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Résumé en français

Ce chapitre a pour objectif de présenter le contexte dans lequel s'inscrit cette thèse, ainsi que les enjeux et questionnements scientiques auxquels nous serons confrontés.

Cette thèse s'inscrit dans le cadre du projet COMCEPT, regroupant plusieurs partenaires industriels issus du domaine de la fonderie. Nous nous intéressons ici au procédé de coulée en source (appelé également coulée en lingotière). Il s'agit d'injecter du métal fondu dans un moule, permettant son remplissage progressif par le bas. Durant ce procédé, une poudre de couverture, appelée "coussin", est déposée à la surface du métal liquide, le protégeant thermiquement de l'air et évitant son oxydation. Ces poudres sont conditionnées dans des sacs, disposés suivant plusieurs méthodes (posés directement au fond du moule, suspendus par des cordes, surélevés par des cartons), et qui brûlent suite aux fortes chaleurs induites par l'entrée du métal en fusion dans le moule, permettant ainsi l'étalement de la poudre. Cepandant, il arrive que l'étalement s'eectue mal, laissant des zones non recouvertes de poudre, ce qui altère la qualité nale du lingot.

Dans ce cadre, la simulation numérique apparaît comme un outil ecace pour l'optimisation du procédé, permettant ainsi la visualisation de la physique à moindre côut. L'objectif de cette thèse consiste à proposer des méthodes numériques permettant la simulation de l'écoulement de poudres, et qui seront appliquées nalement au procédé de coulée en source et intégrées dans le logiciel THERCAST, commercialisé par la société Transvalor.

Deux approches sont décrites dans la littérature pour la simulation des écoulements granulaires. Les méthodes dites "discrètes" sont les plus populaires, et consistent à décrire l'écoulement grain par grain, en considérant leurs intéractions. Cependant, ces méthodes sont très coûteuses quand le nombre de grains devient très élevé, ce qui nous amène à la simulation numérique par des approches dites "continues". Ces dernières consistent à résoudre les équations de la mécanique des uides, et à traduire le comportement des matériaux granulaires par des lois spéciques.

Ainsi, nous nous sommes focalisés sur certaines lois décrivant le comportement de ces matériaux, et soulevant certains enjeux numériques. Nous les avons divisés en trois catégories, suivant leur degré d'immersion.

Dans un premier temps, nous nous focalisons sur les matériaux granulaires secs, qui sont caractérisés par trois régimes diérents : quasi-statique (solide), dense (liquide) et collisionel (gazeux). L'association de la recherche entre communautés physique et mécanique a permis de caractériser le comportement du matériau avec un nombre adimensionnel, appelé nombre inertiel, qui correspond au rapport entre un temps microscopique lié au réarrangement des grains, à un temps macroscopique (inverse du taux de cisaillement) [START_REF] Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear ows[END_REF].

Par la suite, [2] ont proposé la loi de comportement µ(I), traduisant le comportement piezzo-dépendant du matériau en fonction du nombre inertiel.

Dans un second temps, nous nous sommes intéressés au comportement que présente un matériau granulaire auquel nous y ajouté une certaine quantité de liquide, créant ainsi des ponts capillaires entre les grains.

Nous avons donc introduit ici les uides à seuils. Il s'agit de uides s'écoulant si la contrainte appliquée dépasse une certaine limite, appelée contrainte seuil. Ces uides sont fortement non-linéaires, et spéciquement, si un uide ambiant est considéré. Ainsi, la simulation numérique des uides à seuil constitue un grand enjeu, du aux grands sauts de viscosité présents aux interfaces.

Dans cette thèse, nous proposerons donc un formalisme éléments nis permettant la simulation numérique des écoulements multiphasiques de uides non-Newtoniens, et plus particulièrement, fortement non-linéaires.

Introduction

For several centuries, metal objects are encountered everywhere in our daily life, under dierent shapes and usages. The oldest traces of metallurgy go back to several millennials before Christ. Indeed, the rst molded objects have been elaborated with copper in 5000 years before Christ Thus, this discovery has revolutionalized the world of metallurgy, and had a great impact on the industry these days, with the diversication of employed alloys and post-processes used, such as lamination, machining or forging processes.

Casting process corresponds to the rst step involved in the fabrication of metallic objects. It this process is poorly controlled, several defects appear (inclusions, porosities, rough surface ...) , leading to deteriorate surface quality and internal health of the ingot. Consequently, it is essential to control this process to obtain metal objects with optimal nal features.

Internal health of nal ingots represents a crucial issue for metallurgists. Indeed, characteristics of provided metals would become optimal, which would induce a decrease of waste. Three primary issues may be outlined : technological issues, as inclusions would be avoided ; then, environmental issues and nally, economical issues, due to the decrease of metal loss.

Two kinds of casting processes are found in foundry industry: continuous and ingot casting processes. In this thesis, we focus on ingot casting process.

Figure 1 illustrates geometry and purpose of ingot casting process. It consists of a tube linked to a channel, which is connected to the bottom of a mold. The process consists of injecting hot molten metal into the tube, allowing the progressive mold lling from the bottom. It is principally used for the fabrication of massive parts with large dimensions. Ingot casting processes represent a consequent worlwide market (50000 tons/year for a total cost of 500 ME).

Figure 1: Ingot casting process Many phenomena may generate inclusions, but the main source is "mold powder", corresponding to a powder layer, melting partially and aiming to cover and protect the metal during mold lling. Indeed, this powder prevents the appearance of skin defects due to its inltration at steel/mold interface, and ensures also the steel thermal insulation from air, aiming to slow down solidication. Moreover, the liquid metal is protected of oxidation from air. Thus, mold powders are interesting for the optimization of internal health and surface qualities of the nal ingot. However, the quoted advantages are altered if casting conditions are poorly controlled (metal overheating, powder quantities, ux rate of metal), leading to the formation of surface defects or inclusions, such as droplets extracted from powder and trapped inside the ingot.

The COMCEPT project aims to overcome these diculties, by assisting industrial partners to ensure the most adapted powder to casting conditions. This project meets several industrial partners: Transvalor, Industeel, Arcelor Mittal, Aubert & Duval, Aperam, Sciences Computer Consultants, Ascometal, Imerys and Filab, and focuses on powder ow dynamics onto molten metal in the framework of ingot casting process. Moreover, it aims to provide a numerical tool allowing the engineers to optimize the choice of appropriate powders and best practices for the process.

Granular materials

Granular materials are dened as a collection of solid particles with size larger than ten microns [START_REF] Andreotti | Les milieux granulaires : Entre uide et solide[END_REF]. We encounter them everywhere in our daily life under dierent shapes, dimensions, and densities. Due to the wide range of existing granular materials, they cover a wide range of elds of study, such as in geomorphology [4], and a large range of industrial processes, such as foundry, pharmaceutic, cosmetic or food industries [5].

Thus, understanding how granular materials ow may answer to several issues, from the comprehension of many natural phenomena to the optimization of several industrial processes, such as ingot casting.

Among industrial applications involving granular ows, the example of pharmaceutical industry is also relevant (gure 3.b). Indeed, a method used to manufacture pills consists of pushing a powder into cavities with a scraper. However, the scraper speed must be well chosen: indeed, for low speeds, the powder will ll the full cavities, but the process will not be well optimized due to long process times. On the other hand, increasing the scraper speed will not leave the powder to fall and thus, to ll the totality of the cavities.

Therefore, it is important to nd the appropriate speed for the scraper in order to optimize the process, which involves nally to determine the dynamics of the powder during its ow into the cavities.

In geophysics, issues involving granular ows problems are also encountered, for example the prediction of the avalanches run-out (gure 3.a).

Figure 3: Omnipresence of granular materials in nature and industry

In conclusion, the determination of granular dynamics is necessary for several physical and industrial issues. Since several years, numerical simulation appeared as a powerful tool to simulate several physical and industrial processes, and consists nowadays of an inevitable step for engineers to optimize it. Thus, the goal of this work consists of proposing a numerical tool, that simulates granular ows and free-falls in the industrial framework, taking into account its specic dynamics.

In the literature, two approaches exist for the numerical simulation of granular ows : the most used, called Discrete Numerical Simulation (DNS), consists of the ow description at the microscopic scale, by simulating directly the collisions between grains using basic physical interactions (non-penetration, friction, elasticity). In the past, this method helped to understand some key features related to the dynamics of granular materials, and to answer to several physical questions [START_REF] Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear ows[END_REF].

However, computational costs may increase drastically if one wants to simulate the granular ow at the industrial scale. Indeed, one powder bag may cover a total volume of 1dm 3 . By considering the coarsest powder (whose grain diameter is equal to 0.2mm) and by assuming that the packing is maximum (percentage of the total volume that is occupied by grains, usually maximal at 0.64), 80 millions of grains are contained into this volume. Consequently, simulating powder spreading with a discrete method becomes irrelevant, and may give rise to huge computational costs. Indeed, the usual limitation for the number of grains by the use of discrete method is one million of grains. Thus, the idea consists of simulating powder ows using a continuum approach, which aims to solve momentum equations. The denition of appropriate constitutive model used to describe granular dynamics after a fall must then be chosen.

In this work, we will thus develop a continuum model for the simulation of granular ows. The next parts give an overview and discussion on the usual constitutive laws that are relevant for the description of granular dynamics.

Rheology of granular materials

In this section, we introduce a crude and intentionally naive classication of rheological behaviors according to the relative volume fractions Φ g , Φ l and Φ a , respectively, solid (grains), liquid and gas (air) of the total uid. This classication involves three categories : dry granular (Φ l = 0), wet (non-zero Φ g , Φ l and Φ a ) and immersed granular (Φ a = 0) systems.

This classication avoids many physical processes, some being still an active research eld, that could provide accurate macroscopic rheological models, but we will underline their main features that are challenging for numerical simulation, typically strong nonlinear formulations. The proposed models shall them be seen as generic nonlinear behaviors for granular materials.

Dry dense granular systems, illustrated on gure 4.a exhibit a pressure-dependent behavior, due to frictional interactions. For a given deviatoric stress, they behave as solid in highly pressure regions, and grains velocity becomes higher as pressure tends to zero.

If a slight amount of liquid added into the granular material leads to the creation of capillarity bridges between grains, as shown on gure 4. b for wet granular systems. A very crude approach is now to consider that the pressure-dependent behavior of the granular material turn then into a yield stress behavior. Thus, a new constant parameter is introduced, called the yield stress, below which the uid does not ow anymore.

For immersed granular systems (gure 4.c), the behavior is assumed to be Newtonian at rst approximation.

For low Φ g , the material may exhibit eventually nonlinear behavior (appearance of a yield stress, a frictional dynamics) or for high Φ g and high strain rates || γ||, but we will not study such systems.

(a) (b) (c) During the ingot process, powder bags burn, fall and spread onto the metal surface. As introduced before, the ow is split in two parts : the fall of the granular material, and its spreading. Then, the phase change of the powder starts, turning it eventually into a liquid. In the industrial process, it has been shown that the granular ow takes less than one second. Thus, the powder does not have the time to turn signicantly into a liquid (phase change takes several minutes). Thus, the powder is assumed to be dry during the spreading.

Three regimes describe dry granular ows. Figure 5 represents the distribution of these regimes in a granular ow. In the center of the ow (highly pressured regions), grains arrangements do not deform.

This regime is called quasi-static. Approaching the free surface leads to higher velocities, and a liquid-like behavior. This regime is called dense. Finally, velocity of grains in a thin layer, located at the free-surface of the pile, are higher than grains size, and deconstruct the granular ow by creating several collisions between grains. Thus, this regime is called collisional.

In the literature, we may nd some attempts to determine dry granular constitutive laws [START_REF] Forterre | Flows of dense granular media[END_REF][START_REF] Luding | Granular matter: So much for the jamming point[END_REF]. Particularly, a CNRS GdR on granular materials has been created early 2000. Thus, [START_REF] Midi | On dense granular ows[END_REF] proposed an overview of their research on the behavior of dense granular ows. Figure 6 illustrates the six dierent congurations for the study of granular dynamics, where early simple shear is achieved : plane shear, annular shear, vertical-chute ows, ow onto an inclined plane, heap ow and ow into a rotating drum. For each case, they reported yields, the kinematic properties but also the rheological behavior of the ow. All the results obtained by these measurements are then interpreted.

Da Cruz et al. [START_REF] Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear ows[END_REF] determined the relevant parameters that describe the mechanical dynamics of the granular ow, by investigating all the mechanisms occurring at each scales (microscopic scale, grain scale, and geometrical scale). Particularly, they discussed the mechanisms occurring at the grain level, and determined dimensionless parameters that may describe relevantly the granular dynamics. Consequently, the quasi-static regime is approximated by a macroscopic expression which traduces microscopic friction eects. Moreover, [2] proposed a pure plasticity constitutive law, which is pressure-dependent:

τ = µp || γ || γ (1.1)
where µ is a friction coecient. γ and τ are respectively the strain rate and shear stress tensors. || γ || corresponds to the norm of the strain rate tensor and is dened as:

|| γ ||= 2 γ : γ (1.2)
For large domains (with a huge number of grains), dimensional analysis shows that a time constant t micro exists, which may be considered as the time for a grain to fall into a hole of size d (diameter of the grains) under the connement pressure p. Indeed, following [START_REF] Andreotti | Les milieux granulaires : Entre uide et solide[END_REF], the following expression is obtained if the Newton law is formulated following the ordinate axis:

m d 2 y dt 2 = F y (1.3)
where the mass m of a grain with density ρ and diameter d is approximated by m = ρd 3 , where its acceleration is estimated as

d 2 y dt 2 = d t 2 micro
and where the applied force F y is computed as the connement pressure p multiplied by the grain surface (F y = pd 2 ). Thus, we obtain the following expression for t micro :

t micro = d p ρ (1.4) 
If the time t macro = 1

|| γ|| (time for a grain to move to a distance equal to its diameter) is small, it means that the strain rates are important and that the grains do not have the time to rearrange. Da Cruz et al. [START_REF] Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear ows[END_REF] showed that in this case, the volume fraction decreases, whereas the apparent friction coecient µ increases. Inversely, if t macro > t micro , the strain rates are very small and the behavior will tend to a quasi-static regime, described by the equation 1.1.

The inertial number I, dened as t micro /t macro , corresponds to the qualitative transition between the quasi-static and collisional regimes:

I = || γ || d p ρ (1.5)
Figure 7 illustrates the dierent regimes of a granular ow, according to the value of the inertial number I. For very small inertial numbers (I <≈ 10 -3 ), the regime is assumed to be quasi-static. Between 10 -3 and a material parameter I 0 , dened as the inertial number transition between dense and collisional regimes, the regime is dense. Beyond I 0 , the regime is collisional.

Then, the tensorial constitutive law of the µ(I) rheology is thus formulated such as [2] :

τ = 2µ(I)p γ || γ || (1.6)
where the eective friction depends on the inertial number such as: 

µ(I) = µ S + µ F -µ S I 0 I + 1 (1.7)
where µ S and µ F correspond, respectively, to static and dynamic friction coecient of the granular material.

Figure 80 illustrates the evolution of eective friction µ according to I. For low I (quasi-static regime), it shows that the eective friction µ tends to the static friction coecient µ S , which denes the repose angle φ r of the granular material (φ r = atan(µ S )). When I increases, µ tends to the dynamic friction coecient µ F . At I = I 0 , the friction is equal to µ S +µ F 2 . Up to I 0 , the ow regime is collisional. During the last few years, µ(I) rheology has been well understood by physicist and gave rise to several studies [START_REF] Midi | On dense granular ows[END_REF]. However, the physical parameters describing granular cohesion and glassy state are still badly understood. Generic model are thus considered for the moment before physicists give keys to understand these phenomena.
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Dense suspensions

P. Coussot performed a review on dense suspension rheophysics [START_REF] Coussot | Rheophysics of pastes: a review of microscopic modelling approaches[END_REF]. He denes it as materials made of a suciently high concentration of soft elements into a liquid, in order to form a continuous network of interactions which may be assimilated to a jammed structure. Moreover, the concentration of soft elements must be larger than a certain critical value, in order that the behavior is governed by the soft phase.

Furthermore, dense suspensions have the particularity to hold a given shape. Several studies outlined that pastes correspond to materials with a constant yield value below which they do not ow anymore.

They belong thus to the wide category of yield stress uids.

Focusing on the numerical simulation of yield stress ows is thus interesting as a dynamic yield exists for µ(I) rheology, which depends on the pressure. Consequently, the numerical simulation of yield stress uids may appear as a rst step before the one of µ(I) rheology uids. Indeed, the purpose consists rst of developing numerical tools, validating it onto yield stress uids, and studying the overcoming limitations.

Thus, the extension and the validation of these tools to µ(I) rheology uids will be possible.

Yield stress uids represent a class of complex uids, and are encountered in many elds of study. These uids ow only if the applied shear stress is larger than a constant τ 0 , called the yield stress. Several yield stress uids are encountered in the dairy life: mud, mayonnaise, gels and toothpaste for instance.

In [START_REF] Coussot | Yield stress uid ows : A review of experimental data[END_REF], a review of simple yield stress uids is performed. The usual one that describes suspensions dynamics is called a Herschel-Bulkley uid. Constitutive equations are dened such as :

τ = 2 η p + τ 0 || γ|| n γ if || τ ||> τ 0 γ = 0 if || τ ||≤ τ 0 (1.8)
|| γ || corresponds to the shear rate and has been dened in equation 1.2. η p denes the plastic viscosity, and corresponds to the viscosity limit at high shear stress. As mentioned previously, τ 0 denotes the yield stress. n corresponds to an exponent that describes the rheology of the uid. Equation 1.9 gives the normalized formulation of Herschel-Bulkley constitutive equations :

|| τ ||= η p || γ || n +τ 0 if || τ ||> τ 0 || γ ||= 0 if || τ ||≤ τ 0 (1.9)
|| τ || corresponds to the norm of the stress tensor, dened as:

|| τ ||= 1 2 τ : τ (1.10)
The apparent viscosity of a uid is dened as the ratio between the shear stress to the shear rate, and is denoted η. When the applied shear stress is above τ 0 (|| τ ||> τ 0 ), it may be shown that η

= η p + τ 0 || γ|| n .
It also appears in the tensor formulation such as : τ = 2η γ. However, the apparent viscosity remains non dened in unyielded regions, as γ = 0. For numerical simulations, a special focus on this point must be done.

Two categories of Herschel-Bulkley uids are dened, and depend on the value of the exponent n. Indeed, if n is lower than one, the apparent viscosity tends to decrease with the applied shear rate, as illustrated on gure 9(a). It represents the typical behavior for some polymer suspensions or mud. On the other hand, if n is greater than one, we then talk about shear-thickening behavior. As the applied shear rate increases, the grains may get in contact with each other and consequently, the apparent viscosity increases. They are very common in industry : mayonnaise, gels or toothpaste for instance. Particularly, the behavior corresponds to the transition between shear-thinning and shear-thickening ones: they ow as Newtonian uids above the yield stress. It means that the shear stress is proportional to the shear rate, and the proportionality coecient corresponds to the plastic viscosity η p . Constitutive equations of such uids are thus formulated such as:

|| τ ||= η p || γ || +τ 0 if || τ ||> τ 0 || γ ||= 0 if || τ ||≤ τ 0 (1.11)
Figure 9.(c) illustrates the rheological curve of Bingham uids, which plots the shear stress according to the shear rate. As observed into the constitutive law, the shear stress is dened as an ane function according to the shear rate. The slope of this curve corresponds thus to the plastic viscosity η p , and the ordinate at origin, to the yield stress τ 0 .

Immersed granular materials

If the volume fraction occupied by the interstitial uid is important compared to the one occupied by the grains (Φ g and Φ a are negligible compared to Φ l ), it is assumed here that grains have a small inuence on the uid ow. Indeed, this conguration may arise when the powder is totally melt. Consequently, a basic approach to describe the behavior of this melting mixture consists of neglecting the inuence of grains, and to consider the behavior of the interstitial uid predominate the granular behavior. Thus, the mixture may be described as a Newtonian uid.

Newtonian uids represent the most usual uids found in Nature: water, oil and air for example. The apparent viscosity that describes the behavior of such uids is constant. It is dened as the resistance for the uid to ow uniformly (without any turbulence). Dynamically, it may be seen as the ratio between the shear stress to velocity gradients, as for Herschel-Bulkley uids. The tensor formulation for the constitutive law is thus:

τ = 2η γ (1.12)

Conclusion

The study of granular dynamics is thus interesting and useful for the optimization of a wide range of industrial applications. In this work, the optimization of mold powder ow onto molten metal during ingot casting process is considered. Numerical simulations appear to be an inevitable step and a powerful tool for engineers in order to control and optimize several processes. Thus, this thesis will focus on the numerical simulation of granular ows in order to understand its dynamics. Due to the needs for simulating granular ows at the industrial scale, it is irrelevant to use discrete methods. Thus, granular ows are solved as a continuum, with the resolution of mass balance and momentum equations, which need to be coupled with relevant constitutive laws adapted to the industrial conguration for the description of granular dynamics.

During ingot casting process, powder spreads onto the molten metal before a phase change occurs. Thus, it has been assumed that the dry powder obeys a µ(I) rheology, well-understood constitutive law for the description of granular dynamics. After the spreading and due to the interaction with molten metal, the powder is assumed to turn into a Newtonian uid.

For the sake of numerical simulation, it is necessary to develop numerical methods for the resolution of granular ows. In order to perform it, the idea consists of proposing rst a general framework for the resolution of Newtonian ows (constant viscosity), and thus, for the resolution of Navier-Stokes equations.

The limitations of chosen numerical methods will then be discussed. Then, the extension to yield stress uids, and especially to Bingham uids, will be performed. Particularly, a special focus on methods used to treat the discontinuity between yielded and unyielded regions will be outlined. Then, the formulation will be extended to µ(I) rheology ows and sensitivity analysis to rheological and geometrical parameters in the framework of ingot casting will be investigated. Finally, the numerical framework will be extended to free surface ows.

Chapter 2

Finite element framework for multiphase ows

Contents

Résumé en français

Ce chapitre a pour objectif de présenter le modèle numérique permettant la résolution des écoulements multiphasiques, qui consiste en l'écoulement de deux ou plusieurs uides dans un domaine. 

Introduction

This chapter is devoted to the the numerical framework used for the simulation of multiphase ows. They are encountered in nature and in several industrial processes (gure 10), such as in ingot casting, with the interaction between liquid metal, air and powder. Consequently, the numerical simulation of multiphase ows represents an inevitable step for the comprehension of many physical and industrial processes. In this chapter, we focus only on two-uid ows problem. The numerical simulation of multiphase ows needs three steps: rst, the problem is described by the choice of an appropriate discretization method for the resolution. Then, we need to solve the uid mechanics equations, which are dened by momentum and mass equations (Navier-Stokes for Newtonian uids).

Finally, we need to capture and follow the interface during the simulation.

In this chapter, we discuss the choice of the problem description. Then, numerical tools are proposed to capture and follow interfaces between two dierent uids. Then, the mechanical equations are solved. Furthermore, additional tools allowing to increase the solution accuracy are then proposed. Finally, the model is validated using a well-known multiphase benchmark.

Discretization method

A numerical simulation can be described according to two ways. First, there are Lagrangian methods (gure 12). At any instant of the simulation, the mesh ts with the interface. These descriptions are advantageous as the interface is tracked and followed without any additional algorithm to solve, explaining that there are very used for the simulation of free-surface ows.

