
HAL Id: tel-01735320
https://pastel.hal.science/tel-01735320

Submitted on 15 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Averaging in Large Scale Learning
Edwin Grappin

To cite this version:
Edwin Grappin. Model Averaging in Large Scale Learning. Statistics [math.ST]. Université Paris
Saclay (COmUE), 2018. English. �NNT : 2018SACLG001�. �tel-01735320�

https://pastel.hal.science/tel-01735320
https://hal.archives-ouvertes.fr


NNT : 2018SACLG001

Thèse de doctorat

de l’Université Paris-Saclay

École doctorale de mathématiques Hadamard (EDMH, ED 574)

Etablissement d’inscription : ENSAE ParisTech

Etablissement d’accueil : CREST (UMR CNRS 9194) - Laboratoire de Statistiques

Spécialité de doctorat : Mathématiques fondamentales

Edwin Grappin

Estimateur par agrégat en apprentissage statistique

en grande dimension

Soutenue le 6 mars 2018 à l’ENSAE ParisTech, Palaiseau.

Après avis des rapporteurs : Jalal Fadili (GREYC CNRS, ENSICAEN)

Karim Lounici (Georgia Institute of Technology)

Jury de soutenance : Cristina Butucea (Université Paris-Est) Examinateur

Ismaël Castillo (Université Sorbonne) Examinateur

Arnak Dalalyan (CREST - ENSAE - GENES) Directeur de thèse

Jalal Fadili (GREYC CNRS, ENSICAEN) Rapporteur

Mohamed Hebiri (Université Paris-Est) Examinateur

Alexandre Tsybakov (CREST - ENSAE - GENES) Président de jury



NNT : 2018SACLG001

Thesis presented for the title of Doctor of Philosophy

at Université Paris-Saclay.

Doctoral School of Mathematics Hadamard (EDMH, ED 574)

University : ENSAE ParisTech

Hosting research center: CREST (UMR CNRS 9194) - Laboratoire de Statistiques

Doctoral specialty: Fundamental mathematics

Edwin Grappin

Model Averaging in Large Scale Learning

6th March 2018 at ENSAE ParisTech, Palaiseau.

Reviewing committee : Jalal Fadili (GREYC CNRS, ENSICAEN)

Karim Lounici (Georgia Institute of Technology)

Ph.D. committee : Cristina Butucea (Université Paris-Est)

Ismaël Castillo (Université Sorbonne)

Arnak Dalalyan (CREST - ENSAE - GENES) - Ph.D. Supervisor

Jalal Fadili (GREYC CNRS, ENSICAEN)

Mohamed Hebiri (Université Paris-Est)

Alexandre Tsybakov (CREST - ENSAE - GENES)



Model Averaging in Large Scale Learning

Edwin Grappin

Submitted for the degree of Doctor of Philosophy at Université Paris-Saclay
February 2018

Abstract

This thesis explores both statistical and computational properties of estimations procedures

closely related to aggregation in the problem of high-dimensional regression in a sparse setting.

The exponentially weighted aggregate is well studied in the machine learning and statistical

literature. It benefits from strong results in fixed and random design with a PAC-Bayesian

approach. However, little is known about the properties of the exponentially weighted aggregate

with Laplace prior. In Chapter 2 we study the statistical behaviour of the prediction loss of the

exponentially weighted aggregate with Laplace prior in the fixed design setting. We establish

sharp oracle inequalities which generalize the properties of the Lasso to a larger family of

estimators. These results also bridge the gap from the Lasso to the Bayesian Lasso as these

estimators belong to the class of estimators we consider. Moreover, the method of the proof can

be easily applied to other estimators. Oracle inequalities are proven for the matrix regression

setting with the nuclear norm prior. In Chapter 3 we introduce an adjusted Langevin Monte

Carlo sampling method that approximates the exponentially weighted aggregate with Laplace

prior in an explicit finite number of iterations for any targeted accuracy. These works generalize

the results proved in Dalalyan (2017) in order to apply theoretical guarantees for non-smooth

priors such as the Laplace prior. In Chapter 4, we study a complementary subject, namely

the statisctical behaviour of adjusted versions of the Lasso for the transductive and semi-

supervised learning task in the random design setting. Upperbound on the prediction risk,

in both deviation and expectation, are proved and we point out that unlabeled features can

substantially improve bounds on the prediction loss.
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Abstract

Les travaux de cette thèse explorent les propriétés statistiques et computationnelles de procé-

dures d’estimation par agrégation appliquées aux problèmes de régression en grande dimension

dans un context parcimonieux (ou sparse). Les estimateurs par agrégation à poids exponen-

tiels font l’objet d’une abondante littérature dans les communautés de la statistique et de

l’apprentissage automatisé. Ces méthodes bénéficient de résultats théoriques optimaux sous

une approche PAC-Bayésienne dans le cadre de données aléatoires ou fixes. Cependant, le com-

portement théorique de l’agrégat avec prior de Laplace n’est guère connu. Ce dernier représente

pourtant un intérêt important puisqu’il est l’analogue du Lasso dans le cadre pseudo-bayésien.

Le Chapitre 2 explicite une borne du risque de prédiction de cet estimateur, généralisant ainsi

les résultats du Lasso. De ce fait, nous montrons aussi que pour certains niveaux faibles de la

température, l’estimateur bénéficie de bornes optimales. Le Chapitre 3 prouve qu’une méthode

de simulation s’appuyant sur un processus de Langevin Monte Carlo permet de choisir expli-

citement le nombre d’itérations nécessaire pour garantir une qualité d’approximation souhaitée.

Le Chapitre 4 introduit des variantes du Lasso pour améliorer les performances de prédiction

dans des contextes partiellement labélisés.
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Estimateur par agrégat en apprentissage statistique en

grande dimension

Résumé Substantiel

Soient 𝑛 et 𝑝 des entiers strictement positifs. Considérons le couple (𝑋,𝑦) ∈ (R𝑛×𝑝 × R𝑛) tiré

d’une distribution 𝑃 sur l’espace 𝒳 × 𝒴 . Dans le cadre d’un problème de régression, l’objectif

est de prédire le vecteur 𝑦 à partir d’un jeu de données 𝑋. Une approche possible consiste à

estimer une fonction 𝑓 : 𝒳 → 𝒴 qui minimise le risque

ℛ(𝑓) =

∫︁
𝒳×𝒴

𝑙(𝑦, 𝑓(𝑥))𝑃 (d𝑥, dy), (0.0.1)

où 𝑙 est une fonction de perte arbitrairement choisie. Nous appelons 𝑓 ⋆ la fonction qui minimise

Equation 0.0.1. Dans ce cas, le problème de régression peut s’écrire sous la forme

𝑦 = 𝑓 ⋆(𝑋) + 𝜉,

où 𝜉 ∈ R𝑝 est un vecteur de variables aléatoires.

Etude théorique de l’EWA avec prior de Laplace

L’apport principal de ce manuscrit est l’étude du comportement théorique de l’estimateur par

agrégation avec prior de Laplace lorsqu’il existe une représentation quasi-parcimonieuse1 de la

relation fonctionnelle qui lie 𝑦 au jeu de données X.

L’estimation par agrégation à poids exponentiels est une méthode efficace pour inférer un signal

dans un cadre quasi-parcimonieux (Dalalyan and Tsybakov, 2012a,b). Différents priors ont été

étudiés dans la litérature de l’apprentissage statistique. Il est intéressant de remarquer que le

prior de Laplace n’a jamais été utilisé efficacement.

L’estimateur par agrégat avec prior de Laplace représente un intérêt théorique puisqu’il est

l’analogue pseudo-bayésien de l’estimateur Lasso. L’estimateur Lasso est certainement l’estimateur

le plus largement étudié (et utilisé) parmi les méthodes de régression pénalisée dans un con-

texte quasi-parcimonieux en grande dimension. En dépit de ses avantages computationnels et

1Le lecteur est invité à lire la suite de ce manuscrit pour obtenir une compréhension plus complète de la
notion de quasi-parcimonie abordée sous le terme de nearly-sparse.
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théoriques, les garanties d’inégalités oracle optimales pour le Lasso nécessitent des hypothèses

restrictives sur le jeu de données X.

A contrario, les estimateurs par aggrégation à poids exponentiels (EWA) bénéficient de résultats

théoriques optimaux sous une approche PAC-Bayésienne dans le cadre de données aléatoires

ou fixes avec des hypothèses moins contraignantes. A ce jour, l’EWA avec prior de Laplace

est peu étudié. Le Chapitre 2 explicite une borne du risque de prédiction de cet estimateur,

généralisant ainsi les résultats du Lasso. De ce fait, nous montrons aussi que pour de faibles

niveaux du paramètre de température, l’estimateur bénéficie de bornes optimales.

Le principal objet d’étude de cette thèse est la régression linéaire où l’on cherche à prédire 𝑦

par une relation linéaire entre le jeu de données X et un vecteur 𝛽 ∈ R𝑝

𝑦 = X𝛽 + 𝜉, (0.0.2)

où l’on cherche à estimer 𝛽 de sorte à minimiser une fonction de perte.

Dans ce contexte, le Théorème 2.3.1 du Chapitre2 est une version simplifiée des résultats. Il

permet de mettre en évidence l’impact du choix du paramètre de température 𝜏 sur la borne

du risque de prédiction.

Le Théorème 2.4.1 explicite des résultats de type concentration du pseudo-posterior. Ces ré-

sultats sont généralisable à d’autres prior et à d’autres contextes tels que la régression matri-

cielle. Ainsi les Théorèmes 2.5.1 et 2.5.2 du Chapitre 2 étendent ces résultats au cas matriciel.

Etude théorique d’une méthode de simulation de l’EWA

avec prior de Laplace

Si le Chapitre 2 permet de regrouper les résultats théoriques du Lasso et de son analogue

pseudo-bayésien, le Chapitre 3 en étudie l’aspect computationnel. Garantir l’existence d’une

méthode qui approche efficacement cet estimateur s’avère être un défi plus difficile. Cela reste

cependant essentiel pour que l’EWA avec prior de Laplace soit utilisable en pratique. En nous

appuyant sur les travaux de Dalalyan (2016), Durmus and Moulines (2016) et Dalalyan (2017)

nous étudions le comportement d’une méthode de simulation par Langevin Monte Carlo pour

approcher cet estimateur.

Une application directe d’un processus de Langevin Monte Carlo comme présenté dans (Dalalyan,

2016, 2017; Durmus and Moulines, 2016) ne garantirait pas nécessairement l’obtention d’une

précision souhaitée après un nombre fini d’itérations. En effet, ces résultats nécessitent que le
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log-posterior soit fortement convexe et lisse alors que dans le cas du prior de Laplace le log-

posterior n’est pas différentiable. De même, la forte convexité n’est pas respectée pour tout jeu

de données. Dans le Chapitre 3, nous résolvons partiellement cette question. Nous étudions le

comportement d’une simulation de la discrétisation d’Euler d’un processus de Langevin Monte

Carlo. Plus particulièrement, nous étudions la qualité de la simulation au sens de la distance de

Wasserstein par rapport à l’agrégat à poids exponentiels avec prior de Laplace ciblé. L’approche

consiste à adapter le travail de Dalalyan (2016) afin de contourner la non différentiabilité du

pseudo posterior. Nous explicitons un nombre d’itérations 𝐾 du même ordre de grandeur que

le nombre d’itérations nécessaires dans Dalalyan (2016) en vue d’une tolérance à l’erreur 𝜖 et

de la dimension 𝑝. Il s’agit de noter que cette ébauche de résultat ne résout pas entièrement

la question computationnelle. En effet, ces résultats sont garantis sous l’hypothèse de forte

convexité. Cela requiert notamment des hypothèses trop restrictives sur la matrice de Gram.

En particulier, ces hypothèses ne sont pas réalistes dans un problème en grande dimension. En

effet, dans le Chapitre 3, nous supposons que la plus petite valeur propre de la matrice de Gram

est strictement positive. Malgrés ces limites cette étude définie une méthode computationnelle

qui garantie une approximation précise d’une densité ciblée dans une situation légérement plus

généralisée que la littérature existante.

Apprentissage transductif et semi-supervisé

Le Chapitre 4 est une étude de l’estimateur Lasso dans des contextes semi-supervisés ou trans-

ductifs. Il peut être lu indépendemment du reste de ce manuscrit bien qu’il complète et peut

se voir complété par les résultats des autres chapitres de cette thèse. Nous montrons que des

données non labélisées devraient être utilisées dans le calcul de l’estimateur afin d’inférer la

matrice de variance-covariance. Ainsi, nous présentons deux adaptations de l’estimateur Lasso

afin d’améliorer les performances de prédiction dans un cadre d’apprentissage transductif ou

partiellement labélisé. Sous certaines hypothèses, nous démontrons des inégalités oracle opti-

males dans le cadre de designs aléatoires.
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1.1 Context

1.1.1 The rise of Statistics

Over the last decades, Statistics has been at the center of attention, in a wide variety of ways.

Hardly a day goes by without one hearing about Statistics, Artificial Intelligence, Machine

Learning or Big Data. Large companies such as Google, Apple, Facebook and Amazon (also

known as GAFA) or Baidu, Alibaba, Tencent and Xiaomi (sometimes called BATX) play an

important role in the mainstream status of all these technical terms. What can be done with

data and the computer resources that are recently accessible causes a lot of ink to flow and is

subject to a great deal of thoughts and speculations. While some consider artificial intelligence

as a threat for the future of humanity1, others see their applications for the greater good, and

are very optimistic about the impact of artificial intelligence applications, such as automated or

assisted medical diagnoses for early detection, or robots that substitute for humans in laborious

chores. If the impact of artificial intelligence on the future is not well understood, it seems to

be a great consensus that its applications are going to be a key changer of the day-to-day life.

Recent improvements, such as the first weak artificial intelligence algorithm, AlphaGo, that can

outperform the best Go masters in the world, have reinforced the common belief that artificial

intelligence is intended to a bright future. As discussed in McCarthy and Hayes (1969), with

such unclear questions at stakes, it is clear that philosophical and ethical guidelines are to be

questioned and that national and international regulations will be necessary to ensure a positive

impact of artificial intelligence applications.

The rise of challenges and breakthroughs put under the name of artificial intelligence has been

made possible with technological improvements. The most important being the increase of

computer performance and the soar of sharing data capacity with the Internet democratization.

As pointed out by Chen (2016), the number of possible floating-point operations per second in

CPU and GPU has dramatically increased over the last ten years (see Chen (2016)[Figure 4]).

The Moore’s law, introduced for the first time in 1975 Moore (1975), predicted that the number

of components for each chip would double every single year. This early prediction has been

proven to be true until now. From 1991 to 2011, the microprocessors performance has grown
1For example, the open letter Hawking et al. (2015) has been signed by researchers in artificial intelligence

and robotics as well as other non-scientist notorieties, such as Elon Musk, CEO of SpaceX and Tesla Inc., who
stated that artificial intelligence is one of today’s ”biggest existential threats” (Crawford (2016); Markoff (2015)).
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1000-fold. This dramatic increase mentioned in Borkar and Chien (2011) is supposed to face

new challenges. The energy is becoming the limit and will curb the increase of microprocessor

frequency. As a result, large-scale parallelism is one of the promising paths to push the increase

of performance. Storage capacity has dramatically increased while the price of storage has

curbed. This is why it is possible to store more and more data. And with the increase of

computer performance, this large amount of data can be processed at large scale2. The last

needed improvement was the ability to share data and computer resources. With the Internet

speed increase, this has been made possible.

On the one hand, it is now very easy to send large amounts of data through the Internet. Data

can be more easily shared, mutualised and used. One agent can produce data while another

agent can process or use the data. For example, a dramatic comparison that can be made is

the first hard drive disk commercialized by IBM in 1956 (the RAMAC 350) and the last serie

of hard drive built by IBM in 2002 (the star serie) (Wikipedia (2017)). While the RAMAC 350

had a storage capacity of 5 Megabytes, its actual volume was approximately two cubic meters;

it required a power of 625 watt per Megabyte and its cost was $9, 200 per Megabyte. To get

an idea of how big the hardware was at that time, Figure 1-1 shows the transportation of a

RAMAC 350 in 1956. On the other hand, the Travelstar 80GN had a 80-Gigabyte capacity, it

only requires a power of 0.02 watt per Megabytes and would only cost $0.0053 per Megabyte3.

Additionally, the fact that data can be relatively easily shared implies that computing resources

can be outsourced and used when needed. Cloud computing solutions offer on demand com-

puting resources. This has only been made possible by the ease of sending data over the net.

By facilitating the capacity of producing, sharing, storing and processing data, the aforemen-

tioned technological improvements reshape our economical environment. Data, and information

extracted from it, become very valuable and strategical assets in our economy. Some compan-

ies, such as Alphabet (Google’s parent company), offer free services in order to gather user

data. Smartphones and the very common use of the Internet produce considerable amounts of

personal data. These data are valuable for many purposes, such as getting insights on social

trends, improving marketing strategies by using customer data, or even training and reinfor-

cing predictive artificial intelligence algorithms which require important amounts of data to be

trained. As data become valuable assets with very strong potential due to computer perform-

ance and artificial intelligence progress, it is clear that institutions are urged to regulate the

use of data and define some ethics guidelines.
2Of course, the complexity of computational algorithms to process data is a key limit in the capacity of

current processes. It will be one of the topics we will take into consideration in this thesis.
3And the Travelstar 80GN was produced 15 years ago from the time we write this thesis.
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Figure 1-1: A 5-Megabyte IBM hard drive transported in
1956. Photo credit: IBM Company.

If everyone talks about artificial intelligence, we should be aware that the biggest breakthroughs

in artificial intelligence are algorithms based on statistical methods with great computing im-

plementations. The algorithm AlphaGo, described in Silver et al. (2016), has been developed by

Google and uses tree search and neural networks. Autonomous car innovations mainly rely on

image recognition, object detection and trajectory decision. The state of the art algorithms to

achieve these operations use Machine Learning algorithms such as support vector machine, as in

Levinson et al. (2011), and/or neural networks, as in Pomerleau (1991). Machine and statistical

learning are subareas of artificial intelligence. Arguably, not every method used in artificial in-

telligence comes from Statistics or Machine Learning. For example, the study Olmstadt (2000)

describes the early expert systems only which used human knowledge, in which there were no

learning steps in the process. However, the most intricate decisions and challenging operations

are based on learning new representations of the environment and detecting patterns in order

to take decisions, which are tasks achieved by statistical methods. This is the goal of Machine

Learning methods, that we will not differentiate from statistical learning in this thesis. In order

to provide the reader with a better understanding of what is Statistics and of the context of

this thesis, we will define some concepts that will be used throughout this thesis.

4



1.1.2 Definition of Statistics

According to Donoho (2015), the term and the use of Statistics were introduced 200 years

ago along with the need to collect census data about the inhabitants of a given country. The

statistical tools have been limited for a long time by the size of the data and the capacity to

store and process the information, no computer being available. The introduction of the first

automated systems, such as punch card tabulators, was the beginning of the capacity of scaling

the amount of data that could be stored and eventually processed. From this point of view,

Statistics is a boundless field that could be summarized in a very large sense as the definition

of Statistics given by Agresti and Finlay (1997).

Definition 1.1.1 (Statistics). Statistics consists of a body of methods for collecting and ana-

lyzing data.

Defined as such, some questions have been treated by statisticians over time, from both theor-

etical and empirical points of view. With no claim of being exhaustive, we can mention:

Data collection and storage This subarea tackles some questions such as the type of data

that should be collected, and the way the data should be stored, referenced and organized.

Polling has been a very deeply studied subject, asking some questions such as how many

observations we need or how we can collect a survey with a small bias. On a larger extent,

some questions about compressing data to limit storage costs, while loosing as little as

possible information can be seen as part of this area.

Inference Statistical inference is a set of data analysis methods that help interpreting empir-

ical observations. The purpose of estimation is often to understand a phenomenon by

evaluating parameters that could explain the behaviour of a studied sample, or even a

larger set that is supposed to be well represented by this given sample. The term of causal

inference is used when the goal is to explain the causal interactions in a given model. The

book Pearl et al. (2016) provides an excellent explanation of the difference between simple

association and causal relationships in Statistics.

Prediction According to Shmueli (2010), predictive modeling is the process of applying stat-

istical methods in order to predict the observation of a new individual. We will go into

further details later in this section. From Donoho (2015), statistical prediction is defined

as predicting what responses are going to be for future inputs.
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Quality assessment The question of measuring the quality of statistical methods has been

of paramount concern throughout the history of Statistics. How accurate is a prediction?

How representative is a modeling inference to the real observations? Such questions are

at the core of the statistical theory discipline.

This list, far from being exhaustive, comes under a plethoric literature. These different fields

of study have very strongly developed from some simple results to very complex and subtle

results. Some estimation methods have been thoroughly studied and the literature guarantees

that the quality of these estimations are well understood in a given context.

If such a definition of Statistics is very large, it seems to conflict with other disciplines such as

Machine Learning. In the following section, we will point out some similarities and differences

between Statistics and Machine Learning. As it is not the topic of this thesis, we discuss it very

briefly. For any reader who wishes a deeper understanding of the definition of these fields, we

could only recommend the papers Donoho (2015), Breiman (2001), and the book Wasserman

(2013), that are great food for thoughts on these matters.

Machine learning is very similar to Statistics. In view of Definition 1.1.1, both are studying

methods to collect and analyze data. Since Statistics is a much older discipline than the inven-

tion of computers, statisticians could claim that Machine Learning is a mere clone of Statistics.

However, the origins of Machine Learning differ from those of Statistics. This is why these

two communities have distinct terms and sometimes different purposes. According to Wasser-

man (2013), Machine Learning comes from computer science departments. In Wasserman

(2013)[Preface], a table of vocabulary equivalence between Machine Learning and Statistics is

presented. It is worth remarking that there is a trend in both fields to share more and more

terms. As an example, the term learning arised from Machine Learning is now very commonly

used in the area of statistical learning. Originally, as statisticians did not have access to the

calculus capacities of computers, low-dimensional problems were considered. Moreover, as poin-

ted out in Breiman (2001), the issue of inference was initially prioritized over the question of

prediction. This is explained by a long tradition of Statistics as being the inference from a data

sample of an unknown underlying generative models. On the contrary, the Machine Learning

community often worked without probability assumptions on the model; consequently, the field

has been mainly focused on the prediction issue and, of course, computational challenges. As a

consequence, there are differences between Machine Learning and Statistics. However, as there

exist communities within Statistics and Machine Learning, it seems fair to admit that these two

disciplines are also two communities working on same challenges with different backgrounds.
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The focus and vocabulary of these disciplines tend to converge over time.

1.1.3 Examples of applications

There is a tremendous amount of current and potential applications of Statistics in our environ-

ment. While some of these applications are very well-known, some others are used in our daily

life without us being aware of it. Earlier, we mentioned Google AlphaGo (Silver et al. (2016)),

the first algorithm which managed to outperform any living human at playing the board game

Go. The paper Bouzy and Cazenave (2001) provides an analysis of Go from a statistical point

of view. Other games are being, or have been, learned by algorithms and are strongly advert-

ized. Of course, our first thought goes to the famous IBM Deep Blue algorithm that defeated

the best chess players in the world, as explained in Campbell et al. (2002) and Sutton and

Barto (1998). The book Hsu (2002) provides interesting insights on Deep Blue story. It is

worth noting that building a world-class algorithm playing Go has been more challenging than

developing a Chess computer. The main reason of this difficulty gap is mainly the much higher

number of possible combinations in Go, as explained in Burmeister and Wiles (1995).

Other applications are of paramount importance in our society. The healthcare industry has

strongly benefited from statistical algorithms. The diagnosis of various diseases can be auto-

mated or assisted. The review in Kononenko (2001) mentions several statistical methods such

as naive and semi-naive Bayesian classifiers, k-nearest neighbors, neural networks or decision

trees. The article Dreiseitl et al. (2001) compares algorithms such as logistic regression, arti-

ficial neural networks, decision trees, and support vector machines on the task of diagnosing

pigmented skin lesions, in order to distinguish common nevi from dysplastic nevi or melanoma.

The authors of Shipp et al. (2002) describe a method to ease the detection of blood cancer.

The discovery of new drugs in the pharmaceutical industry is a growing challenge. The more

active compounds are discovered, the less likely it is to discover a new drug with positive

impact. In order to keep innovating, the pharmaceutical industry needs to increase the capacity

of screening active compounds. Standard high-throughput screening methods become more

and more costly as the number of active compounds already tested increases. As in ranking

Agarwal et al. (2010), Machine Learning solutions enable to screen million of active compounds

to rank them according to their likelihood to match a given response target. Statisticians and

computer scientists developed digital high-throughput screening solutions based on support

vector machine methods Burbidge et al. (2001) and neural networks Byvatov et al. (2003). The

domain of active learning (Warmuth et al., 2003) plays an important role in the early phases
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of drug discovery.

Image analysis plays a central role in radiology and medical imaging. Numerous examples

are developed in the literature. Methods to detect microcalcifications from mammograms are

compared in Wei et al. (2005). These methods include support vector machine, kernel Fisher

discriminant and ensemble averaging. A review of various radiology applications is made in

Wang and Summers (2012). Image segmentation, computer-aided diagnosis, neurological dia-

gnosis are among the most astonishing applications of Machine Learning. Artificial intelligence

can support the field of medicine with many other applications, such as health monitoring

devices that can analyze data from patients (Bacci, 2017; Boukhebouze et al., 2016; Graham,

2014; Roux et al., 2017). On a larger scale, the detection of epidemiological outbreaks (Aramaki

et al., 2011; Culotta, 2010) can be done with Bayesian network modeling, as in Wong et al.

(2003), or with support vector machine and logistic classification as in Adar and Adamic (2005).

As mentioned earlier, the field of autonomous robotics (Thrun et al., 2001) is one of the applic-

ations of Machine Learning and the last decade has seen the invention of many autonomous

vehicles such as automated drone, unmanned aircrafts (Austin, 2011) or autonomous cars. This

field of applications relies on statistical methods such as Monte Carlo simulations (Thrun et al.,

2001), neural networks (Pomerleau, 1991) or fuzzy logic (Driankov and Saffiotti, 2013). The

aeronautic and defense industries have also strongly benefited from signal processing and clas-

sification as in Zhang et al. (2004) and Zhao and Principe (2001), where wavelet support vector

machines are used to automate recognition from radar data. Security is not the only major

concern in the air. Facial recognition (Jain and Li, 2011) has been used for security purposes to

grant access (Liu et al., 2005) or for surveillance by national authorities (Gilliom, 2001; Haque,

2015), which of course raises some ethical and philosophical questions about citizen freedom

(Introna and Wood, 2004).

On a very different focus, recommendation engines have been a pretext for deep researches in

Statistics. The Machine Learning discipline has benefited from the famous Netflix challenge

(Bell and Koren, 2007; Zhou et al., 2008), which consisted in developing an algorithm to re-

commend to a user a list of movies he or she may enjoy. Some early applications occurred

in the industry of online music radios. The two leaders were Pandora and Last.fm, but they

had very different approaches. On the one hand, Pandora used content-based filtering as in

Mooney and Roy (2000). The content-based approach consists in using features of songs4 and

some feedback from each user. If one user likes a given song, the content-based algorithm

aims at recommending similar song. On the other hand, Last.fm used collaborative filtering

4See the Music Genome Project for more detailed information about such features (John, 2006).
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as in Breese et al. (1998). Collaborative filtering is a very different approach that relies on

the analysis of the behaviour of a community of users. Such methods analyze the behaviour of

one user (such as a list of regularly listened songs) and compare it against the habits of other

users. Collaborative filtering algorithms would recommend songs that other users with similar

behaviours listen to on a regular basis. More recent applications, such as SoundCloud, combine

the two approaches. Youtube (Davidson et al., 2010) recommends to its users the next video

they could watch and Amazon (Linden et al., 2003) increases its sales by proposing items that

a customer may wish to acquire.

Amazon is one of the most active companies in the Machine Learning area. Thus, Amazon has

developed other applications, such as personal assistants, that use speech recognition in order

to comply with the request of a user. Other important companies have developed personal

assistants, including Apple with SIRI, Microsoft with Cortana and Google with Google As-

sistant. Extended applications occurred with the development of home assistant devices such

as Amazon Echo (which is based on Alexa technology), Apple Homepod and Google Home

(Nijholt, 2008; Clauser, 2016). These applications rely on speech recognition and natural lan-

guage processing (Cambria and White, 2014; Kumar et al., 2016; Bowden et al., 2017; Earley,

2015). The list of current and potential applications of statistical methods is very long, if not

infinite. We have mentioned here some disruptive applications. Of course, other areas benefit

from Machine Learning algorithms. In the financial industry, quantitative funds use and keep

exploring Machine Learning algorithms. Google Ad system relies on ranking estimations to

rank and manage bid allocation of advertising content. Media apply filtering algorithms to

rank (Rusmevichientong and Williamson, 2006) and eventually broadcast contents. The Edge

Rank algorithm has been developed by Facebook to evaluate the potential interest of a post

with respect to a specific user (Pennock et al., 2000; Chen et al., 2010). Our email box bene-

fits from spam detectors (Jindal and Liu, 2007). The use of chatbots to automatically assist

customers, or new analytics brought to sport in order to entertain the audience and to increase

athletes’ performance, seem to bring promising applications as well.

The intention behind mentioning this ridiculous number of applications is to show that Statist-

ics, in its broad meaning as defined in 1.1.1, has a strong impact on artificial intelligence and

all the applications that have been so much publicized lately. Statistical (or Machine Learning)

methods such as support vector machine, neural networks, naive Bayesian classifiers, penalized

regressions, make these innovations possible.

We have listed examples of statistical applications and we described the relationship between

Statistics and other names such as artificial intelligence and Machine Learning. In order to give
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Figure 1-2: The risk of spurious correlation. Credit: xkcd.com

a more specific context to the study of this thesis, and close this non-quantitative introduction,

we will introduce some important notions and concepts. Among them are the notions of un-

supervised, supervised and semi-supervised learning, which describe the structure of the data

with respect to the output.

1.1.4 Supervised, unsupervised and partially labeled learning

A great description of these three settings is provided in Wang and Summers (2012). In the

supervised settings, there are two different types of data: inputs and outputs. The inputs

are often named observations in Statistics and features in Machine Learning. The outputs

are called outcomes in Statistics and labels in Machine Learning. The goal of Statistics in

a supervised setting is to estimate a relationship between the inputs and the outputs. The

relationship does not need to be a causal effect; it can be fortuitous (c.f. Figure 1-2). Most

famous examples of supervised problems are the linear and non-linear regressions as well as the

classification. Examples of supervised studies can be found in (Garcia et al., 2013; Bates et al.,

2014; Aphinyanaphongs et al., 2014; Tibshirani, 1996b).

The second setting is the unsupervised learning. In that case, there is no output in the sample,

only inputs. The goal of unsupervised learning is to infer some relationships within the inputs.

It is often assumed that there is an underlying latent variable that explains the relationship

and behaviour of the observations. Well studied examples of unlabeled learning are density

estimation, clustering and anomaly detection (Zeng et al., 2014; Le, 2013; Cheriyadat, 2014;

Zimek et al., 2014; Dinh et al., 2016; Costa et al., 2015; Gupta et al., 2014).

The partially labeled learning setting is an intermediate form of supervised learning. In that

setting, some observations are associated with labels while other inputs have no corresponding

outputs. The purpose of partially labeled learning is similar to the one of supervised learning,
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which is to estimate a relationship between the inputs and the outputs. However, one may

want to improve the quality of the estimation by using structural information of additional

unlabeled features. Most of the time, semi-supervised learning is used when there are a few

labeled data and a large amount of unlabeled data available. Within the partially labeled

setting, two types of tasks might be considered. The semi-supervised learning tasks consist in

estimating a predictor that minimizes a risk as in Equation 1.2.3. On the other hand, the task

of transductive learning is to predict the unknown outcomes of the unlabeled data that are

within the original dataset. These settings will be further discussed in Chapter 4.

It is important to note that partially labeled learning differs from active learning. Active

learning tasks consist of estimating a predictor from unlabeled data where an algorithm can

request interactively the desired outputs of new data points in order to increase the quality of

the estimate.

We have described the notions of supervised, non-supervised, and partially labeled learning, as

well as semi-supervised, transductive and active learning tasks. In Chapter 4, we will consider

the case of partially labeled setting and address some theoretical questions in the context of

penalized regression.

In the next section, we will introduce some fields of statistical learning which are related to the

work presented in this thesis. The goal of this section is to provide the reader with a global

view of the literature related to our study. As this thesis is about theoretical statistics, we will

mainly focus on papers that present an interest from the theoretical point of view. Besides,

as it is at the intersection of many concepts, we believe it is worth going through a certain

number of theories such as high-dimensional statistics, PAC-Bayesian estimation, aggregation,

oracle paradigm, regularization and penalized regression. We will also discuss some theoretical

results from the literature that address Monte Carlo computational challenges. It will nurture

the last chapter of this thesis (Chapter 4).

1.2 Challenges in high-dimensional statistics

1.2.1 High-dimensional statistics

There has been a crucial shift of paradigm in the last decades. Let 𝑛 ∈ N be the number

of observations and 𝑝 ∈ N be the number of features. The standard statistical framework

considers the case where 𝑛 is relatively large and 𝑝 substantially smaller than 𝑛. As pointed

out in Giraud (2014), the technological evolution of computing has urged a shift of paradigm
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from classical statistical theory to high-dimensional statistics. In the high-dimension settings,

a very large number of features 𝑝 is considered and the number of observations 𝑛 is of the same

order of 𝑝, if not smaller.

The practical interest of the high-dimensional theory has come with the increasing number

of data gathered by any connected object that can collect thousands to millions of different

features. The paper Donoho (2000) gives a very clear overview of the particularities of high-

dimensional statistics in comparison with classical statistics. This paper mentions that a very

large number 𝑝 of features is not a blessing but a curse. Indeed, the very large number of features

may sound like an opportunity to obtain a very thorough and complete quantity of information

in order to infer or predict potentially anything. However, the difficulties in a high-dimensional

settings are many. The computational challenge in a high-dimensional settings is of course

one of the main concerns and supposes algorithms to be computable in polynomial time with

respect to 𝑝 and 𝑛. In high-dimensional statistics, some methods priorize the computational

complexity over the estimator optimality. For example, the optimal method to detect sparse

principal components of high-dimensional variance-covariance matrix requires to solve a NP-

complete problem. The authors of Berthet and Rigollet (2013) propose an alternative method

that is nearly optimal in the detection level but guarantees the solution to be computable in

polynomial time. In Chapter 4, we propose an algorithm to approximate a certain class of

estimates and we prove that any targeted accuracy of the approximation can be reached in an

explicit polynomial time.

In some situations, the high-dimensional context induces some heterogeneous collectin of data.

A common situation is when a large dataset can be collected automatically at a low cost, while

the label is difficult or costly to collect. In that case, it is relevant to collect a very large number

of observations with no label and to manually collect labels associated with a few observations.

This situation refers to partially labeled learning setting that we already mentioned earlier.

This context will be discussed in the Chapter 3 and a review of partially labeled classification

can be found in Schwenker and Trentin (2014) for further details on that matter.

On the other hand, some theoretical properties of the high-dimensional settings require to

face other challenges. The survey Zimek et al. (2012) explains well the difficulty that a large

value of 𝑝 induces when detecting outliers in a data set. This has strong consequences in

high-throughput screening of molecules in the pharmaceutical industry, where the goal is to

detect non-zero effect of a given feature as mentioned in the introduction of the book Bühlmann

and Van De Geer (2011). Controlling false discovery becomes more difficult. A set of results

on concentration inequalities is very useful to circumvent the challenge of controlling extreme
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Figure 1-3: A representation (from left to right) of underfit-
ting, balanced and overfitting classification learners. Credit:
Python Machine Learning - Sebastian Raschka

values, when 𝑝 is large. The book Ledoux (2005) and the paper Boucheron et al. (2013) provide

handy results on this matter.

Another famous phenomenon, when 𝑝 is relatively large, is the absence of property of conver-

gence of the variance-covariance matrix estimation. For example, in the trivial case where 𝑛

random variables are sampled from a normalized Gaussian density of dimension 𝑝, 𝒩 (0𝑝, I𝑝), the

empirical covariance matrix does not converge almost surely toward the true covariance matrix

which is the identity I𝑝 if 𝑝 is of the order of 𝑛 or larger. In the paper Ravikumar et al. (2011),

a method is proved to be an appropriate estimator of the covariance in the high-dimensional

settings.

Another theoretical challenge, and arguably the most famous, is the overfitting risk. As many

features are available, it is tempting to use too many parameters to build an estimate relatively

to the number of observations. However, if such an estimate has a very good fitting quality, the

predictive risk on a new observation may be large. In that case the learning algorithm is said

to have high variance. An excessively simplistic model has often high bias as it fails to model

the actual connexion between the variables and the outcomes.

The overfitting phenomenon is widely discussed in the literature on different learning tasks such

as regression (Hawkins, 2004; Hurvich and Tsai, 1989), classification (Khoshgoftaar and Allen,

2001; Hsu et al., 2003) or outlier detection (Abraham and Chuang, 1989; Pell, 2000), and many

methods have been developed such as cross-validation (Hsu et al., 2003; Refaeilzadeh et al.,

2009; Ng, 1997), regularization (Tibshirani, 1996b; Bogdan et al., 2015; Zhang and Oles, 2001;

Bickel et al., 2009) or Bayesian prior (Cawley and Talbot, 2007; Park and Casella, 2008; Wipf

and Rao, 2004) or pruning (Bramer, 2002). We will discuss some of these methods later in this

thesis.

With the exception of cross-validation, these methods use a key concept of the high-dimensional
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Figure 1-4: Various bases can be used to represent face images
in order to approximate faces in a sparse representation. From
top to bottom eigenfaces, fisherfaces and laplacianfaces are
used. Credit: The Github repository Face Recognition from
Wihoho - https://github.com/wihoho/FaceRecognition

settings: the sparsity. From a theoretical point of view, with no further assumptions, guarantees

on estimation risk would be very difficult to prove. However, in empirical situations, it is very

common to observe an underlying model that explains the generation of the data (from an

inference point of view) or predict well the labels (from a predictive point of view) from a lower

dimensional representation. Indeed, a lot of observed phenomena are in very high-dimensional

settings but are actually governed by underlying patterns that can be explained in a much

smaller dimension (at least approximately).

In signal processing, some sparse representations are infered using bases such as wavelets (Mal-

lat, 1999).

1.2.2 Sparsity

Conceptually, the sparsity paradigm is far from being new. In the early 14th century, Occam

introduced the Occam’s razor principle5. The Occam’s razor is a principle making a recom-

mendation to choose among several possible explanations of a phenomenon. Occam suggests

that it is best to choose the simplest possible model among the models that fit the observa-

tions with a relative accuracy. In statistical terms, it means that among all the models that fit

relatively well the dataset, it may be better to choose the simplest model. In high-dimensional

statistics, the sparsity settings is a necessity. In Bühlmann and Van De Geer (2011), there is a

rough expression of a condition on the sparsity level with respect to 𝑝 and 𝑛 required to achieve

5In Latin, Occam’s concept is mentioned by the term lex parsimoniae, which reads as the law of parsimony.
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Figure 1-5: An illustration of learning the empirical average
of a face to increase robustness in image classification. Credit:
Deric Bownd, Deric’s Mindblog

good estimation:

𝑠 log (𝑝) ≪ 𝑛, (1.2.1)

where 𝑠 is the sparsity level that will need to be defined. The definition of sparsity can differ

according to the settings and the learning task. However, in many situations, there is an

equivalence of the notion of sparsity.

For example, in the linear regression settings, the sparsity level is the number of non-zero para-

meters. Let consider some data that consist of 𝑛 observations of random outcomes 𝑦1, . . . , 𝑦𝑛 ∈

R and 𝑝 fixed covariates 𝑥1, . . . ,𝑥𝑝 ∈ R𝑛. Let assume there is an unknown vector 𝛽⋆ ∈ R𝑝 such

that the residuals 𝜉𝑖 = 𝑦𝑖−𝛽⋆1𝑥
1
𝑖 − . . .−𝛽⋆𝑝𝑥

𝑝
𝑖 are independent, zero mean random variables. In

vector notation, this reads as

𝑦 = X𝛽⋆ + 𝜉, (1.2.2)

where 𝑦 = (𝑦1, . . . , 𝑦𝑛)⊤ is the response vector, X = (𝑥1, . . . ,𝑥𝑝) ∈ R𝑛×𝑝 is the design matrix

and 𝜉 is the noise vector. For the sake of simplicity, let assume the noise vector to be distrib-

uted according to the Gaussian distribution 𝒩 (0, 𝜎2I𝑛), with 𝜎 a relatively small quantity in

comparison to the variance of the elements of 𝑦. If the quantity ‖𝛽⋆‖0 of non null element of

𝛽⋆ is equal to 𝑠, then the linear model of 𝑦 admits a 𝑠-sparse representation with respect to the

features of the design matrix X. If 𝑠 is substantially smaller than the dimension 𝑝, it means

that only a few features are explaining (or predicting) the outcome 𝑦.

Numerous patterns of sparsity exist. In order to describe the concept of sparsity in a general

settings, we present the problem of regression in a general settings. Let consider the pair (𝑋,𝑦)

drawn from a distribution 𝑃 on a product space 𝒳 × 𝒴 , we aim at predicting 𝑦 as a function

of 𝑋. Mathematically speaking, we want to estimate a function 𝑓 : 𝒳 → 𝒴 that minimizes the
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risk,

ℛ(𝑓) =

∫︁
𝒳×𝒴

𝑙(𝑦, 𝑓(𝑥))𝑃 (d𝑥, dy), (1.2.3)

where 𝑙 is an arbitrary loss function. We define 𝑓 ⋆ the function that minimizes Equation 1.2.3.

The regression problem can then be written in the form

𝑦 = 𝑓 ⋆(𝑋) + 𝜉,

where 𝜉 ∈ R𝑝 is a vector of random variables. For example, if 𝑙 is the quadratic loss function,

then 𝑓 ⋆ is the Bayes predictor,

𝑓 ⋆(𝑥) = E[𝑦|𝑋 = 𝑥],

and the noise 𝜉 is such that,

E[𝜉|𝑋] = 0𝑝. (1.2.4)

for any 𝛽 ∈ R𝑝. Then, the model admits a 𝑠-sparse representation if there exists 𝛽⋆ ∈ R𝑝

such that 𝑓 ⋆ = 𝑓𝛽⋆ and ‖𝛽⋆‖0 ≤ 𝑠. In the sparsity approach theory, the goal is to detect a

pattern within the data that can be approached with a sparse representation, but the linear

representation may not be the right sparse representation. In the aforementioned case of linear

regression, we consider a subset of functions 𝑓 such that 𝑓 can be written as a linear relationship

betwen the data X and the label 𝑦,

𝑦 = 𝑓𝛽(X) + 𝜉 = X𝛽 + 𝜉, (1.2.5)

For example, in the task of piecewise constant regression, the goal is to estimate a piecewise

constant function 𝑓 on a given interval 𝐼 defined by:

𝑓 ⋆(𝑥) =
∑︁
𝑡∈𝑇

𝑐𝑡1𝑥>𝑡, (1.2.6)

where 𝑇 ⊂ 𝐼 is a finite set of elements. The goal of a piecewise constant regression task is

to propose an estimation 𝑓 of the function 𝑓 ⋆ while we observe 𝑛 discrete random variables

(𝑦𝑖)𝑖∈[𝑛] such that

𝑦𝑖 = 𝑓 ⋆(𝑥𝑖) + 𝜉𝑖, (1.2.7)

where 𝑥𝑖 ∈ 𝐼.

If the set of rupture points 𝑇 is small, then there is a sparse structure in the model in the

sense that there are very few variations. However, this is a different type of sparsity than in
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the standard sparse linear model, since the support of the function 𝑓 ⋆ is not sparse. The sparse

regression of piecewise constant time series has been studied in numerous papers including

(Bleakley and Vert, 2011; Hocking et al., 2013; Antoch and Jarušková, 2000). In Giraud (2014),

several sparsity patterns are listed, including coordinate and variation6 sparsity, that we just

mentioned, but also group, sparse-group and basis sparsity that are important subjects in the

literature (Reid, 1982; Elad and Bruckstein, 2002; Friedman et al., 2010; Meier et al., 2008). It is

interesting to note that this typology of sparsity patterns can be generalized by remarking that

they can all be considered as a sparse representation with respect to a specific representation.

Indeed, let consider the noise-free oracle signal 𝑓 ⋆(X), all the aforementioned learning contexts

can be recasted as representing 𝑓 ⋆(𝑥𝑖) = 𝑓 ⋆𝑖 as a scalar product between a given vector 𝛽⋆ and

a well suited basis 𝜓 of vectors (𝜓𝑖)𝑖∈[𝑛] such that 𝑓 ⋆𝑖 = ⟨𝛽⋆,𝜓𝑖⟩ for any 𝑖 ∈ [𝑛]. Using this

representation, it is possible to define with consistence the notion of sparsity within a given

basis.

Definition 1.2.1 (𝑠-sparsity). Let 𝑠 ∈ N, the signal 𝑙 = (𝑙(𝑥𝑖))𝑖∈[𝑛] is said to admit a sparse

representation with respect to 𝜓 if there exists a vector 𝛽⋆ ∈ R𝑝 such that ‖𝛽⋆‖0 ≤ 𝑠 and

𝑙𝑖 = ⟨𝛽⋆,𝜓𝑖⟩, (1.2.8)

for any 𝑖 ∈ [𝑛].

The parameter 𝑠 of Definition 1.2.1 may also be referred as the intrinsic dimension of a problem

by some authors of the literature such as Guedj and Alquier (2013).

Since many regression problems can be recasted as a linear regression task, with respect to a

given basis, we will only consider the linear case. Consequently, 𝑓 ⋆ will be represented by the

parameter 𝛽⋆ that we name the oracle parameter and we will make no distinction between the

data X and the basis 𝜑, with no loss of generality.

1.2.3 Prediction risk and oracle inequality

Unfortunately, the oracle is not known in practice. Indeed, the knowledge of 𝑓 ⋆ requires a

perfect information over the model. Therefore, one may need to estimate ̂︀𝛽 from the given

observation (𝑦,X). It would be great to obtain guarantees on the risk of this estimator in the

form

ℛ(𝑓̂︀𝛽) ≤ 𝐶, (1.2.9)

6Variation sparsity is also known as fused sparsity.
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where 𝐶 ∈ R is a constant. Ideally, for a given estimate, this guarantee would hold in any

condition, with very few assumptions with no dependency on the data X neither the noise 𝜉.

Unfortunately, the prediction risk ℛ(𝑓̂︀𝛽) may differ from one problem to another. Indeed, 𝑓̂︀𝛽
is not the only parameter that plays a role on the risk. The level of noise 𝜉, and the level of

information that X represents with respect to 𝑦, have both a strong impact on the risk. The

smaller the noise to signal ratio, the smaller the risk can potentially be. From this point of

view, the difficulty of the regression task differs. As a consequence, it is often impossible to

obtain a guarantee of the quality of an estimator independently to the coherence of the model

defined by the data X. Even though an absolute guarantee is not reasonable, it is possible, for

some specific estimators, to compare the risk of the estimator to the risk of the oracle. This

type of comparison is known in the literature as oracle inequalities and enables the guarantees

of estimators to be studied with the consideration of the difficulty of a regression problem. The

paper Candes (2006) reviews the powerful concept of oracle inequalities.

Definition 1.2.2 (Oracle risk inequality). Let 𝑓̂︀𝛽 be the prediction associated to the estimator̂︀𝛽 and let consider the regression problem defined in Equation 1.2.2, then the estimate ̂︀𝛽 is

said to admit an oracle inequality with respect to an arbitrary loss function 𝑙, if there exists a

constant 𝐶1 ∈ R and a function 𝐶2, depending on the model defined in Equation 1.2.2, such

that:

𝑙(𝑓̂︀𝛽, 𝑓 ⋆) ≤ 𝐶1 inf
𝛽∈R𝑝

{︀
𝑙(𝑓𝛽, 𝑓

⋆) + 𝐶2(X, 𝜉)
}︀
. (1.2.10)

Furthermore, when 𝐶1 = 1, the oracle inequality is said to be sharp.

It is worth remarking that Inequality 1.2.10 guarantees that there is no estimator 𝛽 ∈ R𝑝 that

is much better (in the sense of 𝐶2) than ̂︀𝛽. In particular, it implies that for any 𝛽 ∈ R𝑝,

𝑙(𝑓̂︀𝛽, 𝑓𝛽) ≤ 𝐶2(X, 𝜉). (1.2.11)

In particular, Inequality 1.2.11 holds for 𝛽 = 𝛽⋆.

In that case, the inequality links the performance of the estimator ̂︀𝛽 to the performance of the

oracle 𝛽⋆. The study of the quantity 𝐶2 in Inequality 1.2.10 is of great interest, it is the rate of

convergence of the estimator ̂︀𝛽. In many cases, 𝐶2 decreases with the number of observations

𝑛 and increases with the variance 𝜎2 of the noise 𝜉 and with the dimension 𝑝. The optimality

of the rate 𝐶2 is a well studied question in the literature of many estimators. Moreover, the

question of achieving a fast rate of the order 𝜎2 log(𝑝)/𝑛 is a common benchmark in the linear

regression problem.
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1.2.4 Oracle inequality in the sparsity context

In the context of the 𝑠-sparse assumption, one may consider all the supports with 𝑠 or less

elements. In that case, the goal is to obtain a 𝑠-sparse estimator with a small risk. The 𝑠-

sparse context is deeply studied in the literature (Bickel et al., 2009; Bellec et al., 2016b; Giraud,

2014). It is worth remarking that two types of results may be of interest with respect to the

oracle inequalities. On the one hand, the first type of results are guaranteed provided that the

true signal 𝛽⋆ is 𝑠-sparse. These results are said to consider well-specified learning tasks. On

the other hand, some results do not rely on the assumption of a well specified signal 𝛽⋆, this

is the notion of ill-specified oracle inequalities. In view of Definition 1.2.2, well-specified oracle

inequalities in the well specified case are of the form:

𝑙(̂︀𝛽,𝛽⋆) ≤ 𝐶1 inf
𝛽∈R𝑝

𝑠

{︀
𝑙(𝛽,𝛽⋆) + 𝐶2(X, 𝜉)

}︀
, (1.2.12)

where R𝑝
𝑠 is the set of 𝑠-sparse vectors of dimension 𝑝. This type of inequality guarantees that

the estimator performs nearly as well as any other 𝑠-sparse parameter. In the ill-specified case,

this inequality has to hold for any 𝛽 ∈ R𝑝. Of course, the second case is more difficult to prove.

The function 𝐶2 is expected to be larger in the ill-specified case than in the well-specified case.

It is also of interest to quantify the degradation of this inequality when it is no longer a well-

specified case. In the results of Chapter 2, we propose oracle inequalities that consider the

ill-specified case and explicit the degradation of the inequalities due to the relaxation of the

sparsity assumption.

In the sparse regression settings, with the belief that an unknown underlying sparse pattern

represents the signal, or at least predicts an important portion of the signal, it is interesting to

recover the sparsity pattern. Let 𝑆 be the support of the true parameter 𝛽⋆, the subset of non

null elements of 𝛽⋆, and let consider a computable loss criteria such as, for example,

ℓ𝑛(𝛽) = ‖𝑦 −X𝛽‖22, (1.2.13)

for any 𝛽 ∈ R𝑝; then, if 𝑆 was known, a good strategy would be to define the estimate as the

vector that minimizes Equation 1.2.13 among all the vectors whose support is 𝑆. However, this

under constraint minimization problem is not feasible since one does not know 𝑆. The task of

selecting a model within a set of models 𝒮 often refers in the literature to the task of computing

an estimate ̂︀𝑆 as an adequate support7. The best support among the set of support 𝒮 is the

7What is considered adequate may be interpreted in different ways depending on the context. In this thesis,
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oracle model.

Definition 1.2.3 (Oracle support). Let consider the problem of regression as defined in Equa-

tion 1.2.2 and a loss function ℓ. Let 𝒮 be a set of supports in R𝑝. Then we define the Oracle

support with the set 𝒮 as

𝑆⋆𝒮 = arg min
𝑆∈𝒮

E
{︁
ℓ
(︀
𝛽⋆,𝛽⋆𝑆

)︀}︁
, (1.2.14)

where 𝛽⋆𝑆 is the best estimator with the support 𝑆. The unknown parameter 𝛽⋆𝑆 is the oracle

parameter on the support 𝑆.

Unfortunately, the oracle support cannot be calculated from the data since it relies on the

unknown signal 𝛽⋆ and the unknown distribution 𝑃 . A possible approach is to estimate the

expected risk by an empirical loss function (such as 1.2.13) and define the estimated support

such as ̂︀𝑆𝒮 = arg min
𝑆∈𝒮

{︁
ℓ𝑛
(︀ ̂︀𝛽𝑆)︀}︁, (1.2.15)

where ̂︀𝛽𝑆 is the estimate with support 𝑆 that minimizes the empirical risk ℓ𝑛(𝛽), as defined in

Equation 1.2.13.

After estimating a support ̂︀𝑆𝒮 , an intuitive estimate of the regression problem would be ̂︀𝛽𝑆
as defined in Equation 1.2.15. However, such methods present a risk of bias. Indeed, the

theoretical risk is likely to be underestimated when estimated with the empirical risk in the

high-dimensional settings. This phenomenon is known under the name of overfitting. The

empirical risk decreases with complex models that do not benefit from good properties on new

data. In order to compensate this bias due to overfitting, some unbiased risk estimates have

been proposed. These estimations combine an empirical loss function that measures the fitness

of the parameter of the model and a penalty function that increases with the dimension of

the selected model. Historically, some early penalization estimations of the risk have been

proposed, such as the Akaike criterion:

̂︀𝑆𝐴𝐼𝐶 = arg min
𝑆∈𝒮

{︀
ℓ𝑛(̂︀𝛽𝑆) + 2𝜎2‖̂︀𝛽𝑆‖0}︀. (1.2.16)

Even though the limits of the AIC estimator have been shown, it has opened the field of penal-

ization methods that benefit from strong properties. More specifically, the AIC estimator can

be seen as a maximum a posteriori estimator.

The remaining of this introductory chapter will give a brief overview of the litterature of res-

ults on prediction by penalized (Section 1.3) and averaged (Section 1.4) estimators in fixed and

we will focus on prediction tasks.
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random designs.

1.3 Maximum a posteriori estimation

Maximum a posteriori estimation is one of the most used and studied class of estimators. This

class of estimators is very similar to the maximum likelihood approach. However a prior on

the parameter distribution is included in the optimization problem. Hence, considering the

prior as a regularization penalty, one may consider the maximum a posteriori estimations the

penalized equivalent of the maximum likelihood approach. One of the most studied maximum

a posteriori estimator is the Lasso introduced in Tibshirani (1996b) that uses a Laplace prior

that is a sparse inducing prior.

1.3.1 Penalized regression and MAP

Penalization is an alternative approach to the question of the estimation under sparsity assump-

tions. Instead of estimating a support of the sparse pattern and then estimating the estimate

within this subset of vectors, penalization consists of estimating both model and estimate in a

global optimization problem.

Definition 1.3.1 (Linear penalized regression). Let consider a matrix X, and some random

vectors 𝑦 and 𝜉 in R𝑛 and a parameter 𝛽⋆ ∈ R𝑝 such that

𝑦 = X𝛽⋆ + 𝜉,

then the parameter ̂︀𝛽 ∈ R𝑝 is said to be estimated from a penalized regression if it is the solution

of an optimization problem of the form,

̂︀𝛽 = arg min
𝛽∈𝐸⊂R𝑝

{︀
𝐿(𝛽) + 𝒫(𝛽)

}︀
, (1.3.1)

where 𝐸 is arbitrarily chosen, and the function 𝐿 is a function corresponding to a fitting cri-

terion (such as ℓ𝑛) and 𝒫 is a function that penalizes the non sparsity of 𝛽.

