
image analysis and computer vision techniques, such as image denoising, image
segmentation, optical flow, registration and many others, to medical and
biomedical image time series. We do this in order to provide novel, automated
tools for physiological parameters estimation. We develop new methodologies and
techniques, which we validate on real data in vivo and ex-vivo samples.
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4 1.1. General context

1.1 General context
Motion analysis concerns a large range of applications. They range from compart-
mental analysis to asteroid trajectories calculation, via insect behavior analysis.
Each moving objects is different, has its own particularities and characteristics.
Many phenomena in medical and biomedical imaging involve moving objects: beating
hearts, ventilation, muscular motion, etc. They can be either an artifact or an
object of interest. Cardiac imaging needs gating to achieve consistent imaging, and
so has to be taken into account. Ventilation causes artefacts in CT reconstructions
and methodologies to extrapolate and register images was developed to remove
these artefacts. In some cases, the motion is by itself an important cue. For instance
calculating an ejection fraction in cardiac CT necessitates to obtain information
linked to the motion of the heart. The diagnosis of thrombosis is directly linked to
the blood flow. For these purposes, an analysis of the motion in the sequence is
mandatory. However, most of the time the components of interest are not the only
appearing in the sequences and they can be hard to distinguish. Motion analysis
requires much more information than static image analysis, and is not easy to
quantify. Indeed, most phenomena implying motion occur in 3D+t, but usually
data is only available as 2D+t sequences. Hence the use of video sequence analyses
in medicine or in bio-medical procedures remains difficult.

We focused on 2D microscopy applications, especially the high-speed bright
field microscopy, which represent by far the most common techniques. These
kinds of applications raise several issues: the 2D/3D problem mentioned above,
illumination artifact that can be confused as motion, motion of the organisms
studied induced by vibrations, fluid layers (which may induce deformations, may
amplify vibrations etc.), living organism etc. These make the development of a
pre-processing procedure mandatory in order to denoise, stabilize and prepare the
sequence for analysis. Because of noise and experimental protocols, we consider a
component is "non-moving" when the grey-level intensity remains sufficiently stable
over time, i.e. when the variations induced by motion are of the same order as to
those due to noise.
After preprocessing, the necessity of obtaining a segmentation of the motion
component remains important. Indeed, even if pre-processing helps to analyze
the sequence, most of the time the components of interests, the components we
want to analyze, are not present in the entire image but in a small part. There can
be some other motion areas in the sequences due to the objects studied themselves,
for example intestinal motion can occur when studying blood flow in the tail section
of a fish embryo. Hence, it is important to first segment the areas of interest
before going further in the analysis. For this reason, we describe a method that
segments regions according to features, i.e., we aim at obtaining feature-invariant
regions. In this work, we propose a method using the power spectrum of Fourier
transform wavelets-like decomposed as feature to obtain regions with homogeneous
time variations.
Once the segmentation is performed correctly, parameters can be extracted. In
this work for example, we develop a time-wise texture-like analysis allowing us to
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evaluate frequencies but also to characterize the motion; we rely here on analyzing
the pattern of the trajectory of the object.

1.2 Contribution
We propose tools to help provide an answer to the problematics exposed above. We
use computer vision tools to analyze biomedical data, as they are suitable to our
applications. We adapt some existing tools for this purpose. The main tools we
develop are motion analysis methods.
For biomedical purpose, we develop a method that automatically extract beating
frequencies from sequences. We also develop a promising tool, the "curvescan",
which is able to extract many other useful measurements. Finally, we investigate
the possibility of analyzing cilia beating directly in vivo. We also fully describe
two eco-toxicity applications, a mortality assessment tool which is now used in the
industry, and a heart rate estimation tool currently at the feasibility stage.

1.3 Structure of this manuscript
• Chapter 2 and 3 present the context of our studies.

• Chapter 4 summarizes the contributions of Chapters 5, 6 and 7. Because this
manuscrit is intended to be read also by medical practitioners and biologists,
chapter 4 describes the essential elements presented in these chapters.

• Chapter 5 is a presentation of the image processing, image analysis and
computer vision tools and methods we use in the manuscript.

• Chapter 6 details the procedures developed for the analysis of simple motion.
Chapter 7 proposes a methodology for the analysis of more complex motions.

• Chapter 8 presents the pipelines of our cilia analysis procedures. The work
presented in this chapter was published at ISBI 2015 [1] and selected for oral
presentation at ICIP 2016[2].

• Chapter 9 is a feasability study for assessing cilia motility in vivo. It was
published at the medical conference ERS 2016 [3].

• Chapter 10 refers to our fish embryo mortality assay, and was published at
ISMM 2015 [4] and in the journal CBM [5]
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• Chapter 11 presents the pipeline of our heart rate estimation on fish embryo’s
heart and tail. It was presented at an oral session at IPTA 2016 [6].

• Chapter 12 concludes and proposes avenues for further work resulting from
this thesis.

As outlined in the next section, all the applicative chapters have been published
in some fashion.

1.4 Publications associated with this manuscript
International Journal Papers
[1] E. Puybareau, D. Genest, E.Barbeau, M. Léonard, and H. Talbot. An

automated assay for the evaluation of mortality in fish embryo. In print in
Computers in Bio-Medicine

International Conferences
[1] E. Puybareau, H. Talbot, G. Pelle, B. Louis, J-F. Papon, A. Coste, and L.

Najman. Automating the measurement of physiological parameters: a case study in
the image analysis of cilia motion. In Image Processing (ICIP), IEEE International
Conference on, Phoenix, September 2016

[2] E. Puybareau, H. Talbot, and M. Leonard. Automated heart rate estimation
in fish embryo. In Image Processing Theory, Tools and Applications (IPTA),
International Conference on, pages 379–384, Orleans, November 2015

[3] E. Puybareau, M. Léonard, and H. Talbot. An automated assay for the
evaluation of mortality in fish embryo. In Mathematical Morphology and Its
Applications to Signal and Image Processing, volume 9082 of Lecture Notes in
Computer Science, pages 110–121. Springer, Reykjavik, May 2015

[4] E. Puybareau, H. Talbot, G. Pelle, B. Louis, J-F. Papon, A. Coste, and L.
Najman. A regionalized automated measurement of ciliary beating frequency. In
Biomedical Imaging (ISBI), IEEE 12th International Symposium on, pages 528–531,
New-York, April 2015

Medical Conferences Abstracts
[1] E. Puybareau, E. Bequignon, M. Bottier, G. Pelle, B. Louis, E. Escudier, J.-F.

Papon, L. Najman, H. Talbot, and A. Coste. Frequency-based region identification
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Automatic detection of beating cilia with frequencies estimations. Cilia, 4(Suppl
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2
Ciliated cells analysis

This chapter describes methods developed for the analysis of cilated cells. This
work is the result of a collaboration with INSERM UMR 955, Institut Mondor de
Recherche Biomédicale, Cellular and Respiratory Biomechanics Laboratory. It
constitutes one of the principal motivations of the research work reported in this
manuscript. In this chapter, we set the context, the motivation and we review
existing methods.

Contents
2.1 Ciliated cells . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Context and state of the art . . . . . . . . . . . . . . . . 12

2.2.1 Estimating cilia beating frequencies . . . . . . . . . . . 13
2.2.2 Cilia beating characterization and diagnosis . . . . . . . 15
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Figure 2.1: Ciliated cells in the body

2.1 Ciliated cells
Ciliated cells are specific cells present in many parts of the body (see Fig 2.1).
These cells are covered by cilia, tiny hair-like structures that are motile. In contrast,
nearly all cells in the human body have at least one primary cilium, which is not
motile.

Respiratory cilia are composed of 9 external doublet of microtubules and a
central pair (see Fig 2.2). The motility of microtubules is enabled by dynein.

Some genetic impairment can alter the motility of cilia. A loss of dynein or
microtubule disrupts the beating of cilia. Each particular loss implies a different
outcome in the beating. Some are illustrated in Fig. 2.3. Genetic cilia beating
impairment may have profound effects. It may cause chronic disorders such as
Primary Ciliary Dyskinesia (PCD), a disease with many life-altering symptoms,
typically causing progressive damage to the respiratory system, and affecting 1 in
15,000-30,000 people worldwide 1. A defect in ciliated cells in the renal tubes may
cause Polycystic Kidney Disease (PKD) [7]. Lack of functional cilia in the fallopian
tubes may cause ectopic pregnancies. Flagelum of human spermatozoid has an

1http://www.pcdfoundation.org/

http://www.pcdfoundation.org/
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Figure 2.2: Normal axial structure of cilia. (a) Is the axial microscopic view of a cilia.
(b) Is its schematization.

Figure 2.3: Illustration of beating issue according to the loss.(a) Normal beating. (b)
Loss of external dynein. (c) Loss of intern dynein. (d)Loss of central pair

ultrastructure close to respiratory cilia, and thus infertility in males patients with
PCD is frequent. Cilia dysfunction may cause male infertility. It has been shown
that proper cilial function is responsible for the normal left-right asymmetry in
mammals [8].

Cilia motility can also be altered by the environment, accident etc. For example,
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Figure 2.4: Measures needed by practitioners

prolonged or acute exposure to loud sounds can impair the ear’s ciliated cells
irremediably, without genetic influence. Example of such disease is chronic sinusitis,
or chronic obstructive pulmonary disease. Chronic Obstructive Pulmonary Disease
(COPD) is an acquired respiratory disease that affects cilia in the lungs. It is
typically caused by pollution and smoking [9]. The affected cilia lower the lung
clearance capacity and exacerbate pollutants effects in a downward spiral, eventually
resulting in chronic bronchitis or emphysema [10, 11]. COPD affects more than
300 million people worldwide and caused 2.9 million deaths in 2013, 90% of which
are in the developing world. The economic cost of this disease is in the order of 2
trillions annually and increasing. No cure currently exist for this disease, but it is
important to understand cilia motion for diagnosis and associated care [12].

The ciliated cells we are interested in are the respiratory cells, in which cilia are
10µm in length, 0.1µm in diameter, and beat with an average beating frequency of
13Hz.

2.2 Context and state of the art
Muco-ciliary clearance is a crucial mechanism of defense against aerial environmental
attacks such as micro-organisms or pollution. This clearance is achieved by the
coordinated beating of the cilia covering the nasal epithelium. The most commonly
used technique today for evaluating ciliary function in human being consists of
collecting ciliated cells from nasal or tracheobronchial surface mucosa, to observe
them under a microscope and to record their motion via high-speed video acquisition.
Evaluation, via these records, of ciliary beating frequency and ciliary beating pattern
was reported helpful in the diagnosis of primary ciliary dyskinesia [13, 14, 15]. Cilia
beating frequency is the frequency of beating cilia, while the cilia beating pattern
is the way cilia are beating.
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It is of interest for practitioners to evaluate ciliary beating frequency easily, robustly
and reliably. In clinical research, there exist several methods that estimate ciliary
beating frequency. Cinematic analysis [16] counts the number of frames required to
complete 10 ciliary beat cycles. The frequency is thus obtained as:

CBF = frame rate
number of frames for 10 beats × 10

It is a time-consuming and user-dependent method, which has to be repeated several
times to achieve a reliable result. Kymograph analysis [17] is a linescan-like method
where the grey level of a line drawn by a human operator is analyzed. It is sensitive
to illumination and vibrations, depends on the location of the line, and is thus also
user-dependent.
Practitioners generally use both methods: with the kymography, they simply draw
a line and compute a Fourier Transform on the image of the variation during time.
This is illustrated in Fig. 2.5. This method is simple, fast and works on sequences
that are not too noisy and regular enough. On the other hand, it is only capable of
evaluating frequency and broadly assumes cilia arranged in a flat bed.
The cinematic analysis is even more time-consuming and user-dependent. The

operator chooses a single cilium on a sequence, marks the base and the extremity of
the cilium, and marks the extremity point frame by frame over as many frames as
needed to amount to 10 cycles (see Fig. 2.5). This allows the analysis of the entire
beating pattern: the frequency, but also the amplitude of beating, the speed and
pauses the cilia makes (see Fig. 2.4). While this may sound relatively easy when
following a single cilium in isolation, in practice a cilium is never isolated, only
groups of cilia are visible, making the tracking of the cilia fairly complicated. Cilia
are in reality beating in 3D. However only 2D sequences are available. Consequently
cilia often come in and out of the focal plane and may become invisible. They can
be missed or mistaken for a neighboring cilium. Moreover, it can be difficult to see
the extremity of cilia. Analyzing sequences that way is typically time consuming
and requires expertise to be carried out properly.

One of the challenge of this thesis is to provide practitioners with reliable tools
to estimate automatically parameters that are reproducible and diagnostic, and
to evaluate not only those parameters but also the efficiency of beating and by
consequence the clearance efficiency.

2.2.1 Estimating cilia beating frequencies
The estimation of ciliary beating frequency has been a research topic since the middle
of the 20th century. One of the first methods of reference for the measurement of
cilary beating frequency was proposed in 1962 and used a photo-sensitive cell [18].
Stroboscopic methods have been replaced by more accurate techniques that use
photomultiplier, photodiode and high-speed imaging. Those methods are described
and compared in [19].

Some attempts to automate the measurement of CBF have been proposed in
the literature. The SAVA System [20] estimates frequencies from small 4×4 pixels



14 2.2. Context and state of the art

(a) (b)

(c)

Figure 2.5: Illustration of a kymography procedure

windows. Whole frequency spectra can be simultaneously estimated. This method
is based on grey-level intensity variation, which has shown some limitation if the
contrast is not sufficient, rendering the reliability of the technique questionable [21].
CiliaFA [22] provides a frequency histogram of a large number of small regions
of interest, assuming low noise and no cell proper motion. The method proposed
in [23] uses a sparse optical flow to estimate a single frequency per image. Thus, it
is not applicable when several different beating patterns are present in the sequence.
Moreover, the method is very sensitive to noise and is easily perturbed by cells
proper motion. A linescan-based technique is proposed in [24], coupled with the
Fast Fourier Transform [25] (first developed in 1866 [26]), and is evaluated on slices
on brain ciliated epithelium. It deals with acquisition problems: the removal of
artefacts due to the camera sensor, and frame stabilization. However, the removal
needs a blank acquisition sequence and thus access to the camera. More problematic
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Figure 2.6: Screenshot of the software currently used for cinematic. The red dot is the
base of the cilia, the green one is the first position of the extremity and the yellow is the
current position of the extremity. analysis

for our application, the straight linescan technique needs a straight border of cells,
something not always possible with harvested cells. In the field of view, multiple cell
groups are often visible, and cilia on a given cell can beat at different frequencies.
As a result, many frequencies can be measured in a single field of view. Such
frequencies provide information on cilia synchronization, and ultimately on the
status of the cells under scrutiny. We seek to segment the field of view into regions
that are consistent from the point of view of the beating pattern. Nasal brushing
produces significant amounts of cells with beating cilia. The diversity in sequence
appearances can be appreciated on Fig. 2.7. Brushings were all recorded under a
microscope minutes after the biopsy, at 358 frames per second with a high speed
camera. The spatial resolution is 0.13µm, and the resolution is 256×192 pixels.
The sequence was recorded on the border of the groups.

2.2.2 Cilia beating characterization and diagnosis
Cilia beating characterization remains a significant field of study. The difficulty is
to analyze not only a single cilium but a group of cilia to evaluate the efficiency
of beating. Indeed, a cilium can beat at normal frequency, but if the beating is
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Figure 2.7: Four examples of ciliated cells, showing the large variability in our samples.

irregular or not synchronized with its neighbours, the clearance can be ineffective.
Practitioners have to pair the measurements [27] to evaluate the characterization,
which is difficult. Some attempts have been made to help the diagnosis of primary
diskinesis patient such as in [28]. In that article, the procedure classifies the
sequences in two categories (ill or healthy) with a machine learning procedure based
on optical flow. In this study, authors show a significant distinction between classes
but do not attempt to measure parameters interpretable by clinician, which would
be useful for differential diagnosis.
Work in this field is ongoing but as yet not entirely conclusive.

2.2.3 Estimating cilia behaviour in vivo
The evaluation of mucociliary clearance in vivo has always been a challenge. The
most reliable measurement consists of a saccharin protocol described by Andersen
et al. in 1974. This method consists of applying particles of saccharin on the nasal
mucous membrane and to measure the time spent before the patient detect a sweet
taste. This method depends of the sensitivity of patients and is not sufficient to
diagnose diseases. The only way to evaluate reliably the mucociliary clearance for
diagnosis is the ex-vivo methods described above. They remain invasive for patients
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because of the need for a biopsy, and the analysis is tedious to carry out, and so
results can be slow to obtain. Moreover, cells can be injured during the biopsy
leading to unreliable results. Finally, there remain questions about the behavior of
cells in-situ and ex-situ.
For all these reasons, we sought to develop a procedure for observing and analysing
cilia in vivo. This is extremely challenging because cilia are small (10µm in length,
0.1µm in diameter) and beat at relatively high frequency, from 0 to 30Hz. The
results of the experiments related to these developments are reported in chapter 9.

In this chapter we presented the motivation for ciliated cells analysis and the
context of the study. We now describe the eco-toxicity, begining with the reasons
for using fish embryos.
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3
Fish embryos and eco-toxicity

Fish embryo models are used increasingly for human disease modeling, chemical
toxicology screening, drug discovery and environmental toxicology studies. These
studies are devoted to the analysis of a wide spectrum of physiological parameters,
such as mortality ratio or heart rate frequency.

Contents
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3.1 Context
In recent years, it has become mandatory for the cosmetics industry to warrant the
harmlessness of the products and compositions that they manufacture [29]. This
includes the by-products and refuse of the manufacturing process as well as the
degradation results of the products once released into the environment [30]. However,
the cosmetics industry may no longer use animals for any study [31]. Fortunately,
some living organisms are still permitted for toxicology assays. Among those, some
varieties of fish embryos, particularly those that are easily available and do not
require difficult husbandry techniques, are particularly suitable. Fish embryo are
defined here as the stage of development following spawning but such that the yolk
sac is still attached. At this stage, these organisms feed autonomously and passively
from yolk nutrients and are not considered animals. Their size is small (a few mm in
length) but do not require high-power microscopes or sophisticated image acquisition
devices: a simple camera with a macro lens is enough. They are transparent, and
so analyses can be carried out without using invasive techniques. Their circulatory
system, in particular, including the heart and major blood vessels, is easily visible.
Since they live in water they are ideal for studying waterways pollution [32]. These
organisms also belong to the vertebrata subphylum, like humans. For all these
reasons, they have been used as model organisms in toxicology studies for quite some
time [33]. In the cosmetics industry, large numbers of compounds and formulation
need to be tested for health-related effects. L’Oréal for example, use a range of five
concentrations per chemical compound. For replication this represents one 24-well
plate per concentration plus one plate with no compound present for comparison, for
a total amount of 6 plate i.e. 144 wells per test. Because many chemical compounds
need to be tested (several tens of thousands in the context of the cosmetics industry
alone), this represents several millions of measurements. Manual or semi-automated
procedures are no longer sufficient for this task [34].

3.2 The fish embryo model
The fish embryo model has become a classical model in research, and so in toxicology
assays. The two most popular organisms used as models are Zebrafish and Medaka.
Zebrafish (Danio rerio) is a small fish member of genus Danio, and Medaka (Oryzia
latipes) is a small fish member of genus Oryzias.
Both have fast development and are cheap husbandry. Moreover, both are tranparent
(see Fig. 3.1(a)) during the embryo phase, ensuring that their organs are visible and
so readily analyzable. They are important model organisms for in vivo studies of
vertebrates in biology, toxicology, health, and fundamental research [35, 36, 37, 38].
They are also used in new research fields such as nano-toxicity [39] (see Fig 3.1(b)).
Their genetic material is well studied and bears some resemblance to that of humans:
humans and zebrafish share 85% of their genome [40], making it a good model for
toxicity studies. Moreover, their genome can be modified to express susceptibility
to some diseases, or to imbue some of their organs with auto-fluorescence. We recall
that while they are still embryos, they are not considered as lab animals and so can
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be used for studies without special authorizations.

Zebrafish is somewhat smaller than Medaka and is more pigmented. In our
studies transparency is essential, so they are not used for the same studies. We
mainly studied the Medakas embryos. In our study, embryo were procured from
Amagen (UMS 3504 CNRS / UMS 1364 INRA). They are placed as eggs in a
neutral environment with Methylene blue to detect dead eggs, and incubated for 9
days at a temperature of 28◦C. Embryos do not feed, so no nutrients are supplied.
They were anesthetized with tricaine (0.1 g/L) immediately before study.

The protocol for fish analysis is always the same regardless the species or the
technique. This protocol is illustrated in Fig. 3.2.

3.3 Image processing and fish studies
Image processing has been widely used in conjunction with fish studies, for instance
for sizing [42], aging analysis [43], species recognition [44], automated counting [45],
behaviour assessment [46, 47], and more recently for supervising micro-injections in
fish embryo [48]. Indeed, fully automated image analysis can offer an interesting
alternative to manual procedures, capable of rising to the challenge of offering fast
and reliable vital signs assessments in fish embryos [49, 50].
In [41], Mikut and al. present a survey on the existing automated processing for
fish embryo image analysis, and here for Zebrafish.
One of the most common vital sign is the pattern of a beating heart, and one of
the strongest effect of toxic molecules is to induce death. It is hence meaningful to
study the presence of a beating heart to evaluate the lethality of compounds.
In our study, we focused on the analyze of cardiac characteristics of Medaka embryos.
To comply with industrial demands, the procedures have to be entirely automated.
Speed and reproducibility favor reducing the action of humans during the entire
protocol (see workflow on Fig. 3.2). Some tools already exists for automating all the
non-imaging related protocol steps, such as the Hamilton robots1 that cleanse and
handle fish embryos and various molecules in the plate wells without any human
intervention. For the acquisitions, the plates have to be removed from the apparatus,
and brought to the acquisition system. This system can be manual (microscopy
for example) or automated (the VAST system for Zebrafish 2 can take time-lapse
images of a Zebrafish in a capillary glass vessel. Image analysis system vendors
such as FEI 3 with Visilog, or Definiens can propose automated plaforms for taking
images and videos of twell plates without requiring a microscope or a fast camera).
These automated tools have some limitations. The VAST system is currently only
available for Zebrafish, in which they are a very tight fit. Consequently they are
not suitable for Medaka or Zebrafish with serious malformations. Visilog tool is not
particularly well suited to analyze sequences, but is capable of detailed 2D studies,
for instance including embryo malformations.

1http://www.hamiltoncompany.com
2http://www.unionbio.com/vast/
3https://www.fei.com

http://www.hamiltoncompany.com
http://www.unionbio.com/vast/
https://www.fei.com


22 3.3. Image processing and fish studies

(a)

(b)

Figure 3.1: Anatomy of a Zebrafish larva, from http://www.devbio.biology.gatech.
edu/?page_id=399 and Medakas’ malformation as a result of being exposed to nano
particles of silver [39]

http://www.devbio.biology.gatech.edu/?page_id=399
http://www.devbio.biology.gatech.edu/?page_id=399
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Figure 3.2: Workflow for fish analysis procedure (modified from [41]).

Some automated software packages for the analysis of various embryo characteristics
do exist. A quantification of Zebrafish behaviour from low temporal resolution video
sequences was proposed in [47]. A screening method to estimate heart frequency
exists in the form of a patent [51], but is sensitive to noise and requires a high spatial
resolution. The photocardiography method [52] is promising but requires specific
tools. ViewPoint developed an automatic tool to measure heartbeat frequencies
in Zebrafish via bloodflow analysis4, but their method is not open-source and twe
have not found clear documentation describing their methodology.
One challenge is to adapt existing tools to the available platform and industrial
constraints. The methods has to be reliable, easy to use, robust and fast, and finally
it has to be adapted to the demands of industrial applications.
We note that some analyses can be simplified by using stainings and other markers.
For instance using methylene blue, dead eggs and embryos can be easy to detect as
they become dark as the pigment concentrates in the dead organisms.

In most cases, however, a readily available staining does not exist and so a
specific image analysis procedure must be developed.

In this chapter, we have presented our second field of application. We now
present the image analysis tools we developed, with a first chapter summarizing the
methodologies we proposed.

4http://www.viewpoint.fr/en/p/software/microzebralab-zebrafish-cardiology-and-physiology

http://www.viewpoint.fr/en/p/software/microzebralab-zebrafish-cardiology-and-physiology
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Technical contributions
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4
Methodology essentials

This chapter sumarizes in less technical terms all the methodologies presented in
the following three chapters. the objective of this chapter is to communicate the
essential developments that we propose while eschewing technical jargon, for a
broader audience.
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4.1 Tools
Many image processing, image analysis and computer vision techniques were used
in this thesis. We summarize these in technical details in chapter 5. That chapter
also contains two applications for removing artifacts, which we present here in a
simpler context. These two applications are the “Sensor pattern removal" and the
“Image stabilization procedure". We developed these applications because of our
experimental constraints that induce strong artifacts on our sequences. The two
main artifacts we faced were:

• Sensor pattern. Most of our image data were acquired under a microscope
using high speed camera. Due to constraints in high-speed sensor design, the
captured sequences look like they are taken behind a non-moving grid. This
grid is the sensor pattern relative to the camera itself and must be removed
before any further the analysis as it affects the quality of the sequences.

• Undesirable motion. As we are studying motion, undesirable motion
artifacts can induce incorrect results. Because we are working on living
organisms that have to be kept in a liquid medium even during the analysis,
the probability of observing undesired motion such as vibrations, sliding etc.
increases and these have to be corrected for.

These two points have to be handled in a precise order: first the sensor pattern
removal and then the motion correction. The reason of this order is that if we
started the other way, the texture of the camera would no longer be fixed, and
would induce a new type of artifact that would be more difficult to remove.

4.1.1 Sensor pattern removal
The sensor pattern is a fixed, texture-like grid. When we do not remove this texture,
watching the sequence is like through a noisy grid. More importantly, this fixed
grid artifact perturbs motion detection and induces further artifacts.
To remove it, we have first to identify it. By computing the average image of
the sequence, only the immobile parts of the sequence including the grid remain.
Indeed, since the time-wise average of a non-moving element is this element itself.
But the average image also provides other meaningful information on the sequence,
and not just the grid, so we have to separate the grid from the rest of the average
image (for example something moving slowly). Because the grid is composed of
fairly isolated pixels of different varying grey-level intensities (like a lattice), we
can blur the average image with a small Gaussian filter: this erases only the small
components including the grid, and slightly blur the other components.
The result is an average image with the grid and one without (see 5.14). The grid
is identified by subtracting these 2 images. We can now remove the identified grid
from all frames of the sequence without affecting the quality of the sequence.
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4.1.2 Sequence stabilization

We need to stabilize the object of study. For this we are going to perform a
so-called “registration" between the objects on the frames. Registration allows
to superimpose objects between frames. Using a registration method permits to
stabilize the sequence, as the object of study, once registered, appears in the same
fixed position in all the images of the sequence.
We use a registration method based on “key points". A key point is a point located
with high precision on the image, associated with a set of “descriptors". The
descriptors describe the point itself and its environment. A keypoint is a point
whose descriptors are sufficiently specific to be distinguished from other nearby
points.
Registration uses a reference frame and a moving frame. The idea is to consider
a point in the reference frame and to find its corresponding point in the moving
frame. A set of 2 corresponding points forms a pair. With a large enough set of
pair, we are able to find the transform between the coordinates of the points in the
reference frame and in the moving one. The figure below illustrates this.

We have X = R ×X ′ + T where R is the rotation matrix and T the translation
(more detailed equations are given in the methodology paragraph). It means that
to superimpose the points between the two frames, we need to apply a transform
on a set of point. In our case, we consider 3 families of transforms: identity (i.e.
no transformation at all), translation only and translation + rotation. These are
called “rigid" transform because they do not change the scale or the shape of the
objects. We selected the best transform by comparing the differences between each
result with the reference frame. We consider these three cases in succession because
if we look for a complex transform we always find parameters for it, but sometimes
the parameters are not significant.
We transformed our sequence using this method in order to obtain a stabilized
sequence.



30 4.2. Simple motion analysis

4.2 Simple motion analysis

We present here tools that we used for the analysis of simple motion such as heart
frequency estimation. These tools are independent of each other. They can be
used alone or in combination with others, depending on the aim of the study. We
recommend to apply these procedures at least after image stabilization procedure
if the sequence shows undesirable motion, to ensure that the moving parts are
components of interest.

4.2.1 Motion highlighting

This procedure erases all the fixed elements of a sequence, so that only the moving
part are visible. Because we are working on motion analysis, it is useful to enhance
the sequences by highlighting the moving components of this sequence. This
procedure is intended to be used in a sequence where there is no longer any motion
artifact present, so after sequence stabilisation is performed.
We used again the time-wise averaging method: the average of a stabilized sequence
yields an image of the non moving parts of this sequence. We do not need to blur
this image, as it is non-moving. We just subtract this average from all the frames
of the sequence, yielding a sequence consisting only of the moving parts.

4.2.2 Motion segmentation by temporal gradient

We present here a simple segmentation (i.e. separation) between fixed and moving
parts in a sequence. It is possible to visualize the motion between two frames when
computing the difference between two frames. This allows us to detect what changes
between the two frames (see for example fig. 11.4(a)). The asymmetric temporal
gradient is a sequence of the difference between each frame and the one immediately
after it. When we sum this temporal gradient, this shows all the area where motion
occurred during the entire sequence, in a single image (see fig. 11.4(b)). It is not
however of interest to us to consider the motion over a whole sequence. This could
be difficult to interpret since slow motion components would begin to play a part. So
we do integrate (we sum) the sequence only over a few frames. In these integrated
images, the intensity represents the amount of change. The highest intensities refer
to the largest motion. We filter the slow motion pixels with a threshold: all the
pixels under the threshold value are set to 0. This value is determined with an
adaptive thresholding method named “Otsu’s criterion". It automatically adapts
this value to the content of the image. We then connect the pixels of this image
with morphological tools (see Chap. 5.2.1 for the definitions and explanations of
erosion and dilation). We obtain an image of the motion areas where each pixel
belonging to an area have the same value (see fig. 11.4(d)).
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4.2.3 Motion segmentation by temporal variance
We also developed a method to segment motion areas with a more general criterion
called the temporal variance. For this we calculate the same temporal gradient as
previously, but we do not perform a simple sum. Instead we compute a time-wise
variance at each pixel location, i.e. we consider the set of values that a particular
pixel takes over time. This hilights the areas where motion is present. This yields an
image of where motion is present. To blend irrelevant variations, we perform a spatial
Gaussian blur, which smooths the resulting image. Each resulting smooth blob
corresponds to an area of motion. We then segmented each area with “Watershed
procedure", described in chapter 5. In essential terms, the watershed procedure
finds an optimal contour between sets of “markers", which are areas in the image
that are characteristic of the inside of the objects of interest (inner markers) and of
the outside of objects (outer markers). The markers of the watershed were obtained
using morphological tools, the inner markers are the highest values of each blob,
and the outer marker is the area where no motion is detected. We then obtain a
segmentation in which each region is related to a local maximum motion intensity.

4.2.4 Spurious motion elimination
Cyclic motion can be distinguished from other kinds of motions by their own
characteristics, and can be of interest (the heartbeat for example is a cyclic motion).
Cyclic motion is a motion that has a repeated pattern over time. We developed a
tool that distinguishes cyclic motion from other kinds of motion. If we split the
sequence into sub-sequences long enough to contain one cycle, we will notice the
same (or nearly the same) motion in each sequence, whereas spurious motion will
not appear on all sub-sequence. By computing the variance of each sub-sequence,
we highlight the main motion in the sub-sequences, which will always be present in
the case of cyclic motion. The median of all sub-sequences yields the motion that is
present on the majority of the sub-sequences, especially the cyclic motion.

4.2.5 Frequency estimation
The estimation of frequency is a parameter that is of interest for clinicians interested
in diseases involving cilia, or for eco-toxicity studies. We developed several
automated or semi-automated methods to estimate frequencies.

Semi-automatic grey-level intensity based frequency estimation
A semi-automatic way for the estimation of frequency is to measure the variations

of grey-level intensities, for instance by computing the average pixels intensities in
a window. Frequencies can be estimated by Fourier analysis on this signal.

Optical flow
Optical flow is the apparent motion between frames. Computing the optical flow

means provides a local translation vector field between these frames. In our work,
we developed an automatic optical flow-based method to evaluate frequency in
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areas of interest. When we study the intensity of this vector field, which we term
"displacement" in the following, we can observe variations: they correspond to speed
variations, which can yield frequency information. For each motion region detected,
we hence obtain a displacement vector which is the median of all the displacement
vectors belonging to that region. The analysis of the variation of the magnitude
with a Fourier transform yields the frequency in the region.

4.3 Complex motion analysis
Some parameters may be more difficult to analyze than others. Because we do not
always know in advance the characteristics of the motion under study, we developed
tools that are suitable for complex motion analysis.

4.3.1 Feature-based region segmentation
A powerful approach is to take into account beating patterns when segmenting areas
of motion. Each region should correspond to a single motion pattern, and so moving
elements in this region should be moving in a similar way. Because we are mostly
interested in beating patterns, and these patterns are periodic, it makes sense to
use Fourier analysis. Using Fourier analysis, we compute the power spectrogram
of the luminosity at various scales in a moving square window. Each spectrogram
forms a “signature", or a vector of features that can be compared with the feature
vector of the neighboring regions. We use a clustering method to compare vectors
and separate groups, each with sufficient beating pattern similarity. This allows
us to identify markers, which are groups of pixel with the highest similarity-score
and so beat in the same way. We then attribute the remaining pixels according
to their similarity and proximity with the seeds to an area. For each pixel, our
procedure yields a score of similarity with each seed, from which we derive region
identifications. This procedure ensures that in each region, the behavior of its
moving elements is coherent.

4.3.2 Curvescan
Assuming we achieve a reasonable segmentation of areas of motion, we are interested
in analyzing the trajectories of the objects belonging to these regions. It is useful to
visualize the path followed by the objects of interest in the sequence, in particular
the trajectories of cilia. An idea is to outline the pattern they draw while beating.
We can imagine that cilia have a pen at their extremity, and they are made to draw
their path over time, like on seismographs. The curvescan is derived from this idea.
To capture these trajectories, we use the contours of our segmentation. The
segmentation surrounds cilia. The contour of this segmentation are typically located
near the cilia extremities. By taking the first frame, we obtain this contour, and
we "unroll" it: we obtain the position of each extremity of cilia in the first image.
We paste it in a new image. Then we do the same thing in the second image, the
third etc and we paste the new unrolled contour below the previous one like in
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Figure 4.1: Distance map simplification: the red line is the line labeled 1 because it is
necessary to only cross 1 pixel to reach the background, the yellow is labeled 2 because
crossing two pixels is now necessary, etc.

the linescan: we obtain a follow-up of the position of cilia. The difference between
linescan and curvescan is the shape of the studied pixels. To obtain our curves, we
computed a "distance map" to our segmentation: it attributes to each pixel of the
segmentation the value of its minimal distance to the background (see Fig. 4.1). We
can then study all the curves present in our segmentation by doing this procedure
on each line of the distance map.

In the next Chapter, we provide all the technical details for the tools that we
have developed during the course of our research. Readers who are not interested
in a high level of technical details regarding our image analysis contribution may
directly skip to part III, describing the applications.
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5
Tools for motion analysis

This chapter gives a presentation of the basic image processing tools we used in our
study.

All the data we analyzed were acquired on devices such as bright field, fluores-
cence or stereo-microscopes, and were recorded with digital cameras. the organisms
we studied, whether fish embryo or ex-vivo biopsy samples, were imaged in a fluid.
The protocols we used are fraught with artifacts that need to be removed before
motion analysis in the videos. These artifacts typically consist of noise or undesirable
motion.
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5.1 Definitions

5.1.1 Images
An image is an association of pixels, the size of an image is its total number of
pixels. A 2D-image is an image with 2 dimensions: numbers of rows and columns.
Let m be the number of rows, and n the number of columns, the total number of
pixels of the image will be m×n. In a 3D-image, the third dimension is the depth,
d, and the total size will be m×n×d.
A grey level image denotes images whose pixels value corresponds to a grey shade,
from black to white. The lowest values will correspond to a darker shade whereas
the highest values are lighter.

5.1.2 2D+t sequences
A 2D+t sequence is a collection of 2D images acquired (generally with a camera)
over a duration t. Each image in the sequence is called a frame. The total number
of frames depends on both t and the temporal resolution of the camera: a sequence
acquired with a resolution of 25 frames per second will contain fewer frames than
the same duration acquired with a resolution of 300 frames per second.

5.2 Basic tools

5.2.1 Mathematical morphology
Let I, J be grey level images defined on a parallelepipedic support (i.e rectangular for
2D or box-shaped for 3D) Ω, taking 8-bit discrete values, i.e. I, J : Ω→ Z∩ [0, 255].
We denote the Boolean image (I)≥θ = {∀x ∈ Ω, I(x) ≥ θ}, i.e. the thresholded
image of I at value θ.

Connexity
In 2D on a square grid, one pixel is said to be 4 or 8 connected if it belongs to a

specific neighborhood of that pixel. The 4-connexity neighborhood is defined as
pixels sharing an edge. In other words, the neighborhood consists of the 4 nearest
neighbours: the 4 pixels of top, bottom, left and right. The 8-connexity is composed
of the pixels sharing an edge or a corner. In other word, it is formed of the 4 pixel
that are 4-connected plus the 4 pixels in the corners. These are illustrated in fig. 5.1.

Structuring element
A structuring element is a set of points plus an origin point. They can be of

various sizes and shapes, and their associated with may or may not be one of the
considered points. The shape, size and origin depend on the application they are
used for. However, some classical structuring elements are widely used, such as
discrete approximations of Euclidean balls. Their symmetric, or transpose, are the
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Figure 5.1: Illustration of connexity. The dark pixel is the "reference" pixel, and the
lights are its 4/8 neighborhood

(a)

(b)

Figure 5.2: Structuring elements and their "transposed" or symmetric with respect to
their origin. The cross indicates the origin. The same shape of structuring element can
have different origins, yielding different results while used with morphological operators.
(b) are the symmetrics of (a)

180-degree rotation of the structuring elements about their origin. We note B the
structuring element, and B̌ its symmetric, we classically note Br the structuring
element associated with a size r, for example a discrete Euclidean ball of radius r.

Dilation and Erosion
δB(I) is the dilation of I by the structuring element B, εB(I) is the adjunct

erosion. These are defined as follow:
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(a)

(b) (c)

Figure 5.3: Erosion and Dilation: (a) is the original image. (b) and (c) are respectively
the dilation and the erosion of (a) with a ball of radius 5

[δB(I)](x) = max{I(y), y ∈ B̌(x)} (5.1)

[εB(I)](x) = min{I(y), y ∈ B(x)} (5.2)

Fig. 5.3 illustrates the erosion and dilation.
The erosion and dilation with the same structuring element form an adjunction.

This means that :
J ⊆ εB(I)⇔ I ⊆ δB(J) (5.3)

This property allows us to define composed operators, as follows:

Opening and Closing
γB(I) and ϕB(I) are the morphological opening and closing [53]. These operators

are composed from the erosion and dilation. The opening corresponds to the dilation
of the eroded image, while the closing corresponds to an erosion of the dilated
image.

γB(I) = δB(εB(I)) (5.4)

ϕB(I) = εB(δB(I)) (5.5)

Opening and closings can also be defined from their algebraic properties, without
reference to a structuring element [54], these are called algebraic openings and
closings. For instance, we also define, for a binary image X, γλ(X), the area opening
of X with parameter λ [55]. This opening removes all the components with an area
smaller than a parameter λ. This opening can be defined for grey-level images, in
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(a) (b)

Figure 5.4: Opening and Closing: (a) and (b) are respectively the opening and the
closing of Fig 5.3(a) with a ball of radius 5

which case it arases peaks until they have an area larger than λ. Fig. 5.4 illustrates
the erosion and dilation.

Connected component and geodesic reconstruction in binary images
A connected component C is a set of pixels that are connected (i.e. there exist a

path consisting of neighboring pixels between any two points of C), and is separated
from the other components by the background. γr(I, J) is the geodesic binary
reconstruction by dilation of I under J (which is an algebraic opening). In other
words, it allows the reconstruction of objects from seeds.

γr(I, J) = {Ci ∈ I\Ci ∩ J 6= ∅} (5.6)

Fig. 5.5 illustrates this operator on a map of Australia’s mainland and the island
of Tasmania (composed of two different connected components), where the seed
only intersects the Australian mainland, and so Tasmania disappears after the
reconstruction.

H-Maxima
The h-maxima operator finds all the regional maxima in grey-level images with an

height greater than a parameter h [56]. Regional maxima are connected components
(groups of neighbors pixels with the same intensity value), and that are surrounding
by pixels that all have a lower value. The h-maxima operator considers all the
local maxima of an image and arases them by a height of h, then computes the
difference with the original image, which forms the result (see Fig 5.6). We note
Hmax
h (I) the height maxima of I with parameter h. The geodesic reconstruction and

h-maxima operator are examples of connected operators. To implement connected
operators [57, 58], an efficient max-tree/min-tree framework is used [59].

Watershed
The Watershed procedure was proposed for the first time for segmentation purpose

in 1978 by Lantuejoul and Digabel [60]. The first publication on Watershed for
contour detection appeared in 1979 [61].
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(a) (b)

Figure 5.5: Geodesic reconstruction. (a) is the initial image on which an opening has
been applied to obtain a seed. The inner parts of the Australia are the seeds for the
reconstruction. (b) is the reconstruction: note that the island of Tasmania was not
reconstructed.

h-maxima

h f

f-h

Figure 5.6: Illustration of the h-maxima operator.

The classical representation is to consider a terrain or "relief". This relief may be the
magnitude of the gradient of an image, with high values near the contour of objects.
The markers are representative sets of points that belong to each object, or to the
background. The grey level values of an image can be considered in 3D, the high
values are the top of "mountains", and the bottom are the "valleys". The watershed
line is obtained by growing the markers from the valleys to the top of the mountains,
as if simulating an inundation coming from the markers.. When a growing region
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Figure 5.7: Representation of the watershed procedure in 3D

encounters an other one, the border separating these regions is a watershed line and
is kept in the result. When the image has been entirely flooded, the result is an
image of all the watershed lines. Fig. 5.7 illustrates the mountain/valley concept.
Meyer presented a short history of the watershed and its variants in [62].

However, while this classical view of the watershed transform is intuitive, it does
not tell the whole story, indeed the watershed transform can be interpreted in other
ways: a topological transform [63], a graph transform leading to fast algorithms [64],
the result of an optimisation procedure [65], and links with other segmentation
algorithms [66]. For this it is useful to turn to a graph-based representation.

5.2.2 Graph-based optimisation model
The more modern interpretation of the watershed is to consider it as a graph
transform, specifically a minimum spanning forest [67]. Recently, the watershed
and other similar transforms were shown to correspond to a unified graph-based
framework, described in the next section.