Among Lagrangian methods, we nd Smoothed Particles Hydrodynamics (SPH) methods, corresponding to meshfree methods [START_REF] Zainali | Numerical investigation of newtonian and non-newtonian multiphase ows using isph method[END_REF]. It consists in splitting the domain into several particles, and following it during the simulation. These methods allow the accurate tracking of highly physical regions and phenomena, such as vorticies or interfaces.

However, Lagrangian descriptions lead to several drawbacks, leading to a high number of remeshing steps, that generate high computational times. Moreover, a larger number of particles is needed to solve accurately the ow. Finally, the extension to complex problems with high topology changes remains complicated. Then, there are Euleurian descriptions (gure 13). Contrary to Lagrangian descriptions, the mesh does not t the interface, whose location is computed by the use of approximation methods.

These methods have several advantages, such as lower computational times (remeshing steps are not required at every time steps) . Moreover, complex topology changes are better handled. However, these descriptions remain less used for free-surface ows problems with turbulence, as the tracking of interfaces, vorticities and other small phenomena (droplets, bubbles) are dicult to catch, if additional numerical tools are not introduced to improve computational costs. Indeed, the discretization step in space must be very low to capture these small details, leading to high computational times.

In this work, we chose to describe the problem by using an Eulerian framework, due to its better exibility to handle complex problems. Moreover, an advanced remeshing method is used to improve the solution accuarcy.

(a) time t (b) time t + ∆t Eulerian framework. First, there are nite dierence methods. It consists in discretizing the computational domain in each direction, and in solving the equations using numerical approximation schemes. These methods are simple, ecient to implement, and appropriate for the ow resolution with high order schemes.

However, there are several drawbacks, especially when numerical applications involve complex geometries.

Indeed, the mesh must be regular and boundary conditions may be dicult to implement. Thus, we need to use an other discretization method.

The nite volume method is often found for the resolution of uid mechanics problems [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF]. It consists in splitting the uid domain into control volumes, and in performing energy balances, that lead in the end to the resolution of integrals in each cell. This method has the advantage to be very conservative:

all the energies leaving from one control volume go to another one. Thus, it gives good approximations for the verication of conservation laws, that explain the method popularity for uid mechanics problems.

However, this method may become harder to implement for problems with complex geometries, such as ingot casting. Moreover, computational times increase fastly for multiphase problems, due to the reconstruction of interfaces.

The nite element method is also used for the resolution of ows problems. It consists of splitting the uid domain into a mesh, composed of several elements and associated nodes, which dene the discretized required elds. Then, the ow resolution leads to the resolution of the variational formulation of the problem over the domain, corresponding to an energy minimization problem. Finally, it leads to the resolution of a linear system and to the determination of the problem unknowns. This method has the powerful advantage to be able to consider problems with complex geometries, and thus, to easily x the required boundary conditions. However, it has several drawbacks. We can quote non conservation of the problem, for which some additional treatments are necessary.

In this work, the nite element method is chosen for the resolution of multiphase ows, due to its better exibility to handle problems with complex geometries. In this chapter, the numerical method for the resolution of multiphase Newtonian ows will be introduced. First, we will introduce the capturing method for the interface. Then, the resolution and the stabilization will be presented. Then, we will talk about anisotropic mesh adaptation, allowing to a better accuracy of the nal solution. All the numerical tools introduced in this work are implemented in the nite element library CIMLib-CFD, developed by the

Computing & Fluids (CFL) team in CEMEF.

Multiphase tool 2.3.1 Properties mixing

As show in gure 11, the computational domain Ω is occupied by two uids corresponding to Ω 1 and Ω 2 domains. Properties of uids 1 and 2 are taken as ρ 1 , ρ 2 for density elds, and η 1 , η 2 for viscosity. Thus, we must take into account properly the several uids features for the resolution of uid mechanics.

Consequently, a linear mixing law is used, leading to the nal expression for density and viscosity as follows:

ρ = ρ 1 H(x) + ρ 2 (1 -H(x)) η = η 1 H(x) + η 2 (1 -H(x)) (2.1)
where H(x) corresponds to the Heaviside function:

H(x) = 1 if x ∈ Ω 1 0 if x ∈ Ω 2 (2.2)

Literature review on interfaces descriptions

After taking into account the several properties features into single density and viscosity elds, a method allowing to describe properly the interface between the two uids must be proposed. Interfaces description may be performed by two approaches: tracking and capturing methods.

Tracking methods are dened as Lagrangian methods. By using this method, the mesh is adapting as the interface moves. Marker particles methods have been also extensively used to track and follow the interface during the time [START_REF] Hirt | Volume of uid (vof ) method for the dynamics of free boundaries[END_REF]. The specicity of this method consists in describing interfaces with particles, moving with the ow velocity. Then, these methods have the advantages to be very accurate, but it requires a huge number of elements or particles. Moreover, marker particles methods need a huge storage capacity because all datas must be stored independently at each of them [START_REF] Hirt | Volume of uid (vof ) method for the dynamics of free boundaries[END_REF]. Moreover, we may nd diculty to evaluate gradients at corners properly.

Capturing methods consist of another way to describe the interface between two uids. During the simulation, the mesh doesn't t with the boundaries, and the exact location is obtained by performing interpolations. At we mentioned before, we prefer these methods due to the more reasonable computational times it induces. In the literature, several capturing methods are found for interfaces description.

Firstly, Volume of Fluid (VOF) methods have been introduced by Hirt et al. [START_REF] Hirt | Volume of uid (vof ) method for the dynamics of free boundaries[END_REF]. The purpose consists in localizing the interface by the volume fraction occupied by the several uid into the control volumes.

Then, the interface is reconstructed by using numerical schemes, as performed by Mosso et al. [START_REF] Mosso | A smoothed two-and three-dimensional interface reconstruction method[END_REF]. This method is very popular in multiphase ows problems, as it is well conservative. However, it presents some limitations. Particularly, the interface is not smooth but fragmented, which makes normal and curvature computation very challenging. By the way, it remains not well adapted to handle problems with complex topology changes.

Among Eulerian methods, we nd also in the literature diuse interface methods [START_REF] Anderson | Diuse-interface methods in uid mechanics[END_REF]. The purpose consists in choosing an appropriate smoothed eld that describes the interface. Two diuse interface methods are found in the literature: phase eld and Level-Set methods. Phase eld methods are often used for interfaces description in applications with solidication phenomena, but are not now appropriate for the resolution of uid mechanics problems. In an other hand, Level-Set methods are commonly found for the resolution of ow problems, and is chosen in this work for its ability to handle complex problems with high topology changes. However, they are not conservative, and additional treatments must be performed to overcome this limitation.

Introduction to the Level-Set method

The Level-Set method has been formulated for the rst time by Osher et al. and was applied to the modeling of front ame propagation [START_REF] Osher | Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations[END_REF]. For interface capturing, the purpose consists in computing the signed distance function to the interface α, also called Level-Set function. As shown in gure 14, this function is positive in Ω 1 and negative in Ω 2 . Th zero value corresponds to the interface between the two subdomains. After capturing the interface, we need to follow it during the numerical simulation. Thus, the transport equation of the Level-Set function is solved, giving the new interface location:

α(x) =    d(x, Γ) , x ∈ Ω 1 -d(x, Γ) , x ∈ Ω 2 0 , x ∈ Γ (2.3) α > 0 Ω 1 Ω 2 α = 0 α < 0
∂α ∂t + v.∇α = 0 α(t = 0, x) = α 0 (x) (2.4)
This method is often applied in phase transformation and multiphase ows [START_REF] Osher | Level-set methods: An overview and some recent results[END_REF][START_REF] Ji | A hybrid extended nite element/level set method for modeling phase transformations[END_REF]. Indeed, it allows to describe a wide range of problems, as it can handle problems where the surface evolves in fairly complex ways, with high topology changes, and to be exible to extend from two to tree dimensions problems. Then, intrinsic geometric properties of the interface, such as normal vectors or curvatures, are determined from the Level-Set eld. However, it does not appear to be fully-conservative, leading to the loss of small phenomena (droplets, bubbles). Consequently, some additional treatments are necessary to improve it.

In the next part, we will overview the existing extension of Level-Set methods in the literature, used to overcome the encountered problems, such as mass loss. Then, we will discuss of the chosen Level-Set method for the ow resolution.

Improvement of Level-Set methods

For treating the occurring limitations due to mass conservations, several works have been performed during the last few years. In the literature, several methods consist in coupling Level-Set with other conservative interface methods.

In [START_REF] Sussmann | A coupled level set and volume-of-uid method for computing 3d and axisymmetric incompressible two-phase ows[END_REF], a new formulation is proposed, combining the Level-Set with the mass conservation properties of Volume of Fluid method. The purpose consists in capturing the interface by using the Level-Set method, and also in computing the volume fraction of uid in elements. Then, both Level-Set and volume fraction elds are convected, followed by a redistancing step of the Level-Set function. Finally, Volume of Fluid acts to shift the zero-isovalue of the Level-Set function to a location leading to good mass properties.

In [START_REF] Enright | A hybrid particle level set method for improved interface capturing[END_REF], an other method, called Particle Level-Set, is proposed. The purpose consists in placing the particles at each side of the interface, allowing to reconstruct interface regions with bad mass conservation.

Thus, the coupling of Level-Set method with an other interface description method appears to be a powerful alternative to decrease the mass loss which may occur during the simulation. However, it may generate high computational costs if the method is not well-adapted, and especially, for large systems. Thus, the proposed Level-Set method in this work is not coupled with other interface methods. In the next section, details on the considered convective Level-Set method will be introduced.

Redistancing step

After the resolution of the transport equation (2.4), many oscillations may appear close to the interface, polluting the interface quality. Indeed, the iso-contours of the Level-Set function are not smoothed anymore, leading to the loss of distance function property: || ∇α || = 1. Thus, the numerical scheme stabilization consists of giving back this property to the Level-Set function computed in (2.4). Consequently, this reinitialization is performed by the resolution of Hamilton-Jacobi equation:

∂α ∂t + v • ∇α = 0 α(t = 0, x)) = α 0 (x) (2.5)

Filtering of the Level-Set function

During the convection of the Level-Set function, high gradient changes may occur, giving rise to instabilities and then polluting the nal solution. The transport equation stabilization is performed by regularizing the Level-Set function, keeping it constant far from the interface. Thus, a ltering function α is dened, equal to zero at the interface, approaching α close to the interface, and keeping constant value far from the interface. Several ltering functions are found in the literature [START_REF] Ville | Convected level set method for the numerical simulation of uid buckling[END_REF][START_REF] Olsson | A conservative level set method for two phase ow[END_REF]. In this work, a hyperbolical tangential lter is used [START_REF] Bonito | Numerical simulations of bouncing jets[END_REF]. Thus, the new ltered Level-Set function α is computed such as:

α = Etanh α E (2.6)
x α E 0.5 1 0.25 0.5

Figure 15: Filtering curve for the Level-Set function E corresponds to the interface thickness with high variations of the gradient of α. The curve illustrating the evolution of α is shown in gure 15. As expected, α approaches to E as α increases.

Thus, the reinitialization equations are solved using the ltered Level-Set function α. Consequently, the gradient of α is computed such as:

∇α = 1 -tanh 2 α E (2.7)
and is formulated with respect to α:

∇α(α) = 1 - α(α) E 2 (2.8)
Then, a new ctive time space step, called τ f , is introduced. The purpose consists in nding a new parametric function β where reinitialization step must be performed, and having the same isovalue α such as:

| ∇β |= 1 (2.9)
The Hamilton Jacobi equations are then formulated such as:

∂β ∂τ f + s(β)(|∇β| -1) = 0 β(τ = 0, x) = α(t, x) (2.10)
where s(α) corresponds to the sign function of α. However, the ltered Level-Set function is always positive.

By working now with the ltering Level-Set function α, the Hamilton Jacobi equations becomes:

∂β ∂τ + s(α) |∇α| -1 -α E 2 = 0 β(τ f = 0, x) = α(t, x) (2.11)
By transforming equations (2.11) as a transport equation, the problem is rewritten such as:

∂β ∂τ + U.∇α = s(α) • 1 -α E 2 β(τ f = 0, x) = α(t, x) (2.12) with: U = s(α)∇α | ∇α | .

Coupling transport and redistancing steps

For improving computational costs, the goal is to couple transport and Hamilton Jacobi equations [START_REF] Ville | Convected level set method for the numerical simulation of uid buckling[END_REF][START_REF] Khallou | High delity anisotropic adaptive variational multiscale method for multiphase ows with surface tension[END_REF].

Thus, we dene λ such as the ratio between ctive and real time steps:

λ = ∂τ ∂t (2.13)
Then, by chosing λ = h t , we obtain:

∂β ∂t = λ ∂β ∂τ (2.14) 
By replacing (2.14) in (2.12), the new convection-reinitialization equation is obtained:

∂β ∂t + λU.∇α = λs( α) • 1 - α E 2 (2.15)
Moreover, α ≈ β throughout the interface. Therefore, the equation that couples the transport and the reinitialization steps is formulated as follows:

∂ α ∂t + (v + λU ).∇α = λs(α) • 1 - α E 2 (2.16)
This new equation leads to the appearance of a new convection term: (v + λU ) • ∇α. Then, the associated variational formulation is: nd α ∈ L 2 (Ω) such that:

∂ α ∂t , Φ Ω + ((v + λU ) • ∇α, Φ) Ω = λs(α) • 1 - α E 2 , Φ Ω (2.17) for all Φ ∈ L 2 (Ω).
The problem is then discretized with respect to the time by using a BFD2 [START_REF] Bonito | Numerical simulations of bouncing jets[END_REF]. Thus, the discretized problem turns into:

3α n+1 -4α n + αn-1 2∆t , Φ Ω + (v + λU ) • ∇α n+1 , Φ Ω = λs(α n ) • 1 - αn E 2 , Φ Ω (2.18)

Conclusion

In this section, we introduced multiphase numerical tools for describing two-uids ows, by overviewing methods of interfaces description. Thus, the proposed Level-Set method has been introduced, and consists in a convective reinitialization method, allowing to reduce computational times and avoiding several oscillations. The next stage of the multiphase ow resolution consists in solving mass and momentum equations, dened by the Navier-Stokes equations.

Navier-Stokes equations 2.4.1 Weak formulation

The numerical simulation of ows leads to the resolution of uid mechanics equations. They are dened by the Navier-Stokes equations for Newtonian uids. The multiphase ow is assumed to be incompressible.

The computational uid domain is dened such as Ω ⊂ R n (where n corresponds to the number of space dimensions), at time t ∈ [0, T ].

Incompressible Navier-Stokes equations consist in nding velocity and pressure elds (v and p), dened respectively in the spaces V = R n , P = R, such that:

ρ ∂v ∂t + ρv.∇v -∇ • σ = f in Ω × [0, T ] ∇ • v = 0 in Ω × [0, T ] (2.19) 
σ and f correspond respectively to the shear stress tensor and the source term.

By replacing σ by -pI d + τ in equations (2.19) (with τ dened as the deviatoric shear stress tensor), the Navier-Stokes equations are formulated such that:

ρ ∂v ∂t + ρv • ∇v + ∇p -∇ • τ = f ∇ • v = 0 (2.20)
Velocity and pressure functional spaces are dened respectively such that:

V = {v(x, t)|v(x, t) ∈ H 1 (Ω) n } P = {p(x, t)|p(x, t) ∈ L 2 (Ω)} (2.21)
Then, the test functions w and q are dened in the same space as v and p. By multiplying the Navier-Stokes equations by the couple test functions (w, q), and integrating over the computational uid domain Ω, the weak formulation consists in nding v : [0, T ] → V , p : [0, T ] → P such that:

ρ ∂v ∂t , w Ω + (ρv • ∇v, w) Ω -(p, ∇.w) Ω + (∇ • τ, w) Ω = (f, w) Ω ∀w ∈ V (∇.v, q) Ω = 0 ∀q ∈ Q (2.22)
where (•, •) Ω corresponds to the scalar product in L 2 :

(a, b) Ω = Ω (a • b)dΩ (2.23)
For Newtonian uids, τ = 2η γ(v). Thus, it is obtained nally that:

ρ ∂v ∂t , w Ω + (ρv • ∇v, w) Ω -(p, ∇.w) Ω -(∇ • (2η γ(v)), w) Ω = (f, w) Ω (∇.v, q) Ω = 0 (2.24)
Then, the computational domain is decomposed into a mesh Ω h . Subscript h is used here and in the following to denote the nite element component. The functional spaces with nite dimension for the velocity and pressure elds V h and P h are dened as:

V h = {u h ∈ C 0 (Ω) n , u h|K ∈ P 1 (κ) n ; ∀κ ∈ τ h } P h = {p h ∈ C 0 (Ω), p h|κ ∈ P 1 (κ), ∀κ ∈ τ h } (2.25) Navier-Stokes weak formulation turns then into: nd (v h , p h ) ∈ (V h , P h ) such that, ∀(w h , q h ) ∈ (V h , P h ): ρ ∂v h ∂t , w h Ω + (ρv h • ∇v h , w h ) Ω -(p h , ∇.w h ) Ω + (2η γ(v h ) : γ(w h )) Ω = (f, w h ) Ω (∇ • v h , q h ) Ω = 0 (2.26)

Variational MultiScale Methods

As it is well known, the stability of this discrete formulation depends on appropriate compatibility restrictions for the choice of nite element spaces. In this section, a Variational MultiScale (VMS) method is introduced, and initially proposed by Hugues et al. [START_REF] Hugues | Multiscale phenomena: Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF][START_REF] Hugues | The variational multiscale method -a paradigm for computational mechanics[END_REF][START_REF] Hugues | A multiscale discontinuous galerkin method with the computational structure of a continuous galerkin method[END_REF], which enables the use of equal order continuous interpolations, apart from preventing from oscillations due to convection dominated ows. Indeed, it oers an ideal framework to deal accurately with dierent physics such as Darcy [START_REF] Nakshatrala | A stabilized mixed nite element method for darcy ow based on a multiscale decomposition of the solution[END_REF], uid-structure interaction [START_REF] Hachem | Immersed stress method for uid-structure interaction using anisotropic mesh adaptation[END_REF], hydrodynamics [START_REF] Scovazzi | Lagrangian shock hydrodynamics on tetrahedral meshed: a stable and accurate variational multiscale approach[END_REF], non-Newtonian uids [START_REF] Castillo | Stabilized stress-velocity-pressure nite element formulations of the navierstokes problem for uids with non-linear viscosity[END_REF] and more. For more details on the proposed VMS method for this work, we can refer to [START_REF] Hachem | Stabilized nite element method for incompressible ows with high reynolds number[END_REF].

The Variational MultiScale method consists in decomposing pressure and velocity spaces as P h ⊕ P and V h ⊕ V . Subscript h is used to denote the nite element (coarse) component, and the prime is used for the so called subgrid scale (ne) component. According to that, the problem unknowns v and p are split likewise:

v = v h + v ∈ V h ⊕ V p = p h + p ∈ P h ⊕ P (2.27)
According to that, the weak formulation of Navier-Stokes problem, dened in equation (2.26) turns then

into: nd (v h + v , p h + p ) ∈ V h ⊕ V × P h ⊕ P such that:    (ρ∂ t (v h + v ), w h + w ) + (ρ(v h + v ) • ∇(v h + v ), w h + w ) -(p h + p , ∇ • (w h + w )) +(2η γ(v h + v ) : γ(w h + w )) = (f, w h + w ) (∇ • (v h + v ), q h + q ) = 0 (2.28) for all (w h + w , q h + q ) ∈ V h ⊕ V × P h ⊕ P .
The purpose consists now in modeling the small scales and in replacing its eects into the large scales.

Even though the subgrid scales could be approximated and inserted into the previous equations (see [START_REF] Codina | Comparison of some nite element methods for solving the diusion-convection-reaction equation[END_REF]), three assumptions are made to simplify the ne scale problem:

• Interpolation functions are linear (P1 functions), leading to zero second derivatives.

• The subscales are not tracked in time.

• The convective velocity of the non-linear term may be approximated using only its large scales part.

Thus:

(v h + v )∇ • (v h + v ) ≈ v h ∇ • (v h + v ) (2.29)
Finally, the large scales problem is formulated such as: nd

(v h , p h ) ∈ V h × P h such that:    (ρ∂ t v h , w h ) +(ρv h • ∇(v h + v ), w h ) -(p h + p , ∇ • w h ) +(2η γ(v h + v ) : γ(w h )) = (f, w h ) (∇ • (v h + v ), q h ) = 0 (2.30) for all (w h , q h ) ∈ V h × P h .
The small-scales problem is obtained with the same process as the large scales one: nd (v , p ) ∈ V × P such that:

   (ρ∂ t v h , w ) +(ρv h ∇ • (v h + v ), w ) -(p h + p , ∇ • w ) +(2η γ(v h + v ) : γ(w )) = (f, w ) (∇ • (v h + v ), q ) = 0 (2.31)
for all (w , q ) ∈ V × P .

Small scales problem

By rearranging the terms into the small scales problem, the system (2.31) turns then into: nd (v , p ) ∈ V × P such that:

(ρv h • ∇v , w ) + (∇p , w ) + (2η γ(v ) : γ(w )) = (R 1 , w ) (∇ • v , q ) = (R 2 , q ) (2.32)
for all (w , q ) ∈ V × P .

The residuals R 1 and R 2 depend only on the large scales elds:

R 1 = f -∇ • (2η γ(v h )) -∇p h -(ρv h • ∇v h ) -ρ∂ t v h R 2 = -∇v h (2.33)
According to [START_REF] Khurram | A multiscale/stabilized formulation of the incompressible navierstokes equations for moving boundary ows and uidstructure interaction[END_REF], v and p are dened such that:

v = K∈τ h v K b K w = K∈τ h w k b k (2.34)
with b K corresponding to the bubble shape function.

Following [START_REF] Hugues | The variational multiscale method -a paradigm for computational mechanics[END_REF], the expression of p is obtained as follows:

p = τ 2 R 2 (2.35)
where τ 2 corresponds to a stabilization coecient, dened in Codina et al. [START_REF] Codina | Dynamic subscales in the nite element approximation of thermally coupled incompressible ows[END_REF]:

τ 2 = η ρ 2 + c 2 c 1 || u || K h 2 1/2 (2.36)
c 1 and c 2 correspond to independent constants of the characteristic size of the element h. Finally, equation

(1.3.2) can be written as:

K (ρv h • ∇(v K b K ), w K b K ) K + 2 K (η γ(v k b k ) : γ(v k b k )) K = K (R 1 , w k b k ) K (2.37) 
It allows us to extract the expression of v :

v |K = τ K R 1 (2.38)
where τ K is a stabilization parameter, obtained in a natural way from the small scales problem:

τ K = (1, b K ) K (ρv h • ∇b K , b K ) K + 2(η γ(b K ) : γ(b K )) K (2.39)
A particular attention should be made on the choice of the test bubble function.

In this part, the modeling of ne scales has been performed, by dening v and p with stabilization terms. Now, the idea consists in injecting these elds into the large scales problem, leading to the formulation of stabilized Navier-Stokes equations.