In penalized regression, the solution ̂︀𝛽 of Equation 1.3.1 can be seen as the maximum a posteriori
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(MAP) with respect to a negative log-likelihood 𝐿 and a prior proportional to exp{−𝒫}. Indeed,

̂︀𝛽 = arg max
𝛽∈𝐸⊂R𝑝

{︀
exp(−𝐿(𝛽)) exp(−𝒫(𝛽))

}︀
. (1.3.2)

From this point of view, an intuitive approach would be the Bayesian method that consists in

averaging with respect to the prior instead of maximizing the posterior function. In that case,

the pseudo-Bayesian estimator is of the form:

̂︀𝛽𝐵 =

∫︁
𝐸⊂R𝑝

𝑢𝜋(𝑢)d𝑢, (1.3.3)

where 𝜋 is the normalized posterior,

𝜋(𝛽) =
exp(−𝐿(𝛽) − 𝒫(𝛽))∫︀

𝐸
exp(−𝐿(𝑢) − 𝒫(𝑢))d𝑢

. (1.3.4)

Since a convex combination of sparse vectors is not necessary sparse, the weighted average

is often not sparse. However, when the estimate does not require to be sparse, the average

estimate may be of interest. In particular, when the quality criterion is the prediction, sparsity

is rarely required. In that case, one may want to study the property of such estimates with

respect to the pseudo-prior density.

As we will discuss later, Bayesian procedures do not always achieve good results for prediction

tasks in the sparsity settings. The choice of the pseudo-prior density is of paramount import-

ance. The literature of weighted aggregate estimation will be further discussed in this chapter.

One important take-away is that the guarantees of weighted aggregate estimators are less un-

derstood by the statistical community than those of classical MAP estimators. The goal of

Chapter 2 is to provide some understandings of the behaviours of a specific family of weighted

aggregate estimators.

To sum up, there is a strong analogy between penalized estimators and weighted average ones.

However, the state of the art has proven better oracle results in the classical settings of penalized

regression than in the weighted average case. Without any mathematical justification, it seems

more difficult to understand the behaviour of averages than of maxima. One of the goals of

this thesis is to very modestly close this gap.
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1.3.2 The Lasso estimator and related estimators

In the vectorial high-dimensional regression settings, the ℓ1-penalized least squares estimator

(Lasso) is very well known and is arguably one of the most studied estimators. The Lasso can

be defined as the solution of the following convex problem:

̂︀𝛽𝐿 ∈ arg min
𝛽∈R𝑝

{︂
1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2 + 𝜆 ‖𝛽‖1

}︂
, (1.3.5)

where 𝜆 > 0 is a tuning parameter. From the convexity of the ℓ1-norm, this problem can be

efficiently solved as described in the LARS algorithm Efron et al. (2004) and more recently in

Bach et al. (2012). This estimator has been introduced by Tibshirani (1996b) and not only

has it been known for its computational convenience. Since its introduction in 1996, it has

been a well studied estimator as it benefits from high theoretical accuracy performances in the

sparse and nearly-sparse settings. Many papers have studied the theoretical behaviour of the

Lasso and it would be foolish to aim at providing a comprehensive review of the literature

on this topic. Risk bounds have been proven for the Lasso for both prediction and inference

purposes (Bühlmann and van de Geer, 2011; Koltchinskii, 2011; Dalalyan et al., 2014b; Bickel

et al., 2009; Koltchinskii et al., 2011b; Bunea et al., 2007a; Zhang, 2009; Wainwright, 2009;

Cai et al., 2010; Lounici, 2008; Meinshausen and Yu, 2009; Van De Geer, 2007; Zhang and

Huang, 2008; Sun and Zhang, 2012c). The ℓ1-penalized estimator has been generalized to the

matrix settings (Koltchinskii et al., 2011b; Bickel et al., 2009), where the ℓ1-norm is the nuclear

norm. An extension to the total variation norm has been proposed in Dalalyan et al. (2014b).

To the best of our knowledge, the first sharp oracle inequality with fast rate has been proven

in Koltchinskii et al. (2011b)[Theorem 6.1]. Moreover, Sun and Zhang (2012b)[Theorem 4]

provides a sharp oracle inequality with nearly fast rate. This result is also discussed in Dalalyan

et al. (2014b)[Theorem 2]. This last result relies on the compatibility factor assumption. The

compatibility factor of the design matrix X is defined, for any 𝐽 ⊂ [𝑝] and 𝑐 > 0, by

𝜅𝐽,𝑐 = inf
𝑢∈R𝑝:

‖𝑢𝐽𝑐‖1<𝑐‖𝑢𝐽‖1

𝑐2|𝐽 |‖X𝑢‖22
𝑛(𝑐‖𝑢𝐽‖1 − ‖𝑢𝐽𝑐‖1)2

. (1.3.6)

Theorem 1.3.1. Sun and Zhang (2012b)[Theorem 4] – Dalalyan et al. (2014b)[Theorem 2] Let

𝛿 ∈ (0, 1) and 𝛾 > 1 be arbitrarily chosen and the penalty parameter of the Lasso

𝜆 = 𝛾𝜎⋆
(︁ 2

𝑛
log(𝑝/𝛿)

)︁1/2

, (1.3.7)
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then with probability 1 − 𝛿,

ℓ𝑛(̂︀𝛽𝐿,𝛽⋆) ≤ inf
𝛽∈R𝑝

𝐽⊂[𝑝]

{︂
ℓ𝑛(𝛽,𝛽⋆) + 4𝜆‖𝛽𝐽𝑐‖1 +

2(1 + 𝛾)2𝜎⋆2|𝐽 | log(𝑝/𝛿)

𝑛𝜅𝐽,𝑐

}︂
, (1.3.8)

where 𝜎⋆2 is the known variance of the noise, 𝑐 = (𝛾 + 1)/(𝛾 − 1) and ℓ𝑛 is defined in (1.2.13).

Some recent works from Bellec et al. (2016b) have been exploring the properties of the Lasso

estimator in comparison with the SLOPE estimator. To the best of our knowledge, they are

the fastest oracle inequalities rates for the Lasso. In Bellec et al. (2016b)[Theorem 4.2] the rate

of convergence is improved from 𝑠/𝑛 log(𝑝) to 𝑠/𝑛 log(𝑝/𝑠), provided that the sparsity level 𝑠 is

known and that the restricted eigenvalue condition holds. Most of the oracle inequalities that

apply to the Lasso require the confidence level 𝛿 to be tied to the penalty term 𝜆. For example,

1.3.1 relies on Equation 1.3.7. The authors Bellec et al. (2016b) prove an oracle inequality with

a rate 𝑠/𝑛 log(𝑝) with a confidence level 𝛿 chosen irrespectively to the penalty term 𝜆 in Bellec

et al. (2016b)[Proposition 3.2].

It is worth remarking that some estimators such as the Dantzig selector (Candes and Tao, 2007;

Bickel et al., 2009) and the SLOPE (Bogdan et al., 2015; Su and Candes, 2016) benefit from a

similar performance than the Lasso.

The Dantzig selector has been introduced by Candes and Tao (2007). The Dantzig selector is not

defined by a penalized regression optimization problem but by the minimization of the ℓ1-norm

of the parameter under the Dantzig constraint Bickel et al. (2009). The seminal work of Bickel

et al. (2009) compares the Lasso and the Dantzig selector and shows that both estimators have

similar behaviour (Bickel et al. (2009)[Theorem 7.1] and additional studies have been carried

out by Lounici (2008). Indeed, provided that the restricted eigenvalue condition holds, these

estimators benefit from analogous theoretical bounds for both prediction risk and estimation

loss in the linear regression8.

The SLOPE is another interesting estimator that has been recently introduced by Bogdan et al.

(2015) and Su and Candes (2016). The SLOPE is the solution of a penalized optimization

problem. On the one hand, it differs from the Lasso in that the ℓ1-norm is being substituted

by a specific norm (Bogdan et al. (2015)[Proposition 1.2]) that depends on a vector 𝜆 ∈ R𝑝

of tuning parameters9. The very general results studied by Lecué and Mendelson (2016b)

enable to prove error bounds on the SLOPE. On the other hand, in Bellec et al. (2016b), the

8A similar observation is also made in Bickel et al. (2009) in the nonparametric settings.
9See Bellec et al. (2016b)[Equation 2.2] for a definition of the norm and Bellec et al. (2016b)[Equation 2.4]

for a definition of the SLOPE.
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(a) The ℓ1/2-norm con-
straint induces sparse
estimates but its non-
convexity makes the
computational cost of this
estimator crippling.

(b) The Lasso induces
sparse estimates and be-
nefits from convex con-
straint.

(c) Even though the
ℓ2-norm penalization
offers convex constraints,
its geometrical shapes
does not induce sparse
estimates.

Figure 1-6: Estimation picture of three penalized regression methods in a two-
dimensional setting. The red points represent the true parameters 𝛽⋆ and the blue
points the estimates with respect to the given penalization norm.

authors exhibit the strong relationship between the Lasso and the SLOPE by showing that

oracle inequalities benefit from very similar rates from analogous conditions. In the case of

the SLOPE, the conditions are slightly more restrictive (Bellec et al. (2016b)[Strong Restricted

Eigenvalue Condition]).

1.3.3 Review of literature

In the sparsity scenario, the ℓ1-penalized least squares method has been well studied. Some

oracle inequalities are achieved when strong assumptions on the data hold. For example, if

the restricted eigenvalue (Bickel et al., 2009; Raskutti et al., 2010b) condition holds, oracle

inequalities can be achieved in the sparse and nearly-sparse scenarios. The uniform uncertainty

isometry principle (Candes and Tao, 2007; Needell and Vershynin, 2009) is sufficient for oracle

results as well. These assumptions are quite restrictive and are discussed in Van De Geer and

Bühlmann (2009). These assumptions guarantee that the covariates can be distinguished from

each other by ensuring the Gram matrix is not too far (in a given sense) from the Identity

matrix.

For example, the consequences of correlation have been studied in van de Geer and Lederer

(2013) and Hebiri and Lederer (2013). In Dalalyan et al. (2014b), the authors provide insights

of the impact of highly correlated and moderatly correlated covariates on the prediction risk.

In particular, in Dalalyan et al. (2014b)[Example 2], the authors prove that the prediction from

Lasso cannot guarantee a fast rate of convergence for any type of covariates correlation even

if the penalty term 𝜆 was chosen with oracle information. Therefore, the design of the data
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may have a strong impact on the quality of the estimation and the prediction and hampers the

theoretical guarantees of the maximum a posteriori estimator.

This requirement makes sense when the purpose of the estimator is to recover the parameter.

However, when the prediction risk is the criterion of estimation, these assumptions do not seem

reasonable anymore. Thus, in the prediction context, it would be very interesting to study

families of estimators that achieve oracle inequalities with less restrictive conditions on the

Gram matrix.

Such guarantees exist on other estimators such as the ℓ0-penalized estimator. As mentioned

earlier, the ℓ0-penalized estimator computation is a NP-hard problem that cannot be approx-

imated accurately enough by convex problem. Therefore, even though the ℓ0-penalization offers

great guarantees, it is not very useful in high-dimensional settings.

In inspiration of the ℓ0 and ℓ1-penalized estimator properties, it would be of great interest to

study theoretical properties on a family of estimators that can guarantee oracle inequalities

in the nearly-sparse context with weak assumptions on the data, while being fast enough to

compute.

Obtaining results with weaker conditions on the data is a possible way to start tackling the

challenge of obtaining oracle inequalities in the random design settings and in more realistic

situations. For these reasons, aggregation of estimates has proven to be of theoretical and

empirical interest. In particular, we will focus on exponentially weighted aggregations. They

have been well studied in the literature as they benefit from great properties in the PAC-

Bayesian settings. As such, they are a good starting point to investigate the properties of

oracle inequalities in the context of aggregation methods.

1.4 The PAC-Bayesian settings and aggregation estimators

If the Bayesian Information Criterion (BIC) estimator, introduced in Schwarz (1978), performs

well from a theoretical point of view (Bunea et al., 2007b), it is very challenging to compute this

estimator in high-dimensional settings and it shows poor results when the dimension 𝑝 is larger

than the number of observations 𝑛 (Giraud, 2014). On the contrary, as discussed earlier, the

Lasso estimator benefits from fast computation algorithms but requires strong and restrictive

conditions on the design to offer fast rate guarantees. This is especially restrictive when the

data are drawn randomly.

The goal of the PAC-learning framework is to study new estimators with new types of correct-

ness theorems that are convenient for randomly drawn data. The PAC-Bayesian approach has
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been inspired from the works of Vapnik and Chervonenkis (Vapnik, 1998; Vapnik and Chervon-

enkis, 1974) and the term of PAC learnability has been introduced by Valiant (1984).

In the Bayesian settings, correctness theorems apply under the assumption that the data are

generated from a given prior distribution as considered in McAllester (1998). PAC-Bayesian

learning differs from this approach in the sense that the goal is to obtain correctness results

when the data are generated from an unknown i.i.d. density. This difference often involves

weaker guarantees in the PAC-Bayesian settings than in the Bayesian context. However, the

less restrictive assumptions may blend the frequentist and Bayesian approach as the theoretical

guarantees do not rely on a prior assumption even though the bounds often refer to aggregate

or averaging estimator (which relies on a posterior). Recently, Germain et al. (2016) focused

on the similarity of PAC-Bayesian and Bayesian bounds.

1.4.1 The concept of PAC-learning

PAC stands for Probably Approximately Correct and comes from two main ideas.

Probably correct A PAC-bound is not a deterministic guarantee. It allows a small probab-

ility that the estimator does not behave well. Hence, the term probably correct.

Approximately correct Not only a PAC-bound allows a small erratic behaviour of the es-

timator. It is also tolerant to a non exact performance of the estimator. In other words,

the estimator is given a margin of error and can be approximately correct.

These concepts are very important and make some results possible even when an exact and

deterministic recovery of the estimator is not possible. In a practical context, it may be par-

ticularly useful provided that the margin of error and the probability of success are known and

chosen.

The PAC paradigm is very closely related to the paradigm of the VC dimension introduced in

Vapnik and Chervonenkis (1974).

We use one theorem from the monograph Catoni (2007) to illustrate this concept10. Let con-

sider 𝑛 couple (𝑥𝑖, 𝑦𝑖) i.i.d. randomly drawn from an unknown distribution P. Let consider

a prediction function 𝑓𝛽 where 𝛽 ∈ Λ. The goal is to minimize the expected loss criterion

𝑅(𝛽) = E(𝑥,𝑦)∼P{𝑙(𝑦, 𝑓𝛽(𝑥))} for any bounded loss 𝑙, |𝑙(., .)| < 𝐶. As the probability P is

unknown, one may not directly minimize the expected loss criterion. Therefore, we consider a
10I recommend the brief though very insightful introduction to the PAC-learning paradigm made by Pierre

Alquier at the Institut des hautes études scientifiques on January 2016. The presentation support can be found
on https://indico.math.cnrs.fr/event/921/session/8/contribution/36/material/slides/0.pdf.

27

https://indico.math.cnrs.fr/event/921/session/8/contribution/36/material/slides/0.pdf


proxy of the loss 𝑟𝑛 that uses the empirical data set (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑛],

𝑟𝑛(𝛽) =
1

𝑛

∑︁
𝑖∈[𝑛]

𝑙(𝑦𝑖, 𝑓𝛽(𝑥𝑖)).

Theorem 1.4.1 (Catoni (2007)). Let consider a family of posteriors Π and let 𝜋 be a prior on

the parameter space Λ. For any 𝜏 > 0 and for a given posterior estimation ̂︀𝜋𝜏 , the following

inequality,

∫︁
𝑢∈Λ

𝑅(𝑢)̂︀𝜋𝜏 (𝑢)d𝑢 ≤ inf
𝜇∈Π

[︂ ∫︁
𝑢∈Λ

R(𝑢)𝜇(𝑢)d𝑢+
𝜏B

n
+

2

𝜏

{︁
𝒦(𝜇, 𝜋) + log

(︀
2/𝜖

)︀}︁]︂
, (1.4.1)

holds with probability greater than 1 − 𝜖, where 𝒦 is the Kullback Leibler divergence.

The form of Equation 1.4.1 emphasizes the concept behind the term probably approximately

correct.

In order to manage a learning task in the PAC paradigm the notion of PAC-learnability has

been introduced by Valiant (1984).

Definition 1.4.1 (PAC-learnability (Valiant (1984)11). Let ℱ be a class of signal and let ℓ(., .)

be a loss function on ℱ2. The class ℱ is said to be PAC-learnable if there exists an estimation

procedure ̂︀· and an integer 𝑛 such that for any 𝑓 ∈ ℱ , for any distribution P of observations

(𝑥, 𝑦), for any error margin 𝜖 > 0 and for any probability 1− 𝛿, the estimator ̂︀𝑓 computed from

the empirical data (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑛] will be such that

ℓ( ̂︀𝑓, 𝑓) < 𝜖,

with probability greater than 1 − 𝛿.

Moreover, let assume the number of observations 𝑛 needed to obtain the PAC-bound is bounded

by a polynomial function of 1/𝜖, 1/𝛿 and of the dimension 𝑝 of ℱ . Then, if the complexity of

the estimation procedure ̂︀· is also bounded by a polynomial time of the latter parameters, then,

ℱ is said to be efficiently PAC-learnable.

Definition 1.4.1 explains the interest of the PAC-learning paradigm in the statistical learning

community. A problem is said to be PAC-learnable if a minimax guarantee (for any element of

ℱ for any distribution P) can be proven. Moreover, PAC-learning tolerates a given error and a

given probability of failure that gives the opportunity to solve more difficult problem than an

exact estimation framework.
11For the sake of clarity, we restrain Definition 1.4.1 to the regression context.
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Moreover, the concept of efficient PAC learnability is of interest for practical interest, in par-

ticular in the high-dimensional settings where a polynomial time of complexity is required (if

not faster).

It is worth noting that, with some additional assumptions, a problem is PAC-learnable if and

only if the VC dimension of a problem is upperbounded.

1.4.2 Literature in the PAC-Bayesian community

If Theorem 1.4.1 is an important result in the understanding of the PAC-Bayesian theory, other

results have proved to be important as well. The statistical learning community has shown a

strong interest into the PAC-Bayesian theory.

Two seminal studies of the PAC-Bayesian theory have been carried out in Shawe-Taylor and

Williamson (1997) and McAllester (1998). They have set the PAC-Bayesian paradigm and its

first results.

Remark 1.4.1. In Shawe-Taylor and Williamson (1997), the paper Shawe-Taylor et al. (1998)

is referred as a work on PAC-bounds results without the Bayesian approach. Even though the

publication of Shawe-Taylor et al. (1998) follows the one of Shawe-Taylor and Williamson

(1997), the submission was anterior.

Later on, some studies have set the formalization of the PAC-Bayesian approach in the clas-

sification settings (Catoni, 2003, 2004, 2007; Audibert, 2004b) and for the regression learning

task (Audibert, 2004c,a). This settings has been extended in the transductive and inductive

settings in Alquier (2006) and generalized in (Alquier, 2008; Audibert and Catoni, 2010, 2011).

The general message from the literature is that averaging (or aggregating) estimators with a

well chosen weight instead of penalized regression seems to perform well in the PAC-Bayesian

frame.

Even though these studies bring new insights on the theoretical behaviours of family of es-

timators, no solution was brought to address the high-dimensional context with (or without)

the sparsity assumption. The results in (Dalalyan and Tsybakov, 2008; Alquier and Lounici,

2011; Dalalyan and Tsybakov, 2012b; Rigollet and Tsybakov, 2012b; Guedj and Alquier, 2013;

Ridgway et al., 2014)12. In Dalalyan and Tsybakov (2008) the aggregation with exponential

weighting is used in order to obtain PAC-Bayes sharp oracle inequalities in the high-dimensional

sparse settings. The main results of Dalalyan and Tsybakov (2008) are Dalalyan and Tsybakov

12For a French speaking audience, one may want to refer to (Guedj and Robbiano, 2014; Guedj et al.) for
additional literature on the PAC-Bayesian subject.
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(2008)[Theorems 1 and 2]. The following theorem presents the rationale of these results in a

simpler but less general context.

Theorem 1.4.2 (Dalalyan and Tsybakov (2008)(Theorem 1)). Let consider a family of pos-

teriors Π and let consider the regression task where for any 𝑖 ∈ [𝑛],

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜉𝑖,

we assume13 𝜉𝑖 ∼ 𝒩 (0, 𝜎2) with 𝜎 <∞. Let assume that the observations (𝑥𝑖)𝑖∈[𝑛] are determin-

istic. We consider the regression task within a family ℱ of estimators 𝑓𝛽, for any 𝛽 ∈ Λ ⊂ R𝑝.

Let 𝑅 be the risk loss 𝑅(𝛽) = E𝜉{𝑙(𝑓(𝑥), 𝑓𝛽(𝑥))} for any loss 𝑙. As the ground truth signal 𝑓

is unknown, one may not directly minimize the expected loss criterion. Therefore, we consider

a proxy of the loss 𝑟𝑛 that uses the empirical data set (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑛],

𝑟𝑛(𝛽) =
1

𝑛

∑︁
𝑖∈[𝑛]

𝑙(𝑦𝑖, 𝑓𝛽(𝑥𝑖)).

Let define for any temperature parameter 1/𝜏 ≤ 𝑛
4𝜎2 and for any prior 𝜋(𝛽) in the parameter

space Λ, the pseudo-posterior

̂︀𝜋𝜏 (d𝛽) ∝ exp
{︁
− 1

𝜏
rn(𝛽)

}︁
𝜋(d𝛽).

Then the averaged parameter ̂︀𝛽𝜏 =

∫︁
𝑢∈Λ

𝑢̂︀𝜋𝜏 (d𝑢),

is such that the estimator 𝑓̂︀𝛽𝜏
ensures the following bound

E(𝑅(̂︀𝛽𝜏 )) ≤ inf
𝜇∈Π

{︂∫︁
𝑢∈Λ

𝑢̂︀𝜇(d𝑢) + 𝜏𝒦(𝜇, 𝜋)

}︂
,

where 𝒦 is the Kullback-Leibler divergence.

The results in Dalalyan and Tsybakov (2008) are extensions of the work of Leung and Barron

(2006), where properties were only proven in the setting of finite set of parameters.

PAC-Bayesian and aggregation methods have been applied to the online learning tasks (Aud-

ibert, 2009; Cesa-Bianchi et al., 2004) or for variational bayes approximation (Alquier et al.,

2016).

13The results in Dalalyan and Tsybakov (2008) work with a less restrictive condition named Assumption A
in the article.
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Finally, the PAC-Bayesian approach has emphasized the theoretical interest of aggregation

of estimators in order to achieve optimal minimax bounds. The next section presents the

aggregation concept.

1.4.3 Aggregation

The name of weighted aggregate estimators appeared early in the literature. In the book Cesa-

Bianchi and Lugosi (2006), the weighted aggregate estimation is introduced in the discrete

settings with a finite number of experts advice but can easily be generalized to any measurable

space. However, as pointed out in Yang (2001b), the author of Stone (1974) introduced the

aggregation concept through the notion of stacking several estimators in 1974. The theoretical

study and understanding of aggregated estimators improved in the 1990s. One of the initial

goals was to provide a decision in a settings where several experts give their advice (or pre-

diction) and one has to give a final decision based on previous performance. The question is

then to determine a procedure to predict. One could for example follow the best expert in the

sense of a given cumulative loss or one could average uniformly over every expert. In a binary

classification problem, the weighted majority algorithm introduced in Littlestone and Warmuth

(1994) is a generalization of the halving algorithm. Every expert is assigned with a given weight

and the choice is made according to the weighted majority. If this expert is wrong at predicting

an outcome, the weight of this expert is deprecated by an arbitrary parameter.

Let consider the regression model14,

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜉𝑖,

where 𝜉𝑖 is a random variable and 𝑥1, · · · ,𝑥𝑛 are elements of a set 𝒳 . ℱ of estimators 𝑓𝛽, for

any 𝛽 ∈ Λ ⊂ R𝑝. Let consider a set Λ and a mapping 𝛽 → 𝑓𝛽 that associates to every element

𝛽 ∈ Λ an application 𝑓𝛽 : 𝒳 → R. In the context where for every 𝛽 ∈ Λ, 𝑓𝛽 is an estimator of

the outcome in the regression model, we would have access to a various number of prediction

proposition for any observation 𝑥𝑖. In the literature, 𝑓𝛽 is called a weak learner. A question

of interest is to understand how one can build a single estimator ̂︀𝑓 according to the knowledge

one has on the weak estimators. This single estimator is referred as an aggregate of the weak

learners. There exist different types of aggregates and three categories have been well studied

in the literature.

14Here, the classification model could be considered as well with no additional difficulty.
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Linear Aggregation (L) A linear aggregate can be any weighted combination of the family

of learners (𝑓𝛽)𝛽∈Λ. If Λ is a finite set, then the aggregate ̂︀𝑓 is such that for every 𝑖 ∈ [𝑛]

and any 𝛽 ∈ Λ, there exist some 𝜔𝑖𝛽 ∈ R such that

̂︀𝑓(𝑥𝑖) =
∑︁
𝛽∈Λ

𝜔𝑖𝛽𝑓𝛽(𝑥𝑖).

In the linear aggregation settings, the performance of the aggregate is compared to the

best possible linear combination.

Convex Aggregation (C) In the convex aggregation settings, ̂︀𝑓 is built from non-negative

weights which sum to one. In other words, the aggregate is computed under the constraint

of being a convex combination of the learners 𝑓𝛽. Again, if Λ is a finite set, then the

aggregate ̂︀𝑓 is such that for every 𝑖 ∈ [𝑛] and any 𝛽 ∈ Λ, there exist some 𝜔𝑖𝛽 ∈ R such

that ̂︀𝑓(𝑥𝑖) =
∑︁
𝛽∈Λ

𝜔𝑖𝛽𝑓𝛽(𝑥𝑖),

where the vector 𝜔𝑖 ∈ Ω with

Ω =

{︂
𝜔 : ∀𝛽 ∈ Λ, 𝜔𝛽 ≥ 0,

∑︁
𝛽∈Λ

𝜔𝛽 = 1

}︂
.

Similarly to the linear settings, the performance of a convex aggregate is often compared

with the best convex combination of learners.

Model Selection Aggregation (MS) The goal of model selection aggregates is to pick a

weak learner at every iteration 𝑖 ∈ [𝑛] that performs nearly as well as the best weak

learner of the set Λ. In this context, the aggregate ̂︀𝑓 is such that for every 𝑖 ∈ [𝑛] there

exists 𝛽 ∈ Λ, such that, ̂︀𝑓(𝑥𝑖) = 𝑓𝛽(𝑥𝑖).

There is a transitive inclusion relationship between linear, convex and model selection aggreg-

ations. Indeed, any model selection aggregate is a particular convex aggregate and any convex

aggregate is a linear aggregate. Of course, other types of aggregation have been considered in

the literature such as the 𝑠-sparse or the ℓ𝑞 aggregations (Tsybakov, 2014).

It is common usage to compare the model selection aggregate performance with the one of the

best learner. In other word, the goal of aggregation algorithms is to find an estimator ̂︀𝑓 that
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guarantees that there exists a small quantity ∆𝒵 such that,

𝑅( ̂︀𝑓, 𝑓) ≤ inf
𝑓∈𝒵

{︁
𝑅(𝑓, 𝑓) + ∆𝒵

}︁
,

where 𝒵 is the set of aggregation 𝒵 = {𝐿,𝐶,𝑀𝑆}.

The smallest values of ∆𝒵 are given in Tsybakov (2003) and are called optimal rate of aggrega-

tion. Let 𝐾 be the size of the learning set and 𝑛 the number of observations. Under additional

conditions (c.f. Tsybakov (2003) for more details) the optimal rate of aggregation in the model

selection aggregation is

Ψ𝑀𝑆 =
log(𝐾)

𝑛
.

In the convex setting, the optimal rate is

Ψ𝐶 =

⎧⎪⎨⎪⎩𝐾/𝑛, if 𝐾 ≤
√
𝑛(︁

1
𝑛

log
{︁

𝐾√
𝑛

+ 1
}︁)︁1/2

, otherwise.

Finally the optimal rate of linear aggregation is

Ψ𝐿 =
𝐾

𝑛
.

The context of sequential data with expert prediction has been studied in Cesa-Bianchi et al.

(1997) where the binary classification task is studied in worst case scenario, with no assumption

on the data. A further study of this settings is developped in the thorough work Cesa-Bianchi

and Lugosi (2006). The results of Kivinen and Warmuth (1999) proves that a simplified version

of the aggregating algorithm introduced in the early work Vovk (1990) can guarantee a regret

loss of the order 𝑐 log(𝑛), where 𝑛 is the number of sequences and 𝑐 is a parameter depending

on the considered loss function. With a different approach, the authors of (Littlestone, 1990;

Littlestone and Warmuth, 1994) consider the case where one weak learner is guaranteed to do

at most 𝑚 prediction errors in the 𝑛 sequences. Let 𝐾 be the number of experts in the set Λ,

then the proposed algorithm called weighted majority algorithm guarantees a total number of

misclassifications smaller than 𝑐(log(𝐾) +𝑚) with a constant 𝑐.

Later on, the regression task has been studied as well and technical challenges were required to

be solved to do so. Indeed the misclassification loss is bounded which is rarely the case in the

regression task. Moreover, the condition that the set Λ is finite is no longer reasonable in this

context.
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Not all aggregation methods are alike from a guarantee standpoint. For example, it has been

proven that the least squares aggregate is not optimal within the family of model selection

aggregate (Tsybakov (2014)). The definition of optimality may differ according to the type of

aggregation. For example, in the model selection family of aggregation with 𝐾 weak-learners

and 𝑛 observations, an aggregate is said to be optimal if the excess risk cannot exceed a quantity

upperbounded by 𝐶 log(𝐾)/𝑛, where 𝐶 > 0. The next section mentions some of the performing

aggregation methods. Moreover, we discuss guarantees in the random design setting. Indeed, an

important takeaway from the PAC-learning theory and the study of aggregation methods is the

proof of oracle inequalities (bounds in high probability) and in expectation in the random design

setting. To the best of our knowledge, previous theories and estimators from the maximum a

posteriori approach did not benefit from easy and convenient bounds in the random design. For

example, the Lasso requires restrictive conditions on the design (Bickel et al., 2009; Koltchinskii

et al., 2011a; Bellec et al., 2016b).

In that regard, the understanding of the performance of estimators in the context of random

design, whether they rely on penalization or averaging methods, would be of great interest.

Chapter 4 aims at providing some results on the prediction quality of some maximum a pos-

teriori estimators in the context of transductive and partially labeled prediction in the random

design settings. On the other hand, an appealing characteristics of aggregation methods is

that the literature has provided some guarantees in the random design setting with fairly mild

conditions. This pushes our motivation to study some theoretical properties of aggregation

estimators. In the following, we mention aggregation methods that perform well, either in the

fixed or random design settings. In particular, we present the exponentially weighted aggregate

which is at the center of this thesis.

1.4.4 Exponentially weighted aggregation and its variations

In the following, we present the exponentially weighted aggregate in the continuous settings

for linear regression. This family of aggregation estimators is widely used in the literature

(Dalalyan and Tsybakov, 2008, 2012b; Rigollet and Tsybakov, 2012b; Chernousova et al., 2013;

Dai et al., 2014; Dalalyan and Salmon, 2012; Golubev and Ostrovski, 2014).

With the notations we used earlier in this chapter, the exponentially weighted agregate estimate

is of the form ̂︀𝛽𝐸𝑊𝐴 =

∫︁
Λ⊂R𝑝

𝑢𝜋𝜏 (𝑢)d𝑢, (1.4.2)

34



with 𝜏 > 0 a parameter named the temperature and where 𝜋 is the normalized posterior,

𝜋𝜏 (𝛽) =
exp(−𝐿(𝛽)+𝒫(𝛽)

𝜏
)∫︀

𝐸
exp(−𝐿(𝑢)+𝒫(𝑢)

𝜏
)d𝑢

. (1.4.3)

The only difference between the Bayesian estimator we introduced in Equations 1.3.3 and 1.3.4

and the exponentially weighted agregate is the parameter 𝜏 in Equations 1.4.2 and 1.4.3. This

parameter is called the temperature with a reference to methods derived from the physics lit-

erature.

A takeaway from the literature is that exponentially weighted aggregates perform well (Dalalyan

and Tsybakov, 2008; Cesa-Bianchi and Lugosi, 2006; Littlestone and Warmuth, 1994; Alquier

and Lounici, 2011; Guedj and Alquier, 2013). One of the first optimal results has been proven

in Catoni (1999) in the context of progressive mixture methods which rely on exponential

weights. In Dalalyan and Tsybakov (2008), results are proven in the continuous case. Expo-

nentially weighted aggregates offer optimal guarantees in the (nearly-)sparse setting (Dalalyan

and Tsybakov, 2012b; Rigollet and Tsybakov, 2012b; Tsybakov, 2014).

In the fixed design settings, Theorem 1.4.2 is an example of guarantees that can be achieved.

Some variations of this aggregation methods have been developed and studied on the theoretical

standpoint.

The exponential screening estimator has been introduced in Rigollet and Tsybakov (2011b).

In the fixed design setting, the authors prove that the exponential screening estimator bene-

fits from optimal performance universally, which means optimal results in different settings

including model selection, convex and linear aggregation (see Tsybakov (2014) for further ex-

planation on the concept of universal aggregate). Exponential screening is very closely related

to the exponentially weighted aggregation. It consists in artificially creating two sets of random

variables (𝑦(1),𝑦(2)) from the output 𝑦 and additional noise. One of the sets will be used to

build a first maximum a posteriori estimator ̂︀𝛽(1) of the parameter on the loss of interest. The

prediction ̂︀𝑓 (1) is then used to determine the empirical loss

𝑟𝑛 = ℓ
(︁ ̂︀𝑓 (1)

(︀
𝑦(1)

)︀
,𝑦(2)

)︁
that is used to define the weights of the exponentially weighted aggregation.

In the random design setting, mirror averaging (MA) is the analogue of the exponentially

weighted aggregation. What differs from the original exponentially weighted aggregation pro-
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cedure is that the estimated posterior density that determines the weights of the aggregation

is recursively computed and averaged. Using our notations, let define 𝜋0,𝜏 = 1 and then recurs-

ively, for any 𝑖 ∈ [𝑛],

𝜋𝑖,𝜏 =
exp(−𝐿𝑖(𝛽)−𝒫𝑖(𝛽)

𝜏
)∫︀

𝐸
exp(−𝐿(𝑢)−𝒫(𝑢)

𝜏
)d𝑢

,

where 𝐿𝑖 and 𝒫𝑖 are respectively the log-likelihood and the log-prior from the 𝑖 first observations

of the data set. Then the posterior that is finally used in the aggregation procedure is the

average

𝜋𝜏 (𝛽) =
1

𝑛+ 1

𝑛∑︁
𝑖=0

𝜋𝑖,𝜏 (𝛽).

This procedure has been inspired by the mirror descent algorithm in the field of optimization

(Nemirovskii et al., 1983; Ben-Tal and Nemirovski, 1999). To the best of our knowledge, the

mirror averaging procedure has been first introduced in Juditsky et al. (2005). In Juditsky et al.

(2008), the mirror averaging procedure is proven to be optimal in expectation with respect to the

model selection setting. In Dalalyan and Tsybakov (2012a), regression, density estimation and

classification problems are studied within the sparse setting. The authors offer general results

in the random design setting. The authors provide a PAC-bound in expectation in Dalalyan

and Tsybakov (2012a)[Theorem 1] and sharp oracle inequalities in Dalalyan and Tsybakov

(2012a)[Theorem 2]. Moreover, Dalalyan and Tsybakov (2012a)[Proposition 3] proposes bounds

in the sparsity setting that are nearly optimal (up to a logarithmic factor) in the model selection,

convex and linear settings15.

Remark 1.4.2. The method called 𝑄-aggregation studied in Dai et al. (2012) in the fixed design

setting and Lecué and Rigollet (2014) in the random design setting shows interesting theoretical

properties as well. In particular, under conditions given in Lecué and Rigollet (2014), the 𝑄-

aggregation is proven to be an optimal aggregate in the random design setting in Lecué and

Rigollet (2014). Results are given in probability and in expectation. However, we will not

discuss them further as we focus on the exponentially weighted aggregate in the context of this

thesis.

The exponentially weighted aggregation and its variations (exponential screening and mirror av-

eraging) benefit from (nearly)-optimal results either in fixed design or random design. Moreover,

in the (nearly)-sparse setting, the literature has proved optimal results that legitimate the ex-

ponentially weighted aggregate as an interesting alternative to the Lasso. Indeed, obtaining

optimal bound for the exponentially weighted aggregate needs less restrictive conditions on the
15A study on the limit of the mirror averaging procedure can be found in Lecué and Mendelson (2013).
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Gram matrix than the Lasso.

Even though the literature provides optimal rates of convergence for these methods in the

non-asymptotic high-dimensional frame, the computational complexity may represent the bot-

tleneck of these methods. This is particularly important in the high-dimensional settings where

averaging from Monte Carlo processes might be very costly. The next section briefly reviews

this question.

1.4.5 Computational challenges and Langevin Monte Carlo

Aggregation methods require to generate a sample of random vectors with respect to a given

(pseudo-)posterior distribution. This might be a difficult task, especially in the continuous

high-dimensional settings.

For practical puproses, it is very useful to know the number of iterations 𝐾 needed to achieve

a targeted accuracy 𝜖. Otherwise, how could we choose the number of iterations to achieve a

desired accuracy?

Moreover, the required number of iterations should not grow too quickly with the dimension 𝑝

of the problem, neither should it grow when the accuracy 𝜖 gets small.

Hence, a good sampling method would benefit from properties that guarantee the sufficiency

of an explicit number of iterations 𝐾 that remains reasonably small16 for large value of 𝑝 or for

a small error tolerance 𝜖.

There is no need to mention that not every sampling process benefits from such properties. The

need of efficient sampling methods is an important constraint on the choice of the aggregation

method, and more generally, of any statistical learning method requiring sample generation.

As a consequence, among all aggregation methods, some may be more suitable to practical

purposes.

The subject of this thesis is focus on the exponentially weighted aggregate estimator. This

method is of great interest when the distribution of the pseudo-posterior is sampled from a dis-

cretized Langevin Monte Carlo process. Indeed, when the posterior can be written as in Equa-

tion 1.4.3 such that 𝐿+𝜆𝒫 is strongly convex, then any targeted accuracy can be achieved with

an explicit number of iterations 𝐾 (Dalalyan, 2016). There are numerous analogies between the

computational questions in the maximum a posterior penalized estimation where the convex

penalties guarantee fast computation from gradient descent and in the aggregation averaging
16Here, the terms reasonably small, large dimension and small error tolerance are not formally defined. It

depends on the context and on how much resources one individual is willing to allocate to generate the sample
as well. And, clearly this notion will dramatically change over time with improvements in computational
technologies and statistical algorithms.
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where convex penalties can guarantee the Langevin Monte Carlo algorithm to perform well.

Insightful discussion can be found in Dalalyan (2016) and Dalalyan (2017) about the analogy

and relationship between sampling and optimization properties.

Let consider the function17 𝑓 , then in Dalalyan (2016), the Langevin diffusion 𝐿𝑡 is defined for

any 𝑡 ≥ 0, by

d𝜗𝑡 = −∇𝑓(𝜗𝑡)d𝑡+
√

2𝑝b𝑡,

where the function b is a vector of Brownian motion of dimension 𝑝. The Langevin Monte

Carlo relies on a discretization of the Langevin diffusion. In our work, we will consider the

Euler discretization where the 𝑘 + 1-th iteration is recursively defined by

𝜐ℎ𝑘+1 = 𝜐ℎ𝑘 − ℎ∇𝑓(𝜐ℎ𝑘) +
√

2ℎ𝜉𝑘,

for a given step ℎ > 0 and where 𝜉𝑘 is a p-dimensional standard Gaussian vector. Other

discretizations, such as the Ozaki discretization, are considered in the literature (Dalalyan,

2016).

The quality (or accuracy) of the sampling method is relative to an arbitrarily chosen distance

between the distribution from which the sampling is generated and the targeted distribution.

In the literature, common metrics such as the Kullback-Leibler (𝐾𝐿), the Chi-Square (𝜒2)

divergences (c.f. Definition 1.4.2), or the total variation norm, have been widely used.

Definition 1.4.2 (Kullback-Leibler and 𝜒2 divergences). Let 𝜈 and 𝜇 be two probability meas-

ures over a set Ω, then if 𝜈 is absolutely continuous with respect to 𝜇, the Kullback-Leibler

divergence is defined by

𝐾𝐿(𝜈‖𝜇) =

∫︁
Ω

log
(︁d𝜈

d𝜇

)︁
d𝜈.

The 𝜒2 divergence is defined by

𝜒2(𝜈‖𝜇) =

∫︁
Ω

(︂
d𝜈

d𝜇
− 1

)︂2

d𝜇.

Some results on the convergence of the Langevin Monte Carlo have been proven in these different

metrics in Dalalyan (2016). More recently, the Wasserstein distance of order 2 has been more

commonly used.

Definition 1.4.3 (Wasserstein distance). The Wasserstein distance of order 𝑙 ∈ N⋆ between

17The condition of the function 𝑓 will be discussed in Chapter 3.
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Figure 1-7: Shape interpolation in 2-dimensions using the Euclidean bary-
center (left) and the Wasserstein barycenter (right). The Wasserstein bary-
center shape interpolation procedure is discussed in Solomon et al. (2015).
Credit: Solomon et al. (2015)

two measures of probability 𝜈 and 𝜂, 𝑊𝑙(𝜈, 𝜂) is defined by

𝑊𝑙(𝜈, 𝜂) = inf
𝜓∈Ψ(𝜈,𝜂)

{︂∫︁
R𝑝×R𝑝

‖𝑢− 𝑣‖𝑙𝑙d𝜓(𝑢,𝑣)

}︂1/𝑙

where Ψ(𝜈, 𝜂) is the set of probability measures on R𝑝 × R𝑝 with marginals 𝜈 and 𝜂.

In (Durmus and Moulines, 2016; Dalalyan, 2017) the question of proving the accuracy of a

sampling Langevin Monte Carlo with various discretization schemes are proven in the sense

of the Wasserstein distance when the log-density is strongly convex. Using the Wasserstein

distance is a very promising approach. In Dalalyan (2017), it is proven that if 𝑓 is 𝑚-strongly

convex and has a continuous 𝑀 -Lipschitz gradient, then the distribution of the samples gener-

ated by the Langevin Monte Carlo method with a Euler discretization is such that the accuracy

𝜖 will be achieved (in the sense of the Wasserstein distance of order 2) for a number of iterations

𝐾 proportional to 𝑝𝜖−2 log(𝑝/𝜖).

Remark 1.4.3. As a personal note, I find it very tempting to believe that the Wasserstein ap-

proach will offer great technical tools to generalize statistical and simulation theories. However,

computing the Wasserstein distance is a very challenging task. Even methods to approximate

the Wasserstein distance is an ongoing subject. In Solomon et al. (2015) an efficient algorithm

is introduced to do so. However, no general minimization methods of the Wasserstein distance

has been found yet. As such, the Wasserstein is very interesting on the statistical theory point

of view but will require further understanding to improve sampling results.

New results on the Langevin Monte Carlo methods brought the missing part to make the
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exponentially weighted aggregate estimators (or mirror averaging in the random design settings)

an interesting estimator from both a computational and a statistical standpoint, with fairly mild

conditions.

For the various reasons mentioned in this section, the exponentially weighted aggregate is of

great interest and motivates our work in this thesis.

1.5 Roadmap

Now that we have established the importance of statistical theory and more specifically the

notions we need from high-dimensional statistical learning, we will present what will be studied

in Chapters 2, 3 and 4. As mentioned earlier, the exponentially weighted aggregate is an

efficient estimator to recover signal in a nearly-sparse context (Dalalyan and Tsybakov, 2012a,b).

Different priors have been proposed to do so. It is amazingly surprising to note that among

all the priors we can read in the litterature, the Laplace prior was never successfully used.

Indeed, aggregation with Laplace prior is to the aggregation what the Lasso is to the maximum

a posteriori paradigm. Indeed, the Lasso is arguably one of the most studied estimators in

the context of penalized regression methods for nearly-sparse high-dimensional problem. Lasso

has proven to be very efficient to recover sparse signal (even though restrictive conditions are

necessary) and the statistical community has proven strong theoretical properties.

The exponentially weighted aggregate with Laplace prior can be defined by the procedure of the

standard EWA estimator described in Equation 1.4.2 with a pseudo-posterior density defined

by

̂︀𝜋𝑛(𝛽) ∝ exp(−𝑉𝑛(𝛽)/𝜏), where 𝑉𝑛(𝛽) =
1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2 + 𝜆 ‖𝛽‖1. (1.5.1)

There is a chasm between interest and results shown for the exponentially weighted aggregate

with Laplace prior and the huge literature on the Lasso. Our main motivation is to cross that

chasm by developing results on the exponentially weighted aggregate with Laplace prior in terms

of theoretical guarantees and computational efficiency. Obviously, our aim is strongly supported

by already existing results on general theory about the exponentially weighted aggregation.

We already mentioned earlier in this chapter some of the most remarkable results. However,

the use of existing oracle inequalities for the exponentially weighted aggregate (Dalalyan and

Tsybakov (2012b)[Theorem 1]) is not very optimistic when directly applied to the Laplace prior.

They are far from being sharp in comparison to what can be achieved with the maximum a
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posteriori analogue, the Lasso. Moreover, a result in Castillo et al. (2015)[Theorem 7] proves

that the Bayesian Lasso cannot recover sparse signal well enough. However, an inspirational

observation can push the need to study this estimator. If we look briefly at the exponentially

weighted aggregate with Laplace prior, we remark that

lim
𝜏→0

̂︀𝛽𝐸𝑊𝐴

𝜏 = ̂︀𝛽𝐿𝑎𝑠𝑠𝑜.
Therefore, it is legitimate to question the quality of the exponentially weighted aggregation

with Laplace prior to recover sparse signal and to compare it with the Lasso performance. This

was the seminal question of this thesis. Chapter 2 will give some insights to this question. We

provide oracle inequalities in the regression settings under compatibility factor assumption for

the prediction loss. These guarantees are very similar to the one of the Lasso additioned with

a price to pay 𝑝𝜏 . We provide explicit value of the temperature parameter 𝜏 for which sharp

oracle inequalities are guaranteed. From this point of view, we develop a generalization of the

Lasso results to a broader family of estimators and we match similar performance than the one

in Dalalyan et al. (2017) for the Lasso. Relying on the study in Bobkov and Madiman (2011),

we also prove pseudo-posterior concentration results. The derived results can be easily general-

ized to other convex penalty norm such as the total variation as in Harchaoui and Lévy-Leduc

(2010). Hence it gives insight on the relationships between maximum a posteriori penalized

estimators and their aggregation analogues. To illustrate this, we establish results in the mat-

rix regression settings in relation with the nuclear norm penalty. To do so, we introduce the

compatibility factor adapted to the matrix case. Using the exponentially weighted aggregate

with nuclear norm prior, we extend the results of the oracle inequality in Koltchinskii et al.

(2011a) and we provide pseudo posterior concentration. These results legitimate the exponen-

tially weighted aggregation with sparse-inducing priors as a good alternative to the maximum a

posteriori analogues for learning purposes in the nearly-sparse high-dimensional settings. Fur-

thermore, as the literature on Lasso oracle inequalities in the random design settings is quite

arid, such results could help to find mirror averaging oracle inequality in the random design.

However, even though this family of estimators is performing well on the theoretical standpoint,

the approximation of this estimator is more challenging. Indeed, averaging with respect to a

distribution is a difficult and resource consuming task. The computation question is addressed

in Chapter 3. A direct application of Langevin Monte Carlo from (Dalalyan, 2016, 2017; Dur-

mus and Moulines, 2016) would not necessarily guarantee that any accuracy can be achieved

in a finite number of iterations. Indeed, these results require the log-posterior to be strongly
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convex and smooth, and yet with the Laplace prior the differentiability does not hold and the

strong-convexity cannot be assumed for any data design. In Chapter 3, we partially solve this

issue. We study the behaviour of an Euler-discretization Langevin Monte Carlo sampling. We

focus on the Wasserstein distance accuracy with respect to the targeted exponentially weighted

aggregate with Laplace prior. This work relies on the shoulder of the monograph Ledoux (2005).

Our goal is to adjust the algorithm proposed in Dalalyan (2016) in order to circumvent the non

differentiability of the pseudo posterior. We provide an explicit number of iterations 𝐾 that is

comparable to the one in Dalalyan (2016) in regards to the error tolerance 𝜖 and the dimension

𝑝. However, this result is not completely satisfying as it relies on conditions on the Gram

matrix that are not realistic in the high-dimensional settings. Indeed, in Chapter 3, we assume

that the smallest eigenvalue of the Gram matrix is positive. Despite this limitation, this work

provides a solution to guarantee a good approximation of the targeted density in a slightly more

general context than existing results in the literature. The last chapter can be seen as a related

study on the standard Lasso in the context of transductive and semi-supervised learning. Even

though, this work treats a different problem, it could complete (and respectively be completed

by) the other results of this thesis. In Chapter 4, we show that unlabeled data should be

used in the estimator to infer the variance-covariance matrix. We introduce two adaptations of

the Lasso estimators that substantially improve the prediction performance in respectively the

transductive and the partially labeled settings. Under compatibility factor conditions, this last

chapter proves sharp oracle inequalities in the random design settings.
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Chapter 2

On the Exponentially Weighted Aggregate

with the Laplace Prior

A joint work with Arnak Dalalyan and Quentin Paris.
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Abstract

In this paper, we study the statistical behaviour of the Exponentially Weighted Aggregate
(EWA) in the problem of high-dimensional regression with fixed design. Under the assumption
that the underlying regression vector is sparse, it is reasonable to use the Laplace distribution
as a prior. The resulting estimator and, specifically, a particular instance of it referred to as
the Bayesian lasso, was already used in the statistical literature because of its computational
convenience, even though no thorough mathematical analysis of its statistical properties was
carried out. The present work fills this gap by establishing sharp oracle inequalities for the EWA
with the Laplace prior. These inequalities show that if the temperature parameter is small, the
EWA with the Laplace prior satisfies the same type of oracle inequality as the lasso estimator
does, as long as the quality of estimation is measured by the prediction loss. Extensions of the
proposed methodology to the problem of prediction with low-rank matrices are considered.

2.1 Introduction

We investigate statistical properties of the Exponentially Weighted Aggregate (EWA) in the

context of high-dimensional linear regression with fixed design and under the sparsity scenario.

This corresponds to considering data that consist of 𝑛 random observations 𝑦1, . . . , 𝑦𝑛 ∈ R and

𝑝 fixed covariates 𝑥1, . . . ,𝑥𝑝 ∈ R𝑛. We further assume that there is a vector 𝛽⋆ ∈ R𝑝 such that

the residuals 𝜉𝑖 = 𝑦𝑖 − 𝛽⋆1𝑥
1
𝑖 − . . . − 𝛽⋆𝑝𝑥

𝑝
𝑖 are independent, zero mean random variables. In

vector notation, this reads as

𝑦 = X𝛽⋆ + 𝜉, (2.1.1)

where 𝑦 = (𝑦1, . . . , 𝑦𝑛)⊤ is the response vector, X = (𝑥1, . . . ,𝑥𝑝) ∈ R𝑛×𝑝 is the design matrix

and 𝜉 is the noise vector. For simplicity, in all mathematical results, the noise vector is assumed

to be distributed according to the Gaussian distribution 𝒩 (0, 𝜎2I𝑛). We are mainly interested

in obtaining mathematical results that cover the high-dimensional setting. This means that

our goal is to establish risk bounds that can be small even if the ambient dimension 𝑝 is large

compared to the sample size. In order to attain this goal, we will consider the, by now, usual

sparsity scenario. In other words, the established risk bounds are small if the underlying large

vector 𝛽* is well approximated by a sparse vector. Note that this setting can be extended to

the matrix case, sometimes termed trace-regression (Rohde and Tsybakov, 2011; Koltchinskii

et al., 2011a). Indeed, if the rows 𝑥1, . . . ,𝑥𝑛 of the design matrix X are replaced by 𝑚1 ×𝑚2

matrices X1, . . . ,X𝑛, then the regression vector 𝛽⋆ is replaced by a 𝑚1 × 𝑚2 matrix B⋆ and

the model of trace regression is

𝑦𝑖 = tr(X⊤
𝑖 B

⋆) + 𝜉𝑖, 𝑖 = 1, . . . , 𝑛. (2.1.2)
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Our focus here is on the statistical properties related to the prediction risk. The important

questions of variable selection and estimation in various norms are beyond the scope of the

present work.

In the aforementioned vector- and trace-regression models, the most thoroughly studied stat-

istical procedures of estimation and prediction rely on the principle of penalised least squares1.

In the vector-regression model, assuming that the quadratic loss is used, this corresponds to

analysing the properties of the estimator

̂︀𝛽PLS
∈ arg min

𝛽∈R𝑝

{︂
1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2 + 𝜆Pen(𝛽)

}︂
, (2.1.3)

where 𝜆 > 0 is a tuning parameter and Pen : R𝑝 → R is a sparsity promoting penalty function.

The literature on this topic is so rich that it would be impossible to cite here all the relev-

ant papers. We refer the interested reader to the books (Bühlmann and van de Geer, 2011;

Koltchinskii, 2011; Giraud, 2015; van de Geer, 2016) and the references therein. Among the

sparsity promoting penalties, one can mention the ℓ0 penalty (which for various choices of 𝜆

leads to the BIC (Schwarz, 1978), the AIC (Akaike, 1974) or to Mallows’s Cp (Mallows, 1973)),

the ℓ1 penalty or the lasso (Tibshirani, 1996b), the ℓ𝑞 (with 0 < 𝑞 < 1) or the bridge penalty

(Frank and Friedman, 1993; Fu, 1998), the SCAD (Fan and Li, 2001), the minimax concave

penalties (Zhang, 2010), the entropy (Koltchinskii, 2009), the SLOPE (Bogdan et al., 2015; Su

and Candes, 2016), etc.

The aggregation by exponential weights is an alternative approach to the problems of estimation

and prediction that, roughly speaking, replaces the minimisation by the averaging. Assuming

that every vector 𝛽 ∈ R𝑝 is a candidate for estimating the true vector 𝛽⋆, aggregation (cf.,

for instance, the survey (Tsybakov, 2014)) consists in computing a weighted average of the

candidates. Naturally, the weights are to be chosen in a data-driven way. In the case of the

exponentially weighted aggregate (EWA), the weight ̂︀𝜋𝑛(𝛽) of each candidate vector 𝛽 has the

exponential form

̂︀𝜋𝑛(𝛽) ∝ exp
(︀
− 𝑉𝑛(𝛽)/𝜏

)︀
, where 𝑉𝑛(𝛽) =

1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2 + 𝜆Pen(𝛽) (2.1.4)

is the potential used above for defining the penalised least squares estimator and 𝜏 > 0 is an

additional tuning parameter referred to as the temperature. Using this notation, the EWA is

1Or, more generally, on the penalised empirical risk minimisation
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Figure 2-1: Top: the plots of the pseudo-posterior ̂︀𝜋𝑛 with the Laplace prior for the
temperature 𝜏 = 0.5 (left) and 𝜏 = 0.8 (right). One can observe that decreasing the
value of 𝜏 strengthens the peakedness of the density. Bottom: the level curves of
the pseudo-posterior ̂︀𝜋𝑛 with the Laplace prior for the temperature 𝜏 = 0.5 (left) and
𝜏 = 0.8 (right). One clearly observes the non-differentiability of the density along the
axes 𝛽1 and 𝛽2 (caused by the non-differentiability of the ℓ1-norm).

defined by ̂︀𝛽EWA =

∫︁
R𝑝

𝛽 ̂︀𝜋𝑛(𝛽) d𝛽. (2.1.5)

Exponential weights have been used for a long time in statistical learning theory (cf., for in-

stance, Vovk (1990)). Their use in statistics was initiated by Yuhong Yang in (Yang, 2000a,b,c,

2001a) and by Olivier Catoni in a series of preprints, later on included in (Catoni, 2004, 2007).

