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Abstract
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In an indoor environment, the problem of extracting the Angle-of-Arrival of the Line-

of-Sight component between a transmitter and Wi-Fi receiver using a SIMO link is the

main concern of this PhD thesis. One main challenge in doing so is due to the rich

multipath channel that indoor environments enjoy. Other challenges are limitation of

resources, such as number of antennas, available bandwidth, and Signal-to-Noise-Ratio;

not to mention the Wi-Fi ”imperfections”, such as gain/phase mismatches between

antennas and synchronisation issues between transmitter and receiver. In this thesis,

our main focus is implementing a real-time system that could measure the angle between

a transmitter and receiver in the presence of all the previous challenges.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Brief history

Localisation refers to the process of locating intended object(s) in space. Although most

often associated with modern technology, more primitive localisation methods exist. As

a matter of fact, the most basic localisation techniques could be achieved without the

use of any special instruments; sailors have been using celestial objects for sea-based

localisation for a few thousand years. Many specialised tools have been developed to

help provide more accurate localisation, including astrolabe, chronometer, sextant, and

compass as well as detailed maritime charts and maps [1]. In the late 1960s, the U.S.

Department of Defense (DoD) started off with a project to construct a satellite-based lo-

calisation system for military purposes; known nowadays as Global Positioning System,

or simply GPS. The system witnessed its first use in combat during the Persian Gulf

War in 1990. Furthermore, GPS consists of a constellation of 24 satellites that broad-

cast precise time signals. When the satellites are in view of a suitable GPS receiver,

these signals aid position-location, navigation, and precision timing [1]. Not until 1983

has GPS started evolving far beyond its military origins and begun to migrate into the

public sector. It is now a worldwide information resource supporting a wide range of

civil, scientific, and commercial functions, ranging from air traffic control and real-time

navigation on the road to coffee shop discovery in your block.

In response and due 1990, the DoD activated Selective Availability (SA), a purpose-

ful degradation in the civilian GPS signal, which limited the accuracy of most civilian

1
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GPS units to about 100 meters. Luckily SA was triggered off due to the fact that the

DoD recognised the important role played by GPS in numerous commercial activities.

Thanks to the deactivation of SA, along with the employment of other technologies such

as Differential GPS, now allow civilian GPS units to obtain an accuracy of 10 meters or

better. So for localisation in an outdoor environment, GPS works extremely well, given

that there is an unobstructed line of sight to four or more GPS satellites. However,

the signal from the GPS is too weak to penetrate most buildings, hence GPS is useless

indoors; a motivation for seeking other techniques for indoor localisation.

An Indoor Positioning system, or simply IPS, is a data acquisition system providing

information of people or objects within the indoor environment and obtaining data to

occupants to assist in way finding. Said differently and informally, an IPS is a mini-GPS

working indoors, where a mini-GPS might refer to a Wi-Fi receiver. Whereas GPS de-

pends on satellites, IPS is based on ”reference anchors” that are network nodes with a

known fixed position in the indoor environment. These ”anchors” cooperate with each

other to identify the position of the intended node. One approach to the architecture of

IPS is ”Bluetooth Beaconing”. Bluetooth was first invented in 1994 to replace short ca-

bles. All thanks to Bluetooth-enabled smartphones together with the Bluetooth beacons

that can provide the location of smartphone users. In 2010, Nokia introduced an IPS

based on Bluetooth Low Energy (BLE) technology, which was one of latest Bluetooth

technology operating on low power with low latency in communications. On the other

hand, a lot of systems use enhanced Wi-Fi infrastructure to provide location information

[4–6]. Wi-Fi positioning takes advantage of the rapid growth in the early 21st century

of wireless access points in urban areas.

Ladd et al present a novel technique whereby localisation is achieved using the IEEE

802.11b, known as wireless Ethernet [2]. In their paper, Ladd et al propose the use

of measured signal strength of Ethernet packets as a sensor for a localisation system.

The 802.11b wireless standard incorporates a mechanism by which a wireless network

card can measure the signal strength of all base stations within its broadcast range [3].

Consequently, a mobile system can use this information in an attempt to determine its

distance from these fixed based stations. Given these distances and the prior knowledge

of the base stations’ location, the mobile system can estimate its own current position.

Perturbation of the actual position of the mobile system will cause a change in the actual

position of the mobile system results in a change in the measured signal strengths and

therefore a change in the estimated position. The idea is simply stated but the actual

implementation is much more complicated where Ladd et al use the so-called Bayesian

inference localisation. They have implemented this approach to achieve an accuracy of

about one meter.
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Unfortunately, the chief difficulty in localisation with wireless Ethernet is predicting

signal strength. ”Radio frequency signal strength measured indoors is nonlinear with

distance. In addition, it has non-Gaussian noise, resulting from multipath effects and

environmental effects, such as building geometry, network traffic, presence of people,

and atmospheric conditions” [2]. On top of that, IEEE 802.11b standard operates in

the 2.4-GHz frequency band, meaning ”Microwave ovens, Bluetooth devices, 2.4-GHz

cordless phones, and welding equipment can be sources of interference. Ladd et al came

up with an idea where they broke up the area of interest into cells, and then took signal

strength readings in each cell, effectively training the system. A mobile system could

then take signal strength readings, compare the measured data to the training set, and

use Bayesian Inference to determine the location that would most likely produce those

measurements.

Future research [2] was highlighted by Lad et al. Studies were conducted at night-

time, i.e. a nearly static environment, and in particular in corridors, which means that

movement was restricted to narrow straight lines. They point out the interest of studying

the behaviour of a system in a more dynamic environment. The advantage of localising

via wireless Ethernet should be clear: In contrast to GPS, the system could work in

any environment, whether indoors or outdoors, while GPS only operates for outdoor

systems. In addition to that, this technology is ubiquitous and, therefore, no additional

hardware cost would be needed.

1.1.2 Parameters inferring location

Received Power

Received power is one of the basic and oldest measuring principles to compute the

distance between a transmitter and its corresponding receiver. This relation is given by

the free space path loss equation using isotropic radiating antennas [7]:

PR =
PTGTGR
(4πd/λ)2

where PR and PT are the received and transmitted power, respectively; GR and GT

are the receive and transmit antenna gains, respectively; λ is the wavelength of the

propagating signal; and d is the separating distance between the transmitter and receiver.

As a result, a widely used indicator could be derived which is known as Received Signal

Strength Indicator (RSSI). It is an 8-bit signed integer that denotes whether the received

power level is within or below/above the Golden Receiver Power Range (GRPR)[8].
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RSSI indicates 0 if the received power is within the GRPR; positive if it is above and

negative if it is below. Although RSSI was intended for power control purposes [9], many

Bluetooth devices, such as Bluetooth 1.2 uses RSSI to discover any nearby devices [10]

and estimate the separating distance. However, as tested in [8], RSSI doesn’t correlate

well with distance. The reasons why is that RSSI is a quantized version of the provided

received power and therefore the accuracy would mainly depend on the resolution of

the quantization. Also, RSSI is highly affected by multipath, which is a main feature of

indoor environments.

Time-of-Arrival

The distance d between the mobile target to the measuring unit is directly proportional

to the propagation time ∆t. So upon measuring ∆t, one could easily calculate the

separating distance between the mobile target and the measuring unit by:

d = c∆t

where c is the speed of light in vacuum. However, accurate timing synchronization is

required between transmitter and receiver clocks to perform ToA estimation [11].

Wi-Fi

User

Figure 1.1: User transmitting to Wi-Fi at angle θ

Angle-of-Arrival

Angle of Arrival (or AoA) is a technique based on the relative time delay with respect to

an arbitrary antenna chosen as a reference i.e. the time delay at this reference antenna

is zero. Assume the SIMO case, as shown in Fig. 1.1, where the user is equipped with
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one antenna and receive antennas. Let the transmitted signal at any time be s(t) where

it is of the form

s(t) = Aej2πfct

The form of s(t) in the above equation is a valid form of an electromagnetic transmitted

signal having two orthogonal components, which are the Inphase (or I) and the Quadra-

ture (or Q). This signal is transmitted with amplitude A and is oscillating on frequency

fc. Following [12], it is easy to show that the received signal is of the form

rrr(t) = aaa(θ)s(t)

where aaa(θ) is the so-called steering vector, which is a function of the antenna’s position

and the AoA, θ.

Figure 1.2: Angle-based localisation

Figure 1.3: The two fundamental steps for Position Estimation

After θ is estimated by a suitable Parameter-Estimation method by, say, two stations (or

WiFis) as depicted in Fig. 1.2, then the position of the user could be easily determined.

This means that a 2-step procedure is required to determine a position of a user: a



Chapter 1 Introduction 6

(i)Parameter-Estimation step followed by a (ii)Location-Estimation step. In this thesis,

we focus on the first block, i.e. we are very interested in deriving suitable methods that

could yield parameter estimates, which infer the position of the user in the presence of

noise, imperfections, impairments, and other difficulties, which will be addressed in the

next section.

1.2 Parameter Estimation: Problems and Methods

The term Parameter Estimation refers to the process of utilising sample data to estimate

parameters of interest in a certain model, under certain assumptions. It is worth to take

a moment and highlight three keywords in the previous statement: model, parameter,

and assumptions. One difficulty in indoor localisation is actually confirming a model.

For example, Saleh and Valenzuela [13] have modeled the multipath channel as a diffuse

one, namely each multipath component is a cluster of rays. Based on their results, they

have modeled the ToAs of the clusters as Poisson processes with different, but fixed,

rates. The thesis in [14], which is inspired by [13], model the AoAs of the clusters as a

Laplacian distribution. However, most (if not all) localisation methods, such as [15–18]

assume a specular multipath channel, i.e. each multipath component is only one ray.

This seems acceptable due to resolution issues1 and hence closely spaced sources could

be seen as one source.

After confirming a model, or a family of models, parameters involved in these mod-

els need to be estimated. This is where parameter estimation methods come in. The

Maximum Likelihood (ML) was one of the first methods to be investigated [20]. Even

though the ML method is optimal, in the sense that the estimated parameters mini-

mize the Mean-Squared Error (MSE), it did not receive much attention due to the high

computational load of the multivariate nonlinear minimisation problem involved, since

it requires a q-dimensional search, where q are the number of parameters that enter

the model in a non-linear form. Then, a number of interesting beamforming meth-

ods were implemented, as solutions to some suitable optimisation problems, such as

Bartlett’s beamformer [21] and Capon’s beamformer [22]. These beamformers require

a 1-dimensional (1D) search and are therefore considered to be fast. However, the res-

olution of these methods are not acceptable with low number of antennas, snapshots,

and SNR, which calls for the need of methods with higher accuracy, while maintaining

an acceptable computational speed. The 80s witnessed a revolution of the so-called

subspace methods, which are built on one genuine idea: ”the subspace spanned by the

1In the context of array processing, resolution refers to the ability of discriminating between two
closely spaced sources, given a certain SNR [19]
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steering vectors of the sources is orthogonal to the noise subspace”2 The most popular

subspace method is the MUltiple SIgnal Classification algorithm, also known as MUSIC

[24] by Schmidt, which only requires a 1D search. A root-MUSIC [25] method was im-

plemented by Barabell to replace the 1D search of MUSIC by a polynomial root finding

criterion. Paulraj and Kailath invented the ESPRIT [26] (Estimation of Signal Param-

eters Via Rotational Invariance Techniques) method, which is based on Least-Squares

fitting; however, it only operates for Uniform Linear Arrays (ULAs). Even though these

methods dominate the aforementioned beamformers in terms of resolution, there are

cases where subspace methods fail to operate, such as:

• Coherent sources: which is the case of smart jamming or multipath propagation.

A very simple example of two coherent sources are s1(t) and s2(t) = αs1(t), where

α is a complex number.

• Single snapshot: since no subspaces could be formed by a single snapshot.

It is worth mentioning that there is a large number of recent research done on subspace

methods; we refer the reader to the following papers [27–29].

Another class of parameter estimation methods work on approximating the ML cost

function, which are also computationally attractive, but not as attractive as subspace

methods. For example, the method by Ziskind and Wax [30] reaches the ML estimate

by multiple 1D searches, which is described as Alternating Projections (AP). Another

popular technique is the Iterative Quadratic ML (IQML) developed by Bresler and Ma-

covski in [31], where, with a linear parameterisation of the noise subspace, the ML cost

function at each iteration is seen as a weighted LS cost function, which is quadratic in the

vector of parameters of interest, and thus closed form expressions could be derived. How-

ever, the weighting is parameter dependent and hence fixed-point iterations are required.

In addition to parameter estimation methods, one is limited by the number of mul-

tipath components allowed in the model. More specifically, let q denote the number of

multipath components and N denote the number of antennas at the Wi-Fi; then q < N

should be satisfied, otherwise the estimation problem is under-determined, and the esti-

mated solution will not be unique. There is many work done by Pal and Vaidyanathan

, such as [32, 33], where they try to estimate the AoAs of q sources, where q > N .

This is achieved by coprime sampling, i.e. by partitioning the N antennas into two sub-

arrays of sizes N1 and N2, where N = N1 +N2 and (N1, N2) are co-prime. The coprime

sampling approach suggests specific antenna array configurations, called coprime arrays.

2This is explained in details in Chapter 6.
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The advantage is that we now have more degrees of freedom, i.e. the number of sources

could go up to q < O(N1N2). However, this approach has multiple drawbacks, when

our interest is oriented towards indoor localisation via WiFi:

• The sources are assumed to be completely uncorrelated, which is not valid for mul-

tipath sources. On the contrary, multipath components are known to be coherent.

• With a small number of antennas, say N = 3 antennas, we could not expect to

enhance the degrees of freedom by choosing, for instance, N1 = 2 and N2 = 1.

• The AoA between the transmitter and receiver could not be deduced by AoA

information only.

On the other hand, Vanderveen, Papadias and Paulraj introduced a novel approach

called JADE [34], which stands for Joint Angle and Delay Estimation. They propose

to transmit a known signal through a multipath channel, which is received through N

antennas at the receiver and M time samples are collected at each antenna. This idea

has multiple advantages in the context of indoor localisation via WiFi:

• The degrees of freedom of the number of multipath components could go up to

q < MN .

• There is no limitation on the geometry of antennas.

We note that JADE is not, in any way, a method. It is simply a smart way of collect-

ing data to increase the number of components that could be resolved. Therefore, it is

natural to propose JADE-based methods, such as JADE-ML and JADE-MUSIC in [34]

and JADE-ESPRIT in [35]. One should note that the coherence part was not addressed.

Besides the degrees of freedom and coherence of sources, another important aspect to be

considered is array perturbation. This is caused by several factors, such as antenna posi-

tion uncertainty [36], unknown gain/phases between different antennas [37], and mutual

coupling between antennas [38]. We address this topic in details in Chapters 6 and 7.

1.3 Contributions of this dissertation

In this thesis, we address all the problems addressed in the previous section in order to

derive some methods that perform parameter estimation. In particular,



Chapter 1 Introduction 9

Chapter 2. In Chapter 2, we tackle a well-known problem involved in array signal

processing, which is the detection of number of signals present in the model. Indeed, all

the methods mentioned previously require the number of signals to be known a priori.

The Minimum Description Length, or MDL [39], is a well-known method for this mat-

ter, however it suffers from degradation of performance when the number of available

snapshots is, relatively, low. We derive a modified MDL estimator, with the help of

random matrix tools [41–43], which improves the estimation of the number of sources

when a low number of snapshots L = O(N) is available.

Publications related to this chapter are:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Detection of the number of Superimposed

Signals using Modified MDL Criterion : A Random Matrix Approach,” IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

March, 2016.

Chapter 3. In Chapter 3, we address the AoA estimation problem from a compressed

sensing point of view. The contributions of this chapter are summarised as follows:

1. After a literature review on some popular compressed sensing methods, we pro-

pose a Variational Bayes (VB) method that allows sparse recovery of the desired

transmitted signals, which in turn allows estimating their corresponding AoAs.

2. We show that this iterative VB method outperforms existing compressed sensing

methods, such as Matching Pursuit (MP) [50], Orthogonal MP (OMP) [51], and

some other methods.

3. We also derive a Newton-type Forward Backward Greedy method that performs

sparse recovery, given the data.

4. We show, through exhaustive simulations, that the proposed Newton-type method,

is not only faster, but attains a lower MSE when compared to methods such as Fast

Matching Bayesian Pursuit (FBMP) [67] and Basis Pursuit Denoising (BPDN)

[53].

Publications related to this chapter are:

• A. Bazzi, D. T.M. Slock, L. Meilhac, S. Panneerselvan, ”A Comparative Study of

Sparse Recovery and Compressed Sensing Algorithms with Application to AoA Es-

timation,” IEEE International Workshop on Signal Processing advances in Wire-

less Communications (SPAWC), 2016.
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• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Sparse Recovery using an Iterative Varia-

tional Bayes Algorithm and Application to AoA Estimation,” IEEE Symposium

on Signal Processing and Information Technology (ISSPIT), 2016.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”A Newton-type Forward Backward Greedy

Method for Multi-Snapshot Compressed Sensing,” Asilomar conference on signals,

systems, and computers (ASILOMAR), 2017.

Chapter 4. In Chapter 4, we focus on the Joint Angle and Delay Estimation (JADE)

problem for localisation purposes. More specifically, we address the single-snapshot and

coherence problems mentioned in the previous section. The contributions of this chapter

could be summarised as follows:

1. We derive an algorithm that is a modification of the two dimensional Iterative

Quadratic ML (2D-IQML) algorithm, where an additional constraint is added for

joint ToA and AoA estimation and we show that 2D-IQML gives biased estimates

of ToAs/AoAs and performs poorly at low SNR due to noise induced bias.

2. We propose a two dimensional Denoised IQML (2D-DIQML) that gives consistent

estimates and outperforms 2D-IQML; (iv) we show that 2D-DIQML is asymptot-

ically globally convergent and hence insensitive to the initialisation.

3. Furthermore, two algorithms, based on 2D Matrix Pencils (MP), for the case of a

single snapshot OFDM symbol observed by multiple antennas in a ULA configu-

ration are introduced.

4. For the coherence problem, we derive a ”Spatio-Frequential” smoothing technique,

when the transmit OFDM symbol is received through multiple coherent signals

using a uniform linear antenna array, which is the case of an indoor multipath

channel. This smoothing method is inspired from [81] and could be seen as a 2D

generalisation of the traditional spatial smoothing technique.

5. We prove in Theorem 4.3 that we could ”lift” the rank of the sample covariance

matrix, so that we could discriminate between coherent sources, and therefore

apply subspace methods such as JADE-MUSIC and JADE-ESPRIT.

Publications related to this chapter are:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Efficient Maximum Likelihood Joint Estima-

tion of Angles and Times of Arrival of Multi Paths,” IEEE GLOBAL Communica-

tions Conference (GLOBECOM), Localization and Tracking : Indoors, Outdoors,

and Emerging Networks (LION) Workshop, December, 2015.
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• A. Bazzi, D. T. M. Slock, and L. Meilhac, ”Single Snapshot Joint Estimation of

Angles and Times of Arrival: A 2D Matrix Pencil Approach,” IEEE International

Conference on Communications, 2016.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Spatio-Frequential Smoothing for Joint

Angles and Times of Arrival Estimation of Multipaths,” IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), March, 2016.

Chapter 5. In Chapter 5, we propose a novel approach, which builds up on JADE,

entitled Joint Angle and Delay Estimation and Detection, or simply JADED. The con-

tributions of this chapter are summarised as follows:

1. Thanks to this approach, we can now estimate the Angles and Times of Arrival

of multipath, without prior knowledge of the number of multipath components.

To the best of our knowledge, this problem has not been addressed in the open

literature.

2. A method called JADED-RIP, makes use of the Rotational Invariance Properties

(RIP) of ULAs and OFDM symbols, detects the number of multipath components,

and estimates the angles and times of arrival of each path by performing a 2D

search.

3. Another method is a Computationally Efficient Single Snapshot (CESS) version

of the JADED-RIP, called CESS-JADED-RIP. This method requires a 1D search

followed by a least squares fit, and can only be used when a single OFDM symbol

is available.

The drawback of the two proposed methods is that they only work for ULA/OFDM sys-

tems and they are sub-optimal in a sense they could be further improved by considering

the coloured noise, which leads to an ML-JADED estimator.

Publications related to this chapter are:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”JADED-RIP: Joint Angle and Delay Es-

timator and Detector via Rotational Invariance Properties,” IEEE International

Symposium on Signal Processing and Information Technology, (ISSPIT), 2016.

Chapter 6. In Chapter 6, we address an important aspect that perturbs Angle-of-

Arrival estimation, due to antenna coupling, also known as ”Mutual Coupling”. The

contributions of this chapter are summarised as follows:
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1. We derive a sub-optimal algorithm that could estimate AoAs in the presence of

mutual coupling.

2. We show why this sub-optimal algorithm, along with other ones [88–92], are indeed

suboptimal, in the sense that there is an upper bound on the coupling parameters

allowed in the model which can be improved. This would not have been clear

without Theorem 6.6.

3. Then, we further improve the sub-optimal algorithm and propose an optimal one,

in the sense that more coupling parameters are allowed in the model.

4. Also, we refine the estimates of the optimal algorithm by modifying some con-

straints of the optimisation problem considered.

5. We derive the MSE expression of the optimal algorithm and show that, in some

cases, we can attain the Cramér-Rao bound of the problem of joint coupling pa-

rameters and AoA estimation. The related Theorems are Theorem 6.7, Theorem

6.9 and Theorem 6.10.

6. Finally, we derive an iterative method that could give Maximum Likelihood (ML)

estimates of the AoAs, and therefore allowing the presence of coherent sources,

which is not the case of all the previous algorithms.

Publications related to this chapter are:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Online Angle of Arrival Estimation in the

Presence of Mutual Coupling,” IEEE International Workshop on Statistical Signal

Processing (SSP), 2016.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Mutual Coupling for ULAs: Estimating

AoAs in the presence of more coupling parameters,” IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing (ICASSP), 2017.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Performance Analysis of an AoA estimator in

the presence of more mutual coupling parameters,” IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 2017.
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Chapter 7. In Chapter 7, we aim at building a real system that could perform joint

Angle and Delay of Arrival Estimation and Detection of multipath components. This

is simply done, so that we could extract the Angle-of-Arrival of the Line-of-Sight (LoS)

component between the transmitter and receiver.

1. We take into account all critical factors that perturb the Joint Angle and Delay

estimation problem and formulate a system model accordingly.

2. We propose an offline calibration method to compensate for all such factors.

3. With the help of the CESS-JADED-RIP algorithm, we have successfully been able

to estimate the Angles and Times of Arrival of all the multipath components,

which allowed for the extraction of the AoA of the LoS component.

There is no published material related to this chapter.

Other Work. For the sake of consistency of this thesis, we have omitted three publi-

cations, which are the following:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On the Effect of Random Snapshot Timing

Jitter on the Covariance Matrix for JADE Estimation,” European Signal Processing

Conference (EUSIPCO), September, 2015.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Joint Angle and Delay Estimation in the

Presence of Local Scattering,” IEEE International Conference on Communications

(ICC), Workshop on Advances in Network Localization and Navigation, 2016.

• L. Meilhac and A. Bazzi, ”Downlink transmit beamsteering Apparatus for a multi-

user MIMO transmission,” Patent in Preparation, 2017.



Chapter 2

Angle-of-Arrival Detection

In this chapter, we study the problem of estimating the number of superimposed signals

using noisy observations from N antennas. In particular, we are interested in the case

where a low number of snapshots L = O(N) is available. Our main contribution can be

summarised as follows: we derive a modified MDL estimator, with the help of random

matrix tools, which improves the estimation of the number of sources.

2.1 System model

2.1.1 Problem formulation

Consider an array that consists of N antennas. Furthermore, assume q < N narrow-band

sources, centered around a known frequency, say fc, attacking the array from different

angles, ΘΘΘ = [θ1 . . . θq]. Since narrow-bandedness in the context of array processing

means that the propagation delays of the signals across the array are much smaller than

the reciprocal of the bandwidth of the signals, it follows that these propagation delays

translate into phase shifts that depend on the location.

Now following [23], the received analog signal across all antennas, in the absence of

mutual coupling, could be written as

xxx(t) =

q∑
i=1

aaa(θi)si(t) +www(t) (2.1)

where

xxx(t) =
[
x1(t) . . . xN (t)

]T
(2.2)

14
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is the received vector across all antennas at time t. Moreover, the vector aaa(θ) is referred

to as the ”steering vector” of the array towards angle θ. It is this vector that allows us

to perform Angle-of-Arrival (AoA) estimation, and is given by

aaa(θ) =
[
1, zθ, . . . z

N−1
θ

]T
(2.3)

where zθ = e−j2π
d
λ

sin(θ), d is the inter-element spacing and λ is the signal’s wavelength.

Moreover, the signal si(t) is the signal emitted by the ith source at time t and

www(t) =
[
w1(t) . . . wN (t)

]T
(2.4)

is background noise across all antennas at time t. Equation (2.1) could be written in a

more compact way as follows

xxx(t) = AAA(ΘΘΘ)sss(t) +www(t) (2.5)

where AAA(ΘΘΘ) ∈ CN×q is referred to as ”steering matrix” and is given as

AAA(ΘΘΘ) =
[
aaa(θ1) . . . aaa(θq)

]
(2.6)

and sss(t) ∈ Cq×1 is the vector of transmitted signals, viz.

sss(t) =
[
s1(t) . . . sq(t)

]T
(2.7)

Finally, sampling (2.5) at L time instances, say t = {0, T, . . . , (L− 1)T}, where T is the

sampling period, we get

XXX = AAA(ΘΘΘ)SSS +WWW (2.8)

where XXX = [xxx(0),xxx(T ), . . . ,xxx
(
(L−1)T

)
] ∈ CN×L is the data collected over the observed

interval of time. Matrices SSS ∈ Cq×L and WWW ∈ CN×L are similarly defined.

2.1.2 Assumptions

• A1. The matrix of spatial signatures, i.e. AAA, is full column rank. This is valid

when q ≤ N and all angles of arrival are distinct, i.e. θi 6= θj for all i 6= j.

• A2. The sources are assumed to be non-coherent, i.e. RRRss = E{sss(t)sssH(t)} is full

rank.

• A3. The noise is modelled as complex Gaussian vectors, i.i.d over time, with

zero-mean and covariance σ2IIIN . Also, the noise is independent from the signal.
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2.1.3 Problem statement

Under the above assumptions, we are now ready to state our problem: ”Given the

available snapshots XXX, estimate the number of source signals, i.e. q.”

2.2 Background of main result

We write down the signal covariance matrix as

RRRxx = E{xxx(t)xxxH(t)}

= E
(
AAA(ΘΘΘ)sss(t) +www(t)

)(
AAA(ΘΘΘ)sss(t) +www(t)

)H
= E

{
AAA(ΘΘΘ)sss(t)sssH(t)AAAH(ΘΘΘ)

}
+ E

{
AAA(ΘΘΘ)sss(t)wwwH(t)

}
+ E

{
www(t)sssH(t)AAAH(ΘΘΘ)

}
+ E

{
www(t)wwwH(t)

}
= AAA(ΘΘΘ)E

{
sss(t)sssH(t)

}
AAAH(ΘΘΘ) +AAA(ΘΘΘ)E

{
sss(t)wwwH(t)

}
+ E

{
www(t)sssH(t)

}
AAAH(ΘΘΘ) + E

{
www(t)wwwH(t)

}
= AAA(ΘΘΘ)RRRssAAA

H(ΘΘΘ) + σ2IIIN

(2.9)

where the last equality holds due to assumption A3. Now, let l1 ≥ l2 ≥ . . . ≥ lN

denote the eigenvalues of RRRxx. Then, under assumptions A1 till A3, the smallest N − q
eigenvalues of RRRxx are all equal, i.e.

lq+1 = . . . = lN = σ2 (2.10)

We also consider that the q largest eigenvalues are distinct, i.e. l1 > l2 > . . . > lq.

The most straightforward way in determining the number of signals is based on the

multiplicity of the smallest eigenvalues of RRRxx as done in the MUSIC algorithm [24].

However, in practical scenarios, we only have access to the sample eigenvalues and not

the true ones, which makes it more difficult to distinguish the largest q eigenvalues from

the smallest N − q ones, especially at low SNR or low number of snapshots.

If k sources are present in the model, then we can write down

RRR(k)
xx =

k∑
i=1

(λi − σ2)vvvivvv
H
i + σ2IIIN (2.11)

where vvvi is the eigenvector corresponding to the eigenvalue λi of RRR
(k)
xx . Denoting Θ(k)

the vector to be estimated, then

Θ(k) = [λ1, . . . , λk, σ
2, vvvT1 , . . . , vvv

T
k ] (2.12)
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Thanks to assumption A3, the likelihood function is as follows

f(XXX|Θ(k)) =
L∏
i=1

1

πN detRRR
(k)
xx

exp{−xxx(ti)
H [RRR(k)

xx ]−1xxx(ti)} (2.13)

The log-likelihood function, with omitted terms that do not depend on Θ(k), becomes

L(Θ(k)) = −L log det{RRR(k)
xx } − tr{[RRR(k))

xx ]−1R̂̂R̂R} (2.14)

where R̂̂R̂R is the sample covariance matrix computed by

R̂̂R̂R =
1

L
XXXXXXH (2.15)

Maximising (2.14) gives the maximum likelihood estimates of Θ(k). As in [40], these

estimates are

λ̂i = l̂i, i = 1 . . . k (2.16)

σ̂2 =
1

N − k

N∑
i=k+1

l̂i (2.17)

v̂vvi = û̂ûui, i = 1 . . . k (2.18)

where l̂1 ≥ . . . ≥ l̂N and û̂ûu1 . . . û̂ûuN are the sample eigenvalues and their corresponding

eigenvectors, respectively. In other words, they are the eigenvalues and eigenvectors of

the matrix R̂RR. Plugging equations (2.16), (2.17), (2.18) in (2.14), we get

L(Θ̂(k)) = log

( N∏
i=k+1

l̂
1

N−k
i

1
N−k

N∑
i=k+1

l̂i

)L(N−k)

(2.19)

The model selection based on the MDL principle is the one that minimises the following

MDL(k) = −L(Θ̂(k)) +
1

2
ηlog(L) (2.20)

where η is the number of free adjusted parameters in the parameter vector Θ. Substi-

tuting (2.19) in (2.20) and plugging in the number of free adjusted parameters η (See

[39]), we get

MDL(k) = −log

( N∏
i=k+1

l̂
1

N−k
i

1
N−k

N∑
i=k+1

l̂i

)L(N−k)

+
k

2
(2N − k)log(L) (2.21)
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Therefore, according to the MDL criterion, the number of sources q is the argument k

that minimises equation (2.21).

2.3 Detection by MMDL

It has been shown in [41] that the sample eigenvalues l̂1 . . . l̂N extracted from the sample

covariance matrix R̂̂R̂R are (N,L)-inconsistent estimators of the true eigenvalues of the

covariance matrix RRRxx, that is, the sample eigenvalues do not converge towards the

true ones as (N,L) −→ ∞ at the same rate (0 < c = N
L < ∞). The MDL estimator

in (2.21) depends on the sample eigenvalues of R̂̂R̂R, therefore, it seems natural that the

performance of the MDL estimator would perform poorly in the asymptotic regime, i.e.

(N,L) −→ ∞ at the same rate (0 < c = N
L < ∞). In other words, when insufficient

number of snapshots L are available with respect to the number of antennas N in such a

way that the ratio c = N
L is not negligible, then the MDL estimator would perform poorly.

In this section, we present a modified MDL estimator to cope with this aforementioned

issue. The modified MDL estimator is based on using improved estimators of eigenvalues

of the covariance matrix RRRxx, which turn out to be (N,L)-consistent, as shown in [42].

2.3.1 Additional assumptions

Before presenting the improved estimators of the eigenvalues of the covariance matrix

RRRxx, we proceed as in [42] and pose the following assumptions:

• B1. The covariance matrix RRRxx has uniformly bounded spectral norm for all N ,

i.e. SupN‖RRRxx‖ <∞ where ‖.‖ denotes spectral norm.

• B2. The sample covariance matrix written as

R̂̂R̂R =
√
RRRxxWWWWWWH

√
RRRxx (2.22)

where
√
RRRxx denotes the square root of RRRxx. The matrix WWW is of size N × L

with complex i.i.d. absolutely continous random entries, with each entry having

i.i.d. real and imaginary parts of zeros mean, variance 1
2L , and finite eighth-order

moments.

• B3. For all distinct q + 1 eigenvalues of RRRxx, which are l1 > . . . > lq > lq+1 = σ2,

we assume infN{ LN − κN (m)} > 0, where κN (m) is given in (2.23). In (2.23), Ki

is the multiplicity of the ith largest eigenvalue of RRRxx, i.e. K1 = . . . = Kq = 1
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and Kq+1 = N − q. Furthermore, f1 < f2 < . . . < fq are the real-valued roots of

equation (2.24).

κN (m) =



1
N

q+1∑
i=1

φi,1, if m = 1

max
{ q+1∑
i=1

φi,m−1,
q+1∑
i=1

φi,m
}
, if 1 < m < q + 1

1
N

q+1∑
i=1

φi,q, if m = q + 1

(2.23a)

with

φi,k = Ki

( li
li − fk

)2
(2.23b)

and

1

N

q+1∑
i=1

Ki
l2i

(li − f)3
= 0 (2.24)

Assumption B3 gives us a lower bound on the parameter L. In other words, the param-

eter L should be at last infN{NκN (m)}. This assumption can also be, geometrically,

deduced from the asymptotic eigenvalue distribution. It turns out that for a particular

eigenvalue λk to be separated from its adjacent clusters, one must have assumption B3

satisfied. For more info on this assumption, the reader is referred to [42].

2.3.2 The MMDL criterion

The following theorem turns out to be useful because it provides improved eigenvalue

estimates, which are not only L-consistent, but also (N,L)-consistent. The theorem is

as follows:

Theorem 2.1. Under assumptions B1 to B3, the following quantities are strongly

(N,L)-consistent estimators of lj (j = 1, . . . , q + 1).

l̂imp
j = L

(
l̂j − µj

)
, j = 1 . . . q (2.25a)

and

l̂imp
q+1 =

L

N − q

N∑
i=q+1

(
l̂i − µi

)
(2.25b)

where µ1 ≤ µ2 ≤ . . . ≤ µN are the real-valued solutions of the following equation in µ:

1

N

N∑
i=1

l̂i

l̂i − µ
=

1

c
(2.25c)

Proof. See [42]
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With the improved eigenvalue estimates of RRRxx in hand from (2.25), we can modify

equations (2.16) and (2.17) to get

λ̂i = L
(
l̂j − µj

)
, j = 1 . . . k (2.26a)

σ̂2 =
L

N − k

N∑
i=k+1

(
l̂i − µi

)
(2.26b)

Using these improved estimates in (2.26), one could easily verify that the improved MDL

estimtor finally becomes

MDLimp(k) = −log

( ∏N
i=k+1(l̂i − µi)

1
N−k

1
N−k

∑N
i=k+1(l̂i − µi)

)L(N−k)

+
k

2
(2N − k)log(L) (2.27)

and, therefore the number of sources are estimated by

q̂ = arg min
k

MDLimp(k) (2.28)

Remark 2.2. As c −→ 0, then we have l̂imp
i −→ l̂i for all i = 1 . . . q + 1. Consequently,

one could show that MDLimp(k) −→ MDL(k) for all k as c −→ 0.
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Figure 2.1: Experiment 1: Histogram of the number of signals resolved by the tradi-
tional MDL estimator.

We have conducted two experiments: Experiment 1 is dedicated for sufficiently spaced

sources, whereas in Experiment 2 we have two sources that are closely spaced.

In order to show the improvement of the modified MDL estimator, we compare it with

the traditional one. We have plotted two histograms that show the percentage of oc-

currence of an estimate of the number of sources q̂. Simulations were done under an
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Figure 2.2: Experiment 1: Histogram of the number of signals resolved by the MMDL
estimator.

SNR of 10 dB and in the presence of 6 sources with arbitrary (but sufficiently spaced)

angles of arrival. The sources were non-coherent and the array geometry consists of

N = 10 antennas uniformly spaced by half a wavelength. The number of snapshots col-

lected was L = 10, i.e. c = N
L = 1. The AoAs are fixed to θ1 = 10◦, θ2 = 20◦, θ3 = 30◦,

θ4 = 40◦, θ5 = 50◦, and θ6 = 60◦. Note that both histograms were done using 1000 trials.

Figure 2.1 shows the histogram of the percentage of occurrence of q̂ using the ”tradi-

tional” MDL criterion, i.e equation (2.21). Indeed, the performance is poor because only

8% of the estimates of number of sources correspond to the true one, i.e. q̂ = 6.

On the other hand, Fig 2.2 depicts the histogram of the percentage of occurrence of q̂

using the ”modified” MDL criterion, i.e equations (2.27) and (2.28). There is a great

improvement as almost 68% of the estimates of number of sources correspond to the

true one.

Now, in Experiment 2, we have fixed the same parameters as Experiment other, but we

changed the AoA of the second source to θ2 = 10.5◦. In both cases, we can see that it is

”as if” the first and second source are seen as only one source, because they are closely

spaced.
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Figure 2.3: Experiment 2: Histogram of the number of signals resolved by the tradi-
tional MDL estimator.

Figure 2.4: Experiment 2: Histogram of the number of signals resolved by the MMDL
estimator.

2.4 Conclusions and future directions

In this chapter and with the help of random matrix tools, we have presented a modi-

fied MDL (MMDL) estimator for detecting the number of superimposed signals. This
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MMDL estimator dominates the traditional MDL especially at the low number of snap-

shots regime, i.e. when L = O(N). Simulation results have shown the potential of

MMDL over the traditional MDL.

With respect to the results presented in this chapter, interesting future research direc-

tions may include: (i) analysing and deriving closed form expressions of the probability

of error of the MMDL technique and comparing it with that of the traditional MDL; (ii)

studying the regime where the MMDL is considered to be consistent in terms of number

of snapshots or SNR.



Chapter 3

Angle-of-Arrival Estimation by

Compressed Sensing Techniques

In this chapter, we propose different approaches on estimating the Angle-of-Arrival

(AoA) of multiple sources using compressed sensing techniques. The contributions could

be summarized as follows: (i) we derive an iterative Variational Bayes (VB) algorithm

that allows sparse recovery of the desired transmitted vector; (ii) we show that this it-

erative VB method outperforms existing compressed sensing methods, such as Matching

Pursuit (MP), Orthogonal MP (OMP), etc; (iii) we also derive a Newton-type Forward

Backward Greedy method that performs sparse recovery, given the data; (iv) we show,

through exhaustive simulations, that the proposed Newton-type method, is not only faster,

but attains a lower MSE when compared to methods such as Fast Matching Bayesian

Pursuit (FBMP) and Basis Pursuit Denoising (BPDN).

3.1 System model

3.1.1 Problem formulation

As in Chapter 2, we consider q sources impinging an N -element antenna array, and

therefore the model reads

xxx(t) = AAA(ΘΘΘ)sss(t) +www(t) (3.1)

where all quantities have been defined in Chapter 2.

Compressed sensing techniques recast the problem in equation (3.1) to the following

xxx(t) =AAAsss(t) +www(t) (3.2)

24
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where AAA ∈ CN×K is an over-complete dictionary (N < K),

AAA = [aaa(θ1) . . . aaa(θK)] (3.3)

hopefully1, containing the q steering vectors in its columns. The vector sss(t) ∈ CK×1 is

a sparse vector, containing non-zero values at entries corresponding to the true AoAs.

For a single-snapshot, equation (3.2) could be seen as

xxx =AAAsss+www (3.4)

and for multiple snapshots, we stack all the observed vectors into a data matrix:

XXX = [xxx(0),xxx(T ), . . . ,xxx
(
(L− 1)T

)
] =AAASSS +WWW (3.5)

where L is the number of collected snapshots. Also SSS and WWW are defined in a similar

manner to XXX.

3.1.2 Problem statement

The problem could be stated as follows:

• Single-Snapshot case: Given the observed vector xxx and the over-complete dic-

tionary AAA in equation (3.4), estimate the sparse vector sss.

• Multi-Snapshot case: Given the observed data matrixXXX and the over-complete

dictionary AAA in equation (3.5), estimate the row-sparse matrix SSS.