Large scales problem

Recall that the large scale problem is formulated such as:

   (ρ∂ t v h , w h ) +(ρv h • ∇(v h + v ), w h ) -(p h + p , ∇ • w h ) +(2η γ(v h ), γ(w h )) = (f, w h ) (∇ • (v h + v ), q h ) = 0 (2.40)
By integrating by part and injecting v and p in (2.40), the problem turns then into:

   (ρ∂ t v h , w h ) +(ρv h • ∇(v h + τ K R 1 ), w h ) -(p h + τ 2 R 2 , ∇ • w h ) +(2η γ(v h ), γ(w h )) = (f, w h ) (∇ • (v h + τ K R 1 ), q h ) = 0 (2.41)

Mesh adaptation

In multiphase ows, it is important to obtain the most accurate interface description during the simulation.The mesh adaptation strategy presented in this work relies on the a posteriori denition of a unit metric able to, in some specied sense, minimize the interpolation error on the nite element solution. It relies on a statistical representation of the distribution of edges sharing an extremity, a quantity we call length distribution tensor. In order to relate the length distribution tensor to the interpolation error, following [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF], we dene an edge based error estimator based on a gradient recovery procedure. Once the optimal metric has been obtained, the mesh generation and adaptation procedure described in [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF], based on a topological representation, is applied to obtain the new mesh.

Denition of the length distribution tensor: a statistical representation

Let Ω ∈ R d be a polynomial domain, we consider a discretization Ω = K where K is a simplex such as a triangle or tetrahedron. Let Γ(i) be the "patch" associated to a vertex x i of the mesh dened as the set of nodes which share one edge with x i , and let us denote by x ij the edge connecting x i tp x j . The problem of nding a unitary metric M i associated to the i th node can be formulated as the least squares problem [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF]:

M i = argmin M ∈ R d×d sym   j∈Γ(i) M x ij • x ij -| Γ(i) |   2 (2.42)
Provided that the vertices of | Γ(i) | form at least d non-colinear edges with vertices x i , then an approximate solution of (2.42) is given by

M i = 1 d X i -1 (2.43)
where, denoting by ⊗ the tensor product between two vectors, we have introduced the length distribution tensor

X i = 1 | Γ(i) |   j∈Γ(i) x ij ⊗ x ij   (2.44)
whose purpose is to give an "average" representation of the distribution of edges in the patch.

Gradient recovery error estimator

Let v h be a P1 nite element approximation obtained by applying the Lagrange interpolation operator to a regular function v ∈ C 2 (Ω). At node x i , we seek the recovered gradient g i dened by:

g i = argmin g ∈ R d j∈Γ(i) | (g -∇v h ) • x ij | 2 = argmin g ∈ R d j∈Γ(i) | g • x ij -(v h (x j ) -v h (x i )) | 2 (2.45)
The solution to (2.45) can be expressed in terms of the length distribtuion tensor introduced before as

g i = 1 | Γ(i) | X i -1 j∈Γ(i) v h (x j ) -v h (x i ) x ij (2.46)
It can be shown [START_REF] Jannoun | Adaptive time-step with anisotropic meshing for unsteady convection-diusion problems[END_REF] that the quantity | g ij • x ij | gives a second order accurate approximation of the second derivative of v along the edges x ij . Motivated by the fact that, for P1 nite elements on anisotropic mesh, residuals dominate a posteriori errors, as proved in [START_REF] Kunert | Edge residuals dominate a posteriori error estimates for linear nite element methods on anistropic triangular and tetrahedral meshes[END_REF], it is therefore suitable to dene an error indicator function associated to the edges x ij as:

e ij =| g ij • x ij | . (2.47)
Moreover, this quantity can be easily extended to account for several sources of error, instead of just the scalar eld v h , by applying formula (2.47) to each component separately.

New metric construction

In order to relate the error indicator dened in (2.47) to a metric suitable for a mesh adaptation procedure, we introduce the concept of stretching factors s ij dened as the ratio between the length of the edges x ij after the adaptation procedure and before the adaptation procedure. The new metric, denoted by M i , will then given by

M i = 1 d Xi -1 ; Xi = 1 |Γ(i)| j∈Γ(i) (s ij ) 2 x ij ⊗ x ij (2.48) 
To relate the metric to the interpolation error, following [START_REF] Jannoun | Adaptive time-step with anisotropic meshing for unsteady convection-diusion problems[END_REF], we set a target total number of nodes N . Because of the quadratic behaviour of the error as a function of the scaling factor, denoting by ẽij the quantity dened in (2.47) computed after the mesh adaptation process we have

s ij = ẽij e ij 1/2 (2.49)
Moreover, the number of nodes in the new mesh after applying the scaling factors s ij to the edge will be roughly equal to

N ij = 1 s ij , (2.50) 
so that the total contribution of node i (in the old mesh) to the number of nodes in the new mesh will be given by

N i = det   X i -1 j∈Γ(i) N ij x ij ⊗ x ij   (2.51)
By combining (2.49) and (2.50), it is possible to see that (2.51) is a function of ẽij . If we assume that the total error is equidistributed among all edges such that each edge contributes a constant error e to the total, we can see that

N ij = e ij e 1/2
, which yields the relation

N i (e) = e -d 2 N i (1). 
(2.52)

By summing over all the nodes of the old mesh, we get an expression for the total error as a function of the number of nodes in the new mesh. By inverting this equality, we obtain

e = i N i (1) N 2 d (2.53)
and injecting this into (2.49) yields an expression for the scaling factors

s ij = i N i (1) 1 d N 1 d (e ij ) 1 2 
(2.54)

2.6 Validation on a two-dimensional Newtonian collapse

Introduction to the dam-break problem

In this section, we will validate the numerical tools introduced previously on a well-known multiphase ow benchmark. Thus, we chose to simulate the dam-break problem and to compare our results with the one of [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF].

The dam-break problem consists of the collapse of a uid column due to gravity. The two-dimensional problem statement is illustrated on gure 81. A computational domain with height H and length L, is lled with two dierent uids: the rst one is a rectangular column (height h i and length r i ) lled with a denser newtonian uid, and the second one is air. Slip boundary conditions are applied at the bottom wall, and symmetric conditions (∇ • τ = 0), at the left wall.

For dam-break problems, a dimensionless parameter is dened, called aspect ratio a, and corresponds to the ratio between initial height h i and length r i of the column:

a = h i r i (2.55) L H r i h i (ρ f , η f ) (ρ air , η air ) y x Figure 16: Problem statement of a two-dimensional dam-break problem
In the literature, several works have been conducted on Newtonian dam-breaks. For the model validation, we will focus on the work performed by [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF], where experimental and numerical dam-breaks have been conducted and validated. A rectangular box, with dimensions H = 0.44m and L = 0.42m, is considered. Initial lengths of the uid column are taken as h i = 0.114m, and r i = 0.114m (aspect ratio equal to 1). Consequently, the purpose of this section consists in validating the proposed numerical tools onto a Newtonian dam-break problem described in [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF].

In this work, two dierent uids are considered with ρ f = 10 3 kg • m -3 , ρ air = 1kg • m -3 as denser uid and air density, and η f = 1P a • s, η air = 10 -3 P a • s as viscosity. Concerning the Level-Set features, the reinitializing parameter λ is set to 1, imposing the same weight for convection and reinitialization steps. Moreover, the ltering length E is taken twice larger than minimum mesh size h min .

Computational initialization

Thus, the purpose consists in simulating the dam-break problem introduced previously, for the validation of the multiphase numerical tools. Before solving the ow problem, the computations need to be initialized by taking into account the dierent uid properties and by preparing the geometry of the problem. Thus, the computational domain is meshed, followed by its splitting into two subdomains corresponding to the location of the dierent uids (leading to the Level-Set function computation). Then, the ltered Level-Set function is computed, allowing the properties mixing. These steps correspond to computations initialization. However, the mesh is xed, and by looking to the interface (gure 17), several oscillations appear which deteriorate the interface quality. The purpose consists now of preadapt the mesh close to the interface. Moreover, it is interesting to adapt also the mesh according to velocity elds during the simulation. Thus, the idea consists in introducing a muti-criteria vector, as in Coupez and Hachem [START_REF] Coupez | Solution of high-reynolds incompressible ow with stabilized nite element and adaptive anisotropic meshing[END_REF], containing the velocity norm, velocity components in each direction, and Level-Set function. Figure 24.c illustrates the evolution of dimensionless height measured on the right wall. Around t = 0.8s, the impact with the right wall is observed as the measured height increases. However, we observe the same note as in the simulations of [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF] for the second wave (small delay). are in a very good agreement with [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF].

These results show us the interest of the coupling between anisotropic mesh adaptation, VMS and the Level-Set method for the simulation of multiphase ows. First, we observed in gure 23 that it is possible to accurately capture very small phenomena, such as bubbles or droplets, and to follow it according to the time.

Moreover, run-out and height positions of the uid show the same trend as observed in the experiments of [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF]. Consequently, the numerical tools introduced previously seem to be adequate for the simulation of multiphase problems. In the next parts, sensitivity analysis will be performed in order to determine some limitations of the model. 

Sensitivity analysis to mesh parameters

In this part, the inuence of several remeshing parameters onto the height and run-out position is discussed.

Thus, this work focus on the interface position during the simulation on lateral walls, by changing several remeshing parameters. The minimum mesh size is xed to h min = 10 -3 . The parameter that control the thickness of the ltering of the Level-Set function is set to E = 2 • 10 -3 .

Inuence of the mesh adaptation

In this part, we focus on the inuence of the use of mesh adaptation. Figures 25 and 26 measure the interface position on both left and right walls respectively, and study the inuence of the mesh adaptation on the solution quality.

These curves show that the use of mesh adaptation improves the accuracy of interface locations onto the two lateral walls. Indeed, the results measured on the left wall show that mesh adaptation better describes the wall impact. Particularly, the use of a coarse mesh (5000 elements) leads to a larger height for the rst wave as described in the experiments [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF], and reaches a closer value with [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF] experiments, as the mesh is rened.

The results obtained onto the right wall, show the same trend. By increasing the number of elements, the maximum height reached by the uid onto the right wall decreases as the mesh is coarsered, and ts better with experimental datas as the mesh size decreases. Moreover, the impact with the right wall occurs later for a mesh with a lower number of elements. Thus, it is crucial to perform the numerical simulations on a mesh suciently ne, to get relevant results. It is observed that the use of mesh adaptation leads to a very good agreement with the experiments of [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF].

Thus, the computations remain very accurate without using a mesh with high number of elements, leading to the decrease of computational times. We may observe the inuence of the number of elements on the solution quality: by considering a mesh with 10000 elements, the interface location on the two lateral walls is closer to the experimental points extracted from [START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF], especially for the maximum height measured on the left wall. To conclude, it is outlined here the importance of chosing the appropriate number of elements to perform mesh adaptation. Indeed, more phenomena are able to be captured for a huge number of elements. However, a compromise must be chosen in order to increase the accuracy, without increasing the computational times.

Number of elements

Mass conservation analysis

In this section, we focus on the volume conservation of the dense Newtonian uid, called V f . First, we discuss on the remeshing frequency, denoted as F r , onto mass loss. As outlined previously, the time step ∆t is set to 1 • 10 -3 s and the remeshing frequency is rst set to F s = 5. The percentage of gained volume is computed at each time increment i such that:

V i gained = V i f -V 0 f V 0 f (2.56)
Figure 28 illustrates the percentage of gained volume during the simulation, by using a mesh with 10000

elements. Now, the inuence of mesh adaptation frequency is discussed. It is observed that the percentage of gained volume increases as F r increases. However, it is acceptable, as it does not overcome 0.5% . In conclusion, a compromise on the choice of the remeshing frequency must be performed. Indeed, the mass loss is more important as F r increases, but the accuracy is better as observed in the previous section. Thus, chosing F r = 6 in this simulation is relevant.

Conclusion

In this part, we introduced some specic numerical tools to investigate multiphase ow problems. Thus, three dierent steps are needed: rst, we need to perform the mechanical resolution ( Navier-Stokes equations for Newtonian uids). Then, we need to capture and convect the interface between the two dierent uids, and nally, remeshing methods are performed for increasing the computations accuracy.

The ow resolution is performed by using the nite element method, and by considering P1 elements.

A variational multiscale method (VMS) is used to solve these types of ows. The interface is captured by dening a signed distance function (Level-Set method), and the transport equation of this function is coupled with the reinitialization step, in order to reduce computation times. Then, the remeshing method consists of an anisotropic mesh adaption, with a xed number of elements.

These tools have been validated with a two-dimensional Newtonian dam-break. The inuence of several remeshing parameters has also been discussed, and the mass conservation of the multiphase model has been studied. Thus, the coupling between Variational MultiScale, Level-Set and anisotropic mesh adaptation methods is very powerful as the ow front is well-captured, and small phenomena are able to be captured. Moreover, a good mass conservation is observed for the model applied on dam-break problems.

Consequently, the purpose of the further work will consists in extending this accurate formulation to strongly non-linear uids, such as yield stress uids or dry granular ows. 

Résumé en français

Ce chapitre a pour objectif de simuler numériquement les écoulements de uides de Bingham dans un contexte éléments nis.

Comme pour les écoulements de uides Newtoniens, les équations de conservation des moments et de la masse (mécanique des uides) doivent être résolues. Cependant, tout l'enjeu consiste à prendre en compte les équations constitutives des uides de Bingham dans la mécanique des uides, et plus particulièrement, de traduire numériquement les zones non-déformées (contrainte de cisaillement non déni en dessous du seuil).

Dans la littérature, deux approches existent. Tout d'abord, des méthodes dites exactes existent et consistent à calculer la contrainte de cisaillement en dessous du seuil en résolvant un problème de minimisation de l'energie du système. Généralement, la méthode du Lagrangien augmenté est utilisée, et couplée avec un algorithme d'Uzawa, comme eectué par Roquet et al. [42]. Enn, des méthodes de régularisation sont plus communément trouvées dans la littérature, et consistent à traduire le comportement du uide de Bingham par le calcul d'une viscosité eective.

Dans le cadre de ce travail de thèse, nous avons choisi une méthode de régularisation. Ainsi, la première partie de ce chapitre s'intéresse à des écoulements de Bingham monophasiques hautement plastiques (cavité entraînée, expansion planaire et écoulement autour d'un cylindre). Comme pour les uides Newtoniens, la résolution des équations de conservation des moments et de la masse sont résolues et stabilisées par une méthode variationelle multi-échelles. De plus, le maillage est adapté de manière anisotrope dans les régions à fortes variations de gradients des champs Level-Set, vitesse, mais également du champ viscosité eective an de bien caractériser la transition entre zones cisaillées et non-cisaillées. Il a été observé que ces méthodes permettent de traiter des cas hautement plastiques (et donc, à très grands nombres de Bingham), puisque permettant des grands sauts de viscosité entre chaque élément du maillage, et sont ainsi très intéressantes dans notre contexte.

La deuxième partie de ce chapitre est dédiée à la simulation numérique de l'écoulement multiphasique de uides de Bingham. Les résultats obtenus ont été comparé à ceux de Liu et al. [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF], et une bonne concordance entre les deux modèles a été trouvée. De plus, nos résultats montrent encore une fois la puissance des outils numériques pour la résolution des écoulements de uides de Bingham hautement plastiques.

Introduction

Numerical simulation oers a very exible tool to model yield stress uids, and remains an inevitable step to study these complex uids behavior. The remaining challenge is to construct ecient methods to capture such ow patterns in a robust and accurate way. In the literature, the computational domain may be discretized by dierent techniques in order to solve Bingham ows. In [START_REF] Syrakos | Solution of the square lid-driven cavity ow of a bingham plastic using the nite volume method[END_REF], a nite volume method is employed to discrete the equations which leads to approximate continuity and momentum equations on each control volumes. In [START_REF] Zhu | A numerical study of the ow of bingham-like uids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics sph based method[END_REF], a Smoothed Particle Hydrodynamics (SPH) approach is applied, which can be viewed as a numerical scheme where the uid ow is decomposed into discrete particles. The most common used method in the literature is the nite element formulation (see [42] and [START_REF] Vola | Laminar unsteady ows of bingham uids : a numerical strategy and some benchmark results[END_REF] for details). Nevertheless, the stability of the discrete formulation depends on appropriate compatibility restrictions on the choice of the nite element spaces [START_REF] Faria | A regularized-stabilized miwed nite element formulation for viscoplasticity of bingham type[END_REF]. The lack of stability manifests in uncontrollable oscillations that pollute the solution, in particular for high Bingham and Reynolds numbers.

On the other hand, we highlight another issue in the numerical simulation of a viscoplastic ow and is connected to the singularity of relations 3.1 and impossibility to determine stresses in the domains where the rate of deformation equals zero. In order to overcome these diculties, various modications, known as regularization methods have been introduced. We note two approaches, Bercovier-Engleman [START_REF] Bercovier | a nite-element method for incompressible non-newtonian ows[END_REF] and Papanastasiou [START_REF] Papanastasiou | Flows of materials with yield[END_REF], where the term (Papanastasiou) for an arbitrarily large regularizing parameter m. The performance and comparisons between these methods are summarized and analyzed in [START_REF] Frigaard | On the usage of viscosity regularisation methods for visco-plastic uid ow computation[END_REF].

η p + τ 0 / || γ || in relations 3.1 is replaced with η p + τ 0 / || γ || 2 + (1/m) 2 (Bercovier-Engleman) or η p + τ 0 (1 -e -m|| γ|| )/ || γ ||
Despite the simplicity of implementing these models, some limitations still exist. The resolution is strongly dependent on the regularizing parameter m. Indeed, taking high values of this parameter encounters convergence issues whereas small values limit the ow prediction and the ow arrest is not controlled. One must nd a compromise for choosing this parameter, in order to ensure reasonable computation time and good accuracy of the solution.

Several techniques have been developed aiming to increase this coecient. One consists in applying a continuation method, which means to select dynamically m and to keep it smaller during all the simulation. Another one found in the literature consists in performing a number of Picard iterations, and switch to the Newton method when a suciently good approximation to the solution is found [START_REF] Aposporidis | A mixed formulation of the bingham uid ow problem : Analysis and numerical solution[END_REF]. One may also consider multiplier methods as alternatives for regularized models. It consists in computing the extra-stress tensor directly using minimization algorithms. The most useful way consists in employing Augmented Lagrangian method, coupled with Uzawa algorithm. This kind of methods reveals to be more accurate to determine ow arrests, but convergence may be slow, which can lead to unreasonable computational times.

In this chapter, we derive an adaptive Variational MultiScale (VMS) method for Bingham ows combined with a regularization method. In fact, we adapt the numerical tools introduced previously and used to solve Newtonian ow, to Bingham ows. The main reasons for this choice of adaptive variational approach are stability, robustness and computational eciency, as proven before in Newtonian benchmarks. Indeed, mesh adaptation reveals to be a useful tool to improve accuracy, without reaching high computational times.

In [START_REF] Syrakos | Performance of the nite volume method in solving regularised bingham ows : Inertial eects in the lid-driven cavity ow[END_REF], an isotropic mesh adaptation is proposed and is based on the subdivision of a quadrilateral grid into subvolumes, each of them with the same mesh size. However, isotropic adaptation lacks in accuracy when the ow presents specic directional properties. We combine here the VMS formulation with an a posteriori error estimator for dynamic anisotropic mesh adaptation. It involves building a mesh based on a metric map. It provides both the size and the stretching of elements in a very condensed information data. Consequently, due to the presence of high gradients when using high values for the regularization coecient, it provides highly stretched elements at the inner and the boundary layers, and thus yields an accurate modeling framework for Bingham ows as explained in [42]. The obtained system is then solved using a stabilized nite element method designed to handle the discontinuity on shear stress eld. Indeed, it consists on the decomposition for both the velocity and the pressure elds into coarse/resolved scales and ne/unresolved scales, needed to deal with both high Bingham and Reynolds numbers.

We assess the behavior and accuracy of the proposed formulation in the simulation of three timedependent challenging numerical examples, aiming for the rst time to deal with high regularizing parameter (up to 10 6 ), high Bingham (up to 2000) and Reynolds (up to 10000) numbers.

Finally, we apply these tools to multiphase Bingham ows.

Constitutive equations

As introduced in the rst chapter, the constitutive equations of Bingham uids are dened such as:

τ = 2 η p + τ 0 || γ|| γ for || τ ||> τ 0 γ = 0 for || τ ||≤ τ 0 (3.1) 
In this formulation, the apparent viscosity is dened above the yield stress such as:

η a = η p + τ 0 || γ|| (3.2)
The resolution of momentum equations leads thus to a problem as the apparent viscosity is not dened in the unyielded areas. Consequently, the main challenge consists in taking into account the constitutive law into motion and mass equations. In this work, we use a regularization method, aiming to compute eective viscosity of the uid. When the uid is owing, this viscosity must approach the plastic viscosity and when no deformations occur, it must be the maximum possible. Regularization methods aim to control and limit the maximum viscosity, in order to avoid convergence problems due to viscosity jumps.

Papanastasiou proposed a regularization which consists of expressing eective viscosity as an exponential function of shear rate [START_REF] Papanastasiou | Flows of materials with yield[END_REF]. Thus, we nd the following expression for the eective viscosity η ef f of the uid:

η ef f = η p + τ 0 || γ || [1 -exp(-m || γ ||)] (3.3)
m corresponds to the Papanastasiou coecient designed to control the yield limit: the larger m, the better we approach the classical Bingham model. However, as mentioned before, it may manifest in uncontrollable oscillations and a non-convergent solution, in particular for high Bingham and Reynolds numbers.

Mesh adaption criteria

In viscoplastic ows, the yielded and unyielded regions are not a priori known and may vary in time, thus it is dicult to pre-adapt the mesh around these regions. This motivates again the use of implicit strategy that imposes a dynamic mesh adaptation that changes the mesh frequently and minimizes as possible the prescribed error. Consequently, it requires a criterion based solely on the solution.

The common way to adapt a mesh to several variables, such as the velocity and the viscosity, is to compute the metrics corresponding to each of them and then to produce a unique metric by an operation known as the intersection of metrics. In this work, we simplify this operation and we use one metric that account for dierent variables, as introduced in chapter 2. In the following numerical experiments, the adaption accounts for the velocity, its magnitude and also the viscosity η ef f by dening the following vector of sources of error

v(x i ) =    v i ||v i || , ||v i || max j ||v j || , η ef f max(η ef f )    (3.4)

Model validation

In order to validate the proposed methods, three time-dependent numerical test cases are presented in this section. The results obtained with the proposed approach are compared with those obtained by other approaches that can be found in the literature. Some test cases cannot be handled using classical model in particular for high Bingham and Reynolds numbers using high regularizing parameter (up to 10 6 ) attest of the benet of adaptive VMS formulation.

Recall rst the two dimensionless parameters used in the test cases: the Reynolds number characterizes the ow regime, such as laminar or turbulent, and is dened as the ratio of inertial forces to viscous forces [START_REF] Frey | Stabilized mixed approximations for inertial viscoplastic uid ows[END_REF].

Re = ρv c L c η p (3.5) 
where L c and v c correspond respectively to the characteristic length and velocity.

Bingham number is dened as the ratio between yield stress and viscous stresses:

Bn = τ 0 η p || γ || c (3.6)
where || γ || c corresponds to the characteristic shear rate.

Flow in a lid-driven cavity

The ow inside a lid-driven square cavity of length unity is investigated and the performance of the mesh adaptation is examined. Figure 29 illustrates the problem statement. No-slip velocity boundary conditions are imposed at the left, right and bottom walls of the cavity. A horizontal uniform velocity v lid = 1 is prescribed at the top. Characteristic values of length, velocity and shear rate are given by L, v lid , and v lid /L.