Precise risk bounds for the EWA in the model of regression with fixed design have been estab-

lished in (Leung and Barron, 2006; Dalalyan and Tsybakov, 2007, 2008, 2012a; Dalalyan and

Salmon, 2012; Dai et al., 2012; Golubev and Ostrovski, 2014; Chernousova et al., 2013). In

the model of regression with random design, the counterpart of the EWA, often referred to as

mirror averaging, has been thoroughly studied in (Juditsky et al., 2005, 2008; Audibert, 2009;

Chesneau and Lecué, 2009; Gaïffas and Lecué, 2007; Dalalyan and Tsybakov, 2012a; Lecué and

Mendelson, 2013). Note that when the temperature 𝜏 equals 𝜎2/𝑛, the EWA coincides with the

Bayesian posterior mean in the regression model with Gaussian noise provided that the prior is

defined by 𝜋0(𝛽) ∝ exp(−𝜆Pen(𝛽)/𝜏). Thanks to this analogy, we will call ̂︀𝜋𝑛 pseudo-posterior

density. Let us mention here that, considering the path 𝜏 ↦→ ̂︀𝛽EWA for 𝜏 ∈ (0, 𝜎2/𝑛], we get a

continuous interpolation between the penalised least squares and the Bayesian posterior mean.

Along with these studies, several authors have demonstrated the ability of the EWA to optimally
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estimate a sparse signal. To this end, various types of priors have been used. For instance,

(Leung and Barron, 2006; Rigollet and Tsybakov, 2011b; Alquier and Lounici, 2011; Arias-

Castro and Lounici, 2014) have employed discrete priors over the set of least-squares estimators

with varying supports whereas (Dalalyan and Tsybakov, 2008, 2012b) have used Student-type

heavy-tailed priors. In the context of structured sparsity, the EWA has been successfully used

in (Alquier and Biau, 2013; Guedj and Alquier, 2013; Dalalyan et al., 2014a). Given the close

relationship between the EWA and the Bayes estimator, it is worth mentioning here that the

problem of sparse estimation has also received much attention in the literature on Bayesian

Statistics (Wipf et al., 2003; Park and Casella, 2008; Hans, 2009). Posterior concentration

properties for these methods have been investigated in (Castillo and van der Vaart, 2012;

Castillo et al., 2015; van der Pas et al., 2016; Gao et al., 2015).

Despite these efforts, some natural questions remain open. One of them, described in details

below, is at the origin of this work. Let us consider the prediction error of a candidate vector

𝛽 with respect to the quadratic loss

ℓ𝑛(𝛽,𝛽⋆) =
1

𝑛
‖X(𝛽 − 𝛽⋆)‖22 =

1

𝑛

𝑛∑︁
𝑖=1

(𝑥⊤
𝑖 𝛽 − 𝑥⊤

𝑖 𝛽
⋆)2. (2.1.6)

On the one hand, theoretical studies of the lasso (Candes and Tao, 2007; Bickel et al., 2009;

Belloni et al., 2014; Dalalyan et al., 2014b; Bellec et al., 2016b,a), established2 sharp upper

bounds for the prediction risk of the PLS estimator (2.1.3) for the ℓ1-penalty Pen(𝛽) = ‖𝛽‖1.

Therefore, one could expect the EWA with the Laplace prior 𝜋0(𝛽) ∝ exp(−𝜆‖𝛽‖1/𝜏) to have a

high prediction performance. On the other hand, to the best of our knowledge, there is no result

in the literature establishing accurate risk bounds for the EWA with Laplace prior. Indeed, a

straightforward application of the PAC-Bayesian type risk bounds (McAllester, 1998) for the

EWA (such as, for instance, Theorem 1 in (Dalalyan and Tsybakov, 2012b)) to the Laplace

prior leads to strongly sub-optimal remainder terms. This raises the following questions:

Q1. Is the EWA with the Laplace prior suitable for prediction under the sparsity scenario?

Q2. If it is, what is the range of temperature 𝜏 providing good prediction accuracy?

Q3. How do the statistical properties of the EWA with the Laplace prior compare with those

of the lasso?

Related questions are considered in (Castillo et al., 2015). Indeed, for 𝛽⋆ = 0𝑝, 𝑝 = 𝑛 and

X⊤X/𝑛 = I𝑛, Theorem 7 from (Castillo et al., 2015) establishes the following property. For
2Provided that the Gram matrix X⊤X/𝑛 satisfies suitable assumptions (restricted isometry, restricted ei-

genvalues, compatibility, etc.).
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all the reasonable choices3 of the tuning parameter 𝜆, if the temperature 𝜏 in the EWA with

the Laplace prior is chosen as 𝜏 = 𝜎2/𝑛, then the resulting posterior puts asymptotically no

mass on the ball centred at 𝛽⋆ and of radius Const(log 𝑛/𝑛)1/2, the latter corresponding to the

optimal rate of convergence in this model. This negative result, stated in terms of the posterior

contraction rate, can be easily adapted in order to show that, under the previous conditions,

the Bayesian posterior mean is sub-optimal.

The present paper completes the picture by establishing some positive results. In particular,

it turns out that if the temperature parameter of the EWA with the Laplace prior is of the

order 𝑠𝜎2/(𝑝𝑛), where 𝑠 is the sparsity of 𝛽⋆, then the EWA with the Laplace prior does attain

the optimal rate of convergence. Furthermore, it satisfies the same type of sharp sparsity

inequality as the lasso does. Interestingly, the proof of this result is based on arguments which

differ from those used in the aggregation literature. Indeed, the two previously used techniques

for getting oracle inequalities for the EWA and related procedures rely either on the PAC-

Bayesian inequality or on the Stein unbiased risk estimate. Instead, the key idea of our proof

is to take advantage of the following relations:

∫︁
R𝑝

∇
(︀
𝛽𝛼𝑗 𝑒

−𝑉𝑛(𝛽)/𝜏
)︀

d𝛽 = 0, 𝑗 = 1, . . . , 𝑝, 𝛼 = 0, 1. (2.1.7)

Hence, most of our arguments are independent of the noise distribution and can be extended

to other settings (as opposed to the results relying on the Stein formula). Elaborating on

this, we prove that the pseudo-posterior ̂︀𝜋𝑛 puts an overwhelming weight on the set of vectors

𝛽 satisfying a sharp oracle inequality with rate-optimal remainder term. In the case of the

Gaussian noise, we also obtain the explicit form of the Stein unbiased estimator of the risk of̂︀𝛽EWA, which can be used for choosing the tuning parameter. Finally, we extend these results

to the model of trace regression when the underlying true matrix B⋆ has low rank.

The rest of the paper is organised as follows. The notation used throughout the paper is intro-

duced in the next section. 2.3 analyses the prediction loss of the EWA with the Laplace prior,

and 2.4 gathers results characterising the concentration of the pseudo-posterior ̂︀𝜋𝑛. Extensions

of these results to the case where the unknown parameter is a (nearly) low-rank matrix are

considered in 2.5. A brief summary of the obtained results along with some conclusions is given

in 2.6. Finally, the proofs are postponed to 2.7.

3By “reasonable” we understand here the choice 𝜆 = Const𝜎( log 𝑝
𝑛 )1/2, for which the lasso is provably rate

optimal under the sparsity scenario, provided that the design satisfies a version of the restricted eigenvalue
condition.
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2.2 Notation

This paragraph collects notation used throughout the paper. For every integer 𝑘 ≥ 1, we write

1𝑘 (resp. 0𝑘) for the vector of R𝑘 having all coordinates equal to one (resp. zero). We set

[𝑘] = {1, . . . , 𝑘}. For every 𝑞 ∈ [0,∞], we denote by ‖𝑢‖𝑞 the usual ℓ𝑞-norm of 𝑢 ∈ R𝑘, that is

‖𝑢‖𝑞 = (
∑︀

𝑗∈[𝑘] |𝑢𝑗|𝑞)1/𝑞 when 0 < 𝑞 <∞, ‖𝑢‖0 = Card({𝑗 : 𝑢𝑗 ̸= 0}) and ‖𝑢‖∞ = max𝑗∈[𝑘] |𝑢𝑗|.

For every integer 𝑘 ≥ 1 and any 𝑇 ⊂ [𝑘], we denote by 𝑇 𝑐 and |𝑇 | the complementary set [𝑝]∖𝑇

and the cardinality of 𝑇 , respectively. For 𝑢 ∈ R𝑘 and 𝑇 ⊂ [𝑘], we denote 𝑢𝑇 ∈ R|𝑇 | the vector

obtained from 𝑢 by removing all the coordinates belonging to the set 𝑇 𝑐.

In Sections 2.3 and 2.4, we recall that X ∈ R𝑛×𝑝 refers to the deterministic design matrix

with columns 𝑥1, . . . ,𝑥𝑝 ∈ R𝑛 and rows 𝑥1, . . . ,𝑥𝑛 ∈ R𝑝. Finally, our analysis will involve the

compatibility factor of the design matrix defined, for any 𝐽 ⊂ [𝑝] and 𝑐 > 0, by

𝜅𝐽,𝑐 = inf
𝑢∈R𝑝:‖𝑢𝐽𝑐‖1<𝑐‖𝑢𝐽‖1

𝑐2|𝐽 |‖X𝑢‖22
𝑛(𝑐‖𝑢𝐽‖1 − ‖𝑢𝐽𝑐‖1)2

. (2.2.1)

Note that the compatibility factor, often used for the analysis of the lasso, is slightly larger4

than the restricted eigenvalue (Bickel et al., 2009). For a better understanding of these (and

related) quantities we refer the reader to (Bickel et al., 2009, Sections 3 and 4) and (van de

Geer and Bühlmann, 2009).

Risk bounds established in the present work for the EWA contain a new term, as compared

to the analogous risk bounds for the lasso. This term reflects the peakedness of the pseudo-

posterior density ̂︀𝜋𝑛 and is defined by

𝐻(𝜏) = 𝑝𝜏 −
∫︁
𝐺(𝑢)̂︀𝜋𝑛(𝑢)d𝑢+𝐺(̂︀𝛽EWA), (2.2.2)

where 𝐺(𝑢) = 1/𝑛‖X𝑢‖22 + 𝜆‖𝑢‖1. When the temperature 𝜏 is low, close to zero, the pseudo-

posterior ̂︀𝜋𝑛 is close to a Dirac measure centred at the lasso, which implies that 𝐻(𝜏) is close

to zero. Furthermore, since the above function 𝐺 is convex, we have the following bound

𝐻(𝜏) ≤ 𝑝𝜏. (2.2.3)

In 2.3 and 2.4 we will occasionally use the following matrix notation. For all integers 𝑝 ≥ 1, I𝑝

refers to the identity matrix in R𝑝×𝑝. For any integers 𝑝 ≥ 1 and 𝑞 ≥ 1, any matrix A ∈ R𝑝×𝑞

and any subset 𝑇 of [𝑞], we denote by A𝑇 the matrix obtained from A by removing all the

4Since this factor appears in the denominator of the risk bound, the larger is the better.
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columns belonging to 𝑇 𝑐. Finally the transpose and the Moore-Penrose pseudoinverse of a

matrix A are denoted by A⊤ and A†, respectively.

2.3 Risk bound for the EWA with the Laplace prior

This section is devoted to discussing statistical properties of the EWA with the Laplace prior.

Recall that it is defined by (2.1.5) as the average with respect to the pseudo-posterior density

̂︀𝜋𝑛(𝛽) ∝ exp(−𝑉𝑛(𝛽)/𝜏), where 𝑉𝑛(𝛽) =
1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2 + 𝜆 ‖𝛽‖1. (2.3.1)

The emphasis is put on non-asymptotic guarantees in terms of the prediction loss. It is import-

ant to mention here that the Laplace prior, 𝜋0(𝛽) ∝ exp(−𝜆‖𝛽‖1/𝜏), makes use of the same

scale for all the coordinates of the vector 𝛽. This presumes that the covariates (columns of the

matrix X) are already rescaled so that their Euclidean norms are almost equal. An alternative

approach (see, for instance, Bunea et al. (2007b); Bickel et al. (2009))—that we will not follow

here—would consist in replacing the ℓ1-norm of 𝛽 by the weighted ℓ1-norm
∑︀

𝑗∈[𝑝] ‖𝑥𝑗‖|𝛽𝑗|.

The next result provides the main risk bound for the EWA.

Theorem 2.3.1. Assume that data are generated by model (2.1.1) with 𝜉 drawn from the

Gaussian distribution 𝒩 (0, 𝜎2I𝑛) and that the covariates are rescaled so that max𝑗∈[𝑝] 1/𝑛‖𝑥𝑗‖22 ≤

1. Suppose, in addition, that 𝜆 ≥ 2𝜎(2/𝑛 log(𝑝/𝛿))1/2, for some 𝛿 ∈ (0, 1). Then, with probability

at least 1 − 𝛿,

ℓ𝑛(̂︀𝛽EWA,𝛽⋆) ≤ inf
𝛽∈R𝑝

𝐽⊂[𝑝]

{︂
ℓ𝑛(𝛽,𝛽⋆) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
4𝜅𝐽,3

}︂
+ 2𝑝𝜏, (2.3.2)

where ℓ𝑛 is defined in (2.1.6) and ̂︀𝛽EWA is defined in (2.1.5) and (2.3.1).

For the lasso estimator, risk bounds of this nature have been developed in (Koltchinskii et al.,

2011a; Sun and Zhang, 2012a; Dalalyan et al., 2014b; Bellec et al., 2016a). The risk bound in

(2.3.2) extends the risk bounds available for the lasso (cf. Theorem 2 in (Dalalyan et al., 2014b))

to the EWA with the Laplace prior. Indeed, letting the temperature 𝜏 go to zero, the last term

in the right-hand side of (2.3.2) disappears and we retrieve the risk bound for the lasso. An

attractive feature of risk bound (2.3.2) is that the factor in front of the term ℓ𝑛(𝛽,𝛽⋆) is equal to

one; this is often referred to as a sharp or exact oracle inequality. Furthermore, the other three

terms in the right-hand side of (2.3.2) are neat and have a simple interpretation. The second
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term, 4𝜆‖𝛽𝐽𝑐‖1, accounts for the approximate sparsity; when X𝛽⋆ is well approximated by X𝛽

with a 𝑠-sparse vector 𝛽, then choosing 𝐽 = {𝑗 : 𝛽𝑗 ̸= 0} annihilates this term. The third term

of the risk bound corresponds to the optimal rate, up to a logarithmic factor, of estimation of

a vector 𝛽⋆ concentrated on the known set 𝐽 . Indeed, if |𝐽 | = 𝑠 and the compatibility factor

is bounded away from zero, this term is of order 𝑠/𝑛 log(𝑝). Finally, the last term in the above

risk bound, 2𝑝𝜏 , reflects the influence of the temperature parameter 𝜏 . In particular, it shows

that if 𝜏 = 𝜎2/(𝑝𝑛) then this term is negligible with respect to the other remainder terms.

The inequality stated in 2.3.1 is a simplified version of the following one (proved in 2.7): for

any 𝛾 > 1, in the event ‖X⊤𝜉‖∞ ≤ 𝑛𝜆/𝛾, it holds

ℓ𝑛(̂︀𝛽EWA,𝛽⋆) ≤ inf
𝛽∈R𝑝

𝐽⊂[𝑝]

{︂
ℓ𝑛(𝛽,𝛽⋆) + 4𝜆‖𝛽𝐽𝑐‖1 +

𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅𝐽,(𝛾+1)/(𝛾−1)

}︂
+ 2𝐻(𝜏), (2.3.3)

where 𝐻(𝜏) is defined in (2.2.2). On the one hand, one can use this more general result for

getting an oracle inequality under more general assumptions on the noise distribution such as

those considered, for instance, in (Bunea et al., 2007b; Belloni et al., 2014). On the other hand,

one can infer from (2.3.3) that the term 𝐻(𝜏) highlights the difference, in terms of statistical

complexity, between the lasso and the EWA with the Laplace prior. It is therefore important

to get a precise evaluation of 𝐻(𝜏) as a function of 𝜏 , 𝑝 and 𝑛, and to understand how tight

the inequality 𝐻(𝜏) ≤ 𝑝𝜏 is. To answer this question, we restrict our attention to orthonormal

designs and show the tightness of the aforementioned inequality. To this end, let us introduce

the scaled complementary error function Ψ𝑣(𝑡) = 𝑒𝑡
2/2𝑣 1√

2𝜋𝑣

∫︀∞
𝑡
𝑒−𝑢

2/2𝑣 d𝑢.

Proposition 2.3.1. Let ̂︀Σ𝑛 = 1/𝑛X⊤X be the Gram matrix and ̂︀𝛽LS = 1/𝑛̂︀Σ†
𝑛X

⊤𝑦 be the

least-squares estimator. Then, we have

𝐻(𝜏) = ‖̂︀Σ1/2
𝑛

̂︀𝛽EWA‖22 + 𝜆‖̂︀𝛽EWA‖1 − (̂︀𝛽EWA)⊤ ̂︀Σ𝑛
̂︀𝛽LS. (2.3.4)

Furthermore, when the design is orthonormal, that is ̂︀Σ𝑛 = I𝑝, then the EWA with the Laplace

prior is a thresholding estimator, ̂︀𝛽EWA
𝑗 = sign(̂︀𝛽LS

𝑗 )
(︀
|̂︀𝛽LS
𝑗 | − 𝜆𝑤(𝜏, 𝜆, |̂︀𝛽LS

𝑗 |)
)︀
, where

𝑤(𝜏, 𝜆, |̂︀𝛽LS
𝑗 |) =

Ψ𝜏 (𝜆− |̂︀𝛽LS
𝑗 |) − Ψ𝜏 (𝜆+ |̂︀𝛽LS

𝑗 |)
Ψ𝜏 (𝜆− |̂︀𝛽LS

𝑗 |) + Ψ𝜏 (𝜆+ |̂︀𝛽LS
𝑗 |)

, (2.3.5)

and

𝐻(𝜏) =

𝑝∑︁
𝑗=1

𝜆
(︀
|̂︀𝛽LS
𝑗 | − 𝜆𝑤(𝜏, 𝜆, |̂︀𝛽LS

𝑗 |)
)︀(︀

1 − 𝑤(𝜏, 𝜆, |̂︀𝛽LS
𝑗 |)

)︀
. (2.3.6)
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The last expression of 𝐻(𝜏) provided by the proposition may be used for a numerical evaluation.

First, let us note that if we set 𝛽𝑗 = ̂︀𝛽LS
𝑗 /

√
𝜏 and 𝜆̄ = 𝜆/

√
𝜏 , the function 𝐻(𝜏)/𝜏 is independent

of 𝜏 . Indeed, we have 𝐻(𝜏)/𝜏 =
∑︀

𝑗 ℎ(𝜆̄, |𝛽𝑗|) where

ℎ(𝜆̄, 𝑧) = 𝜆̄
(︀
𝑧 − 𝜆̄𝑤(1, 𝜆̄, 𝑧)

)︀(︀
1 − 𝑤(1, 𝜆̄, 𝑧)

)︀
, ∀𝑧 > 0.

In Fig. 2-2 below, we plot the curves of the functions 𝑧 ↦→ ℎ(𝜆̄, 𝑧) for different values of the

parameter 𝜆̄.
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Figure 2-2: For different values 𝜆̄ ∈ {10, 20, 40, 60, 80, 100},
we plot the function 𝑧 ↦→ ℎ(𝜆̄, 𝑧).

These curves clearly show that the bound 𝐻(𝜏) ≤ 𝑝𝜏 , a consequence of ℎ(𝜆̄, 𝑧) ≤ 1, is tight.

Another interesting observation is that the function 𝐻(𝜏) is always nonnegative. This basically

implies that the value of 𝜏 minimising the right-hand side of (2.3.3) is 𝜏 = 0. In other terms,

the lowest risk bound is obtained for the lasso. This legitimately raises the following question:

is there any advantage of using the EWA with the Laplace prior as compared to the lasso? Our

firm conviction is that there is an advantage, and will try to explain our viewpoint in the rest

of this section.

The point is that the lasso estimator is a nonsmooth function of the data. One of the con-

sequences of this is that the Stein unbiased risk estimate (SURE) for the lasso is a discontinuous

function of data. Indeed, as proved in (Tibshirani and Taylor, 2012), The SURE for the lasso

(see also the earlier work (Donoho and Johnstone, 1995; Zou et al., 2007)) is given by

̂︀𝑅lasso(𝜆) =
1

𝑛
‖𝑦 −X̂︀𝛽lasso(𝜆)‖22 − 𝜎2 +

2𝜎2

𝑛
rank(X𝒜(𝜆)),

where 𝒜(𝜆) = {𝑗 ∈ [𝑝] : ̂︀𝛽lasso
𝑗 (𝜆) ̸= 0} is the active set for the lasso estimator with the tuning

parameter 𝜆. In theory, this quantity ̂︀𝑅lasso(𝜆) can be used for choosing the tuning parameter

𝜆 of the lasso. However, in practice, this solution is rarely employed, since 𝒜(𝜆) has a very
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unstable behaviour as a function of 𝜆 and 𝑦. As a consequence, not only one can get very

different “optimal” values of 𝜆 for two very close vectors 𝑦 and 𝑦′, but is also likely to obtain

very different “optimal” values of 𝜆 for the same vector 𝑦 if using two different optimisation

algorithms for computing an approximate solution to the lasso problem.

Using Stein’s lemma, in the case where 𝜉 is drawn from the Gaussian 𝒩 (0, 𝜎2I𝑛) distribution,

one checks that

̂︀𝑅EWA(𝜆, 𝜏) =
1

𝑛
‖𝑦 −X̂︀𝛽EWA

𝜆,𝜏 ‖22 −
𝜎2

𝑛
+

2𝜎2

𝑛2𝜏

∫︁
R𝑝

‖X(𝛽 − ̂︀𝛽EWA
𝜆,𝜏 )‖22 ̂︀𝜋𝑛,𝜆,𝜏 (𝛽) d𝛽 (2.3.7)

is an unbiased estimator of the risk E[ℓ𝑛(̂︀𝛽EWA,𝛽⋆)]. Furthermore, the function (𝜆, 𝜏) ↦→̂︀𝑅EWA(𝜆, 𝜏) is clearly continuous on (0,∞)× (0,∞). One can also check that the unbiased risk

estimate ̂︀𝑅EWA(𝜆, 𝜏) depends continuously on the data vector 𝑦. Therefore, this quantity us

arguably more robust to the variation in data and more regular as a function of the tuning

parameters as compared to ̂︀𝑅lasso. This implies that minimising ̂︀𝑅EWA(𝜆, 𝜏) with respect to 𝜆

or 𝜏 might be a good strategy for choosing these parameters adaptively.

Of course, this requires to be able to numerically compute the right-hand side of (2.3.7) or,

equivalently, the mean and the covariance matrix of the pseudo-posterior distribution ̂︀𝜋𝑛. For

smooth and strongly log-concave densities, the cost of such computations has been recently

assessed in (Dalalyan, 2016; Durmus and Moulines, 2016). The adaptation of the approaches

developed therein to the pseudo-posterior ̂︀𝜋𝑛, which is neither smooth nor strongly log-concave

(but can be approximated by such a function), is an ongoing work.

2.4 Pseudo-Posterior concentration

Since the EWA estimator has a Bayesian flavour, it is appealing to look at the concentration

properties of the pseudo-posterior distribution ̂︀𝜋𝑛. This is particularly important in the light

of the results in Castillo et al. (2015) establishing that, for the temperature 𝜏 = 𝜎2/𝑛, the

pseudo-posterior ̂︀𝜋𝑛 with the Laplace prior puts asymptotically no mass on the set of vectors 𝛽

having a small prediction error. Furthermore, this result is proven for the orthonormal design

matrix X, which, intuitively, is a rather favourable situation for the Laplace prior.

The first property that we establish here and that characterises the concentration of the pseudo-

posterior around its average is the following upper bound on the variance of the prediction X𝛽

when 𝛽 is drawn from ̂︀𝜋𝑛. (Recall that the matrix X has 𝑛 rows, so the normalisation by

multiplicative factor 1/𝑛 is natural.)
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Proposition 2.4.1. If ̂︀𝜋𝑛(𝑢) ∝ exp (−𝑉𝑛(𝑢)/𝜏) is the pseudo-posterior with the Laplace prior

defined by (2.3.1), then, for every 𝛽 ∈ R𝑝, we have

∫︁
R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢 ≤ 𝑝𝜏 + 𝑉𝑛(𝛽) − 1

2𝑛

∫︁
R𝑝

‖X(𝑢−𝛽)‖22 ̂︀𝜋𝑛(𝑢) d𝑢. (2.4.1)

Furthermore, choosing 𝛽 = ̂︀𝛽EWA =
∫︀
R𝑝 𝑢 ̂︀𝜋𝑛(𝑢) d𝑢, we get

1

𝑛

∫︁
R𝑝

‖X(𝑢− ̂︀𝛽EWA)‖22 ̂︀𝜋𝑛(𝑢) d𝑢 ≤ 𝑝𝜏. (2.4.2)

The proof of this result is rather simple and plays an important role in the proof of the oracle

inequality stated in 2.3.1. For these reasons, we opted for presenting this proof in this section,

instead of postponing it to 2.7.

Proof. The convexity of the function 𝛽 ↦→ ‖𝛽‖1 readily implies that the function 𝛽 ↦→ 𝑊𝑛(𝛽) =

𝑉𝑛(𝛽) − 1/2𝑛‖X(𝑢 − 𝛽)‖22 is a convex function, for every fixed 𝑢 ∈ R𝑝. Furthermore, we have

𝑊𝑛(𝑢) = 𝑉𝑛(𝑢) and ∇𝑊𝑛(𝑢) = ∇𝑉𝑛(𝑢) at any point 𝑢 of differentiability of 𝑉𝑛. Therefore,

𝑉𝑛
(︀
𝛽
)︀
≥ 𝑉𝑛(𝑢) +

(︀
𝛽 − 𝑢

)︀⊤∇𝑉𝑛(𝑢) +
1

2𝑛

⃦⃦
X(𝑢−𝛽)

⃦⃦2

2
, (2.4.3)

for all 𝛽 ∈ R𝑝 and for almost all 𝑢 ∈ R𝑝 (those for which 𝑉𝑛 is continuously differentiable at

𝑢). Using the fundamental theorem of calculus, we remark that

∫︁
R𝑝

∇𝑉𝑛(𝑢) ̂︀𝜋(𝑢) d𝑢 = −𝜏
∫︁
R𝑝

[∇̂︀𝜋𝑛(𝑢)] d𝑢 = 0𝑝 (2.4.4)

and that

∫︁
R𝑝

𝑢⊤∇𝑉𝑛(𝑢) ̂︀𝜋(𝑢) d𝑢− 𝑝𝜏 =

∫︁
R𝑝

𝑝∑︁
𝑗=1

(︂
𝛽𝑗
𝜕𝑉𝑛
𝜕𝛽𝑗

(𝑢) − 𝜏

)︂̂︀𝜋(𝑢) d𝑢 (2.4.5)

= −𝜏
∫︁
R𝑝

𝑝∑︁
𝑗=1

𝜕[𝑢𝑗̂︀𝜋𝑛(𝑢)]

𝜕𝑢𝑗
d𝑢 = 0. (2.4.6)

Integrating inequality (2.4.3) on R𝑝 with respect to the density ̂︀𝜋𝑛 and using relations (2.4.4)

and (2.4.6), we arrive at

𝑉𝑛
(︀
𝛽
)︀
≥

∫︁
R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢− 𝑝𝜏 +
1

2𝑛

∫︁
R𝑝

⃦⃦
X
(︀
𝑢−𝛽

)︀⃦⃦2

2
̂︀𝜋𝑛(𝑢) d𝑢. (2.4.7)

This completes the proof of the first claim of the proposition.
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To prove the second claim, we replace 𝛽 by ̂︀𝛽EWA in (2.4.7). After rearranging the terms, this

yields

1

2𝑛

∫︁
R𝑝

⃦⃦
X
(︀
𝑢− ̂︀𝛽EWA)︀⃦⃦2

2
̂︀𝜋𝑛(𝑢) d𝑢 ≤ 𝑝𝜏 + 𝑉𝑛

(︀̂︀𝛽EWA)︀− ∫︁
R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢. (2.4.8)

Using once again the fact that 𝑢 ↦→ 𝑊𝑛(𝑢) = 𝑉𝑛(𝑢)− 1/2𝑛‖X(𝑢− ̂︀𝛽EWA)‖22 is a convex function,

we obtain 𝑉𝑛
(︀̂︀𝛽EWA

)︀
= 𝑊𝑛

(︀̂︀𝛽EWA
)︀
≤

∫︀
𝑊𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢, which is equivalent to

𝑉𝑛
(︀̂︀𝛽EWA)︀− ∫︁

R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢 ≤ − 1

2𝑛

∫︁
R𝑝

⃦⃦
X
(︀
𝑢− ̂︀𝛽EWA)︀⃦⃦2

2
̂︀𝜋𝑛(𝑢) d𝑢. (2.4.9)

This inequality, combined with (2.4.8), completes the proof of (2.4.2) and of the proposition.

Remark 2.4.1. A careful inspection of the proof reveals that the claims of the proposition are

independent of the precise form of the ℓ1-penalty. Therefore, the proposition still holds if we

replace the ℓ1-norm by any convex penalty.

The second claim of the proposition establishes that the dispersion of the distribution ̂︀𝜋𝑛 around

its average value ̂︀𝛽EWA is of the order (𝑝𝜏)1/2. Interestingly, we show below that the same order

of magnitude appears when we determine a region of concentration for the pseudo-posterior ̂︀𝜋𝑛.
A key argument in the proof of the latter claim is the following result.

Proposition 2.4.2 (Bobkov and Madiman (2011), Theorem 1.1). Let ̂︀𝜋𝑛(𝑢) ∝ exp(−𝑉𝑛(𝑢)/𝜏)

be a log-concave probability density5 and let 𝛽 be a random vector drawn from ̂︀𝜋𝑛. Then, for

any 𝑡 > 0, the inequality

𝑉𝑛(𝛽) ≤
∫︁
R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢+ 𝜏
√
𝑝 𝑡 (2.4.10)

holds with probability at least 1 − 2𝑒−𝑡/16.

Using this proposition, we establish the following result (the proof of which is postponed to

2.7) characterising the concentration of ̂︀𝜋𝑛.
Theorem 2.4.1 (Posterior concentration bound). Assume that data are generated by model

(2.1.1) with 𝜉 ∼ 𝒩 (0, 𝜎2I𝑛) and rescaled covariates, i.e., max𝑗∈[𝑝] 1/𝑛‖𝑥𝑗‖22 ≤ 1. Let the quality

of an estimator be measured by the squared prediction loss (2.1.6). Assume that the tuning

parameter 𝜆 satisfies 𝜆 ≥ 2𝜎
(︀
2/𝑛 log(𝑝/𝛿)

)︀
1/2, for some 𝛿 ∈ (0, 1). Then, with probability at least

5This means that 𝑉𝑛 is a convex function.
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1 − 𝛿, the pseudo-posterior ̂︀𝜋𝑛 with the Laplace prior defined by (2.3.1) satisfies

̂︀𝜋𝑛(︂𝛽 : ℓ𝑛(𝛽,𝛽⋆) ≤ inf
𝛽∈R𝑝

𝐽⊂[𝑝]

{︂
ℓ𝑛(𝛽,𝛽⋆) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
2𝜅𝐽,3

}︂
+ 8𝑝𝜏

)︂
≥ 1 − 2𝑒−

√
𝑝/16. (2.4.11)

The latter theorem, in conjunction with 2.3.1, tells us that if we generate a random vector 𝛽

distributed according to the density ̂︀𝜋𝑛, then with high probability it will have a prediction loss

almost as small as the one of the EWA, the average with respect to ̂︀𝜋𝑛. This remark might be

attractive from the computational point of view, since, at least for some distributions, drawing

a random sample is easier than computing the expectation. Note also that by increasing the

factor in front of the term 𝑝𝜏 it is possible to make the ̂︀𝜋𝑛-probability of the event considered

in 2.4.1 even closer to one.

2.5 Sparsity oracle inequality in the matrix case

In this section, we extend the results of the previous sections to the problem of matrix regres-

sion with a low-rankness inducing prior. We first need to introduce additional notations used

throughout this section.

2.5.1 Specific notation

For two matrices A and B of the same dimension, the scalar product is defined by

⟨A,B⟩ = tr(A⊤ B). (2.5.1)

The nuclear norm of a 𝑝 × 𝑞 matrix A is ‖A‖1 =
∑︀𝑟

𝑘=1 𝑠A,𝑘, where 𝑠A,𝑘 is the 𝑘-th largest

singular value of A and 𝑟 = rank(A). The operator norm is ‖A‖ = sup𝑥∈R𝑞 ‖A𝑥‖2/‖𝑥‖2 =

𝑠A,1. We denote by 𝒳 = (X1, . . . ,X𝑛) ∈ R𝑛×𝑚1×𝑚2 the three-dimensional tensor playing the

role of the design matrix. Besides, let ‖A‖2𝐿2(𝒳 ) = ⟨A,A⟩𝐿2(𝒳 ) be the prediction loss defined

via the “scalar product” ⟨A,C⟩𝐿2(𝒳 ) = 1
𝑛

∑︀𝑛
𝑖=1(⟨X𝑖,A⟩⟨X𝑖,C⟩). We will use the notation

𝑢⊤𝒳 =
∑︀

𝑖∈[𝑛] 𝑢𝑖X𝑖 ∈ ℳ𝑚1,𝑚2 for the product of the tensor 𝒳 with the vector 𝑢 ∈ R𝑛.

We now need to define the matrix compatibility factor. Its definition is more involved than

in the vector case because of the fact that the left and right singular spaces differ from one

matrix to another. Let B̄ be any 𝑚1×𝑚2 matrix of rank 𝑟 = rank(B̄) having the singular value

decomposition B̄ = V1ΣV⊤
2 . Here, Σ is a 𝑟× 𝑟 diagonal matrix with positive diagonal entries,

Σ11 ≥ . . . ≥ Σ𝑟𝑟 > 0, and V𝑗 is a 𝑚𝑗 × 𝑟 matrix with orthonormal columns for 𝑗 = 1, 2. For
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any 𝐽 ⊂ [𝑟] and 𝑗 = 1, 2, we define V𝑗,𝐽 as the 𝑚𝑗 × |𝐽 | matrix obtained from V𝑗 by removing

the columns with indices lying outside of 𝐽 . This allows us to introduce the linear operators

𝒫B̄,𝐽𝑐 and 𝒫⊥
B̄,𝐽𝑐 from ℳ𝑚1,𝑚2 to ℳ𝑚1,𝑚2

𝒫B̄,𝐽𝑐(U) = (I𝑚1 −V1,𝐽V
⊤
1,𝐽)U(I𝑚2 −V2,𝐽V

⊤
2,𝐽), 𝒫⊥

B̄,𝐽𝑐(U) = U− 𝒫B̄,𝐽𝑐(U).

We define, for every B̄ ∈ ℳ𝑚1,𝑚2 , 𝐽 ⊂ [rank(B̄)] and 𝑐 > 0, the compatibility factor

𝜅B̄,𝐽,𝑐 = inf
U∈ℳ𝑚1,𝑚2

‖𝒫B̄,𝐽𝑐 (U)‖1<𝑐‖𝒫⊥
B̄,𝐽𝑐 (U)‖1

𝑐2|𝐽 | ‖U‖2𝐿2(𝒳 )(︀
𝑐‖𝒫⊥

B̄,𝐽𝑐(U)‖1 − ‖𝒫B̄,𝐽𝑐(U)‖1
)︀2 . (2.5.2)

When 𝐽 = [rank(B̄)], we use the notation 𝜅B̄,𝑐 instead of 𝜅B̄,𝐽,𝑐. Note that the set 𝒞(B̄, 𝐽, 𝑐) =

{U ∈ ℳ𝑚1,𝑚2 : ‖𝒫B̄,𝐽𝑐(U)‖1 < 𝑐‖𝒫⊥
B̄,𝐽𝑐(U)‖1} defines the cone of dimensionality reduction.

It consists of matrices U that can be written as a sum of two matrices U1 and U2 such

that U1 is of small rank and dominates the possibly full-rank matrix U2, in the sense that

‖U2‖1 ≤ 𝑐‖U1‖1. Indeed, it suffices to set U1 = 𝒫⊥
B̄,𝐽𝑐(U) and to remark that 𝒫⊥

B̄,𝐽𝑐(U) =

V1,𝐽V
⊤
1,𝐽U + (I𝑚1 −V1,𝐽V

⊤
1,𝐽)UV2,𝐽V

⊤
2,𝐽 is of rank not exceeding 2|𝐽 |.

Similarly to (2.2.2), we also define the function

𝐻(𝜏) = 𝑚1𝑚2𝜏 −
∫︁
ℳ𝑚1,𝑚2

𝐺(U) ̂︀𝜋𝑛(U) dU +𝐺
(︀̂︀B)︀

, (2.5.3)

where 𝐺(U) = ‖U‖2𝐿2(𝒳 ) + 𝜆‖U‖1. The convexity property of the function 𝐺 entails that

𝐻(𝜏) ≤ 𝑚1𝑚2𝜏 for every 𝜏 > 0.

2.5.2 Nuclear-norm prior and the exponential weights

The observed outcomes are 𝑛 real random variables 𝑦1, . . . , 𝑦𝑛 ∈ R. Contrary to Sections 2.3

and 2.4 where the design points are 𝑥1, . . . ,𝑥𝑛 ∈ R𝑝, this section studies the situation in which

we consider 𝑛 design matrices X𝑖 ∈ R𝑚1×𝑚2 for 𝑖 ∈ [𝑛]. We further assume that there is a

regression matrix B⋆ ∈ ℳ𝑚1,𝑚2 such that

𝑦𝑖 = tr(X⊤
𝑖 B

⋆) + 𝜉𝑖, 𝑖 ∈ [𝑛], (2.5.4)

where the residuals 𝜉𝑖 are independent and identically distributed according to a centred Gaus-

sian distribution with variance 𝜎2. This model is referred to as trace-regression; see, for instance,

Rohde and Tsybakov (2011). In this model, the nuclear norm is akin to the ℓ1 norm in the
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vector case. Therefore, to some extent, the equivalent of the lasso estimator ̂︀BNNP−LS
𝜆 with a

positive smoothing parameter 𝜆, is defined by

̂︀BNNP−LS
𝜆 ∈ arg minB∈ℳ𝑚1,𝑚2

{︂
1

2𝑛

∑︁
𝑖∈[𝑛]

(𝑦𝑖 − ⟨X𝑖,B⟩)2 + 𝜆‖B‖1
}︂
. (2.5.5)

This is the nuclear-norm penalized least-squares estimator. Similarly to the vector case, the

above defined estimator ̂︀BNNP−LS
𝜆 is the maximum a posteriori estimator corresponding to the

nuclear-norm prior

𝜋0(B) ∝ exp
{︁
− 𝜆𝜎2‖B‖1

𝑛

}︁
. (2.5.6)

This section investigates the prediction performance of the procedure obtained by replacing the

optimisation step by averaging. In the matrix case, we define the potential function 𝑉𝑛 and the

pseudo-posterior, respectively, by

𝑉𝑛(B) =
1

2𝑛

∑︁
𝑖∈[𝑛]

(𝑦𝑖 − ⟨X𝑖,B⟩)2 + 𝜆‖B‖1, and ̂︀𝜋𝑛(B) ∝ exp {−1/𝜏𝑉𝑛(B)} . (2.5.7)

Using these concepts, we define the EWA with the nuclear-norm prior by

̂︀BEWA =

∫︁
ℳ𝑚1,𝑚2

B ̂︀𝜋𝑛(B) dB. (2.5.8)

We aim at studying the performance of this estimator in terms of the prediction loss

ℓ𝑛
(︀̂︀B,B⋆

)︀
= ‖̂︀B−B⋆‖2𝐿2(𝒳 ) =

1

𝑛

𝑛∑︁
𝑖=1

⟨X𝑖, ̂︀B−B⋆⟩2. (2.5.9)

2.5.3 Oracle Inequality

The problem of assessing the quality of the nuclear-norm penalised estimators has received a

great deal of attention; see, for instance, (Srebro and Shraibman, 2005; Candès and Tao, 2010;

Candes and Plan, 2011; Bunea et al., 2011; Gaiffas and Lecué, 2011; Negahban and Wainwright,

2011, 2012; Klopp, 2014). Such an interest in these methods is mainly motivated by the variety

of applications in computer vision and image analysis (Shen and Wu, 2012; Harchaoui et al.,

2012), recommendation systems (Zhou et al., 2008; Lim and Teh, 2007), and many other areas.

Bayesian approaches to the problem of low-rank matrix estimation and prediction has been

recently analysed by Alquier and Biau (2013); Mai and Alquier (2015); Cottet and Alquier

(2016).
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Making the parallel with the sparse vector estimation and prediction problem, we can note

that the counterpart of the vector sparsity 𝑠 = ‖𝛽⋆‖0 in the matrix case is the product (𝑚1 +

𝑚2) rank(B⋆), representing the number of potentially nonzero terms in the singular values

decomposition of B⋆. Similarly, the counterpart of the ambient dimension 𝑝 is the overall

number of entries in B⋆ that is 𝑚1𝑚2. In view of these analogies, the next theorem is a natural

extension of 2.3.1 to the model of trace-regression. To state it, we need the following notation:

𝑣𝒳 =

⃦⃦⃦⃦
1

𝑛

𝑛∑︁
𝑖=1

X𝑖X
⊤
𝑖

⃦⃦⃦⃦1/2⋁︁⃦⃦⃦⃦
1

𝑛

𝑛∑︁
𝑖=1

X⊤
𝑖 X𝑖

⃦⃦⃦⃦1/2

. (2.5.10)

Theorem 2.5.1. Assume that data are generated by model (2.5.4) with 𝜉 drawn from the Gaus-

sian distribution 𝒩 (0𝑛, 𝜎
2I𝑛). Suppose, in addition, that 𝜆 ≥ 2𝜎𝑣𝒳{2/𝑛 log((𝑚1 +𝑚2)/𝛿)}1/2,

for some 𝛿 ∈ (0, 1). Then, with probability at least 1 − 𝛿, the matrix ̂︀BEWA defined in (2.5.8)

satisfies

ℓ𝑛(̂︀BEWA,B⋆) ≤ inf
B̄∈ℳ𝑚1,𝑚2

𝐽⊂[rank(B̄)]

{︂
ℓ𝑛(B̄,B⋆) + 4𝜆‖𝒫B̄,𝐽𝑐(B̄)‖1 +

9𝜆2|𝐽 |
4𝜅B̄,𝐽,3

}︂
+ 2𝑚1𝑚2𝜏. (2.5.11)

This result can be seen as an extension of (Koltchinskii et al., 2011a, Theorem 2) to the

exponentially weighted aggregate with a prior proportional to the scaled nuclear norm. Indeed,

if we upper bound the infimum over all matrices B by the infimum over matrices such that

rank(B) ≤ 𝑟 for some given integer 𝑟, we easily see that (2.5.11) yields

ℓ𝑛(̂︀BEWA,B⋆) ≤ inf
B̄∈ℳ𝑚1,𝑚2

rank(B̄)≤𝑟

{︂
ℓ𝑛(B̄,B⋆) +

9𝜆2𝑟

4𝜅B̄,3

}︂
+ 2𝑚1𝑚2𝜏. (2.5.12)

An advantage of inequality (2.5.11) is that it offers a continuous interpolation between the so

called “slow” and “fast” rates. “Slow” rates refer typically to risk bounds that are proportional

to 𝜆, whereas “fast” rates are proportional to 𝜆2. For procedures based on ℓ1-norm or nuclear-

norm penalty, “slow” rates are known to hold without any assumption on the design, while

“fast” rates require a kind of compatibility assumption. In (2.5.11), taking 𝐽 = ∅, the term

with 𝜆2 disappears and we get the “slow” rate proportional to 𝜆‖B̄‖1. The other extreme case

corresponding to 𝐽 = [rank(B̄)] leads to the “fast” rate proportional to 𝜆2 rank(B̄), provided

that the compatibility factor is bounded away from zero. The risk bound in (2.5.11) bridges

these two extreme situations by providing the rate min𝑞∈[𝑟]{𝜆(𝑠𝑞+1,B̄ + . . .+ 𝑠𝑟,B̄) +𝜆2𝑞}, where

𝑟 = rank(B̄) and 𝑠ℓ,B̄ is the ℓ-th largest singular value of B̄. Thus, our risk bound quantifies
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the quality of prediction in the situations where the true matrix (or the best prediction matrix)

is nearly low-rank, but not necessarily exactly low-rank.

As well as in the vector case, the inequality stated in 2.5.1 is a simplified version of the following

one: for any 𝛾 > 1, in the event ‖𝜉⊤𝒳‖ ≤ 𝑛𝜆/𝛾, it holds

ℓ𝑛(̂︀BEWA,B⋆) ≤ inf
B∈ℳ𝑚1,𝑚2

𝒫∈P

{︂
ℓ𝑛(B,B⋆)+4𝜆‖𝒫B̄,𝐽𝑐(B̄)‖1+

𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅B̄,𝐽,(𝛾+1)/(𝛾−1)

}︂
+2𝐻(𝜏), (2.5.13)

where 𝐻 is defined by (2.5.3). This inequality as well as 2.5.1 is proved in 2.7.

2.5.4 Pseudo-posterior concentration

In what follows, we state the result on the pseudo-posterior concentration in the matrix case.

Akin to the vector case, one of the main building blocks is (Bobkov and Madiman, 2011,

Theorem 1.1), see 2.4.2 above. Since the potential 𝑉𝑛 in (2.5.7) is convex, the proposition

applies and implies that, for every 𝑡 > 0,

̂︀𝜋𝑛(︁B : 𝑉𝑛(B) ≤
∫︁
ℳ𝑚1,𝑚2

𝑉𝑛(U) ̂︀𝜋𝑛(U) dU + 𝜏
√
𝑚1𝑚2𝑡

)︁
≥ 1 − 2𝑒−𝑡/16. (2.5.14)

After some nontrivial algebra, this allows us to show that a risk bound similar to (2.5.1) holds

not only for the pseudo-posterior-mean ̂︀BEWA, but also for any matrix B randomly sampled

from ̂︀𝜋𝑛.
Theorem 2.5.2. Let data be generated by model (2.5.4) with 𝜉 ∼ 𝒩 (0𝑛, 𝜎

2I𝑛) and let the

quality of an estimator be measured by the squared prediction loss (2.5.9). Assume that the

tuning parameter 𝜆 satisfies 𝜆 ≥ 2𝜎𝑣𝒳{2/𝑛 log((𝑚1 +𝑚2)/𝛿)}1/2, for some 𝛿 ∈ (0, 1). Then,

with probability at least 1 − 𝛿, the pseudo-posterior ̂︀𝜋𝑛 with the nuclear-norm prior defined by

(2.5.7) is such that the probability

̂︀𝜋𝑛(︂B : ℓ𝑛(B,B⋆) ≤ inf
B̄∈ℳ𝑚1,𝑚2

𝐽⊂[rank(B̄)]

{︂
ℓ𝑛(B̄,B⋆) + 4𝜆‖𝒫B̄,𝐽𝑐(B̄)‖1 +

9𝜆2|𝐽 |
4𝜅B̄,𝐽,3

}︂
+ 8𝑚1𝑚2𝜏

)︂
(2.5.15)

is larger than 1 − 2𝑒−
√
𝑚1𝑚2/16.

We postpone the proof of Theorem 2.5.2 to Section 2.7. One can deduce from 2.5.2 that if

the temperature parameter 𝜏 is sufficiently small, for instance, 𝜏 ≤ 𝜆2/(𝑚1𝑚2), then a random

matrix sampled from the pseudo-posterior ̂︀𝜋𝑛 satisfies nearly the same oracle inequality as the

nuclear-norm penalized least-squares estimator. Indeed, the term 8𝑚1𝑚2𝜏 , which is the only
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difference between the two upper bounds, is in this case negligible with respect to the term

involving 𝜆2.

2.6 Conclusions

We have considered the model of regression with fixed design and established risk bounds for the

exponentially weighted aggregate with the Laplace prior. This class of estimators encompasses

important particular cases such as the lasso and the Bayesian lasso. The risk bounds established

in the present work exhibit a range of values for the temperature parameter for which the EWA

with the Laplace prior has a risk bound of the same order as the lasso. This offers a valuable

complement to the negative results by Castillo et al. (2015), which show that the Bayesian lasso

is not rate-optimal in the sparsity scenario. Note that the Bayesian lasso corresponds to the

EWA with the Laplace prior for the temperature parameter 𝜏 = 𝜎2/𝑛, where 𝜎2 is the variance

of the noise. Our results imply that in order to get rate-optimality in the sparsity scenario, it

is sufficient to choose 𝜏 smaller than 𝜎2/(𝑛𝑝).

We have extended the result outlined in the previous paragraph in two directions. First, we

have shown that one can replace the pseudo-posterior mean by any random sample from the

pseudo-posterior distribution. This eventually increases the risk by a negligible additional

term, but might be useful from a computational point of view. Second, we have established

risk bounds of the same flavour in the case of trace-regression, when the unknown parameter

is a nearly low-rank large matrix. This result extends those of (Koltchinskii et al., 2011a) and

unifies the risks bounds leading to the “slow” and “fast” rates. Furthermore, our result offers

an interpolation between these two extreme cases, see the discussion following 2.5.1.

With some additional work, all the results established in the present work can be extended

to the model of regression with random design. Furthermore, the case of a partially labelled

sample can be handled by coupling the methodology of the present work with that of Chapter 4.

An interesting line of future research is to apply our approach to other priors constructed from

convex penalties such as the mixed ℓ1/ℓ2-norm used in the group-lasso (Yuan and Lin, 2006),

or the weighted ℓ1-norm of ordered entries used in the slope (Bogdan et al., 2015). Another

highly relevant and challenging topic for future work will be to investigate the computational

complexity of various methods for approximating the pseudo-posterior mean or for drawing a

sample from the pseudo-posterior density.
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2.7 Proofs

2.7.1 Proof of the oracle inequality of Theorem 2.3.1

To ease notation, throughout this section we write ̂︀𝛽 instead of ̂︀𝛽EWA. Furthermore, for a

function ℎ : R𝑝 → R, we often write
∫︀
ℎ ̂︀𝜋𝑛 instead of

∫︀
R𝑝 ℎ(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢. We split the proof

into three steps. The first step, carried out in 2.7.1, consists in deriving an initial upper

bound on the prediction loss from the fundamental inequality stated in (2.4.1). The second

step, performed in 2.7.2, shares many common features with the analogous developments for

the lasso and provides a proof of (2.3.3). Finally, the third step is a standard bound of the

probability of the event ℰ𝛾 = {‖X⊤𝜉‖∞ ≤ 𝑛𝜆/𝛾} based on the union bound and properties of

the Gaussian distribution.

Lemma 2.7.1. For any 𝛽 ∈ R𝑝,we have

ℓ𝑛(̂︀𝛽,𝛽⋆) ≤ ℓ𝑛(𝛽,𝛽⋆) +
2

𝑛
‖X⊤𝜉‖∞‖̂︀𝛽 −𝛽‖1 + 2𝜆(‖𝛽‖1 − ‖̂︀𝛽‖1) + 2𝐻(𝜏) − 1

𝑛
‖X(𝛽 − ̂︀𝛽)‖22.

Proof. On the one hand, inequality (2.4.1) can be rewritten as

𝑉𝑛(̂︀𝛽) ≤ 𝑉𝑛(𝛽) + 𝑉𝑛(̂︀𝛽) −
∫︁
R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢+ 𝑝𝜏 − 1

2𝑛

∫︁
R𝑝

‖X(𝑢−𝛽)‖22 ̂︀𝜋𝑛(𝑢) d𝑢⏟  ⏞  
:=𝐴

. (2.7.1)

On the other hand, one can check that

𝑉𝑛(̂︀𝛽) −
∫︁
R𝑝

𝑉𝑛(𝑢) ̂︀𝜋𝑛(𝑢) d𝑢 =
1

2𝑛
‖X̂︀𝛽‖22 + 𝜆‖̂︀𝛽‖1 − ∫︁

R𝑝

(︁ 1

2𝑛
‖X𝑢‖22 + 𝜆‖𝑢‖1

)︁ ̂︀𝜋𝑛(𝑢) d𝑢,

(2.7.2)∫︁
R𝑝

‖X(𝑢−𝛽)
⃦⃦2

2
̂︀𝜋𝑛(𝑢) d𝑢 = ‖X(𝛽 − ̂︀𝛽)‖22 +

∫︁
R𝑝

‖X𝑢‖22 ̂︀𝜋𝑛(𝑢) d𝑢− ‖X̂︀𝛽‖22. (2.7.3)

These inequalities, combined with the definition of 𝐻, given in (2.2.2), yield

𝐴 =
1

𝑛
‖X̂︀𝛽‖22 + 𝜆‖̂︀𝛽‖1 − ∫︁

R𝑝

(︁ 1

𝑛
‖X𝑢‖22 + 𝜆‖𝑢‖1

)︁ ̂︀𝜋𝑛(𝑢) d𝑢+ 𝑝𝜏 − 1

2𝑛
‖X(𝛽 − ̂︀𝛽)‖22 (2.7.4)

= 𝐻(𝜏) − 1

2𝑛
‖X(𝛽 − ̂︀𝛽)‖22. (2.7.5)

Finally, using the definitions of the prediction loss ℓ𝑛 and the potential 𝑉𝑛, we get

ℓ𝑛(̂︀𝛽,𝛽⋆) − ℓ𝑛(𝛽,𝛽⋆) = 2
(︀
𝑉𝑛(̂︀𝛽) − 𝑉𝑛(𝛽)

)︀
+

2

𝑛
𝜉⊤X(̂︀𝛽 −𝛽) + 2𝜆(‖𝛽‖1 − ‖̂︀𝛽‖1). (2.7.6)
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In view of the duality inequality, the term 𝜉⊤X(̂︀𝛽 −𝛽) is upper bounded in absolute value by

‖X⊤𝜉‖∞‖̂︀𝛽−𝛽‖1. Inserting this inequality and (2.7.1) in (2.7.6) and using relation (2.7.5), we

get the claim of the lemma.

According to 2.7.1, in the event ℰ𝛾 = {‖X⊤𝜉‖∞ ≤ 𝑛𝜆/𝛾}, we have

ℓ𝑛(̂︀𝛽,𝛽⋆) ≤ ℓ𝑛(𝛽,𝛽⋆) +
2𝜆

𝛾
(‖̂︀𝛽 −𝛽‖1 + 𝛾‖𝛽‖1 − 𝛾‖̂︀𝛽‖1) + 2𝐻(𝜏) − 1

𝑛
‖X(𝛽 − ̂︀𝛽)‖22. (2.7.7)

Lemma 2.7.2. For every 𝐽 ⊂ [𝑝], we have

2𝜆

𝛾
(‖̂︀𝛽 −𝛽‖1 + 𝛾‖𝛽‖1 − 𝛾‖̂︀𝛽‖1) − 1

𝑛
‖X(𝛽 − ̂︀𝛽)‖22 ≤ 4𝜆‖𝛽𝐽𝑐‖1 +

𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅𝐽,(𝛾+1)/(𝛾−1)

.

