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In an indoor environment, the problem of extracting the Angle-of-Arrival of the Line-
of-Sight component between a transmitter and Wi-Fi receiver using a SIMO link is the
main concern of this PhD thesis. One main challenge in doing so is due to the rich
multipath channel that indoor environments enjoy. Other challenges are limitation of
resources, such as number of antennas, available bandwidth, and Signal-to-Noise-Ratio;
not to mention the Wi-Fi ”imperfections”, such as gain/phase mismatches between
antennas and synchronisation issues between transmitter and receiver. In this thesis,
our main focus is implementing a real-time system that could measure the angle between

a transmitter and receiver in the presence of all the previous challenges.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Brief history

Localisation refers to the process of locating intended object(s) in space. Although most
often associated with modern technology, more primitive localisation methods exist. As
a matter of fact, the most basic localisation techniques could be achieved without the
use of any special instruments; sailors have been using celestial objects for sea-based
localisation for a few thousand years. Many specialised tools have been developed to
help provide more accurate localisation, including astrolabe, chronometer, sextant, and
compass as well as detailed maritime charts and maps [1]. In the late 1960s, the U.S.
Department of Defense (DoD) started off with a project to construct a satellite-based lo-
calisation system for military purposes; known nowadays as Global Positioning System,
or simply GPS. The system witnessed its first use in combat during the Persian Gulf
War in 1990. Furthermore, GPS consists of a constellation of 24 satellites that broad-
cast precise time signals. When the satellites are in view of a suitable GPS receiver,
these signals aid position-location, navigation, and precision timing [1]. Not until 1983
has GPS started evolving far beyond its military origins and begun to migrate into the
public sector. It is now a worldwide information resource supporting a wide range of
civil, scientific, and commercial functions, ranging from air traffic control and real-time

navigation on the road to coffee shop discovery in your block.

In response and due 1990, the DoD activated Selective Availability (SA), a purpose-

ful degradation in the civilian GPS signal, which limited the accuracy of most civilian
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GPS units to about 100 meters. Luckily SA was triggered off due to the fact that the
DoD recognised the important role played by GPS in numerous commercial activities.
Thanks to the deactivation of SA, along with the employment of other technologies such
as Differential GPS, now allow civilian GPS units to obtain an accuracy of 10 meters or
better. So for localisation in an outdoor environment, GPS works extremely well, given
that there is an unobstructed line of sight to four or more GPS satellites. However,
the signal from the GPS is too weak to penetrate most buildings, hence GPS is useless

indoors; a motivation for seeking other techniques for indoor localisation.

An Indoor Positioning system, or simply TIPS, is a data acquisition system providing
information of people or objects within the indoor environment and obtaining data to
occupants to assist in way finding. Said differently and informally, an IPS is a mini-GPS
working indoors, where a mini-GPS might refer to a Wi-Fi receiver. Whereas GPS de-
pends on satellites, IPS is based on "reference anchors” that are network nodes with a
known fixed position in the indoor environment. These ”anchors” cooperate with each
other to identify the position of the intended node. One approach to the architecture of
IPS is ” Bluetooth Beaconing”. Bluetooth was first invented in 1994 to replace short ca-
bles. All thanks to Bluetooth-enabled smartphones together with the Bluetooth beacons
that can provide the location of smartphone users. In 2010, Nokia introduced an IPS
based on Bluetooth Low Energy (BLE) technology, which was one of latest Bluetooth
technology operating on low power with low latency in communications. On the other
hand, a lot of systems use enhanced Wi-Fi infrastructure to provide location information
[4-6]. Wi-Fi positioning takes advantage of the rapid growth in the early 21%¢ century

of wireless access points in urban areas.

Ladd et al present a novel technique whereby localisation is achieved using the IEEE
802.11b, known as wireless Ethernet [2]. In their paper, Ladd et al propose the use
of measured signal strength of Ethernet packets as a sensor for a localisation system.
The 802.11b wireless standard incorporates a mechanism by which a wireless network
card can measure the signal strength of all base stations within its broadcast range [3].
Consequently, a mobile system can use this information in an attempt to determine its
distance from these fixed based stations. Given these distances and the prior knowledge
of the base stations’ location, the mobile system can estimate its own current position.
Perturbation of the actual position of the mobile system will cause a change in the actual
position of the mobile system results in a change in the measured signal strengths and
therefore a change in the estimated position. The idea is simply stated but the actual
implementation is much more complicated where Ladd et al use the so-called Bayesian
inference localisation. They have implemented this approach to achieve an accuracy of

about one meter.
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Unfortunately, the chief difficulty in localisation with wireless Ethernet is predicting
signal strength. ”Radio frequency signal strength measured indoors is nonlinear with
distance. In addition, it has non-Gaussian noise, resulting from multipath effects and
environmental effects, such as building geometry, network traffic, presence of people,
and atmospheric conditions” [2]. On top of that, IEEE 802.11b standard operates in
the 2.4-GHz frequency band, meaning ”Microwave ovens, Bluetooth devices, 2.4-GHz
cordless phones, and welding equipment can be sources of interference. Ladd et al came
up with an idea where they broke up the area of interest into cells, and then took signal
strength readings in each cell, effectively training the system. A mobile system could
then take signal strength readings, compare the measured data to the training set, and
use Bayesian Inference to determine the location that would most likely produce those

measurements.

Future research [2] was highlighted by Lad et al. Studies were conducted at night-
time, i.e. a nearly static environment, and in particular in corridors, which means that
movement was restricted to narrow straight lines. They point out the interest of studying
the behaviour of a system in a more dynamic environment. The advantage of localising
via wireless Ethernet should be clear: In contrast to GPS, the system could work in
any environment, whether indoors or outdoors, while GPS only operates for outdoor
systems. In addition to that, this technology is ubiquitous and, therefore, no additional

hardware cost would be needed.

1.1.2 Parameters inferring location
Received Power

Received power is one of the basic and oldest measuring principles to compute the
distance between a transmitter and its corresponding receiver. This relation is given by
the free space path loss equation using isotropic radiating antennas [7]:

P PrGrGpr
BECTAE

where Pr and Pr are the received and transmitted power, respectively; Gr and Gr
are the receive and transmit antenna gains, respectively; A is the wavelength of the
propagating signal; and d is the separating distance between the transmitter and receiver.
As a result, a widely used indicator could be derived which is known as Received Signal
Strength Indicator (RSSI). It is an 8-bit signed integer that denotes whether the received
power level is within or below/above the Golden Receiver Power Range (GRPR)IS].
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RSSI indicates 0 if the received power is within the GRPR; positive if it is above and
negative if it is below. Although RSSI was intended for power control purposes [9], many
Bluetooth devices, such as Bluetooth 1.2 uses RSSI to discover any nearby devices [10]
and estimate the separating distance. However, as tested in [8], RSSI doesn’t correlate
well with distance. The reasons why is that RSSI is a quantized version of the provided
received power and therefore the accuracy would mainly depend on the resolution of
the quantization. Also, RSSI is highly affected by multipath, which is a main feature of

indoor environments.

Time-of-Arrival

The distance d between the mobile target to the measuring unit is directly proportional
to the propagation time At. So upon measuring At, one could easily calculate the

separating distance between the mobile target and the measuring unit by:
d = cAt

where c is the speed of light in vacuum. However, accurate timing synchronization is

required between transmitter and receiver clocks to perform ToA estimation [11].

Wi-Fi

R

User

Figure 1.1: User transmitting to Wi-Fi at angle 6

Angle-of-Arrival

Angle of Arrival (or AoA) is a technique based on the relative time delay with respect to
an arbitrary antenna chosen as a reference i.e. the time delay at this reference antenna

is zero. Assume the SIMO case, as shown in Fig. 1.1, where the user is equipped with



Chapter 1 Introduction 5

one antenna and receive antennas. Let the transmitted signal at any time be s(¢) where
it is of the form
s(t) = Aei?riet

The form of s(t) in the above equation is a valid form of an electromagnetic transmitted
signal having two orthogonal components, which are the Inphase (or I) and the Quadra-
ture (or Q). This signal is transmitted with amplitude A and is oscillating on frequency

fe. Following [12], it is easy to show that the received signal is of the form

where a(f) is the so-called steering vector, which is a function of the antenna’s position
and the AoA, 6.

Figure 1.2: Angle-based localisation

received

signal Parameter Estimation Location Estimation location

Figure 1.3: The two fundamental steps for Position Estimation

After 0 is estimated by a suitable Parameter- Estimation method by, say, two stations (or
WiFis) as depicted in Fig. 1.2, then the position of the user could be easily determined.

This means that a 2-step procedure is required to determine a position of a user: a
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(i)Parameter- Estimation step followed by a (ii)Location- Estimation step. In this thesis,
we focus on the first block, i.e. we are very interested in deriving suitable methods that
could yield parameter estimates, which infer the position of the user in the presence of
noise, imperfections, impairments, and other difficulties, which will be addressed in the

next section.

1.2 Parameter Estimation: Problems and Methods

The term Parameter Estimation refers to the process of utilising sample data to estimate
parameters of interest in a certain model, under certain assumptions. It is worth to take
a moment and highlight three keywords in the previous statement: model, parameter,
and assumptions. One difficulty in indoor localisation is actually confirming a model.
For example, Saleh and Valenzuela [13] have modeled the multipath channel as a diffuse
one, namely each multipath component is a cluster of rays. Based on their results, they
have modeled the ToAs of the clusters as Poisson processes with different, but fixed,
rates. The thesis in [14], which is inspired by [13], model the AoAs of the clusters as a
Laplacian distribution. However, most (if not all) localisation methods, such as [15-18]
assume a specular multipath channel, i.e. each multipath component is only one ray.
This seems acceptable due to resolution issues' and hence closely spaced sources could

be seen as one source.

After confirming a model, or a family of models, parameters involved in these mod-
els need to be estimated. This is where parameter estimation methods come in. The
Maximum Likelihood (ML) was one of the first methods to be investigated [20]. Even
though the ML method is optimal, in the sense that the estimated parameters mini-
mize the Mean-Squared Error (MSE), it did not receive much attention due to the high
computational load of the multivariate nonlinear minimisation problem involved, since
it requires a ¢-dimensional search, where ¢ are the number of parameters that enter
the model in a non-linear form. Then, a number of interesting beamforming meth-
ods were implemented, as solutions to some suitable optimisation problems, such as
Bartlett’s beamformer [21] and Capon’s beamformer [22]. These beamformers require
a 1-dimensional (1D) search and are therefore considered to be fast. However, the res-
olution of these methods are not acceptable with low number of antennas, snapshots,
and SNR, which calls for the need of methods with higher accuracy, while maintaining
an acceptable computational speed. The 80s witnessed a revolution of the so-called

subspace methods, which are built on one genuine idea: ”"the subspace spanned by the

n the context of array processing, resolution refers to the ability of discriminating between two
closely spaced sources, given a certain SNR [19]
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steering vectors of the sources is orthogonal to the noise subspace” The most popular
subspace method is the MUItiple SIgnal Classification algorithm, also known as MUSIC
[24] by Schmidt, which only requires a 1D search. A root-MUSIC [25] method was im-
plemented by Barabell to replace the 1D search of MUSIC by a polynomial root finding
criterion. Paulraj and Kailath invented the ESPRIT [26] (Estimation of Signal Param-
eters Via Rotational Invariance Techniques) method, which is based on Least-Squares
fitting; however, it only operates for Uniform Linear Arrays (ULAs). Even though these
methods dominate the aforementioned beamformers in terms of resolution, there are

cases where subspace methods fail to operate, such as:

e Coherent sources: which is the case of smart jamming or multipath propagation.
A very simple example of two coherent sources are s1(t) and sa(t) = asy(t), where

« is a complex number.

e Single snapshot: since no subspaces could be formed by a single snapshot.

It is worth mentioning that there is a large number of recent research done on subspace

methods; we refer the reader to the following papers [27-29].

Another class of parameter estimation methods work on approximating the ML cost
function, which are also computationally attractive, but not as attractive as subspace
methods. For example, the method by Ziskind and Wax [30] reaches the ML estimate
by multiple 1D searches, which is described as Alternating Projections (AP). Another
popular technique is the Iterative Quadratic ML (IQML) developed by Bresler and Ma-
covski in [31], where, with a linear parameterisation of the noise subspace, the ML cost
function at each iteration is seen as a weighted LS cost function, which is quadratic in the
vector of parameters of interest, and thus closed form expressions could be derived. How-

ever, the weighting is parameter dependent and hence fixed-point iterations are required.

In addition to parameter estimation methods, one is limited by the number of mul-
tipath components allowed in the model. More specifically, let ¢ denote the number of
multipath components and N denote the number of antennas at the Wi-Fi; then ¢ < N
should be satisfied, otherwise the estimation problem is under-determined, and the esti-
mated solution will not be unique. There is many work done by Pal and Vaidyanathan
, such as [32, 33], where they try to estimate the AoAs of ¢ sources, where ¢ > N.
This is achieved by coprime sampling, i.e. by partitioning the N antennas into two sub-
arrays of sizes N1 and Ny, where N = N+ Ny and (N7, N3) are co-prime. The coprime

sampling approach suggests specific antenna array configurations, called coprime arrays.

2This is explained in details in Chapter 6.



Chapter 1 Introduction 8

The advantage is that we now have more degrees of freedom, i.e. the number of sources
could go up to ¢ < O(N1N2). However, this approach has multiple drawbacks, when

our interest is oriented towards indoor localisation via WiFi:

e The sources are assumed to be completely uncorrelated, which is not valid for mul-

tipath sources. On the contrary, multipath components are known to be coherent.

e With a small number of antennas, say N = 3 antennas, we could not expect to

enhance the degrees of freedom by choosing, for instance, Ny = 2 and Ny = 1.

e The AoA between the transmitter and receiver could not be deduced by AoA

information only.

On the other hand, Vanderveen, Papadias and Paulraj introduced a novel approach
called JADE [34], which stands for Joint Angle and Delay Estimation. They propose
to transmit a known signal through a multipath channel, which is received through N
antennas at the receiver and M time samples are collected at each antenna. This idea

has multiple advantages in the context of indoor localisation via WiFi:

e The degrees of freedom of the number of multipath components could go up to
q<MN.

e There is no limitation on the geometry of antennas.

We note that JADE is not, in any way, a method. It is simply a smart way of collect-
ing data to increase the number of components that could be resolved. Therefore, it is
natural to propose JADE-based methods, such as JADE-ML and JADE-MUSIC in [34]
and JADE-ESPRIT in [35]. One should note that the coherence part was not addressed.

Besides the degrees of freedom and coherence of sources, another important aspect to be
considered is array perturbation. This is caused by several factors, such as antenna posi-
tion uncertainty [36], unknown gain/phases between different antennas [37], and mutual

coupling between antennas [38]. We address this topic in details in Chapters 6 and 7.

1.3 Contributions of this dissertation

In this thesis, we address all the problems addressed in the previous section in order to

derive some methods that perform parameter estimation. In particular,
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Chapter 2. In Chapter 2, we tackle a well-known problem involved in array signal
processing, which is the detection of number of signals present in the model. Indeed, all
the methods mentioned previously require the number of signals to be known a priori.
The Minimum Description Length, or MDL [39], is a well-known method for this mat-
ter, however it suffers from degradation of performance when the number of available
snapshots is, relatively, low. We derive a modified MDL estimator, with the help of
random matrix tools [41-43], which improves the estimation of the number of sources

when a low number of snapshots L = O(N) is available.

Publications related to this chapter are:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Detection of the number of Superimposed
Signals using Modified MDL Criterion : A Random Matrix Approach,” IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
March, 2016.

Chapter 3. In Chapter 3, we address the AoA estimation problem from a compressed

sensing point of view. The contributions of this chapter are summarised as follows:

1. After a literature review on some popular compressed sensing methods, we pro-
pose a Variational Bayes (VB) method that allows sparse recovery of the desired

transmitted signals, which in turn allows estimating their corresponding AoAs.

2. We show that this iterative VB method outperforms existing compressed sensing
methods, such as Matching Pursuit (MP) [50], Orthogonal MP (OMP) [51], and

some other methods.

3. We also derive a Newton-type Forward Backward Greedy method that performs

sparse recovery, given the data.

4. We show, through exhaustive simulations, that the proposed Newton-type method,
is not only faster, but attains a lower MSE when compared to methods such as Fast
Matching Bayesian Pursuit (FBMP) [67] and Basis Pursuit Denoising (BPDN)
[53].

Publications related to this chapter are:

e A. Bazzi, D. T.M. Slock, L. Meilhac, S. Panneerselvan, ” A Comparative Study of
Sparse Recovery and Compressed Sensing Algorithms with Application to AoA Es-

timation,” IFEFE International Workshop on Signal Processing advances in Wire-
less Communications (SPAWC), 2016.
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e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Sparse Recovery using an Iterative Varia-
tional Bayes Algorithm and Application to AoA Estimation,” IEEE Symposium
on Signal Processing and Information Technology (ISSPIT), 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ” A Newton-type Forward Backward Greedy
Method for Multi-Snapshot Compressed Sensing,” Asilomar conference on signals,
systems, and computers (ASILOMAR), 2017.

Chapter 4. In Chapter 4, we focus on the Joint Angle and Delay Estimation (JADE)
problem for localisation purposes. More specifically, we address the single-snapshot and
coherence problems mentioned in the previous section. The contributions of this chapter

could be summarised as follows:

1. We derive an algorithm that is a modification of the two dimensional Iterative
Quadratic ML (2D-IQML) algorithm, where an additional constraint is added for
joint ToA and AoA estimation and we show that 2D-IQML gives biased estimates
of ToAs/AoAs and performs poorly at low SNR due to noise induced bias.

2. We propose a two dimensional Denoised IQML (2D-DIQML) that gives consistent
estimates and outperforms 2D-IQML; (iv) we show that 2D-DIQML is asymptot-

ically globally convergent and hence insensitive to the initialisation.

3. Furthermore, two algorithms, based on 2D Matrix Pencils (MP), for the case of a
single snapshot OFDM symbol observed by multiple antennas in a ULA configu-

ration are introduced.

4. For the coherence problem, we derive a ” Spatio-Frequential” smoothing technique,
when the transmit OFDM symbol is received through multiple coherent signals
using a uniform linear antenna array, which is the case of an indoor multipath
channel. This smoothing method is inspired from [81] and could be seen as a 2D

generalisation of the traditional spatial smoothing technique.

5. We prove in Theorem 4.3 that we could ”lift” the rank of the sample covariance
matrix, so that we could discriminate between coherent sources, and therefore
apply subspace methods such as JADE-MUSIC and JADE-ESPRIT.

Publications related to this chapter are:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ” Efficient Maximum Likelihood Joint Estima-
tion of Angles and Times of Arrival of Multi Paths,” IEEFE GLOBAL Communica-
tions Conference (GLOBECOM), Localization and Tracking : Indoors, Outdoors,
and Emerging Networks (LION) Workshop, December, 2015.
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e A. Bazzi, D. T. M. Slock, and L. Meilhac, ”Single Snapshot Joint Estimation of
Angles and Times of Arrival: A 2D Matrix Pencil Approach,” IEEFE International

Conference on Communications, 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Spatio-Frequential Smoothing for Joint
Angles and Times of Arrival Estimation of Multipaths,” IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), March, 2016.

Chapter 5. In Chapter 5, we propose a novel approach, which builds up on JADE,
entitled Joint Angle and Delay Estimation and Detection, or simply JADED. The con-

tributions of this chapter are summarised as follows:

1. Thanks to this approach, we can now estimate the Angles and Times of Arrival
of multipath, without prior knowledge of the number of multipath components.
To the best of our knowledge, this problem has not been addressed in the open

literature.

2. A method called JADED-RIP, makes use of the Rotational Invariance Properties
(RIP) of ULAs and OFDM symbols, detects the number of multipath components,
and estimates the angles and times of arrival of each path by performing a 2D

search.

3. Another method is a Computationally Efficient Single Snapshot (CESS) version
of the JADED-RIP, called CESS-JADED-RIP. This method requires a 1D search
followed by a least squares fit, and can only be used when a single OFDM symbol

is available.

The drawback of the two proposed methods is that they only work for ULA /OFDM sys-
tems and they are sub-optimal in a sense they could be further improved by considering

the coloured noise, which leads to an ML-JADED estimator.

Publications related to this chapter are:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”JADED-RIP: Joint Angle and Delay Es-
timator and Detector via Rotational Invariance Properties,” IEEE International

Symposium on Signal Processing and Information Technology, (ISSPIT), 2016.

Chapter 6. In Chapter 6, we address an important aspect that perturbs Angle-of-
Arrival estimation, due to antenna coupling, also known as ”Mutual Coupling”. The

contributions of this chapter are summarised as follows:
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1. We derive a sub-optimal algorithm that could estimate AoAs in the presence of

mutual coupling.

2. We show why this sub-optimal algorithm, along with other ones [88-92], are indeed
suboptimal, in the sense that there is an upper bound on the coupling parameters
allowed in the model which can be improved. This would not have been clear

without Theorem 6.6.

3. Then, we further improve the sub-optimal algorithm and propose an optimal one,

in the sense that more coupling parameters are allowed in the model.

4. Also, we refine the estimates of the optimal algorithm by modifying some con-

straints of the optimisation problem considered.

5. We derive the MSE expression of the optimal algorithm and show that, in some
cases, we can attain the Cramér-Rao bound of the problem of joint coupling pa-
rameters and AoA estimation. The related Theorems are Theorem 6.7, Theorem
6.9 and Theorem 6.10.

6. Finally, we derive an iterative method that could give Maximum Likelihood (ML)
estimates of the AoAs, and therefore allowing the presence of coherent sources,

which is not the case of all the previous algorithms.

Publications related to this chapter are:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Online Angle of Arrival Estimation in the
Presence of Mutual Coupling,” IEEE International Workshop on Statistical Signal
Processing (SSP), 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Mutual Coupling for ULAs: Estimating
AoAs in the presence of more coupling parameters,” IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing (ICASSP), 2017.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ” Performance Analysis of an AoA estimator in
the presence of more mutual coupling parameters,” IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 2017.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On a Mutual Coupling Agnostic Maximum
Likelihood Angle of Arrival Estimator by Alternating Projection,” IEEE Global
Conference on Signal and Information Processing (GlobalSIP), 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”A Mutual Coupling Resilient Algorithm
for Joint Angle and Delay Estimation,” IEEFE Global Conference on Signal and
Information Processing (GlobalSIP), 2016.
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Chapter 7. In Chapter 7, we aim at building a real system that could perform joint
Angle and Delay of Arrival Estimation and Detection of multipath components. This
is simply done, so that we could extract the Angle-of-Arrival of the Line-of-Sight (LoS)

component between the transmitter and receiver.

1. We take into account all critical factors that perturb the Joint Angle and Delay

estimation problem and formulate a system model accordingly.
2. We propose an offline calibration method to compensate for all such factors.

3. With the help of the CESS-JADED-RIP algorithm, we have successfully been able
to estimate the Angles and Times of Arrival of all the multipath components,

which allowed for the extraction of the AoA of the LoS component.

There is no published material related to this chapter.

Other Work. For the sake of consistency of this thesis, we have omitted three publi-

cations, which are the following:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On the Effect of Random Snapshot Timing
Jitter on the Covariance Matrix for JADE Estimation,” Furopean Signal Processing
Conference (EUSIPCO), September, 2015.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Joint Angle and Delay Estimation in the
Presence of Local Scattering,” IEEE International Conference on Communications

(ICC), Workshop on Advances in Network Localization and Navigation, 2016.

e L. Meilhac and A. Bazzi, ”Downlink transmit beamsteering Apparatus for a multi-

user MIMO transmission,” Patent in Preparation, 2017.



Chapter 2

Angle-of-Arrival Detection

In this chapter, we study the problem of estimating the number of superimposed signals
using noisy observations from N antennas. In particular, we are interested in the case
where a low number of snapshots L = O(N) is available. Our main contribution can be
summarised as follows: we derive a modified MDL estimator, with the help of random

matriz tools, which improves the estimation of the number of sources.

2.1 System model

2.1.1 Problem formulation

Consider an array that consists of NV antennas. Furthermore, assume ¢ < N narrow-band
sources, centered around a known frequency, say f., attacking the array from different
angles, © = [0;...6,]. Since narrow-bandedness in the context of array processing
means that the propagation delays of the signals across the array are much smaller than
the reciprocal of the bandwidth of the signals, it follows that these propagation delays

translate into phase shifts that depend on the location.

Now following [23], the received analog signal across all antennas, in the absence of

mutual coupling, could be written as

z(t) =) _a(6:)si(t) +w(t) (2.1)

—

=

where

(2.2)
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is the received vector across all antennas at time ¢. Moreover, the vector a(#) is referred
to as the ”steering vector” of the array towards angle 6. It is this vector that allows us

to perform Angle-of-Arrival (AoA) estimation, and is given by

a(0) = [1,2g,... 20 """ (2.3)

where zy = e‘ﬂw%sm(e), d is the inter-element spacing and ) is the signal’s wavelength.

Moreover, the signal s;(t) is the signal emitted by the i'* source at time ¢ and

T

w(t) = [wi(t)... wn(t)] (2.4)

is background noise across all antennas at time ¢. Equation (2.1) could be written in a

more compact way as follows

z(t) = A(©)s(t) +w(t) (2.5)
where A(@) € CV*4 is referred to as ”steering matrix” and is given as

A(®©) = [a(by)...a(0,)] (2.6)
and s(t) € C?*! is the vector of transmitted signals, viz.

s(t) = [s1(t) ... 54(t)]" (2.7)

Finally, sampling (2.5) at L time instances, say t = {0,7),..., (L —1)T'}, where T is the
sampling period, we get

X =A®O)S+W (2.8)

where X = [2(0),z(T),...,z((L—1)T)] € CV*L s the data collected over the observed

interval of time. Matrices § € C?*X and W € CV*L are similarly defined.

2.1.2 Assumptions
e Al. The matrix of spatial signatures, i.e. A, is full column rank. This is valid
when ¢ < N and all angles of arrival are distinct, i.e. 0; # 6; for all ¢ # j.

e A2. The sources are assumed to be non-coherent, i.e. Rgs = E{s(t)s(t)} is full

rank.

e A3. The noise is modelled as complex Gaussian vectors, i.i.d over time, with

zero-mean and covariance 021 . Also, the noise is independent from the signal.
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2.1.3 Problem statement

Under the above assumptions, we are now ready to state our problem: ”Given the

2

available snapshots X, estimate the number of source signals, i.e. q.

2.2 Background of main result

We write down the signal covariance matrix as

:]E(A(G)s(t)+w(t))( ©® )(t)+w(t>)H

=E{A(©)s(t)s" (t)A" } + E{A sw” ()} + E{w®)s” (1)A"(©)} + E{w(t)w" ()}
= (G)E{s(t)sH(t)}AH E{s (t wH(t)} + E{w(t)sH(t)}AH(G) + ]E{w(t)wH(t)}
— A(®)R,, A" () + U2IN

(2.9)

where the last equality holds due to assumption A3. Now, let [ > lo > ... > Iy
denote the eigenvalues of R,,. Then, under assumptions A1 till A3, the smallest N — ¢

eigenvalues of R, are all equal, i.e.
lyp1=-.. = Iy =0 (2.10)

We also consider that the g largest eigenvalues are distinct, i.e. 1 > lo > ... > [,.
The most straightforward way in determining the number of signals is based on the
multiplicity of the smallest eigenvalues of R;, as done in the MUSIC algorithm [24].
However, in practical scenarios, we only have access to the sample eigenvalues and not
the true ones, which makes it more difficult to distinguish the largest ¢ eigenvalues from

the smallest N — ¢ ones, especially at low SNR or low number of snapshots.

If k£ sources are present in the model, then we can write down
k

RE) =" (N — ol + oI (2.11)
=1

where v; is the eigenvector corresponding to the eigenvalue A; of R( ) Denoting ©%)

the vector to be estimated, then

0% = A1, ..., Aot ol o] (2.12)
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Thanks to assumption A3, the likelihood function is as follows
(2.13)

~

rxeW) =11 ¥ qegm o) HIRMa(t;))

i=1T
The log-likelihood function, with omitted terms that do not depend on ©%) becomes

—L log det{R")} — tr{[R())] "' R} (2.14)

Le®) =
where R is the sample covariance matrix computed by
A 1 "
R=—-XX (2.15)
L
Maximising (2.14) gives the maximum likelihood estimates of ©). As in [40], these
estimates are
Ni=1l, i=1...k (2.16)
1 N
2 ~
i=k+1
v; = U, i=1...k (2.18)

where Zl > ... > ] ~ and 4 ...4y are the sample eigenvalues and their corresponding
eigenvectors, respectively. In other words, they are the eigenvalues and eigenvectors of
the matrix R. Plugging equations (2.16), (2.17), (2.18) in (2.14), we get

N 1
[I (N—k)
=kt > (2.19)

R E
1 z ZZ

T i=kt1

N)

The model selection based on the MDL principle is the one that minimises the following
(2.20)

MDL(k) = —L(6™)) + %nlog(L)

where 7 is the number of free adjusted parameters in the parameter vector ©. Substi-
tuting (2.19) in (2.20) and plugging in the number of free adjusted parameters n (See

[39]), we get
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Therefore, according to the MDL criterion, the number of sources ¢ is the argument &

that minimises equation (2.21).

2.3 Detection by MMDL

It has been shown in [41] that the sample eigenvalues I ... Iy extracted from the sample
covariance matrix R are (N, L)-inconsistent estimators of the true eigenvalues of the
covariance matrix R,;, that is, the sample eigenvalues do not converge towards the
true ones as (N, L) — oo at the same rate (0 < ¢ = & < o0). The MDL estimator
in (2.21) depends on the sample eigenvalues of R, therefore, it seems natural that the
performance of the MDL estimator would perform poorly in the asymptotic regime, i.e.
(N,L) — oo at the same rate (0 < ¢ = & < c0). In other words, when insufficient
number of snapshots L are available with respect to the number of antennas N in such a
way that the ratio ¢ = % is not negligible, then the MDL estimator would perform poorly.
In this section, we present a modified MDL estimator to cope with this aforementioned

issue. The modified MDL estimator is based on using improved estimators of eigenvalues

of the covariance matrix R;;, which turn out to be (N, L)-consistent, as shown in [42].

2.3.1 Additional assumptions

Before presenting the improved estimators of the eigenvalues of the covariance matrix

R, we proceed as in [42] and pose the following assumptions:

e B1. The covariance matrix R, has uniformly bounded spectral norm for all IV,

i.e. Supy||Rsz|| < oo where ||.|| denotes spectral norm.

e B2. The sample covariance matrix written as
R=VR, ,WWH"VR,, (2.22)

where VR, denotes the square root of Ryy. The matrix W is of size N x L

with complex i.i.d. absolutely continous random entries, with each entry having

1

i.i.d. real and imaginary parts of zeros mean, variance 5,

and finite eighth-order

moments.

e B3. For all distinct ¢ + 1 eigenvalues of R;,, which are l; > ... >, > l441 = a2,
we assume infy{£ — ky(m)} > 0, where £y (m) is given in (2.23). In (2.23), K;

is the multiplicity of the " largest eigenvalue of Ry, ie. K| = ... = g =1
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and Kg,y1 = N — ¢. Furthermore, f1 < fo < ... < f; are the real-valued roots of
equation (2.24).

( g+l
156 it =1
i=1
q+1 q+1
kn(m) = max{ > Pim—1, Y ¢z’,m}, if l<m<q+1 (2.23a)
i=1 i=1
g+1
N 2 i it m=gq+1
i=1
with
li \2
= K (—— 2.23b
ik (lz — fk) ( )
and
— Ki—"— = 2.24
v 2 g = (224

Assumption B3 gives us a lower bound on the parameter L. In other words, the param-
eter L should be at last infy{ Nk (m)}. This assumption can also be, geometrically,
deduced from the asymptotic eigenvalue distribution. It turns out that for a particular
eigenvalue A\ to be separated from its adjacent clusters, one must have assumption B3

satisfied. For more info on this assumption, the reader is referred to [42].

2.3.2 The MMDL criterion

The following theorem turns out to be useful because it provides improved eigenvalue
estimates, which are not only L-consistent, but also (IV, L)-consistent. The theorem is

as follows:

Theorem 2.1. Under assumptions B1 to B3, the following quantities are strongly
(N, L)-consistent estimators of l; (j =1,...,q+1).

™ =L(l; —py), j=1...q (2.25a)
and
. . M.
lyr1 = N —q izq;rl (l — pa) (2.25b)

1
N Z - (2.25¢)

Proof. See [42] O
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With the improved eigenvalue estimates of R, in hand from (2.25), we can modify

equations (2.16) and (2.17) to get

Ni=L(l—p5), j=1...k (2.26a)
N
~9 L (A
6% = —— li — 1) (2.26b)
N—k i=k+1

Using these improved estimates in (2.26), one could easily verify that the improved MDL

estimtor finally becomes

N - _1_\ L(N—k)
. - li — py) N—F k
MDL™P (k) = —log< l—{z*kﬂj\g r ) ) + —(2N — k)log(L) (2.27)
N 2aimkr1 (li = i) 2
and, therefore the number of sources are estimated by
¢ = arg min MDL™P (k) (2.28)
k

Remark 2.2. As ¢ — 0, then we have lzmp —» I foralli=1...¢+ 1. Consequently,
one could show that MDL™P(k) — MDL(k) for all k£ as ¢ — 0.

Traditional MDL
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Figure 2.1: Experiment 1: Histogram of the number of signals resolved by the tradi-
tional MDL estimator.

We have conducted two experiments: Experiment 1 is dedicated for sufficiently spaced

sources, whereas in Experiment 2 we have two sources that are closely spaced.

In order to show the improvement of the modified MDL estimator, we compare it with
the traditional one. We have plotted two histograms that show the percentage of oc-

currence of an estimate of the number of sources ¢. Simulations were done under an
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Modified MDL
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Figure 2.2: Experiment 1: Histogram of the number of signals resolved by the MMDL
estimator.

SNR of 10 dB and in the presence of 6 sources with arbitrary (but sufficiently spaced)
angles of arrival. The sources were non-coherent and the array geometry consists of
N = 10 antennas uniformly spaced by half a wavelength. The number of snapshots col-
lected was L = 10, i.e. ¢ = % = 1. The AoAs are fixed to #; = 10°, 5 = 20°, 5 = 30°,
04 = 40°, 05 = 50°, and 0 = 60°. Note that both histograms were done using 1000 trials.

Figure 2.1 shows the histogram of the percentage of occurrence of ¢ using the ”tradi-
tional” MDL criterion, i.e equation (2.21). Indeed, the performance is poor because only

8% of the estimates of number of sources correspond to the true one, i.e. § = 6.