Several test cases with increasing complexity will be presented using dierent Reynolds and Bingham numbers and Papanastasiou regularizing coecients. Comparisons with the literature and new results will be proposed. Moreover, the mesh has been adapted according to the velocity norm, to each component of the velocity vector and to the obtained viscosity.

In gure 30, yield stress eects on viscoplastic uid dynamics are analyzed, plotting extra-stress isobands of very-low-inertia Bingham ows. In this case, we xed Re = 0 and m = 1000 and we let the Bingham number varies from 1 to 1000. The number of elements is xed to 10000. Yielded (liquid-like) and unyielded (solid-like) regions may be observed respectively in white and black color. Two dierent kinds of rigid areas We can observe that yielded and unyielded proportions in the cavity are strongly inuenced by the Bingham number. Indeed, increasing of unyielded regions is observed as Bingham number increases, as it was noticed in [START_REF] Neofytou | A 3rd order upwind nite volume method for generalised newtonian uid ows[END_REF][START_REF] Frey | Stabilized mixed approximations for inertial viscoplastic uid ows[END_REF]. Horizontal and vertical velocity proles are proposed in [START_REF] Neofytou | A 3rd order upwind nite volume method for generalised newtonian uid ows[END_REF]. Therefore, to assess the accuracy of the adaptive VMS method, we repeated the same cases using two dierent number of elements: 2000 and 1000

L = 1m v x = 0 v y = 0 v x = 0 v y = 0 v x = 0 v y = 0 v x = v lid = 1m/s L = 1m
and we plotted the results in Figures 31 and32. We recall that Re is equal to 100 and two values of Bingham number were used: Bn= 0.1 and 1.

As expected, the uid behavior may be recognized with low velocity values at the bottom of the cavity (unyielded areas) and with high velocities at the top (yielded areas). Moreover, the eciency of using adaptive anisotropic meshing is well highlighted with the use of very low number of elements. It decreases considerably the computational times without loss of accuracy. From a theoretical point of view, increasing the Papanastasiou regularization parameter involves a more realistic Bingham model. Figure 33 clearly shows the inuence of using high values of m up to 10 6 . The interfaces between yielded and unyielded regions are clearer and are capture better using anisotropic mesh adaptation. This phenomenon is due to the increasing viscosity of the uid in order to get unyielded regions with more rigidity, but also to approach to a realistic Bingham uid. Finally, to assess the performance of the proposed VMS adaptive framework and its ability to solve very complex yield stress ows, we repeated the same numerical test using higher Reynolds numbers (1000 and 10000) and varying the Bingham number up to 2000. The Papanastasiou regularizing parameter is set to 10 6 and the number of elements in all the simulations is xed to 10000. The adaptive process always starts from a uniform mesh and is iterated every ve time step. The results on the respective converged meshes can be seen in Figures 34 and35. Note the concentration of the resolution not only along all the boundary layers but also at the detachment regions. This reects well the anisotropy of the solution caused by the discontinuity of the boundary conditions and the nature of the ow. The elements far from the discontinuities are mostly isotropic and increase in size as the Reynolds number increases. Again, this reects and explains how, for a controlled number of nodes, the mesh is naturally and automatically coarsened in that region with the goal of reducing the mesh size around the discontinuities.

As Reynolds and Bingham numbers increases, the owing regions decreases and the uid in the cavity becomes totally rigid. At this level, it is important to highlight how sharply the layers can be captured. It

shows the correct orientation and deformation of the mesh elements (longest edges parallel to the boundary).

This yields a great reduction of the number of triangles. This results give condence that the proposed framework allows to deal for the rst time with extreme cases. 

Flow through a sudden planar expansion

In this example, we study a Bingham ow through a sudden planar expansion as illustrated in Figure 36. A new dimensionless number is introduced as the ratio β between higher and smaller channels (β = H 2 /H 1 ).

On both channel walls, no-slip and impermeability boundary conditions are applied. At the inlet, a parabolic velocity prole V x (y) is applied. The characteristic values of length, velocity and shear rate are given by H 1 , the average inlet velocity

V 1 and || γ || c = V 1 /2H 1 .
H 1

H 2 V x = V y = 0 V x (y) L 1 L 2 V y = 0 y x
Figure 36: Problem statement of the ow through a sudden planar expansion

In this example, we consider a ratio β of 2 with a smaller channel height of 1. In addition, the Papanastasiou regularizing coecient is assumed to be equal to 10 6 in order to obtain the most realistic Bingham model.

Figure 37 illustrates the distribution of yielded and unyielded regions in the computational domain.

Unyielded zones (black ones) may be sorted into two distinct zones: non-moving regions (dead zones) at expansion corner and moving regions (plug-ows) around the center-line. The more Bingham number Bn increases and the more unyielded regions expand, as being noticed for the lid-driven cavity case. This is the consequence of material yield limit increasing. Figure 39 shows the obtained anisotropic adaptive meshes. The number of elements was set here to 20, 000. We notice that the viscosity computation becomes more accurate, especially in unyielded zones located at the center of both channels, where the mesh captures the underlying physics of such ows. Again, this reects and explains how, for a controlled number of nodes, the mesh is naturally and automatically coarsened in yielded regions with the goal of reducing the mesh size near the discontinuities. 

Flow around a cylinder

We consider a circular unity cylinder of an incompressible Bingham plastic uid with a uniform free stream velocity V 0 . The problem statement is illustrated in Figure 40. In order to make the problem of unconned ow numerically feasible, the cylinder is placed in a rectangular ctitious domain characterized by upstream length L l , downstream length L r , and lateral height H. As proposed in [START_REF] Tokpavi | Very slow ow of bingham viscoplastic uid around a circular cylinder[END_REF], we set L l = 20, L r = 25 and H = 30. At the surface of the cylinder, no-slip condition is assumed (V x = 0, V y = 0). At outlet, zero diusion condition for all dependent variables (except pressure, which is zero at the outlet).

Figure 41 illustrates the distribution of yielded and unyielded regions for two dierent Bingham numbers (Bn=10 and Bn=100) and for a low Reynolds number (Re=1). We observe three dierent unyielded subdomains: two regions located at both extremities of the cylinder, which represent front stagnation points, and undergo rigid-body like rotations; two small unyielded zones, known as polar caps, which are static in nature; but also a solid-like region moving like a plug without deforming. We can observe in the same gure that polar caps and front stagnation points are still present. However, the area occupied by the other yielded regions decreases as the Bingham number increases. In gures 42 and 43, we plot the horizontal velocity proles measured in regions close to the cylinder.

The obtained results agree very well with the ones in [START_REF] Tokpavi | Very slow ow of bingham viscoplastic uid around a circular cylinder[END_REF]. We notice that the higher the Bingham number the faster the velocity converges to 1. This is especially due to the reduction of solid-like regions which enclose the cylinder when Bn increases too fast. According to y-components, two observations may be added. First, the appearance of front stagnation points can be noticed on all the curves. The more the Bingham number, the larger the velocity gradients in these zones. Second, the zones located after the front stagnation points are studied. We notice that with a low value of Bn, the velocity approaches slowly to 1, in contrary to what was observed using high Bingham numbers. This is the consequence of a larger yielded region.

Finally, gure 44 shows the obtained anisotropic adaptive mesh. As expected, the renement is important close to the polar caps, where higher viscosity and velocity gradients are noted. Again, the developed Navier-Stokes VMS solver combined with anisotropic mesh adaptation shows to be very ecient and robust to deal with yield stress uid ows. 

Conclusion

We have shown in this section that the Variational MultiScale method combined with anisotropic adapted meshes with highly stretched elements can be used to compute high Reynolds and Bingham number ows [START_REF] Riber | Adaptive variational multiscale method for bingham ows[END_REF]. All the meshes are obtained by solving an optimization problem under the constraint of a xed number of edges in the mesh. We demonstrated the eciency of this framework to be capable of automatically producing boundary layers and capturing the interfaces between yielded and unyielded regions. The numerical results show that the ow solvers based on stabilized nite element method is able to exhibit good stability and accuracy properties using very high values of the Papanastasiou coecient up to 10 6 . This is an important novelty for Bingham uids study. Indeed, the maximum value reached for Papanastasiou coecient is found in the literature around 10 3 .

We validated the proposed model for the simulation of Bingham ows in a monophase framework. Now, the purpose consists in simulating multiphase Bingham ows, and specically, in adapting the multiphase tools previously validated for two Newtonian uids ows. This point will be the purpose of the next section.

Multiphase framework: the dam-break problem

In this section, we will focus on the simulation of mutiphase Bingham ows. Previously, the Level-Set method has been introduced, and aim to capture and follow the position of the interface between two uids during the simulation. Particularly, we introduced the convective auto-reinitializing Level-Set method, which couples both transport and reinitialization steps of the signed distance function. Now, this section is devoted to the numerical simulation of multiphase Bingham ows.

Problem statement

The dam-break problem consists of the collapse of a uid column due to gravity. The problem statement is illustrated in gure 81. We consider a computational domain of height H and length L, lled with two uids: the rst one is a rectangular column (height h i and length r i ) of Bingham uid, and the second one properties mixing between Bingham and ambient uids leads to higher viscosity jumps than observed for monophase ows.

Some works on the simulation of multiphase Bingham ows are found in the literature. First, shallow water models are found, and consider that the height of the ow is negligible compared to the run-out distance. Several works deal with free-surface yield stress ow, by using this method. For instance, [START_REF] Balmforth | Viscoplastic dam breaks and the Bostwick consistometer[END_REF] and [START_REF] Matson | Two-dimensional dam break ows of HerschelBulkley uids: The approach to the arrested state[END_REF] used such an approach for the spreading of a Herschel-Bulkley uid down a slope. In [START_REF] Balmforth | Viscoplastic dam breaks and the Bostwick consistometer[END_REF], unyielded areas are thus dened such that zero velocity in the height direction is applied. In [START_REF] Matson | Two-dimensional dam break ows of HerschelBulkley uids: The approach to the arrested state[END_REF], the critical height, which denes the transition height between unyielded and yielded areas, is estimated. Then, the velocity in the height direction is computed by integrating momentum equations separately in yielded and unyielded areas. This approach is interesting, but is limited for ows high Bn.

[59] performed two-dimensional Bingham collapses, by using the nite element method in a Lagrangian framework. Momentum equations are solved only in the owing (yielded) area, avoiding the use of any regularization methods. This method consists in expressing the problem of potential energy minimization and in solving it with Uzawa algorithm. The interface is tracked at each time step, and is then reconstructed after its convection by using polygonal curves. They performed non-Newtonian collapses on a slope, and compared the shape of the ow between several rheological models (Bingham, Herschel-Bulkley, Power-law).

This method is able to simulate ow arrests, as no eective viscosity is computed. However, it leads to higher computational times as an additional loop is needed.

[60] performed two-dimensional Bingham collapses, by using a volume of uid method (VOF). The constitutive equations are taken into account into the momentum equations by using a regularization method. Specically, they chose to limit the viscosity by introducing directly a maximum viscosity η max . Thus, the viscosity eld is thought discontinuous which may generate numerical diculties. Moreover, the ratio between maximum viscosity and plastic viscosity is only taken to 10 2 . Following [START_REF] Staron | Scaling laws for the slumping of a bingham plastic uid[END_REF], this choice for η max does not aect the results. However, they have not extended their formulation to highly viscous ows (high Bingham numbers), for which ow arrests can be dicult to determine.

[43] performed also two-dimensional Bingham collapses by using VOF method. However, they used the simple regularization method. Properties of the ambient uid have been chosen such that the ratio with the Bingham uid properties is 10 -3 . Moreover, the regularization parameter m has been chosen as 10 7 , allowing the simulation of Bingham dam-breaks with high Bn.

The purpose of the next section consists in validating rst our model with the results of [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF], for analyzing the model robustness to ows with high Bn. Then, sensitivity analysis will be performed.

Dimensionless constitutive equations

As in [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF], dimensionless momentum and mass equations are solved. Each length is non-dimensionalized by dividing it by a characteristic value, determined by the ow problem. For the dam-break problem, characteristic height and velocity are thus chosen such as L c = h i and v c = ρ f gh 2 i ηp . Characteristic time and stress are dened such as t c = h i vc and τ c = ρ f gh i .

Thus, characteristic density is

ρ c = ρ f
Re where Re corresponds to the Reynolds number, dened such as:

Re = ρ f v c h i η p (3.7)
Consequently, characteristic viscosity is η c = η p and characteristic acceleration, g c = gRe.

By scaling each lengths by the appropriate characteristic value, dimensionless momentum equations are expressed formulated such that:

ρRe ∂ ū ∂ t + (ū • ∇ū) = -∇p + ∇ • τ + ρ ∇ • ū = 0 (3.8)
In [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF], the Bingham number Bn is dened as the ratio between yield stress and viscous stress, dening dimensionless yield stress from which the uid begins to ow:

Bn = τ 0 ρ f gh i (3.9)
Thus, dimensionless constitutive equations of Bingham uids are:

|| τ ||= Bn+ || γ || for || τ ||> Bn || γ ||= 0 for || τ ||≤ Bn (3.10)
Finally, dimensionless eective viscosity of the uid is computed in all the domain such as:

ηeff = 1 + Bn || γ || (1 -exp(-m || γ ||)) (3.11)
where m corresponds to the dimensionless regularization parameter, which must be chosen as large as possible. Now, the purpose consists in simulating the Bingham dam-break problem, and in validating with the results obtained by [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF]. As for monophase ows, momentum and mass equations are solved, and coupled with the Papanastasiou regularization method. However, no-slip boundary conditions are applied on the bottom surface. Consequently, the wetting of the Bingham is not performed as a ne air layer is present at the bottom surface. In the following part, a method will be proposed to ensure the Bingham wetting onto the bottom surface.

Wetting

As explained before, the dynamic wetting of the Bingham uid must be ensured onto the bottom surface.

Thus, a thin layer g , of the order of the minimum mesh size h min , is computed at each time increment. On g , the Bingham uid is able to slip, allowing the air to escape.

To compute g , the rst step consists in localizing the zero-isovalue position on the bottom wall. Then, we compute the signed distance function on the bottom surface nodes. When it is positive, no-slip boundary conditions (v = 0) is thus applied and when it is negative, the air is able to slip (v y = 0). Then, the coordinates of the nearest node to the zero-isovalue, localized both on the bottom wall and inside the Bingham domain, are determined. At this node, the boundary conditions are changed, to slip conditions.

Figure 47 illustrates how to determine the slipping region.

• • • • • • • • • • • v = 0 v y = 0 L Γ y x
Figure 47: Boundary conditions at the bottom surface for a Bingham dam-break

Model validation

In this part, the model proposed for Bingham ows is validated by comparing the obtained results with the ones of [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF]. A Bigham dam-break is studied, with aspect ratio a = 1.

Two dimensionless parameters control the ow: the Reynolds number Re, and the Bingham number Bn. For the validation, the Reynolds number is xed to Re = 10 -3 , and Bn varies from 0.01 to 0.2.

Dimensionless viscosity and density of air are chosen such that its ratio with Bingham properties is 10 -3 , in order to be negligible. Thus, ηair = 10 -6 and ρair = 10 -3 . For instance, a Bingham uid with density ρ f = 1000kg/m 3 and plastic viscosity η p = 100P a • s will be surrounded by a Newtonian uid with density ρ air = 1kg/m 3 and viscosity η air = 10 -1 P a • s. The initial height of the column h i is equal then to 20cm. Yield stress are thus taken in a range from 2 to 40 Pa.

Computations initialization

Figure 48 illustrates adaptive mesh and iso-zero value of the Level-Set function, which corresponds to the interface between the Bingham uid and the air. Computations initialization has been performed in the same way as for Newtonian uid: the mesh is adapted several times until the obtention of the nest possible mesh close to the interface. At time t = 1000, as illustrated in gure 51, the maximum velocity is very low, and the uid seems to be stopped since t = 100. an unyielded region, located at the ow center and corresponding to a dead zone, is observed. We observe also a smaller unyielded area located at the column corner, tending to vanish as the uid is owing (gure 56). Moreover, the associated mesh captures very accurately yielded and unyielded transition. During the collapse, the dead zone grows onto the Bingham domain, and the corner vanishes completely. At the end of the simulation ( t = 1000), the ow stabilizes and seems to be stopped.

Numerical results

Then, a Bingham dam-break with Bn = 0.1 is performed, and inuence of Bn is analyzed. At t = 10, unyielded areas located both at corner and column center, are larger. Moreover, an other small unyielded region appears at the front, giving a curved front shape.

To conclude, the model allows the simulation of highly viscoplastic ows, and the accurate capture of small unyielded regions, such as the column corner. Particularly, the mesh adapation allows an accurate description of the transition unyielded/unyielded areas. Bn=0.1 [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF] Bn=0.03 Bn=0.1

Figure 61: Run-out distance during dam-breaks with dierent Bn and comparison with Liu et al. [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF] sooner for larger Bn. Finally, our results ts the ones of Liu et al. [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF]. 

Energy analysis

Now, an energy analysis is performed. First, kinetic energy is computed such as:

E c = 1 2 ρ || v || 2 (3.12)
Potential energy corresponds to the energy able to be transformed into kinetic energy, and is computed such as:

E p = ρgz (3.13)
where z corresponds to the height coordinate.

Mechanical energy corresponds to the sum of both energies. In the absence of friction (for instance, in the case of a chute), the total potential energy is transformed into kinetic energy, inducing constant mechanical energy.

E m = E p + E c (3.14)
Moreover, dissipated power is dened such as:

P dissip = η ef f || γ || 2 (3.15) 
The analysis of energy evolution with respect to the time, is performed, by computing the mean energy over the Bingham domain:

E c = 1 2Vtot Ω f ρ || v || 2 dΩ f E p = 1 Vtot Ω f ρgzdΩ f P dissip = 1 Vtot Ω f η || γ || dΩ f (3.16)
Figure 63.a illustrates kinetic energy evolution during two Bingham dam-breaks with Bn = 0.03 and Bn = 0.1. We observe that kinetic energy decreases drastically between t = 0 to 20, and stabilizes slowly to a very low value for the two dam-breaks. The dierence deals with kinetic energy value during the rst instants: when Bn is larger, kinetic energy is slightly lower. However, a larger time is needed to stabilize to a nal value for low Bn. Indeed, gure 62 shows that nal height is larger for a Bingham uid with higher Bn. Moreover, we notice that kinetic energy is negligible compared to potential energy. Thus, all the variation of potential energy is transformed into power dissipation as the Reynolds number is very low. Thus, the ow is quasi-static. 

V gained = V current -V init V init (3.17)
Figure 64.a illustrates Bingham volume during a Bingham dam-break with Bn = 0.03. A larger volume gain is observed between t = 0 and 200.Indeed, gure 61 shows clearly it corresponds to the owing times until almost reaching the nal prole. It is observed that the Bingham uid gains 1.5% of its initial volume.

Up to t = 200, we notice that the gained volume stabilizes around 0.5% of the initial one. Figure 64.b illustrates the gained volume of Bingham uid V gained according to the time t for a Bingham dam-break with Bn = 0.1. Thus, V gained increases also during a certain period (until t = 100 approximately), corresponding almost to the time until almost reaching the nal prole. However, the volume conservation is worse, due to the computation stiness (higher Bn). Up to t = 100, the gained volume is more stable, but continue as well to increase. 

Determination of arrest times

Regularization methods are not able to simulate ow arrests. Thus, we need to propose a method capable to determine time arrests. The purpose consists in proposing a arrest criterion based on the mean shear rate value.

To correlate our criterion to values of the shear rate eld, the shear rate integral || γ || is rst computed. Figure 65.a illustrates the evolution of Ω f || γ || dΩ f according to the dimensionless time, during a Bingham collapse with Bn = 0.03. This curve leads to the observation of two trends. Before t = 200, the mean shear rate computed into the uid domain is decreasing drastically. Up to this value, it decreases in a constant power-law regime. At this stage, even if the front advances very slowly, the mean shear rate continues to decrease and does not stabilize to a small value, as the uid continues to creep (see gure 57). The ow stop criterion is then reached for time t ≈ 1840 and corresponds to || γ ||= 1.29 • 10 -4 , which is approximately the creep rate of a Newtonian uid of viscosity ηeff = 1 + mBn.

By denoting n + 1 as the current time step, we plotted the speed of descent (dierence between successive mean shear rates) in gure 65.b. We observe that the dierence decreases quickly during the rst iterations, and tends to stabilize after by oscillating at very low values. Vtot Vtot We proposed a criterion based on shear rate value. However, some incertainties remain for the determination for the time arrest, which stays a crude approximation.

Ω f || γ || n+1 -|| γ || n dΩ f (b)
Ω f || γ || n+1 -|| γ || n dΩ f (b)

Inuence of boundary conditions

Now, the inuence of the applied boundary conditions at the bottom surface is analyzed. Run-out distance of Bingham collapses are thus dierent by changing the applied boundary conditions at the bottom surface. However, both ows have the same dynamics : an acceleration phase, leading to the motion of the column, followed by a deceleration phase leading to the ow stabilization. As observed in the energy analysis section, a very small part of potential energy E p is dissipated into kinetic energy, leading to a quasi-static ow.

The dissipated energy of the uid is dened such as:

E d = 1 2V tot Ω τ : γdΩ (3.18)
Thus, shear dissipated energy E shear is computed such as tangential contribution of E d : In the same manner, the extensional dissipated energy E extension is computed such as tangential contribution of E d :

E extension = 1 V tot Ω τ xy • γxy dΩ (3.20) 
Figure 71 illustrates dissipated energy in extension according to the dimensionless time for two Bingham collapses with dierent boundary conditions applied at the bottom surface. For collapses with no-slip boundary conditions, dissipative energy in extension increases slowly (the sticky substrate retains the ow), until reaching a maximum value, corresponding to the time at maximum velocity. Then, it decreases slowly until no more energy is dissipated (arrest of the ow). For collapses with slip boundary conditions, dissipated energy in extension is much larger. Indeed, only the yield stress retains the front to advance on the slipped substrate. Thus, the dissipative energy in extension reaches its maximum at the very beginning of the ow.

Finally, as for a ow with no-slip boundary conditions, the uid stabilizes (dissipative energy equal to 0).

In conclusion, the choice of appropriate boundary conditions at the bottom surface is essential and can aect drastically the way for the uid to ow, and can impact the nal shape of the Bingham uid. 

Conclusion

This section was devoted to multiphase Bingham ows. A regularization method has been used to take into account the constitutive law into momentum and mass equations. This is a multiphase problem (Bingham/air): we use the convective auto-reinitialization Level-Set method to capture and follow the interface between the two uids. Anisotropic mesh adaptation has been used, in order to catch all the physics occurring during the ow. Finally, as for monophase ows, a Papanastasiou regularization method is used for the coupling between the constitutive law and momentum equations.

Then, Bingham dam-break problems with dierent Bn are performed and compared with Liu et al. [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF]. First, the results show a good agreement with the work of Liu et al. [START_REF] Liu | Two-dimensional viscoplastic dambreaks[END_REF]. Then, the robustness of the numerical methods has been studied. Particularly, mass conservation studies show that the loss remains reasonnable (several percents of volume loss of Bingham uid) during the ow.Finally, an appropriate choice for the boundary conditions applied onto the bottom surface is crucial, and may aect drastically the dynamics and shape of the nal Bingham prole.

In the multiphase framework, the limitations of the regularization method have been also observed. By using this method of resolution, the uid will continue to ow slightly even when it was supposed to stop, altering mass conservation.