This lemma is essentially a copy of Proposition 2 in Chapter 4. We provide here its proof for

the sake of self-containedness.

Proof. Let us fix a 𝐽 ⊂ {1, . . . , 𝑝} and set 𝑢 = ̂︀𝛽 −𝛽. We have

‖̂︀𝛽−𝛽‖1 +𝛾‖𝛽‖1−𝛾‖̂︀𝛽‖1 = ‖𝑢𝐽‖1 +‖𝑢𝐽𝑐‖1 +𝛾‖𝛽𝐽‖1 +𝛾‖𝛽𝐽𝑐‖1−𝛾‖̂︀𝛽𝐽‖1−𝛾‖̂︀𝛽𝐽𝑐‖1. (2.7.8)

Using inequalities ‖𝛽𝐽‖1 − ‖̂︀𝛽𝐽‖1 ≤ ‖𝑢𝐽‖1 and ‖̂︀𝛽𝐽𝑐‖1 ≥ ‖𝑢𝐽𝑐‖1 − ‖𝛽𝐽𝑐‖1, we deduce from

equation (2.7.8) that

‖̂︀𝛽 −𝛽‖1 + 𝛾‖𝛽‖1 − 𝛾‖̂︀𝛽‖1 ≤ (𝛾 + 1)‖𝑢𝐽‖1 − (𝛾 − 1)‖𝑢𝐽𝑐‖1 + 2𝛾‖𝛽𝐽𝑐‖1. (2.7.9)

Now, by definition of the compatibility factor 𝜅𝐽,𝑐 given by equation (2.2.1), we obtain

‖𝑢𝐽‖1 −
𝛾 − 1

𝛾 + 1
‖𝑢𝐽𝑐‖1 ≤

(︂
|𝐽 |‖X𝑢‖22

𝑛𝜅𝐽,(𝛾+1)/(𝛾−1)

)︂1/2

. (2.7.10)

Hence, inequalities (2.7.9) end (2.7.10) imply that

2𝜆

𝛾
(‖̂︀𝛽 −𝛽‖1 + 𝛾‖𝛽‖1 − 𝛾‖̂︀𝛽‖1) − 1

𝑛
‖X(𝛽 − ̂︀𝛽)‖22 ≤ 4𝜆‖𝛽𝐽𝑐‖1 + 2𝑎𝑏− 𝑎2, (2.7.11)

where we have used the notation 𝑎2 = ‖X𝑢‖22/𝑛 and 𝑏2 = 𝜆2(𝛾+1)2|𝐽 |
𝛾2𝜅𝐽,(𝛾+1)/(𝛾−1)

. Finally, noticing that

2𝑎𝑏− 𝑎2 ≤ 𝑏2 =
𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅𝐽,(𝛾+1)/(𝛾−1)

,

we get the claim of the lemma.
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Combining the claims of the previous lemmas and taking the minimum with respect to 𝐽 and

𝛽, we obtain that the inequality

ℓ𝑛
(︀ ̂︀𝛽,𝛽⋆

)︀
≤ inf

𝛽∈R𝑝

𝐽⊂[𝑝]

{︂
ℓ𝑛
(︀
𝛽,𝛽⋆

)︀
+ 4𝜆‖𝛽𝐽𝑐‖1 +

𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅𝐽,(𝛾+1)/(𝛾−1)

}︂
+ 2𝐻(𝜏) (2.7.12)

holds in the event ℰ𝛾. The third and the last step of the proof consists in assessing the prob-

ability of this event.

Lemma 2.7.3. If X = (𝑥1, . . . ,𝑥𝑝) is a 𝑛× 𝑝 deterministic matrix with columns 𝑥𝑗 satisfying

‖𝑥𝑗‖22 ≤ 𝑛 and if 𝜉 ∼ 𝒩 (0𝑛, 𝜎
2I𝑛), then, for all 𝜀 > 0,

P
(︀
‖X⊤𝜉‖∞ > 𝑛𝜀

)︀
≤ 𝑝 exp

(︀
− 𝑛𝜀2/(2𝜎2)

)︀
. (2.7.13)

Proof. By the union bound, we get

P
(︀
‖X⊤𝜉‖∞ > 𝑛𝜀

)︀
= P

(︂
max
𝑗∈[𝑝]

|𝜉⊤𝑥𝑗| > 𝑛𝜀

)︂
≤

𝑝∑︁
𝑖=1

P
(︀
|𝜉⊤𝑥𝑗| > 𝑛𝜀

)︀
. (2.7.14)

Then, noticing that for each 𝑗 ∈ [𝑝] the random variable 𝜉⊤𝑥𝑗 is distributed according to

𝒩 (0, 𝜎2‖𝑥𝑗‖22), we deduce that

P
(︀
‖X⊤𝜉‖∞ > 𝑛𝜀

)︀
≤ 2

𝑝∑︁
𝑗=1

∫︁ +∞

𝑛𝜀/(𝜎‖𝑥𝑗‖2)
𝜑(𝑢) d𝑢,

where 𝜑 stands for the probability density function of the standard Gaussian distribution.

Finally, by using the inequality
∫︀ +∞
𝑥

𝜑(𝑢) d𝑢 ≤ 1/2 exp(−𝑥2/2) that holds for every 𝑥 > 0, we

obtain the result.

A proof of 2.3.1 can be deduced from the three previous lemmas as follows. Choosing 𝛾 = 2

and 𝜀 = 𝜆/2 ≥ 𝜎
√︀

(2/𝑛) log(𝑝/𝛿) in 2.7.3, we get that the event ℰ𝛾 has a probability at least

1 − 𝛿. Furthermore, on this event, we have already established inequality (2.7.12). Finally,

upper bounding 𝐻(𝜏) by 𝑝𝜏 leads to the claim of the theorem.

2.7.2 Proof of the concentration property of Theorem 2.4.1

Let us introduce the set ℬ = {𝛽 ∈ R𝑝 : 𝑉𝑛(𝛽) ≤
∫︀
𝑉𝑛 ̂︀𝜋𝑛 + 𝑝𝜏}. Applying 2.4.2 with 𝑡 =

√
𝑝,

we get ̂︀𝜋𝑛(ℬ) ≥ 1 − 2𝑒−
√
𝑝/16. To prove 2.4.1, it is sufficient to check that in the event ℰ𝛾 (in
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particular, with 𝛾 = 2), every vector 𝛽 from ℬ satisfies the inequality

ℓ𝑛(𝛽,𝛽⋆) ≤ inf
𝛽∈R𝑝

𝐽⊂[𝑝]

{︂
ℓ𝑛(𝛽,𝛽⋆) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
2𝜅𝐽,3

}︂
+ 8𝑝𝜏. (2.7.15)

In the rest of this proof, 𝛽 is always a vector from ℬ. In view of (2.4.1), it satisfies

𝑉𝑛(𝛽) ≤ 2𝑝𝜏 + 𝑉𝑛(𝛽) − 1

2𝑛

∫︁
R𝑝

‖X(𝑢−𝛽)‖22 ̂︀𝜋𝑛(𝑢) d𝑢. (2.7.16)

Note that (2.7.16) holds for every 𝛽 ∈ R𝑝. Therefore, it also holds for 𝛽 = 𝛽 and yields

1

𝑛

∫︁
R𝑝

‖X(𝑢− 𝛽)‖22 ̂︀𝜋𝑛(𝑢) d𝑢 ≤ 4𝑝𝜏. (2.7.17)

In addition, we have

ℓ𝑛(𝛽,𝛽⋆) − ℓ𝑛(𝛽,𝛽⋆) = 2
(︀
𝑉𝑛(𝛽) − 𝑉𝑛(𝛽)

)︀
+

2

𝑛
𝜉⊤X(𝛽 −𝛽) + 2𝜆(‖𝛽‖1 − ‖𝛽‖1). (2.7.18)

Combining (2.7.16), (2.7.18) and the duality inequality, we get that in ℰ𝛾,

ℓ𝑛(𝛽,𝛽⋆) − ℓ𝑛(𝛽,𝛽⋆) ≤ 4𝑝𝜏 − 1

𝑛

∫︁
R𝑝

‖X(𝑢−𝛽)‖22 ̂︀𝜋𝑛(𝑢) d𝑢 (2.7.19)

+
2𝜆

𝛾
‖𝛽 −𝛽‖1 + 2𝜆(‖𝛽‖1 − ‖𝛽‖1). (2.7.20)

We use now the inequality ‖X(𝑢−𝛽)‖22 ≥ 1/2‖X(𝛽−𝛽)‖22 −‖X(𝑢−𝛽)‖22, in conjunction with

(2.7.17), to deduce from (2.7.20) that

ℓ𝑛(𝛽,𝛽⋆) − ℓ𝑛(𝛽,𝛽⋆) ≤ 8𝑝𝜏 +
2𝜆

𝛾
‖𝛽 −𝛽‖1 + 2𝜆(‖𝛽‖1 − ‖𝛽‖1) −

1

2𝑛
‖X(𝛽 −𝛽)‖22. (2.7.21)

We can apply now 2.7.2 with 𝛽 instead of ̂︀𝛽 and X/
√

2 instead of X in order to get the claim

of 2.4.1.

2.7.3 Proof of Proposition 2.3.1

For the sake of simplicity, we abbreviate ̂︀𝛽 = ̂︀𝛽EWA and ̂︀𝛽0 = ̂︀𝛽LS throughout the proof. In

particular, notation ̂︀𝛽𝑗 (resp. ̂︀𝛽0
𝑗) will refer to the 𝑗-th entry of ̂︀𝛽EWA (resp. ̂︀𝛽LS). First, observe
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that one can write the posterior density as ̂︀𝜋(𝑢) ∝ exp(−𝑉𝑛(𝑢)/𝜏) with

𝑉𝑛(𝑢) = 𝑉𝑛(𝑢) − 1

2𝑛
‖𝑦‖2 +

1

2
‖̂︀Σ1/2

𝑛
̂︀𝛽0‖22 (2.7.22)

=
1

2
‖̂︀Σ1/2

𝑛 (𝑢− ̂︀𝛽0)‖22 + 𝜆‖𝑢‖1. (2.7.23)

On the one hand, the integration by parts formula yields

∫︁
R𝑝

[𝑢⊤∇𝑉𝑛(𝑢)] ̂︀𝜋(𝑢) d𝑢 = −𝜏
∫︁
R𝑝

𝑢⊤∇̂︀𝜋(𝑢) d𝑢 = 𝑝𝜏.

On the other hand, the expression of 𝑉𝑛(𝑢) written in (2.7.23) leads directly to

∫︁
R𝑝

[𝑢⊤∇𝑉𝑛(𝑢)] ̂︀𝜋(𝑢) d𝑢 =

∫︁
R𝑝

𝐺(𝑢) ̂︀𝜋(𝑢) d𝑢− ̂︀𝛽⊤ ̂︀Σ𝑛
̂︀𝛽0, (2.7.24)

where we recall that 𝐺(𝑢) = ‖X𝑢‖22/𝑛+ 𝜆‖𝑢‖1 = ‖̂︀Σ1/2
𝑛 𝑢‖22 + 𝜆‖𝑢‖1. This yields

∫︁
R𝑝

𝐺(𝑢) ̂︀𝜋(𝑢) d𝑢 = 𝑝𝜏 + ̂︀𝛽⊤ ̂︀Σ𝑛
̂︀𝛽0,

and, hence,

𝐻(𝜏) = 𝑝𝜏 − 1

𝑛

∫︁
R𝑝

𝐺(𝑢)̂︀𝜋(𝑢) d𝑢+ ‖̂︀Σ1/2
𝑛

̂︀𝛽‖22 + 𝜆‖̂︀𝛽‖1 (2.7.25)

= ‖̂︀Σ1/2
𝑛

̂︀𝛽‖22 + 𝜆‖̂︀𝛽‖1 − ̂︀𝛽⊤ ̂︀Σ𝑛
̂︀𝛽0, (2.7.26)

which proves the first claim of Proposition 2.3.1. Let us now consider the case where ̂︀Σ𝑛 = I𝑝.

Then, recalling the definition of 𝑉𝑛(𝑢) in (2.7.23), a straightforward calculation reveals that

𝑉𝑛(𝑢) =
𝜆2𝑝

2
+

𝑝∑︁
𝑗=1

[︂
1

2

(︁
𝑢𝑗 − ̂︀𝛽0

𝑗 + 𝜆sign(𝑢𝑗)
)︁2

+ 𝜆̂︀𝛽0
𝑗 sign(𝑢𝑗)

]︂
. (2.7.27)

Hence, we deduce that ̂︀𝜋(𝑢) =
∏︀𝑝

𝑗=1 ̂︀𝜋𝑗(𝑢𝑗) where

̂︀𝜋𝑗(𝑡) ∝ exp
(︁
− 1

2𝜏
(𝑡− ̂︀𝛽0

𝑗 + 𝜆sign(𝑡))2 − 𝜆

𝜏
̂︀𝛽0
𝑗 sign(𝑡)

)︁
. (2.7.28)

Next, let 𝜙(𝑡) =
∫︀ +∞
𝑡

𝜑(𝑥)d𝑥 where 𝜑 denotes the density function of the standard normal

distribution. For a fixed 𝑗 ∈ [𝑝], we consider the abbreviations 𝑎 = 𝜆/
√
𝜏 and 𝑏 = ̂︀𝛽0

𝑗 /
√
𝜏 .

Then, the change of variable 𝑢 = 𝑡/
√
𝜏 in the first integral below, together with the observation
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that sign(𝑡) = sign(𝑡/
√
𝜏) for all real 𝑡, leads to

̂︀𝛽𝑗 =

∫︁
𝑡 ̂︀𝜋𝑗(𝑡) d𝑡 =

√
𝜏

∫︀
𝑢 exp{−1

2
(𝑢− 𝑏+ 𝑎sign(𝑢))2 − 𝑎𝑏sign(𝑢)} d𝑢∫︀

exp{−1
2
(𝑢− 𝑏+ 𝑎sign(𝑢))2 − 𝑎𝑏sign(𝑢)} d𝑢

(2.7.29)

=
√
𝜏

(𝑎+ 𝑏)𝑒𝑎𝑏𝜙(𝑎+ 𝑏) − (𝑎− 𝑏)𝑒−𝑎𝑏𝜙(𝑎− 𝑏)

𝑒𝑎𝑏𝜙(𝑎+ 𝑏) + 𝑒−𝑎𝑏𝜙(𝑎− 𝑏)
(2.7.30)

=
√
𝜏 sign(𝑏)

(𝑎+ |𝑏|)𝑒𝑎|𝑏|𝜙(𝑎+ |𝑏|) − (𝑎− |𝑏|)𝑒−𝑎|𝑏|𝜙(𝑎− |𝑏|)
𝑒𝑎|𝑏|𝜙(𝑎+ |𝑏|) + 𝑒−𝑎|𝑏|𝜙(𝑎− |𝑏|)

(2.7.31)

= ̂︀𝛽0
𝑗 + 𝜆sign(̂︀𝛽0

𝑗 )
𝑒𝑎|𝑏|𝜙(𝑎+ |𝑏|) − 𝑒−𝑎|𝑏|𝜙(𝑎− |𝑏|)
𝑒𝑎|𝑏|𝜙(𝑎+ |𝑏|) + 𝑒−𝑎|𝑏|𝜙(𝑎− |𝑏|)

(2.7.32)

= ̂︀𝛽0
𝑗 + 𝜆sign(̂︀𝛽0

𝑗 )
Ψ(𝑎+ |𝑏|) − Ψ(𝑎− |𝑏|)
Ψ(𝑎+ |𝑏|) + Ψ(𝑎− |𝑏|)

, (2.7.33)

where Ψ(𝑡) = 𝑒𝑡
2/2𝜙(𝑡). In other terms, noticing that Ψ𝜏 (𝑡) = Ψ(𝑡/

√
𝜏), we have obtained

̂︀𝛽𝑗 = sign(̂︀𝛽0
𝑗)
(︁
|̂︀𝛽0
𝑗 | − 𝜆𝑤(𝜏, 𝜆, |̂︀𝛽0

𝑗 |)
)︁
, (2.7.34)

where we have denoted 𝑤(𝜏, 𝜆, 𝑡) = (Ψ𝜏 (𝜆− 𝑡) − Ψ𝜏 (𝜆 + 𝑡))/(Ψ𝜏 (𝜆− 𝑡) + Ψ𝜏 (𝜆 + 𝑡)). Finally,

injecting (2.7.34) in (2.7.26) leads easily to the desired expression for 𝐻.

2.7.4 Proofs for Stein’s unbiased risk estimate (2.3.7)

In what follows, we denote ̂︀𝛽 = ̂︀𝛽EWA for brevity. The dependance on 𝑦 will sometimes be

made explicit in the proof for clarity. Below, it is understood that all gradients are taken with

respect to variable 𝑦 and that 𝜕𝑖 refers to the 𝑖-th element of the gradient. In addition, for every

function ℎ : R𝑛 → R𝑛, we use the notation ∇ · ℎ for the divergence operator
∑︀

𝑖 𝜕𝑖ℎ𝑖. Finally,

function 𝑓 will refer to the non-normalized pseudo-posterior, 𝑓(𝛽,𝑦) = exp(−𝑉𝑛(𝛽,𝑦)/𝜏), and

𝑔 to its integral (the normalizing constant), i.e.

𝑔(𝑦) =

∫︁
R𝑝

𝑓(𝛽,𝑦) d𝛽. (2.7.35)

According to Stein’s formula, an unbiased estimate of the risk of ̂︀𝛽—under Gaussian noise—is

given by ̂︀𝑅EWA(𝜆, 𝜏) =
1

𝑛
‖𝑦 −X̂︀𝛽‖22 − 𝜎2

𝑛
+

2𝜎2

𝑛
∇ · (X̂︀𝛽). (2.7.36)

Therefore, to prove (2.3.7), we need only to show that

∇̂︀𝛽(𝑦) =
Cov̂︀𝜋(𝛽)

𝑛𝜏
X⊤ ∈ R𝑝×𝑛. (2.7.37)
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Indeed, this will imply that

∇ · (X̂︀𝛽) =
∑︁
𝑖

𝑥⊤
𝑖 𝜕𝑖

̂︀𝛽(𝑦) =
1

𝑛𝜏

∑︁
𝑖

𝑥⊤
𝑖 Cov̂︀𝜋(𝛽)𝑥𝑖 =

1

𝑛𝜏

∫︁
R𝑝

‖X(𝛽 − ̂︀𝛽)‖22 ̂︀𝜋𝑛(d𝛽),

which, combined with (2.7.36), leads to (2.3.7). To do so, we proceed in two steps. First, we

prove that

𝜕𝑖̂︀𝜋(𝛽,𝑦) =
𝑥𝑖
𝑛𝜏

(𝛽 − ̂︀𝛽(𝑦))̂︀𝜋(𝛽,𝑦). (2.7.38)

Secondly, we show that

𝜕𝑖̂︀𝛽(𝑦) =
Cov̂︀𝜋(𝛽)

𝑛𝜏
𝑥⊤
𝑖 . (2.7.39)

Given the notations introduced above, we have

̂︀𝜋(𝛽,𝑦) =
𝑓(𝛽,𝑦)

𝑔(𝑦)
. (2.7.40)

Then, notice that

𝜕𝑖𝑓(𝛽,𝑦) = −
(︂
𝑦𝑖 − 𝑥⊤

𝑖 𝛽

𝑛𝜏

)︂
𝑓(𝛽,𝑦). (2.7.41)

Hence, combining (2.7.40) and (2.7.41) yields,

𝜕𝑖𝑓(𝛽,𝑦)

𝑔(𝑦)
= − 1

𝑛𝜏
(𝑦𝑖 − 𝑥⊤

𝑖 𝛽) ̂︀𝜋(𝛽,𝑦). (2.7.42)

Moreover, using one more time (2.7.41), we get

𝜕𝑖𝑔(𝑦)

𝑔(𝑦)
=

∫︀
𝜕𝑖𝑓(𝛽,𝑦)d𝛽

𝑔(𝑦)

= − 1

𝑛𝜏

∫︀
(𝑦𝑖 − 𝑥⊤

𝑖 𝛽)𝑓(𝛽,𝑦)d𝛽

𝑔(𝑦)

=
𝑥⊤
𝑖

𝑛𝜏

∫︀
𝛽𝑓(𝛽,𝑦)d𝛽

𝑔(𝑦)
− 𝑦𝑖
𝑛𝜏

=
1

𝑛𝜏
(𝑥⊤

𝑖
̂︀𝛽(𝑦) − 𝑦𝑖), (2.7.43)
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where (2.7.43) follows from the definition of ̂︀𝛽, 𝑓 and 𝑔. With these remarks in mind, observe

that

𝜕𝑖̂︀𝜋(𝛽,𝑦) =
𝜕𝑖𝑓(𝛽,𝑦)𝑔(𝑦) − 𝑓(𝛽,𝑦)𝜕𝑖𝑔(𝑦)

𝑔(𝑦)2
(2.7.44)

=
𝜕𝑖𝑓(𝛽,𝑦)

𝑔(𝑦)
− ̂︀𝜋(𝛽,𝑦)

𝜕𝑖𝑔(𝑦)

𝑔(𝑦)
(2.7.45)

=
𝑥⊤
𝑖

𝑛𝜏
(𝛽 − ̂︀𝛽(𝑦)) ̂︀𝜋(𝛽,𝑦), (2.7.46)

where the last line follows easily by combining (2.7.42) and (2.7.43). We have therefore proved

(2.7.38) and now proceed to showing (2.7.39). To that aim, we write

𝜕𝑖 ̂︀𝛽(𝑦) = 𝜕𝑖

∫︁
R𝑝

𝛽 ̂︀𝜋(𝛽,𝑦) d𝛽 =

∫︁
R𝑝

𝛽 𝜕𝑖̂︀𝜋(𝛽,𝑦) d𝛽. (2.7.47)

Using (2.7.38) and then transposing the product 𝑥⊤
𝑖 (𝛽 − ̂︀𝛽(𝑦)) ∈ R we have,

𝜕𝑖 ̂︀𝛽(𝑦) =
1

𝑛𝜏

∫︁
R𝑝

𝛽(𝑥⊤
𝑖 (𝛽 − ̂︀𝛽(𝑦))̂︀𝜋(𝛽,𝑦))d𝛽

=
1

𝑛𝜏

∫︁
R𝑝

(𝛽𝛽⊤ − 𝛽 ̂︀𝛽(𝑦)⊤)𝑥𝑖 ̂︀𝜋(𝛽,𝑦)d𝛽

=
1

𝑛𝜏

(︂∫︁
R𝑝

𝛽𝛽⊤̂︀𝜋(𝛽,𝑦)d𝛽 − ̂︀𝛽(𝑦)̂︀𝛽(𝑦)⊤
)︂
𝑥𝑖,

which is equivalent to (2.7.39) and concludes the proof of (2.3.7).

2.7.5 Proof of the results in the matrix case

To ease notation, throughout this section we write ̂︀B instead of ̂︀BEWA. Furthermore, for a

function ℎ : ℳ𝑚1,𝑚2 → R, we often use the notation
∫︀
ℎ ̂︀𝜋𝑛 or

∫︀
ℳ ℎ(U) ̂︀𝜋𝑛(dU) instead of∫︀

ℳ𝑚1,𝑚2
ℎ(U) ̂︀𝜋𝑛(U) dU. In this section, we prove 2.5.1 and 2.5.2. To do so, we state and prove

2.7.1 as well as 2.7.2 that will be used throughout the proofs.

2.7.1 is an extension of the fundamental theorem of calculus in the case of locally-Lipschitz func-

tions. It will be very useful to work with any (pseudo-)posterior of the form ̂︀𝜋𝑛 corresponding

to convex penalties.

Let us first recall that a function 𝑓 : R → R is called locally-Lipschitz-continuous, or locally-

Lipschitz, if it is Lipschitz-continuous on any bounded interval. Clearly, any locally-Lipschitz

function is absolutely continuous (in the sense of Definition 7.17 in Rudin (1987)) and, therefore,

is almost everywhere (with respect to the Lebesgue measure) differentiable.
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Proposition 2.7.1. For any locally-Lipschitz function 𝑓 such that lim|𝑥|→∞ 𝑓(𝑥) = 0 and

𝑓 ′ ∈ 𝐿1(R), we have ∫︁
R
𝑓 ′(𝑥)d𝑥 = 0.

Proof. The result of (Rudin, 1987, Theorem 7.20) implies that for any 𝑎 > 0,

∫︁ 𝑎

−𝑎
𝑓 ′(𝑥) d𝑥 = 𝑓(𝑎) − 𝑓(−𝑎).

Since, by assumption, the derivative 𝑓 ′ is absolutely integrable over R, we have

∫︁
R
𝑓 ′(𝑥) d𝑥 = lim

𝑎→+∞

∫︁ 𝑎

−𝑎
𝑓 ′(𝑥) d𝑥 = lim

𝑎→+∞

(︀
𝑓(𝑎) − 𝑓(−𝑎)

)︀
= 0.

This completes the proof.

Corollary 2.7.1. Let 0𝑚1,𝑚2 be the null element of ℳ𝑚1,𝑚2. Then

∫︁
ℳ

∇̂︀𝜋𝑛(U) dU = 0𝑚1,𝑚2 .

Proof. We want to prove that
∫︀
ℳ[𝜕U𝑠𝑑

̂︀𝜋𝑛(U)] dU = 0 for any 𝑑 := (𝑘, 𝑙) ∈ [𝑚1] × [𝑚2]. To

this end, we will simply prove that
∫︀
R[𝜕U𝑠𝑑

̂︀𝜋𝑛(U)] dU𝑠𝑑 = 0, where the integration is done with

respect to the 𝑠𝑑-th entry of U when all the other entries are fixed.

The function U ↦→ 𝑉𝑛(U) is locally-Lipschitz as the sum of a continuously differentiable function

(the quadratic term) and a Lipschitz term (the nuclear norm). We note in passing that any

norm in a finite-dimensional space is Lipschitz continuous thanks to the triangle inequality

and the equivalence of norms. In addition, one easily checks that ‖U‖21 ≥ ‖U‖2 = ‖U⊤U‖ ≥

max𝑙(U
⊤U)𝑙,𝑙 ≥ U2

𝑠𝑑. This implies that if U𝑠𝑑 tends to infinity while all the other entries of U

remain fixed, the nuclear norm ‖U‖1 tends to infinity6.

As a consequence, the function U𝑠𝑑 ↦→ 𝜋𝑛(U) ∝ exp{−𝑉𝑛(U)/𝜏} is locally-Lipschitz and tends

to zero when |U𝑠𝑑| → ∞. This implies that we can apply 2.7.1 and the claim of the corollary

follows.

Corollary 2.7.2. With the notation introduced in 2.5, we have

∫︁
ℳ
⟨U,∇𝑉𝑛(U)⟩ ̂︀𝜋𝑛(U) dU = 𝜏𝑚1𝑚2. (2.7.48)

6This assertion can be also established for any other norm using the equivalence of norms in ℳ𝑚1,𝑚2
.
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Proof of Corrolary 2.7.2. We first remark that (2.7.48) can be equivalently written as

∑︁
𝑑∈[𝑚1]×[𝑚2]

∫︁
ℳ

U𝑠𝑑 [𝜕U𝑠𝑑
𝑉𝑛(U)] ̂︀𝜋𝑛(U) dU = 𝜏𝑚1𝑚2. (2.7.49)

To establish this identity, it suffices to prove that each integral of the left-hand side is equal to

𝜏 . We have already checked in the proof of 2.7.1 that the mapping U𝑠𝑑 ↦→ 𝜋𝑛(U) is locally-

Lipschitz and tends to zero when U𝑠𝑑 tends to infinity. Furthermore, the latter convergence

is exponential so that U𝑠𝑑𝜋𝑛(U) tends to zero as well, when U𝑠𝑑 tends to infinity. In view of

2.7.1, this yields

∫︁
ℳ

𝜕[U𝑠𝑑 ̂︀𝜋𝑛(U)]

𝜕U𝑠𝑑

dU = 0. (2.7.50)

Moreover, we remark that

𝜕[U𝑠𝑑 ̂︀𝜋𝑛(U)]

𝜕U𝑠𝑑

= U𝑠𝑑
𝜕̂︀𝜋𝑛(U)

𝜕U𝑠𝑑

+ ̂︀𝜋𝑛(U) = −U𝑠𝑑
𝜕𝑉𝑛(U)

𝜏𝜕U𝑠𝑑

̂︀𝜋𝑛(U) + ̂︀𝜋𝑛(U). (2.7.51)

Therefore, multiplying by 𝜏 and integrating over ℳ𝑚1,𝑚2 , we get

∫︁
ℳ

U𝑠𝑑
𝜕𝑉𝑛(U)

𝜕U𝑠𝑑

̂︀𝜋𝑛(U) dU = 𝜏

∫︁
ℳ

̂︀𝜋𝑛(U)dU = 𝜏.

This completes the proof.

The next Proposition is the matrix analogue of 2.4.1.

Proposition 2.7.2. Let ̂︀𝜋𝑛(U) ∝ exp (−𝑉𝑛(U)/𝜏) be the pseudo-posterior defined by (2.5.7).

Then, for every B̄ ∈ ℳ𝑚1,𝑚2, we have

∫︁
ℳ
𝑉𝑛(U) ̂︀𝜋𝑛(dU) ≤ 𝑉𝑛(B̄) − 1

2

∫︁
ℳ

‖B̄−U‖2𝐿2(𝒳 )̂︀𝜋𝑛(dU) +𝑚1𝑚2𝜏. (2.7.52)

Furthermore, ∫︁
ℳ

‖U− ̂︀BEWA‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU) ≤ 𝑚1𝑚2𝜏. (2.7.53)

Proof. The convexity of U ↦→ ‖U‖1 and the strong convexity of the function 𝜃 ↦→ ‖𝑦 − 𝜃‖22
applied in 𝜃 =

∑︀
𝑖∈[𝑛]⟨X𝑖,U⟩ imply that for any U, B̄ ∈ ℳ𝑚1,𝑚2 ,

𝑉𝑛
(︀
B̄
)︀
≥ 𝑉𝑛(U) + ⟨B̄−U,∇𝑉𝑛(U)⟩ +

1

2
‖B̄−U‖2𝐿2(𝒳 ). (2.7.54)
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In order to prove 2.7.2 we rely on Corrolaries 2.7.1 and 2.7.2 from 2.7.1:

∫︁
ℳ

∇𝑉𝑛(U) ̂︀𝜋𝑛(dU) = 0 and
∫︁
ℳ
⟨U,∇𝑉𝑛(U)⟩ ̂︀𝜋𝑛(dU) = 𝑚1𝑚2𝜏. (2.7.55)

We integrate inequality (2.7.54) over ℳ𝑚1,𝑚2 with respect to the density ̂︀𝜋𝑛 and use equalities

(2.7.55). This yields

𝑉𝑛
(︀
B̄
)︀
≥

∫︁
ℳ
𝑉𝑛(U) ̂︀𝜋𝑛(dU) −𝑚1𝑚2𝜏 +

1

2

∫︁
ℳ

‖B̄−U‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU), (2.7.56)

which concludes the proof of the first assertion of 2.7.2. The second assertion follows from the

first one by choosing B̄ = ̂︀B.

Lemma 2.7.4. In the event ℰ𝛾 = {‖𝜉⊤𝒳‖ ≤ 𝑛𝜆/𝛾}, for any B̄ ∈ ℳ𝑚1,𝑚2,we have

ℓ𝑛(̂︀B,B⋆) ≤ ℓ𝑛(B̄,B⋆) +
2𝜆

𝛾

(︀
𝛾‖B̄‖1 − 𝛾‖̂︀B‖1 + ‖B̄− ̂︀B‖1

)︀
− ‖B̄− ̂︀B‖2𝐿2(𝒳 ) + 2𝐻(𝜏).

(2.7.57)

Proof. On the one hand, using the definitions of the prediction loss ℓ𝑛 and the empirical loss

𝐿𝑛, as well as the Von Neumann inequality, we get

ℓ𝑛(̂︀B,B⋆) − ℓ𝑛(B̄,B⋆) = 2(𝑉𝑛(̂︀B) − 𝑉𝑛(B̄)) +
2

𝑛

∑︁
𝑖∈[𝑛]

𝜉𝑖⟨X𝑖, ̂︀B− B̄⟩ + 2𝜆(‖B̄‖1 − ‖̂︀B‖1)

(2.7.58)

≤ 2(𝑉𝑛(̂︀B) − 𝑉𝑛(B̄)) +
2

𝑛
‖𝜉⊤𝒳‖‖̂︀B− B̄‖1 + 2𝜆(‖B̄‖1 − ‖̂︀B‖1)

(2.7.59)
(in ℰ𝛾)
≤ 2(𝑉𝑛(̂︀B) − 𝑉𝑛(B̄)) + 2𝜆(‖B̄‖1 − ‖̂︀B‖1) +

2𝜆

𝛾
‖B̄− ̂︀B‖1. (2.7.60)

Notice that inequality (2.7.52) can be rewritten as

𝑉𝑛(̂︀B) ≤ 𝑉𝑛(B̄) + 𝑉𝑛(̂︀B) −
∫︁
ℳ
𝑉𝑛̂︀𝜋𝑛 +𝑚1𝑚2𝜏 −

1

2

∫︁
ℳ

‖B̄−U‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU)⏟  ⏞  
:=𝐴

. (2.7.61)
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One can check that

𝑉𝑛(̂︀B) −
∫︁
ℳ
𝑉𝑛 ̂︀𝜋𝑛 =

1

2
‖̂︀B‖2𝐿2(𝒳 ) + 𝜆‖̂︀B‖1 −

∫︁
ℳ

(︁1

2
‖U‖2𝐿2(𝒳 ) + 𝜆‖U‖1

)︁ ̂︀𝜋𝑛(dU),

(2.7.62)∫︁
‖U− B̄

⃦⃦2

𝐿2(𝒳 )
̂︀𝜋𝑛(dU) = ‖B̄− ̂︀B‖2𝐿2(𝒳 ) +

∫︁
‖U‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU) − ‖̂︀B‖2𝐿2(𝒳 ). (2.7.63)

These inequalities, combined with the definition of 𝐻, given in (2.5.3), yield

𝐴 = 𝐻(𝜏) − 1

2
‖B̄− ̂︀B‖2𝐿2(𝒳 ). (2.7.64)

Inserting this inequality in (2.7.61) and using relation (2.7.60), we get the claim of the lemma.

The next step is to establish the counterpart of 2.7.2 in the matrix setting.

Lemma 2.7.5. For every 𝐽 ∈ [rank(B̄)], we have

2𝜆

𝛾

(︀
𝛾‖B̄‖1 − 𝛾‖̂︀B‖1 + ‖B̄− ̂︀B‖1

)︀
− ‖B̄− ̂︀B‖2𝐿2(𝒳 ) ≤ 4𝜆‖𝒫B̄,𝐽𝑐(B̄)‖1 +

𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅B̄,𝐽,(𝛾+1)/(𝛾−1)

.

(2.7.65)

Proof. To ease notation, let us write B̄𝐽 and B̄𝐽𝑐 instead of 𝒫B̄,𝐽(B̄) = 𝒫⊥
B̄,𝐽𝑐(B̄) and 𝒫B̄,𝐽𝑐(B̄),

respectively. Clearly, B̄ = B̄𝐽 + B̄𝐽𝑐 . Recall that 𝑟 = rank(B̄) and B̄ = V1ΣV⊤
2 is the

singular value decomposition of B̄. Note that the matrices Π1,𝐽𝑐 = I𝑚1 −V1,𝐽V
⊤
1,𝐽 and Π2,𝐽𝑐 =

I𝑚2 −V2,𝐽V
⊤
2,𝐽 are orthogonal projectors and, for every matrix U ∈ ℳ, we have 𝒫B̄,𝐽𝑐(U) =

Π1,𝐽𝑐UΠ2,𝐽𝑐 .

Let W be a 𝑚1 ×𝑚2 matrix such that ‖W‖ = 1 and ⟨𝒫B̄,𝐽𝑐(̂︀B),W⟩ = ‖𝒫B̄,𝐽𝑐(̂︀B)‖1. We set

D = V1,𝐽V
⊤
2,𝐽 + Π1,𝐽𝑐WΠ2,𝐽𝑐 . It is clear that

‖B̄‖1 ≤ ‖B̄𝐽‖1 + ‖B̄𝐽𝑐‖1 = ⟨B̄𝐽 ,D⟩ + ‖B̄𝐽𝑐‖1 (2.7.66)

and, in view of the von Neumann inequality, ‖̂︀B‖1 ≥ ⟨̂︀B,D⟩. This implies that

‖B̄‖1 − ‖̂︀B‖1 ≤ ‖B̄𝐽𝑐‖1 + ⟨B̄𝐽 − ̂︀B,D⟩. (2.7.67)

As shown in (Koltchinskii et al., 2011a), ⟨B̄𝐽 − ̂︀B,D⟩ ≤ ‖𝒫⊥
B̄,𝐽𝑐(B̄− ̂︀B)‖1 − ‖𝒫B̄,𝐽𝑐(̂︀B)‖1. For
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the sake of self-containedness, we reproduce their proof here. We have

⟨B̄𝐽 − ̂︀B,D⟩ = ⟨B̄𝐽 − ̂︀B,V1,𝐽V2,𝐽 + Π1,𝐽𝑐WΠ2,𝐽𝑐⟩ (2.7.68)

= ⟨B̄𝐽 − ̂︀B,V1,𝐽V
⊤
2,𝐽⟩ + ⟨Π1,𝐽𝑐(B̄𝐽 − ̂︀B)Π2,𝐽𝑐 ,W⟩ (2.7.69)

= ⟨B̄− ̂︀B,V1,𝐽V
⊤
2,𝐽⟩ − ⟨𝒫B̄,𝐽𝑐(̂︀B),W⟩ (2.7.70)

= ⟨B̄− ̂︀B,V1,𝐽V
⊤
2,𝐽⟩ − ‖𝒫B̄,𝐽𝑐(̂︀B)‖1. (2.7.71)

In addition, using the triangle inequality, we get ‖𝒫B̄,𝐽𝑐(̂︀B)‖1 ≥ ‖𝒫B̄,𝐽𝑐(B̄ − ̂︀B)‖1 − ‖B̄𝐽𝑐‖1.

Thus, we get

⟨B̄𝐽 − ̂︀B,D⟩ ≤ ⟨B̄− ̂︀B,V1,𝐽V
⊤
2,𝐽⟩ − ‖𝒫B̄,𝐽𝑐(B̄− ̂︀B)‖1 + ‖B̄𝐽𝑐‖1. (2.7.72)

Finally, one easily checks that ⟨B̄−̂︀B,V1,𝐽V
⊤
2,𝐽⟩ = ⟨𝒫⊥

B̄,𝐽𝑐(B̄−̂︀B),V1,𝐽V
⊤
2,𝐽⟩ ≤ ‖𝒫⊥

B̄,𝐽𝑐(B̄−̂︀B)‖1.

Combining this inequality with (2.7.67) and (2.7.72), we get

‖B̄‖1 − ‖̂︀B‖1 ≤ 2‖B̄𝐽𝑐‖1 + ‖𝒫⊥
B̄,𝐽𝑐(B̄− ̂︀B)‖1 − ‖𝒫B̄,𝐽𝑐(B̄− ̂︀B)‖1. (2.7.73)

If we set M = B̄− ̂︀B, then we have already shown that

2𝜆

𝛾

{︀
𝛾‖B̄‖1 − 𝛾‖̂︀B‖1 + ‖B̄− ̂︀B‖1

}︁
− ‖B̄− ̂︀B‖2𝐿2(𝒳 ) (2.7.74)

≤ 4𝜆‖B̄𝐽𝑐‖1 +
2𝜆

𝛾

(︀
𝛾‖𝒫⊥

B̄,𝐽𝑐(M)‖1 − 𝛾‖𝒫B̄,𝐽𝑐(M)‖1 + ‖M‖1
)︀
− ‖M‖2𝐿2(𝒳 ). (2.7.75)

We remark that

𝛾‖𝒫⊥
B̄,𝐽𝑐(M)‖1 − 𝛾‖𝒫B̄,𝐽𝑐(M)‖1 + ‖M‖1 ≤ (𝛾 + 1)‖𝒫⊥

B̄,𝐽𝑐(M)‖1 − (𝛾 − 1)‖𝒫B̄,𝐽𝑐(M)‖1.(2.7.76)

Now, by definition of the compatibility factor 𝜅B̄,𝐽,𝑐 given by equation (2.5.2), we obtain

‖𝒫⊥
B̄,𝐽𝑐(M)‖1 −

𝛾 − 1

𝛾 + 1
‖𝒫B̄,𝐽𝑐(M)‖1 ≤

(︂ |𝐽 | ‖M‖2𝐿2(𝒳 )

𝑛𝜅B̄,𝐽,(𝛾+1)/(𝛾−1)

)︂1/2

. (2.7.77)

Hence, inequalities (2.7.76) end (2.7.77) imply that

2𝜆

𝛾

(︀
𝛾‖𝒫⊥

B̄,𝐽𝑐(M)‖1 − 𝛾‖𝒫B̄,𝐽𝑐(M)‖1 + ‖M‖1
)︀
− ‖M‖2𝐿2(𝒳 ) ≤ 2𝑎𝑏− 𝑎2, (2.7.78)

where we have used the notation 𝑎2 = ‖M‖2𝐿2(𝒳 ) and 𝑏2 = 𝜆2(𝛾+1)2|𝐽 |
𝛾2𝜅B̄,𝐽,(𝛾+1)/(𝛾−1)

. Finally, noticing
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that 2𝑎𝑏− 𝑎2 ≤ 𝑏2 we get the claim of the lemma.

Combining the claims of the previous lemmas and taking the minimum with respect to 𝐽 and

B̄, we obtain that the inequality

ℓ𝑛
(︀̂︀B,B⋆

)︀
≤ inf

B̄∈ℳ
𝐽⊂[rank(B̄)]

{︂
ℓ𝑛
(︀
B̄,B⋆

)︀
+ 4𝜆‖𝒫B̄,𝐽𝑐(B̄)‖1 +

𝜆2(𝛾 + 1)2|𝐽 |
𝛾2𝜅B̄,𝐽,(𝛾+1)/(𝛾−1)

}︂
+ 2𝐻(𝜏) (2.7.79)

holds in the event ℰ𝛾. At this point, we remark that we have proved the more general result of

Inequality (2.5.13).

The third and last step of the proof consists in assessing the probability of the event ℰ𝛾. We

rely on Theorem 4.1.1 from (Tropp, 2015) that provides a comprehensive account on matrix

concentration inequalities.

Lemma 2.7.6. Let 𝒳 be a fixed design tensor and 𝑣𝒳 be defined by (2.5.10). If 𝜉 ∼ 𝒩 (0𝑛, 𝜎
2I𝑛),

then, for all 𝜀 > 0,

P
(︀
‖𝜉⊤𝒳‖ > 𝑛𝜀

)︀
≤ (𝑚1 +𝑚2) exp

(︀
− 𝑛𝜀2/(2𝜎2𝑣2𝒳 )

)︀
. (2.7.80)

Proof. It is clear that 𝜉𝑖/𝜎 are standard gaussian random variables. Therefore, we can apply

(Tropp, 2015, Theorem 4.1.1) to the 𝑚1 ×𝑚2 matrix

Z =
𝑛∑︁
𝑖=1

𝜉𝑖X𝑖/𝜎. (2.7.81)

One easily checks that

𝑣(Z) = ‖E(ZZ⊤)‖ ∨ ‖E(Z⊤Z)‖ (2.7.82)

=

⃦⃦⃦⃦ 𝑛∑︁
𝑖=1

X𝑖X
⊤
𝑖

⃦⃦⃦⃦⋁︁ ⃦⃦⃦⃦ 𝑛∑︁
𝑖=1

X⊤
𝑖 X𝑖

⃦⃦⃦⃦
= 𝑣𝒳 . (2.7.83)

Therefore,

P
(︀
‖𝜉⊤𝒳/𝜎‖ > 𝑛𝜀/𝜎

)︀
≤ (𝑚1 +𝑚2) exp

(︀
− 𝑛𝜀2/(2𝜎2𝑣𝒳 )

)︀
, (2.7.84)

from which we deduce the claim of 2.7.6.

A proof of 2.5.1 can be deduced from the three previous lemmas as follows. Choosing 𝛾 = 2 and

𝜀 = 𝜆/𝛾 ≥ 𝜎𝑣𝒳
√︀

2/𝑛 log((𝑚1 +𝑚2)/𝛿) in 2.7.6, we get that the event ℰ𝛾 has a probability at

least 1 − 𝛿. Furthermore, on this event, we have already established inequality (2.7.79), which

coincides with the claim of 2.5.1.
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We conclude this section by proving 2.5.2 which is the analogue of 2.4.1. Let us introduce

the (random) set ℬ = {B ∈ ℳ𝑚1,𝑚2 : 𝑉𝑛(B) ≤
∫︀
𝑉𝑛 ̂︀𝜋𝑛 + 𝑚1𝑚2𝜏}. Applying (2.5.14) with

𝑡 =
√
𝑚1𝑚2, we get ̂︀𝜋𝑛(ℬ) ≥ 1 − 2𝑒−

√
𝑚1𝑚2/16. To prove 2.5.2, it is sufficient to check that in

the event ℰ𝛾 (in particular, with 𝛾 = 2), every matrix B from ℬ satisfies the inequality

ℓ𝑛(B,B⋆) ≤ inf
B̄∈ℳ

𝐽∈[rank(B̄)]

{︂
ℓ𝑛(B̄,B⋆) + 4𝜆‖𝒫B̄,𝐽𝑐(B̄)‖1 +

9𝜆2|𝐽 |
2𝜅B̄,𝐽,3

}︂
+ 8𝑚1𝑚2𝜏. (2.7.85)

In the rest of this proof, B is always a matrix from ℬ. In view of (2.7.52), it satisfies

𝑉𝑛(B) ≤ 2𝑚1𝑚2𝜏 + 𝑉𝑛(B̄) − 1

2

∫︁
ℳ

‖U− B̄‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU). (2.7.86)

Note that (2.7.86) holds for every B̄ ∈ ℳ𝑚1,𝑚2 . Therefore, it also holds for B̄ = B and yields

∫︁
ℳ

‖U−B‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU) ≤ 4𝑚1𝑚2𝜏. (2.7.87)

In addition, we have

ℓ𝑛(B,B⋆)−ℓ𝑛(B̄,B⋆) = 2
(︀
𝑉𝑛(B)−𝑉𝑛(B̄)

)︀
+

2

𝑛

𝑛∑︁
𝑖=1

𝜉𝑖⟨X𝑖,B− B̄⟩+2𝜆(‖B̄‖1−‖B‖1). (2.7.88)

Combining (2.7.86), (2.7.88) and the Von Neuman inequality, we get that in ℰ𝛾

ℓ𝑛(B,B⋆) − ℓ𝑛(B̄,B⋆) ≤ 4𝑚1𝑚2𝜏 +
2𝜆

𝛾

(︀
𝛾‖B̄‖1 − 𝛾‖B‖1 + ‖B− B̄‖1

)︀
(2.7.89)

−
∫︁
ℳ

‖U− B̄‖2𝐿2(𝒳 ) ̂︀𝜋𝑛(dU). (2.7.90)

We use now the inequality ‖U − B̄‖2𝐿2(𝒳 ) ≥ 1/2‖B − B̄‖2𝐿2(𝒳 ) − ‖U − B‖2𝐿2(𝒳 ), in conjunction

with (2.7.87), to deduce from (2.7.90) that

ℓ𝑛(B,B⋆) − ℓ𝑛(B̄,B⋆) ≤ 8𝑚1𝑚2𝜏 +
2𝜆

𝛾
‖B− B̄‖1 + 2𝜆(‖B̄‖1 − ‖B‖1) −

1

2
‖B− B̄‖2𝐿2(𝒳 ).

(2.7.91)

We can apply now 2.7.5 with B instead of ̂︀B and 𝒳/
√

2 instead of 𝒳 in order to get the claim

of 2.5.2.
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Abstract

We study the behaviour of the Langevin Monte Carlo approximation method to estimate log-
concave densities. In the existing literature, the density is assumed to be strongly log-concave
and its gradient Lipschitz continuous. In our case we provide results in the spirit of Dalalyan
(2016), Durmus and Moulines (2016) and Dalalyan (2017) without assuming that the gradient
of the potential of the density is Lipschitz continuous. In particular, it will allow us to consider
the exponentially weighted aggregate with Laplace prior estimate as in Chapter 2 (Dalalyan
et al. (2016)). In this study, provided that the gram matrix is invertible, we provide a method
that offers guarantees in the sense of the Wasserstein metrics. These results will provide an
explicit upper bound on the quality of the sampling and therefore of the approximation of the
estimate.

3.1 Introduction, context and notations

Let 𝑝 be a positive integer and 𝜋 be a log-concave distribution density in R𝑝. Then the potential

𝑓 associated with 𝜋 is a convex function and takes value in R𝑝 such that for any 𝛽 ∈ R𝑝,

𝜋(𝛽) ∝ exp{−𝑓(𝛽)}. (3.1.1)

The potential 𝑓 can be seen as the negative log-likelihood or the negative log-posterior. In this

paper, we study approximation methods of the quantity

̂︀𝛽𝜏 =

∫︀
R𝑝 𝑢 exp{−𝑓(𝑢)

𝜏
}d𝑢∫︀

R𝑝 exp{−𝑓(𝑢)
𝜏

}d𝑢
, (3.1.2)

for any 𝜏 ≥ 0 such that
∫︀
R𝑝 exp{−𝑓(𝑢)

𝜏
}d𝑢 is finite. Provided it exists, the limit of ̂︀𝛽𝜏 when 𝜏

tends to 0 is the maximum likelihood estimate. In that case, closed solutions or approximations

of the estimates of such forms have been thoroughly studied in the literature. There are well-

known guarantees on the quality of the approximations that often come from optimization

methods as described in Boyd and Vandenberghe (2004).

However, almost every time 𝜏 is not null, the approximation of ̂︀𝛽𝜏 requires sampling methods

for which convergence properties are less understood. The authors of Dalalyan (2016), Durmus

and Moulines (2016) and Dalalyan (2017) answered this question when ̂︀𝛽𝜏 is approximated

by averaging a discretized Langevin Monte Carlo sampling algorithm with respect to 𝜋. The

authors of these papers offer non-asymptotic guarantees of the quality of the approximation in

the sense of Kullback-Leibler metric (Dalalyan et al. (2016)) and in the sense of the Wasserstein

distance (Durmus and Moulines (2016) and Dalalyan (2017)). Such results offer practical

insights of the number of required iterations in order to obtain a desired precision. In these
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papers, the rate of convergence of the approximates are directly linked to the property of strong

convexity of 𝑓 and to the Lipschitz property of ∇𝑓 , the gradient of 𝑓 .

These results offer useful guarantees in the context of pseudo-bayesian methods. For example,

this question can be motivated by the pseudo-bayesian analogue to penalized regression. Let

us consider instances of the potential 𝑓 that can be written as

𝑓(𝛽) = 𝐿(𝛽) + 𝑔(𝛽), (3.1.3)

where, from a frequentist point of view, 𝐿 is the fitting term while 𝑔 is the penalization term. On

a Bayesian basis, 𝐿 is the negative log-likelihood and 𝑔 is the logarithm of the prior distribution

of the parameter 𝛽. In that context, ̂︀𝛽𝜏 is the pseudo-Bayesian estimate.

No matter the design of the data, the results of Dalalyan et al. (2016), Durmus and Moulines

(2016) and Dalalyan (2017) applied very well to the pseudo-bayesian analogue of the Ridge

regression. Indeed, in that case, ∇𝑓 is lipschitz-continuous, 𝑔 is the ℓ2-norm that is strongly

convex and 𝐿 is convex, which makes in turn 𝑓 strongly convex.

However, one may want to slightly relax the assumptions and to keep benefitting from non-

asymptotic guarantees. For example, one may wish to consider the case where 𝑓 is strongly

convex but ∇𝑓 is not Lipschitz-continuous. Another instance of practical motivation is when

𝑓 is subdifferentiable and not differentiable for some elements in R𝑝.

In the classical optimization settings, there have been developed nearly equivalent results when

the convex function to optimize is subdifferentiable instead of differentiable. It would make

sense that we could offer analogous results in the averaging settings. In a sense, we aim at

crossing this chasm by offering non-asymptotic guarantees in order to approximate averaging

estimate with a given accuracy.

This question has been motivated by the challenge of approximating the exponential weighted

aggregate with Laplace prior as in Chapter 2 (Dalalyan et al. (2016)) where the function 𝑔 is

the ℓ1 -norm. Therefore, 𝑔 is not differentiable for any 𝛽 that has at least one null element.

However, 𝑔 is differentiable almost everywhere.

Even though this situation does not belong to the scope of the aforementioned papers, one

would expect the theoretical properties of the Langevin Monte Carlo sampling approximation

to hold, up to a few adjustments. Indeed, 𝑓 is strongly convex (provided conditions on 𝐿) and

its gradient is almost everywhere defined and Lipschitz-continuous.

In this study, we assume 𝐿 and 𝑔 to be convex functions. Besides, we assume 𝐿 to be differen-

tiable and 𝑚-strongly convex while 𝑔 is assumed to be subdifferentiable. Let 𝜇 be the measure
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of probability associated with the density 𝜋.

The rationale behind this work consists in approximating the measure 𝜇 by a well chosen

measure 𝜇𝑠 associated with a density measure 𝜋𝑠 and with a potential 𝑓𝑠 that is differentiable,

strongly convex and which gradient is Lipschitz continuous. Using the results of Durmus and

Moulines (2016), we obtain an upper bound of the Wasserstein distance between the measure

𝜇𝑠 and the one associated with the simulation by a discretized Langevin Monte Carlo process,

as described in Durmus and Moulines (2016) and Dalalyan (2016). If 𝜇𝑠 and 𝜇 are such that

the Wasserstein distance is small enough, by the triangle inequality we would obtain an upper

bound of the distance between 𝜇 and the discretized sampling process of 𝜇𝑠.

The rest of this section provides us with notations and frames the context of our study. In par-

ticular we define the Wasserstein distance and the discretized Langevins Monte Carlo process.

Section 3.2 gathers and combines results found in the literature in order to prove the quality

of the approximation in a finite number of iteration. In Section 3.2, we also mention some

useful upper bound tips on the Wasserstein distance. The main results is Corollary 3.2.3 that

interprets the impact of the caracteristic of the measure and of the smooth approximation. In

Section 3.3, we focus on our initial motivation, namely the challenge of approximating the ex-

ponentially weighted aggregate with Laplace prior estimate. We propose a well chosen measure

𝜇𝛾 which depends on a smoothing parameter 𝛾 > 0. Corollary 3.3.2 provides a practical result

to help practitioner to approximate the exponentially weighted aggregate estimate by choosing

the parameters and by defining the number of iterations required to achieve a given accuracy.

3.1.1 Notations

Let 𝑝 be a positive integer, for any 𝑢 ∈ R𝑝, ‖𝑢‖2 is the Euclidean norm and ‖𝑢‖1 =
∑︀

𝑖∈[𝑝] |𝛽𝑗|

the ℓ1-norm and, more generally, ‖𝑢‖𝑘 refers to the ℓ𝑘-norm for any positive integer 𝑘. We will

denote 0𝑝 the null vector of dimension 𝑝. The matrix I𝑝 is the identity matrix of dimension 𝑝.

The gradient operator of a function 𝑣 is denoted ∇ and the subgradient set 𝜕𝑣. We can now

set the definitions of strong convexity and gradient Lipschitzness.

Definition 3.1.1 (𝑚-strong convexity). Let 𝑓 be a function taking values in R𝑝, let 𝑚 be a

positive integer, 𝑓 is 𝑚-strongly convex if and only if

𝑓(𝛽) − 𝑓(𝛽) + 𝑢⊤(𝛽 −𝛽) ≥ 𝑚

2
‖𝛽 −𝛽‖22,∀𝑢 ∈ 𝜕𝑓(𝛽),∀𝛽,𝛽 ∈ R𝑝. (3.1.4)

Definition 3.1.2 (gradient 𝑀 -Lipschitz). Let 𝑓 be a function taking values in R𝑝, let 𝑀 > 0,
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𝑓 is continuously differentiable and has a 𝑀-Lipschitz gradient if and only if

‖∇𝑓(𝛽) −∇𝑓(𝛽)‖2 ≤𝑀‖𝛽 −𝛽‖2,∀𝛽,𝛽 ∈ R𝑝. (3.1.5)

Let 𝑚 > 0 and 𝑀 > 0, we note ℱ𝑀,𝑚 the set of functions that are 𝑚-strongly convex and which

gradient is 𝑀 -Lipschitz. It is interesting to remark that, if a function 𝑓 belongs to the family

ℱ𝑀,𝑚, it implies necessarily that 𝑚 ≤ 𝑀 . This comes from the study of Definition 3.1.1 when

𝛽 → 𝛽.

Let 𝑘 be a positive integer, we also define 𝒫𝑘 the set of probability measures in R𝑝 with finite

𝑘-moment.

For any set Ω, let us define ℬ(Ω) as the Borel set of Ω. For a probability measure 𝜈 and Markov

kernel 𝑄, we denote 𝜈𝑄 the probability measure {(𝜈𝑄)𝐴 =
∫︀
R𝑝 𝜈(𝑢)𝑄(𝑢, 𝐴)d𝑢 : 𝐴 ∈ ℬ(R𝑝)}.

Throughout this work, we use the Wasserstein distance of order 2 as the distance of reference

between two measures. This choice is motivated by the strong results of Durmus and Moulines

(2016) using Wasserstein distance, instead of Kullback-Leibler as in Dalalyan (2016).

Definition 3.1.3 (Wasserstein distance). The Wasserstein distance of order 2 between two

measures of probability 𝜈 and 𝜂, 𝑊 2
2 (𝜈, 𝜂) is defined by

𝑊2(𝜈, 𝜂) = inf
𝜓∈Ψ(𝜈,𝜂)

{︂∫︁
R𝑝×R𝑝

‖𝑢− 𝑣‖22d𝜓(𝑢,𝑣)

}︂1/2

(3.1.6)

where Ψ(𝜈, 𝜂) is the set of probability measures on R𝑝 × R𝑝 with marginals 𝜈 and 𝜂.

For clarity purpose, we also remind the definition of the Kullback-Leibler divergence between

two probability measures 𝜈 and 𝜇.

Definition 3.1.4 (Kullback-Leibler divergence). Let 𝜈 and 𝜇 be two probability measures over

a set Ω, then if 𝜈 is absolutely continuous with respect to 𝜇, the Kullback-Leibler divergence is

defined by

𝐾𝐿(𝜈‖𝜇) =

∫︁
Ω

log
(︁d𝜈

d𝜇

)︁
d𝜈. (3.1.7)

Finally, we define the norms

‖𝑓‖𝐿2(𝜋) =

∫︁
R𝑝

(︀
𝑓(𝑢)

)︀2
𝜋(d𝑢), (3.1.8)

and

‖𝑓‖∞ = max
R𝑝

|𝑓(𝑢)|. (3.1.9)
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3.1.2 The Langevin Monte Carlo algorithm

Let 𝑓𝑠 be 𝑚-strongly convex, continuously differentiable and with a 𝑀 -Lipschitz continuous

gradient. We consider the Langevin stochastic differential equation associated with 𝜋𝑠

d𝜗𝑡 = −∇𝑓𝑠(𝜗𝑡)d𝑡+
√

2𝑝b𝑡, (3.1.10)

where b𝑡 is a 𝑝-dimensional Brownian motion. The process studied in Durmus and Moulines

(2016)1 and Dalalyan (2016) is the Markov chain process based on the Euler-Maruyama dis-

cretization

𝜐𝑠,ℎ𝑘+1 = 𝜐𝑠,ℎ𝑘 − ℎ∇𝑓𝑠(𝜐𝑠,ℎ𝑘 ) +
√

2ℎ𝜉𝑘, (3.1.11)

where ℎ > 0 is the discretization stepsize and 𝜉𝑘 is a 𝑝-dimensional standard Gaussian variable.

It is worth remarking that 𝜐𝑠,ℎ0 can be either set arbitrarily in R𝑝 or be the result of a random

distribution. In the case where 𝜐𝑠,ℎ0 is generated by a probability measure 𝜈, we note 𝜈𝑃𝐾
ℎ,𝑠 the

measure of the Markov chain defined in Equation 3.1.11.

In this study we focus our attention on the Euler-Maruyama discretization process as described

in Equation 3.1.11. Other discretization schemes might be considered and could be subject to

further studies.

Section 3.2.1 offers explicit and computable upper bound of the quantity 𝑊 2
2 (𝜈𝑃𝐾

ℎ,𝑠, 𝜇
𝑠) while

Section 3.2.2 guarantees an upper bound of 𝑊 2
2 (𝜇, 𝜇𝑠).

Although we will derive results that hold for functions 𝑓 in the general case as described in

Equation 3.1.3, we will consider some specific cases too. For example, in Section 3.3 we will

explicitly investigate the computational challenge of the EWA with Laplace prior as described

in Chapter 2 (Dalalyan et al. (2016)). In that case,

𝑓(𝛽) =
1

𝜏

(︁‖𝑦 −X𝛽‖22
2𝑛

+ 𝜆‖𝛽‖1
)︁
, (3.1.12)

where 𝜏 > 0 is the temperature parameter.

1In the paper of Durmus and Moulines (2016), the sampling process considered is more general since stepsize
ℎ are not assumed constant; however, in our work, we specify this sampling procedure to the case where ℎ is
constant.
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3.2 Guarantees for the Wasserstein distance of subdiffer-

entiable potentials

For practical reasons, one may want to sample data from a computable measure ̂︀𝜇 that ap-

proximates well a given measure 𝜇. In this study, the approximation accuracy is in the sense of

the Wasserstein distance; The measure ̂︀𝜇 approximates the targeted measure 𝜇 with accuracy

𝜖 > 0 if 𝑊2(𝜇, ̂︀𝜇) < 𝜖.

Let 𝑚 > 0 and 𝑀 > 0, in this section we show that it is possible to approximate accurately the

sampling process of a measure 𝜇 as long as there exists a measure 𝜇𝑠 associated with a smooth

function 𝑓𝑠 ∈ ℱ𝑀,𝑚 such that 𝑊2(𝜇, 𝜇
𝑠) is smaller than the desired accuracy level 𝜖. If such 𝜇𝑠

exists, we propose to approximate the process by applying the Euler-Maruyama discretization

of the Langevin Monte Carlo process to 𝜇𝑠 as described in Equation 3.1.11. We named this

process ̂︀𝜇𝑠,ℎ𝑘 for any integer 𝑘.

The rationale behind this procedure is straightforward, since 𝑓𝑠 ∈ ℱ𝑀,𝑚, the guarantees proved

in Dalalyan (2016), Durmus and Moulines (2016) and Dalalyan (2017) offer explicit upper

bounds of 𝑊2(𝜇
𝑠, ̂︀𝜇𝑠,ℎ𝐾 ) for a given and explicit number of iterations 𝐾. Moreover, if 𝑓𝑠 can be

chosen such that 𝑊2(𝜇, 𝜇
𝑠) is upper bounded by a quantity smaller than the accuracy level 𝜖.

Then, using the triangle inequality,

𝑊2(𝜇, ̂︀𝜇𝑠,ℎ𝐾 ) ≤ 𝑊2(𝜇, 𝜇
𝑠) +𝑊2(𝜇

𝑠, ̂︀𝜇𝑠,ℎ𝐾 ), (3.2.1)

one may choose an explicit number of iterations 𝐾 such that the Wasserstein distance between

𝜇 and ̂︀𝜇𝑠,ℎ𝐾 is smaller than 𝜖.

This section states this rationale in Corollaries 3.2.2 and 3.2.3. They are guarantees on the

quality of the approximate of the estimation by Langevin Monte Carlo ̂︀𝜇𝑠,ℎ𝐾 when the log-density

𝑓 is close, in the sense of the Wasserstein distance, to an artefact log-density 𝑓𝑠 ∈ ℱ𝑀,𝑚.

Section 3.2.1 translates the results of Durmus and Moulines (2016) and Dalalyan (2017) in

order to offer an upper bound of 𝑊2(𝜇
𝑠, ̂︀𝜇𝑠,ℎ𝐾 ). It is not always simple or even possible to obtain

an explicit quantity of 𝑊2(𝜇, 𝜇
𝑠). Thus, we provide in Section 3.2.2 some tools to control the

quantity 𝑊2(𝜇, 𝜇
𝑠) with respect to the Kullback-Leibler divergence. These results are mainly

due to the very thorough book of Bakry et al. (2014). We seize this opportunity to upper

bound the Wasserstein distance with other distances such as ‖𝑓 − 𝑓𝑠‖2𝐿2(𝜋)
or ‖𝑓 − 𝑓𝑠‖∞. This

can be useful in practical situations where one meets difficulties to upper bound explicitly the

Kullback-Leibler divergence.
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3.2.1 Theoretical guarantees from Durmus and Moulines (2016) and

Dalalyan (2017)

This section outlines results from Dalalyan (2017) which are closely related to Durmus and Mou-

lines (2016). These results exhibit upper bounds that apply to the last term of the right hand

side of Inequality 3.2.1 𝑊2(𝜇
𝑠, ̂︀𝜇𝑠,ℎ𝐾 ). Indeed these results hold for any log-density 𝑓𝑠 ∈ ℱ𝑀,𝑚

when the sampling of the Langevin Monte Carlo is built on the Euler-Maruyama discretization

of the markov chain as described in Equation 3.1.11.

Theorem 3.2.1 is a mere translation of Dalalyan (2017)[Theorem 1] into our notations. Theorem

3.2.1 is very close to Durmus and Moulines (2016)[Theorem 3]. Actually, in the followings, as

we will consider constant stepsize of the discretization process, Theorem 3.2.1 is equivalent

to Durmus and Moulines (2016)[Corollary 5] that is a consequence of Durmus and Moulines

(2016)[Theorem 3].

Theorem 3.2.1 considers the case where the discretization stepsize ℎ is smaller than 2/𝑀 with

𝑀 being the gradient Lipschitzness coefficient as defined in Definition 3.1.2. The smoother is

the gradient the rougher can be the discretization scheme. Even though one could possibly

choose ℎ = 2/𝑀 to benefit from theoretical Theorem 3.2.1, it may be interesting to choose

smaller stepsize. Indeed, the upper bound has two different regimes depending whether ℎ is

smaller than 2/(𝑀 +𝑚) or not.

Theorem 3.2.1 (Wasserstein upper bound of 𝑓𝑠 ∈ ℱ𝑀,𝑚). Let 𝑓𝑠 ∈ ℱ𝑀,𝑚 and 𝜇𝑠 the measure

of probability associated with 𝑓𝑠. Let ℎ < 2
𝑀

and 𝐾 > 1, for any probability measure 𝜈 ∈ 𝒫2,

we consider the probability measure ̂︀𝜇𝑠,ℎ𝐾 defined by the probability distribution 𝜈𝑃𝐾
𝑠,ℎ, where

𝑃𝐾
𝑠,ℎ is the discretized process diffusion approximation described in Equation 3.1.11. Then, if

ℎ ≤ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠) ≤ (1 −𝑚ℎ)𝐾𝑊2(𝜈, 𝜇
𝑠) + 1.82

𝑀

𝑚
(ℎ𝑝)1/2. (3.2.2)

Alternatively, if ℎ ≥ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠) ≤ (𝑀ℎ− 1)𝐾𝑊2(𝜈, 𝜇
𝑠) + 1.82

𝑀ℎ

2 −𝑀ℎ
(ℎ𝑝)1/2. (3.2.3)

It is worth commenting some elements of this result. The right hand side of Inequalities 3.2.2

and 3.2.3 are both composed of two elements. The first one decreases with the number of

iterations 𝐾 and depends on the initial choice of the measure 𝜈 ∈ 𝒫2. We will name this
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quantity the decreasing part. Respectively, we will name the constant part the second term in

the right hand side of these inequalities. Let us first consider the case when one has chosen a

stepsize ℎ smaller than 2/(𝑀 +𝑚). First of all it is easy to show that

lim
𝐾→+∞

(1 −𝑚ℎ)𝐾 = 0. (3.2.4)

Indeed, since 0 < ℎ ≤ 2/(𝑀 + 𝑚) ≤ 1/𝑚, it implies that 0 ≥ (1 − 𝑚ℎ) < 1. Moreover, it

implies that the decreasing part of the upper bound is decreasing with ℎ. On the other hand

the constant part

1.82
𝑀

𝑚
(ℎ𝑝)1/2 (3.2.5)

increases with 𝑀 and 𝑝 and decreases with 𝑚 and ℎ. Therefore one faces a tradeoff. A small

value of ℎ minimizes the constant part while a value of ℎ closer to 2/(𝑀 + 𝑚) minimizes the

decreasing part. In practical situation, for a given targeted accuracy, one may not have so much

choice. It is clear that the constant part has to be controlled with a small value of ℎ and the

number of iterations 𝐾 will be chosen to counterbalance the small value of ℎ.

In the case where ℎ ≥ 2/(𝑀 +𝑚), the interpretation is different. Even though

lim
𝐾→+∞

(𝑀ℎ− 1)𝐾 = 0 (3.2.6)

increases with ℎ, contrary to the quantity defined in Equation 3.2.4. The constant part

1.82
𝑀ℎ

2 −𝑀ℎ
(ℎ𝑝)1/2 (3.2.7)

increases with ℎ too. In the case where ℎ ≥ 2/(𝑀 + 𝑚), we recommend to choose a small ℎ

close to 2/(𝑀 +𝑚).

Theorem 3.2.1 is key to our study. However, as mentioned in Dalalyan (2017), it does not

provide explicit guarantees since it depends on the term 𝑊2(𝜈, 𝜇
𝑠), while 𝜈 has not been spe-

cified, and on 𝑊2, which may often be difficult to compute for any 𝜈 ∈ 𝒫2.

In order to offer an explicit upper bound as in Corollary 3.2.1, we remark that Theorem 3.2.1

holds for any 𝜈 ∈ 𝒫2. In particular, it is true for any Dirac measure. It makes the consideration

of deterministic initialization of the Langevin Monte Carlo process possible. Let us consider an

arbitrarily chosen vector 𝛽(0) ∈ R𝑝, let us set the measure 𝜈 to be a Dirac in 𝛽(0), 𝜈 = 𝛿𝛽(0) .

Let 𝛽𝑠 be the average with respect to the density 𝜋𝑠. Then we can propose a rough but explicit
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upper bound of 𝑊 2
2 (𝛿𝛽(0) , 𝜇𝑠) using the exact same arguments as in Dalalyan (2017). Indeed,

𝑊 2
2 (𝛿𝛽(0) , 𝜇𝑠) ≤ ‖𝛽(0) −𝛽𝑠‖22 +

∫︁
R𝑝

‖𝛽𝑠 − 𝛽‖22𝜋𝑠(d𝛽). (3.2.8)

Therefore,

𝑊 2
2 (𝛿𝛽(0) , 𝜇𝑠) ≤ ‖𝛽(0) −𝛽𝑠‖22 +

𝑝

𝑚
. (3.2.9)

This leads to the conclusion that,

𝑊2(𝛿𝛽(0) , 𝜇𝑠) ≤ ‖𝛽(0) −𝛽𝑠‖2 +
(︁ 𝑝
𝑚

)︁1/2

. (3.2.10)

In a practical context, the use of a deterministic initialization enables, through Inequality 3.2.10,

an explicit upper bound of 𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠). Of course, it requires 𝛽(0) to be chosen. If the use of a

deterministic initialization is useful for the proof of the existence of an explicit upper bound of

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠), the choice of the initialization is of paramount importance in a practical context.

Indeed, a not suited choice of 𝛽(0) deteriors strongly the approximation accuracy. The following

corollary is a consequence of a deterministic initialization, it provides an explicit upper bound

and exhibits the importance of the choice of 𝛽(0). One more time, Corollary 3.2.1 is a mere

translation of the results of Dalalyan (2017).

Corollary 3.2.1. Let 𝑓𝑠 ∈ ℱ𝑀,𝑚 and 𝜇𝑠 the measure of probability associated with 𝑓𝑠. Let

ℎ < 2
𝑀

and 𝐾 > 1, for any probability measure 𝜈 ∈ 𝒫2, we consider the probability measurê︀𝜇𝑠,ℎ𝐾 defined by the probability distribution 𝜈𝑃𝐾
𝑠,ℎ, where 𝑃𝐾

𝑠,ℎ is the discretized process diffusion

approximation described in Equation 3.1.11. Then, if ℎ ≤ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠) ≤ (1 −𝑚ℎ)𝐾
(︂
‖𝛽(0) −𝛽𝑠‖2 +

(︁ 𝑝
𝑚

)︁1/2
)︂

+ 1.82
𝑀

𝑚
(ℎ𝑝)1/2.

Alternatively, if ℎ ≥ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠) ≤ (𝑀ℎ− 1)𝐾
(︂
‖𝛽(0) −𝛽𝑠‖2 +

(︁ 𝑝
𝑚

)︁1/2
)︂

+ 1.82
𝑀ℎ

2 −𝑀ℎ
(ℎ𝑝)1/2.

Corollary 3.2.1 will be used in Section 3.2.3. In the meanwhile, we study results that enable to

control the distance between the smooth measure and the non-smooth targeted measure.
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3.2.2 Bounding the Wasserstein distance between approximation and

the target distribution

In Section 3.2.1, we remind some explicit upper bound of the distance 𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠) for a given

stepsize ℎ and an explicit number of iterations 𝐾, when 𝑓𝑠 ∈ ℱ𝑀,𝑚. Now, we study some

inequalities that are useful to bound the second term of Inequality 3.2.1, 𝑊2(𝜇, 𝜇
𝑠). Close

forms of Wasserstein distance between two measures are not always known, this section provides

the practitioners with some tools to explicitly upper bound 𝑊2(𝜇, 𝜇
𝑠). The main result of this

section is Proposition 3.2.1. It is a direct application of some results from the optimal transport

theory applied in the trivial case that is R𝑝. It states that the 𝑚-strong convexity of the

smoothed potential 𝑓𝑠 guarantees an upper bound of the Wasserstein distance between 𝜇𝑠 and

the measure of probability of interest 𝜇. It is a method to upper bound the distance 𝑊2(𝜇, 𝜇
𝑠)

by a quantity that is related to the Kullback-Leibler divergence 𝐾𝐿(𝜇‖𝜇𝑠). This result is

implied by Bakry et al. (2014)[Corollary 9.2.2] which is a specific case of the more general

result Bakry et al. (2014)[Theorem 9.3.1]. These results can be interpreted as generalizations

of the Talagrand inequality theorem as described in Bakry et al. (2014)[Theorem 9.2.1]. The

goal of this section is to provide methodologies that can help upper bounding the quantity

𝑊2(𝜇, 𝜇
𝑠) in practical situations. Therefore, we mention complementary results that could

offer guarantees on the upper bound of the Kullback-Leibler divergence, and consequently of

the Wasserstein distance. So are the goals of Proposition 3.2.2 and Remark 3.2.1.

In order to understand the result of Proposition 3.2.1, we first introduce the definition of the

quadratic transportation cost inequality 𝒯 (𝜌) for any positive real 𝜌 as in Otto and Villani

(2000)[Definition 2] and to Bakry et al. (2014)[Definition 9.2.2].

Definition 3.2.1 (Quadratic transport cost inequality). Let 𝜂 be a probability measure we say

that the quadratic transportation cost inequality 𝒯 (𝜌) holds for 𝜂 (i.e. 𝜂 ∈ 𝒯 (𝜌)) if for any

measure 𝜈 ∈ 𝒫2, absolutely continuous with respect to 𝜂 ,

𝑊 2
2 (𝜂, 𝜈) ≤ 2𝐾𝐿(𝜈‖𝜂)

𝜌
. (3.2.11)

This definition states that Inequality 3.2.11 must hold for any 𝜈 ∈ 𝒫2. Since we consider target

measure 𝜇 in 𝒫2, if one is able to choose a measure 𝜇𝑠 in 𝒯 (𝜌) for a given 𝜌 > 0, then the

inequality

𝑊 2
2 (𝜇, 𝜇𝑠) ≤ 2𝐾𝐿(𝜇‖𝜇𝑠)

𝜌
(3.2.12)

would hold.
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Proposition 3.2.1 gives conditions that are sufficient to guarantee that a measure 𝜇𝑠 belongs to

the set 𝒯 (𝜌) for an explicit value of 𝜌 as long as there exists an associated potential 𝑓𝑠 that is

twice differentiable and strongly convex. The parameter 𝜌 will be defined by the coefficient of

strong-convexity of 𝑓𝑠.

Proposition 3.2.1. Let 𝑚 > 0 , and 𝑓𝑠 the potential of 𝜋𝑠 be twice differentiable and 𝑚-strongly

convex, then 𝜇𝑠 ∈ 𝒯 (𝑚).

It implies that

𝑊 2
2 (𝜇, 𝜇𝑠) ≤ 2𝐾𝐿(𝜇‖𝜇𝑠)

𝑚
. (3.2.13)

This result can be deduced from Bakry et al. (2014)[Corollary 9.3.2] that states, with our

notations, that if d𝜇𝑠 = exp(−𝑓𝑠)d𝛽 is a probability measure of R𝑝 where 𝑓𝑠 is a smooth

function such that ∇2(𝑓𝑠) < 𝜌I𝑝 for some 𝜌 > 0 then 𝜇𝑠 satisfies the quadratic transportation

cost of Inequality 3.2.11 (i.e. 𝜇𝑠 ∈ 𝒯 (𝜌)). Since 𝜇𝑠 ∈ 𝒯 (𝜌), for any 𝜈 ∈ 𝒫2,

𝑊 2
2 (𝜈, 𝜇𝑠) ≤ 2𝐾𝐿(𝜈‖𝜇𝑠)

𝜌
. (3.2.14)

In particular, 𝜇 ∈ 𝒫2 and 𝑓𝑠 ∈ ℱ𝑀,𝑚 implies that ∇2(𝑓𝑠) < 𝑚I𝑝, therefore

𝑊 2
2 (𝜇, 𝜇𝑠) ≤ 2𝐾𝐿(𝜇‖𝜇𝑠)

𝑚
, (3.2.15)

which concludes the proof of Corollary 3.2.1. �

Using Proposition 3.2.1 directly offers a solution to upper bound the second term of Inequality

3.2.1 as long as there exists 𝑚 > 0 such that 𝑓𝑠 is twice differentiable and 𝑚-strongly convex.

Indeed, if so,

𝑊2(𝜇, 𝜇
𝑠) ≤

(︂
2𝐾𝐿(𝜇‖𝜇𝑠)

𝑚

)︂1/2

. (3.2.16)

The result of Dalalyan (2016)[Lemma 3] upper bounds the Kullback-Leibler metric between two

measures with some assumptions that are reasonable in the context of Section 3.3. This is the

reason why Proposition 3.2.1 is interesting for our purpose. The result Dalalyan (2016)[Lemma

3] is described in our notations in Proposition 3.2.2.

Proposition 3.2.2 (Dalalyan (2016), Lemma 3). Let 𝑓𝑠 and 𝑓 be some potentials respectively

associated with the measures 𝜇𝑠 and 𝜇 such that 𝑓(𝛽) ≤ 𝑓𝑠(𝛽), for any 𝛽 ∈ R𝑝. If exp (−𝑓)

and exp (−𝑓𝑠) are both integrable, then

𝐾𝐿(𝜇‖𝜇𝑠) ≤ 1

2
‖𝑓 − 𝑓𝑠‖2𝐿2(𝜋)

, (3.2.17)

88



where 𝜋 is the density associated with 𝜇 and 𝑓 .

Remark 3.2.1. From Inequality 3.2.17, it is trivial to remark that, with similar assumptions

than the ones necessary to Proposition 3.2.2,

𝐾𝐿(𝜇‖𝜇𝑠) ≤ 1

2
‖𝑓 − 𝑓𝑠‖2∞ = max

𝛽∈R𝑝
{|𝑓(𝛽) − 𝑓𝑠(𝛽)|}2. (3.2.18)

Indeed,

‖𝑓 − 𝑓𝑠‖2𝐿2(𝜋)
=

∫︁
R𝑝

(𝑓(𝑢) − 𝑓𝑠(𝑢))2d𝜋(𝑢), (3.2.19)

therefore, 𝜋 being a density, by construction, it integrates to one. It implies that,

∫︁
R𝑝

(𝑓(𝑢) − 𝑓𝑠(𝑢))2d𝜋(𝑢) ≤ max
𝛽∈R𝑝

{︀(︀
𝑓(𝛽) − 𝑓𝑠(𝛽)

)︀2}︀
. (3.2.20)

Combining Inequalities 3.2.17 and 3.2.20, we obtain Inequality 3.2.18.

In view of Definition 3.2.1, Proposition 3.2.2 and Remark 3.2.1, some conditions in the choice

of the smooth potential 𝑓𝑠 are now known to guarantee an upper bound of the Wasserstein

distance 𝑊2(𝜇, 𝜇
𝑠).

If 𝜇𝑠 is such that one knows an upper bound of 𝐾𝐿(𝜇‖𝜇𝑠) then it is enough to show that there

exists 𝜌 > 0 such that 𝜇𝑠 ∈ 𝒯 (𝜌). In particular, Proposition 3.2.2 states that if 𝜇𝑠 is twice

differentiable and 𝑚-strongly convex, then 𝜇𝑠 ∈ 𝒯 (𝑚). In the case one does not know an upper

bound of the divergence 𝐾𝐿(𝜇‖𝜇𝑠), then Proposition 3.2.2 and Remark 3.2.1 provide one with

some methodologies to upper bound the Wasserstein distance 𝑊2(𝜇, 𝜇
𝑠). If 𝑓(𝛽) ≤ 𝑓𝑠(𝛽), for

any 𝛽 ∈ R𝑝, then,

𝑊2(𝜇, 𝜇
𝑠) ≤

(︂
2𝐾𝐿(𝜇‖𝜇𝑠)

𝑚

)︂1/2

≤
‖𝑓 − 𝑓𝑠‖𝐿2(𝜋)

𝑚1/2
≤ ‖𝑓 − 𝑓𝑠‖∞

𝑚1/2
. (3.2.21)

Even though these inequalities are very rough, they may be useful if one aims at obtaining

explicit guarantees. Moreover, it is worth noting that these inequalities provide guidelines

to choose 𝜇𝑠 and 𝑓𝑠. Indeed, the Wasserstein distance 𝑊2(𝜇, 𝜇
𝑠) decreases with the strong-

convexity coefficient 𝑚 of the potential 𝑓𝑠 and increases with the divergence between 𝜇 and 𝜇𝑠

(in the sense of Kullback Leibler) or similarly with the distance between 𝑓 and 𝑓𝑠.

Section 3.2.1 gives explicit upper bound of the Wasserstein distance 𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠), while this

section defines conditions for which 𝑊2(𝜇, 𝜇
𝑠) is controlled. In the next section, we combine

these results to prove, under a given set of assumptions, the existence of an explicit upper

bound with a finite number of iterations 𝐾 of 𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠).
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3.2.3 Conclusion on theoretical guarantees in finite sampling

It is now possible to consider the case of interest by using the triangle inequality applied to

previous results,

𝑊2(𝜇, ̂︀𝜇𝑠,ℎ𝐾 ) ≤ 𝑊2(𝜇, 𝜇
𝑠) +𝑊2(𝜇

𝑠, ̂︀𝜇𝑠,ℎ𝐾 ). (3.2.22)

For the sake of completeness, the authors Clement and Desch (2008) offer a complete proof of

the triangle inequality property of the Wasserstein distance.

This being taken into consideration, we deduce a corollary from Theorem 3.2.1 and Corollary

3.2.1.

Corollary 3.2.2. Let 𝑓𝑠 be a smooth potential that approximates 𝑓 such that 𝑓𝑠 ∈ ℱ𝑀,𝑚, and

let 𝜇𝑠 be the measure of probability associated with 𝑓𝑠. Let 0 < ℎ < 2/𝑀 and 𝐾 > 1, for any

probability measure 𝜈 ∈ 𝒫2, we consider the probability measure ̂︀𝜇𝑠,ℎ𝐾 defined by the probability

distribution 𝜈𝑃 𝑇
𝑠,ℎ, where 𝑃𝐾

𝑠,ℎ is the discretized process diffusion approximation described in

Equation 3.1.11.

Then, if ℎ ≤ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇) ≤ (1 −𝑚ℎ)𝐾𝑊2(𝜈, 𝜇
𝑠) + 1.82

𝑀

𝑚
(ℎ𝑝)1/2 +

(︂
2𝐾𝐿(𝜇‖𝜇𝑠)

𝑚

)︂1/2

. (3.2.23)

Alternatively, if ℎ ≥ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇) ≤ (𝑀ℎ− 1)𝐾𝑊2(𝜈, 𝜇
𝑠) + 1.82

𝑀ℎ

2 −𝑀ℎ
(ℎ𝑝)1/2 +

(︂
2𝐾𝐿(𝜇‖𝜇𝑠)

𝑚

)︂1/2

. (3.2.24)

Furthermore, it is possible to substitute the terms 𝑊2(𝜈, 𝜇
𝑠) and 𝐾𝐿(𝜇‖𝜇𝑠)1/2 in Equations

3.2.23 and 3.2.24 by more explicit quantities. If the substitution of 𝑊2(𝜈, 𝜇
𝑠) does not require

additional assumptions, the upper bound of 𝐾𝐿(𝜇‖𝜇𝑠)1/2 by (‖𝑓−𝑓𝑠‖𝐿2(𝜋))/2 or (‖𝑓−𝑓𝑠‖∞)/2

requires so. Even though the substitution with (‖𝑓 − 𝑓𝑠‖∞) is the roughest we represent

Corollary 3.2.3 with this substitution, because it is often simpler to get a close form of (‖𝑓 −

𝑓𝑠‖∞) than of (‖𝑓 − 𝑓𝑠‖𝐿2(𝜋)). Of course one could use the same corollary with the term

(‖𝑓 − 𝑓𝑠‖𝐿2(𝜋)) instead of (‖𝑓 − 𝑓𝑠‖∞).

Corollary 3.2.3. Let 𝑓𝑠 ∈ ℱ𝑀,𝑚 and 𝜇𝑠 the measure of probability associated with 𝑓𝑠. Let

ℎ < 2
𝑀

and 𝐾 > 1, for any probability measure 𝜈 ∈ 𝒫2, we consider the probability measurê︀𝜇𝑠,ℎ𝐾 defined by the probability distribution 𝜈𝑃 𝑇
𝑠,ℎ, where 𝑃𝐾

𝑠,ℎ is the discretized process diffusion

approximation described in Equation 3.1.11. Moreover, if 𝑓𝑠 is twice differentiable and 𝑓𝑠(𝛽) ≥

90



𝑓(𝛽) for any 𝛽 ∈ R𝑝, then if ℎ ≤ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇) ≤ (1 −𝑚ℎ)𝐾
(︂
‖𝛽(0) −𝛽𝑠‖2 +

(︁ 𝑝
𝑚

)︁1/2
)︂

+ 1.82
𝑀

𝑚
(ℎ𝑝)1/2 +

‖𝑓 − 𝑓𝑠‖∞
𝑚1/2

.

Alternatively, if ℎ ≥ 2/(𝑀 +𝑚),

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇) ≤(𝑀ℎ− 1)𝐾
(︂
‖𝛽(0) −𝛽𝑠‖2 +

(︁ 𝑝
𝑚

)︁1/2
)︂

+ 1.82
𝑀ℎ

2 −𝑀ℎ
(ℎ𝑝)1/2

+
‖𝑓 − 𝑓𝑠‖∞
𝑚1/2

.

This corollary is the combination of known results from the literature such as the one mentioned

in Dalalyan (2017). However it is new in the sense that it provides an explicit guarantee of

the quality of the sampling approximation of the measure 𝜇, even though 𝑓 does not belong

to the set ℱ𝑀,𝑚. Clearly, some questions remain since ‖𝛽(0) − 𝛽𝑠‖2 is not necessarily known,

neither is 𝐾𝐿(𝜇‖𝜇𝑠) or ‖𝑓 − 𝑓𝑠‖∞. However, these quantities are easier to measure, or at least

to approximate than the quantity 𝑊2(𝜈, 𝜇
𝑠).

This result describes some explicit conditions to guarantee the existence and the reach of a

given accuracy 𝜖. Of course, the accuracy strongly relies on the choice of 𝑓𝑠. In the article

Brosse et al. (2017), a general approach of smoothing using the proximal operator is defined.

In order to optimize the solution, it would be interesting, for a given family ℱ𝑀,𝑚 to minimize

the problem

arg min
𝑔∈ℱ𝑀,𝑚

𝑊2(𝜇, 𝜈𝑔), (3.2.25)

where 𝜈𝑔 is the measure associated with 𝑔. If solving this problem was feasible for any (𝑚,𝑀),

then it would be possible to choose optimally the best sample approximation. The exact

solution if this problem is a very difficult challenge. However, there is a literature on efficient

computational methods for the approximation of the Wasserstein distance as in Solomon et al.

(2015) that could be of help in order to solve this problem.

In the next section, we will consider an example of application of Corollary 3.3.2, the exponential

weighted aggregate with Laplace prior estimation.

3.3 The case of EWA with Laplace prior approximation

In this section, we consider the exponentially weighted aggregate with Laplace prior estimatê︀𝛽𝐸𝑊𝐴 and the model described in Chapter 2 (Dalalyan et al. (2016)). This corresponds to
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considering data that consist of 𝑛 random observations 𝑦1, . . . , 𝑦𝑛 ∈ R and 𝑝 fixed covariates

𝑥1, . . . ,𝑥𝑝 ∈ R𝑛. We further assume that there is a vector 𝛽⋆ ∈ R𝑝 such that the residuals

𝜉𝑖 = 𝑦𝑖 − 𝛽⋆1𝑥
1
𝑖 − . . .− 𝛽⋆𝑝𝑥

𝑝
𝑖 are independent, zero mean random variables. In vector notation,

this reads as

𝑦 = X𝛽⋆ + 𝜉, (3.3.1)

where 𝑦 = (𝑦1, . . . , 𝑦𝑛)⊤ is the response vector, X = (𝑥1, . . . ,𝑥𝑝) ∈ R𝑛×𝑝 is the design matrix

and 𝜉 is the noise vector.

In this section, we assume the Gram matrix to be invertible; in particular, we assume that its

smallest eigen value ̂︀𝜎min is positive. It is equivalent to

X⊤X/𝑛 < ̂︀𝜎minI𝑝. (3.3.2)

We define the fitting function 𝐿 by

𝐿(𝛽) =
‖𝑦 −X𝛽‖22

2𝑛
, (3.3.3)

and the penalization term 𝑔 by

𝑔(𝛽) = ‖𝛽‖1. (3.3.4)

In that context, the potential of the pseudo-posterior function is

𝑓(𝛽) =
1

𝜏
𝐿(𝛽) +

𝜆

𝜏
𝑔(𝛽). (3.3.5)

The function 𝑓 corresponds to the potential associated with the pseudo posterior of the EWA

with Laplace prior as defined in Chapter 2. The exponentially weighted aggregate with Laplace

prior estimate is defined, for a given temperature 𝜏 , by Equation 3.1.2. As shown in Chapter

2, the exponentially weighted aggregate estimate ̂︀𝛽𝐸𝑊𝐴 enjoys a fast rate property in the sense

of the prediction error:

ℓ𝑛(𝛽,𝛽⋆) = ‖X(𝛽 − 𝛽⋆)‖22, (3.3.6)

for a given temperature parameter 𝜏 and a specific value of the penalty term 𝜆. It is therefore

a question of interest to determine a method that guarantees a feasible and practical method

to approximate with a desired accuracy the EWA estimate ̂︀𝛽𝐸𝑊𝐴. However, to the best of our

knowledge, there is no guarantee in the literature that a given method could approximate the

estimate ̂︀𝛽𝐸𝑊𝐴 in a polynomial finite computational time for a fixed accuracy 𝜖.
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In this section, we first provide a smooth approximation 𝑓𝛾 of 𝑓 such that 𝑓𝛾 ∈ ℱ𝑀,𝑚 and such

that an explicit upper bound of 𝑊2(𝜇, 𝜇
𝛾) is guaranteed. We then show in Theorem 3.3.1 that

this approximation enables to apply Theorem 3.2.1 and therefore to show that, with a given

approximation of 𝑓 , the sampling method can achieve accurate approximation in finite time.

Finally, we provide in Corollary 3.3.2 practical requirements on the number of iterations 𝐾 as

well as of the stepsize ℎ so that a desired accuracy 𝜖 is achieved.

Figure 3-1: This figure illustrates the density function 𝜋 asso-
ciated with the log-density 𝑓(𝛽) as defined in Equation 3.3.5
for different values of the temperature parameter 𝜏 in the
noise-free and unidimensional settings where 𝑦 = 𝛽⋆ = 1 and
𝜆 = 1. The solid blue line represents 𝜋 with 𝜏 = 1 which is
equivalent to the bayesian Lasso. The red dashed line is an
illustration of the density 𝜋 when 𝜏 = 0.5. Finally, the dotted
green line represents a smaller temperature 𝜏 = 0.2. When
𝜏 is a very small quantity, the density 𝜋 is converging, in the
sense of distributions, into a Dirac concentrated at the lasso
estimate.

The function 𝑓 is (̂︀𝜎min/𝜏)-strongly convex from Equation 3.3.2. However, 𝑓 /∈ ℱ𝑀,𝑚, since 𝑔

is not differentiable but only subdifferentiable. This is why direct applications of the results

from Durmus and Moulines (2016) or from Dalalyan (2016) do not apply here. To tackle this

challenge, we investigate the properties of 𝑔𝛾, a smooth approximation of 𝑔:

𝑔𝛾(𝛽) =
∑︁
𝑗∈[𝑝]

√︁
𝛾2 + 𝛽2

𝑗 , (3.3.7)
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where 𝛾 ≥ 0 is a parameter.

Figure 3-2: This figure represents the function 𝑔𝛾 as described
in Equation 3.3.7 for different values of 𝛾 in the unidimen-
sional settings (𝛽 ∈ R). The solid blue line is 𝑔0, which is
also the ℓ1-norm. The red dashed line is 𝑔0.05 and the green
dotted line is 𝑔0.2. The greater the value of 𝛾, the smoother
is the penalty function 𝑔𝛾.

We can now define the smooth approximation 𝑓𝛾 of the potential 𝑓 defined as

𝑓𝛾(𝛽) =
1

𝜏
𝐿(𝛽) +

𝜆

𝜏
𝑔𝛾(𝛽). (3.3.8)

The goal of this section is to investigate the quality of a Langevin Monte Carlo procedure

applied to 𝑓𝛾 in order to sample the distribution characterized by the potential 𝑓 .

In this section, we derivate and show some properties of 𝑓𝛾 that are useful to obtain explicit

guarantees of the sampling process. In particular, we show that 𝑓𝛾 has all the necessary

properties so that Corollary 3.2.2 can be applied.

We define ̂︀𝜎min (respectively ̂︀𝜎max) as the smallest (resp. the largest) eigenvalue of the Gram

matrix X⊤X/𝑛. In the following, we will assume that the Gram matrix is invertible and

that ̂︀𝜎min > 0. These assumptions exclude some situations that are potentially important. In

particular, the high-dimensional settings, where 𝑝 > 𝑛, will not belong to the frame of our

study. It would be of great interest to develop a method that could guarantee approximation

accuracies in finite time with less restrictive assumptions. Indeed, the penalization methods
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Figure 3-3: This plot represents the density function 𝜋𝛾 associ-
ated with the smooth log-density 𝑓𝛾(𝛽) as defined in Equation
3.3.8 for a given temperature parameter 𝜏 = 0.2. This plot
considers the noise-free and unidimensional settings where
𝛽⋆ = 1, 𝑦 = 𝛽⋆ and 𝜆 = 1. The solid blue line is 𝜋0, the
non-smooth case, which is the standard EWA estimate. The
red dash line is 𝜋0.05 and the green dotted line is 𝜋0.2.

such as the EWA with Laplace prior are efficient in the case of high-dimensional settings.

However, this will not be the focus of this section, nor of this study.

Proposition 3.3.1 explicits constants 𝑀𝛾,𝑚𝛾 depending on the matrix X and on the parameter

𝛾 so that 𝑓𝛾 ∈ ℱ𝑀𝛾 ,𝑚𝛾 . Moreover, these constants are proved to be optimal in the sense that

there is neither 𝑚 > 𝑚𝛾 such that 𝑓𝛾 is 𝑚-strongly convex, nor any 𝑀 < 𝑀𝛾 such that the

gradient ∇𝑓𝛾 is 𝑀 -Lipschitz.

Proposition 3.3.1. Let us consider a design matrix X such that the associated Gram matrix

X⊤X/𝑛 is invertible with its smallest eigen value ̂︀𝜎min positive and its greatest eigen value ̂︀𝜎max

known. Let 𝛾 be a positive real number and 𝑓𝛾 be the smooth negative log-density defined in

Equation 3.3.8 with respect to the smooth penalty 𝑔𝛾 defined in Equation 3.3.7. Then, 𝑓𝛾 belongs

to the set ℱ𝑀𝛾 ,𝑚𝛾 with

𝑀𝛾 =
1

𝜏

(︀̂︀𝜎max +
𝜆

𝛾

)︀
, (3.3.9)

and

𝑚𝛾 =
̂︀𝜎min

𝜏
. (3.3.10)
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Moreover, the constants (𝑚𝛾,𝑀𝛾) are optimal in the sense that there is no couple (𝑚,𝑀) with

𝑚 < 𝑚𝛾 or 𝑀 > 𝑀𝛾 such that 𝑓𝛾 ∈ ℱ𝑀,𝑚.

The proof of Proposition 3.3.1 is postponed to Section 3.5. First of all, Proposition 3.3.1

mentions that the strong convexity property of 𝑓𝛾 is not affected by the parameter 𝛾. Indeed,

considering Equation 3.3.8, only 𝑔𝛾 varies with 𝛾. As illustrated in Figure 3-2, 𝑔𝛾 is not strongly-

convex but only strictly-convex as long as 𝛾 > 0. Therefore, no theoretical improvement is

expected to come from an increase of the strong-convexity parameter 𝑚 = 𝑚𝛾. However,

referring to Figure 3-2, 𝑔𝛾 is strongly-convex on any bounded set included in R𝑝 as long as

𝛾 > 0. Consequently, some empirical benefits of the strong-convexity are expected with the

increase of 𝛾. On the other hand, 𝛾 has a significant impact on the Lipschitzness property of

the gradient. Indeed, if 𝛾 = 0, 𝑓𝛾 is not differentiable since the ℓ1-norm is not differentiable. By

smoothing 𝑔𝛾 with the increase of 𝛾, we observe theoretical improvement of the Lipschitzness of

the gradient ∇𝑓𝛾. As a consequence, the increase of 𝛾 will theoretically improve the property

of 𝑓𝛾 in the sense of the Lipschitzness of the gradient. It will therefore improve the accuracy

of the approximation ̂︀𝜇𝛾,ℎ𝐾 . However, if the term 𝑊2(̂︀𝜇𝛾,ℎ𝐾 , 𝜇𝛾) will decrease with 𝛾, the quality

of the approximation 𝜇𝛾 of the targeted measure 𝜇 will suffer from a rougher approximation of

the ℓ1-norm. This result is explicited by Proposition 3.3.2.

Proposition 3.3.2. Let 𝜇 be the measure of probability associated with the potential 𝑓 defined

in Equation 3.3.5 and 𝜇𝛾 the measure associated with 𝑓𝛾 defined in Equation 3.3.8, then

𝑊2(𝜇, 𝜇
𝛾) ≤

(︂̂︀𝜎min

𝜏

)︂1/2

𝑝𝜆𝛾. (3.3.11)

The proof of Proposition 3.3.2 is postponed to Section 3.5. The proof relies on Equation 3.2.18

in Remark 3.2.1. This result provides a rough upper bound of 𝑊2(𝜇, 𝜇
𝛾) and shows the impact

of 𝛾 on the approximation quality. The next theorem combines Propositions 3.3.1 and 3.3.2 to

explicit the rate of convergence of the approximation ̂︀𝜇𝛾,ℎ𝐾 with respect to 𝜇. This result enables

to state the result that motivates this work, namely Theorem 3.3.1.

Theorem 3.3.1. Let 𝜇 be the probability measure of the pseudo-posterior of the EWA with

Laplace prior, with temperature 𝜏 > 0, as described by the potential 𝑓 in Equation 3.3.5, and

let 𝜇𝛾 be the measure probability associated to 𝑓𝛾 as in Equation 3.3.8. Let 0 < ℎ < 2
𝑀

and

𝐾 > 1, for any probability measure 𝜈 ∈ 𝒫2, we consider the probability measure ̂︀𝜇𝐾𝛾,ℎ defined by

the probability distribution 𝜈𝑃 𝑇
𝛾,ℎ, where 𝑃𝐾

𝛾,ℎ is the discretized process diffusion approximation

of the measure 𝜇𝛾, as described in Equation 3.1.11.
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If ℎ ≤ 2/(𝑀𝛾 +𝑚𝛾),

𝑊2(̂︀𝜇𝐾𝛾,ℎ, 𝜇) ≤ (1 −𝑚𝛾ℎ)𝐾𝑊2(𝜈, 𝜇
𝛾) + 1.82

𝑀𝛾

𝑚𝛾

(ℎ𝑝)1/2 +
𝑝𝜆𝛾

𝜏
√
𝑚𝛾

. (3.3.12)

Alternatively, if ℎ ≥ 2/(𝑀𝛾 +𝑚𝛾),

𝑊2(̂︀𝜇𝐾𝛾,ℎ, 𝜇) ≤ (𝑀𝛾ℎ− 1)𝐾𝑊2(𝜈, 𝜇
𝛾) + 1.82

𝑀𝛾ℎ

2 −𝑀𝛾ℎ
(ℎ𝑝)1/2 +

𝑝𝜆𝛾

𝜏
√
𝑚𝛾

. (3.3.13)

Theorem 3.3.1 is the direct application of Theorem 3.2.1 in the context of the exponentially

weighted aggregate with Laplace prior estimate. Of course, one may not know the quantity

𝑊2(𝜈, 𝜇
𝛾). Corollary 3.3.1 offers an upper bound that turns out to be explicit.

Corollary 3.3.1. Let 𝜇 be the probability measure of the pseudo-posterior of the EWA with

Laplace prior with temperature 𝜏 > 0, as described by the potential 𝑓 in Equation 3.3.5, and let

𝜇𝛾 be the measure probability associated to 𝑓𝛾 in Equation 3.3.8. Let 0 < ℎ < 2
𝑀

and 𝐾 > 1,

for any probability measure 𝜈 ∈ 𝒫2, we consider the probability measure ̂︀𝜇𝐾𝛾,ℎ defined by the

probability distribution 𝜈𝑃 𝑇
𝛾,ℎ, where 𝑃𝐾

𝛾,ℎ is the discretized process diffusion approximation of

the measure 𝜇𝛾 as described in Equation 3.1.11.

If ℎ ≤ 2/(𝑀𝛾 +𝑚𝛾),

𝑊2(̂︀𝜇𝐾𝛾,ℎ, 𝜇) ≤(1 −𝑚𝛾ℎ)𝐾
(︂
‖𝛽(0) −𝛽𝛾‖2 +

(︁ 𝑝

𝑚𝛾

)︁1/2
)︂

+ 1.82
𝑀𝛾

𝑚𝛾

(ℎ𝑝)1/2

+
𝑝𝜆𝛾

𝜏
√
𝑚𝛾

.

Alternatively, if ℎ ≥ 2/(𝑀𝛾 +𝑚𝛾),

𝑊2(̂︀𝜇𝐾𝛾,ℎ, 𝜇) ≤(𝑀𝛾ℎ− 1)𝐾
(︂
‖𝛽(0) −𝛽𝛾‖2 +

(︁ 𝑝

𝑚𝛾

)︁1/2
)︂

+ 1.82
𝑀𝛾ℎ

2 −𝑀𝛾ℎ
(ℎ𝑝)1/2

+
𝑝𝜆𝛾

𝜏
√
𝑚𝛾

.

The proof of this corollary is straightforward in view of Corollary 3.2.2 applied to 𝑓𝛾 using the

fact from Proposition 3.3.1 that 𝑓𝛾 ∈ ℱ𝑀𝛾 ,𝑚𝛾 . �

In Chapter 2 (Dalalyan et al. (2016)), sharp oracles inequalities of the prediction error and

of the pseudo-posterior concentration are proven to hold when 𝜏 is of the order 𝜎2/𝑛𝑝 and 𝜆

of the order 𝜎{log (𝑝)/𝑛}1/2. In the following, we study explicitly the rate of convergence of
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𝑊2(̂︀𝜇𝐾𝛾,ℎ, 𝜇) when

𝜏 =
𝜎2

𝑛𝑝
, (3.3.14)

and

𝜆 = 𝜎

{︂
log (𝑝)

𝑛

}︂1/2

. (3.3.15)

We assume ̂︀𝜎min > 0, ̂︀𝜎max and 𝜎2 to be constant with respect to the number of observations 𝑛

and the dimension 𝑝. Corollary 3.3.2 provides an explicit approximation process that achieves

a given accuracy 𝜖. Conditions on the stepsize ℎ as well as on the number of iterations 𝐾 are

explicit. Similarly to previous results, two different rates of convergence are given conditionally

to the stepsize ℎ. In Corollary 3.3.2 we also recommend 𝑔𝛾 to be chosen with

𝛾 =
𝜖̂︀𝜎1/2

min

3𝑝3/2 log(𝑝)1/2
. (3.3.16)

Corollary 3.3.2. Let 𝜇 be the probability measure of the pseudo-posterior of the EWA with

Laplace prior with temperature 𝜏 > 0, as described by the potential 𝑓 in Equation 3.3.5. Let

𝛾 be defined as in Equation 3.3.16 and let 𝜇𝛾 be the measure probability associated to 𝑓𝛾 in

Equation 3.3.8. Let ℎ ∈ R⋆ and 𝐾 ∈ N⋆.

For any Dirac measure 𝜈 = 𝛿𝛽(0), we consider the probability measure ̂︀𝜇𝐾𝛾,ℎ defined by the

probability distribution 𝜈𝑃𝐾
𝛾,ℎ, where 𝑃𝐾

𝛾,ℎ is the discretized process diffusion approximation of

the measure 𝜇𝛾 as described in Equation 3.1.11.

If ℎ < 2/(𝑀𝛾 +𝑚𝛾), then for any 𝜖 > 0,

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇𝑠) ≤ 𝜖, (3.3.17)

if

𝐾ℎ ≥ 𝜎2
log

(︁
3
𝜖

(︀
‖𝛽(0) −𝛽𝛾‖2 + 𝜎√

𝑛̂︀𝜎min

)︀)︁
𝑛𝑝̂︀𝜎min

, (3.3.18)

1

ℎ
>

31

𝜖2

(︂̂︀𝜎max
√
𝑝̂︀𝜎min

+
3𝜎𝑝2 log (𝑝)

𝜖
√︀
𝑛̂︀𝜎3

min

)︂2

. (3.3.19)

If we assume ̂︀𝜎min, ̂︀𝜎max to be constant, ‖𝛽(0) − 𝛽𝑠‖2 to be of order √
𝑝 or smaller such that,

‖𝛽(0)−𝛽𝑠‖2 +(𝜎/
√
𝑛) ≤ 𝒪(

√
𝑝) and ℎ to be small enough, then, there is a number of iterations

𝐾 = 𝒪
(︂
𝑝3 log (𝑝)2

(𝑛𝜖)4
log(

√
𝑝/𝜖)

)︂
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such that the target accuracy 𝜖 is achieved. This result should be compared to the paper Brosse

et al. (2017). However, even though the authors defined a more general smoothing method,

the smoothing parameter 𝛾 are not explicited. It is reasonable to consider 𝛾 to depend on

parameters such as the dimension 𝑝. Therefore, it is not easy to compare the complexity of

the general method described in Brosse et al. (2017) with the method we study. The result of

Corollary 3.3.2 is to be compared with the results mentioned in Dalalyan (2017). Indeed, when

𝑓 ∈ ℱ𝑀,𝑚, a number of iterations 𝐾 = 𝒪(𝑝 log(𝑝/𝜖)𝜖−2) is sufficient to achieve an accuracy of

order 𝜖. Thus, a higher number of iterations is needed when the Lispschitzness of the gradient

does not hold.

Remark 3.3.1. When the choice is given, a small stepsize such as ℎ < 2/(𝑀𝛾 +𝑚𝛾) enables to

reach accuracy 𝜖 in a finite number of iterations 𝐾 as described in Corollary 3.3.2. However,

one may wish to guarantee a convergence rate of the approximation in a situation where the

discretization process has been generated with a given ℎ ≥ 2/(𝑀𝛾 +𝑚𝛾). In that case, if

1

ℎ
<

60𝑝

𝜖2
∨ 𝑀𝛾

2
,

then for any 𝜖 > 0, Inequality 3.3.17 holds if,

𝐾 ≥
log

(︂
3
(︀
‖𝛽(0)−𝛽𝛾‖2+ 𝜎√

𝑛̂︀𝜎min

)︀
𝜖

)︂
2 −

(︀
𝑛𝑝̂︀𝜎max/𝜎2 + log(𝑝)3/2𝑝5/2

𝜎𝜖
√̂︀𝜎min

)︀
ℎ
.

Corollary 3.3.2 and Remark 3.3.1 are proven in Section 3.5.

3.4 Discussion and outlook

This study establishes guarantees in the spirit of Dalalyan (2017) for any log-density that is

close, in the sense of the Wasserstein distance, to a strongly convex log-density with a Lipschitz

gradient. A particularly suited application is the log-density of the exponentially weighted

aggregate with Laplace prior. We have established explicit results in the context of this applic-

ation with the assumption that the Gram matrix is invertible when the temperature parameter

𝜏 = 𝜎2/(𝑛𝑝) and the penalty parameter 𝜆 = 𝜎[log (𝑝)/𝑛]1/2, as recommended in Chapter 2. The

sampling approximation is computable in polynomial time and explicit constants are given.

Matching the optimization performance in the context of sampling is a very promising and

exciting subject. In a practical situation, in order to improve the algorithm, the choice of an
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optimal smooth log-density is important. To do so, the computation of the Wasserstein distance

is necessary, some researches, such as Solomon et al. (2015), provide tools to start solving such

questions.

In the context of regression in high-dimensional settings, guaranteeing a targeted accuracy when

the design matrix is such that the Gram matrix is not invertible would be of great interest.