On the other hand, Fig 2.2 depicts the histogram of the percentage of occurrence of ¢
using the "modified” MDL criterion, i.e equations (2.27) and (2.28). There is a great
improvement as almost 68% of the estimates of number of sources correspond to the

true one.

Now, in Experiment 2, we have fixed the same parameters as Experiment other, but we
changed the AoA of the second source to 3 = 10.5°. In both cases, we can see that it is
7as if” the first and second source are seen as only one source, because they are closely

spaced.
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Figure 2.3: Experiment 2: Histogram of the number of signals resolved by the tradi-
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tional MDL estimator.

Modified MDL
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Figure 2.4: Experiment 2: Histogram of the number of signals resolved by the MMDL

estimator.

2.4 Conclusions and future directions

In this chapter and with the help of random matrix tools, we have presented a modi-

fied MDL (MMDL) estimator for detecting the number of superimposed signals. This
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MMDL estimator dominates the traditional MDL especially at the low number of snap-
shots regime, i.e. when L = O(N). Simulation results have shown the potential of
MMDL over the traditional MDL.

With respect to the results presented in this chapter, interesting future research direc-
tions may include: (i) analysing and deriving closed form expressions of the probability
of error of the MMDL technique and comparing it with that of the traditional MDL; (ii)
studying the regime where the MMDL is considered to be consistent in terms of number

of snapshots or SNR.



Chapter 3

Angle-of-Arrival Estimation by

Compressed Sensing Techniques

In this chapter, we propose different approaches on estimating the Angle-of-Arrival
(AoA) of multiple sources using compressed sensing techniques. The contributions could
be summarized as follows: (i) we derive an iterative Variational Bayes (VB) algorithm
that allows sparse recovery of the desired transmitted vector; (ii) we show that this it-
erative VB method outperforms existing compressed sensing methods, such as Matching
Pursuit (MP), Orthogonal MP (OMP), etc; (iii) we also derive a Newton-type Forward
Backward Greedy method that performs sparse recovery, given the data; (iv) we show,
through exhaustive simulations, that the proposed Newton-type method, is not only faster,
but attains a lower MSE when compared to methods such as Fast Matching Bayesian
Pursuit (FBMP) and Basis Pursuit Denoising (BPDN).

3.1 System model

3.1.1 Problem formulation

As in Chapter 2, we consider ¢ sources impinging an N-element antenna array, and

therefore the model reads

a(t) = A©)s(t) +w(t) (3.1)

where all quantities have been defined in Chapter 2.

Compressed sensing techniques recast the problem in equation (3.1) to the following

z(t) = As(t) +w(t) (3.2)

24
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where A € CNV*X is an over-complete dictionary (N < K),
A=[a(8Y)...a(p")] (3.3)

hopefully!, containing the g steering vectors in its columns. The vector s(t) € CK*1 is
a sparse vector, containing non-zero values at entries corresponding to the true AoAs.

For a single-snapshot, equation (3.2) could be seen as
z=As+w (3.4)
and for multiple snapshots, we stack all the observed vectors into a data matrix:
X = [z(0),2(T),...,z((L-1)T)| = AS+W (3.5)

where L is the number of collected snapshots. Also S and W are defined in a similar

manner to X.

3.1.2 Problem statement

The problem could be stated as follows:

e Single-Snapshot case: Given the observed vector £ and the over-complete dic-

tionary A in equation (3.4), estimate the sparse vector s.

e Multi-Snapshot case: Given the observed data matrix X and the over-complete

dictionary A in equation (3.5), estimate the row-sparse matrix S.

3.2 Background of existing methods

Consider the optimisation problem in penalised form given as follows
3 = argmin ||z — As|? + \||s|l, (3.6)
S

This problem is referred to as [,-optimisation. When p = 0, note that ||s||o counts
the number of non-zero elements of s. Also note that ||s||p is a quasi-norm, since the
triangular inequality of norms is not satisfied in this case. Solving the problem in (3.6),

when p = 0, is known to favour sparse solutions the most. However, this comes with a

'For example, if A = [a(—90°),a(—89°)...a(89°),a(90)], and we have ¢ = 1 source at 6; = 30.5°,
then the steering vector is in one of the columns of A.
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price of having an NP-hard problem in hand to solve. In this paper, we aim to study

the performance of three broad categories of compressed sensing algorithms, namely:

e Pursuit-type algorithms.
e Thresholding-type algorithms.

e Bayesian-based algorithms.

3.2.1 Pursuit-type algorithms

Pursuit-type algorithms are popular algorithms in the field of compressed sensing. More
specifically, matching pursuit algorithms deal with an approximate solution of the Iy-
optimisation problem. For uniqueness of the ly problem, we refer the reader to [44].
However, basis pursuit relax the ly-optimisation problem to an [i-optimisation one. The
[1-optimisation problem is also known as LASSO [45]. For uniqueness of the [; problem,
we refer the reader to [46]. An advantage of this relaxation is that the problem is
now convex. It remains to see when the unique solution provided by the [;-optimisation
problem coincides with that of the [y one. The papers in [44, 47] give sufficient conditions
for 8§ to be a unique solution of the [y and [i-optimisation problems. Moreover, the

necessary conditions for that to happen are found in [48, 49].

The pursuit algorithms that are evaluated in the context of AoA estimation in this paper

are the following:

e Matching Pursuit (MP) [50]
e Orthogonal MP (OMP) [51]
e Gradient, or directional, Pursuit (GP) [52]

e Basis Pursuit De-Noising (BPDN) [53]

The first three algorithms: MP, OMP, and GP are also referred to as Greedy algorithms.
These algorithms start by initialising § to a zero vector, then estimate a set of non-zero
components of § by adding new components to those non-zero terms, in an iterative
manner [54]. A brief summary of Greedy algorithms is given in Table 1. Indeed, the
algorithms: MP, OMP, and GP differ in how the ”Element Selection” and ” Coefficient
Updates” are done. For example, MP updates one element at each iteration (this entry
corresponds to the maximum magnitude of g(")). However, OMP updates multiple

entries at the same iteration using Least-Square fit. For more information regarding
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Table 1: General framework of Greedy algorithms

INPUT:

Given the data z and the dictionary A.
INITTALISATION:

r@® =z 30 =0, and n = 0.

MAIN LOOP:

while Stopping Criterion is not met do

e Element Selection: Select the columns of A based on the largest magnitude of
entries of g™ = AHp®)

e Coefficient Update: Obtain a new estimate 4™ that minimises ||z — As||? then
increment n.

Greedy methods, we encourage the reader to refer to [54] and [55]. Furthermore, many
work has been done on figuring out a good ”Stopping Criterion” for Greedy algorithms.
For example, in [56, 57], a necessary condition was given in order to recover s with error

threshold § = 0, i.e. when ||5®™]| < ¢ =0.

On the other hand, BPDN aims at an [j-optimisation problem, or equivalently the
following

3 =argmin||s|; subject to |z — As||?><e (3.7)
S

The regularization parameter € has to be chosen appropriately depending on the noise,

which is a major disadvantage of this algorithm.

3.2.2 Thresholding-type algorithms

The Greedy algorithms are easy and computationally efficient. However, they do not
promise recovery of s as strong as the [{-optimisation problem. In this sub-section, we

are interested in the following:

e Iterative Hard Thresholding (IHT) [58, 59]
e Normalised IHT (NIHT) [60]

e Iterative Shrinkage-Thresholding Algorithm (ISTA) [61]

It was shown in [62] that solutions of (3.6) are given as follows

s = pI'OX”.Hp (S - ’)/AH(AS - :1:)) (38)
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where v > 0 and the proximity function is given by
. 1 2
prox., (2) = arg min ( sl + 5 ls — 2[3) (3.9)

which has a unique solution s for every z € CX*! [63]. Now, equation (3.8) could be

solved using fixed-point in an iterative fashion, viz.
S(TH—I) = pI'OX”.Hp (S(n) - ’)/AH(AS(n) - a:)) (310)

When p = 0, the proxzimity in (3.10) gives the hard threshold, and therefore the IHT

algorithm
prOX/\’Y”-”O(z) = [ .. ,Zi]l‘zi|>\/m, .. .]T (311)

However, when p = 1, the prozimity in (3.10) gives the soft threshold. Hence, we obtain
the ISTA algorithm

2.
prox, ., (2) = [+, ‘z—qmax(|zi| —A,0),...]7T (3.12)

(2
Convergence and recovery properties of IHT are found in [58, 64, 65]. To further enhance
IHT, the normalised IHT (NIHT) was obtained by a simple modification [60]. This
modification yields a faster algorithm, whilst keeping theoretical performance similar to

IHT, in some scenarios.

3.2.3 Bayesian-based algorithms

In this sub-section, the sparse signal s is no longer treated as deterministic, but rather
as probabilistic, or random. In other words, a Bayesian approach is adopted. Here, we

briefly discuss the ideas of:

e Sparse reconstruction using distribution Agnostic Bayesian Matching Pursuit (SABMP)
[66]

e Iterative Variational Bayes (VB) with latent variables. [105]

SABMP [66] performs Bayesian estimates of the sparse signal s even when it is modelled
as non-Gaussian, thus the term ”Agnostic”. Even more, this method makes use of a
priori statistics of the noise and the sparsity rate of the signal. More specifically, the
signal s is modelled as s = 84 ® sp, where s4 consists of elements that are drawn from
some unknown distribution (Agnostic), whereas sp are drawn i.i.d. from a Bernoulli

distribution with success probability p. Note that p controls the sparsity of s, and thus
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it plays a major role in activating elements? of s. The SABMP method was shown,
through simulations, to outperform BPDN [53] and Fast Bayesian Matching Pursuit
(FBMP) [67].

On the other hand, we have recently introduced an iterative Variational Bayes (VB)
algorithm in [105] with the help of latent variables. Indeed, the paper was inspired by
the work in [68-70]. The papers [68-70] focus on introducing latent, or hidden, variables
and imposing prior distributions on these variables that favor sparsity. In [105], we
also introduce the latent variables discussed in [68-70], which leads to a novel iterative
Variational Bayes [71] algorithm that allows recovering s from a single observation x

with the help of the latent variables that were introduced.

3.3 Sparse Recovery via Iterative Variational Bayes

3.3.1 The Bayesian perspective

In this section, we shall take a Bayesian approach, i.e. the vector s is random and
not an unknown deterministic vector. Adopting the Bayesian criterion is equivalent to

optimising the mazimum aposteriori (MAP) [23], which is given as

p(x|s)p(s)
p(z)

where p(z|s) is known as the likelihood function and p(s) is referred to as the prior. It

§ = arg max p(s|x) = arg max (3.13)
s S

was noted in [68] and [69] that the following type of prior favors sparsity

K

p(s) = [T p(sk).  plsi) = plsilBr)d(Br) (3.14)

k=1

where 31 ... 8k are referred to as latent variables and

p(sklBr) = N (s1:0, 8, 1) (3.15)

and ¢(f) is a nonnegative function. Now, the latent variables f; ... Sk, which are
treated as random variables, should have appropriate corresponding pdfs, i.e. ¢(51)...o(8Kk),
respectively. As explained in [72], the pdf ¢(Bx) should be chosen as the conjugate to

the Gaussian distribution. One possibility is the Gamma function, i.e.

¢(Bk) = T'(Br; 7, 9) (3.16)

2By activating elements of s, we mean to set these elements to non-zero. Actually, this term was
taken from [66].
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Moreover, let v = % be the inverse of the noise variance. Also, we allow v to follow a
Gamma prior, viz.

p(v) =T(v;¢,mn) (3.17)

The MAP criterion, with the formulation from equations (3.14) till (3.17) is now

p(xls, B, v)p(s, B, v)
p(z)

p(s, B, viz) = (3.18)

with 8 = [B1 ... PKk]. Assuming independency between the signal vector s and the noise,

we can say that

p(s,B,v) = p(s|B)p(B)p(v) (3.19)

Finally, we notice that the normalisation factor in equation (3.19) given as

plx) = / p(zls, v)p(s|B)p(B)p(v)dsdudB (3.20)

does not have a closed-form expression; hence we propose to use the Variational Bayes

methodology.

3.3.2 Variational Bayes methodology

Let y = [B,v]. The log-likelihood function that does not take into account the latent

variables y, is given as follows [71]

log p([s) = /(J(y) log (]?(Zj)'s))dy +KL(qllp) (321)

where KL(q||p) is the Kullback-Leilbler divergence between p(y|z,s) and g(y). Since
KL(g||[p) > 0, then

oz pals) > [ a(0) g ("2 )ay (322

The methodology of Variational Bayes lies in maximising the lower bound in equa-

tion (3.22) by imposing a factorised structure on y as follows [71]

K+1

a@) = [T a(we) (3.23)
k=1
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Substituting the form of ¢(y) in (3.22) and following [71], this lower bound could be

expressed as follows:

[ atw tox (REYD)ay

K+1 (3.24)
==Y /Qk(yk) log qr(yr)dyr — KL(gi||Ps)
=1

kit

with

ﬁi L Eyk#yi{log p(il?,s’y)}
K+1

_ / log(p(x,5,9)) [ ar(ye)dus
k=1
ki

(3.25)

It is straightforward to see that the lower bound is maximising when KL(¢;||p;) = 0. In

other words, each ¢;(y;) should be chosen as

log 4:(y:) = By, {log p(,5,9) } +C (3.26)

where C' is a normalisation constant. Now, following [73], one could solve for s, in a

Variational Expectation-Maximisation (EM) iterative manner as follows:

e Variational E-step: Given s(™) (i.e. the value of s at iteration n), compute ql(") (yi)

for all ¢ using equation (3.26).

(n)

e Variational M-step: Given ¢; ' (y;) for all 7, compute s(™*t1) that maximises equa-

tion (3.24).

Now, we are ready to apply the Variational Bayes methodology to the problem in hand.

3.3.3 The Iterative Variational Bayes method

We first start off by deriving the expressions of ¢;(y;) and ¢(s). Following the factorised
structure of y in equation (3.23) and the independency between s and y, we can say that

the posterier factorises as follows

p(s,ylz,7,8,(,n) = p(s)p(y) = p(s)p(B)p(v) (3.27)
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With the help of equation (3.26), we now analytically evaluate ¢(s) as follows

log q(s) = Eﬂ,y{log p(m,s,y)}

= Em{log p(zls, V)p(SIﬂ)} (3.28)
K

- _%Eﬂw{yﬂx — As|? + Z BIJSIJQ}
k=1

With some abuse of notation, Eg, is the average over the joint distributions ¢(8) and
¢(v). In addition, we have omitted the constant in equation (3.28) for the sake of

compact presentation. Now, assuming that 8 and v are independent, we can say

K
m 1
log q(s) = _TVH:B — As|]* - 3 ngk]sk|2 (3.29)
k=1

where m,, = E{v} and mg, = E{S;}. With some mathematical steps, one could show

that ¢(s) is given as follows

log q(s) = —%(s — ms)HE’1 (s —my) (3.30)
where
2 =04+ m,A%A (3.31)
and
ms = m, LAz (3.32)

where = diag[mg, ...mg,|. Now, we compute ¢(8)

log q(B

Es,. logpxsy}

)
{
K
Es V{ > (log p(Br ) + log p(SIﬂ)} (3.33)
(&

k=1

1
— Dlog B — 06 + 3log B — BiElsi[?)

I
Mx

>
Il

1

where the terms (v — 1)log i and §8; appear due to K independent Gamma distribu-
tions, i.e. p(fk) for k =1... K. Again, with some abuse of notation, we have ommited
constant terms for the sake of compact presentation. With some straightforward algebra,

we could say that

27+ 1 26+ |(ms)k|? + Xk
(Bka )

qa(Br) = : 5 (3.34)
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where (myg)y is the k" entry of vector mg and Yk is the element found in the Eth

diagonal of ¥. In a similar manner, we could show that

201 2+ o — Ams |+ tr {ARA }> (3.35)

pu— F( 3
q(v) V=5 5
Knowing that for any random variable following a Gamma distribution with parameters
A and p, i.e. X ~ T'(z; A, 1), the mean of X, say my, is given as mx = % Therefore, it

is easy to see from equation (3.34) that

2v+1
mg, = 3.36
% = 25+ [(ma )l + Sk (3:50)
Similarly, equation (3.35) implies that
20+1
L = 3.37
T o |z — Amg|? + tr {ASAH} (8:37)
Before presenting the algorithm in Table 1, we find the following notation useful
O = [mg, ... mg,, My, 8] (3.38)

Furthermore, let (™) denote the value of the quantity xz at iteration n. For convenience,
z(©) is the initial value of z. Now, we are ready to state the iterative algorithm that is
based on Variational EM as explained in Section IV.A. The algorithm is given in Table
1.

MSE vs. SNR
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Figure 3.1: Two sources impinging the array from directions 6; = 0°

and 6y = 5°. The number of antennas is 10.

We have simulated three different scenarios. Furthermore, we fix the following simulation

parameters: Consider a Uniform Linear Antenna array composed of N antennas spaced
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MSE vs. SNR
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Figure 3.2: Two sources impinging the array from directions 6; = 0°

and 03 = 30°. The number of antennas is 10.
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Figure 3.3: Two sources impinging the array from directions 6; = 0° and 6y = 5°.
The SNR is 20dB.

at half a wavelength. Furthermore, assume g = 2 sources attacking the array from
directions #; = 0° and 65. The dictionary A is composed of K = 91 atoms discretized
from —45° till +45° with a grid step of 1°. All our experiments are done using M = 100

Monte Carlo trials.

In Scenario 1 (Figure 3.1), we fix N = 10 antennas and 63 = 5°. Moreover, we plot
the MSE vs. SNR and we notice that all algorithms except for CELO, SABMP, and
VB were not able to resolve the closely spaced sources. This phenomenon is explained

through the Restricted Isometry Property (RIP). In short, the RIP condition (in the
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context of AoA estimation) relates the number of resolvable sources® with the number
of antennas NN that should be used to resolve these sources. Furthermore, we observe
that the MSE of SABMP and VB are close to the Cramer-Rao Bound (CRB), whereas
CELO has inferior performance when compared to VB or SABMP. In order to validate

the RIP condition, we have simulated Scenarios 2 and 3.

In Scenario 2 (Figure 3.2), we fix N = 10 antennas and 63 = 30°. One could verify that
the RIP condition is now validated for 2 sources when separated at 30°. As one can now
see, all the algorithms now recover the sparse signal, and thus properly estimate the
AoAs at a sufficiently high SNR. For example, IHT presents no error when SNR, > 25
dB. Furthermore, MP, OMP, GP, and BPDN present no error when SNR > 30 dB.

In Scenario 3 (Figure 3.3), we fix the SNR to be 20 dB and 6, = 5°. Furthermore,
we plot the MSE vs. the number of antennas (N). We notice that all pursuit and
thresholding algorithms promise exact recovery of the closely spaced sources when the
number of antennas N exceeds a certain level. For instance, ISTA and THT promise
exact recovery at 20 dB of two sources spaced at 5° when N > 25. As for MP, OMP,
GP, and BPDN, the required number of antennas should exceed 30 to guarantee exact

recovery.

3.4 A Newton-type Forward Backward Greedy Method

In this section, we present a new Greedy method, which is inspired from the Adaptive
Forward Backward (AdFoBa) [74] Greedy method. The difference is in the cost function
itself, and therefore the forward step would be modified. In addition, we propose a

different backward scheme, which seems to correct false peaks.

3.4.1 Optimization problem

The proposed method deals with the multi-snapshots case, i.e. equation (3.5). Further-

more, greedy methods tackle the fp-optimization problem, namely:

minimize ||Y — AX]||3
X (3.39)
subject to || X |20 < ¢

3By number of resolvable sources, we mean the number of sources that could be resolved, given that
the angular separation between these sources exceed a certain threshold.



Chapter 3 Angle-of-Arrival Estimation by Compressed Sensing Techniques 36

where ||.|[2,0 is the ¢ o norm defined as
”X”Q,O = card {k) : HX]C,;HQ 7'é 0} (3.40)

where X . is the k' row of X and ||||2 is the ¢2 norm. This means that the 2 norm
counts the number of rows that have at least one non-zero entry. In what follows, we

discuss the Forward and Backward steps of the proposed Newton-type greedy method.

3.4.2 Forward step

At an n'" iteration, we propose to choose an atom* that minimizes

4™ =arg min min Y — AX™ + ;87|13
igat-n B [[[Vx (Y — AX)];.l13

(3.41)

Note the following

Y —AX ™ +e;87)13
min 3
s IVx (Y —AX)];.[3

= min [ AX ™ +e;8M)3
— mﬁintr {(Y — .A(X(") + ejﬁH)> (Y - .A(X(”) + ejﬁH))H}
(3.42)

Omitting terms that do not depend on 8, we get
mﬁin (— el ATYB + el ATAXB — Y " Ae; + BT XT AT Ae;j + B3] Ae;13) (3.43)

The optimal value of B is attained by setting the derivative of the above expression with

respect to B to zero.

;ﬁ(—efAHY,BJreJH.AHAX,B —BHIYH Ae; + BT XH A Ae; + ||B|I3]Ae;3) =0 (3.44)
which gives
—2Y 7 Ae; + 2XH AT Ae; + 2B°Pt|| Aej|5 =0 (3.45)

Re-arranging terms, we get

B = L (af(y - AX))" (3.46)

(M3

4 Atom refers to a column of the dictionary A
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But since the columns of A are restricted to have a unit norm, then ||Ae;||3 = 1. Plugging

B°Pt in equation (3.41), we now have

) g i Y A e ALY - A
searty Vx(Y — AX)); B

(3.47)

Intuitively, equation (3.47) means that we are "wiggling” the weights corresponding to
the j** atom, or column, in A and choosing the atom index that is least affected with
this perturbation. Moreover, we have included the Gradient term in the denominator of
the above cost function, similar to the Newton’s method. Although it may seem natural,
this additional term helps in speeding up the convergence of the algorithm, yet achieving
better performance as well. After finding this index and appending it in the support
set, namely

QM =1y {5} (3.48)

We estimate an updated version of X as follows

X(Tl+1) = (Agﬂ("))A(C,Q(m)) A{I’Q(n))y (349)
Also, let €™ denote the relative error at iteration n as

) = ||y — AXCH - |y - A (3.50)

3.4.3 Backward step

To allow flexibility of the proposed greedy method, we propose a backward scheme. The
backward scheme will indeed depend on the value of the error (™ at iteration (n). If
the error is "relatively” small, we can go on to another forward step n + 1, otherwise a

correction is needed. A natural question arises here:
What should €™ be compared to ?
Well, we can ask an alternative question, which is the following;:

What if the atom added at iteration (n) corresponding to index 3™ increases the cost

function ||[Y — AX |3 and not decrease it?

To check for this case, we compare the error €™ to an error 9™, which is computed if

the support Q™ contains 1 less element®. More precisely, define

(n) _ (n+1) 2 n) |2
191‘ - HY - A(:,Q(n)/{i})X(Q(n)/{i},:) HQ - HY - 'AX( )”2 (351)

5This could be seen as over-fitting
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for all i € Q™. Now, choose the smallest error amongst all 192("), ie.
9" = min {ﬂgn)}ieg(m (3.52)
and denote
i = argmin ﬁgn) (3.53)

Here, if 9 > (™) we say that the error at iteration n is acceptable and there doesn’t
seem to be any over-fitting. On the other hand, if 9" < (™ we should remove this

”defected atom”, which corresponds to index (")

QM Q) /{imy (3.54)

Re-modify the weighting matrix
X(n+1) — (A{:I,Q("))A(Z,Q("))) A(}{Q(n))y (355)

and finally go one step backward
n<mn—1 (3.56)

The forward backward procedure is repeated until error €™ < §, where § is a given

tolerance value.

Wieghts

20
—«— Proposed
0O+ v ¥ % ¥ | —7— AdFoBa
Y Y A4 Y
-20 + vy Y Y

60
-100 -50 0 50 100
Dic Index (A0AS)

Figure 3.4: Comparison of spectra for ¢ = 4 sources.
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Figure 3.6: MSE of AoAs for Exp. 2

We present some computer simulations to show the efficiency and accuracy of the pro-
posed Newton-type method. In Fig. 3.4, we have used N = 15 antennas and a dictionary
of size K = 181 discritized at steps of 1° . Furthermore, L = 1 snapshot was used at
SNR = 20 dB. We have ¢ = 4 sources at #; = —50°,0, = —27°,03 = —20°,04 = 20°
. We can clearly see the difference between the proposed Newton-type method and the
one AdFoBa [74]. Our method avoids overfitting of sources, whereas the AdFoBa over-
estimates then number of existing sources.

In Experiment 1 (Fig. 3.5), we are interested in the MSE performance of existing sparse
recovery methods compared to the proposed here. We compare the Newton-type For-
ward Backward proposed method with AdFoBa [74], BPDN [53] and FBMP [67]. Here
we have set L = 102 , N = 10 , ¢ = 2 with #; = 0° and #y = 10°. Also, K = 181 as
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Figure 3.7: Run times of Exp. 3

Error per iteration of Experiment 4

i *— FBMP
\\*\\

+—BPDN 1
Y

AdFoBa
W

—x— Proposed
N
\

\ .
* *

Error per iteration

.
e

g

[V

5

T

0

s

i *-1-1_ ¥

15

20

Iteration number
Figure 3.8: Errors per iteration of Exp. 4

before. The MSE is computed using 10* Monte Carlo trials. Here, in case of overfitting,
we choose the ¢ largest peaks in the weights. We can see that both Forward-Backward
schemes (the proposed one and AdFoBa) perform better than BPDN and FBMP, due
to their adaptive ability of ”correcting themselves” in case of any overfitting or false
selected atoms. Moreover, the proposed one performs better than AdFoBa, due to the
different backward step criterion. We can see an 5 dB between the proposed method
and the AdFoBa at sufficiently high SNR. In Experiment 2 (Fig. 3.6), we have used the
same parameters as in Experiment 1, except that we have changed L to L = 10. We
can also observe the phenomena as above. Note that here we have a higher MSE for

all methods due to less observed samples. Nevertheless, we can see that the MSE gaps
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between the different methods are still the same as that in Experiment 1. We can see
an 8 dB between the proposed method and the AdFoBa at sufficiently high SNR.
Another important aspect is the algorithm complexity or the number of operations re-
quired before the algorithm terminates. In Experiment 3 (i.e. Fig. 3.7), we study the
speed of the algorithms mentioned above as a function of number of antennas N . To
assess generality, we have also averaged the speeds over 10* Monte Carlo trials. We can
see that the proposed algorithm terminates before all the other ones mentioned above,
thanks to the gradient factor in the cost function of equation (3.41). If N = 100 anten-
nas were used, we can see a gain of speed of about 0.6 seconds compared to the FBMP
algorithm and 0.2 seconds compared to AdFoBa and BPDN.

Finally, in Experiment 4, i.e. Fig. 3.8, we have fixed the parameters as in Experiment 1

and studied the behaviour of the error for different algorithms, in the sense of
e =Y — AX™[3 - Y — AX V|3 (3.57)

This means that when no improvement occurs, the above error should become negligible.
Also, we can see that the proposed algorithm converges in about 8 to 9 iterations. The
AdFoBa and the BPDN require around 15 iterations to achieve the same error as the
proposed one. Additionally, we can see that the FBMP needs more than 20 iterations

to achieve this accuracy.

3.5 Conclusions and future directions

In this Chapter, and with the help of latent variables and Variational Bayes, we have
derived an iterative algorithm that could estimate the Angles of Arrival (AoA) of the in-
coming sources with a single snapshot, without the knowledge of the number of sources,

and with closely spaced sources at high SNR.

We have also seen that it is possible that the proposed Newton-type forward back-
ward greedy method performs faster, in terms of convergence and number of operations,
and better, in terms of Mean-Squared-Error (MSE) of AoAs.

Future work may be oriented towards performance analysis of the proposed Variational
Bayes algorithm and towards taking into account prior knowledge of the number of

source signals, which may improve the performance of this algorithm.
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Table 2: Proposed Variational Bayes algorithm for AoA Estimation

INPUT:
Given the observed vector £ = As + n.
INITIALISATION:

e Fix

e Initialise

MAIN POOP: A
while |61 — @™ > ¢ (Pre-defined Threshold) do

e Form

Q" = diag [m” ...m{"]

Compute ¥ as in equation (3.31)

500 = (20 + m{ A"A) -

Compute mg using (3.32)

me™ = MM gl

For all k =1... K, compute mg, using (3.36)

(n+1) _ 2y+1
Mo T (n)y, 12 1 ™)
20 + [(ms (™) [* + 2 1

Compute m,, using (3.37)

C T 24 o — AmP P+t {AZ® AR

Increment n

n<n-+1

OUTPUT:
The estimate of s is
§ =5 ms (TL)




Chapter 4

Joint Angle and Delay Estimation

In this chapter, we derive several algorithms for the problem of Joint Angle and Delay
FEstimation (JADE). The contributions, herein, are summarized as follows: (i) we derive
an algorithm that is a modification of the two dimensional Iterative Quadratic ML (2D-
IQML) algorithm, where an additional constraint is added for joint ToA and AoA esti-
mation; (ii) we show that 2D-IQML gives biased estimates of ToAs/AoAs and performs
poorly at low SNR due to noise induced bias; (iii) we derive a two dimensional Denoised
IQML (2D-DIQML) that gives consistent estimates and outperforms 2D-IQML; (iv) we
show that 2D-DIQML is asymptotically globally convergent and hence insensitive to the
initialisation; (v) we derive two algorithms, based on 2D Matriz Pencils (MP), for the
case of a single snapshot OFDM symbol observed by multiple antennas in a ULA config-
uration; (vi) one of the two MP algorithms seems more interesting because it’s motivated
from an idea that most Wi-Fi systems use a large number of subcarriers compared to
the number of antennas; (vii) We present a ”Spatio-Frequential” smoothing technique,
when the transmit OFDM symbol is received through multiple coherent signals using a

uniform linear antenna array, which is the case of an indoor multipath channel.

4.1 System Model

4.1.1 Problem formulation
Consider an OFDM symbol s(t) composed of M subcarriers and centered at a carrier

frequency f., impinging an antenna array of N antennas via ¢ multipath components,

each arriving at different AoAs {6;}7_; and ToAs {r;}{_,. In baseband, we could write

43
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the I** received OFDM symbol at the n antenna as:

q

rO(t) =3 an(0)s(t — ) + (1) (4.1)
=1
where e
3 bped?mAst it t € (0,7
s(t) = { m=0 (4.2)
0 elsewhere

where T = Aif is the OFDM symbol duration, Ay is the subcarrier spacing, b, is the

modulated symbol onto the m!* subcarrier, a,(6) is the n'* antenna response to an

incoming signal at angle §. The form of a,(f) depends on the array geometry. 'y(l)

(]
the complex coefficient of the i** multipath component. The term ng)(t) is background

noise. Plugging (4.2) in (4.1) and sampling ) (t) at regular intervals of k £ kL, we

is

get T’Ell)k é T7(7,l) (k%) as:
M-1 ok )
7"7(1[7)]9 _ Z Z bm6327r7’?6—327rmAfTi,yi(l)an(9i) + nfwl?k (43)
i=1 m=0

Collecting M samples, we can apply an M-point DFT, so observing the m!" subcarrier
at the n'" antenna, we get:
M-1 . q
RY, =S ema2mar = b, 3" 4D ay, (6)e-32mmerm 4 NGO, (4.4)
k=0 =1

We claim that the transmitted OFDM symbol s(¢) is a preamble field of the Wi-Fi 802.11

M-1

frame, thus prior knowledge of the modulated symbols {b,,},,

is a valid assumption,
since this stream of symbols (each at its corresponding sub-carrier) are repeated in each
OFDM symbol placed at the beginning of the Wi-Fi frame for channel estimation and
frequency offset purposes. Therefore, at each OFDM symbol reception, we compensate
for all such symbols (multiplying by %) and hence omit by, from (4.4). Re-writing (4.4)

in a compact matrix form, we have:
z(l)=H~()+n(l), I=1...L (4.5)

where z(l) and n(l) are M N x 1 vectors

z(l) = vec{R}, Rm™ = R (4.6)
n(l) = vec{N}, Nmn) — NT(len (4.7)

H is an M N X ¢ matrix given as

H=ARC = [a(6)) ®e(r1)...a(0,) @ clr,)] (4.8)
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where a(f) and ¢(7) are N x 1 and M x 1, respectively. The n'* entry of a(6), denoted
a,(0), is the response of the n'" antenna to a signal arriving at angle § with respect
to the antenna array. We shall assume a Uniform Linear Array (ULA), thus a,(0) =

e—Jd2rfe(n=1)sin(0) where d is the distance between 2 adjacent antennas. Similarly, the

_ efj27r7'(m71)

m!" entry of ¢(), denoted ¢, (7) Af . is the response of the m!" subcarrier

to a signal arriving with time delay 7. The g x 1 vector «({) is composed of the multipath

coefficients
T (4.9)

Throughout the chapter, we make a distinction between the multi-snapshot case (L > 2)
and the single-snapshot case (L = 1). As done in the previous chapter, we omit the time

dependence in case of 1 snapshot, i.e.

z=Hvy+n (4.10)

4.1.2 Assumptions

We assume the following:

e Al: H is full column rank.

e A2: The multipath coefficients, (), are fixed within a snapshot, and may vary

from one snapshot to another.
e A3: The number of multipath components ¢ is known.

e A4: The vector n(l) is additive Gaussian noise of zero mean and variance oI,
assumed to be white over space, frequencies, and symbols; we also assume that

the noise is independent from the multipath coefficients.

Condition A2 is a valid assumption since the time it takes for an indoor channel to
change significantly is of the order of milliseconds [75], whereas the OFDM symbol

duration of a snapshot 7T is of the order of microseconds.

Techniques for estimating the number of sources could be done through hypothesis
testing [76] or via information theoretic criteria [77]. However, we assume knowledge of

the number of sources, i.e. ¢ is known.

4.1.3 Problem statement

The problem could be stated as follows:
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e Single-Snapshot case: Given the observed vector  in equation (4.10) and the

number of multi-path components ¢, and their corresponding AoAs and ToAs

{0 iy

e Multi-Snapshot case: Given the observed data {z(l)}%_; in equation (4.5) and

the number of multi-path components ¢, and their corresponding AoAs and ToAs

{0, )}y

4.2 Efficient Maximum Likelihood Joint AoA and ToA es-

timation

In a deterministic approach, the signal parameters {(6;,7;)};_; and multipath compo-
nents {v(I)}~, are not sample functions of random processes. Instead, these quantities
are modelled as unknown deterministic sequences, and are jointly estimated through the
criterion:

L
[H A1), A(L)] = argmin > [&() - Hy(D)| (4.11)
H:’Y(l)""v’Y(L) =1

Minimising with respect to {y(I)}£,, we obtain:
A1) = (HPH) 'H¥2(l), 1=1...L (4.12)

Treating {~(I)}1_, as nuissance parameters, we substitute its estimate obtained by (4.12)

in (4.11) to get:
| L 2 .
H = arg minz H,@IJ;:L'(Z)H = arg min tr{?ﬁRm} (4.13)
H = H

where P4 = Iy — H(HYH)"'H* is the orthogonal projection onto the noise sub-
space. The matrix R, is the sample covariance matrix obtained by Ry, = 1 Zlel z(D)z()1.