Conclusion

In this chapter, numerical simulations of Bingham ows have been performed by the use of a regularization method, coupled with anisotropic meshing. The coupling between the dierent numerical tools, mostly introduced in chapter 2, leads to the simulation of highly plastic ows, and to take sti regularization parameters, allowing high jumps of eective viscosity. Even if regularization methods have some limitations, it appears to be an interesting method leading to relevant results due to its coupling with VMS and the anisotropic meshing. Now, future work will consist in proposing a method to extend this nite element formulation to µ(I) rheology, in order to simulate dry granular ows. Indeed, unyielded regions exist also in these ows (quasistatic areas). Thus, it would be interesting to solve these ows with the numerical tools able to simulate Bingham ows. However, we need to take into account the pressure-dependency of dry granular material.

Résumé en français

Ce chapitre est consacré à la simulation numérique de l'écoulement des matériaux granulaires secs par une approche continue en deux et trois dimensions.

Nous nous focalisons ici sur la dynamique de l'eondrement de colonnes granulaires en deux et trois dimensions. Dans un premier temps, une étude bibliographique expérimentale est menée. La forme nale du dépôt nous mène à l'existence de deux régimes d'écoulements suivant le rapport d'aspect de la colonne a: forme de cône tronqué quand a est faible, forme de "chapeau mexicain" quand a est grand, et une forme conique obtenue à un a critique, noté a c . De plus, la courbe illustrant la distance parcourue adimensionnée du matériau en fonction de a, conforte cette hypothèse, avec un régime linéaire pour a < a c , un régime en loi puissance pour a > a c (exposant 0.7 pour des écoulements 2D et 0.5 pour des écoulements 3D).

De plus, il a été observé que la dynamique des matériaux granulaires serait indépendante des propriétés rhéologiques. En eet, la distance parcourue adimensionnée en fonction du temps adimensionné suit une même courbe maîtresse.

Dans un second temps, la résolution des écoulements granulaires secs, décrits par la rhéologie µ(I), a été eectuée. An de prendre en compte les équations constitutives du comportement dans les équations de la mécanique des uides, une méthode de régularisation de type Bercovier-Engelman a été utilisée, qui revient au calcul de la viscosité eective du matériau granulaire. Comme pour les uides de Bingham, le maillage est adapté suivant les champs Level-Set, vitesse et viscosité eective.

Le modèle a été validé tout d'abord sur des cas d'eondrements de colonnes granulaire en deux dimensions. Les deux régimes (linéaire et loi puissance) caractérisés par la littérature expérimentale sont bien retrouvés avec la simulation numérique. De plus, une étude de sensbilité aux diérents paramètres rhéologiques du matériau a été menée. Il a été ainsi observé que le coecient de frottement statique est le paramètre le plus inuant sur la distance parcourue du matériau.

Par la suite, le modèle a été étendu à des cas d'eondrements de colonnes en trois dimensions. Les deux régimes correspondant aux diérentes formes des dépôts naux ont été également retrouvés. Cependant, la transition s'eectue à plus grand a c que dans les travaux expérimentaux de Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. Les mêmes analyses de sensibilité aux paramètres rhéologiques sont menées, et les mêmes constats que pour des écroulements en deux dimensions sont eectués. Additionnellement, l'inuence de la hauteur initiale de la colonne h i sur l'écoulement a été analysée, montrant que la dynamique dépend du nombre inertiel.

Finalement, la modélisation en trois dimensions a été étendue à des cas de chute de colonnes de granulaire.

Un nouveau nombre adimensionnel a r a été déni, et correspond au rapport entre hauteur maximale de la colonne (somme entre h i et hauteur de lâcher h r ) et rayon initial r i . Il a tout d'abord été observé que la distance parcourue suit une courbe en loi puissance, en fonction de a r , et qui se rapproche de la courbe loi puissance d'exposant 0.54 (courbe obtenue pour les eondrements de colonnes de grains) au plus la colonne est élancée. Enn, il a été souligné qu'à même a r (même hauteur maximale de la colonne), la colonne contenant plus de grains, et donc FBla plus élancée, s'étalera plus loin.

In the previous chapters, a numerical framework for the numerical simulation of multiphase Newtonian and Bingham ows has been proposed and validated. Particularly, the developed numerical tools allow the treatment of highly viscoplastic uids. Now, the extension of the formulation to the simulation of µ(I)

rheology ows is investigated. The physical ow features, where the yield stress and plastic viscosity depend now on the pressure, shear rate, and other rheological parameters dening the granular material, will be then analyzed and the limitations of the employed approach will be outlined.

This chapter is split into two sections. First, a literature review on granular collapses is performed. Then, the nite element formulation is extended to two and three-dimensional µ(I) rheology ows. A parametric sensitivity analysis will be nally conducted in order to show the relevance of µ(I) rheology to describe dry granular ows.

Experimental granular collapses

For the last past years, several works focused on the dynamics of granular collapses, leading to determine the impact of rheological and geometrical features on the dynamics. This section will be devoted to the literature review on experimental collapses, leading to the determination of several features describing the granular dynamics.

Granular collapses consist of an initial cylindrical column of height h i and radius r i lled with a granular material, which collapses by gravity. As dened in the previous chapters, the aspect ratio a corresponds to the ratio between initial height h i and radius r i of the column:

a = h i r i (4.1)
In 2004, Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] performed three-dimensional granular collapses with glass beads and studied the inuence of a and the substrate on the nal deposit.

Figure 72 illustrates the experimental setup used to perform three-dimensional granular collapses. A tube, with radius r i and height h i , is set onto a plane surface, and is lled with glass beads. A lifting system, linked to the tube, has been used in order to release the column. This step must be done very quickly in order to be negligible compared to the acceleration phase of the ows.

Figure 73 illustrates the column shape at several instants, for three granular collapses with dierent initial aspect ratios a. This picture leads to the observation of two ow regimes. For small aspect ratios (gure 73.a), they observed that the nal prole has a truncated cone shape. For high aspect ratios (gure 73.c), there is a grains chute phase, that leads to considerable grains spreading and a nal prole that looks like a Mexican hat. Moreover, a critical aspect ratio, denoted a c exists, and gives the transition between these two regimes. For a granular collapse with a = a c , the shape of the nal deposit is conic (gure 73.b).

Figure 74 illustrates the two regimes for granular column collapses of several materials, performed by Lube et al. [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF]. In their experiments, Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] found that for small aspect ratios (a < 1.7), the run-out distance varies linearly according to a (nal shape of truncated cone in gure 73), and for higher a, the dimensionless run-out distance follows a power-law curve with exponent 0.5 according to a (nal Figure 72: Experimental procedure to perform granular collapses [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] Figure 73: Proles of granular collapses with dierent aspect ratios [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] shape looking like a Mexican hat in gure 73). Moreover, the intersection of the two curves is found at a c = 1.7. This value corresponds to the critical aspect ratio that denes the transition between the two regimes (conical nal prole observed in gure 73). Finally, they concluded that the substrate (sandpaper, erodible bed, smooth wooden surface) and initial radius r i do not inuence the granular dynamics, which remains controlled by the geometrical properties.

Contrary to Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF], Lube et al. [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF] performed granular collapses with dierent granular materials (sand, salt, rice, couscous and sugar). By plotting the dimensionless run-out distance according to the aspect ratio (gure 74), they conclude that the rheological properties of the granular material do not inuence the ow dynamics. Moreover, the same trends as observed in LAjeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] are outlined.

Indeed, dimensionless run-out distance follows a linear regime for a < a c (gure 74.a) and a power-law regime with 0.5 exponent for a > a c , with the same critical aspect as Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] (a c = 1.7).

(a) (b)

Figure 74: Dimensionless run-out distance according to the aspects ratios [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF]: (a) Linear curve for low aspect ratios collapses ; (b) Power-law curve for high aspect ratios collapses

In the several conducted experiments of granular collapses, the existence of a transition between two regimes, corresponding to a nal conic prole was outlined , as illustrated in gure 73b. Moreover, Lube et al. [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF] shown, using columns with three initially concentric zones of dierent colors (see gure 75) that the kinematics suggests that the run-out is achieved by the initially top external grains, at least for low aspect ratios. At this stage, we can propose crude arguments to retrieve the linear dependency of dimensionless run-out distance with respect to initial aspect ratio. Indeed, using an energetic analysis of a quasi-static collapse, we could assume that only friction (no rolling or bouncing) is occurring during the collapse, and then the loss of potential energy of any granular column of mass m c is equal to the dissipated work of radial (in 3D collapses) or axial (in 2D) friction forces. Assuming no slip on the substrate, the friction force is simply µ times the weight of the column. Equaling the two energies for the grains reaching the nal run-out gives:

m c gh i = µm c g∆r (4.2)
where ∆r = r f -r i is the run-out distance. Consequently, the dimensionless version of this equation becomes:

a µ = r f -r i r i (4.3)
An other argument could also consider the nal pile obtained for a c as a simple static pile, so that µ = tan(φ r ) = h i /r f (see gure 76), which gives nally:

a µ -1 = r f -r i r i (4.4)
which is close to the previous energetic argument. Both conrm the linear experimental dependency in the rst regime, but suggests a spreading proportional to µ -1 , contrarily to the experiments of Lube et al. [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF]. Further experiments from Balmforth and Kerswell [START_REF] Balmforth | Granular collapse in two dimensions[END_REF] have shown indeed a material dependency that suggests a negative inuence of static friction. Several granular collapses, with several granular materials (rice, sugar, coarse and ne quartz sands) and with several aspect ratios, are performed. Here also, as noticed in three-dimensional granular collapses, experiments show that 2D granular dynamics depends on the aspect ratio [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF][START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF], but not on the type of material [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF]. More precisely, as shown on gure 78, the dimensionless run-out distance varies linearly for small aspect ratios (a < a c ), and as a 2/3 for a > a c , a c being of the same order as in 3D collapses.

Finally, for large aspect ratios, Lube et al.experiments [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] show that the total collapse time t f varies as h i /g, which is the time scale of a free fall. Here also, this value was not found to be dependent on the type of material. Interestingly, the relative distance-time plot (r(t)/r f , t/t f ) falls into a single master curve (see gure 79) that shows an initial acceleration of the front ow, followed by a constant velocity phase that lasts almost 80% of the ow, and ended by a short deceleration phase. According to all these results, one could wonder what governs the spreading in the general case: aspect ratio only, rheological constants, etc... In the next section, numerical simulations of granular collapses will be performed by the use of µ(I) rheology. Then, the results observed in Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] and Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] will be discussed in the light of a sensitivity analysis that could validate this model for such complex ows.

Figure 78: Final dimensionless run-out distance of the front according to the initial aspect ratio a for two-dimensional granular collapses [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] Figure 79: Final dimensionless run-out distance according to the dimensionless time [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] 4.2 Continuum model for granular materials ows

The µ(I) rheology

As for Newtonian and Bingham ows, a continuum approach is used for the simulation of granular ows.

It is based on the resolution of momentum and mass equations of the ow, and not on the modeling of granular materials as an assembly of solid particles. As described in the rst chapter, the µ(I) rheology has the powerful feature to be able to describe the transition between the granular ow regimes (quasi-static, dense, collisional) with a dimensionless number, called inertial number.

The inertial number I is dened as the ratio between the time for grains rearrangement (microscopic time) to the inverse of the shear rate (macroscopic time):

I = || γ || d p ρ f (4.5)
The tensorial constitutive law of the µ(I) rheology is thus formulated such as [2]:

τ = 2µ(I)p γ || γ || (4.6)
where the eective friction depends on the inertial number such as:

µ(I) = µ S + µ F -µ S I 0 I + 1 (4.7)
Figure 80 illustrates the variation of the eective friction µ according to I.When the inertial number is low (quasi-static regime), it shows that the eective friction µ tends to the static friction coecient µ S , which denes the repose angle φ r of the granular material (φ r = atan(µ S )). When I increases, µ tends to the dynamic friction coecient µ F . At I = I 0 , the friction is equal to µ S +µ The constitutive law that describes the µ(I) rheology, may also be formulated like a Bingham constitutive equation:

τ = 2 η f (p, || γ ||) + τ 0 (p) || γ|| γ if || τ ||> τ 0 || γ ||= 0 if || τ ||≤ τ 0 (4.8)
where τ 0 (p) and η f (p, || γ ||) represent the yield stress (pressure dependent) and the plastic viscosity (pressure and shear rate dependent) of the granular material. These quantities are dened as follows:

τ 0 (p) = µ s p (4.9) η f (p, || γ ||) = (µ F -µ s )p p ρ I 0 d + || γ || (4.10)
By analogy with Bingham ows, unyielded (quasi-static) areas are dened when the shear stress is lower than a yield value µ S p. Thus, the larger the pressure, the larger the yield criterion, and the larger the unyielded regions. The term η f (p, || γ ||) corresponds to the plastic viscosity of the uid, and depends both on the pressure and shear rate elds. It increases with pressure and decreases with shear rate.

Literature review on numerical models of granular ows

As for Bingham uids, the diculty lies in the coupling between the constitutive law and the uid mechanics. In the literature, some studies that simulate continuum µ(I) rheology ows may be found, and the two existing coupling methods are based on the same principle that those introduced for Bingham uids.

Thus, regularization (mostly used) and multiplier methods are also found in the literature for the resolution of dry granular ows.

In a rst hand, several works deal with the numerical simulation of granular collapses in a Lagrangian framework.

Recently, Dunatunga and Kamrin [START_REF] Dunatunga | Continuum modeling and simulation of granular ows through their many phases[END_REF] proposed a new model based of the µ(I) rheology when the uid is dense, and as disconnected, stress-free media when the material is deemed to separate. A Material Point Method (MPM) is used for the simulation. The mechanics is rst solved in a nite element framework, and information are then projected to a set of Lagrangian points, which are advected. This approach leads to avoid the use of any regularization methods.

Minatti and Paris [START_REF] Minatti | A sph model for the simulation of free surface granular ows in a dense regime[END_REF] proposed a SPH model for the simulation of µ(I) rheology ows. It consists of a meshless method, in which the uid domain is discretized into a set of particles. Chambon et al. [START_REF] Chambon | Numerical simulations of granular free-surface ows using smoothed particle hydrodynamics[END_REF] proposed also a model based on the SPH method.

However, numerical simulation of granular collapses in an Eulerian framework remains less explored, even if some attempts have been performed during the last few years.

In 2013, Chauchat and Medale [START_REF] Chauchat | A three-dimensional numerical model for dense granular ows based on the µ(i) rheology[END_REF] investigated numerical simulations of µ(I) rheology ows, and performed a comparison between several kinds of regularization methods. In their work, they proposed to regularize the shear rate in unyielded regions, by introducing a minimum shear rate. Moreover, they also regularize the pressure, as it tends to zero close to the free-surface. The model has been validated onto a Bagnold prole. However, this paper did not treat free surface ows.

Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF] proposed a nite volume method, coupled with a regularization method for the simulation of µ(I) rheology. A Volume of Fluid method (VOF) is used to track and follow the interface air/granular material. They compared their model with discrete simulations for dierent 2D granular collapse simulations, and found a good agreement between both models and also the experimental regimes and scaling with aspect ratio. These results were the rst conrmation of the validity of the µ(I) rheology in 2D.

Finally, the coupling between the µ(I) model and uid mechanics may be performed by using a multiplier method. In the literature, a 2D study is proposed by Ionescu et al. [START_REF] Ionescu | Viscoplastic modeling of granular column collapse with pressure-dependent rheology[END_REF] using a nite element method, based on an Augmented Lagrangian/decomposition-coordination method where the principle remains the same as for the Bingham analogy explained previously. An arbitrary Langrangian-Eulerian method is used to compute the free surface position. The authors show that the µ(I) and Drucker-Prager (constant viscosity) models give very similar height proles.

In this section, we propose a new continuum model to simulate granular materials ows, following the µ(I)

rheology constitutive law. The multiphase resolution is performed by using the numerical tools introduced in the previous chapter. Finally, the model will be validated with two-dimensional and three-dimensional granular collapses, and comparisons with experimental works will be investigated. Moreover, the formulation will be extended to the simulation of granular chutes, and will try to determine a general dynamics for the granular ow in this geometrical conguration.

Regularization method for µ(I) rheology ows

In this work, granular ows are solved by using a continuum approach. Thus, momentum and mass equations must be solved and are dened such as:

ρ (∂ t v + v • ∇v) + ∇p -∇ • τ = f in Ω × [0, T ] ∇ • v = 0 in Ω × [0, T ] (4.11)
However, granular ows are described by the µ(I) rheology constitutive law, which must be traduced into these equations. Thus, as for Bingham ows, the diculty deals with the way to introduce the specic constitutive law into momentum and mass equations (4.11). In the literature, two ways are found for the coupling of µ(I) rheology law and uid mechanics: regularization and multiplier methods. In this work, a regularization method is privileged. Indeed, it would be able to predict accurately unyielded areas as we observed that high plastic Bingham ows may be described with this method. Moreover, as the mold powder spreading onto liquid metal will be integrated in the future into a commercial software, the computational times induced by the resolution must not be too large. Thus, a regularization method seems to be more appropriate in this framework.

From the constitutive law introduced in equation (4.8), the apparent viscosity of µ(I) rheology uids, denoted as η a , is dened such as (in the case where || γ || = 0):

η a = η f (p, || γ ||) + τ 0 (p) || γ || (4.12)
The constitutive equations (4.8) of µ(I) rheology, written in a Bingham analogy, show that the shear stress is not dened below the dynamic yield stress τ 0 (p), and thus, leads to the divergence of apparent viscosity as the shear rate || γ || tends to zero. Consequently, as for Bingham ows, the maximum apparent viscosity must be limited in order to allow the resolution of µ(I) rheology ows in unyielded regions. In this framework, a Bercovier-Engelman regularization method is employed, and consists of the introduction of the minimum shear rate || γ || min , which corresponds to the regularization parameter. The eective viscosity of the uid becomes then:

η ef f = η f (p, || γ ||) + τ 0 (p) || γ || 2 + || γ || 2 min (4.13)
However, the yield stress and plastic viscosity tends to zero as the pressure eld tends to zero, which leads to a zero eective viscosity, which naturally is outside the validity window of the physical µ(I) model. Thus, an additional treatment must be done in order to control the viscosity in high Reynolds number regions.

Consequently, an additional regularization parameter is added, and corresponds to the minimum viscosity of the uid. Generally, it is taken as the viscosity of the ambient uid (air). The eective viscosity for µ(I)

rheology uids is thus dened such that:

η ef f = min   η air , η f (p, || γ ||) + τ 0 (p) || γ || 2 + || γ || 2 min   (4.14)
Finally, the numerical resolution of µ(I) rheology ows requires the resolution of mass and momentum equations, dened in (4.11). The constitutive law is thus taken into account by the denition of the shear stress tensor such as τ = 2η ef f γ.

Mesh adaptation criteria

As for Bingham ows, yielded and unyielded regions evolve during the simulation. Thus, it is dicult to preadapt the mesh around these regions. This motivates again the use of implicit strategy that imposes a dynamic mesh adaptation that minimizes as much as possible the prescribed error.

The adaptivity accounts for the eective viscosity η ef f and the velocity norm | v | in order to catch accurately the transition between yielded and unyielded areas. It also accounts for the ltered Level-Set function α in order to describe accurately the interface evolution. These elds are described in the following vector V , containing all the adaptation criteria:

V (x i ) =    v i ||v i || , ||v i || max j ||v j || , η ef f max(η ef f ) , α max(α)    (4.15)
Here also, mesh adaptation is supposed to improve the conditioning and then helps the convergence of the regularization algorithm.

Application to granular collapses

In this section, µ(I) rheology ows are solved in the nite element framework, leading to validate rst the proposed modeling. Then, the relevance of µ(I) for the description of granular dynamics, is discussed, by performing two and three-dimensional granular collapses. Finally, the obtained results will be compared to the experimental results of Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] and Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF].

Two-dimensional granular collapses 4.3.1.1 Introduction of the problem

First two-dimensional granular collapses are investigated. As for Newtonian and Bingham ows, it consists of a granular column of height H i and radius R i which ows only due to gravity (gure 81). This is a multiphase problem, as the air is considered as the ambient uid. Moreover, height H and length L of the computational domain are taken suciently large so that the run-out does not reach the end of the domain.

L H r i h i (ρ f , η ef f ) (ρ air , η air ) y x
Figure 81: Problem statement of the granular collapse problem

In our simulations, no-slip boundary conditions are applied at the bottom surface. However, the dynamic wetting of this surface with the granular material must be ensured. To do so, a perfect slip is imposed on a thin layer, which length is of the order of the minimum mesh size h min (set as a few grains diameters) upstream the granular front (see gure 82).

To compute the position of this layer, the rst step consists in localizing the zero-isovalue position on the bottom wall. Then, the signed distance function of the nodes located on the bottom surface, are computed.

When it is positive, no-slip boundary conditions (v = 0) is thus applied and when it is negative, the air is allowed to slip (v y = 0). Then, the thin slipping layer at the granular front is computed. Thus, the coordinates of the nearest node from the zero-isovalue, localized both on the bottom wall and inside the granular material, are determined. At this nodes, the boundary conditions are changed, and the granular material is allowed to slip. In practice, this method avoids the occurrence of stress singularities at the ow front.

Figure 82: Boundary conditions applied on the bottom surface for two-dimensional granular collapses

Validation of the model

This work aims to simulate two-dimensional granular collapses in the nite element framework. After introducing the numerical tools, we need to validate the model. Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF] performed two-dimensional granular collapses by using the nite volume method, and validated the model by comparing the obtained results with discrete simulations. These discrete simulations were set using grains of average diameter d, aspect ratio a and a total number of grains N b Grains . To deduce an estimate for the height h i and width r i , we assume a simple cubic compacity and get h i = d √ aN b Grains and r i = d N b Grains /a. The continuous problem turns then into a dimensionless formulation as performed in Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF]: the characteristic length, velocity, time and density are taken respectively as h i , √ gh i , h i /g and ρ f . In this new dimensionless problem, ve dimensionless numbers control the system: the number of grains N b grains , the initial aspect ratio of the column a, and the dimensionless rheological parameters µ S , ∆µ and I 0 .

Consequently, the inertial number computation involves the dimensionless grain diameter d = 1/ √ aN b Grains and granular density ρf = 1. The dimensionless geometries become: initial column radius ri = 1/a, initial column height hi = 1.

By considering dimensionless shear rate and pressure elds, the inertial number turns then to:

I = || γ || √ paN b Grains (4.16) 
Three granular collapses with dierent aspect ratios a = 0.5, 1.42 and 6.26 are performed, respectively with N b grains = 3407, 6041 and 6036. The same rheological parameters as Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF] are considered:

µ S = 0.32, ∆µ = 0.28 and I 0 = 0.4. The regularization parameters are taken as || γ || min = 10 -3 and ηair = 10 -4 . As mentioned previously, the mesh is adapted according to the eective viscosity, velocity norm and ltered Level-Set elds, and the number of elements is set to 4 • 10 4 .

Figures 83.a, 83.b and 83.c illustrate the height proles at dierent instants, t = 0, 1, 2 and 4 respectively. For a = 0.5 (gure 83.a), we observe that the granular deposit corresponds to a truncated cone, leading to a maximum height on the left wall (equal to 1). For a = 1.42 (gure 83.b), a larger spreading is observed, leading to the granular collapse on the left side. Thus, the run-out distance is larger as a increases, leading to a wide nal deposit (gure 83.c).