The generalization of the aforementioned results to other discretization schemes could broaden

the understanding of the sampling algorithms. In particular, considering the Ozaki scheme as

defined in Ozaki (1992) could be useful to study the associated performance. The analysis of

other log-densities inspired from other penalized regression problems such as the SLOPE, as in

Bogdan et al. (2015) and Sepehri (2016), or even the nuclear-norm penalization in the matrix

regression context, as in Koltchinskii et al. (2011b), would be of great interest.

Another promising field of study is the generalization of these results to other sampling methods.

For example, guarantees on time-inhomogeneous Langevin-type processes, as defined in Andrieu

et al. (2016), or on the Hamiltonian Monte Carlo, as explained in Neal (2011). Furthermore,

such studies could provide useful insights to deepen the understanding of the existing similarities

between optimization and sampling performances. On the spectrum of analogies with the

optimization, the question of sampling on a convex subset is very important. The study of

theoretical guarantees on samplings methods based on reflecting diffusion such as in Skorokhod

(1961) and Tanaka (1979) would be very promising.

3.5 Proofs

In this section, we prove the claims of Propositions 3.3.1 and 3.3.2 as well as the results of

Corollary 3.3.2 and Remark 3.3.1.

3.5.1 Proof of Proposition 3.3.1

Let X be the design matrix such that the associated Gram matrix X⊤X/𝑛 is invertible. We

define ̂︀𝜎min (respectively ̂︀𝜎max) to be the smallest (resp. greatest) eigen value of the Gram

matrix and we assume ̂︀𝜎min > 0. Let 𝛾 be a positive real number. With respect to X and

𝛾, the negative log-likelihood 𝑓𝛾 is defined in Equation 3.3.8. In order to prove Proposition

3.3.1, we will first study the strong-convexity property of 𝑓𝛾 with Lemmas 3.5.1 and 3.5.2 which

respectively provide results on the strong-convexity of 𝐿 and 𝑔𝛾. In a second time, Lemmas

3.5.3 and 3.5.4 will ensure properties on the Lipschitz property of the gradient of 𝑓𝛾 with respect
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to 𝛽, ∇𝑓𝛾.

These various lemmas will use some derivative results up to the third order of the functions 𝐿

and 𝑔𝛾. We start the proof of Proposition 3.3.1 with the definition of these derivatives.

The function 𝐿 is well known in the statistical literature and the following properties are well

known (see Montgomery et al. (2015)[Section 3.2.1] for example):

∇𝐿(𝛽) =
X⊤X𝛽 −X⊤𝑦

𝑛
, (3.5.1)

and

∇2𝐿(𝛽) =
X⊤X

𝑛
. (3.5.2)

Furthermore, it is then trivial that

∇3𝐿(𝛽) = 0. (3.5.3)

The function 𝑔𝛾 is differentiable and for any 𝑗 ∈ [𝑝],

𝜕𝑔𝛾
𝜕𝛽𝑗

(𝛽) =
𝛽𝑗(︀

𝛾2 + 𝛽2
𝑗

)︀1/2 . (3.5.4)

On the second order derivative, the Hessian matrix of 𝑔𝛾 is a diagonal matrix such that diagonal

coefficients are defined by

𝜕2𝑔𝛾
𝜕𝛽2

𝑗

(𝛽) =
1

(𝛾2 + 𝛽2
𝑗 )

1/2
−

𝛽2
𝑗

(𝛾2 + 𝛽2
𝑗 )

3/2
, (3.5.5)

and every non-diagonal term is null. Finally, we can show that the third differentiable of 𝑔𝛾 is

null everywhere but in the element 𝜕3𝑔𝛾
𝜕𝛽3

𝑗
, for any 𝑗 ∈ [𝑝],

𝜕3𝑔𝛾
𝜕𝛽3

𝑗

(𝛽) =
3𝛽𝑗

(𝛾2 + 𝛽2
𝑗 )

3/2

(︁ 𝛽2
𝑗

(𝛾2 + 𝛽2
𝑗 )

− 1
)︁
. (3.5.6)

The development of the calculations to prove Equations 3.5.4, 3.5.5 and 3.5.6 are left to the

reader, they follow on from combinations of standard derivative properties. That ∇3𝑓𝛾 is well

defined is of interest for one who wants to study theoretical properties of other discretization

schemes than the Euler Maruyama in order to approximate the Langevin Monte Carlo process.

In particular, it is of interest for higher order numerical schemes. For example, one could

consider the Ozaki discretization as defined in Ozaki (1992) that has been proposed to be used

in Stramer and Tweedie (1999) to approximate the Langevin Monte Carlo algorithm.

Now that these results have been mentioned, we can study the properties of 𝐿 and 𝑔𝛾.
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Lemma 3.5.1. The function 𝐿 is ̂︀𝜎min-strongly convex and there is no 𝑚 > ̂︀𝜎min such that 𝐿

is 𝑚-strongly convex.

This Lemma holds true from the definition of ̂︀𝜎min as the smallest eigen value of the Gram

matrix X⊤X/𝑛. Indeed, from Equation 3.5.2, since for any 𝛽 ∈ R𝑝, ∇2𝐿(𝛽) = X⊤X/𝑛, it

implies that

∇2𝐿(𝛽) − ̂︀𝜎minI𝑝(𝛽) =
(︁X⊤X

𝑛
− ̂︀𝜎minI𝑝

)︁
𝛽 < 0. (3.5.7)

Therefore, 𝐿 is ̂︀𝜎min-strongly convex.

Moreover, since ̂︀𝜎min is the smallest eigen value, there is no 𝑚 > ̂︀𝜎min such that ∇2𝐿(𝛽) <

𝑚I𝑝(𝛽) for any 𝛽 ∈ R𝑝, otherwise the smallest eigen-value of the Gram matrix would be

greater than 𝑚 which is contradictory with 𝑚 > ̂︀𝜎min. Therefore, there is no 𝑚 > ̂︀𝜎min such

that 𝐿 is 𝑚-strongly convex and consequently, 𝐿 is ̂︀𝜎min-strongly convex with ̂︀𝜎min being the

optimal constant. �

Lemma 3.5.2. The smooth function 𝑔𝛾 defined in Equation 3.3.7 is strictly convex but not

strongly convex.

We remind that the non-diagonal elements of ∇2𝑔𝛾 are null and that the diagonal terms are

defined by Equation 3.5.5. As a consequence, proving that for any 𝛽 ∈ R𝑝 and any 𝑗 ∈ [𝑝],
𝜕2𝑔𝛾
𝜕𝛽2

𝑗
(𝛽) > 0 is equivalent to prove the strict convexity of 𝑔𝛾. Moreover, if for any 𝜄 > 0 there

exists 𝛽 ∈ R𝑝 and 𝑗 ∈ [𝑝], such that
𝜕2𝑔𝛾
𝜕𝛽2

𝑗

(𝛽) < 𝜄,

then, 𝑔𝛾 is not strongly convex.

From Equation 3.5.5,
𝜕2𝑔𝛾
𝜕𝛽2

𝑗

(𝛽) =

(︂
1 −

𝛽2
𝑗

(𝛾2 + 𝛽2
𝑗 )

)︂
(𝛾2 + 𝛽2

𝑗 )
−1/2.

Therefore, for any 𝛽𝑗 ∈ R, 𝛽2
𝑗 < 𝛽2

𝑗 + 𝛾2, implies that 1 − (𝛽2
𝑗 /
(︀
𝛽2
𝑗 + 𝛾2)

)︀
> 0. Therefore, for

any 𝛽 ∈ R𝑝,
𝜕2𝑔𝛾
𝜕𝛽2

𝑗

(𝛽) > 0,

which proves the strict convexity of 𝑔𝛾. However,

lim
𝛽𝑗→+∞

𝜕2𝑔𝛾
𝜕𝛽2

𝑗

(𝛽) = 0.

Therefore, for any 𝜄 > 0, there exits 𝛽 ∈ R𝑝 such that ∇2𝑔𝛾(𝛽) ≺ 𝜄I𝑝. Consequently, for any

𝜄 > 0, 𝑔𝛾 is not 𝜄-strongly convex. We have proved that 𝑔𝛾 is strictly convex and not strongly
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convex and have therefore proved Lemma 3.5.2. �

The sum of a 𝑚-strongly convex function with a strictly but not strongly convex function is a

𝑚-strongly convex function. Thus, 𝑓𝛾 is (̂︀𝜎min/𝜏)-strongly convex from Lemmas 3.5.1 and 3.5.2

and ̂︀𝜎min is optimal.

The strongly convex property has been proven. In order to conclude the proof of Proposition

3.3.1 we study the Lipschitz property of the gradient ∇𝑓𝛾.

Lemma 3.5.3. Let 𝐿 be defined in Equation 3.3.3 where X is a matrix of data with the greatest

eigenvalue ̂︀𝜎max of the Gram matrix X⊤X/𝑛 known. Then, the gradient ∇𝐿 with respect to 𝛽

is ̂︀𝜎max-Lipschitz and there is no 𝑀 < ̂︀𝜎max such that ∇𝐿 is 𝑀-Lipschitz.

To prove Lemma 3.5.3, we remark that ∇2𝐿 exists and is defined in Equation 3.5.2. Therefore,

proving Lemma 3.5.3 is equivalent to prove that ̂︀𝜎max is the smallest quantity such that for any

𝛽 ∈ R𝑝,

‖𝑛−1X⊤X𝛽‖2 ≤ ̂︀𝜎max‖𝛽‖2,

which is true from the definition of ̂︀𝜎max as the largest eigenvalue of the Gram matrix X⊤X/𝑛.

�

Lemma 3.5.4. The gradient ∇𝑔𝛾 is 𝛾−1-Lipschitz and there is no 𝑀 < 𝛾−1 such that ∇𝐿 is

𝑀-Lipschitz.

From equation 3.5.5, the Hessian ∇2𝑔𝛾 exists. Therefore, proving that ∇𝑔𝛾 is 𝛾−1-Lipschitz and

that there is no smaller constant than 𝛾−1 for which ∇𝑔𝛾 is Lipschitz is equivalent to guarantee

that

𝛾−1I𝑝 < ∇2𝑔𝛾(𝛽),

for any 𝛽 ∈ R𝑝.

The third derivative operator ∇3𝑔𝛾 is also diagonal and we deduce from Equations 3.5.5 and

3.5.6 that for any 𝑗 ∈ [𝑝], 𝜕2𝑔𝛾
𝜕𝛽2

𝑗
reaches its maximum in any 𝛽 ∈ R𝑝 such that 𝛽𝑗 = 0. Indeed,

∇2𝑔𝛾 is continuous and ∇3𝑔𝛾(𝛽) = 0 implies that 𝛽 = 0𝑝. Moreover, for any 𝑗 ∈ [𝑝], and for

any 𝛽𝑗 ∈ R,

lim
𝛽∈R𝑝

|𝛽𝑗 |→+∞

𝜕2𝑔𝛾
𝜕𝛽2

𝑗

(𝛽) = 0 <
𝜕2𝑔𝛾

𝜕̃︀𝛽2
𝑗

(︀̃︀𝛽)︀ = 𝛾−1,

for any ̃︀𝛽 ∈ R𝑝 such that ̃︀𝛽𝑗 = 0.

Therefore, the diagonal elements of ∇2𝑔𝛾(𝛽) are not greater than the diagonal elements of
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∇2𝑔𝛾(0𝑝), which are equal to 𝛾−1. Thus, for any 𝛽 ∈ R𝑝,

𝛾−1I𝑝 = ∇2𝑔𝛾(0𝑝) < ∇2𝑔𝛾(𝛽). (3.5.8)

The inequality in Equation 3.5.8 proves that ∇2𝑔𝛾 is 𝛾−1-Lipschitz, while the left hand equality

proves the optimality of 𝛾−1 as the Lipschitz parameter. Hence, we have concluded the proof

of Lemma 3.5.4. �

Lemmas 3.5.3 and 3.5.4 combined prove that the optimal 𝑀𝛾-Lipschitz property of ∇𝑓𝛾 is

𝑀𝛾 =
1

𝜏

(︀̂︀𝜎max +
𝜆

𝛾

)︀
.

We have calculated the gradients and Hessians of 𝐿 and 𝑔𝛾 and have shown the optimal 𝑚𝛾-

strong convexity of 𝑓𝛾 as well as the optimal 𝑀𝛾-Lipschitz property of ∇𝑓𝛾. Therefore, 𝑓𝛾 ∈

ℱ𝑀𝛾 ,𝑚𝛾 and the couple (𝑀𝛾,𝑚𝛾) is optimal, which concludes the proof of Proposition 3.3.1. �

3.5.2 Proof of Proposition 3.3.2

Let 𝜇𝛾 be the measure associated with 𝑓𝛾 defined in Equation 3.3.8. Proposition 3.3.2 upper

bounds the Wasserstein distance 𝑊2(𝜇, 𝜇
𝛾). To prove this upper bound in the clearest possible

way, we define the quantities 𝑎𝛾 = ̂︀𝜎max + 𝜆
𝛾
, 𝑏𝛾 = ̂︀𝜎min+𝑎𝛾̂︀𝜎min

and 𝑐𝛾 = 𝑎𝛾𝑏𝛾.

With these notations, and using the fact that we assume that 𝜏 = 𝑛𝑝/𝜎2,

𝑀𝛾 =
1

𝜏

(︀̂︀𝜎max +
𝜆

𝛾

)︀
=
𝑛𝑝 𝑎𝛾
𝜎2

, (3.5.9)

and,

𝑚𝛾 =
̂︀𝜎min

𝜏
=
𝑛𝑝 ̂︀𝜎min

𝜎2
. (3.5.10)

Hence, (︀
𝛾𝑝𝜆

)︀2
𝑚𝛾𝜏 2

=
𝜎2
(︀
𝑛𝑝 𝛾𝑝𝜆

)︀2
𝑛𝑝 ̂︀𝜎min𝜎4

=
𝑛𝑝3𝜆2𝛾2

𝜎2 ̂︀𝜎min

. (3.5.11)

Moreover, from Proposition 3.2.2, the inequality

𝐾𝐿(𝜇‖𝜇𝛾) ≤ 1

2

∫︁
R𝑝

(𝑓(𝑢) − 𝑓𝛾(𝑢))2𝜋(𝑢)d𝑢

holds. Therefore, remarking that (𝑓(𝛽) − 𝑓𝛾(𝛽))2 < (𝜆𝑝𝛾/𝜏)2 for any 𝛽 ∈ R𝑝 and averaging

this upper bound with respect to the density measure 𝜋, we deduce that
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𝐾𝐿(𝜇‖𝜇𝛾) ≤ 1

2

(︁𝑝𝜆𝛾
𝜏

)︁2

. (3.5.12)

Finally, applying Proposition 3.2.1 and the result of Equation 3.5.12 implies that if 𝑓𝛾 ∈ ℱ𝑀𝛾 ,𝑚𝛾 ,

then

𝑊2(𝜇, 𝜇
𝛾) ≤ 𝑝𝜆𝛾

𝜏
√
𝑚𝛾

.

This upper bound concludes the proof by remarking that 𝑚𝛾 = ̂︀𝜎min

𝜏
. �

3.5.3 Proof of Corollary 3.3.2 and Remark 3.3.1

In order to prove Corollary 3.3.2 and Remark 3.3.1, we consider a targeted accuracy 𝜖 > 0,

such that ̂︀𝜇𝑠,ℎ𝐾 is a good approximation of the measure 𝜇 in the sense that 𝑊2(𝜇, ̂︀𝜇𝑠,ℎ𝐾 ) < 𝜖.

The goal of this corollary is to provide explicit values of the parameters that one has to choose

in practical situations, namely the stepsize ℎ, the smoothing parameter 𝛾 and the number of

iterations 𝐾 needed to reach the accuracy level 𝜖. To do so, we approach the problem by

splitting the upper bound of the quantity 𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇) in three terms as in Inequalities 3.3.12 or

3.3.13. We will upper bound the three quantities by (𝜖/3) so that the sum is upper bound by

the targeted accuracy 𝜖 such that, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1 −𝑚𝛾ℎ)𝐾𝐴 ≤ 𝜖

3
, (3.5.13)

1.82
𝑀𝛾

𝑚𝛾

(ℎ𝑝)1/2 ≤ 𝜖

3
, (3.5.14)

𝑊2(𝜇, 𝜇
𝛾) ≤ 𝜖

3
, (3.5.15)

where

𝐴 , ‖𝛽(0) −𝛽𝑠‖2 +
(︁ 𝑝

𝑚𝛾

)︁1/2

. (3.5.16)

As a consequence, Inequality 3.3.17 would hold and Corolarry 3.3.2 would be proven. In order

to prove Remark 3.3.1 Inequality 3.5.14 has to be substituted with

1.82
𝑀𝛾ℎ

2 −𝑀𝛾ℎ
(ℎ𝑝)1/2 ≤ 𝜖

3
, (3.5.17)

and Inequality 3.5.13 has to be substituted with

(𝑀𝛾ℎ− 1)𝐾𝐴 ≤ 𝜖

3
. (3.5.18)
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While Lemma 3.5.5 will provide explicit condition on 𝛾 to guarantee Inequality 3.5.15, Lemmas

3.5.6 and 3.5.7 (respectively Lemmas 3.5.8 and 3.5.9) will provide explicit requirements on 𝐾

and ℎ that guarantee the remainings inequalities.

For clarity sake, we assume

𝜏 =
𝑛𝑝

𝜎2
, (3.5.19)

and

𝜆 = 𝜎[log(𝑝)/𝑛]1/2. (3.5.20)

Of course, one could adjust this proof with specific values of 𝜏 and 𝛾. As we will see, the value

of ℎ interfers in the result and the convergence rate. We consider ℎ to be small when ℎ is such

that ℎ ≤ 2
𝑀𝛾+𝑚𝛾

, we consider ℎ to be relatively large when 2
𝑀𝛾+𝑚𝛾

≤ ℎ < 2
𝑀𝛾

. Inequality 3.3.12

applies when ℎ is small and Inequality 3.3.13 applies when ℎ is large. However, the last term

of both inequalities is the same. As a consequence, we start the proofs of Corollary 3.3.2 and

Remark 3.3.1 with Lemma 3.5.5, which provides a first condition on how small should be 𝛾.

Lemma 3.5.5. The following inequality

𝑝𝜆𝛾

𝜏
√
𝑚𝛾

≤ 𝜖

3
(3.5.21)

holds if and only if

𝛾 ≤ 𝜖̂︀𝜎1/2
min

3𝑝3/2 log(𝑝)1/2
. (3.5.22)

Indeed, from Equations 3.5.19 and 3.5.20, the inequality

𝑝𝜆𝛾

𝜏
√
𝑚𝛾

≤ 𝜖

3

is equivalent to
𝑝𝜎[log(𝑝)/𝑛]1/2𝛾

𝜎2/(𝑛𝑝)
√︁

𝑛𝑝 ̂︀𝜎min

𝜎2

≤ 𝜖

3
.

Therefore, it is equivalent to
𝑝3/2 log(𝑝)1/2𝛾̂︀𝜎1/2

min

≤ 𝜖

3
.

We conclude that Inequality 3.5.21 holds if and only if

𝛾 ≤ 𝜖̂︀𝜎1/2
min

3𝑝3/2 log(𝑝)1/2
.

�
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The choice of 𝛾 is of paramount importance, it determines how rough is the smoothing approx-

imation of 𝜇. Lemma 3.5.5 guarantees an upper bound of the quality as long as 𝛾 is smaller

than a specific threshold. A small value of 𝛾 guarantee a good approximation of the target

measure 𝜇 by 𝜇𝛾. Not only the parameter 𝛾 plays a role in the smooth approximation of the

measure, it also has an impact on the Lipschitz property of the gradient ∇𝑓𝛾. As mentioned in

Proposition 3.3.1, a small value of 𝛾 as a negative impact on the regularity of the gradient as

shown in Equation 3.3.9. On the other hand, 𝛾 has no effect on the strong convexity parameter

𝑚𝛾 as Equation 3.3.10 shows. From this point of view, we recommend to choose the greatest

value of 𝛾 that respects Inequality 3.5.22, which is

𝛾 =
𝜖̂︀𝜎1/2

min

3𝑝3/2 log(𝑝)1/2
. (3.5.23)

From now on, we assume 𝛾 to be set as in Equation 3.5.23. Now, we focus on the case where ℎ

is small in the sense that ℎ ≤ 2
𝑀𝛾+𝑚𝛾

. In that case two lemmas are necessary to conclude the

proof of Corollary 3.3.2.

Lemma 3.5.6. If ℎ ≤ 2
𝑀𝛾+𝑚𝛾

, then the inequality

1.82
𝑀𝛾

𝑚𝛾

(︀
ℎ𝑝

)︀1/2 ≤ 𝜖

3
(3.5.24)

holds if
1

ℎ
>

31

𝜖2

(︂̂︀𝜎max
√
𝑝̂︀𝜎min

+
3𝜎 log (𝑝)𝑝2

𝜖
√︀
𝑛̂︀𝜎3

min

)︂2

. (3.5.25)

In order to prove Lemma 3.5.6, let first remark that 31 > 9(1.82)2. Furthermore, if ℎ is such

that

ℎ <
𝜖2

9 × (1.82)2

(︂̂︀𝜎max
√
𝑝̂︀𝜎min

+
3𝜎 log (𝑝)𝑝2

𝜖
√︀
𝑛̂︀𝜎3

min

)︂−2

,

then, it implies that

(1.82)2ℎ

(︂̂︀𝜎max
√
𝑝̂︀𝜎min

+
3𝜎 log (𝑝)𝑝2

𝜖
√︀
𝑛̂︀𝜎3

min

)︂2

<
𝜖2

9
.

For any positive ℎ, this inequality is equivalent to

1.82
√︀
ℎ𝑝

(︂̂︀𝜎max̂︀𝜎min

+
3𝜎 log (𝑝)𝑝3/2

𝜖
√︀
𝑛̂︀𝜎3

min

)︂
<
𝜖

3
. (3.5.26)
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From Equations 3.5.20 and 3.5.23, we remark that

𝑀𝛾

𝑚𝛾

=
̂︀𝜎max̂︀𝜎min

+
3𝜎 log (𝑝)𝑝3/2

𝜖
√︀
𝑛̂︀𝜎3

min

, (3.5.27)

where 𝑀𝛾 and 𝑚𝛾 are defined in Proposition 3.3.1. Therefore, the combination of Inequality

3.5.26 and Equation 3.5.27 implies the claim of Lemma 3.5.6. Namely, if ℎ is such that

ℎ <
𝜖2

15

(︂̂︀𝜎max
√
𝑝̂︀𝜎min

+
3𝜎 log (𝑝)𝑝2

𝜖
√︀
𝑛̂︀𝜎3

min

)︂−2

,

then

1.82
𝑀𝛾

𝑚𝛾

(︀
ℎ𝑝

)︀1/2 ≤ 𝜖

3
.

�

Therefore, in order to obtain Inequality 3.5.24, the stepsize ℎ has to be small enough. When

ℎ ≤ 2
𝑀𝛾+𝑚𝛾

, Lemmas 3.5.5 and 3.5.6 respectively provide conditions on 𝛾 and ℎ. The last

condition will focus on the number of iterations 𝐾 needed to achieve a targeted accuracy. This

condition is given by Lemma 3.5.7.

Lemma 3.5.7. Let 𝜈 be a Dirac measure concentrated at 𝛽(0) and let 𝛽𝛾 be the average with

respect to the density 𝜋𝛾. Let 𝐴 be the quantity defined by

𝐴 , ‖𝛽(0) −𝛽𝛾‖2 +
𝜎√
𝑛̂︀𝜎min

. (3.5.28)

If ℎ ≤ 2
𝑀𝛾+𝑚𝛾

, then the inequality

(1 −𝑚𝛾ℎ)𝐾𝑊2(𝜈, 𝜇
𝛾) ≤ 𝜖

3
(3.5.29)

holds if

𝐾ℎ ≥
log (3𝐴

𝜖
)

𝑚𝛾

. (3.5.30)

In order to prove Lemma 3.5.6, we explicit a number of iterations 𝐾 that guarantees the upper

bound of Inequality 3.5.29. To do so, we will use the result of Proposition 3.2.2 and we will

assume 𝜈 to be a Dirac measure concentrated at 𝛽(0). Let us define 𝛽𝛾 the average over 𝜋𝛾.

Then, from Proposition 3.2.2, we remark that

𝑊 2
2 (𝜈, 𝜇𝛾) ≤ ‖𝛽(0) −𝛽𝛾‖22 +

𝑝

𝑚𝛾

.
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Thus, from the definitions of 𝑚𝛾 and 𝜏 respectively in Equations 3.3.10 and 3.5.19,

𝑊2(𝜈, 𝜇
𝛾) ≤ ‖𝛽(0) −𝛽𝛾‖2 +

𝜎√
𝑛̂︀𝜎min

= 𝐴.

Moreover, since 0 < ℎ < 2
𝑚𝛾+𝑀𝛾

,

0 < 𝑚𝛾ℎ < 2
̂︀𝜎min̂︀𝜎min + ̂︀𝜎max + 𝜆/𝛾

< 1.

Therefore, 0 < 𝑚𝛾ℎ < 1 and consequently, for any ℎ < 2
𝑀𝛾+𝑚𝛾

, (1 −𝑚𝛾ℎ) ≤ exp (−𝑚𝛾ℎ). It

implies that

(1 −𝑚𝛾ℎ)𝐾 ≤ exp (−𝐾𝑚𝛾ℎ).

As a consequence, if 𝐾 is such that

exp (−𝐾𝑚𝛾ℎ)𝐴 ≤ 𝜖

3
, (3.5.31)

then Inequality 3.5.29 holds. Moreover, since Inequality 3.5.31 is equivalent to

𝐾ℎ ≥
log (3𝐴

𝜖
)

𝑚𝛾

,

Lemma 3.5.7 is proven. Indeed, if Inequality 3.5.30 holds then

(1 −𝑚𝛾ℎ)𝐾𝑊2(𝜈, 𝜇
𝛾) ≤ exp (−𝐾𝑚𝛾ℎ)𝐴 ≤ 𝜖

3
,

which concludes the proof. �

So far, we have proven Lemmas 3.5.5, 3.5.6 and 3.5.7. These three Lemmas combined together

prove the result of Corollary 3.3.2 in the case where ℎ is small. Indeed, applying Inequalities

3.5.29, 3.5.21 and 3.5.24 within Inequality 3.3.12 guarantees that if 0 < ℎ < 2
𝑚𝛾+𝑀𝛾

then, the

statement of Corollary 3.3.2 holds:

𝑊2(̂︀𝜇𝑠,ℎ𝐾 , 𝜇) ≤ 𝜖

3
+
𝜖

3
+
𝜖

3
,

as long as Inequalities 3.5.22, 3.5.25 and 3.5.30 are verified.

In order to prove Remark 3.3.1, let us now consider the second case where ℎ is relatively large,

in the sense that 2
𝑀𝛾+𝑚𝛾

≤ ℎ ≤ 2
𝑀𝛾

.
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Lemma 3.5.8. If 2
𝑀𝛾+𝑚𝛾

≤ ℎ ≤ 2
𝑀𝛾

, then the inequality

1.82
𝑀𝛾ℎ

2 −𝑀𝛾ℎ
(ℎ𝑝)1/2 ≤ 𝜖

3
(3.5.32)

holds if

ℎ <
𝜖2

11𝑝
. (3.5.33)

Indeed, we remark that if 2
𝑀𝛾+𝑚𝛾

≤ ℎ ≤ 2
𝑀𝛾

, then,

1.82
𝑀𝛾ℎ

2 −𝑀𝛾ℎ
(ℎ𝑝)1/2 ≤ 1.82

𝑀𝛾
2
𝑀𝛾

2 −𝑀𝛾/𝑀𝛾

(ℎ𝑝)1/2

≤ 3.64(ℎ𝑝)1/2.

Moreover, {︂
3.64(ℎ𝑝)1/2 ≤ 𝜖

3

}︂
⇐⇒

{︂
ℎ ≤ 𝜖2

10.92𝑝

}︂
.

Therefore, Inequaliy 3.5.32 holds if

ℎ ≤ 𝜖2

11𝑝
. (3.5.34)

�

Lemma 3.5.9. Let 𝜈 be a Dirac measure concentrated at 𝛽(0) and let 𝛽𝛾 be the average with

respect to the density 𝜋𝛾 and let 𝐴 be the quantity defined in Equation 3.5.28. If 2
𝑀𝛾+𝑚𝛾

≤ ℎ ≤
2
𝑀𝛾

, then the inequality (︀
𝑀𝛾ℎ− 1

)︀𝐾
𝑊2(𝜈, 𝜇

𝛾) ≤ 𝜖

3
(3.5.35)

holds if

𝐾 ≥
log

(︁
3𝐴
𝜖

)︁
(2 −𝑀𝛾ℎ)

. (3.5.36)

From our assumptions, we remark that 𝑀𝛾ℎ ∈ (1, 2). Therefore, 𝑀𝛾ℎ− 1 ∈ (0, 1) and

exp (𝑀𝛾ℎ− 2) ≥𝑀𝛾ℎ− 1, (3.5.37)

for any ℎ ∈ [𝑀𝛾/(𝑀𝛾 +𝑚𝛾), 2]. It implies that for any integer 𝐾,

exp
(︀
𝐾(𝑀𝛾ℎ− 2)

)︀
≥

(︀
𝑀𝛾ℎ− 1

)︀𝐾
. (3.5.38)
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Therefore, if there exists 𝐾 ∈ N such that

exp
(︀
𝐾(𝑀𝛾ℎ− 2)

)︀
𝐴 ≤ 𝜖

3
(3.5.39)

then Inequality 3.5.35 holds for this specific value of 𝐾.

The following inequality

𝐾 ≥
log

(︁
3𝐴
𝜖

)︁
(2 −𝑀𝛾ℎ)

,

is equivalent to Inequality 3.5.39. Therefore, if 𝐾 is such that Inequality 3.5.36 holds, then

(𝑀𝛾ℎ− 1
)︀𝐾
𝑊2(𝜈, 𝜇

𝛾) ≤ exp
(︀
𝐾(𝑀𝛾ℎ− 2)

)︀
𝐴 ≤ 𝜖

3
,

which concludes the proof of Lemma 3.5.9.

These results enable to confirm that for any ℎ ≥ 2/(𝑀𝛾 +𝑚𝛾), if Inequality (3.5.36) holds then

Inequality 3.5.35 is guaranteed. �

Remark 3.5.1. From the previous inequality, one remarks that in order to keep 𝐾 reasonable,

it is important, when ℎ ≥ 2/(𝑀𝛾 +𝑚𝛾) to choose a value of ℎ not to close to 2/𝑀𝛾.

We have proven Lemmas 3.5.5, 3.5.8 and 3.5.9. These three Lemmas combined together prove

the result of Corollary 3.3.2 in the case where ℎ is large. Indeed, applying Inequalities 3.5.35,

3.5.21 and 3.5.32 within Inequality 3.3.13 guarantees that if 2
𝑚𝛾+𝑀𝛾

< ℎ < 2/𝑀𝛾 then, the

statement of Corollary 3.3.2 (respectively Remark 3.3.1) holds:

𝑊2 ≤
𝜖

3
+
𝜖

3
+
𝜖

3
,

as long as Inequalities 3.5.22, 3.5.33 and 3.5.36 are verified.

Therefore, we have proven Corollary 3.3.2 and Remark 3.3.1 statements when ℎ is either small

or relatively larger. �

111



112



Chapter 4

On the prediction loss of the lasso in the

partially labeled setting

A joint work with Pierre Bellec, Arnak Dalalyan and Quentin Paris.
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Abstract

In this paper we revisit the risk bounds of the lasso estimator in the context of transductive and
semi-supervised learning. In other terms, the setting under consideration is that of regression
with random design under partial labeling. The main goal is to obtain user-friendly bounds on
the off-sample prediction risk. To this end, the simple setting of bounded response variable and
bounded (high-dimensional) covariates is considered. We propose some new adaptations of the
lasso to these settings and establish oracle inequalities both in expectation and in deviation.
These results provide non-asymptotic upper bounds on the risk that highlight the interplay
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between the bias due to the mis-specification of the linear model, the bias due to the approx-
imate sparsity and the variance. They also demonstrate that the presence of a large number of
unlabeled features may have significant positive impact in the situations where the restricted
eigenvalue of the design matrix vanishes or is very small.

4.1 Introduction

We consider the problem of prediction under the quadratic loss. That is, for a random feature-

label pair (𝑋, 𝑌 ) drawn from a distribution 𝑃 on a product space 𝒳 ×𝒴 , we aim at predicting

𝑌 as a function of 𝑋. The goal is to find a measurable function 𝑓 : 𝒳 → 𝒴 such that the

expected quadratic risk,

ℛ(𝑓) =

∫︁
𝒳×𝒴

(𝑦 − 𝑓(𝑥))2 𝑃 (𝑑𝑥, 𝑑𝑦) = E
[︀(︀
𝑌 − 𝑓(𝑋)

)︀2]︀ (4.1.1)

is as small as possible. When 𝒴 is an interval of R and 𝒳 is a measurable set in R𝑝—which

is the setting considered in the present work—the Bayes predictor, defined as the minimizer of

ℛ(𝑓) over all measurable functions 𝑓 : 𝒳 → 𝒴 , is the regression function (Vapnik, 1998)

𝑓 ⋆(𝑥) = E[𝑌 |𝑋 = 𝑥]. (4.1.2)

Using 𝑓 ⋆, the problem can be rewritten in a form which is more familiar in Statistics, namely

𝑌 = 𝑓 ⋆(𝑋) + 𝜉, (4.1.3)

where the noise variable 𝜉 satisfies E[𝜉|𝑋] = 0, 𝑃𝑋-almost surely1. In the present work,

we tackle the prediction problem in the case where the available data 𝒟all is of the form

𝒟all = 𝒟labeled ∪ 𝒟unlabeled, where

𝒟labeled = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)} and 𝒟unlabeled = {𝑋𝑛+1, . . . ,𝑋𝑁}.

The labeled sample 𝒟labeled is composed of independent and identically distributed (i.i.d.)

feature-label pairs with distribution 𝑃 . The unlabeled sample 𝒟unlabeled contains only i.i.d.

features, with distribution 𝑃𝑋 , and is independent of 𝒟labeled. This formal setting accounts for

a number of realistic situations in which the labeling process is costly while the unlabeled data

points are available in abundance (see, for instance, Balcan et al., 2005; Guillaumin et al., 2010;

1Notation 𝑃𝑋 is used for the marginal distribution of 𝑋.

114



Brouard et al., 2011), that is 𝑛 may be quite small compared to 𝑁 . Here, the baseline idea is to

build upon the sample 𝒟unlabeled to improve the supervised prediction process based on 𝒟labeled

alone. In this context, our study encompasses two closely related settings: semi-supervised

learning and transductive learning.

In the semi-supervised learning setting, one aims at constructing a predictor ̂︀𝑓 , based on the

data 𝒟all, such that the excess risk

ℰ( ̂︀𝑓) = ℛ( ̂︀𝑓) −ℛ(𝑓 ⋆) =

∫︁
R𝑝

(︀ ̂︀𝑓(𝑥) − 𝑓 ⋆(𝑥)
)︀2
𝑃𝑋(𝑑𝑥) = ‖ ̂︀𝑓 − 𝑓 ⋆‖2𝐿2(𝑃𝑋) (4.1.4)

is as small as possible. This learning framework differs from the classical supervised learning

only in that the data set is enriched by the unlabeled features.

In contrast with this, the goal of transductive learning is to predict solely the labels of the

observed unlabeled features. This amounts to considering the same setting as above but to

measure the quality of a prediction function 𝑓 by the excess risk

ℰTL(𝑓) =
1

𝑁 − 𝑛

𝑁∑︁
𝑖=𝑛+1

(︀
𝑓(𝑋 𝑖) − 𝑓 ⋆(𝑋 𝑖)

)︀2
. (4.1.5)

We refer the reader to (Chapelle et al., 2006; Zhu, 2008) and the references therein for a

comprehensive survey on the topic of semi-supervised and transductive learning. Theoretical

analysis of the generalisation error and the excess risk in this context can be found in (Rigollet,

2007; Wang and Shen, 2007; Lafferty and Wasserman, 2007), whereas the closely related area

of manifold learning is studied in (Belkin et al., 2006; Nadler et al., 2009; Niyogi, 2013). The

purpose of the present work differs from these papers in that we put the emphasis on the

high-dimensional setting and the sparsity assumption. The goal is to understand whether the

unlabeled data can help in predicting the unknown labels using the ℓ1-penalized empirical risk

minimizers. From another perspective—that of multi-view learning—the problem of sparse

semi-supervised learning is investigated in (Sun and Shawe-Taylor, 2010).

When the feature vector is high dimensional, it is reasonable to consider prediction strategies

based on “simple” functions 𝑓 in order to limit the computational cost. A widely used approach

is then to look for a good linear predictor

𝑓𝛽(𝑥) = 𝑥⊤𝛽, 𝛽 ∈ R𝑝. (4.1.6)

When the dimension 𝑝 is of the same order as (or larger than) the size 𝑛 of the labeled sample,
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the simple empirical risk minimizer (i.e., the least squares estimator) is a poor predictor since it

suffers from the curse of dimensionality. To circumvent this shortcoming, one popular approach

is to use the ℓ1-penalised empirical risk minimizer, also known as the lasso estimator (Tibshirani,

1996a): ̂︀𝑓 lasso = 𝑓̂︀𝛽lasso where2

̂︀𝛽lasso ∈ arg min
𝛽∈R𝑝

{︂
1

𝑛
‖𝑌 −Xlab𝛽‖22 + 2𝜆‖𝛽‖1

}︂
, (4.1.7)

where 𝜆 > 0 stands for a tuning parameter and

𝑌 =

⎡⎢⎢⎢⎣
𝑌1
...

𝑌𝑛

⎤⎥⎥⎥⎦ , Xlab =

⎡⎢⎢⎢⎣
𝑋⊤

1

...

𝑋⊤
𝑛

⎤⎥⎥⎥⎦ . (4.1.8)

Statistical properties of the lasso with regard to the prediction error were studied in many

papers, the most relevant (to our purposes) of which will be discussed in the next section. We

also refer the reader to (Bühlmann and van de Geer, 2011) for an overview of related topics.

The rationale behind this approach is that (a) the term 1
𝑛
‖𝑌 −Xlab𝛽‖22 −E[𝜉2] is an unbiased

estimator of the excess risk ℰ(𝑓𝛽) and (b) the ℓ1-penalty term favors predictors 𝑓𝛽 defined via

a (nearly) sparse vector 𝛽.

The prediction rules we are going to analyze in the present work are suitable adaptations of

the (supervised) lasso to the semi-supervised and the transductive settings. More precisely, we

consider the estimator

̂︀𝛽 ∈ arg min
𝛽∈R𝑝

{︂
‖A𝛽‖22 −

2

𝑛
𝑌 ⊤Xlab𝛽 + 2𝜆‖𝛽‖1

}︂
, (4.1.9)

where 𝜆 > 0 and A ∈ R𝑝×𝑝 are parameters to be chosen by the statistician. This definition

is based on the following observation. The unlabeled sample may be used to get an improved

estimator of the excess risk ℰ(𝑓𝛽) = E[𝑓 ⋆(𝑋)2] − 2E[𝑌𝑋⊤]𝛽 + 𝛽⊤Σ𝛽, where Σ = E[𝑋𝑋⊤] is

the 𝑝× 𝑝 covariance matrix. Indeed, the population covariance matrix can be estimated using

both labeled and unlabeled data. A similar observation holds for the transductive excess risk

ℰTL(𝑓𝛽).

2To ease notation, we assume that both labels and features are centered, that is E[𝑌 ] = 0 and E[𝑋] = 0, so
that there is no need to include an intercept in the linear combination 𝑓𝛽.
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Denoting by ̂︀Σlab the empirical covariance matrix based on the labeled sample, that is

̂︀Σlab =
1

𝑛

𝑛∑︁
𝑖=1

𝑋 𝑖𝑋
⊤
𝑖 ,

one checks that the vector ̂︀𝛽 coincides with the lasso estimator (4.1.7) when A = ̂︀Σ1/2
lab . If an

unlabeled sample is available, the foregoing discussion suggests a different choice for the matrix

A. This choice depends on the setting under consideration. Namely, defining the matrices

̂︀Σall =
1

𝑁

𝑁∑︁
𝑖=1

𝑋 𝑖𝑋
⊤
𝑖 and ̂︀Σunlab =

1

𝑁 − 𝑛

𝑁∑︁
𝑖=𝑛+1

𝑋 𝑖𝑋
⊤
𝑖 ,

we use A = ̂︀Σ1/2
all and A = ̂︀Σ1/2

unlab in the semi-supervised and transductive settings, respectively.

The following two assumptions made on the probability distribution 𝑃 will be repeatedly used

throughout this work.

(A1) The random variables 𝑌 and 𝑋 have zero mean and finite variance. Furthermore, all

the coordinates 𝑋𝑗 of the random vector 𝑋 satisfy E[(𝑋𝑗)2] = 1.

(A2) The random variables 𝑌 and𝑋𝑗 are almost surely bounded. That is, there exist constants

𝐵𝑌 and 𝐵𝑋 such that P
(︀
|𝑌 | ≤ 𝐵𝑌 ; max𝑗∈[𝑝] |𝑋𝑗| ≤ 𝐵𝑋

)︀
= 1.

Assumption 4.1 is fairly mild, since one can get close to it by centering and scaling the ob-

served labels and features. For features, the centering and the scaling may be performed using

the sample mean and the sample variance computed over the whole data-set. It is however

important to require this assumption, since its violation may seriously affect the quality of

the ℓ1-penalized least-squares estimator ̂︀𝛽, unless the terms |𝛽𝑗| of the ℓ1-norm are weighted

according to the magnitude of the corresponding feature 𝑋𝑗. The second assumption is less

crucial both for practical and theoretical purposes, given that its primary aim is to allow for

user-friendly, easy-to-interpret theoretical guarantees. In most situations, even if assumption

4.1 is violated, the predictor 𝑓̂︀𝛽 does have a fairly small prediction error rate.

The main contributions of the present work are:

• Review of the relevant recent literature on the off-sample performance of the lasso in the

prediction problem.

• Non-asymptotic bounds for the prediction error of the lasso in the semi-supervised and

transductive settings that guarantee the fast rate under the restricted eigenvalue condi-

tion. We did an effort for keeping the results easy to understand and to obtain small

constants. These results are simple enough to be taught to graduate students.
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• Oracle inequalities in expectation for the prediction error of the lasso. To the best of our

knowledge, such results were not available in the literature until the very recent paper

(Bellec et al., 2016b).

To give a foretaste of the results detailed in the rest of this work, let us state and briefly discuss a

risk bound in the semi-supervised setting (the complete form of the result is provided in 4.5.2).

For a matrix A, we denote by ‖A‖ its largest singular value and by 𝜅A the compatibility

constant (see 4.2 for a precise definition).

Theorem 4.1.1. Let assumption 4.1 be fulfilled and let the random variables 𝑌 , 𝑋𝑗 be bounded

in absolute value by 1. For a prescribed tolerance level 𝛿 ∈ (0, 1), assume that the overall sample

size 𝑁 and the tuning parameter 𝜆 satisfy 𝑁 ≥ 18𝑝‖Σ−1‖ log(3𝑝/𝛿) and

𝜆 ≥ 4

(︂
2 log(6𝑝/𝛿)

𝑛

)︂1/2

+
8 log(6𝑝/𝛿)

3𝑛
. (4.1.10)

Then, for every 𝐽 ⊆ {1, . . . , 𝑝}, with probability at least 1−𝛿, the estimator ̂︀𝛽 defined in (4.1.9)

above with A = ̂︀Σ1/2
all satisfies

ℰ(𝑓̂︀𝛽) ≤ inf
𝛽∈R𝑝

{︂
ℰ(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
2𝜅̂︀Σall

(𝐽, 3)

}︂
. (4.1.11)

This result follows in the footsteps of many recent papers such as (Koltchinskii et al., 2011a;

Sun and Zhang, 2012b; Dalalyan et al., 2014b) among others. The term oracle inequality refers

to the fact that it allows us to compare the excess risk of the predictor 𝑓̂︀𝛽 to that of the best

possible nearly sparse prediction function. (By nearly sparse we understand here a vector 𝛽

such that for a set 𝐽 ⊆ {1, . . . , 𝑝} of small cardinality the entries of 𝛽 with indices in 𝐽 𝑐 have

small magnitude; that is ‖𝛽𝐽𝑐‖1 =
∑︀

𝑗 ̸∈𝐽 |𝛽𝑗| is small.) Indeed, if we denote by 𝛽̄ a nearly

𝑠-sparse vector in R𝑝 such that the excess risk ℰ(𝑓𝛽̄) is small, then the aforestated risk bound

is the sum of three terms having clear interpretation. The first term, ℰ(𝑓𝛽̄), is a bias term due

to the 𝑠-sparse linear approximation. The second term, 𝜆‖𝛽̄𝐽𝑐‖, is the bias due to approximate

𝑠-sparsity. (Note that it vanishes if 𝛽̄ is exactly 𝑠-sparse and 𝐽 is taken as its support.) Finally,

the third term measures the magnitude of the stochastic error. Assuming the compatibility

constant to be bounded away from 0, this last term is of the order 𝑠 log(𝑝)/𝑛, which is known

to be optimal3 over all possible estimators (Ye and Zhang, 2010; Raskutti et al., 2011; Rigollet

and Tsybakov, 2011a, 2012a).

3More precisely, the optimal rate is 𝑠 log(1+𝑝/𝑠)
𝑛 , which is of the same order as 𝑠 log(𝑝)

𝑛 for most values of 𝑠.
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Inequality (4.1.11) readily shows the advantage of using the unlabeled data: the compatibility

constant involved in the last term of the right hand side is computed for the overall covari-

ance matrix. When the size of the labeled sample is small in regard to the dimension 𝑝, the

corresponding constant computed for ̂︀Σlab may be very close (and even equal) to zero. This

may downgrade the fast rate of the original lasso to the slow rate ‖𝛽̄‖1/
√
𝑛. Instead, if a large

number of unlabeled features are used, it becomes more plausible to assume that the compat-

ibility constant is bounded away from zero. In relation with this, it is important to underline

that the unlabeled sample cannot help to improve the fast rate of convergence of the lasso,

𝑠 log(𝑝)/𝑛, which is optimal in the minimax sense. The best we can hope to achieve using

the unlabeled sample is the relaxation of the conditions guaranteeing the fast rate. Another

worthwhile remark is that the theorem stated above is valid when the size of the unlabeled

sample is significantly larger than the dimension 𝑝. Interestingly, this condition is not required

for getting the analogous result in the transductive set-up.

The rest is as follows. In 4.2, we introduce the notations used throughout the paper. 4.3 contains

a review of the relevant literature and discusses the relation of the previous work with our

results. 4.4 presents risk bounds for the prediction error of the lasso in the transductive setting,

whereas 4.5 is devoted to the analogous results in the semi-supervised setting. Conclusions are

made in 4.6. The proofs are postponed to 4.7.

4.2 Notations

In the sequel, for any integer 𝑘 we denote by [𝑘] the set {1, . . . , 𝑘}. For any 𝑞 ∈ [1,+∞] the

notation ‖𝑣‖𝑞 refers to the ℓ𝑞-norm of a vector 𝑣 belonging to an Euclidean space R𝑘 with

arbitrary dimension 𝑘. Since there is no risk of confusion, we omit the dependence on 𝑘 in the

notation. For any square matrix A ∈ R𝑝×𝑝 we denote by A+ its Moore-Penrose pseudoinverse

and by ‖A‖ its spectral norm defined by

‖A‖ = max
‖𝑣‖2=1

‖A𝑣‖2 (4.2.1)

We use boldface italic letters for vectors and boldface letters for matrices. Throughout the

manuscript, the index 𝑗 will be used for referring to 𝑝 features, whereas the index 𝑖 will refer to

the observations (𝑖 ∈ [𝑛] or 𝑖 ∈ [𝑁 ]). For any set of indices 𝐽 ⊆ [𝑝] and any 𝛽 = (𝛽1, . . . ,𝛽𝑝)
⊤ ∈

R𝑝, we define 𝛽𝐽 as the 𝑝-dimensional vector whose 𝑗-th coordinate equals 𝛽𝑗 if 𝑗 ∈ 𝐽 and 0

otherwise. We denote the cardinality of any 𝐽 ⊆ [𝑝] by |𝐽 |. Also, we set supp(𝛽) = {𝑗 : 𝛽𝑗 ̸= 0}.

119



In particular, whenever 𝑓 ⋆(𝑥) = 𝑥⊤𝛽⋆, we set 𝐽⋆ = supp(𝛽⋆) and 𝑠⋆ = |𝐽⋆|. For 𝐽 ⊆ [𝑝] and

𝑐 > 0, we introduce the compatibility constants

𝜅A(𝐽, 𝑐) = inf

{︂
𝑐2|𝐽 | ‖A1/2𝑣‖22

(𝑐‖𝑣𝐽‖1 − ‖𝑣𝐽𝑐‖1)2
: 𝑣 ∈ R𝑝, ‖𝑣𝐽𝑐‖1 < 𝑐‖𝑣𝐽‖1

}︂
(4.2.2)

and

𝜅̄A(𝐽, 𝑐) = inf

{︂
|𝐽 | ‖A1/2𝑣‖22

‖𝑣𝐽‖21
: 𝑣 ∈ R𝑝, ‖𝑣𝐽𝑐‖1 < 𝑐‖𝑣𝐽‖1

}︂
. (4.2.3)

One easily checks that these two constants are of the same order of magnitude in the sense that

𝑐2

(𝑐+ 𝑐)2
𝜅A(𝐽, 𝑐+ 𝑐) ≤ 𝜅̄A(𝐽, 𝑐) ≤ 𝜅A(𝐽, 𝑐)

for every 𝑐, 𝑐 > 0. These constants are slightly larger4 than the restricted eigenvalues (Bickel

et al., 2009) defined by

𝜅RE
A (𝐽, 𝑐) = inf

{︀
‖A1/2𝑣‖22 : ‖𝑣𝐽𝑐‖1 ≤ 𝑐‖𝑣𝐽‖1 and ‖𝑣𝐽‖2 = 1

}︀
.

For more details, we refer the reader to van de Geer and Bühlmann (2009).

4.3 Brief overview of related work

The material of this paper builds on the shoulders of giants and this section aims at providing a

unified overview of some of the most relevant results in our setting, without having the ambition

of being exhaustive. For each of the selected papers, we will discuss its strengths and limitations

in relation with the results presented further in this work.

Some recent results, obtained in the context of matrix regression, can be specialized to our

problem and should be put in perspective with our contribution. For instance, a large part of

Chapter 9 in (Koltchinskii, 2011) is devoted to the problem of assessing the off-sample excess

risk of the trace-norm penalized empirical risk minimizer in the setting of trace regression with

random design. One can arguably consider that setting as an extension of the random design

regression problem by restricting attention to the set of diagonal matrices. Then the estimator

studied in Koltchinskii (2011) coincides with the lasso estimator (4.1.7). With our notations,

the main result of Chapter 9 in (Koltchinskii, 2011) reads as follows.

Theorem 4.3.1 (Theorem 9.3 in Koltchinskii, 2011). Assume that Assumptions 4.1 and 4.1

4We recall here that a larger compatibility constant provides a better risk bound.
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hold. Then there exist universal positive constants 𝑐1 and 𝑐2 such that, if

𝜆 ≥ 𝑐1𝐵𝑋 max

{︂
𝐵𝑌 log (2𝑝/𝛿)

𝑛
,
(︁𝐵𝑌 log (2𝑝/𝛿)

𝑛

)︁1/2
}︂

for some 𝛿 ∈ (0, 1), the estimator (4.1.7) satisfies,

ℰ(𝑓̂︀𝛽) ≤ inf
𝛽∈R𝑝

{︂
2ℰ(𝑓𝛽) + 𝑐2

[︂
‖𝛽‖0𝜆2

𝜅̄Σ(supp(𝛽), 5)
+
(︁
‖𝛽‖1 ∨

𝑞(𝜆)

𝜆

)︁2 log(𝑘/𝛿) log(𝑛)

𝑛
+

1

𝑛

]︂}︂
, (4.3.1)

with probability larger than 1 − 𝛿, where

𝑘 = log(𝑛 ∨ 𝑝 ∨𝐵𝑌 ) ∨ | log(2𝜆)| ∨ 2 and 𝑞(𝜆) = inf
𝛽∈R𝑝

(︀
ℰ(𝑓𝛽) + 2𝜆‖𝛽‖1

)︀
.

This result can be briefly compared to the risk bound in (4.1.11). The main advantages of this

result is that (a) it is established under much weaker assumptions on the boundedness of the

random variables 𝑋 and 𝑌 than those of Assumption 4.1, (b) it holds not only for the vector

regression but also for matrix regression, (c) it contains no restriction on the sample size and (d)

it involves the compatibility constant of the population covariance matrix Σ. On the negative

side, the oracle inequality in 4.3.1 is not sharp since the factor in front of ℰ(𝑓𝛽) is not equal

to one and, more importantly, the rate of convergence of the remainder term is sub-optimal

in most situations. Indeed, if the best linear predictor corresponds to an 𝑠-sparse vector the

nonzero entries of which are of the same order, then the term ‖𝛽‖21 log(𝑘/𝛿) log(𝑛)/𝑛, present

in the right hand side, is of order 𝑠2 log(𝑛) log log(𝑛 + 𝑝)/𝑛, whereas the remainder term in

(4.1.11) is of smaller order 𝑠 log(𝑝)/𝑛.

On a related note, Koltchinskii et al. (2011a) establish sharp oracle inequalities for the trace-

norm penalized least-squares estimator in the problem of matrix estimation and completion

under low rank assumption. Using our notation, Theorem 2 in (Koltchinskii et al., 2011a)

yields the following result.

Theorem 4.3.2 (Koltchinskii et al., 2011a). Assume that the matrix Σ = E[𝑋𝑋⊤] is known

and let ̂︀𝛽 be as in (4.1.9) with A = Σ1/2. Suppose in addition that Assumption 4.1 holds and

that, for 𝛿 ∈ (0, 1),

𝜆 ≥ 4𝐵𝑌

(︁ log(𝑝/𝛿)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(𝑝/𝛿)

𝑛

)︁1/2
]︂
.
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Then, with probability larger than 1 − 𝛿, we have

ℰ(𝑓̂︀𝛽) ≤ inf
𝐽⊆[𝑝]

inf
𝛽∈R𝑝

{︂
ℰ(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
4𝜅Σ(𝐽, 3)

}︂
. (4.3.2)

The original result (Koltchinskii et al., 2011a, Theorem 2) is slightly different from the aforest-

ated one. In particular, it is expressed in terms of the restricted eigenvalue constant with

respect to the population covariance matrix Σ. However, all these differences imply only minor

modifications in the proofs. 4.3.2 is very similar to the risk bounds that we establish in the

present work, but has the obvious shortcoming of requiring the covariance matrix Σ to be

known. In fact, this corresponds to the situation in which infinitely many unlabeled feature

vectors 𝑋𝑛+1,𝑋𝑛+2, ... are available, that is 𝑁 = +∞. To some extent, one of the purposes

of the present work is to provide risk bounds analogous to the result of 4.3.2 but valid for a

broad range of values of 𝑁 . Note that the choice of the tuning parameter 𝜆 advocated by all

the aforementioned results is of the same order of magnitude.

To the best of our knowledge, the only paper establishing risk bounds for a transductive version

of the lasso is (Alquier and Hebiri, 2012). In that paper, the authors considered the problem

of transductive learning in a linear model 𝑌 = 𝑋⊤𝛽⋆ + 𝜉 under the sparsity constraint. The

estimator they studied is slightly different from ours and is defined by

̂︀𝛽 ∈ arg min
𝛽∈R𝑝

{︂
‖̂︀Σ1/2

unlab𝛽‖
2
2 −

2

𝑛
𝑌 ⊤Xlab

̂︀Σ+
lab

̂︀Σunlab𝛽 + 2𝜆‖𝛽‖1
}︂
. (4.3.3)

For the predictor 𝑓̂︀𝛽 based on this estimator, the authors established the following risk bound.

Theorem 4.3.3 (Theorems 4.3 and 4.4 in Alquier and Hebiri, 2012). Assume that for some

𝛽⋆ ∈ R𝑝, the conditional distribution of 𝜉 := 𝑌 −𝑋⊤𝛽⋆ given 𝑋 is Gaussian 𝒩 (0, 𝜎2). Let

E1 be the event “all the unlabeled features {𝑋𝑛+𝑖 : 𝑖 ∈ [𝑁 − 𝑛]}, belong to the linear span

of the labeled features {𝑋 𝑖 : 𝑖 ∈ [𝑛]}” and let 𝛿 ∈ (0, 1). Denote by 𝑎𝑛,𝑁,𝑝 the harmonic

mean of the diagonal entries of the matrix ̂︀Σunlab
̂︀Σ+

lab
̂︀Σunlab. Then the estimator (4.3.3) with

𝜆 = 𝜎
√︀

(2/𝑛)𝑎𝑛,𝑁,𝑝 log(𝑝/𝛿) satisfies

P
(︂
ℰTL(𝑓̂︀𝛽) ≤ 72𝜎2𝑎𝑛,𝑁,𝑝

𝜅̂︀Σunlab
(𝐽⋆, 3)

· 𝑠
⋆ log(𝑝/𝛿)

𝑛

⃒⃒⃒⃒
Xall

)︂
≥ 1 − 𝛿 on E1.

This result is close in spirit to the result that we establish in this work in the setting of

transductive learning. Note however that there are three main differences. First, we do not

confine our study to the well-specified situation in which the Bayes predictor is linear, 𝑓 ⋆(𝑥) =
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𝑥⊤𝛽⋆ for every 𝑥 ∈ R𝑝, with a sparse vector 𝛽⋆. Second, we avoid the unpleasant restriction

that the unlabeled features are linear combinations of labeled features. Third, we replace the

factor 𝑎𝑛,𝑁,𝑝—which may be quite large—by a more tractable quantity. This being said, the

result of Alquier and Hebiri (2012)—in contrast with our results—does not require the unlabeled

features to be drawn from the same distribution as the labeled features.

We also review a recent result from (Lecué and Mendelson, 2016a). In that paper, the authors

consider the isotropic case Σ = I𝑝, where I𝑝 stands for the 𝑝 × 𝑝 identity matrix, but impose

only weak assumptions on the moments of the noise. Translated to our notations, their result

can be formulated as follows.

Theorem 4.3.4 (Theorem 1.3 in Lecué and Mendelson, 2016a). Let Assumption 4.1 be satisfied

and let Σ = I𝑝. Let 𝑓𝛽̄ be the best linear approximation in 𝐿2(𝑃𝑋) of the regression function

𝑓 ⋆, that is 𝛽̄ ∈ arg min𝛽∈R𝑝 ℰ(𝑓𝛽). Let 𝛿 ∈ (0, 1) be a prescribed tolerance level. There are three

constants 𝑐1(𝛿), 𝑐2(𝛿, 𝐵𝑋) and 𝑐3(𝛿, 𝐵𝑋) such that, if 𝛽̄ is nearly 𝑠-sparse in the sense that5

𝑝∑︁
𝑗=𝑠+1

|𝛽|(𝑗) ≤ 𝑐1(𝛿)𝐵𝑌 𝑠
(︁ log(2𝑝)

𝑛

)︁1/2

and 𝜆 is chosen by 𝜆 = 𝑐2(𝛿, 𝐵𝑋)𝐵𝑌

(︀ log(2𝑝)
𝑛

)︀1/2, then with probability at least 1 − 𝛿 the lasso

estimator satisfies

ℰ(𝑓̂︀𝛽) ≤ ℰ(𝑓𝛽̄) + 𝑐3(𝛿, 𝐵𝑋)𝐵2
𝑌

𝑠 log(2𝑝)

𝑛
. (4.3.4)

The principal strength of this result is that it is valid under a very weak assumption on the tails

of the noise, but it has the shortcoming of requiring the minimizer of the excess risk to be nearly

𝑠-sparse with a quite precise upper bound on the authorized non-sparsity bias. From this point

of view, an upper bound of the form (4.1.11) provides more information on the robustness of

the prediction rule with respect to the model mis-specification.

The proofs of the results above assess the off-sample prediction error rate of the lasso by using

direct arguments. An alternative approach (adopted, for example, in Raskutti et al., 2010a;

Koltchinskii, 2011; Oliveira, 2013; Rudelson and Zhou, 2013) consists in taking advantage of

the in-sample risk bounds in order to assess the off-sample excess risk. In short, by means of

nowadays well-known techniques (developed in Bickel et al., 2009; Juditsky and Nemirovski,

2011; Bühlmann and van de Geer, 2011; Belloni et al., 2014; Dalalyan et al., 2014b, for instance)

5We denote by |𝛽|(𝑗) the 𝑗-th largest value of the sequence |𝛽1|, . . . , |𝛽𝑝|, so that |𝛽|(1) ≥ · · · ≥ |𝛽|(𝑝).
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for a well-specified model6, an upper bound on the in-sample risk,

1

𝑛
‖Xlab(̂︀𝛽 − 𝛽⋆)‖22 = ‖̂︀Σ1/2

lab (̂︀𝛽 − 𝛽⋆)‖22,

is obtained along with proving that the vector ̂︀𝛽 − 𝛽⋆ belongs to the dimension-reduction

cone appearing in the definition of the compatibility constant. Then, using suitably chosen

concentration arguments, it is shown that (with high probability) the compatibility constant

𝜅̂︀Σlab
(𝐽⋆, 𝑐) of the empirical covariance matrix ̂︀Σlab is lower bounded by a (multiple of a)

compatibility constant 𝜅Σ(𝐽⋆, 𝑐′) of the population covariance matrix, provided that the sparsity

𝑠 is of order 𝑛/ log(𝑝). The main conceptual differences between the aforementioned papers are

in the conditions on the random vectors 𝑋 𝑖. In (Raskutti et al., 2010a), it is assumed that

the 𝑋 𝑖’s are Gaussian. In Rudelson and Zhou (2013) and Theorem 9.2 in Koltchinskii (2011),

sub-Gaussian and bounded designs are considered, whereas only a bounded moment condition

is required in Oliveira (2013). We will not reproduce their results here because (a) they do not

allow to account for the robustness to the model mis-specification and, to a lesser extent, (b)

the constants involved in the bounds are not explicit.

4.4 Risk bounds in transductive setting

We first consider the case of transductive learning. From an intuitive point of view, this case

is simpler than the case of semi-supervised learning since a prediction needs to be carried out

only for the features in 𝒟unlabeled. Indeed, recall from (4.1.5) that in this context, the excess

risk of the linear predictor 𝑓𝛽 is defined by

ℰTL(𝑓𝛽) =
1

𝑁 − 𝑛

𝑁∑︁
𝑖=𝑛+1

(︀
𝑋⊤

𝑖 𝛽 − 𝑓 ⋆(𝑋 𝑖)
)︀2

and the suitably adapted lasso estimator is given by choosing A = ̂︀Σ1/2
unlab in (4.1.9), that is

̂︀𝛽 ∈ arg min
𝛽∈R𝑝

{︁
‖̂︀Σ1/2

unlab𝛽‖
2
2 −

2

𝑛
𝑌 ⊤Xlab𝛽 + 2𝜆‖𝛽‖1

}︁
.

Note here that the role of the term 2
𝑛
𝑌 ⊤Xlab is to estimate the term 2

𝑁−𝑛
∑︀𝑁

𝑖=𝑛+1 𝑓
⋆(𝑋 𝑖)𝑋

⊤
𝑖 ,

which appears after developing the square in the excess risk. Since the latter belongs to the

image of the matrix Xunlab, one can slightly improve the estimator by projecting onto the

6This means that for a sparse vector 𝛽⋆, it holds that 𝑓⋆ = 𝑓𝛽⋆ .
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subspace of R𝑝 spanned by the unlabeled vectors X𝑖. This amounts to replacing the term

𝑌 ⊤Xlab𝛽 by 𝑌 ⊤XlabΠunlab𝛽, where Πunlab stands for the orthogonal projector in R𝑝 onto

Span(𝑋𝑛+1, . . . ,𝑋𝑁). However, from a theoretical point of view, this modification has no

impact on the risk bound stated below. That is why we confine our attention to the lasso

estimator that does not use this modification.

Theorem 4.4.1. Let Assumptions 4.1 and 4.1 be fulfilled. Define 𝑛⋆ = 𝑛∧(𝑁−𝑛) and assume

that, for a given 𝛿 ∈ (0, 1), the tuning parameter 𝜆 satisfies

𝜆 ≥ 4𝐵𝑌

(︁ log(2𝑝/𝛿)

𝑛⋆

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(2𝑝/𝛿)

𝑛⋆

)︁1/2
]︂
. (4.4.1)

Then, with probability at least 1 − 𝛿, the predictor 𝑓̂︀𝛽 satisfies

ℰTL(𝑓̂︀𝛽) ≤ inf
𝛽∈R𝑝

𝐽⊆[𝑝]

{︂
ℰTL(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
4𝜅̂︀Σunlab

(𝐽, 3)

}︂
. (4.4.2)

A few comments are in order. First, 4.4.1 holds for any pair of integers 𝑛 and 𝑁 larger than

1. However, it is especially relevant when the number 𝑁 − 𝑛 of unlabeled features is larger

than the number 𝑛 of labeled ones. As already mentioned, this kind of situation is frequent in

applications where the labeling procedure is expensive. In this case, 𝑛⋆ = 𝑛 and 4.4.1 takes the

same form as (4.1.11) with the notable advantage that the size of the unlabeled sample does

not need to be of larger order than the dimension 𝑝. Let us present a few implications of this

result in the well-specified case.

Well-specified case. Recall that the well-specified case refers to the situation where there

exists 𝛽⋆ ∈ R𝑝 such that the Bayes predictor 𝑓 ⋆ satisfies 𝑓 ⋆(𝑥) = 𝑥⊤𝛽⋆, 𝑃𝑋-almost surely. In

this case, the excess risk of a predictor 𝑓𝛽 can be written as ℰTL(𝑓𝛽) = ‖̂︀Σ1/2
unlab(𝛽−𝛽⋆)‖22. In this

form, the technical tractability of the transductive learning problem appears clearly since the

matrix A = ̂︀Σ1/2
unlab used in the definition of the estimator ̂︀𝛽 coincides with the one appearing

in the excess loss. As we shall see later, this is indeed not the case for semi-supervised learning.

Now, the choice of 𝛽 = 𝛽⋆ and 𝐽 = 𝐽⋆ in the right hand side of inequality (4.4.2) yields

ℰTL(𝑓̂︀𝛽) ≤ 9𝜆2𝑠⋆

4𝜅̂︀Σunlab
(𝐽⋆, 3)

.
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The choice of 𝜆 provided by the right hand side of inequality (4.4.1), along with the condition

𝑛⋆ ≥ 𝐵2
𝑋 log(2𝑝/𝛿), leads to the bound

ℰTL(𝑓̂︀𝛽) ≤ 64𝐵2
𝑌

𝜅̂︀Σunlab
(𝐽⋆, 3)

· 𝑠
⋆ log(𝑝/𝛿)

𝑛⋆
,

with probability at least 1−𝛿. Comparing our result with that of Alquier and Hebiri (2012) (cf.

4.3.3 above), we can note that 4.4.1 holds without the assumption that the unlabeled features

belong to the linear span of the labeled ones. On the other hand, Alquier and Hebiri (2012) do

not require the labeled and the unlabeled features to be drawn from the same distribution.

4.5 Risk bounds in semi-supervised setting

We now turn to the more challenging problem of semi-supervised learning. In this subsection,

we first consider the well-specified setting in which the Bayes predictor 𝑓 ⋆ is linear. We start

with risk bounds that hold with a probability close to one. Such bounds are often termed in

deviation as opposed to those holding in expectation.

Well-specified case. We assume here that

𝑓 ⋆(𝑥) = 𝑥⊤𝛽⋆, 𝑃𝑋-almost surely. (4.5.1)

In this context, the excess risk of the linear predictor 𝑓𝛽, defined in (4.1.4), becomes ℰ(𝑓𝛽) =

‖Σ1/2(𝛽 − 𝛽⋆)‖22. This setting is more restrictive than the mis-specified setting considered

below, but it has the advantage of allowing us to obtain risk bounds that are small even if

the sample size 𝑁 is not necessarily larger than the dimension 𝑝. The next result assesses the

performance of the predictor 𝑓̂︀𝛽 where

̂︀𝛽 ∈ arg min
𝛽∈R𝑝

{︂
‖̂︀Σ1/2

all 𝛽‖
2
2 −

2

𝑛
𝑌 ⊤Xlab𝛽 + 2𝜆‖𝛽‖1

}︂
, (4.5.2)

corresponding to the choice A = ̂︀Σ1/2
all in (4.1.9). In the next result, we set

𝜅RE
A (𝑠, 𝑐) = min

𝐽⊆[𝑝]:|𝐽 |≤𝑠
𝜅RE
A (𝐽, 𝑐),

where the restricted eigenvalue 𝜅RE
A (𝐽, 𝑐) is defined in 4.2.
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Theorem 4.5.1. Let Assumptions 4.1, 4.1 and (4.5.1) be fulfilled. Let 𝛿 ∈ (0, 1) be a tolerance

level and let the tuning parameter 𝜆 satisfy

𝜆 ≥ 4𝐵𝑌

(︁ log(4𝑝/𝛿)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

2

(︁ log(4𝑝/𝛿)

𝑛

)︁1/2
]︂
.

With probability at least 1 − 𝛿, it holds

ℰ(𝑓̂︀𝛽) ≤
(︂

6𝜆𝑠⋆

𝜅̄̂︀Σ𝑁
(𝐽⋆, 3)

)︂2⋀︁ 9‖Σ‖𝜆2𝑠⋆

𝜅RÊ︀Σ𝑁
(𝑠⋆, 3)2

. (4.5.3)

In addition, if the overall sample size 𝑁 is such that 16𝑠⋆𝐵2
𝑋

√︀
2 log(4𝑝2/𝛿) ≤ 𝜅̄Σ(𝐽⋆, 3)

√
𝑁

then, with probability at least 1 − 𝛿, the predictor 𝑓̂︀𝛽 satisfies the inequality

ℰ(𝑓̂︀𝛽) ≤ 9𝜆2𝑠⋆

𝜅̄Σ(𝐽⋆, 3)
. (4.5.4)

This theorem provides three different risk bounds, all of them being valid for the same choice

of the tuning parameter 𝜆, that clearly show the benefits of using unlabeled data. The first two

bounds are stated in 4.5.3. They share the common feature of depending on a characteristic

(compatibility constant or restricted eigenvalue) of the sample covariance matrix. The latter is

computed using both labeled and unlabeled data. For large values of 𝑁 , it is more likely that

these characteristics are bounded away from zero than those of the sample covariance matrix

based on the labeled data only. In the asymptotic setting where 𝑠⋆ goes to infinity with the

sample size and the dimension, the second term in the right hand side of 4.5.3 is of smaller

order than the first one and is rate optimal, provided that the restricted eigenvalue is lower

bounded by a fixed positive constant. However, for finite and small values of 𝑠⋆ the first term

in the right hand side of 4.5.3 might be smaller than the second term.

This being said, it might be more insightful to look at the non random upper bounds on the

excess risk as the one stated in 4.5.4. It basically tells us that if the overall sample size is larger

than a multiple of (𝑠⋆)2 log 𝑝, then the off-sample prediction risk of the semi-supervised lasso

estimator achieves the fast rate 𝑠⋆ log 𝑝
𝑛

. Note that if we use only the labeled data points, the best

known results—as recalled in 4.2 above—provide the fast rate when 𝑛 is larger than a multiple

of 𝑠⋆ log 𝑝. Thus, if 𝑁 is of the same order as 𝑛, our result above is not the sharpest possible,

but it has the advantage of being easy to prove and, nevertheless, demonstrating the gain of

using the unlabeled data. In particular, the proof of results providing the fast rate under the

condition 𝑛 ≥ 𝐶𝑠⋆ log(𝑝), for some 𝐶 > 0, involve the important step of lower bounding the
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compatibility constant of the sample covariance matrix by its population counterpart. This step

uses concentration arguments which are often tedious and come with implicit (or unreasonably

large) constants. Instead, our proof makes use of much simpler tools essentially boiling down

to the classical Bernstein inequality and leads to explicit and small constants.

Mis-specified case. Mathematical analysis of the semi-supervised lasso under mis-specification

is more involved, since it requires careful control of the bias terms corresponding to the non-

linearity and the non-sparsity of the model. We first state results providing risk bounds in

deviation, then state their counterpart in expectation.

Theorem 4.5.2. Let Assumptions 4.1 and 4.1 be fulfilled. Fix 𝐽 ⊆ [𝑝] and 𝛿 ∈ (0, 1). Suppose

in addition that

𝑁 ≥ 18𝐵2
𝑋𝑝‖Σ−1‖ log(3𝑝/𝛿) (4.5.5)

and

𝜆 ≥ 8𝐵𝑋𝐵𝑌

(︁ log(6𝑝/𝛿)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(6𝑝/𝛿)

𝑛

)︁1/2
]︂
. (4.5.6)

Then the semi-supervised lasso estimator ̂︀𝛽 defined in (4.5.2) above satisfies

ℰ(𝑓̂︀𝛽) ≤ inf
𝛽∈R𝑝

{︂
ℰ(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 +

9𝜆2|𝐽 |
2𝜅̂︀Σall

(𝐽, 3)

}︂
, (4.5.7)

with probability larger than 1 − 𝛿.

The novelty of 4.5.2 lies in the semi-supervised nature of the estimator (4.5.2), which involves

all the unlabeled features through the matrix A = ̂︀Σ1/2
all in 4.1.9. In particular, 4.5.2 quantifies

the natural intuition according to which, if 𝑁 is large enough, the matrix A = ̂︀Σ1/2
all is a good

estimator of Σ and a result similar to 4.3.2 should hold. As mentioned in the introduction, an

attractive feature of the upper bound in 4.5.7 is that it is of the same form as the recent oracle

inequalities established in the case of fixed design regression (see, for instance, Dalalyan et al.,

2014b; Pensky, 2014, and the references therein) and quantify in an easy-to-understand manner

the error terms accounting for the non-linearity and the non-sparsity of the true regression

function 𝑓 ⋆.

The minimal number 𝑁 of features satisfying (4.5.5) depends on ‖Σ−1‖ = 𝜆−1
min(Σ), reflecting

the fact that the quality of approximation of the identity matrix I𝑝 by Σ−1/2 ̂︀ΣallΣ
−1/2 depends

on ‖Σ−1‖. One can remark that under constraint (4.5.5), the lowest eigenvalue of the sample

covariance matrix is close to its population counterpart (Vershynin, 2010) and provides a simple
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lower bound on the compatibility constant 𝜅̂︀Σall
(𝐽, 3) appearing in 4.5.7. These considerations

lead to the following corollary.

Corollary 4.5.1. Under the conditions of 4.5.2, with probability at least 1 − 𝛿,

ℰ(𝑓̂︀𝛽) ≤ inf
𝐽⊆[𝑝]

inf
𝛽∈R𝑝

{︁
ℰ(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 + 27‖Σ−1‖

4
𝜆2|𝐽 |

}︁
. (4.5.8)

Let us also mention that the factor 𝐵2
𝑋𝑝‖Σ−1‖ present in the right hand side of 4.5.5 is an

upper bound on the norm ‖Σ−1/2𝑋 𝑖‖22 under assumption 4.1. Under additional assumptions

on the support of the features 𝑋 𝑖, this expression may be replaced by a smaller one leading

thus to a relaxation of condition (4.5.5).

Sharp oracle inequality in expectation. All the previously stated results assert that the

lasso estimator has a small prediction error on an event of overwhelming probability. However,

in these results, the choice of the tuning parameter 𝜆 and, therefore, the final predictor 𝑓̂︀𝛽,

depends on the prescribed level of tolerance. A consequence of this dependence is that one

can not integrate out the bounds in deviation in order to get a bound in expectation. This

is probably one of the reasons why the bounds in expectation for the lasso are scarce in the

literature. To fill this caveat, we state below a risk bound in expectation that can be easily

deduced from the bounds in deviation.

Theorem 4.5.3. Let Assumptions 4.1 and 4.1 be fulfilled. Suppose that the overall sample size

is such that 𝑁 ≥ 18𝐵2
𝑋𝑝‖Σ−1‖ log(3𝑝𝑁2). Then, for the tuning parameter

𝜆 = 8𝐵𝑋𝐵𝑌

(︁ log(6𝑝𝑁2)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(6𝑝𝑁2)

𝑛

)︁1/2
]︂

(4.5.9)

the semi-supervised lasso estimator ̂︀𝛽 defined in (4.5.2) above satisfies

E[ℰ(𝑓̂︀𝛽)] ≤ inf
𝐽⊆[𝑝]

inf
𝛽∈R𝑝

{︁
ℰ(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 +

27‖Σ−1‖
4

𝜆2|𝐽 |
}︁

+
2𝐵2

𝑌

𝑁2
+

𝐵2
𝑌

27𝑛 log2(6𝑝𝑁2)
.

(4.5.10)

The proof of this theorem is postponed to 4.7.2. The bound above is not optimal in terms

of its dependence on 𝑁 . In particular, it blows up when 𝑁 goes to infinity and all the other

parameters are fixed. However, this divergence is only logarithmic in 𝑁 . The dominating term

in the risk bound above is (at least in the well specified setting) of the order 𝜆2|𝐽 | ≍ 𝑠 log(𝑝𝑁)
𝑛

.
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4.6 Conclusion

We have reviewed some recent results on the prediction accuracy of the lasso in the problem

of regression with random design and have proposed their extensions to the setting where the

labels of some data points are not available. Theoretical guarantees stated in previous sections

are formulated as oracle inequalities that allow us to compare the excess risk of a suitable ad-

aptation of the lasso to the best possible (nearly) sparse prediction function. We have opted for

considering only those risk bounds that provide the fast rate and are valid under some conditions

on the design such as the restricted eigenvalue condition or the compatibility condition. Some

of the established upper bounds involve the compatibility constant of the sample covariance

matrix. Using results on random matrices (Rudelson and Zhou, 2013; Oliveira, 2013; Bah and

Tanner, 2014) they can be further worked out to get deterministic upper bounds. However, the

evaluation of the restricted eigenvalues and related quantities of the random covariance-type

matrices is a dynamically evolving research area and we expect that new advances will be made

in near future.

The main high level message of the contributions of this paper is that one can take advantage

of the unlabeled sample for improving the prediction accuracy of the lasso. Roughly speaking,

if the size of the unlabeled sample is larger than the ambient dimension, then the modified lasso

predictor has a prediction risk that converges to zero at the optimal rate even if the sample

covariance matrix based only on the labeled sample does not satisfy the compatibility or the

restricted eigenvalue condition. However, it should be acknowledged that when the model is

well specified (that is there exists a sparse linear combination of the features with an extremely

low approximation error) and the population covariance matrix is well-conditioned, then the

original lasso might perform as well as, or even better than, the modified lasso proposed in

this work. Therefore, one can conclude that the use of the unlabeled sample improves on the

robustness of the lasso to the model mis-specification.

We would like also to emphasize that, pursuing pedagogical goals, we have restricted our atten-

tion to the simple case of bounded feature vectors and bounded labels. All the proofs presented

in this paper are based on elementary arguments and are fairly simple. Using more involved

arguments, they can be carried over the case of sub-Gaussian design and labels. It would

be interesting to explore their extensions to other settings such as regression with structured

sparsity, low rank matrix regression or matrix completion, etc.
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4.7 Proofs

We start with a general result that holds for the penalized least squares predictor with arbitrary

convex penalty. This result is of independent interest. It generalizes the corresponding result

of (Koltchinskii et al., 2011a) established for the matrix trace-norm penalties. The proof that

we present here is different from the one in (Koltchinskii et al., 2011a) in that it does not rely

on the precise form of the sub-differential of the penalty function.

Lemma 4.7.1. Let 𝑛, 𝑝 ≥ 1. Let pen : R𝑝 → R be any convex function and ̂︀𝛽 be defined by

̂︀𝛽 ∈ arg min
𝛽∈R𝑝

{︂
‖A𝛽‖22 −

2

𝑛
𝑌 ⊤Xlab𝛽 + pen(𝛽)

}︂
, (4.7.1)

where A ∈ R𝑝×𝑝, 𝑌 ∈ R𝑛 and Xlab ∈ R𝑛×𝑝. Then, for all 𝛽 ∈ R𝑝,

‖Â︀𝛽‖22 ≤ ‖A𝛽‖22 +
2

𝑛
𝑌 ⊤Xlab(̂︀𝛽 − 𝛽) + pen(𝛽) − pen(̂︀𝛽) − ‖A(̂︀𝛽 − 𝛽)‖22. (4.7.2)

Proof. Let us introduce the function Φ(𝛽) = ‖A𝛽‖22 − 2
𝑛
𝑌 ⊤Xlab𝛽 + pen(𝛽) for every 𝛽 ∈ R𝑝,

so that ̂︀𝛽 is a minimum point of Φ. Since the latter is a convex function, we know that the

zero vector 0𝑝 of R𝑝 belongs to the sub-differential 𝜕Φ(̂︀𝛽) of Φ at ̂︀𝛽. For all 𝛽 ∈ R𝑝, let

𝜓(𝛽) = ‖A(𝛽 − ̂︀𝛽)‖22, Φ̄(𝛽) = Φ(𝛽) − 𝜓(𝛽). (4.7.3)

The function 𝜓 is proper and convex. It is also differentiable on R𝑝 and the sub-differential

of 𝜓 at ̂︀𝛽 is reduced to its gradient at ̂︀𝛽, so that 𝜕𝜓(̂︀𝛽) = {∇𝜓(̂︀𝛽)} = {0𝑝}. The function

Φ̄ defined on R𝑝 is the sum of an affine function and the convex function pen, thus it is also

convex. The functions 𝜓, Φ̄ are proper and convex, the function 𝜓 is continuous on R𝑝 so by

the Moreau-Rochafellar Theorem,

𝜕Φ(̂︀𝛽) = 𝜕𝜓(̂︀𝛽) + 𝜕Φ̄(̂︀𝛽) = {0𝑝} + 𝜕Φ̄(̂︀𝛽) = 𝜕Φ̄(̂︀𝛽). (4.7.4)

Thus 0𝑝 ∈ 𝜕Φ̄(̂︀𝛽), which can be rewritten as

Φ̄(𝛽) ≥ Φ̄(̂︀𝛽), ∀𝛽 ∈ R𝑝. (4.7.5)

By adding 𝜓(𝛽) on both sides of the previous display, we obtain

Φ(𝛽) ≥ Φ(̂︀𝛽) + ‖A(̂︀𝛽 − 𝛽)‖22, ∀𝛽 ∈ R𝑝. (4.7.6)
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Rearranging the terms of this inequality, we get the claim of the lemma.

We will also repeatedly use the following result.

Lemma 4.7.2. For any pair of vectors 𝛽,𝛽′ ∈ R𝑝, for any pair of scalars 𝜇 > 0 and 𝛾 > 1,

for any 𝑝× 𝑝 symmetric matrix A and for any set 𝐽 ⊆ [𝑝], the following inequality is true

2𝜇𝛾−1
(︁
‖𝛽 − 𝛽′‖1 + 𝛾‖𝛽‖1 − 𝛾‖𝛽′‖1

)︁
− ‖A(𝛽 − 𝛽′)‖22 ≤ 4𝜇‖𝛽𝐽𝑐‖1 +

(𝛾 + 1)2𝜇2|𝐽 |
𝛾2𝜅A2(𝐽, 𝑐𝛾)

, (4.7.7)

where 𝑐𝛾 = (𝛾 + 1)/(𝛾 − 1).

Proof. To ease notation, we set 𝑢 = 𝛽−𝛽′. Using that ‖𝛽𝐽‖1 − ‖𝛽′
𝐽‖1 ≤ ‖𝑢𝐽‖1 and ‖𝛽𝐽𝑐‖1 +

‖𝛽′
𝐽𝑐‖1 ≥ ‖𝑢𝐽𝑐‖1, we obtain

‖𝑢‖1 + 𝛾‖𝛽‖1 − 𝛾‖𝛽′‖1 = ‖𝑢‖1 + 𝛾
(︀
‖𝛽𝐽‖1 + ‖𝛽𝐽𝑐‖1 − ‖𝛽′

𝐽‖1 − ‖𝛽′
𝐽𝑐‖1

)︀
(4.7.8)

= ‖𝑢‖1 + 2𝛾‖𝛽𝐽𝑐‖1 + 𝛾
(︀
‖𝛽𝐽‖1 − ‖𝛽′

𝐽‖1
)︀
− 𝛾

(︀
‖𝛽′

𝐽𝑐‖1 + ‖𝛽𝐽𝑐‖1
)︀

(4.7.9)

≤ ‖𝑢‖1 + 2𝛾‖𝛽𝐽𝑐‖1 + 𝛾‖𝑢𝐽‖1 − 𝛾‖𝑢𝐽𝑐‖1 (4.7.10)

= 2𝛾‖𝛽𝐽𝑐‖1 + (𝛾 + 1)‖𝑢𝐽‖1 − (𝛾 − 1)‖𝑢𝐽𝑐‖1 (4.7.11)

= 2𝛾‖𝛽𝐽𝑐‖1 + (𝛾 + 1)
(︀
‖𝑢𝐽‖1 − 𝑐−1

𝛾 ‖𝑢𝐽𝑐‖1
)︀
. (4.7.12)

If 𝑐𝛾‖𝑢𝐽‖1 < ‖𝑢𝐽𝑐‖1, the claim of the lemma is straightforward. Otherwise, ‖𝑢𝐽𝑐‖1 ≤ 𝑐𝛾‖𝑢𝐽‖1
and using the definition of the compatibility constant we get

2𝜆(𝛾 + 1)

𝛾

(︀
‖𝑢𝐽‖1 − 𝑐−1

𝛾 ‖𝑢𝐽𝑐‖1
)︀
− ‖A𝑢‖22 ≤

2𝜆(𝛾 + 1)

𝛾

(︂
|𝐽 | · ‖A𝑢‖22
𝜅A2(𝐽, 𝑐𝛾)

)︂1/2

− ‖A𝑢‖22 (4.7.13)

≤ (𝛾 + 1)2𝜆2|𝐽 |
𝛾2𝜅A2(𝐽, 𝑐𝛾)

, [by Cauchy-Schwarz] (4.7.14)

which completes the proof.

To close this subsection of auxiliary results, we provide simple upper bounds on the quantiles

of some random noise variables.

Proposition 4.7.1. Let 𝑚 = 𝑁 − 𝑛 and 𝑛⋆ = 𝑛 ∧ 𝑚. Introduce the random vectors 𝜁(1) =

1
𝑛

∑︀𝑛
𝑖=1 𝑌𝑖𝑋 𝑖 − E[𝑌𝑋],

𝜁 =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑋 𝑖 −
1

𝑚

𝑛+𝑚∑︁
𝑖=𝑛+1

𝑓 ⋆(𝑋 𝑖)𝑋 𝑖 and 𝜁 =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑋 𝑖 −
1

𝑁

𝑁∑︁
𝑖=1

𝑓 ⋆(𝑋 𝑖)𝑋 𝑖. (4.7.15)
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Under Assumptions 4.1 and 4.1, and for any 𝛿 ∈ (0, 1), each of the following inequalities

‖𝜁(1)‖∞ ≤ 2𝐵𝑌

(︁ log(2𝑝/𝛿)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(2𝑝/𝛿)

𝑛

)︁1/2
]︂

(4.7.16)

‖𝜁‖∞ ≤ 2𝐵𝑌

(︁ log(2𝑝/𝛿)

𝑛⋆

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(2𝑝/𝛿)

𝑛⋆

)︁1/2
]︂

(4.7.17)

‖𝜁‖∞ ≤ 2𝐵𝑌

(︁ log(2𝑝/𝛿)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

2

(︁ log(2𝑝/𝛿)

𝑛

)︁1/2
]︂

(4.7.18)

holds with probability at least 1 − 𝛿.

Proof. We will only prove the inequality corresponding to 𝜁. The others being very similar are

left to the reader. Denote 𝑠𝜇 = E[𝑌𝑋] = E[𝑓 ⋆(𝑋)𝑋] ∈ R𝑝, and introduce the random vectors

𝑠𝑍𝑖 =

⎧⎪⎨⎪⎩𝑁(𝑌𝑖𝑋 𝑖 − 𝑠𝜇)/𝑛, 𝑖 ∈ [𝑛],

𝑁(𝑠𝜇− 𝑓 ⋆(𝑋 𝑖)𝑋 𝑖)/𝑚, 𝑖 ∈ [𝑁 ] ∖ [𝑛].

The vectors 𝑠𝑍𝑖 are independent, centered, bounded and satisfy

𝜁 =
𝑠𝑍1 + · · · + 𝑠𝑍𝑁

𝑁
.

Furthermore, Assumption 4.1 implies that ‖𝑠𝑍𝑖‖∞ ≤ 2𝑁𝐵𝑌𝐵𝑋/𝑛 if 𝑖 ≤ 𝑛 and that ‖𝑠𝑍𝑖‖∞ ≤

2𝑁𝐵𝑌𝐵𝑋/𝑚 if 𝑖 > 𝑛. One can also bound from above the variance of the 𝑗-th component 𝑍𝑖𝑗

of 𝑠𝑍𝑖 as follows. If 𝑖 ≤ 𝑛 then, in view of Assumptions 4.1 and 4.1, E[𝑍2
𝑖𝑗] ≤ (𝑁/𝑛)2E[𝑌 2

𝑖 𝑋
2
𝑖𝑗] ≤

(𝑁𝐵𝑌 /𝑛)2. Similarly, if 𝑖 > 𝑛 then E[𝑍2
𝑖𝑗] ≤ (𝑁𝐵𝑌 /𝑚)2. Hence, we may easily deduce that,

for all 𝑗 ∈ [𝑝],
1

𝑁

𝑁∑︁
𝑖=1

E[𝑍2
𝑖𝑗] ≤

2𝑁𝐵2
𝑌

𝑛⋆
.

Therefore, using the Bernstein inequality recalled in Proposition 4.7.4 of Appendix 4.7.3, for

every 𝑗 ∈ [𝑝] and every 𝛿 > 0, we get that inequality

|𝜁𝑗| > 2𝐵𝑌

(︂
log(2𝑝/𝛿)

𝑛⋆

)︂1/2

+
2𝐵𝑌𝐵𝑋 log(2𝑝/𝛿)

3𝑛⋆
(4.7.19)

holds with probability at most 𝛿/𝑝. The claim of Proposition 4.7.1 follows from the union

bound.

Remark 4.7.1. One can easily check that the inequality E[𝑍2
𝑖𝑗] ≤ (𝑁𝐵𝑌 /𝑛)2, for 𝑖 = 1, . . . , 𝑛,

used in the previous proof can be replaced by E[𝑍2
𝑖𝑗] ≤ (𝑁𝐿𝑌𝐵𝑋/𝑛)2, where 𝐿𝑌 = (E[𝑌 2

𝑖 ])1/2.

This may lead to a better risk bound in the cases where the random variable 𝑌𝑖 is not well
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concentrated around its average value.

We are now in a position to prove the main theorems of this paper.

4.7.1 Proof of 4.4.1

The proof of Theorem 4.4.1 follows directly from 4.7.1 and 4.7.2 below. For simplicity, the

parameter 𝛾 > 1 introduced in Proposition 4.7.2 is fixed at the value 𝛾 = 2 in 4.4.1.

Proposition 4.7.2. Let 𝜁 be as in 4.7.1. For any 𝛾 > 1, we set 𝑐𝛾 = (𝛾 + 1)/(𝛾 − 1). On the

event E = {‖𝜁‖∞ ≤ 𝜆/𝛾}, for every 𝛽 ∈ R𝑝 and every 𝐽 ⊆ [𝑝], we have

ℰTL(𝑓̂︀𝛽) ≤ ℰTL(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 +
(𝛾 + 1)2𝜆2|𝐽 |
𝛾2𝜅̂︀Σunlab

(𝐽, 𝑐𝛾)
. (4.7.20)

Proof. Along the proof, we will use for convenience the shorthand notations𝑚 = 𝑁−𝑛 and A =̂︀Σ1/2
unlab. First, notice that developing the square in the expression ℰTL(𝑓𝛽) = 1

𝑚

∑︀𝑁
𝑖=𝑛+1

(︀
𝑋⊤

𝑖 𝛽−

𝑓 ⋆(𝑋 𝑖)
)︀2, we get

ℰTL(𝑓𝛽) = ‖A𝛽‖22 −
(︂

2

𝑚

𝑛+𝑚∑︁
𝑖=𝑛+1

𝑓 ⋆(𝑋 𝑖)𝑋
⊤
𝑖

)︂
𝛽 +

1

𝑚

𝑛+𝑚∑︁
𝑖=𝑛+1

𝑓 ⋆(𝑋 𝑖)
2 (4.7.21)

= ‖A𝛽‖22 + 2𝜁⊤𝛽 − 2

𝑛
𝑌 ⊤Xlab𝛽 +

1

𝑚

𝑛+𝑚∑︁
𝑖=𝑛+1

𝑓 ⋆(𝑋 𝑖)
2. (4.7.22)

This implies that for every 𝛽 ∈ R𝑝, we have

ℰTL(𝑓̂︀𝛽) − ℰTL(𝑓𝛽) = ‖Â︀𝛽‖22 − ‖A𝛽‖22 + 2𝜁⊤(̂︀𝛽 − 𝛽) − 2

𝑛
𝑌 ⊤Xlab(̂︀𝛽 − 𝛽). (4.7.23)

Using 4.7.1 with the convex penalty term pen(𝛽) = 2𝜆‖𝛽‖1 , we deduce that, for every 𝛽 ∈ R𝑝,

ℰTL(𝑓̂︀𝛽) − ℰTL(𝑓𝛽) ≤ 2𝜁⊤(𝛽 − ̂︀𝛽) + 2𝜆(‖𝛽‖1 − ‖̂︀𝛽‖1) − ‖A(𝛽 − ̂︀𝛽)‖22. (4.7.24)

On the event E , note that 2𝜁⊤(𝛽 − ̂︀𝛽) ≤ 2‖𝜁‖∞‖𝛽 − ̂︀𝛽‖1 ≤ 2𝜆
𝛾
‖𝛽 − ̂︀𝛽‖1, which leads to

2𝜁⊤(𝛽 − ̂︀𝛽) + 2𝜆(‖𝛽‖1 − ‖̂︀𝛽‖1) ≤ 2𝜆

𝛾

(︁
‖𝛽 − ̂︀𝛽‖1 + 𝛾‖𝛽‖1 − 𝛾‖̂︀𝛽‖1)︁ . (4.7.25)

Combining equations (4.7.24) and (4.7.25), we get that on the event E , for every 𝛽 ∈ R𝑝 and
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every 𝐽 ⊆ [𝑝],

ℰTL(𝑓̂︀𝛽) − ℰTL(𝑓𝛽) ≤ 2𝜆𝛾−1
(︀
‖𝛽 − ̂︀𝛽‖1 + 𝛾‖𝛽‖1 − 𝛾‖̂︀𝛽‖1)︀− ‖A(𝛽 − ̂︀𝛽)‖22. (4.7.26)

The claim of the proposition follows from 4.7.26 by applying 4.7.2 with 𝜇 = 𝜆.

To conclude the proof of 4.4.1, it suffices to note that in view of 4.7.1, the probability of the

event E = {‖𝜁‖∞ ≤ 𝜆/𝛾} is larger than 1 − 𝛿 provided that

𝜆 ≥ 2𝛾𝐵𝑌

(︁ log(2𝑝/𝛿)

𝑛⋆

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(2𝑝/𝛿)

𝑛⋆

)︁1/2
]︂
.

4.7.2 Proofs for the semi-supervised version of the lasso

We start this section by some arguments that are shared by the proofs of both theorems stated

in 4.5. Let 𝐽 ⊆ [𝑝] and let 𝛽 be a minimizer of the right hand side of (4.5.7). Note in particular

that 𝛽 is a deterministic vector depending on the unknown distribution 𝑃 of the data. In

addition, if the model is well-specified and 𝐽 = 𝐽⋆ then 𝛽 = 𝛽⋆. We will also use the notation

𝑢 = ̂︀𝛽 − 𝛽 and

𝜁(1) =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑋 𝑖 − E[𝑌𝑋] and 𝜁(2) =
(︀
Σ− ̂︀Σall

)︀
𝛽. (4.7.27)

Furthermore, to ease notation, we set ̂︀Σ𝑁 = ̂︀Σall, ̂︀Σ𝑛 = ̂︀Σlab, A = ̂︀Σ1/2
𝑁 . First, observe that

the excess risk ℰ(𝑓̂︀𝛽) =
∫︀
𝒳

(︀
𝑥⊤̂︀𝛽 − 𝑓 ⋆(𝑥)

)︀2
𝑃𝑋(d𝑥) of the predictor 𝑓̂︀𝛽 satisfies

ℰ(𝑓̂︀𝛽) =

∫︁
𝒳

{︀
(𝑥⊤𝑢)2 + 2𝑢⊤𝑥

(︀
𝑥⊤𝛽 − 𝑓 ⋆(𝑥)

)︀
+
(︀
𝑥⊤𝛽 − 𝑓 ⋆(𝑥)

)︀2}︀
𝑃𝑋(d𝑥) (4.7.28)

= ‖Σ1/2𝑢‖22 + 2𝑢⊤Σ𝛽 − 2𝑢⊤E [𝑋𝑓 ⋆(𝑋)] + ℰ(𝑓𝛽). (4.7.29)

Next, notice that

‖Σ1/2𝑢‖22 = 𝑢⊤(Σ− ̂︀Σ𝑁)𝑢+ ‖A𝑢‖22, (4.7.30)

and that

2𝑢⊤Σ𝛽 = 2𝑢⊤(Σ− ̂︀Σ𝑁)𝛽 + 2𝑢⊤ ̂︀Σ𝑁𝛽 (4.7.31)

= 2𝑢⊤(Σ− ̂︀Σ𝑁)𝛽 + ‖Â︀𝛽‖22 − ‖A𝑢‖22 − ‖A𝛽‖22, (4.7.32)
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where in the last line we have used the identity 2𝑎⊤𝑏 = ‖𝑎 + 𝑏‖22 − ‖𝑎‖22 − ‖𝑏‖22 with 𝑎 = A𝑢

and 𝑏 = A𝛽. Transforming 4.7.29 thanks to (4.7.30) and (4.7.32) we obtain

ℰ(𝑓̂︀𝛽) − ℰ(𝑓𝛽) = 𝑢⊤(Σ− ̂︀Σ𝑁)𝑢+ 2𝑢⊤(Σ− ̂︀Σ𝑁)𝛽 + ‖Â︀𝛽‖22 − ‖A𝛽‖22 − 2𝑢⊤E [𝑌𝑋] (4.7.33)

= 𝑢⊤(Σ− ̂︀Σ𝑁)𝑢+ 2𝑢⊤𝜁(2) + ‖Â︀𝛽‖22 − ‖A𝛽‖22 + 2𝑢⊤𝜁(1) − 2

𝑛
𝑌 ⊤X𝑛𝑢,

(4.7.34)

where we have used the identity E [𝑌𝑋] = E [𝑋𝑓 ⋆(𝑋)] and the definitions of 𝜁(1) and 𝜁(2).

Applying Lemma 4.7.1 with pen(𝛽) = 2𝜆‖𝛽‖1 and combining its result with (4.7.34), we arrive

at

ℰ(𝑓̂︀𝛽) − ℰ(𝑓𝛽) ≤ 2𝑢⊤(𝜁(1) + 𝜁(2)) + 2𝜆(‖𝛽‖1 − ‖̂︀𝛽‖1)⏟  ⏞  
T1

+𝑢⊤(Σ− ̂︀Σ𝑁)𝑢− ‖A𝑢‖22⏟  ⏞  
T2

. (4.7.35)

Proof of 4.5.1.

As mentioned earlier, in the well-specified setting we have 𝛽 = 𝛽⋆ and, therefore, ℰ(𝑓̂︀𝛽) =

‖Σ1/2𝑢‖22 and ℰ(𝑓𝛽⋆) = 0. Hence, (4.7.35) yields

2‖̂︀Σ1/2
𝑁 𝑢‖22 ≤ 2𝑢⊤(︀𝜁(1) + 𝜁(2)

)︀
+ 2𝜆(‖𝛽⋆‖1 − ‖𝛽⋆ + 𝑢‖1). (4.7.36)

Combining the duality inequality |𝑢⊤(︀𝜁(1) + 𝜁(2)
)︀
| ≤ ‖𝜁(1) + 𝜁(2)‖∞‖𝑢‖1 with the following one

‖𝛽⋆‖1 − ‖𝛽⋆ + 𝑢‖1 = ‖𝛽⋆𝐽⋆‖1 − ‖𝛽⋆𝐽⋆ + 𝑢𝐽⋆‖1 − ‖𝑢(𝐽⋆)𝑐‖1 ≤ ‖𝑢𝐽⋆‖1 − ‖𝑢(𝐽⋆)𝑐‖1, we infer from

inequality (4.7.36) that on the event E =
{︀

2‖𝜁(1) + 𝜁(2)‖∞ ≤ 𝜆
}︀
, we have

2‖̂︀Σ1/2
𝑁 𝑢‖22 ≤ 𝜆(3‖𝑢𝐽⋆‖1 − ‖𝑢(𝐽⋆)𝑐‖1). (4.7.37)

This implies that ‖𝑢(𝐽⋆)𝑐‖1 ≤ 3‖𝑢𝐽⋆‖1 and, therefore,

2𝜅̄̂︀Σ𝑁
(𝐽⋆, 3)‖𝑢𝐽⋆‖21 ≤ 2𝑠⋆‖̂︀Σ1/2

𝑁 𝑢‖22 ≤ 3𝜆𝑠⋆‖𝑢𝐽⋆‖1. (4.7.38)

This yields ‖𝑢𝐽⋆‖1 ≤ 3𝜆𝑠⋆/(2𝜅̄̂︀Σ𝑁
(𝐽⋆, 3)) and, since max𝑗,𝑗′ |Σ𝑗,𝑗′ | ≤ 1, ‖Σ1/2𝑢‖2 ≤ ‖𝑢‖1 ≤

4‖𝑢𝐽⋆‖1, which implies that

ℰ(𝑓̂︀𝛽) = ‖Σ1/2𝑢‖22 ≤
(︂

6𝜆𝑠⋆

𝜅̄̂︀Σ𝑁
(𝐽⋆, 3)

)︂2

. (4.7.39)
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On the other hand, if we denote by 𝐼 the set of the 𝑠⋆ largest entries of the vector |𝑢|, inequality

(4.7.37) implies that 2‖̂︀Σ1/2
𝑁 𝑢‖22 ≤ 𝜆(3‖𝑢𝐼‖1 − ‖𝑢𝐼𝑐‖1).

Therefore, using the definition of the restricted eigenvalue and similar arguments as above, we

deduce that ‖𝑢𝐼‖2 ≤ 3𝜆
√
𝑠⋆/(2𝜅RÊ︀Σ𝑁

(𝐼, 3)). Furthermore, ‖𝑢‖22 = ‖𝑢𝐼‖22 + ‖𝑢𝐼𝑐‖22 ≤ ‖𝑢𝐼‖22 +

‖𝑢𝐼𝑐‖∞‖𝑢𝐼𝑐‖1 ≤ ‖𝑢𝐼‖22 + (𝑠⋆)−1‖𝑢𝐼‖1‖𝑢𝐼𝑐‖1 ≤ ‖𝑢𝐼‖22 + 3(𝑠⋆)−1‖𝑢𝐼‖21 ≤ 4‖𝑢𝐼‖22. This yields

ℰ(𝑓̂︀𝛽) = ‖Σ1/2𝑢‖22 ≤ ‖Σ‖ · ‖𝑢‖22 ≤ 4‖Σ‖ · ‖𝑢𝐼‖22 ≤
9‖Σ‖𝜆2𝑠⋆

𝜅RÊ︀Σ𝑁
(𝐼, 3)2

. (4.7.40)

Combining (4.7.39) and(4.7.40), we get the first claim of the theorem.

To get the second claim of the theorem, we go back to (4.7.37) and use the following inequalities:

2‖Σ1/2𝑢‖22 = 2‖̂︀Σ1/2
𝑁 𝑢‖22 + 2𝑢⊤(Σ− ̂︀Σ𝑁)𝑢 (4.7.41)

≤ 3𝜆‖𝑢𝐽⋆‖1 + 2‖Σ− ̂︀Σ𝑁‖∞‖𝑢‖21 (4.7.42)

≤ 3𝜆‖𝑢𝐽⋆‖1 + 32‖Σ− ̂︀Σ𝑁‖∞‖𝑢𝐽⋆‖21. (4.7.43)

In the sequel, let us denote 𝜅 = 𝜅̄Σ(𝐽⋆, 3) for brevity. Then, upper bounding the two instances

of ‖𝑢𝐽⋆‖1 in (4.7.43) by (𝑠⋆‖Σ1/2𝑢‖22/𝜅)1/2, we infer that on E ,

‖Σ1/2𝑢‖22 ≤
3𝜆

√
𝑠⋆

2
√
𝜅

‖Σ1/2𝑢‖2 +
16𝑠⋆

𝜅
‖Σ− ̂︀Σ𝑁‖∞‖Σ1/2𝑢‖22. (4.7.44)

Dividing both sides by ‖Σ1/2𝑢‖2 (if this quantity vanishes then the claim of the theorem is

obviously true) and after some algebra, we get the inequality

‖Σ1/2𝑢‖22 ≤
9𝜆2𝑠⋆𝜅

4(𝜅− 16𝑠⋆ ‖Σ− ̂︀Σ𝑁‖∞)2
≤ 9𝜆2𝑠⋆

𝜅
, (4.7.45)

where the last inequality holds on the event E ∩ {32𝑠⋆ ‖Σ− ̂︀Σ𝑁‖∞ ≤ 𝜅}. In view of the union

bound, Hoeffding’s inequality and Assumption 4.1, we get for any 𝑡 > 0,

P
(︁
‖Σ− ̂︀Σ𝑁‖∞ ≥ 𝑡

)︁
≤ 𝑝2 max

𝑗,𝑗′∈[𝑝]
P (|𝜎𝑗𝑗′ − ̂︀𝜎𝑗𝑗′| ≥ 𝑡) ≤ 2𝑝2 exp

(︀
−2𝑁𝑡2/𝐵4

𝑋

)︀
, (4.7.46)

where Σ = (𝜎𝑖𝑗) and ̂︀Σ𝑁 = (̂︀𝜎𝑖𝑗). Therefore, if

16𝑠⋆𝐵2
𝑋

(︁2 log(4𝑝2/𝛿)

𝑁

)︁1/2

≤ 𝜅,

then the event {32𝑠⋆ ‖Σ− ̂︀Σ𝑁‖∞ ≤ 𝜅} has a probability larger than 1 − (𝛿/2). To bound the
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probability of E , we use the fact that 𝜁(1) + 𝜁(2) = 𝜁 and the quantiles of the supremum norm

of the random vector 𝜁 have been assessed in 4.7.1. This implies that the choice

𝜆 ≥ 4𝐵𝑌

(︁ log(4𝑝/𝛿)

𝑛

)︁1/2

+
𝐵𝑋𝐵𝑌 log(4𝑝/𝛿)

𝑛

guarantees that 𝑃 (E ) = 𝑃 (‖𝜁‖∞ ≤ 𝜆/2) ≥ 1 − (𝛿/2). This completes the proof.

Proof of 4.5.2.

We start by some auxiliary results before providing the proof of the theorem.

Proposition 4.7.3. Let 𝐽 ⊆ [𝑝] and let 𝛽 be a minimizer of the right hand side of (4.5.7). On

the event E = E1 ∩ E2 ∩ E3, where

E1 =
{︀
‖𝜁(1)‖∞ ≤ 𝜆

4

}︀
, E2 =

{︀
‖𝜁(2)‖∞ ≤ 𝜆

4

}︀
, and E3 =

{︀
𝜆min(Σ−1/2 ̂︀Σ𝑁Σ

−1/2) ≥ 2
3

}︀
,

(4.7.47)

we have

ℰ(𝑓̂︀𝛽) − ℰ(𝑓𝛽) ≤ 4𝜆‖𝛽𝐽𝑐‖1 +
9𝜆2|𝐽 |

2𝜅̂︀Σall
(𝐽, 3)

.

Proof. Our starting point in this proof is (4.7.34). We first focus on bounding T1. On the

event E1 ∩ E2, we have

T1 ≤ 2‖𝜁(1) + 𝜁(2)‖∞‖𝑢‖1 + 2𝜆(‖𝛽‖1 − ‖̂︀𝛽‖1) ≤ 𝜆
(︀
‖𝑢‖1 + 2‖𝛽‖1 − 2‖̂︀𝛽‖1)︀. (4.7.48)

We now look for an upper bound of the term T2. On the event E3, for any 𝑣 ∈ R𝑝,

𝑣⊤
(︀
2I𝑝 − 3Σ−1/2 ̂︀Σ𝑁Σ

−1/2
)︀
𝑣 ≤ 0, (4.7.49)

which leads to

𝑣⊤
(︀
I𝑝 − 2Σ−1/2 ̂︀Σ𝑁Σ

−1/2
)︀
𝑣 ≤ −1

2
(𝑣⊤Σ−1/2 ̂︀Σ𝑁Σ

−1/2)𝑣. (4.7.50)

Therefore, applying (4.7.50) to 𝑣 = Σ1/2𝑢, it follows that on the event E3

T2 = 𝑣⊤
(︀
I𝑝 − 2Σ−1/2 ̂︀Σ𝑁Σ

−1/2
)︀
𝑣 ≤ −1

2
𝑣⊤(Σ−1/2 ̂︀Σ𝑁Σ

−1/2)𝑣 = −1
2
‖A𝑢‖22. (4.7.51)
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To sum up, equations (4.7.48) and (4.7.51) together imply that on the event E = E1 ∩ E2 ∩ E3,

ℰ(𝑓̂︀𝛽) − ℰ(𝑓𝛽) ≤ 𝜆
(︀
‖𝑢‖1 + 2‖𝛽‖1 − 2‖̂︀𝛽‖1)︀− 1

2
‖A𝑢‖22. (4.7.52)

The desired result follows from this inequality and 4.7.2 with 𝜇 = 𝜆 and 𝛾 = 2.

Note that according to 4.7.1,

P
(︂
‖𝜁(1)‖∞ ≤ 2𝐵𝑌

(︁ log(6𝑝/𝛿)

𝑛

)︁1/2
[︂
1 +

𝐵𝑋

3

(︁ log(6𝑝/𝛿)

𝑛

)︁1/2
]︂)︂

≥ 1 − 𝛿

3
. (4.7.53)

The next two lemmas provide bounds for the probabilities of the events E2 and E3 introduced

in 4.7.3.