3.2 Background of existing methods

Consider the optimisation problem in penalised form given as follows

ŝ̂ŝs = arg min
sss

‖xxx−AAAsss‖2 + λ‖sss‖p (3.6)

This problem is referred to as lp-optimisation. When p = 0, note that ‖sss‖0 counts

the number of non-zero elements of sss. Also note that ‖sss‖0 is a quasi-norm, since the

triangular inequality of norms is not satisfied in this case. Solving the problem in (3.6),

when p = 0, is known to favour sparse solutions the most. However, this comes with a

1For example, if AAA = [aaa(−90◦), aaa(−89◦) . . . aaa(89◦), aaa(90)], and we have q = 1 source at θ1 = 30.5◦,
then the steering vector is in one of the columns of AAA.
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price of having an NP-hard problem in hand to solve. In this paper, we aim to study

the performance of three broad categories of compressed sensing algorithms, namely:

• Pursuit-type algorithms.

• Thresholding-type algorithms.

• Bayesian-based algorithms.

3.2.1 Pursuit-type algorithms

Pursuit-type algorithms are popular algorithms in the field of compressed sensing. More

specifically, matching pursuit algorithms deal with an approximate solution of the l0-

optimisation problem. For uniqueness of the l0 problem, we refer the reader to [44].

However, basis pursuit relax the l0-optimisation problem to an l1-optimisation one. The

l1-optimisation problem is also known as LASSO [45]. For uniqueness of the l1 problem,

we refer the reader to [46]. An advantage of this relaxation is that the problem is

now convex. It remains to see when the unique solution provided by the l1-optimisation

problem coincides with that of the l0 one. The papers in [44, 47] give sufficient conditions

for ŝ̂ŝs to be a unique solution of the l0 and l1-optimisation problems. Moreover, the

necessary conditions for that to happen are found in [48, 49].

The pursuit algorithms that are evaluated in the context of AoA estimation in this paper

are the following:

• Matching Pursuit (MP) [50]

• Orthogonal MP (OMP) [51]

• Gradient, or directional, Pursuit (GP) [52]

• Basis Pursuit De-Noising (BPDN) [53]

The first three algorithms: MP, OMP, and GP are also referred to as Greedy algorithms.

These algorithms start by initialising ŝ̂ŝs to a zero vector, then estimate a set of non-zero

components of ŝ̂ŝs by adding new components to those non-zero terms, in an iterative

manner [54]. A brief summary of Greedy algorithms is given in Table 1. Indeed, the

algorithms: MP, OMP, and GP differ in how the ”Element Selection” and ”Coefficient

Updates” are done. For example, MP updates one element at each iteration (this entry

corresponds to the maximum magnitude of g(n)g(n)g(n)). However, OMP updates multiple

entries at the same iteration using Least-Square fit. For more information regarding
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Table 1: General framework of Greedy algorithms

INPUT:
Given the data xxx and the dictionary AAA.
INITIALISATION:
r(0)r(0)r(0) = xxx, ŝ(0)ŝ(0)ŝ(0) = 000, and n = 0.
MAIN LOOP:
while Stopping Criterion is not met do

• Element Selection: Select the columns of AAA based on the largest magnitude of
entries of g(n)g(n)g(n) =AAAHr(n)r(n)r(n)

• Coefficient Update: Obtain a new estimate ŝ(n)ŝ(n)ŝ(n) that minimises ‖xxx−AAAsss‖2 then
increment n.

Greedy methods, we encourage the reader to refer to [54] and [55]. Furthermore, many

work has been done on figuring out a good ”Stopping Criterion” for Greedy algorithms.

For example, in [56, 57], a necessary condition was given in order to recover sss with error

threshold δ = 0, i.e. when ‖ŝ(n)ŝ(n)ŝ(n)‖ ≤ δ = 0.

On the other hand, BPDN aims at an l1-optimisation problem, or equivalently the

following

ŝ̂ŝs = arg min
sss

‖sss‖1 subject to ‖xxx−Asss‖2 ≤ ε (3.7)

The regularization parameter ε has to be chosen appropriately depending on the noise,

which is a major disadvantage of this algorithm.

3.2.2 Thresholding-type algorithms

The Greedy algorithms are easy and computationally efficient. However, they do not

promise recovery of sss as strong as the l1-optimisation problem. In this sub-section, we

are interested in the following:

• Iterative Hard Thresholding (IHT) [58, 59]

• Normalised IHT (NIHT) [60]

• Iterative Shrinkage-Thresholding Algorithm (ISTA) [61]

It was shown in [62] that solutions of (3.6) are given as follows

sss = prox‖.‖p

(
sss− γAH(Asss− xxx)

)
(3.8)
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where γ > 0 and the proximity function is given by

prox‖.‖p(zzz) = arg min
sss

(
‖sss‖p +

1

2
‖sss− zzz‖22

)
(3.9)

which has a unique solution sss for every zzz ∈ CK×1 [63]. Now, equation (3.8) could be

solved using fixed-point in an iterative fashion, viz.

sss(n+1) = prox‖.‖p

(
sss(n) − γAH(Asss(n) − xxx)

)
(3.10)

When p = 0, the proximity in (3.10) gives the hard threshold, and therefore the IHT

algorithm

proxλγ‖.‖0(zzz) = [. . . , zzzi1|zzzi|>
√

2λγ , . . .]
T (3.11)

However, when p = 1, the proximity in (3.10) gives the soft threshold. Hence, we obtain

the ISTA algorithm

proxλγ‖.‖1(zzz) = [. . . ,
zzzi
|zzzi|

max(|zzzi| − λγ, 0), . . .]T (3.12)

Convergence and recovery properties of IHT are found in [58, 64, 65]. To further enhance

IHT, the normalised IHT (NIHT) was obtained by a simple modification [60]. This

modification yields a faster algorithm, whilst keeping theoretical performance similar to

IHT, in some scenarios.

3.2.3 Bayesian-based algorithms

In this sub-section, the sparse signal sss is no longer treated as deterministic, but rather

as probabilistic, or random. In other words, a Bayesian approach is adopted. Here, we

briefly discuss the ideas of:

• Sparse reconstruction using distribution Agnostic Bayesian Matching Pursuit (SABMP)

[66]

• Iterative Variational Bayes (VB) with latent variables. [105]

SABMP [66] performs Bayesian estimates of the sparse signal sss even when it is modelled

as non-Gaussian, thus the term ”Agnostic”. Even more, this method makes use of a

priori statistics of the noise and the sparsity rate of the signal. More specifically, the

signal sss is modelled as sss = sssA � sssB, where sssA consists of elements that are drawn from

some unknown distribution (Agnostic), whereas sssB are drawn i.i.d. from a Bernoulli

distribution with success probability p. Note that p controls the sparsity of sss, and thus
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it plays a major role in activating elements2 of sss. The SABMP method was shown,

through simulations, to outperform BPDN [53] and Fast Bayesian Matching Pursuit

(FBMP) [67].

On the other hand, we have recently introduced an iterative Variational Bayes (VB)

algorithm in [105] with the help of latent variables. Indeed, the paper was inspired by

the work in [68–70]. The papers [68–70] focus on introducing latent, or hidden, variables

and imposing prior distributions on these variables that favor sparsity. In [105], we

also introduce the latent variables discussed in [68–70], which leads to a novel iterative

Variational Bayes [71] algorithm that allows recovering sss from a single observation xxx

with the help of the latent variables that were introduced.

3.3 Sparse Recovery via Iterative Variational Bayes

3.3.1 The Bayesian perspective

In this section, we shall take a Bayesian approach, i.e. the vector sss is random and

not an unknown deterministic vector. Adopting the Bayesian criterion is equivalent to

optimising the maximum aposteriori (MAP) [23], which is given as

ŝ̂ŝs = arg max
sss

p(sss|xxx) = arg max
sss

p(xxx|sss)p(sss)
p(xxx)

(3.13)

where p(xxx|sss) is known as the likelihood function and p(sss) is referred to as the prior. It

was noted in [68] and [69] that the following type of prior favors sparsity

p(sss) =

K∏
k=1

p(sk), p(sk) = p(sk|βk)φ(βk) (3.14)

where β1 . . . βK are referred to as latent variables and

p(sk|βk) = N (sk; 0, β−1
k ) (3.15)

and φ(βk) is a nonnegative function. Now, the latent variables β1 . . . βK , which are

treated as random variables, should have appropriate corresponding pdfs, i.e. φ(β1) . . . φ(βK),

respectively. As explained in [72], the pdf φ(βK) should be chosen as the conjugate to

the Gaussian distribution. One possibility is the Gamma function, i.e.

φ(βk) = Γ(βk; γ, δ) (3.16)

2By activating elements of sss, we mean to set these elements to non-zero. Actually, this term was
taken from [66].
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Moreover, let ν = 1
σ2 be the inverse of the noise variance. Also, we allow ν to follow a

Gamma prior, viz.

p(ν) = Γ(ν; ζ, η) (3.17)

The MAP criterion, with the formulation from equations (3.14) till (3.17) is now

p(sss,βββ, ν|xxx) =
p(xxx|sss,βββ, ν)p(sss,βββ, ν)

p(xxx)
(3.18)

with βββ = [β1 . . . βK ]. Assuming independency between the signal vector sss and the noise,

we can say that

p(sss,βββ, ν) = p(sss|βββ)p(βββ)p(ν) (3.19)

Finally, we notice that the normalisation factor in equation (3.19) given as

p(xxx) =

∫
p(xxx|sss, ν)p(sss|βββ)p(βββ)p(ν)dsssdνdβββ (3.20)

does not have a closed-form expression; hence we propose to use the Variational Bayes

methodology.

3.3.2 Variational Bayes methodology

Let yyy = [βββ, ν]. The log-likelihood function that does not take into account the latent

variables yyy, is given as follows [71]

log p(xxx|sss) =

∫
q(yyy) log

(p(xxx,yyy|sss)
q(yyy)

)
dyyy + KL

(
q||p) (3.21)

where KL
(
q||p) is the Kullback-Leilbler divergence between p(yyy|xxx,sss) and q(yyy). Since

KL
(
q||p) ≥ 0, then

log p(xxx|sss) ≥
∫
q(yyy) log

(p(xxx,yyy|sss)
q(yyy)

)
dyyy (3.22)

The methodology of Variational Bayes lies in maximising the lower bound in equa-

tion (3.22) by imposing a factorised structure on yyy as follows [71]

q(yyy) =

K+1∏
k=1

qk(yk) (3.23)
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Substituting the form of q(yyy) in (3.22) and following [71], this lower bound could be

expressed as follows:∫
q(yyy) log

(p(xxx,yyy|sss)
q(yyy)

)
dyyy

= −
K+1∑
k=1
k 6=i

∫
qk(yk) log qk(yk)dyk −KL(qi||p̄i)

(3.24)

with

p̂i , Eyk 6=yi
{

log p(xxx,sss,yyy)
}

=

∫
log
(
p(xxx,sss,yyy)

)K+1∏
k=1
k 6=i

qk(yk)dyk
(3.25)

It is straightforward to see that the lower bound is maximising when KL(qi||p̄i) = 0. In

other words, each qi(yi) should be chosen as

log qi(yi) = Eyk 6=yi
{

log p(xxx,sss,yyy)
}

+ C (3.26)

where C is a normalisation constant. Now, following [73], one could solve for sss, in a

Variational Expectation-Maximisation (EM) iterative manner as follows:

• Variational E-step: Given sss(n) (i.e. the value of sss at iteration n), compute q
(n)
i (yi)

for all i using equation (3.26).

• Variational M-step: Given q
(n)
i (yi) for all i, compute sss(n+1) that maximises equa-

tion (3.24).

Now, we are ready to apply the Variational Bayes methodology to the problem in hand.

3.3.3 The Iterative Variational Bayes method

We first start off by deriving the expressions of qi(yi) and q(sss). Following the factorised

structure of yyy in equation (3.23) and the independency between sss and yyy, we can say that

the posterier factorises as follows

p(sss,yyy|xxx, γ, δ, ζ, η) = p(sss)p(yyy) = p(sss)p(βββ)p(ν) (3.27)
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With the help of equation (3.26), we now analytically evaluate q(sss) as follows

log q(sss) = Eβββ,ν
{

log p(xxx,sss,yyy)
}

= Eβββ,ν
{

log p(xxx|sss, ν)p(sss|βββ)
}

= −1

2
Eβββ,ν

{
ν‖xxx−AAAsss‖2 +

K∑
k=1

βk|sk|2
} (3.28)

With some abuse of notation, Eβββ,ν is the average over the joint distributions q(βββ) and

q(ν). In addition, we have omitted the constant in equation (3.28) for the sake of

compact presentation. Now, assuming that βββ and ν are independent, we can say

log q(sss) = −mν

2
‖xxx−AAAsss‖2 − 1

2

K∑
k=1

mβk |sk|
2 (3.29)

where mν = E{ν} and mβk = E{βk}. With some mathematical steps, one could show

that q(sss) is given as follows

log q(sss) = −1

2

(
sss−msmsms

)H
ΣΣΣ−1

(
sss−msmsms

)
(3.30)

where

ΣΣΣ−1 = ΩΩΩ +mνAAAHAAA (3.31)

and

msmsms = mνΣΣΣAAAHxxx (3.32)

where ΩΩΩ = diag[mβ1 . . .mβK ]. Now, we compute q(βββ)

log q(βββ)

= Esss,ν
{

log p(xxx,sss,yyy)
}

= Esss,ν
{ K∑
k=1

(
log p(βk)

)
+ log p(sss|βββ)

}
=

K∑
k=1

(
(γ − 1)log βk − δβk +

1

2
log βk − βkE|sk|2

)
(3.33)

where the terms (γ − 1)log βk and δβk appear due to K independent Gamma distribu-

tions, i.e. p(βk) for k = 1 . . .K. Again, with some abuse of notation, we have ommited

constant terms for the sake of compact presentation. With some straightforward algebra,

we could say that

q(βk) = Γ
(
βk;

2γ + 1

2
,
2δ + |(msmsms)k|2 + ΣΣΣk,k

2

)
(3.34)
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where (msmsms)k is the kth entry of vector msmsms and ΣΣΣk,k is the element found in the kth

diagonal of ΣΣΣ. In a similar manner, we could show that

q(ν) = Γ
(
ν;

2ζ + 1

2
,
2η + ‖xxx−AAAmsmsms‖2 + tr {AAAΣΣΣAAAH}

2

)
(3.35)

Knowing that for any random variable following a Gamma distribution with parameters

λ and µ, i.e. X ∼ Γ(x;λ, µ), the mean of X, say mX , is given as mX = λ
µ . Therefore, it

is easy to see from equation (3.34) that

mβk =
2γ + 1

2δ + |(msmsms)k|2 + ΣΣΣk,k
(3.36)

Similarly, equation (3.35) implies that

mν =
2ζ + 1

2η + ‖xxx−AAAmsmsms‖2 + tr {AAAΣΣΣAAAH}
(3.37)

Before presenting the algorithm in Table 1, we find the following notation useful

ΘΘΘ = [mβ1 . . .mβK ,mν , sss] (3.38)

Furthermore, let x(n) denote the value of the quantity x at iteration n. For convenience,

x(0) is the initial value of x. Now, we are ready to state the iterative algorithm that is

based on Variational EM as explained in Section IV.A. The algorithm is given in Table

1.
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Figure 3.1: Two sources impinging the array from directions θ1 = 0◦

and θ2 = 5◦. The number of antennas is 10.

We have simulated three different scenarios. Furthermore, we fix the following simulation

parameters: Consider a Uniform Linear Antenna array composed of N antennas spaced
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Figure 3.2: Two sources impinging the array from directions θ1 = 0◦

and θ2 = 30◦. The number of antennas is 10.
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Figure 3.3: Two sources impinging the array from directions θ1 = 0◦ and θ2 = 5◦.
The SNR is 20dB.

at half a wavelength. Furthermore, assume q = 2 sources attacking the array from

directions θ1 = 0◦ and θ2. The dictionary A is composed of K = 91 atoms discretized

from −45◦ till +45◦ with a grid step of 1◦. All our experiments are done using M = 100

Monte Carlo trials.

In Scenario 1 (Figure 3.1), we fix N = 10 antennas and θ2 = 5◦. Moreover, we plot

the MSE vs. SNR and we notice that all algorithms except for CELO, SABMP, and

VB were not able to resolve the closely spaced sources. This phenomenon is explained

through the Restricted Isometry Property (RIP). In short, the RIP condition (in the
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context of AoA estimation) relates the number of resolvable sources3 with the number

of antennas N that should be used to resolve these sources. Furthermore, we observe

that the MSE of SABMP and VB are close to the Cramer-Rao Bound (CRB), whereas

CELO has inferior performance when compared to VB or SABMP. In order to validate

the RIP condition, we have simulated Scenarios 2 and 3.

In Scenario 2 (Figure 3.2), we fix N = 10 antennas and θ2 = 30◦. One could verify that

the RIP condition is now validated for 2 sources when separated at 30◦. As one can now

see, all the algorithms now recover the sparse signal, and thus properly estimate the

AoAs at a sufficiently high SNR. For example, IHT presents no error when SNR ≥ 25

dB. Furthermore, MP, OMP, GP, and BPDN present no error when SNR ≥ 30 dB.

In Scenario 3 (Figure 3.3), we fix the SNR to be 20 dB and θ2 = 5◦. Furthermore,

we plot the MSE vs. the number of antennas (N). We notice that all pursuit and

thresholding algorithms promise exact recovery of the closely spaced sources when the

number of antennas N exceeds a certain level. For instance, ISTA and IHT promise

exact recovery at 20 dB of two sources spaced at 5◦ when N > 25. As for MP, OMP,

GP, and BPDN, the required number of antennas should exceed 30 to guarantee exact

recovery.

3.4 A Newton-type Forward Backward Greedy Method

In this section, we present a new Greedy method, which is inspired from the Adaptive

Forward Backward (AdFoBa) [74] Greedy method. The difference is in the cost function

itself, and therefore the forward step would be modified. In addition, we propose a

different backward scheme, which seems to correct false peaks.

3.4.1 Optimization problem

The proposed method deals with the multi-snapshots case, i.e. equation (3.5). Further-

more, greedy methods tackle the `0-optimization problem, namely:

minimize
XXX

‖YYY −AAAXXX‖22

subject to ‖XXX‖2,0 ≤ q
(3.39)

3By number of resolvable sources, we mean the number of sources that could be resolved, given that
the angular separation between these sources exceed a certain threshold.
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where ‖.‖2,0 is the `2,0 norm defined as

‖XXX‖2,0 = card {k : ‖XXXk,:‖2 6= 0} (3.40)

where XXXk,: is the kth row of XXX and ‖‖2 is the `2 norm. This means that the `2,0 norm

counts the number of rows that have at least one non-zero entry. In what follows, we

discuss the Forward and Backward steps of the proposed Newton-type greedy method.

3.4.2 Forward step

At an nth iteration, we propose to choose an atom4 that minimizes

j(n) = arg min
j 6∈ΩΩΩ(n−1)

min
βββ

‖YYY −AAA(XXX(n) + eeejβββ
H)‖22

‖[∇XXX(YYY −AAAXXX)]j,:‖22
(3.41)

Note the following

min
βββ

‖YYY −AAA(XXX(n) + eeejβββ
H)‖22

‖[∇XXX(YYY −AAAXXX)]j,:‖22
= min

βββ
‖YYY −AAA(XXX(n) + eeejβββ

H)‖22

= min
βββ

tr
{(
YYY −AAA(XXX(n) + eeejβββ

H)
)(
YYY −AAA(XXX(n) + eeejβββ

H)
)H}

(3.42)

Omitting terms that do not depend on βββ, we get

min
βββ

(
− eeeHj AAAHYYY βββ + eeeHj AAAHAAAXXXβββ − βββHYYY HAAAeeej + βββHXXXHAAAHAAAeeej + ‖βββ‖22‖AAAeeej‖22

)
(3.43)

The optimal value of βββ is attained by setting the derivative of the above expression with

respect to βββ to zero.

∂

∂βββ

(
−eeeHj AAAHYYY βββ+eeeHj AAAHAAAXXXβββ−βββHYYY HAAAeeej +βββHXXXHAAAHAAAeeej +‖βββ‖22‖AAAeeej‖22

)
= 0 (3.44)

which gives

− 2YYY HAAAeeej + 2XXXHAAAHAAAeeej + 2βββopt‖AAAeeej‖22 = 0 (3.45)

Re-arranging terms, we get

βββopt =
1

‖AAAeeej‖22

(
AAAH:,j(YYY −AAAXXX)

)H
(3.46)

4Atom refers to a column of the dictionary AAA
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But since the columns ofAAA are restricted to have a unit norm, then ‖AAAeeej‖22 = 1. Plugging

βββopt in equation (3.41), we now have

j(n) = arg min
j 6∈ΩΩΩ(n−1)

‖YYY −AAA(XXX(n) + eeejAAAH:,j(YYY −AAAXXX))‖22
‖[∇XXX(YYY −AAAXXX)]j,:‖22

(3.47)

Intuitively, equation (3.47) means that we are ”wiggling” the weights corresponding to

the jth atom, or column, in AAA and choosing the atom index that is least affected with

this perturbation. Moreover, we have included the Gradient term in the denominator of

the above cost function, similar to the Newton’s method. Although it may seem natural,

this additional term helps in speeding up the convergence of the algorithm, yet achieving

better performance as well. After finding this index and appending it in the support

set, namely

ΩΩΩ(n) ← ΩΩΩ(n−1) ∪ {ĵ(n)} (3.48)

We estimate an updated version of XXX as follows

XXX(n+1) =
(
AAAH

(:,ΩΩΩ(n))
AAA(:,ΩΩΩ(n))

)−1
AAAH

(:,ΩΩΩ(n))
YYY (3.49)

Also, let ε(n) denote the relative error at iteration n as

ε(n) =
∣∣∣‖YYY −AAAXXX(n+1)‖22 − ‖YYY −AAAXXX(n)‖22

∣∣∣ (3.50)

3.4.3 Backward step

To allow flexibility of the proposed greedy method, we propose a backward scheme. The

backward scheme will indeed depend on the value of the error ε(n) at iteration (n). If

the error is ”relatively” small, we can go on to another forward step n+ 1, otherwise a

correction is needed. A natural question arises here:

What should ε(n) be compared to ?

Well, we can ask an alternative question, which is the following:

What if the atom added at iteration (n) corresponding to index j(n) increases the cost

function ‖YYY −AAAXXX‖22 and not decrease it?

To check for this case, we compare the error ε(n) to an error ϑ(n), which is computed if

the support ΩΩΩ(n) contains 1 less element5. More precisely, define

ϑ
(n)
i =

∣∣∣‖YYY −AAA(:,ΩΩΩ(n)/{i})XXX
(n+1)

(ΩΩΩ(n)/{i},:)‖
2
2 − ‖YYY −AAAXXX(n)‖22

∣∣∣ (3.51)

5This could be seen as over-fitting
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for all i ∈ ΩΩΩ(n). Now, choose the smallest error amongst all ϑ
(n)
i , i.e.

ϑ(n) = min {ϑ(n)
i }i∈ΩΩΩ(n) (3.52)

and denote

i(n) = argmin
i
ϑ

(n)
i (3.53)

Here, if ϑ(n) > ε(n) we say that the error at iteration n is acceptable and there doesn’t

seem to be any over-fitting. On the other hand, if ϑ(n) ≤ ε(n), we should remove this

”defected atom”, which corresponds to index i(n)

ΩΩΩ(n) ← ΩΩΩ(n)/{i(n)} (3.54)

Re-modify the weighting matrix

XXX(n+1) =
(
AAAH

(:,ΩΩΩ(n))
AAA(:,ΩΩΩ(n))

)−1
AAAH

(:,ΩΩΩ(n))
YYY (3.55)

and finally go one step backward

n← n− 1 (3.56)

The forward backward procedure is repeated until error ε(n) ≤ δ, where δ is a given

tolerance value.

Figure 3.4: Comparison of spectra for q = 4 sources.
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Figure 3.5: MSE of AoAs for Exp. 1

Figure 3.6: MSE of AoAs for Exp. 2

We present some computer simulations to show the efficiency and accuracy of the pro-

posed Newton-type method. In Fig. 3.4, we have used N = 15 antennas and a dictionary

of size K = 181 discritized at steps of 1◦ . Furthermore, L = 1 snapshot was used at

SNR = 20 dB. We have q = 4 sources at θ1 = −50◦, θ2 = −27◦, θ3 = −20◦, θ4 = 20◦

. We can clearly see the difference between the proposed Newton-type method and the

one AdFoBa [74]. Our method avoids overfitting of sources, whereas the AdFoBa over-

estimates then number of existing sources.

In Experiment 1 (Fig. 3.5), we are interested in the MSE performance of existing sparse

recovery methods compared to the proposed here. We compare the Newton-type For-

ward Backward proposed method with AdFoBa [74], BPDN [53] and FBMP [67]. Here

we have set L = 102 , N = 10 , q = 2 with θ1 = 0◦ and θ2 = 10◦. Also, K = 181 as
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Figure 3.7: Run times of Exp. 3

Figure 3.8: Errors per iteration of Exp. 4

before. The MSE is computed using 104 Monte Carlo trials. Here, in case of overfitting,

we choose the q largest peaks in the weights. We can see that both Forward-Backward

schemes (the proposed one and AdFoBa) perform better than BPDN and FBMP, due

to their adaptive ability of ”correcting themselves” in case of any overfitting or false

selected atoms. Moreover, the proposed one performs better than AdFoBa, due to the

different backward step criterion. We can see an 5 dB between the proposed method

and the AdFoBa at sufficiently high SNR. In Experiment 2 (Fig. 3.6), we have used the

same parameters as in Experiment 1, except that we have changed L to L = 10. We

can also observe the phenomena as above. Note that here we have a higher MSE for

all methods due to less observed samples. Nevertheless, we can see that the MSE gaps
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between the different methods are still the same as that in Experiment 1. We can see

an 8 dB between the proposed method and the AdFoBa at sufficiently high SNR.

Another important aspect is the algorithm complexity or the number of operations re-

quired before the algorithm terminates. In Experiment 3 (i.e. Fig. 3.7), we study the

speed of the algorithms mentioned above as a function of number of antennas N . To

assess generality, we have also averaged the speeds over 104 Monte Carlo trials. We can

see that the proposed algorithm terminates before all the other ones mentioned above,

thanks to the gradient factor in the cost function of equation (3.41). If N = 100 anten-

nas were used, we can see a gain of speed of about 0.6 seconds compared to the FBMP

algorithm and 0.2 seconds compared to AdFoBa and BPDN.

Finally, in Experiment 4, i.e. Fig. 3.8, we have fixed the parameters as in Experiment 1

and studied the behaviour of the error for different algorithms, in the sense of

ε(n) =
∣∣∣‖YYY −AAAXXX(n)‖22 − ‖YYY −AAAXXX(n−1)‖22

∣∣∣ (3.57)

This means that when no improvement occurs, the above error should become negligible.

Also, we can see that the proposed algorithm converges in about 8 to 9 iterations. The

AdFoBa and the BPDN require around 15 iterations to achieve the same error as the

proposed one. Additionally, we can see that the FBMP needs more than 20 iterations

to achieve this accuracy.

3.5 Conclusions and future directions

In this Chapter, and with the help of latent variables and Variational Bayes, we have

derived an iterative algorithm that could estimate the Angles of Arrival (AoA) of the in-

coming sources with a single snapshot, without the knowledge of the number of sources,

and with closely spaced sources at high SNR.

We have also seen that it is possible that the proposed Newton-type forward back-

ward greedy method performs faster, in terms of convergence and number of operations,

and better, in terms of Mean-Squared-Error (MSE) of AoAs.

Future work may be oriented towards performance analysis of the proposed Variational

Bayes algorithm and towards taking into account prior knowledge of the number of

source signals, which may improve the performance of this algorithm.
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Table 2: Proposed Variational Bayes algorithm for AoA Estimation

INPUT:
Given the observed vector xxx =AAAsss+nnn.
INITIALISATION:

• Fix
γ = δ = ζ = η = 10−6

n = 0

• Initialise
m

(0)
βk

= 105 for all k

m(0)
ν =

1

σ2
n

MAIN LOOP:
while ‖Θ̂̂Θ̂Θ(n+1) − Θ̂̂Θ̂Θ(n)‖ > ξ (Pre-defined Threshold) do

• Form
ΩΩΩ(n) = diag [m

(n)
β1
. . .m

(n)
βK

]

• Compute ΣΣΣ as in equation (3.31)

ΣΣΣ(n) =
(
ΩΩΩ(n) +m(n)

ν AAAHAAA
)−1

• Compute msmsms using (3.32)

msmsms
(n) = m(n)

ν ΣΣΣ(n)AAAHxxx

• For all k = 1 . . .K, compute mβk using (3.36)

m
(n+1)
βk

=
2γ + 1

2δ + |(msmsms
(n))k|2 + ΣΣΣ

(n)
k,k

• Compute mν using (3.37)

m(n+1)
ν =

2ζ + 1

2η + ‖xxx−AAAm(n)
sm
(n)
sm
(n)
s ‖2 + tr {AAAΣ(n)Σ(n)Σ(n)AAAH}

• Increment n
n← n+ 1

OUTPUT:
The estimate of sss is

ŝss = msmsms
(n)



Chapter 4

Joint Angle and Delay Estimation

In this chapter, we derive several algorithms for the problem of Joint Angle and Delay

Estimation (JADE). The contributions, herein, are summarized as follows: (i) we derive

an algorithm that is a modification of the two dimensional Iterative Quadratic ML (2D-

IQML) algorithm, where an additional constraint is added for joint ToA and AoA esti-

mation; (ii) we show that 2D-IQML gives biased estimates of ToAs/AoAs and performs

poorly at low SNR due to noise induced bias; (iii) we derive a two dimensional Denoised

IQML (2D-DIQML) that gives consistent estimates and outperforms 2D-IQML; (iv) we

show that 2D-DIQML is asymptotically globally convergent and hence insensitive to the

initialisation; (v) we derive two algorithms, based on 2D Matrix Pencils (MP), for the

case of a single snapshot OFDM symbol observed by multiple antennas in a ULA config-

uration; (vi) one of the two MP algorithms seems more interesting because it’s motivated

from an idea that most Wi-Fi systems use a large number of subcarriers compared to

the number of antennas; (vii) We present a ”Spatio-Frequential” smoothing technique,

when the transmit OFDM symbol is received through multiple coherent signals using a

uniform linear antenna array, which is the case of an indoor multipath channel.

4.1 System Model

4.1.1 Problem formulation

Consider an OFDM symbol s(t) composed of M subcarriers and centered at a carrier

frequency fc, impinging an antenna array of N antennas via q multipath components,

each arriving at different AoAs {θi}qi=1 and ToAs {τi}qi=1. In baseband, we could write

43
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the lth received OFDM symbol at the nth antenna as:

r(l)
n (t) =

q∑
i=1

γ
(l)
i an(θi)s(t− τi) + n(l)

n (t) (4.1)

where

s(t) =


M−1∑
m=0

bme
j2πmMf t if t ∈ [0, T ]

0 elsewhere

(4.2)

where T = 1
4f is the OFDM symbol duration, 4f is the subcarrier spacing, bm is the

modulated symbol onto the mth subcarrier, an(θ) is the nth antenna response to an

incoming signal at angle θ. The form of an(θ) depends on the array geometry. γ
(l)
i is

the complex coefficient of the ith multipath component. The term n
(l)
n (t) is background

noise. Plugging (4.2) in (4.1) and sampling r
(l)
n (t) at regular intervals of k , k TM , we

get r
(l)
n,k , r

(l)
n (k TM ) as:

r
(l)
n,k =

q∑
i=1

M−1∑
m=0

bme
j2π km

M e−j2πmMf τiγ
(l)
i an(θi) + n

(l)
n,k. (4.3)

Collecting M samples, we can apply an M -point DFT, so observing the mth subcarrier

at the nth antenna, we get:

R(l)
n,m =

M−1∑
k=0

r
(l)
n,ke

−j2πm k
M = bm

q∑
i=1

γ
(l)
i an(θi)e

−j2πmMf τi +N (l)
n,m (4.4)

We claim that the transmitted OFDM symbol s(t) is a preamble field of the Wi-Fi 802.11

frame, thus prior knowledge of the modulated symbols {bm}M−1
m=0 is a valid assumption,

since this stream of symbols (each at its corresponding sub-carrier) are repeated in each

OFDM symbol placed at the beginning of the Wi-Fi frame for channel estimation and

frequency offset purposes. Therefore, at each OFDM symbol reception, we compensate

for all such symbols (multiplying by b∗m
|bm|2 ) and hence omit bm from (4.4). Re-writing (4.4)

in a compact matrix form, we have:

xxx(l) = HHHγ(l) +nnn(l), l = 1 . . . L (4.5)

where xxx(l) and nnn(l) are MN × 1 vectors

xxx(l) = vec{RRR}, RRR〈m,n〉 = R(l)
n,m (4.6)

nnn(l) = vec{NNN}, NNN 〈m,n〉 = N (l)
n,m (4.7)

HHH is an MN × q matrix given as

HHH = AAA�CCC = [aaa(θ1)⊗ ccc(τ1) . . . aaa(θq)⊗ ccc(τq)] (4.8)
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where aaa(θ) and ccc(τ) are N × 1 and M × 1, respectively. The nth entry of aaa(θ), denoted

aaan(θ), is the response of the nth antenna to a signal arriving at angle θ with respect

to the antenna array. We shall assume a Uniform Linear Array (ULA), thus aaan(θ) =

e−jd2πfc(n−1)sin(θ), where d is the distance between 2 adjacent antennas. Similarly, the

mth entry of ccc(τ), denoted cccm(τ) = e−j2πτ(m−1)Mf , is the response of the mth subcarrier

to a signal arriving with time delay τ . The q×1 vector γ(l) is composed of the multipath

coefficients

γ(l) = [γ
(l)
1 . . . γ(l)

q ]T (4.9)

Throughout the chapter, we make a distinction between the multi-snapshot case (L ≥ 2)

and the single-snapshot case (L = 1). As done in the previous chapter, we omit the time

dependence in case of 1 snapshot, i.e.

xxx = HHHγ +nnn (4.10)

4.1.2 Assumptions

We assume the following:

• A1: HHH is full column rank.

• A2: The multipath coefficients, γ(l), are fixed within a snapshot, and may vary

from one snapshot to another.

• A3: The number of multipath components q is known.

• A4: The vector nnn(l) is additive Gaussian noise of zero mean and variance σ2III,

assumed to be white over space, frequencies, and symbols; we also assume that

the noise is independent from the multipath coefficients.

Condition A2 is a valid assumption since the time it takes for an indoor channel to

change significantly is of the order of milliseconds [75], whereas the OFDM symbol

duration of a snapshot T is of the order of microseconds.

Techniques for estimating the number of sources could be done through hypothesis

testing [76] or via information theoretic criteria [77]. However, we assume knowledge of

the number of sources, i.e. q is known.

4.1.3 Problem statement

The problem could be stated as follows:
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• Single-Snapshot case: Given the observed vector xxx in equation (4.10) and the

number of multi-path components q, and their corresponding AoAs and ToAs

{(θi, τi)}qi=1.

• Multi-Snapshot case: Given the observed data {xxx(l)}Ll=1 in equation (4.5) and

the number of multi-path components q, and their corresponding AoAs and ToAs

{(θi, τi)}qi=1.

4.2 Efficient Maximum Likelihood Joint AoA and ToA es-

timation

In a deterministic approach, the signal parameters {(θi, τi)}qi=1 and multipath compo-

nents {γ(l)}Ll=1 are not sample functions of random processes. Instead, these quantities

are modelled as unknown deterministic sequences, and are jointly estimated through the

criterion:

[Ĥ̂ĤH, γ̂(1), . . . , γ̂(L)] = arg min
HHH,γ(1),...,γ(L)

L∑
l=1

‖xxx(l)−HHHγ(l)‖2 (4.11)

Minimising with respect to {γ(l)}Ll=1, we obtain:

γ̂(l) = (HHHHHHH)−1HHHHxxx(l), l = 1 . . . L (4.12)

Treating {γ(l)}Ll=1 as nuissance parameters, we substitute its estimate obtained by (4.12)

in (4.11) to get:

Ĥ̂ĤH = arg min
HHH

L∑
l=1

∥∥∥PPP⊥
HHHxxx(l)

∥∥∥2
= arg min

HHH
tr
{
PPP⊥

HHHR̂̂R̂Rxx

}
(4.13)

where PPP⊥
HHH = IIIMN −HHH(HHHHHHH)−1HHHH is the orthogonal projection onto the noise sub-

space. The matrix R̂̂R̂Rxx is the sample covariance matrix obtained by R̂̂R̂Rxx = 1
L

∑L
l=1xxx(l)xxx(l)H .

Equation (4.13) represents the DML criteria.

4.2.1 Parameterisation of the Noise Subspace

The Deterministic ML (DML) criterion in (4.10) is highly nonlinear, as it requires a 2q-

dimensional search, and its direct optimisation would require cumbersome optimisation

techniques. The key to a computationally attractive solution of the DML problem is

a parameterisation of the noise subspace, as done in this section. Consider the two



Chapter 4 Joint Angle and Delay Estimation 47

following polynomials:

A(z) =

q∑
i=0

aiz
q−i =

q∏
i=1

(z − zτi) (4.14a)

and

B(z) =

q−1∑
i=0

biz
q−1−i =

q∑
i=1

zθi

q∏
k=1,k 6=i

(z − zτk)

(zτi − zτk)
(4.14b)

where zτi = e−j2πτiMf and zθi = e−jd2πfcsin(θi). Note that A(zτi) = 0 and B(zτi) = zθi .

The coefficient a0 = 1 so that A(z) is monic. Furthermore, W (f)W (f)W (f) is a
(
(2N − 1)(M −

q) +N − 1
)
×MN matrix given as

W (f)W (f)W (f) =

[
IIIN ⊗AAA

[IIIN−1|000]⊗BBB − [000|IIIN−1]⊗ IIIM,q−1

]
(4.15)

where AAA is (M − q)×M

AAA =


aq · · · a1 a0 0

. . .
. . .

. . .

0 aq · · · a1 a0

 (4.16a)

and BBB is (M − q + 1)×M

BBB =


bq−1 · · · b1 b0 0

. . .
. . .

. . .

0 bq−1 · · · b1 b0

 (4.16b)

Also, fff is 2(q + 1)× 1 given as

fffT =
[
aaaT bbbT 1

]
(4.16c)

aaaT =
[
a0 · · · aq

]
(4.16d)

bbbT =
[
b0 · · · bq−1

]
(4.16e)

Finally, IIIM,q−1 is (M − q + 1)×M defined by

IIIM,q−1 = [IIIM−q+1|
q−1︷ ︸︸ ︷

000 · · ·000] (4.16f)

Theorem 4.1. W (f)W (f)W (f) has row rank MN − q if q ≤ M+1
2 and HHH has full column rank.

Proof. See [107].
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Under assumption A1 and q ≤ M+1
2 , the rows of the matrix W (f)W (f)W (f) (equivalently, the

columns of WWWH(f)(f)(f)) span the noise subspace, i.e. W (f)W (f)W (f)HHH = 000 and thus we can write

PPP⊥
HHH = PPPWWWH(f)(f)(f).

Note that this parameterisation resolves maximally M+1
2 paths. It is worth mentioning

that if N > M , one would want to resolve N+1
2 paths (and not M+1

2 paths), so a simple

modification of the model in (4.5) is done by interchanging aaa(θ) and ccc(τ) in (4.8), then

constructing matrices AAA and BBB (equivalently, the polynomials A(z) and B(z)) of N and

N − 1 coefficients, respectively. In general, we could find a noise parameterisation that

could allow the resolvability of max(M,N)+1
2 .

4.2.2 2D Iterative Quadratic ML (2D-IQML)

We rewrite the DML cost function in (4.13) as follows

min
HHH

tr
{
PPP⊥

HHHR̂̂R̂Rxx

}
= min

HHH

L∑
l=1

∥∥∥PPPWWWH(f)(f)(f)xxx(l)
∥∥∥2

= min
fff

L∑
l=1

xxxH(l)WWWH(f)(f)(f)
(
WWW(f)(f)(f)WWWH(f)(f)(f)

)†
WWW(f)(f)(f)xxx(l)

(4.17)

where the Moore-Penrose pseudo–inverse has to be introduced since WWW(f)(f)(f)WWWH(f)(f)(f) is

singular for q < M+1
2 , and non-singular for q = M+1

2 if M is odd. Note that WWW(f)(f)(f)xxx(l) =

XXX lfff , where XXX l is an ((2N − 1)(M − q) + N − 1) × (2q + 2) matrix formed of elements

of xxx(l). Finally, (4.17) boils down to the following

f̂̂f̂f = arg min
fff

fffHQQQfff (4.18a)

where

QQQ =
L∑
l=1

XXXHl
(
WWW(f)(f)(f)WWWH(f)(f)(f)

)†
XXX l (4.18b)

The cost function in (4.18) could be solved in an iterative fashion as

f̂̂f̂f (n) = arg min
fff

fffHQQQ(n−1)fff (4.19a)

where

QQQ(n−1) =

L∑
l=1

XXXHl
(
WWW (f̂̂f̂f (n−1))WWW

H(f̂̂f̂f (n−1))
)†
XXX l (4.19b)

The vector f̂̂f̂f (n) is the estimated vector of fff at iteration (n). A good initialisation would

be to set WWW (f̂̂f̂f (0))WWW
H(f̂̂f̂f (0)) = III. If the constraint eeeT1 fff = 1 was posed to solve (4.19a),

then at any iteration (n), the vector f̂̂f̂f (n) would estimate the coefficients in aaa = [ao . . . aq]
T
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properly, but the rest of its entries corresponding to the coefficients in bbb = [bo . . . bq−1]T

would be zero because there is no constraint posed on fff in order to take the structure

of bbb = [bo . . . bq−1]T into account.

To cope with the aforementioned issue, we add the contraint (JJJeee1)Tfff = 1. Note that

this constraint is reasonable since, indeed, the last entry of fff is 1. In short, we aim to

solve (4.19) subject to:

eeeT1 fff = 1 (4.20a)

and

eeeT1 JJJfff = 1 (4.20b)

We write the Lagrangian function as

L(fff, µ1, µ2) = fffHQQQ(n−1)fff − µ1(eeeT1 fff − 1)− µ2(eeeT1 JJJfff − 1) (4.21)

where µ1 and µ2 are constants. Setting the derivative of L(fff, µ1, µ2) with respect to fff

to 0, we get
∂

∂fff
L(fff, µ1, µ2) = 2QQQ(n−1)fff − µ1eee1 − µ2JJJeee1 = 0 (4.22)

So, with some straightforward manipulations, we have

fff = µ
′
1QQQ−1

(n−1)eee1 + µ
′
2QQQ−1

(n−1)JJJeee1 (4.23)

where µ
′
i = µi

2 . Plugging (4.23) in (4.20a) and (4.20b), we have the following set of

equations [
α γ

γ∗ β

][
µ
′
1

µ
′
2

]
=

[
1

1

]
(4.24)

where α, β, and γ are given as:

α = eeeT1QQQ−1
(n−1)eee1 (4.25a)

β = eeeT1 JJJQQQ−1
(n−1)JJJeee1 (4.25b)

γ = eeeT1QQQ−1
(n−1)JJJeee1 (4.25c)

Finally, solving (4.24) with respect to µ
′
1 and µ

′
2, we get the following

f̂̂f̂f (n) =
(β − γ)QQQ−1

(n−1)eee1 + (α− γ∗)QQQ−1
(n−1)JJJeee1

αβ − |γ|2
(4.26)

The 2D-IQML could be summarised as follows:
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• Step1. Given
{
xxx(l)

}L
l=1

, form
{
XXX l
}L
l=1

.

• Step2. Initialise QQQ(0) =
∑L

l=1XXXHl XXX l.

• Step3. Iterate over (n) to compute f̂̂f̂f (n), using (24) and (25). Stop when ‖f̂̂f̂f (n) −
f̂̂f̂f (n−1)‖ < ξ (Pre-defined Threshold).

• Step4. Form the polynomials A(z) and B(z) using the estimate of f̂̂f̂f (n) obtained

in the last iteration of Step3 and equations (13), (15c), (15d), (15e).

• Step5. Find the q roots of A(zτ̂i) = 0, which give estimates of the ToAs as{
zτ̂i = e−j2πτ̂iMf

}q
i=1

.

• Step6. Compute B(zτ̂i) = zθ̂i , which give estimates of the q AoAs as
{
zθ̂i =

e−jd2πfcsin(θ̂i)
}q
i=1

.

The first iteration of 2D-IQML could be seen as a Subchannel Response Matching (SRM)

[79]. Note that, in a first iteration of 2D-IQML, we minimise:

1

L

L∑
l=1

fffHXXXHl XXX lfff ' El
{
fffHXXXHl XXX lfff

}
= El

{
fffHGGGHl GGGlfff

}
+ σ2tr

{
WWWH(f)(f)(f)WWW(f)(f)(f)

} (4.27)

where ggg(l) = HHHγγγ(l) and WWW(f)(f)(f)ggg(l) = GGGlfff , with GGGl being a matrix formed by elements

of ggg(l). (4.27) tells us that a balanced fff yields asymptotically unbiased and consistent

estimates, whereas unbalanced fff yield biased and inconsistent estimates. One should

also note that different parameterisations of the noise subspace give different estimates of

fff . This initialisation could be seen as a non-weighted version of 2D-IQML. Furthermore,

it is easy to see that the optimal value of fff , denoted hereby fffo, is the one that nulls

El{fffHGGGHl GGGlfff}. Therefore, in a noiseless scenario, a first iteration of 2D-IQML gives the

true value fffo. In general, at sufficiently high SNR, 2D-IQML performs well; however, at

low SNR, the 2D-IQML estimate is biased. Indeed, consider the asymptotic situation in

which the number of subcarriers M grow to infinity. By the law of large numbers, the
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2D-IQML criterion becomes essentially equivalent to its expected value, viz.

1

M
fffHXXXHl RRR†XXX lfff

= tr
{
WWWH(f)(f)(f)RRR†WWW(f)(f)(f)E

{
xxx(l)xxxH(l)

}}
+O(

1√
M

)

=
1

M
fffHGGGHl RRR†GGGlfff +

σ2

M
tr
{
WWWH(f)(f)(f)RRR†WWW(f)(f)(f)

}
+O(

1√
M

)

(4.28)

where RRR ,RRR(fff) = WWW(f)(f)(f)WWWH(f)(f)(f).

Recall that the minimiser of fffHGGGHl RRR†GGGlfff is fffo. Therefore, at high SNR, the 2D-IQML

estimate fff differs from the optimal fffo by an asymptotically vanishing estimation error,

because σ2

M tr{WWWH(f)(f)(f)RRR†WWW(f)(f)(f)} is negligible. However, this is not the case at low SNR,

simply because fffo is not the minimiser of σ2

M tr{WWWH(f)(f)(f)RRR†WWW(f)(f)(f)}, even if RRR , RRR(fffo).

More explicitely,

min
fff

{
tr
{
WWWH(f)(f)(f)RRR(fffo)†WWW(f)(f)(f)

}}
< tr

{
PPPWWWH(fo)(fo)(fo)

}
= MN − q

(4.29)

Finally, we can say from (4.29) that σ2

M tr
{
WWWH(f)(f)(f)RRR†WWW(f)(f)(f)

}
is minimised at fff1 6= fffo,

so the 2D-IQML criteria is minimised at fff2 6= fffo. Hence, due to presence of noise, fffo

is not asymptotically near a stationary point of the algorithm and 2D-IQML performs

poorly for any initialisation.

We propose here a method to ”denoise” the 2D-IQML criterion in a sense that it will

correct the 2D-IQML bias and provide a consistent estimate of the vector fff .

4.2.3 2D-Denoised IQML (2D-DIQML)

Asymptotic Number of Subcarriers (Large M)

The asymptotic noise contribution to the DML criterion is σ2tr{PPPWWWH(f)(f)(f)} (see (4.28)).

The denoising strategy consists of removing this asymptotic noise term, or more precisely,

an estimate of it i.e. σ̂2tr{PPPWWWH(f)(f)(f)} from the DML criterion, which becomes

min
fff

L∑
l=1

{
tr
{
PPPWWWH(f)(f)(f)

(
xxx(l)xxxH(l)− σ̂2IIIMN

)}}
⇔

min
fff

L∑
l=1

{
fffHXXXHl RRR†(fff)XXX lfff − σ̂2tr

{
WWWH(f)(f)(f)RRR†(fff)WWW(f)(f)(f)

}} (4.30)
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subject to (4.20a) and (4.20b).

Note that this operation does not change the optimizer of the DML criterion as σ̂2tr{PPPWWWH(f)(f)(f)} =

σ̂2(MN − q) is constant with respect to fff . We take σ̂2 to be a consistent estimate of

the noise variance. The denoised DML criterion is now solved in the 2D-IQML way, i.e.

f̂̂f̂f (n) = arg min
fff

fffH
{
QQQ(n−1) − σ̂2D

}
fff (4.31)

subject to (4.20a) and (4.20b).

The matrix D is such that fff
′′HDfff ′ = tr

{
WWWH(f

′′
)(f
′′
)(f
′′
)RRR†(fff)WWW(f

′
)(f
′
)(f
′
)
}

. Asymptotically in the

number of subcarriers, 2D-DIQML is globally convergent. Indeed, asymptotically it is

essentially equivalent to the denoised criterion

1

M
fffH
{
QQQ(n−1) − σ̂2D

}
fff =

1

M
fffHGGGHl RRR†GGGlfff +O(

1√
M

) (4.32)

if σ2 − σ̂2 = O( 1√
M

). Notice, again, that the fffo minimises the first term on the right

hand side of (4.32). Therefore, one iteration of 2D-DIQML yields an estimate of the

form f̂̂f̂f = ρfffo+O( 1√
M

), for some scaling factor ρ. So, the 2D-DIQML algorithm behaves

asymptotically at any SNR as the 2D-IQML algorithm behaves at high SNR.

Finite Number of Subcarriers

The choice of σ̂2 turns out to be crucial. In practice, with large but finite number

of subcarriers M , and the true noise variance, the central matrix QQQ − σ2D in (4.31) is

indefinite, thus the minimisation problem is no longer well posed. Simulations show that

the performance of 2D-DIQML in that case is very poor. The central matrix QQQ− σ̂2D
should be constrained to be positive semi-definite.

For the consistent estimate of σ2, we choose here a certain λ that rendersQQQ−λD exactly

positive semi-definite with one singularity. The 2D-DIQML criterion becomes

f̂̂f̂f (n) = arg min
fff,λ

fffH
{
QQQ(n−1) − λD

}
fff (4.33)

subject to (4.20a), (4.20b), and QQQ(n−1) − λD being positive semi-definite.

The solution of λ is λ = λmin

(
QQQ(n−1),D

)
, the minimal generalised eigenvalue of QQQ(n−1)

and D. After solving for λ, we get fff at iteration (n) as

f̂̂f̂f (n) =
(β
′ − γ′)SSS−1

(n−1)eee1 + (α
′ − γ′∗)SSS−1

(n−1)JJJeee1

α′β′ − |γ′ |2
(4.34)
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where

SSS(n−1) =QQQ(n−1) − λDDD (4.35a)

α
′

= eeeT1SSS−1
(n−1)eee1 (4.35b)

β
′

= eeeT1 JJJSSS−1
(n−1)JJJeee1 (4.35c)

γ
′

= eeeT1SSS−1
(n−1)JJJeee1 (4.35d)

Asymptotically, 2D-DIQML becomes

1

M
fffH
(
XXXHl RRR†XXX l − λDDD

)
fff

=
1

M
fffHGGGHl RRR†GGGlfff +

1

M

(
σ2 − λ

)
fffHDDDfff +O(

1√
M

)
(4.36)

Notice that, first, optimisation with respect to λ subject to the non-negativity constraint

would give λ = σ2 + O( 1√
M

), regardless of any initialisation of fff . Hence, λ asymptot-

ically nulls the noise contribution, and the optimal value of fff is fffo. Therefore, global

convergence applies for fff (to fffo) and λ (to σ2). In other words, at high M , the minimiser

of fff is fffo and the minimiser of λ is σ2.
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Figure 4.1: 2D-IQML vs. 2D-DIQML on AoA estimation of 1st Path, where true
AoA = 0 deg at SNR = -5dB

We have observed that, indeed, the 2D-DIQML algorithm behaves asymptotically at any

SNR as the 2D-IQML algorithm behaves at high SNR. To that extent, we fix the following

simulation parameters:

• M = 64 (Large M) subcarriers and N = 3 antennas.
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Figure 4.2: 2D-IQML vs. 2D-DIQML on ToA estimation of 1st Path, where true ToA
= 0 nsec at SNR = -5dB
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Figure 4.3: 2D-IQML vs. 2D-DIQML on AoA estimation of 2nd Path, where true
AoA = 30 deg at SNR = -5dB

• Mf= 0.3125MHz and d = λ
2

• q = 2 coherent paths with:

1. AoAs: θ1 = 0 and θ2 = 30 degrees.

2. ToAs: τ1 = 0 and τ2 = 100 nsecs.
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Figure 4.4: 2D-IQML vs. 2D-DIQML on ToA estimation of 2nd Path, where true
ToA = 100 deg at SNR = -5dB

• L = 10 snapshots.

• SNR = −5 dB (Low SNR).

At high SNR, both algorithms perform equally the same, i.e. both give unbiased esti-

mates of ToA/AoAs. Therefore, we have excluded this case from simulations. Neverthe-

less, it is of vast interest to see how both algorithms perform at low SNR and with a large

number of subcarriers. As one can see, the estimated ToAs of both algorithms converge

to the true ToA value (see Fig 4.2 and Fig 4.4). However, 2D-IQML AoA estimates

are much more biased compared to 2D-DIQML AoA estimates. Indeed, as one could

observe in Fig 4.1, the AoA of the first path which was set to be 0 degrees, was estimated

to be 4 degrees by 2D-IQML and 0 degrees by 2D-DIQML. Also, by taking a look at

Fig 4.3, the AoA of the second path which was set to be 30 degrees, was estimated to

be 15 degrees by 2D-IQML and 33 degrees by 2D-DIQML. Finally, we can say that, at

low SNR and high number of subcarriers, the 2D-IQML estimates are biased compared

to the 2D-DIQML estimates.
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4.3 Joint Angle and Delay Estimation by a single-snapshot:

2D Matrix Pencil Approach

In this section, and as the section title suggests, we shall use the single-snapshot model,

i.e.

xxx = HHHγ +nnn

where

HHH = CCCM �AAAN (4.37)

and all quantities are defined in the first section of this Chapter. In addition, we shall

make the sizes of the matrices AAA and CCC, as well as the sizes of their corresponding

columns, explicit. In other words, matrices (CCCK ,AAAK) ∈ CK×q where

CCCK = [cccK(τ1) . . . cccK(τq)] (4.38)

AAAK = [aaaK(θ1) . . . aaaK(θq)] (4.39)

4.3.1 ToA Estimation using 2D Matrix Pencil

Analytic Formulation

We start by forming a matrix from the data vector xxx given in equation (4.10). Let XXX

be a Mp ×KM Hankel block matrix defined as follows

XXX =


XXX1 XXX2 · · · XXXKM

XXX2 XXX3 · · · XXXKM+1

...
...

. . .
...

XXXMp XXXMp+1 · · · XXXM

 (4.40)

where XXXi is an Np ×KN Hankel matrix given by

XXXi =


Xi,1 Xi,2 · · · Xi,KN

Xi,2 Xi,3 · · · Xi,KN+1

...
...

. . .
...

Xi,Np Xi,Np+1 · · · Xi,N

 (4.41)

with

KM = M −Mp + 1 (4.42)
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and

KN = N −Np + 1 . (4.43)

The matrix XXX could be written as

XXX = LLLΓΓΓRRRT +NNN (4.44)

where NNN is a noise matrix with appropriate dimension, and LLL is an MpNp × q matrix

expressed as

LLL =


AAANp

AAANpDDDτ

...

AAANpDDD
Mp−1
τ

 (4.45)

and RRR is a KMKN × q matrix given by

RRR =


AAAKN

AAAKNDDDτ

...

AAAKNDDD
KM−1
τ

 (4.46)

The matrices ΓΓΓ and DDDτ are q × q diagonal matrices as

ΓΓΓ = diag [γ1 . . . γq] (4.47)

and

DDDτ = diag [zτ1 . . . zτq ] (4.48)

Let XXX l and XXXr be two NpMp ×KN (KM − 1) matrices defined as

XXX l = XXX〈:,1:KN (KM−1)〉 (4.49a)

XXXr = XXX〈:,(KN+1):KNKM 〉 (4.49b)

In a noiseless case, it is easy to see that

XXX l = LLLΓΓΓRRRT
o (4.50a)

and

XXXr = LLLΓΓΓDDDτRRR
T
o (4.50b)

where

RRRo = RRR〈1:KN (KM−1),:〉 (4.50c)
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Consider the following matrix pencil

XXXr − λXXX l = LLLΓΓΓ
(
DDDτ − λIIIq

)
RRRo (4.51)

Provided that the two matrices LLL and RRRo are full column rank, i.e. the rank of both

matrices is q, then the rank of the matrix pencil XXXr − λXXX l drops to q − 1 at λ = zτi for

all i = 1 . . . q.

It is proved in [50] that if the singular value decomposition of XXX l is XXX l = UUUΛΛΛVVV H, then

the q eigenvalues of the following matrix

TTT = Λ̄̄Λ̄Λ−1Ū̄ŪUHXXXrV̄̄V̄V (4.52a)

where

Ū̄ŪU = UUU 〈:,1:q〉 (4.52b)

Λ̄̄Λ̄Λ = ΛΛΛ〈1:q,1:q〉 (4.52c)

V̄̄V̄V = VVV 〈:,1:q〉 (4.52d)

are the values of λ that drop the rank of the matrix pencil XXXr − λXXX l to q − 1. In other

words, these q values of λ are called the generalised eigenvalues of the matrix pencil

(XXXr,XXX l). As a consequence, the q generalised eigenvalues of (XXXr,XXX l) are estimates of

{zτi}
q
i=1. We denote these estimates as {ẑMP

τi }
q
i=1.

Conditions for ToA Estimates using 2D Matrix Pencil

Recall that under the assumption that both matrices LLL and RRRo are full column rank, the

generalised eigenvalues of the matrix pencil (XXXr,XXX l) are estimates of {zτi}
q
i=1. Before

deriving the conditions, we define the following:

Definition: Let P and Q be two integers defined as follows:

• Let qτ be the number of distinct ToAs, i.e. τ1, . . . , τ q
τ
; and let the following

integers P1, . . . , Pqτ denote their corresponding multiplicity.

Note that
∑qτ

i=1 Pi = q. The maximum number of paths arriving at the same time

but with different angles of arrival is maxi Pi = P .

• Similarly, let qθ be the number of distinct AoAs, i.e. θ1, . . . , θq
θ
; and let the

following integers Q1, . . . , Qqθ denote their corresponding multiplicity.

Note that
∑qθ

i=1Qi = q. The maximum number of paths arriving at same AoAs

but with different ToAs is maxiQi = Q.
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It is straightforward to see that LLL and RRRo have same structure, but different dimensions,

i.e.

LLL = CCCMp �AAANp (4.53)

RRRo = CCCKM−1 �AAAKN (4.54)

Remark 4.2. Let HHH ∈ CMN×q be a matrix defined as HHH = CCCM �AAAN . The matrix HHH has

full column rank if the following hold:

• Condition 1 : q ≤MN

• Condition 2 : P ≤ N

• Condition 3 : Q ≤M

Using the above remark, it is easy to see that both matrices LLL and RRRo are full column

rank under the following conditions:

• B1. q ≤ min {MpNp,KN (KM − 1)}

• B2. P ≤ min {Np,KN}

• B3. Q ≤ min {Mp,KM − 1}

Therefore, if conditions B1 till B3 are satisfied, the ToAs could be estimated through

the 2D Matrix Pencil technique described herein.

4.3.2 AoA Estimation using 2D Matrix Pencil

Analytic Formulation

Let YYY be a shuffled version of matrix XXX, viz.

YYY = XXXPPP (4.55)

where PPP is a KMKN ×KMKN permutation matrix defined as follows

PPPT =


EEE1

EEE2

...

EEEKN

 (4.56a)
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where

EEEk =


eeeTk

eeeTk+KN
...

eeeTk+KN (KM−1)

 (4.56b)

where eeek is the kth column of the identity matrix IIIKMKN . Now, as done in equa-

tion (4.49), form YYY l and YYY r by

YYY l = YYY 〈:,1:KM (KN−1)〉 (4.57a)

YYY r = YYY 〈:,(KM+1):KNKM 〉 (4.57b)

Using the same methodology as in equations (4.50), (4.51), and (4.52), one could obtain

estimates of the AoAs, i.e. {ẑMP
θi
}qi=1. The conditions for proper estimation of AoAs

using the 2D Matrix Pencil technique just described are similar to those in Section 4.3.1

and are given in the following subsection.

Conditions for AoA Estimates using 2D Matrix Pencil

The conditions for AoA estimation using 2D Matrix Pencil are the following:

• C1. q ≤ min {MpNp,KM (KN − 1)}

• C2. P ≤ min {Np,KN − 1}

• C3. Q ≤ min {Mp,KM}

4.3.3 Proposed Algorithms
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Figure 4.5: Scatter plot of experiment 1 at SNR = 30 dB.
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Figure 4.6: Scatter plot of experiment 2 at SNR = 20 dB.
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Figure 4.7: Scatter plot of experiment 3 at SNR = 10 dB.
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Figure 4.8: Scatter plot of experiment 4 at SNR = 0 dB.

In this section, we present two algorithms that allow joint estimation of the times and

angles of arrival. The first algorithm is intended for systems where the number of subcar-

riers M is much larger than the number of antennas N , i.e. M � N . This is a reasonable

assumption since most Wi-Fi technologies are equipped with 3 up to 8 antennas. More-

over, the number of subcarriers used in a Wi-Fi OFDM symbol varies between 64 and

512. Furthermore, the second algorithm could be used for any configuration, i.e. for any

M and N . In addition, conditions for the two algorithms are provided.
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Figure 4.9: MSE of ToAs vs. SNR of experiment 5.
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Figure 4.10: MSE of AoAs vs. SNR of experiment 5.

Algorithm 1: (M � N)

Note that the parameters KM and KN (or equivalently Mp and Np) are free in a noiseless

case. However, in a noisy scenario, those parameters should be properly selected. For

more details, the reader is referred to [50]. In any case, the parameters KM and KN

parameters are jointly tuned so that conditions B1 till B3 (or C1 till C3) are met, if

the purpose is to estimate the ToAs (or AoAs) using 2D Matrix Pencil. If M � N , one

could show that there exist integers KM and KN (or equivalently Mp and Np) where

conditions B1 till B3 are less restrictive than conditions C1 till C3. In other words, if
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M � N , the 2D Matrix Pencil described herein allows estimation of more ToAs than

AoAs. Therefore, we propose the following algorithm:

• Step 1: Given xxx and q, form XXX using equations (4.40) and (4.41).

• Step 2: Obtain {ẑMP
τi }

q
i=1 using equations (4.49) till (4.52).

• Step 3: Estimate the ToAs of the q paths by the following relation:

τ̂MP
i = −

ang{ẑMP
τi }

2π Mf
(4.58)

• Step 4: Form an N ×M matrix ZZZ by using entries of the snapshot vector xxx as

follows:

ZZZ =


X1,1 X2,1 · · · XM,1

X1,2 X2,2 · · · XM,2

...
...

. . .
...

X1,N X2,N · · · XM,N

 (4.59)

Note that ZZZ is written as:

ZZZ = AAANΓΓΓCCCT
M +WWW (4.60)

where WWW is the noise part. This step comprises in estimating the term GGG = AAANΓΓΓ

using Least Squares (LS), i.e:

ĜGG = arg min
GGG

‖ZZZ −GGGCCCT
M‖2 (4.61)

The solution of (4.61) is:

ĜGG = ZZZCCC†M (4.62)

where CCC†M is the Moore–Penrose pseudoinverse of CCCT
M and is given by

CCC†M = CCC∗M
(
CCCT

MCCC
∗
M

)−1
(4.63)

Note that CCC†M exists if and only if q ≤ M and all ToAs are distinct, i.e. P = 1.

Finally, we use the 2D Matrix Pencil estimates of the ToAs obtained in Step 3 to

computeCCCT
M in order to obtain the estimate ofGGG using equation (4.63) then (4.62).

In other words, CCCM is obtained as

CCCM = [cccM (τ̂MP
1 ) . . . cccM (τ̂MP

q )] (4.64)
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• Step 5: Using Ĝ̂ĜG from Step 4, we solve the following optimisation problem:

Â̂ÂAN = arg min
AAAN

‖Ĝ̂ĜG−AAANΓΓΓ‖2

=

q∑
i=1

arg min
aaaN(θi)

‖Ĝ̂ĜG〈:,i〉 − γiaaaN(θi)‖2
(4.65)

Note that the problem is decoupled in terms of aaaN(θi) due to the diagonal structure

of ΓΓΓ. The solution of the problem under a norm constraint, e.g. ‖aaaN(θi)‖2 = N

for i = 1 . . . q, is

â̂âaN(θi) =
Ĝ̂ĜG〈:,i〉

‖Ĝ̂ĜG〈:,i〉‖
(4.66)

• Step 6: In the last step, we estimate the AoAs by using an LS fit, i.e.

ê̂êei = arg min
eeei

‖ang{â̂âaN(θi)} − TTTeeei‖2, i = 1 . . . q (4.67)

where TTT ∈ CN×2 and is given by

TTT =


0 1

1 1
...

...

N − 1 1

 (4.68)

and the solution is ê̂êei = [ei,1, ei,2]T = TTT †ang{â̂âaN(θi)} with TTT † = (TTTTTTT )−1TTTT and

finally θi is estimated as follows

θ̂i = −sin−1
(ei,1λ

2πd

)
, i = 1 . . . q (4.69)

Note that the angles in equation (4.67) should be carefully dealt with, i.e. those

angles should be within the range [0, 2π]. In MATLAB, the unwrap command is

able to maintain the angles in this range. In short, Algorithm 1 is useful when

M � N . Note that only the ToAs were estimated using the 2D Matrix Pencil

technique in Step 2. Therefore, the conditions for Algorithm 1 are B1 till B3,

in addition to the condition of existance of a pseudoinverse of CCCM in Step 4.

Combining all those conditions, we get the following:

– D1. q ≤ min {MpNp,KN (KM − 1),M}

– D2. P = 1

– D3. Q ≤ min {Mp,KM − 1}
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Algorithm 2

In this algorithm, both ToAs and AoAs are estimated using the 2D-Matrix Pencil tech-

nique, i.e.

• Step 1 till Step 3 are similar to Algorithm 1.

• Step 4: Form YYY = XXXPPP where PPP is given in equation (4.56).

• Step 5: Obtain {ẑMP
θi
}qi=1 using equations (4.57) and (4.52).

• Step 6: Estimate the AoAs of the q paths by the following relation:

θ̂MP
i = −sin−1

(ang{ẑMP
θi
}λ

2πd

)
(4.70)

Note that the ToAs and AoAs are estimated but are not matched; unlike Algorithm

1, where the matching happens naturally in Step 5. In other words, τ̂MP
k and θ̂MP

k

are not necessarily the ToA and AoA of the kth multipath. Therefore, a matching

step is required to pair {τ̂MP
i }qi=1 with {θ̂MP

i }
q
i=1. Fixing the position of τ̂MP

k at

position k, there are q! possible permutations of {θ̂MP
i }

q
i=1.

• Step 7: The matching criterion is based on evaluating the Maximum Likelihood

(ML) cost function for joint angles and times of arrival estimation (see [107] for

the JADE ML cost function) by fixing the positions of {τ̂MP
i }qi=1 and permuting

{θ̂MP
i }

q
i=1 as done in the table SubAlgorithm 1.

Since the ToAs and AoAs are both estimated using 2D Matrix Pencil, Algorithm

2 needs conditions B1 till B3 and C1 till C3, and therefore

– E1. q ≤ min {MpNp,KN (KM − 1),KM (KN − 1)}

– E2. P ≤ min {Np,KN − 1}

– E3. Q ≤ min {Mp,KM − 1}

This section demonstrates the performance of Algorithm 1 as a function of SNR. The

performance of Algorithm 2 was not provided due to lack of space.

In the first four experiments, the array was ULA with N = 3 antennas spaced half

a wavelength apart. The transmitted OFDM symbol occupies 40 MHz of bandwidth,

and uses M = 64 subcarriers with uniform spacing Mf= 0.625 MHz. The 2D Matrix
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Table 3: Step 7 of Algorithm 2

INITIALISATION:
CCCM = [cccM (τ̂MP

1 ) . . . cccM (τ̂MP
q )]

AAAN = [aaaN (θ̂MP
1 ) . . . aaaN (θ̂MP

q )]
Υ1Υ1Υ1 = IIIq

MAIN LOOP:
for l = 1 to q! do

Step 7.1: HHH = CCCM � (AAANΥΥΥl)

Step 7.2: PPPHHH = IIIMN −HHH(HHHHHHH)−1HHHH

Step 7.3: bbb(l) =
∥∥PPPHHHxxx

∥∥2

Step 7.4: Choose another permutation matrix ΥΥΥl+1

FIND BEST MATCH:
Step 7.5: Find k̂ = arg maxk bbb(k). This means that all columns of CCCM are matched to
columns of AAANΥΥΥk̂ according to the ML criterion in Step 7.3.

Pencil parameters were Mp = 30 and Np = 2. The number of multipath components

were set to q = 17 paths. The ToAs and AoAs of each path are given as follows: The

first 11 paths arrive with delays {τk = 30(k − 1) nsec}11
k=1 with corresponding AoAs as

{θk = −60◦}2k=1, θ3 = −45◦, θ4 = −20◦, {θk = 0◦}8k=5, {θk = 10◦}10
k=9, and θ11 = 35◦.

The 6 other paths arrive with delays {τk = 500+50(k−12) nsec}17
k=12 with corresponding

AoAs as {θk = 35◦}14
k=12 and {θk = 60◦}17

k=15. Moreover, the multipath coefficients γ are

randomly chosen. For each experiment, a different SNR was set and a scatter plot was

depicted using 1000 Monte-Carlo simulations. Each Monte-Carlo simulation plots the

ToA and AoA estimates using only one snapshot xxx.

Note that the maximum number of paths arriving at the same time but with different

AoAs is P = 1, and the maximum number of paths arriving with same AoAs but at

different times is Q = 4. Moreover, one could easily verify that conditions D1 till D3

are satisfied and hence Algorithm 1 is applicable.

In the first experiment, i.e. Figure 4.5, the SNR was set to 30 dB, and we observe almost

perfect estimation of all ToAs and AoAs since the variations of the estimates from their

true values is negligible. The SNR was 20 dB in the second experiment (Figure 4.6) and

we observe almost the same phenomena as the first experiment except for paths 5 till 8

where their AoAs were properly estimated but their ToAs tend to overlap. In the third

experiment (Figure 4.7) where the SNR = 10 dB , paths 5 till 10 overlap and ToA/AoA

estimates of all paths start to show more deviation from their true values. Finally, in

the last experiment (Figure 4.8), the SNR was set to 0 dB and we could observe a clear

degradation of the performance of Algorithm 1.
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In the last experiment, i.e. experiment 5, we plot two Mean-Squared-Error (MSE)

curves, one corresponding to the MSE of the Times-of-Arrival (Figure 4.9) and the other

corresponding to the MSE of the Angles-of-Arrival (Figure 4.10). We compare with the

first algorithm proposed by A. Gaber and A. Omar in Section III, [80]. The simulation

parameters are the same as those in the first four experiments except for q which is now

set to 3 sources. In addition, the ToAs are selected as follows: τ1 = 0 nsec, τ2 = 25 nsec,

and τ3 = 75 nsec. Furthermore, the corresponding AoAs are chosen to be: θ1 = 0◦,

θ2 = 5◦, and θ3 = 10◦. As expected, the MSE of the estimated ToAs using Algorithm 1

and the method in [80] is the same (See Figure 4.9) since Steps 1 till 3 are similar in both

algorithms, and therefore the ToA estimates are the same. However, the estimated AoAs

are different, since both algorithms are essentially different. In particular, our proposed

Algorithm 1 doesn’t require ToA/AoA pairing, since this is automatically done in Step

6. Whereas, the method in [80] requires a matching criterion. This may explain why

the proposed Algorithm 1 exhibits a lower MSE in AoAs than the one in [80] (See

Figure 4.10).

4.4 Spatio-Frequential smoothing: A Remedy for coherent

sources

4.4.1 The JADE-MUSIC Algorithm: A Recap

The spatio-frequential covariance matrix is given by

RRRxx = E{xxx(l)xxxH(l)} = HHHRRRγγHHH
H + σ2IIIMN (4.71)

where RRRγγ is the covariance matrix of γ(l). The matrix given in (4.71) is, usually, esti-

mated through a sample average over snapshots, and is known as the sample covariance

matrix, i.e.

RRRxx '
1

L

L∑
l=1

xxx(l)xxxH(l) (4.72)

In what follows, RRRxx will be referred to as the sample covariance matrix, and not the

true one. We denote λ1 > λ2 > . . . > λMN the eigenvalues of RRRxx. Their correspond-

ing eigenvectors are named uuu1,uuu2, . . . ,uuuMN . The sample covariance matrix in (4.72) is

an input to most subspace algorithms for estimating the signal parameters, i.e. AoAs

{θ1 . . . θq} and ToAs {τ1 . . . τq}. One of these algorithms is the JADE-MUSIC algorithm,

which is a 2-D version of MUSIC. This algorithm is summarised as follows:

(1) Apply an eigenvalue decomposition of RRRxx.
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(2) Form the noise subspace matrix, i.e. UUUn = [uuuq+1 . . .uuuMN ].

(3) Search for {θ̂i, τ̂i}qi=1 by

{(θ̂i, τ̂i)}qi=1 = arg max
θ,τ

{ 1

‖UUUHn [aaa(θ)⊗ ccc(τ)]‖2F
} (4.73)

The MUSIC algorithm is one of many subspace techniques, i.e. the extraction of a signal

or noise subspace is required for further processing. Subspace techniques assume that

the matrix RRRγγ is full rank, otherwise the estimated subspaces do not reflect the true

ones (See [81] for a mathematical argument). Furthermore, rank deficiency of RRRγγ is

due to coherence of multiple signals, or to insufficient number of snapshots, i.e. L < q.

The spatial smoothing pre-processing technique is known to ”decorrelate” the sources,

and therefore attain full rank of the matrix RRRγγ .

In the following section, we present a 2D version of smoothing, i.e. spatio-frequential

smoothing, and we show its advantage over conventional spatial or frequential smoothing

techniques.

4.4.2 The Spatio-Frequential Preprocessing Technique

(1,1)	
   (1,2)	
   (1,3)	
   (1,4)	
  

(2,1)	
   (2,2)	
   (2,3)	
   (2,4)	
  

(3,1)	
   (3,2)	
   (3,3)	
   (3,4)	
  

1st	
  
antenna	
  

2nd	
  
antenna	
  

3rd	
  	
  
antenna	
  

1st	
  
subcarrier	
  

2nd	
  
subcarrier	
  

3rd	
  	
  
subcarrier	
  

4th	
  	
  	
  
subcarrier	
  

Figure 4.11: A spatio-frequential array of N = 3 antennas and M = 4 subcarriers
partitioned into Np = 2 and Mp = 3, hence a total of KMKN = 4 subarrays.

Recall that equation (4.5) gives the information on all subcarriers at all antennas. We

shall use the notation (n,m) to index the mth subcarrier and nth antenna. Let the

spatio-frequential array {(i, j)}j=1...M
i=1...N of size MN be divided into overlapping subarrays

of size MpNp (Mp and Np being the number of subcarriers and antennas in the subarrays,
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respectively). Indeed, one could check that the total number of overlapping subarrays

is equal to KMKN , where KM = M −Mp + 1 and KN = N −Np + 1.

To visualise how the subarrays are formed, we refer the reader to Fig 4.11, where a set-

ting of N = 3 antennas and M = 4 subcarriers is partitioned into overlapping subarrays

of sizes Np = 2 and Mp = 3, and therefore a total of KMKN = 4 subarrays.

Since the effective number of subcarriers and antennas used now are Mp and Np, respec-

tively, then (4.5) becomes

xxxm,n(l) = H̄̄H̄HDDDm−1
τ DDDn−1

θ γ(l) +nnnm,n(l) (4.74)

where

H̄̄H̄H =
[
aaaNp(θ1)⊗ cccMp(τ1)

∣∣ . . .
∣∣ aaaNp(θq)⊗ cccMp(τq)

]
(4.75)

Matrices DDDm−1
τ and DDDn−1

θ are the (m − 1)th and (n − 1)th power of the diagonal q × q
matrices DDDτ and DDDθ, given by

DDDτ = diag {c2(τ1) . . . c2(τq)} (4.76a)

DDDθ = diag {a2(θ1) . . . a2(θq)} (4.76b)

This means that xxxm,n(l) is anMpNp×1 received vector on the subarray {(i, j)}i=m...Mp+m−1
j=n...Np+n−1 .

The covariance matrix of xxxm,n(l) in (4.74) after averaging over time snapshots is given

as

RRRm,n = H̄̄H̄HDDDm−1
τ DDDn−1

θ RRRγγDDD
H
θ
n−1

DDDH
τ
m−1

H̄̄H̄HH + σ2IIIMpNp (4.77)

The spatio-frequential smoothed covariance matrix is given by

R̄̄R̄R =
1

KMKN

KM∑
m=1

KN∑
n=1

RRRm,n (4.78)

R̄̄R̄R could also be written as

R̄̄R̄R = H̄̄H̄HR̄̄R̄RγγH̄̄H̄H
H + σ2IIIMpNp (4.79)

where

R̄̄R̄Rγγ =
1

KMKN

KM∑
m=1

KN∑
n=1

DDDm−1
τ DDDn−1

θ RRRγγDDD
H
θ
n−1

DDDH
τ
m−1

(4.80)

In a single carrier case, i.e. M = Mp = 1, it has been proven that the spatial smoothing

technique ensures full rank of R̄̄R̄Rγγ [81], given that q ≤ KN .
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Analogously, in the single antenna but multi-carrier case, i.e. N = Np = 1, the same

technique has been applied in [82] and was referred to as frequency smoothing, in order

to acheive full rank of R̄̄R̄Rγγ , when q ≤ KM . However, in the general multi-antenna and

multi-carrier case, we have the following:

Figure 4.12: Spatial Smoothing with Np = 2.

Figure 4.13: Frequency Smoothing with Mp = 2.

Theorem 4.3. If the number of subarrays formed jointly over space and frequency is

greater than the number of multipath components, i.e. q ≤ KMKN , and the maximum

number of paths arriving at the same time but with different angles is less than KN , i.e.
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Figure 4.14: Spatio-Frequential Smoothing with Np = 2 and Mp = 3.

maxiQi ≤ KN , and the maximum number of paths arriving at the same angles but with

different times is less than KM , i.e. maxi Pi ≤ KM , then R̄̄R̄Rγγ is of rank q.

Proof. See Appendix A

Conditions (i) till (iii) in Appendix A are sufficient to attain full rank of R̄̄R̄Rγγ . But, in

order for subspace methods to work properly, one should also have that H̄̄H̄H (see (4.74))

is full column rank. Note that H̄̄H̄H has dimensions NpMp× q. In the spirit of Remark 4.2,

this is valid when q ≤ MpNp, maxiQi ≤ Np , and maxi Pi ≤ Mp. In general, one must

have:

• q ≤ min{KMKN ,MpNp}

• maxiQi ≤ min{KN , Np}

• maxi Pi ≤ min{KM ,Mp}

Finally, the advantage of spatio-frequential smoothing is that it offers KMKN subar-

rays to smooth over, in contrast to spatial and frequential smoothing that naturally

provide KN and KM subarrays, respectively. Therefore, one could be able to resolve

more coherent sources, as given in (b.1). This advantage is, also, presented through

simulations.

Computer simulations are presented to show the advantage of spatio-frequential smooth-

ing over the conventional spatial and frequential smoothing. Simulations have been done
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with N = 3 antennas and M = 4 subcarriers at SNR = 20dB. The subcarrier spacing

is chosen 4f = 3.125 MHz. We have fixed q = 4 paths, where their correspond-

ing angles and times of arrival are (θ1, τ1) = (0◦, 40 nsec), (θ2, τ2) = (60◦, 100 nsec),

(θ3, τ3) = (−20◦, 150 nsec) and (θ4, τ4) = (50◦, 200 nsec). The complex attenuation

vector γγγ is fixed to a constant arbitrary value. Finally, L = 3 snapshots were collected.

Figure 4.12 shows the JADE spectrum after preprocessing only by spatial smoothing,

i.e. M = Mp = 4 and Np = 2. Indeed, there is an ambiguity in detecting the 4 peaks

corresponding to the true angles and times of arrival due to insufficient number of sub-

arrays to smooth over, i.e. only KN = 2 < q spatial subarrays are available. The same

argument is done when one applies only frequency smoothing, i.e. N = Np = 3 and

Mp = 2. In that case, one will have KM = 3 < q subarrays to smooth over. As a result,

false peaks appear in figure 4.13.

To this end, we could see that we need at least q = 4 subarrays to smooth over. This

is done by preprocessing through spatio-frequential smoothing. Choosing Np = 2 and

Mp = 3 would lead to KNKM = 4 subarrays in total. After smoothing over space and

frequencies, one could observe 4 clear peaks corresponding to the true angles and times

of arrival of the 4 paths in figure 4.14.

4.5 Conclusions

In this chapter, we have presented two techniques to solve the highly nonlinear DML

algorithm for joint times and angles of arrival: 2D-IQML and 2D-DIQML. Asymptotic

performance analysis of both techniques were provided. It has been shown that 2D-

IQML gives biased estimates of ToA/AoA and performs poorly at low SNR due to

noise. An original ”denoising” strategy is proposed, which constrains the Hessian of the

cost function to be positive semi-definite. This ”denoising” strategy is called 2D-DIQML

that has been shown to be globally convergent. Furthermore, 2D-DIQML outperforms

2D-IQML because the former behaves asymptotically at any SNR as the latter behaves

at high SNR. Finally, for localisation purposes, joint AoA and ToA information could

be used to form a database, where a mapping is done between ToA/AoA vectors and

location. Then, this database could be used in an online stage, where joint AoA/ToA

estimation is done using the proposed algorithms, followed by a matching criteria that

finds the best match in the database to obtain an estimate of the location of a wireless

transmitter.
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We have also presented two algorithms based on 2D Matrix Pencils. These two al-

gorithms allow joint estimation of times and angles of arrival of multiple paths using

only one snapshot. Algorithm 1 resolves more sources than Algorithm 2 in the case

where the number of subcarriers is much larger than the number of antennas, which is

the case of most Wi-Fi systems. The performance of Algorithm 1 as a function of SNR

was studied through simulations.

Finally, we have presented a 2D smoothing preprocessing technique, applied to a Spatial-

Frequential array, to ”decorrelate” multipath components. Then, any 2D subspace al-

gorithm could be applied to estimate the times and angles of arrivals of the different

paths. The 2D smoothing technique presented here, naturally, offers more subarrays to

smooth over and, therefore, one could be able to resolve more coherent paths.



Chapter 5

Joint Angle and Delay Estimation and

Detection

In this chapter, a novel approach entitled ”Joint Angle and Delay Estimator and Detec-

tor”, or simply JADED, is presented. The contributions could be summarized as follows:

(i) Thanks to this approach, we can now estimate the Angles and Times of Arrival of

multipath, without prior knowledge of the number of multipath components; (ii) a method

called JADED-RIP, makes use of the Rotational Invariance Properties (RIP) of ULAs

and OFDM symbols, detects the number of multipath components, and estimates the an-

gles and times of arrival of each path by performing a 2D search; (iii) the second method

is a Computationally Efficient Single Snapshot (CESS) version of the JADED-RIP, i.e.

it requires a 1D search followed by a least squares fit, and can only be used when a single

OFDM symbol is available.

5.1 System model

As in the previous Chapter, we consider an OFDM symbol composed of M subcarriers

and centered at a carrier frequency fc, impinging an array of N antennas via q multipath

components. Each path arrives at AoA θi and ToA τi. After applying an FFT and

equalization, we can express the lth OFDM symbol as follows

xxx(l) = HHHγ(l) +www(l), l = 1 . . . L (5.1)

where xxx(l) ∈ CMN×1 is given as

xxx(l) = [X
(l)
1,1 . . . X

(l)
1,N . . . X

(l)
M,1 . . . X

(l)
M,N ]T (5.2)

74
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with X
(l)
m,n being the data at the nth antenna and mth subcarrier in the lth OFDM

symbol. HHH ∈ CMN×q contains the ToA/AoA information as

HHH = [cccM (τ1)⊗ aaaN (θ1) . . . cccM (τq)⊗ aaaN (θq)] (5.3)

where

aaaN (θ) = [1, zθ . . . z
N−1
θ ]T with zθ = e−j2π

d
λ

sin(θ) (5.4)

cccM (τ) = [1, zτ . . . z
M−1
τ ]T with zτ = e−j2πτMf (5.5)

where 4f is the subcarrier spacing, d is the inter-element spacing, and λ is the signal’s

wavelength. The q × 1 vector γγγ(l) is composed of the multipath coefficients

γγγ(l) = [γ1(l) . . . γq(l)]
T (5.6)

Note that we have made explicit the dimensions of vectors cccM (τ) and aaaN (θ), i.e. it

should be understood that for any integer K ≥ 1, the vectors
(
cccK(τ), aaaK(θ)

)
∈ CK×1.

The vector www(l) is additive Gaussian noise of zero mean and covariance σ2III, assumed

to be white over space, and frequencies. We are now ready to address the problem:

”Given the data {xxx(l)}Ll=1, estimate the number of multipath components q and the signal

parameters {(τj , θj)}qj=1.”

5.2 JADED-RIP Algorithm Derivation

5.2.1 Data Manipulation

Let XXX(l) be a matrix formed from the entries of xxx(l)

XXX(l) =


XXX

(l)
1 XXX

(l)
2 · · · XXX

(l)
KM

XXX
(l)
2 XXX

(l)
3 · · · XXX

(l)
KM+1

...
...

. . .
...

XXX
(l)
PM

XXX
(l)
PM+1 · · · XXX

(l)
M

 (5.7)

where XXX
(l)
i is an PN ×KN Hankel matrix given by

XXX
(l)
i =


X

(l)
i,1 X

(l)
i,2 · · · X

(l)
i,KN

X
(l)
i,2 X

(l)
i,3 · · · X

(l)
i,KN+1

...
...

. . .
...

X
(l)
i,PN

X
(l)
i,PN+1 · · · X

(l)
i,N

 (5.8)
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with

KM = M − PM + 1 and KN = N − PN + 1 (5.9)

For simplicity of notation, define the following integers

K , KMKN and P , PMPN (5.10)

The matrix XXX(l) can be written as

XXX(l) = LLLΓΓΓ(l)RRRT +WWW (l) (5.11)

where LLL ∈ CP×q and RRR ∈ CK×q are given as

LLL = [hhhP (τ1, θ1) . . .hhhP (τq, θq)] (5.12)

RRR = [hhhK(τ1, θ1) . . .hhhK(τq, θq)] (5.13)

with

hhhP (τ, θ) = cccPM (τ)⊗ aaaPN (θ) (5.14)

hhhK(τ, θ) = cccKM (τ)⊗ aaaKN (θ) (5.15)

The matrix ΓΓΓ(l) ∈ Cq×q is a diagonal matrix, i.e.

ΓΓΓ(l) = diag [γ1(l), γ2(l) . . . γq(l)] (5.16)

Finally, the matrix WWW (l) ∈ CP×K is background noise defined in a similar manner as

XXX(l).

5.2.2 Introducing Orthogonal Projectors

Let RRRj be a matrix defined as RRR with omitted jth column. Furthermore, define the

orthogonal projector matrix that spans the null space of the columns of RRRj as

PPP⊥j = IIIK −RRRj
(
RRRT
j RRRj

)−1
RRRT
j (5.17)

In other words, RRRT
j PPP⊥j = 000. Now, let fff j ∈ CK×1 be a vector that lives in the null space

of the columns of RRRj . Therefore, there exists a non-zero vector zzz ∈ CK×1 such that

fff j = PPP⊥j zzz (5.18)
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Post-multiplying the vector fff j with the data matrix XXX(l) yields

XXX(l)fff j =
(
LLLΓΓΓ(l)RRRT

)
fff j +WWW (l)fff j

= LLLjΓΓΓj(l)RRR
T
j PPP⊥j zzz + αj(l)hhhP (τj , θj) + w̃ww(l)

= αj(l)hhhP (τj , θj) + w̃ww(l), l = 1 . . . L

(5.19)

where LLLj is defined in a similar manner as RRRj and ΓΓΓj(l) ∈ C is the same as ΓΓΓ(l)

in equation (5.16) but with eliminated jth row and column. Furthermore, αj(l) =

γ
(l)
j hhh

T
K(τj , θj)fff j . Finally, w̃ww(l) = WWW (l)fff j is the noise part, which is easily verified to be

colored noise.

Equation (5.19) is key to what follows. In other words, we know that a vector fff j exists,

which can select the contribution of the jth source. Next, we derive a Least-Square (LS)

estimator of all the unknown parameters.

5.2.3 Least-Square Estimator

The parameters concerning the jth source are

ΘΘΘj = [fffT
j ,ααα

T
j , τj , θj ] (5.20)

where αααj = [αj(1) . . . αj(L)]T. Let’s stack all unknown parameters into one vector ΘΘΘ,

i.e.

ΘΘΘ = [ΘΘΘ1,ΘΘΘ2 . . .ΘΘΘq] = [fffT,αααT, τττ ,θθθ] (5.21)

where

fff = [fffT
1 . . . fff

T
q ]T and ααα = [αααT

1 . . .ααα
T
q ]T (5.22)

τττ = [τ1 . . . τq] and θθθ = [θ1 . . . θq] (5.23)

All parameters in ΘΘΘ have to be jointly estimated. In this section, we propose to esti-

mate these parameters by Least-Squares (LS). In other words, we seek to optimise the

following cost function

Θ̂̂Θ̂ΘLS = arg min
ΘΘΘ

g(ΘΘΘ) (5.24)

where

g(ΘΘΘ) =

q∑
j=1

L∑
l=1

∥∥∥XXX(l)fff j − αj(l)hhhP (τj , θj)
∥∥∥2

(5.25)
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and Θ̂̂Θ̂ΘLS is the LS estimate of ΘΘΘ. We re-write g(ΘΘΘ) in a compact way as follows

g(ΘΘΘ) = fffH
(
IIIq ⊗QQQ

)
fff − 2 <

(
fffHCCC(τττ ,θθθ)ααα

)
+ P‖ααα‖2 (5.26)

where matrices QQQ and CCC(τττ ,θθθ) are given by

QQQ = XXXHXXX (5.27)

CCC(τττ ,θθθ) = blkdiag [SSS(τ1, θ1) . . .SSS(τq, θq)] (5.28)

and matrices XXX and SSS(τ, θ) are defined as

XXX =
[
XXXH(1) . . . XXXH(L)

]H
(5.29)

SSS(τ, θ) = XXXHHHH(τ, θ) (5.30)

where

HHH(τ, θ) = IIIL ⊗ hhhP (τ, θ) (5.31)

Fixing (ααα,τττ ,θθθ), we optimise the cost function g(ΘΘΘ) w.r.t fff . Hence, setting the derivative

of g(ΘΘΘ) w.r.t fff to zero, we get

∂g(ΘΘΘ)

∂fff
= 2
(
IIIq ⊗QQQ

)
fff − 2CCC(τττ ,θθθ)ααα = 0 (5.32)

which gives

f̂̂f̂fLS =
(
IIIq ⊗QQQ

)−1
CCC(τττ ,θθθ)ααα (5.33)

Now, we treat f̂̂f̂fLS as a nuissance parameter and plug it in the cost function g(ΘΘΘ) in

equation (5.26), namely

g(ααα,τττ ,θθθ) , g(f̂̂f̂fLS,ααα,τττ ,θθθ)

= αααH
(
PIIIqL −CCCH(τττ ,θθθ)

(
IIIq ⊗QQQ

)−1
CCC(τττ ,θθθ)

)
ααα

(5.34)

Due to the block diagonal nature of CCC(τττ ,θθθ), and using

(
IIIq ⊗QQQ

)−1
= IIIq ⊗QQQ−1 (5.35)

The function g(ααα,τττ ,θθθ) decouples into q positive cost functions

g(ααα,τττ ,θθθ) =

q∑
j=1

gj(αααj , τj , θj) (5.36)
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Denoting gj , gj(αααj , τj , θj) for ease of notation, we can say

gj = αααH
j

(
PIIIL −SSSH(τj , θj)QQQ

−1SSS(τj , θj)
)
αααj

= αααH
j

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)
αααj

(5.37)

where the last equality is due to equations (5.27) and (5.30). The projector PPP⊥XXX is given

as

PPP⊥XXX = IIILP −XXX (XXXHXXX )−1XXXH (5.38)

Fixing (τττ ,θθθ) in g(ααα,τττ ,θθθ), each function gj is quadratic in αααj . Note that minimising

g(ααα,τττ ,θθθ) w.r.t ααα is equivalent to minimising each gj w.r.t αααj since gj ≥ 0 for all j. In

order to prevent a function gj to be minimized at the trivial solution αααj = 000, we form

the following Equality Constrained Quadratic Optimisation [83] problem
minimize

αααj
gj(αααj , τj , θj)

subject to αααH
j eee1 = 1

(5.39)

where eee1 is the 1st column of IIIL. The Lagrangian function corresponding to the opti-

misation problem in (5.39) is the following:

L(αααj , λ) = gj(αααj , τj , θj)− λ
(
αααH
j eee1 − 1

)
(5.40)

Setting the derivative of L(αααj , λ) w.r.t αααj to 0, we get

∂L(αααj , λ)

∂αααj
= 2HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)αααj − λe1e1e1 = 0 (5.41)

which yields

α̂̂α̂αLS
j =

λ

2

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
e1e1e1 (5.42)

Plugging this expression of α̂̂α̂αLS
j in the constraint of the optimisation problem in equa-

tion (5.39), we can solve for the Lagrangian multiplier λ as

λ =
2

eeeH
1

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

(5.43)

and therefore α̂̂α̂αLS
j is obtained by plugging the expression of λ in equation (5.42), i.e.

α̂̂α̂αLS
j =

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

eeeH
1

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

(5.44)

hence α̂̂α̂αLS is obtained by stacking all α̂̂α̂αLS
j into one vector as in equation (5.22). As done

before, we treat α̂̂α̂αLS as nuissance parameters and thus we substitute them in g(ααα,τττ ,θθθ)
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to get g(τττ ,θθθ) , g(α̂̂α̂αLS, τττ ,θθθ), where

g(τττ ,θθθ) =

q∑
j=1

1

eeeH
1

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

(5.45)

The LS estimates of the ToAs τττ and AoAs θθθ are simply

(τ̂̂τ̂τLS, θ̂̂θ̂θLS) = arg min
τττ ,θθθ

g(τττ ,θθθ) (5.46)

Since g(τττ ,θθθ) is decoupled into q identical functional forms, given in the last equality in

equation (5.45), then one can jointly estimate the ToAs/AoAs by performing a 2D-search

as

{(τ̂LS
j , θ̂LS

j )}q̂j=1 = arg max
τ,θ

fJADED(τ, θ) (5.47)

where

fJADED(τ, θ) = eeeH
1

(
HHHH(τ, θ)PPP⊥XXXHHH(τ, θ)

)−1
eee1 (5.48)

and q̂ is an estimate of q obtained by the number of peaks in fJADED(τ, θ).

5.3 Computationally Efficient Single Snapshot JADED-

RIP (CESS-JADED-RIP)

The JADED-RIP algorithm requires a 2D search over the variables (τ, θ). It turns out

that for a single snapshot, i.e. L = 1, we can propose a computationally more efficient

method, which we call here Computationally Efficient Single Snapshot JADED-RIP, or

simply CESS-JADED-RIP. For a single snapshot and using equation (5.31), fJADED(τ, θ)

can be expressed as

fJADED(τ, θ) =
1

hhhH
P (τ, θ)PPP⊥XXXhhhP (τ, θ)

(5.49)

Using the structure of hhhP (τ, θ) in equation (5.14), we can write the denominator in

equation (5.49) as follows

hhhH
P (τ, θ)PPP⊥XXXhhhP (τ, θ) = aaaH

PN
(θ)F (τ)aaaPN (θ) (5.50)

where

F (τ) =
(
cccPM (τ)⊗ IIIPN

)HPPP⊥XXX (cccPM (τ)⊗ IIIPN
)

(5.51)
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Maximising (5.49) is equivalent to minimizing (5.50), hence we aim at solving
minimize
aaaPN (θ)

aaaH
PN

(θ)F (τ)aaaPN (θ)

subject to aaaH
PN

(θ)eee1 = 1

(5.52)

Following similar steps as in equations (5.40) till (5.44), the vector âaaPN (θ) that solves

the above problem is given as

âaaPN (θ) =
F−1(τ)eee1

eeeH
1 F
−1(τ)eee1

(5.53)

Substituting âaaPN (θ) in the objective function of the problem in equation (5.52) gives us

a cost function in τ , and therefore the ToAs are estimated as follows

{τ̂j}q̂j=1 = arg max
τ

w(τ) (5.54)

where

w(τ) = eeeH
1 F
−1(τ)eee1 (5.55)

Now, we are left with the estimation of the AoAs. Notice that equation (5.53) maps τ

to θ, therefore for each τ̂j , we can obtain âaaPN (θ̂j) as

âaaPN (θ̂j) =
F−1(τ̂j)eee1

eeeH
1 F
−1(τ̂j)eee1

, j = 1 . . . q̂ (5.56)

Then, we estimate θ̂j from âaaPN (θ̂j). This is done by forming the vector of phases of

âaaPN (θ̂j) as follows

[
φ̂φφj
]
k

= − 1

2πd
tan−1

(=(
[
âaaPN (θ̂j)

]
k
)

<(
[
âaaPN (θ̂j)

]
k
)

)
, j = 1 . . . q̂ (5.57)

After the operation in equation (5.57), we have φ̂φφj in the following form: φ̂φφj = ρρρsin(θ̂j),

where ρρρ = [0 . . . (PN − 1)]T. Finally, we extract θ̂j from φ̂φφj by the following LS fit

θ̂j = arg min
θ̂j

∥∥∥φ̂φφj − ρρρsin(θ̂j)
∥∥∥2
, j = 1 . . . q̂ (5.58)

The solution is easily verified to be

θ̂j = sin−1
(
ρρρ†φ̂φφj

)
= sin−1

( 6ρρρTφ̂φφj
PN (PN − 1)(2PN − 1)

)
(5.59)

where ρρρ† = (ρρρTρρρ)−1ρρρT.
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Table 4: Summary of the JADED-RIP algorithm

INITIALISATION:
Step 1. Given the data {xxx(l)}Ll=1, form matrices {XXX(l)}Ll=1 using equations (5.7)
and (5.8).
Step 2. Compute the projector matrix PPP⊥XXX given in equation (5.38).
MAIN LOOP:
Step 3. On a 2D discretized grid, find the q̂ peaks of fJADED(τ, θ):{

(θ̂j , τ̂j)
}q̂
j=1

= arg max
θ,τ

eeeH
1

(
HHHH(τ, θ)PPP⊥XXXHHH(τ, θ)

)−1
eee1

where HHH(τ, θ) is given in equation (5.31).

Table 5: Summary of the CESS-JADED-RIP algorithm

INITIALISATION:
Similar to JADED-RIP.
MAIN LOOP:
Step 3. On a 1D discretized grid, find the q̂ peaks of w(τ):{

τ̂j
}q̂
j=1

= arg max
τ

eeeH
1 F
−1(τ)eee1

where F (τ) is given in equation (5.51).
Step 4. For each τ̂j , estimate θ̂j using equations (5.56) till (5.59).
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Figure 5.1: The JADED-RIP method.

5.4 Identifiability conditions

In this section, we derive identifiability conditions for unique estimation and detection

of (τττ ,θθθ) for JADED-RIP and CESS-JADED-RIP. The first set of conditions are given

to guarantee a unique representation of equation (5.19), which happens when projectors

{PPP⊥j }
q
j=1, given in equation (5.17), are uniquely defined. In other terms, these projectors

should be full column rank. A sufficient condition for that to occur is when RRR is full

column rank.
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Figure 5.2: The CESS-JADED-RIP method.
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Figure 5.3: MSE of ToAs
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Figure 5.4: MSE of AoAs

The second projector that should be uniquely defined is the data projector matrix,

namely PPP⊥XXX , given in equation (5.38). A necessary condition is when XXX is a tall matrix,
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Figure 5.5: MSE of ToAs
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Figure 5.6: MSE of AoAs

namely LP > K. Combining Remark 4.2 and the condition of the existance of the data

projector, the JADED-RIP algorithm should satisfy the following:

• A1: q ≤ KMKN < LPMPN

• A2: Qτ ≤ KN and Qθ ≤ KM

As for CESS-JADED-RIP, the parameter Qτ should be 1, since the ToAs are estimated

through a 1D search over w(τ) given in equation (5.55). Therefore, this approach does

not allow multiple paths arriving at the same time. Finally, the CESS-JADED-RIP

method should satisfy the following:

• B1: q ≤ KMKN < PMPN

• B2: Qτ = 1 and Qθ ≤ KM

We have conducted the following three experiments:
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In Experiment 1, i.e. Fig 5.1 and Fig 5.2, we plot the different spectra of the proposed

algorithms. More precisely, Fig 5.1 plots the 2D-spectrum of the JADED-RIP given in

equation (5.48). Also, Fig 5.2 plots the 1D-spectrum given in equation (5.55) (in order

to estimate the ToAs) and the scatter plot to estimate the AoAs using the LS fit in

equation (5.59). We have fixed q = 8 paths, where τk = 10k nsec and θk = −70+20(k−1)

degrees, for k = 1 . . . 8. Also the multipath coefficients are chosen to be i.i.d Gaussian of

zero mean. The number of antennas used is N = 3 with d = 0.5 and the OFDM symbol

comprises of M = 64 subcarriers occupying a bandwidth of 200 MHz, i.e. Mf= 3.125

MHz. We have chosen PM = 40 and PN = 2. The SNR is set to 5 dB. We have collected

L = 10 OFDM symbols for the JADED-RIP method. It is interesting to see that we do

not observe an overestimation of q in both methods, i.e. the peaks correspond to the

true and only the true signal parameters.

In Experiment 2, i.e. Fig 5.3 and Fig 5.4, we plot the MSE of ToA/AoA estimates of

CESS-JADED-RIP as a function of SNR. Moreover, the MSE is compared with other

existing methods, such as the 2D-MP [108], the 2D-IQML [107], and a straightforward

extension of [84] to the 2D case, which we refer to as JADE-Bayesian. We have averaged

over 103 Monte-Carlo trials. These methods are particularly chosen for this experiment,

since they could deal with a single snapshot. We recall that 2D-MP and 2D-IQML

require the knowledge of q, whereas JADED and JADE-Bayesian estimate q from data.

Note that the value of q is prior known for both 2D-MP and 2D-IQML. To this end, we

fix q = 2 paths, with (τ1, θ1) = (10nsec,−70◦) and (τ2, θ2) = (20nsec, 20◦). The values

of N , M , PN , PM , d and Mf are the same as those in Experiment 1. The multipath

parameters are set to γγγ = [1; 0.8ej
π
4 ], i.e. coherent sources. In addition, only L = 1

OFDM symbol is available. We see that the performance of CESS-JADED-RIP is very

close to that of 2D-MP in terms of MSE of ToA and AoA, according to Fig 5.3 and

Fig 5.4, respectively. Also, we can see that CESS-JADED-RIP outperforms 2D-IQML

and JADE-Bayesian.

In Experiment 3, i.e. Fig 5.5 and Fig 5.6, we plot the MSE of ToA/AoA estimates of

JADED-RIP and 2D-IQML as a function of SNR, when multiple snapshots are available.

This is why we have excluded 2D-MP and JADE-Bayesian, since they only operate with

one snapshot. The same parameters are set as in Experiment 2, except for L, which is

set to 10. By referring to Fig 5.5 and Fig 5.6, one could observe that the JADED-RIP

outperforms 2D-IQML in terms of MSE of ToAs and AoAs, at any given SNR.
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5.5 Peak Detection and Resolvability

Indeed, a natural question that arrises here is how are we going to detect the number of

sources. Since the JADED approach is automated to give peaks around the AoA/ToA,

then a heuristic approach of picking the peaks is to set a certain threshold, which is

determined through practice. This step should be done after normalising the JADED

spectrum such that the highest peak is equal to 1. In addition, we have observed that

peaks corresponding to true locations have almost the same altitude, which could further

ease the detection criterion. We would also like to note that false peaks are inevitable

at low SNR.

5.6 Conclusions and future directions

There are some contributions that should be highlighted: We have proposed a novel

approach for joint estimation and detection of Angles and Times of arrival, i.e. JADED.

Two methods were derived so as to solve the JADED problem using Rotational Invari-

ance Properties (RIP), which arises when a ULA receives known OFDM symbols. The

JADED-RIP method performs a 2D search of a suitable cost function, where each peak

indicates a present source with corresponding ToA/AoA. The second algorithm, CESS-

JADED-RIP, is a faster version of JADED-RIP, which can be used for single snapshot

scenarios only. The algorithms function properly in the presence of coherent sources,

since subspace extraction is not needed, as in the case of MUSIC, ESPRIT, and other

subspace methods.

Future work should address the following points:

• Improving JADED-RIP, by taking into account the colored noise in equation (??),

which leads to an ML estimator.

• Deriving analytic MSE expressions and the optimal values of PN and PM .

• Proposing a JADED algorithm that operates for arbitrary arrays, such as uniform

circular arrays.

• Taking into account hardware imperfections, such as antenna calibration and mu-

tual coupling, synchronization errors, etc. This could further empower JADED as a

competitive candidate among other indoor positioning methods.



Chapter 6

Mutual Coupling

In this chapter, we study an important aspect that perturbs Angle-of-Arrival estimation,

due to antenna coupling, also known as ”Mutual Coupling”. The contributions are sum-

marised as follows: (i) we derive a sub-optimal algorithm that could estimate AoAs in

the presence of mutual coupling; (ii) we show why this sub-optimal algorithm, along with

other ones, are indeed suboptimal, in the sense that there is an upper bound on the cou-

pling parameters allowed in the model; (iii) then, we further improve the sub-optimal

algorithm and propose an optimal one, in the sense that more coupling parameters are

allowed in the model; (iv) then, we refine the estimates of the optimal algorithm by

modifying some constraints of the optimisation problem considered; (v) we derive the

MSE expression of the optimal algorithm and show that, in some cases, we can attain

the Cramér-Rao bound of the problem of joint coupling parameters and AoA estimation;

(vi) finally, we derive an iterative method that could give Maximum Likelihood (ML)

estimates of the AoAs, and therefore allowing the presence of coherent sources, which is

not the case of all the previous algorithms.

6.1 System model

6.1.1 Problem formulation

The previous chapters considered an ideal model, in the sense that no mutual coupling

was included in the model. Recall equation (2.8), which is the AoA estimation problem,

i.e.

XXX = AAA(ΘΘΘ)SSS +WWW

87
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where all quantities have been defined in Chapter 2. Equation (2.8) assumes an ideal

model, in the sense that each antenna acts independently of all the others. In reality,

the current developed in an antenna element depends on its own excitation and on the

contributions from adjacent antennas. As a consequence, an ideal model is no longer

valid. This phenomenon is called ”Mutual Coupling” between array elements, and it

enters the model as follows [85]

X̃̃X̃X = TTT (ccc)AAA(ΘΘΘ)SSS +WWW (6.1)

where TTT (ccc) ∈ CN×N captures the effect of mutual coupling, and is known as the ”Mutual

Coupling Matrix” (MCM). Due to the linear and uniform configuration of the different

elements of the array, the MCM TTT (ccc) is given by a symmetric Toeplitz matrix, i.e.

TTT (ccc) =



c0 c1 c2 · · · cp−1 0 · · · 0

c1 c0 c1 · · · cp−2 cp−1 · · · 0
...

. . .
. . .

...

0 · · · cp−1 cp−2 · · · c1 c0 c1

0 · · · 0 cp−1 · · · c2 c1 c0


(6.2)

Let ci be the coupling coefficient between two elements placed i inter-element spacings

apart. Since the amplitude of the coupling parameters tend to decay as a function of

increasing distance, namely

1 > |c1| > . . . > |cN−1| (6.3)

then a well-approximation of TTT (ccc) is a banded symmetric Toeplitz matrix [86, 87] with

bandwidth p. In other words, antennas that are placed at least p inter-element spacings

apart do not interfere, i.e. ci = 0 for all i ≥ p. In what follows, the MCM of a ULA

configuration is modelled as banded symmetric Toeplitz matrix of bandwidth p and

denoted as TTT (ccc), where ccc = [1, c1 . . . cp−1]T is the vector of coupling parameters.

6.1.2 Assumptions

For both problems above, we shall assume the following:

• A1: Matrix AAA is full column rank.

• A2: The noise www(l) is modelled as a white circular complex Gaussian process of

zero mean and covariance σ2III and independent from the source signals.

• A3: For simplicity, the number of source signals q is known.

• A4: The source signals are allowed to be partially correlated, but not coherent.
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6.1.3 Problem statement

We are now ready to address our online calibration problem:

”Given XXX, q, and p, estimate the angles of arrival ΘΘΘ of the incoming signals in the

presence of mutual coupling TTT (ccc).”

6.2 The MUSIC Algorithm

6.2.1 Preliminaries

This subsection serves as a review of the MUSIC algorithm, in the absence of mutual

coupling. In other words, the model in equation (2.8) is assumed. The covariance matrix

of the received data could be written as

RxxRxxRxx , E{xxx(t)xxxH(t)}

= AAA(ΘΘΘ)RssRssRssAAA
H(ΘΘΘ) + σ2III

(6.4)

where the second equality is due to Assumption 5 and

RssRssRss , E{sss(t)sssH(t)} (6.5)

is the source covariance matrix. Using spectral decomposition, the matrix RxxRxxRxx is ex-

pressed as

RxxRxxRxx =
[
UsUsUs UnUnUn

] [ ΣsΣsΣs 000

000 ΣnΣnΣn

] [
UsUsUs UnUnUn

]H

= UsUsUsΣsΣsΣsUUU
H
sss +UnUnUnΣnΣnΣnUUU

H
nnn

(6.6)

The partitioning in equation (6.6) is done because RxxRxxRxx is composed of two major parts:

Signal and Noise. The signal part AAA(ΘΘΘ)RssRssRssAAA
H(ΘΘΘ) is rank q, under Assumptions 1 and

3. Therefore, due to the noise part σ2III, one can say that ΣsΣsΣs is a q × q diagonal matrix

composed of eigenvalues strictly greater than σ2 and ΣnΣnΣn = σ2IIIN−q. The eigenvectors

UsUsUs and UnUnUn are, often, referred to as the signal and noise subspaces, respectively.

In the absence of mutual coupling, the key to MUSIC is the following observation:

‖UUUH
nnn aaa(θ)‖2 = 0 =⇒ θ ∈ΘΘΘ (6.7)
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In practice, one could estimate the covariance quantities through sample averaging, viz.

R̂xxR̂xxR̂xx =
1

L
XXXXXXH = ÛsÛsÛsΣ̂sΣ̂sΣ̂sÛ̂ÛU

H
sss + ÛnÛnÛnΣ̂nΣ̂nΣ̂nÛ̂ÛU

H
nnn (6.8)

MUSIC estimates the angles-of-arrival ΘΘΘ through peak finding, as follows

{θ̂i}qi=1 = arg max
θ

1

aaaH(θ)ÛnÛnÛnÛ̂ÛUH
nnn aaa(θ)

(6.9)

6.2.2 Mutual Coupling in the sense of MUSIC

The previous subsection tells us that one can estimate the angles-of-arrival in the absence

of mutual coupling by performing a 1D-search according to equation (6.9). Now, for the

ease of exposition, let ā̄āa(θ) denote the steering vector in the presence of mutual coupling,

i.e.

ā̄āa(θ) = TTT (ccc)aaa(θ) (6.10)

Similarly, define Ā̄ĀA(ΘΘΘ) as follows

Ā̄ĀA(ΘΘΘ) = TTT (ccc)AAA(ΘΘΘ) = [ā̄āa(θ1) . . . ā̄āa(θq)] (6.11)

Taking into account mutual coupling, i.e. the model in equation (6.1), one could follow

the same steps from equation (6.4) till (6.8) in order to say that the angles-of-arrival

could be estimated as follows

{θ̂i}qi=1 = arg max
θ

1

ā̄āaH(θ)ÛnÛnÛnÛ̂ÛUH
nnn ā̄āa(θ)

(6.12)

where ÛnÛnÛn is the sample estimate of UnUnUn. Throughout the rest of this paper, UnUnUn is the

noise subspace, namely UnUnUnUUU
H
nnn = P⊥

Ā
P⊥
Ā
P⊥
Ā

= III −PĀPĀPĀ, where

PĀPĀPĀ = Ā̄ĀA(Ā̄ĀAHĀ̄ĀA)−1Ā̄ĀAH (6.13)

However, applying MUSIC directly as in equation (6.12) to the problem in hand is not

possible, since the functional form of the steering vector is not known. In other terms,

we have partial knowledge of vector ā̄āa(θ), which is that it is a known Vandermonde

vector aaa(θ) pre-multiplied by an unknown banded symmetric Toeplitz matrix TTT (ccc), as

in equation (6.10). Nevertheless, MUSIC implies the following

‖UUUH
nnn TTT (mmm)aaa(θ)‖2 = 0 =⇒ {θ ∈ΘΘΘ and mmm = ccc} (6.14)

In order to proceed, we find the following theorem useful:
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Theorem 6.1. Let ααα = [α0, α1 . . . αp−1]T ∈ Cp×1 and aaa ∈ CN×1. Define the correspond-

ing matrix TTT (ααα). Then the following is true for any 1 ≤ p ≤ N

TTT (ααα)aaa = BBBpααα (6.15)

where BBBp = Gp(aaa). where

BBBp =
[
aaa SSS1aaa . . . SSSp−1aaa

]
(6.16)

and SSSk ∈ CN×N is an all-zero matrix except at the kth sub- and super-diagonals, which

are set to 1.

Proof. See Appendix B.

Using this theorem, we can say that

ā̄āa(θ) = TTT (ccc)aaa(θ) = BBB(θ)ccc (6.17)

where

BBB(θ) = Gp(aaa(θ)) (6.18)

Therefore, equation (6.14) could be re-written as

‖UUUH
nnn BBB(θ)mmm‖2 = 0 =⇒ {θ ∈ ΘΘΘ and mmm = ccc} (6.19)

Said differently and in a more compact way, equation (6.19) also means

∥∥∥

UUUH
nnn BBB(θ1)

...

UUUH
nnn BBB(θq)

mmm∥∥∥2
= 0 =⇒mmm = ccc (6.20)

Therefore, one way to formulate the problem is

(P1) : min
mmm,θ̄1...θ̄q

mmmHŜ̂ŜS(θ̄1 . . . θ̄q)mmm (6.21)

where

Ŝ̂ŜS(θ1 . . . θq) =


Û̂ÛUH
nnn BBB(θ1)

...

Û̂ÛUH
nnn BBB(θq)


H 

Û̂ÛUH
nnn BBB(θ1)

...

Û̂ÛUH
nnn BBB(θq)

 =

q∑
j=1

K̂̂K̂K(θj) (6.22)

where

K̂̂K̂K(θ) = BBB(θ)ÛnÛnÛnÛ̂ÛU
H
nnn BBB(θ) (6.23)
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Assuming true subspaces (i.e. ÛnÛnÛn = UnUnUn) and excluding the trivial solution mmm = 000, it

is clear that one solution of problem (P1) is attained when mmm = ccc and [θ̄1 . . . θ̄q] =

[θ1 . . . θq] = ΘΘΘ. Said differently, S(ΘΘΘ) admits a null space of dimension 1 spanned by the

vector of coupling parameters, ccc.

In any case, this is a multidimensional problem in the AoA parameters, and a number

of papers have resorted to an alternative and sub-optimal problem, namely

(P2) : min
mmm,θ

mmmHK̂̂K̂K(θ)mmm (6.24)

The sub-optimality here has a nice interpretation: It is ”as if” the coupling parameters

are treated to be angular-dependent and therefore, one does not acknowledge that the

vector of coupling parameters ccc is fixed for any θ. Consequently, the objective function in

(P2) would have been a reasonable choice if the coupling parameters are a function of θ,

i.e. ccc = ccc(θ). Surprisingly, a problem involving angular-dependent coupling parameters

suggests a computationally less optimisation problem in terms of the AoA parameters.

Indeed, this approach is sub-optimal when ccc is independent of θ.

6.3 A suboptimal MUSIC-based approach

6.3.1 Algorithm derivation

Let us consider problem (P2) under an affine constraint

minimize
mmm,θ

mmmHK̂̂K̂K(θ)mmm

subject to eeeH1 mmm = 1

(6.25)

The Lagrangian function corresponding to the optimisation problem in (6.25) is the

following:

L(mmm,α) = mmmHKKK(θ)mmm− α
(
eH

1e
H
1e
H
1mmm− 1

)
(6.26)

Setting the derivative of L(mmm,α) with respect to mmm to 0, we get

∂

∂mmm
L(mmm,α) = 2KKK(θ)mmm− αe1e1e1 = 0 (6.27)

Equation (6.27) gives the optimal coupling parameters, mmm∗, for a given θ, in terms of

the optimal Lagrangian multiplier α∗ as

mmm∗ =
α∗

2
KKK(θ)−1e1e1e1 (6.28)
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Now plugging the expression ofmmm∗ in the constraint of the optimisation problem in (6.25)

yields the optimal value of α∗

α∗ =
2

eH
1e
H
1e
H
1KKK(θ)−1e1e1e1

(6.29)

Therefore, mmm∗ is now given as

mmm∗ =
KKK(θ)−1e1e1e1

eH
1e
H
1e
H
1KKK(θ)−1e1e1e1

(6.30)

Finally, plugging the expression of mmm∗ in the MUSIC cost function in (6.24), we get

{θ̂i}qi=1 = arg max
θ

eH
1e
H
1e
H
1KKK(θ)−1e1e1e1 (6.31)

To prove the existance and uniqueness of mmm∗, we need the following Lemma:

Lemma 6.2. [83] Consider the ”Equality Constrained Quadratic Optimisation” problem

given in equation (6.25). Equations (6.27) and the constraint in equation (6.25) together

are written in matrix form as:[
KKK(θ) −e1e1e1

eH1e
H
1e
H
1 0

]
︸ ︷︷ ︸

,MMM

[
mmm

α

]
=

[
000

1

]
(6.32)

The coefficient matrixMMM is referred to as the KKT matrix [83].

Let [mmm∗, α∗]T denote a solution of (6.32).

The following holds:

• The KKT matrixMMM is nonsingular, and therefore invertible.

• The solution [mmm∗, α∗]T is the unique global solution of the equality constrained

quadratic problem in equation (6.25).

if and only if:

• Assumption 1: The matrix eH1e
H
1e
H
1 has linearly independent rows.

• Assumption 2: The matrix KKK(θ) is positive definite in the null space of eH1e
H
1e
H
1 , i.e.

zzzHKKK(θ)zzz > 0 for all zzz 6= 0 satisfying eH1e
H
1e
H
1 zzz = 0.

Using the above Lemma, we have the following Theorem:

Theorem 6.3. The solution [mmm∗, α∗]T is the unique global solution if and only if q+p <

N + 1 and p ≤ N
2 .
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Proof. See Appendix C

6.3.2 Discussion

Theorem 6.3 p rovides a sufficient and necessary condition for the existance and unique-

ness of the coupling parameters mmm∗ using the proposed algorithm, i.e. p+q < N+1 and

p ≤ N
2 . However, the identifiability condition in [88] is the following: 2p + q ≤ N + 1.

One could, thus, easily verify that the proposed algorithm could resolve more sources.

We would strongly like to note that we have not addressed the coupling estimation part as

the optimisation was first done over mmm, then the solution of mmm (i.e. mmm∗) was substituted

back in the MUSIC cost function. In other words, the vector mmm∗ was treated as a

nuissance parameter. The problem of estimating the coupling parameters mmm is beyond

the scope of this paper. Once again, our aim is estimating the AoAs of multiple sources

in the presence of mutual coupling.

-100 -50 0 50 100
3 (degree)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
pe

ct
ru

m
 (

Li
ne

ar
 N

or
m

lis
ed

 S
ca

le
)

Proposed Method vs. Liao's Method (1st Experiment)

Proposed Method
Liao's Method

Figure 6.1: Comparison of Spectra of different methods (N = 7, p = 3, q = 2, L =
100). Vertical dashed lines correspond to the true AoAs.

Now, we present our simulation results regarding the proposed method and compare

with the method presented by Liao et Al. [88]. In the first experiment, consider a

ULA array that is composed of N = 7 antennas spaced at λ
2 . Furthermore, assume two

sources impinging the array at θ1 = 10◦ and θ2 = 30◦. As for the mutual coupling, we

fix p = 3, with t1 = −0.95− 1.29j and t2 = −0.05 + 0.25j. The SNR is set to 9 dB and

the number of snapshots L = 100. Figure 6.1 depicts the spectrum of our method versus

Liao’s method for this situation. The vertical dashed lines correspond to the true AoAs.
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Figure 6.3: RMSE on a linear scale vs. Number of Snapshots of experiment 3.

We can clearly see that our method peaks at the true AoAs, whereas Liao’s method is

biased away from the true values.

In the second experiment (i.e. Figure 6.2), we fix N = 10 antennas, q = 3 sources

arriving at θ1 = 10◦, θ2 = 20◦, and θ3 = 30◦. The number of coupling parameters

is p = 3. The number of snapshots L = 100. The number of Monte-Carlo trials is

M = 500. In addition, at each trial, the coupling parameters are chosen randomly to

assess generality of our RMSE curves. We notice that our proposed method exhibits an

improvement of around 1.5◦, in average, in terms of RMSE when 5 dB < SNR < 20 dB.
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Interestingly, when SNR > 22 dB, our method coincides with MUSIC (”coupling-free”

MUSIC, that is) and the RMSE is 0, whereas Liao’s method still shows some error of

around 0.75◦ RMSE.

In the third experiment (i.e. Figure 6.3) ,we plot RMSE vs. number of snapshots (L)

at fixed SNR. The parameters q, ΘΘΘ, N , M , and p are the same as those in the 2nd

experiment. The SNR is set to 30 dB. Again, we observe that our proposed method

performs better than Liao’s. When the number of snapshots exceeds 20, our method

shows zero RMSE and coincides with ”coupling-free” MUSIC. However, Liao’s method

shows error even when the number of snapshots reach 100.

6.4 An optimal MUSIC-based approach

6.4.1 Preliminaries

Theorem 6.4. Let αααp = [α0, α1 . . . αp−1]T and aaa = [1, z . . . zN−1]T. Define the corre-

sponding matrix TTT (αααp). Then for any 1 ≤ p ≤ N , the following holds

TTT (αααp)aaa = g(z,αααp)aaa−MMMpα̃ααp (6.33)

where the polynomial g(z,ααα) is given by

g(z,αααp) = α0 +

p−1∑
k=1

αk(z
k + z−k) (6.34)

The matrix MMMp ∈ CN×(p−1) is defined as

MMMp =

[
UUUp

000

]
+

[
000

LLLp

]
(6.35)

with

UUUp =


z−1 z−2 · · · z−(p−1)

0 z−1 · · · z−(p−2)

...
. . .

. . .
...

0 · · · 0 z−1

 (6.36)

LLLp =


0 · · · 0 zN

...
...

...
...

0 zN · · · zN+p−3

zN zN+1 · · · zN+p−2

 (6.37)
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and

α̃ααp = [α1, α2 . . . αp−1]T (6.38)

Proof. See Appendix D

Theorem 6.4 is key to Theorem 6.5, which comes next:

Theorem 6.5. Let aaa = [1, z . . . zN−1]T and BBBp = Gp(aaa). Then, BBBp has the following

spectral characteristics:

1. If p ≤ N+1
2 , then BBBp is full column rank.

2. If p = N+2
2 and z is an N th unit root (i.e. zN = 1) then rank(BBBp) = N

2 . The null

space is given in equation (E.11). Otherwise, it is full column rank.

3. We distinguish 2 cases when p > N+2
2 :

(a) N is even:

i. If zN 6= ±1, then BBBp is full column rank.

ii. If zN = −1, then rank(BBBp) = N
2 + 1. The null space is given in equa-

tion (E.30).

iii. If zN = 1, then rank(BBBp) = N
2 . The null space is given in equa-

tion (E.34).

(b) N is odd:

i. If zN = ±1, then rank(BBBp) = N+1
2 . The null space is given in equa-

tion (E.35).

ii. Otherwise, BBBp is full column rank.

Proof. See Appendix E

Theorem 6.6. For ULA type configurations, i.e. aaa(θ) = [1, zθ, . . . z
N−1
θ ]T with zθ =

e−j2π
d
λ
sin(θ). Define the following sets

Θ+Θ+Θ+ =
{

sin−1(
kλ

Nd
), k = −N

2
. . .

N

2

}
(6.39)

Θ−Θ−Θ− =
{

sin−1(
(k + 1

2)λ

Nd
), k = −N

2
. . .

N

2

}
(6.40)

Θ±Θ±Θ± =
{

Θ+Θ+Θ+ ∪Θ−Θ−Θ−

}
(6.41)

The matrix BBB(θ) = Gp(aaa(θ)) has the following characteristics:

• If p < N+2
2 , the matrix BBB(θ) is full column rank.
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• When p ≥ N+2
2 , we distinguish the following cases:

– If N is even and θ ∈Θ+Θ+Θ+, then rank(BBB(θ)) = N
2 .

– If N is even and θ ∈Θ−Θ−Θ−, then rank(BBB(θ)) = N
2 + 1.

– If N is odd and θ ∈Θ±Θ±Θ±, then rank(BBB(θ)) = N+1
2 .

– Else BBB(θ) is full column rank.

Proof. See Appendix F
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(b) N = 9 and p = 8
Figure 6.4: Eigenvalues of BBBH(θ)BBB(θ) as a function of θ for different values of N and

p.
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It is important to understand the behaviour of matrix BBB(θ) as function of θ. Let ν1 ≤
ν2 ≤ . . . ≤ νp be the eigenvalues of BBBH(θ)BBB(θ). In order to partially verify Theorem

6.6, we have depicted two figures where p > N+2
2 . In Fig. 6.4a, we fix N = 8 (even)

and p = 7. The red and green dashed vertical lines correspond to angles in Θ+Θ+Θ+ and Θ−Θ−Θ−,

respectively. Observe that when θ approaches angles in Θ+Θ+Θ+, we have three eigenvalues,

i.e. ν1, ν2, and ν3, dropping to zero. This implies that, when θ ∈ Θ+Θ+Θ+, the rank of BBB(θ)

is p − 3 = 4 = N
2 . However, when when θ ∈ Θ−Θ−Θ−, only two eigenvalues, namely ν1 and

ν2, go to zero. In this case, the rank of BBB(θ) is p − 2 = 5 = N
2 + 1. Also note that ν4

is strictly positive. In Fig. 6.4b, we fix N = 9 (odd) and p = 8. Again, ν4 is strictly

positive. When θ ∈ Θ±Θ±Θ±, three eigenvalues go to zero, implying that the rank of BBB(θ) is

p− 3 = 5 = N+1
2 .

6.4.2 Algorithm derivation

The previous subsection reveals an important phenomenon of matrix BBB(θ). According

to Theorem 6.6, if θk ∈ Θ±Θ±Θ± and p ≥ N+2
2 , then BBB(θk) admits a null-space. Therefore,

optimising the cost function given in (P2), without choosing an appropriate constraint,

gives false AoAs. Mathematically speaking, the cost function in (P2) is exactly zero for

all θk ∈Θ±Θ±Θ± when p ≥ N+2
2 . To circumvent this issue, we form the following optimisation

problem 
minimize

mmm,θ
mmmHK̂̂K̂K(θ)mmm

subject to eeeH
1 BBB(θ)mmm = 1

(6.42)

It is easy to see that, for any θ, the trivial solution mmm = 000 and the vectors that lie in

the null space of BBB(θ) (i.e. BBB(θ)mmm = 0) are not feasible solutions because they do not

satisfy the constraint. Therefore, optimising the above problem will exclude the latter

false solutions.

The Lagrangian function corresponding to the optimisation problem in (6.42) is the

following:

L(mmm, ν) = mmmHK̂̂K̂K(θ)mmm− ν
(
eeeH
1 BBB(θ)mmm− 1

)
(6.43)

Setting the derivative of L(mmm, ν) with respect to mmm to 0, we get

∂

∂mmm
L(mmm, ν) = 2K̂̂K̂K(θ)mmm− νBBBH(θ)eee1 = 0 (6.44)
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Equation (6.44) gives the optimal coupling parameters, momomo, for a given θ, in terms of

the optimal Lagrangian multiplier νo as

momomo =
νo

2
K̂̂K̂K−1(θ)BBBH(θ)eee1 (6.45)

It is easy to prove that

BBBH(θ)eee1 = aaa∗p(θ) (6.46)

where aaap(θ) is a p×1 vector defined as in equation (2.3). The expression of νo is obtained

by plugging equations (6.45) and (6.46) in the constraint of the problem in (6.42), viz.

νo =
2

aaaT
p (θ)K̂̂K̂K−1(θ)aaa∗p(θ)

(6.47)

Therefore, momomo is now given as

momomo =
K̂̂K̂K−1(θ)aaa∗p(θ)

aaaT
p (θ)K̂̂K̂K−1(θ)aaa∗p(θ)

(6.48)

Substituting momomo in the objective function of (6.42), the q AoAs could be estimated as

follows {
θ̂k
}q
k=1

= arg min
θ

1

f(θ)
(6.49a)

where

f(θ) = aaaT
p (θ)K̂̂K̂K−1(θ)aaa∗p(θ) (6.49b)

Note that K̂̂K̂K(θ) is not invertible for the cases given in Theorem 6.6 and when θ ∈ΘΘΘ at

infinite SNR. For that, we adopt diagonal loading as done in [94], namely
(
KKK(θ)+εIII

)−1
,

where ε > 0 is small. Additionally, it has been mentioned in [94] that there is generally

no known method for determining the optimal value of ε, and it is usually determined

experimentally. We have found that ε = 10−14 serves as a good value.

6.4.3 Properties of the algorithm

For a better understanding of the behaviour of the cost function given in equation (6.49),

we reveal some of its properties

Property 1: For p = 1, i.e. no mutual coupling, the function f(θ) ”boils down” to the

traditional MUSIC cost function in equation (6.9).

Proof. Trivial.
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Property 2: This property characterizes the null space of KKK(θ) for p + q ≤ N as a

function of θ

N (KKK(θi)) =



{000}, if θi 6∈ΘΘΘ ∪ΘΘΘ±

{000 ∪ ccc}, if θi ∈ΘΘΘ and θi 6∈ΘΘΘ±

N
(
BBB(θi)

)
, if θi 6∈ΘΘΘ and θi ∈ΘΘΘ±

N
(
BBB(θi)

)
∪ {ccc}, if θi ∈ΘΘΘ ∩ΘΘΘ±

(6.50)

Note that if p < N+2
2 , then N

(
BBB(θi)

)
= {000}. Also note that this property assumes true

subspaces, i.e. K̂̂K̂K(θ) = KKK(θ) = BHBHBH(θ)UnUnUnUUU
H
nnn BBB(θ).

Proof. See Appendix G

Property 3: Assuming true subspaces (i.e. ÛnÛnÛn = UnUnUn), the function f(θ) is bounded

when θ 6∈ΘΘΘ and unbounded when θ ∈ΘΘΘ.

Proof. See Appendix H

Property 4: The condition so that f(θ) uniquely identifies the AoAs is that p+ q ≤ N .

Proof. This is so because the cost function in equation (6.49) depends on the inversion

of KKK(θ). Hence, in the case where θ 6∈ ΘΘΘ ∪Θ±Θ±Θ±, the matrix UUUH
nnn BBB(θ) is full column rank

when p ≤ N − q. As for the case when θ ∈ΘΘΘ∪Θ±Θ±Θ±, we have the argument in Property

3.

Remark: The existing methods in [89–91] and the suboptimal method in Section 6.3.1

can not identify the true AoAs, when the number of coupling parameters p > N
2 . Ac-

cording to Property 2 , the cost functions of these exsiting methods would yield peaks

whenever θ ∈ Θ±Θ±Θ± and p > N
2 . One could not, simply, remove these peaks because they

would affect the estimation, when the true AoAs are close to those in Θ±Θ±Θ±.

6.4.4 MSE Analysis

It is well known that the noise subspace could be decomposed into two parts:

ÛnÛnÛn = UnUnUn + ŨnŨnŨn (6.51)
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where the first part, UnUnUn, is the true noise subspace and the second one, ŨnŨnŨn, is the error

term. Using this decomposition and other asymptotic properties (i.e. for large L or

high SNR) which will appear in this section, we wish to derive an asymptotic MSE

expression for the AoA estimates obtained from equation (6.49). In other words, we

seek an asymptotic expression of E
{

(θ̃k)
2
}

, where θ̃k is the error part

θ̂k = θk + θ̃k (6.52)

Since
{
θ̂k
}q
k=1

are minimum points of f−1(θ), then

∂f−1(θ̂k)

∂θ
,
∂f−1(θ)

∂θ

∣∣∣
θ=θ̂k

= 0 (6.53)

As done in [95], since θ̂k is an estimate of θk, we could, asymptotically, expand the above

derivative in the neighborhood of the true θk using Taylor series

∂f−1(θ̂k)

∂θ
=
∂f−1(θk)

∂θ
+
∂2f−1(θk)

∂θ2
(θ̂k − θk) + . . . (6.54)

which gives an approximate expression of the error θ̃k = θ̂k − θk

θ̃k w −
∂f−1(θk)

∂θ
∂2f−1(θk)

∂θ2

= − f ′(θk)

f ′′(θk)− 2 (f ′(θk))2

f(θk)

(6.55)

where f ′(θk) and f ′′(θk) are the 1st and 2nd order derivatives of f(θ) evaluated at point

θk, respectively.

Property 5: The derivatives f ′(θ) and f ′′(θ) are given as

f ′(θ) = g1(θ) + g2(θ) (6.56)

f ′′(θ) = h1(θ) + h2(θ) + h3(θ) (6.57)

where g1(θ) and g2(θ) are given in equation (I.5) and h1(θ), h2(θ), and h3(θ) are given

in equation (I.6).

Proof. See Appendix I.

The expressions of f ′(θ) and f ′′(θ) in equations (6.56) and (6.57), respectively, turn

out to be too complicated to analyze the error in equation (6.55). However, some

simplifications could be done, asymptotically, thanks to the following theorem

Theorem 6.7. Let λj and vvvj be the jth smallest eigenvalue and its corresponding nor-

malized eigenvector of KKK(θk). Similarly, define λ̂j and v̂̂v̂vj for K̂̂K̂K(θk). The smallest
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eigenvalue λ̂1 and its eigenvector v̂̂v̂v1 could be approximated as

λ̂1 =
1

‖ccc‖2
cccHBBBH(θk)ŨnŨnŨnPPP

⊥⊥⊥
k Ũ̃ŨU

H
nnn BBB(θk)ccc+O(‖ŨnŨnŨn‖3) (6.58)

v̂̂v̂v1 =
1

‖ccc‖

(
ccc−

p∑
i=∆+2

vvvHi BBB
H(θk)UnUnUnŨ̃ŨU

H
nnn BBB(θk)ccc

λi
vvvi

)
+O(Ũ̃ŨU2

nnn) (6.59)

where PPP⊥⊥⊥k = III −PPPk and

PPPk = UUUH
nnn BBB(θk)KKK

+(θk)BBB
H(θk)UnUnUn (6.60)

and ∆ is the dimension of N
(
BBB(θk)

)
, which is 0 when p ≤ N+2

2 or {p > N+2
2 and

θk 6∈ Θ±Θ±Θ±} and non-zero otherwise (according to Theorem 6.6). Note that O(‖ŨnŨnŨn‖k)
and O(Ũ̃ŨUknnn ) are scalar and vector terms, respectively, in which ŨnŨnŨn appears k times in

each term.

Proof. See Appendix J.

This theorem reveals a behaviour of λ̂1, i.e. it acts as O(‖ŨnŨnŨn‖2). Using Theorem 4,

and some straightforward algebra, we have the following asymptotic approximations of

f(θ), f ′(θ), and f ′′(θ)

f(θ) =
1

λ̂1‖ccc‖2
µk +O

(
‖ŨnŨnŨn‖−1

)
(6.61)

f ′(θ) = − 2

λ̂2
1‖ccc‖4

µkRe{ρ̃k}+O
(
‖ŨnŨnŨn‖−2

)
(6.62)

f ′′(θ) =
2

λ̂3
1‖ccc‖4

µk
( 4

‖ccc‖2
(Re{ρ̃k})2 − λ̂1υk

)
+O

(
‖ŨnŨnŨn‖−3

)
(6.63)

where

µk = ‖cccHaaa∗p(θk)‖2 (6.64)

ρ̃k = cccHBBBH(θk)ŨnŨnŨnPPP
⊥⊥⊥
k UUU

H
nnnDDD(θk)ccc (6.65)

υk = cccHDDDH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnnDDD(θk)ccc (6.66)

Substituting these expressions in equation (6.55), we arrive at

θ̃k '
Re{ρ̃k}
υk

(6.67)

In order to proceed, we use the following lemma, which gives the probabilistic distribu-

tion of the columns of ŨnŨnŨn
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Lemma 6.8. Let ñ̃ñni be the ith column of ŨnŨnŨn. Asymptotically, the vectors UsUsUsUUU
H
sss ñ̃ñni are

jointly Gaussian distributed with zero means and covariance matrices given by

E
{(
UsUsUsUUU

H
sss ñ̃ñni

)(
UsUsUsUUU

H
sss ñ̃ñnj

)H}
=
σ2

L
UUUδi,j (6.68)

E
{(
UsUsUsUUU

H
sss ñ̃ñni

)(
UsUsUsUUU

H
sss ñ̃ñnj

)T}
= 000 (6.69)

where

UUU = UsUsUsΣsΣsΣs

(
ΣsΣsΣs − σ2III

)−2
UUUH
sss (6.70)

Proof. See [95].

This lemma is key to the following theorem, which gives the MSE expression E
{

(θ̃k)
2
}

Theorem 6.9. The estimates
{
θ̂k
}q
k=1

estimated through f(θ) by equation (6.49) are

asymptotically unbiased. Furthermore, the MSE expression E
{

(θ̃k)
2
}

is given as

E
{

(θ̃k)
2
}
, var

(p)
f (θ̂k) =

σ2

2L

ā̄āaH(θk)UUUā̄āa(θk)

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk)

(6.71)

where ā̄āa(θk) and UUU are defined in equations (6.10) and (6.70), respectively. Also, d̄̄d̄d(θk) =
∂ā̄āa(θ)
∂θ

∣∣∣
θ=θ̂k

.

Proof. See Appendix K.

It is interesting and easy to see that when p = 1, the above MSE expression coincides

with the MSE expression of MUSIC derived in [95]. In other words, if p = 1, we have

ā̄āa(θk) = aaa(θk), d̄̄d̄d(θk) = ddd(θk), and PPP⊥⊥⊥k = III, hence

var
(1)
f (θ̂k) =

σ2

2L

aaaH(θk)UUUaaa(θk)

dddH(θk)UnUnUnUUUH
nnn ddd(θk)

= varMU(θ̂k;aaa) (6.72)

where varMU(θ̂k;aaa) is read as follows: The variance of θ̂k obtained by MUSIC by utilising

a steering vector aaa(θ). We adopt this notation because the MSE expression, var
(p)
f (θ̂k),

could also be expressed as

var
(p)
f (θ̂k) =

( 1

1− γk

)
varMU(θ̂k; ā̄āa) (6.73)

where

0 ≤ γk = R
(
PPPk,UUU

H
nnn d̄̄d̄d(θk)

)
< 1 (6.74)
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where the bounds in equation (6.74) are due to the fact that γk is a Rayleigh quotient,

which is always bounded between the minimum and maximum eigenvalues of PPPk. Since

PPPk is a projector matrix, then the eigenvalues are either 0 or 1. Note that γk = 1 only

when N − q = rank(PPPk) = p − 1, thus violating the identifiability condition given in

Property 4.

Observation : It is very important to observe that varMU(θ̂k; ā̄āa) appearing in equa-

tion (6.73) is, indeed, the MSE of θ̂k estimated through MUSIC with known mutual

coupling parameters. Therefore, the quantity 1
1−γk quantifies the loss of performance,

or ”gap” in terms of MSE, between the proposed method in equation (6.49) and the

MUSIC algorithm with known mutual coupling parameters.
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Figure 6.5: The behaviour of γk for fixed p = 3 as a function of N .

In Fig. 6.5, we study the behaviour of γk given in equation (6.74) by fixing p = 3 and

increasing N , i.e. p
N → 0. Fig. 6.5a plots γ1 for one source q = 1, but different AoAs.

The coupling parameters are set to

ccc =
[
1; −0.08 + 0.5j; −0.14− 0.3j

]T
(6.75)

In addition, Fig. 6.5b plots γ1 and γ2 when q = 2 sources are present. The coupling

parameters are set to

ccc =
[
1; 0.28 + 0.41j; 0.18 + 0.2j

]T
(6.76)

We observe that in both cases γk → 0 as p
N → 0. Furthermore, the rate of decay depends

on the AoA, number of sources, and the coupling parameters.
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Figure 6.6: The behaviour of γk for fixed N as a function of p.

In Fig. 6.6, we study the behaviour of γk by fixing N and increasing p. We have

simulated two different scenarios when q = 1 source is present. The coupling parameters

are generated by first forming a vector ccc, such that
{
ck = 1

k+1e
j2πφk

}N
k=1

, where φk is

randomly chosen. Then, in order to compute γk, for p = p0, we choose the first p0

elements of ccc to form the vector ccc ∈ Cp0×1. In Fig. 6.6a and Fig. 6.6b, we have set

N = 10 and N = 50, respectively. We also observe that γk is increasing as p increases

for fixed N . This results in an increase of the MSE given in equation (6.71), when p

increases due to the factor
(

1
1−γk

)
, as we shall next.
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Figure 6.7: MSE of the proposed method in equation (6.71) for different values of p

and θ1

The MSE of the proposed algorithm in equation (6.49), namely var
(p)
f (θ̂k), is simulated

in Fig. 6.7. In Fig. 6.7a, we set N = 6, q = 1, and θ1 = 50◦. The number of snapshots

is L = 103. The coupling parameters are chosen from vector

ccc = [1; −0.08 + 0.5j; −0.14− 0.3j; −0.04 + 0.04j; 0.03− 0.02j]T (6.77)

as done in the case of Fig. 6.6. This figure tells us that a higher MSE is obtained for

increasing p. In Fig. 6.7b, we quantify this loss of performance. We have q = 1 source

impinging an array of N = 6 at θ1 = 10◦. The number of snapshots is L = 102. The
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number of coupling parameters is p = 3 with ccc equal to that in the scenario depicted in

Fig. 6.5a. We have plotted the experimental and theoretical MSE of MUSIC with known

coupling parameters and the proposed algorithm in equation (6.49). For the experimen-

tal MSE, we have averaged over 103 Monte-Carlo simulations. This figure validates the

gap between the MSE of MUSIC and the proposed algorithm, which is about 1
1−γ1

, for

sufficiently high SNR. The value of γ1 could be extracted from Fig. 6.5a, since we have

used the same coupling parameters. We could see that γ1 ' 0.758 for θ1 = 10◦, which

gives 10log10

(
1

1−γ1

)
' 6dB. This factor is the loss of performance compared to MUSIC

with known coupling parameters. Furthermore, we could also observe that the experi-

mental and theoretical MSE curves are in agreement for sufficiently high SNR.

6.4.5 Comparison with the Cramér-Rao Bound

The Cramér-Rao Bound (CRB) on the AoA estimates of a model that includes unknown

mutual coupling, i.e. equation (6.1) was derived in [96]. The CRB is given as

varCRB(θ̂k) =
σ2

2L

([
D̄̄D̄DHP⊥ĀP

⊥
ĀP
⊥
Ā D̄̄D̄D �RssRssRss

]−1
)
k,k

(6.78)

where P⊥
Ā
P⊥
Ā
P⊥
Ā

= III −PĀPĀPĀ is given in equation (6.2) and Ā̄ĀA is given in equation (6.11). Also

D̄̄D̄D =
[

∂ā̄āa(θ1)
∂θ1

. . .
∂ā̄āa(θq)
∂θq

]
(6.79)

Following similar steps as in [95], we re-write the MSE equation, var
(p)
f (θ̂k), in a way

that turns out to be useful when comparing to the CRB

var
(p)
f (θ̂k) =

σ2

2L

(
RRR−1
ssssss

)
k,k

+ σ2
(
RRR−1
ssssss (Ā̄ĀAHĀ̄ĀA)−1RRR−1

ssssss

)
k,k

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk)

(6.80)

Large Number of Antennas

We study the performance of the algorithm proposed in equation (6.49) in the asymptotic

regime when p
N → 0, i.e. N →∞ for fixed p. We have the following Theorem, which is

a generalisation of the case with no mutual coupling in [95]
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Theorem 6.10. The limits of varCRB(θ̂k) and var
(p)
f (θ̂k) are given as

varCRB(θ̂k) −−−→p
N
→0

6σ2

N3L|hhhHk ccc|2
1(

RssRssRss
)
k,k

(6.81)

var
(p)
f (θ̂k) −−−→p

N
→0

6σ2

N3L|hhhHk ccc|2
(
RRR−1
ssssss

)
k,k

(6.82)

γk −−−→p
N
→0

0 (6.83)

where

hhhk = aaap(θk) + aaa∗p(θk)− eee1 (6.84)

Proof. See Appendix L.

Using this theorem, we have that

var
(p)
f (θ̂k)

varCRB(θ̂k)
=
(
RssRssRss
)
k,k

(
RRR−1
ssssss

)
k,k

(6.85)

and hence the CRB is attained for uncorrelated signals (i.e. RssRssRss is diagonal), when
p
N → 0.

High SNR

For high SNR and uncorrelated signals, one could show the following relation

var
(p)
f (θ̂k)

varCRB(θ̂k)
=
(

1 +

(
(Ā̄ĀAHĀ̄ĀA)−1

)
k,k

SNRk

)( 1

1− γk

)
(6.86)

where SNRk =
(RssRssRss)k,k
σ2 . For high SNR, the ratio in equation (6.86) is controlled by the

factor 1
1−γk , i.e. the ”gap” between the MSE of the proposed algorithm and the CRB is

1
1−γk .
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(a) Proposed sub-optimal method
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(b) Method in [89]
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(d) RARE [90, 91]
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(e) Recursive RARE [92]
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(f) Method in [93]
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(g) Proposed method f(θ) in eqn (6.49)
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(h) Refinement of proposed method
Figure 6.8: Different normalized spectra (in dB) of methods that estimate AoAs in

the presence of mutual coupling.

In Fig. 6.8, different spectra of methods that estimate AoAs in the presence of mutual

coupling are depicted for a particular scenario. There are two sources θ1 = 2◦ and
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θ2 = 20◦ attacking a ULA composed of N = 8 antennas. The ULA suffers from mutual

coupling with p = N+2
2 = 5 coupling parameters given as

ccc = [1; −0.44 + 0.23j; 0.33 + 0.01j; −0.23− 0.1j; 0.1 + 0.16j]T (6.87)

The SNR is set to 10 dB and the collected number of snapshots is L = 500. We

observe that the methods in Figures 6.8a, 6.8b, and 6.8d yield fake peaks when θ ∈ΘΘΘ+

according to Theorem 6.6. In addition, there is no peaks corresponding to the true

positions. This is so because fake peaks may overlap with the true ones, when the

latter are sufficiently close to the former. Furthermore, the recursive RARE depicted in

Fig. 6.8e is initialized by RARE, and therefore selecting a false peak in the first iteration

may deteriorate the performance of recursive RARE in further iterations. As we can

see, recursive RARE has not successfully identified the true positions. Moreover, the

method in [88] depicted in Fig. 6.8c does not perform well at all. As stated earlier, this

is so because the method requires that 2p+ q ≤ N + 1. On the other hand, the iterative

method in [93] gives broad and biased peaks away from the true positions. Moreover,

the proposed method in equation (6.49) depicted in Fig. 6.8g gives peaks at the true

positions. The ratio between the highest true peak and the highest fake peak is about

50dB. Additionally, the ratio between the 2nd highest true peak and the highest fake

peak is about 25dB. Indeed, there is a great improvement between the proposed method

and the previously mentioned one. Finally, the refined method discussed in Section VII

could further diminish the fake peaks as we can see in Fig. 6.8h. In addition, the refined

method also exhibits better performance in terms of bias and MSE of AoAs and coupling

parameters, when compared to all these methods.

6.4.6 Refining the AoA estimates by alternating minimisation

As explained in Section III.B, the optimisation problem formed in (P2) is suboptimal.

This is due to the fact that it, implicitly, assumes that each AoA is exposed to different

mutual coupling parameters, namely ccc = ccc(θ). Fortunately, problem (P1) is optimal,

since it forces the same coupling parameters on all the AoAs. In this section, we propose

an efficient algorithm that aims at optimising problem (P1).

Consider the following problem:
minimize
mmm,θ1...θq

mmmHŜ̂ŜS(ΘΘΘ)mmm

subject to
( q∑
k=1

eeeH
1 BBB(θk)

)
mmm = 1

(6.88)

The constraint here is a generalisation of that in problem (6.42) in a sense that it

prevents the cost function to be zero when the AoA variables ΘΘΘ are ”simultaneously”



Chapter 6 Mutual Coupling 111

in the set ΘΘΘ±, i.e. when θ1 ∈ ΘΘΘ± . . . θq ∈ ΘΘΘ±. Following similar steps as in equa-

tions (6.43)till (6.48), the optimal coupling parameters are given as

momomo =
Ŝ̂ŜS−1(ΘΘΘ)AAA∗p(ΘΘΘ)1q

1
T
qAAA

T
p (ΘΘΘ)Ŝ̂ŜS−1(ΘΘΘ)AAA∗p(ΘΘΘ)1q

(6.89)

where AAAp(ΘΘΘ) is similarly defined as AAA(ΘΘΘ) in equation (2.6) but of size p × q. Plugging

this expression of momomo in the objective function of (6.88), we get

Θ̂̂Θ̂Θ = arg max
ΘΘΘ

{
1

T
qAAA

T
p (ΘΘΘ)Ŝ̂ŜS−1(ΘΘΘ)AAA∗p(ΘΘΘ)1q

}
(6.90)

which involves a q−dimensional search in the AoA parameters. We, hereby, propose

q ”1−dimensional” searches done by alternating minimisations: At an iteration i, the

following AoAs are estimated from previous iterations:

Θ̂̂Θ̂Θī = [θ̂1 . . . θ̂i−1] (6.91)

Estimate θ̂i as

θ̂i = arg max
θ

{
1

T
i AAA

T
p (Θ̂̂Θ̂Θī, θ)Ŝ̂ŜS

−1(Θ̂̂Θ̂Θī, θ)AAA
∗
p(Θ̂̂Θ̂Θī, θ)1i

}
(6.92)

by picking θ̂i 6∈ Θ̂̂Θ̂Θī because values in Θ̂̂Θ̂Θī also maximize the above cost function. It

is easy to see that the first iteration of this algorithm, i.e. i = 1, is equivalent to

maximising f(θ). However, the difference is that, the first approach involves picking

q peaks from f(θ), whereas, the alternating minimisation algorithm in equation (6.92)

picks one peak at each iteration, and therefore refining the estimates of each AoA.

Moreover, this approach could also estimate the coupling parameters. This is done by

using all estimated AoAs, say Θ̂̂Θ̂Θ and inserting them into equation (6.89), namely

ĉ̂ĉc =
Ŝ̂ŜS−1(Θ̂̂Θ̂Θ)AAA∗p(Θ̂̂Θ̂Θ)1q

1
T
qAAA

T
p (Θ̂̂Θ̂Θ)Ŝ̂ŜS−1(Θ̂̂Θ̂Θ)AAA∗p(Θ̂̂Θ̂Θ)1q

(6.93)
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Figure 6.9: Bias and MSE of the AoA estimates as a function of SNR for Experiment
1

In Experiment 1, we fix the following parameters: N = 8, q = 2 i.i.d. uncorrelated

Gaussian sources impinge the array at θ1 = 5◦ and θ2 = 20◦. The collected number of

snapshots is L = 103, and the number of coupling parameters is p = 3 with

ccc =
[
1; 0.2 + 0.46j; 0.33 + 0.04j

]T
(6.94)

According to Fig. 6.9a, all methods, except for [93], show no bias when SNR> 2dB.

However, it is interesting to observe that the proposed method and its refinement are

the least biased. In terms of the MSE of AoA estimates, which is depicted in Fig. 6.9b,

we also observe that the proposed method and its refinement exhibit less MSE for any

SNR. Interestingly, all algorithms (except for [88] and [93]), are exposed to the same

MSE, when the SNR exceeds 2dB.
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Figure 6.10: Bias and MSE of the AoA estimates as a function of SNR for Experiment
2
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In Experiment 2, we fix the same parameters as in Experiment 1, except now that the

2 sources are correlated. The sources are Gaussian with covariance matrix

RssRssRss =

[
1 ρ

ρ∗ 1

]
(6.95)

where the correlation coefficient is set to |ρ| = 0.8. Again, the method in [93] does not

perform well at all (in terms of bias and MSE). This is so because the method was based

on the assumption that RssRssRss is diagonal, and therefore correlation between sources is not

allowed. On the other hand, all other methods require higher SNR when sources are

correlated, since they are MUSIC-based methods. For example, the proposed method in

equation (6.49) requires an SNR of −2 dB to achieve 0 dB MSE, when the sources are

un-correlated (Experiment 1). On the other hand, and in order to achieve the same MSE

for correlated sources with correlation coefficient |ρ| = 0.8, an SNR of 13 dB is needed.

This is so because the MSE of this method depends on RRR−1
ssssss , and hence a higher MSE

is obtained as correlation between sources increase. According to Fig. 6.10a and 6.10b,

we also observe that the proposed and refined methods are the least biased and enjoy

better MSE performance than other methods.
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Figure 6.11: Bias and MSE of the AoA estimates as a function of SNR for Experiment
3

In Experiment 3, we fix the same parameters as in Experiment 1, except for p = N+2
2 = 5,

with

ccc =
[
1; 0.2 + 0.46j; 0.33 + 0.04j; 0.12 + 0.01j; 0.01 + 0.03

]T
(6.96)

According to Figures 6.11a and 6.11b, we see that all algorithms, except for [93] and

the proposed ones, do not operate properly in terms of bias and MSE. This is so since

p was chosen to be N+2
2 . Therefore, according to Theorem 6.6, the matrix BBB(θ), and

consequently K̂̂K̂K(θ) admits a null-space whenever θ ∈ Θ+Θ+Θ+, and therefore the mentioned

methods will always choose peaks corresponding to angles in θ ∈Θ+Θ+Θ+. At sufficiently high

SNR, we see that the MSE of the proposed algorithm and the refined method coincide



Chapter 6 Mutual Coupling 114

(Fig. 6.11b). Additionally, the refined method outperforms all other algorithms in terms

of bias and MSE of AoAs and coupling parameters.

6.5 Mutual Coupling Agnostic AoA estimator

6.5.1 The Maximum Likelihood Estimator

Now let us denote

Ã̃ÃA(ΘΘΘ) = TTT (ccc)AAA(ΘΘΘ) (6.97)

we can say that the received signal X̃̃X̃X, under assumption A2,

X̃̃X̃X ∼ N
(
Ã̃ÃA(ΘΘΘ)SSS, σ2IIIN

)
, l = 1 . . . L (6.98)

To simplify notation, we stack all signal and noise parameters into one vector, say

Ω =
[
ΘΘΘT, cccT, vec(SSS), σ2

]T
(6.99)

We can now express the joint probability distibution function of all the snapshots XXX,

given the unknown signal and noise parameters Ω as

f
(
X̃̃X̃X|Ω

)
=

L∏
l=1

1

πdet
{
σ2IIIN

}exp
{
− 1

σ2

∥∥x̃̃x̃x(l)− Ã̃ÃA(ΘΘΘ)sss(l)
∥∥2
}

(6.100)

The Deterministic ML estimates of the noise and signal parameters, i.e. Ω̂ML, are

obtained through the following criterion

Ω̂ML = arg max
Ω

f
(
X̃̃X̃X|Ω

)
(6.101)

Finally, Ω̂ML is given by the following

Ω̂ML =
[
Θ̂̂Θ̂ΘT, m̂̂m̂mT, vec(Ŝ̂ŜS), σ̂2

]T
(6.102a)

σ̂2 =
1

NL

∥∥XXX − Ã̃ÃA(Θ̂̂Θ̂Θ)Ŝ̂ŜS
∥∥2

(6.102b)

Ŝ̂ŜS =
(
Ã̃ÃAH(Θ̂̂Θ̂Θ)Ã̃ÃA(Θ̂̂Θ̂Θ)

)−1
Ã̃ÃAH(Θ̂̂Θ̂Θ)XXX (6.102c)

[Θ̂̂Θ̂Θ, ĉ̂ĉc] = arg max
ΘΘΘ,ccc

tr
{
PPPÃ̃ÃA(ΘΘΘ)R̂̂R̂R

}
(6.102d)
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where PPPÃ̃ÃA(ΘΘΘ) is the projector onto the signal subspace, i.e. the space spanned by columns

of PPPÃ̃ÃA(ΘΘΘ)

PPPÃ̃ÃA(ΘΘΘ) = Ã̃ÃA(ΘΘΘ)
(
Ã̃ÃAH(ΘΘΘ)Ã̃ÃA(ΘΘΘ)

)−1
Ã̃ÃAH(ΘΘΘ) (6.102e)

and R̂xxR̂xxR̂xx is the sample covariance matrix of the data given in equation (6.8).

Note that once the estimate [Θ̂̂Θ̂Θ, ĉ̂ĉc] is obtained by solving (6.102d), then one could plug

[Θ̂̂Θ̂Θ, ĉ̂ĉc] in (6.102b) and (6.102c) to obtain the ML estimate of the noise variance and signal

matrix, respectively. It turns out that the optimisation problem in (6.102d) is highly

nonlinear, as it requires a
(
q+ 2(p−1)

)
-dimensional search1, and its direct optimisation

would require cumbersome optimisation techniques. It is worth stressing a point here:

The rest of the paper focuses on solving (6.102d) in order to estimate ΘΘΘ, by treating ccc

as a nuissance parameter. Our aim is to estimate the AoAs of multiple sources in the

presence of mutual coupling, thus the term ”Mutual Coupling Agnostic”.

6.5.2 Proposed iterative method

In the absence of mutual coupling, i.e. p = 1 and ccc = 1, Ziskind and Wax have proposed

to optimise (6.102d) in order to estimate ΘΘΘ via Alternating Projection [30]. That is,

the value of θi at the kth iteration is obtained by solving the following 1-dimensional

optimisation problem

θ̂
(k)
i = arg max

θi

aaaH(θi)PPP⊥
AAAī
R̂xxR̂xxR̂xxPPP⊥

AAAī
aaa(θi)

aaaH(θi)PPP⊥
AAAī
aaa(θi)

(6.103)

where P⊥
YYY = III − PYYY and AAAī is obtained by omitting the ith column from matrix

Ã̃ÃA(ΘΘΘ(k)). The vector ΘΘΘ(k) represents the estimated AoAs at iteration k, in an attempt

of estimating the ith AoA. In other words, at iteration k and sub-iteration i, vector ΘΘΘ(k)

could be expressed as

Θ̂̂Θ̂Θ(k) = [θ̂
(k)
1 , θ̂

(k)
2 . . . θ̂

(k)
i−1, θ̂

(k−1)
i , θ̂

(k−1)
i+1 . . . θ̂(k−1)

q ]T (6.104)

Naturally, the algorithm is iterative. At each iteration, the 1-dimensional search in (6.103)

is done per AoA (i = 1 . . . q) in a successive manner until the vector Θ̂̂Θ̂Θ(k) converges.

Notice that, in the presence of mutual coupling, we could follow similar steps as in [30]

to get

[θ̂
(k)
i , ĉ̂ĉc

(k)
i ] = arg max

[θi,ccc]

ã̃ãaH(θi)PPP⊥
Ã̃ÃAī
R̂xxR̂xxR̂xxPPP⊥

Ã̃ÃAī
ã̃ãa(θi)

ã̃ãaH(θi)PPP⊥
Ã̃ÃAī
ã̃ãa(θi)

(6.105)

1It is a
(
q + 2(p− 1)

)
-dimensional search: q is due to the number of parameters in ΘΘΘ and 2(p− 1) is

the number of real and imaginary unknown parameters in ccc.
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where the maximisation is also done over the coupling parameters ccc. Thanks to Theorem

6.1, we can say that

ã̃ãa(θ) = TTT (ccc)aaa(θ) = BBB(θ)ccc (6.106)

where BBB(θ) is given in equation (6.18). Equation (6.105) is re-written as

[θ̂
(k)
i , ĉ̂ĉc

(k)
i ] = arg max

[θi,ccc]

cccHQQQ(θi)ccc

cccHKKK(θi)ccc
(6.107a)

where

QQQ(θi) = BBBH(θi)PPP
⊥
Ã̃ÃAī
R̂xxR̂xxR̂xxPPP

⊥
Ã̃ÃAī
BBB(θi) (6.107b)

KKK(θi) = BBBH(θi)PPP
⊥
Ã̃ÃAī
BBB(θi) (6.107c)

Maximising first with respect to ccc according to the following criterionmaximise
ccc∈Cp×1

cccHQQQ(θi)ccc

subject to cccHKKK(θi)ccc = 1

(6.108)

gives rise to the following cost function

θ̂
(k)
i = arg max

θi

λmax

(
QQQ(θi);KKK(θi)

)
(6.109a)

where λmax(YYY ;ZZZ) is the maximum generalised eigenvalue of the matrix pencil (or matrix

pair) (YYY ;ZZZ). Then, the vector ĉ̂ĉc
(k)
i is estimated after maximising (6.109a) and obtaining

θ̂
(k)
i , viz.

ĉ̂ĉc
(k)
i = vvvmax

(
QQQ(θ̂

(k)
i );KKK(θ̂

(k)
i )
)

(6.109b)

where vvvmax(YYY ;ZZZ) is the generalised eigenvector corresponding to the maximum gener-

alised eigenvalue of the matrix pencil (YYY ;ZZZ). The vector ĉ̂ĉc
(k)
i is also normalised with

respect to its first element. Then, an update is done on the vector Θ̂̂Θ̂Θ(k) by replacing

θ
(k−1)
i with θ

(k)
i .

After estimating θ̂
(k)
i and ĉ̂ĉc

(k)
i , an update should be done on the corresponding column

of Ã̃ÃA according to equation (6.106) as follows

[
Ã̃ÃA
]
(:,i)
← TTT (ĉ̂ĉc

(k)
i )aaa(θ̂

(k)
i ) (6.110)

Then, increment i ← i + 1 and do the same procedure to estimate the next AoA. If

i > q, then i← 1, and k ← k+ 1. The procedure is repeated until the vector Θ̂̂Θ̂Θ(k) shows

no satisfying improvement. The algorithm is summarised in the table Algorithm 6.
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Algorithm 6: Implementation of the Proposed Agnostic Mutual Coupling ML AoA
Estimator by Alternating Projection

DATA: Collect XXX and compute R̂xxR̂xxR̂xx according to equation (6.8).

INITIALISATION:
k ← 0; Ã̃ÃA← ∅; PPP⊥ ← III; Θ̂̂Θ̂Θ(k) ← ∅;
for i = 1 to q do

• Step I.1: Estimate θ̂
(k)
i via 1D search using (6.109a), where:

– QQQ(θ) = BBBH(θ)PPP⊥R̂xxR̂xxR̂xxPPP⊥BBB(θ).

– KKK(θ) = BBBH(θ)PPP⊥BBB(θ).

• Step I.2: Obtain ĉ̂ĉc
(k)
i using equation (6.109b) and θ̂

(k)
i .

• Step I.3: Update the following quantities:

– [Ã̃ÃA](:,i) ← TTT (ĉ̂ĉc
(k)
i )aaa(θ̂

(k)
i ).

– PPP⊥ ← III − Ã̃ÃA(Ã̃ÃAHÃ̃ÃA)−1Ã̃ÃAH.

– [ΘΘΘ(k)](i,1) ← θ̂
(k)
i .

MAIN LOOP:

do

• Θ̂̂Θ̂Θold ← Θ̂̂Θ̂Θ(k)

• k ← k + 1

for i = 1 to q do

• Compute PPP⊥ ← III − Ã̃ÃAī(Ã̃ÃAH
ī
Ã̃ÃAī)
−1Ã̃ÃAH

ī
, where Ã̃ÃAī is obtained by omitting the ith

column from matrix Ã̃ÃA.

• Do Step I.1 to estimate θ̂
(k)
i .

• Do Step I.2 to obtain ĉ̂ĉc
(k)
i .

• Update [Ã̃ÃA](:,i) ← TTT (ĉ̂ĉc
(k)
i )aaa(θ̂

(k)
i ) and [ΘΘΘ(k)](i,1) ← θ̂

(k)
i as done in Step I.3.

while ‖Θ̂̂Θ̂Θ(k) − Θ̂̂Θ̂Θold‖ > ξ

We have conducted three experiments by fixing the following simulation parameters:

N = 7 antennas, q = 2 sources, and the RMSE is averaged over 200 trials. In all

the experiments, we compare the RMSE of the AoA estimates with the Cramér-Rao

bound that takes into account joint estimation of AoAs and coupling parameters [96].

This threshold indeed depends on several factors, such as separation, correlation, and

number of sources.

In the 1st experiment (Fig. 6.12), we have fixed the AoAs to θ1 = 0◦ and θ2 = 20◦. The

sources are uncorrelated and are generated as independent and identically distributed

(i.i.d) according to a Gaussian distibution. The number of snapshots is L = 100. Also,
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the number of coupling parameters are p = 3 with c = [1, 0.3115 + 0.3911j,−0.3063 −
0.1314j]. We can see that the RMSE of both AoA estimates via the proposed method

are close to their corresponding CRBs when SNR exceeds 5 dB
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Figure 6.12: RMSE of AoAs on a log-scale vs. SNR of the 1st experiment.
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Figure 6.13: RMSE of AoAs on a log-scale vs. SNR of the 2nd experiment.

In the 2nd experiment (Fig. 6.13), the two sources are coherent. the AoAs are now more

separated compared to the 1st experiment, namely θ1 = 0◦ and θ2 = 35◦. The number

of snapshots is L = 100. Moreover, the number of coupling parameters are p = 2, with
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c = [1, 0.1563 − 0.475j]. We can see that the RMSE per SNR is higher than those of

the 1st experiment, even though we have less coupling parameters and AoAs being more

separated. This is due to coherency of the sources. However, we see that the RMSE of

both AoA estimates are close to their corresponding CRBs, when SNR exceeds 15 dB.
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Figure 6.14: RMSE of AoAs on a log-scale vs. SNR of the 3rd experiment.

In the 3rd experiment (Fig. 6.14), we plot the RMSE v.s. number of snapshots L, with

SNR fixed to 5 dB. The sources are uncorrelated and are generated as i.i.d according

to a Gaussian distibution. The AoAs are brought back to the values of experiment

1, i.e. θ1 = 0◦ and θ2 = 20◦, but with less coupling parameters, i.e. p = 2 with

c = [1, 0.3561 − 0.22j]. The RMSE of θ̂1 is close to its corresponding CRB, when L

exceeds 75, however, θ̂2 still shows some error of about 0.1◦.

6.6 Conclusions and future directions

There are several new results in this paper that should be highlighted.

• We have derived a suboptimal MUSIC-based method for estimating Angles-of-

Arrival in the presence of mutual coupling in Section 6.3.1.

• We have presented and proven two theorems, namely Theorem 6.4 and Theorem

6.5, that allowed us to characterize the spectral behaviour of an important matrix,

i.e. BBB(θ), through an important theorem, i.e. Theorem 6.6, which explains why

other algorithms, such as [89–91] including the suboptimal method in Section 6.3.1,

suffer from ”non-identifiability” (i.e. when p > N
2 ) through that particular matrix.
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• In the light of these results, we propose an optimal algorithm (Section 6.4), in the

sense that it does not suffer from this ”non-identifiability” issue. This algorithm

could estimate the Angles-of-Arrival of q sources in the presence of p mutual cou-

pling parameters, given that p+ q ≤ N . We have also proved some properties that

are related to the cost function f(θ) (the optimal method) to give a better insight

on how the proposed method operates.

• We have derived a closed-form asymptotic MSE expression of the proposed al-

gorithm with the help of the paper in [95] and some Perturbation Theory tools.

Moreover, we have shown that the estimates of the Angles-of-Arrival through peak

finding of f(θ) are asymptotically unbiased.

• We observed the ”gap” between the MSE of the proposed method and the MSE of

MUSIC with known mutual coupling parameters. This is given by equation (6.73).

For the kth source, this ”gap” is given by
(

1
1−γk

)
.

• Furthermore, the derived MSE reveals that the proposed algorithm attains the

Cramér-Rao bound of joint mutual coupling and Angle-of-Arrival estimation when
p
N → 0 for uncorrelated signals. However, for high SNR, this is not generally the

case.

• We have improved the optimal method, in Section 6.4.6, by a method that is

guaranteed to give a lower MSE on Angles-of-Arrival estimates by taking into

account a better constraint of the optimization problem in hand.

• Finally, we have proposed an iterative algorithm based on Alternating Projection

in order to optimise the Deterministic Maximum Likelihood cost function that

takes into account mutual coupling. Throughout the operation of the algorithm,

mutual coupling parameters were treated as nuissance parameters, thus the name

”Mutual Coupling Agnostic”. Furthermore, the sources are allowed to be coherent.

Future directions may include: (i) regarding the mutual coupling problem from a dif-

ferent perspective, namely reducing the mutual coupling effect instead of considering a

joint coupling/AoA estimation problem; (ii) including other phenomena that perturb

AoA estimation, such as gain/phase mismatch between different antennas.
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Localizing via Wi-Fi

In this chapter, we aim at building a real system that could perform joint Angle and Delay

of Arrival Estimation and Detection of multipath components. This is simply done, so

that we could extract the Angle-of-Arrival of the Line-of-Sight (LoS) component between

the transmitter and receiver. The contributions are summarised as follows: (i) we take

into account all critical factors that perturb the Joint Angle and Delay estimation problem

and formulate a system model accordingly; (ii) then, we propose an offline calibration

method to compensate for all such factors; (iii) finally, and with the help of the CESS-

JADED-RIP algorithm, we have successfully been able to estimate the Angles and Times

of Arrival of all the multipath components, which allowed for the extraction of the AoA

of the LoS component.

7.1 Analytical Modelling

7.1.1 Transmit Signal

Let the baseband OFDM symbol be defined as followed:

s(t) =

M
2∑

m=−M
2

bme
j2πm∆f tΠ(

m∆f

B
) (7.1)

where ∆f = 1
T is the subcarrier spacing and T is the symbol period (i.e. T = 3.2µsec.)

Moreover, parameter M indicates the total number of subcarriers (including the non-

useful ones within the band of interest). In the above equation, the time index t could

121
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span any real positive value, i.e. t > 0. Due to the periodicity of the exponential term,

we get the following relation,

s(αT ) = s(αT + T ), 0 ≤ α ≤ 1 (7.2)

We would like to, explicitly, express consecutive OFDM symbols that form an OFDM

frame. Assuming we have transmitted L consecutive symbols, the overall transmit frame

is expressed as

f(t) =
L−1∑
l=0

s(t− lT ), 0 ≤ t ≤ LT (7.3)

Note that the rect function Π(f) is defined as

Π(f) =


1 if |f | < 1

2

1
2 if |f | = 1

2

0 if |f | > 1
2

(7.4)

In reality, the function Π(f) is seen as an ideal low pass filter (sinc filter) with zero ripple

in the pass and stop bands and zero transition width. In practical scenarios, this ideal

filter is not realisable, and instead we shall use G(f) to denote the actual pulse shaping

filters in frequency domain1. Since Therefore, the baseband signal has the following

form now

f(t) =
L−1∑
l=0

s(t− lT ), 0 ≤ t ≤ LT

=

L−1∑
l=0

M
2∑

m=−M
2

bme
j2πm∆f (t−lT )G(m∆f ), 0 ≤ t ≤ LT

=

L−1∑
l=0

M
2∑

m=−M
2

b̃me
j2πm∆f t, 0 ≤ t ≤ LT

(7.5)

where the last equality is due to the fact that ∆fT = 1 and b̃m = G(m∆f )bm. As one

can see, the same OFDM symbol s(t) is transmitted L times. The final form of the

transmit frame is in broadband, viz.

1In case of transmit or receive filters, we do not make the difference and we assume that G(f) is a
cascade of filters.
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x(t) = f(t)ej2πfct (7.6)

In all what follows, we assume absence of noise only for the sake of compact presentation.

7.1.2 Channel Propagation

We assume a specular channel model, i.e. let hn(t) be the channel seen by the nth

antenna

hn(t) =

q∑
k=1

γkan(θk)δ(t− τk) (7.7)

where γk is the complex coefficient of the kth path and the parameters θk, τk indicates

the time of arrival (ToA) and the angle of arrival (AoA) of the kth. Note that the ToA

is measured from the moment of transmission of the frame. The function an(θ) is the

response of the nth receiving antenna due to a path arriving at angle θk. Finally, δ(t) is

the Dirac-delta function defined as

δ(t− τ) =

1 if t = τ

0 else
(7.8)

The received signal at the nth antennas could be expressed as

yn(t) = hn(t) ∗ x(t) (7.9)

where ∗ denotes convolution. We could write yn(t) as

yn(t) = hn(t) ∗ x(t)

=
( q∑
k=1

γkan(θk)δ(t− τk)
)
∗ x(t)

=

q∑
k=1

γkan(θk)
(
δ(t− τk) ∗ x(t)

) (7.10)

To compute the above term
(
δ(t− τk) ∗ x(t)

)
and ”get rid” of the convolution sign, we

make use of the shifting property of the convolution, namely

∫ ∞
−∞

f(x)δ(x− a) dx = f(a) (7.11)
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Using the definition of the convolution, we have that

f(t) ∗ g(t) :=

∫ t

0
f(t− s)g(s) ds, (7.12)

Using this definition, we compute the quantity we are interested in

δ(t− τk) ∗ x(t) = x(t) ∗ δ(t− τk)

=

∫ t

0
x(t− s)δ(s− τk) ds.

(7.13)

Now, consider the two following cases,

• If t < τk, then δ(s− τk) = 0 since 0 ≤ s ≤ t < τk and hence∫ t

0
x(t− s)δ(s− τk) ds ≡ 0 (7.14)

• If t ≥ τk, then using the shifting property,∫ t

0
x(t− s)δ(s− τk) ds = x(t− s)

∣∣∣
s=τk

= x(t− τk) (7.15)

We conclude that

δ(t− τk) ∗ x(t) =

x(t− τk) t ≥ τk

0 t < τk

(7.16)

Now since the signal x(t) is present within 0 ≤ t ≤ LT , and zero otherwise, then we

could say

δ(t− τk) ∗ x(t) = x(t− τk) (7.17)

without the need to impose the two cases. So,

yn(t) =

q∑
k=1

γkan(θk)x(t− τk) (7.18)

7.1.3 Receiver

In this subsection, we should describe carefully the different blocks associated at the

receiver’s side.
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Down-Conversion of the RF signal

Upon the reception of the analog signal yn(t) for 1 ≤ n ≤ N across all antennas, a

downconversion is needed to center the signal yn(t) around the zero frequency. Ideally,

all clocks per antenna paths should have a crystal embedded and running at fc. However,

this is not usually the case. In other words, assume that the oscillator is running at

frequency fnc at the nth antenna path2, then a downconversion at the nth path reads

ydown
n (t) = yn(t)e−j2πf

n
c t (7.19)

where the superscript ”down” indicates ”down-conversion”. We would like to see the

effect of the mismatching in downconversion (i.e. when fnc 6= fc for all n). Using equation

(7.18) in (7.19) we get

ydown
n (t) =

( q∑
k=1

γkan(θk)x(t− τk)
)
e−j2πf

n
c t (7.20)

Now using equation (7.6), we get

ydown
n (t) =

( q∑
k=1

γkan(θk)x(t− τk)
)
e−j2πf

n
c t

=

q∑
k=1

γkan(θk)f(t− τk)ej2πfc(t−τk)e−j2πf
n
c t

=

q∑
k=1

γkan(θk)f(t− τk)ej2π(fc−fnc )te−j2πfcτk

(7.21)

As mentioned in Section ??, the difference εnf ≡ fc− fnc causes Carrier Frequency Offset

(CFO). Also let’s absorb the term e−j2πfcτk into the multipath coefficients γk, due to its

independence of time. To this end, let’s denote

γ̄k = γke
−j2πfcτk (7.22)

Therefore, equation (7.21) becomes

ydown
n (t) =

q∑
k=1

γ̄kan(θk)f(t− τk)ej2πε
n
f t (7.23)

As we can see, the CFO εnf causes a drift in time domain.

2In the case of a common oscillator, we have that f1
c = f2

c = . . . = fNc = f ′c
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Sampling the RF signal

The sampling process of the RF signal is a block that is of fundamental importance,

as it allows us for further signal processing. Nominally, and according to the Nyquist

criterion, we should sample at a rate that is at least the signal bandwidth so that we do

not loose any information carried by the signal. This means that the sampling frequency,

fs = 1
Ts

should satisfy

fs ≥ B (7.24)

where B = M∆f is the bandwidth of the OFDM signal x(t) or, equivalently, ydown
n (t). In

this document, we assume that the nominal sampling frequency is chosen to be fs = B

and hence

Ts =
1

B
=

1

M∆f
(7.25)

It is impossible to guarantee an exact sampling period Ts. As in the case of CFO,

the deviation of the crystal’s oscillation frequency from the true one causes a sampling

mismatch. More formally, assume that the sampling period is Tns at the nth antenna

path3. Then sampling ydown
n (t) in (7.23) at Tns reads

ydown
n (p) , ydown

n (t = pTns + βn) =

q∑
k=1

γ̄kan(θk)f(pTns + βn − τk)ej2πε
n
f (pTns +βn) (7.26)

Using equation (7.5) in (7.26), we get

ydown
n (p) =

q∑
k=1

γ̄kãn(θk)

M
2∑

m=−M
2

b̃me
j2πm∆f (pTns −τk)ej2πε

n
f pT

n
s

= ej2πε
n
f pT

n
s

q∑
k=1

γ̄kãn(θk)

M
2∑

m=−M
2

b̃me
j2πm∆f (pTns −τk)

(7.27)

where ãn(θ) = an(θ)ej2πβn(εnf ). Assuming that εnT = Ts − Tns , then if εnT 6= 0, we can

say that the system is prone to Sampling Frequency Offset (SFO). This destroys the

orthogonality of the subcarriers, thereby resulting in inter-carrier interference (ICI).

3In the case of a common oscillator for sampling, we have that T 1
s = T 2

s = . . . = TNs = T ′s
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Focusing on the last sum in equation (7.27), we can say

M
2∑

m=−M
2

b̃me
j2πmp∆fT

n
s e−j2πm∆f τk =

M
2∑

m=−M
2

b̃me
j2πmp∆f (Ts−εnT )e−j2πm∆f τk

=

M
2∑

m=−M
2

b̃me
j2πmp∆fTs(1−δnT )e−j2πm∆f τk

=

M
2∑

m=−M
2

b̃me
j2πmp

M
(1−δnT )e−j2πm∆f τk

=

M
2∑

m=−M
2

b̃me
j2πmp

M e−j2π
mp
M
δnT e−j2πm∆f τk

(7.28)

where δnT =
εnT
Ts

. Using (7.27) and (7.28), we can say that

ydown
n (p, l) = ej2πε

n
f pT

n
s .

q∑
k=1

M
2∑

m=−M
2

b̃me
j2πmp

M e−j2π
mp
M
δnT e−j2πm∆f τk γ̄kãn(θk) (7.29)

A compact representation would be4

yn(p, l) =
(
ej2πε

n
f (p+lM)Tns

)(
f̃ff
T

p,n(l)B̃BBCCCGGGãaan
)

(7.30)

4We omit the ”down” super-scipt
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where

f̃ffp,n(l) =



(z.zδn)−
M
2

(p+lM)

(z.zδn)(−M
2

+1)(p+lM)

...

(z.zδn)−(p+lM)

(z.zδn)(p+lM)

...

(z.zδn)(M
2
−1)(p+lM)

(z.zδn)
M
2

(p+lM)


, z = ej

2π
M and zδn = e−j

2π
M
δnT (7.31)

B̃BB = diag[̃b−M
2
. . . b̃M

2
] (7.32)

CCC =
[
ccc(τ1) ccc(τ2) . . . ccc(τq)

]
(7.33)

ccc(τ) =



1

zτ

z2
τ
...

z
M
2
−1

τ

z
M
2

+1
τ

...

zMτ



, zτ = e−j2π∆f τ (7.34)

GGG = = diag[¯̄γ1 . . . ¯̄γq], ¯̄γk = γ̄ke
j2πM

2
∆f τk (7.35)

ãaan =


ãn(θ1)

...

ãn(θq)

 (7.36)

Collecting M time samples for the lth symbol we get

yyyn(l) =


yn(1, l)

yn(2, l)
...

yn(M, l)



=


(
ej2πε

n
f (1+lM)Tns

)(
f̃ff
T

1,n(l)B̃BBCCCGGGãaan
)(

ej2πε
n
f (2+lM)Tns

)(
f̃ff
T

2,n(l)B̃BBCCCGGGãaan
)

...(
ej2πε

n
f (M+lM)Tns

)(
f̃ff
T

M,n(l)B̃BBCCCGGGãaan
)


= DDDε(l)F̃FF (l)B̃BBCCCGGGãaan

(7.37)
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where

DDDε(l) = diag
[
ej2πε

n
f (1+lM)Tns . . . ej2πε

n
f (M+lM)Tns

]
(7.38)

F̃FF (l) =


f̃ff
T

1,n(l)

f̃ff
T

2,n(l)
...

f̃ff
T

M,n(l)

 (7.39)

7.1.4 Summary

The sampled lth symbol up to the output of the ADC at the nth antenna is given by

yyyn(l) = DDDε(l)F̃FF (l)B̃BBCCCGGGãaan (7.40)

where

• DDDε(l) is given in equation (7.38). This matrix captures the CFO on the nth path.

• F̃FF (l) is given in equation (7.39) and could be defined as the perturbed DFT matrix.

• B̃BB is given in equation (7.32). This is a diagonal matrix containing the transmit

symbols per subcarrier.

• CCC is given in equations (7.33)-(7.34). This is the steering matrix to multipaths

arriving with delays τ1 . . . τq.

• GGG is given in equations (7.35). This matrix is a diagonal matrix containing complex

gains of each multipath.

• ãaan is given in equation (7.36) and is the perturbed vector of response of only the

nth antenna to all path arriving at angles θ1 . . . θq.

7.2 Offline calibration approach

In this section, we explain the preprocessing steps done before AoA/ToA estimation.

The preprocessing will be done in an offline manner, i.e. the channel is only the cables

connecting Tx with Rx.
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Figure 7.1: Block Diagram of the Offline Calibration approach

7.2.1 Step 1: Detect Frame/Symbol

The first step is to find the beginning of the frame. Let’s assume that we have transmitted

31 consecutive LTF symbols, just as in Figure 1, where we can see the received signal

sampled at 80 MHz. Our task here is to find which time sample n determines the

beginning of the frame.
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Figure 7.2: An arbitrary chosen frame during Offline Calibration

7.2.2 Step 2: Estimating and Compensating the CFO

Since calibrations are done thru connecting cables, then there doesn’t seem to be a

multipath channel. In other words, we assume a single direct path of the signal, that is

traversing directly thru the cables. Having said that, we shall now write equation (7.40)

for a single path, thus the received signal thru the cables read:

yyyn(l) = DDDε(l)F̃FF (l)B̃BBCCCGGGãaan

= DDDε(l)F̃FF (l)B̃BBccc(τ0) ¯̄γ0ãn(θ0)
(7.41)
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Figure 7.3: Detection of Start Index

But with connected cables, there is no physical meaning of a steering vector an(θ),

since ideally the received signal should arrive at the same time instant up till the ADC.

However, it is important to include the delays per path, which was given below equation

(7.27), which is

ãn(θ) = ej2πβn(εnf ) (7.42)

Therefore we shall assume an(θ) = 1. Also since ¯̄γ0 is common for all n (i.e. common

for all antennas), then we shall assume it to be equal to 1. Let 2πβn(εnf ) = φn, therefore

equation (7.41) will read

yyyn(l) = DDDε(l)F̃FF (l)B̃BBccc(τ0)ejφn (7.43)



Chapter 7 Localizing via Wi-Fi 132

In this subsection, when we say compensating for CFO, when mean equalizing matrices

DDDε(l). The procedure is as follows:

1. We choose a random OFDM symbol as a reference symbol. Let’s say we have

picked the first symbol, yyyn(0) to serve as reference.

2. Let us consider the following inner products yyyHn (l)yyyn(0), which can be expressed

as

yyyHn (l)yyyn(0) =
(
DDDε(l)F̃FF (l)B̃BBccc(τ0)ejφn

)H(
DDDε(0)F̃FF (l)B̃BBccc(τ0)ejφn

)
= e−jφn

(
F̃FF (l)B̃BBccc(τ0)

)H(
DDD∗ε (l)DDDε(0)

)(
F̃FF (l)B̃BBccc(τ0)

)
ejφn

=
(
F̃FF (l)B̃BBccc(τ0)

)H(
DDD∗ε (l)DDDε(0)

)(
F̃FF (l)B̃BBccc(τ0)

) (7.44)

where DDD∗ε (l) = DDDH
ε (l) since this matrix is diagonal. Using equation (7.38), we get

that

DDD∗ε (l)DDDε(0) = diag[e−j2πε
n
f lMTns . . . e−j2πε

n
f lMTns ]

= e−j2πε
n
f lMTns diag[1 . . . 1]

= e−j2πε
n
f lMTns III

(7.45)

Plugging (7.45) in (7.44), we get

yyyHn (l)yyyn(0) =
(
F̃FF (l)B̃BBccc(τ0)

)H(
e−j2πε

n
f lMTns III

)(
F̃FF (l)B̃BBccc(τ0)

)
= e−j2πε

n
f lMTns

(
F̃FF (l)B̃BBccc(τ0)

)H(
F̃FF (l)B̃BBccc(τ0)

)
= e−j2πε

n
f lMTns

∥∥∥F̃FF (l)B̃BBccc(τ0)
∥∥∥2

(7.46)

Now observe that the phase of yyyHn (l)yyyn(0) is 2πεnf lM , which allows us to estimate

εnf . To do this in an optimal manner, we collect all the phases of the L − 1 inner

products in one vector, call it zzz as follows:

z̃̃z̃zn =


∠yyyHn (1)yyyn(0)

∠yyyHn (2)yyyn(0)
...

∠yyyHn (L− 1)yyyn(0)

 =


2πεnfMTns

2πεnf2MTns
...

2πεnf (L− 1)MTns

 (7.47)
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3. We regard zzzn as a shifted vector, i.e.

z̃̃z̃zn =


2πεnfMTns + φ

(1)
n

2πεnf2MTns + φ
(1)
n

...

2πεnf (L− 1)MTns + φ
(1)
n

 (7.48)

where φ
(1)
n should be read as follows: It is the first attempt of estimating absolute

phases at the nth antenna. This technique actually helped us to resolve phase

ambiguities when it came to estimation of φn. This will be further elaborated on

below. Furthermore, we are observing noisy estimates of zzzn, i.e. we have access to

zzz′n,

zzz′n = z̃̃z̃zn +wwwn (7.49)

where wwwn is noise, that is not necessarily Gaussian.

4. Now that the problem is set, we would like to retrieve εnf from zzz′n. Although,

there is a small problem, which is that we do not know Tns , we know that Tns is a

perturbed version of Ts according to equation (??), we can say that

z̃̃z̃zn =


2πεnfMTns + φ

(1)
n

2πεnf2MTns + φ
(1)
n

...

2πεnf (L− 1)MTns + φ
(1)
n



=


2πεnfM(Ts − εnT ) + φ

(1)
n

2πεnf2M(Ts − εnT ) + φ
(1)
n

...

2πεnf (L− 1)M(Ts − εnT ) + φ
(1)
n



= 2πεnfM︸ ︷︷ ︸
O(ε)


Ts + φ

(1)
n

2Ts + φ
(1)
n

...

(L− 1)Ts + φ
(1)
n


︸ ︷︷ ︸

zzzn

− 2πεnf ε
n
TM︸ ︷︷ ︸

O(ε2)


1

2
...

(L− 1)


︸ ︷︷ ︸

vvvn

= zzzn + vvvn

(7.50)

where zzzn is seen as the unperturbed vector for εnf -estimation and vvvn will be re-

garded as noise because it is of an order O(ε2) when compared to zzzn which is of

order O(ε).
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5. Plugging (7.50) in (7.49), we get

zzz′n = zzzn + vvvn +wwwn︸ ︷︷ ︸
www′n

= zzzn +www′n (7.51)

Solving via Least Squares means that we optimize the following:

minimize
εnf ,φ

(1)
n

‖z̃̃z̃zn − zzzn‖ (7.52)

yields in [
ε̂nf

φ̂
(1)
n

]
=
(
ΠΠΠTΠΠΠ)−1ΠΠΠTzzz′n (7.53)

where

ΠΠΠ =


2πMTs(1) 1

2πMTs(2) 1
...

...

2πMTs(L− 1) 1

 (7.54)
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Figure 7.4: 1st Trial: Estimating CFO and phases

Notice that this operation is done twice, to estimate any residual values. The third time

we call the function is for verification purposes only.

Note that in Figures 7.4, 7.5, and 7.6, the difference of phases φ1 − φ2 is negligible, i.e.

it is of order 10−4. This is natural because the phase has been eliminated due to the

usage of a first symbol as reference. Including such a step5 in this case has not done

5Phase offsets φ in Least Squares in equation (7.48)
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Figure 7.5: 2nd Trial: Estimating CFO and Phases after 1st compensation
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Figure 7.6: 3rd Trial (Verification): Estimating CFO and Phases after 2nd compen-
sation

anything. However, one may choose to use a generated reference signal to form all the

inner products in equation (7.47). In that case, including phase offsets φ in the LS

step is crucial. We have repeated the same experiment but this time by using our own

generated reference signal to get Figures 7.7, 7.8, and 7.9.
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Figure 7.7: 1st Trial: Estimating CFO and phases (Using a generated reference signal)
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Figure 7.8: 2nd Trial: Estimating CFO and Phases after 1st compensation (Using a
generated reference signal)

7.2.3 Step 3: Compensating Tx/Rx Filter Effects

Now we assume that we have compensated the effect of CFO, i.e.

ȳyyn(l) = D̂DD
H

ε (l)yyyn(l)

= D̂DD
H

ε (l)DDDε(l)F̃FF (l)B̃BBCCCGGGãaan

' F̃FF (l)B̃BBccc(τ0) ¯̄γ0ãn(θ0) +O(εf − ε̂f )︸ ︷︷ ︸
seen as noise

(7.55)
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Figure 7.9: 3rd Trial (Verification): Estimating CFO and Phases after 2nd compen-
sation (Using a generated reference signal)

where the O(εf − ε̂f ) term comes from a Taylor series expansion of the exponential

function in the neighbourhood of 0. To proceed there is an assumption made of matrix

F̃FF (l), which is mainly an assumption on the SFO. Let us look at the pth row of F̃FF (l)

(equation (7.31)). They are all multiples of a phase shift: (z.zδn)(p+lM).

(z.zδn)(p+lM) = z(p+lM)z
(p+lM)
δn

= zpe−j
2π
M

(p+lM)δnT
(7.56)

The approximation here is the following:

(p+ lM)δnT ' lMδnT (7.57)

this means that we shall assume that the SFO effect has an effect from symbol to symbol

only and not within a symbol. Plugging equation (7.57) back in (7.56) gives

(z.zδn)(p+lM) = zpe−j2πlδ
n
T (7.58)

Thanks to this approximation, now we can say that the perturbed DFT in equation

(7.39) becomes

F̃FF (l) = e−j2πlδ
n
TFFF (7.59)

where FFF is the DFT matrix. Now the model in (7.55) becomes6:

ȳyyn(l) = e−j2πlδ
n
TFFFB̃BBccc(τ0) ¯̄γ0ãn(θ0) (7.60)

6We do not express noise for presentation’s sake
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Going to frequency domain means multiplying with FFFH , i.e.

ȲYY n(l) = FFFHȳyyn(l) = e−j2πlδ
n
TFFFHFFFB̃BBccc(τ0) ¯̄γ0ãn(θ0) (7.61)

Since FFF is unitary, then FFFHFFF = III, hence

ȲYY n(l) = e−j2πlδ
n
T B̃BBccc(τ0) ¯̄γ0ãn(θ0) (7.62)

In this subsection, since our main focus is the BBB matrix, then we treat all other param-

eters as nuisance. In other words, we let νn,l = e−j2πlδ
n
T ¯̄γ0ãn(θ0) and hence

ȲYY n(l) = νn,lB̃BBccc(τ0) (7.63)

Recall the form of B̃BB in equation (7.32) and that

b̃m = G(m∆f )bm (7.64)

We know what bm are a priori, therefore we compensate for all such BPSK symbols by

a simple diagonal matrix multiplication:

¯̄YYY n(l) = BBBHȲYY n(l) = νn,lBBB
HB̃BBccc(τ0) = νn,lGGGccc(τ0) (7.65)

where

GGG = diag [G((−M
2

)∆f ) . . . G((
M

2
)∆f )] (7.66)

Now plotting the phase of ¯̄YYY n(l), we get:

If GGG = III, i.e. no Tx/Rx filters, then we would have observed a straight line with a

slope that is decided by the value of τ0 and an offset that is decided by the phase of

νn,l. Figure 7.10 suggests that there are some filters present in the Transmission and/or

Reception chain. The good news is that the phases seem to be static7. Observe that

we have a ”sinusoidal shape” in the figure. Indeed one might assume that the phase

filter behaves sinusoidally. If we were to assume that, then we have to do a Maximum

Likelihood estimator on the amplitude, phase and frequency of the sinusoid that we have.

We have proceeded in another manner, i.e. we have divided the set of frequencies into 3

zones, that are separated by vertical dashed lines in Figure 7.10: LeftZone, CenterZone,

RightZone. Each zone is parametrised by the following parameters:

• LeftZone: Slope a1 and offset b1.

• CenterZone: Slope a2 and offset b2.

7Variation effects are due to noise of course. We have done exhaustive simulations and found out
that the phases are not time-varying.
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Figure 7.10: Phases of ¯̄YYY n(l0) for some l0.

• RightZone: Slope a3 and offset b3.

Indeed these slopes and offsets change from symbol to other. The change is not due to

the filter effects GGG, but due to τ0 and νn,l. The former contributes in a change of

a common slope. However, the latter contributes in an addition of a common offset.

Therefore, a1, a2, a3 will have a common τ0 added to their values and b1, b2, b3 will have

a common ∠νn,l added to their values.

So as to be concise, the task of this subsection is to eliminate any filter slopes/off-

sets. Hence, we are interested in the relative slopes/offsets rather than the absolute

ones. To this extent, let

a21 = a2 − a1 (7.67)

a32 = a3 − a2 (7.68)

b21 = b2 − b1 (7.69)

b32 = b3 − b2 (7.70)

To estimate these parameters, we just do a Least Squares fit on each zone separately

and then a compensation is done on the angles. Note that we have assumed a flat filter

in terms of magnitude, therefore the compensation is done as follows:

¯̄̄
YYY n(l) = GGGH ¯̄YYY n(l) = νn,lGGG

HGGGccc(τ0) = νn,lccc(τ0) (7.71)
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In Figure 7.11, we have plotted the estimated values of a21, a32, b21, and b32 on a

chosen frame. As one can see, these values tend to be constant as we mentioned. We

have averaged the estimates over multiple symbols and frames and obtained their mean

values, which we used in the MATLAB code of this block. Note that mean values of

estimates are needed for an online phase. In Figure 7.12, we have re-estimated a21, a32,

b21, and b32 after doing a compensation on the mean values. We can see that the slopes

and phases have been at least reduced by 10−2 order of magnitude.
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Figure 7.11: Estimation of a21, a32, b21, and b32 on a chosen frame per antenna.

Note that we have finally chosen values a21, a32, b21, and b32 which were obtained by

averaging multiple frames and symbols.
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7.2.4 Step 4: Estimating and Compensating the SFO and antenna

phases

Now that we have compensated the signal in the past three steps, our signal, more or

less, follows the model

¯̄̄
YYY n(l) = νn,lccc(τ0) = e−j2πlδ

n
T ¯̄γ0ãn(θ0)ccc(τ0) = e−j2πlδ

n
T ¯̄γ0e

jφnccc(τ0) (7.72)

Here, the parameters that need to be estimating per antenna, that are

• The SFO δnT

• The antenna phase φn

We propose a 2-stage Lest Squares fit for this estimation:

1st stage: On a Symbol Level

Let

%l,n = 2πlδnT − φn (7.73)

and for each
¯̄̄
YYY n(l). Notice that the phase of vector in equation (7.73) could be expressed

as

∠
¯̄̄
YYY n(l) =


1

2π∆fτ0

...

2π∆f (M − 1)τ0

+


%l,n

%l,n
...

%l,n

 (7.74)

Applying LS as in equations (7.47) till (7.49) gives us estimates τ̂
(l)
0 and %̂l,n. Note that

τ̂
(l)
0 includes superscript l because each symbol l yields a different τ0 estimate. Our main

focus is the latter, i.e. %l,n, which is estimated in the 2nd stage below.

2nd stage: On a Frame Level

Now, let us stack all the collected %̂l,n per antenna, namely
%̂1,n

%̂2,n

...

%̂L,n

 =


2πδnT

2π2δnT
...

2πLδnT

−

φn

φn
...

φn

 (7.75)
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Notice that the slope is the SFO δnT and the phase is the antenna phase φn, that are

estimated via Least Squares as well. Hence we can say that (following equations (7.47)

till (7.49)) we get estimates δ̂nT and φ̂n.
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Figure 7.13: Estimation of δnT at a Frame Level
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Figure 7.14: Estimation of φn at a Frame Level

We can see, according to Figure 7.13, that the estimation of δnT lies in the slope of plot as

explained in (7.75). The Phase lies in the offset (or difference) of plots in Figure 7.14. It

is worth mentioning that AoA estimation is possible due to the observation

that φ2 − φ1 is constant and therefore could be compensated for in the AoA

estimation phase.
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7.3 Online method

In this section, we describe the main blocks of the online method for our parameter esti-

mation approach, in order to extract the Angle of Arrival of the Line-of-Sight component

between the Tx and Wi-Fi Rx.

7.3.1 Why JADED and CSI?

The localisation algorithm that is used to estimate the AoA of the LoS is the CESS-

JADED-RIP algorithm, which stands for Joint Angle and Delay Estimation and Detec-

tion. It is worth noting the following points of the CESS-JADED-RIP algorithm:

• CESS-JADED-RIP operates for OFDM/ULA systems only.

• CESS-JADED-RIP does not impose the uncorrelated sources assumption. This

means that JADED could jointly estimate the Angles and Times of Arrival of

multiple coherent sources, which is the case of multipath propagation.

• CESS-JADED-RIP functions properly given a single snapshot, which is what we

do here.

• CESS-JADED-RIP does not need prior knowledge of the number of multipath

components or number of sources.

Throughout all the conducted experiments, we have used only 2 antennas placed next

to each other on the same plane, hence ULA. There was one problem when we look

at the OFDM structure we have, i.e. we have a ”quasi-OFDM” like structure since

the 3 central subcarriers were not used. To overcome this, we have used Cubic Spline

Interpolation (CSI) to, more or less, interpolate the 3 missing subcarriers to have a

continuous frequency spectrum.

7.3.2 Main blocks

The block diagram depicted below in Fig. 7.15 shows the 4 essential blocks of the

online method. Indeed, after detecting the start of the OFDM symbol as described

in Section 7.2.1, we should use the stored calibration parameters to calibrate our data

before using any parameter estimation model. A Cubic Spline Interpolation is done

in frequency domain to solve the ”missing subcarriers” problem as described above.

Finally, the CESS-JADED-RIP is applied on each symbol to extract the AoA of the LoS

component.
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Figure 7.15: Block Diagram of the proposed online method

7.3.3 Real data

To demonstrate that this method actually works, we have set up a campaign shown in

Fig. 7.16. As we can see, we have a Wi-Fi Rx equipped with 2 antennas. The signal

Location	1

Location	2

Location	7

Figure 7.16: Campaign1

transmitted is a 80 MHz OFDM symbol. We have ran the online method described and

plotted 3 subplots in Fig. 7.17:

• 1st subplot: The estimated ToA of the LoS as a function of OFDM symbol.

• 2nd subplot: The estimated AoA of the LoS as a function of OFDM symbol.
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• 3rd subplot: An accuracy measure that indicates the quality of estimation, which

we talk about below.

Also observe the red and black vertical dashed lines, which indicate:

• Red dashed line: indicates moving from one frame to another.

• Black dashed line: indicates moving from one position to another on a circle where

the Wi-Fi is acting as the center.
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Figure 7.17: Campaign1

We have considered the following cost function:

f(ΘΘΘ,ΓΓΓ) =
xxxHPPP (ΘΘΘ,ΓΓΓ)xxx

xxxHxxx
(7.76)
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where xxx is the spatio-frequency vector observed and PPP (ΘΘΘ,ΓΓΓ) is

PPP (ΘΘΘ,ΓΓΓ) = H(ΘΘΘ,ΓΓΓ)
(
HH(ΘΘΘ,ΓΓΓ)H(ΘΘΘ,ΓΓΓ)

)−1
HH(ΘΘΘ,ΓΓΓ) (7.77)

where

H(ΘΘΘ,ΓΓΓ) = AAA(ΘΘΘ)�CCC(ΘΘΘ) (7.78)

with

AAA(ΘΘΘ) =
[
aaa(θ1) . . . aaa(θq)

]
(7.79)

and

CCC(ΓΓΓ) =
[
ccc(τ1) . . . ccc(τq)

]
(7.80)

and � denotes column-wise Kronecker product. Note that ΘΘΘ = [θ1 . . . θq] and ΓΓΓ =

[τ1 . . . τq] are the AoAs/ToAs, respectively, estimated by the JADED algorithm. The

numerator of f(ΘΘΘ,ΓΓΓ) is nothing other than the Maximum Likelihood cost function,

which should be maximized in order to estimate the AoAs and ToAs. In the absence of

noise and in an ideal case, we have that

xxxHPPP (ΘΘΘ,ΓΓΓ)xxx = xxxHxxx (7.81)

since the xxx vector fully resides in the subspace of H(ΘΘΘ,ΓΓΓ) and therefore

PPP (ΘΘΘ,ΓΓΓ)xxx = xxx (7.82)

Hence in the absence of noise f(ΘΘΘ,ΓΓΓ) = 1. In case of no signal and pure noise, we have

that

f(ΘΘΘ,ΓΓΓ) ' 0 (7.83)

We can see a good AoA estimation in almost all OFDM symbols in this Campaign as

it reflects the actual physical location of the user. We would like to mention that the

closer we are to angle θ ' 90◦, we can see some perturbations going back to ∼ −90◦.

This is normal as this is one characteristic of ULAs. Also when the WiFi is mounted in

a corner of a room, we think that this issue can be resolved. Also, we have done other

campaigns and we have obtained similar results.

7.4 Conclusions and future directions

In this chapter, we have seen multiple scenarios where we could indeed estimate the AoA

of the LoS component in the presence of multipath. Herein, we have taken into account

all factors that perturb the Joint Angle and Delay estimation problem and formulated
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a system model accordingly. These factors are: Sampling Frequency Offset (SFO), Car-

rier Frequency Offset (CFO), Phase and Delay offsets at each antenna. To compensate

for the effect of these critical factors, we propose an offline calibration method to com-

pensate for all their effects. Lastly and most importantly, and with the help of the

CESS-JADED-RIP algorithm and the Cubic Spline Interpolation technique, we have

successfully been able to estimate the Angles and Times of Arrival of all the multipath

components, which allowed for the extraction of the AoA of the LoS component.

Our last work related to this issue is trying to verify whether AoA estimation between

a transmitter and receiver could be done in Non LoS (NLoS) scenarios. Some data

show the possibility of this attempt. Future work must also be oriented towards a more

computationally efficient way of applying the CESS-JADED-RIP method.
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Conclusions

First in Chapter 2, and with the help of random matrix tools, we have presented a

modified MDL (MMDL) estimator for detecting the number of superimposed signals.

This MMDL estimator dominates the traditional MDL especially at the low number of

snapshots regime, i.e. when L = O(N). Simulation results have shown the potential

of MMDL over the traditional MDL. Furthermore, in Chapter 3, and with the help of

latent variables and Variational Bayes, we have derived an iterative algorithm that could

estimate the Angles of Arrival (AoA) of the incoming sources with a single snapshot,

without the knowledge of the number of sources, and with closely spaced sources at high

SNR. We have also seen that it is possible that the proposed Newton-type forward back-

ward greedy method performs faster, in terms of convergence and number of operations,

and better, in terms of Mean-Squared-Error (MSE) of AoAs. In Chapter 4, we have

presented two techniques to solve the highly nonlinear DML algorithm for joint times

and angles of arrival: 2D-IQML and 2D-DIQML. Asymptotic performance analysis of

both techniques were provided. It has been shown that 2D-IQML gives biased estimates

of ToA/AoA and performs poorly at low SNR due to noise. An original ”denoising”

strategy is proposed, which constrains the Hessian of the cost function to be positive

semi-definite. This ”denoising” strategy is called 2D-DIQML that has been shown to be

globally convergent. Furthermore, 2D-DIQML outperforms 2D-IQML because the for-

mer behaves asymptotically at any SNR as the latter behaves at high SNR. Finally, for

localisation purposes, joint AoA and ToA information could be used to form a database,

where a mapping is done between ToA/AoA vectors and location. Then, this database

could be used in an online stage, where joint AoA/ToA estimation is done using the

proposed algorithms, followed by a matching criteria that finds the best match in the

database to obtain an estimate of the location of a wireless transmitter. We have also

presented two algorithms based on 2D Matrix Pencils. These two algorithms allow joint

148
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estimation of times and angles of arrival of multiple paths using only one snapshot.

Algorithm 1 resolves more sources than Algorithm 2 in the case where the number of

subcarriers is much larger than the number of antennas, which is the case of most Wi-Fi

systems. The performance of Algorithm 1 as a function of SNR was studied through

simulations. The final aspect of Chapter 4 is that we have presented a 2D smoothing

preprocessing technique, applied to a Spatial-Frequential array, to ”decorrelate” multi-

path components. Then, any 2D subspace algorithm could be applied to estimate the

times and angles of arrivals of the different paths. The 2D smoothing technique pre-

sented here, naturally, offers more subarrays to smooth over and, therefore, one could

be able to resolve more coherent paths. In Chapter 5, there are some contributions

that should be highlighted: We have proposed a novel approach for joint estimation and

detection of Angles and Times of arrival, i.e. JADED. Two methods were derived so

as to solve the JADED problem using Rotational Invariance Properties (RIP), which

arises when a ULA receives known OFDM symbols. The JADED-RIP method performs

a 2D search of a suitable cost function, where each peak indicates a present source with

corresponding ToA/AoA. The second algorithm, CESS-JADED-RIP, is a faster version

of JADED-RIP, which can be used for single snapshot scenarios only. The algorithms

function properly in the presence of coherent sources, since subspace extraction is not

needed, as in the case of MUSIC, ESPRIT, and other subspace methods. In Chap-

ter 6, we study an important aspect that perturbs Angle-of-Arrival estimation, due to

antenna coupling, also known as ”Mutual Coupling”. First, we derive a sub-optimal

algorithm that could estimate AoAs in the presence of mutual coupling; then, we show

why this sub-optimal algorithm, along with other ones, are indeed suboptimal, in the

sense that there is an upper bound on the coupling parameters allowed in the model.

Moreover, we further improve the sub-optimal algorithm and propose an optimal one,

in the sense that more coupling parameters are allowed in the model. We have been

able to refine the estimates of the optimal algorithm by modifying some constraints of

the optimization problem considered. We derive the MSE expression of the optimal

algorithm and show that, in some cases, we can attain the Cramér-Rao bound of the

problem of joint coupling parameters and AoA estimation. Finally in Chapter 6, we

derive an iterative method that could give Maximum Likelihood (ML) estimates of the

AoAs, and therefore allowing the presence of coherent sources, which is not the case of all

the previous algorithms. In Chapter 7, we have seen multiple scenarios where we could

indeed estimate the AoA of the LoS component in the presence of multipath. Herein,

we have taken into account all factors that perturb the Joint Angle and Delay estima-

tion problem and formulated a system model accordingly. These factors are: Sampling

Frequency Offset (SFO), Carrier Frequency Offset (CFO), Phase and Delay offsets at

each antenna. To compensate for the effect of these critical factors, we propose an offline

calibration method to compensate for all their effects. Lastly and most importantly, and
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with the help of the CESS-JADED-RIP algorithm and the Cubic Spline Interpolation

technique, we have successfully been able to estimate the Angles and Times of Arrival

of all the multipath components, which allowed for the extraction of the AoA of the LoS

component.



Chapter 9

Résumé en Français

9.1 Motivation

9.1.1 Bref historique

La localisation se réfère au processus de localisation des objets visés dans l’espace.

Bien que le plus souvent associé à la technologie moderne, il existe des méthodes

de localisation plus primitives. En fait, les techniques de localisation les plus

élémentaires pourraient être obtenues sans utiliser d’instruments spéciaux; Les

marins ont utilisé des objets célestes pour la localisation en mer depuis quelques

milliers d’années. De nombreux outils spécialisés ont été développés pour aider

à fournir une localisation plus précise, y compris l’astrolabe, le chronomètre, le

sextant et la boussole, ainsi que des cartes et cartes maritimes détaillées [1]. À

la fin des années 1960, le Département de la défense des États-Unis (DoD) a en-

trepris un projet visant à construire un système de localisation par satellite à des

fins militaires; Connu aujourd’hui comme système de positionnement global, ou

simplement GPS. Le système a connu sa première utilisation en combat pendant

la guerre du Golfe Persique en 1990. De plus, le GPS se compose d’une constella-

tion de 24 satellites qui diffusent des signaux précis. Lorsque les satellites sont en

vue d’un récepteur GPS approprié, ces signaux aident la position-emplacement, la

navigation et le timing de précision [1]. Ce n’est qu’en 1983 que le GPS a com-

mencé à évoluer bien au-delà de ses origines militaires et a commencé à migrer

vers le secteur public. Il s’agit maintenant d’une ressource d’information mondiale

qui soutient une large gamme de fonctions civiles, scientifiques et commerciales,

allant du contrôle du trafic aérien et de la navigation en temps réel sur la route

151
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jusqu’à la découverte du café dans votre bloc.

En réponse et en 1990, la DoD a activé la disponibilité sélective (SA), une dégradation

délibérée du signal GPS civil, qui a limité la précision de la plupart des unités GPS

civiles à environ 100 mètres. Luckily SA a été déclenchée en raison du fait que le

DoD a reconnu le rôle important joué par le GPS dans de nombreuses activités

commerciales. Grâce à la désactivation de SA, avec l’emploi d’autres technolo-

gies telles que le GPS différentiel, permettent maintenant aux unités GPS civiles

d’obtenir une précision de 10 mètres ou mieux. Ainsi, pour la localisation dans un

environnement extérieur, le GPS fonctionne très bien, étant donné qu’il existe une

ligne de visée dégagée sur quatre satellites GPS ou plus. Cependant, le signal du

GPS est trop faible pour pénétrer la plupart des bâtiments, donc le GPS est inutile

à l’intérieur; Une motivation pour rechercher d’autres techniques de localisation à

l’intérieur.

Un système de positionnement intérieur, ou simplement IPS, est un système

d’acquisition de données fournissant des informations sur des personnes ou des

objets dans l’environnement intérieur et l’obtention de données sur les occupants

pour faciliter la recherche. Dit différemment et de manière informelle, un IPS

est un mini-GPS travaillant à l’intérieur, où un mini-GPS peut se référer à un

récepteur Wi-Fi. Alors que le GPS dépend des satellites, IPS est basé sur des

”ancres de référence” qui sont des noeuds de réseau avec une position fixe connue

dans l’environnement intérieur. Ces ”ancres” coopèrent les uns avec les autres

pour identifier la position du noeud prévu. Une approche de l’architecture d’IPS

est ”Bluetooth Beaconing”. Bluetooth a d’abord été inventé en 1994 pour rem-

placer les câbles courts. Tout grâce aux smartphones Bluetooth et aux balises

Bluetooth qui peuvent fournir l’emplacement des utilisateurs de smartphones. En

2010, Nokia a introduit un IPS basé sur la technologie Bluetooth Low Energy

(BLE), qui était l’une des dernières technologies Bluetooth fonctionnant à faible

puissance avec une faible latence dans les communications. D’autre part, beau-

coup de systèmes utilisent une infrastructure Wi-Fi améliorée pour fournir des

informations de localisation [4–6]. Le positionnement Wi-Fi profite de la crois-

sance rapide au début du 21ème siècle des points d’accès sans fil dans les zones

urbaines.

Ladd et al. présentent une nouvelle technique par laquelle la localisation est

réalisée en utilisant l’IEEE 802.11b, connu sous le nom Ethernet Ethernet [2].

Dans leur document, Ladd et al proposent l’utilisation de la puissance de signal
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mesurée des paquets Ethernet comme capteur pour un système de localisation. La

norme sans fil 802.11b intègre un mécanisme par lequel une carte réseau sans fil

peut mesurer la puissance du signal de toutes les stations de base dans sa gamme

de diffusion [3]. Par conséquent, un système mobile peut utiliser ces informations

afin de déterminer sa distance à partir de ces stations à base fixe. Compte tenu de

ces distances et de la connaissance préalable de l’emplacement des stations de base,

le système mobile peut estimer sa propre position actuelle. La perturbation de la

position réelle du système mobile entrâınera une modification de la position réelle

du système mobile entrâınant une modification des intensités de signal mesurées

et donc une modification de la position estimée. L’idée est simplement indiquée,

mais l’implémentation réelle est beaucoup plus compliquée où Ladd et al utilisent

la localisation dite d’inférence Bayésienne. Ils ont mis en œuvre cette approche

pour atteindre une précision d’environ un mètre.

Malheureusement, la principale difficulté de localisation avec Ethernet sans fil

prédit la puissance du signal. ”La puissance du signal de fréquence radio mesurée

à l’intérieur est non linéaire avec la distance. En outre, il présente un bruit non

Gaussien résultant d’effets multi-voies et d’effets environnementaux, tels que la

géométrie du bâtiment, le trafic réseau, la présence de personnes et les condi-

tions atmosphériques” [2]. En outre, la norme IEEE 802.11b fonctionne dans la

bande de fréquences 2,4 GHz, ce qui signifie que ”les fours à micro-ondes, les ap-

pareils Bluetooth, les téléphones sans fil 2,4 GHz et les équipements de soudage

peuvent être des sources d’interférence. Ladd et al ont trouvé une idée où Ils

ont séparé la zone d’intérêt dans les cellules, puis ont pris des lectures de force

du signal dans chaque cellule, en train d’entrâıner efficacement le système. Un

système mobile pourrait alors prendre des mesures de force du signal, comparer

les données mesurées à l’ensemble de formation et utiliser l’inférence Bayésienne

pour déterminer L’emplacement qui produirait le plus souvent ces mesures.

Ladd et al. identifient un certain nombre de domaines pour des recherches fu-

tures [2]. Leurs études ont été effectuées la nuit, quand il y avait relativement peu

de trafic humain ou réseau. De plus, les expériences ont eu lieu dans les couloirs,

ce qui signifie que leur mouvement était restreint aux lignes droites relativement

étroites. Il serait intéressant d’étudier le comportement du système dans un envi-

ronnement plus dynamique ou plus géométriquement irrégulier, ou les deux. Les

avantages de la localisation Ethernet sans fil sont clairs. Contrairement au GPS, le

système fonctionnera dans n’importe quel endroit avec accès à plusieurs stations

de base sans fil, que ce soit à l’intérieur ou à l’extérieur. En outre, comme la
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plupart des systèmes qui utiliseraient potentiellement cette technologie utilisent

déjà une carte réseau sans fil, il n’y a pas de coût de matériel associé.

9.1.2 Paramètres dépendants de la localisation

Puissance reçue

La puissance reçu est l’un des principes de mesure basiques et les plus anciens pour

calculer la distance entre un émetteur et son récepteur correspondant. Cette rela-

tion est donnée par l’équation de perte de chemin d’espace libre à l’aide d’antennes

rayonnantes isotropes [7]:

PR =
PTGTGR

(4πd/λ)2

où PR et PT Sont la puissance reçue et transmise, respectivement; GR et GT sont

les gains d’antennes de réception et d’émission, respectivement; λ est la longueur

d’onde du signal de propagation; et d est la distance de séparation entre l’émetteur

et le récepteur.

En conséquence, un indicateur largement utilisé pourrait être dérivé qui est connu

sous le nom de Indicateur de résistance du signal reçu (RSSI). Il s’agit d’un entier

signé de 8 bits qui indique si le niveau de puissance reçu est inférieur ou inférieur à

la plage de puissance du récepteur d’or (GRPR) [8]. RSSI indique 0 si la puissance

reçue se trouve dans le GRPR; Positif s’il est au-dessus et négatif s’il est ci-

dessous. Bien que RSSI soit destiné à des fins de contrôle de puissance [9], de

nombreux périphériques Bluetooth, tels que Bluetooth 1.2, utilisent RSSI pour

découvrir tous les périphériques proches [10] et estiment la distance de séparation.

Cependant, comme testé dans [8], RSSI ne correspond pas bien avec la distance.

Les raisons pour lesquelles RSSI est une version quantifiée de la puissance reçue

fournie et, par conséquent, la précision dépendrait principalement de la résolution

de la quantification. En outre, RSSI est fortement affecté par multipath, qui est

une caractéristique principale des environnements intérieurs.

Temps d’arrivée

La distance d entre la cible mobile à l’unité de mesure est directement proportion-

nelle au temps de propagation ∆t. Donc, en mesurant ∆t, on pourrait facilement

calculer la distance de séparation entre la cible mobile et l’unité de mesure en:

d = c∆t
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où c est la vitesse de la lumière sous vide. Cependant, une synchronisation de

synchronisation précise est requise entre les horloges de l’émetteur et du récepteur

pour effectuer une estimation ToA [11].

Wi-Fi

User

Figure 9.1: L’utilisateur transmet à Wi-Fi à l’angle θ

Angle de Arrivée

Angle de Arrivée (ou AoA) est une technique basée sur le retard temporel relatif

par rapport à une antenne arbitraire choisie comme référence, c’est-à-dire que le

retard temporel à cette antenne de référence est nul. Assume the SIMO case,

as shown in Fig. 9.1, where the user is equipped with one antenna and receive

antennas. Let the transmitted signal at any time be s(t) where it is of the form

s(t) = Aej2πfct

La forme de s(t) Dans l’équation ci-dessus est une forme valide d’un signal transmis

électromagnétique ayant deux composants orthogonaux, qui sont l’Inphase (ou I)

et la Quadrature (ou Q). Ce signal est transmis avec une amplitude A et est en

oscillation sur la fréquence fc. Suivant [12], il est facile de montrer que le signal

reçu est sous la forme

rrr(t) = aaa(θ)s(t)

où aaa(θ) est le steering vector, qui est fonction de la position des antennes et de

l’AoA, θ.

Après θ est estimé par une méthode textit Parameter-Estimation appropriée par,

par exemple, deux stations (ou WiFis) telles que représentées dans Fig. 9.2,
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Figure 9.2: Localisation à angle

Figure 9.3: Les deux étapes fondamentales pour l’estimation de position

alors la position de l’utilisateur pourrait être facilement déterminée. Cela sig-

nifie qu’une procédure en deux étapes est requise pour déterminer la position d’un

utilisateur: a (i) Éstimation des paramètres étape suivie d’un (ii)Emplacement-

estimation étape. Dans cette thèse, nous nous concentrons sur le premier bloc,

c’est-à-dire que nous sommes très intéressés à dériver des méthodes appropriées

qui pourraient fournir des estimations de paramètres, ce qui détermine la posi-

tion de l’utilisateur en présence de bruit, d’imperfections, d’altérations et d’autres

difficultés, qui seront Abordé dans la section suivante.

9.2 Éstimation des paramètres: problèmes et méthodes

Le terme Éstimation des paramètres se réfère au processus d’utilisation de données

d’échantillonnage pour estimer les paramètres d’intérêt dans un certain modèle,
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sous certaines hypothèses. Il vaut la peine de prendre un moment et de mettre en

évidence trois mots clés dans l’énoncé précédent: modèle, paramètre et hypothèses.

Une difficulté dans la localisation à l’intérieur confirme un modèle. Par exem-

ple, Saleh et Valenzuela [13] ont modélisé le canal multipath comme diffuse, à

savoir chaque composant multipath est un groupe de rayons. Sur la base de leurs

résultats, ils ont modelé les ToAs des clusters en tant que processus de Poisson

avec des taux différents, mais fixes. La thèse dans [14], inspirée de [13], modélise

les AoAs des clusters en tant que distribution laplacienne. Cependant, la plupart

des méthodes de localisation (sinon toutes), telles que [15–18] supposent un canal

multipath spéculaire, c’est-à-dire que chaque composant multi-voies n’est qu’un

seul rayon. Cela semble acceptable en raison des problèmes de résolution 1 et donc

des sources étroitement espacées pourraient être considérées comme la source.

Après avoir confirmé un modèle ou une famille de modèles, les paramètres im-

pliqués dans ces modèles doivent être estimés. C’est là que les méthodes d’estimation

des paramètres entrent. Le maximum de vraisemblance (ML) était l’une des

premières méthodes à étudier [20]. Même si la méthode ML est optimale, dans

le sens où les paramètres estimés minimisent l’erreur moyenne de niveau (MSE),

il n’a pas reçu beaucoup d’attention en raison de la charge informatique élevée

du problème de minimisation non linéaire multivarié impliqué, car il nécessite une

q-Dimensionnel cherche, où q est le nombre de paramètres qui entrent dans le

modèle sous une forme non linéaire. Ensuite, un certain nombre de méthodes de

formage de faisceau intéressantes ont été mises en œuvre, en tant que solutions

à certains problèmes d’optimisation appropriés, tels que le formateur de faisceau

Bartlett [21] et le formateur de faisceau de Capon [22]. Ces formateurs de faisceau

nécessitent une 1–Dimensionnel (1D) cherche et sont donc considérés comme rapi-

des. Cependant, la résolution de ces méthodes n’est pas acceptable avec un faible

nombre d’antennes, de snapshots et de SNR, ce qui nécessite des méthodes avec

une précision supérieure, tout en maintenant une vitesse de calcul acceptable. Les

années 80 ont été témoins d’une révolution de la subspace methods, qui reposent

sur une véritable idée: ”Le sous-espace parcouru par les vecteurs de direction des

sources est orthogonal au sous-espace de bruit”2 La méthode de sous-espace la plus

populaire est la MUltiple SIgnal Classification algorithm, aussi connu sous le nom

MUSIC [24] par Schmidt, qui nécessite uniquement une recherche 1D. Un root-

MUSIC [25] est un méthode qui a été implémentée par Barabell pour remplacer la

1Dans le contexte du traitement de la matrice, la résolution se réfère à la capacité de discriminer
entre deux sources étroitement espacées, compte tenu d’un certain SNR [19]

2Ceci est expliqué en détail dans le Chapitre 6.
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recherche 1D de MUSIC par un critère de recherche racine polynomiale. Paulraj et

Kailath a inventé l’ESPRIT [26] (Estimation of Signal Parameters Via Rotational

Invariance Techniques) méthode, qui est basé sur l’ajustement des moindres carrés;

Cependant, il ne fonctionne que pour les ensembles linéaires uniformes (ULAs).

Bien que ces méthodes dominent les formateurs de faisceau susmentionnés en ter-

mes de résolution, il existe des cas où les méthodes sous-espace ne fonctionnent

pas, telles que:

• Sources cohérentes: c’est le cas du brouillage intelligent ou de la propagation

multi-voies. Un exemple très simple de deux sources cohérentes est s1(t) et

s2(t) = αs1(t), oú α est un nombre complexe.

• Instantané unique: car aucun sous-espace ne peut être formé par un seul

instantané.

Il convient de mentionner qu’il existe un grand nombre de recherches récentes

effectuées sur les méthodes sous-espace; Nous renvoyons le lecteur aux articles

suivants [27–29].

Une autre classe de méthodes d’estimation de paramètres travaille sur l’approximation

de la fonction de coût de ML, qui sont également attrayantes sur le plan du cal-

cul, mais pas aussi attrayantes que les méthodes de sous-espace. Par exemple, la

méthode par Ziskind et Wax [30] Atteint l’estimation ML par plusieurs recherches

1D, qui sont décrites comme Projections alternées (AP). Une autre technique

populaire est le Iterative Quadratic ML (IQML) développé par Bresler et Ma-

covski dans [31], où, avec un paramétrage linéaire du sous-espace de bruit, la

fonction de coût ML à chaque itération est considérée comme une fonction de

coût LS pondérée, Qui est quadratique dans le vecteur de paramètres d’intérêt,

et donc les expressions de forme fermée pourraient être dérivées. Cependant, la

pondération dépend du paramètre et, par conséquent, des itérations à point fixe

sont nécessaires.

En plus des méthodes d’estimation de paramètres, l’un est limité par le nom-

bre de composants multi-voies autorisés dans le modèle. Plus précisément, laisser

q désignent le nombre de composants multipath et N indique le nombre d’antennes

à la Wi-Fi; puis q < N devrait être satisfaite, sinon le problème d’estimation est

sous-déterminé et la solution estimée ne sera pas unique. Il y a beaucoup de tra-

vail effectué par Pal et Vaidyanathan, tel que [32, 33], où ils tentent d’estimer
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les accords de q sources, où q > N . Ceci est réalisé par échantillonnage coprime,

c’est-à-dire en divisant le N antennes en deux sous-réseaux de tailles N1 et N2, où

N = N1 + N2 et (N1, N2) sont co-prime. L’approche d’échantillonnage coprime

suggère des configurations de réseau d’antenne spécifiques, appelé coprime arrays.

Il est avantageux que nous ayons maintenant plus de degrés de liberté, c’est-à-dire

que le nombre de sources pourrait augmenter q < O(N1N2). Cependant, cette ap-

proche présente de multiples inconvénients, lorsque notre intérêt est orienté vers

la localisation à l’intérieur via WiFi:

• Les sources sont supposées être totalement non corrélées, ce qui n’est pas

valable pour les sources multi-voies. Au contraire, les composants multi-

voies sont connus pour être cohérents.

• Avec un petit nombre d’antennes, disons N = 3 antennes, on ne pouvait

pas s’attendre à améliorer les degrés de liberté en choisissant, par exemple,

N1 = 2 et N2 = 1.

• L’AoA entre l’émetteur et le récepteur ne pouvait être déduit que par les

informations de l’AoA uniquement.

D’autre part, Vanderveen, Papadias et Paulraj a introduit une nouvelle approche

appelée JADE [34], qui signifie Joint Angle and Delay Estimation. Ils proposent

de transmettre un signal connu par un canal multi-voies, qui est reçu à travers

N antennes au récepteur et M Des échantillons de temps sont collectés à chaque

antenne. Cette idée présente de multiples avantages dans le contexte de la locali-

sation à l’intérieur via WiFi:

• Les degrés de liberté du nombre de composants multi-voies pourraient aller

jusqu’à q < MN .

• Il n’y a pas de limitation sur la géométrie des antennes.

On remarque que JADE N’est en aucun cas une méthode. C’est simplement une

façon intelligente de collecter des données pour augmenter le nombre de com-

posants qui pourraient être résolus. Par conséquent, il est naturel de proposer

des méthodes basées sur JADE, telles que JADE-ML et JADE-MUSIC in [34] et

JADE-ESPRIT en [35]. Il convient de noter que la partie de la cohérence n’a pas

été abordée.
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Outre les degrés de liberté et la cohérence des sources, un autre aspect impor-

tant à considérer est la perturbation du tableau. Ceci est dû à plusieurs facteurs,

tels que l’incertitude de position de l’antenne [36], Gains/phases inconnus entre

différentes antennes [37], et couplage mutuel entre les antennes [38]. Nous abor-

dons ce sujet en détail dans les chapitres 6 et 7.

9.3 Contributions de cette thèse

Dans cette thèse, nous abordons tous les problèmes abordés dans la section précédente

afin de dériver certaines méthodes qui effectuent l’estimation des paramètres. En

particulier,

Chapitre 2. Au chapitre 2, nous abordons un problème bien connu impliqué

dans le traitement du signal de tableau, qui est la détection du nombre de signaux

présents dans le modèle. En effet, toutes les méthodes mentionnées précédemment

exigent le nombre de signaux à connâıtre a priori. Longueur de description min-

imale, ou MDL [39], Est une méthode bien connue pour cette question, mais elle

subit une dégradation des performances lorsque le nombre d’instantanés disponibles

est relativement faible. Nous tirons un estimateur MDL modifié, avec l’aide

d’RMT [41–43], ce qui améliore l’estimation du nombre de sources lorsqu’un petit

nombre d’instantanés L = O(N) est disponible.

Les publications relatives à ce chapitre sont les suivantes:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Detection of the number of Superim-

posed Signals using Modified MDL Criterion : A Random Matrix Approach,”

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), March, 2016.

Chapitre 3. Dans le chapitre 3, nous abordons le problème d’estimation de l’AoA

d’un point de vue de détection comprimé. Les contributions de ce chapitre sont

résumées comme suit:

1. Après une revue de la littérature sur certaines méthodes populaires de détection

comprimée, nous proposons une méthode Variational Bayes (VB) qui permet

une récupération sparse des signaux transmis désirés, ce qui permet d’estimer

leurs acceptations correspondantes.
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2. Nous montrons que cette méthode VB itérative dépasse les méthodes de

détection comprimée existantes, telles que Matching Pursuit (MP) [50], Or-

thogonal MP (OMP) [51], et d’autres méthodes.

3. Nous dérivons également une méthode Newward de type Newward Forward

Forward Greedy qui effectue une récupération sparse, compte tenu des données.

4. Nous montrons, grâce à des simulations exhaustives, que la méthode de type

Newton proposée n’est pas seulement plus rapide, mais atteint une MSE

inférieure par rapport à des méthodes telles que Fast Matching Bayesian

Pursuit (FBMP) [67] et Basis Pursuit Denoising (BPDN) [53].

Les publications relatives à ce chapitre sont les suivantes:

• A. Bazzi, D. T.M. Slock, L. Meilhac, S. Panneerselvan, ”A Comparative

Study of Sparse Recovery and Compressed Sensing Algorithms with Applica-

tion to AoA Estimation,” IEEE International Workshop on Signal Processing

advances in Wireless Communications (SPAWC), 2016.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Sparse Recovery using an Iterative

Variational Bayes Algorithm and Application to AoA Estimation,” IEEE

Symposium on Signal Processing and Information Technology (ISSPIT), 2016.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”A Newton-type Forward Backward

Greedy Method for Multi-Snapshot Compressed Sensing,” Asilomar confer-

ence on signals, systems, and computers (ASILOMAR), 2017.

Chapitre 4. Dans le chapitre 4, nous nous concentrons sur le problème Joint

Angle and Delay Estimation (JADE) à des fins de localisation. Plus précisément,

nous abordons les problèmes d’instantané unique et de cohérence mentionnés dans

la section précédente. Les contributions de ce chapitre pourraient être résumées

comme suit:

1. Nous dérivons un algorithme qui est une modification de l’algorithme ML

(2D-IQML) itératif itératif bidimensionnel, où une contrainte supplémentaire

est ajoutée pour l’estimation conjointe de ToA et AoA et nous montrons que

2D-IQML donne des estimations biaisées de ToAs / AoAs et effectue Mal à

faible SNR en raison du biais induit par le bruit.

2. Nous proposons un IQML Denoisé bidimensionnel (2D-DIQML) qui donne

des estimations cohérentes et surperforme le 2D-IQML; nous montrons que
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2D-DIQML est asymptotiquement globalement convergent et donc insensible

à l’initialisation.

3. En outre, deux algorithmes, basés sur 2D Matrix Pencils (MP), pour le cas

d’un seul symbole OFDM instantané observé par plusieurs antennes dans

une configuration ULA sont introduits.

4. Pour le problème de cohérence, nous dérivons une technique de lissage ”Spatio-

Frequential”, lorsque le symbole OFDM d’émission est reçu à travers de mul-

tiples signaux cohérents en utilisant un réseau d’antennes linéaire uniforme,

ce qui est le cas d’un canal multi-voies intérieur. Cette méthode de lissage

est inspirée de [81] et pourrait être considérée comme une généralisation 2D

de la technique de lissage spatial traditionnelle.

5. Nous prouvons dans le Théorème 4.3 que nous pourrions ”ascenseur” Le rang

de la matrice de covariance de l’échantillon, afin que nous puissions discrim-

iner entre des sources cohérentes, et donc appliquer des méthodes sous-espace

telles que JADE-MUSIC et JADE-ESPRIT.

Théorème 4.3: Si le nombre de sous-réseaux formés conjointement sur

l’espace et la fréquence est supérieur au nombre de composants multi-voies,

c’est-à-dire q ≤ KMKN , et le nombre maximum de chemins arrivant en

même temps mais avec des angles différents est inférieur à KN , i.e. maxiQi ≤
KN , et le nombre maximum de chemins arrivant aux mêmes angles mais avec

des temps différents est inférieur à KM , i.e. maxi Pi ≤ KM , alors R̄̄R̄Rγγ est

de rang q.

Démonstration Voir l’Annexe A.

Les publications relatives à ce chapitre sont les suivantes:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Efficient Maximum Likelihood Joint

Estimation of Angles and Times of Arrival of Multi Paths,” IEEE GLOBAL

Communications Conference (GLOBECOM), Localization and Tracking :

Indoors, Outdoors, and Emerging Networks (LION) Workshop, December,

2015.

• A. Bazzi, D. T. M. Slock, and L. Meilhac, ”Single Snapshot Joint Estima-

tion of Angles and Times of Arrival: A 2D Matrix Pencil Approach,” IEEE

International Conference on Communications, 2016.
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• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Spatio-Frequential Smoothing for

Joint Angles and Times of Arrival Estimation of Multipaths,” IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),

March, 2016.

Chapitre 5. Au chapitre 5, nous proposons une approche novatrice, qui s’habille

sur JADE, intitulée Joint Angle and Delay Estimation and Detection, ou simple-

ment JADED. Les contributions de ce chapitre sont résumées comme suit:

1. Grâce à cette approche, nous pouvons maintenant estimer les angles et les

horaires d’arrivée des chemins multiples, sans connaissance préalable du nom-

bre de composants multi-voies. À notre connaissance, ce problème n’a pas

été abordé dans la littérature ouverte.

2. Une méthode appelée JADED-RIP utilise les Propriétés d’Invariance Ro-

tationnelle (RIP) des ULA et des symboles OFDM, détecte le nombre de

composants multi-voies et estime les angles et les heures d’arrivée de chaque

chemin en effectuant une recherche 2D.

3. Une autre méthode est une version CESS (Simple Instant Effet Computation-

ally Efficient) du JADED-RIP, appelée CESS-JADED-RIP. Cette méthode

nécessite une recherche 1D suivie d’un ajustement des moindres carrés et ne

peut être utilisée que lorsqu’un seul symbole OFDM est disponible.

L’inconvénient des deux méthodes proposées est qu’ils ne fonctionnent que pour

les systèmes ULA / OFDM et qu’ils sont sous-optimaux dans le sens où ils pour-

raient être encore améliorés en considérant le bruit coloré, ce qui conduit à un

estimateur ML-JADED.

Les publications relatives à ce chapitre sont les suivantes:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”JADED-RIP: Joint Angle and Delay

Estimator and Detector via Rotational Invariance Properties,” IEEE Inter-

national Symposium on Signal Processing and Information Technology, (IS-

SPIT), 2016.

Chapitre 6. Dans le chapitre 6, nous abordons un aspect important qui perturbe

l’estimation de l’angle d’arrivée, en raison du couplage de l’antenne, également

appelé ”couplage mutuel”. Les contributions de ce chapitre sont résumées comme

suit:
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1. Nous dérivons un algorithme sous-optimal qui pourrait estimer les AAS en

présence d’un couplage mutuel.

2. Nous montrons pourquoi cet algorithme sous-optimal, avec d’autres [88–92],

Sont en effet suboptimiques, en ce sens qu’il existe une limite supérieure sur

les paramètres de couplage autorisés dans le modèle qui peut être amélioré.

Cela n’aurait pas été clair sans Théorème 6.6:

Théorème 6.6: Pour les configurations de types de matrices linéaires uni-

formes, c’est-à-dire aaa(θ) = [1, zθ, . . . z
N−1
θ ]T avec zθ = e−j2π

d
λ

sin(θ). Définissez

les ensembles suivants:

Θ+Θ+Θ+ =
{

sin−1(
kλ

Nd
), k = −N

2
. . .

N

2

}
(9.1)

Θ−Θ−Θ− =
{

sin−1(
(k + 1

2
)λ

Nd
), k = −N

2
. . .

N

2

}
(9.2)

Θ±Θ±Θ± =
{

Θ+Θ+Θ+ ∪Θ−Θ−Θ−

}
(9.3)

La matrice BBB(θ) = Gp(aaa(θ)) présente les caractéristiques suivantes:

• Si p < N+2
2

, la matrice BBB(θ) est un rang de colonne complet.

• When p ≥ N+2
2

, nous distinguons les cas suivants:

– Si N est pair et θ ∈ Θ+Θ+Θ+, puis rank(BBB(θ)) = N
2

.

– Si N est pair et θ ∈ Θ−Θ−Θ−, puis rank(BBB(θ)) = N
2

+ 1.

– Si N est impair et θ ∈ Θ±Θ±Θ±, puis rank(BBB(θ)) = N+1
2

.

– Autre BBB(θ) est un rang de colonne complet.

Proof. Voir l’Annexe F
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(a) N = 8 and p = 7
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(b) N = 9 and p = 8
Figure 9.4: Valeurs propres de BBBH(θ)BBB(θ) en tant que fonction de θ pour différentes

valeurs de N et p.

Il est important de comprendre le comportement de la matrice BBB(θ) en fonc-

tion de θ. Laisser ν1 ≤ ν2 ≤ . . . ≤ νp être la valeur propre de BBBH(θ)BBB(θ).

Afin de vérifier partiellement Théorème 6.6, nous avons représenté deux

chiffres où p > N+2
2

. En Fig. 9.4a, nous fixons N = 8 (pair) and p = 7. Les

lignes verticales pointillées rouge et verte correspondent à des angles dans

Θ+Θ+Θ+ et Θ−Θ−Θ−, respectivement. Observez cela lorsque θ approche des angles dans

Θ+Θ+Θ+, nous avons trois valeurs propres, i.e. ν1, ν2, et ν3, tomber à zéro. Cela

implique que, lorsque θ ∈ Θ+Θ+Θ+, le rang deBBB(θ) est p−3 = 4 = N
2

. Cependant,

quand θ ∈ Θ−Θ−Θ−, seulement deux valeurs propres, à savoir ν1 et ν2, aller à zéro.
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Dans ce cas, le rang de BBB(θ) est p− 2 = 5 = N
2

+ 1. Notez également que ν4

est strictement positif. En Fig. 9.4b, nous fixons N = 9 (impair) est p = 8.

Encore, ν4 est strictement positif. Quand θ ∈ Θ±Θ±Θ±, trois valeurs propres vont

à zéro, ce qui implique que le rang de BBB(θ) est p− 3 = 5 = N+1
2

.

3. Ensuite, nous améliorons encore l’algorithme sous-optimal et proposons un

optimum, dans le sens où plus de paramètres de couplage sont autorisés dans

le modèle.

4. En outre, nous affinons les estimations de l’algorithme optimal en modifiant

certaines contraintes du problème d’optimisation considéré.

5. Nous dérivons l’expression MSE de l’algorithme optimal et montrons que,

dans certains cas, nous pouvons atteindre Cramér-Rao bound du problème

des paramètres de couplage articulaire et de l’estimation de l’AoA. Les théorèmes

connexes sont le Théorème 6.7, Théorème 6.9 et Théorème 6.10.

6. Enfin, nous dérivons une méthode itérative qui pourrait donner des estima-

tions de la vraisemblance maximale (ML) des AoAs et donc permettre la

présence de sources cohérentes, ce qui n’est pas le cas de tous les algorithmes

précédents.

Les publications relatives à ce chapitre sont les suivantes:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Online Angle of Arrival Estimation in

the Presence of Mutual Coupling,” IEEE International Workshop on Statis-

tical Signal Processing (SSP), 2016.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Mutual Coupling for ULAs: Es-

timating AoAs in the presence of more coupling parameters,” IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),

2017.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”Performance Analysis of an AoA

estimator in the presence of more mutual coupling parameters,” IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),

2017.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On a Mutual Coupling Agnostic Max-

imum Likelihood Angle of Arrival Estimator by Alternating Projection,”

IEEE Global Conference on Signal and Information Processing (GlobalSIP),

2016.
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• A. Bazzi, D. T.M. Slock, L. Meilhac, ”A Mutual Coupling Resilient Algo-

rithm for Joint Angle and Delay Estimation,” IEEE Global Conference on

Signal and Information Processing (GlobalSIP), 2016.

Chapitre 7. Dans le chapitre 7, nous visons à construire un système réel qui pour-

rait effectuer l’angle d’articulation et l’Étude de retard d’arrivée et la détection

des composants multi-voies. Ceci est tout simplement fait, afin que nous puissions

extraire l’angle de l’arrivée du composant Line-of-Sight (LoS) entre l’émetteur et

le récepteur.

1. Nous prenons en compte tous les facteurs critiques qui perturbent le problème

d’estimation de l’angle articulaire et du retard et formulons un modèle de

système en conséquence.

2. Nous proposons une méthode d’étalonnage hors ligne pour compenser tous

ces facteurs. Sur la Fig. 9.5, on peut voir que la méthode d’étalonnage

Figure 9.5: Diagramme à blocs de l’approche d’étalonnage hors-ligne

hors ligne. Tout d’abord, nous devons détecter le début du symbole OFDM

avant d’estimer tout paramètre. Ensuite, nous devons estimer et compenser

le CFO. Notez qu’après avoir estimé le CFO, il est sauvegardé dans la base

de données pour les paramètres d’étalonnage. Ensuite, nous estimons les

effets de filtre d’émission / réception et compensons leurs effets. De plus,

nous sauvegardons les paramètres du filtre dans la base de données. Enfin,

nous estimons l’SFO et les paramètres de phase et de gain et leurs effets sont

enregistrés dans une base de données.

3. Avec l’aide de l’algorithme CESS-JADED-RIP, nous avons réussi à estimer

les angles et les temps d’arrivée de tous les composants multi-voies, ce qui

a permis d’extraire l’AoA du composant LoS. L’algorithme de localisation
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Figure 9.6: Diagramme séquentiel de la méthode en ligne proposée

utilisé pour estimer l’AoA du LoS est l’algorithme CESS-JADED-RIP, qui

correspond à l’estimation et au dépistage des angles et des retards. Il convient

de noter les points suivants de l’algorithme CESS-JADED-RIP:

• CESS-JADED-RIP fonctionne pour OFDM/ULA systèmes seulement.

• CESS-JADED-RIP n’impose pas l’hypothèse des sources non corrélées.

Cela signifie que JADED pourrait estimer conjointement les angles et

les temps d’arrivée de multiples sources cohérentes, ce qui est le cas de

la propagation multi-voies.

• CESS-JADED-RIP les fonctions sont correctement fournies avec un in-

stantané unique, ce que nous faisons ici.

• CESS-JADED-RIP n’a pas besoin d’une connaissance préalable du nom-

bre de composants multi-voies ou du nombre de sources.

Tout au long de toutes les expériences conduites, nous avons utilisé seulement 2

antennes placées l’une à côté de l’autre sur le même plan, donc ULA. Il y a eu

un problème lorsque nous examinons la structure OFDM que nous avons, c’est-

à-dire que nous avons une structure ”quasi-OFDM” puisque les 3 sous-porteuses

centrales n’étaient pas utilisées. Pour remédier à cela, nous avons utilisé Cubic

Spline Interpolation (CSI) pour, plus ou moins, interpoler les 3 sous-porteuses

manquantes pour avoir un spectre de fréquence continu.

Il n’y a pas de matériel publié concernant ce chapitre.
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Autre travail. Par souci de cohérence de cette thèse, nous avons omis trois

publications, qui sont les suivantes:

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On the Effect of Random Snapshot

Timing Jitter on the Covariance Matrix for JADE Estimation,” European

Signal Processing Conference (EUSIPCO), September, 2015.

• A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Joint Angle and Delay Estima-

tion in the Presence of Local Scattering,” IEEE International Conference

on Communications (ICC), Workshop on Advances in Network Localization

and Navigation, 2016.

• L. Meilhac and A. Bazzi, ”Downlink transmit beamsteering Apparatus for a

multi-user MIMO transmission,” Patent in Preparation, 2017.

9.4 Conclusions

Tout d’abord au chapitre 2, et avec l’aide d’outils matriciels aléatoires, nous avons

présenté un estimateur MDL modifié (MMDL) pour détecter le nombre de sig-

naux superposés. Cet estimateur de MMDL domine le MDL traditionnel surtout

au faible nombre de régime d’instantanés, c’est-à-dire quand L = O(N). Les

résultats de simulation ont montré le potentiel de MMDL sur le MDL tradition-

nel. En outre, dans le chapitre 3, et à l’aide de variables latentes et de Variation

Bayes, nous avons dérivé un algorithme itératif qui pourrait estimer les Angles of

Arrival (AoA) des sources entrantes avec un seul instantané, sans connaissance

du nombre de sources , Et avec des sources étroitement espacées à haute SNR.

Nous avons également vu qu’il est possible que la méthode codée vers l’arrière

avance de type newton soit plus rapide, en termes de convergence et de nombre

d’opérations, et mieux, en termes de Mean-Squared-Error (MSE) de AoAs. Dans

le chapitre 4, nous avons présenté deux techniques pour résoudre l’algorithme DML

hautement non linéaire pour les temps de joint et les angles d’arrivée: 2D-IQML

et 2D-DIQML. Une analyse de performance asymptotique des deux techniques a

été fournie. Il a été démontré que 2D-IQML donne des estimations biaisées de

ToA / AoA et fonctionne mal à faible SNR en raison du bruit. Une stratégie

”denoising” originale est proposée, ce qui contraint le Hessian de la fonction de

coût à être semi-définitif positif. Cette stratégie de ”déconcentration” s’appelle

2D-DIQML qui s’est révélée globalement convergente. En outre, 2D-DIQML sur-

passe 2D-IQML car le premier se comporte de manière asymptotique à n’importe
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quel SNR car celui-ci se comporte à haute SNR. Enfin, à des fins de localisa-

tion, les informations conjointes AoA et ToA pourraient être utilisées pour former

une base de données, où une cartographie est effectuée entre les vecteurs ToA /

AoA et l’emplacement. Ensuite, cette base de données pourrait être utilisée en

ligne, où l’estimation conjointe AoA / ToA se fait à l’aide des algorithmes pro-

posés, suivie d’un critère correspondant à la meilleure concordance dans la base

de données pour obtenir une estimation de l’emplacement d’un émetteur sans fil.

Nous avons également présenté deux algorithmes basés sur 2D Matrix Pencils.

Ces deux algorithmes permettent une estimation conjointe des temps et des an-

gles d’arrivée de plusieurs chemins en utilisant un seul instantané. Algorithme

1 résout plus de sources que l’Algorithme 2 dans le cas où le nombre de sous-

porteuses est beaucoup plus grand que le nombre d’antennes, ce qui est le cas

de la plupart des systèmes Wi-Fi. La performance de l’Algorithme 1 en fonction

de SNR a été étudiée par des simulations. L’aspect final du chapitre 4 est que

nous avons présenté une technique de prétraitement de lissage 2D, appliquée à un

Spatial-Frequential Array, pour ”décénérer” les composants multipath. Ensuite,

tout algorithme de sous-espace 2D pourrait être appliqué pour estimer les temps

et les angles d’arrivée des différents chemins. La technique de lissage 2D présentée

ici, naturellement, offre plus de sous-réseaux pour se lisser et, par conséquent,

on pourrait pouvoir résoudre des chemins plus cohérents. Au chapitre 5, il faut

souligner certaines contributions: Nous avons proposé une nouvelle approche pour

l’estimation conjointe et la détection des angles et des temps d’arrivée, à savoir

JADED. Deux méthodes ont été dérivées afin de résoudre le problème JADED

en utilisant les propriétés d’invariance de rotation (RIP), qui survient lorsqu’un

ULA reçoit des symboles OFDM connus. La méthode JADED-RIP effectue une

recherche 2D d’une fonction de coût appropriée, où chaque pic indique une source

actuelle avec ToA / AoA correspondant. Le deuxième algorithme, CESS-JADED-

RIP, est une version plus rapide de JADED-RIP, qui peut être utilisée unique-

ment pour des scénarios simples. Les algorithmes fonctionnent correctement en

présence de sources cohérentes, car l’extraction sous-espace n’est pas nécessaire,

comme dans le cas de MUSIC, ESPRIT et d’autres méthodes sous-espace. Au

chapitre 6, nous étudions un aspect important qui perturbe l’estimation de l’angle

d’arrivée, en raison du couplage de l’antenne, également appelé ”couplage mutuel”.

Tout d’abord, nous dérivons un algorithme sous-optimal qui pourrait estimer les

AAS en présence d’un couplage mutuel; Ensuite, nous montrons pourquoi cet al-

gorithme sous-optimal, avec d’autres, est en effet sous-optimal, en ce sens qu’il ex-

iste une limite supérieure sur les paramètres de couplage autorisés dans le modèle.
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En outre, nous améliorons encore l’algorithme sous-optimal et proposons un op-

timum, dans le sens où d’autres paramètres de couplage sont autorisés dans le

modèle. Nous avons réussi à affiner les estimations de l’algorithme optimal en mod-

ifiant certaines contraintes du problème d’optimisation considéré. Nous dérivons

l’expression MSE de l’algorithme optimal et montrons que, dans certains cas, nous

pouvons atteindre Cramér-Rao bound du problème des paramètres de couplage

articulaire et de l’estimation de l’AoA. Enfin, dans le chapitre 6, nous dérivons une

méthode itérative qui pourrait donner des estimations de la vraisemblance maxi-

male (ML) des AoAs, et donc permettre la présence de sources cohérentes, ce qui

n’est pas le cas de tous les algorithmes précédents. Dans le chapitre 7, nous avons

vu plusieurs scénarios où nous pourrions en effet estimer l’AoA du composant LoS

en présence de multipath. Dans ce cas, nous avons pris en compte tous les fac-

teurs qui perturbent le problème d’estimation de l’angle articulaire et du délai et

formulé un modèle de système en conséquence. Ces facteurs sont: le décalage de

fréquence d’échantillonnage (OFS), le décalage de fréquence de porteuse (CFO),

la phase et les décalages de retard sur chaque antenne. Pour compenser l’effet de

ces facteurs critiques, nous proposons une méthode d’étalonnage hors ligne pour

compenser tous leurs effets. Enfin et surtout, et avec l’aide de l’algorithme CESS-

JADED-RIP et de la technique d’interpolation cubique cubique, nous avons réussi

à estimer les angles et les temps d’arrivée de tous les composants multi-voies, ce

qui a permis d’extraire le AoA du composant LoS.



Appendix A

Proof of Theorem 4.3

Using (4.79), R̄̄R̄Rγγ could be written as

R̄̄R̄Rγγ = DDDQQQDDDH (A.1)

where DDD is a q × qKMKN matrix given by

DDD =
[
TTT

∣∣ DDDθTTT
∣∣ . . .

∣∣ DDDKN−1
θ TTT

]
(A.2a)

and

TTT =
[
IIIq

∣∣ DDDτ

∣∣ . . .
∣∣ DDDKM−1

τ

]
(A.2b)

and QQQ is a block diagonal qKMKN × qKMKN matrix expressed as

QQQ =
1

KMKN

IIIKMKN ⊗RRRγγ (A.3)

Equation (A.1) can be expressed as follows

R̄̄R̄Rγγ = WWWWWWH (A.4)

with

WWW =
[
TTT c

∣∣ DDDθTTT c
∣∣ . . .

∣∣ DDDKN−1
θ TTT c

]
(A.5a)

and

TTT c =
[
CCC

∣∣ DDDτCCC
∣∣ . . .

∣∣ DDDKM−1
τ CCC

]
(A.5b)
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where CCC is the square root of 1
KMKN

RRRγγ:

1

KMKN

RRRγγ = CCCCCCH (A.6)

The rank of R̄̄R̄Rγγ is equal to the rank of WWW . Now, using the fact that the rank of a

matrix is unchanged under column permutations, then we can write the following:

rank WWW = rank


c11vvv1 ⊗ ttt1 · · · c1qvvv1 ⊗ ttt1

...
. . .

...

cq1vvvq ⊗ tttq · · · cqqvvvq ⊗ tttq

 (A.7)

where cij is the (i, j)th entry of CCC. Vectors vvvi and ttti (i = 1 . . . q) are of sizes 1×KN

and 1×KM , respectively, given as

vvvi = [1, e−jπsin(θi), . . . , e−jπ(KN−1)sin(θi)] (A.8a)

ttti = [1, e−j2πMf τi , . . . , e−j2πMf (KM−1)τi ] (A.8b)

To prove that, for q ≤ KMKN , maxiQi ≤ KN , and maxi Pi ≤ KM , the matrix WWW

is of rank q, we should prove the following:

(a) WWW does not have an all-zero row, i.e. for a given row i, there exists at least

one j such that cij 6= 0.

(b) The vectors {vvvi ⊗ ttti}qi=1 are linearly independent.

The proof of (a) is found in [81]. As for (b), let HHH be a KMKN × q matrix of

columns {vvvi ⊗ ttti}qi=1. The matrix HHH is full column rank under the following three

conditions:

• (i) q ≤ KMKN . (Similar to Condition 1 in Remark 4.2)

• (ii) maxiQi ≤ KN . (Similar to Condition 2 in Remark 4.2)

• (iii) maxi Pi ≤ KM . (Similar to Condition 3 in Remark 4.2)



Appendix B

Proof of Theorem 6.1

The matrix TTT (ααα) could be re-written as

TTT (ααα) = INININ +

p−1∑
i=1

αiSSSi (B.1)

Using the above expression of TTT (ααα), we can now say

TTT (ααα)aaa =
(
INININ +

p−1∑
i=1

αiSSSi

)
aaa

=
[
aaa SSS1aaa . . . SSSp−1aaa

]
ααα

= BBBpααα

(B.2)
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Appendix C

Proof of Theorem 6.3

We shall seek the conditions under which the assumptions of Lemma 6.2 hold true.

Clearly, Assumption 1 is satisfied for any p. As for Assumption 2, let z ∈ Cp×1 be

a vector such that eH
1 z = 0, then:

z ∈ span{e2, . . . , ep} = N (E) (C.1)

In other words, there exists β2 . . . βp ∈ C such that

z = [0, β2 . . . βp]
T (C.2)

Now, we seek a condition under which a vector z ∈ N (eH
1 ) satisfies zHK(θ)z = 0.

Since B(θ) is full column rank for any p satisfying p ≤ N
2

, then

rank
(
K(θ)

)
= rank

(
BH(θ)ÛnÛH

nB(θ)
)

= rank
(
ÛnÛH

n

)
= N − q

(C.3)

Therefore, K(θ) admits N − q linearly independent columns. Recall that the

number of possibly non-zero elements of z is p− 1. This immediately implies that

there exists a vector z such that zHK(θ)z = 0 if and only if

p− 1 ≥ N − q (C.4)

Finally, for every z ∈ N (E) such that zHK(θ)z 6= 0 is satisfied if and only if

p+ q < N + 1 and p ≤ N
2

. And the proof is done. Note that when p = 1 (absence

of mutual coupling), we get the traditional identifiability, i.e. q < N .
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Appendix D

Proof of Theorem 6.4

We shall prove this theorem by mathematical recurrence. Clearly, the theorem is

true when p = 1 for any N ≥ 1. Assume equality (6.33) holds true for p− 1. Our

task is to prove the same equality for p. Using Theorem 6.1, we can say

TTT (αααp)aaa = BBBpαααp

= BBBp−1αααp−1 + αp−1SSSp−1aaa

= g(z,αααp−1)aaa−MMMp−1α̃ααp−1 + αp−1SSSp−1aaa

= g(z,αααp)aaa− αp−1(zp−1 + z−(p−1))aaa−MMMp−1α̃ααp−1

+ αp−1SSSp−1aaa

= g(z,αααp)aaa−
[
MMMp−1 mmmp−1

]
α̃ααp

(D.1)

where BBBp = Gp(αααp) and SSSp−1 are given in Theorem 6.1. The vector mmmp−1 is given

as

mmmp−1 =
(

(zp−1 + z−(p−1))IIIN −SSSp−1

)
aaa = uuup−1 + lllp−1 (D.2)

where

uuup−1 =
[
z−(p−1) . . . z−1 000[1×(N−p+1)]

]T

(D.3a)

and

lllp−1 =
[

000[1×(N−p+1)] zN . . . zN+p−2
]T

(D.3b)

Notice that uuup−1 and lllp−1 are the last columns of UUUp and LLLp, respectively. And

the proof is done.
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Proof of Theorem 6.5

Using Theorem 1 and Theorem 2, then for any 1 ≤ p ≤ N andααα = [α0, α1 . . . αp−1]T

we could say

BBBpααα = TTT (ααα)aaa = g(z,ααα)aaa−MMMpα̃αα (E.1)

where quantities have been previously defined in their corresponding theorems.

Case 1: Here, we should prove that BBBpααα = 000 implies ααα = 000. For p ≤ N+1
2

, the

matrix MMMp could be alternatively expressed as

MMMp =

 UUUp

000[(N−2p+2)×(p−1)]

LLLp

 (E.2)

Note the ”zero” gap in matrix MMMp. This gap exists when N − 2p + 2 ≥ 1, or

equivalently p ≤ N+1
2

. In this case, the system of equations BBBpααα = 000, and in

particular the ”zero” gap, suggest that the polynomial g(z,ααα) = 0. Now, the

(p− 1)th row gives

αp−1z
−1 = 0⇒ αp−1 = 0 (E.3)

By backward substitution from rows p−2 till 1 in matrixMMMp, one gets the following

αp−1 = . . . = α1 = 0 (E.4)

which, in turn, by plugging in g(z,ααα) gives α0 = 0.

177



Appendix E Proof of Theorem 6.5 178

Case 2: Fix p = N+2
2

and N is even. The matrices UUUp and LLLp that are embedded

in MMMp do not overlap, but the ”zero” gap doesn’t exist, viz.

MMMp =

[
UUUp

LLLp

]
(E.5)

Assume BBBpααα = 000. The (p− 1)th row implies

zp−2g(z,ααα) = z−1αp−1 (E.6)

Plugging equation (E.6) in the equation given by row p − 2 gives αp−1 = 0. By

backward substitution from rows p− 3 till 1, we get

αp−2 = . . . = α1 = 0 (E.7)

Now, the polynomial g(z,ααα) is given as

g(z,ααα) = α0 + αp−1(zp−1 + z−(p−1)) (E.8)

Therefore, using equation (E.6), row (p− 1) gives

α0 = −αp−1z
p−1 (E.9)

Similarly, the pth row and using z2(p−1) = zN since p = N+2
2

, we get

α0 = −αp−1z
−(p−1) (E.10)

Equations (E.9) and (E.10) together give zN = 1 if αp−1 6= 0. Moreover, equa-

tions (E.9) and (E.10) give us the null space of BBBp, namely

N (BBBp) = {βββ ∈ Cp×1, z ∈ C∗|βββ = [1, 0 . . . 0,−zp−1]T} (E.11)

Therefore, the rank of BBBp is p− 1.

Case 3(a): Here, N is even and p > N+2
2

. Fix k = p − N+2
2

. In this case, the

matrices UUUp and LLLp overlap. Furthermore, the structure of MMMp is given as follows

MMMp =

[
UUUp−k

LLLp−k
VVV

]
(E.12)
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The ith column of VVV ∈ CN×k is

vvvi =
[
uuuT
i mmmT

i bbbT
i

]T

(E.13)

where

uuui = [z−(N
2

+i), z−(N
2

+i)+1 . . . z−(2i+1)]T (E.14)

mmmi = [z−2i + zN , z(z−2i + zN) . . . z2i−1(z−2i + zN)]T (E.15)

bbbi = [zN+2i, zN+2i+1 . . . z
3N
2
−1+i]T (E.16)

Realising the above equations, the system of equations BBBpααα = 000 could be parti-

tioned into 4 subsystems of equations given as follows:

Rows 1 . . . N
2
− k of BBBpααα = 000 are given by system S1

S1 : ggg(z,ααα) =

N
2

+k∑
i=l

αiz
−i, l = 1 . . .

N

2
− k (E.17)

Rows N
2
− k + 1 . . . N

2
of BBBpααα = 000 are given by system S2

S2 : ggg(z,ααα) =

N
2

+k−l∑
i=N

2
−k+l

αiz
−i +

N
2

+k∑
i=N

2
−k−l+1

αi(z
i + z−i), l = 1 . . . k (E.18)

Rows N
2

+ 1 . . . N
2

+ k of BBBpααα = 000 are given by system S3

S3 : ggg(z,ααα) =

N
2

+k−l∑
i=N

2
−k+l

αiz
i +

N
2

+k∑
i=N

2
−k−l+1

αi(z
i + z−i), l = 1 . . . k (E.19)

Rows N
2

+ k + 1 . . . N of BBBpααα = 000 are given by system S4

S4 : ggg(z,ααα) =

N
2

+k∑
i=l

αiz
i, l = 1 . . .

N

2
− k (E.20)

Now, system S1 (or equivalently S4) imply the following

α1 = . . . = αN
2
−k−1 = 0 (E.21)

which is carried on by backward substitution. Therefore, systems S1 and S4 each

break down to one and only one equation (for l = N
2
− k). Furthermore, for l = k,
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system S2 gives

αN
2
z−

N
2 (zN − 1) = 0 (E.22)

According to equation (E.22), two cases arise:

αN
2

= 0 and zN 6= 1

Using systems S1 and S2, we get

N
2
−k+l−1∑
i=N

2
−k

αiz
−i =

N
2

+k∑
i=N

2
+k−l+1

αiz
i, l = 1 . . . k (E.23)

Similarly, systems S3 and S4 give

N
2
−k+l−1∑
i=N

2
−k

αiz
i =

N
2

+k∑
i=N

2
+k−l+1

αiz
−i, l = 1 . . . k (E.24)

Equation (E.23) reads

αN
2
−k+l−1 = αN

2
+k−l+1z

N , l = 1 . . . k (E.25)

Equation (E.24) gives

αN
2
−k+l−1 = αN

2
+k−l+1z

−N , l = 1 . . . k (E.26)

Equations (E.25) and (E.26) together give

αN
2

+k−l+1(1− zN)(1 + z−N) = 0 (E.27)

Based on assumption zN 6= 1, equation (E.27) gives two subcases:

Case 3(a.i): {αN
2

+k−l+1 = 0}kl=1 and zN 6= −1. In this case, one could easily

verify that α0 = . . . = αp−1 = 0. Hence, iff zN 6= ±1, the matrix BBBp is full rank.

Case 3(a.ii): {αN
2

+k−l+1 6= 0}kl=1 and zN = −1 . In this case, equation (E.26)

gives

αN
2
−k+l−1 = −αN

2
+k−l+1, l = 1 . . . k (E.28)
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Systems S1 and S4 now give

α0 = −z
N
2

k∑
i=1

αN
2

+i(z
i − z−i) (E.29)

The dimension of the corresponding null space is (2k + 1) − (k + 1) = k. Note

that the quantity (2k + 1) is the number of non-zero variables and (k + 1) is the

number of linearly independent equations. The null space of BBBp when zN = −1 is

given by

N (BBBp) =
{
bbb ∈ Cp×1,βββ 6= 000

∣∣∣bbb =


h−(βββ)

000

−JJJkβββ
0

βββ


}

(E.30a)

where βββ = [β1 . . . βk]
T and

h−(βββ) = −z
N
2

k∑
i=1

βi(z
i − z−i) (E.30b)

Therefore,

rank(BBBp) = p− k =
N

2
+ 1 (E.31)

αN
2
6= 0 and zN = 1

Following the same steps as Case 3(a.1), one reaches equation (E.25) and concludes

αN
2
−k+l−1 = αN

2
+k−l+1, l = 1 . . . k (E.32)

Also, as previously done, systems S1 and S4 imply

α0 = −z
N
2

(
αN

2
+

k∑
i=1

αN
2

+i(z
i + z−i)

)
(E.33)

The null space therefore spans k + 1 dimensions, namely

N (BBBp) =
{
bbb ∈ Cp×1, [βββ, γ]T 6= 000

∣∣∣bbb =


h+(βββ, γ)

000

JJJkβββ

γ

βββ


}

(E.34a)
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h+(βββ, γ) = −z
N
2

(
γ +

k∑
i=1

βi(z
i + z−i)

)
(E.34b)

Hence, we conclude that the rank of BBBp is N
2

. This completes the proof of Case

3(a.iii).

Case 3(b): Here, N is odd and p > N+2
2

. Fix k = p − N+1
2

. The proof follows

similar steps as Case 3(a). The null space is given as follows

N (BBBp) =
{
bbb ∈ Cp×1,βββ 6= 000

∣∣∣bbb =


y(βββ)

000

−zNJJJkβββ
βββ


}

(E.35a)

y(βββ) = −z
N
2

k∑
i=1

βi

(
z(i+ 1

2
) − zNz−(i+ 1

2
)
)

(E.35b)



Appendix F

Proof of Theorem 6.6

Using the results of Theorem 3 and restricting ourselves with z = zθ = e−j2π
d
λ

sin(θ),

it suffices to derive the two sets, Θ+Θ+Θ+ and Θ−Θ−Θ−. The equation zNθ = 1 reads the fol-

lowing

e−j2π
d
λ
Nsin(θ) = ej2kπ, k = −N

2
. . .

N

2
(F.1)

With some straightforward algebra, equation (F.1) implies that θ ∈ Θ+Θ+Θ+. In a

similar manner, zNθ = −1 implies θ ∈ Θ−Θ−Θ−. Combining Theorem 3 with the

above completes the proof.
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Proof of Property 2

• The first two cases are a direct consequence of equation (6.19).

• The third case is a result of Consequence 1 and equation (6.19).

• As for the fourth case, assume that the sets ΘΘΘ and ΘΘΘ± overlap and N+2
2
≤

p < N . Let θi ∈ ΘΘΘ ∩ΘΘΘ±. Therefore, KKK(θi)ααα = 000 only when ααα ∈ N
(
BBB(θi)

)
or ααα = ccc. It suffices to prove that the set ccc is linearly independent from the

span of N
(
BBB(θi)

)
.

Let ∆ be the dimension of N
(
BBB(θi)

)
. Furthermore, let γγγ ∈ C(∆+1)×1 be an

arbitrary vector and EEE ∈ Cp×(∆+1) be a matrix where the first ∆ columns

span N
(
BBB(θi)

)
and the last column is the vector ccc. It remains to show

that EEEγγγ = 000 ⇒ γγγ = 000. Under the assumption that p < N and using the

structure of the null space of BBB(θi) given in equations (E.11), (E.30), (E.34),

and (E.35), one could easily verify that the second row of EEE is given as

[0 . . . 0︸ ︷︷ ︸
∆

, c1] (G.1)

which implies that the last element of γγγ is 0, since by construction c1 6= 0,

for p ≥ 2. Hence, γγγ = 000 because the first ∆ columns of EEE are linearly

independent.
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Appendix H

Proof of Property 3

Let the function fε(θ) be defined as follows:

fε(θ) = aaaT
p (θ)

(
KKK(θ) + εIII

)−1
aaa∗p(θ) (H.1)

and therefore

lim
ε→0

fε(θ) = f(θ) (H.2)

By spectral decomposition,

KKK(θ) = VVVΦΦΦVVV H (H.3)

where the kth column of VVV is the kth normalized eigenvector1 of KKK(θ), denoted as

vvvk and its corresponding eigenvalue is the kth smallest eigenvalue found in the kth

diagonal entry of ΦΦΦ, denoted as λk. We could then express fε(θ) as

fε(θ) = aaaT
p (θ)VVV

(
ΦΦΦ + εIII

)−1
VVV Haaa∗p(θ) (H.4)

• When θ 6∈ ΘΘΘ, we distinguish two sub-cases:

– If θ 6∈ ΘΘΘ±, then KKK(θ) is full rank according to Property 2 and hence

λk > 0 for all k, so

f(θ) = ‖ΦΦΦ−1/2VVV Haaa∗p(θ)‖2 <∞ (H.5)

– If θ ∈ Θ±Θ±Θ±, then KKK(θ) is full rank (if p < N+2
2

) and the preceeding

argument holds. However, if p ≥ N+2
2

, then KKK(θ) admits the same null-

space as that of BBB(θ) according to Property 2. As before, let ∆ be the

1Indeed, VVV and ΦΦΦ are functions of θ. This is omitted for the sake of compact exposition.
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dimension of KKK(θ), therefore fε(θ) behaves as

fε(θ) v
∆∑
k=1

1

λk + ε
‖aaaT

p (θ)vvvk‖2 =
∆∑
k=1

1

ε
‖eeeT

1 BBB(θ)vvvk‖2 (H.6)

Note that {vvvk}∆
k=1 span the null space ofBBB(θ) and thereforeBBB(θ)vvvk = 000.

So, fε(θ) = f(θ) = 0 <∞.

• When θ ∈ ΘΘΘ, we also distinguish the same sub-cases:

– If θ 6∈ ΘΘΘ±, then there is only one singularity inKKK(θ) according to Prop-

erty 2, i.e. λ1 = 0, vvv1 = ccc
‖ccc‖ , and λk > 0 for all k ≥ 2. Hence

fε(θ) v
1

ε

‖aaaT
p (θ)ccc‖2

‖ccc‖2
(H.7)

Notice that the term aaaT
p (θ)ccc is a polynomial of degree p− 1 evaluated at

the unit circle. For a polynomial with non-zero coefficients to have zeros

on the unit-circle, the coefficient vector ccc must be conjugate-symmetric

[97], which is not the case according to equation (2.10). Therefore,

aaaT
p (θ)ccc 6= 0 and thus

f(θ) = lim
ε→0

fε(θ) =∞ (H.8)

– If θ ∈ Θ±Θ±Θ±, then the null space of KKK(θ) is spanned by ∆+1 vectors given

in Property 2, and we have

fε(θ) v
∆∑
k=1

1

ε
‖eeeT

1 BBB(θ)vvvk‖2 +
1

ε

‖aaaT
p (θ)ccc‖2

‖ccc‖2
(H.9)

Using the same argument as before, as ε goes to zero, the 1st term of

the above expression goes to zero, whereas the 2nd term goes to ∞.



Appendix I

Proof of Property 5

The 1st order derivative is computed as

f ′(θ) = 2Re{aaaT
p (θ)K̂̂K̂K−1(θ)

∂aaa∗p(θ)

∂θ
}+ aaaT

p (θ)
∂K̂̂K̂K−1(θ)

∂θ
aaa∗p(θ) (I.1)

Denoting

dddp(θ) =
∂aaap(θ)

∂θ
(I.2)

DDD(θ) =
∂BBB(θ)

∂θ
= Gp(

∂aaa(θ)

∂θ
) (I.3)

and using the following identity [98]

∂K̂̂K̂K−1(θ)

∂θ
= −K̂̂K̂K−1(θ)

∂K̂̂K̂K(θ)

∂θ
K̂̂K̂K−1(θ) (I.4)

then f ′(θ) = g1(θ) + g2(θ), where

g1(θ) = 2Re{aaaT
p (θ)K̂̂K̂K−1(θ)ddd∗p(θ)} (I.5a)

g2(θ) = −2Re{aaaT
p (θ)K̂̂K̂K−1(θ)Ĝ̂ĜG(θ)K̂̂K̂K−1(θ)aaa∗p(θ)} (I.5b)

and

Ĝ̂ĜG(θ) = BBBH(θ)ÛnÛnÛnÛ̂ÛU
H
nnnDDD(θ) (I.5c)

In a similar manner, after some straightforward, but lengthy, calculations, one

could verify that f ′′(θ) = h1(θ) + h2(θ) + h3(θ), where hk(θ) are given as

h1(θ) = 2Re
{
dddT
p (θ)K̂̂K̂K−1(θ)ddd∗p(θ) + aaaT

p (θ)K̂̂K̂K−1(θ)
∂ddd∗p(θ)

∂θ

}
(I.6a)

187



Appendix I Proof of Property 5 188

h2(θ) =− 4Re
{
aaaT
p (θ)K̂̂K̂K−1(θ)

(
Ĝ̂ĜG(θ) + Ĝ̂ĜGH(θ)

)
K̂̂K̂K−1(θ)ddd∗p(θ)

}
− 2Re

{
aaaT
p (θ)K̂̂K̂K−1(θ)BBBH(θ)ÛnÛnÛnÛ̂ÛU

H
nnn

∂DDD(θ)

∂θ
K̂̂K̂K−1(θ)aaa∗p(θ)

}
− 2aaaT

p (θ)K̂̂K̂K−1(θ)DDDH(θ)ÛnÛnÛnÛ̂ÛU
H
nnnDDD(θ)K̂̂K̂K−1(θ)aaa∗p(θ)

(I.6b)

h3(θ) = 4Re
{
aaaT
p (θ)K̂̂K̂K−1(θ)

(
Ĝ̂ĜG(θ)K̂̂K̂K−1(θ)Ĝ̂ĜG(θ) + Ĝ̂ĜGH(θ)K̂̂K̂K−1(θ)Ĝ̂ĜG(θ)

)
K̂̂K̂K−1(θ)aaa∗p(θ)

}
(I.6c)



Appendix J

Proof of Theorem 6.7

KKK(θk) could, also, be decomposed as follows

K̂̂K̂K(θk) = KKK(θk) + K̃̃K̃K(θk) (J.1)

where KKK(θk) = BBBH(θk)UnUnUnUUU
H
nnnBBB(θk) and

K̃̃K̃K(θk) = 2Re
{
BBBH(θk)ŨnŨnŨnUUU

H
nnnBBB(θk)

}
+BBBH(θk)ŨnŨnŨnŨ̃ŨU

H
nnnBBB(θk) (J.2)

Using well-known results in Perturbation Theory [100, 101], we seek to use the fol-

lowing methodology: Given two Hermitian positive semi-definite matrices KKK(θk)

and K̃̃K̃K(θk), where the latter perturbs the former, each λ̂j and v̂̂v̂vj could be approx-

imated by a linear combination as follows:

λ̂j = λj + vvvH
j K̃̃K̃K(θk)vvvj +

∑
i 6=j

|vvvH
i K̃̃K̃K(θk)vvvj|2

λj − λi
+O(‖K̃̃K̃K‖3) (J.3)

and

v̂̂v̂vj = vvvj +
∑
i 6=j

vvvH
i K̃̃K̃K(θk)vvvj
λj − λi

vvvi +O(K̃̃K̃K2) (J.4)

This approximation is valid if the the eigenvalue λj is non-degenerate. In our case,

λ1 = 0 is non-degenerate as long as p ≤ N+2
2

or {p > N+2
2

and θk 6∈ Θ±Θ±Θ±} according

to Consequence 1. In that case, applying equation (J.3) to λ̂1 and denoting
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BBB = BBB(θk) and KKK = KKK(θk) for short, we get

λ̂1 =
1

‖ccc‖2

(
cccHK̃̃K̃Kccc−

p∑
i=2

|vvvH
i K̃̃K̃Kccc|2

λi

)
+O(‖K̃̃K̃K‖3)

=
1

‖ccc‖2

(
cccHBBBHŨnŨnŨnŨ̃ŨU

H
nnnBBBccc−

p∑
i=2

|vvvH
i BBB

HUnUnUnŨ̃ŨU
H
nnnBBBccc|2

λi

)
+ . . .

=
1

‖ccc‖2
cccHBBBHŨnŨnŨn

(
III −UUUH

nnnBBB
( p∑
i=2

vvvivvv
H
i

λi︸ ︷︷ ︸
KKK+

)
BBBHUnUnUn

)
Ũ̃ŨUH
nnnBBBccc

=
1

‖ccc‖2
cccHBBBHŨnŨnŨn

(
III −PPPk

)
Ũ̃ŨUH
nnnBBBccc+O(‖ŨnŨnŨn‖3)

=
1

‖ccc‖2
cccHBBBHŨnŨnŨnPPP

⊥⊥⊥
k Ũ̃ŨU

H
nnnBBBccc+O(‖ŨnŨnŨn‖3)

(J.5)

In a similar manner, using equation (J.4), v̂1̂v1̂v1 could be written as

v̂̂v̂v1 =
1

‖ccc‖

(
ccc−

p∑
i=2

vvvH
i K̃̃K̃Kccc

λi
vvvi

)
+O(K̃̃K̃K2)

=
1

‖ccc‖

(
ccc−

p∑
i=2

vvvH
i BBB

HUnUnUnŨ̃ŨU
H
nnnBBBccc

λi
vvvi

)
+O(Ũ̃ŨU2

nnn)

(J.6)

As for the degenerate case, i.e. λ1 = . . . = λ∆+1 = 0, which occurs when p > N+2
2

and θk ∈ Θ±Θ±Θ±; we follow similar steps and use the approximations given in [102].
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Proof of Theorem 6.9

Let’s call

ω̃̃ω̃ωk , Ũ̃ŨU
H
nnnBBB(θk)ccc = Ũ̃ŨUH

nnn UsUsUsUUU
H
sss BBB(θk)ccc (K.1)

where the second equality is due to the fact that BBB(θk)ccc = ā̄āa(θk) = TTT (ccc)aaa(θk).

Using Lemma 1, it is easy to see that ω̃̃ω̃ωk is Gaussian distributed with zero mean

and covariance matrix(
E{ω̃̃ω̃ωkω̃̃ω̃ωH

k }
)
i,j

= E
{(
UsUsUsUUU

H
sss ñ̃ñni

)H
ā̄āa(θk)ā̄āa

H(θk)
(
UsUsUsUUU

H
sss ñ̃ñnj

)}
= ā̄āaH(θk)E

{(
UsUsUsUUU

H
sss ñ̃ñnj

)(
UsUsUsUUU

H
sss ñ̃ñni

)H
}
ā̄āa(θk)

=
σ2

L
ā̄āaH(θk)UUUā̄āa(θk)︸ ︷︷ ︸

σ̃2
k

δi,j

(K.2)

where the last equality is a result of equation (6.68). Therefore, ω̃̃ω̃ωk ∼ CN (000, σ̃2
kIII).

Similarly, E{ω̃̃ω̃ωkω̃̃ω̃ωT
k } = 000. Using the moments of ω̃̃ω̃ωk, we have

E
{

(θ̃k)
}

= E
{Re{ρ̃k}

υk

}
=

1

2υk

(
d̄̄d̄dH(θk)UnUnUnPPP

⊥⊥⊥
k E
{
ω̃̃ω̃ωk
}

+ E
{
ω̃̃ω̃ωH
k

}
PPP⊥⊥⊥k UUU

H
nnn d̄̄d̄d(θk)

)
= 0

(K.3)
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E
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2
}

= E
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υ2
k

}
=

1

2υ2
k
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}
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1
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(K.4)

where we have used (
Re{z}

)2
=

1

2

(
|z|2 + Re{z2}

)
(K.5)

and E
{

Re{ρ̃2
k}
}

= 0 since E{ω̃̃ω̃ωkω̃̃ω̃ωT
k } = 000.
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Proof of Theorem 6.10

The terms BBBH(θk)BBB(θl), BBB
H(θk)DDD(θl), and DDDH(θk)DDD(θl) appear in var

(p)
f (θ̂k) and

varCRB(θ̂k). We first compute the limits of these three expressions as p
N
→ 0. With

some straightforward calculations, one could verify the following equality

(
BBBH(θk)BBB(θl)

)
m,n

=

bk,l(m,n), if m ≥ n

b∗l,k(n,m), else
(L.1)

where

bk,l(m,n)

=
(
z
−(m−1)
θk

z
(n−1)
θl

+ (1− δ1,mδ1,n)z
(m−n)
θl

)(N−m∑
i=0

[z∗θkzθl ]
i
)

+ (1− δ1,n)
(
z
−(m+n−2)
θk

+ z
(m+n−2)
θl

)(N−m−n+1∑
i=0

[z∗θkzθl ]
i
) (L.2)

Using the following identity

1

mk+1

m∑
t=1

tkejt(w1−w2) −−−→
m→∞

1

k + 1
δw1,w2 (L.3)

and keeping in mind that p is fixed, we could complete the summation terms

appearing in equation (L.2) by a ”finite” amount of terms of order p so that the

limits of the sum span all integers i = 0 . . . N , and therefore we have

BBBH(θk)BBB(θl)

N
−−−→
p
N
→0

hhhkhhh
H
k δk,l (L.4a)
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which is a rank-one contribution, and hhhk is given in equation (6.6). In a very

similar manner, we can prove

BBBH(θk)DDD(θl)

N2
−−−→
p
N
→0

j

2
hhhkhhh

H
k δk,l (L.4b)

and
DDDH(θk)DDD(θl)

N3
−−−→
p
N
→0

1

3
hhhkhhh

H
k δk,l (L.4c)

With those limits in hand, we could verify the following

1

N3
D̄̄D̄DHP⊥ĀP

⊥
ĀP
⊥
Ā D̄̄D̄D −−−→p

N
→0

1

12
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1 ccc|2 0 · · · 0

0 |hhhH
2 ccc|2 · · · 0

...
. . . . . .

...

0 · · · 0 |hhhH
q ccc|2

 (L.5)

Note that, when p = 1, the above diagonal matrix is the identity matrix, which co-

incides with the result in [95]. Plugging the limit of equation (L.5) in the CRB ex-

pression given in equation (6.1), we get equation (6.81). To verify equation (6.82),

we expand the denominator of equation (6.4) as follow

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
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)
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H
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)+(
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H
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)]
ccc

(L.6)

By using the limits computed in (L.4), we have
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H
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H
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and therefore
1

N3
d̄̄d̄dH(θk)UnUnUnPPP

⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk) −−−→p

N
→0

1

12
|hhhH
k ccc|2 (L.8)

Equations (L.7) directly imply that γk −−−→p
N
→0

0. Now, using equation (L.4a), we

can verify that the second term in the numerator of equation (6.4) goes to zero,
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viz. (
RRR−1
ssssss (Ā̄ĀAHĀ̄ĀA)−1RRR−1

ssssss

)
k,k
−−−→
p
N
→0

0 (L.9)

Another proof could be done by using the asymptotic equivalence between Toeplitz

and Circulant type matrices [99].
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