Figures 84,85, 86 and 87 illustrate several elds during a granular collapse with a = 1.42, at several dimensionless instants: t = 1, 2, 4 and 6. As observed in the screen-shots, the velocity is larger as approaching the free-surface, and is maximal at the front. Moreover, unyielded regions are characterized by a very low shear rate (close to || γ || min ), a large eective viscosity η ef f , but also by a negative τ -µ S p. In the screen-shots, they are close to the ow center, and get closer to the free-surface as the granular material ows. At the end of the simulation (gure 87), it is observed that unyielded regions cover the full uid, as it stopped. and compare the obtained results with the ones of Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF]. It is observed that our simulations get closer to the discrete simulations, than the continuum method of Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF], probably due to mesh adaptation that improves accuracy. (c) a = 6.26

Figure 83: Height proles after granular collapses with dierent aspect ratios (a = 0.5, 1.42 and 6.26) at several instants t g/h i = 0.1, 2 and 4

Figure 89 illustrates the adaptive mesh for a granular collapse with aspect ratio a = 1.42 at dierent instants. It is observed that the mesh follows very accurately the interface and the transition regions delimiting the three regimes: quasi-static at the left corner, collisional at the ow front, and dense elsewhere.

Finally, the quasi-static regime dominates in the full granular material, leading to a extreme mesh renement close to air/granular interface.

Sensitivity to regularization parameters

As introduced previously, two numerical parameters are dened for regularizing µ(I) ows: || γ || min (minimum shear rate) used to limit the viscosity into unyielded areas, and η min (minimum granular viscosity) used to limit the Reynolds areas. This subsection will give a sensitivity analysis leading to the best choice for these parameters. Sensitivity to minimum shear rate Figure 90 and 91 compare the eect of the minimum shear rate (|| γ || min ) which goes from 10 -6 to 1 onto, respectively, the dimensionless position of the front according to dimensionless time and the nal dimensionless granular proles. The results show approximately the same curves for || γ || min under 10 -2 . Thus, choosing || γ || min to 10 -2 is sucient to obtain relevant results. 

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 4
0 1 2 3 4 5 1 2 3 4 t/ h i /g x/r i || γ ||min= 10 -4 || γ ||min= 10 -3 || γ ||min= 10 -2 || γ ||min= 10 -1 || γ ||min= 1

Sensitivity to minimum viscosity

Figures 92 and93 show the inuence of the minimum viscosity (η min ) onto, respectively, relative (t, x)

plots and dimensionless nal height proles. First, the results show that the acceleration step is well-predicted and is weakly independent of the minimum viscosity. However, dierences appear during the deceleration step. Indeed, considering a too large η min leads to a more viscous uid, tending to a shorter arrest than for a uid with low η min . However, the obtained results do not evolve when η min ≤ 10 -4 (dierences between η min = 10 -4 and η min = 10 -5 computations are indistinguishable). Thus, the choice for η min to 10 -4 is relevant. In conclusion, the choice of regularization parameters is important as it can aect the granular nal shape. However, considering highly plastic regions leads to convergence problems, with large viscosity jumps. Thus, a compromise must be determined. In the previous numerical simulation, it has been shown that choosing || γ || min = 10 -2 and η min = 10 -4 give accurate results.

Flow sensitivity to rheological constants

In this section, inuence of the rheological parameters (µ S , ∆µ, I 0 and d) is studied. Thus, dierent numerical collapses are performed with dierent rheological parameters. In this work, the initial aspect ratio is xed at a = 1.42.

Static friction coecient µ S

First, the inuence of µ S is studied. Four collapses are performed with dierent µ S : µ S = 0.32, 0.42, 0.52 and 0.62. Figure 94 illustrates the nal proles. It is observed that static friction coecient changes drastically the nal shape of the ow. Indeed, from µ S = 0.52 to 0.62, the run-out distance is 20% larger. Moreover, the same analysis has been performed with a granular collapse with a = 10. Figure 95 illustrates the nal proles of the ow. The same conclusion as for a = 1.42 is performed: the static friction coecient has a strong inuence on the run-distance of the ow. Thus, gure 96 illustrates the run-out distance according to µ S for the two granular collapses. It is observed that the run-out distance follows a power-law curve according to µ S . The exponent is found approximately to -1.2 for both ows, which is closely consistent with the scaling obtained from a crude energy argument (see equation 4.3).

Finally, gure 97 illustrates eective viscosity of the ow at t = 1, for collapses with dierent µ S . It is observed the unyielded regions increase close to free-surface (ow front and close to the symmetrical wall) as µ S increases, but also the creation of shear-banding regions, leading to a reduced spreading of the granular material. The occurrence of shear bands was theoretically predicted by Barker et al. [START_REF] Barker | Well-posed and ill-posed behaviour of the µ(i)rheology for granular ows[END_REF]. Inuence of µ F Then, the inuence of µ F is studied. Thus, granular collapses with dierent ∆µ (∆µ = µ F -µ S ) are performed and run-out distances are compared. In these simulations, µ S is xed to 0.32. Figure 98 illustrates the nal granular proles after the collapse. It is observed that the nal height measured on the symmetry plane is independent of µ F and remains constant. However, the dierence deals with the run-out distance, which increases as µ F decreases. Such a behavior is expected, as the inertial number is large in the vicinity of the front ow.

The evolution of the front position during the simulation (gure 99) shows that only the deceleration stage depends on µ F , and not the acceleration one. By analyzing curves 98 and 99, µ F acts at the end of the ow, leading to elongate (low µ F ) the nal granular prole, while remaining the maximum height constant. Then, the same analysis has been performed for a granular collapse with higher a (a = 10) (gure 100). The same conclusion as for a lower a, is made.

Finally, gure 101 illustrates dimensionless run-out of the granular ow according to the ∆µ, for two granular collapses with a = 1.42 and 10. It is observed that the dimensionless run-out distance follows a power-law curve. Moreover, ∆µ has a stronger impact on the run-out distance for low a. However, inuence of ∆µ on the run-out distance remains lower than the one for µ S (relative impact four times lower).

Inuence of I 0

Finally, inuence of I 0 is studied. Three granular collapses with dierent I 0 (0.04, 0.4 and 4) are performed. Figure 102 shows the evolution of dimensionless front position during the simulation for the dierent collapses. It is observed that the ow spreads further for large I 0 granular collapses, which is expected. Indeed, a low I 0 leads to a fast transition between quasi-static and dense regimes, inducing thus smaller unyielded regions. Thus, it is expected that the granular material spreads further as I 0 increases, as obtained in the numerical simulations.

Figure 103 illustrates dimensionless run-out distance according to I 0 , which follows a power-law curve with exponent 0.11. Thus, it is found that I 0 has a negligible inuence on the granular dynamics (inuence ten times less important than µ S ) for the chosen set of parameters. Let us remark that the inuence of I 0 should be larger for large aspect ratios ows as such ows would become more inertial, this point is discussed further. In conclusion, we performed two-dimensional granular collapses with granular materials having dierent rheological properties (µ S , µ F and I 0 ). The analysis of each parameter shows that the predominant feature impacting the nal run-out distance is µ S . Then, it is observed that µ F has also a small inuence (approximately four times less than µ S ), particularly during the deceleration stage. Finally, I 0 has a negligible inuence compared to µ S (ten times less), for low h i .

Inuence of the aspect ratio

In this section, two-dimensional granular collapses with dierent aspect ratios are performed. linear curve is found for low a (lower than 7). Moreover, the power-law curve with exponent 0.7 is found for large a (larger than 7):

r f -r i r i ≈ 1.72 a 0.97 a ≤ 7 2.96 a 0.69 a ≥ 7 (4.17) 
The same results as obtained by Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF] have been found, namely a limit between linear and power-law regimes a c ≈ 7, and a power-law exponent of 0.7 . In the experimental work conducted by Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF], the same type of curves has been found. They tted, however, a power-law exponent of 2/3 and a lower critical aspect ratio. This dierence could be explained by the choice of the numerical rheological parameters (µ S , typically) and maybe by the static and non-local eects that have not been introduced in the model, while they could inuence the granular dynamics in unyielded regions. In order to explain the two observed power-law regimes, we propose to conrm the theory proposed by Larrieu et al. [START_REF] Larrieu | Raining into shallow water as a description of the collapse of a column of grains[END_REF], who suggested that, for large enough a, an extra-dissipation of some of the (vertical) kinetic energy of the fall is dissipated when the grains impact on the base, therefore not converted into horizontal kinetic energy.

Figures 105, 106 and 107 show relative (with respect to initial potential energy) energy partition (kinetic, potential, mechanical and dissipated energies) during a granular collapse of, respectively a = 1.42, a = 10 and a = 50. As expected, both the kinetic energy part and nal dissipated energy increase with aspect ratio. For low aspect ratio, one notices that the maximum kinetic energy is reached a time t 2h i /g, which is the impact time for a free fall. For large aspect ratios, the maximum kinetic energy is much larger and reached earlier, then decreases quickly until t 2h i /g, while the dissipated energy jumps quickly.

It suggests that the extra-dissipation indeed occurs during the impact, which is conrmed on gures 108, 109 and 110 that show the volume fraction of owing regions (non zero velocity) during a collapse for, respectively, a = 1.42, a = 10 and a = 50. Indeed, the graphs show that for large a, nearly the whole volume is owing, including the bottom center region, inducing the measured extra-dissipation. Figure 111 shows the complex height proles formed during a granular column collapse with a = 50, plotted for dierent times. At the free fall time t 1.5 h i /g, a crater and a crest are formed, creating a wave that is advected away for the subsequent times, and then spreads away at late times, the crest being damped in the inner direction. This complex ow is divided in dense and inertial regions, forming respectively the top and bottom of the advected wave, as shown on gure 112. 

Flow features close to arrest

In this section, we introduce a method for the determination of granular ow arrests, as the chosen regularization method does not ensure a strict ow stop at long times, but rather a slow creep. We then study how ow stops for small and large aspect ratios a, and show that the last moving region before stop is close to the center for small a, whereas it is located at the front for large a.

As shown for Bingham ows, we expect to nd the time for ow stop when the stress is smaller than µ S p everywhere in the ow domain. However, as the pressure p depends on the ow geometry, there exist some regions (typically close to the free surface) where µ S p is arbitrary small. Consequently, in these regions, the eective viscosity tends to the regularized value η min , whereas stress close to the surface could occur from potential (for slow ows) or kinetic (for fast ows) energy. For example, when checking gure 87 we notice that the front ow does not satisfy the stress criterion in the two last elements, due to our method to avoid the triple point/line singularity. However, when plotting Ω f || γ || Ω f at dierent instants (see gure 113) we notice that the mean shear rate increases, corresponding to the ow start, then it reaches a maximum, followed by a plateau. Finally, it decreases drastically down to a nite plateau value 1 . We then choose the corresponding time as the ow stop time. 

Inuence of rheological constants on arrest time

For the same collapse, it is observed that the arrest time of the ow depends strongly on µ S : the higher µ S , the sooner the ow arrest, and the lower the run-out distance (see gure 114.a). Moreover, it is observed that ∆µ has a smaller inuence: the larger ∆µ , the sooner the ow arrest, and the lower the run-out distance (see gure 114.b). For larger aspect ratios, the arrest time is much less dependent on rheology, as the free fall time controls the global ow duration.

Inuence of the aspect ratio 1 This nite plateau scales inversely with ηmin When varying the aspect ratio from small to large, according to the transition value a c , we observe two types of ow arrests. First, for small aspect ratio, the ow consists of a rst excursion of the edges, that stops before the global arrest, followed by a rearrangement of the surface, close to the symmetry plane (see shear rates plots on gure 115). For large aspect ratio, the ow spreads from the edges until the arrest (see gure 116), because the kinetic energy is concentrated in these zones. 

Master curves for granular collapses

As introduced at the beginning of this chapter, the work of Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] pointed that for any rheology and geometrical features, the ow follows a same curve, representing the relative run-out distance (rr i )/(r f -r i ) according to the relative time t/t f , where r f is the time made by the ow to reach its nal position.

Figure 117 illustrates this curve for granular collapses (a = 10) with dierent µ S . It is observed that the run-out distance follows a curve nearly independent of µ S . Slight dierences are observed, particularly, the acceleration is slower as µ S increases. Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] outlined that the granular dynamics is independent of geometrical and rheological ow features, by demonstrating that granular materials follow a same curve (relative run-out distance according to relative time). However, several dierences are outlined by performing granular collapses with dierent µ S and ∆µ, as illustrated in curves 117 and 118. Thus, this work suggests, according to the µ(I) theory, that rheological constants inuence the granular dynamics, contrary to Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF]. Alternatively, we could conclude that the materials used in Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] were not rheologically dierent, as suggested by Balmforth and Kerswell [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]. 

Conclusion

In this part, we performed two-dimensional granular collapses with materials exhibiting dierent rheological features, but also with dierent a. First, multiphase µ(I) rheology ows have been validated with results of Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF] obtained with discrete methods (DEM). Then, the inuence of rheological features has been analyzed. It has been shown that µ S is the dominant rheological parameter that drives the ow.

Then, the inuence of a has been studied. The two regimes observed in Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] have been found: a linear regime for low a, and a power-law one for high a. Moreover, we found that the µ(I) model can predict a quasi universal relative time-distance curve. 

ψ m = 1 if x ∈ (Ω f ∩ Γ b ) \ Γ i 0 elsewhere (4.18)
The last step consists of setting a slip boundary condition to the nodes belonging to the determining the nodes where the granular material is allowed to slip (gure 120). Finally, ψ n is computed, aiming to determine minimum of ψ m of all the connected elements to a specic node: 

ψ n = min (ψ m ) Ω (4.19) (a) (b) (c) (d) 

Flow sensitivity to rheological constants

In this part, the inuence of µ(I) parameters on the nal run-out distance is analyzed. Thus, dimensionless run-out distances according to µ S , ∆µ and I 0 are plotted.

Figure 121 illustrates the dimensionless nal run-out distance according to µ S . As observed for twodimensional granular collapses, the granular material spreads further for low µ S . Moreover, the obtained curve follows a power-law regime with exponent -0.7 according to µ S . Thus, it is found that the impact of µ S onto the spreading is less strong than for 2D collapses (where the power-law exponent was -1.2). This suggest that the covered surface (proportional to a in 2D and a 2 in 3D) is likely to depend on 1/µ S . Figure 122 illustrates dimensionless nal run-out distance according to ∆µ. As observed for two-dimensional granular collapses, the granular material spreads further when ∆µ is lower. Moreover, it is observed that the curve follows a power-law with exponent -0.21. Thus, as for two-dimensional granular collapses, µ S has a stronger inuence (three times more) than µ F . Finally, gure 123 illustrates dimensionless run-out distance according to I 0 . As observed for twodimensional granular collapses, the granular material spreads further when I 0 is lower. Moreover, it is observed that the curve follows a power-law with exponent 0.08 on I 0 . Thus, inuence of I 0 is negligible compared to the one of µ S (ten times smaller), at least for small h i . 

Inuence of the aspect ratio

Now, three-dimensional granular collapses with dierent a are performed. In the computations, the parameters of Jop et al. [2] are taken for the description of granular rheology: µ S = 0.38, ∆µ = 0.28,

I 0 = 0.279, ρ f = 2500kg • m -3 , d = 0.54mm.
Figure 124 illustrates dimensionless position of the nal front according to a. It is observed that for large aspect ratios (a > 2.7), the granular dynamics follows a power-law curve with exponent 0.54, and for low aspect ratios (a < 2.7), a linear regime is found, which has also been observed in two-dimensional granular collapses. Thus, the critical aspect ratio has been found equal to a c = 2.7:

r f -r i r i = 1.2 a if a < 2.7 1.93 a 0.54 if a > 2.7 (4.20)
Figures 125 and 126 illustrate the ow shape during granular collapses with a = 2 and 7. In gure 126, a granular chute is occurring at the beginning of the ow, leading to a more dissipative impact than for a granular collapse with low a (gure 125), as explained previously.

Inuence of initial column height

Now, the purpose consists in analyzing the inuence of h i on the ow dynamics, for a xed rheology and a xed aspect ratio. To do so, r i is set 10 times larger than previously (r i = 0.2m), leading to proportionally larger h i for the analysis of dimensionless run-out distance curve according to a. Figure 127 illustrates this curve, by comparing with the previous curve obtained for granular collapses with r i = 0.02 m (illustrated in gure 124). We observe that granular collapses with same a and higher h i leads to a larger run-out distance. We propose to explain this result by the fact that the velocity eld varies as √ h i , leading || γ || to vary as 1/ √ h i . Furthermore, the pressure may be approximated by a linear function of h i . Finally, the inertial number I varies as 1/h i . A similar trend can be deduced by considering that the ration between grain 

Master curve

Figure 129 shows the relative run-out distance according to relative time during granular collapses for dierent aspect ratios a. Three dierent dynamics are observed. For low a (lower than a c ), a slow and late acceleration stage is observed.For larger a, the front position increases linearly after the acceleration.

For very elongated columns (a>20), a wave is formed during the collapse. As observed in two-dimensional collapses, the chute column is occurring, leading to a wave formation. The constant velocity front ow is taking most of the ow time. Comparing to the sensitivity analysis to rheological parameters, performed in the 2D section, we observe here a similar sensitivity to aspect ratio a, but the eect is more pronounced as Moreover, gure 130 illustrates dimensionless run-out distance according to dimensionless time during granular collapses with dierent h i and xed a. It is shown that the granular dynamics for the two collapses are very close. To conclude this analysis, the granular dynamics is more dependent on a than h i .

Conclusion

In this section, three-dimensional numerical simulations of granular collapses have been performed. As observed for two-dimensional collapses, granular ows exhibit two dierent dynamics, depending on a. For low a, dimensionless run-out distance follows a linear curve according to a, and for higher a, a powerlaw curve with exponent 0.5. In Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF], the same ow regimes have been observed. Then, inuence of rheology has been studied. As for two-dimensional collapses, the dominant parameter driving the granular ow is µ S . Then, inuence of initial column height has been studied. It has been observed a larger run-out distance for larger h i , underlying the inuence of the inertial regime on the spreading. 

t/t f (r -r i )/(r f -r i ) a = 2 a = 10 a = 20 a = 30

Numerical studies for 3D granular chutes

During ingot casting process, it has been outlined that three methods are used in industry (gure 2) to initially place powder bags. The most investigated one consists in hanging powder bags by ropes in the mold. Thus, they burn due to high temperatures induced by the metal entering into the mold, leading to the powder chute. Consequently, we focus now on the dynamics of 3D granular chute dynamics (onto a solid and sticky substrate, at rst).

Figure 131 illustrates the problem statement. We consider a granular column with initial height h i and radius r i , released from a height h r . In this conguration, we dene a new dimensionless number a r , corresponding to the ratio between h i + h r to r i : surface. The second one consists of the granular impact and spreading onto the solid substrate. During the chute, all the potential energy is transformed into kinetic energy, leading to the analytical computation of the velocity eld. Therefore, the numerical resolution of the granular chute may be avoided, leading to the reduction of computational times. Thus, the purpose consists in transforming the problem into a granular spreading with imposed initial velocity v impact :

a r = h i + h r r i (4.21) L H r i h r h i (ρ f , η ef f ) (ρ
v impact = 2gh r (4.22)
Thus, the time of the granular chute is computed such as: In this part, nal run-out distances after granular chutes for the same rheological parameters as Jop et al. [2] are analyzed. Thus, several granular chutes with dierent a and a r are performed, aiming to determine the dynamics of granular chutes. In the following numerical simulations, r i is xed to 2.5cm.

t chute = 2h
Curves illustrated in gure 133 show the dimensionless run-out of the ow according to a r . The black curve represents the run-out distance after a granular collapse (h r = 0, thus a = a r ). Moreover, colored curves are representing this dynamics for granular collapses with xed a and several a r .
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Figure 133: Dimensionless nal run-out distance according to a r , after granular chutes with dierent a First, it is observed that for a given granular column aspect ratio a, the initial fall helps to spread further, as expected. Moreover, when a is large enough, the collapse power-law exponent tends to 0.54 (obtained in the previous section): Consequently, for large enough a, the dominant parameter to ensure a good spreading is a r . For low aspect ratios, it is less useful to drop the granular material from a given height. Now, the dynamics of granular chutes with xed a r and dierent a is analyzed: we performed four granular chutes with dierent h i . Figure 134 illustrates the problem statement. The rst case, illustrated in gure 134(a), corresponds to a granular collapse (a r = a). In the other simulations, granular chutes with xed a r and dierent a are investigated. Moreover, r i is xed (r i = 2.5 cm), inducing h i and h r to vary. Figure 135 illustrates the dimensionless nal run-out distance according to a after granular collapses with a r = 4. It is observed that the run-out distance increases as a increases. However, if we now consider the covered surface (which is proportional to r 2 f -r 2 i ) with respect to the needed volume (proportional to ar 3 i )

r f -r i r i =    1.24 • a 0.
r i h i (a) r i 3h i 4 (b) r i h i 2 (c) r i h i 4 (d)
of granular material, we notice that it is more ecient to spread 1/4 of the volume (a = 1) from a sucient height than to perform a dam-break of the initial volume (a = 4).

Energy analysis

In gure 136 an energy partition is computed for granular chutes with xed a = 4 (which correspond to the "large enough" aspect ratio mentioned in the previous paragraph) and dierent a r (h i = 10cm and r i = 2.5cm). We can see that the nal dissipated energy is proportional to a r , while the radius of the surface of spreading varies closely like a 0.5 r . We can then conclude that the surface of spreading varies nearly linearly with a r , for large enough a. In gure 137 an energy partition is computed for granular chutes with xed a r = 4 and dierent aspect ratios a (r i = 2.5cm). We can see now that the nal dissipated energy is approximately proportional to a, contrarily to the surface of spreading (see previous paragraph and gure 135 that saturates with a. This result conrms the previous one: to maximize the spreading, one needs to play on the height of the fall, for a large enough aspect ratio. 

Conclusion

This chapter aimed to validate the use of µ(I) rheology for describing granular ows. Thus, a new formulation, based on the nite element method, has been proposed. Momentum and mass equations have been solved and stabilized using VMS, and a Bercovier-Engelman regularization method has been used in order to take into account the granular behavior. This model has been validated onto granular collapses in two and three dimensions, by comparing with experimental works conducted by Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] and Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF].

For two-dimensional granular collapses, it has been observed a good agreement with the results of Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF]. Moreover, the inuence of geometrical and rheological parameters on ow features has been discussed (µ S , ∆µ, I 0 and a). Thus, it has been shown that the static friction coecient µ S corresponds to the most dominant rheological parameter for the ow dynamics. Moreover, we displayed the well-know curve representing the dimensionless position of the front according to the initial aspect ratio, and found the two dierent regimes evidenced by Lube et al. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF]: a linear one, and a power-law one with exponent 2/3.

In this chapter, we also performed new three-dimensional granular collapses. Dierent aspect ratios for the initial column have been considered and we found the two regimes evidenced by the experiments of Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]: a linear regime for very small aspect ratios and a power-law regime with exponent 1/2

for larger aspect ratios. We also proved that the µ(I) rheology is predictive with respect to the experimental work. We also underlined an additional aspect ratio eect: grain diameter vs. column height.

Finally, for some test cases, we provided a "rule of thumb" to maximize the surface of spreading for a falling granular column, using the µ(I) model. f

Introduction

In the previous chapter, we focused on the numerical simulation of granular collapses and validated the proposed model with benchmarks from the literature. Now, the purpose consists in proposing a few test cases on industrial applications. Thus, collapses and chutes of industrial powders onto liquid metal will be performed and analyzed.