Lemma 4.7.3. Let assumption 4.1 be fulfilled. Let 𝐽 ⊆ [𝑝] and let 𝛽 be a minimizer of the

right hand side of (4.5.7). Then, for all 𝛿 ∈ (0, 1), the inequality

‖𝜁(2)‖∞ ≥ 𝐵𝑋𝐵𝑌

(︁2 log(6𝑝/𝛿)

𝑁

)︁1/2[︁
1 +

𝐵𝑋

3

(︁2𝑝‖Σ−1‖ log(6𝑝/𝛿)

𝑁

)︁1/2]︁
(4.7.54)

holds with probability at most 𝛿/3, where the random vector 𝜁(2) is defined in 4.7.27.

Proof. Note that 𝜁(2) = (1/𝑁)
∑︀𝑁

𝑖=1 𝑠𝑈𝑖, where 𝑠𝑈𝑖 = 𝑋 𝑖(𝑋
⊤
𝑖 𝛽) − E[𝑋(𝑋⊤𝛽)]. The random

vectors 𝑠𝑈𝑖 are independent and, for all 𝑖 ∈ [𝑁 ] and all 𝑗 ∈ [𝑝], the 𝑗-th component 𝑈𝑖𝑗 =

𝑋𝑖𝑗(𝑋
⊤
𝑖 𝛽) − E[𝑋𝑗(𝑋

⊤𝛽)] of 𝑠𝑈𝑖 satisfies, almost surely,

|𝑈𝑖𝑗| ≤ 2𝐵2
𝑋‖𝛽‖1 ≤ 2𝐵2

𝑋

√
𝑝‖𝛽‖2, (4.7.55)

where we have used that |𝑋⊤𝛽| ≤ ‖𝑋‖∞‖𝛽‖1 ≤ 𝐵𝑋‖𝛽‖1 with probability 1. Then, noticing

that ‖𝛽‖2 = ‖Σ−1/2Σ1/2𝛽‖2 ≤ ‖Σ−1/2‖‖Σ1/2𝛽‖2 = ‖Σ−1‖1/2‖Σ1/2𝛽‖2, we deduce that

|𝑈𝑖𝑗| ≤ 2𝐵2
𝑋(𝑝‖Σ−1‖)1/2‖Σ1/2𝛽‖2, (4.7.56)

almost surely. Since 𝛽 minimizes the term on the right hand side of (4.5.7), by 4.7.5 below,

‖Σ1/2𝛽‖2 ≤ 𝐵𝑌 . Thus for all 𝑖 ∈ [𝑁 ] and all 𝑗 ∈ [𝑝], |𝑈𝑖𝑗| ≤ 2𝐵2
𝑋𝐵𝑌 (𝑝‖Σ−1‖)1/2. Furthermore,

according to the previous lines, it holds 1
𝑁

∑︀𝑁
𝑖=1 E[𝑋2

𝑖𝑗(𝑋
⊤
𝑖 𝛽)2] ≤ 𝐵2

𝑋𝐵
2
𝑌 . 4.7.4 and the union

bound complete the proof.

Lemma 4.7.4. Under assumption 4.1, the smallest eigenvalue 𝜆min(Σ−1/2 ̂︀Σ𝑁Σ
−1/2) of the
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matrix Σ−1/2 ̂︀Σ𝑁Σ
−1/2 satisfies

P
{︂
𝜆min(Σ−1/2 ̂︀Σ𝑁Σ

−1/2) ≥ 1 −
(︁2𝐵2

𝑋𝑝‖Σ−1‖ log(𝑝/𝛿)

𝑁

)︁1/2
}︂

≥ 1 − 𝛿, (4.7.57)

for all 𝛿 ∈ (0, 1) such that 2𝐵2
𝑋𝑝‖Σ−1‖ log(𝑝/𝛿) ≤ 𝑁 .

Proof. For all 𝑖 ∈ [𝑁 ], 𝜆max(Σ
−1/2𝑋 𝑖𝑋

⊤
𝑖 Σ

−1/2) = ‖Σ−1/2𝑋 𝑖‖2 ≤ 𝑝𝐵2
𝑋‖Σ−1‖ and the matrix

Σ−1/2𝑋 𝑖𝑋
⊤
𝑖 Σ

−1/2 is positive semi-definite. Applying the first Chernoff matrix inequality given

in Remark 5.3 of Tropp (2012) to the sequence of matrices {Σ−1/2𝑋 𝑖𝑋
⊤
𝑖 Σ

−1/2 : 𝑖 ∈ [𝑁 ]} with

𝑡 = 1 −
(︁2𝐵2

𝑋𝑝‖Σ−1‖ log(𝑝/𝛿)

𝑁

)︁1/2

, 𝑅 = 𝑝𝐵2
𝑋 , 𝛿 = 𝑝 exp

{︁
− (1 − 𝑡)2𝑁

2𝑅‖Σ−1‖

}︁
(4.7.58)

yields (4.7.57).

Lemma 4.7.5. Let pen : R𝑝 → [0,+∞) be a convex function such that pen(0𝑝) = 0. Let 𝛽̄ be

a minimizer of the function

Φ(𝛽) = E[(𝛽⊤𝑋 − 𝑌 )2] + pen(𝛽), 𝛽 ∈ R𝑝. (4.7.59)

Then E[(𝛽̄
⊤
𝑋)2] ≤ E[𝑌 2] and, if Assumption 4.1 is fulfilled, E[(𝛽̄

⊤
𝑋)2] ≤ 𝐵2

𝑌 .

Proof. We apply 4.7.1 with A = E[𝑋𝑋⊤]1/2, 𝑛 = 1, 𝑌 = 1 and Xlab = E[𝑌𝑋] so that
1
𝑛
𝑌 ⊤Xlab = E[𝑌𝑋]. Inequality (4.7.2) with 𝛽 = 0𝑝 yields

E[(𝛽̄
⊤
𝑋)2] ≤ 2E[𝑌 (𝛽̄

⊤
𝑋)] − pen(𝛽̄) − E[(𝛽̄

⊤
𝑋)2]. (4.7.60)

Rearranging the terms and using that pen(𝛽̄) ≥ 0, we get E[(𝛽̄
⊤
𝑋)2] ≤ E[𝑌 (𝛽̄

⊤
𝑋)]. In

view of the Cauchy-Schwarz inequality, (E[𝑌 (𝛽̄
⊤
𝑋)])2 ≤ E[𝑌 2]E[(𝛽̄

⊤
𝑋)2], which implies that

(E[(𝛽̄
⊤
𝑋)2])2 ≤ E[𝑌 2]E[(𝛽̄

⊤
𝑋)2]. It now suffices to divide both sides of the last inequality by

E[(𝛽̄
⊤
𝑋)2] to obtain the claim of the lemma.

Proof of 4.5.2. Under the conditions of the theorem, we have

(︁2𝐵2
𝑋𝑝‖Σ−1‖ log(3𝑝/𝛿)

𝑁

)︁1/2

≤ 1

3
.

Therefore, 4.7.4 implies that P(E3) ≥ 1 − 𝛿/3. On the other hand, in view of 4.7.53 and 4.7.3,
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the conditions

𝜆 ≥ 8𝐵𝑌

(︁ log(6𝑝/𝛿)

𝑛

)︁1/2[︁
1 +

𝐵𝑋

3

(︁ log(6𝑝/𝛿)

𝑛

)︁1/2]︁
, (4.7.61)

𝜆 ≥ 4𝐵𝑋𝐵𝑌

(︁2 log(6𝑝/𝛿)

𝑁

)︁1/2[︁
1 +

𝐵𝑋

3

(︁2𝑝‖Σ−1‖ log(6𝑝/𝛿)

𝑁

)︁1/2]︁
(4.7.62)

imply that P(E1) ≥ 1 − 𝛿/3 and P(E2) ≥ 1 − 𝛿/3. One can easily check that under the

conditions of the theorem, the two inequalities of the last display are satisfied. Therefore, we

have P(E1 ∩ E2 ∩ E3) ≥ 1 − 𝛿. Finally, applying 4.7.3 we get the claim of the theorem.

Proof of the oracle inequality in expectation.

Let 𝛿 be a positive number smaller than 1 to be chosen later. We have already seen in 4.5.1

that on an event E of probability 1 − 𝛿, we have

ℰ(𝑓̂︀𝛽) ≤ inf
𝐽⊆[𝑝]

inf
𝛽∈R𝑝

{︁
ℰ(𝑓𝛽) + 4𝜆‖𝛽𝐽𝑐‖1 + 27‖Σ−1‖

4
𝜆2|𝐽 |

}︁
. (4.7.63)

On the other hand, using the fact that ̂︀𝛽 minimises the function 𝜓(𝛽) = ‖̂︀Σ1/2
𝑁 𝛽‖22− 2

𝑛
𝑌 ⊤X𝑛𝛽+

2𝜆‖𝛽‖1, we have 𝜓(̂︀𝛽) ≤ 𝜓(0𝑝), which yields

‖̂︀Σ1/2
𝑁

̂︀𝛽‖22− 2

𝑛
𝑌 ⊤X𝑛

̂︀𝛽+ 2𝜆‖̂︀𝛽‖1 = ‖̂︀Σ1/2
𝑁

̂︀𝛽− 1
𝑛
̂︀Σ−1/2
𝑁 X⊤

𝑛𝑌 ‖22−
1

𝑛2
‖̂︀Σ−1/2

𝑁 X⊤
𝑛𝑌 ‖22 + 2𝜆‖̂︀𝛽‖1 ≤ 0.

Note that ̂︀Σ−1/2
𝑁 is understood as the Moore-Penrose pseudo-inverse and all the expressions

involving this quantity are well defined since 𝑁 ̂︀Σ𝑁 ⪰ 𝑛̂︀Σ𝑛 = X⊤
𝑛X𝑛. This implies that

2𝜆‖̂︀𝛽‖1 ≤ 1
𝑛2‖̂︀Σ−1/2

𝑁 X⊤
𝑛𝑌 ‖22 ≤ 1

𝑛2‖̂︀Σ−1/2
𝑁 X⊤

𝑛 ‖2‖𝑌 ‖22 = 1
𝑛
‖̂︀Σ−1/2

𝑁
̂︀Σ𝑛

̂︀Σ−1/2
𝑁 ‖ ‖𝑌 ‖22, which entails

‖̂︀𝛽‖1 ≤ 𝐵2
𝑌

2𝜆
‖̂︀Σ−1/2

𝑁
̂︀Σ𝑛

̂︀Σ−1/2
𝑁 ‖ ≤ 𝐵2

𝑌𝑁

2𝑛𝜆
. (4.7.64)

It is also true that for every 𝛽 ∈ R𝑝,

ℰ(𝑓𝛽) = E[(𝑓 ⋆(𝑋) −𝑋⊤𝛽)2] ≤ 2E[𝑓 ⋆(𝑋)2] + 2𝛽⊤Σ𝛽 ≤ 2𝐵2
𝑌 + 2‖𝛽‖21. (4.7.65)

Therefore, we have E[ℰ(𝑓̂︀𝛽)1E 𝑐 ] ≤ 2𝐵2
𝑌 P(E 𝑐)+2E[‖̂︀𝛽‖211E 𝑐 ] = 2𝛿𝐵2

𝑌 +2E[‖̂︀𝛽‖211E 𝑐 ]. Combining

this inequality with (4.7.64), we get

E[ℰ(𝑓̂︀𝛽)1E 𝑐 ] ≤ 2𝛿𝐵2
𝑌 +

𝛿𝐵4
𝑌𝑁

2

2𝑛2𝜆2
.
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Setting 𝛿 = 𝑁−2, we get the claim of the theorem.

4.7.3 Bernstein inequality

The next result follows from (Massart, 2007, Proposition 2.9).

Proposition 4.7.4. Let 𝑍1, . . . , 𝑍𝑁 be independent real-valued random variables satisfying, for

all 𝑖 ∈ [𝑁 ] and for some constant 𝑏, E[𝑍2
𝑖 ] < +∞ and |𝑍𝑖 − E𝑍𝑖| ≤ 𝑏 almost surely. Denote

𝑍𝑁 = 1
𝑁

∑︀𝑁
𝑖=1 𝑍𝑖 and 𝜎2

𝑁 = (1/𝑁)
∑︀𝑁

𝑖=1 E [𝑍2
𝑖 − (E𝑍𝑖)2]. Then, for all 𝛿 ∈ (0, 1), inequality

|𝑍𝑁 − E[𝑍𝑁 ]| ≤ 𝜎𝑁

(︁2 log(2/𝛿)

𝑁

)︁1/2[︁
1 +

𝑏

6𝑁𝜎𝑁

(︁2 log(2/𝛿)

𝑁

)︁1/2]︁
, (4.7.66)

holds with probability at least 1 − 𝛿.

Proof. Define, for all 𝑖 ∈ [𝑁 ], the random variable 𝑋𝑖 = (𝑍𝑖 − E[𝑍𝑖])/𝑁 . Denote as well

𝑣 =
𝑁∑︁
𝑖=1

E[𝑋2
𝑖 ] =

1

𝑁2

𝑁∑︁
𝑖=1

E
[︀
𝑍2
𝑖 − (E𝑍𝑖)2

]︀
=

𝑢

𝑁
.

For all 𝑘 ≥ 3, the assumptions imply that

𝑁∑︁
𝑖=1

E[(𝑋𝑖)
𝑘
+] ≤ 𝑣

(︂
𝑏

𝑁

)︂𝑘−2

≤ 𝑘!

2
𝑣

(︂
𝑏

3𝑁

)︂𝑘−2

,

where we have used the fact that 𝑘!/3𝑘−2 ≥ 2, for all 𝑘 ≥ 3. As a result, applying (Massart,

2007, Prop. 2.9), with 𝑣 = 𝜎2
𝑁/𝑁 and 𝑐 = 𝑏/3𝑁 , we get that for all 𝛿 ∈ (0, 1), the inequality

𝑁∑︁
𝑖=1

𝑋𝑖 > 𝜎𝑁

√︂
2 log(2/𝛿)

𝑁
+
𝑏 log(2/𝛿)

3𝑁

holds with probability less than 𝛿/2. Applying the same argument to the variables −𝑋𝑖, we

infer that for all 𝛿 ∈ (0, 1), the inequality

𝑁∑︁
𝑖=1

𝑋𝑖 < −𝜎𝑁

√︂
2 log(2/𝛿)

𝑁
− 𝑏 log(2/𝛿)

3𝑁
,

holds with probability less than 𝛿/2, which completes the proof.

142



Bibliography

Bovas Abraham and Alice Chuang. Outlier detection and time series modeling. Technometrics,
31(2):241–248, 1989.

Eytan Adar and Lada A Adamic. Tracking information epidemics in blogspace. pages 207–214,
2005.

Shivani Agarwal, Deepak Dugar, and Shiladitya Sengupta. Ranking chemical structures for
drug discovery: a new machine learning approach. Journal of chemical information and
modeling, 50(5):716–731, 2010.

Alan Agresti and Barbara Finlay. Statistical methods for the social sciences. printice hall. Inc.
NJ, 1997.

Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on
automatic control, 19(6):716–723, 1974.

Pierre Alquier. Transductive and inductive adaptative inference for regression and density
estimation. PhD thesis, ENSAE ParisTech, 2006.

Pierre Alquier. Pac-bayesian bounds for randomized empirical risk minimizers. Mathematical
Methods of Statistics, 17(4):279–304, 2008.

Pierre Alquier and Gérard Biau. Sparse single-index model. Journal of Machine Learning
Research, 14(Jan):243–280, 2013.

Pierre Alquier and Mohamed Hebiri. Transductive versions of the LASSO and the dantzig
selector. Journal of Statistical Planning and Inference, 142(9):2485 – 2500, 2012.

Pierre Alquier and Karim Lounici. Pac-bayesian bounds for sparse regression estimation with
exponential weights. Electronic Journal of Statistics, 5:127–145, 2011.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approx-
imations of gibbs posteriors. JMLR, 17(239):1–41, 2016.

Christophe Andrieu, James Ridgway, and Nick Whiteley. Sampling normalizing constants in
high dimensions using inhomogeneous diffusions. arXiv preprint arXiv:1612.07583, 2016.

Jaromır Antoch and Daniela Jarušková. Change point detection. In FORUM STATISTICUM
SLOVACUM, page 2, 2000.

Yindalon Aphinyanaphongs, Lawrence D Fu, Zhiguo Li, Eric R Peskin, Efstratios Efstathiadis,
Constantin F Aliferis, and Alexander Statnikov. A comprehensive empirical comparison
of modern supervised classification and feature selection methods for text categorization.
Journal of the Association for Information Science and Technology, 65(10):1964–1987, 2014.

143



Eiji Aramaki, Sachiko Maskawa, and Mizuki Morita. Twitter catches the flu: detecting influenza
epidemics using twitter. pages 1568–1576, 2011.

Ery Arias-Castro and Karim Lounici. Estimation and variable selection with exponential
weights. Electronic Journal of Statistics, 8(1):328–354, 2014.

Jean-Yves Audibert. Aggregated estimators and empirical complexity for least square regres-
sion. In Annales de l’Institut Henri Poincare (B) Probability and Statistics, volume 40, pages
685–736. Elsevier, 2004a.

Jean-Yves Audibert. A better variance control for pac-bayesian classification. Preprint, 905,
2004b.

Jean-Yves Audibert. Pac-bayesian statistical learning theory. 2004c.

Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation. The Annals
of Statistics, 37(4):1591–1646, 2009.

Jean-Yves Audibert and Olivier Catoni. Robust linear regression through pac-bayesian trun-
cation. Preprint, 38:60, 2010.

Jean-Yves Audibert and Olivier Catoni. Robust linear least squares regression. The Annals of
Statistics, 39(5):2766–2794, 2011.

Reg Austin. Unmanned aircraft systems: UAVS design, development and deployment,
volume 54. John Wiley & Sons, 2011.

Alberto Bacci. Gabacortex, cortical inhibitory control circuits, anr. Impact, 2017(4):84–87,
2017.

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with
sparsity-inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–106,
2012.

Bubacarr Bah and Jared Tanner. Bounds of restricted isometry constants in extreme asymp-
totics: formulae for Gaussian matrices. Linear Algebra Appl., 441:88–109, 2014.

Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of Markov Diffusion
Operators. Grundlehren der mathematischen Wissenschaften 348. Springer International
Publishing, 1 edition, 2014. ISBN 978-3-319-00226-2,978-3-319-00227-9. URL http://gen.
lib.rus.ec/book/index.php?md5=D7444D65A44D4F39407F88D54C90B446.

Maria-Florina Balcan, Avrim Blum, Patrick Pakyan Choi, John Lafferty, Brian Pantano, Mu-
gizi R. Rwebangira, and Xiaojin Zhu. Person identification in webcam images: An applica-
tion of semi-supervised learning. ICML2005 Workshop on Learning with Partially Classified
Training Data, 2005.

Douglas Bates, Martin Maechler, Ben Bolker, and Steven Walker. lme4: Linear mixed-effects
models using eigen and s4. R package version, 1(7):1–23, 2014.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: a geometric
framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–
2434, 2006.

Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. Acm Sigkdd
Explorations Newsletter, 9(2):75–79, 2007.

144

http://gen.lib.rus.ec/book/index.php?md5=D7444D65A44D4F39407F88D54C90B446
http://gen.lib.rus.ec/book/index.php?md5=D7444D65A44D4F39407F88D54C90B446


Pierre C Bellec, Arnak S Dalalyan, Edwin Grappin, and Quentin Paris. On the prediction loss
of the lasso in the partially labeled setting. arXiv preprint arXiv:1606.06179, 2016a.

Pierre C Bellec, Guillaume Lecué, and Alexandre B Tsybakov. Slope meets lasso: improved
oracle bounds and optimality. arXiv preprint arXiv:1605.08651, 2016b.

Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Pivotal estimation via square-root
lasso in nonparametric regression. Ann. Statist., 42(2):757–788, 04 2014. doi: 10.1214/
14-AOS1204. URL http://dx.doi.org/10.1214/14-AOS1204.

Aharon Ben-Tal and Arkadi Nemirovski. The conjugate barrier mirror descent method for non-
smooth convex optimization. Minerva optimization center, Technion Institute of Technology,
1999.

Quentin Berthet and Philippe Rigollet. Optimal detection of sparse principal components in
high dimension. The Annals of Statistics, 41(4):1780–1815, 2013.

Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, pages 1705–1732, 2009.

Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple change-point de-
tection. arXiv preprint arXiv:1106.4199, 2011.

Sergey Bobkov and Mokshay Madiman. Concentration of the information in data with log-
concave distributions. The Annals of Probability, 39(4):1528–1543, 2011.

Małgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J Candès.
Slope—adaptive variable selection via convex optimization. The annals of applied statistics,
9(3):1103, 2015.

Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communications of the
ACM, 54(5):67–77, 2011.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Mohamed Boukhebouze, Stéphane Mouton, and Jimmy Nsenga. Towards an on-board personal
data mining framework for p4 medicine. ERCIM NEWS, (104):28–29, 2016.

Bruno Bouzy and Tristan Cazenave. Computer go: an ai oriented survey. Artificial Intelligence,
132(1):39–103, 2001.

Kevin K Bowden, Shereen Oraby, Amita Misra, Jiaqi Wu, and Stephanie Lukin. Data-driven
dialogue systems for social agents. arXiv preprint arXiv:1709.03190, 2017.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Max Bramer. Using j-pruning to reduce overfitting in classification trees. Knowledge-Based
Systems, 15(5):301–308, 2002.

John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. pages 43–52, 1998.

145

http://dx.doi.org/10.1214/14-AOS1204


Leo Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the
author). Statist. Sci., 16(3):199–231, 08 2001. doi: 10.1214/ss/1009213726. URL http:
//dx.doi.org/10.1214/ss/1009213726.

Nicolas Brosse, Alain Durmus, Éric Moulines, and Marcelo Pereyra. Sampling from a log-
concave distribution with compact support with proximal langevin monte carlo. arXiv pre-
print arXiv:1705.08964, 2017.

Céline Brouard, Florence d’Alché-Buc, and Marie Szafranski. Semi-supervised penalized output
kernel regression for link prediction. In Lise Getoor and Tobias Scheffer, editors, Proceedings
of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washing-
ton, USA, June 28 - July 2, 2011, pages 593–600. Omnipress, 2011.

Peter Bühlmann and Sara van de Geer. Statistics for high-dimensional data. Springer Series in
Statistics. Springer, Heidelberg, 2011. Methods, theory and applications.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory
and applications. Springer Science & Business Media, 2011.

Florentina Bunea, Alexandre Tsybakov, and Marten Wegkamp. Sparsity oracle inequalities for
the lasso. Electronic Journal of Statistics, 1:169–194, 2007a.

Florentina Bunea, Alexandre B Tsybakov, and Marten H Wegkamp. Aggregation for gaussian
regression. The Annals of Statistics, 35(4):1674–1697, 2007b.

Florentina Bunea, Yiyuan She, and Marten H Wegkamp. Optimal selection of reduced rank
estimators of high-dimensional matrices. The Annals of Statistics, pages 1282–1309, 2011.

Robert Burbidge, Matthew Trotter, B Buxton, and Sl Holden. Drug design by machine learning:
support vector machines for pharmaceutical data analysis. Computers & chemistry, 26(1):
5–14, 2001.

Jay Burmeister and Janet Wiles. The challenge of go as a domain for ai research: a comparison
between go and chess. pages 181–186, 1995.

Evgeny Byvatov, Uli Fechner, Jens Sadowski, and Gisbert Schneider. Comparison of support
vector machine and artificial neural network systems for drug/nondrug classification. Journal
of chemical information and computer sciences, 43(6):1882–1889, 2003.

T Tony Cai, Lie Wang, and Guangwu Xu. Shifting inequality and recovery of sparse signals.
IEEE Transactions on Signal Processing, 58(3):1300–1308, 2010.

Erik Cambria and Bebo White. Jumping nlp curves: A review of natural language processing
research. IEEE Computational intelligence magazine, 9(2):48–57, 2014.

Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep blue. Artificial intelligence,
134(1-2):57–83, 2002.

Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is
much larger than n. The Annals of Statistics, pages 2313–2351, 2007.

Emmanuel J Candes. Modern statistical estimation via oracle inequalities. Acta numerica, 15:
257–325, 2006.

146

http://dx.doi.org/10.1214/ss/1009213726
http://dx.doi.org/10.1214/ss/1009213726


Emmanuel J Candes and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery
from a minimal number of noisy random measurements. IEEE Transactions on Information
Theory, 57(4):2342–2359, 2011.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

Ismaël Castillo and Aad van der Vaart. Needles and straw in a haystack: Posterior concentration
for possibly sparse sequences. The Annals of Statistics, 40(4):2069–2101, 2012.

Ismaël Castillo, Johannes Schmidt-Hieber, and Aad Van der Vaart. Bayesian linear regression
with sparse priors. The Annals of Statistics, 43(5):1986–2018, 2015.

Olivier Catoni. Universal aggregation rules with exact bias bounds. preprint, 510, 1999.

Olivier Catoni. A pac-bayesian approach to adaptive classification. preprint, 840, 2003.

Olivier Catoni. Statistical learning theory and stochastic optimization: Ecole d’Eté de Probab-
ilités de Saint-Flour XXXI-2001. Springer, 2004.

Olivier Catoni. Pac-bayesian supervised classification. Lecture Notes-Monograph Series. IMS,
2007.

Gavin C Cawley and Nicola LC Talbot. Preventing over-fitting during model selection via
bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research, 8
(Apr):841–861, 2007.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E Schapire,
and Manfred K Warmuth. How to use expert advice. Journal of the ACM (JACM), 44(3):
427–485, 1997.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

O. Chapelle, B. Shölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, 2006.

Jim X Chen. The evolution of computing: Alphago. Computing in Science & Engineering, 18
(4):4–7, 2016.

Xi Chen, Xudong Liu, Zicheng Huang, and Hailong Sun. Regionknn: A scalable hybrid collab-
orative filtering algorithm for personalized web service recommendation. pages 9–16, 2010.

Anil M Cheriyadat. Unsupervised feature learning for aerial scene classification. IEEE Trans-
actions on Geoscience and Remote Sensing, 52(1):439–451, 2014.

Elena Chernousova, Yuri Golubev, and Ekaterina Krymova. Ordered smoothers with exponen-
tial weighting. Electronic Journal of Statistics, 7:2395–2419, 2013.

Christophe Chesneau and Guillaume Lecué. Adapting to unknown smoothness by aggregation
of thresholded wavelet estimators. Statistica Sinica, pages 1407–1417, 2009.

Grant Clauser. What is alexa? what is the amazon echo, and should you get one? The
Wirecutter, last updated September, 14, 2016.

147



Philippe Clement and Wolfgang Desch. An elementary proof of the triangle inequality for the
wasserstein metric. Proceedings of the American Mathematical Society, 136(1):333–339, 2008.

Bruno Sielly Jales Costa, Plamen Parvanov Angelov, and Luiz Affonso Guedes. Fully unsuper-
vised fault detection and identification based on recursive density estimation and self-evolving
cloud-based classifier. Neurocomputing, 150:289–303, 2015.

Vincent Cottet and Pierre Alquier. 1-bit matrix completion: Pac-bayesian analysis of a vari-
ational approximation. arXiv preprint arXiv:1604.04191, 2016.

Kate Crawford. Artificial intelligence’s white guy problem. The New York Times, 2016.

Aron Culotta. Towards detecting influenza epidemics by analyzing twitter messages. pages
115–122, 2010.

Dong Dai, Philippe Rigollet, and Tong Zhang. Deviation optimal learning using greedy 𝑞-
aggregation. The Annals of Statistics, 40(3):1878–1905, 2012.

Dong Dai, Philippe Rigollet, Lucy Xia, and Tong Zhang. Aggregation of affine estimators.
Electronic Journal of Statistics, 8(1):302–327, 2014.

Arnak Dalalyan and Alexandre Tsybakov. Aggregation by exponential weighting and sharp
oracle inequalities. Learning theory, pages 97–111, 2007.

Arnak Dalalyan and Alexandre B Tsybakov. Aggregation by exponential weighting, sharp
pac-bayesian bounds and sparsity. Machine Learning, 72(1):39–61, 2008.

Arnak Dalalyan, Yuri Ingster, and Alexandre B Tsybakov. Statistical inference in compound
functional models. Probability Theory and Related Fields, 158(3-4):513–532, 2014a.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-
concave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
2016.

Arnak S Dalalyan. Further and stronger analogy between sampling and optimization: Langevin
monte carlo and gradient descent. arXiv:1704.04752, 2017.

Arnak S Dalalyan and Joseph Salmon. Sharp oracle inequalities for aggregation of affine es-
timators. The Annals of Statistics, 40(4):2327–2355, 2012.

Arnak S Dalalyan and Alexandre B Tsybakov. Mirror averaging with sparsity priors. Bernoulli,
18(3):914–944, 2012a.

Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation and
langevin monte-carlo. Journal of Computer and System Sciences, 78(5):1423–1443, 2012b.

Arnak S. Dalalyan, Mohamed Heibiri, and Johannes Lederer. On the prediction performance
of the lasso. Bernoulli, in press, 2014b.

Arnak S Dalalyan, Edwin Grappin, and Quentin Paris. On the exponentially weighted aggregate
with the laplace prior. 2016.

Arnak S Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction performance of
the lasso. Bernoulli, 23(1):552–581, 2017.

148



James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi,
Sujoy Gupta, Yu He, Mike Lambert, and Blake Livingston. The youtube video recommend-
ation system. pages 293–296, 2010.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

David Donoho. 50 years of data science. 2015.

David L Donoho. High-dimensional data analysis: The curses and blessings of dimensionality.
AMS Math Challenges Lecture, 1:32, 2000.

David L Donoho and Iain M Johnstone. Adapting to unknown smoothness via wavelet shrink-
age. Journal of the american statistical association, 90(432):1200–1224, 1995.

Stephan Dreiseitl, Lucila Ohno-Machado, Harald Kittler, Staal Vinterbo, Holger Billhardt, and
Michael Binder. A comparison of machine learning methods for the diagnosis of pigmented
skin lesions. Journal of biomedical informatics, 34(1):28–36, 2001.

Dimiter Driankov and Alessandro Saffiotti. Fuzzy logic techniques for autonomous vehicle nav-
igation, volume 61. Physica, 2013.

Alain Durmus and Eric Moulines. Sampling from strongly log-concave distributions with the
unadjusted langevin algorithm. arXiv preprint arXiv:1605.01559, 2016.

Seth Earley. Analytics, machine learning, and the internet of things. IT Professional, 17(1):
10–13, 2015.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

Michael Elad and Alfred M Bruckstein. A generalized uncertainty principle and sparse rep-
resentation in pairs of bases. IEEE Transactions on Information Theory, 48(9):2558–2567,
2002.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

LLdiko E Frank and Jerome H Friedman. A statistical view of some chemometrics regression
tools. Technometrics, 35(2):109–135, 1993.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the group lasso and a
sparse group lasso. arXiv preprint arXiv:1001.0736, 2010.

Wenjiang J Fu. Penalized regressions: the bridge versus the lasso. Journal of computational
and graphical statistics, 7(3):397–416, 1998.

Stéphane Gaïffas and Guillaume Lecué. Optimal rates and adaptation in the single-index model
using aggregation. Electronic journal of statistics, 1:538–573, 2007.

Stéphane Gaiffas and Guillaume Lecué. Sharp oracle inequalities for high-dimensional matrix
prediction. IEEE Transactions on Information Theory, 57(10):6942–6957, 2011.

Chao Gao, Aad W van der Vaart, and Harrison H Zhou. A general framework for bayes
structured linear models. arXiv preprint arXiv:1506.02174, 2015.

149



Salvador Garcia, Julian Luengo, José Antonio Sáez, Victoria Lopez, and Francisco Herrera. A
survey of discretization techniques: Taxonomy and empirical analysis in supervised learning.
IEEE Transactions on Knowledge and Data Engineering, 25(4):734–750, 2013.

Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-bayesian
theory meets bayesian inference. In Advances in Neural Information Processing Systems,
pages 1884–1892, 2016.

John Gilliom. Overseers of the poor: Surveillance, resistance, and the limits of privacy. Uni-
versity of Chicago Press, 2001.

Christophe Giraud. Introduction to high-dimensional statistics, volume 138. CRC Press, 2014.

Christophe Giraud. Introduction to High-Dimensional Statistics. CRC Press, 2015.

Yu Golubev and D Ostrovski. Concentration inequalities for the exponential weighting method.
Mathematical Methods of Statistics, 23(1):20–37, 2014.

Fiona Graham. Wearable technology: Clothing designed to save your life. BBC News, 25, 2014.

Benjamin Guedj and Pierre Alquier. Pac-bayesian estimation and prediction in sparse additive
models. Electronic Journal of Statistics, 7:264–291, 2013.

Benjamin Guedj and Sylvain Robbiano. Une approche pac-bayésienne d’un probleme de ranking
binaire en grande dimension. 2014.

Benjamin Guedj, Pierre Alquier, Gérard Biau, Éric Moulines, and Telecom ParisTech LTCI.
Prévision pac-bayésienne pour le modele additif sous contrainte de parcimonie.

Matthieu Guillaumin, Jakob J. Verbeek, and Cordelia Schmid. Multimodal semi-supervised
learning for image classification. In The Twenty-Third IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pages
902–909, 2010. URL http://dx.doi.org/10.1109/CVPR.2010.5540120.

Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. Outlier detection for temporal
data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250–2267,
2014.

Chris Hans. Bayesian lasso regression. Biometrika, 96(4):835–845, 2009.

Akhlaque Haque. Surveillance, transparency, and democracy: Public administration in the
information age. University of Alabama Press, 2015.

Zaıd Harchaoui and Céline Lévy-Leduc. Multiple change-point estimation with a total variation
penalty. Journal of the American Statistical Association, 105(492):1480–1493, 2010.

Zaid Harchaoui, Matthijs Douze, Mattis Paulin, Miroslav Dudik, and Jérôme Malick. Large-
scale image classification with trace-norm regularization. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 3386–3393. IEEE, 2012.

S Hawking, E Musk, and S Wozniak. Autonomous weapons: an open letter from ai & robotics
researchers. Future of Life Institute, 2015.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

150

http://dx.doi.org/10.1109/CVPR.2010.5540120


Mohamed Hebiri and Johannes Lederer. How correlations influence lasso prediction. IEEE
Transactions on Information Theory, 59(3):1846–1854, 2013.

Toby Hocking, Guillem Rigaill, Jean-Philippe Vert, and Francis Bach. Learning sparse penalties
for change-point detection using max margin interval regression. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13), pages 172–180, 2013.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector
classification. 2003.

Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that defeated the world chess
champion. Princeton University Press, 2002.

Clifford M Hurvich and Chih-Ling Tsai. Regression and time series model selection in small
samples. Biometrika, 76(2):297–307, 1989.

Lucas Introna and David Wood. Picturing algorithmic surveillance: The politics of facial
recognition systems. Surveillance & Society, 2(2/3):177–198, 2004.

Anil K Jain and Stan Z Li. Handbook of face recognition. Springer, 2011.

Nitin Jindal and Bing Liu. Review spam detection. pages 1189–1190, 2007.

Joyce John. Pandora and the music genome project. Scientific Computing, 23(10):40–41, 2006.

AB Juditsky, Alexander V Nazin, Alexandre B Tsybakov, and Nicolas Vayatis. Recursive
aggregation of estimators by the mirror descent algorithm with averaging. Problems of In-
formation Transmission, 41(4):368–384, 2005.

Anatoli Juditsky and Arkadi Nemirovski. Accuracy guarantees for-recovery. Information The-
ory, IEEE Transactions on, 57(12):7818–7839, 2011.

Anatoli Juditsky, Philippe Rigollet, and Alexandre B Tsybakov. Learning by mirror averaging.
The Annals of Statistics, 36(5):2183–2206, 2008.

Taghi M Khoshgoftaar and Edward B Allen. Controlling overfitting in classification-tree models
of software quality. Empirical Software Engineering, 6(1):59–79, 2001.

Jyrki Kivinen and Manfred Warmuth. Averaging expert predictions. In Computational Learning
Theory, pages 638–638. Springer, 1999.

Olga Klopp. Noisy low-rank matrix completion with general sampling distribution. Bernoulli,
20(1):282–303, 2014.

Vladimir Koltchinskii. Sparse recovery in convex hulls via entropy penalization. The Annals of
Statistics, pages 1332–1359, 2009.

Vladimir Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems: Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-2008, volume 38. Springer,
2011.

Vladimir Koltchinskii, Karim Lounici, and Alexandre B. Tsybakov. Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. The Annals of Statistics, 39(5):
2302–2329, 2011a.

151



Vladimir Koltchinskii, Karim Lounici, and Alexandre B Tsybakov. Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. The Annals of Statistics, 39(5):
2302–2329, 2011b.

Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspect-
ive. Artificial Intelligence in medicine, 23(1):89–109, 2001.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani,
Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. In International Conference on Machine Learning,
pages 1378–1387, 2016.

John D. Lafferty and Larry A. Wasserman. Statistical analysis of semi-supervised regression.
In NIPS, pages 801–808. Curran Associates, Inc., 2007.

Quoc V Le. Building high-level features using large scale unsupervised learning. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages
8595–8598. IEEE, 2013.

Guillaume Lecué and Shahar Mendelson. On the optimality of the aggregate with exponential
weights for low temperatures. Bernoulli, 19(2):646–675, 2013.

Guillaume Lecué and Shahar Mendelson. Regularization and the small-ball method i: sparse
recovery. Technical Report 1601.05584, arXiv, January 2016a.

Guillaume Lecué and Shahar Mendelson. Regularization and the small-ball method i: sparse
recovery. arXiv preprint arXiv:1601.05584, 2016b.

Guillaume Lecué and Philippe Rigollet. Optimal learning with q-aggregation. The Annals of
Statistics, 42(1):211–224, 2014.

Michel Ledoux. The concentration of measure phenomenon. Number 89. American Mathemat-
ical Soc., 2005.

Gilbert Leung and Andrew R Barron. Information theory and mixing least-squares regressions.
IEEE Transactions on Information Theory, 52(8):3396–3410, 2006.

Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel,
J Zico Kolter, Dirk Langer, Oliver Pink, and Vaughan Pratt. Towards fully autonomous
driving: Systems and algorithms. pages 163–168, 2011.

Yew Jin Lim and Yee Whye Teh. Variational bayesian approach to movie rating prediction. In
Proceedings of KDD cup and workshop, volume 7, pages 15–21, 2007.

Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

Nicholas Littlestone. Mistake bounds and logarithmic linear-threshold learning algorithms.
1990.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

James NK Liu, Meng Wang, and Bo Feng. ibotguard: an internet-based intelligent robot
security system using invariant face recognition against intruder. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(1):97–105, 2005.

152



Karim Lounici. Sup-norm convergence rate and sign concentration property of lasso and dantzig
estimators. Electronic Journal of statistics, 2:90–102, 2008.

The Tien Mai and Pierre Alquier. A bayesian approach for noisy matrix completion: Optimal
rate under general sampling distribution. Electronic Journal of Statistics, 9(1):823–841, 2015.

Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

Colin L Mallows. Some comments on c p. Technometrics, 15(4):661–675, 1973.

John Markoff. Relax, the terminator is far away. The New York Times, 25, 2015.

Pascal Massart. Concentration Inequalities and Model Selection: Ecole d’Eté de Probabilités de
Saint-Flour XXXIII - 2003, volume 1896. Springer, 2007.

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 230–234. ACM, 1998.

John McCarthy and Patrick J Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Readings in artificial intelligence, pages 431–450, 1969.

Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-
dimensional data. The Annals of Statistics, pages 246–270, 2009.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to linear
regression analysis. John Wiley & Sons, 2015.

Raymond J Mooney and Loriene Roy. Content-based book recommending using learning for
text categorization. pages 195–204, 2000.

Gordon E Moore. Progress in digital integrated electronics. 21:11–13, 1975.

Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. Statistical analysis of semi-supervised learn-
ing: The limit of infinite unlabelled data. In Advances in Neural Information Processing
Systems 22, pages 1330–1338. Curran Associates, Inc., 2009.

Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2(11), 2011.

Deanna Needell and Roman Vershynin. Uniform uncertainty principle and signal recovery via
regularized orthogonal matching pursuit. Foundations of computational mathematics, 9(3):
317–334, 2009.

Sahand Negahban and Martin J Wainwright. Estimation of (near) low-rank matrices with noise
and high-dimensional scaling. The Annals of Statistics, pages 1069–1097, 2011.

Sahand Negahban and Martin J Wainwright. Restricted strong convexity and weighted matrix
completion: Optimal bounds with noise. Journal of Machine Learning Research, 13(May):
1665–1697, 2012.

Arkadii Nemirovskii, David Borisovich Yudin, and Edgar Ronald Dawson. Problem complexity
and method efficiency in optimization. 1983.

Andrew Y Ng. Preventing" overfitting" of cross-validation data. 97:245–253, 1997.

153



Anton Nijholt. Google home: Experience, support and re-experience of social home activities.
Information Sciences, 178(3):612–630, 2008.

Partha Niyogi. Manifold regularization and semi-supervised learning: Some theoretical ana-
lyses. Journal of Machine Learning Research, 14:1229–1250, 2013. URL http://jmlr.org/
papers/v14/niyogi13a.html.

Roberto Imbuzeiro Oliveira. The lower tail of random quadratic forms, with applications to
ordinary least squares and restricted eigenvalue properties. arXiv preprint arXiv:1312.2903,
2013.

William Olmstadt. Cataloging expert systems: optimism and frustrated reality. Journal of
Southern Academic and Special Librarianship, 1(3):n3, 2000.

Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the
logarithmic sobolev inequality. Journal of Functional Analysis, 173(2):361–400, 2000.

Tohru Ozaki. A bridge between nonlinear time series models and nonlinear stochastic dynamical
systems: a local linearization approach. Statistica Sinica, pages 113–135, 1992.

Trevor Park and George Casella. The bayesian lasso. Journal of the American Statistical
Association, 103(482):681–686, 2008.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: a primer.
John Wiley & Sons, 2016.

Randy J Pell. Multiple outlier detection for multivariate calibration using robust statistical
techniques. Chemometrics and Intelligent Laboratory Systems, 52(1):87–104, 2000.

David M Pennock, Eric Horvitz, Steve Lawrence, and C Lee Giles. Collaborative filtering by
personality diagnosis: A hybrid memory-and model-based approach. pages 473–480, 2000.

M. Pensky. Solution of linear ill-posed problems using overcomplete dictionaries. Technical
Report 1408.3386, Ann. Statist., to appear, arXiv, August 2014.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for
correlated gaussian designs. The Journal of Machine Learning Research, 11:2241–2259, 2010a.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for
correlated gaussian designs. Journal of Machine Learning Research, 11(Aug):2241–2259,
2010b.

Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax rates of estimation for high-
dimensional linear regression over ℓ𝑞-balls. IEEE Trans. Inform. Theory, 57(10):6976–6994,
2011.

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, and Bin Yu. High-dimensional
covariance estimation by minimizing 1-penalized log-determinant divergence. Electronic
Journal of Statistics, 5:935–980, 2011.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. pages 532–538, 2009.

154

http://jmlr.org/papers/v14/niyogi13a.html
http://jmlr.org/papers/v14/niyogi13a.html


John K Reid. A sparsity-exploiting variant of the bartels—golub decomposition for linear
programming bases. Mathematical Programming, 24(1):55–69, 1982.

James Ridgway, Pierre Alquier, Nicolas Chopin, and Feng Liang. Pac-bayesian auc classification
and scoring. In Advances in Neural Information Processing Systems, pages 658–666, 2014.

Philippe Rigollet. Generalized error bounds in semi-supervised classification under the cluster
assumption. J. Mach. Learn. Res., 8:1369–1392, 2007.

Philippe Rigollet and Alexandre Tsybakov. Exponential screening and optimal rates of sparse
estimation. Ann. Statist., 39(2):731–771, 2011a.

Philippe Rigollet and Alexandre Tsybakov. Exponential screening and optimal rates of sparse
estimation. The Annals of Statistics, 39(2):731–771, 2011b.

Philippe Rigollet and Alexandre B. Tsybakov. Sparse estimation by exponential weighting.
Statist. Sci., 27(4):558–575, 2012a.

Philippe Rigollet and Alexandre B Tsybakov. Sparse estimation by exponential weighting.
Statistical Science, 27(4):558–575, 2012b.

Angelika Rohde and Alexandre B Tsybakov. Estimation of high-dimensional low-rank matrices.
The Annals of Statistics, 39(2):887–930, 2011.

M Roux, S Asset, and S Medjebar. Tools for assisting diagnosis. Revue de l’infirmiere, 66(235):
26, 2017.

Mark Rudelson and Shuheng Zhou. Reconstruction from anisotropic random measurements.
Information Theory, IEEE Transactions on, 59(6):3434–3447, 2013.

Walter Rudin. Real and complex analysis. Tata McGraw-Hill Education, 1987.

Paat Rusmevichientong and David P Williamson. An adaptive algorithm for selecting profitable
keywords for search-based advertising services. pages 260–269, 2006.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–464,
1978.

Friedhelm Schwenker and Edmondo Trentin. Pattern classification and clustering: A review of
partially supervised learning approaches. Pattern Recognition Letters, 37:4–14, 2014.

Amir Sepehri. The bayesian slope. arXiv preprint arXiv:1608.08968, 2016.

John Shawe-Taylor and Robert C Williamson. A pac analysis of a bayesian estimator. In
Proceedings of the tenth annual conference on Computational learning theory, pages 2–9.
ACM, 1997.

John Shawe-Taylor, Peter L Bartlett, Robert C Williamson, and Martin Anthony. Structural
risk minimization over data-dependent hierarchies. IEEE transactions on Information The-
ory, 44(5):1926–1940, 1998.

Xiaohui Shen and Ying Wu. A unified approach to salient object detection via low rank matrix
recovery. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 853–860. IEEE, 2012.

155



Margaret A Shipp, Ken N Ross, Pablo Tamayo, Andrew P Weng, Jeffery L Kutok, Ricardo CT
Aguiar, Michelle Gaasenbeek, Michael Angelo, Michael Reich, and Geraldine S Pinkus. Dif-
fuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised
machine learning. Nature medicine, 8(1):68–74, 2002.

Galit Shmueli. To explain or to predict? Statist. Sci., 25(3):289–310, 08 2010. doi: 10.1214/
10-STS330. URL http://dx.doi.org/10.1214/10-STS330.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc
Lanctot. Mastering the game of go with deep neural networks and tree search. Nature, 529
(7587):484–489, 2016.

Anatoliy V Skorokhod. Stochastic equations for diffusion processes in a bounded region. Theory
of Probability & Its Applications, 6(3):264–274, 1961.

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas Guibas. Convolutional wasserstein distances: Efficient op-
timal transportation on geometric domains. ACM Transactions on Graphics (TOG), 34(4):
66, 2015.

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In COLT, volume 5,
pages 545–560. Springer, 2005.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
royal statistical society. Series B (Methodological), pages 111–147, 1974.

O Stramer and RL Tweedie. Langevin-type models ii: self-targeting candidates for mcmc
algorithms. Methodology and Computing in Applied Probability, 1(3):307–328, 1999.

Weijie Su and Emmanuel Candes. Slope is adaptive to unknown sparsity and asymptotically
minimax. The Annals of Statistics, 44(3):1038–1068, 2016.

Shiliang Sun and John Shawe-Taylor. Sparse semi-supervised learning using conjugate func-
tions. J. Mach. Learn. Res., 11:2423–2455, 2010.

Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898,
2012a.

Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898,
2012b.

Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898,
2012c.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135.
MIT Press Cambridge, 1998.

Hiroshi Tanaka. Stochastic differential equations with reflecting. Stochastic Processes: Selected
Papers of Hiroshi Tanaka, 9:157, 1979.

Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust monte carlo
localization for mobile robots. Artificial intelligence, 128(1-2):99–141, 2001.

Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser.
B, 58(1):267–288, 1996a.

156

http://dx.doi.org/10.1214/10-STS330


Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996b.

Ryan J Tibshirani and Jonathan Taylor. Degrees of freedom in lasso problems. The Annals of
Statistics, 40(2):1198–1232, 2012.

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Com-
putational Mathematics, 12(4):389–434, 2012.

Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230, 2015.

Alexandre B Tsybakov. Optimal rates of aggregation. In COLT, volume 2777, pages 303–313.
Springer, 2003.

Alexandre B Tsybakov. Aggregation and minimax optimality in high-dimensional estimation.
In Proceedings of the International Congress of Mathematicians, pages 225–246, 2014.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

Sara Van De Geer. The deterministic lasso. 2007.

Sara van de Geer and Peter Bühlmann. On the conditions used to prove oracle results for the
Lasso. Electron. J. Stat., 3:1360–1392, 2009.

Sara van de Geer and Johannes Lederer. The lasso, correlated design, and improved oracle
inequalities. In From Probability to Statistics and Back: High-Dimensional Models and
Processes–A Festschrift in Honor of Jon A. Wellner, pages 303–316. Institute of Mathemat-
ical Statistics, 2013.

Sara A van de Geer. Estimation and testing under sparsity. Springer, 2016.

Sara A Van De Geer and Peter Bühlmann. On the conditions used to prove oracle results for
the lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

SL van der Pas, J-B Salomond, and Johannes Schmidt-Hieber. Conditions for posterior con-
traction in the sparse normal means problem. Electronic journal of statistics, 10(1):976–1000,
2016.

Vladimir N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal
Processing, Communications, and Control. John Wiley & Sons, Inc., New York, 1998. A
Wiley-Interscience Publication.

Vladimir N Vapnik and Alexey J Chervonenkis. Theory of pattern recognition. 1974.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. ArXiv e-prints,
November 2010.

Volodimir G Vovk. Aggregating strategies. Proc. of Computational Learning Theory, 1990,
1990.

Martin J Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using
{ℓ1}-constrained quadratic programming (lasso). IEEE transactions on information theory,
55(5):2183–2202, 2009.

157



Junhui Wang and Xiaotong Shen. Large margin semi-supervised learning. J. Mach. Learn.
Res., 8:1867–1891, 2007.

Shijun Wang and Ronald M Summers. Machine learning and radiology. Medical image analysis,
16(5):933–951, 2012.

Manfred K Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh Putta, and Chris-
tian Lemmen. Active learning with support vector machines in the drug discovery process.
Journal of chemical information and computer sciences, 43(2):667–673, 2003.

Larry Wasserman. All of statistics: a concise course in statistical inference. Springer Science
& Business Media, 2013.

Liyang Wei, Yongyi Yang, Robert M Nishikawa, and Yulei Jiang. A study on several machine-
learning methods for classification of malignant and benign clustered microcalcifications.
IEEE transactions on medical imaging, 24(3):371–380, 2005.

Wikipedia. History of ibm magnetic disk drives, 2017. URL https://en.wikipedia.org/
wiki/History_of_IBM_magnetic_disk_drives. [Online; accessed 16 November 2017].

David Wipf, Jason Palmer, and Bhaskar Rao. Perspectives on sparse bayesian learning. In
Proceedings of the 16th International Conference on Neural Information Processing Systems,
pages 249–256. MIT Press, 2003.

David P Wipf and Bhaskar D Rao. Sparse bayesian learning for basis selection. IEEE Trans-
actions on Signal processing, 52(8):2153–2164, 2004.

Weng-Keen Wong, Andrew W Moore, Gregory F Cooper, and Michael M Wagner. Bayesian
network anomaly pattern detection for disease outbreaks. pages 808–815, 2003.

Yuhong Yang. Adaptive estimation in pattern recognition by combining different procedures.
Statistica Sinica, pages 1069–1089, 2000a.

Yuhong Yang. Combining different procedures for adaptive regression. Journal of multivariate
analysis, 74(1):135–161, 2000b.

Yuhong Yang. Mixing strategies for density estimation. The Annals of Statistics, 28(1):75–87,
2000c.

Yuhong Yang. Adaptive regression by mixing. Journal of the American Statistical Association,
96(454):574–588, 2001a.

Yuhong Yang. Adaptive regression by mixing. 96:574–588, 02 2001b.

Fei Ye and Cun-Hui Zhang. Rate minimaxity of the Lasso and Dantzig selector for the ℓ𝑞 loss
in ℓ𝑟 balls. J. Mach. Learn. Res., 11:3519–3540, 2010.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Ling-Li Zeng, Hui Shen, Li Liu, and Dewen Hu. Unsupervised classification of major depression
using functional connectivity mri. Human brain mapping, 35(4):1630–1641, 2014.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals
of statistics, 38(2):894–942, 2010.

158

https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drives
https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drives


Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-dimensional
linear regression. The Annals of Statistics, pages 1567–1594, 2008.

Li Zhang, Weida Zhou, and Licheng Jiao. Wavelet support vector machine. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):34–39, 2004.

Tong Zhang. Some sharp performance bounds for least squares regression with l1 regularization.
The Annals of Statistics, 37(5A):2109–2144, 2009.

Tong Zhang and Frank J Oles. Text categorization based on regularized linear classification
methods. Information retrieval, 4(1):5–31, 2001.

Qun Zhao and Jose C Principe. Support vector machines for sar automatic target recognition.
IEEE Transactions on Aerospace and Electronic Systems, 37(2):643–654, 2001.

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale parallel col-
laborative filtering for the netflix prize. Lecture Notes in Computer Science, 5034:337–348,
2008.

X. Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin
– Madison, 2008.

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised outlier
detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 5(5):363–387, 2012.

Arthur Zimek, Ricardo JGB Campello, and Jörg Sander. Ensembles for unsupervised outlier
detection: challenges and research questions a position paper. Acm Sigkdd Explorations
Newsletter, 15(1):11–22, 2014.

Hui Zou, Trevor Hastie, and Robert Tibshirani. On the “degrees of freedom” of the lasso. The
Annals of Statistics, 35(5):2173–2192, 2007.

159



160



Estimateur par agrégat en apprentissage statistique en grande dimension

Mots clés : Agrégation, PAC-Bayésien, Estimation en Grande Dimension, Apprentissage Stat-

istique.

Les travaux de cette thèse explorent les propriétés de procédures d’estimation par agrégation

appliquées aux problèmes de régressions en grande dimension. Les estimateurs par agrég-

ation à poids exponentiels bénéficient de résultats théoriques optimaux sous une approche

PAC-Bayésienne. Cependant, le comportement théorique de l’agrégat avec prior de Laplace

n’est guère connu. Ce dernier est l’analogue du Lasso dans le cadre pseudo-bayésien. Le

Chapitre 2 explicite une borne du risque de prédiction de cet estimateur. Le Chapitre 3

prouve qu’une méthode de simulation s’appuyant sur un processus de Langevin Monte Carlo

permet de choisir explicitement le nombre d’itérations nécessaire pour garantir une qualité

d’approximation souhaitée. Le Chapitre 4 introduit des variantes du Lasso pour améliorer les

performances de prédiction dans des contextes partiellement labélisés.

Model Averaging in Large Scale Learning

Key-words: Aggregation, PAC-Bayesian, High-Dimensional Estimation, Machine Learning.

This thesis explores properties of estimation procedures related to aggregation in the problem of

high-dimensional regression in a sparse setting. The exponentially weighted aggregate (EWA)

is well studied in the literature. It benefits from strong results in fixed and random designs

with a PAC-Bayesian approach. However, little is known about the properties of the EWA

with Laplace prior. Chapter 2 analyses the statistical behaviour of the prediction loss of the

EWA with Laplace prior in the fixed design setting. Sharp oracle inequalities which generalize

the properties of the Lasso to a larger family of estimators are established. These results

also bridge the gap from the Lasso to the Bayesian Lasso. Chapter 3 introduces an adjusted

Langevin Monte Carlo sampling method that approximates the EWA with Laplace prior in an

explicit finite number of iterations for any targeted accuracy. Chapter 4 explores the statisctical

behaviour of adjusted versions of the Lasso for the transductive and semi-supervised learning

task in the random design setting.
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