Definition
Let G(I) = (V (I), E(I)) a non-directed graph such as V (I) = I are vertices and

E(I) are the edges.
Each point p ∈ V (I) is a pixel of the image I = a vertex. Each couple (p, q) ∈ E(I)
is an undirected couple of neighbors (p,q) = (q,p), for example representing the
4-connectivity.
Let X be the unknown expected result, and Y the image of markers. Markers
are labeled pixels that constitute data fidelity, e.g. representative areas in a
segmentation.
We write the problem of the segmentation as an optimization problem where we
minimize the energy of:

F (X) =
∑

p∈V (I)
W k(p)(xp − yp)l +

∑
(p,q)∈E(I)

W k
D(p, q)(xp − xq)l (5.7)
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l
k 0 1 2 ... → +∞

0 V ... ... ... ...
1 ... GC GC ... WC
2 ... RW RW ... PW
... ... ... ... ... ...

→ +∞ ... MF ... ... ...

Table 5.1: V = Voronoï , GC = Graph Cut [68], RW = Random Walker [69], WC =
WatershedCut [70], PW = PowerWatershed [68], MF = MaxForest [71]

Figure 5.8: Illustration of 3 markers on the image

X∗ = arg min
X

(F (X)) (5.8)

Where for p ∈ I (p = (i, j)), we write xp = X(p), yp = Y (p).
The power (k,l) will determine the model used for resolution. We present here
the corresponding models, without specifying which ones we use in the remainder.
Table 5.1 presents the models according to the values of k and l.

Each edge has a weight represented in W including the edges w between markers
and image (see Fig 5.8).

Data similarity: comparison between X and Y∑
p∈V (I)

W k(p)(xp − yp)l (5.9)

Initially The only known ouput data in X are the markers. The first term compares
X(p) and Y (p) when Y (p) 6= N/A. This is implemented with W k(p):

W (p) =
{

0 if yp = N/A
λ if yp = class 1 or 2



5. Tools for motion analysis 43

If Y p is not a marker (and so is N/A), W k(p)(xp − yp)l is equal to 0, whereas if it
is a marker, to minimize this term, the optimization procedure will tend to make
xp and yp tend toward each other: it will select the output X in which xp is close
to yp. The sum will be equal to 0 if all the xp corresponding to markers Y are well
classified. This influence will vary in importance according to the value of λ.

Neighbor similarity and regularization of X∑
(p,q)∈E(I)

W k
D(p, q)(xp − xq)l (5.10)

When p and q are neighbors. xp and xq are their respective values in X. This
term helps to ensure label similarity in a region. The similarity is determined by
W k

D(p, q). If W is high, it means p and q in Im should be similar according to D,
and the resolution will select X in which xp and xq tend to be equal. If W is small,
xp and xq are more likely to be different.
The definition of D is largely up to the user, but is generally a functional that has
a low value if the difference between pixel is high, and vice versa. For example, for
a grey-level intensity segmentation, WD(p, q) can be given by:

WD(p, q) = exp(−β(I(p)− I(q))2) (5.11)

with β > 0, and I(p) and I(q) the original grey-level intensities. If they are equal,
the value of WD(p, q) will be equal to 1, whereas the more p and q differ, the
more the corresponding Wd(p, q) tends to zero. This behaviour will tend to place
transitions in the values of X in areas where p and q differ, which is the desired
outcome.
The choice of D and W are directly linked to the problem considered.

The combination of the two terms allows us to select the best X that respects
the markers and the coherence of the regions according to the descriptors.

Solution
The resolution of Eq. (5.7) depends very much on l. If l = 1, the equation

can be interpreted as solving a linear programming problem, more specifically a
maximum-flow/minimum cut transport problem [72]. This can be solved with fast
algorithms, but these are only exact in the binary case (two markers). With l = 2,
a fast exact solution exists for any number of labels, with the Random Walker
algorithm [69]. In this case, Eq. (5.7) is a strictly convex quadratic functional that
can be optimized by classical differentiation, yielding a linear system.

Random walker Let X be n rows and m columns. vx = nm is the number
of vertices in X and ex = 2nm− n−m the number of edges in X. Let vy = ey be
the number of markers. The total number of vertices is v = vx + vy and the total
number of edges is e = ex + ey
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Figure 5.9: Illustration of the adjacence matrix with 2 markers. The grey pixels are
0, white +1 and black -1. It is the adjacence matrix of a 5×10 image, with markers on
pixels [1,2] and [4,5]

A is the adjacence matrix: it represents the edges from a vertex with a +1 and to a
vertex with a -1. It contains the markers and their edges in the last rows.

A =

1 2 3 4 5 . . . v



+1 −1 0 0 0 . . . 0 e1
0 +1 −1 0 0 . . . 0 e2
0 0 +1 −1 0 . . . 0 e3
... ... ... ... ... . . .

... ...
... ... ... ... ... . . .

... ee

The upper part of A are the horizontal edges, and the middle are the vertical ones
and the ey last are the lines of the markers. An illustration of this can be found on
Fig 5.9.
W is the matrix of the weights. It is a diagonal matrix of size e × e where the

diagonal components are the weight on the edge ei.
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W =





wea 0 . . . . . . 0
0 web

. . . ...
... . . . wec

. . . ...
... . . . . . . 0
0 . . . . . . 0 wee

We define the Laplacian matrix as follows: L = A>WA. It is a v×v matrix.
Minimizing F (X) when l = 2 and any arbitrary k, corresponds to the Random

Walker algorithm. In this case the Euler-Lagrange of Eq. (5.7) reduces to a linear
system:

Let X be the vector of xi and Y the vector of yi, we have:

V = X ∪ Y = {x1, ..., xvx} ∪ {y1, ..., yvy} =
[
X
Y

]
(5.12)

Separating L taking X and Y into account yields:

L =

X Y


LX

... B
. . .

... . . .

...
B> ... LY

Expressing F in terms of V yields:

F[V] =
[
Y> X>

] [LX B
B> LY

] [
X
Y

]
= 1

2
[
X>LXX + 2Y>B>X + Y>LYY

]
(5.13)

Deriving with respect to X and setting to 0 yields:

∂D
∂X = 1

2
[
2B>Y + 2LXX

]
= B>Y + LXX = 0 (5.14)

Finally X is given by solving:

LXX = −B>Y (5.15)

Watershed cuts In the case where k → +∞, the solution to Eq. 5.7 is also
easily obtained: it is a watershed cut [67]. Watershed cuts at least as efficient as
random walkers, and also exact for any number of labels. Watershed cut solutions
are usually not unique, though the specific one obtained by letting k tend to infinity
is indeed unique, and is termed the power watershed solution [68], for which an
efficient algorithm exist. As for the general watershed-cut algorithm, it is derived
from maximum spanning tree algorithms, for which quasi-linear algorithms exist [73,
74]. The Image Foresting Transform [75] is a related algorithm.
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(a) (b) (c) (d) (e)

Figure 5.10: Effect of a Gaussian filter. (a) is the initial image, (b) the result of the
Gaussian filter with σ = 1, (c) with σ = 2, (d) with σ = 5 and (e) with σ = 10.

5.2.3 Gaussian filter
A Gaussian filter smooths the image with a convolution of a Gaussian function
centered in 0 (mean = 0) and with a standard deviation σ. The convolution is given
by the following equation:

(f ∗ g)(x) =
∫ +∞

−∞
f(x− t)g(t) dt =

∫ +∞

−∞
f(t)g(x− t) dt (5.16)

In 1D, the Gaussian function is written in this way:

g(x) = 1√
2πσ

exp(− x2

2σ2 ) (5.17)

The 2D filter is an isotropic combination isotropic of the 1D filter. The filter is a
convolution of the image with a Gaussian kernel. The 2D Gaussian kernel is defined
by:

g(x, y) = 1
2.πσ2 exp(−x

2 + y2

2σ2 ) (5.18)

The result is a blurred image. The image is becomes increasingly blurred as σ
increases. (see Fig 5.10).

5.2.4 Bilateral filter
The bilateral filter is a spatially variant convolution. It is an edge-preserving filter.
It averages pixels based on their spatial closeness and similarity. The closeness
is determined in a window and the similarity by a spatial σ. It is based on the
Gaussian filters but takes into account the variation in intensity [76]. For each pixel
pixel at coordinate (x,y,t) in a 2D+t image, for each pixel (k,l,m) in a window W
around this pixel, we have:

g(i, j, t) = 1∑
(k,l,m)∈W w(i, j, t, k, l,m)

∑
(k,l,m)∈W

I(k, l,m)w(i, j, t, k, l,m), (5.19)

where

w(i, j, t, k, l,m) = exp
(
− (i− k)2 + (j − l)2 + (t−m)2

2σ2
d

− (I(i, j, t)− I(k, l,m))2

2σ2
r

)
.

(5.20)
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i)

Figure 5.11: Example of Bilateral filter with various parameters. (a) is the initial image,
and (b) the noisy one. (c) the result of the Bilateral filter with σr = 0.01 and σd = 3, (d)
with σr = 0.06 and σd = 3, (e) with σr = 0.15 and σd = 5, (f) with σr = 0.25 and σd = 7,
(g) with σr = 1 and σd = 7, (h) with σr = 2 and σd = 9 and (i) with σr = 4 and σd = 11.

Fig 5.11 illustrates the Bilateral filter on a noisy image with varying parameters
σr and σd. We can notice that if parameters are too low, the filter has a limited
filtering effect, whereas if the parameters are too high, the filter tends to blur the
image like the Gaussian filter. However, for a range of parameters, the filters reduces
the noise effectively while keeping contours intact.

5.2.5 Optical flow
Optical flow is the computation of the apparent oriented motion of objects between
two consecutive frames. Optical flow is more sophisticated than a temporal gradient:
it provides translation vectors between objects from one frame to the next. Taking
a set of points or pixels in the first image, the algorithm locates the equivalent
points in the second image. The vector of translation is the vector with which we
can find the coordinates of the point in the previous or next image.
This vector provides the direction and the speed of translation obtained from the
magnitude and the frame rate. Several methods exist to estimate the optical flow,
that may be dense or sparse. Sparse optical flow works with the extraction of
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Figure 5.12: One frame of the Yosemite sequence and the corresponding true velocity
field (subsampled), from [80]

features (such as edges). Dense optical flow will work on all the pixels or a subset of
pixels. Sparse optical flow is generally faster but can miss some areas if the object
are not selected as interest points. Dense optical flow is usually slower, but efficient
methods do exist.
The Lucas–Kanade method [77] is a famous historical method. Proposed in 1981, it
used a differential method for optical flow estimation. It is a local method as it will
calculate the flow only in the neighborhood of the pixels selected from the features.
It assumes that the flow is essentially constant in a local neighborhood of a selected
pixel and uses least squares to solve the optical flow equations for all the pixels in
that neighborhood.
The Horn-Schunck method [78] is often compared to the previous one. It is a global
method that yields a high density of flow vectors. In a homogeneous object where
there are no features, the flow information is extracted from the boundaries of
the objects. It yields a plain map of motion for objects of interest but it is more
sensitive to noise than local methods.

The Gunnar-Farneback [79] algorithm is a semi-local dense flow. It analyzes
only a few points that are regularly spaced on a grid applied to the sequence. The
Farneback method uses pyramidal calculations and polynomial approximations to
estimate the flow. Each neighborhood of both frames is approximated by quadratic
polynomials using the polynomial expansion transform.

f(x) ∼ xTAx+ bTx+ c (5.21)

where A is a symmetric matrix, b a vector and c a scalar. The coefficients are
estimated from a weighted least squares fit to the signal values in the neighborhood
(cited from [80]) This algorithm does not uses the a-piori of the spatio-temporal
consistency over several frames, which is in our case a good point. Fig. 5.12 shows
the vector translation field on the Yosemite sequence. We used the Farneback
algorithm in this thesis, due to its performance and wide availability in the OpenCV
framework 1.

1http://opencv.org

http://opencv.org
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Figure 5.13: Example of key points extraction and matching by pair of corresponding
points

5.2.6 Features
"Features" can be associated to descriptors. They are parameters that describe
regions, that can be used for segmentation. They can correspond to a texture,
a frequency, motion etc. We need to define the descriptors before doing any
segmentation.

Keys points are representative areas with some special characteristics, defined
by coordinates and features. Features can represent corners, edges or texture, or
some other characteristics that are expected to be robust and relevant. These
features represent the points and can be used to match them by pairs between
frames. Fig. 5.13 illustrates pairs of matching points between two images, an initial
image and its transform by rotation, axial symmetry and scale variation.

Several algorithm for key-points extraction exist.

• Scale-Invariant Feature Transform (SIFT) [81]

SIFT builds a multi-resolution image pyramid, filters each layer with Gaussian
kernels and computes gradient orientation at each level. This method consists
of four major steps: scale-space extrema detection, keypoint localization,
orientation assignment and keypoint descriptor.

• Speeded Up Robust Features (SURF) [82]

SURF uses a Hessian matrix approximation for point detection and integral
images, which make the SURF calculations faster [83]. Specifically, authors
that article create an image stack and filter it and filters it using a box filter
approximation of second-order Gaussian partial derivatives. Integral images
allow the computation of rectangular box filters in near constant time.

Luo Juan & Oubong Gwun presented in 2009 a comparison between the SIFT and
SURF algorithm in [84].
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5.2.7 Fourier Transform
The Fourier Transform [85] decomposes a signal into its constituants in the frequency
domain. This means it can be used, among other things, to detect significant
frequencies in a signal, i.e. the regular repetition of some patterns. Let f be a
function of x, real or complex. We define the Fourier Transform of f(x) the complex
function of the real variable k:

F (k) = F [f(x)] =
∫ +∞

−∞
f(x) exp(−ikx)dx (5.22)

If x is a length, k is an inverse length.
If f is a function of time, then x becomes t and we use ω instead of k, which
represent the inverse of a duration, or period: a frequency.

F [f(t)] = F (ω) =
∫ +∞

−∞
f(t) exp(−iωt)dt (5.23)

The result of the Fourier Transform is a function describing the frequencies present
in the signal. Important frequencies in a signal typically appear as peaks in the
amplitude of the Fourier transform. The intensity of the peaks represents their
relative importance in the original signal.

The peaks can be detected with simple peak-detection algorithms and a quadratic
extrapolation can be performed to be more precise on the estimation [86] 2.

5.3 Applications

5.3.1 Definition of motion
Motion in a video sequence can be defined as grey-level intensity variation between
frames, which differs from noise by its spatial and temporal characteristics. If we
consider a fully denoised sequence with enough temporal resolution, we can define
three kinds of components. A “non-moving" component is a pixel or a group of pixel
whose grey-level intensity remains stable over time, a "slow-moving" component is a
pixel or a group of pixel whose grey-level intensity slightly vary over time and a
“moving" component will have significant variations over time.

5.3.2 Sensor pattern removal
Motivations
Our acquisitions show not only the subject under study but also a fixed-grid,

texture-like pattern often present in high-speed sensors. This artifact is due to the
sensor pattern of the camera itself. This pattern is a signature of the camera. It
appears even when recording a blank field, leading to an image of this texture. A

2http://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak

http://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak


5. Tools for motion analysis 51

method for removing the grid pattern could then be to record a blank image, and
subtract or divide this image from all subsequent recorded frames. However this
method implies acquiring such a blank-field, which is not always desirable or even
possible. For this reason we developed a method to obtain the pattern from the
sequence itself, based on the idea of the unsharp masking method.

Methodology
The texture is, in fact, a high-spatial frequency, non moving component of the

sequence. To obtain an image of the texture, we first computed the average image
S̄ of the sequence S. An average image of the sequence will represent the average
variations of the sequence: it will preserve the slow and non moving components
of the sequence including this pattern, and removes the components with larger
motion. Indeed, an average will smooth the grey-level intensities. We hence recover
all the "non-moving" and very "slow-moving" components of the sequence.
Because we require an image of the pattern, we filter the S̄ with a high-pass filter.
We applied a Gaussian filter with σ = 1 on S̄ yielding to a "blurred" pattern-free
image. Indeed, the pattern is composed of small independent pixels of various grey-
level intensity, which are erased by the Gaussian filter. By subtracting the blurred
S̄ from S̄, this high-pass filter conserves only the high-frequency "non-moving"
elements. This is illustrated in Fig 5.14.

Once we have this image, we can obtain a pattern-free sequence Sclear of Iclear
by subtracting the pattern from all frames I

∀I ∈ S : Iclear = I −
(
S̄ − Gσ(S̄)

)
(5.24)

with Gσ a gaussian filter with standard deviation σ = 1, S̄ is the average of the
sequence S. Sclear is the sequence of the Iclear .

5.3.3 Image stabilization
Motivations

Because we are most of the time analyzing physiological parameters, the organisms
under study have to be kept alive. For this purpose and because of their charac-
teristics, we kept them in a liquid medium while recording the video sequences. It
implies a higher probability of observing undesirable motion induced by vibrations,
or large-scale motion. We hence need to stabilize the object of interest on videos
before going further in the analysis. The stabilization part takes place after the
sensor pattern removal procedure if that one is needed. Indeed, after stabilization,
if it were not removed beforehand, the pattern of Sec 5.3.2 would no longer be fixed
but would appear to move due to the stabilisation.

Registration methodology for image stabilization
We developed an specific, adaptive registration. It is adaptive because of the

parameters specified in our program: a "shift" and a binary mask. The "shift" of the
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registration specifies the reference frame. If the shift is 1, each frame is registered
according to the previous one. If it is 10, frames 1-10 are registered using the frame
0 as reference, 11-20 using 10 etc. The shift defines the frequency of selection of a
new reference frame. The mask parameter is used to select a region of interest for
the registration. Indeed, some frame parts are of no interest for the registration
(featureless for instance). We calculate an adaptive binary mask which delimits
the moving components of the sequence, or which considers the entire sequence if
needed.
To find the transformation, we used a keypoint-based method. Key points were
extracted in images using the SIFT method [81] or the SURF method [82]. A key
point is a point associated with a rotation and scale-invariant set of descriptors,
which are sufficiently specific to be distinguished from other points. Point descriptors
were matched in pairs in a complete graph and sorted according to their distance
coefficient: the smallest coefficient indicates the best matching pair. We kept at
most the 10 best pairs of points belonging to the mask.
This yields the transform parameters after an iterative RANSAC-like method [87]
to weed out the outliers. The translation (dx, dy) is estimated by the median of
the difference of the points of the first image and their corresponding points in
the second. The combination rotation/translation is determined using a linear
least squares system resolution. This resolution is applied on each combination
of pairs of points. Then, the median of all the transforms is considered as the
rotation/translation. Since we use pairs of points to estimate the transform, it
is always a similarity (translation/rotation + change of scale). We assumed that
the angle of the similarity is always correctly estimated. We verify that the scale
factor is small and we project it back to unity, yielding a rigid transform. This
transform is applied and a new translation is then calculated. We then perform a
model selection allowing three types of transformations between each pair of frame:
identity, pure translation or translation plus rotation. The best transformation is
the transformation yielding the smallest image covariance norm. As soon as the
transformation matrix is known, it can be applied to all the pixels of a frame. This
method is repeated for each frame, and is iterated twice to robustify it. It may
happen that none of the transforms yield an improvement over the identity, in
which case we decide that no transformation occurred. Matching pairs rather than
individual points allow us to better constrain the result [88]. We neglect non-rigid
deformations. We choose the best model taking into account both the error and
the complexity of the model.

R =
(

cos θ sin θ
− sin θ cos θ

)
is the rotation matrix. T = (dx, dy) is the translation;

∀(x, y) ∈ Iclear : Ireg(x, y) = Iclear(x′, y′) (5.25)

with the estimated R and T , [x′ y′]> = R[x y]>+ T . Sreg is the resulting stabilized
sequence of Ireg
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Now that the classical tools are presented, we will develop in the next chapter
our simple motion analysis procedures.
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(a) (b)

(c) (d)

(e)

Figure 5.14: Removing sensor pattern from the acquisition, illustration on a crop of a
sequence.(a) is the initial frame of the sequence (b) The average of the sequence yields the
non-moving components of the sequence. (c) Blurred average removes thin and textured
elements. Computing (b)-(c)=(d) yields the sensor pattern. (e) Finally, we subtract this
pattern from all the images of the sequence.



6
Simple motion analysis

In this chapter we present the (relatively) simple motion analysis tools that we
have developed. We started from the notion of frame difference to enhance the
areas where motion occurs, then we switched to more formalized notions based on
temporal gradient and temporal variance. We also develop tools for eliminating
spurious motion and for frequency estimation.
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6.1 Motion enhancement

As a reminder (see section 5.3.1), we defined motion in a video sequence as grey-
level intensity variation between frames, which differs from noise by its spatial and
temporal characteristics. If we consider a sequence which has its pattern texture
removed and is stabilized, we should have “non moving" components, which are not
of interest, and moving component that are assumed to correspond to our objects
of interest.

6.1.1 Motivations

We need to enhance the moving components of the sequence in order to obtain
easily analyzable moving components. To this end, we need to get rid off all the
background, including parts of the objects, which are of no interest to the problem
at hand. This procedure takes place after the stabilization part (if needed), to
ensure that the moving parts are the objects of interest.

6.1.2 Enhancement methodology

Assuming that the sequence is stabilized (directly from acquisition or after sequence
processing), the moving components should mainly be the objects of interest. We
again compute the average image of the sequence (Fig. 6.1 (b)), yielding an image
of the non-moving parts of the sequence: the background and the parts we do not
need for motion analysis. We subtract this result from each frame. This operation
removes the static parts of the sequence and yields a sequence of only the moving
elements.

∀Ireg ∈ Sreg : Imov = Ireg − S̄reg (6.1)

Smov is the sequence of Imov

6.2 Motion segmentation by temporal gradient

Our first segmentation protocol uses only motion criteria. Since motion components
are sometime easily distinguishable from the background, and the motion is simple
(e.g. a simple translation), sometime it may be efficient to segment motion areas
regardless any other parameter. Let Smov be the initial sequence. This sequence is
precisely where the objects of interest are the moving components. The absolute
value of the difference between two consecutive frames yields the motion between
them.

∀i ∈ [0 : 10], I idiff = |I imov − I i+1
mov| (6.2)
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(a) (b)

(c)

Figure 6.1: Detecting the moving motion components of an artifact-free sequence.
(a) Initial frame. (b) Averaging of the sequence yielding the non-moving components,
including all the parts that are not blood cells. (c) Areas with motion from the difference
between frames and (b).

Sdiff is the sequence of I idiff . We can simply integrate this sequence to obtain an
image of the motion areas through the N first frames.

ISum =
N∑
i=1

I idiff (6.3)

We binarize this image using the Otsu’s criterion [89] θO: we threshold ISum at the
θO value.

ITSum = (ISum)≥θO
(6.4)

We thus obtain a binary image of the moving areas. Because the threshold criterion
has no spatial regularity, the result can be noisy, hence we clean these areas with
a morphological opening γ and a closing ϕ [53] with the same euclidian ball B of
radius r to denoise ITSum, yieldingM.

M = γBr(ϕBr(ITSum)) (6.5)

We then create ML in which all connected component are distinguished with
the attribution of a label (see fig. 6.2(d)). Obviously this method has many
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(a) (b)

(c) (d)

Figure 6.2: Illustration of the sequence of operation for our motion-based segmentation.
(a) Difference between two consecutive frames. (b) Integrating motion yields segmentation
(c) and vessel labeling (d).

drawbacks. In particular, it requires the setting of many parameters that are
problem-dependent and it is only suitable for simple motion. In our case we used
it for vessel segmentation in the tail of alevins as in Fig. 6.2. In this example the
motion is a simple translation, constant in direction and only changing in speed.
As shown on Fig. 6.2(d) the result is quite satisfactory and stable in practice.

6.3 Motion segmentation by temporal variance
The previous method makes a number of assumptions with respect to the kind of
motion that can be detected: motion is well confined in disconnected area, contours
of motion are well defined and motion is easily detected. Here we propose a more
general method based on the temporal variance that is less dependent on these
assumptions. The temporal variance V of a sequence highlights the zones that
exhibit motion. We first compute the asymmetric temporal gradient ∇tI, which is
a sequence of the difference between consecutive frames. This gradient is very noisy
but contains information about the motion components. We summarize the motion
information by computing the variance on the sequence of temporal gradient. This
yields a single image, which we blur using a Gaussian kernel in order to retain only
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the most important motion. A formula for the whole process is as follows:

V = Gσ ∗
L−1∑
t=1

(∇tI −
1

L− 1

L−1∑
t=1
∇tI)2, (6.6)

where ∇tI = It−1− It is the temporal gradient and σ = 1. For speed and simplicity,
we used a marker-based watershed procedure [90] to segment the different areas of
motion. This procedures require the computation of a gradient and of markers of
the areas we want to segment. These marker areas can be small and their shape
does not matter, however they need to be representative (or prototypic) of the final
segmentation. Under this model it is possible to separate the detection of regions of
interest and the precise placement of their contour. For marker detection, we use
height maxima of the filtered variance image indicating the intensity of motion or a
threshold. A high threshold indicates high motion, a low threshold, low motion,
whereas the height maxima will keep even the slow motion area.

M = (Gσ(δBr(V)))>p∗max(V) (6.7)

or
M = Hmax

h (Gσ(δBr(V))) (6.8)
where δBr(I) is the dilation of I by an Euclidian ball B of radius r = 3. I>θ denotes
the thresholding of image I above θ, p = 0.3, σ = 5.
Internal markers are provided by εB(M) and external marker by εB3(X \M), where
εB is the erosion by an Euclidian ball B and X is the image domain.

Computing the watershed of the gradient of the variance image leads to a
mask denoted by ML. Figure 6.3 shows an example of the procedure and the
segmentation, in which all the connected components are distinguished by a different
(color) label. In these results we see that motion areas have been well segmented
and that the contours of these regions are soft but sufficiently well defined for the
watershed transform to provide a convincing result. However there remain a degree
of arbitrariness to the thresholding criteria or the parameter of the height maxima,
and solely the quantity of motion information is used. There is no characterization
of the individual segmented areas, so their spatial differentiation could be an artifact.
To counter this, we now seek a more sophisticated region-based method, where we
develop and use descriptors of cyclic motion.

6.4 False motion elimination

6.4.1 Context
A cyclic motion is a motion that is repeated over time. If we take the motion
definition from 5.3.1, cyclic motion can be described as a same grey-level variation
that occurs periodically. Heart beat or motion of lungs during breathing are
examples of cyclic motion. In this part, it is useful to differentiate cyclic motion
from non-repeated motion. The former is typically something associated with
biological processes (beating heart, blood flow, etc), whereas the former is more
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(a) (b)

(c) (d)

Figure 6.3: Sequence of operations for segmentation. (a) Variance on the sequence
of temporal gradient. (b) Blured variance (c) Markers determination (d) Segmentation
result.

likely to be associated with motion artifacts.
Cyclic motion is very much at the core of the characterization of cilia motion for
example, but also occurs when detecting a beating heart in a fish embryo.

However cyclic motion in living organisms is never perfectly periodic and can be
subtle or irregular. Using a Fourier analysis would not necessarily be appropriate.

Here we propose a methodology for detecting approximately cyclic motion as
opposed to noise or other types of motion that are not cyclic.

6.4.2 Methodology
The particularity of cyclic motion is its recurrence. Let’s consider a sequence S.
Computing the grey level variance at each pixel of a sequence along the time line
show the grey-level variability for that pixel, however this variability may not be
due to a cyclic pattern. If we split this sequence into sub-sequences long enough to
contain one period, we will detect it in each sub-sequence. This is the idea behind
the cyclic motion detection. We split S into n sub-sequences of l frames (S1, S2
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... Sn). The interval of l frames needs to be long enough to contain at least one
period. We compute the pixels temporal variance on each sub-sequence, on the
entire images or on a region of interest. This yields n variance images V1,V2 ... Vn
(see Fig 6.4 (a)(b)(c)). We next compute the median of these n images Vi. Residual
variation occurring only once in the sequence will produce a large variance only once,
and so the median of all the variances in this area will remain small (Fig 6.4(d)).
On the other hand, non-spurious motion will exhibit significant variance in all n
sub-sequences.

S =
n⋃
i=1
Si (6.9)

∀i ∈ [1, n], Vi = variance(Si) (6.10)
C = median(Vi, i ∈ [1, n]) (6.11)

(a) (b) (c) (d)

Figure 6.4: False color rendering of the temporal variance. The brightest colors
correspond to the highest values. (a), (b) and (c) are variances from sub-sequences, and
(d) is the median of the three variances. We see that the areas that exhibit high variance
in only one of the (a),(b) or (c) frames are eliminated in (d).

We can now segment the region where cyclic motion append with morphological
operators. We want to connect the closest objects (for example the different parts
of the heart) and to eliminate the small residual motion.

D = (γλ1(ϕBr(γλ2(C))))≥1. (6.12)

Here, Br is a ball of radius r = 4, λ1,and λ2 are area parameters that depend on
the objects of interest. This image can be thresholded at 1 to obtain a mask of the
main cyclic variation areas and can be filtered again to remove areas that are not
large enough. This filter reduces the false positive detection due to small remaining
noise. Results are illustrated in fig. 6.5. In chapter 10, we apply this method for
the detection of heartbeats. We have used this technique extensively and this has
reduced the error rate by a factor of 2.
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(a) (b) (c)

Figure 6.5: Segmentation of cyclic motion from C: (a) is the result of the median of
the variance, (b) is the result of the thresholding before area filtering and (c) is the result
of the segmentation

6.5 Frequency estimation

6.5.1 Semi-automatic grey-level intensity based frequency
estimation

A simple way of estimating frequency from cyclic motion is to compute the average
of grey level intensity in an area a and to follow this variation. Fig 6.6 illustrates
the results on Zebrafish and Medaka hearts. Heart segmentation was first computed
using the method of section 6.2.
However, this method is sensitive to noise and needs a spatially non-variant cyclic
motion. We illustrated it in a feasibility study described in chapter 9.

6.5.2 Automatic optical flow based frequency estimation
As seen in the previous section, sometimes processes of interest manifest themselves
via grey-level variations. For instance as the heart fills and empties, it becomes
darker and lighter in appearance. However sometimes biological processes do not
incur a variation in brightness, but it is still possible to detect variation in speed. To
measure these, it is useful to consider the optical flow. Optical flow is the apparent
motion of objects between two consecutive images. Three hypotheses are needed to
use optical flow in the right way: object pixels intensities do not change between
consecutive images; the acquisition rate is sufficiently high to ensure motion is
smooth enough for differential calculus to be used, and neighbouring pixels show
similar motion.

The dense optical flow methods provide motion information everywhere in the
frame, even in areas with zero motion, whereas sparse techniques only show non-zero
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(a) (b)

Figure 6.6: Grey level average intensity variation in the heart of (a) a Zebrafish and (b)
a Medaka.

motion. Dense methods are known to be slower but may be more accurate than
sparse methods. Because we are working on complex sequences of living models,
various frequencies may be present all over the image. A dense optical flow method
is preferable when coupled with a labelling of the zones with consistent motion and
frequency. Indeed, before applying the optical flow, we first segment the areas of
interest: we hence develop a combined method for frequencies estimation which
allows the estimation of frequencies in each area of interest.

We use the Färneback’s algorithm for computing the optical flow [79]. It works
by dividing the frame with a grid, and calculating global motion in relation to
its consecutive frame for each zone. The global motion is assigned to a point
representing the center of that zone. For each point this method gives a translation
vector that corresponds to the flow vector. We take the median value of the
magnitude of all the speed vectors belonging to an area previously segmented to
obtain the global translation in this area. We formulate the problem in this way:

V (i) =
⋃

α∈ML

Vα(i) (6.13)

∀α ∈ML, Vα = {vi ∈ V/ML(xvi
, yvi

) = α} (6.14)
Vα(i) = median(Vα(i)) (6.15)

V (i) is the list of the translation vectors between two frames i and i+ 1. Vα(i) is
the list of the translation vectors belonging to the component α of ML, which is a
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Figure 6.7: (a) Representation of optical flow (in green) between two frames in vessels
of a fish embryo tail and rough representation of the magnitude of translation vectors in
vessel and artery (b)

labeled mask. For each region α, we have a median translation value Vα(i) which
is the median value of translation in the α region. We validate the choice of the
median operator with speed vector clustering.

We identify average motion vectors with each segmented and labelled region.
The plot of the magnitude of the speed vs. time in each labelled region allows us
to identify useful physiological measurements, such as frequency, minimum and
maximum speed, motion regularity and so on. Frequency analysis is performed
using the Fast Fourier Transform.
Figure 6.7 illustrates the optical flow extraction in the tail of a fish embryo. If
there is no significant differences between the blood flow representation between two
frames on (a), by studying the evolution of that flow over time, we can distinguish
the vein from the artery (b).
The main advantage of this method is that it can deal with several types of motion:
the cyclic motion that is spatially non-variant such as heart that fills and empties,
and spatially variant motion such as in blood vessels where blood cells move. We
use this estimation on cilliated cells (presented in Chap. 8) and fish embryo heart
and vessels where blood cells are visible (Chap. 11). For visual representation, the
the frequency plots in these chapters are smoothed using a 1D Gaussian filter with
a small σ.
On the three cases studies, we obtain precise frequency estimation using this method.

These tools were developed for the analysis of simple motion. They did not prove
sufficient when we analyzed some more complex motion such as the description of
cilia beating pattern. We hence developed two other procedures for this purpose.
They are described in the next chapter.



7
Complex motion identification

The previously described motion analysis tools are useful and effective but do not
provide a precise characterization of motion. We need to extract other complex
parameters that will describe the motion such as period, amplitude, time pauses,
intervals between two moving objects etc. These parameters are important in the
cilia analysis. We present here tools that are designed for achieving such a complex
motion estimation. We rely on a precise segmentation of moving areas that allows
for a better analysis of object trajectories.
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7.1 Feature-based region segmentation
Here we seek a motion segmentation method which is as much as possible parameter
free and can distinguish zones of motion based on their characteristics. For periodic
motion, which is of special interest to us in the case of cilia motion, we propose to
use a multiscale Fourier domain analysis.
The challenge in this part is to obtain a segmentation of homogeneous moving areas.
The watershed algorithm we used in the previous section yields plausible results, so
it makes sense to continue using a marker-based algorithm in the same graph-based
family. However simple watershed implementations does not lend themselves to a
more sophisticated energy-based interpretation. In this section we formulate our
motion-based segmentation as an optimisation problem. Remaining in the graph
framework allows us to test various graph-based optimisation methods, namely the
Graph Cuts, Random Walker, Shortest-path forest and Power Watershed. These
were all shown to belong to the same framework in [68]. In this thesis, we only
worked Random Walker.

7.1.1 Graph-based optimisation model
We take the definition of Section 5.2.2, using the Random Walker model (l=2 and
k is arbitrary). We chose this model because it is easy to implement and can give
good results while not requiring a high-quality gradient. The functional we wish to
minimize is:

F (X) =
∑

p∈V (I)
W k(p)(xp − yp)l +

∑
(p,q)∈E(I)

W k
D(p, q)(xp − xq)l (7.1)

7.1.2 Descriptors and weights
The processes we propose to study are assumed to be periodic. As we have seen,
periodic motion in biological processes is only approximate. However, we assume
here that the studied processes vary slowly, and so can be assimilated to true periodic
processes for a short time. Hence we propose using windowed Fourier analysis, as
is common in spectrograms in voice analysis, EEG, ECG and so on. The idea is
to compare Fourier spectra in small neighboring regions. Let (p, q) be neighboring
pixels. We consider a square window Rp (resp. Rq ) of size (2r + 1)-pixels centered
on them (see Fig 7.1), and we calculate the FFT on each window. We named Vp
and Vq the descriptors associated with pixels p and q, described below.
We write the weight W this way:

Wpq = exp−β‖Vp − Vq‖2 (7.2)

where Wpq denotes the weight on the edge between p and q. W is the diagonal
matrix of {Wpq} used to calculate L
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Figure 7.1: Illustration of neighbors centroids with their associated areas.

Figure 7.2: Decomposition of spectrum

Expression of Vp
Vp is a vector composed of N elements. From the local area Rp near a pixel, we

propose to compute descriptors corresponding to subsets of the Fourier spectrum.
We compute the FFT power spectrum on F frames for each pixel of Rp. Each
region Rp contains (2r + 1)2 spectra. Si is the spectrum of the pixel number i. The
final spectrum Sp of the centroid p is the sum of all the Si limited to its first half
(since the FFT spectrum is symmetrical) as illustrated on Fig. 7.2.

Sp =
∑
i

Si[1 : F/2] (7.3)

The first descriptor is the DC component. We then compute E parameters from
Sp. They are obtained by recursively dividing and averaging the vector Sp (see
Fig. 7.3). In this way the resulting descriptor correspond to a wavelet-like multiscale
representation of the average power spectrum of the region around the pixel of
interest. If we subdivide Sp down to single values, we end up with N descriptors
(DC + N − 1). This vector is vp. We then divided vp by the total area of Sp to
normalize the values.

vp = [
∫
a
Spda,

∫
b
Spdb,

∫
c
Spdc, ..., Sp[0]] (7.4)

Vp = vp∫
fp
Spdfp

(7.5)
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Figure 7.3: Decomposition of the FFT spectrum in 30 components for Vp

Comparison of Vp and Vq
In order to compare Vp and Vq, we subtract the two terms. We hence obtain:

Vpq = vp∫
fp
Spdfp

− vq∫
fq
Sqdfq

(7.6)

Each term Vpq represents the similarity of the signal between p and q in the entire
range of frequencies compatible with the time resolution of the FFT. We named V
the image of {Vp}. V can be represented as a 3D image, of depth N. To deal with
border effects, we only compute these descriptors r away from the border, resulting
in a (n− r ×m− r) image.
We can represent it using the finite difference vector gradient (right and bottom) G
(see Fig 7.4). As we see, the regions with motion present are very well delimited by
this gradient.

G[i, j] =
√

(V [i, j]− V [i, j + 1])2 + (V [i, j]− V [i+ 1, j])2 (7.7)

Markers from unsupervised classification
The better the markers, the more accurate the segmentation. In particular, the

markers have to be representative of their associated region.
We propose to use unsupervised classification on the descriptor image to determine
the markers. Here we illustrate this idea with a k-means clustering method on the
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(a) (b)

Figure 7.4: Representation of the non-centered gradient G (b) of the sequence of (a)
using Vp

image V . The k-means clustering is useful in our case to obtain clusters. k-means
clustering partitions data into k clusters according to their distance to a “reference"
means. The k regions are associated to their centroïd or mean, which is built
iteratively. Each point belonging to a particular region is closest to the centroid
of that region than any other’s. This assumes a clear-enough separation between
groups when we plot two vectors belonging to two sets against each other. In our
case, the k-means is a suitable choice such as shown in fig. 7.5 where we plotted
each descriptor against the DC and attributed colors according to the k-means
result for k=2.
The k-means method attributes a label to each pixel according to the number of
classes we choose. The only criterion is the notion of descriptor similiarity, there is
no notion of spatial consistency (see Fig 7.6(a)). We obtain clusters where each
pixel is attributed to a class without spatial constraints. Due to the lack of spatial
consistency, the result is not entirely satisfactory, with many isolated small areas
attributed to the wrong cluster. However, this is sufficient for the purpose of
obtaining markers. An erosion of the k-means image removes the small regions and
provides good markers (see Fig 7.6(b)).

Segmentation
Since the non-supervised k-means already provides us with a plausible result,

the choice of l in 5.7 is not critical. For simplicity, we chose l = 2 in equation 5.7,
corresponding to the Random Walker algorithm. We now solve equation 5.15:
LXX = −B>Y with Y and B obtained from the clusters computed before. The
result X is a probability map where each pixel have a probability of belonging to
one class or another.
We compare clusters in pairs. The matrix Y is composed only of 0 and 1. When
there are only 2 classes, the result X can simply be thresholded at 0.5 to obtain the
segmentation (see Fig 7.7). When we have z classes, we compare each class against
all the others and the final result X contains z different values: each pixel is labeled
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Figure 7.5: Validation of k-means procedure. These are the plot of the 6 first descriptors
vs the DC component, and the colors are the two classes after the k-means algorithm.

according to the class with the highest affiliation probability.

7.2 Pattern extraction: Curvescan
After the classification step, we have segmented areas based on their motion content,
but we have not identified this content according to parameters that clinicians find
relevant. Particularly for cilia analysis, we need to identifiy various elements specific
to the motion of cilia, that are not well captured by a pure Fourier analysis. Here
we propose to extend the notion of the linescan, a semi-automated tool used in cilia
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(a) (b)

Figure 7.6: Markers. (a) is the result of the k-means method with 2 classes asked, and
(b) the result of the eroded (a).

(a) (b)

Figure 7.7: Result of segmentation. (a) is the probability map result of the random
walker algorithm and (b) the thresholding of (a) at 0.5

analysis, to something more flexible: the curvescan.

7.2.1 Principle
In this part, we are looking to extract the path of objects in a sequence after the area
segmentation, using the shape of this segmentation. This method was developed for
cilia analysis. The idea is to obtain a visualization of the objects over time along
their path.

7.2.2 Linescan definition
The curvescan method is directly inspired from the linescan method, itself inspired
from kymography. In these methods we record the variation of the pixels of a
line over time, and we create a synthetic image of these pixels: each line l of the
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(a)

(b)

Figure 7.8: Illustration of linescan.(a) explanation of linescan and (b) linescan in red vs
curvescan in green.

synthetic image corresponds to the line in the frame number l. This method is very
useful to observe the pattern of trajectories of objects, but has a major limitation:
it is applied only on straight lines whereas we study circular objects.
In our studies, we analyze objects with a smooth, curved boundaries, and so we
needed to consider the path of cilia along “curves" instead of "lines" (see 7.8). Hence
we developed the “curvescan", described hereafter.

7.2.3 Methodology
We first use the segmentation ML obtained either in the previous section or in
chapter 6 and we smoothed each motion zone a by a closing followed by an opening
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(a) (b)

Figure 7.9: Extraction of level lines. (a) is the result of the previous segmentation and
(b) the corresponding distance map result

of radius r, resulting in af = γBrϕBr(a), where γ is the opening and ϕ the closing.
The value of r must be smaller than the diameter of the smallest object that we
need to follow, so they are all preserved by the filtering. For each region af , an
interior Euclidean distance map [91] Df is computed. Each pixel of Df belonging
to af has for value the minimal euclidian distance to the complement of af (see
Fig 7.9).

∀x ∈ af , Df [x] = arg min
p

(distance(x, p)) (7.8)

where p are the external contour of af . This global filtering and distance map
simplifies the region contours, removes regions that are too small to contain your
object of interest, separates regions and guarantees that the first r level lines of Df

are connected.
Each level-line of Df allows us to "unroll" the region af at a different distance
from the complement of af (see Fig. 7.10.a). Starting from an extremity point of a
level line Lv at distance v in Df , we follow this curve around af in an 8-connected
fashion, recording the pixel coordinates as we go. We stop when we encounter
the edge of the image. We create a new image ILv of size (length of the curve)×
(number of frames in the sequence), where each column m corresponds to the grey
level values of Lv in the frame m.

ILv [n,m] = Immov[Cv[n]] (7.9)

Where Immov corresponds to the frame number m of Imov, Cv[n] = [n′,m′] is the
coordinates of the point number n of the line Lv in Immov. We subtract the output
of a spatial median filter with a window size of 11× 11 to eliminate illumination
variation and only retain thin objects. We denote Iv this resulting image (see
Fig. 7.10.b).

In the case where there are no extremities, we begin at an arbitrary point, and
we stop when we encounter this point after two loops. The second loop ensures
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(a)

(b)
Figure 7.10: Example of grey level extraction.(a) Schematic example of unrolling of the
first line in distance map (b) ImedLv (= Iv) is an example of curvescan result after median
filtering subtraction.

that we record complete trajectories.

We presented here our proposal for a complex motion analysis procedure. Results
associated with this methods are shown in chapter 8. In the next chapters, we
described our proposed analysis pipelines corresponding to our applications.
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8
Cilia Beating Analysis

In this chapter we propose a fully automated method to characterize the motion
of cilia from high-speed video microscopy. Our methodology is mostly based on
Fourier analysis and so readily estimates frequencies.
The idea is to analyze not only beating frequencies but also their pattern. Indeed,
simple frequency analysis is not sufficient to provide practitioners a practical tool.
The advantage of our approach is its capacity to automatically compute robust,
adaptive and regionalized measurements, i.e. associated with different regions in
the image. We describe two different methods, which nevertheless have identical
initial steps.

These two works were respectively published at ISBI 2015 [1] and selected for oral
presentation at ICIP 2016[2].
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8.1 Pipelines
We present here the two pipelines were developed. The purple items are in common.

Acquisition and
data extraction

Sensor pattern
removal 5.3.2

Registration 5.3.3

Motion
enhancement 6.1

Segmentation of
motion areas 6.3

Optical flow

Fourier analysis

Figure 8.1: Flowchart of our cilia beating frequency estimation.

8.2 Details of the methodology: common parts
Let S be the sequence acquired under the microscope. We use a pre-processing
procedure that consists of three main steps: sensor pattern removal, registration
and motion enhancement. We have to first remove the sensor pattern due to the
camera before stabilizing the sequence. Indeed, if we stabilize first, the fixed sensor
pattern becomes noise.

Acquisition and data extraction.
We acquire videos from nose biopsies recorded under a microscope and we extract

the frames with purpose-written software. We obtain the sequence S1800. In the
remainder, we use the first 300 frames for analysis. We name this sub-sequence S.
The samples were obtained by nasal brushing of 10 patients with suspected cilia
disease for diagnosis purpose, and from healthy volunteers. The brushing was
performed by the ENT department under local anesthesia and sequences were
acquired by the team 13 of Inserm U955.
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Acquisition and
data extraction

Sensor pattern
removal 5.3.2

Registration 5.3.3

Motion
enhancement 6.1

Segmentation of
motion areas 6.3

Curvescan 7.2 Cilia length
measurement

Selection of lines 7.2

Frequency estimation

Figure 8.2: Flowchart of our cilia beating characterization steps.

Sensor-pattern removal (Chap. 5.3.2).
We apply our sensor pattern removal procedure described in 5.3.2 on the sequence
S to obtain Sclear

∀I ∈ S : Iclear = I −
(
S̄ − Gσ(S̄)

)
(8.1)

where Gσ is a gaussian filter with standard deviation σ = 1 and S̄ is the average of
the sequence S. This sequence Sclear is free from this artifact and contains the cells
with beating cilia. (see Fig. 8.3)

Registration (Chap. 5.3.3).
Then we stabilize the sequence with our proposed registration procedure 5.3.3 to

obtain Sreg, the pattern-free stabilized sequence.

∀(x, y) ∈ Iclear : Ireg(x, y) = Iclear(x′, y′) (8.2)

and [x′ y′]> = R[x y]> + T .
We estimate R and T using our robust iterated regression:

P1 = P2 ×R+ T (8.3)
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where P1 and P2 are matching sets of points, extracted using SIFT [81] or SURF [92].
We call Sreg the resulting stabilized sequence of Ireg. This sequence contains stabilized
denoised cells.

Motion enhancement.
The final step of the pre-processing steps is the motion enhancement. Indeed,

once the two previous steps are processed, the only remaining moving parts of
the sequence Sreg should be the beating cilia. Applying our procedure yields the
sequence of moving parts Smov and so the sequence of cilia. The result is shown in
Fig. 8.3.

∀Ireg ∈ Sreg : Imov = Ireg − S̄reg (8.4)
Smov is the sequence of Imov. These steps are illustrated on Fig. 8.3.

At this stage, we have a stabilized sequence containing the highlighted beating
cilia.

Segmentation of motion areas (Chap. 6.3).
After pre-processing, beating cilia are the only moving part in the sequence. Our

objective is to analyse the beating pattern of cilia. We seek to apply our curvescan
method, which should be the best procedure for our purpose. Hence, we need first
to segment the beating areas. The temporal gradient highlights the pixels that
move between two consecutive frames.

∀Imov ∈ Smov : Isub = Smov[i]− Smov[i+ 1] = ∇tI (8.5)

The temporal variance V of this sequence (Fig. 8.9.b) highlights the zones with
motion. The temporal variance provides qualitative information about the beating
of cilia: the variance is higher where cilia are beating faster. In this way we can
obtain a preview of the beating areas of ciliated cells. We then apply a Gaussian
filter on the variance leading to an image in which each zone with a similar beating
intensity forms a white blob.

V = Gσ=1 ∗
L−1∑
t=1

(∇tI −
1

L− 1

L−1∑
t=1
∇tI)2, (8.6)

where ∇tI = It−1 − It is the temporal gradient. We use a classical watershed-based
morphological procedure [90] to segment the different areas of motion. The markers
are selected fromM, a thresholding of a smoothed dilated image of the variance.
We threshold at 30% of the maximum intensity, and the markers of the blobs are
obtained by morphological erosion and dilation onM.

M = (Gσ=5(δB3(V)))>0.3∗max(V) (8.7)

where δB3(I) is the dilation of I by an Euclidian ball B of radius 3. I>θ denotes the
thresholding of image I above θ.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.3: Removal of sensor pattern. (a) is the initial frame I of the sequence S, (b)
is the average frame of the sequence S̄ (c) is the blurred average Gσ=1(S̄) (d) is the sensor
pattern obtained by subtracting Gσ=1(S̄) to the average S̄, (e) is the result Iclear of the
subtraction between the sequence and the sensor pattern I −

(
S̄ − Gσ=1(S̄)

)
(f) is the

extraction of the moving parts of the sequence Imov = Ireg − ¯Sreg , using registered images
Ireg.
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Internal markers are provided by εB(M) and external marker by εB3(X \M), where
εB is the erosion by an Euclidian ball B and X is the image domain.

The watershed of the variance yields a mask denoted by ML, in which all
the connected components are distinguished by a different (color) label. This
segmentation shows the areas in which cilia have a similar intensity of displacement.

We can also segment the regions and obtain ML using the feature-based
segmentation presented in 7.1. We solve:

F (X) =
∑

p∈V (I)
W k(p)(xp − yp)l +

∑
(p,q)∈E(I)

W k
D(p, q)(xp − xq)l (8.8)

using k = 1, l = 2. ML is the result of the segmentation. Results are illustrated in
Fig. 8.4. Here, we have two distinct beating areas.

8.3 Methodology for frequency estimation
In this section, we estimate cilia beating frequency using optical flow and Fourier
analysis.

8.3.1 Methodology after the segmentation
Optical flow.

We compute the dense Farneback optical flow the entire sequence. In each of the
previously segmented regions, the median of the vectors associate with a region
provides an estimate of the displacement of that region.

Fourier analysis.
Frequency is then estimated via a Fourier analysis of the speed variation (i.e.,

the norm of the displacement vector) over time (Fig. 8.5).

8.3.2 Results and Validation.
We analyzed 10 annotated nasal brushing samples from patients of the ENT
department of Centre Hospitalier Intercommunal et CHU H Mondor (Créteil,
France). The correlation between our estimations and the ground truth is illustrated
in Fig. 8.6. The “Ground truth" is the plot of the Kymography versus the Cinematic
analysis that are our references. We can see that one outlier is present in our
estimations, but even with the two reference standards we can observe outliers from
the 5% confidence interval, meaning that our measurement are as reliable as the
two other methods.

This is confirmed with the Bland-Altman diagram when comparing the methods
in pairs. Bland-Altman diagrams show a repartition of the distance between our
method and the two methods of reference (cinematic analysis and kymography,
see Fig. 8.7). We can observe that our frequency estimations are all contained in
the 95% confidence interval when compared with the kymography method. By
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comparison with the cinematic anaysis, only one measure is out of the interval,
which remains acceptable.

Limitations.
In all of our sequences, we can only validate one frequency and so one estimation.

For now, we only have one reference frequency per sequence, corresponding to the
one cilium that was manually studied in that sequence. Further annotations will
help with the validation of every area.
With the presented method, we only estimate invidual frequencies, which is not
sufficient for a precise beating analysis.

8.4 Methodology for cilia beating characteriza-
tion

Our objective is to characterize the beating of cilia. We wish to estimate or estimate
all the parameters currently measured by practitioners: cilia beating frequency, cilia
length, amplitude of beating, distance cross by cilia, pauses during the beating.
We applied our curvescan procedure to measure these parameters (exemplified in
Fig. 8.8). Because cilia beat in 3D, they come in and out of focus during their
motion. They also beat in groups. This makes tracking an individual cilium very
challenging. The idea of the "linescan" technique is to only observe the variations
of intensity in a given narrow, elongated region (typically a line) encompassing the
perceived cilia motion. Since the cilia motion is pseudo-periodic, so should be the
intensity variation. Here we seek to specify this scanning region automatically, and
we do not limit our acquisitions to a line segment. Cilia located on sampled cells are
rooted along the surface of the cell. Contrary to the experimental conditions of [24],
where cultured ciliated cells are located on a flat surface, the beating extremity of
cilia form a curve. Since cilia may be of varying lengths, it is useful to consider not
just a single curve but several from the root to the tip of the beating region. By
analogy to the linescan technique, we call this new one the adaptive curvescan. In
this section, we present the frequency estimation and cilia measurement.

8.4.1 Methodology after the segmentation
Curvescan and selection of lines (Chap. 7.2)
Each segmented motion zone a of ML is smoothed by a closing followed by an

opening of radius r, resulting in af = γBrϕBr(a), where γ is the opening and ϕ
the closing. An interior Euclidean distance map [91] Df is then computed from
af . The value of r has to be chosen to correspond to a diameter smaller than
the smallest cilia, so they are all preserved by the filtering. We chose r = 15
which corresponds to a 4µm cilium. This filtering simplifies the region contours,
removes regions that are too small to contain cilia, separates regions containing
different groups of cilia and guarantees that the first 15 level lines of Df are
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connected. Each level-line of Df allows us to "unroll" the region af at a different
distance from the ciliated cell. Starting from an arbitrary point of a level line
Lv at distance v in Df , we follow this curve around af in an 8-connected fashion,
recording the pixel coordinates as we go. We stop when we encounter the edge of
the image or the initial point after one loop. We create a new image ILv of size
(length of the curve)× (number of frames in the sequence), where each column m
corresponds to the grey level values of Lv in the frame m.

ILv [n,m] = Immov[Cv[n]] (8.9)

Where Immov corresponds to the frame number m of Imov, Cv[n] = [n′,m′] is the
coordinates of the point number n of the line Lv in Immov. We subtracted the output
of a spatial median filter with a window size of 11× 11 to eliminate illumination
variation and only retain thin objects. We denote Iv this resulting image (see
Fig. 8.10).

Frequency estimation
We estimate the power spectrum S = |F|2 by a power spectral density method,

exemplified in [24] as the curvescan is an adaptation of their method. It consists
of computing the Fourier transform Fn on each line n of Iv and averaging the
square modulus of all the Fn. The cilia beating frequency is then estimated using a
parabolic approximation of the main peak and its potential neighbors, in the range
of plausible frequencies for cilia (i.e. 0-30Hz).

∀k ∈ [0,M − 1] : Fn(k) =
M−1∑
g=0

Iv[n, g]e−j2π
gk
M (8.10)

S(k) = |F(k)|2 = 1
N

N−1∑
n=0
|Fn(k)|2 (8.11)

where M is the number of columns of Iv (number of frames of the sequence),
and N is the number of pixels of Lv. For robustness evaluation, we analyze 3
lines of each region, to compare them (each line should return around the same
beating frequency), and to take their average as result for frequency estimation and
validation. For each sequence, we estimate the cilia beating frequencies over the
level lines Lv 2, 7 and 14 of Df , which are all connected by construction thanks to
the precautions taken during the curvescan building, and we take the average as
our estimation. These three lines are representative of the difference between inner,
outer and middle areas of the beating region. Note that the fact that different
level lines have differing length has no bearing on the frequency estimation since
the time axis has the same length. Also note that we do not need to discriminate
on the image Iv along the vertical axis for areas that correspond to zones close to
the root or near the tip of the cilia, since due to the continuity of the cilia, the
pseudo-periodic motion occurs consistently.
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Cilia length measurement
The regions of cilia motion segmented inML represent the zones where cilia are

located. The width of the mask is representative of the length l of the beating cilia.
In order to obtain precise measurements, we compute a distance map DQ

f on labels
of Ml using a quadratic Euclidian distance [91]. The maximum value of DQ

f inside
the region of interest is the square of the radius of the largest inscribed disk, and
thus using this value we can obtain a good approximation of the width of the region,
and therefore of the length of the cilia beating in it, by using the following formula:

l =
√

max(DQ
f )× 2× 0.13 (8.12)

where 0.13 is the spatial resolution (1 pixel = 0.13µm).

8.4.2 Results
Frequency
We computed our curvescan results on 11 annotated sequences of beating cilia.

We tested our method on cilia exhibiting a variety of beating frequencies, between
6Hz and 14Hz. As stated above, for each sequence, we measured frequencies using 3
different level curves of the distance map, one at the border, one in the center and
one in between them. We hence ended up with 33 measurements for 11 sequences.
The frequency analysis of the power spectrum may reveal several frequencies present
in a region. It may be a single real frequency and its harmonics, or several
similar frequencies corresponding to cilia group beating at different frequencies (see
Fig. 8.11). In all cases we only considered the frequency with the highest power in
the spectrum.

We validated our results in two steps: we first checked the robustness of the
method by comparing the values obtained for each line (see Fig. 8.12(b)). Then
we validated the accuracy of our method by comparing our frequencies with those
carefully estimated by experts (see Fig. 8.12(c)). We measured the average error
rate in the classical way with the formula AverageError = 1

J

∑J
j=1

|mj−tj |
tj

with mj

our measurement and tj the corresponding ground truth .
We measured the error rate of each measurement separately first, and then the error
rate of the averaged estimations. Results obtained are shown in Fig 8.12(a).The
mean errors are similar, about 2.2%.
Among our 33 measurements, 30 (or 91%) are within the confidence interval of
±5%. However, if we consider the averaged frequency estimations and compare
them to the expert estimations, the main frequency is estimated correctly in 100%
of sequences. These results are promising for both the robustness and accuracy of
our proposed method.

Cilia Length We computed cilia length measurement on our sequences using the
method described before. A unique value is obtained for each sequence. An expert
manually measured the length of cilia in a region. Their manual measurement was
repeated 3 times. We took the average as ground truth for our validations.
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We compared our measurements in two different ways (see Fig 8.13). The first is
the equivalent of the frequency validation: we considered the expert measurement
as perfect and we measured the AverageError rate. In this way, we obtained an
error rate of 2.13%, with one measurement out of 11 outside the 95% confidence
interval and a standard deviation on the error of 2.91%. The second way is the total
least square regression method, which seeks a proportionality factor between the
manual and automated measurements, taking into account the fact that there could
be variability in the expert measurements too. With this method, assuming equal
variance between the automated and expert measurements, we achieved an error
rate of only 0.8%. The real error rate may be in between these two values. In any
case these error rates are reasonably low and so our results are again promising.

8.5 Conclusion

8.5.1 Discussion
Preprocessing steps are meaningful in our context. Removing camera artefacts
is necessary for the subsequent image analysis to succeed. The importance of
stabilization can be highlighted by some of the image sequences. Indeed, one
example shows a dead cell sequence. If the stabilization is not performed, both
our algorithm and the classical techniques estimate a beating frequency of 12Hz.
A closer look at the video seems to indicate that this frequency corresponds to
the motion of the cell due to vibrations. After stabilization, no motion was longer
visible and the recorded frequency was 0Hz, as expected. After thie pre-processing,
any remaning motion should be that of beating cilia, that can be segmented and
analyzed according to their motion pattern.
We have proposed a regionalized automated measurement of the ciliary beating
frequency, capable of coping with several cell groups, each with their own beating
pattern. Comparison with semi-automated kymography and cinematic analysis for
frequency measurement in the same segmented areas shows that our results are
significant.
We still need to confirm that our approach is indeed able to process more than one
cell group in each field of view.
We believed that we can measure other characteristics beyond frequency from the
segmented regions. In particular, an analysis of the qualitative components of
beating patterns seemed achievable, including a full description of range, rhythm
and structure. This is the reason why we have proposed another method.

This new method, the curvescan, currently records only the main frequency in
a beating region but can be easily extended to record all relevant frequencies. At
present we only estimate fairly simple characteristics, however our curvescan results
opens the way for more interesting analyses. We are currently working on estimating
the beating amplitude, regularity, symmetry, and so on from a better segmentation.
Indeed, we need a more precise segmentation to analyze the beating pattern. We
are currently combining our segmentation method presented in Chap.7.1 using the
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Table 8.1: Comparison of our two methods.

Optical flow Curvescan
Frequency estimation Yes Yes
Other parameters No Possible

Easy-to use Yes Needs quality segmentation
Detection of dead cilia Yes No

frequency into account to obtain more homogeneous and more precisely defined
beating regions. For the analysis, the idea is to analyze the tracks of cilia (see
Fig. 8.8) in the curvescan. With respect to this diagram, we are already measuring
Tx and a subset of Dx, the distance crossed by cilia. For a more complete set of
measurements, we would need to estimate Ax corresponding to the amplitude of
beating cilia, and Px the pause duration in the cilia motion. The combination of
these parameters with Tx and the cilia length that we already measure, will provide
most of the parameters necessary for disease characterization currently used in
clinical practice [15].
A procedure of clinical validation will be necessary to complete this study.

8.5.2 Comparison of the two methods
The two methods have different pros and cons. Table 8.1 helps to highlight them.

The curvescan is more complete than the optical flow method. But it requires a
precise segmentation. The optical flow is less precise and estimates only the beating
frequency, but can be used with a segmentation that is less precise and is more
versatile, in the sense that the curvescan is only suitable for spatially cycly motion.
However, the curvescan has a great deal of potential use in clinical practice, if it
can replace the painstaking manual measurements constituting the current gold
standard. For dead cilia, the optical flow can easily detect them, regardless of
the segmentation (there will always be a segmented region), whereas the linescan
may fail in detecting such specific cases. For now, we suggest to combine both
methods: the optical flow first as pre-analysis (mostly for the dead cilia), and then
the curvescan for more precise analysis.
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(a)

(b) (c)

(d) (e)

Figure 8.4: Sequence of operations for segmentation. (a) Is the first frame of the
sequence. (b) Gradient of the descriptors Vp (c) markers of regions (d) Probability map
(e) Segmentation resultML.
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(a) (b)

Figure 8.5: Fourier analysis of speed variation for one of the sample yields to a frequency
of 12.10 Hz.
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Figure 8.6: Correlation between our measurements and the ground truth
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Figure 8.7: Bland-Altman plots show the consistency between our proposed approach
vs. cinematic analyis and kymography.

Figure 8.8: Ilustration of curvescan and parameters, on synthetic image where we can
see two patterns.
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(a) (b)

Figure 8.9: Adaptative curvescan. (a) Distance map Df inside the first region of 8.4(e)
. (b) Distance map Df inside the second region of 8.4(e), yielding concentric lines.

(a)

(b)

Figure 8.10: Example of grey level extraction (a) from the lines of 8.9(a) and (b) from
the lines of 8.9(b)
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Figure 8.11: Power spectra examples (a) a single frequency present, with harmonics,
(b) Two distinct frequencies present.

Mean error Standard deviation on error
Single line 0.0223 0.0207

Averaged frequency 0.0219 0.0162
(a)

5 6 7 8 9 10 11 12 13 14
5

6

7

8

9

10

11

12

13

14

L1 vs L3
L2 vs L1
L3 vs L2

(b)
6 7 8 9 10 11 12 13 14

frequency (Hz)

6

8

10

12

14

fr
e
q
u
e
n
cy

 (
H

z)

expert vs expert
L1 vs expert
L2 vs expert
L3 vs expert
expert +/- 5%

(c)

Figure 8.12: Validations of our method for frequency estimation. (a) Mean and standard
deviation of our error measurement (b) Validation of the robustness : frequencies estimated
on several lines of DQ

f are similar. (c) Validation of the accuracy : frequencies obtained
with our method correspond to ground truth.
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Figure 8.13: Validations of our method for cilia length measurement. (a) Validation of
the robustness : frequencies estimated on several lines of Df are similar. (b) Validation of
the using expert variation with total least squares regression method yields a line which
fits our measurements better. (c) Error estimation with the two methods of validation :
our mean error may lay somewhere between 0.08% and 2.13%.
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9
In vivo assessment of cilia

motility evaluation

The main part of the medical application concerns ex-vivo analysis. Sampling is
invasive and may damage cilia, and ex-vivo measurements may not always reflect
the in-vivo cilia function. In this work we investigate the possibility of assessing
cilia motility in vivo in humans. This work has been published in [3].
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9.1 Existing tools and solutions proposed
Classical endoscopes are not suitable to evaluate cilia motion due to the lack of
spatial resolution. We hence looked for the state of the art in existing micro-
endoscopy. Micro-endoscopy is already in use in various applications, particularly
for in-vivo histology.

Potential Co-development
One possibility was to develop a tool in partnership with a research group.

We found a team in Stanford, the team of Joseph Khan, who has developed a
protoype for a high-resolution endoscope. Currently, it is not designed for human
experiment [93]. The current prototype does not have the required resolution
at present. Their team is looking to improve this point. In their latest article,
they present the design of their apparatus [94]. Unfortunately, these developments
would imply long authorization procedure and pre-clinical research before becoming
available for medical practice.
We hence surveyed the existing approved material for clinical use in various fields.

Olympus instrument
Olympus is currently developing a micro-endoscope. We do not have a lot of

information about its level of development, but some tantalizing articles have been
published. We contacted them, and the answer was that their equipment was not
ready for testing outside of Olympus.

Pentax and Optiscan partnership
Optiscan is an Australian company that focuses on RD of optical products for

medical use. They have a partnership with Pentax. They provide a confocal
micro-endoscopy system that seems to have the required specification. However,
their activities seem limited to Australia.

Mauna Kea CellVizio instrument
Mauna Kea is a pionneer in the area of micro-endoscopy. They have a commercial

product ready and approved for pre-clinical and clinical use, called the Cellvizio,
which is a confocal micro-endoscope. We contacted them and organized a feasibility
study using their instrument.

9.2 The Cellvizio properties
The Cellvizio is a confocal endomicroscopy system used for in-vivo « histology and
pathology » to evaluate tissues and cells morphology and abnormalities directly
in situ during endoscopy of various organs such as esophagus. This technology is
based on optical fibers and fluorescence response. According to the objects studied,
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different probes with different resolutions are provided. The objects of interest are
labeled with a fluorescent dye.
It is of interest as it can be used to observe respiratory epithelium at cellular scale
in-vivo, with minimal invasive procedure. For the respiratory tract, this device has
only been used for bronchoscopy. It had never been used for the analysis of mobile
organites such as cilia. We sought to develop a partnership with Mauna Kea to
develop the device and protocols adapted to our problematic.
Cellvizio exists in two models: the clinical and the pre-clinical device.
As ours was a feasability study, we used only the pre-clinical device. The difference
between the two models are the name and durability of the probes, and the software
which can reach the temporal resolution from 8-12Hz to 100Hz available in the
pre-clinical model. This device can have a 1µm spatial resolution , which is at the
lower limit of what is necessary for our needs.

9.3 Experimental runs
We conducted two experimental runs:
The first one was on nasal human brushing samples to observe cilia beating ex-vivo
with the Cellvizio probes with a fluorescent dye, Octadecyl Rhodamine B Chloride
(R18). It showed it was possible to observe cilia with that endoscope. The second
experiment lasted a week and allowed us to explore the limitations of the device,
to set an experimental protocol and to evaluate the analysis of sequences acquired
this way.
During this week of experiment, ex-vivo pig trachea samples, harvested human cells
and human nasal biopsy samples were labeled either with fluorescent marker R18
and with fluoresceine. We stabilized the samples and the probe with a shelf and
an elevator jack (see Fig. 9.1), and recorded sequences using several probes and
temporal resolution. We acquired the sequences with the default settings and with
the software that boosts the frame rate acquisition.
The pig trachea samples were provided by the ENVA (National Veterinary School
of Alfort).

9.4 Results ans analysis
Beating cilia were easily identified allowing the acquisition of 200 sequences. Those
sequences showed cilia, cells and impurities labeled by R18. For sequences with
fluoresceine, the cilia and cells are not labeled, but the medium is. Hence we can
see the movement of cilia with the fading of the fluorescence while they evacuate
the labeled medium. We developed specific software to evaluate frequencies of
beating in sequences. Out of the 200 sequences, we could analyze only 19 because
the stability of the cells were not sufficient, the temporal resolution was too low, or
the duration of acquisition was not long enough.
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Figure 9.1: Experimental apparatus.

Markers
The R18 marker gave really good results for visualization of cilia. Indeed, as

a membrane marker, it labeled cilia but also the cells. For the fluoresceine, it is
complicated to analyze the sequences and to quantify motion. We eliminated this
dye to focus on R18 for the experiment. Figure 9.2 shows example of ciliated cells
with the two markers. With the R18, cilia are visible, and relatively well defined
whereas with the fluoresceine they remain fuzzy.

Frequency estimation: acquisition settings.
We validated our frequency estimations on videos with a sufficiently long and

stable sequence of beating cilia to allow measurements over several cycles. With an
acquisition frequency under 30Hz, it was impossible to estimate the frequency of
beating, so we eliminated all these sequences.

• Estimations were validated on sequences acquired between 30 and 90Hz;

• We estimated frequencies both in human and pig samples;

• 5 areas were selected in each sequence, yielding 95 measurements.

On each sequence we could analyze, we estimated frequency in 5 areas. We selected
a pixel in each area and we computed the pixel intensity average in a 4-pixels square
containing that pixel. Variations of pixels intensities were then analyzed using a
FFT analysis to estimate frequency (see Fig 9.3). We validated these estimations
by comparing them with expert human assessment.
Among the 95 measurements, in 5 cases, we incorrectly confused harmonic frequen-
cies with the fundamental (see Fig 9.4(a)).
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(a) (b)

(c) (d)

Figure 9.2: Images of samples labeled with R18 ((a) and (b)) and fluoresceine ((c) and
(d)) aquired with Cellvizio.

a rough error rate is so about 5%. However this says nothing of the precision of
our measurements. For this, we we propose a global error rate, that takes into
account multiple acquisition sequences. We take the median of the estimation
for each sequence and compare it with the median of the ground truth. We also
compute a confidence interval: by allowing of +/- 1 in the sum of cycles. Indeed, the
ground truth is made by manually counting the number of cycles in the sequence.
It appears that, even if the same person counts the cycle, they can make an error of
1 or 2 cycles for the same sequence analyzed at different moments. We hence chose
to include this variability to define our confidence interval. While comparing the
different medians, the total average error rate is 2.72% while the confidence interval
is +/- 7.62%. We represented this comparison in Fig 9.4(b).
These results shows the necessity of estimating 5 frequencies per sequence and to
take the median value to have a reliable frequency determination.
We cannot analyze the beating pattern because of limits in spatial resolution.
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Figure 9.3: Variation of pixel intensity and Fourier Transform.
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Figure 9.4: Correlations between software measurement and ground truth. (a) is the
individual measurements (95 measures) and (b) is the average of each sequence.

Probes of the endoscope.
We eliminated 2 probes that are too slow to permit frequency estimation (in red

in Fig 9.5). We selected the 2 probes which gave the best sequences (in green in
Fig 9.5).
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Probes
Ref Speed Spatial resolution

S-1500 8 fps 3.3µm
Z serie 8 fps 3.5µm

MiniO-30 8-50 fps 1.4µm
UltraMiniO 8-90 fps 1.4µm
MiniO-100 8-100 fps 1.4µm

Figure 9.5: Probe specifications.

Limitations
Even if these experiment are promising, R18, the dye we used, is cytotoxic and

cannot be used in-vivo. Finding a bio-compatible marker with comparable marking
qualities is a challenge that must be addressed for further studies.
The spatial resolution is sufficient to evaluate beating frequency, but not to analyze
the beating pattern. It has to be improved for a complete analysis. Moreover, the
temporal resolution of Cellvizio without the software that boosts the frame rate
acquisition is not sufficient. Unfortunately, this software comes only with the pre-
clinical instrument and not the clinical one. The usage of the pre-clinical software
in a clinical context is a costly certification issue, and is not in the short-term plans
of Mauna-Kea. Thus, at this moment, the usage of Mauna-Kea instruments for
cilia beating evaluation requires further work.

9.5 Perspectives
This study constitutes a first feasability step for the in-vivo cilia motility evaluation.
Using the Mauna-Kea confocal endoscope, we are able to visualize beating cilia
and to accurately measure beat frequency. We pointed out some limitations due
to the available probes: for reliable results, we need the highest frame rate and
spatial resolution. For now, we have to compromise between these parameters.
Consequently, current sequences are suitable for frequency estimation but not for
further analysis (study of beating pattern for example). Crutially, a less cytotoxic
fluorescent dye approved for human use than R18 is necessary for future in-vivo
experiments. We found two potential dyes for that purpose that seem to have very
little toxicity, the Sir-tubilin and Sir-actin that are respectively markers of tubulin
and actin. They are already used for cilia labelling, and could be a good starting
point for further work.
Olympus is currently developing a device that could be used in our study, even if
the specifications remain confidential.
We are pretty confident that adequate technologies exist and can be adapted to
in-vivo analyses with comparatively little work, and will hopefully be available in a
a reasonably near future.
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Application: fish embryo based
assays
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10
Fish embryo mortality

evaluation

This work represents the development of an eco-toxicity assay based on a fish
embryo model. The aim of this assay is to determine the life or death status of
fish embryo using image processing in an industrial environment using heartbeat
detection. In this chapter, we propose the design of an image processing pipeline
based on mathematical morphology [95, 96, 54] to assess the presence or absence of a
beating heart pattern in fish embryo. We describe, investigate and propose solutions
for all the problems and challenges we have encountered in this study. Another
objective of this chapter is to showcase the design of an automated pipeline for
processing sequences of fish embryo and more generally to provide some guidelines
for the design of robust image analysis pipelines, through the particular example of
a real-world problem. This work was published in ISMM 2015 [4] and in the journal
Computers in Biology and Medicine [5].
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10.1 Aim
Because of throughput and storage constraints, a major aim is to achieve complete
sequence analysis online within the same time frame as the acquisition, i.e. roughly
under 10s. We therefore propose a robust pipeline suitable for production usage.
It consists of simple operators, which are for the most part readily available and
fast. Figure 10.1 presents the flowchart of our assay. It is split into two phases: a
pre-processing step which consists of sequence stabilization and denoising, while
the actual processing step consists of detecting significant periodic changes in the
embryo (variation of grey level values) assuming they are caused by its beating
heart.

10.2 Pipeline

Acquisition

Segmentation
of the embryoRegistration

Denoising
Segmentation of
the inner parts
of the embryo

Variation estimations
in the mask of
the inner parts
of the embryo

Segmentation of
cyclic motion areas

Calculation of
A, the area of

the cyclic regions
If A=0: the embryo
is considered dead

If A>0: the embryo
is considered alive

Figure 10.1: Flowchart of our embryo mortality image processing assay.
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Figure 10.2: Schematization of our acquisition procedure

10.3 Details of the methodology
Acquisition
Fish embryos were anesthetized with tricaine (0.1g/L) and placed on a support

gel in a 24-well plate, one embryo per well. The plate was then placed under the
connector board and the acquisition was automatically performed by the software
package 1. For each well, we record 2s of uncompressed video sequence at 15
frame per second and a resolution of 800×600 pixels. This protocol is illustrated in
Fig. 10.2.

Segmentation of the embryo
The first step is an initial segmentation of the embryo. Indeed, this segmentation

is crucial for several reasons. In order to reduce the memory usage, we need to
crop the area of interest to a small window centered on the embryo. This step
allows us to weed out the sequences where an embryo is not visible or intersects the
acquisition window. Moreover, we generally need to stabilize the sequence, and this
stabilization must be performed on the embryo itself, and not on other elements
on the field of view like the contours of the well. The background appears white
whereas edges of the well and embryo are darker (see Fig. 10.3(a)), particularly the
eyes are very dark. Therefore the embryo is easy to segment as the largest connected
component in the min-tree associated with the darkest minimum not connected to
the edges of the field of view, simultaneously maximizing the inter-class variance
between foreground and background (i.e, following the Otsu criterion [89]). We
implemented it as follows. If θO is the Otsu threshold for the first input frame S0,

1https://www.fei.com/software/visilog/

https://www.fei.com/software/visilog/
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then
A0 = 1− S0

≥(θO+θb), (10.1)
where 1 is a boolean image consisting only of ones, and θb is a baseline value,
optimized to 30 experimentally.

Because we are not interested in the thin elements of the embryo (i.e. the tail),
a morphological opening is applied, and because a single connected component is
desired, an area criterion is also used:

A1 = ϕB1(ϕλ1(A0)). (10.2)

Experimentally, we determined the average area of an healthy embryo to 3000 pixel,
so we set λ1 conservatively to 600 pixel. The embryo’s body is between 20-60 pixel
wide, while artifacts in the well are usually much smaller, so B1 is set to a discrete
Euclidean ball of radius 3. Since the embryo is expected to be near the center
of the field of view, we remove all objects connected to the frame of the image,
calling the result A2. For speed, all these operators are implemented on the min-tree
structure of the image, except the opening with B1, which is approximated by a
fast, separable dodecagon [97].

This result A2 is expected to represent the mask of the embryo (see Fig 10.3(b)).
However, if the result is empty, this means that the embryo is not centered in the
well and then the sequence cannot be reliably analyzed. If we do find an embryo,
we crop the sequence by defining a bounding box around our segmentation, dilated
by 10 pixels. The result is a new sequence S1 centered on the thorax of the embryo
(see Fig 10.3(c)).

(a) Initial frame. (b) Embryo segmentation. (c) Cropped frame.

Figure 10.3: Segmentation of the initial frame to locate and the embryo in the well.

Registration
Because of vibrations associated with other equipment around the acquisition

platform, the embryo can appear to move around slightly in its well. The sequence
needs to be stabilized to avoid false positives. For registration, we used the method
described in chapter 5.

We then apply the estimated transform between the first cropped frame of the
sequence S1 and all subsequent frames, taking the first as reference. We compute
dxmax = max |dx| and dymax = max |dy| for all frames, and we crop the bounding
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box of the whole sequence further by these amounts in x and y respectively. We
call S2 the stabilized, cropped sequence of the embryo.

Denoising
To eliminate global illumination variation during a sequence, which occurs

sometimes, we equalize the average intensity of all frames. We obtain a sequence
S3 where the average value of all frames is constant throughout the sequence.

Depending on the average illumination, the sequence can be quite noisy, so we
used the 2D+t bilateral filter described in chapter 5.

We have optimized the parameters that removed the noise without removing
the heartbeat. These are: window size=5× 5× 5, σr=0.75, σd=0.9. The result is a
denoised sequence S4. Due to border effects, we remove the first three and the last
three frames from this sequence, which is then 24-frames long.

Segmentation of the inner parts of the embryo
If the embryo is alive, the heart should be detected in its thorax region. To

ascertain this, cyclic motion should be detected in this region of the sequence, but
not anywhere else where remaining noise or motion might be present. Because eyes
are very dark, noise causes detectable variations in them, and remaining motion
may be detectable near the contours of the embryo. We developed a maskM1 of
the inner part of the embryo to avoid false detection in these areas.

We define B1 as the minimum image of the sequence: B1 = min(S4). In this
image, where the heart and vessels are darker because of the presence of blood, we
apply the same procedure as before:

B2 = ϕB1(ϕλ1(1−B1
≥(θO+θc))) (10.3)

In this instance, because of the change of contrast, θc is set to 20; θO is again
obtained using the Otsu criterion; λ1 and B are unchanged. The resulting B2

is a binary mask (with values in {0, 1}) of the registered body of the embryo.
Considering B2 as a geodesic mask, we now segment the eyes as the one or two more
prominent minima from the min-tree. We cannot rely on the eyes being separated.
Depending on the pose of the embryo, they might get merged. We write:

M1 = εB3(γB2((B2.B1)≥(θO−θc))) (10.4)

Here the dot in B2.B1 denotes the pixelwise multiplication. Note that θO is
re-estimated from the grey-level distribution of the embryo within the geodesic
mask. In this formula, B2 is a ball of radius 1 and B3 a ball of radius 3. The outline
of the resulting maskM1 are exemplified on Fig. 10.4.

Variation estimations in the mask of the inner parts of the embryo
Our challenge is now to detect cyclic motion-induced variations in the sequence

assuming it corresponds to a heartbeat. The heartbeat is noticeable by changes of
contrast due to blood cell concentration in the heart region. Computing the grey
level variance at each pixel of a sequence along the time line show the grey-level
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(a) (b)

Figure 10.4: Inner parts segmentation on two embryos. (a) is alive whereas (b) is dead.

variability for that pixel, however this variability may not be due to a cyclic pattern.
To account for cyclic variations, we split S4 into 3 sub-sequences of 8 frames (S4

1 ,
S4

2 and S4
3 ). An interval of 8 frames is similar to the expected period of a single

heart beat. We compute the pixels variances inside (M1) on each sub-sequence,
yielding three variance images V1,V2,V3. We next compute the median of these three
images Vi. In this way, some spurious, potentially even large, residual variation
occurring only once in the sequence will produce a large variance only once, and so
the median of all the variances in this area will remain small. On the other hand,
cyclic variation will exhibit significant variance in all three sub-sequences.

S4 = {S4
1 ∪ S4

2 ∪ S4
3} (10.5)

∀i ∈ [1, 3], Vi = variance(S4
i ) (10.6)

C1 =M1.median(Vi, i ∈ [1, 3]) (10.7)

The result of this process is shown in Fig. 10.5.

(a) (b)

Figure 10.5: False color rendering of the temporal variance. (a) is for a living embryo,
(b) a dead one.

Segmentation of cyclic motion areas
Binarizing the image of the cyclic variance is simple with area openings and a

small closing in classical alternating sequence.

D1 = (γλ3(ϕB4(γλ2(C1))))≥1. (10.8)

Here, λ2 = 3, B4 is a radius-2 ball, and λ3 = 10. This image is then thresholded at
1.
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(a) (b)

Figure 10.6: Segmentation of cyclic motion detection on embryos. (a) corresponds to
the segmentation of 10.5 (a) (living embryo), and (b) corresponds to the segmentation
of 10.5 (b) (dead embryo)

Calculation of A, the area of the cyclic regions
A is the number of non-zero pixels in D1. It corresponds to the area of the cyclic

regions. If this area is null, it means the software didn’t find any cyclic region in
the sequence, and so no heartbeat is detected. The alevin is considered dead. If
A is positive, a cyclic motion considered as the heart is found and the embryo is
considered alive.

10.4 Results and validation
We tested our program on 651 videos taken over several experimental runs. The
protocol was identical each time but conditions such as illumination or marker
concentration could change. This number of videos is significant and reflects
production usage. We have also tested our protocol on unusual embryos: some with
oedemas and with other malformations to ensure the robustness of our protocol (see
Fig. 10.7(a) and (b)). The program processes a sequence in less than 10 seconds,
which is in accordance with our initial constraints.

(a) (b) (c)

Figure 10.7: Heart segmentation in the presence of oedema (a) or malformation (b).
Incorrect segmentation in the fin due to fluttering (c).
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In some cases, even actually dead embryos can appear to move. This can be due
to fluctuations in the gel or the presence of shadows (figure 10.7(c)). In dark areas,
electronic noise is proportionally more present, and may appear as motion and in
some cases, the embryo may appear to slide on the gel. This happens for example
if we incorrectly do not compensate for rotation in the sequence stabilization phase.
The main remaining cause of problem is ambiguity: in some cases, the heart beats
so slowly or weakly that we cannot detect it. In most cases, a human operator
would also have difficulties in detecting it. We could also argue that embryo with
weak heartbeats are not very healthy and likely to die, however this is unconfirmed.

We have run experiments on many sequences: some darker, some lighter, some
with varying amounts of tricaine, some with embryo abnormalities, and so on. In
total, we processed 651 such sequences, which might be considered sufficient for a
first validation step.

From an initial set of 660 videos, 9 were eliminated as incomplete. From the
remaining set of 651 sequences, 100 were used for training, i.e. optimizing the
parameters of the pipeline. The remaining 551 were used for testing. There was 1
remaining error in the training sample (1% error rate). There were 3 errors in total
in the test set, for an error rate of 0.54%. Such an error rate is effectively quite low.

10.5 Pipeline improvements for enhanced automa-
tion.

The procedure described in the previous section is essentially a feasibility study. In a
second step, changes in the acquisition protocol were introduced to allow for a larger
degree of automation in the handling of fish embryos. Under this protocol, fish
embryos live all their life in the same well: fish eggs are put in their well unhatched
once. They develop, hatch and grow for 11 days in there, with occasional changes
of liquid medium. Since they are embryo, they do not need to feed.

This change is significant because the medium is liquid and so embryo are much
more mobile. Also illumination changes were introduced. Indeed with the liquid
medium, it is no longer possible to move the platform, so the camera needs to move
instead. The camera also features a higher resolution and faster speed.

Here we describe the new protocol and the changes in image analysis that
were introduced to improve the pipeline and keep it robust. Fish eggs are placed
manually in 24-well plate, one embryo per well, immediately after spawning on day
0. Each well contains 2mL of incubation medium, together with a predetermined
concentration of a water-soluble compound under study. Embryos are incubated
in this medium in their respective well until day 9, when image acquisition is
performed. Medium replacements are automatically performed on days 2, 5 and
7. On day 9, we removed 1.5 mL of incubation medium from each well, to limit
embryo movements, and fish embryos are anesthetized with 70 µL of tricaine (0.1
g/L) in a total volume of 0.57 mL. The plate is then placed under the connector
board and the acquisition is automatically performed under the control of a Visilog
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Visual Basic script. For each well, 30 uncompressed video frames at a resolution of
1500×1500 pixels are recorded for a duration of 1 s.
These changes induced some problems with our procedure: the morphological
parameter had been optimized for the previous camera. Now the definition is higher,
and so the size of structuring elements have to be changed. Moreover, the embryo
in its well yields several problems: the well can be dirty as the embryo is left in it
while it was still an egg, the embryo can be erroneously vacuumed off by the system,
causing some wells to become empty, and without the gelose bed, the embryo can
move more easily and appears deformed by the refraction of light in water. Finally,
we can encounter both eggs or hatched alevins, making mandatory a differentiation
step in our image processing assay.

10.6 Modifications : details
Quality test of the video sequence

We begin by detecting the videos that present important and undesirable changes
during the sequence. These may be due to the presence of black frames, shadows or
large uncontrolled motion. For this, on each difference di between two successive
frames of the video sequence S0, we compute the statistical variance (Vi):

∀i ∈ [1, 29], di = S0
i − S0

i+1 (10.9)
Vi = variance(di) (10.10)

In the case of a correctly recorded video, two successive frames should be very
similar, and their pixelwise difference should yield a near-zero output, so its variance
remains small. On the other hand, if a large motion appears on a frame, the
difference will show a high contrast. If at least one of all computed variances is
higher than an experimentally determined threshold (set to 30), the video sequence
is deemed non-exploitable.

Segmentation of the well
The segmentation of the embryo is crucial for several reasons. For speed and

reduced memory usage, we crop the area of interest to a small window centered
on the embryo. During this step, we also detect sequences where the embryo is
not fully visible, for instance too close to the edges of the well. Moreover, motion
stabilization must be performed on the embryo itself, and not on other elements
of the field of view. We first delimit the region of interest by finding the disk area
corresponding to the inner part of the well. This step also removes all objects
connected to the edges of the well. The procedure for finding this disk area is as
follows: edges of the disk appear dark, so we first compute a so-called bottom-hat
filter: see Fig. 10.9(a) and Eq. (10.11) for a definition. In this equation, B20 is
chosen to remove small artifacts in the well. This yields image A0 (Fig. 10.9(b)),
which we binarize via an automated thresholding operation to obtain image A1 in
Fig. 10.9(c). The automated thresholding procedure is described here: we determine
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the threshold which maximizes the inter-class variance between foreground and
background (i.e. following the Otsu criterion [98]), with the added constraint that
the area of the foreground must be in the interval [20 000, 40 000]. This interval
was determined experimentally to guarantee the presence of the well edges in the
foreground. This constraint is convex and so easily implemented: we consider all
thresholds from the highest to the lowest in order. The area of the foreground
necessarily increases during this process. In the acceptable interval for the area of
the foreground, we select the threshold with the highest Otsu criterion. We call
this threshold θco (for constrained-Otsu). F0 is the first frame of the sequence.

A0 = ϕB20(F0)−F0 (10.11)
A1 = (A0)≥θco (10.12)

We weed out small components in the well with an area opening γα100 of parameter
λ = 100, followed by a closing with a ball B40 to reconstruct fragmented edges of the
well. Then a radial opening γρ100 with linear element ρ of length τ = 100 is applied
to remove short artifacts in the well, while retaining the thin well borders [99]. This
yields image A2:

A2 = γρ100(ϕB40(γα100(A1))) (10.13)

From this result shown on Fig.10.10(a), we wish to keep only the internal ring
that represents the separation between the interior of the well and its edges. For
this, we use a well-established morphological approach to segmentation, based on
the Watershed transform. This operator is intuitively defined as in hydrology, in a
grayscale image whose intensity can be assimilated to a 3D terrain, as delimiting the
borders between adjacent catchment basins [100]. We compute the magnitude of
the Derivative of Gaussian filter (DoG): DoGσ = ∇ ?Gσ using the Deriche recursive
implementation of the gradient operator for speed [101] with parameter σ = 10
and we use a markers-based Watershed algorithm [102] on the magnitude of this
gradient. A disk at the center of the frame is taken as internal marker m1

int and the
frame corners are the external marker m1

ext. We write:

A3 = watershed(‖DoG10(F0)‖,m1
int,m

1
ext) (10.14)

The resulting contour is shown on Fig.10.10(b). The result may be incorrect
if the embryo is too close to the edge of the well. To help with this, we expand
the contour using the smallest convex set that contains A3 [103]. We call A4 the
resulting image (see Fig. 10.10(c)) and G4 the set of points contained in the central
component of A4. We compute the barycenter C of coordinates (a, b) and the
diameter 2R of G4 as the largest width or height of its bounding box. The final
well segmentation is the disk D centered in C and of radius R. Its contour is shown
on Fig.10.10(d).

D =
{

(x, y), (x− a)2 + (y − b)2 ≤ R2
}

(10.15)

with (a, b) = barycenter(G4) and R = max(width(G4), height(G4))
2
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Segmentation of the embryo: location in the well
Our image analysis procedure is intended to work for both alevins and eggs, but

some eggs do not develop at all and differ markedly from healthy eggs and alevins
(see Fig. 10.11(a) and (c)). They feature low contrast, which make them look like
empty chorions or impurities we can have in the well too. An early challenge in
the pipeline is to detect and identify the embryo in each well reliably. To achieve
this, we begin by performing an initial segmentation adapted to all components in
the well, whatever the intensity level or variance they may have. In the previously
calculated bottom-hat image A0 (see Fig. 10.9(b)), all the components of interest
are easy to detect as connected components located strictly inside the segmented
well. We call h the contrast significance, understood as the intensity variation that
connected components should at least have to be significant [104]. The value h is set
experimentally to ignore the irrelevant intensity variations for instance due to noise,
while still detecting the dimmest components we cannot ignore (e.g. the undeveloped
eggs). We call pipeak the local maximum of intensity in the neighborhood of the
pixel pi. Image B1 contains the so-called h-maxima of A0 ∩ D, defined as follows:

B1 =
{
pi ∈ A0 ∩ D with pi =

[
0 if (pipeak − pi) > h
pi if (pipeak − pi) ≤ h

}
(10.16)

The image B1 of the h-maxima can be efficiently computed using a morphological
reconstruction operator, as explained in [56].

Several components can be detected in the resulting frame B1, potentially
matching with the embryo, an empty chorion, or some impurity. To identify
the embryo, we combine several criteria: presence of eyes, minimal and average
intensities, variance and circularity. A component is considered as including an eye if
it presents a very dark part representing less than the quarter of the total component
area. Since impurities are generally homogeneous, this procedure filters out dark
impurities because these are uniformly dark, and light impurities and chorions
because they are evenly bright. However it can also filter out under-developed eggs.
To avoid that, we enhance the classification with other criteria: a high average
intensity or a low variance, we also check the circularity to differentiate between
undeveloped eggs and chorions or bright impurities. Finally this process allows us
to associate each component with one of the following classes: “under-developed
eggs” , “other embryos” or “impurities and chorions”. We delete every components
identified as an impurity or a chorion. As we know that it must be only one
embryo per well, if after this step several components of the class “under-developped
eggs" remain, we only keep the largest. If several components of both remaining
classes remain, we only keep the largest component among those from the class
“other embryo”. Indeed, we have found experimentally that it is more difficult to
distinguish under-developed eggs from chorions than other embryos from impurities.
Thus the probability of making a mistake from the class “undeveloped egg” is
higher. The result M0 is a binary mask (with values in {0,1}) containing only
one component expected to locate the embryo in the well (see its red contour in
Fig. 10.11(a,b)). If the result is empty, this means that the embryo intersects the
edges of the well and then the sequence cannot be reliably analyzed. If instead we
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find an embryo, we crop the sequence and the maskM0 by defining a bounding
box around our segmentation, dilated by B20, a ball of diameter 20 pixels. This
results in a new sequence denoted S1 centered on the embryo (see Fig. 10.11(c)).
However, because of contrast variations and the large variability of grey levels
between embryos, the mask M0 is only approximate. In particular, for alevins,
it delimits a rough area with the tail included (see Fig. 10.11(b)) and potentially
some shadows and impurities if they are too close to the embryo. For the purpose
of heartbeat detection, we need to restrict the search field to the thorax region.

Differentiation (egg or alevin)
Because eggs and alevins have different visual properties, we need to identify

the type of embryo for further processing. The differentiation step is based on the
morphological analysis of the embryo contours previously detected. The previous
segmentation provides a reliable localization of the embryo, but only a rough
approximation of its contours (see Fig.10.12(a) and (b)), so they need to be refined.
For this, we consider the first frame F1 of the cropped sequence S1. In particular,
it is crucial to weed out potential shadows and impurities, which may have been
segmented with the embryo, while retaining the tail segmentation for the alevins. We
apply the same bottom-hat procedure as in Eq. (10.11) to eliminate the background.
Then we define experimentally an adaptive threshold slightly above the average pixel
intensity near the border of the cropped frame. For our images, with a 8-bit depth, an
increment of 5 was experimentally determined as appropriate: θ = average(F1) + 5.
We obtain a binary image, whose small components are filtered out with an area
opening with parameter λ = 5. We apply the morphological gradient of an image I
defined as gradM(I) ≡ δB1(I)− εB1(I) to the resulting image, to obtain image C1.

C1 = gradM(γα5 ((ϕB40(F1)−F1)≥θ)) (10.17)

In order to properly extract the contours of the embryo without confusing them
with residual artifacts that can still be present in the background, we again use a
markers-based watershed methodology on the image C1, as follows:

m2
int = skeleton(γB8(εB15(M0))) (10.18)
M1 = watershed(C1,m2

int,m
2
ext) (10.19)

The outline of the image is set as the external marker m2
ext and the ultimate binary

skeleton [105] of the eroded and opened maskM0 is set as the internal marker m2
int.

The erosion and the opening are respectively performed with a radius-15 and a
radius-8 disk, in order to remove potential thin impurities linked to the previous
embryo segmentation.

The outline of the resulting binary maskM1 is shown on Fig. 10.12(c) and (d).
We now use the shape ofM1, to differentiate between eggs and alevins. Eggs

are highly circular, so we could use the classical circularity attribute:

circ = 4πA
P 2 (10.20)
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Where A is the area and P is the perimeter of the binary shape under study.
This ratio is at most equal to 1 for a disk, and decreases as the elongation becomes
more pronounced. However it is still possible for some alevins to be so tightly wound
that their associated binary shape presents a high circularity. Eggs also possess
hairs on their chorion that may reduce the circular aspect of their associated mask.
To correctly differentiate both cases, we also consider two other criteria. We have
determined experimentally that a healthy well-segmented egg has a radius around
60 pixels. Therefore, allowing for some margin of error, we apply a morphological
opening γB40 that deletes the mask of every alevins, which are much thinner than
eggs. If the component under study is filtered out during this step, it is considered
an alevin. If it is not, we determine the minimum enclosing disk of the mask and
we calculate the area difference d between this disk and the maskM1. Indeed, as
eggs hairs are globally distributed uniformly on the chorion, the difference between
the mask area and the area of its minimum enclosing disk is higher for hatched
alevins than for eggs. Below a threshold of 3000 pixels, determined experimentally,
we considered the component under study as an egg. Otherwise, we conclude it is
an alevin.

Segmentation adjustment and frames cropping
For the purpose of heartbeat detection, it is essential to restrict the region of

interest to the thorax region, in order to minimize the probability of false detection
due to electronic noise or blood motion in the bright tail regions. Therefore, after the
differentiation step, we refine the embryo segmentation in the alevin case. Alevins
are darker than the background and in particular, their eyes are very dark. They are
fairly easy to segment as a large connected component associated with the darkest
minima in the thorax region. We apply the same threshold process as in Eq. (10.12).
Because we determined experimentally the minimal area of the thoracic region of
an alevin to be around 600 square pixels, we apply a morphological are opening
using a criterion λ = 100 to eliminate small components. Moreover, we limit the
thorax region to theM0, by computing the intersection.

M2 =M0 ∩ (γα100((F0)≤θoc)) (10.21)

The result M2 is a new binary mask representing thorax of the alevin (see
Fig. 10.13(b)). We crop the sequence and obtain a new sequence S2 centered on
this area (Fig. 10.13(c)). For egg sequences, these remain unchanged andM2 and
S2 are respectively equivalent toM1 and S1.

Registration, denoising
We used the same procedure as before the changes in acquisition protocol,

described in section 10.3.

Segmentation of the inner parts of the embryo
To ascertain the presence of a heartbeat in the thorax region, we look for cyclic

motion in this region only. We develop a maskM3 of the inner part of the alevin
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to avoid false detection in area most subject to noise, like the eyes. We define D1

as the sequential average image of the sequence S4:

D1 = seq_average(S4). (10.22)

In this image, the heart and vessels are darker because of the presence of blood,
so they are easy to segment as a large connected component associated with the
darkest minima, simultaneously maximizing the inter-class variance.

D2 = (D1)≤(θo+θc) (10.23)

Here θo is obtained using the Otsu criterion, and we experimentally optimized
θc to 20. The resulting D2 is a binary mask of the registered body of the alevin.
Considering D2 as a geodesic mask, we now extract the eyes from D2 as the one
or two most prominent minima from its min-tree [57]. We cannot rely on the eyes
being separated. Depending on the pose of the embryo, they might be merged. We
write:

M3 = εB1(γB3((D2.D1)≥(θo−θd))) (10.24)
Note that θo is re-estimated from the grey-level distribution of the embryo within
the geodesic mask. Here we subtract an experimentally optimized constant θd,
which turns out to be equal to 20 as well. The outline of the resulting maskM3 in
alevins is exemplified on Fig. 10.14(a,b). this procedure is used only on alevins in
order to restrict the region of interest for detecting heartbeats. It is not suitable for
eggs, due to the folded aspect of the embryo. For these, we computeM3 using the
same procedure for segmenting the eyes but consideringM2 as the geodesic mask.
(Fig. 10.14(c,d)).

Variation estimations in the mask of the inner parts of the embryo
Our challenge is now to detect cyclic motion-induced variations in the sequence

assuming it corresponds to heartbeats. The heartbeat is noticeable by contrast
variations due to blood concentration in the heart region. Computing the grey
level variance at each pixel of a sequence along the time line shows the grey-level
variability for that pixel, however this variability may not be due to a cyclic pattern.
To account for cyclic variations, we split S4 into 4 sub-sequences of 7 frames (S4

1 ,
S4

2 , S4
3 and S4

4 ). An interval of 7 frames is similar to the expected period of a single
heartbeat. We compute the sequential variance images Vi = seq_variance(S4

i )
on each sub-sequence, yielding four variance images V1, V2, V3, V4. We next
compute the sequential median of these four images seq_median({Vi}). In this
way, some spurious, potentially even large, residual variation occurring only once in
the sequence will produce a large variance only once, and so the median of all the
variances in this area will remain small. On the other hand, cyclic variation will
exhibit significant variance in all four sub-sequences. The result is shown on 10.15.

S4 = S4
1 ∪ S4

2 ∪ S4
3 ∪ S4

4 (10.25)
∀i ∈ [1, 4], Vi = seq_variance(S4

i ) (10.26)
E1 =M3. seq_median({Vi, i ∈ [1, 4]}) (10.27)
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Segmentation of cyclic motion areas and calculation of A, the area of
the cyclic regions

We used the same procedure as before the acquisition changes, described in
section 10.3.

10.7 Results
Our heartbeat detection method described in the previous sections returns three
possible results : “unexploitable”, “alive” or “dead” and processes a sequence in
around 10 seconds, which is in accordance with our initial constraints. We tested
this procedure on 3192 videos acquired over several experimental runs. The protocol
was always the same but conditions such as Methylene blue marker concentration
changed. This number of videos is significant and concerns healthy as well as
diseased embryos: some with edemas and with other malformations. Thus, this set
reflects production usage and allows us to validate the robustness of our protocol
(see Fig. 10.16).

The strongest way of establishing ground truth is to observe embryos under a
microscope. Indeed, it is the most reliable way to assess the quality of the complete
method of embryos analysis. We originally performed this study on the 2532 videos:
embryos were observed under a microscope before the acquisition. However, we
noticed that the discrepancy between video and microscope analysis was much
higher (282 videos, for a rate of 11%). Several reasons linked to the experimental
protocol or the acquisition method can explain this fact. (i) Video quality is such
that some weak heart beats may be undetectable on a video even when it is visible
under a microscope. (ii) Observations with a microscope also depend on operator
fatigue and subjectivity. (iii) Because there is some gap between the microscope
observations and videos acquisition, an embryo can also die during the interval.
To avoid this, in future work we plan to assess the embryo twice: before and after
the video analysis to detect heart failure for example. (iv) Observations under
a microscope make it possible to observe embryos in a favorable position to see
the heart, whereas in videos the embryo posture may obscure the heart. Finally,
because of these differences, observations under microscope did not appear as the
most relevant way to assess the quality of the program itself, as we wanted to do
in this chapter. That is why it was decided to provide ground truth basing on the
videos observations of several operators.

Firstly, all the 3192 video sequences were observed by an expert (named here
"expert 1") who manually assessed the exploitability of the video by checking that
it was complete, well-recorded, that the well was not empty and that the embryo
was not too close from the well boundary. Then, for the usable sequences, the
health status of the embryo was assessed by checking for the presence of a heartbeat.
Whereas the determination of the videos usability is easy and thus reliable, the
detection of a beating heart is sometimes difficult and therefore subject to errors.
For this reason, the same work was performed by two other, independent observers
("experts 2" and "expert 3") on a subset of 200 exploitable videos. A consensus was
then reached between the three observers on videos where the assessment differed.
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Table 10.1: Results and error rates. (a) shows the distribution of dead and living embryos
in the program results compared to ground truth and (b) the error rates calculated for
each expert and for the program versus ground truth.

Program: Dead Program: Alive
Ground truth: Dead 38 0
Ground truth: Alive 3 159

(a)

Expert 1 Expert 2 Expert 3 Program
Ground truth 1.5% 2.5% 1.5% 1.5%

(b)

The 200 data resulting from this consensus represent the ground truth of our assay.
Among the 200 ground truth videos, we identified 3 errors by the program for a

corresponding error rate of 1.5% (see Table 10.1). Moreover, this error rate only
corresponds to false negatives i.e living embryos detected as dead by the program.
In toxicity tests, this type of error is more acceptable since they do not provide a
false sense of security over the tested molecule. We present in Table 10.1(b) the
error rates calculated for each expert compared to this final set of 200 ground truth
videos. Expert 1, who processed the 3192 video set, has a similarity rate of 98.5%
with the ground truth. We can consider their observations as sufficiently reliable to
analyze the entire program results. Results of this analysis (program vs expert 1)
are described below.

From an initial set of 3192 videos, 660 were flagged by the program as unusable
(20.7%). 655 of them correctly so (99.25% of the subset "unusable"), and 5 (or 0.75%
of the subset) incorrectly so due to some error in the program itself. If we consider
the entire set, 3187 videos were well-flagged, leading to a success rate of 99.85%.
The remaining 2532 were used for mortality test validation. There were 45 errors in
this set, for an error rate of 1.77%. Such an error rate is low and can be considered
satisfactory. We noticed that 11 of these 45 errors are due to embryos that had
died a long time before the acquisition, and had consequently absorbed the blue
marker. These embryos appear very dark on the video and so are more affected by
noise, which was incorrectly labeled as periodic motion. This is something we can
improve in a future version of our software pipeline.

In some cases, even actually dead embryos can appear to move. This can be due
to motion in the water, fluttering, shadows or embryo rotation inside the well (see
Fig. 10.17 for an illustration). In dark areas, acquisition noise is proportionnally
more troublesome [106], and may be confused for cyclic motion. Sometimes, the
embryo may appear to slide on the water. This can happen if we do not correctly
compensate for rotation in the sequence stabilization phase. The main remaining
cause is ambiguity: in some cases, the heart beats so slowly or weakly that we cannot
detect it. In most cases, a human operator would also have difficulties in detecting
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it. In our pipeline, all parameters, were hand-optimized on a training sample of
100 sequences. However, several parameters such as the size of structuring elements
or thresholds can be optimized further than they already have, in particular those
that are dependent on the size of the embryo.

The purpose of this chapter is to present and assess an image analysis pipeline
for detecting a beating heart on 1 second long videos of fish embryos. Our results
on 2532 usable sequences show an acceptably low error rate, near 1.5% overall.
This proves the efficacy and reliability of our image analysis method. However,
when considering its integration in the whole system of embryos preparation, image
acquisition and processing, several points remain to be discussed, in particular
concerning the validation phase and the ground truth.

Since we are discussing living organisms, establishing a ground truth is not
always easy. We rely on multiple visual observations of a subset of the video
sequences, which turned out not to be always consistent: expert observers did not
always come to same conclusion. Indeed, we noticed 6 differences between them for
200 assessed videos, a rate of 3%. A second viewing of these videos was consequently
performed with all observers present to achieve a consensus. With respect to this
consensus, each observer had made between 3 and 5 errors, a rate between 1.5%
and 2.5%. We note that our program also had made 3 errors. We conclude that
the rate of assessment subjectivity is near 1.5%. Such a rate is acceptable, because
experiments can easily be repeated three times. Assuming errors are random and
independent, the final error rate on repeated experiments is negligible (2.25× 10−4).

However, this low error rate is based on video-based ground truth and is only
representative of the quality of the program itself. To assess the reliability of the
whole procedure, including preparation, acquisition and treatment, we need to
establish ground truth by observing embryos under a microscope. Nevertheless, as
we explained in 10.4, we still face to videos quality and accuracy issues with the
current acquisition procedure. To improve this, we are currently investigating the
use of the VAST system 2, which is however currently not available for Medaka,
only for Zebrafish.

Many sequences (20.5%) are correctly detected by the program as unusable.
Some of them are due to an empty well, and so are not an issue, but the majority
are due to embryos being too close to the well boundary. This represents an actual
problem for the efficiency of the global procedure. To solve it, we are currently
experimenting with wells with a rounded, rather than flat bottom. These are
not widely available commercially, and are not compatible with our Hamilton
MICROLAB automated filling system. However, they are compatible with our
acquisition device and they do solve the problem of the proximity with the edges.
We hope that with some experimental protocol adjustments, we will be able to use
them in production.

In spite of these issues, our current pipeline is used in production at L’Oreal.
We are confident to eventually solve all of the stated experimental problems and
reach an error rate comparable with a human observer under the best conditions,

2http://www.unionbio.com/vast/

http://www.unionbio.com/vast/
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using a microscope.
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Figure 10.8: Flowchart of our embryo mortality image processing assay 2.
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(a) (b) (c)

Figure 10.9: Bottom-hat application. (a) is the frame F0 before bottom-hat, (b) is the
result A0 and (c) is the subsequent thresholded image A1.

(a) (b)

(c) (d)

Figure 10.10: Segmentation of the inner part of the well. (a) is before applying the
watershed algorithm (image A2); (b) is the result (image A3); (c) is the result of convex
hull (image A4) and (d) is the outline of the final result D superimposed on F0.
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(a) (b)

(c) (d)

Figure 10.11: Segmentation of the well and location of the embryo. (a) and (b) show
the outlines of D andM0 on the initial frame F0. (c) and (d) show the first frames of
cropped sequences S1.

(a) (b)

(c) (d)

Figure 10.12: Segmentation of the embryo. (a,b) are the outline of the maskM0 (before
adjusting) ; (c,d) are those ofM1 (after adjusting).
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(a) (b) (c)

Figure 10.13: Segmentation of the initial frame to locate the thorax of the alevin. (a)
is the initial frame F0, (b) the thorax maskM2 and (c) the first frame of S2

(a) (b) (c) (d)

Figure 10.14: Inner parts segmentation on two alevins and two eggs. (a) and (c) are
alive whereas (b) and (d) are dead.

(a) (b) (c) (d)

Figure 10.15: False color rending of the temporal variance. (a) and (c) are for the living
embryos in Fig.10.14(a,c); (b) and (d) for the dead ones in Fig.10.14(b,d).

(a) (b)

Figure 10.16: Heart segmentation in the presence of malformations. (a) is in the
presence of edema and (b) in the presence of axial malformation.
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(a) (b)

Figure 10.17: Incorrect segmentations due to fluttering.
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11
Heart frequency estimation

In this chapter we study elements that exhibit cyclic behavior, such as a beating
heart, or the speed of blood cells in vessels. Various methods already exist for
estimating frequencies based on motion: for instance tracking methods [107, 108],
integrated box methods [17], measuring the amount of changing pixels between
frames [51], and optical flow [78]. In our case, we developed a fully automatic
method based on segmentation and optical flow to reliably estimate heart frequency
directly in heart or in vessels of Medaka embryos.
This work was given an oral presentation at IPTA 2016 [6]
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11.1 Pipeline

Acquisition and
data extraction

Sensor pattern
removal 5.3.2

Registration 5.3.3

Motion
enhancement 6.1

Temporal gradient 6.2

Segmentation of
motion areas 6.2

Optical flow 6.5.2

Fourier analysis

Figure 11.1: Flowchart of our Heart frequency estimation.

11.2 Details of the methodology
Medaka embryos were anaesthetized with tricaine for immobilization, placed under
a Leica DMi8 inverted brightfield microscope and 600×480 2D video were acquired
with a ×20 objective and a ×10 focusing lens, at a frame rate of 100 frames per
second via a high-speed camera. The calibration was 2µm per pixel, sufficient to
identify the motion of blood cells in the bloodstream. Embryos were captured at
various stages of their development between 1-7 days after hatching, and exposed
to various substances, some of which induced either bradycardia or tachycardia.
The acquired video stream exhibit various artifacts, including noise, global motion
due to vibrations, remaining embryo motion and spurious stage motion, as well
as sensor pattern. After sequence stabilization, this grid would no longer be fixed
and so would impair further processing. We therefore need to remove this texture
beforehand.
We used the three pre-processing steps described in Chap. 5 and 6.
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Sensor pattern removal (Chap. 5.3.2)
As presented in Chap. 5.3.2, we obtain an image of this texture by computing

the average image of the unstabilized sequences, and we subtracted it from the
same image on which we applied a Gaussian filter with σ = 1. This texture is then
subtracted from each image of the whole sequence. This is illustrated in Fig 11.2.

∀I ∈ S : Iclear = I −
(
S̄ − Gσ=1(S̄)

)
(11.1)

with Gσ=1 a gaussian filter with standard deviation σ = 1, S̄ is the average of the
sequence S. Sclear is the sequence of the Iclear .

(a) (b)

(c) (d)

Figure 11.2: Removing sensor pattern from the acquisition. (a) The average of the
sequence yields the non-moving parts of the sequence. (b) Blurred average removes thin
and textured elements. Computing (a)-(b)=(c) yields the sensor pattern. (d) Finally, we
subtract this pattern from all the images of the sequence.

This removes the grid without blurring the sequence, yielding to the sequence
Sclear .

Registration (Chap. 5.3.3)
Next, we use our robust rigid registration method (see Chap. 5.3.3) to stabilize

our structures of interest, based on detection of key-points and RANSAC-like
method [87] to weed out the outliers.
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P1 = P2 ×R+ T (11.2)

Where P1 and P2 are the sets of points of the two frames we seek to match,

R =
(

cos θ sin θ
− sin θ cos θ

)
is the rotation matrix. T = (dx, dy) is the translation;

∀(x, y) ∈ Iclear : Ireg(x, y) = Iclear(x′, y′) (11.3)

with the estimated R and T , [x′ y′]> = R[x y]>+ T . Sreg is the resulting stabilized
sequence of Ireg

Motion area highlighting (Chap. 6.1)
Then we compute the average image of the sequence (Fig. 11.3 (b)), yielding

an image of the non-moving parts of the sequence as presented in Chap. 6.1. We
subtract this result from each frame. This operation removes the static parts of the
sequence and yields only a sequence of moving elements.

∀Ireg ∈ Sreg : Imov = Ireg − S̄reg (11.4)

with [x′ y′]> = R[x y]> + T . Smov is the sequence of Imov
We add a new step after this pre-processing procedure: an illumination correction

step. Indeed, illumination variations may occur during the sequences. To correct
for these, we compute the average value of the sequence, and multiply each pixel
by this value divided by the average of the frame. This operation ensures that the
average value of each frame is constant, and so will normalize the sequence in term
on grey-level intensity value. For each pixel :

∀(x, y) ∈ Imov : Icorr [x, y] = Imov[x, y]µSmov

µImov

(11.5)

where µSmov is the average value of the sequence and µImov is the average grey-level
of the frame. We obtain a sequence Scorr where the average value of all frames is
constant throughout the sequence.

Temporal gradient and segmentation of motion areas (Chap. 6.2)
At the end of our pipeline, the areas where motion is present are our regions

of interest: the blood cells. When we observed the tail of the embryos, we notice
severan "moving" areas: the main artery, the main vein and capillaries. We are
only interested in the artery in which blood cells will exhibit a cyclic motion due to
the natural elasticity of this particular vessel. We hence segmented the vein and
the artery using the methodology developed in Chap. 6.2. Indeed, vein and artery
are the parts of the sequence where the motion is the most important. On heart
sequences, we segment only the heart region as it is the part of the image with the
most motion present.
We segment the areas according to connectivity criteria and rough motion. To
achieve this, we integrated the absolute value of the first few frames to obtain an
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(a) (b)

(c) (d)

Figure 11.3: Detecting the moving areas of the sequence. (a) Initial frame. (b) Averaging
of the sequence yielding the non-moving parts, including all the parts that are not blood
cells. (c) Areas with motion from the difference between frames and (b). (d) Equivalent
result on a beating heart.

image of the motion areas. Then we computed a labelled mask using a morphological
closing and connectivity criteria [54].

sumdiff =
10∑
i=0

I icorr − I i+1
corr (11.6)

M = γB5(ϕB5((sumdiff)≥θO
)) (11.7)

Where θO is the Otsu threshold [89]; γB5 and ϕB5 are respectively the morphological
opening and closing [53] by structuring element B5, a discrete Euclidean ball of
radius 5. M is the mask of the vessels. We created ML in which all connected
component are distinguished with the attribution of a label. We should expect a
maximum number of 2 labels (corresponding to the artery and the vein) for vessels
sequences, whereas in heart we should expect a unique label. Figure 11.4 shows the
steps of this segmentation.

Optical flow (Chap. 6.5.2)
Tracking methods follow one or more elements of a sequence. Hence they can
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(a) (b)

(c) (d)

(e)

Figure 11.4: Sequence of operations for segmentation. (a) Difference between two
consecutive frames. (b) Integrating motion yields a segmentation (c) and vessel labeling
(d). Equivalent labeling in a heart (e): a single area is segmented.

estimate a proper motion together with a position, and so can be used to estimate
frequencies associated with variations in motion. Integrated boxes, such as linescans,
measure the change of luminosity in a fixed image subset. Change of luminosity in
the box over time yields a time series associated with the motion. Variations in
grey level in the box through the sequence can be used to estimate the frequency of
spatial cycles. Similarly, measuring the number of changing pixels between frames
is correlated to the speed of the change, under ideal conditions [51].
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In our case, tracking methods are in practice unusable, particularly since moving
elements of interest can be difficult to identify and segment. Indeed, the appearance
of blood cells may change significantly during motion, since it occurs in 3D and we
only measure 2D information. We cannot use integrated box methods either because
motion may not be spatially cyclic, is 3D and may not involve large illumination
variations. Similarly, measuring changing pixels between frames is simple, but does
not correspond to a physical measurement, is sensitive to noise and spurious motion.
This measurement is sufficient for the vessel segmentation presented above but
not for motion analysis. In contrast, optical flow can be rendered insensitive to
global motion via image stabilization, is generally robust to noise and does indeed
correspond to a physical measurement. While the study of speed variation can
clearly be connected to heart motion and so heart rate, this is not so clear in
the blood vessel case. In reality we assume that artery wall elasticity converts
changes in pressure to changes in speed, as in the human vessel case. For this
reason, we estimate blood cells motion using the optical flow method as described
in Chap. 6.5.2.

We used the Färneback’s algorithm for computing the optical flow [79]. It
works by dividing the frame with a grid, and calculating global motion in relation
to its consecutive frame for each zone. The global motion is assigned to a point
representing the center of the zone. For each point we have a displacement vector
(see Fig. 11.5(a,b)). This method is suitable even though is not possible to track
individual blood cells in our videos.

V (i) =
⋃

α∈ML

Vα(i) (11.8)

∀α ∈ML, Vα = {vi ∈ V/ML(xvi
, yvi

) = α} (11.9)
Vα(i) = median(Vα(i)) (11.10)

V (i) is the list of the displacement vectors between two frames Icorr(i), Icorr(i+ 1).
Vα(i) is the list of the displacement vectors belonging to the component α of ML.
For each region α, we have a median displacement value Vα(i) which is the global
value of displacement in the α region. We validate the choice of the median with
speed vector clustering (see Fig. 11.6).

We can observe two different behaviours in blood vessels: the speed profiles of
veins and arteries are different. We observed wide variations of speed in the arteries
while in the veins the speed is almost constant (see Fig. 11.5(d)). This is to be
expected since arteries are closer to the ventricular expulsion, whereas veins convey
blood that has gone through the whole body and so speed variations are damped.
For this reason, we focus only on measurements in arteries to extract physiological
parameters such as heart rate.

We identify average motion vectors with each segmented and labelled region.
The plot of the magnitude of the speed vs. time in each labelled region allows us
to identify useful physiological measurements, such as frequency, minimum and
maximum speed, motion regularity and so on.
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Figure 11.5: Speed analysis on a sequence. Optical flow estimation in a heart (a) and
vessel (b). Left vessel is the artery, right is the vein. (c) Speed vector clustering and
median values, notice speed consistency in each labeled region. (d) Median speeds during
a whole sequence, showing direction and speed variation.

Fourier analysis
Frequency analysis is performed using the Fast Fourier Transform on the magni-

tude vector obtained before.

11.3 Results and validations
Fig. 11.6 shows examples of speed variation and associated Fast Fourier Transform
in heart and vessel.

Our optical flow-based method can be used to measure speed variations in
arteries and around the heart, and so should be correlated with heartbeats. To
validate our approach, we first consider frequency estimations in heart sequences.
Then we compared frequency estimation in vessels with frequency estimation in the
heart. Finally, we compare our speed estimations with another method.



11. Heart frequency estimation 137

0 50 100 150 200 250 300
frames

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

in
te

n
si

ty
 o

f 
d
is

p
la

ce
m

e
n
t

(a)
0 20 40 60 80 100

frequency (Hz)

0

20

40

60

80

100

p
o
w

e
r

(b)

0 50 100 150 200 250 300
frames

1

2

3

4

5

6

in
te

n
si

ty
 o

f 
d
is

p
la

ce
m

e
n
t

(c)
0 20 40 60 80 100

frequency (Hz)

0

10

20

30

40

50

60

70

80

90

p
o
w

e
r

(d)

Figure 11.6: Speed frequency analysis on a sequence. Speed variations vs. time over
a complete heart sequence (a) and vessel sequence (c). Corresponding Fast Fourier
Transform (b) and (d) (cropped to 100 Hz).

Manual heart rate validation
For a first validation of our frequency estimation procedures, we first estimated

the beating frequency in the heart manually. This is acceptable since the fish
embryo heartbeat is easy to follow in the sequence. We recorded several sequences
on various embryos (the video acquisition lasted several minutes for each embryo)
and we counted the number of heart cycle by watching the sequences at low speed.
We compared it with the estimation of our approach. In all the cases, we obtained
the same results for both methods up to rounding.

Heart vs. vessel validation
To validate our approach in vessels, we estimated heartbeat frequencies in a single

fish embryo. Each estimation was performed on 18 different video acquisitions
separated by several minutes, and we estimated the frequencies in both the heart and
the arteries. Because heart estimation was validated previously, we considered it as
our ground truth. In Fig. 11.7(a), we plotted all possible couples of measurements
against each other. All measurements appear consistent and fit within a 5%
uncertainty circle, so we can now consider them reliable.
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Figure 11.7: Correlation between heart and arteries sequences (a) in a single fish embryo
with multiple observations and (b) for 10 subjects exposed to varying environmental
conditions.
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Figure 11.8: Comparison with the method of [51] in the ideal single-vessel case.

Heart rate variations validation
We also measured the heart rate in the heart and artery in 10 fish embryos

subjected to varying environmental conditions, causing the heart rate to vary
significantly. We see that our estimations of the heart rate and the frequency
measured in the arteries correlate very well as illustrated in Fig. 11.7(b).

Speed measurement validation
Finally we compared our blood cell speed measurement vs. the method described

in [51]. This latter, less sophisticated method relies on counting changing pixels
between frames rather than estimating a flow. It is only usable in a sequence
containing a single vessel, in a noise-free and vibration-free environment. The
relationship between the number of changed pixels and speed is also not clear.
However in this ideal case it is well-correlated, although non-linearly, with ours.
The non-linearity in the correlation may be explained because our speed estimate
uses a multi-scale approach, whereas [51] is single-scale. Consequently our speed
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estimates have a wider range (a ratio of 5 vs. 3 between the highest and lowest
values). However, reproducibility between cycles is good (see Fig. 11.8).

11.4 Further work
We have shown that we can successfully estimate frequencies from optical flow
speed variations, both around the heart and in blood vessels after segmentation
of these structures. The frequencies are consistently estimated and correlate with
each other with a low margin of error. This ability to accurately estimate the heart
rate from optical flow rather than intensity variations extends the range of possible
physiological measurements. Indeed, it is often easier to locate an artery in the tail
of a fish embryo than to obtain a clear view of the heart, especially in later stages of
development. A possibility for for future work will be to study more sophisticated
measurements such as estimation of ejection fractions.
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12
Conclusion

In this manuscript, we have described some tools that we have developed for
motion analysis studies in a bio-medical context. These tools have been illustrated
through several applications on ciliated cells and fish embryos. Many perspectives
are left open at the end of this work, and will be followed by new development and
applications.
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12.1 Contribution of this work
In this manuscript, we have proposed a number of motion analysis tools for bio-
medical applications, in particular for 2D+t sequences. While the processing of
sequences is a common application in both the biomedical world and in computer
vision, the entirely automated analysis of such sequences is much less so. These
tools have been developed in the context of high-speed bright field and fluorescence
microscopy, but can easily be adapted to other domains.

Our main area of application was the analysis of ciliated cells. We have sought
to automate the characterization of cilia motion. As detailed in this document,
ciliated cells in the body are critical for lung clearance. Many acquired and genetic
diseases that affect clearance can be traced back to cilia motion disorders. Currently,
existing tools for assessing cilia motion disorders are all semi-automated and require
a significant amount of practitioner input. Our aim was to provide practitioners
new protocols for cilia motion disorder assessment and thereby new tools for the
diagnosis of diseases that affect clearance. For this we have proposed a number of
increasingly sophisticated methods that are able to automatically pre-process images
and provide validated, reliable measurements, such as the cilia beating frequency,
in a regionalized manner (i.e per group of cilia independently). More generally, we
have proposed a methodology for describing motion patterns, and segment image
sequences into regions of similar motion, from which various descriptors can be
derived. These can potentially be used further for as a direct input for a diagnosis
system.

Importantly, we have also investigated the possibility of estimating the motion
of cilia directly in vivo. This is particularly challenging given the size of cilia and
their beating frequency. This task essentially requires a high power microscope
combined with a high-speed camera. Since no instrument currently exist to perform
this task, we formed a partnership with Mauna Kea Technology (MKT) and used
their instrument on ex-vivo samples. We have conclusively shown that, even though
the current MKT technology is not designed for this task, it is possible to at least
automatically measure cilia beating frequencies with this instrument and that these
measurements compare well with manual ones.

A secondary application was the analysis of fish embryo in the context of eco-
toxicity. These living organisms are increasingly used to assess the toxicity status
of test substances, for instance in cosmetic formulations. More generally, they can
be used to assess the degree of pollution in waterways. For these organisms, we
were able to provide validated sequence-based assays of the life/death status of fish
embryo, with high accuracy, similar to that of trained human operators. We have
also proposed various methods for estimating the heart frequency, from observing
the heart of from blood circulation.

All of our applications have been validated, sometime extensively. Our automated
life status assay was validated over more than 3000 videos, with an error rate
estimated at 1.5%, comparable to human experts. Our error rates on the others
assays and procedures are consistently in the 1-5% error range and have been
published in one form or another, see the publication list in the introduction to this
manuscript. We stress that all of our software was developed using open-source
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tools, in order for our results to be reproducible.

12.2 Future work
Our current proposals allow us to be optimistic regarding the future of sequence
analysis tools for bio-médical application. In particular, the following areas can be
improved:

• Segmentation
The current segmentation method that we have proposed in chapter 5 relies
on a hierarchy of temporal Fourier descriptors. It would be interesting to
add more spatial information and to allow other types of continuous wavelets
(Gabor, Morlet) instead. Our segmentation model is a variation of the Random
Walker algorithm. It would be interesting to explore other metrics (graph
cuts, power watershed, etc), especially for speed and reliability in the presence
of many regions.

• Pattern analysis
From these segmentations and descriptors, it would be useful to be able the
patterns of visible cilia motion and to ascribe these to various diseases, via a
classification/machine learning approach. Some annotated data is available in
this domain so at least an experimental study could be conducted.

• Clinical study
While we have validated most of the measurements that we have proposed, we
have done so only at a low level, i.e. we have shown that they do correspond to
equivalent manual or semi-automated measurements. However their usefulness
in a clinical setting has not yet been proven. This is a study that is well
beyond the purpose of this thesis but is of obvious interest.

• More data from fish embryo sequences
More data can be extracted from sequences of beating hearts on fish embryo.
We believe that physiologically relevant measurement can be extracted also,
such as the ejection fraction. More sophisticated image acquisition devices also
exist, e.g. the VAST system from Union-Biometrica, that allows practitioners
to image embryo from many angles and not solely in 2D. Also the possibility
exists of real 3D sequence analysis, for instance using fluorescence or bi-photon
microscopy.

• Continuing the in-vivo study
At present the collaboration with MKT on in-vivo analyses has been halted,
however other provider of similar instruments exist. For the moment we
have not been able to raise sufficient interest, but this could change. The
possibility of using rigid, bright-field, high-power endoscopes instead should
also be investigated.
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• Enlarging the field of applications of cilia analysis
We obtained sequences of beating cilia from mouse brain and from zebrafish
nasal cavities. One goal is to analyze these new data with our procedure to test
our method and to adapt it if needed to propose a "universal" cilia analysis tool.
The new data were provided by Nathalie Delgehyr (Ecole Normale Supérieure
de Paris, France) for the brain, and Nathalie Jurisch-Yaksi (Kavli Institute
for Systems Neuroscience, Sweden) for the zebrafish. They are different from
the nasal ciliated cells we have been working with so far (see Fig. 12.1), but
our procedures can certainly be adapted to them. A complementary study on
flow analysis with particle tracking on living zebrafish embryo is also planned.
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(a)

(b)

Figure 12.1: Ciliated cells images from brain sequences (a) and from zebrafish nasal
cavity (b)
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