Before studying the ow of metal in ingot casting process, powders are conditioned into bags, placed in the mold according to several ways. Thus, they may be deposited at the bottom surface, raised onto a cardboard box, or hanged with ropes at dierent levels of the mold (gure 2).

The hot liquid metal is then lling the mold, leading to burn the bags due to the high temperatures involved, and allowing the powder to spread onto the metal ingot surface.

This chapter deals with industrial applications involving industrial powder ows, without thermal uxes.

The µ(I) rheology is adopted. First, experimental and numerical powder collapses are performed, then, the use of a static liquid metal substrate is considered. Finally, the inuence of number of bags, dispositions and shapes, but also the eects of lateral walls of the mold will be discussed.

Industrial powder collapse

In this section, a preliminary work consists in validating the µ(I) rheology for the dynamics of industrial powders.

Thus, three-dimensional experimental powder collapses are performed. Then, the obtained results are compared with the results of Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. Finally, numerical collapses are performed in order to validate the model for industrial powder ows, and a sensitivity analysis to rheological parameters is then conducted.

Experimental collapses

Methods

Granular collapses

The experimental set-up used to perform granular collapses is illustrated in gure 138: a polyvinyl chloride (PVC) cylindrical tube, with height h i and radius r i , is disposed onto a plane surface. The granular material is allowed to spread thanks to the removal of the tube in the fastest possible way (in order to reduce its impact on the ow dynamics).

Granular chutes

The experimental set-up used to perform granular chutes is illustrated in gure 139. Now, the PVC tube is linked to a stand, and placed at a height h r from the bottom surface. The granular material is blocked with a solid plug, placed under the tube. Then, the fall and spreading are triggered by removing the plug in the fastest possible way. 

Granular materials

Usual granular materials

First, the experimental setup is validated with collapses onto a solid substrate with usual granular materials (polenta, sugar and sand). Then, the obtained results are compared with the ones of Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. 

Estimation of run-out distance Collapses

As mentioned before, the experimental set-up is rst validated with usual granular collapses, and the obtained results are compared with the ones of Lajeunesse et al. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. Sugar, polenta and sand are considered and several collapses with dierent aspect ratios a are conducted. The obtained dimensionless run-out distances according to a are illustrated in gure 141. For the several granular collapses, the two regimes are observed. For polenta and sand (materials with the larger µ S ), the exponents corresponding to the two regimes are found very close from the ones shown in [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. For sugar (material with the lower µ S ), the exponent obtained for the power-law curve is larger (gure 141.a) than the ones obtained for sand and polenta (gures 141.b and 141.c). Thus, two regimes are observed, but the exponent of the power-law curve seems to depend on µ S , as it decreases for large values. In the future, it would be interesting to study the inuence of granular rheology onto the dynamics for large a.

As introduced in the previous chapter (gure 76), the theoretical dimensionless run-out distance may be obtained with the critical aspect ratio, as a conic deposit is obtained. In gures 141.a, 141.b and 141.c, it is observed that theoretical critical run-out distance (equation 4.3) is lower than the one obtained in experimental works. First, the spreading of the coarsest industrial powder, called G-IZY 109, is investigated. The results, illustrated in gure 142, show the same dynamics as for usual granular experiments, with the appearance of the power-law regime (with exponent 0.54) at large a.

Then, the spreading of the nest one, called Thermotect M20-10, is carried out, and gure 142 shows the granular dynamics. It is observed that the dimensionless run-out approaches the power-law regime only for large a. Indeed, the material exhibits several heterogeneities at low a. This result is explained by the small size of the grains (order of ten microns), that should induce non negligible cohesion. Thus, we may assume the existence of another yield, which changes the powder dynamics, where cohesion dominates.

Large aspect ratio collapses imply larger potential energy, that may overcome the cohesion energy, which tends to a nal run-out close to the dry granular theoretical curve. ), the power-law regime is observed, with a larger exponent 0.6. For low a, the numerical curve does not t the experimental data. However, the same observation as done before is veried, and the experimental run-out distances are in agreement with the numerical curve for large a. In conclusion, granular collapses with the two industrial powders show dierent dynamics. For the coarsest powder (G-Izy 109), the observed dynamics is the same as for dry granular materials. However, the one observed for the nest powder (Thermotect M20-10) is dierent for low a, and is due to a larger cohesion.

Moreover, the results obtained with the numerical simulations are relevant as experimental run-out distances 

Numerical simulations of powder chute

Finally, gure 148 compares dimensionless run-out after a G-Izy chute between experiments and numerical simulations. We can observe that a reasonable agreement is obtained for most of the cases.

In conclusion, the purpose of this section was to extend the µ(I) rheology to industrial powder ows.

Thus, experimental powder collapses and chutes have been conducted to analyze the ow dynamics. Then, 

Numerical simulation of powder ow onto molten metal

During this thesis, the proposed model for the simulation of granular ows has been implemented by Transvalor into the Thercast software, aiming to model casting processes. Now, we propose to simulate granular ows onto liquid metal by using this software, and to discuss on the inuence of several industrial features, such as wall eects, liquid metal layer, or number of bags.

Problem statement

The problem statement of the powder chute onto liquid metal is illustrated in gure 149. A mold, with height H i and radius R i , is lled with liquid metal at height h m from the bottom. A powder cylindrical bag, with volume V b , is placed at a height h r from the molten metal. In the simulations, no-slip boundary conditions are assumed on the mold walls. 

Discussion on the liquid metal layer

In this part, the inuence of liquid metal height is studied. Figure 151 illustrates problem statements of the two considered benchmarks. A powder cylinder with height h i = 25cm and radius r i = 5cm is placed at h r = 25cm from the metal surface.

First, the liquid metal height is chosen suciently large in order that the perturbation of the liquid substrate does not reach the bottom of the mold, and thus, h m = 15cm (gure 151). Finally, the length of the mold are taken very large in order that the powder never reaches it. Figure 151: Spreading onto liquid metal and analysis of its height Figure 152 illustrates the powder ow onto liquid metal at several instants. Before t = 0.3, the powder chute is observed. Then, the impact velocity onto the metal layer leads to the creation of a crater. Finally, the powder stops with r f ≈ 30.8cm.

Then, a thinner layer of liquid metal is considered (h m = 2 cm), as shown on gure 151.b . Moreover, we recall that h r and h i are taken as in the previous case. Figure 153 shows the powder spreading at several instants. In this conguration, the crater formed by the impact is less deep, probably due to a lower dissipation in the liquid metal. Moreover, the run-out distance is larger: r f ≈ 31.7cm. 

Walls eects

Now, we analyze the eects of the mold walls onto the powder spreading. We consider now a cylindrical powder bag with aspect ratio equal to 5 (r i = 5 cm and h i = 25 cm, thus, V b = 1.96 L). Furthermore, the mold is assumed to be lled at 15 cm from the bottom. The bag chutes at a height h r = 25 cm from the metal surface, as for the previous numerical simulations.

The conguration of this study is built by using the results obtained in the previous simulation (with h m = 15 cm). Indeed, the purpose consists in taking adequate mold lengths for the analysis of walls inuence. Thus, the circumscribe square of the circle with radius r f = 30.8 cm is traced, leading to the computation of half of its diagonal value r c = 0.523. Finally, we compute R i = (r c + r f )/2, as shown on gure 154. The circumscribe square (in red) to the circle of radius R i corresponds to the basis geometry of the considered mold. Thus, L i = 52.3cm. 

Conclusion

In this section, we performed numerical industrial powder chutes onto static liquid metal, by using the Thercast software. Several casting features are discussed, such as the height of liquid metal, spreading at mold corners and number of bags.

Some improvements for a better powder spreading are thus proposed. First, it has been observed that the liquid layer has an inuence onto the powder run-out distance. Indeed, a lower h m leads to soften the powder chute, and thus, to decrease the crater depth formed by the impact and nally, to increase the run-out distance of the powder.

Then, the spreading at the corner mold has been also analyzed. It has been observed that the powder moves in the mold walls directions, leading to cover a larger surface than without considering any walls.

Thus, walls have a strong inuence on the powder spreading, and may increase the run-out distance of powder.

Finally, splitting a bag into smaller ones leads to a worse spreading. Thus, it would be more interesting for metallurgists to deposit just one bag into the mold, in order to optimize the powder spreading.

Conclusion

In this chapter, the purpose consisted in simulating industrial powder chutes onto a solid substrate and a static liquid metal. First, experimental collapses and chutes of industrial powders have been performed in order to analyze the relevance of µ(I) rheology for describing these ows. For the coarsest powder, the same dynamics as determined in [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] has been found. For the nest one, it has been observed a strong cohesion between grains inducing a bad spreading, which tends to disappear as a increases, and thus leading to obtain the same dynamics as [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF].

Then, industrial powder chutes onto liquid metal have been performed by using the industrial software Thercast. Several industrial features have been discussed, leading to the process optimization. Finally, it has been observed that liquid metal height, walls and number of powder bags inuence a lot the spreading quality.

Chapter 6 

Conclusion and perspectives

Conclusion

The nal objective of this thesis was to provide numerical tools for modeling the spreadng of industrial powders by a continuous approach. Suitable constitutive equations of certain behaviors representative of granular materials were chosen according to their numerical and physical relevance. For dry granular materials, the µ(I) rheology is able to characterize the dierent regimes (quasi-static, dense and collisional), representative of the dynamics of this type of material.

Finally, we chose yield stress uids to characterize the understanding of partially wet granular materials.

Although other phenomena exist to characterize this type of material, these types of uids have been privileged because they represent a numerical challenge, especially for free surface ows and due to the strong non-linearities.

We proposed and developed a nite element formulation for the resolution of multiphase ows of materials obeying the chosen constitutive models. Interface capture and tracking was performed using a Level-Set method. The signed distance eld is rst truncated around the interface to improve stability, convected over time, but also reset. Then, momentum and mass equations are solved, and stabilized by a variational multiscale approach. In addition, the behavior of the uid was taken into account by a regularization method. Finally, an anisotropic mesh adaptation method was proposed to increase accuracy. In the case of non-Newtonian ows, the mesh has been adapted in zones with strong variations in level-set eld gradients, velocity but also eective viscosity (in order to capture the yielded / unyielded transition).

It has been shown that this method has great potential for the simulation of highly plastic ows. Indeed, for Bingham ows, it is possible to consider very large viscosity jumps thanks to the VMS method and mesh adaptation where very ne and stretched meshes are considered in the transition zones.

Finally, we simulated the ow of dry granular materials in two and three dimensions by the µ(I) rheology. We have dealt with the case of granular column collapses. First, we compared the µ(I) model with the discrete simulations of Lagrée et al. [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a i rheology[END_REF], that showed good agreement. Finally, we studied the inuence of dierent rheological parameters on spreading. Thus, it has been observed that static friction coecient µ S is the dominant parameter in the ow. Finally, the inuence of the geometry of the column was discussed.

We found the same dynamics observed in the experimental literature: a linear regime for low aspect ratios and a power law regime for large aspect ratios. In addition, a study of the inuence of the initial height was carried out, and greater spreading.

Finally, we applied the µ(I) rheology to the ow of industrial powders. In a rst step, the objective was to validate the µ(I) rheology to describe the ows of powder, with collapse and collapse experiments that we carried out. Thus, it is observed that the granuar material follows the same dynamics as the µ(I) rheology. On the other hand, the nest powder tends towards this dynamic for large aspect ratios, due to a negligible cohesion between grains over the ow energy. Finally, simulations of powder chute on liquid metal were performed with the software Thercast, commercialized by Transvalor, in order to give rst ways to optimize the process.

Perpectives

Improvement of numerical methods

In this thesis, the behavior of the non-Newtonian uids was introduced into the equations of uid mechanics by a regularization method. However, some limitations of the method appear, due in particular to the fact that the ow never stops. This can cause more uncertainties in the calculation of the material arrest time. In this perspective, it would be interesting to use an exact method, as proposed by Roquet et al. [42].

To mathematically translate non-deformed zones that are not dened below the threshold, we solve a constrained system energy minimization problem that || γ ||, using the augmented Lagrangian method, coupled with the Uzawa algorithm. These methods are very powerful, because they are able to model very precisely the unyielded zones of the uid. Roquet et al. [42] solved single-phase ows of Bingham uids using this approach. Very promising results have been obtained by the authors.

It would be interesting to extend this method rst to the multiphase ows of Bingham uids. However, careful attention must be paid to the robustness of this method, since it may appear very expensive in computing time, if it is not well adapted to the problem under consideration.

Finally, it would also be interesting to propose an exact formulation for the µ(I) model, based on the same method of resolution. However, an additional diculty is introduced, with the appearance of a nonlinear term in pressure, and which, if we do not take it into account, can totally degrade the quality of the solution.

In order to simulate such a ow, it would be interesting to validate the model on a Bagnold prole, for which we have an analytical solution, and where it would be interesting to study the robustness of the calculations as well as the speed of convergence.

Ingot casting process

As part of the industrial project COMCEPT, this model has been applied to the prediction of the spreading of the cover powders used during the ingot casting process. All the developments numerically related to this thesis work were introduced by the company Transvalor in the Thercast software.

In this thesis, we simulated the spreading of industrial powder on a static bath of liquid metal, without considering the heat exchanges. We have evaluated the inuence of dierent parameters representative of the industrial process: thickness of the liquid metal layer, spreading in the corners of the ingot mold, inuence of the number of bags. It would be interesting to continue further studies on the inuence of these parameters in order to determine the best arrangement of powder bags for a given ingot mold.

The prospects of the COMCEPT project then consist in considering the thermal exchanges induced by the lling of the metal in the ingot mold, and in particular to take into account the phase change of the powder, which occurs after spreading. Finally, the last numerical perspective is to numerically simulate this process dynamically (ie, considering the lling of the ingot mold). Indeed, the powder can penetrate into the molten metal, due mainly to the strong tubulences generated by the entry of the metal, creating inclusions in the nal product. Post-doctoral work is in progress and aims to propose a criterion of removal of the powder, and also focuses on the inclusion monitoring during the process, in order to nally predict the nal position of the inclusions.

Finally, it would be interesting to extend this model to mold powders used in continuous casting.

Extension to other type of ows for the µ(I) rheology

It could be also interesting to use our solver to test the pertinence of the µ(I) model to other types of ows. For example, the drag and lift of an object immersed in a sheared granular medium could be computed.

Extension to other non-Newtonian ows

In this work, we proposed and implemented numerical methods for the resolution of non-Newtonian uid ows. We began by treating the ows of threshold uids, and more particularly of Bingham uids, by the numerical challenge that occurs because of the strong non-linearities observed specically at the interfaces.

We then extended our method to ows of dry granular materials (obeying the µ(I) model), since during the casting process, the powder is always considered in its granular state during spreading.

This model can nevertheless be extended to the ow of other non-Newtonian uids, such as thixotropic fuids. The simulation of the ow of the latter was the subject of a Master internship within the Computing and Fluids team.

Thixotropic uids

The behavior of a thixotropic uid is characterized by the evolution of its microstructure over time and the reversibility of this evolution. Indeed, when the uid is heavily sheared, the behavior approximates that of a Newtonian uid. At rest, a change in the microstucture of the uid will take place over time, drastically increasing the viscosity of the uid (which is not due to the existence of a ow threshold. New T 0 corresponds to a time of restructuring of the material considered and α is a constant of the system. For λ = 0, the uid is not structured at all, and the eective viscosity tends towards the plastic viscosity. When λ tends to innity, the uid is structured, and the eective viscosity tends to innity. As in the case of Bingham uids, the divergence of this viscosity should be limited, and methods similar to those used for Bingham or µ(I) ows should be developed and tested.

Résumé

Cette thèse traite de la modélisation et des méthodes numériques pour la simulation d'écoulements de fluides non-Newtoniens, et particulièrement, de matériaux granulaires. Une application de ce travail concerne les poudres de couverture utilisées pour protéger thermiquement le métal de l'air dans le procédé de coulée en source d'alliages métalliques. Ces poudres sont conditionnées dans des sacs disposés dans la lingotière, qui brûlent suite aux fortes chaleurs engendrées, et permettant son écoulement sur la surface du métal. Ainsi, la simulation numérique apparaît comme un puissant outil pour l'optimisation du procédé, et notamment, de l'étalement de ces poudres. Dans ce travail, une formulation éléments finis a été proposée pour modéliser l'écoulement multiphasique des matériaux granulaires dans un formalisme de la mécanique des milieux continus. Les équations associées sont résolues via des schémas numériques stabilisés, couplés avec la méthode Level-Set pour capturer et suivre le profil du matériau granulaire au cours de la simulation. Dans un premier temps, les outils numériques ont été testés sur des cas d'écoulements de fluides de Bingham, où les fortes non-linéarités sont traitées par une méthode de régularisation. Puis la formulation est étendue aux écoulements de granulaires secs, dont le comportement piezzo-dépendent est traduit par la loi µ(I). Le modèle a été validé sur des cas d'effondrement de colonnes de grains, et une étude de sensibilité aux conditions aux limites et constantes physiques du modèle est proposée. Enfin, des cas industriels de chutes de poudres sur substrats solide et métal fondu ont été menés, amenant à des premières pistes pour l'optimisation du procédé de coulée en lingotière.

Mots Clés

Matériaux granulaires, rhéologie µ(I), fluides de Bingham simulation numérique, méthodes éléments finis, coulée en lingotière Abstract This thesis is devoted to the modeling and numerical methods for the simulation of non-Newtonian flows, and focuses particularly on granular materials flows. This work is applied to molten powders aiming to ensure metal thermal protection from the air in ingot casting process of metallic alloys. These powders are conditionned into bags disposed into the mold, which burn due to high temperatures, and allowing the powder spreading onto the metal surface. Thus, numerical simulation appears as a powerful tool for the process optimization, and especially, for the powder spreading. In this work, a finite element formulation has been proposed for the modeling of granular multiphase flows by a continuum approach. The associated equations are solved using stabilized numerical schemes, coupled with the Level-Set method to capture and follow the granular profile during the simulation. First, the numerical tools have been implemented for Bingham flows, by using regularization a method. Then, the formulation was extended to dry granular flows, by the use of the µ(I) rheology constitutive model for describing its pressure-dependent behavior. The model has been validated on granular collapses, and a sensitivity analysis to boundary conditions and physical constants has been proposed. Finally, industrial cases of powder chutes onto both solid and liquid metla substrates have been conducted, leading to preliminary solutions for the optimization of ingot casting process.
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Figure 2 Figure 2 :

 22 Figure 2 illustrates an overview of usual initial disposition of powders into the mold. Powders are conditioned into bags, attached mostly by ropes from the top of the mold (gure 2.a). Then, bags are burning due to the high temperatures induced by the mold lling, allowing the powder falling and spreading onto the liquid metal surface. Other industrial partners deposit the bags directly at the bottom of the ingot (gure 2.b), or raise it onto cardboard boxes (gure 2.c). After spreading, the powder phase change is occuring partially due to the contact with hot metal, turning the powder into a liquid. At the end of the process, powder has the appearance of a solid crust.

Figure 4 :

 4 Figure 4: Pictures of granular microstructures with respect to the amount of interstitial uid : (a) Dry granular material ; (b) Creation of capillarity bridges ; (c) Immersed granular material
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 56 Figure 5: Representation of the three regimes (solid, liquid, gas) occurring in a granular ow
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 7 Figure 7: Determination of the ow regime according to the inertial number

Figure 8 :

 8 Figure 8: Eective friction µ according to the initial number I
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 9 Figure 9: Shear stress according to shear rate for Herschel-Bulkley uids : (a) Shear-thinning uids (n < 1) ; (b) Shear-thickening uids (n > 1) ; (c) Bingham uids (n = 1)
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 10 Figure 10: Examples of multiphase ows in nature and industry
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 11 Figure 11: Computational domain of a multiphase problem

  (a) time t (b) time t + ∆t

Figure 12 :

 12 Figure12: Lagrangian description of a multiphase problem[START_REF] Ionescu | Viscoplastic modeling of granular column collapse with pressure-dependent rheology[END_REF] 
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 13 Figure 13: Eulerian description of a multiphase problem

Figure 14 :

 14 Figure 14: Computation of the signed distance function α
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 17 Figure 17: Fixed mesh with 20000 elements and the associated interface

Figure 18 :Figure 19 :

 1819 Figure 18: New adaptive mesh with 20000 elements and the obtained interface after ve remeshing steps

Figure 21 illustrates

 21 Figure21illustrates the interface between the two uids, at t = 0.4s. At this stage, the uid impacts the right wall. Furthermore, kinetic energy induced by the dam-break begins to transform into potential energy (close to the right wall), leading to a wave formation.

Figure 24 .

 24 Figure[START_REF] Bonito | Numerical simulations of bouncing jets[END_REF].a illustrates the dimensionless front position of the ow with respect to the time. The obtained results are compared with Cruchaga et al.[START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF]. The same ow dynamics is observed for the run-out, but the front goes faster in the numerical simulations than in the experimental work. These dierences are generated by the boundary conditions applied at the bottom surface (slip-boundary conditions) and thus, to the abscence of friction law.

Figure 24 .

 24 Figure 24.b illustrates the dimensionless height on the left wall according to the time. Now, the rst wave occurring at the left wall is closer to the experimental work[START_REF] Cruchaga | Collapse of a liquid column : numerical simulation and experimental validation[END_REF].

Figure 24 .

 24 Figure 24.d illustrates the dimensionless height at x = 0.27m according to the time. The obtained results
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 20 Figure 20: The interface and the associated mesh at t = 0.1s

Figure 21 :

 21 Figure 21: The interface and the associated mesh at t = 0.4s
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 22 Figure 22: The interface and the associated mesh at t = 1s
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 23 Figure 23: Zoom on the interface and associated mesh at t = 1s

Figure 24 :

 24 Figure 24: Interface locations according to the time for a Newtonian dam-break with aspect ratio a = 1 (a) Dimensionless position of the front; (b) Dimensionless height on the left wall ; (c) Dimensionless height on the right wall ; (d) Dimensionless height at x = 0.27m

Figure 25 :

 25 Figure 25: Inuence of mesh adaptation on the height position of the water onto lateral walls for a mesh with 5000 elements: (a) Dimensionless height position measured on the left wall ; (b) Dimensionless height position measured on the right wall

Figure 26

 26 illustrates the same comparison for a mesh with 10000 elements.

Figures 27 .