Equation (4.13) represents the DML criteria.

4.2.1 Parameterisation of the Noise Subspace

The Deterministic ML (DML) criterion in (4.10) is highly nonlinear, as it requires a 2g-
dimensional search, and its direct optimisation would require cumbersome optimisation
techniques. The key to a computationally attractive solution of the DML problem is

a parameterisation of the noise subspace, as done in this section. Consider the two
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following polynomials:

q q
A(z) = Z a;z7 = H(z — Zr,) (4.14a)
i=0 i=1
and _
' S i _ X T (- )
i=0 i=1  k=lkz#i Tk

where z,, = e 72™Ti%5 and zg, = e /927 Fesn(0) Note that A(z,,) = 0 and B(zy,) = zp,.
The coefficient ag = 1 so that A(z) is monic. Furthermore, W(f) is a ((2N — 1)(M —
q) + N — 1) x M N matrix given as

IN®A
117 _ 4.15
(f) [IN_;[‘O] QB — [OIIN_;[] ®IM7q_1 ( )

where A is (M —q) x M

g ai ap 0
A= (4.16a)
0 g ai  ag
and Bis (M —qg+1)x M
bg—1 by by 0
B- (4.16b)
0 bg—1 by by
Also, f is 2(¢+ 1) x 1 given as
7= la b7 1] (4.16¢)
of — [ao aq} (4.16d)
BT — [bo bqfl] (4.16e)

Finally, Insq—1is (M — g+ 1) x M defined by

q—1
Tntgo1 = Tar—qe1|0---0) (4.16f)

Theorem 4.1. W(f) has row rank MN — q if ¢ < % and H has full column rank.

Proof. See [107]. O
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Under assumption Al and ¢ < %, the rows of the matrix W (f) (equivalently, the
columns of W (f)) span the noise subspace, i.e. W(f)H = 0 and thus we can write

Note that this parameterisation resolves maximally £ ‘H

paths. It is worth mentioning
that if N > M, one would want to resolve & H paths (and not H paths), so a simple
modification of the model in (4.5) is done by interchanging a(#) and ¢(7) in (4.8), then
constructing matrices A and B (equivalently, the polynomials A(z) and B(z)) of N and
N — 1 coefficients, respectively. In general, we could find a noise parameterisation that

could allow the resolvability of w

4.2.2 2D Iterative Quadratic ML (2D-IQML)

We rewrite the DML cost function in (4.13) as follows

H}}ntr{gﬁRm} - ngni H@WH(f)z(Z)HQ
=1

. (4.17)

. i
= min 3" W () (WEHW () W(H)z()
=1
where the Moore-Penrose pseudo-inverse has to be introduced since W(f)W(f) is
singular for ¢ < 25t and non-singular for ¢ = 252 if M is odd. Note that W(f)z(l) =
X f, where X} is an ((2N — 1)(M — ¢) + N — 1) x (2q + 2) matrix formed of elements
of z(I). Finally, (4.17) boils down to the following

f = argmin fQf (4.18a)
f
where .
o=y x (WwnHw"(p) x, (4.18b)
=1
The cost function in (4.18) could be solved in an iterative fashion as
f(n) = arg min fHQ(nfl)f (4.19a)
f
where
A T
(n=1) —Z""l ( (Fn-1)W H(f(m))) X (4.19D)

The vector f (n) 18 the estimated vector of f at iteration (n). A good initialisation would

be to set W(f(o))WH(f(O)) = I. If the constraint el f = 1 was posed to solve (4.19a),

then at any iteration (n), the vector f (n) Would estimate the coefficients ina = [a, . .. ag|’
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properly, but the rest of its entries corresponding to the coefficients in b = [b, ... by—1]"
would be zero because there is no constraint posed on f in order to take the structure
of b= [b,...b,—1]7 into account.

To cope with the aforementioned issue, we add the contraint (Je;)T f = 1. Note that
this constraint is reasonable since, indeed, the last entry of f is 1. In short, we aim to

solve (4.19) subject to:

elf=1 (4.20a)
and
el Jf =1 (4.20D)
We write the Lagrangian function as
L(f7 Ui, M?) = fHQ(n—l)f ! (e{f - 1) - MQ(e{Jf - 1) (421)

where p1 and po are constants. Setting the derivative of L(f, i1, u2) with respect to f
to 0, we get 5
a*fL(f,Mhm) =2Q—1)f — me1 — paJer =0 (4.22)

So, with some straightforward manipulations, we have
f=mQ, e +mQ.  Je (4.23)

where p1; = Ei. Plugging (4.23) in (4.20a) and (4.20b), we have the following set of

a | ;| |1
SIFIRN a2

equations

where «, 3, and ~ are given as:

a=e{Q, el (4.25a)
_ T —1
B =€ JQ(n_l)Jel (4251:))
v = elTQ(_nl_l)Jel (4.25¢)

Finally, solving (4.24) with respect to ull and /1//2, we get the following

f _ (B - ’Y)Q(_nlfl)el + (a - 7*)Q(_nl,1)=]el
= aB — |y

The 2D-IQML could be summarised as follows:

(4.26)
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e Stepl. Given {m(l)}lL:1, form {Xl}lL:1.

o Step2. Initialise Q) = Zlel X{IXl.

e Step3. Iterate over (n) to compute f(n), using (24) and (25). Stop when Hf(n) -
f(n,l)H < & (Pre-defined Threshold).

e Stepj. Form the polynomials A(z) and B(z) using the estimate of f (n) Obtained
in the last iteration of Step8 and equations (13), (15¢), (15d), (15e).

e Step5. Find the ¢ roots of A(z;) = 0, which give estimates of the ToAs as

.4
{Zf—. = e‘J27rTiAf} :
‘ i=1

e Step6. Compute B(zz) = z,, which give estimates of the ¢ AoAs as {zé, =

e—dewasin(éi) }q
i=1

The first iteration of 2D-IQML could be seen as a Subchannel Response Matching (SRM)
[79]. Note that, in a first iteration of 2D-IQML, we minimise:

1 L
- l;fHXﬁle = Ez{fHXf[Xzf} (4.27)

= B{f6'Gif | + Pu{WH(HW(H)}

where g(I) = H~y(l) and W(f)g(l) = G,f, with G; being a matrix formed by elements
of g(1). (4.27) tells us that a balanced f yields asymptotically unbiased and consistent
estimates, whereas unbalanced f yield biased and inconsistent estimates. One should
also note that different parameterisations of the noise subspace give different estimates of
f. This initialisation could be seen as a non-weighted version of 2D-IQML. Furthermore,
it is easy to see that the optimal value of f, denoted hereby f°, is the one that nulls
E{fH ng Gif}. Therefore, in a noiseless scenario, a first iteration of 2D-IQML gives the
true value f°. In general, at sufficiently high SNR, 2D-IQML performs well; however, at
low SNR, the 2D-IQML estimate is biased. Indeed, consider the asymptotic situation in

which the number of subcarriers M grow to infinity. By the law of large numbers, the
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2D-IQML criterion becomes essentially equivalent to its expected value, viz.

1
AR

= e {WHORW (D) Ea)e" (1)} } + O( ) (1.29)
0.2
= 371" RIG + S {WHORW() ) + O(—)

where R = R(f) = W(f)WH(f).

Recall that the minimiser of fIGHRIG, f is fo. Therefore, at high SNR, the 2D-IQML
estimate f differs from the optimal f° by an asymptotically vanishing estimation error,
because ”—Ajtr{WH(f)RTW(f)} is negligible. However, this is not the case at low SNR,
simply because f° is not the minimiser of %tr{WH(f)RTW(f)}, even if R = R(f?).
More explicitely,

win {ix (WY (R W)}

(4.29)
<] Py} = MN ¢

Finally, we can say from (4.29) that %tr{WH(f)'R,TW(f)} is minimised at f! # f°,
so the 2D-IQML criteria is minimised at f? # f°. Hence, due to presence of noise, f°
is not asymptotically near a stationary point of the algorithm and 2D-IQML performs

poorly for any initialisation.

We propose here a method to ”denoise” the 2D-IQML criterion in a sense that it will

correct the 2D-IQML bias and provide a consistent estimate of the vector f.

4.2.3 2D-Denoised IQML (2D-DIQML)

Asymptotic Number of Subcarriers (Large M)

The asymptotic noise contribution to the DML criterion is 02tr{.9?WH(f)} (see (4.28)).
The denoising strategy consists of removing this asymptotic noise term, or more precisely,

an estimate of it i.e. &Qtr{g'?’WH(f)} from the DML criterion, which becomes

L
H}inz {tr{?WH(f) (e(a’ (1) — “QIMN)}} =
=1

(4.30)

=1

L
min 3 {fHXﬁR* (Hxif - s {W(HR! (f)W(f)}}
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subject to (4.20a) and (4.20b).
Note that this operation does not change the optimizer of the DML criterion as 62tr{9WH( f)} =
62(MN — q) is constant with respect to f. We take 62 to be a consistent estimate of

the noise variance. The denoised DML criterion is now solved in the 2D-IQML way, i.e.

fm):angman{Qm,U—¢¥D}f (4.31)
f
subject to (4.20a) and (4.20b).
The matrix D is such that f"2HDf = tr{WH(f")’RT(f)W(f')}. Asymptotically in the
number of subcarriers, 2D-DIQML is globally convergent. Indeed, asymptotically it is

essentially equivalent to the denoised criterion

1,
VM
if 02 — 62 = O(—%). Notice, again, that the f© minimises the first term on the right

VM
hand side of (4.32). Therefore, one iteration of 2D-DIQML yields an estimate of the

form f = pf‘“k(’)(ﬁ), for some scaling factor p. So, the 2D-DIQML algorithm behaves

asymptotically at any SNR as the 2D-IQML algorithm behaves at high SNR.

S Qi — 8D} = S FIGIRIG + O (432

Finite Number of Subcarriers

The choice of 62 turns out to be crucial. In practice, with large but finite number
of subcarriers M, and the true noise variance, the central matrix @ — o?D in (4.31) is
indefinite, thus the minimisation problem is no longer well posed. Simulations show that
the performance of 2D-DIQML in that case is very poor. The central matrix @ — 62D

should be constrained to be positive semi-definite.

For the consistent estimate of o2, we choose here a certain A that renders @ — AD exactly

positive semi-definite with one singularity. The 2D-DIQML criterion becomes

f(n) = arg;;cmin fH{Q(n_l) — )\D}f (4.33)
A
subject to (4.20a), (4.20b), and Q(,_1) — AD being positive semi-definite.
The solution of A is A = A\pn (Q(n,l),D), the minimal generalised eigenvalue of Q,_)
and D. After solving for A\, we get f at iteration (n) as
R (B/ _ ’)/,)8(711_1)61 + (Oé/ _ 7/*)8(:11_1)J61

fn) = TP (4.34)
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where
Sin1)=Qn_1) — AD (4.35a)
o =elS, el (4.35D)
g =elds; | Jei (4.35¢)
7Y =elS; e (4.35d)

Asymptotically, 2D-DIQML becomes

% fA(xfRIxX, - D) f
. . 1 (4.36)
= MngfIRTglf + M(UQ -\ f'Df + O(ﬁ)

Notice that, first, optimisation with respect to A subject to the non-negativity constraint
would give A = o2 + O(ﬁ), regardless of any initialisation of f. Hence, A\ asymptot-
ically nulls the noise contribution, and the optimal value of f is f°. Therefore, global
convergence applies for f (to f°) and A (to 02). In other words, at high M, the minimiser

of fis f° and the minimiser of \ is 0.

True AoA =0 deg
T

— — 2D-IQML
—%— 2D-DIQML

.60 1 1 1 1 1
0 10 20 30 40 50 60

lteration Number
Figure 4.1: 2D-IQML vs. 2D-DIQML on AoA estimation of 1st Path, where true
AoA = 0 deg at SNR = -5dB

We have observed that, indeed, the 2D-DIQML algorithm behaves asymptotically at any
SNR as the 2D-1QML algorithm behaves at high SNR. To that extent, we fix the following

simulation parameters:

o M =64 (Large M) subcarriers and N = 3 antennas.
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True ToA = 0 nsec
T
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Figure 4.2: 2D-IQML vs. 2D-DIQML on ToA estimation of 1st Path, where true ToA
= 0 nsec at SNR = -5dB

True AoA = 30 de
45 . . : g

— — 2D-IQML
—s%— 2D-DIQML

0 1 1 1 1 1
0 10 20 30 40 50 60

Iteration Number

Figure 4.3: 2D-IQML vs. 2D-DIQML on AoA estimation of 2nd Path, where true
AoA = 30 deg at SNR = -5dB

o Ap=0.3125MHz and d = 3
e g = 2 coherent paths with:

1. AoAs: 6; =0 and 05 = 30 degrees.
2. ToAs: 71 = 0 and 7 = 100 nsecs.
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True ToOA =1
800 : : rue To . 00 nsec
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700 ‘ E

)
600 |- ll

500-'l

sec)

<400 -

Time

300 |-

200 |-

100 -1 H:
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Figure 4.4: 2D-IQML vs. 2D-DIQML on ToA estimation of 2nd Path, where true
ToA = 100 deg at SNR = -5dB

e [ =10 snapshots.

e SNR = —5dB (Low SNR).

At high SNR, both algorithms perform equally the same, i.e. both give unbiased esti-
mates of ToA/AoAs. Therefore, we have excluded this case from simulations. Neverthe-
less, it is of vast interest to see how both algorithms perform at low SNR and with a large
number of subcarriers. As one can see, the estimated ToAs of both algorithms converge
to the true ToA value (see Fig 4.2 and Fig 4.4). However, 2D-IQML AoA estimates
are much more biased compared to 2D-DIQML AoA estimates. Indeed, as one could
observe in Fig 4.1, the AoA of the first path which was set to be 0 degrees, was estimated
to be 4 degrees by 2D-IQML and 0 degrees by 2D-DIQML. Also, by taking a look at
Fig 4.3, the AoA of the second path which was set to be 30 degrees, was estimated to
be 15 degrees by 2D-IQML and 33 degrees by 2D-DIQML. Finally, we can say that, at
low SNR and high number of subcarriers, the 2D-IQML estimates are biased compared
to the 2D-DIQML estimates.
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4.3 Joint Angle and Delay Estimation by a single-snapshot:
2D Matrix Pencil Approach

In this section, and as the section title suggests, we shall use the single-snapshot model,
i.e.

z=H~v+n

where

H=CyKAy (4.37)

and all quantities are defined in the first section of this Chapter. In addition, we shall
make the sizes of the matrices A and C, as well as the sizes of their corresponding

columns, explicit. In other words, matrices (Cg, Ax) € CK¥*9 where

CK = [CK<T1)...CK<TQ)] (4.38)
AK = [aK(Gl) . .G,K(Qq)] (439)

4.3.1 ToA Estimation using 2D Matrix Pencil

Analytic Formulation

We start by forming a matrix from the data vector & given in equation (4.10). Let X

be a M, x Kjr Hankel block matrix defined as follows

X, Xy - Xk,
P (4.40)
Xv, Xmpt1 - Xum

where X; is an N, x Ky Hankel matrix given by

Xin Xio2 - Xiky
X, Xis - Xig

x;=| "7 o (4.41)
XinN, XinNp+1 - Xi N

with
Ky=M—-M,+1 (4.42)
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and
Ky=N-N,+1. (4.43)

The matrix X could be written as

X =LTRT+N (4.44)

where N is a noise matrix with appropriate dimension, and L is an M, N, X ¢ matrix

expressed as

An,
Ay D,
L= " (4.45)
M,y—1
ANpDT P
and R is a KKy X ¢ matrix given by
Ak,
A D,
R= fo (4.46)
AAK]\,I).,I.(]‘/[_1
The matrices I' and D, are ¢ X ¢ diagonal matrices as
I = diag [y1...7] (4.47)
and
D, = diag [z, ... 2r,] (4.48)
Let X; and X, be two N, M, x Ky(Kjr — 1) matrices defined as
X; = X LN (K1) (4.49a)
X, = XOEN+H):EnKar) (4.49b)
In a noiseless case, it is easy to see that
X, =LIR! (4.50a)
and
X, =LI'D.R! (4.50b)
where

R, = RVEN(Eu=1)) (4.50c¢)
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Consider the following matrix pencil
X, —XX; =LI'(D; — M\,)R, (4.51)

Provided that the two matrices L and R, are full column rank, i.e. the rank of both
matrices is ¢, then the rank of the matrix pencil X, — AX; drops to ¢ — 1 at A = 2, for
alli=1...q.

It is proved in [50] that if the singular value decomposition of X; is X; = UAV! then

the ¢ eigenvalues of the following matrix

T=A'"U"X,V (4.52a)
where
U=vutt (4.52D)
A = Atato (4.52c)
V = vt (4.52d)

are the values of A that drop the rank of the matrix pencil X, — AX; to ¢ — 1. In other
words, these g values of A are called the generalised eigenvalues of the matrix pencil
(X,,X). As a consequence, the g generalised eigenvalues of (X,,X;) are estimates of

{zr,}1_,. We denote these estimates as {Z}"}7_,.

Conditions for ToA Estimates using 2D Matrix Pencil

Recall that under the assumption that both matrices L and R, are full column rank, the
generalised eigenvalues of the matrix pencil (X,, X)) are estimates of {z,}{_,. Before

deriving the conditions, we define the following:
Definition: Let P and () be two integers defined as follows:

e Let ¢7 be the number of distinct ToAs, i.e. 7',...,79; and let the following
integers P, ..., Py, denote their corresponding multiplicity.
Note that Zg;l P, = ¢q. The maximum number of paths arriving at the same time

but with different angles of arrival is max; P; = P.

e Similarly, let ¢’ be the number of distinct AoAs, i.e. 91,...,9‘10; and let the
following integers Q1, ..., denote their corresponding multiplicity.
6
Note that > 7 ; @Q; = ¢. The maximum number of paths arriving at same AoAs

but with different ToAs is max; Q; = Q.
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It is straightforward to see that L and R, have same structure, but different dimensions,
i.e.

L=Cy, RAy, (4.53)
R,=Crk, 1 KAk, (4.54)

Remark 4.2. Let H € CMNX4 e a matrix defined as H = C; K Ay. The matrix H has

full column rank if the following hold:

e Condition 1: qg<MN
o Condition 2: P<N
o Condition 3: Q<M

Using the above remark, it is easy to see that both matrices L and R, are full column

rank under the following conditions:

e B1. g <min {M,Ny, Kn(Ky — 1)}
e B2, P < min {N,, Ky}
e B3. Q < min {M,, K); — 1}

Therefore, if conditions B1 till B3 are satisfied, the ToAs could be estimated through
the 2D Matrix Pencil technique described herein.

4.3.2 AoA Estimation using 2D Matrix Pencil
Analytic Formulation

Let Y be a shuffled version of matrix X, viz.
Y=XP (4.55)

where P is a Ky Ky x Kj; Ky permutation matrix defined as follows

E,

Pt = | (4.56a)
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where
€;

eg—&—K
o (4.56Db)

eT
L=k+Kn(Kp—1) |

where e;, is the k' column of the identity matrix I KyKy- Now, as done in equa-
tion (4.49), form Y; and Y, by

Y, = YLK (En-1) (4.57a)

Y, = Y (Eu+1):KnKa) (4.57b)

Using the same methodology as in equations (4.50), (4.51), and (4.52), one could obtain
estimates of the AoAs, i.e. {ﬁé\fp 7 . The conditions for proper estimation of AoAs
using the 2D Matrix Pencil technique just described are similar to those in Section 4.3.1

and are given in the following subsection.

Conditions for AoA Estimates using 2D Matrix Pencil

The conditions for AoA estimation using 2D Matrix Pencil are the following:

e C1. g <min {M,N,, Ky;(Ky — 1)}
o C2. P <min {N,, Ky — 1}
e C3. Q < min {Mp, Ky}

4.3.3 Proposed Algorithms

80 T T T T T T T
60 - (<] o (<] -
40 ° o o o T
B 20+ 4
3 o o
;‘3 of coeeo 4
)
= 20 o =
-40 -
0 ]
608 © =
_80 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
7 (nsec)

Figure 4.5: Scatter plot of experiment 1 at SNR = 30 dB.
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Figure 4.6: Scatter plot of experiment 2 at SNR = 20 dB.
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Figure 4.7: Scatter plot of experiment 3 at SNR = 10 dB.
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Figure 4.8: Scatter plot of experiment 4 at SNR = 0 dB.

In this section, we present two algorithms that allow joint estimation of the times and

angles of arrival. The first algorithm is intended for systems where the number of subcar-

riers M is much larger than the number of antennas N, i.e. M > N. This is a reasonable

assumption since most Wi-Fi technologies are equipped with 3 up to 8 antennas. More-

over, the number of subcarriers used in a Wi-Fi OFDM symbol varies between 64 and

512. Furthermore, the second algorithm could be used for any configuration, i.e. for any

M and N. In addition, conditions for the two algorithms are provided.
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Figure 4.9: MSE of ToAs vs. SNR of experiment 5.
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Figure 4.10: MSE of AoAs vs. SNR of experiment 5.

Algorithm 1: (M > N)

Note that the parameters K); and Ky (or equivalently M, and N,) are free in a noiseless
case. However, in a noisy scenario, those parameters should be properly selected. For
more details, the reader is referred to [50]. In any case, the parameters K and Ky
parameters are jointly tuned so that conditions B1 till B3 (or C1 till C3) are met, if
the purpose is to estimate the ToAs (or AoAs) using 2D Matrix Pencil. If M > N, one
could show that there exist integers Kjs and Ky (or equivalently M, and N,) where

conditions B1 till B3 are less restrictive than conditions C1 till C3. In other words, if
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M > N, the 2D Matrix Pencil described herein allows estimation of more ToAs than

AoAs. Therefore, we propose the following algorithm:

Step 1: Given z and ¢, form X using equations (4.40) and (4.41).
Step 2: Obtain {2M"}7 | using equations (4.49) till (4.52).

Step 3: Estimate the ToAs of the ¢ paths by the following relation:

s MP
ang4z_.
MP — _ane{sn T} (4.58)
2w Ay

Step 4: Form an N x M matrix Z by using entries of the snapshot vector & as

follows:
X1 Xo1 - X
X12 Xoo -+ Xy
S ! (4.59)
Xinv Xon - Xunwn
Note that Z is written as:
Z = ANTCH +W (4.60)

where W is the noise part. This step comprises in estimating the term G = ANT

using Least Squares (LS), i.e:
G = argmin | Z — GCY|)? (4.61)
G

The solution of (4.61) is:
G =zCl, (4.62)
where C’LI is the Moore—Penrose pseudoinverse of C;\F/I and is given by

Cli = Ci(CNCh) (4.63)

Note that C’IT\4 exists if and only if ¢ < M and all ToAs are distinct, i.e. P = 1.
Finally, we use the 2D Matrix Pencil estimates of the ToAs obtained in Step 3 to
compute C}; in order to obtain the estimate of G using equation (4.63) then (4.62).

In other words, C'y is obtained as

Cy = [CM(ﬂVIP) . .CM(f‘MP)] (4.64)
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e Step 5: Using G from Step 4, we solve the following optimisation problem:

Ay = argmin |G — ANT|?
Ax
q o (4.65)
=Y argmin |[G% — yian(6,)|”

i=1 an(0:)

Note that the problem is decoupled in terms of an(6;) due to the diagonal structure
of T'. The solution of the problem under a norm constraint, e.g. [lax(0;)||* = N

fori=1...q,is

an(0;) = ——— 4.66
BT o

e Step 6: In the last step, we estimate the AoAs by using an LS fit, i.e.

é; = argmin ||ang{an(6;)} — Te;||>, i=1...q (4.67)

€;

where T € CN*2 and is given by

0 1
11

T=| (4.68)
N-1 1

and the solution is & = [e; 1, ei2]" = TTang{ax(;)} with Tt = (TTT)"'TT and

finally 6; is estimated as follows

A Q1A .
b; = —sin*l(Z;d>, i=1...q (4.69)

Note that the angles in equation (4.67) should be carefully dealt with, i.e. those
angles should be within the range [0,27]. In MATLAB, the unwrap command is
able to maintain the angles in this range. In short, Algorithm 1 is useful when
M > N. Note that only the ToAs were estimated using the 2D Matrix Pencil
technique in Step 2. Therefore, the conditions for Algorithm 1 are B1 till B3,
in addition to the condition of existance of a pseudoinverse of Cy; in Step 4.

Combining all those conditions, we get the following;:
— D1. g <min {M,Np, Kn(Ky — 1), M}
— D2. P=1
— D3. Q < min {M,, Ky — 1}
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Algorithm 2

In this algorithm, both ToAs and AoAs are estimated using the 2D-Matrix Pencil tech-

nique, i.e.

Step 1 till Step 8 are similar to Algorithm 1.

Step 4: Form' Y = X P where P is given in equation (4.56).

Step 5: Obtain {£3'"}{_ using equations (4.57) and (4.52).

Step 6: Estimate the AoAs of the ¢ paths by the following relation:

e = g (L)

4.70
2md ( )

Note that the ToAs and AoAs are estimated but are not matched; unlike Algorithm

1, where the matching happens naturally in Step 5. In other words, %,E/IP and HA};/IP

are not necessarily the ToA and AoA of the k"

multipath. Therefore, a matching
step is required to pair {#MF}7 | with {9”%\/[13}?:1_ Fixing the position of 7MF at

position k, there are ¢! possible permutations of {é%\/lp}g:r

e Step 7: The matching criterion is based on evaluating the Maximum Likelihood
(ML) cost function for joint angles and times of arrival estimation (see [107] for
the JADE ML cost function) by fixing the positions of {#MP}Y_, and permuting
{6MP}9_ as done in the table SubAlgorithm 1.

Since the ToAs and AoAs are both estimated using 2D Matrix Pencil, Algorithm
2 needs conditions B1 till B3 and C1 till C3, and therefore

— E1. q < min {Mpr,KN(KM — 1),KM(KN — 1)}

— E2. P <min {Np, Ky — 1}

— E3. Q <min {M,, Kj; — 1}

This section demonstrates the performance of Algorithm 1 as a function of SNR. The

performance of Algorithm 2 was not provided due to lack of space.

In the first four experiments, the array was ULA with N = 3 antennas spaced half
a wavelength apart. The transmitted OFDM symbol occupies 40 MHz of bandwidth,
and uses M = 64 subcarriers with uniform spacing A= 0.625 MHz. The 2D Matrix
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Table 3: Step 7 of Algorithm 2

INTTTALISATION:
CM = [CM(%%\/IP) .. CM(?(;\/IP)]
Ay = [an(0YP) .. .an(0)P)]

T =1,

MAIN LOOP:

for [ =1 to ¢! do

Step 7.1: H= CM X (ANTl)

Step 7.2: Py =Iun —H(HHH)ilHH
Step 7.3: b(l) = || Puz||”

Step 7.4: Choose another permutation matrix Y,

FIND BEST MATCH:
Step 7.5: Find k = argmax;, b(k). This means that all columns of Cy are matched to
columns of ANyY; according to the ML criterion in Step 7.5.

Pencil parameters were M, = 30 and N, = 2. The number of multipath components
were set to ¢ = 17 paths. The ToAs and AoAs of each path are given as follows: The
first 11 paths arrive with delays {7; = 30(k — 1) nsec}}., with corresponding AoAs as
{6 = —60°}2_,, 03 = —45°, 0, = —20°, {6 = 0°}3_., {0 = 10°}},, and 611 = 35°.
The 6 other paths arrive with delays {7, = 500+50(k—12) nsec} ", with corresponding
AoAs as {0, = 35°}1 5 and {0, = 60°}.7 .. Moreover, the multipath coefficients -y are
randomly chosen. For each experiment, a different SNR was set and a scatter plot was
depicted using 1000 Monte-Carlo simulations. Each Monte-Carlo simulation plots the

ToA and AoA estimates using only one snapshot x.

Note that the maximum number of paths arriving at the same time but with different
AoAs is P = 1, and the maximum number of paths arriving with same AoAs but at
different times is () = 4. Moreover, one could easily verify that conditions D1 till D3
are satisfied and hence Algorithm 1 is applicable.

In the first experiment, i.e. Figure 4.5, the SNR was set to 30 dB, and we observe almost
perfect estimation of all ToAs and AoAs since the variations of the estimates from their
true values is negligible. The SNR was 20 dB in the second experiment (Figure 4.6) and
we observe almost the same phenomena as the first experiment except for paths 5 till 8
where their AoAs were properly estimated but their ToAs tend to overlap. In the third
experiment (Figure 4.7) where the SNR = 10 dB , paths 5 till 10 overlap and ToA/AoA
estimates of all paths start to show more deviation from their true values. Finally, in
the last experiment (Figure 4.8), the SNR was set to 0 dB and we could observe a clear

degradation of the performance of Algorithm 1.
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In the last experiment, i.e. experiment 5, we plot two Mean-Squared-Error (MSE)
curves, one corresponding to the MSE of the Times-of-Arrival (Figure 4.9) and the other
corresponding to the MSE of the Angles-of-Arrival (Figure 4.10). We compare with the
first algorithm proposed by A. Gaber and A. Omar in Section III, [80]. The simulation
parameters are the same as those in the first four experiments except for ¢ which is now
set to 3 sources. In addition, the ToAs are selected as follows: 71 = 0 nsec, 75 = 25 nsec,
and 73 = 75 nsec. Furthermore, the corresponding AoAs are chosen to be: 67 = 0°,
0y = 5°, and 03 = 10°. As expected, the MSE of the estimated ToAs using Algorithm 1
and the method in [80] is the same (See Figure 4.9) since Steps 1 till 3 are similar in both
algorithms, and therefore the ToA estimates are the same. However, the estimated AoAs
are different, since both algorithms are essentially different. In particular, our proposed
Algorithm 1 doesn’t require ToA /AoA pairing, since this is automatically done in Step
6. Whereas, the method in [80] requires a matching criterion. This may explain why
the proposed Algorithm 1 exhibits a lower MSE in AoAs than the one in [80] (See
Figure 4.10).

4.4 Spatio-Frequential smoothing: A Remedy for coherent

sources

4.4.1 The JADE-MUSIC Algorithm: A Recap

The spatio-frequential covariance matrix is given by
R,, = E{z()z" (1)} = HR,,H" + ¢’ I yn (4.71)

where R, is the covariance matrix of (/). The matrix given in (4.71) is, usually, esti-
mated through a sample average over snapshots, and is known as the sample covariance

matrix, i.e.

L
Re~~ Y )z’ () (4.72)
=1

=~

In what follows, R, will be referred to as the sample covariance matrix, and not the
true one. We denote A\y > Ao > ... > Apy/n the eigenvalues of R,,. Their correspond-
ing eigenvectors are named ui,us, ..., upn. The sample covariance matrix in (4.72) is
an input to most subspace algorithms for estimating the signal parameters, i.e. AoAs
{61...60,} and ToAs {7y ...7,}. One of these algorithms is the JADE-MUSIC algorithm,

which is a 2-D version of MUSIC. This algorithm is summarised as follows:

(1) Apply an eigenvalue decomposition of R,.
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(2) Form the noise subspace matrix, i.e. Uy, = [tg41 ... upmN].
(3) Search for {H},ﬁ-}?:l by

~ 1

(O =2 7 a0) & el T
The MUSIC algorithm is one of many subspace techniques, i.e. the extraction of a signal
or noise subspace is required for further processing. Subspace techniques assume that
the matrix R, is full rank, otherwise the estimated subspaces do not reflect the true
ones (See [81] for a mathematical argument). Furthermore, rank deficiency of R,, is
due to coherence of multiple signals, or to insufficient number of snapshots, i.e. L < q.
The spatial smoothing pre-processing technique is known to ”decorrelate” the sources,
and therefore attain full rank of the matrix R,.
In the following section, we present a 2D version of smoothing, i.e. spatio-frequential
smoothing, and we show its advantage over conventional spatial or frequential smoothing

techniques.

4.4.2 The Spatio-Frequential Preprocessing Technique

1 1
L) | (12) 13+ @wL4a)
| f ] 1
: : i l
=t : | :
antenna | i 1 -
ey — L ] \
= T 1
121 | (22) 23 ! 24) |
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" ! " |
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N ERY) (3,2) (33) | (3,4)
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st znd 3rd 4th
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Figure 4.11: A spatio-frequential array of N = 3 antennas and M = 4 subcarriers
partitioned into N, = 2 and M,, = 3, hence a total of Kj; Ky = 4 subarrays.

Recall that equation (4.5) gives the information on all subcarriers at all antennas. We
shall use the notation (n,m) to index the m!" subcarrier and n* antenna. Let the
spatio-frequential array {(7, j )}f;ljj\‘,/[ of size M N be divided into overlapping subarrays

of size M, N,, (M), and N, being the number of subcarriers and antennas in the subarrays,
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respectively). Indeed, one could check that the total number of overlapping subarrays
is equal to KKy, where Kpy = M — M, +1 and Ky = N — N, + 1.

To visualise how the subarrays are formed, we refer the reader to Fig 4.11, where a set-
ting of NV = 3 antennas and M = 4 subcarriers is partitioned into overlapping subarrays

of sizes N, = 2 and M), = 3, and therefore a total of KKy = 4 subarrays.

Since the effective number of subcarriers and antennas used now are M, and N,,, respec-

tively, then (4.5) becomes
T (1) = HD?'Dy (1) + npy (1) (4.74)

where
H = |ay,(0) @ ea(n) | - | an,(6,) ® e, (my)] (4.75)

Matrices D™~ and D}~ " are the (m — 1)** and (n — 1) power of the diagonal ¢ x ¢

matrices D, and Dy, given by
D, = diag {ca(71) ... ca(mg)} (4.76a)

Dy = diag {as(61) . .. az(6,)} (4.76b)

This means that z, ,, (1) is an M, N, x 1 received vector on the subarray {(4, j )};z:?]]\\,i”;@;l

The covariance matrix of 2, ,(I) in (4.74) after averaging over time snapshots is given

as
Ry, =AD" 'D} 'R, D" 'DF" T HY 4 62T v, (4.77)

The spatio-frequential smoothed covariance matrix is given by

Ky Ky

— 1
= m.,n 4.
i e
R could also be written as
R= E[RWWEIH + U2IMPNP (4.79)
where
> 1 & & 1 1 Hn—1 gm—1
R, = D 'priR DI DHE™T 4.80
R .

In a single carrier case, i.e. M = M, = 1, it has been proven that the spatial smoothing

technique ensures full rank of R, [81], given that ¢ < K.
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Analogously, in the single antenna but multi-carrier case, i.e. N = N, = 1, the same
technique has been applied in [82] and was referred to as frequency smoothing, in order
to acheive full rank of RW, when ¢ < Kjs. However, in the general multi-antenna and

multi-carrier case, we have the following:

JADE 5 pectrum

-a
.

Figure 4.12: Spatial Smoothing with N, = 2.

JADE 5 pectrum

[)/Y]

Figure 4.13: Frequency Smoothmg with M, = 2.

Theorem 4.3. If the number of subarrays formed jointly over space and frequency is
greater than the number of multipath components, i.e. q < Ky Ky, and the maximum

number of paths arriving at the same time but with different angles is less than Ky, i.e.
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JADE 5 pectrum

1r..==c]

Figure 4.14: Spatio-Frequential Smoothing with N, = 2 and M,, = 3.

max; Q; < Ky, and the mazimum number of paths arriving at the same angles but with

different times is less than Ky, i.e. max; P; < Ky, then RW is of rank q.
Proof. See Appendix A O

Conditions (i) till (iii) in Appendix A are sufficient to attain full rank of R,,. But, in
order for subspace methods to work properly, one should also have that H (see (4.74))
is full column rank. Note that H has dimensions NpM, x q. In the spirit of Remark 4.2,
this is valid when ¢ < M, N, max; Q; < N, , and max; P; < M,,. In general, one must

have:

o ¢ <min{Ky Ky, M,N,}

e max; Q; < min{Kn, Np}

e max; P; < min{Ks, M,}
Finally, the advantage of spatio-frequential smoothing is that it offers Kj; Ky subar-
rays to smooth over, in contrast to spatial and frequential smoothing that naturally
provide K and Kj; subarrays, respectively. Therefore, one could be able to resolve

more coherent sources, as given in (b.1). This advantage is, also, presented through

simulations.

Computer simulations are presented to show the advantage of spatio-frequential smooth-

ing over the conventional spatial and frequential smoothing. Simulations have been done
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with N = 3 antennas and M = 4 subcarriers at SNR = 20dB. The subcarrier spacing
is chosen Ay = 3.125 MHz. We have fixed ¢ = 4 paths, where their correspond-
ing angles and times of arrival are (61,71) = (0°,40 nsec), (62,72) = (60°,100 nsec),
(03,73) = (—20°,150 nsec) and (64,74) = (50°,200 nsec). The complex attenuation

vector 4 is fixed to a constant arbitrary value. Finally, L = 3 snapshots were collected.

Figure 4.12 shows the JADE spectrum after preprocessing only by spatial smoothing,
ie. M = M, =4 and N, = 2. Indeed, there is an ambiguity in detecting the 4 peaks
corresponding to the true angles and times of arrival due to insufficient number of sub-
arrays to smooth over, i.e. only Ky = 2 < ¢ spatial subarrays are available. The same
argument is done when one applies only frequency smoothing, i.e. N = N, = 3 and
M, = 2. In that case, one will have Kj; = 3 < ¢ subarrays to smooth over. As a result,

false peaks appear in figure 4.13.

To this end, we could see that we need at least ¢ = 4 subarrays to smooth over. This
is done by preprocessing through spatio-frequential smoothing. Choosing N, = 2 and
M, = 3 would lead to KnxKj); = 4 subarrays in total. After smoothing over space and
frequencies, one could observe 4 clear peaks corresponding to the true angles and times

of arrival of the 4 paths in figure 4.14.

4.5 Conclusions

In this chapter, we have presented two techniques to solve the highly nonlinear DML
algorithm for joint times and angles of arrival: 2D-IQML and 2D-DIQML. Asymptotic
performance analysis of both techniques were provided. It has been shown that 2D-
IQML gives biased estimates of ToA/AoA and performs poorly at low SNR due to
noise. An original ”denoising” strategy is proposed, which constrains the Hessian of the
cost function to be positive semi-definite. This ”denoising” strategy is called 2D-DIQML
that has been shown to be globally convergent. Furthermore, 2D-DIQML outperforms
2D-IQML because the former behaves asymptotically at any SNR as the latter behaves
at high SNR. Finally, for localisation purposes, joint AoA and ToA information could
be used to form a database, where a mapping is done between ToA/AoA vectors and
location. Then, this database could be used in an online stage, where joint AoA/ToA
estimation is done using the proposed algorithms, followed by a matching criteria that
finds the best match in the database to obtain an estimate of the location of a wireless

transmitter.
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We have also presented two algorithms based on 2D Matrix Pencils. These two al-
gorithms allow joint estimation of times and angles of arrival of multiple paths using
only one snapshot. Algorithm 1 resolves more sources than Algorithm 2 in the case
where the number of subcarriers is much larger than the number of antennas, which is
the case of most Wi-Fi systems. The performance of Algorithm 1 as a function of SNR

was studied through simulations.

Finally, we have presented a 2D smoothing preprocessing technique, applied to a Spatial-
Frequential array, to ”decorrelate” multipath components. Then, any 2D subspace al-
gorithm could be applied to estimate the times and angles of arrivals of the different
paths. The 2D smoothing technique presented here, naturally, offers more subarrays to

smooth over and, therefore, one could be able to resolve more coherent paths.



Chapter 5

Joint Angle and Delay Estimation and

Detection

In this chapter, a novel approach entitled ”Joint Angle and Delay Estimator and Detec-

tor”

, or simply JADED, is presented. The contributions could be summarized as follows:
(i) Thanks to this approach, we can now estimate the Angles and Times of Arrival of
multipath, without prior knowledge of the number of multipath components; (ii) a method
called JADED-RIP, makes use of the Rotational Invariance Properties (RIP) of ULAs
and OFDM symbols, detects the number of multipath components, and estimates the an-
gles and times of arrival of each path by performing a 2D search; (iii) the second method
is a Computationally Efficient Single Snapshot (CESS) version of the JADED-RIP, i.e.
it requires a 1D search followed by a least squares fit, and can only be used when a single

OFDM symbol is available.

5.1 System model

As in the previous Chapter, we consider an OFDM symbol composed of M subcarriers
and centered at a carrier frequency f., impinging an array of N antennas via g multipath
components. Each path arrives at AoA 6; and ToA 7;. After applying an FFT and

equalization, we can express the [ OFDM symbol as follows
z(l) = H~(1) + w(l), l=1...L (5.1)

where z(1) € CMN*1 is given as
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with X,g?n being the data at the n® antenna and m!* subcarrier in the I[** OFDM

symbol. H € CMN*4 contains the ToA/AoA information as

H=[cy(n)®an(01)...ca(mg) @an(6y)] (5.3)
where

an(®) =[1,2p...2) 1" with 2z = ¢~ i2m §sin(0) (5.4)

em(r) = [Lzr. . 2T with zp = 772770 (5:5)

where Ay is the subcarrier spacing, d is the inter-element spacing, and A is the signal’s

wavelength. The ¢ x 1 vector (1) is composed of the multipath coefficients

v() = (). .90 (5.6)

Note that we have made explicit the dimensions of vectors ejs(7) and an(0), i.e. it
should be understood that for any integer K > 1, the vectors (cx(7),ar(6)) € CK*1.
The vector w(l) is additive Gaussian noise of zero mean and covariance o2I, assumed
to be white over space, and frequencies. We are now ready to address the problem:

”Given the data {m(l)}lL:l, estimate the number of multipath components q and the signal

parameters {(j, 9]-)}3-:1 7

5.2 JADED-RIP Algorithm Derivation

5.2.1 Data Manipulation

Let X (I) be a matrix formed from the entries of z(1)

l l l

x®  xO L xO
xX(y=|"7? o Rt (5.7)

[ l [

X0, X o X

where X gl) is an Py x Kx Hankel matrix given by

l l l
XX X
0] 0] O]
X(l) _ 7,2 1,3 ,Kn+1 (58)

7

l l
X?,'(,})DN Xi(,})jv#»l
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with
Ky=M-Py+1 and Ky=N-Py+1

For simplicity of notation, define the following integers
K2 KyKy and P £ PyPy
The matrix X (/) can be written as
X(l) =LT(HRT + W ()
where L € CP*? and R € CX*9 are given as

L= [hp(’rl, 91) .. .hP(Tq,Hq)]
R = [hg(11,01) ... hi(74,0,)]

with

hp (T7 9) =Cpy (T) ®apy (0)
hx (T7 9) =CKy (T) KaKy (9)

The matrix I'(l) € C9*9 is a diagonal matrix, i.e.

L'(l) = diag [v1(1),72() - - - 74(D)]

(5.9)

(5.10)

(5.11)

—~

5.12)

—

5.13)

—

5.14)

—

5.15)

(5.16)

Finally, the matrix W (l) € CP*¥ is background noise defined in a similar manner as

X(0).

5.2.2 Introducing Orthogonal Projectors

Let R; be a matrix defined as R with omitted 4% column. Furthermore, define the

orthogonal projector matrix that spans the null space of the columns of R; as

PL—Ix—R; (RjTRj) _1R}

(5.17)

In other words, R;r'le =0. Now, let f; € CK*1 be a vector that lives in the null space

of the columns of R;. Therefore, there exists a non-zero vector z € CHE*1 guch that

fi=P5z

(5.18)
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Post-multiplying the vector f; with the data matrix X (1) yields

X()f; = (LLORT) £+ WD)
= L;T;()RT Pz + aj(Dhp(rj, 0;) + (1) (5.19)
:Oéj(l)hp(Tj,gj)—l-’lT)(l), l=1...L
where L; is defined in a similar manner as R; and I';(I) € C is the same as I'(])
in equation (5.16) but with eliminated j* row and column. Furthermore, () =

’y](-l)h[T((Tj, 6;)f;. Finally, w(l) = W(l)f; is the noise part, which is easily verified to be

colored noise.
Equation (5.19) is key to what follows. In other words, we know that a vector f; exists,

which can select the contribution of the j* source. Next, we derive a Least-Square (LS)

estimator of all the unknown parameters.

5.2.3 Least-Square Estimator

The parameters concerning the j** source are

where a; = [o;(1)...;(L)]T. Let’s stack all unknown parameters into one vector ©,
ie.
0=100,6,...0,]=[f"a", 1,0 (5.21)
where
f=1f1.. .qu]T and a=[a] .. .a;F]T (5.22)
T=[r...7q) and O0=1[0;...60y] (5.23)

All parameters in © have to be jointly estimated. In this section, we propose to esti-
mate these parameters by Least-Squares (LS). In other words, we seek to optimise the

following cost function
6" = argmin 9(0) (5.24)
(S)

where

OIS [x@s; - as@hr. 0| (5.25)

j=11=1
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and OLS is the LS estimate of ©. We re-write 9(©) in a compact way as follows
9©) =1 (I, ®Q)f -2 R(f'C(1,0)a) + Plla|? (5.26)
where matrices @ and C(7,60) are given by

Q=xtx (5.27)
C(7,0) = blkdiag [S(71,61)...8(74,0,)] (5.28)

and matrices X and S(r,6) are defined as

x| x| | x"@) }H (5.29)
S(r,0) = X"H(r,0) (5.30)

where
H(7,0) =1 @hp(T,0) (5.31)

Fixing (a,7,6), we optimise the cost function g(0) w.r.t f. Hence, setting the derivative

of g(©) w.r.t f to zero, we get

d9(0)
of

=2(I,®Q)f —2C(1,0)a =0 (5.32)

which gives

5= I,2Q)'Clr,0)a (5.33)

Now, we treat ]'\LS as a nuissance parameter and plug it in the cost function g(©) in

equation (5.26), namely

gla,7,0) £ g(f*5 a,7,0)

» (5.34)
—a"(PL, - CM(1.0)(1,©Q) 'C(r.0))a
Due to the block diagonal nature of C(7,6), and using
([,0Q) ' =I,2Q" (5.35)

The function g(a,7,0) decouples into g positive cost functions

q
g9la,7,0) = gj(a;,75,0)) (5.36)
j=1
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Denoting g; = g;(e;, 7;,0;) for ease of notation, we can say

g9; =aj (P—’L —8"(7;,0,)Q 'S (1}, '93'))013'
- . (5.37)

= o ('H (Tjﬁj)PxH(Tjﬁj))aj

where the last equality is due to equations (5.27) and (5.30). The projector ’P{{, is given

as
Py =1I.p— X(&xMx)" X8 (5.38)

Fixing (7,0) in g(a,T,0), each function g; is quadratic in a;. Note that minimising
g(a,7,0) w.r.t a is equivalent to minimising each g; w.r.t a; since g; > 0 for all j. In
order to prevent a function g; to be minimized at the trivial solution a; = 0, we form

the following Equality Constrained Quadratic Optimisation [83] problem

minimize gj (aj7 Ty, Hj)
y (5.39)
subject to Ol]Hel =1

where e; is the 1% column of I;. The Lagrangian function corresponding to the opti-

misation problem in (5.39) is the following:

ﬁ(a]‘, )\) = gj(aj,7j7 9]‘) — )\(0?61 — 1) (540)

Setting the derivative of L(a;, ) w.r.t a; to 0, we get

a[’(aj? A)

oa, (7 0,)PxH(7),0;)a; — Aer = 0 (5.41)
which yields
~ A -
& = 2 (H'(7,0,)PxH(7;. ;) ‘1 (5.42)

Plugging this expression of &?S in the constraint of the optimisation problem in equa-

tion (5.39), we can solve for the Lagrangian multiplier A\ as

Am i - (5.43)
61 (’H (Tj,@j)'PXH(Tj,aj)) el

and therefore &jﬁs is obtained by plugging the expression of A in equation (5.42), i.e.

s _ (M. 0)PyH(;.0) e

i T TH/amH n — (5.44)
el (MU (7;,0;)PxH(7;,0;)) e

hence @™ is obtained by stacking all a%s into one vector as in equation (5.22). As done

before, we treat @S as nuissance parameters and thus we substitute them in g(a,T,0)
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to get g(7,0) £ g(@“%,7,0), where

4 1
T,0) =
o0 = ) i G i) e (54

J

The LS estimates of the ToAs 7 and AoAs 8 are simply

(7"5,8"5) = arg min g(,0) (5.46)
7.0

Since ¢(7,0) is decoupled into ¢ identical functional forms, given in the last equality in

equation (5.45), then one can jointly estimate the ToAs/AoAs by performing a 2D-search

as
{5, @LS) ;7-:1 = argmax f1aDED(T, 0) (5.47)
where
f1apED(T,0) = €' (K" (7, 0)PH (7, 0))7161 (5.48)

and ¢ is an estimate of g obtained by the number of peaks in fyjaprp(T,0).

5.3 Computationally Efficient Single Snapshot JADED-
RIP (CESS-JADED-RIP)

The JADED-RIP algorithm requires a 2D search over the variables (7,6). It turns out
that for a single snapshot, i.e. L = 1, we can propose a computationally more efficient
method, which we call here Computationally Efficient Single Snapshot JADED-RIP, or
simply CESS-JADED-RIP. For a single snapshot and using equation (5.31), fyapep(7, 0)

can be expressed as
1

Jaapen(r, 0) = Wi (7,0YPLhp(r.0) (5.49)

Using the structure of hp(7,6) in equation (5.14), we can write the denominator in

equation (5.49) as follows
hi(T,0)Pxhp(7,0) = ap (0)F(T)ap, (0) (5.50)

where
F(7) = (epy (1) @ Ipy) "Px (epy, () @ Ipy) (5.51)
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Maximising (5.49) is equivalent to minimizing (5.50), hence we aim at solving

minimize agN (0)F(T)ap, (6)
ary (6) (5.52)
subject to a%N ()e; =1

Following similar steps as in equations (5.40) till (5.44), the vector ap, (¢) that solves

the above problem is given as

F*1(7)61

ap,(0) = — "
Px(9) ellF-1(1)e;

(5.53)

Substituting @p, (¢) in the objective function of the problem in equation (5.52) gives us

a cost function in 7, and therefore the ToAs are estimated as follows
{ﬂ}?zl = arg max w(T) (5.54)
T
where
w(t) = ellF71(1)e; (5.55)

Now, we are left with the estimation of the AoAs. Notice that equation (5.53) maps 7

to 6, therefore for each 7;, we can obtain ap, (@) as

F~l(7)ex

dp (0) = e g (5.56)
N el P1(7 e

Then, we estimate §] from ap, ((/9\3) This is done by forming the vector of phases of

6PN(§j) as follows

6], = _tan1<;w>, j=1...q (5.57)

~

After the operation in equation (5.57), we have $j in the following form: ¢; = psin(gj),
where p = [0...(Py — 1)]T. Finally, we extract @\j from aj by the following LS fit

~ ~ 2
0j = argmin H¢J —psin(ﬂj)H , j=1...q (5.58)

J

The solution is easily verified to be

S 60”9
6; = sin™ (pT¢j> =sin”™ <PN(PN —pl)(;PN - 1)) (5-59)

where p! = (pTp)~'p".
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Table 4: Summary of the JADED-RIP algorithm

INITTALISATION:

Step 1. Given the data {z(l)}L |, form matrices {X (1)}~ | using equations (5.7)
and (5.8).

Step 2. Compute the projector matrix Py given in equation (5.38).

MAIN LOOP:

Step 3. On a 2D discretized grid, find the ¢ peaks of fjapep(T,0):

{(0,7) }j;l = argmaxe; (K (7, 0)PxH(7,0)) e
0,7

where H(7,0) is given in equation (5.31).

Table 5: Summary of the CESS-JADED-RIP algorithm
INITIALISATION:

Similar to JADED-RIP.

MAIN LOOP:

Step 3. On a 1D discretized grid, find the ¢ peaks of w(r):

{73}j_) = argmaxel P! (r)es

where F(7) is given in equation (5.51).
Step 4. For each 7j, estimate 6; using equations (5.56) till (5.59).

JADED Spectrum
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Figure 5.1: The JADED-RIP method.

5.4 Identifiability conditions

In this section, we derive identifiability conditions for unique estimation and detection
of (1,0) for JADED-RIP and CESS-JADED-RIP. The first set of conditions are given
to guarantee a unique representation of equation (5.19), which happens when projectors
{le };1-:1, given in equation (5.17), are uniquely defined. In other terms, these projectors
should be full column rank. A sufficient condition for that to occur is when R is full

column rank.
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Figure 5.2: The CESS-JADED-RIP method.
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The second projector that should be uniquely defined is the data projector matrix,

namely ’Pi., given in equation (5.38). A necessary condition is when X is a tall matrix,
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namely LP > K. Combining Remark 4.2 and the condition of the existance of the data

projector, the JADED-RIP algorithm should satisfy the following:

o Al: g < Ky Ky < LPyPn

o A2: QTSKN annggKM

As for CESS-JADED-RIP, the parameter () should be 1, since the ToAs are estimated
through a 1D search over w(7) given in equation (5.55). Therefore, this approach does

not allow multiple paths arriving at the same time. Finally, the CESS-JADED-RIP

method should satisfy the following:

e Bl: ¢ < Ky Ky < PyPn

e B2: QT:1andQ9§KM

We have conducted the following three experiments:



Chapter 5 Joint Angle and Delay Estimation and Detection 85

In Experiment 1, i.e. Fig 5.1 and Fig 5.2, we plot the different spectra of the proposed
algorithms. More precisely, Fig 5.1 plots the 2D-spectrum of the JADED-RIP given in
equation (5.48). Also, Fig 5.2 plots the 1D-spectrum given in equation (5.55) (in order
to estimate the ToAs) and the scatter plot to estimate the AoAs using the LS fit in
equation (5.59). We have fixed ¢ = 8 paths, where 7, = 10k nsec and 0, = —70420(k—1)
degrees, for k = 1...8. Also the multipath coefficients are chosen to be i.i.d Gaussian of
zero mean. The number of antennas used is N = 3 with d = 0.5 and the OFDM symbol
comprises of M = 64 subcarriers occupying a bandwidth of 200 MHz, i.e. Ay= 3.125
MHz. We have chosen Py; = 40 and Py = 2. The SNR is set to 5 dB. We have collected
L =10 OFDM symbols for the JADED-RIP method. It is interesting to see that we do
not observe an overestimation of ¢ in both methods, i.e. the peaks correspond to the

true and only the true signal parameters.

In Experiment 2, i.e. Fig 5.3 and Fig 5.4, we plot the MSE of ToA/AoA estimates of
CESS-JADED-RIP as a function of SNR. Moreover, the MSE is compared with other
existing methods, such as the 2D-MP [108], the 2D-IQML [107], and a straightforward
extension of [84] to the 2D case, which we refer to as JADE-Bayesian. We have averaged
over 10% Monte-Carlo trials. These methods are particularly chosen for this experiment,
since they could deal with a single snapshot. We recall that 2D-MP and 2D-IQML
require the knowledge of ¢, whereas JADED and JADE-Bayesian estimate ¢ from data.
Note that the value of ¢ is prior known for both 2D-MP and 2D-IQML. To this end, we
fix ¢ = 2 paths, with (71,601) = (10nsec, —70°) and (72,62) = (20nsec, 20°). The values
of N, M, Py, Py, d and Ay are the same as those in Experiment 1. The multipath
parameters are set to v = [1;0.8ej %], i.e. coherent sources. In addition, only L = 1
OFDM symbol is available. We see that the performance of CESS-JADED-RIP is very
close to that of 2D-MP in terms of MSE of ToA and AoA, according to Fig 5.3 and
Fig 5.4, respectively. Also, we can see that CESS-JADED-RIP outperforms 2D-IQML
and JADE-Bayesian.

In Experiment 3, i.e. Fig 5.5 and Fig 5.6, we plot the MSE of ToA/AoA estimates of
JADED-RIP and 2D-IQML as a function of SNR, when multiple snapshots are available.
This is why we have excluded 2D-MP and JADE-Bayesian, since they only operate with
one snapshot. The same parameters are set as in Experiment 2, except for L, which is
set to 10. By referring to Fig 5.5 and Fig 5.6, one could observe that the JADED-RIP
outperforms 2D-IQML in terms of MSE of ToAs and AoAs, at any given SNR.
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5.5 Peak Detection and Resolvability

Indeed, a natural question that arrises here is how are we going to detect the number of
sources. Since the JADED approach is automated to give peaks around the AoA/ToA,
then a heuristic approach of picking the peaks is to set a certain threshold, which is
determined through practice. This step should be done after normalising the JADED
spectrum such that the highest peak is equal to 1. In addition, we have observed that
peaks corresponding to true locations have almost the same altitude, which could further
ease the detection criterion. We would also like to note that false peaks are inevitable

at low SNR.

5.6 Conclusions and future directions

There are some contributions that should be highlighted: We have proposed a novel
approach for joint estimation and detection of Angles and Times of arrival, i.e. JADED.
Two methods were derived so as to solve the JADED problem using Rotational Invari-
ance Properties (RIP), which arises when a ULA receives known OFDM symbols. The
JADED-RIP method performs a 2D search of a suitable cost function, where each peak
indicates a present source with corresponding ToA /AoA. The second algorithm, CESS-
JADED-RIP, is a faster version of JADED-RIP, which can be used for single snapshot
scenarios only. The algorithms function properly in the presence of coherent sources,
since subspace extraction is not needed, as in the case of MUSIC, ESPRIT, and other

subspace methods.

Future work should address the following points:

e Improving JADED-RIP, by taking into account the colored noise in equation (?7),
which leads to an ML estimator.

e Deriving analytic MSE expressions and the optimal values of Py and Ppy.

e Proposing a JADED algorithm that operates for arbitrary arrays, such as uniform

circular arrays.

e Taking into account hardware imperfections, such as antenna calibration and mu-
tual coupling, synchronization errors, etc. This could further empower JADED as a

competitive candidate among other indoor positioning methods.



Chapter 6

Mutual Coupling

In this chapter, we study an important aspect that perturbs Angle-of-Arrival estimation,
due to antenna coupling, also known as ”Mutual Coupling”. The contributions are sum-
marised as follows: (i) we derive a sub-optimal algorithm that could estimate AoAs in
the presence of mutual coupling; (ii) we show why this sub-optimal algorithm, along with
other ones, are indeed suboptimal, in the sense that there is an upper bound on the cou-
pling parameters allowed in the model; (iii) then, we further improve the sub-optimal
algorithm and propose an optimal one, in the sense that more coupling parameters are
allowed in the model; (iv) then, we refine the estimates of the optimal algorithm by
modifying some constraints of the optimisation problem considered; (v) we derive the
MSE expression of the optimal algorithm and show that, in some cases, we can attain
the Cramér-Rao bound of the problem of joint coupling parameters and AoA estimation;
(vi) finally, we derive an iterative method that could give Mazimum Likelihood (ML)
estimates of the AoAs, and therefore allowing the presence of coherent sources, which is

not the case of all the previous algorithms.

6.1 System model

6.1.1 Problem formulation

The previous chapters considered an ideal model, in the sense that no mutual coupling
was included in the model. Recall equation (2.8), which is the AoA estimation problem,
i.e.

X =A©)S+W

87



Chapter 6 Mutual Coupling 88

where all quantities have been defined in Chapter 2. Equation (2.8) assumes an ideal
model, in the sense that each antenna acts independently of all the others. In reality,
the current developed in an antenna element depends on its own excitation and on the
contributions from adjacent antennas. As a consequence, an ideal model is no longer
valid. This phenomenon is called ”Mutual Coupling” between array elements, and it

enters the model as follows [85]
X =T()A®)S + W (6.1)

where T'(c) € CV*¥ captures the effect of mutual coupling, and is known as the ”Mutual
Coupling Matrix” (MCM). Due to the linear and uniform configuration of the different
elements of the array, the MCM T'(¢) is given by a symmetric Toeplitz matrix, i.e.

CO Cl C2 DY Cp*l 0 DY 0
C1 Co C1 e Cp_2 Cp_l
T(c) = (6.2)
Cp_1 Cp_2 e C1 Co C1
0 Cp—1 cee Co C1 Co

Let ¢; be the coupling coefficient between two elements placed ¢ inter-element spacings
apart. Since the amplitude of the coupling parameters tend to decay as a function of
increasing distance, namely

1> |Cl| >0 > |CN,1| (6.3)

then a well-approximation of T'(¢) is a banded symmetric Toeplitz matrix [86, 87] with
bandwidth p. In other words, antennas that are placed at least p inter-element spacings
apart do not interfere, i.e. ¢; = 0 for all ¢ > p. In what follows, the MCM of a ULA
configuration is modelled as banded symmetric Toeplitz matrix of bandwidth p and

denoted as T'(¢), where ¢ = [1,¢; ...cp—1]T is the vector of coupling parameters.

6.1.2 Assumptions
For both problems above, we shall assume the following:

e A1l: Matrix A is full column rank.

e A2: The noise w(l) is modelled as a white circular complex Gaussian process of

zero mean and covariance o2l and independent from the source signals.
e A3: For simplicity, the number of source signals ¢ is known.

e A4: The source signals are allowed to be partially correlated, but not coherent.
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6.1.3 Problem statement

We are now ready to address our online calibration problem:
"Given X, q, and p, estimate the angles of arrival © of the incoming signals in the

presence of mutual coupling T(e).”

6.2 The MUSIC Algorithm

6.2.1 Preliminaries

This subsection serves as a review of the MUSIC algorithm, in the absence of mutual
coupling. In other words, the model in equation (2.8) is assumed. The covariance matrix

of the received data could be written as

Ryp & E{z(t)z" (1)}

(6.4)
= A(@)R;, AN (0) + oI
where the second equality is due to Assumption 5 and
R, & E{s(t)sH(t)} (6.5)

is the source covariance matrix. Using spectral decomposition, the matrix Rgzs is ex-

pressed as
¥s1 0 H
R, = | U | T Us | U,
z[sn}ozn[sn] 66
= U,X,U! + Uz, Ul

The partitioning in equation (6.6) is done because Ry is composed of two major parts:
Signal and Noise. The signal part A(©)RgA™(0) is rank ¢, under Assumptions 1 and
3. Therefore, due to the noise part ¢2I, one can say that ¥4 is a ¢ x ¢ diagonal matrix
composed of eigenvalues strictly greater than ¢? and B, = %I N—q- The eigenvectors
Us and U, are, often, referred to as the signal and noise subspaces, respectively.

In the absence of mutual coupling, the key to MUSIC is the following observation:

|UHa(9)|?=0=60c O (6.7)
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In practice, one could estimate the covariance quantities through sample averaging, viz.
~ 1 ~ o~ PPN
R = ZXXH =UE,00 + U, 2,0 (6.8)

MUSIC estimates the angles-of-arrival © through peak finding, as follows

~ 1
0,}_, = argmax S 6.9
Wik o al(0)U.UMa(0) (69)

6.2.2 Mutual Coupling in the sense of MUSIC

The previous subsection tells us that one can estimate the angles-of-arrival in the absence
of mutual coupling by performing a 1D-search according to equation (6.9). Now, for the
ease of exposition, let @(f) denote the steering vector in the presence of mutual coupling,
i.e.

a(0) = T(c)a(0) (6.10)

Similarly, define A(©) as follows
AB) =T(c)A®) =[a(by)...a(b,)] (6.11)

Taking into account mutual coupling, i.e. the model in equation (6.1), one could follow
the same steps from equation (6.4) till (6.8) in order to say that the angles-of-arrival

could be estimated as follows

1
H(0)U,Ula(9)

{@}?:1 = arg max (6.12)
0 a

where ﬁn is the sample estimate of U,. Throughout the rest of this paper, U, is the
noise subspace, namely U,UM = ij = I — P4, where
P; = A(AHA)~1AH (6.13)

However, applying MUSIC directly as in equation (6.12) to the problem in hand is not
possible, since the functional form of the steering vector is not known. In other terms,
we have partial knowledge of vector @(f), which is that it is a known Vandermonde
vector a(f) pre-multiplied by an unknown banded symmetric Toeplitz matrix T'(c), as

in equation (6.10). Nevertheless, MUSIC implies the following
|UST (m)a(9)|? =0 = {# € © and m = ¢} (6.14)

In order to proceed, we find the following theorem useful:
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Theorem 6.1. Leta = [ag, 1 ...ap—1]T € CP*! anda € CN*XL. Define the correspond-

ing matriz T (a). Then the following is true for any 1 <p < N
T(a)a = By (6.15)
where By, = G,(a). where
B,=|a|Sal|...|5, ] (6.16)

and Sy, € CV*N s an all-zero matriz except at the k'™ sub- and super-diagonals, which

are set to 1.
Proof. See Appendix B. O

Using this theorem, we can say that
a(0) =T(c)a(d) = B(0)c (6.17)

where

B(0) = Gy(a(0)) (6.18)

Therefore, equation (6.14) could be re-written as
HU,IL{B(G)mH2 =0={# €O andm=c} (6.19)
Said differently and in a more compact way, equation (6.19) also means

UIB(6,)
H : m”2 —0—m=c (6.20)

U,'B(0,)

Therefore, one way to formulate the problem is

~ _ —

(P1): min m’S@ ...0,)m (6.21)
m,&l...eq
where .
UIB(6,) UIB(6,) .
56,...0,) = : : =Y K (9, (6.22)
UEB(9,) ouB@,) | 7
where

K (9) = B(6)U.U"B(0) (6.23)
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~

Assuming true subspaces (i.e. U, = Up) and excluding the trivial solution m = 0, it
is clear that one solution of problem (P;) is attained when m = ¢ and [0;...0,] =
[01...04) = ©. Said differently, S(©) admits a null space of dimension 1 spanned by the
vector of coupling parameters, c.

In any case, this is a multidimensional problem in the AoA parameters, and a number

of papers have resorted to an alternative and sub-optimal problem, namely

(Py) : min m"K (9)m (6.24)
The sub-optimality here has a nice interpretation: It is ”as if” the coupling parameters
are treated to be angular-dependent and therefore, one does not acknowledge that the
vector of coupling parameters ¢ is fixed for any . Consequently, the objective function in
(P2) would have been a reasonable choice if the coupling parameters are a function of 6,
ie. ¢ =c(0). Surprisingly, a problem involving angular-dependent coupling parameters
suggests a computationally less optimisation problem in terms of the AoA parameters.

Indeed, this approach is sub-optimal when ¢ is independent of 6.

6.3 A suboptimal MUSIC-based approach

6.3.1 Algorithm derivation

Let us consider problem (P2) under an affine constraint

minimize mHI?(O)m
™0 (6.25)

subject to ef'm =1

The Lagrangian function corresponding to the optimisation problem in (6.25) is the
following;:
L(m,a) =m"K(@O)m — a(ef'm — 1) (6.26)

Setting the derivative of £(m, a) with respect to m to 0, we get

0
8—m£(m7 a) =2K(0)m —ae; =0 (6.27)

Equation (6.27) gives the optimal coupling parameters, m*, for a given 6, in terms of

the optimal Lagrangian multiplier o* as

m'=—K(@) e (6.28)
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Now plugging the expression of m* in the constraint of the optimisation problem in (6.25)

yields the optimal value of o*
2
of = 6.29
ell-IK(Q)flel ( )

Therefore, m* is now given as

. K@) e

e (6.30)

Finally, plugging the expression of m* in the MUSIC cost function in (6.24), we get

{6:}, = argénaerfK(Q)_lel (6.31)
To prove the existance and uniqueness of m*, we need the following Lemma:

Lemma 6.2. [83] Consider the ”Equality Constrained Quadratic Optimisation” problem
given in equation (6.25). Equations (6.27) and the constraint in equation (6.25) together

are written in matrix form as:

K@) —e | |m| |0
e -l o

M

The coefficient matriz M is referred to as the KKT matriz [83].
Let [m*, a*]T denote a solution of (6.32).
The following holds:

e The KKT matriz M is nonsingular, and therefore invertible.

e The solution [m*,a*]” is the unique global solution of the equality constrained

quadratic problem in equation (6.25).
if and only if:

e Assumption 1: The matriz e{f has linearly independent rows.
o Assumption 2: The matriz K(0) is positive definite in the null space of e{’r, i.€e.
2B K (0)z > 0 for all z # 0 satisfying eflz = 0.
Using the above Lemma, we have the following Theorem:

Theorem 6.3. The solution [m*, a*]" is the unique global solution if and only if ¢+p <
N+1andp< %
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Proof. See Appendix C O

6.3.2 Discussion

Theorem 6.3 p rovides a sufficient and necessary condition for the existance and unique-
ness of the coupling parameters m* using the proposed algorithm, i.e. p+¢ < N+1 and
p < % However, the identifiability condition in [88] is the following: 2p + ¢ < N + 1.

One could, thus, easily verify that the proposed algorithm could resolve more sources.

We would strongly like to note that we have not addressed the coupling estimation part as
the optimisation was first done over m, then the solution of m (i.e. m*) was substituted
back in the MUSIC cost function. In other words, the vector m* was treated as a
nuissance parameter. The problem of estimating the coupling parameters m is beyond
the scope of this paper. Once again, our aim is estimating the AoAs of multiple sources

in the presence of mutual coupling.

Proposed Method vs. Liao's Method (1St Experiment)
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Figure 6.1: Comparison of Spectra of different methods (N = 7,p = 3,¢ = 2,L =
100). Vertical dashed lines correspond to the true AoAs.

Now, we present our simulation results regarding the proposed method and compare
with the method presented by Liao et Al. [88]. In the first experiment, consider a
ULA array that is composed of N = 7 antennas spaced at % Furthermore, assume two
sources impinging the array at §; = 10° and #3 = 30°. As for the mutual coupling, we
fix p =3, with t; = —0.95 — 1.295 and to = —0.05 + 0.255. The SNR is set to 9 dB and
the number of snapshots L = 100. Figure 6.1 depicts the spectrum of our method versus

Liao’s method for this situation. The vertical dashed lines correspond to the true AoAs.
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RMSE vs. SNR (2" experiment)
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Figure 6.2: RMSE on a linear scale vs. SNR of experiment 2.
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We can clearly see that our method peaks at the true AoAs, whereas Liao’s method is

biased away from the true values.

In the second experiment (i.e. Figure 6.2), we fix N = 10 antennas, ¢ = 3 sources

arriving at 6; = 10°, 6y =

20°, and A3 = 30°. The number of coupling parameters

is p = 3. The number of snapshots L = 100. The number of Monte-Carlo trials is

M = 500. In addition, at each trial, the coupling parameters are chosen randomly to

assess generality of our RMSE curves. We notice that our proposed method exhibits an

improvement of around 1.5°, in average, in terms of RMSE when 5 dB < SNR < 20 dB.
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Interestingly, when SNR > 22 dB, our method coincides with MUSIC (”coupling-free”
MUSIC, that is) and the RMSE is 0, whereas Liao’s method still shows some error of
around 0.75° RMSE.

In the third experiment (i.e. Figure 6.3) ,we plot RMSE vs. number of snapshots (L)
at fixed SNR. The parameters ¢, ©, N, M, and p are the same as those in the 2"¢
experiment. The SNR is set to 30 dB. Again, we observe that our proposed method
performs better than Liao’s. When the number of snapshots exceeds 20, our method
shows zero RMSE and coincides with ”coupling-free” MUSIC. However, Liao’s method

shows error even when the number of snapshots reach 100.

6.4 An optimal MUSIC-based approach

6.4.1 Preliminaries

Theorem 6.4. Let o = [, 1 ...qp1]T and a = [1,z...2V 71T Define the corre-

sponding matriz T (ap). Then for any 1 < p < N, the following holds
T(ap)a = g(z,ap)a — Mpa, (6.33)

where the polynomial g(z,a) is given by

p—1
g(z,ap) = ap + Z o (2F 4+ 27F) (6.34)
k=1
The matriz M, € CN>(=1) 45 defined as
U 0
M,=|—2| +|— (6.35)
0 L,
with _ -
271 272 2~ (-1
O Zfl .. Zf(p72)
Up=1| . . . . (6.36)
| 0 0 271 |
K 0 N ]
L,= ’ 6.37
P 0 2N ... LN+p-3 (6:37)
SN UN+L . N+p—2
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and

&p = [041, a9 ... Oépfl]T (6.38)
Proof. See Appendix D O

Theorem 6.4 is key to Theorem 6.5, which comes next:

Theorem 6.5. Let a = [1,2...2Y YT and B, = Gy(a). Then, B, has the following

spectral characteristics:

1. If p< %, then By, is full column rank.

2. Ifp= w and z is an N unit root (i.e. 2 =1) then rank(B,) = % The null

space is given in equation (E.11). Otherwise, it is full column rank.

3. We distinguish 2 cases when p > #

(a) N _is even:
i. If 2N # +1, then By, is full column rank.

ii. If 2V = —1, then rank(B,) = % + 1. The null space is given in equa-
tion (E.30).
ii. If 2V = 1, then rank(B,) = % The null space is given in equa-
tion (E.34).
(b) N _is odd:
i. If 2N = +1, then rank(B,) = % The null space is given in equa-
tion (E.35).

it. Otherwise, By, is full column rank.

Proof. See Appendix E O

Theorem 6.6. For ULA type configurations, i.e. a(f) = [1,29,...zév_1]T with zg =

ei2m S sin(0) Define the following sets

0, — {sin_l(%), k= _g . %} (6.39)
o_ = {sm—l((’fxf?), k= 7% . g} (6.40)
O = {e+ ue_} (6.41)

The matriz B(0) = Gp(a(8)) has the following characteristics:

o If p < NE2 the matriz B() is full column rank.
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e When p > %, we distinguish the following cases:

— If N is even and 0 € O, then rank(B(0)) = .
— If N is even and 0 € ©_, then rank(B(0)) = § +1
— If N is odd and 0 € O, then rank(B(9)) = M.

FElse B(0) is full column rank.

Proof. See Appendix F
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It is important to understand the behaviour of matrix B(f) as function of §. Let vy <
vy < ... < v, be the eigenvalues of BY(9)B(6). In order to partially verify Theorem
6.6, we have depicted two figures where p > % In Fig. 6.4a, we fix N = 8 (even)
and p = 7. The red and green dashed vertical lines correspond to angles in @4 and ©_,
respectively. Observe that when 6 approaches angles in ©4, we have three eigenvalues,
i.e. v1, v9, and vs, dropping to zero. This implies that, when 6 € ©4, the rank of B(0)
isp—3=4= % However, when when 6 € ©_, only two eigenvalues, namely v; and
V9, go to zero. In this case, the rank of B(f) isp—2 =5 = % + 1. Also note that 4
is strictly positive. In Fig. 6.4b, we fix N = 9 (odd) and p = 8. Again, vy is strictly
positive. When 6 € ©4, three eigenvalues go to zero, implying that the rank of B(0) is

N
p—3:5:T+1.

6.4.2 Algorithm derivation

The previous subsection reveals an important phenomenon of matrix B(#). According
to Theorem 6.6, if 6;, € ©4 and p > %, then B(6;) admits a null-space. Therefore,
optimising the cost function given in (Pz), without choosing an appropriate constraint,
gives false AoAs. Mathematically speaking, the cost function in (Ps) is exactly zero for
all 0, € O+ when p > % To circumvent this issue, we form the following optimisation
problem

minimize m"K (O)m

m,6 (6.42)
subject to el!B(8)m = 1

It is easy to see that, for any 6, the trivial solution m = 0 and the vectors that lie in
the null space of B(#) (i.e. B(#)m = 0) are not feasible solutions because they do not
satisfy the constraint. Therefore, optimising the above problem will exclude the latter

false solutions.

The Lagrangian function corresponding to the optimisation problem in (6.42) is the
following:
L(m,v) =m"K(0)m — v(ef'B(O)m — 1) (6.43)

Setting the derivative of £(m,r) with respect to m to 0, we get

%E(m, v) = 2K (0)m — vB" (0)e; = 0 (6.44)
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Equation (6.44) gives the optimal coupling parameters, m®, for a given 6, in terms of

the optimal Lagrangian multiplier v° as

me = %I?_I(G)BH(H)el (6.45)
It is easy to prove that
BY(0)e1 = a3 (0) (6.46)

where a,,(0) is a px 1 vector defined as in equation (2.3). The expression of v is obtained

by plugging equations (6.45) and (6.46) in the constraint of the problem in (6.42), viz.

Vo = (6.47)

Therefore, m® is now given as

o K=1(0)az(6) (6.4
al (0)K~1(0)ax(9) '

Substituting m® in the objective function of (6.42), the ¢ AoAs could be estimated as

follows )
{Gk}zzl = argemin 70 (6.49a)
where
£(8) = al (O)K 1 (0)a’(6) (6.49b)

Note that K (0) is not invertible for the cases given in Theorem 6.6 and when 0 € © at
infinite SNR. For that, we adopt diagonal loading as done in [94], namely (K (6)+ el )_1,
where € > 0 is small. Additionally, it has been mentioned in [94] that there is generally
no known method for determining the optimal value of €, and it is usually determined

experimentally. We have found that e = 107 serves as a good value.

6.4.3 Properties of the algorithm

For a better understanding of the behaviour of the cost function given in equation (6.49),

we reveal some of its properties

Property 1: For p =1, i.e. no mutual coupling, the function f(0) "boils down” to the
traditional MUSIC cost function in equation (6.9).

Proof. Trivial. O
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Property 2: This property characterizes the null space of K(0) forp+q < N as a

function of 6

{0}, if, 6 U6L
0 if0;,cO© and 6, £ ©
NE @) = 00 0 €O and b: ¢ Ou (6.50)
N(B(GZ)), if 9; Q O and 0; € ej:
N (B(0)) Ufe). ith;c0n0,

Note that if p < N+2 then N( 01)) = {0}. Also note that this property assumes true
subspaces, i.e. K(Q) K(9) = BH(0)U,UFEB(0).

Proof. See Appendix G O

Property 3: Assuming true subspaces (i.e. U, = n), the function f(6) is bounded
when 0 ¢ © and unbounded when 6 € ©.

Proof. See Appendix H O
Property 4: The condition so that f(0) uniquely identifies the AoAs is that p+q < N.

Proof. This is so because the cost function in equation (6.49) depends on the inversion
of K(0). Hence, in the case where § ¢ © U O, the matrix UIB(#) is full column rank
when p < N — ¢q. As for the case when § € © UBO4, we have the argument in Property
3. O]

Remark: The existing methods in [89-91] and the suboptimal method in Section 6.3.1
can not identify the true AoAs, when the number of coupling parameters p > % Ac-
cording to Property 2, the cost functions of these exsiting methods would yield peaks
whenever # € 4 and p > % One could not, simply, remove these peaks because they

would affect the estimation, when the true AoAs are close to those in ©4.

6.4.4 MSE Analysis

It is well known that the noise subspace could be decomposed into two parts:

Up, =Upn + U, (6.51)
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where the first part, Uy, is the true noise subspace and the second one, ﬁn, is the error
term. Using this decomposition and other asymptotic properties (i.e. for large L or
high SNR) which will appear in this section, we wish to derive an asymptotic MSE
expression for the AoA estimates obtained from equation (6.49). In other words, we

seek an asymptotic expression of E{(gk)z}, where 5k is the error part
é\k =0+ gk (6.52)
Since {gk}zzl are minimum points of f~1(#), then

Of () » 0F'(9)

20 99 lo_g, 0 (6.53)

As done in [95], since 5k is an estimate of 0, we could, asymptotically, expand the above

derivative in the neighborhood of the true 6 using Taylor series

Of 1(Ok) _ 0F 10k | O°fL(0k) 5
fae(k): f09(k>+ f602(k)(9k—9k)+--- (6.54)

which gives an approximate expression of the error HNk = @\k — 0

’ék o afiale(ek) - f,(ek) (6 55)
- 2 f—1 - 12 2 .
0 f802(9k) F(65,) — Q(ff((?;)))

where f/(6;) and f”()) are the 15 and 2"¢ order derivatives of f(6) evaluated at point

0, respectively.

Property 5: The derivatives f'(0) and f"(0) are given as

f1(0) = g1(0) + g2(0) (6.56)
f"(0) = h1(0) + ha(0) + h3(6) (6.57)

where g1(0) and g2(0) are given in equation (1.5) and hi(0), ha(6), and hs(0) are given

in equation (1.6).
Proof. See Appendix 1. O

The expressions of f/(f) and f”(f) in equations (6.56) and (6.57), respectively, turn
out to be too complicated to analyze the error in equation (6.55). However, some

simplifications could be done, asymptotically, thanks to the following theorem

Theorem 6.7. Let \; and v; be the Gt smallest eigenvalue and its corresponding nor-

malized eigenvector of K(0y). Similarly, define /):j and v; for I/(\’(Gk) The smallest
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etgenvalue 3\\1 and its eigenvector v could be approximated as

1

A= WCHBH(ek)ﬁnP,jﬁ,{fB(ek)c + O(|Unl?) (6.58)
1 " vHBH(0,)UUMB(6;)c 0
%= (c - . vi) +O02) (6.59)
i=A+2
where P,ﬂ' =1— P, and
P, =U"B(6;,)K* (6,)B"(6,)U, (6.60)

and A is the dimension of N'(B(6y)), which is 0 when p < YF2 or {p > NF2 qnd
0 & ©+} and non-zero otherwise (according to Theorem 6.6). Note that (’)(||ﬁn||k)
and (’)(fjff) are scalar and vector terms, respectively, in which 17,, appears k times in

each term.
Proof. See Appendix J. O

This theorem reveals a behaviour of Aj, i.e. it acts as O(||Un||?). Using Theorem 4,

and some straightforward algebra, we have the following asymptotic approximations of

£(0), f'(0), and f"(0)

F0) = =——p + O(|Unl ™) (6.61)
Adllell
2 ~ ~
F(0) = —=;——uxRe{pr} + O([Un] =) (6.62)
Atllell
2 4 - -
"(0) = ——pr(— Re{pr})? — \vg ) + O(||Un| 3 6.63
£100) = 5 i (o Refpid)” = & ¢) +O(1Ta]~?) (6.63)
where
k= |l ar (0r) |2 (6.64)
o = B (6,) U, PLURD (6, )e (6.65)
v, = DY (0, U, PLULD(0),)c (6.66)

Substituting these expressions in equation (6.55), we arrive at

i~ Relowd

Ok ” (6.67)

In order to proceed, we use the following lemma, which gives the probabilistic distribu-

tion of the columns of ﬁn
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Lemma 6.8. Let n; be the it" column of ﬁn. Asymptotically, the vectors UsUl™n; are

jointly Gaussian distributed with zero means and covariance matrices given by

2
E{ (UUL5;) (U0 ;)" } = ey (6.68)
E{ (UUS5;) (U0 ;) T} =0 (6.69)
where
U =UZs(Ss — o21) °Uf (6.70)
Proof. See [95]. O

This lemma is key to the following theorem, which gives the MSE expression E{(gk)Q}

Theorem 6.9. The estimates {gk}zzl estimated through f(6) by equation (6.49) are
asymptotically unbiased. Furthermore, the MSE expression ]E{(gk)Q} S given as
») o a"(0x)Ua(9y)

E{(05)?) £ varf’ (B) = 2L dH(6,,)Un PLUd(0y) (670

—

where @(0y) and U are defined in equations (6.10) and (6.70), respectively. Also, d(6y) =
9a(0)

00 9:§k :

Proof. See Appendix K. O

It is interesting and easy to see that when p = 1, the above MSE expression coincides
with the MSE expression of MUSIC derived in [95]. In other words, if p = 1, we have
a(0;) =a(by), J(Qk) =d(0y), and P]ﬂ' =1, hence

2 H
gy _ 0 a (0r)Ua(0k)
vary (0) = 57 G0, U 01d 0y

= vary (0 @) (6.72)

where varyy (gk, a) is read as follows: The variance of gk obtained by MUSIC by utilising
a steering vector a(f). We adopt this notation because the MSE expression, V&I‘;p )(é\k),

could also be expressed as

S

var

(Or) = (1 jvk)varMU(é\k;d) (6.73)

where

0< = R(Pk,U}jJ(ek)) <1 (6.74)
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where the bounds in equation (6.74) are due to the fact that ~; is a Rayleigh quotient,
which is always bounded between the minimum and maximum eigenvalues of Py. Since
Py is a projector matrix, then the eigenvalues are either 0 or 1. Note that v, = 1 only
when N — gq = rank(Py) =

p — 1, thus violating the identifiability condition given in
Property 4.

Observation: It is very important to observe that VarMU(gk;(_z) appearing in equa-

tion (6.73) is, indeed, the MSE of f) estimated through MUSIC with known mutual

coupling parameters. Therefore, the quantity ﬁ quantifies the loss of performance,

or "gap” in terms of MSE, between the proposed method in equation (6.49) and the
MUSIC algorithm with known mutual coupling parameters.

Behaviour of v as a function of N and different AoAs

N —o- 0, =10

20 . —e— 0, =30°| ]
i —— 0, =50

al® ——0 =70 | i\

Behaviour of 71 and 72 as a function of N and different AoAs
0 T T T T

1 in dB

~k in dB
-
/

R

L L L L - L L L L
20 40 60 80 100 0 20 40 60 80 100
N

(a) g=1 (b) ¢ =2
Figure 6.5: The behaviour of v for fixed p = 3 as a function of N.

In Fig. 6.5, we study the behaviour of 7% given in equation (6.74) by fixing p = 3 and

increasing N, i.e. & — 0. Fig. 6.5a plots 1 for one source ¢ = 1, but different AoAs.
The coupling parameters are set to

¢=[1; —0.08 4 0.55; —0.14 — 0.35] " (6.75)

In addition, Fig. 6.5b plots v; and 2 when ¢ = 2 sources are present. The coupling
parameters are set to
¢=[1; 0.28+0.41j; 0.18+0.2j]" (6.76)

We observe that in both cases v, — 0 as £ — 0. Furthermore, the rate of decay depends

on the AoA, number of sources, and the coupling parameters.
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71 as a function of p function of p
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Figure 6.6: The behaviour of v for fixed N as a function of p.

In Fig. 6.6, we study the behaviour of 4 by fixing N and increasing p. We have
simulated two different scenarios when ¢ = 1 source is present. The coupling parameters
are generated by first forming a vector €, such that {Ek = %ﬂej%%}iv:p where ¢y, is
randomly chosen. Then, in order to compute 7, for p = py, we choose the first pg
elements of € to form the vector ¢ € CP°*!. In Fig. 6.6a and Fig. 6.6b, we have set
N =10 and N = 50, respectively. We also observe that v is increasing as p increases
for fixed N. This results in an increase of the MSE given in equation (6.71), when p

increases due to the factor (ﬁ), as we shall next.

Theoretical and experimental MSE of MUSIC and f(6)

MSE as a function of SNR for different values of p

15
7 p— —o— Experimental MSE of f(6)
30k ¥ —p=2|] 10 —e— Experimental MSE of MUSIC
¥ —e—p=3 sl varf)(61)
20+ vary (61)
m 10r
9 S
2 ot 'E R
;5 10} a-
ol &
® a0l i
30]
-40
-50 . . . . . .
-20 -15 -10 -5 0 5 10 15 20
SNR in dB SNR in dB
(a) N=6,¢g=1, and 6, =50° (b) N=6,9g=1, 6, =10°, and p = 3.
Figure 6.7: MSE of the proposed method in equation (6.71) for different values of p

and 91
The MSE of the proposed algorithm in equation (6.49), namely Var}p ) (é\k), is simulated
in Fig. 6.7. In Fig. 6.7a, we set N =6, ¢ = 1, and 6; = 50°. The number of snapshots

is L = 10%. The coupling parameters are chosen from vector
€=[1; —0.08+0.5j; —0.14 — 0.35; —0.04 +0.045; 0.03 — 0.02;]" (6.77)

as done in the case of Fig. 6.6. This figure tells us that a higher MSE is obtained for
increasing p. In Fig. 6.7b, we quantify this loss of performance. We have ¢ = 1 source

impinging an array of N = 6 at #; = 10°. The number of snapshots is L = 10%2. The
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number of coupling parameters is p = 3 with ¢ equal to that in the scenario depicted in
Fig. 6.5a. We have plotted the experimental and theoretical MSE of MUSIC with known
coupling parameters and the proposed algorithm in equation (6.49). For the experimen-
tal MSE, we have averaged over 10%> Monte-Carlo simulations. This figure validates the
gap between the MSE of MUSIC and the proposed algorithm, which is about ﬁ, for
sufficiently high SNR. The value of 41 could be extracted from Fig. 6.5a, since we have
used the same coupling parameters. We could see that v, >~ 0.758 for #; = 10°, which
gives 1010g10(ﬁ) ~ 6dB. This factor is the loss of performance compared to MUSIC
with known coupling parameters. Furthermore, we could also observe that the experi-

mental and theoretical MSE curves are in agreement for sufficiently high SNR.

6.4.5 Comparison with the Cramér-Rao Bound

The Cramér-Rao Bound (CRB) on the AoA estimates of a model that includes unknown
mutual coupling, i.e. equation (6.1) was derived in [96]. The CRB is given as

varcrs(0k) 5T ([DHPj;‘D © Ry _1) - (6.78)

)

where PI% = I — Pj is given in equation (6.2) and A is given in equation (6.11). Also

D=| 00| |20 ] (6.79)

Following similar steps as in [95], we re-write the MSE equation, vargcp )(gk), in a way

that turns out to be useful when comparing to the CRB

Wiy = o Pl (B @A) R,
Y dH (0,)U, PLUSd(6))

var

(6.80)

Large Number of Antennas

We study the performance of the algorithm proposed in equation (6.49) in the asymptotic

regime when £ — 0, i.e. N — oo for fixed p. We have the following Theorem, which is

a generalisation of the case with no mutual coupling in [95]
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Theorem 6.10. The limits of varCRB(QAk) and var;p)(é\k) are given as

@) LA (681)
var .
CREK 250 NS3L|hfe|? (Rss)k,k
2
(20 6o -1
vary (Or) " N3L|h,€]c|2 (Rss )kk (6.82)
e 5 0 (6.83)
~—0
where
h; = ap(ﬁk) + a;‘,(ﬁk) —eq (6.84)
Proof. See Appendix L. O
Using this theorem, we have that
() (g
vary ’ (0) B
s (Rss)k k(RSsl)k:k (6.85)
Val"CRB(ek) ’ ’

and hence the CRB is attained for uncorrelated signals (i.e. Rgs is diagonal), when

p
N_>0-

High SNR

For high SNR and uncorrelated signals, one could show the following relation

(O AH 3\ —1
var (k) B ((AMA) )kk 1
m B (1 * SNRy ) (1 - ’Yk) (686)

where SNRy, = Rea)ite gy high SNR, the ratio in equation (6.86) is controlled by the

0.2
factor ﬁ, i.e. the 7gap” between the MSE of the proposed algorithm and the CRB is

=
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(g) Proposed method f(#) in eqn (6.49) (h) Refinement of proposed method
Figure 6.8: Different normalized spectra (in dB) of methods that estimate AoAs in
the presence of mutual coupling.

In Fig. 6.8, different spectra of methods that estimate AoAs in the presence of mutual

coupling are depicted for a particular scenario. There are two sources #; = 2° and
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Ay = 20° attacking a ULA composed of N = 8 antennas. The ULA suffers from mutual

coupling with p = % = 5 coupling parameters given as

c=[1; —0.44 4+ 0.235; 0.33 4 0.015; —0.23 — 0.1j; 0.1+ 0.165]T (6.87)

The SNR is set to 10 dB and the collected number of snapshots is L = 500. We
observe that the methods in Figures 6.8a, 6.8b, and 6.8d yield fake peaks when 6 € ©
according to Theorem 6.6. In addition, there is no peaks corresponding to the true
positions. This is so because fake peaks may overlap with the true ones, when the
latter are sufficiently close to the former. Furthermore, the recursive RARE depicted in
Fig. 6.8e is initialized by RARE, and therefore selecting a false peak in the first iteration
may deteriorate the performance of recursive RARE in further iterations. As we can
see, recursive RARE has not successfully identified the true positions. Moreover, the
method in [88] depicted in Fig. 6.8c does not perform well at all. As stated earlier, this
is so because the method requires that 2p+q < N + 1. On the other hand, the iterative
method in [93] gives broad and biased peaks away from the true positions. Moreover,
the proposed method in equation (6.49) depicted in Fig. 6.8g gives peaks at the true
positions. The ratio between the highest true peak and the highest fake peak is about
50dB. Additionally, the ratio between the 2"? highest true peak and the highest fake
peak is about 25dB. Indeed, there is a great improvement between the proposed method
and the previously mentioned one. Finally, the refined method discussed in Section VII
could further diminish the fake peaks as we can see in Fig. 6.8h. In addition, the refined
method also exhibits better performance in terms of bias and MSE of AoAs and coupling

parameters, when compared to all these methods.

6.4.6 Refining the AoA estimates by alternating minimisation

As explained in Section III.B, the optimisation problem formed in (P2) is suboptimal.
This is due to the fact that it, implicitly, assumes that each AoA is exposed to different
mutual coupling parameters, namely ¢ = ¢(f). Fortunately, problem (P;) is optimal,
since it forces the same coupling parameters on all the AoAs. In this section, we propose

an efficient algorithm that aims at optimising problem (P;).

Consider the following problem:

minimize m"§(@)m
m,@luﬂq

g (6.88)
subject to (ZelHB(Hk))m =1
k=1

The constraint here is a generalisation of that in problem (6.42) in a sense that it

prevents the cost function to be zero when the AoA variables © are ”simultaneously”
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in the set ©4, i.e. when 6 € ©4+...0, € ©1. Following similar steps as in equa-

tions (6.43)till (6.48), the optimal coupling parameters are given as

_ §e)4;0)1,
- 17AT(©)5-1(8)450)1,

o

(6.89)

where A, (0©) is similarly defined as A(©) in equation (2.6) but of size p x ¢q. Plugging

this expression of m® in the objective function of (6.88), we get

~

T 4T a1 *
6 = arg o {Ilq AT(©)S (e)Ap(e)ﬂq} (6.90)
which involves a g—dimensional search in the AoA parameters. We, hereby, propose
q ”1—dimensional” searches done by alternating minimisations: At an iteration ¢, the

following AoAs are estimated from previous iterations:
O, =1[01...0i_1] (6.91)

Estimate @ as

0; = arg max {ILEA;F 6,,0)871(6;,0)43(6;, Q)L-} (6.92)
by picking @ ¢ ég because values in ég also maximize the above cost function. It
is easy to see that the first iteration of this algorithm, i.e. ¢ = 1, is equivalent to
maximising f(0). However, the difference is that, the first approach involves picking
q peaks from f(6), whereas, the alternating minimisation algorithm in equation (6.92)
picks one peak at each iteration, and therefore refining the estimates of each AoA.
Moreover, this approach could also estimate the coupling parameters. This is done by

using all estimated AoAs, say O and inserting them into equation (6.89), namely

5-1©)4:(0)1
= — . A(Ailf; )*qA (6.93)
1,4,(©)571(6)4;(0)1,
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Figure 6.9: Bias and MSE of the AoA estimates as a function of SNR for Experiment
1

In Experiment 1, we fix the following parameters: N = 8, ¢ = 2 i.i.d. uncorrelated
Gaussian sources impinge the array at #; = 5° and 62 = 20°. The collected number of
snapshots is L = 103, and the number of coupling parameters is p = 3 with
]T

c=[1; 0.2+ 0.465; 0.33 4 0.04; (6.94)

According to Fig. 6.9a, all methods, except for [93], show no bias when SNR> 2dB.
However, it is interesting to observe that the proposed method and its refinement are
the least biased. In terms of the MSE of AoA estimates, which is depicted in Fig. 6.9b,
we also observe that the proposed method and its refinement exhibit less MSE for any
SNR. Interestingly, all algorithms (except for [88] and [93]), are exposed to the same
MSE, when the SNR exceeds 2dB.

Bias as a function of SNR

15 MSE as a function of SNR
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MSE in dB
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-10 - 7 —%— Recursive RARE [58]
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Lo Method in [59]
AA5) - —x— Proposed optimal £(6)
—e— Refinement of optimal method
Coupling-free MUSIC

-20
0 10 15 20
SNR in dB SNR in dB
(a) Biasin © of AoA estimates as a function (b) MSE in dB of AoA estimates as a func-
of SNR. tion of SNR.
Figure 6.10: Bias and MSE of the AoA estimates as a function of SNR for Experiment
2
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In Experiment 2, we fix the same parameters as in Experiment 1, except now that the

2 sources are correlated. The sources are Gaussian with covariance matrix
1
Res = [ p] (6.95)

where the correlation coefficient is set to |p| = 0.8. Again, the method in [93] does not
perform well at all (in terms of bias and MSE). This is so because the method was based
on the assumption that Rgs is diagonal, and therefore correlation between sources is not
allowed. On the other hand, all other methods require higher SNR when sources are
correlated, since they are MUSIC-based methods. For example, the proposed method in
equation (6.49) requires an SNR of —2 dB to achieve 0 dB MSE, when the sources are
un-correlated (Experiment 1). On the other hand, and in order to achieve the same MSE
for correlated sources with correlation coefficient |p| = 0.8, an SNR of 13 dB is needed.
This is so because the MSE of this method depends on R,!, and hence a higher MSE
is obtained as correlation between sources increase. According to Fig. 6.10a and 6.10b,
we also observe that the proposed and refined methods are the least biased and enjoy

better MSE performance than other methods.

Bias as a function of SNR MSE as a function of SNR

S it e D G S L s ok — e — — —

Bias in °
MSE in dB

3 L L L
-10 -5 0 5 10 0 5 10
SNR in dB SNR in dB

(a) Bias in © of AoA estimates as a function (b) MSE in dB of AoA estimates as a func-

of SNR. tion of SNR.
Figure 6.11: Bias and MSE of the AoA estimates as a function of SNR for Experiment
3
In Experiment 3, we fix the same parameters as in Experiment 1, except for p = % =5,
with
T
¢ = [1; 0.2 4 0.465; 0.33 + 0.04j; 0.12+ 0.015; 0.01 + 0.03] (6.96)

According to Figures 6.11a and 6.11b, we see that all algorithms, except for [93] and
the proposed ones, do not operate properly in terms of bias and MSE. This is so since
p was chosen to be # Therefore, according to Theorem 6.6, the matrix B(f), and
consequently K () admits a null-space whenever § € ©4, and therefore the mentioned
methods will always choose peaks corresponding to angles in § € ©4. At sufficiently high
SNR, we see that the MSE of the proposed algorithm and the refined method coincide
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(Fig. 6.11b). Additionally, the refined method outperforms all other algorithms in terms
of bias and MSE of AoAs and coupling parameters.

6.5 Mutual Coupling Agnostic AoA estimator

6.5.1 The Maximum Likelihood Estimator

Now let us denote

A(B) =T(c)A(®) (6.97)

we can say that the received signal X , under assumption A2,
X ~ N(A(@)S,J2IN), I=1...L (6.98)

To simplify notation, we stack all signal and noise parameters into one vector, say

T
0= [eT,cT,vec(S),aﬂ (6.99)

We can now express the joint probability distibution function of all the snapshots X,

given the unknown signal and noise parameters {2 as

L

~ 1 1. = 2
X|Q) = _ ——|Z2() - A [ .1
$(319) = T g byl S0 A0} 610
The Deterministic ML estimates of the noise and signal parameters, i.e. QML, are
obtained through the following criterion
OML — arg maxf()}‘m) (6.101)
Q
Finally, OML g given by the following
. N . T
ML = [eT T,vec(S),&ﬂ (6.102a)
1 - A A
A2
— —A .102b
' =7 H (©) SH (6.102b)
8= ( A(6) ) (6.102¢)
[6,¢ = argmax tr QA(O)R} (6.102d)



Chapter 6 Mutual Coupling 115

where &2 i®) is the projector onto the signal subspace, i.e. the space spanned by columns

of 91‘1(6) 3
R G)) (XH(G)A(G)) Ale) (6.102¢)

and ﬁ,m is the sample covariance matrix of the data given in equation (6.8).

Note that once the estimate [6,é] is obtained by solving (6.102d), then one could plug
[6,¢] in (6.102b) and (6.102¢) to obtain the ML estimate of the noise variance and signal
matrix, respectively. It turns out that the optimisation problem in (6.102d) is highly
nonlinear, as it requires a (q—l— 2(p— 1))—dimensional search!, and its direct optimisation
would require cumbersome optimisation techniques. It is worth stressing a point here:
The rest of the paper focuses on solving (6.102d) in order to estimate ©, by treating ¢
as a nuissance parameter. Our aim is to estimate the AoAs of multiple sources in the

presence of mutual coupling, thus the term ”Mutual Coupling Agnostic”.

6.5.2 Proposed iterative method

In the absence of mutual coupling, i.e. p =1 and ¢ = 1, Ziskind and Wax have proposed
to optimise (6.102d) in order to estimate © via Alternating Projection [30]. That is,
the value of #; at the k' iteration is obtained by solving the following 1-dimensional
optimisation problem

aH(é’i)@j;ngjga(Gi)

o) _ 6.103
arg max aH(Qz)Qia(el) ( )

where 91} = I — Py and A; is obtained by omitting the i** column from matrix
X(G(’“)). The vector ©*) represents the estimated AoAs at iteration k, in an attempt
of estimating the i*» AoA. In other words, at iteration k and sub-iteration 4, vector o)
could be expressed as

6" — [ 65 .. 9P o1 gk gkt (6.104)

Naturally, the algorithm is iterative. At each iteration, the 1-dimensional search in (6.103)

is done per AoA (i =1...q) in a successive manner until the vector 6" converges.

Notice that, in the presence of mutual coupling, we could follow similar steps as in [30]

to get

&H(Gi)yijﬁmmg%,&(ei)
= arg max : 4

5 a® : -
O T ) P L e,

(6.105)

Ttisa (q +2(p— 1))-dimensional search: ¢ is due to the number of parameters in © and 2(p — 1) is
the number of real and imaginary unknown parameters in c.
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where the maximisation is also done over the coupling parameters ¢. Thanks to Theorem

6.1, we can say that

a(0) =T(c)a(d) = B(0)c (6.106)

[él(k) ) égk)] = arg max 07 (6.107a)

where

Q(0;) = B(0,)P% Rea P% B(0:) (6.107b)
K (0;) = B"(0:)2% B(0:) (6.107¢)

Maximising first with respect to ¢ according to the following criterion

maximise ¢ Q(6;)e
ceCrxl (6.108)
subject to K (6;)e =1

gives rise to the following cost function

égk) = arg max Apmax (Q(GQ;K(@)) (6.109a)
0;

where A\pax(Y'; Z) is the maximum generalised eigenvalue of the matrix pencil (or matrix

pair) (Y;Z). Then, the vector égk) is estimated after maximising (6.109a) and obtaining
e

7, Viz.

e® =y (Q(é§’“>); K(éf.’“))) (6.109b)
where vax(Y; Z) is the generalised eigenvector corresponding to the maximum gener-

(k)

alised eigenvalue of the matrix pencil (Y;Z). The vector ¢’ is also normalised with

respect to its first element. Then, an update is done on the vector 6®) by replacing
(k=1) __ . (k)
0, with 6,

(k)

i

(%)

After estimating 6" and ¢;”’, an update should be done on the corresponding column

of A according to equation (6.106) as follows
A(k A(k

o < T@Ea(@0) (6.110)

Then, increment ¢ < i + 1 and do the same procedure to estimate the next AoA. If

1> ¢, then i <— 1, and k <~ k+ 1. The procedure is repeated until the vector 6™ shows

no satisfying improvement. The algorithm is summarised in the table Algorithm 6.
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Algorithm 6: Implementation of the Proposed Agnostic Mutual Coupling ML AoA
Estimator by Alternating Projection

DATA: Collect X and compute Rgs according to equation (6.8).

INITTALISATION:

k+0; A<+ 0 PL1, 60k

for i =1 to g do

e Step L.1: Estimate él(k) via 1D search using (6.109a), where:

— Q(0) = BH(0) PR, #LB(0).
— K(0) = BH(0)21B(0).

e Step 1.2: Obtain égk) using equation (6.109b) and él(k)
e Step 1.3: Update the following quantities:
1 ~ k
~ [y < TE)a@).
— PL T AAHA)T1AH,
— (0] + .

MAIN LOOP:
do

° éOId%é(k)
e k+—Lk+1

for i =1 to q do
e Compute P+ I — A;(A;Hfi;)_lfi%{, where A; is obtained by omitting the i
column from matrix A.
e Do Step I.1 to estimate él(k)
e Do Step 1.2 to obtain é(k).

e Update [fi]( T (k)) (éfk)) and [G(k)](ijl) — él(k) as done in Step 1.3.

while [|[6®) — @°ld|| > ¢

We have conducted three experiments by fixing the following simulation parameters:
N = 7 antennas, ¢ = 2 sources, and the RMSE is averaged over 200 trials. In all
the experiments, we compare the RMSE of the AoA estimates with the Cramér-Rao
bound that takes into account joint estimation of AoAs and coupling parameters [96].
This threshold indeed depends on several factors, such as separation, correlation, and

number of sources.

In the 1% experiment (Fig. 6.12), we have fixed the AoAs to #; = 0° and s = 20°. The
sources are uncorrelated and are generated as independent and identically distributed

(i.i.d) according to a Gaussian distibution. The number of snapshots is L = 100. Also,
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the number of coupling parameters are p = 3 with ¢ = [1,0.3115 + 0.39113, —0.3063 —
0.13145]. We can see that the RMSE of both AoA estimates via the proposed method

are close to their corresponding CRBs when SNR exceeds 5 dB

9 RMSE vs SNR
3 —e— 0’ via AP
gl —© —0'CRB
—— 20’ via AP
7r — % — 20" CRB
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Figure 6.12: RMSE of AoAs on a log-scale vs. SNR. of the 1% experiment.
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Figure 6.13: RMSE of AoAs on a log-scale vs. SNR of the 2"¢ experiment.

In the 2" experiment (Fig. 6.13), the two sources are coherent. the AoAs are now more
separated compared to the 1% experiment, namely §; = 0° and 65 = 35°. The number

of snapshots is L = 100. Moreover, the number of coupling parameters are p = 2, with
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c = [1,0.1563 — 0.475j]. We can see that the RMSE per SNR is higher than those of
the 1% experiment, even though we have less coupling parameters and AoAs being more
separated. This is due to coherency of the sources. However, we see that the RMSE of

both AoA estimates are close to their corresponding CRBs, when SNR exceeds 15 dB.

Number of Snapshots vs SNR
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—o- -0° CRB
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©
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No. of Snapshots (L)
Figure 6.14: RMSE of AoAs on a log-scale vs. SNR of the 3"¢ experiment.

In the 3" experiment (Fig. 6.14), we plot the RMSE v.s. number of snapshots L, with
SNR fixed to 5 dB. The sources are uncorrelated and are generated as i.i.d according
to a Gaussian distibution. The AoAs are brought back to the values of experiment
1, iie. 07 = 0° and 0y = 20°, but with less coupling parameters, i.e. p = 2 with
c = [1,0.3561 — 0.225]. The RMSE of 6 is close to its corresponding CRB, when L

exceeds 75, however, 0 still shows some error of about 0.1°.

6.6 Conclusions and future directions

There are several new results in this paper that should be highlighted.

e We have derived a suboptimal MUSIC-based method for estimating Angles-of-

Arrival in the presence of mutual coupling in Section 6.3.1.

e We have presented and proven two theorems, namely Theorem 6.4 and Theorem
6.5, that allowed us to characterize the spectral behaviour of an important matrix,
i.e. B(6), through an important theorem, i.e. Theorem 6.6, which explains why
other algorithms, such as [89-91] including the suboptimal method in Section 6.3.1,

suffer from "non-identifiability” (i.e. when p > %) through that particular matrix.
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e In the light of these results, we propose an optimal algorithm (Section 6.4), in the
sense that it does not suffer from this “non-identifiability” issue. This algorithm
could estimate the Angles-of-Arrival of ¢ sources in the presence of p mutual cou-
pling parameters, given that p+¢q < N. We have also proved some properties that
are related to the cost function f(6) (the optimal method) to give a better insight

on how the proposed method operates.

e We have derived a closed-form asymptotic MSE expression of the proposed al-
gorithm with the help of the paper in [95] and some Perturbation Theory tools.
Moreover, we have shown that the estimates of the Angles-of-Arrival through peak

finding of f(#) are asymptotically unbiased.

o We observed the "gap” between the MSE of the proposed method and the MSE of
MUSIC with known mutual coupling parameters. This is given by equation (6.73).

For the k' source, this ”gap” is given by (1f7k).

e Furthermore, the derived MSE reveals that the proposed algorithm attains the
Cramér-Rao bound of joint mutual coupling and Angle-of-Arrival estimation when
£ — 0 for uncorrelated signals. However, for high SNR, this is not generally the

case.

e We have improved the optimal method, in Section 6.4.6, by a method that is
guaranteed to give a lower MSE on Angles-of-Arrival estimates by taking into

account a better constraint of the optimization problem in hand.

e Finally, we have proposed an iterative algorithm based on Alternating Projection
in order to optimise the Deterministic Maximum Likelihood cost function that
takes into account mutual coupling. Throughout the operation of the algorithm,
mutual coupling parameters were treated as nuissance parameters, thus the name

” Mutual Coupling Agnostic”. Furthermore, the sources are allowed to be coherent.

Future directions may include: (i) regarding the mutual coupling problem from a dif-
ferent perspective, namely reducing the mutual coupling effect instead of considering a
joint coupling/AoA estimation problem; (ii) including other phenomena that perturb

AoA estimation, such as gain/phase mismatch between different antennas.
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Localizing via Wi-Fi

In this chapter, we aim at building a real system that could perform joint Angle and Delay
of Arrival Estimation and Detection of multipath components. This is simply done, so
that we could extract the Angle-of-Arrival of the Line-of-Sight (LoS) component between
the transmitter and receiver. The contributions are summarised as follows: (i) we take
into account all critical factors that perturb the Joint Angle and Delay estimation problem
and formulate a system model accordingly; (ii) then, we propose an offline calibration
method to compensate for all such factors; (iii) finally, and with the help of the CESS-
JADED-RIP algorithm, we have successfully been able to estimate the Angles and Times
of Arrival of all the multipath components, which allowed for the extraction of the AoA
of the LoS component.

7.1 Analytical Modelling

7.1.1 Transmit Signal
Let the baseband OFDM symbol be defined as followed:

M

2
s(t)= Y bl

m=—

w) (7.1)

where Ay = % is the subcarrier spacing and 7' is the symbol period (i.e. T" = 3.2usec.)
Moreover, parameter M indicates the total number of subcarriers (including the non-

useful ones within the band of interest). In the above equation, the time index ¢ could

121
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span any real positive value, i.e. ¢ > 0. Due to the periodicity of the exponential term,

we get the following relation,

s(aT) =s(aT +T), 0<a<l1 (7.2)

We would like to, explicitly, express consecutive OFDM symbols that form an OFDM
frame. Assuming we have transmitted L consecutive symbols, the overall transmit frame

is expressed as

T
)

FO) =S "st—1IT), 0<t<LT (7.3)
l

Note that the rect function II(f) is defined as

Il
=)

1 if|f| <3
HO(f) =13 if[f]=3 (7.4)
0 if[f] >3

In reality, the function IT(f) is seen as an ideal low pass filter (sinc filter) with zero ripple
in the pass and stop bands and zero transition width. In practical scenarios, this ideal
filter is not realisable, and instead we shall use G(f) to denote the actual pulse shaping

1

filters in frequency domain'. Since Therefore, the baseband signal has the following

form now

L1
ft) = s(t—1T), 0<t<LT
1=0
-1 % ‘
— Z bme]27TmAf(t*lT)G(mAf)7 0<t<ILT (7.5)
1=0 ppe_ M
2
-1 5
= by el TmASE 0<t<LT
1=0 =M

where the last equality is due to the fact that AT =1 and by, = G(mA¢)by,. As one
can see, the same OFDM symbol s(t) is transmitted L times. The final form of the

transmit frame is in broadband, viz.

n case of transmit or receive filters, we do not make the difference and we assume that G(f) is a
cascade of filters.
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z(t) = f(t)er*met (7.6)

In all what follows, we assume absence of noise only for the sake of compact presentation.

7.1.2 Channel Propagation

We assume a specular channel model, i.e. let h,(t) be the channel seen by the n'*

antenna

ha(t) = Yean(01)6(t — 74) (7.7)

k=1
where 7, is the complex coefficient of the k' path and the parameters 6y, 75, indicates
the time of arrival (ToA) and the angle of arrival (AoA) of the k*". Note that the ToA
is measured from the moment of transmission of the frame. The function a, () is the
response of the n'* receiving antenna due to a path arriving at angle 6. Finally, 6(¢) is

the Dirac-delta function defined as

TR L (7.8)

0 else

The received signal at the n'* antennas could be expressed as

Yn(t) = hn(t) * z(t) (7.9)

where x denotes convolution. We could write y,,(t) as

(7.10)

= nykan(Gk) (5(t — Tk) * m(t))

k=1

To compute the above term (§(t — 7;) * 2(t)) and "get rid” of the convolution sign, we

make use of the shifting property of the convolution, namely

/00 f(z)é(x —a)dr = f(a) (7.11)
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Using the definition of the convolution, we have that

F(t) = g(t) = /O f(t = 5)g(s) ds, (7.12)

Using this definition, we compute the quantity we are interested in

O(t — 1x) *x(t) = 2(t) x0(t — 1)

t (7.13)
= / x(t — 8)0(s — 1) ds.
0
Now, consider the two following cases,
o If t < 7k, then d(s — 7;) = 0 since 0 < s < ¢ < 71, and hence
t
/ x(t—5)0(s —1,)ds =0 (7.14)
0
e If t > 715, then using the shifting property,
t
/ x(t — $)d(s — 1) ds = z(t — s) =z(t — 1) (7.15)
0 S=TL
We conclude that
x(t — 7 t>T
8(t — 73) % x(t) = U IER (7.16)

Now since the signal z(t) is present within 0 < ¢t < LT, and zero otherwise, then we

could say
O(t — 1) *x(t) = x(t — 1) (7.17)

without the need to impose the two cases. So,
q
Yn(t) =Y Akan(Ok)2(t — 1) (7.18)
k=1

7.1.3 Receiver

In this subsection, we should describe carefully the different blocks associated at the

receiver’s side.
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Down-Conversion of the RF signal

Upon the reception of the analog signal y,(¢) for 1 < n < N across all antennas, a
downconversion is needed to center the signal y,(f) around the zero frequency. Ideally,
all clocks per antenna paths should have a crystal embedded and running at f.. However,
this is not usually the case. In other words, assume that the oscillator is running at

frequency f7 at the n'” antenna path?, then a downconversion at the n‘* path reads
ylovn (1) = yp (t)e I3 et (7.19)
where the superscript "down” indicates ”down-conversion”. We would like to see the

effect of the mismatching in downconversion (i.e. when fI* # f. for all n). Using equation
(7.18) in (7.19) we get

q
yiown(t) = (Z Vi (O )x(t — Tk))e_ﬂ”fgt (7.20)
k=1
Now using equation (7.6), we get

Vian (Or)z(t — 73,)) e I2mIe

B

(1) = (

B
Il

1

Vn (Op) f(t — 73) 72T felt=Te) =2 fe't (7.21)

M= 11

/}/kan(ak)f(t — Tk)ej2ﬂ(fcifg)tefj27rfc7'k

T
I

As mentioned in Section 7?7, the difference €= fe— fI causes Carrier Frequency Offset
(CFO). Also let’s absorb the term e~72™/¢™ into the multipath coefficients 4, due to its

independence of time. To this end, let’s denote
Ay = ype 2T (7.22)

Therefore, equation (7.21) becomes
q .
ygown(t) — Z ﬁkan(ek)f(t _ Tk)ej%'eft (7.23)

As we can see, the CFO e? causes a drift in time domain.

%In the case of a common oscillator, we have that fi = f2=... = fN = f!
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Sampling the RF signal

The sampling process of the RF signal is a block that is of fundamental importance,
as it allows us for further signal processing. Nominally, and according to the Nyquist
criterion, we should sample at a rate that is at least the signal bandwidth so that we do
not loose any information carried by the signal. This means that the sampling frequency,
fs = T% should satisfy

fs> B (7.24)

where B = M A/ is the bandwidth of the OFDM signal z(t) or, equivalently, yS°"2(¢). In
this document, we assume that the nominal sampling frequency is chosen to be f;, = B

and hence
1 1

R 5, (7.25)

It is impossible to guarantee an exact sampling period Ts. As in the case of CFO,
the deviation of the crystal’s oscillation frequency from the true one causes a sampling
mismatch. More formally, assume that the sampling period is 77" at the nt" antenna
path?. Then sampling y3°""(¢) in (7.23) at T reads

q
ygown(p) A ygown(t _ an + Bn — Z an ek pTSTL + Bn o Tk) ]27re (T2 +Bn) (726)
k=1
Using equation (7.5) in (7.26), we get

M

down i an(ak) i EmejQWmAf(stnf‘rk)ej%rez}st"
=1 —_M
? . (7.27)
q 3
_ 6j27r67prTS" Z vkan(ek) Z bm6j27rmAf(pTS”—Tk)
k=1 M

where G (0) = an(0)e’>™(F) . Assuming that el = Ty — T7, then if €/} # 0, we can
say that the system is prone to Sampling Frequency Offset (SFO). This destroys the

orthogonality of the subcarriers, thereby resulting in inter-carrier interference (ICI).

3In the case of a common oscillator for sampling, we have that TS = T2 = =TN =T!
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Focusing on the last sum in equation (7.27), we can say

M M
2 2
E bmeJ'ZTrmpAfT:efj%'mAka — E : bm€j27rmpAf(Tsfe%)eijWmAka
m=—M m—
M
2

_ Z gmej%rmpAfTS(l—&%)6—j27rmAka

M
m=—ry

_ Z b e]27r P(1— 6T) —j2mmAfTy

mi_i

_ § : b e]27r e —j2m R on. —j?ﬂ"n’LAka

m__i

where 07, = % Using (7.27) and (7.28), we can say that

: n n mp n
ygown(p,l):(BjQﬂ—EprS Z Z b 6j27rMe J2m SO Te ]27rmAka,yka (ak)

k=1 =M

A compact representation would be?

. n n ~T ~ .
yn(p,1) = (> FPHIDTE (£ (1)BCGa,,)

4We omit the ”down” super-scipt

(7.28)

(7.29)

(7.30)
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where
_ (Z'zén),%(erlM)
(2.25 )(—%+1)(P+ZM)
~ (Z.Z(;n)*(erlM) o _i2mgn
Fonl) = (2.2 )P+ , z=¢€M and z5, = e IMT (7.31)
(A1) (p+1Mm)
(z.25,)
(z.z(gn)%(p“M)
B = diag[g_% . .E%] (7.32)
C=le(n) e(r) e(ry)| (7.33)
S
Zr
2
e(r)=| u 4|, z =T (7.34)
27
ZT%H
e
G ==diaglfi... 7, k=TT (7.35)
an(01)
a, = : (7.36)
an(0g)
Collecting M time samples for the I symbol we get
yn(la l)
Yn(2,1)
yn(l) = .
| yn (M, 1)
[ (277G OHTY (71 (1)BCGa,) | (7.37)
(ej27re’j}(2+lM)Ts") (f;n(l)ECG&’n)
_(ej27re:}(M+lM)Tg) (Af/L’n(Z)ECG&/n)_

= D ()F(1)BCGa,
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where

De(l) — diag ej27re’fl(1+lM)TS" o €j27re?(M+lM)T5" (738)
_~T -
fl,n(l)
~T
_ l
F(l) = f 2”?( ) (7.39)
~T
_.fM,n(l)_

7.1.4 Summary

The sampled 1™ symbol up to the output of the ADC at the n'* antenna is given by
yn(l) = D(1)F(1)BCGay, (7.40)
where

e D.(1) is given in equation (7.38). This matriz captures the CFO on the n'" path.
e F(I) is given in equation (7.39) and could be defined as the perturbed DFT matriz.

e B is given in equation (7.32). This is a diagonal matriz containing the transmit

symbols per subcarrier.

e C is given in equations (7.33)-(7.34). This is the steering matriz to multipaths

arriving with delays 1 ... 74.

e G is given in equations (7.35). This matriz is a diagonal matriz containing complex

gains of each multipath.

e a, is given in equation (7.36) and is the perturbed vector of response of only the

nt" antenna to all path arriving at angles 0 . . 04.

7.2 Offline calibration approach

In this section, we explain the preprocessing steps done before AoA/ToA estimation.
The preprocessing will be done in an offline manner, i.e. the channel is only the cables

connecting Tx with Rx.
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Figure 7.1: Block Diagram of the Offline Calibration approach

7.2.1 Step 1: Detect Frame/Symbol

The first step is to find the beginning of the frame. Let’s assume that we have transmitted
31 consecutive LTF symbols, just as in Figure 1, where we can see the received signal
sampled at 80 MHz. Our task here is to find which time sample n determines the

beginning of the frame.
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Figure 7.2: An arbitrary chosen frame during Offline Calibration

7.2.2 Step 2: Estimating and Compensating the CFO

Since calibrations are done thru connecting cables, then there doesn’t seem to be a
multipath channel. In other words, we assume a single direct path of the signal, that is
traversing directly thru the cables. Having said that, we shall now write equation (7.40)

for a single path, thus the received signal thru the cables read:

yn(l) = D.())F(1)BCGa,

F()B (7.41)
= D (1)F(1)Be(0)5otn (6o)
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Figure 7.3: Detection of Start Index

But with connected cables, there is no physical meaning of a steering vector a,(6),
since ideally the received signal should arrive at the same time instant up till the ADC.
However, it is important to include the delays per path, which was given below equation
(7.27), which is

n(0) = ?2Pnle}) (7.42)

Therefore we shall assume a,,(6) = 1. Also since 7p is common for all n (i.e. common
for all antennas), then we shall assume it to be equal to 1. Let 27rﬁn(e7}) = ¢n, therefore
equation (7.41) will read

Yn(l) = Dc(1)F(1)Be(o el (7.43)
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In this subsection, when we say compensating for CFO, when mean equalizing matrices

D.(l). The procedure is as follows:

1. We choose a random OFDM symbol as a reference symbol. Let’s say we have

picked the first symbol, y,,(0) to serve as reference.

2. Let us consider the following inner products y (1)y,,(0), which can be expressed

as

Y (Dyn(0) = (De(l)F(l)BC(To)6j¢">H(DE(O)F(Z)Ec(TO)6j¢n>
= e 90 (ﬁ(l)ﬁc(fo))H (D:)D.(0)) (FW)Be(r) )i (7.44)

= (FW)Be(m)) " (D: (D)) (F(1)Be(m))

where D*(1) = DX (1) since this matrix is diagonal. Using equation (7.38), we get
that

D*(1)D(0) = diag[e 727FMLs"  omi2mef M
eI Qiagl1 .. 1] (7.45)
e*j27re}LlMTS"I

Plugging (7.45) in (7.44), we get

yl 0y (0) = (F)Be(r)) " (¢ 2755 1) (F()Be(ro))
= T (F(1)Be(m)) (F(1)Be(m)) (7.46)

e~ 2
G (1) Be(r) |

Now observe that the phase of y (1)y,,(0) is 2me’IM, which allows us to estimate
e;ﬁ. To do this in an optimal manner, we collect all the phases of the L — 1 inner

products in one vector, call it z as follows:

ZyH 1)y, (0) 2met MTY

ZyH(2)y,, (0 2mer2MT?
5o | WO ) 2 (.47

2y (L -1y, (0)]  |2ren(L - 1)MTY|
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3. We regard z, as a shifted vector, i.e.

2wt MTT + ¢

2 2MT" + ¢
£ (7.48)

n mn 1
2me(L — )MTT + ¢

where ¢,9) should be read as follows: [t is the first attempt of estimating absolute
phases at the n'" antenna. This technique actually helped us to resolve phase
ambiguities when it came to estimation of ¢,. This will be further elaborated on

below. Furthermore, we are observing noisy estimates of z,,, i.e. we have access to

!/
n?

z

! ~
z, =Z, +tw, (7.49)
where w,, is noise, that is not necessarily Gaussian.

4. Now that the problem is set, we would like to retrieve €} from z/,. Although,
there is a small problem, which is that we do not know 7', we know that 77" is a

perturbed version of Ty according to equation (??), we can say that

2w MTT + o)
2rel2MTY + )

n mn 1
2me(L — )MTT + 6\,

2met M (T, — €) + ¢
2men2M (T, — &) + ¢

. ) . ) (7.50)
_27ref(L - 1)M(Ts —€}) + én |
e ] T
2T, + ¢V p
= 2mef M _ —2mefep M
~—— : S—— :
O(e) (1) O(e?)
(L= 1)Ts + én” | (L—1))
Zn Un
=2znt+ v,

where z, is seen as the unperturbed vector for e’}—estimation and v, will be re-
garded as noise because it is of an order O(€?) when compared to z,, which is of
order O(e).
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5. Plugging (7.50) in (7.49), we get

20 =z, v, +w, =2z, +w, (7.51)

/
wy,

Solving via Least Squares means that we optimize the following:

minimize||Z,, — 2| (7.52)
g
f7 n
yields in
€ _
[A({) = (O'm) '’z (7.53)
where ) )
2nMTs(1) 1
2nMTs(2) 1

= | | (7.54)
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Figure 7.4: 1% Trial: Estimating CFO and phases

Notice that this operation is done twice, to estimate any residual values. The third time

we call the function is for verification purposes only.

Note that in Figures 7.4, 7.5, and 7.6, the difference of phases ¢1 — ¢2 is negligible, i.e.
it is of order 10~%. This is natural because the phase has been eliminated due to the

usage of a first symbol as reference. Including such a step® in this case has not done

"Phase offsets ¢ in Least Squares in equation (7.48)
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Figure 7.6: 3" Trial (Verification): Estimating CFO and Phases after 2"¢ compen-

sation

|
14 1.6
Ant Index: k

12 18

anything. However, one may choose to use a generated reference signal to form all the

inner products in equation (7.47). In that case, including phase offsets ¢ in the LS

step is crucial. We have repeated the same experiment but this time by using our own

generated reference signal to get Figures 7.7, 7.8, and 7.9.
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Figure 7.8: 2" Trial: Estimating CFO and Phases after 1°/ compensation (Using a
generated reference signal)

7.2.3 Step 3: Compensating Tx/Rx Filter Effects

Now we assume that we have compensated the effect of CFO, i.e.

A~

D 1y, (1)

b p.()F()BCGa,

F(1)Be(ro)0@n(60) + O(e €f —éf)
—_——

seen as noise

Y ()

(7.55)

| 2
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Figure 7.9: 3" Trial (Verification): Estimating CFO and Phases after 2"% compen-
sation (Using a generated reference signal)

where the O(ef — €7) term comes from a Taylor series expansion of the exponential
function in the neighbourhood of 0. To proceed there is an assumption made of matrix
F (1), which is mainly an assumption on the SFO. Let us look at the p'* row of F(l)
(equation (7.31)). They are all multiples of a phase shift: (z.z5, )@+,

)(p—i—lM) Z(p—i—lM)Z(erlM)

(=22, N o (7.56)
— P 5t (PHIM)SR:

The approximation here is the following;:
(p+ M)} ~ IMT (7.57)

this means that we shall assume that the SFO effect has an effect from symbol to symbol

only and not within a symbol. Plugging equation (7.57) back in (7.56) gives

(2.25, )PTM) = op=i2mlo7 (7.58)

Thanks to this approximation, now we can say that the perturbed DFT in equation

(7.39) becomes

F(l) = e %707 (7.59)

where F is the DFT matrix. Now the model in (7.55) becomes®:

7,,(1) = e 72" F Be(1o) o an (6o) (7.60)

SWe do not express noise for presentation’s sake
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Going to frequency domain means multiplying with F¥ i.e.

Y. (1) = Fy, (1) = e 7™ FH F Be(7o)Yoan (60) (7.61)

Since F is unitary, then FF = I, hence

Yo (1) = e 7729 Be(10)Fotn (60) (7.62)

In this subsection, since our main focus is the B matrix, then we treat all other param-

— 2o}

eters as nuisance. In other words, we let v, Yoan (0p) and hence

Y (1) = v, Be(mo) (7.63)

Recall the form of B in equation (7.32) and that

b = G(mA )b (7.64)

We know what b, are a priori, therefore we compensate for all such BPSK symbols by

a simple diagonal matrix multiplication:
Y, (1) = B1Y (1) = v, ,B" Be(ro) = vy ,Ge(7o) (7.65)

where

G = ding [G((~ 5)Ap) .. G((5)A)] (7.66)

Now plotting the phase of l:/n (1), we get:

If G = I, i.e. no Tx/Rx filters, then we would have observed a straight line with a
slope that is decided by the value of 79 and an offset that is decided by the phase of
Vp,. Figure 7.10 suggests that there are some filters present in the Transmission and/or
Reception chain. The good news is that the phases seem to be static’. Observe that
we have a ”sinusoidal shape” in the figure. Indeed one might assume that the phase
filter behaves sinusoidally. If we were to assume that, then we have to do a Maximum
Likelihood estimator on the amplitude, phase and frequency of the sinusoid that we have.
We have proceeded in another manner, i.e. we have divided the set of frequencies into 3
zones, that are separated by vertical dashed lines in Figure 7.10: LeftZone, CenterZone,

RightZone. Each zone is parametrised by the following parameters:

e LeftZone: Slope aq and offset b;.

e CenterZone: Slope ay and offset bo.

"Variation effects are due to noise of course. We have done exhaustive simulations and found out
that the phases are not time-varying.
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Figure 7.10: Phases of ?n(lo) for some lj.

e RightZone: Slope as and offset bs.

Indeed these slopes and offsets change from symbol to other. The change is not due to
the filter effects G, but due to 79 and v, ;. The former contributes in a change of
a common slope. However, the latter contributes in an addition of a common offset.
Therefore, a1, as, az will have a common 79 added to their values and b1, by, b3 will have

a common Zv,; added to their values.

So as to be concise, the task of this subsection is to eliminate any filter slopes/off-
sets. Hence, we are interested in the relative slopes/offsets rather than the absolute

ones. To this extent, let

as1 = as — aq (7.67)
asy = asz — ag (7.68)
bor = by — by (7.69)
bys = bs — by (7.70)

To estimate these parameters, we just do a Least Squares fit on each zone separately
and then a compensation is done on the angles. Note that we have assumed a flat filter

in terms of magnitude, therefore the compensation is done as follows:

=i

(1) = GHY (1) = v, G Ge(ro) = vy 1¢(m0) (7.71)
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In Figure 7.11, we have plotted the estimated values of asi, asgs, bo1, and b3 on a
chosen frame. As one can see, these values tend to be constant as we mentioned. We
have averaged the estimates over multiple symbols and frames and obtained their mean
values, which we used in the MATLAB code of this block. Note that mean values of
estimates are needed for an online phase. In Figure 7.12, we have re-estimated as1, aso,
ba1, and by after doing a compensation on the mean values. We can see that the slopes

and phases have been at least reduced by 1072 order of magnitude.
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Figure 7.11: Estimation of as1, aszz, b21, and bzs on a chosen frame per antenna.

Note that we have finally chosen values as1, ase, bo1, and bgs which were obtained by

averaging multiple frames and symbols.
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Figure 7.12: Verification of estimates of as1, ags, bay, and b3s per antenna after
compensating by their means over multiple frames and symbols



Chapter 7 Localizing via Wi-Fi 141

7.2.4 Step 4: Estimating and Compensating the SFO and antenna

phases

Now that we have compensated the signal in the past three steps, our signal, more or

less, follows the model
f/na) = v e(70) = e IO 50T, (80)e(To) = e TP T e Pne(ry) (7.72)

Here, the parameters that need to be estimating per antenna, that are

e The SFO 67

e The antenna phase ¢,

We propose a 2-stage Lest Squares fit for this estimation:

1% stage: On a Symbol Level

Let
01n = 2707 — oy, (7.73)

and for each lzfn (). Notice that the phase of vector in equation (7.73) could be expressed

as

1 Ol,n

= 2TA Oln
LY (1) = AR I (7.74)

_27TAf(M - 1)7‘0_ Oi,n

Applying LS as in equations (7.47) till (7.49) gives us estimates %él) and g;,,. Note that

@

7y~ includes superscript [ because each symbol [ yields a different 7y estimate. Our main

focus is the latter, i.e. g;,, which is estimated in the 274 stage below.

2" stage: On a Frame Level

Now, let us stack all the collected ¢;, per antenna, namely

él,n 271—5?‘ gbn

02.n 2mw26% On
A I I (7.75)

_@L,n_ _277[/551“_ ¢n_
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Notice that the slope is the SFO 07 and the phase is the antenna phase ¢,, that are
estimated via Least Squares as well. Hence we can say that (following equations (7.47)

till (7.49)) we get estimates % and ¢y,.
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Figure 7.14: Estimation of ¢,, at a Frame Level

We can see, according to Figure 7.13, that the estimation of 67 lies in the slope of plot as
explained in (7.75). The Phase lies in the offset (or difference) of plots in Figure 7.14. It
is worth mentioning that AoA estimation is possible due to the observation
that ¢ — ¢; is constant and therefore could be compensated for in the AoA

estimation phase.
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7.3 Online method

In this section, we describe the main blocks of the online method for our parameter esti-
mation approach, in order to extract the Angle of Arrival of the Line-of-Sight component
between the Tx and Wi-Fi Rx.

7.3.1 Why JADED and CSI?

The localisation algorithm that is used to estimate the AoA of the LoS is the CESS-
JADED-RIP algorithm, which stands for Joint Angle and Delay Estimation and Detec-
tion. It is worth noting the following points of the CESS-JADED-RIP algorithm:

e CESS-JADED-RIP operates for OFDM/ULA systems only.

e CESS-JADED-RIP does not impose the uncorrelated sources assumption. This
means that JADED could jointly estimate the Angles and Times of Arrival of

multiple coherent sources, which is the case of multipath propagation.

e CESS-JADED-RIP functions properly given a single snapshot, which is what we

do here.

e CESS-JADED-RIP does not need prior knowledge of the number of multipath

components or number of sources.

Throughout all the conducted experiments, we have used only 2 antennas placed next
to each other on the same plane, hence ULA. There was one problem when we look
at the OFDM structure we have, i.e. we have a ”quasi-OFDM” like structure since
the 3 central subcarriers were not used. To overcome this, we have used Cubic Spline
Interpolation (CSI) to, more or less, interpolate the 3 missing subcarriers to have a

continuous frequency spectrum.

7.3.2 Main blocks

The block diagram depicted below in Fig. 7.15 shows the 4 essential blocks of the
online method. Indeed, after detecting the start of the OFDM symbol as described
in Section 7.2.1, we should use the stored calibration parameters to calibrate our data
before using any parameter estimation model. A Cubic Spline Interpolation is done
in frequency domain to solve the ”missing subcarriers” problem as described above.
Finally, the CESS-JADED-RIP is applied on each symbol to extract the AoA of the LoS

component.
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4[ Detect OFDM symbol H Calibrate all factors HCuhi:SplineInterpulation]——[ CESS-JADED-RIP ]—

Figure 7.15: Block Diagram of the proposed online method

7.3.3 Real data

To demonstrate that this method actually works, we have set up a campaign shown in

Fig. 7.16. As we can see, we have a Wi-Fi Rx equipped with 2 antennas. The signal

© Location 1 P
© Location 2
o
(@)
(@)
o
O Location 7

Figure 7.16: Campaignl

transmitted is a 80 MHz OFDM symbol. We have ran the online method described and
plotted 3 subplots in Fig. 7.17:

e 15! subplot: The estimated ToA of the LoS as a function of OFDM symbol.

e 2@ subplot: The estimated AoA of the LoS as a function of OFDM symbol.
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e 3¢ subplot: An accuracy measure that indicates the quality of estimation, which

we talk about below.

Also observe the red and black vertical dashed lines, which indicate:

e Red dashed line: indicates moving from one frame to another.

e Black dashed line: indicates moving from one position to another on a circle where

the Wi-Fi is acting as the center.
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Figure 7.17: Campaignl

We have considered the following cost function:

(7.76)

=z P©,T)z
Hy

f(ear) =
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where z is the spatio-frequency vector observed and P(0,T") is

P©.T) = H(®.I)(H"©.r)HEe.T) H"®e.r) (7.77)
where
HO.TI)=AB)XC©) (7.78)
with
A©) = |a(61)...a(6,)] (7.79)
and
C(T) = le(n)...e(ry)| (7.80)
and X denotes column-wise Kronecker product. Note that © = [#;...6,] and T' =

[T1...74] are the AoAs/ToAs, respectively, estimated by the JADED algorithm. The
numerator of f(6©,T') is nothing other than the Maximum Likelihood cost function,
which should be maximized in order to estimate the AoAs and ToAs. In the absence of

noise and in an ideal case, we have that
PO,z =2z (7.81)
since the & vector fully resides in the subspace of H(0O,I') and therefore
PO =2 (7.82)

Hence in the absence of noise f(0,I') = 1. In case of no signal and pure noise, we have
that
fOe,r)y~o (7.83)

We can see a good AoA estimation in almost all OFDM symbols in this Campaign as
it reflects the actual physical location of the user. We would like to mention that the
closer we are to angle § ~ 90°, we can see some perturbations going back to ~ —90°.
This is normal as this is one characteristic of ULAs. Also when the WiFi is mounted in
a corner of a room, we think that this issue can be resolved. Also, we have done other

campaigns and we have obtained similar results.

7.4 Conclusions and future directions

In this chapter, we have seen multiple scenarios where we could indeed estimate the AoA
of the LoS component in the presence of multipath. Herein, we have taken into account

all factors that perturb the Joint Angle and Delay estimation problem and formulated
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a system model accordingly. These factors are: Sampling Frequency Offset (SFO), Car-
rier Frequency Offset (CFO), Phase and Delay offsets at each antenna. To compensate
for the effect of these critical factors, we propose an offline calibration method to com-
pensate for all their effects. Lastly and most importantly, and with the help of the
CESS-JADED-RIP algorithm and the Cubic Spline Interpolation technique, we have
successfully been able to estimate the Angles and Times of Arrival of all the multipath

components, which allowed for the extraction of the AoA of the LoS component.

Our last work related to this issue is trying to verify whether AoA estimation between
a transmitter and receiver could be done in Non LoS (NLoS) scenarios. Some data
show the possibility of this attempt. Future work must also be oriented towards a more

computationally efficient way of applying the CESS-JADED-RIP method.



Chapter 8

Conclusions

First in Chapter 2, and with the help of random matrix tools, we have presented a
modified MDL (MMDL) estimator for detecting the number of superimposed signals.
This MMDL estimator dominates the traditional MDL especially at the low number of
snapshots regime, i.e. when L = O(N). Simulation results have shown the potential
of MMDL over the traditional MDL. Furthermore, in Chapter 3, and with the help of
latent variables and Variational Bayes, we have derived an iterative algorithm that could
estimate the Angles of Arrival (AoA) of the incoming sources with a single snapshot,
without the knowledge of the number of sources, and with closely spaced sources at high
SNR. We have also seen that it is possible that the proposed Newton-type forward back-
ward greedy method performs faster, in terms of convergence and number of operations,
and better, in terms of Mean-Squared-Error (MSE) of AoAs. In Chapter 4, we have
presented two techniques to solve the highly nonlinear DML algorithm for joint times
and angles of arrival: 2D-IQML and 2D-DIQML. Asymptotic performance analysis of
both techniques were provided. It has been shown that 2D-IQML gives biased estimates
of ToA/AoA and performs poorly at low SNR due to noise. An original ”denoising”
strategy is proposed, which constrains the Hessian of the cost function to be positive
semi-definite. This ”denoising” strategy is called 2D-DIQML that has been shown to be
globally convergent. Furthermore, 2D-DIQML outperforms 2D-IQML because the for-
mer behaves asymptotically at any SNR as the latter behaves at high SNR. Finally, for
localisation purposes, joint AoA and ToA information could be used to form a database,
where a mapping is done between ToA /AoA vectors and location. Then, this database
could be used in an online stage, where joint AoA/ToA estimation is done using the
proposed algorithms, followed by a matching criteria that finds the best match in the
database to obtain an estimate of the location of a wireless transmitter. We have also

presented two algorithms based on 2D Matrix Pencils. These two algorithms allow joint
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estimation of times and angles of arrival of multiple paths using only one snapshot.
Algorithm 1 resolves more sources than Algorithm 2 in the case where the number of
subcarriers is much larger than the number of antennas, which is the case of most Wi-Fi
systems. The performance of Algorithm 1 as a function of SNR was studied through
simulations. The final aspect of Chapter 4 is that we have presented a 2D smoothing
preprocessing technique, applied to a Spatial-Frequential array, to ”decorrelate” multi-
path components. Then, any 2D subspace algorithm could be applied to estimate the
times and angles of arrivals of the different paths. The 2D smoothing technique pre-
sented here, naturally, offers more subarrays to smooth over and, therefore, one could
be able to resolve more coherent paths. In Chapter 5, there are some contributions
that should be highlighted: We have proposed a novel approach for joint estimation and
detection of Angles and Times of arrival, i.e. JADED. Two methods were derived so
as to solve the JADED problem using Rotational Invariance Properties (RIP), which
arises when a ULA receives known OFDM symbols. The JADED-RIP method performs
a 2D search of a suitable cost function, where each peak indicates a present source with
corresponding ToA /AoA. The second algorithm, CESS-JADED-RIP, is a faster version
of JADED-RIP, which can be used for single snapshot scenarios only. The algorithms
function properly in the presence of coherent sources, since subspace extraction is not
needed, as in the case of MUSIC, ESPRIT, and other subspace methods. In Chap-
ter 6, we study an important aspect that perturbs Angle-of-Arrival estimation, due to
antenna coupling, also known as ”Mutual Coupling”. First, we derive a sub-optimal
algorithm that could estimate AoAs in the presence of mutual coupling; then, we show
why this sub-optimal algorithm, along with other ones, are indeed suboptimal, in the
sense that there is an upper bound on the coupling parameters allowed in the model.
Moreover, we further improve the sub-optimal algorithm and propose an optimal one,
in the sense that more coupling parameters are allowed in the model. We have been
able to refine the estimates of the optimal algorithm by modifying some constraints of
the optimization problem considered. We derive the MSE expression of the optimal
algorithm and show that, in some cases, we can attain the Cramér-Rao bound of the
problem of joint coupling parameters and AoA estimation. Finally in Chapter 6, we
derive an iterative method that could give Maximum Likelihood (ML) estimates of the
AoAs, and therefore allowing the presence of coherent sources, which is not the case of all
the previous algorithms. In Chapter 7, we have seen multiple scenarios where we could
indeed estimate the AoA of the LoS component in the presence of multipath. Herein,
we have taken into account all factors that perturb the Joint Angle and Delay estima-
tion problem and formulated a system model accordingly. These factors are: Sampling
Frequency Offset (SFO), Carrier Frequency Offset (CFO), Phase and Delay offsets at
each antenna. To compensate for the effect of these critical factors, we propose an offline

calibration method to compensate for all their effects. Lastly and most importantly, and
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with the help of the CESS-JADED-RIP algorithm and the Cubic Spline Interpolation
technique, we have successfully been able to estimate the Angles and Times of Arrival
of all the multipath components, which allowed for the extraction of the AoA of the LoS

component.



Chapter 9

Résumé en Francais

9.1 Motivation

9.1.1 Bref historique

La localisation se réfere au processus de localisation des objets visés dans ’espace.
Bien que le plus souvent associé a la technologie moderne, il existe des méthodes
de localisation plus primitives. En fait, les techniques de localisation les plus
élémentaires pourraient étre obtenues sans utiliser d’instruments spéciaux; Les
marins ont utilisé des objets célestes pour la localisation en mer depuis quelques
milliers d’années. De nombreux outils spécialisés ont été développés pour aider
a fournir une localisation plus précise, y compris I'astrolabe, le chronometre, le
sextant et la boussole, ainsi que des cartes et cartes maritimes détaillées [1]. A
la fin des années 1960, le Département de la défense des Etats-Unis (DoD) a en-
trepris un projet visant a construire un systeme de localisation par satellite a des
fins militaires; Connu aujourd’hui comme systeme de positionnement global, ou
simplement GPS. Le systeme a connu sa premiere utilisation en combat pendant
la guerre du Golfe Persique en 1990. De plus, le GPS se compose d’une constella-
tion de 24 satellites qui diffusent des signaux précis. Lorsque les satellites sont en
vue d’un récepteur GPS approprié, ces signaux aident la position-emplacement, la
navigation et le timing de précision [1]. Ce n’est qu’en 1983 que le GPS a com-
mencé a évoluer bien au-dela de ses origines militaires et a commencé a migrer
vers le secteur public. Il s’agit maintenant d’une ressource d’information mondiale
qui soutient une large gamme de fonctions civiles, scientifiques et commerciales,

allant du controle du trafic aérien et de la navigation en temps réel sur la route

151



Chapter 9 Résumé en Francais 152

jusqu’a la découverte du café dans votre bloc.

En réponse et en 1990, la DoD a activé la disponibilité sélective (SA), une dégradation
délibérée du signal GPS civil, qui a limité la précision de la plupart des unités GPS
civiles a environ 100 metres. Luckily SA a été déclenchée en raison du fait que le
DoD a reconnu le role important joué par le GPS dans de nombreuses activités
commerciales. Grace a la désactivation de SA, avec 'emploi d’autres technolo-
gies telles que le GPS différentiel, permettent maintenant aux unités GPS civiles
d’obtenir une précision de 10 metres ou mieux. Ainsi, pour la localisation dans un
environnement extérieur, le GPS fonctionne tres bien, étant donné qu’il existe une
ligne de visée dégagée sur quatre satellites GPS ou plus. Cependant, le signal du
GPS est trop faible pour pénétrer la plupart des batiments, donc le GPS est inutile
a 'intérieur; Une motivation pour rechercher d’autres techniques de localisation a

I'intérieur.

Un systeme de positionnement intérieur, ou simplement IPS, est un systeme
d’acquisition de données fournissant des informations sur des personnes ou des
objets dans ’environnement intérieur et ’obtention de données sur les occupants
pour faciliter la recherche. Dit différemment et de maniere informelle, un IPS
est un mini-GPS travaillant a l'intérieur, ou un mini-GPS peut se référer a un
récepteur Wi-Fi. Alors que le GPS dépend des satellites, IPS est basé sur des
"ancres de référence” qui sont des noeuds de réseau avec une position fixe connue
dans l'environnement intérieur. Ces ”ancres” cooperent les uns avec les autres
pour identifier la position du noeud prévu. Une approche de I'architecture d’IPS
est ”Bluetooth Beaconing”. Bluetooth a d’abord été inventé en 1994 pour rem-
placer les cables courts. Tout grace aux smartphones Bluetooth et aux balises
Bluetooth qui peuvent fournir 'emplacement des utilisateurs de smartphones. En
2010, Nokia a introduit un IPS basé sur la technologie Bluetooth Low Energy
(BLE), qui était I'une des dernieres technologies Bluetooth fonctionnant a faible
puissance avec une faible latence dans les communications. D’autre part, beau-
coup de systemes utilisent une infrastructure Wi-Fi améliorée pour fournir des
informations de localisation [4-6]. Le positionnement Wi-Fi profite de la crois-
sance rapide au début du 21eme siecle des points d’acces sans fil dans les zones

urbaines.

Ladd et al. présentent une nouvelle technique par laquelle la localisation est
réalisée en utilisant I'IEEE 802.11b, connu sous le nom Ethernet Ethernet [2].

Dans leur document, Ladd et al proposent 1'utilisation de la puissance de signal
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mesurée des paquets Ethernet comme capteur pour un systeme de localisation. La
norme sans fil 802.11b integre un mécanisme par lequel une carte réseau sans fil
peut mesurer la puissance du signal de toutes les stations de base dans sa gamme
de diffusion [3]. Par conséquent, un systéme mobile peut utiliser ces informations
afin de déterminer sa distance a partir de ces stations a base fixe. Compte tenu de
ces distances et de la connaissance préalable de ’emplacement des stations de base,
le systeme mobile peut estimer sa propre position actuelle. La perturbation de la
position réelle du systeme mobile entrainera une modification de la position réelle
du systeme mobile entrainant une modification des intensités de signal mesurées
et donc une modification de la position estimée. L’idée est simplement indiquée,
mais 'implémentation réelle est beaucoup plus compliquée ou Ladd et al utilisent
la localisation dite d’inférence Bayésienne. Ils ont mis en ceuvre cette approche

pour atteindre une précision d’environ un metre.

Malheureusement, la principale difficulté de localisation avec Ethernet sans fil
prédit la puissance du signal. ”La puissance du signal de fréquence radio mesurée
a l'intérieur est non linéaire avec la distance. En outre, il présente un bruit non
Gaussien résultant d’effets multi-voies et d’effets environnementaux, tels que la
géométrie du batiment, le trafic réseau, la présence de personnes et les condi-
tions atmosphériques” [2]. En outre, la norme IEEE 802.11b fonctionne dans la
bande de fréquences 2,4 GHz, ce qui signifie que "les fours a micro-ondes, les ap-
pareils Bluetooth, les téléphones sans fil 2,4 GHz et les équipements de soudage
peuvent étre des sources d’interférence. Ladd et al ont trouvé une idée ou Ils
ont séparé la zone d’intérét dans les cellules, puis ont pris des lectures de force
du signal dans chaque cellule, en train d’entrainer efficacement le systeme. Un
systeme mobile pourrait alors prendre des mesures de force du signal, comparer
les données mesurées a l’ensemble de formation et utiliser 'inférence Bayésienne

pour déterminer L’emplacement qui produirait le plus souvent ces mesures.

Ladd et al. identifient un certain nombre de domaines pour des recherches fu-
tures [2]. Leurs études ont été effectuées la nuit, quand il y avait relativement peu
de trafic humain ou réseau. De plus, les expériences ont eu lieu dans les couloirs,
ce qui signifie que leur mouvement était restreint aux lignes droites relativement
étroites. Il serait intéressant d’étudier le comportement du systeme dans un envi-
ronnement plus dynamique ou plus géométriquement irrégulier, ou les deux. Les
avantages de la localisation Ethernet sans fil sont clairs. Contrairement au GPS, le
systeme fonctionnera dans n’importe quel endroit avec acces a plusieurs stations

de base sans fil, que ce soit a l'intérieur ou a l'extérieur. En outre, comme la
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plupart des systemes qui utiliseraient potentiellement cette technologie utilisent

déja une carte réseau sans fil, il n’y a pas de cott de matériel associé.

9.1.2 Parametres dépendants de la localisation
Puissance recgue

La puissance regu est I’'un des principes de mesure basiques et les plus anciens pour
calculer la distance entre un émetteur et son récepteur correspondant. Cette rela-
tion est donnée par I’équation de perte de chemin d’espace libre a I’aide d’antennes
rayonnantes isotropes [7]:
P — PrGrGp

(4md /y)2
ou Pg et Pr Sont la puissance recue et transmise, respectivement; G et G sont
les gains d’antennes de réception et d’émission, respectivement; A est la longueur
d’onde du signal de propagation; et d est la distance de séparation entre I’émetteur
et le récepteur.
En conséquence, un indicateur largement utilisé pourrait étre dérivé qui est connu
sous le nom de Indicateur de résistance du signal requ (RSSI). Il s’agit d’un entier
signé de 8 bits qui indique si le niveau de puissance recu est inférieur ou inférieur a
la plage de puissance du récepteur d’or (GRPR) [8]. RSSI indique 0 si la puissance
regue se trouve dans le GRPR; Positif s’il est au-dessus et négatif s’il est ci-
dessous. Bien que RSSI soit destiné & des fins de controle de puissance [9], de
nombreux périphériques Bluetooth, tels que Bluetooth 1.2, utilisent RSSI pour
découvrir tous les périphériques proches [10] et estiment la distance de séparation.
Cependant, comme testé dans [8], RSSI ne correspond pas bien avec la distance.
Les raisons pour lesquelles RSSI est une version quantifiée de la puissance recue
fournie et, par conséquent, la précision dépendrait principalement de la résolution
de la quantification. En outre, RSSI est fortement affecté par multipath, qui est

une caractéristique principale des environnements intérieurs.

Temps d’arrivée

La distance d entre la cible mobile a I'unité de mesure est directement proportion-
nelle au temps de propagation At. Donc, en mesurant At, on pourrait facilement

calculer la distance de séparation entre la cible mobile et 'unité de mesure en:

d = cAt



Chapter 9 Résumé en Francais 155

ou c est la vitesse de la lumiere sous vide. Cependant, une synchronisation de
synchronisation précise est requise entre les horloges de I’émetteur et du récepteur

pour effectuer une estimation ToA [11].

Wi-Fi

N

User

Figure 9.1: L’utilisateur transmet a Wi-Fi a ’angle 6

Angle de Arrivée

Angle de Arrivée (ou AoA) est une technique basée sur le retard temporel relatif
par rapport a une antenne arbitraire choisie comme référence, c’est-a-dire que le
retard temporel a cette antenne de référence est nul. Assume the SIMO case,
as shown in Fig. 9.1, where the user is equipped with one antenna and receive

antennas. Let the transmitted signal at any time be s(t) where it is of the form
s(t) = Ael?mlet

La forme de s(t) Dans I’équation ci-dessus est une forme valide d’un signal transmis
électromagnétique ayant deux composants orthogonaux, qui sont I'Inphase (ou I)
et la Quadrature (ou Q). Ce signal est transmis avec une amplitude A et est en
oscillation sur la fréquence f.. Suivant [12], il est facile de montrer que le signal

recgu est sous la forme

ou a(f) est le steering vector, qui est fonction de la position des antennes et de
I'AoA, 0.

Apres 6 est estimé par une méthode textit Parameter-Estimation appropriée par,

par exemple, deux stations (ou WiFis) telles que représentées dans Fig. 9.2,
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Figure 9.2: Localisation a angle

signal Estimation des

N Estimation de lieu emplacement
regu paramétres

Figure 9.3: Les deux étapes fondamentales pour I'estimation de position

alors la position de l'utilisateur pourrait étre facilement déterminée. Cela sig-
nifie qu’une procédure en deux étapes est requise pour déterminer la position d’un
utilisateur: a () Estimation des paramétres étape suivie d’un (i1) Emplacement-
estimation étape. Dans cette these, nous nous concentrons sur le premier bloc,
c’est-a-dire que nous sommes tres intéressés a dériver des méthodes appropriées
qui pourraient fournir des estimations de parametres, ce qui détermine la posi-
tion de ['utilisateur en présence de bruit, d’imperfections, d’altérations et d’autres

difficultés, qui seront Abordé dans la section suivante.

9.2 Estimation des parametres: problemes et méthodes

Le terme FEstimation des parameétres se réfere au processus d’utilisation de données

d’échantillonnage pour estimer les parametres d’intérét dans un certain modele,
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sous certaines hypotheses. Il vaut la peine de prendre un moment et de mettre en
évidence trois mots clés dans ’énoncé précédent: modele, paramétre et hypotheses.
Une difficulté dans la localisation a l'intérieur confirme un modele. Par exem-
ple, Saleh et Valenzuela [13] ont modélisé le canal multipath comme diffuse, a
savoir chaque composant multipath est un groupe de rayons. Sur la base de leurs
résultats, ils ont modelé les ToAs des clusters en tant que processus de Poisson
avec des taux différents, mais fixes. La these dans [14], inspirée de [13], modélise
les AoAs des clusters en tant que distribution laplacienne. Cependant, la plupart
des méthodes de localisation (sinon toutes), telles que [15-18] supposent un canal
multipath spéculaire, c’est-a-dire que chaque composant multi-voies n’est qu’un
seul rayon. Cela semble acceptable en raison des probleémes de résolution ! et donc

des sources étroitement espacées pourraient étre considérées comme la source.

Apres avoir confirmé un modele ou une famille de modeles, les parametres im-
pliqués dans ces modeles doivent étre estimés. C’est la que les méthodes d’estimation
des parametres entrent. Le maximum de vraisemblance (ML) était I'une des
premieéres méthodes a étudier [20]. Méme si la méthode ML est optimale, dans
le sens ol les parametres estimés minimisent I’erreur moyenne de niveau (MSE),
il n’a pas recu beaucoup d’attention en raison de la charge informatique élevée
du probleme de minimisation non linéaire multivarié impliqué, car il nécessite une
g-Dimensionnel cherche, ou ¢ est le nombre de parametres qui entrent dans le
modele sous une forme non linéaire. Ensuite, un certain nombre de méthodes de
formage de faisceau intéressantes ont été mises en ceuvre, en tant que solutions
a certains problemes d’optimisation appropriés, tels que le formateur de faisceau
Bartlett [21] et le formateur de faisceau de Capon [22]. Ces formateurs de faisceau
nécessitent une 1-Dimensionnel (1D) cherche et sont donc considérés comme rapi-
des. Cependant, la résolution de ces méthodes n’est pas acceptable avec un faible
nombre d’antennes, de snapshots et de SNR, ce qui nécessite des méthodes avec
une précision supérieure, tout en maintenant une vitesse de calcul acceptable. Les
années 80 ont été témoins d'une révolution de la subspace methods, qui reposent
sur une véritable idée: "Le sous-espace parcouru par les vecteurs de direction des

t”? La méthode de sous-espace la plus

sources est orthogonal au sous-espace de brui
populaire est la MU]Itiple SIgnal Classification algorithm, aussi connu sous le nom
MUSIC [24] par Schmidt, qui nécessite uniquement une recherche 1D. Un root-

MUSIC [25] est un méthode qui a été implémentée par Barabell pour remplacer la

'Dans le contexte du traitement de la matrice, la résolution se réfere & la capacité de discriminer
entre deux sources étroitement espacées, compte tenu d’un certain SNR [19]
2Ceci est expliqué en détail dans le Chapitre 6.
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recherche 1D de MUSIC par un critere de recherche racine polynomiale. Paulraj et
Kailath a inventé 'ESPRIT [26] (Estimation of Signal Parameters Via Rotational
Invariance Techniques) méthode, qui est basé sur ’ajustement des moindres carrés;
Cependant, il ne fonctionne que pour les ensembles linéaires uniformes (ULAs).
Bien que ces méthodes dominent les formateurs de faisceau susmentionnés en ter-
mes de résolution, il existe des cas ou les méthodes sous-espace ne fonctionnent

pas, telles que:

e Sources cohérentes: c’est le cas du brouillage intelligent ou de la propagation
multi-voies. Un exemple trés simple de deux sources cohérentes est s(t) et

So(t) = asy(t), oi « est un nombre complexe.

e Instantané unique: car aucun sous-espace ne peut étre formé par un seul

instantané.

Il convient de mentionner qu’il existe un grand nombre de recherches récentes
effectuées sur les méthodes sous-espace; Nous renvoyons le lecteur aux articles
suivants [27-29)].

Une autre classe de méthodes d’estimation de parametres travaille sur I’approximation
de la fonction de cout de ML, qui sont également attrayantes sur le plan du cal-
cul, mais pas aussi attrayantes que les méthodes de sous-espace. Par exemple, la
méthode par Ziskind et Wax [30] Atteint ’estimation ML par plusieurs recherches
1D, qui sont décrites comme Projections alternées (AP). Une autre technique
populaire est le Iterative Quadratic ML (IQML) développé par Bresler et Ma-
covski dans [31], ou, avec un paramétrage linéaire du sous-espace de bruit, la
fonction de cout ML a chaque itération est considérée comme une fonction de
cout LS pondérée, Qui est quadratique dans le vecteur de parametres d’intéréet,
et donc les expressions de forme fermée pourraient étre dérivées. Cependant, la
pondération dépend du parametre et, par conséquent, des itérations a point fixe

sont nécessaires.

En plus des méthodes d’estimation de parametres, 'un est limité par le nom-
bre de composants multi-voies autorisés dans le modele. Plus précisément, laisser
q désignent le nombre de composants multipath et N indique le nombre d’antennes
a la Wi-Fi; puis ¢ < N devrait étre satisfaite, sinon le probleme d’estimation est
sous-déterminé et la solution estimée ne sera pas unique. Il y a beaucoup de tra-

vail effectué par Pal et Vaidyanathan, tel que [32, 33], ou ils tentent d’estimer
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les accords de g sources, ou ¢ > N. Ceci est réalisé par échantillonnage coprime,
c’est-a-dire en divisant le N antennes en deux sous-réseaux de tailles Ny et Ny, o
N = Nj + N; et (N7, Ny) sont co-prime. L’approche d’échantillonnage coprime
suggere des configurations de réseau d’antenne spécifiques, appelé coprime arrays.
Il est avantageux que nous ayons maintenant plus de degrés de liberté, c¢’est-a-dire
que le nombre de sources pourrait augmenter ¢ < O(N;N,). Cependant, cette ap-
proche présente de multiples inconvénients, lorsque notre intérét est orienté vers

la localisation & l'intérieur via WiFi:

e Les sources sont supposées étre totalement non corrélées, ce qui n’est pas
valable pour les sources multi-voies. Au contraire, les composants multi-

voies sont connus pour étre cohérents.

e Avec un petit nombre d’antennes, disons N = 3 antennes, on ne pouvait
pas s’attendre a améliorer les degrés de liberté en choisissant, par exemple,
N1 =2et NQ =1.

e L’AoA entre I'émetteur et le récepteur ne pouvait étre déduit que par les

informations de I’AoA uniquement.

D’autre part, Vanderveen, Papadias et Paulraj a introduit une nouvelle approche
appelée JADE [34], qui signifie Joint Angle and Delay Estimation. Ils proposent
de transmettre un signal connu par un canal multi-voies, qui est recu a travers
N antennes au récepteur et M Des échantillons de temps sont collectés a chaque
antenne. Cette idée présente de multiples avantages dans le contexte de la locali-

sation a l'intérieur via WiFi:

e Les degrés de liberté du nombre de composants multi-voies pourraient aller

jusqu'a g < MN.

e [l n’y a pas de limitation sur la géométrie des antennes.

On remarque que JADE N’est en aucun cas une méthode. C’est simplement une
facon intelligente de collecter des données pour augmenter le nombre de com-
posants qui pourraient etre résolus. Par conséquent, il est naturel de proposer
des méthodes basées sur JADE, telles que JADE-ML et JADE-MUSIC in [34] et
JADE-ESPRIT en [35]. Il convient de noter que la partie de la cohérence n’a pas

été abordée.
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Outre les degrés de liberté et la cohérence des sources, un autre aspect impor-
tant a considérer est la perturbation du tableau. Ceci est di a plusieurs facteurs,
tels que l'incertitude de position de I’antenne [36], Gains/phases inconnus entre
différentes antennes [37], et couplage mutuel entre les antennes [38]. Nous abor-

dons ce sujet en détail dans les chapitres 6 et 7.

9.3 Contributions de cette theése

Dans cette these, nous abordons tous les problemes abordés dans la section précédente
afin de dériver certaines méthodes qui effectuent ’estimation des parametres. En

particulier,

Chapitre 2. Au chapitre 2, nous abordons un probleme bien connu impliqué
dans le traitement du signal de tableau, qui est la détection du nombre de signaux
présents dans le modele. En effet, toutes les méthodes mentionnées précédemment
exigent le nombre de signaux a connaitre a priori. Longueur de description min-
imale, ou MDL [39], Est une méthode bien connue pour cette question, mais elle
subit une dégradation des performances lorsque le nombre d’instantanés disponibles
est relativement faible. Nous tirons un estimateur MDL modifié, avec 'aide
d’'RMT [41-43], ce qui améliore 'estimation du nombre de sources lorsqu’'un petit

nombre d’instantanés L = O(N) est disponible.
Les publications relatives a ce chapitre sont les suivantes:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Detection of the number of Superim-
posed Signals using Modified MDL Criterion : A Random Matrix Approach,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), March, 2016.

Chapitre 3. Dans le chapitre 3, nous abordons le probleme d’estimation de ’AoA
d’un point de vue de détection comprimé. Les contributions de ce chapitre sont

résumées comme suit:

1. Apres une revue de la littérature sur certaines méthodes populaires de détection
comprimée, nous proposons une méthode Variational Bayes (VB) qui permet
une récupération sparse des signaux transmis désirés, ce qui permet d’estimer

leurs acceptations correspondantes.
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2. Nous montrons que cette méthode VB itérative dépasse les méthodes de
détection comprimée existantes, telles que Matching Pursuit (MP) [50], Or-
thogonal MP (OMP) [51], et d’autres méthodes.

3. Nous dérivons également une méthode Newward de type Newward Forward

Forward Greedy qui effectue une récupération sparse, compte tenu des données.

4. Nous montrons, grace a des simulations exhaustives, que la méthode de type
Newton proposée n’est pas seulement plus rapide, mais atteint une MSE
inférieure par rapport a des méthodes telles que Fast Matching Bayesian
Pursuit (FBMP) [67] et Basis Pursuit Denoising (BPDN) [53].

Les publications relatives a ce chapitre sont les suivantes:

e A. Bazzi, D. T.M. Slock, L. Meilhac, S. Panneerselvan, ”A Comparative
Study of Sparse Recovery and Compressed Sensing Algorithms with Applica-
tion to AoA Estimation,” IEEFE International Workshop on Signal Processing
advances in Wireless Communications (SPAWC), 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Sparse Recovery using an Iterative
Variational Bayes Algorithm and Application to AoA Estimation,” IEEFFE
Symposium on Signal Processing and Information Technology (ISSPIT), 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”A Newton-type Forward Backward
Greedy Method for Multi-Snapshot Compressed Sensing,” Asilomar confer-
ence on signals, systems, and computers (ASILOMAR), 2017.

Chapitre 4. Dans le chapitre 4, nous nous concentrons sur le probleme Joint
Angle and Delay Estimation (JADE) a des fins de localisation. Plus précisément,
nous abordons les problemes d’instantané unique et de cohérence mentionnés dans
la section précédente. Les contributions de ce chapitre pourraient étre résumées

comme suit:

1. Nous dérivons un algorithme qui est une modification de l'algorithme ML
(2D-IQML) itératif itératif bidimensionnel, ott une contrainte supplémentaire
est ajoutée pour I'estimation conjointe de ToA et AoA et nous montrons que
2D-IQML donne des estimations biaisées de ToAs / AoAs et effectue Mal a

faible SNR en raison du biais induit par le bruit.

2. Nous proposons un IQML Denoisé bidimensionnel (2D-DIQML) qui donne

des estimations cohérentes et surperforme le 2D-IQML; nous montrons que
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2D-DIQML est asymptotiquement globalement convergent et donc insensible
a 'initialisation.
3. En outre, deux algorithmes, basés sur 2D Matrix Pencils (MP), pour le cas

d’un seul symbole OFDM instantané observé par plusieurs antennes dans

une configuration ULA sont introduits.

4. Pour le probleme de cohérence, nous dérivons une technique de lissage ” Spatio-
Frequential”, lorsque le symbole OFDM d’émission est re¢u a travers de mul-
tiples signaux cohérents en utilisant un réseau d’antennes linéaire uniforme,
ce qui est le cas d'un canal multi-voies intérieur. Cette méthode de lissage
est inspirée de [81] et pourrait étre considérée comme une généralisation 2D

de la technique de lissage spatial traditionnelle.

5. Nous prouvons dans le Théoreme 4.3 que nous pourrions “ascenseur” Le rang
de la matrice de covariance de 1’échantillon, afin que nous puissions discrim-

iner entre des sources cohérentes, et donc appliquer des méthodes sous-espace
telles que JADE-MUSIC et JADE-ESPRIT.

Théoréme 4.3: Si le nombre de sous-réseauzr formés conjointement sur
l’espace et la fréquence est supérieur au nombre de composants multi-voies,
c’est-a-dire ¢ < Ky Ky, et le nombre maximum de chemins arrivant en
meéme temps mais avec des angles différents est inférieur a Ky, i.e. max; QQ; <
Ky, et le nombre mazimum de chemins arrivant aux mémes angles mais avec
des temps différents est inférieur a Ky, i.e. max; P; < Ky, alors RW est

de rang q.

Démonstration Voir ’Annexe A.

Les publications relatives a ce chapitre sont les suivantes:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Efficient Maximum Likelihood Joint
Estimation of Angles and Times of Arrival of Multi Paths,” IEFE GLOBAL
Communications Conference (GLOBECOM), Localization and Tracking :
Indoors, Outdoors, and Emerging Networks (LION) Workshop, December,
2015.

e A. Bazzi, D. T. M. Slock, and L. Meilhac, ”Single Snapshot Joint Estima-
tion of Angles and Times of Arrival: A 2D Matrix Pencil Approach,” IEEFE

International Conference on Communications, 2016.



Chapter 9 Résumé en Francais 163

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Spatio-Frequential Smoothing for
Joint Angles and Times of Arrival Estimation of Multipaths,” IEFE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
March, 2016.

Chapitre 5. Au chapitre 5, nous proposons une approche novatrice, qui s’habille
sur JADE, intitulée Joint Angle and Delay Estimation and Detection, ou simple-

ment JADED. Les contributions de ce chapitre sont résumées comme suit:

1. Grace a cette approche, nous pouvons maintenant estimer les angles et les
horaires d’arrivée des chemins multiples, sans connaissance préalable du nom-
bre de composants multi-voies. A notre connaissance, ce probleme n’a pas

été abordé dans la littérature ouverte.

2. Une méthode appelée JADED-RIP utilise les Propriétés d’Invariance Ro-
tationnelle (RIP) des ULA et des symboles OFDM, détecte le nombre de
composants multi-voies et estime les angles et les heures d’arrivée de chaque

chemin en effectuant une recherche 2D.

3. Une autre méthode est une version CESS (Simple Instant Effet Computation-
ally Efficient) du JADED-RIP, appelée CESS-JADED-RIP. Cette méthode
nécessite une recherche 1D suivie d’un ajustement des moindres carrés et ne

peut étre utilisée que lorsqu’un seul symbole OFDM est disponible.

L’inconvénient des deux méthodes proposées est qu’ils ne fonctionnent que pour
les systemes ULA / OFDM et qu'’ils sont sous-optimaux dans le sens ou ils pour-
raient étre encore améliorés en considérant le bruit coloré, ce qui conduit a un
estimateur ML-JADED.

Les publications relatives a ce chapitre sont les suivantes:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”JADED-RIP: Joint Angle and Delay
Estimator and Detector via Rotational Invariance Properties,” IEEE Inter-

national Symposium on Signal Processing and Information Technology, (IS-

SPIT), 2016.

Chapitre 6. Dans le chapitre 6, nous abordons un aspect important qui perturbe
I'estimation de 1’angle d’arrivée, en raison du couplage de ’antenne, également
appelé ”couplage mutuel”. Les contributions de ce chapitre sont résumées comme

suit:
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1. Nous dérivons un algorithme sous-optimal qui pourrait estimer les AAS en

présence d’un couplage mutuel.

2. Nous montrons pourquoi cet algorithme sous-optimal, avec d’autres [88-92],
Sont en effet suboptimiques, en ce sens qu’il existe une limite supérieure sur
les parametres de couplage autorisés dans le modele qui peut étre amélioré.

Cela n’aurait pas été clair sans Théoreme 6.6:

Théoreme 6.6: Pour les configurations de types de matrices linéaires uni-

formes, cest-a-dire a(f) = [1, 2z, ... 2 1T avec zg = e 27551 Définissez
les ensembles suivants:
N N
- k= —} 0.1
{sm 5 5 (9.1)

A N N
o N
sin™ (———), ) )

La matrice B(0) = G,(a(f)) présente les caractéristiques suivantes:

e Sip < &2 la matrice B(f) est un rang de colonne complet.
e When p > %, nous distinguons les cas suivants:

— Si N est pair et § € ©,, puis rank(B(§)) = %

— Si N est pair et § € ©_, puis rank(B(0)) = & + 1.
— Si N est impair et 0 € O, puis rank(B(0)) = 852

2-1—

— Autre B(6) est un rang de colonne complet.

Proof. Voir I’Annexe F O



Chapter 9 Résumé en Francais 165

20 Behaviour of the Eigenvalues of B¥(8)B(6) as a function of 6
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Figure 9.4: Valeurs propres de BY(0)B(6) en tant que fonction de 6 pour différentes
valeurs de N et p.

Il est important de comprendre le comportement de la matrice B(#) en fonc-
tion de 0. Laisser v; < vy < ... < v, étre la valeur propre de BY(0)B(0).

Afin de vérifier partiellement Théoréme 6.6, nous avons représenté deux
N+2
2
lignes verticales pointillées rouge et verte correspondent a des angles dans

chiffres ou p > . En Fig. 9.4a, nous fixons N = 8 (pair) and p = 7. Les
O, et O_, respectivement. Observez cela lorsque 6 approche des angles dans
O,, nous avons trois valeurs propres, i.e. vy, Vs, et v3, tomber a zéro. Cela
implique que, lorsque 6 € O, le rang de B(f) est p—3 =4 = % Cependant,

quand # € ©_, seulement deux valeurs propres, a savoir v; et vy, aller a zéro.
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Dans ce cas, le rang de B(f) est p—2 =5 = % + 1. Notez également que vy
est strictement positif. En Fig. 9.4b; nous fixons N = 9 (impair) est p = 8.

Encore, v, est strictement positif. Quand 6 € O, trois valeurs propres vont

N+1

a zéro, ce qui implique que le rang de B(#) est p —3 =5 = =5

3. Ensuite, nous améliorons encore 1’algorithme sous-optimal et proposons un
optimum, dans le sens ou plus de parametres de couplage sont autorisés dans

le modele.

4. En outre, nous affinons les estimations de ’algorithme optimal en modifiant

certaines contraintes du probleme d’optimisation considéré.

5. Nous dérivons l'expression MSE de l'algorithme optimal et montrons que,
dans certains cas, nous pouvons atteindre Cramér-Rao bound du probleme
des parametres de couplage articulaire et de I’estimation de ’AoA. Les théoremes

connexes sont le Théoreme 6.7, Théoreme 6.9 et Théoreme 6.10.

6. Enfin, nous dérivons une méthode itérative qui pourrait donner des estima-
tions de la vraisemblance maximale (ML) des AoAs et donc permettre la
présence de sources cohérentes, ce qui n’est pas le cas de tous les algorithmes

précédents.
Les publications relatives a ce chapitre sont les suivantes:

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Online Angle of Arrival Estimation in
the Presence of Mutual Coupling,” IEEFE International Workshop on Statis-
tical Signal Processing (SSP), 2016.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On Mutual Coupling for ULAs: Es-
timating AoAs in the presence of more coupling parameters,” IEFE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2017.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”Performance Analysis of an AoA
estimator in the presence of more mutual coupling parameters,” IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2017.

e A. Bazzi, D. T.M. Slock, L. Meilhac, ”On a Mutual Coupling Agnostic Max-
imum Likelihood Angle of Arrival Estimator by Alternating Projection,”
IEEFE Global Conference on Signal and Information Processing (GlobalSIP),
2016.
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e A. Bazzi, D. T.M. Slock, L. Meilhac, A Mutual Coupling Resilient Algo-
rithm for Joint Angle and Delay Estimation,” IEEE Global Conference on
Signal and Information Processing (GlobalSIP), 2016.

Chapitre 7. Dans le chapitre 7, nous visons a construire un systeme réel qui pour-
rait effectuer Pangle d’articulation et I'Etude de retard d’arrivée et la détection
des composants multi-voies. Ceci est tout simplement fait, afin que nous puissions
extraire I'angle de l'arrivée du composant Line-of-Sight (LoS) entre 1’émetteur et

le récepteur.

1. Nous prenons en compte tous les facteurs critiques qui perturbent le probleme
d’estimation de I’angle articulaire et du retard et formulons un modele de

systeme en conséquence.

2. Nous proposons une méthode d’étalonnage hors ligne pour compenser tous

ces facteurs. Sur la Fig. 9.5, on peut voir que la méthode d’étalonnage

P : Estimation/Compensation
" . . . Estimation/Compensation
Détecter le symbole OFDM| Estimation/Compensation q
*—L ¥ H ICFU P les effets de filtre SFO + gain et phases de
I'antenne

Figure 9.5: Diagramme a blocs de 'approche d’étalonnage hors-ligne

hors ligne. Tout d’abord, nous devons détecter le début du symbole OFDM
avant d’estimer tout parametre. Ensuite, nous devons estimer et compenser
le CFO. Notez qu’apres avoir estimé le CFO, il est sauvegardé dans la base
de données pour les parametres d’étalonnage. Ensuite, nous estimons les
effets de filtre d’émission / réception et compensons leurs effets. De plus,
nous sauvegardons les parametres du filtre dans la base de données. Enfin,
nous estimons I’'SFO et les parametres de phase et de gain et leurs effets sont

enregistrés dans une base de données.

3. Avec l'aide de l'algorithme CESS-JADED-RIP, nous avons réussi a estimer
les angles et les temps d’arrivée de tous les composants multi-voies, ce qui

a permis d’extraire ’AoA du composant LoS. L’algorithme de localisation
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‘—tjétecter le symbole OFDMHEtannner tous les facteurs/'——[tubic Spline InterpnlationH CESS-JADED-RIP }—

Figure 9.6: Diagramme séquentiel de la méthode en ligne proposée

utilisé pour estimer ’AoA du LoS est I'algorithme CESS-JADED-RIP, qui
correspond a ’estimation et au dépistage des angles et des retards. Il convient
de noter les points suivants de ’algorithme CESS-JADED-RIP:

e CESS-JADED-RIP fonctionne pour OFDM/ULA systemes seulement.

e CESS-JADED-RIP n’impose pas 'hypothese des sources non corrélées.
Cela signifie que JADED pourrait estimer conjointement les angles et
les temps d’arrivée de multiples sources cohérentes, ce qui est le cas de

la propagation multi-voies.

o CESS-JADED-RIP les fonctions sont correctement fournies avec un in-

stantané unique, ce que nous faisons ici.

o CESS-JADED-RIP n’a pas besoin d’une connaissance préalable du nom-

bre de composants multi-voies ou du nombre de sources.

Tout au long de toutes les expériences conduites, nous avons utilisé seulement 2
antennes placées 'une a coté de 'autre sur le méme plan, donc ULA. Il y a eu
un probleme lorsque nous examinons la structure OFDM que nous avons, c’est-
a-dire que nous avons une structure ”quasi-OFDM” puisque les 3 sous-porteuses
centrales n’étaient pas utilisées. Pour remédier a cela, nous avons utilisé Cubic
Spline Interpolation (CSI) pour, plus ou moins, interpoler les 3 sous-porteuses

manquantes pour avoir un spectre de fréquence continu.

Il n’y a pas de matériel publié concernant ce chapitre.
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Autre travail. Par souci de cohérence de cette these, nous avons omis trois

publications, qui sont les suivantes:

e A. Bazzi, D. T.M. Slock, L. Meilhac, "On the Effect of Random Snapshot
Timing Jitter on the Covariance Matrix for JADE Estimation,” Furopean
Signal Processing Conference (EUSIPCO), September, 2015.

e A. Bazzi, D. T.M. Slock, L. Meilhac, "On Joint Angle and Delay Estima-
tion in the Presence of Local Scattering,” IEEFE International Conference
on Communications (ICC), Workshop on Advances in Network Localization
and Navigation, 2016.

e L. Meilhac and A. Bazzi, ” Downlink transmit beamsteering Apparatus for a

multi-user MIMO transmission,” Patent in Preparation, 2017.

9.4 Conclusions

Tout d’abord au chapitre 2, et avec ’aide d’outils matriciels aléatoires, nous avons
présenté un estimateur MDL modifié (MMDL) pour détecter le nombre de sig-
naux superposés. Cet estimateur de MMDL domine le MDL traditionnel surtout
au faible nombre de régime d’instantanés, c’est-a-dire quand L = O(N). Les
résultats de simulation ont montré le potentiel de MMDL sur le MDL tradition-
nel. En outre, dans le chapitre 3, et a ’aide de variables latentes et de Variation
Bayes, nous avons dérivé un algorithme itératif qui pourrait estimer les Angles of
Arrival (AoA) des sources entrantes avec un seul instantané, sans connaissance
du nombre de sources , Et avec des sources étroitement espacées a haute SNR.
Nous avons également vu qu’il est possible que la méthode codée vers I'arriere
avance de type newton soit plus rapide, en termes de convergence et de nombre
d’opérations, et mieux, en termes de Mean-Squared-Error (MSE) de AoAs. Dans
le chapitre 4, nous avons présenté deux techniques pour résoudre 1’algorithme DML
hautement non linéaire pour les temps de joint et les angles d’arrivée: 2D-IQML
et 2D-DIQML. Une analyse de performance asymptotique des deux techniques a
été fournie. Il a été démontré que 2D-IQML donne des estimations biaisées de
ToA / AoA et fonctionne mal a faible SNR en raison du bruit. Une stratégie
”denoising” originale est proposée, ce qui contraint le Hessian de la fonction de
cott a étre semi-définitif positif. Cette stratégie de ”déconcentration” s’appelle
2D-DIQML qui s’est révélée globalement convergente. En outre, 2D-DIQML sur-

passe 2D-IQML car le premier se comporte de maniere asymptotique a n’importe
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quel SNR car celui-ci se comporte a haute SNR. Enfin, a des fins de localisa-
tion, les informations conjointes AoA et ToA pourraient étre utilisées pour former
une base de données, oul une cartographie est effectuée entre les vecteurs ToA /
AoA et 'emplacement. Ensuite, cette base de données pourrait étre utilisée en
ligne, ou 'estimation conjointe AoA / ToA se fait a I’aide des algorithmes pro-
posés, suivie d'un critere correspondant a la meilleure concordance dans la base
de données pour obtenir une estimation de I’emplacement d'un émetteur sans fil.
Nous avons également présenté deux algorithmes basés sur 2D Matrix Pencils.
Ces deux algorithmes permettent une estimation conjointe des temps et des an-
gles d’arrivée de plusieurs chemins en utilisant un seul instantané. Algorithme
1 résout plus de sources que I’Algorithme 2 dans le cas ou le nombre de sous-
porteuses est beaucoup plus grand que le nombre d’antennes, ce qui est le cas
de la plupart des systemes Wi-Fi. La performance de 1’Algorithme 1 en fonction
de SNR a été étudiée par des simulations. IL’aspect final du chapitre 4 est que
nous avons présenté une technique de prétraitement de lissage 2D, appliquée a un
Spatial-Frequential Array, pour ”décénérer” les composants multipath. Ensuite,
tout algorithme de sous-espace 2D pourrait étre appliqué pour estimer les temps
et les angles d’arrivée des différents chemins. La technique de lissage 2D présentée
ici, naturellement, offre plus de sous-réseaux pour se lisser et, par conséquent,
on pourrait pouvoir résoudre des chemins plus cohérents. Au chapitre 5, il faut
souligner certaines contributions: Nous avons proposé une nouvelle approche pour
I’estimation conjointe et la détection des angles et des temps d’arrivée, a savoir
JADED. Deux méthodes ont été dérivées afin de résoudre le probleme JADED
en utilisant les propriétés d’invariance de rotation (RIP), qui survient lorsqu'un
ULA recoit des symboles OFDM connus. La méthode JADED-RIP effectue une
recherche 2D d’une fonction de cout appropriée, ou chaque pic indique une source
actuelle avec ToA / AoA correspondant. Le deuxieme algorithme, CESS-JADED-
RIP, est une version plus rapide de JADED-RIP, qui peut étre utilisée unique-
ment pour des scénarios simples. Les algorithmes fonctionnent correctement en
présence de sources cohérentes, car l'extraction sous-espace n’est pas nécessaire,
comme dans le cas de MUSIC, ESPRIT et d’autres méthodes sous-espace. Au
chapitre 6, nous étudions un aspect important qui perturbe ’estimation de I’angle
d’arrivée, en raison du couplage de I’antenne, également appelé ”couplage mutuel”.
Tout d’abord, nous dérivons un algorithme sous-optimal qui pourrait estimer les
AAS en présence d’un couplage mutuel; Ensuite, nous montrons pourquoi cet al-
gorithme sous-optimal, avec d’autres, est en effet sous-optimal, en ce sens qu’il ex-

iste une limite supérieure sur les parametres de couplage autorisés dans le modele.
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En outre, nous améliorons encore 'algorithme sous-optimal et proposons un op-
timum, dans le sens ou d’autres parametres de couplage sont autorisés dans le
modele. Nous avons réussi a affiner les estimations de I’algorithme optimal en mod-
ifiant certaines contraintes du probleme d’optimisation considéré. Nous dérivons
I’expression MSE de I'algorithme optimal et montrons que, dans certains cas, nous
pouvons atteindre Cramér-Rao bound du probleme des parametres de couplage
articulaire et de I'estimation de I’AoA. Enfin, dans le chapitre 6, nous dérivons une
méthode itérative qui pourrait donner des estimations de la vraisemblance maxi-
male (ML) des AoAs, et donc permettre la présence de sources cohérentes, ce qui
n’est pas le cas de tous les algorithmes précédents. Dans le chapitre 7, nous avons
vu plusieurs scénarios ot nous pourrions en effet estimer ’AoA du composant LoS
en présence de multipath. Dans ce cas, nous avons pris en compte tous les fac-
teurs qui perturbent le probleme d’estimation de ’angle articulaire et du délai et
formulé un modele de systeme en conséquence. Ces facteurs sont: le décalage de
fréquence d’échantillonnage (OFS), le décalage de fréquence de porteuse (CFO),
la phase et les décalages de retard sur chaque antenne. Pour compenser 'effet de
ces facteurs critiques, nous proposons une méthode d’étalonnage hors ligne pour
compenser tous leurs effets. Enfin et surtout, et avec I'aide de ’algorithme CESS-
JADED-RIP et de la technique d’interpolation cubique cubique, nous avons réussi
a estimer les angles et les temps d’arrivée de tous les composants multi-voies, ce

qui a permis d’extraire le AoA du composant LoS.



Appendix A

Proof of Theorem 4.3

Using (4.79), R, could be written as
R, =DQ@D"
where D is a ¢ X ¢K ;K matrix given by
D=|T | DT | ... | D*'T|

and
T=|1, | D, | ... | DK
and @ is a block diagonal ¢K Ky X qK Ky matrix expressed as

1
Ky Ky

Q= IKMKN ® R’Y’Y

Equation (A.1) can be expressed as follows

R, =ww"
with
w=|T. | D,T. | ... | DT
and
T.=|c | p.c | ... | D]
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. 1 .
where C' is the square root of mRW.

1

_ H
o R =cC (A.6)

The rank of R, is equal to the rank of W. Now, using the fact that the rank of a

matrix is unchanged under column permutations, then we can write the following:

v @t - U @1
rank W = rank : : (A.7)

CaUq @ty -+ Ceq¥q Dty

where c;; is the (i, j)™ entry of C. Vectorsv; and ¢; (i = 1...q) are of sizes 1 x Ky

and 1 x Ky, respectively, given as
v; = [1, e—jﬂsin(Gz’)7 o 7€—j7r(KN—1)sin(9z‘)] (A.8a)

t = [1,e 2T e dmas (K= (A.8b)

To prove that, for ¢ < KKy, max; Q; < Ky, and max; P; < Ky, the matrix W
is of rank ¢, we should prove the following:

(a) W does not have an all-zero row, i.e. for a given row 7, there exists at least
one j such that ¢;; # 0.

(b) The vectors {v; ®¢;}{_, are linearly independent.

The proof of (a) is found in [81]. As for (b), let H be a K Ky X ¢ matrix of
columns {v; ®t;};_,. The matrix H is full column rank under the following three

conditions:

e (i) ¢ < Ky Ky. (Similar to Condition 1 in Remark 4.2)
e (ii) max; @; < K. (Similar to Condition 2 in Remark 4.2)

e (iii) max; P, < K. (Similar to Condition 3 in Remark 4.2)



Appendix B

Proof of Theorem 6.1

The matrix T'(a) could be re-written as
p—1
T(a)=In+ Y @S,
i=1
Using the above expression of T'(a), we can now say

T(a)a

p—1
<IN + Z aiSi>a

=1
= [a‘Sla‘...‘Sp_la}a
B,a
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Proof of Theorem 6.3

We shall seek the conditions under which the assumptions of Lemma 6.2 hold true.
Clearly, Assumption 1 is satisfied for any p. As for Assumption 2, let z € CP*! be

a vector such that ef'z = 0, then:
z € span{es,...,ep} = N(E) (C.1)
In other words, there exists 35 .../, € C such that

z=10,8...0,]" (C.2)

Now, we seek a condition under which a vector z € N (ell) satisfies zZ'K(6)z = 0.
Since B(#) is full column rank for any p satisfying p < %, then

rank (K(@)) = rank (BH(H)ﬁnﬂEB(9)> = rank (ﬂnﬂH>

n

(C.3)

Therefore, K(#) admits N — ¢ linearly independent columns. Recall that the
number of possibly non-zero elements of z is p — 1. This immediately implies that

there exists a vector z such that z"'K(0)z = 0 if and only if
p—1>N—gq (C.4)

Finally, for every z € N(E) such that z'K(0)z # 0 is satisfied if and only if
p+qg< N+1andp< % And the proof is done. Note that when p = 1 (absence
of mutual coupling), we get the traditional identifiability, i.e. ¢ < N.
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Proof of Theorem 6.4

We shall prove this theorem by mathematical recurrence. Clearly, the theorem is

true when p = 1 for any N > 1. Assume equality (6.33) holds true for p — 1. Our

task is to prove the same equality for p. Using Theorem 6.1, we can say

T(ap)a = Bya,

=B, 101+ 0,15, 1a

=g(z,ap_1)a — M, 10, 1+ p_1S,-1a
—g(z,a)a—ap 1 (P 42" Na— M, &, (D.1)
+ a,-18,_1a

=g(z,a,)a — [ M, ‘mp—l ]ap

where B, = G,(a,) and S,,_; are given in Theorem 6.1. The vector m,_; is given

as

where

and

m,_ | = <(Zp71 + Z*(pfl))IN _ S'p,l)a =u, 1+ lpfl (D_Q)
T

Uy = [ z= (=1 ‘ ‘ 271 ‘O[M(N_pﬂ)} } (D.3a)
T

L1 = [ 015 (N—p+1)] ‘ 2N ‘ ‘ NP2 ] (D.3b)

Notice that u,_; and l,_; are the last columns of U, and L,, respectively. And

the proof is done.
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Proof of Theorem 6.5

Using Theorem 1 and Theorem 2, then forany 1 < p < N anda = [ag, a1 ... ap_1]

we could say
B,a =T(a)a = g(z,a)a — M o (E.1)

where quantities have been previously defined in their corresponding theorems.

Case 1: Here, we should prove that B,a = 0 implies @« = 0. For p < %, the

matrix M, could be alternatively expressed as

Up
M, = Oj(N—2p+2)x (p—1)] (E.2)
L

P

Note the "zero” gap in matrix M,. This gap exists when N —2p +2 > 1, or

equivalently p < % In this case, the system of equations Bya = 0, and in

particular the ”zero” gap, suggest that the polynomial g(z,a) = 0. Now, the
(p — 1) row gives
ap 12t =0=0a, =0 (E.3)

By backward substitution from rows p—2 till 1 in matrix M, one gets the following
Ckp,1:...:Oé1:0 (E4)

which, in turn, by plugging in g(z,a) gives ag = 0.
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Case 2: Fix p = % and N is even. The matrices U, and L, that are embedded

in M, do not overlap, but the "zero” gap doesn’t exist, viz.

U
M,= |-~ (E.5)
Lp
Assume Bya =0. The (p — 1) row implies
2g(z,@) = 2 oy, (E.6)

Plugging equation (E.6) in the equation given by row p — 2 gives a,_; = 0. By

backward substitution from rows p — 3 till 1, we get
apo=...=a; =0 (E.7)
Now, the polynomial g(z,a) is given as
g(z,a) = ag + oy 1 (P71 277D (E.8)

Therefore, using equation (E.6), row (p — 1) gives

g = —a, 12P7! (E.9)
Similarly, the p™* row and using 221 = 2V since p = %, we get
ap = —ay_yz~ P~V (E.10)

Equations (E.9) and (E.10) together give 2V = 1 if a,_; # 0. Moreover, equa-
tions (E.9) and (E.10) give us the null space of B,, namely

N(B,) ={BecCP e C*B=1,0...0,—2""|"} (E.11)

Therefore, the rank of B, is p — 1.

N+2 N+2
2 2
matrices U, and L, overlap. Furthermore, the structure of M, is given as follows

Case 3(a): Here, N is even and p > Fix k =p— In this case, the

1% ] (E.12)
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The it" column of V. € CN** is

T
v; = [uZT m} | b} ] (E.13)

where
w; = [z (2 (AL @iHDT (E.14)
m; = [272 4 2N (7B N AT T (E.15)
b = [V NI Z%AH]T (E.16)

Realising the above equations, the system of equations Bya = 0 could be parti-

tioned into 4 subsystems of equations given as follows:
Rows 1... % — k of B,a = 0 are given by system S;
T+k

S g9(za) = Zaiz_i, lzl...E—k‘ (E.17)
i=l

Rows % —k+1... % of B,a = 0 are given by system S

[z
Jr
o
L

S

+k
Sy oglza)= Y a4 a4z, I=1..k (E18)

= ki i=8 —k—1+1

Rows % +1... % + k of B,a =0 are given by system S;

Nkt Stk
S3: g(za) = Z ;2" + Z iz +27h, I=1...k (E.19)
i=8 —k+1 i=8 —k—1+1

Rows % +k+1...N of Bya =0 are given by system S,

N
S +k

- N
Si: g(z,a) = g ;2" l:1...?—k (E.20)
i=l

Now, system S; (or equivalently S;) imply the following

agp=...=anx_, ;=0 (E.21)

2

which is carried on by backward substitution. Therefore, systems &; and S, each

break down to one and only one equation (for [ = % — k). Furthermore, for [ = k,
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system Sy gives

ayz N -1)=0 (E.22)

According to equation (E.22), two cases arise:

a%:OandzN%l

Using systems &; and Ss, we get

N—kti-1 S+k
E ozt = E a2t l=1...k (E.23)
=Nk i=8+k—1+1

Similarly, systems &3 and S, give

N —kti-1 Stk
Z ;2 = Z a2z l=1...k (E.24)
i=N_k i=N 4 k—141

Equation (E.23) reads
Oy g = a2, =1k (E.25)
Equation (E.24) gives
AN _pyyy :a%+k71+1z’N, l=1...k (E.26)
Equations (E.25) and (E.26) together give
ay (1= M1+ =0 (E.27)
Based on assumption 2V # 1, equation (E.27) gives two subcases:

Case 3(a.i): {a%+k71+1 = 0}F, and 2V # —1. In this case, one could easily
verify that ap = ... = a;,_; = 0. Hence, iff 2"V # +1, the matrix B, is full rank.

Case 3(a.ii): {ox 1y # 0}¢ , and 2V = —1 . In this case, equation (E.26)
gives
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Systems S and &4 now give

k
g = —22 > ay (= 27) (E.29)
=1

The dimension of the corresponding null space is (2k + 1) — (k + 1) = k. Note
that the quantity (2k + 1) is the number of non-zero variables and (k + 1) is the

number of linearly independent equations. The null space of B, when 2" = —1 is
given by
h—(B)
0
N(B,)={becr prop=| -Jp |} (E.30a)
0
| B ]
where 8 = [3;...5]T and
L
ho(B)=—22 ) Bi(z'— =7 (E.30D)
i=1
Therefore,
N
rank(B,) =p—k = 5 +1 (E.31)

a%#OandzNzl

Following the same steps as Case 3(a.1), one reaches equation (E.25) and concludes
a%_ﬂl_l:a%%_l“, l=1...k (E32)

Also, as previously done, systems S; and Sy imply
k
i i —i
ap = —272 (Ou;r—l—;&];eri(Z + z )) (E.33)

The null space therefore spans k£ 4+ 1 dimensions, namely

[ h+(1377) |

NB,) ={pec B #opp=| 5 |} (E.34a)
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k
he(B,7) = =23 (v+ 3 Bl +279) (E.34b)

i=1
Hence, we conclude that the rank of B, is % This completes the proof of Case

3(a.ii1).

Case 3(b): Here, N is odd and p > 2. Fix k = p — 2. The proof follows

similar steps as Case 3(a). The null space is given as follows

y(B)
NB)={pecrprop=| D |} (E.35)

y(B)=-2>Y B (z(”%) - zNz‘“'*%)) (E.35b)



Appendix F

Proof of Theorem 6.6

Using the results of Theorem 3 and restricting ourselves with z = zp = e/ 2”§Sin(9),

it suffices to derive the two sets, ©4 and ©_. The equation 2z} = 1 reads the fol-

lowing

6_]'27r§Nsin((9) _ eﬂ’ﬂf, k= —E - E
2 2

(F.1)
With some straightforward algebra, equation (F.1) implies that § € ©4. In a

similar manner, 2 = —1 implies § € ©_. Combining Theorem 3 with the

above completes the proof.
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Proof of Property 2

e The first two cases are a direct consequence of equation (6.19).
e The third case is a result of Consequence 1 and equation (6.19).

e As for the fourth case, assume that the sets © and O, overlap and % <
p < N. Let §; € © NO,. Therefore, K(f;)a = 0 only when a € N'(B(6;))
or a = c. It suffices to prove that the set ¢ is linearly independent from the
span of N (B(6;)).

Let A be the dimension of N'(B(6;)). Furthermore, let v € C(AH)*! be an
arbitrary vector and E € CP*(A+) be a matrix where the first A columns
span N (B (61)) and the last column is the vector ¢. It remains to show
that Ey = 0 = o = 0. Under the assumption that p < N and using the
structure of the null space of B(f;) given in equations (E.11), (E.30), (E.34),

and (E.35), one could easily verify that the second row of E is given as

0...0,c1] (G.1)
A

which implies that the last element of 7 is 0, since by construction ¢; # 0,
for p > 2. Hence, ¥ = 0 because the first A columns of E are linearly

independent.
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Proof of Property 3

Let the function f.(f) be defined as follows:

f.(6) = al (8) (K(8) + I) " 'ai(6) (H.1)
and therefore
iy £.(6) = £(6) (1.2)

By spectral decomposition,

K(9) =Vavh (H.3)

where the k™ column of V is the k™ normalized eigenvector!' of K(f), denoted as
v}, and its corresponding eigenvalue is the k'* smallest eigenvalue found in the k"

diagonal entry of ®, denoted as A\;. We could then express f.(0) as
f(8) = al OV (® + ) 'Vai(0) (H.4)

e When 0 ¢ O, we distinguish two sub-cases:

— If 0 ¢ O, then K(0) is full rank according to Property 2 and hence
A > 0 for all &, so

7(6) = |82V a(0)] < o (1L5)

p

— If 6 € O, then K(f) is full rank (if p < 242) and the preceeding

argument holds. However, if p > %, then K () admits the same null-

space as that of B(0) according to Property 2. As before, let A be the

Indeed, V and ® are functions of §. This is omitted for the sake of compact exposition.
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dimension of K (#), therefore f.(6) behaves as

A

20 1
fe(0) « ; Jvpn G\Ia;f(@)vk||2 = ; gllelTB(@)ka2 (H.6)

Note that {v),}2_, span the null space of B(#) and therefore B()v; = 0.
So, fo(0) = f(#) =0 < oo.

e When 0 € O, we also distinguish the same sub-cases:

— If 6 ¢ O, then there is only one singularity in K (6) according to Prop-
erty 2,ie. Ay =0,v, = %, and Ay > 0 for all £ > 2. Hence

lell”

(0) - L1as @l

< el (57)

Notice that the term ag(ﬁ)c is a polynomial of degree p — 1 evaluated at
the unit circle. For a polynomial with non-zero coefficients to have zeros
on the unit-circle, the coefficient vector ¢ must be conjugate-symmetric
[97], which is not the case according to equation (2.10). Therefore,
a, (0)c # 0 and thus

£(6) = 1im £,(6) = o0 (H.8)

— If 0 € ©4, then the null space of K (#) is spanned by A+ 1 vectors given

in Property 2, and we have

=1 1la, (9)cl|?
f(0) <> E||'31TB(9)W||2 + el (H.9)

k=1

Using the same argument as before, as € goes to zero, the 1% term of

the above expression goes to zero, whereas the 27¢ term goes to oo.



Appendix I

Proof of Property 5

The 1% order derivative is computed as

~ a0 K-
7(0) = 2mefal R (0) 2y 1 a70) K0 )
Denoting
a,0) = %210
D)= "2 =g,

and using the following identity [98]

oK)  ~_,  0K(9)
0

and

G(0) = BY(0)U,UD(0)

(1.4)

(L.5¢c)

In a similar manner, after some straightforward, but lengthy, calculations, one

could verify that f”(0) = h1(0) + ho(6) + h3(0), where hy(6) are given as

R L odi(0
hi(0) = 2Re{d ()R~ (9)d;(0) +af ()R _1@%}
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ha(6) = — 4Re{a§(9)f<—1(9) (é(e) +GY(0) X—l(e)d;;(e)}



Appendix J

Proof of Theorem 6.7

K (0;) could, also, be decomposed as follows
R(0y) = K (0:) + K (6;) (J.1)
where K (6;) = BY(0,,)U,UYB(6;,) and
K (6)) = 2Re{B"(6,)U,U'B(6;)} + B (6,)U,UB(6y,) (J.2)

Using well-known results in Perturbation Theory[100, 101], we seek to use the fol-
lowing methodology: Given two Hermitian positive semi-definite matrices K (6y)
and K (0x), where the latter perturbs the former, each /)\\j and v; could be approx-

imated by a linear combination as follows:

K ~
N =N ol R (O, + Y L v, ”f' +O(|K|P) (1.3)
i#j A=
and
5K (6) ~
—vj+zv)\ _’“)\ v; + O(K?) (J.4)
7]

This approximation is valid if the the eigenvalue ); is non-degenerate. In our case,
A1 = 0 is non-degenerate as long as p < % or {p > % and 0y & ©1} according

to Consequence 1. In that case, applying equation (J.3) to Xl and denoting
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B = B(0;) and K = K (0;) for short, we get

R R TN Y Gy =13
= HCH2(C Re—3" 070 ) + O(IR]?)

=2
|, " v BYU, U Be|?
— B ' Be — 7 n
o ("B alBe = 5 === )
1 ~ P vl ~
= o BT (1-UFB(Y_ == )B"U,)U; Be (.5)
i=2 !
K+
~ LB, (1 - P)TBe + O(|T, |
= (g B O (1 = )T Be -+ OO
1 ~ ~ ~
— Hc||2cHBHUnP,jU§Bc+0(||U,,|\3)

In a similar manner, using equation (J.4), 93 could be written as

1 P oK -
61:w<0— ’UZ/\—Cvl> +O<K2)
1 . le;HU U!'Be o
= (o= Y ) + 0T
] ( Z Ai
As for the degenerate case, i.e. A\ = ... = Aa;1 = 0, which occurs when p > %

and 0 € O; we follow similar steps and use the approximations given in [102].



Appendix K

Proof of Theorem 6.9

Let’s call
&, 2 U'B(6,)e = UMUURB (6, )c (K.1)

where the second equality is due to the fact that B(6x)c = a(0;y) = T'(c)a(by).
Using Lemma 1, it is easy to see that w;, is Gaussian distributed with zero mean

and covariance matrix
(e@at}) =r{(Uui) ao)a" o) (UU) |
i,j

—a (Hk)E{ (UU;'0;) (UsU i) }d(9k> (K.2)

where the last equality is a result of equation (6.68). Therefore, @), ~ CN(0,5:1).

Similarly, E{@;@]} = 0. Using the moments of @}, we have

E{( (6) )} = E{Re{Pk}}
= g(‘iﬂ (0x)Un P E{@) } +E{&§}P¢U,?J(9k)> (K.3)

=0

191



Appendix K Proof of Theorem 6.9 192

() - e o))

- Wﬁ{w )
1
= szd (04)Un PrE{ @@} } PLULA(61) (K.4)
O k@ (0,) U, PLUSd(6 s
N QUk (0) (0) = 2vy,
_ o*a"(0y)Ua(0y)
N 2L (%3
where we have used .
(Re{z}) = §(|Z|2 + Re{z%}) (K.5)
and E{Re{p}}} = 0 since E{@,&} } =0.



Appendix L

Proof of Theorem 6.10

The terms B%(6,)B(6;), BY(0,)D(6,), and D" (0,)D(6,) appear in Vargfp)(@k) and
varCRB(ak). We first compute the limits of these three expressions as & — 0. With

some straightforward calculations, one could verify the following equality

bpi(m,n), ifm>n

(B"60nB@) = (L.1)

mat b p(n,m), else
where
bk,l (m7 TL)
N—m
—(m—1) (n—1 m—n * 7
i=0 :
N—m—n+1
+ (1 _ 51’71) <Ze_k(m+n_2) + Zé:n+n—2)> ( [Z;k201]2>
i=0
Using the following identity
! D ket 1 (L.3)
mk+1 mooo k41 W2

t=1

and keeping in mind that p is fixed, we could complete the summation terms
appearing in equation (L.2) by a "finite” amount of terms of order p so that the

limits of the sum span all integers ¢ = 0... N, and therefore we have

B"(6,)B(6))
N %

> hkhgék,l (L4a)
—0
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which is a rank-one contribution, and hyj is given in equation (6.6). In a very

similar manner, we can prove

B"(0,)D(6) Jy
NE %_)0) Ehkhk 5k,l (L4b)
and D(6,)D(6)) |
k ! . H
RE o ghkzhkék,l (L.4c)

With those limits in hand, we could verify the following

|htle|? 0 0
1 - _ 1 0 [|hile)? - 0
—D'prtD — 5 — L.5
N3 A 20 12 ( )
H
0 0 |hye|?

Note that, when p = 1, the above diagonal matrix is the identity matrix, which co-
incides with the result in [95]. Plugging the limit of equation (L.5) in the CRB ex-
pression given in equation (6.1), we get equation (6.81). To verify equation (6.82),
we expand the denominator of equation (6.4) as follow

d" (6,)UnP-U,d(6),)

= ¢ [ D*(0,)UUD(6;) — (D™(6:)UUS B (6))) (L.6)

(B (0)UUSB(0))) " (B™(0:)UUD(01) | e

By using the limits computed in (L.4), we have

BH(Hk)UnU,IfB(Hk)
N P 0 (L.7a)

BY(0,)\U,UYD(6,)
N7 e 0 (L.7b)

DY) U, UED(0,,) 1 H
N3 %4)0 Ehkhk (L7C)
and therefore | .
;! 1r7H T Lo H 2

N3d (0r)Un P U, d(6y) Q} 12|hkc\ (L.8)

Equations (L.7) directly imply that ~; —— 0. Now, using equation (L.4a), we
~—0

can verify that the second term in the numerator of equation (6.4) goes to zero,
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viz.
(Rsisl(AHA)ilegl)k k —0 (Lg)
=0
Another proof could be done by using the asymptotic equivalence between Toeplitz

and Clirculant type matrices [99).
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