 27 Figures 27.a and 27.b measure the interface position onto the left and right walls, and discuss the inuence of number of elements on the solution accuracy. Now, the mesh adaptation is used for all the simulations.
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 26 Figure 26: Inuence of mesh adaptation frequency on the height position of the water onto walls by considering a mesh with 10000 elements: (a) Dimensionless height position measured on the left wall ; (b) Dimensionless height position measured on the right wall

Figure 27 :

 27 Figure 27: Inuence of the number of elements on the height position onto lateral walls: (a) Dimensionless height position measured on the left wall ; (b) Dimensionless height position measured on the right wall
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 28 Figure 28: Percentage of gained volume of densest uid according to the time and inuence of the remeshing frequency
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Figure 29 :

 29 Figure 29: Lid-driven cavity ow: problem statement

Figure 30 :

 30 Figure 30: Yielded and unyielded regions in a lid-driven cavity, for Re=0: (a) Bn=1, (b) Bn=5, (c) Bn=20, and (d) Bn=1000
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 3132 Figure 31: Horizontal velocity, for Re = 100 and Bn = 0.1 -1: (a) Mesh with 10000 elements, (b) Mesh with 2000 elements

Figure 33 :

 33 Figure 33: Mesh adaptation according to velocity and viscosity elds, for Re = 0 and Bn = 5: (a) m = 10 3 , (b) m = 10 6

Figure 34 :Figure 35 :

 3435 Figure 34: Mesh adaptation following velocity eld, for Re=1000 and m = 10 6 : (a) Bn = 1, (b) Bn = 100, (c) Bn = 1000, (d) Bn = 2000

Figure 37 :

 37 Figure 37: || τ || iso-bands for Re=0: (a) Bn=0.2, (b) Bn=3.9, (c) Bn=27 (d) Bn=127

Figure 38 :

 38 Figure 38: Horizontal velocity prole at a fully developed region of larger channel for Re=0

Figure 39 :

 39 Figure 39: Anisotropic adaptive meshes, for Re = 0 and m = 10 6 : (a) Bn=3.9 (b) Bn=27.1
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 4041 Figure 40: Problem statement of a Bingham ow around a cylinder
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 424344 Figure 42: Horizontal velocity according to y-coordinate, Re = 1, Bn=10, 100, 1000

Figure 45 :

 45 Figure 45: Problem statement of a Bingham dam-break problem

Figure 46 τFigure 46 :

 4646 Figure46illustrates the rheological curve of Bingham uids (logarithmic scale), after the use of Papanastasiou regularization. It is observed the existence of a critical shear rate, denoted γc , which corresponds to the transition between unyielded and yielded regions. Theoretically, nding γc corresponds to nd the zero of the function x -Bn • exp(-mx).

Figures 49 ,Figure 48 :Figure 49 :

 494849 Figures 49,[START_REF] Frigaard | On the usage of viscosity regularisation methods for visco-plastic uid ow computation[END_REF], and 51 show the height prole during a Bingham collapse with Bn = 0.03, and illustrate dimensionless velocity (a), shear rate (b), shear stress (c) and eective viscosity (d) elds at several instants
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 505152 Figure 50: Dam-break of a Bingham uid with Bn = 0.03 at t = 100: (a) Velocity v ; (b) Shear rate γ ; (c) Shear stress τ ; (d) Eective viscosity ηeff
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 5354555657 Figure 53: Dam-break of a Bingham ow with Bn = 0.1 at t = 100: (a) Velocity v ; (b) Shear rate γ ; (c) Shear stress τ ; (d) Eective viscosity ηeff
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 585960 Figure 58: Bingham dam-break with Bn = 0.1 at t = 10: (a) Interface and yielded/unyielded regions ; (b) Adaptive mesh

Figure 62

 62 Figure62illustrates the Bingham height, measured on the left wall for dam-breaks with dierent Bn. First, the larger Bn, the larger the nal Bingham height. Moreover, the nal Bingham height is minimum

Figure 62 :

 62 Figure 62: Bingham height, measured on the left wall, during dam-breaks with dierent Bn

Figure 63 .

 63 Figure 63.b illustrates potential energy evolution. A brutal decrease is observed at the rst instants.

Figure 63 .

 63 Figure 63.c illustrates mechanical energy evolution. As mentioned before, we nd here the negligibility of kinetic energy compared to potential energy, traducing the quasi-static ow.

Figure 63 .

 63 Figure 63.d illustrates the variation of power dissipation. The same trend as kinetic energy curve 63.a is observed. First, a decrease is observed until t = 20 , leading to the stabilization at a low value, as observed before. Moreover, the ow dissipates more power for a low Bn.

Figure 63 :

 63 Figure 63: Energy analysis during Bingham dam-breaks with Bn = 0.03 and Bn = 0.1: (a) Kinetic energy ; (b) Potential energy ; (c) Mechanical energy ; (d) Dissipated power

Figure 64 :

 64 Figure 64: Volume conservation of Bingham uid according to the time for a dam-break problem: (a) Bn = 0.03 ; (b) Bn = 0.1

Figure 65 :Figure 66 .a illustrates the evolution of 1 Vtot

 65661 Figure 65: Mean shear rate evolution during a dam-break with Bn=0.03: (a) Mean shear rate ; (b) Speed of descent

Figure 66 :

 66 Figure 66: Mean shear rate evolution during a dam-break with Bn=0.1: (a) Mean shear rate ; (b) Speed descent

Figure 67 Figure 67 :

 6767 Figure 67 illustrates yielded/unyielded regions during Bingham dam-breaks with dierent boundary conditions: gure 67.a represents the ow shape with no-slip boundary conditions, and gure 67.b with slip boundary conditions. In the rst ow, dead regions are observed at the ow center, making slow down the uid. In the second ow, no-dead zones are noticed. However, two unyielded zones, moving enmasse, are observed: the rst one is located at the front. The second one is located close to the corner, inducing its conservation during the ow.

Figure 68 :

 68 Figure 68: Run-out distance of dam-breaks with Bn = 0.1 with no-slip and slip boundary conditions

Figure 69 :

 69 Figure 69: Height measured on the left wall of a dam-break with Bn = 0.1 with no-slip and slip boundary conditions

Figure 70 illustrates

 70 Figure 70 illustrates dissipated energy in shear according to the dimensionless time for two Bingham collapses with dierent boundary conditions applied at the bottom surface (slip and no-slip). A large dissipated energy in shear at the beginning of the ow is observed, which corresponds to the setting into motion of the ow. Indeed, a larger dissipated energy in shear is observed for a column collapse with no-slip boundary conditions at the bottom surface as observed in curves 70 (twice more dissipation initially). When the ow is arrested, there is no more energy to dissipate.

Figure 70 :

 70 Figure 70: Comparaison of the dissipative energy in shear E d = 2 Ω τ xy γxy dΩ

Figure 71 :

 71 Figure 71: Comparaison of the dissipative energy in extension E d = Ω τ xx γxx + τ yy γyy dΩ

Figure 75 : 62 ]Figure 76 :

 756276 Figure 75: (a) vertical section of the deposit (b) of a granular column with three initially concentric zones[START_REF] Lube | Axisymmetric collapses of granular columns[END_REF] 

Figure 77 :

 77 Figure 77: Initial set-up of the two series of 2D granular collapses

  Figure80illustrates the variation of the eective friction µ according to I.When the inertial number is low (quasi-static regime), it shows that the eective friction µ tends to the static friction coecient µ S , which denes the repose angle φ r of the granular material (φ r = atan(µ S )). When I increases, µ tends to the dynamic friction coecient µ F . At I = I 0 , the friction is equal to µ S +µ F

2 .

 2 Up to I 0 , the ow regime is collisional.

Figure 80 :

 80 Figure 80: Eective friction µ according to the initial number I

Figures

  Figures 88.a, 88.b and 88.c illustrate the dimensionless front position according to the dimensionless time,

  (a) Velocity eld v (b) Shear rate || γ || (c) Pressure p (d) I/I0 (e) Eective viscosity η ef f (f) τ -µSp

Figure 84 :

 84 Figure 84: Screen-shots on several physical elds during a granular collapse with a = 1.42, plotted at time t = 1

Figure 85 :

 85 Figure 85: Screen-shots on several dimensionless physical elds during a granular collapse with a = 1.42, plotted at time t = 2

Figure 86 :

 86 Figure 86: Screen-shots on several dimensionless physical elds during a granular collapse with a = 1.42, plotted at time t = 4

Figure 87 :

 87 Figure 87: Screen-shots on several dimensionless physical elds during a granular collapse with a = 1.42, plotted at time t = 6

Figure 88 :

 88 Figure 88: Dimensionless position of the front according to dimensionless time for granular collapses with dierent aspect ratios (a = 0.5, 1.42 and 6.26)

Figure 89 :

 89 Figure 89: Anisotropic adaptive mesh at dierent instants (t = 0, 1, 2 and 4) for a granular collapse ow with initial aspect ratio a = 1.42
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 90 Figure 90: Sensitivity analysis to || γ || min of dimensionless position of the front vs. dimensionless time for a granular collapse with a = 1.42

Figure 91 :

 91 Figure 91: Sensitivity analysis to || γ || min of nal granular proles after granular collapses (a = 1.42)

  -1 ηmin = 10 -2 ηmin = 10 -3 ηmin = 10 -4 ηmin = 10 -5

Figure 92 :

 92 Figure 92: Sensitivity analysis to η min by plotting dimensionless position of the front according to the dimensionless time during a granular collapse with a = 1.42

Figure 93 :

 93 Figure 93: Final granular proles after granular collapses (a = 1.42) with dierent η min

  µS = 0.42 µS = 0.52 µS = 0.62

Figure 94 :

 94 Figure 94: Final proles after granular collapses (a = 1.42) with dierent µ S

Figure 95 : 26 SFigure 96 :

 952696 Figure 95: Final proles after a granular column (a = 10) for dierent µ S

Figure 97 :

 97 Figure 97: Eective viscosity of the granular material at time t = 1

Figure 98 :

 98 Figure 98: Final proles for a column with initial aspect ratio a = 1.42 for dierent values of dynamic friction coecient ∆µ = 0.18, 0.28, 0.38 and 0.48

Figure 99 :

 99 Figure 99: Dimensionless position of the front according to dimensionless time with initial aspect ratio a = 1.42 for dierent values of dynamic friction coecient ∆µ = 0.18, 0.28, 0.38 and 0.48

Figure 100 :

 100 Figure 100: Final proles after a granular collapse (a = 10) for dierent ∆µ

  y = 2.29∆µ -0.32 y = 13.34∆µ -0.2

Figure 101 :

 101 Figure 101: Dimensionless run-out distance according to ∆µ

Figure 102 :

 102 Figure 102: Dimensionless position of the front according to dimensionless time with initial aspect ratio a = 1.42 for dierent values of I 0 = 0.04, 0.4 and 4

Figure 104 Figure 103 :

 104103 Figure104shows the normalized ow front position according to a. As obtained in Lube et al.[START_REF] Lube | Collapses of two-dimensional granular columns[END_REF], a

  72 * x 0.97 y = 2.96 * x 0.69

Figure 104 :

 104 Figure 104: Dimensionless run-out distance according to a for two-dimensional granular collapses
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 105 Figure 105: Relative energy partition during a granular collapse with a = 1.42
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 106 Figure 106: Relative energy partition during a granular collapse with a = 10
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 107108109110 Figure 107: Relative energy partition during a granular collapse with a = 50
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 111 Figure 111: Height proles during a granular column collapse with a = 50, plotted for dierent nondimensional times t = t/ h i /g

Figure 112 :

 112 Figure 112: Dense vs. inertial regions for dierent non-dimensional times t = t/ h i /g, plotted as I/I 0 for a granular collapse with a = 50

Figure 113 :

 113 Figure 113: Evolution of mean shear rate during a granular collapse with a = 1.42

Figure 114 :

 114 Figure 114: Variation of arrest time with rheological constants: (a) Inuence of µ S ; (b) Inuence of ∆µ

  (a) t = 0.5 (b) t = 3 (c) t = 5 (d) t = 6

Figure 115 :

 115 Figure 115: Shear rate for a granular collapse with a = 1.42 plotted at several instants

Figure 116 :

 116 Figure 116: Shear rate during a granular collapse with a = 10, plotted at several instants

Figure 117 :

 117 Figure 117: Run-out distance according to dimensionless time for granular collapses for a = 10 with dierent µ S

Figure 118 :

 118 Figure 118: Run-out distance according to dimensionless time for granular collapses for a = 10 with dierent ∆µ
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 32 Three-dimensional granular collapses 4.3.2.1 Problem statement Then, the model developed in this work is extended to three-dimensional granular collapses. The geometry of the problem is illustrated in gure 119. A cylindrical granular column with initial height h i and radius r i is considered. The computations are performed in a rectangular domain (with two symmetry planes) of height H in z direction and length L in both x and y directions.

Figure 119 :

 119 Figure 119: Initial granular column and adaptive mesh of a three-dimensional granular collapse simulation

Figure 120 :

 120 Figure 120: Steps required to determine regions where the granular material is allowed to slip: (a) The interface between the two domains (red): granular material (orange) and air (white) ; (b) Localization of the region where elements are cut by the interface (gray) ; (c) Subtraction of the gray region from granular domain ; (d) Determination of nodes located into the granular area where slip boundary conditions is applied (nodes in brown)
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 67121 Figure 121: Dimensionless nal run-out distance according to µ S after three-dimensional collapses

Figure 122 :

 122 Figure 122: Dimensionless run-out of the ow according to ∆µ after three-dimensional granular collapses

Figure 123 :

 123 Figure 123: Dimensionless run-out distance according to I 0 after three-dimensional collapses

Figure 124 :

 124 Figure 124: Dimensionless run-out distance according to a after three-dimensional granular collapses

Figure 126 : 10 )

 12610 Figure 126: Proles at dierent instants of a 3D granular column collapse with initial aspect ratio a = 7: (a) t = 0s ; (b) t = 0.1s ; (c) t = 0.21s ; (d) t = 0.33s

Figure 127 :

 127 Figure 127: Dimensionless nal run-out distance according to a after three-dimensional granular collapses and inuence of h i

  (a) hi = 0.2m (b) hi = 2m

Figure 128 :

 128 Figure 128: Dense vs. inertial regimes region for time t = h i /g, plotted as I/I 0 for granular collapses with a = 10 and dierent h i

Figure 129 :

 129 Figure 129: Dimensionless run-out distance according to dimensionless time during granular collapses with dierent a

Figure 130 :

 130 Figure 130: Dimensionless run-out distance according dimensionless time for columns spreading with different initial radius

Figure 131 :

 131 Figure 131: Problem statement of a granular chute from height h r -Cut in the (y, z) plane
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Figure 134 :

 134 Figure 134: Study of inuence of granular volume fraction for granular collapses with xed a r : (a) a = 4, (b) a = 3, (c) a = 2 and (d) a = 1

Figure 135 :

 135 Figure 135: Dimensionless run-out of the ow according to a = h i /r i for a r = 4
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 136137 Figure 136: Energy partition during granular chutes with a = 4 and dierent a r

Figure 139 :

 139 Figure 138: Experimental setup for granular collapse experiments

Figure 140 :

 140 Figure 140: Deposit proles of sugar, sand and polenta

Figure 141 .Figure 141 :

 141141 Figure 141.d illustrates numerical collapse simulations of sand, sugar and polenta obtained using the identied µ S and arbitrary values for I 0 and ∆µ (taken from Jop et al.). The inuence of µ S outlined in the previous chapter, is observed, as the run-out distance is larger for low µ S . By comparing these results with the experimental ones, several dierences are observed. Indeed, a larger run-out distance for the polenta is noticed in our experiments, which is not conform with µ S values. This dierence may be explained by some uncertainties in our experimental protocol, conrming the global results of Lube et al., Lajeunesse et al.and other papers.In conclusion, experimental work conducted with sugar, polenta and sand, show the same dynamics as the one observed in the literature, which validates the investigated setup for the study of industrial powder collapses and chute.

54 ThermotectFigure 142 :

 54142 Figure 142: Dimensionless run-out distance according to the aspect ratio, obtained with industrial powders collapse

Figure 144

 144 Figure 144 compares dimensionless run-out distances of experimental G-Izy collapses with the numerical results. A good agreement between the two methods are found for large a.

6 Figure 143 :

 6143 Figure 143: Dimensionless run-out distance according to a after a Thermotect collapse and comparison with numerical simulation

Figure 144 : 4 10Figure 146 :

 1444146 Figure 144: Dimensionless run-out distance according to a after a Gizy collapse and comparison with numerical simulation

Figure 147 :

 147 Figure 147: Dimensionless run-out distance according to a r , obtained for Thermotect M20-10 chutes

Figure 148 :

 148 Figure 148: Dimensionless run-out distance according to a r , obtained after G-izy chute simulations

Finally, density andFigure 149 :

 149 Figure 149: Problem statement of powder ow onto liquid metal

Figure 150

 150 Figure150illustrates a three-uids ow problem. Fluids 1, 2 and 3 cover respectively computational domains Ω 1 , Ω 2 and Ω 3 , localized in the Ω domain. Each uid has its own features, denoted respectively as ρ 1 , ρ 2 , ρ 3 for the density, and η 1 , η 2 , η 3 for the viscosity. Then, two interfaces are dened: Γ 13 and Γ 23 .

Figure 150 :

 150 Figure 150: Computational domain of a three-uids ow problem

  (a) t = 0s (b) t = 0.1s (c) t = 0.2s (d) t = 0.3s (e) t = 0.4s (f) t = 0.5s (g) t = 0.6s (h) t = 0.7s

Figure 152 :

 152 Figure 152: Chute and spreading of a G-Izy column onto liquid metal

Figure 153 :

 153 Figure 153: Chute and spreading of a G-Izy column onto a thin layer of liquid metal

Figure 154 :

 154 Figure 154: Computation of the mold dimensions for the analysis of wall eects

  (a) t = 0.4s (b) t = 0.45s (c) t = 0.5s (d) t = 0.55s (e) t = 0.6s (f) t = 0.65s

Figure 155 :

 155 Figure 155: Powder front advancing to the mold corner, illustrated at several instants

Figure 156 :

 156 Figure 156: Mold dimensions and initial bags disposition for the study of the inuence of number of bags

Figure 157 :

 157 Figure 157: Chute and spreading of four granular columns onto liquid metal
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 06 convection-reaction equation appears in the problem, and corresponds to the evolution over time of the uid structure parameter λ: ∂λ ∂t + v • ∇λ + αλ || γ ||= 1 T
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	6.2.3		
	Glossary	
	a	aspect ratio of the uid column	(dimensionless)
	a c	critical aspect ratio	(dimensionless)
	a r	ratio between h i + h r to r i	(dimensionless)
	b	bubble function	(dimensionless)
	Bn	Bingham number	(dimensionless)
	d	diameter of the grains	(m)
	E	ltering length of the Level-Set function	(m)
	E c	kinetic energy	(J )
	E d	dissipated energy	(J )
	E m	mechanical energy	(J )

  Dans un premier temps, nous avons introduit les manières de décrire numériquement un problème multiphasique. Tout d'abord, les méthodes Lagrangiennes consistent à faire coincider le maillage considéré avec l'interface. Enn, les méthodes Eulériennes consistent à décrire l'interface indépendamment du maillage, en utilisant ensuite des méthodes d'interpolation. Nous avons choisi d'utiliser une description Eulérienne pour sa plus grand exibilité. De plus, une formulation basée sur la méthode des éléments nis a été choisie pour discrétiser le problème, puisque permettant des changements topologiques plus complexes.La résolution des écoulements multiphasiques est composée ici de trois étapes. Dans un premier temps,

	La métrique est basée sur le calcul du tenseur de distribution des arêtes, qui donne ainsi l'orientation et
	l'étirement de chaque arête. Dans les régions à fortes variations de gradients d'un vecteur, contenant les
	critères suivant lesquels adapter, les mailles seront très étirées dans la direction considérée. Sinon, le maillage
	sera dérané.
	Ces outils numériques sont nalement testés sur un cas d'écroulement de barrage (eondrement d'une
	colonne de uide sous gravité). L'inuence des paramètres de remaillage (fréquence d'adaptation, nombre
	d'éléments) sur la précision et la conservation de masse est enn analysée.

il s'agit de choisir une méthode permettant de décrire et suivre l'interface au cours du temps. Ensuite, les équations de la mécanique des uides stabilisées doivent être résolues. Enn, nous adaptons le maillage de manière anisotrope an que nos calculs soient très précis.

Pour capturer l'interface, une méthode Level-Set, basée sur le calcul des distances signées à l'interface, a été choisie pour son faible temps de calcul. Puis, la fonction Level-Set a été ltrée autour de l'interface, évitant les oscillations numériques loin de l'interface. Enn, les étapes de réinitialisation et de convection de la Level-Set ont été couplées an de gagner en précision et en rapidité.

Ensuite, les équations de la mécanique des uides (Navier-Stokes) sont résolues et stabilisées grâce à une méthode variationelle multi-échelles. Il s'agit ici de décomposer les champs vitesse et pression en petites et grandes échelles, et d'injecter les eets des petites échelles dans le problèmes grandes échelles.

Finalement, une technique de maillage adaptatif anisotrope à nombre d'éléments xe est employée.

  Then, the new problem statement is shown in gure 132. No-slip boundary conditions are applied onto the bottom surface. Furthermore, symmetry conditions are applied onto (x, z) and (x, y) planes. Moreover, the computational domain is opened, leading to apply zero-pressure conditions in the other sides.

				(ρ air , η air )
	H	h i	(ρ f , η ef f )	v impact	z
			r i		y
				L	
	Figure 132: Problem statement of granular chutes from a collapse point of view
	4.3.3.1 Run-out analysis			
				g	r	(4.23)

Table 2 :

 2 Repose angles and static friction coecients of sugar, sand and polentaIndustrial powdersTwo industrial powders, with dierent internal properties, have been selected. The rst material is a black powder, called "Thermotect M20-10", which is mostly composed of silicon (SiO 2 ), alumina (Al 2 O 3 ) and carbon (more than 20%) . The second one, called "G-Izy 109", consists of a brown granular material, and is mostly composed of SiO 2 , CaO and Al 2 O 3 . Rheological features of these powders are summarized in table 3.

		Thermotect M20-10	G-Izy 109
	Repose angle	36 o	29 o
	Static friction coecient µ S	0.73	0.55
	Mean diameter d	3.2 • 10 -5	2 • 10 -4
	Apparent density ρ	625	550

Table 3 :

 3 Rheological features of Thermotect M20-10 and G-Izy 109
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Chapter 4

Modeling of dry granular ows using a continuum approach Contents Powder chutes Now, the purpose consists in determining industrial powder chute dynamics onto a solid substrate. We recall the dimensionless number a r , dened in the previous chapter, and corresponding to the ratio between h i + h r and r i :

First, experimental industrial chutes are investigated by using G-Izy powder (deposit shape illustrated in gure 145). Figure 146.a shows dimensionless run-out distance according to a r , and for several a. First, it is observed that the global behaviour is consistent with our previous theoretical conclusions using the µ(I)

model: the spreading behaves as a power-law for suciently large aspect ratio, increasing up to the collapse curve for a given a r . For chute experiments, we notice that large aspect ratios a = 8 and a = 10 do not discriminate signicantly for large a r , which should be due to a dispersion in our experimental protocol.

(a) G-Izy 109 (b) Thermotect M20-10 Therefore, two following Level-Set functions are dened such that:

and

(5.3)

Mixing laws for physical properties

First, we need to take into account the uid properties onto the computational domain. In this conguration, two mixing steps are performed. In a rst time, the purpose consists in mixing uid 2 and 3 properties by using a Heaviside function H 23 (x), and leading to the mixing density ρ 23 and viscosity η 23 :

with H 23 (x) dened such as:

Then, density ρ 23 and viscosity η 23 , are mixed with the properties of uid 1 (ρ 1 , η 1 ) by the use of an other Heaviside function H(x), dened such as:

leading nally to the nal density ρ and viscosity η:

(5.7)

Interfaces tracking

Then, we need to compute the two interfaces during the simulation. The same procedure as for a two uid ows is performed. First, the two Level-Set functions are ltered in the vicinity of the interface, and are now denoted as α23 and α13 . Finally, two convective auto-reinitialization equations are solved in order to ensure the transport of the two ltered Level-Set functions. By dening α such as the vector (α 23 , α 13 )

containing the two Level-Set functions, the transport of the Level-Set functions leads to the resolution of the following system: