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“Ce sont les évènements qui commandent aux 

hommes, et non les hommes aux évènements.” 
Hérodote 

 
“Watch therefore,  

for ye know neither the day nor the hour.” 
Matthew, 25:13 

 
“Prognostics do not always prove prophecies; at least 

the wisest prophets make sure of the event first.” 
Horace Walpole 
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PART 1 

PRESENTATION OF THE RESEARCH WORK 
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PRESENTATION OF THE DATASETS 

The datasets and results presented in this supporting statement are for illustrative purpose and do 
not aim at providing quantitative results. Several datasets are also presented in detail in the 
publications in the second part of this document. 

� Figure 6, Figure 21 to Figure 27, Figure 29, Figure 32, Figure 34 to Figure 36, Figure 39:  

� atmospheric fields (sea level pressure and 500 hPa geopotential height): archives of 
ERA-Interim atmospheric reanalyses 0.75°, 

� wind speed: measurements at Météo-France’s weather station of Guipavas (29), 

� significant wave height ��: output point (48.5°N, 5°W, Figure 1) of a 6-hourly database of 
sea states over the period 1948-2012 from a numerical model built with the WaveWatch 
III code forced over the Atlantic Ocean by NCEP wind fields and run with the European 
“Cycle 4” parameterization (Bertin et al., 2013), linearly interpolated every 1 hour, 

� sea level: hourly measurements at SHOM’s Brest tide gauge (4.4950°W, 48.3829°N, 
Figure 1), referenced to the local Chart Datum Zéro Hydrographique 1996, from 
1953/01/01 to 2010/12/31 (58 years), corrected of the eustatic trend of + 1.48 mm/yr so 
as to get a mean sea level of + 4.14 m ZH, 

� residual: non-tidal residual (considered as the meteorological surge) after removal of the 
astronomical retro-predictions computed by SHOM’s software SHOMAR; 

 

Figure 1. Output point of the WW3 model of Bertin et al. (2013) and location of Brest tide 
gauge 

� Figure 7: 

� atmospheric fields (sea level pressure and 500 hPa geopotential height): GFS 1° Europe, 
run 18Z of 2010/02/27, 

� sea level: measurements at SHOM’s tide gauge of La Rochelle – La Pallice, referenced 
to the local Chart Datum Zéro Hydrographique, 

� tidal level: astronomical retro-predictions computed by SHOM’s software SHOMAR, 

� residual: non-tidal residual (considered as the meteorological surge) after removal of the 
astronomical component from the sea level; 

� Figure 13: 
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� 3-hourly numerical modelling of sea states by a WaveWatch III / SWAN coupled model off 
Bastia’s Carbonite port (~ 450 m deep), run by GlobOcean for ARTELIA; 

� Figure 14, Figure 17, Figure 19, Figure 20: 

� Haltenbanken’s dataset of storm peaks of �� provided by the IAHR Working Group on 
Extreme Wave Analysis (van Vledder et al., 1994), issued from the analysis of 3-hourly 
wave measurements on the Norwegian continental shelf at the deep water locations of 
65°05’N, 7°34’E (280 m deep, March 1980 to October 1987) and 65°11’N, 7°15’E (290 m 
deep, November 1987 to March 1988); 

� Figure 40: 

� 1992-2007 3-hourly numerical modelling of sea states by a WaveWatch III / SWAN 
coupled model off Cotonou (Benin) port, run by GlobOcean for ARTELIA (2008); 

� Figure 42 to Figure 47: 

� sea states: 1996-2015 hourly modelling of sea states by a WaveWatch III / SWAN 
coupled model off Groix island (Figure 2), run by GlobOcean for ARTELIA (2016), 

� wind: output point off Groix island of CFSR wind fields calibrated against satellite 
measurements by GlobOcean for ARTELIA (2016). 

Figure 2. Output points Z20A and Z20E for the Groix meteo-oceanic study 

oOo 
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1. AN INTRODUCTION TO METOCEAN EVENTS 

1.1. WHAT IS METEO-OCEANOGRAPHY? 

Meteo-oceanography, abbreviated to metocean, is a field of research and knowledge that comes 
from the gradual connection of two scientific disciplines that have long evolved both in parallel and 
somewhat separately: 

� physical oceanography (sea levels, currents, salinity, temperature, etc.); 

� marine meteorology (wind, waves, pressure, etc.). 

Offshore engineers, later followed by coastal engineers, are gradually having to address in 
increasing detail the interactions between the physical quantities of these two once distinct 
domains. A very simple illustration of such an interaction is the importance of the sea level when 
considering the propagation of waves in shallow water. 

1.1.1. Spatial variability: a useful distinction in geographical domains 

An important characteristic of meteo-oceanography is the distinction that can (or even should) be 
made in several geographical domains from the ocean to the shore. This distinction is based upon 
the physical processes involved in the generation and propagation of waves: 

� the deep sea domain (domaine hauturier): when the water depth exceeds 200 m or so, i.e. 
off the continental shelf; waves do not interact with the seabed; 

� the coastal domain (domaine côtier): in the continental shelf from the boundary of the 
continental slope to the seaward boundary of the surf zone; waves interact quasi-linearly 
with the seabed (refraction); 

� the surf zone or littoral domain (domaine littoral): wave interaction with the seabed 
becomes highly non-linear (shoaling, breaking, low-frequency waves); 

� the estuarine domain (domaine estuarien): strong tidal currents, freshwater discharges from 
rivers and the associated turbidity, and friction must be accounted for; 

� the harbour domain (domaine portuaire): ports, harbours and coastal structures, including 
access channels; waves interact with structures (reflection, diffraction). 

It is interesting to note that the definition of these domains is dynamic as it depends on the 
wavelength, especially with the first three. 
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Figure 3. Geographical domains of meteo-oceanography 

1.1.2. A far-reaching variety of time scales 

We have just mentioned wavelength and water depth. For a scientist, it is thus natural to consider 
the frequency of the phenomena immediately afterwards. Here again, meteo-oceanography is 
characterized by a very wide variety of time scales, in particular when it comes to variations in the 
surface of the sea. The following time scales may be identified: 

� geological eras: the drift of continental plates modifies the space available for seawater 
(isostasy); 

� millennia: the alternation of glacial and interglacial periods over the Quaternary period 
(roughly every 105,000 years over 2.5 million years), driven in particular by the Milanković 
cycles1, led to wide variations in sea level (~ 100-200 m); 

� centuries: shorter variations in the climate (including current global warming) also yield 
variations in mean sea level (~ 1 m); 

� years to decades: the climate has a natural variability illustrated by oscillations in the ocean-
atmosphere coupling over a few years to a few decades (e.g. North Atlantic Oscillation, 
Arctic Oscillation, El Niño Southern Oscillation, etc.); 

� seasons: the tilting of the Earth’s axis of rotation relative to the ecliptic plane induces 
seasonal variations of environmental conditions that increase with latitude; 

� days: meteorological patterns such as storms or heatwaves typically last a few days; 

� hours: the main tidal components and storm surges have periods of several hours; 

� minutes: low-frequency waves that cause harbour or coastal resonance have periods 
ranging from ~ 1 minute to ~ 1 hour; 

� seconds: short waves (wind waves and swells); 

� less than 1 second: capillary waves. 

                                                      

1 Milanković cycles describe the effects of the variations in the Earth’s orbital parameters on the global climate 
over thousands of years. These parameters are the eccentricity of the Earth’s orbit (it varies between 
0.000055 and 0.0679 with major component periods of 95,000, 125,000 and 413,000 years), the obliquity or 
axial tilt (it varies between 22.1° and 24.5° with a period of 43,000 years) and the precession of the Earth’s 
axis of rotation (period of 25,760 years). 

Deep sea Coastal

Estuarine

Littoral

Harbour
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Figure 4 (Kinsman, 1965) illustrates the time scales associated with variations in sea level and 
their relationship to the different generating forces (atmospheric, astronomic). 

Figure 4. Frequency spectrum of the variations of sea level 

source: Kinsman, 1965 

An important distinction to be made consists of the difference between short waves and long 
waves. Although a given, precise limit at any particular frequency is not very meaningful, the period 
of 30 s is generally accepted as the limit between short and long waves. Below, wave celerity � 
varies with both period 	 and water depth ℎ while above it tends to depend solely on water depth, 
as formulated by Airy’s linear wave theory (1841). 

 � = �	2 tanh �2ℎ�	 � �→������� ��ℎ (1)

Historically, various measurement networks have been set up to measure sea level fluctuations: 
wave buoys on the one hand for short waves, and tide then pressure gauges on the other hand for 
long waves. 

1.1.3. Input data: measurements and model databases 

It is also worth mentioning the data available to the engineer to be used as inputs to his analyses. 
Roughly speaking, it can be divided in two categories: in situ measurements and outputs from 
numerical models. Both have their pros and cons. 

Provided that the measuring device is reliable, measurements provide very accurate data and can 
be regarded as a faithful reporter of what really happened in nature. In France, the main 
measurement networks for meteo-oceanic data include the network of coastal wave buoys 
CANDHIS (Centre d’Archivage National de Données de Houle In Situ) operated by CEREMA, the 
offshore wave buoys operated by Météo-France and the REFMAR network of tide gauges operated 
by the SHOM (Pouvreau, 2014). Radar devices have also been recently set up for measuring sea 
level (UNESCO-IOC, 2016). At the global scale, satellite altimetry provides measurements of 
various meteo-oceanic quantities including mean sea level and wave heights since 
TOPEX/Poseidon was launched in 1992 (Chelton et al., 2001). But measurements are of course 
scarce and expensive. In hydrology, one stream gauge measuring the water level (from which the 
discharge can be deduced) will suffice to give very good knowledge of the river. Along the coastline 
the density of tide gauges does not need to be very high, but waves present a very wide spatial 
variability that cannot be reasonably handled by wave buoys. Satellites can cover the whole globe 
but at any given area the monitoring is only periodic and not continuous. Lastly, measurement 
devices can neither explore the past nor predict the future but simply report the present: if a port is 
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to be built in a remote part of Africa, it is inconceivable to set up a few buoys and wait for ten years 
before beginning the studies. 

In some cases, this last difficulty can be partly attenuated by using historical information. This 
consists of the marks and prints left by the largest observations, either on the environment (high 
water marks, sediments, etc.) or in the collective memory (archives of local newspapers, memories 
of elders, etc.). This is particularly useful in hydrology (Payrastre, 2005, Payrastre et al., 2012); in 
coastal engineering, however, the difficulty is that only the highest sea levels can be retrieved 
whereas the largest meteorological surges would be much more useful (Bulteau et al., 2015, 
Hamdi et al., 2015). As for waves, historical data is generally not available. 

Numerical models, on the other hand, can time-travel, either backwards (hindcast) or forwards 
(forecast). Output points can be defined anywhere in the computational domain and the marginal 
cost of additional locations is generally near zero. Depending on the equations, it can be easy to 
separate the different components and phenomena (see section 1.3.1). Their two main limitations 
are progressively being pushed back, but can still be major constraints for the analysis. The first 
one consists of computing power and storage space. The number of nodes can reach 7- to 8-digit 
figures, and both inputs and outputs could require tera-octets of storage, even when the outputs 
are not archived at each grid node or at each time step. A clever use of nested models or 
unstructured meshing becoming progressively more refined can help to overcome this difficulty. 
The second is more fundamental: this is the translation of the physical reality into a set of 
mathematical equations; more precisely, equations that can be numerically resolved in a 
reasonable amount of time. In particular, the non-linearity of the fluid equations, particularly the 
Navier-Stokes equation, requires several simplifications, such as spatial and/or temporal 
integrations. The consequence is that numerical models can only predict what lies within their 
equations. Even when these equations are sufficient for the problem considered, the issue of 
parameterization can be arduous. As a consequence, the accuracy of the results obtained is 
sometimes questionable. 

The most commonly used databases covering the French coasts include ANEMOC (Benoit et al., 
2008, Laugel et al., 2014), the databases from Ifremer’s work for the IOWAGA and PREVIMER 
projects and, in particular, the HOMERE database (Boudière et al., 2013), and the BRGM’s 
BOBWA-H database (Charles et al., 2012). 

Today’s best practice consists in combining the advantages of both measurements and numerical 
models by using the former to calibrate and validate the latter. For instance, satellites perform both 
wind measurements to be used first to calibrate the input wind fields over the generation area, and 
altimetry measurements to be used next to improve wave generation and propagation by the 
numerical models through assimilation and calibration. Pressure sensors, wave buoys, tide 
gauges, wind masts, etc., provide local information regarding either the forcing or the output of the 
models, allowing calibration at the site of interest.  The complementarity of satellite measurements, 
which offer global coverage in space but seldom cover a precise spot, and local measurement 
devices, which can provide extensive coverage in time, should be noted. This approach was used 
in particular by Artelia and its technical and commercial partner GlobOcean to model sea states in 
the Gulf of Lion (Mediterranean Sea): the use of satellite measurements significantly improved the 
numerical modelling, particularly in the case of storm events (Mazas et al., 2015). 

As a result, typical analyses in coastal engineering nowadays rely on databases of waves, winds, 
sea levels and/or currents, at a time step varying from 10 minutes (for hydrodynamic processes) to 
3 hours, over 20 to 25 years. The phenomena can be split up into many components (see section 
1.3.1), including astronomical tide, meteorological surge and eustatic rise for sea levels, and wind 
waves and primary to third swells for sea states. In some cases, the duration of the database may 
be extended to 50 or 60 years in order to account for decadal variability (e.g. the North-Atlantic 
oscillation). 
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1.2. METEO-OCEANIC EXTREMES IN ENGINEERING, RISK AND 

SOCIETY 

1.2.1. Analyses for engineering 

A coastal engineer in charge of determining meteo-oceanographic conditions on a project is 
expected to provide: 

� frequent conditions, or operational conditions, that affect the daily operation of the 
facility: e.g. wave disturbance at mooring stations for downtime assessment, and wind speed 
or current velocity values for power production by offshore wind turbines or tidal current 
turbine farms; 

� extreme conditions, or design conditions, that concern hazard assessments for designing 
structures: e.g. extreme wave heights for a breakwater, extreme still water levels for coastal 
flooding, etc. 

The engineer has thus to deal with: 

� a varying number of physical phenomena, that can themselves be described by a certain 
number of quantities in constant interaction; 

� various geographical domains, each being characterized by predominant physical 
processes; 

� variability at multiple spatial and temporal scales. 

1.2.2. A simple definition of risk 

Recent decades have seen exponential growth in the use of coastal areas by humans: population 
settlement, houses, buildings, facilities, etc. - in other words, assets, or elements-at-risk. These 
elements-at-risk are: 

� exposed to natural hazards, i.e. natural processes or phenomena that may cause damage 
such as loss of life or injury, property damage, loss of livelihoods and services, social and 
economic disruption or environmental damage and, more precisely, exposed to meteo-
oceanographic hazards; 

� vulnerable to varying degrees to these hazards, i.e. they present characteristics that make 
them susceptible to their damaging effects. 

The combination of vulnerability and hazard is the risk to which these assets are exposed. As 
developed by Breysse (2009): “The risk therefore integrates two dimensions: that of hazards and 
that of loss, both being probabilised. Therefore, a risk is characterised by two components: the 
level of danger (likelihood of occurrence of a given event and intensity of the hazard), and the 
severity of the effects or consequences of the event that could have an impact on the assets.” 
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Figure 5. Definition of risk 

source: UN-SPIDER 

1.2.3. Illustrative examples, at home 

In western Europe and in particular in France, the risk related to meteo-oceanographic extremes 
has been rediscovered in recent times after a long period during which it somehow ceased to be a 
primary concern, or at least was considered as something that human industry and genius would 
soon be able to tackle once and for all. 

Indeed, the period of stunning economic growth during the 1950s-1960s when the rush to the sea 
began was quite calm in that regard, as were the following decades, the 1970s to the 1990s. While 
the old villages of the Atlantic coasts had safely been settled upon ancient islets on elevated 
ground, or a few kilometres away from the coastline, by the elders, new cities and facilities began 
to sprout right behind (and sometimes over!) the dunes. No major storms occurred during this time 
and the memories of the elders faded away (Sauzeau and Acerra, 2012, Péret and Sauzeau, 
2014). Hazards turned out not to occur and vulnerability thus steadily increased. 

A first warning shot across the bows did come, however, in December 1999. The two major storms 
Lothar and Martin hit the French coasts a single day apart. While the winds caused major damage 
across the country, disaster nearly struck when the wind waves generated over the Gironde 
estuary, in combination with a large storm surge (above 2 m in the estuary according to Salomon, 
2002), overtopped the dykes protecting the Blayais nuclear power plant and threatened to flood it 
(Aelbrecht et al., 2004). But an accident was avoided and in the collective memory the storms of 
1999 would be remembered as meteorological events, just like the Great Storm of October 1987 
(Figure 6). Coastal communities could keep building houses and camp sites on lowlands. 
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Figure 6. Storms of October 1987 and December 1999 (Martin). Top: 500 hPa 
geopotential height on 16/10/1987 0Z and 27/12/1999 18Z, middle: time series of wind 
speed (left) and wave height (right) at Brest, bottom: time series of sea level (left) and 

non-tidal residual (right) at Brest 

Sources: ERA-Interim atmospheric reanalyses, wind measurements at Météo-France’s weather station of 
Guipavas (29), sea state hindcast offshore Brest (48.5°N, 5°W) from Bertin et al. (2013) WW3 model, sea 

level measurements at Brest tide gauge (SHOM) and non-tidal residual at Brest tide gauge after removal of 
astronomical retro-predictions and correction of the eustatic trend (see Mazas et al., 2014) 

Then storm Xynthia struck in February 2010. Its singular track, from Portugal to the Vendée coast 
of France, generated short, rough wind waves in the Bay of Biscay that favoured the development 
of a huge storm surge on the continental shelf (Bertin et al., 2012). This surge reached the shallow 
end of the Bay, known as the Pertuis Breton, in the darkest hour of a cold February night, just 
coinciding with the high water of a strong spring tide (Figure 7). 
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Figure 7. Storm Xynthia. Top: 500 hPa geopotential height on 28/02/2010 0Z (left), time 
series of sea level at La Rochelle-La Pallice tide gauge (right), bottom: time series of sea 

level, tidal level and non-tidal residual around Xynthia 

Sources: ERA-Interim atmospheric reanalyses, sea level measurements at La Rochelle-La Pallice tide 
gauge (SHOM), astronomical retro-predictions from SHOMAR software (SHOM) and non-tidal residual 

29 people drowned in La-Faute-sur-Mer, in a lowland area surrounded by the Ocean and a coastal 
river protected by dykes that were submerged by the sea (Figure 8). 
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Figure 8. La Faute-sur-Mer, hours after the storm peak. In the foreground: the Lay 
coastal river; in the background: the Atlantic Ocean 

source: © Photo PQR/OuestFrance 

This disaster was a brutal reminder of the coastal risks for French society. During the winter of 
2013-2014, an exceptional succession of Atlantic storms caused dramatic coastal erosion in Biscay 
(Masselink et al., 2016). Scientists and historians have charted the evolution of society’s 
perception of hazard and risk across the centuries. The long period of respite may have been 
linked to natural decadal climate variability, or simply a result of mere luck, but the risk related to 
meteo-oceanographic extremes had been forgotten by society, because the hazard simply did not 
materialise (Garnier and Surville, 2010). 

Things had been different in the Netherlands. The coastal flooding of 1953 caused by the same 
joint occurrence of spring tide and storm surge triggered a gigantic plan to protect land against sea 
flooding, the Delta Plan. A culture of risk had been deeply embedded in Dutch society (Stive, 
2012). 

Today, fresh memories of these events and, in parallel, ever-growing concerns over the sea level 
rise induced by climate change are bringing about a change in mentalities (IPCC, 2012). Old habits 
are deeply rooted but it is becoming ever more clear to ever more people that the coastal strip is a 
place where human settlements and activities cannot be taken for granted as previously imagined. 
New approaches and strategies are being considered and applied, sometimes painfully (Cousin, 
2011). 

In this context, the assessment of extreme meteo-oceanographic events has become more than a 
scientific challenge: it is now a societal issue (Sauzeau, 2011). 

1.3. PHYSICS AND STATISTICS: A MATTER OF TERMINOLOGY 

1.3.1. Physical definitions and… non-definitions 

As will be shown subsequently, statistical methods (or, to be more precise, probability methods) 
are used to estimate extreme values of physical quantities. It is hence necessary to define some 
basic concepts that take a different meaning in these two fields. 
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A phenomenon, from the Greek phainómenon, itself from the verb phainein, “to show, shine, 
appear, to be manifest or manifest itself”, can be defined as any thing which manifests itself. In 
science, it may be described as a system of information related to matter, energy or spacetime. In 
other words, a physical phenomenon is a natural phenomenon that involves the physical 
properties of matter and energy. 

Wind: a flow of gases; currents: a flow of liquid; sea state: fluctuations of free surface in a certain 
range of frequencies caused by the wind; astronomical tide: fluctuations of free surface at low-
frequency induced by astronomical forcing; these are examples of physical phenomena. 

The International Vocabulary of Metrology (VIM) defined by the Joint Committee for Guides in 
Metrology (JCGM, 2012) specifies that a physical quantity is a “property of a phenomenon, body 
or substance, where the property has a magnitude that can be expressed as a number and a 
reference”. In other words, a property that can be quantified by measurement. Wind speed, current 
direction, spectral significant wave height, peak period and atmospheric pressure are thus 
examples of physical quantities. 

Interestingly, the VIM also specifies that “in some definitions, the use of non-defined concepts (also 
called “primitives”) is unavoidable. In this vocabulary, such non-defined concepts include: system, 
component, phenomenon, body, substance, property, reference…” 

Things hence become harder because we also have to consider phenomena made of several 
components that happen on the same body: three concepts that are non-defined in this system of 
definitions… 

For instance, sea level fluctuations are the result of the superposition of many components 
associated with distinct physical phenomena: long-term variations in mean sea level (eustatism, 
isostasy, seasonal heat variation, etc.), astronomical tide, meteorological surge, low-frequency 
waves, tsunamis, short waves. Each component corresponds to a particular phenomenon and can 
be described by physical quantities such as height and period (for periodic phenomena); their sum 
can be described by the physical quantity “sea level”, i.e. the vertical position of the upper limit of a 
physical body: ocean, sea or lake. Following the VIM, we can say that these components are all of 
the same kind, the kind of quantity being the aspect common to mutually comparable quantities. 

It should also be stressed that a sea state (a general phenomenon described by physical quantities 
such as the spectro-angular density and the associated reduced parameters) can be split up into 
different wave systems (wind sea, swells), each of which corresponds to a more specific 
phenomenon. Here again, the spectro-angular densities of a wind sea and a swell are of the same 
kind and can be summed. 

However, when considering waves propagating on a vein of strong tidal current, these two 
phenomena are not of the same kind and cannot be considered as components of a general 
phenomenon2. 

1.3.2. Statistics: probabilities of… what exactly? 

In probability and statistics, there is generally no such distinction between phenomena, quantities, 
bodies, etc. A random variable can be quite simply defined as “a variable quantity whose possible 
values are numerical outcomes of a random phenomenon” (Blitzstein and Hwang, 2014), and a 
covariate is a variable that may be predictive of the outcome being studied. 

Random is itself a lack of predictability in these outcomes, be it by nature (quantum phenomena) 
or due to a lack of information (see Laplace’s demon). Let us consider a random experiment that 
leads to the realization of a single outcome among a set of possible outcomes Ω (called the 
universe). A subset � of Ω is called an event and its probability is a measure of the likelihood that 

                                                      

2 Strictly speaking, the mathematicians who unified these two processes in a same equation within the theory 
of free surface gravity waves could dispute this assertion for this particular example… 
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it will occur, defined as a weighting of this event relative to Ω. The axioms proposed by Kolmogorov 
(positivity, unit mass, additivity) allowed a mathematical theory to be built on that concept. 

The different interpretations of this measure of likelihood are a broad topic in themselves. At this 
stage, we simply need to mention the two main categories of probability interpretation: 

� the frequentist interpretation considers that this concept describes some objective or 
physical state of affairs and that the probability of an event is its relative frequency of 
occurrence over time; 

� the subjective interpretation views probability as a measure of a “degree of belief” of the 
individual assessing the uncertainty of a particular situation; in particular, Bayesian 
probability is based on such an interpretation. 

The probabilities of occurrence of the different possible outcomes (events) of a random experiment 
can be provided by a mathematical function called a probability distribution. In other words, a 
probability distribution is description of a random phenomenon in terms of the probabilities of an 
event. Probability distributions of continuous random variables can be described in several ways, in 
particular the probability density function � that describes the infinitesimal probability of any 
given value (probability of occurrence) and the cumulative distribution function � that describes 
the probability that the random variable is no larger than a given value (probability of non-
exceedance). The probability of exceedance  = 1 − � is also often convenient. 

Another useful definition is as follows: a collection of random variables indexed by a set of 
numbers, such as points in time, is called a stochastic process. In our case, we can consider a 
stochastic process as the variation of a random variable over time, as opposed to a deterministic 
process in which random is totally excluded: the outcome of the variable can be determined if a 
finite number of conditions are known. In particular, stochastic processes include Poisson point 
processes, a counting process that represents the random number of points or events up to a 
given time. In meteo-oceanography, the astronomic tide is considered to be a deterministic process 
because we have very good knowledge of the conditions, and hence of the outcome. This is a 
typically Newtonian situation in which Laplace’s demon would be almost omniscient. In contrast, 
atmospheric events require such a huge amount of prior knowledge that they very quickly become 
fully stochastic: a surge is handled as a stochastic variable. 

Yet ambiguous or ill-defined concepts are not alien to probabilities. A key figure of extreme value 
studies is the return period #, first introduced by Fuller (1914) (in hydrology) more than a century 
ago. Still it continues to be particularly prone to misleading interpretations, and this is particularly 
damaging because it is widely used to popularize the results of studies and help the public 
understand3. 

When speaking with stakeholders, inhabitants or even fellow engineers who are not probability 
theory specialists, the return period is generally heard as “the average period between two 
occurrences” of the event (Fleming et al., 2002). So, taking a record covering 3,000 years, the 
100-year quantile will be observed or exceeded roughly 30 times. This is not incorrect, but in most 
cases it is completely useless. We do not have such long records and, furthermore, the 
phenomenon is certainly not stationary over such a long period. The return period must hence be 
understood as a probability of exceedance and, more precisely, a yearly probability of exceedance: 
every year, the probability that the #-year value is reached or exceeded at least once is 1/#. This 
implies that several events may occur in the same year! 

In the univariate and stationary case, considering a random variable %, we can easily link the return 
period #, the cumulative distribution function �& or its complement, the probability of exceedance  , 
and either the mean number of occurrences per year ' or its reciprocal, the average inter-arrival 
time between two realizations of the process (: 

                                                      

3 See for instance the public hearing at the French Senate following Xynthia (in French): 
http://www.senat.fr/rap/r09-647-2/r09-647-28.html 
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 # =
)*
+ (ℙ-% > /0 = ( & = (1 − �1/2
= 1'ℙ-% > /0 = 1' & = 1'-1 − �1/20

 (2)

The return period is clearly a frequentist interpretation of the probability of an “event”. The definition 
of Equation (2) can even be generalized by introducing this probability ℙ3: 

 # = (ℙ3 = 1'ℙ3 (3)

A second mistake consists in forgetting the yearly aspect of this probability and the cumulative 
effect. When inhabitants are told after a storm that wreaked havoc on their houses that its return 
period was 50 years, not only will they feel safe for the next decades, but they may also consider 
that a probability of occurrence of 2% is not something to worry about. But if they plan to live in 
their house for many years to come, this yearly probability is to be accounted for every year: this 
cumulative effect is described by the encounter probability  4  associated with # that depends on 
the duration or lifetime 5.  

  4 = 1 − �1 − 1#�
6

 (4)

The encounter probability  4  is much larger; if the aforementioned inhabitants stay 25 years, the 
probability of encountering a 50-year storm rises to 40% (Table 1). Last, this cumulative effect is 
also to be considered within one single year: several events can occur during the same year. 

Table 1 – Relationships between return period, lifetime and encounter probability 

 
Lifetime 7 (years) 

1 5 10 25 50 75 100 
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5 0.20 0.67 0.89 1.00 1.00 1.00 1.00 
10 0.10 0.41 0.65 0.93 0.99 1.00 1.00 
50 0.02 0.10 0.18 0.40 0.64 0.78 0.87 

100 0.01 0.05 0.10 0.22 0.39 0.53 0.63 
200 0.01 0.02 0.05 0.12 0.22 0.31 0.39 
500 0.00 0.01 0.02 0.05 0.10 0.14 0.18 

1000 0.00 0.00 0.01 0.02 0.05 0.07 0.10 
When these two properties are understood, the return period seems to be unequivocal: the 
probability of an event exceeding a value over a given duration. However, we will see later that it 
becomes highly ambiguous in the multivariate case. 

But what is this event, this subset of all the possible outcomes of a random experiment? How can 
we interpret this concept? Do we have a choice to make that will affect the meaning of the return 
period? 

1.3.3. A first approach to events: etymology and definitions 

The following sections will explain how the event concept arose as the core principle in the 
research carried out to refine the estimation of extreme meteo-oceanic conditions. But first of all, it 
is necessary to discuss the meaning of this word beyond the cold probabilistic definition. 

In such a case, it is always wise to go back to the etymology. According to the Online Etymology 
Dictionary, the English word event comes from the Middle French event, itself from the Latin 
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eventus “occurrence, accident, event, fortune, fate, lot, issue”, itself from past participle stem of 
evenire “to come out, happen, result”, itself from the assimilated form of ex- “out” + venire “to 
come”. 

It is worth noting first that two meanings appear: either what happens, or what results from what 
has happened (as in eventually). The latter sense is mentioned to have appeared in English in the 
1570s, as “the consequence of anything”, just prior to the former meaning in the 1580s, “that which 
happens”. 

The dictionary of the Académie française4 agrees on the etymology and also on the two meanings. 
Although it is in French, it is worth being quoted: 

ÉVÈNEMENT ou ÉVÉNEMENT n. m. XVe siècle. 

Dérivé savant, sur le modèle d'avènement, du latin evenire, 
« sortir, se produire », de venire, « venir ». 

1. Vieilli. Issue, conséquence bonne ou mauvaise d'une action ou 
d'une situation. S'emploie encore dans quelques expressions 

2. Ce qui survient, ce qui arrive, en un temps et en un lieu 
déterminés. PHYS. Tout phénomène se produisant en un point 

et à un instant donnés. - MATH. En calcul de probabilités, 
résultat éventuel d'un tirage au sort, d'un jeu de hasard, d'un 

pronostic, etc. 

It can be translated as follows: 

1. (Old) Issue, outcome, bad or good consequence of an action or situation. Is still used in a 
few expressions. 

2. What occurs or happens at a given time and a given place. PHYS. Any phenomenon 
occurring at a given point and a given time. MATH. In probabilities, result of a random draw, 
a game of chance, a forecast, etc. 

In the famous Encyclopaedia of Diderot and d’Alembert, Louis-Jacques Goussier5 wrote the 
following definition in 1756: 

S. m. (Grammaire) terme par lequel on désigne, ou la 
production, ou la fin, ou quelque circonstance remarquable et 

déterminée dans la durée de toutes les choses contingentes. 
Mais peut-être ce terme est-il un des radicaux de la langue : et 

servant à définir les autres termes, ne se peut-il définir lui-
même ? Voyez l'article DICTIONNAIRE. Voyez aussi à l'article 

ENCYCLOPEDIE, la manière de fixer la notion des termes 
radicaux. 

ÉVENEMENT, eventus, (Médecine) ; ce terme est employé pour 
signifier la fin d'une maladie, l'issue qu'elle a, bonne ou 

mauvaise. 

Once again, the distinct meanings of the outcome of “something” or this “something” itself appear. 
But the second one is interestingly put. First, the event is defined as any “remarkable” 
circumstance; it depends on “all contingent things”, i.e. things that can occur or not, or may depend 
on chance; and it is determined “over time”. This is somewhat different from the previous definitions 
based on a fact that happens at a given time and place. Second, the author raises the possibility 

                                                      

4 French Academy: the pre-eminent French council for matters pertaining to the French language. 

5 Louis-Jacques Goussier, 1722-1799, French illustrator and encyclopaedist. 
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that it is a radical of the language itself, so necessary for defining the other words that it is hardly 
definable itself. 

It is worth noting that the core concept of the work presented here has been acknowledged to be 
almost un-definable in one of the major works of the Age of Enlightenment! 

In addition, ISO/Guide 73:2009 provides a vocabulary relative to risk management with definitions 
of events that are rather more arid than those given above, but interesting in terms of their 
approach to risk. If risk is defined as the “effect of uncertainty on objectives”, the notes below 
specify that “risk is often characterized with reference to potential events and consequences, or a 
combination of these” and that “risk is often expressed in terms of a combination of the 
consequences of an event (including changes in circumstances) and the associated likelihood of 
occurrence”. An event is then defined as an “occurrence or change of a particular set of 
circumstances”, with the following precisions: an event “can be one or more occurrences, and can 
have several causes” and “can consist of something not happening”, and “can sometimes be 
referred to as an ‘incident’ or ‘accident’”. In modern times, the meaning of “something occurring” is 
definitely accepted and the oldest sense of the outcome or consequence no longer holds.  

In this spirit, this thesis proposes a better understanding of meteo-oceanic events, and more 
generally environmental events, which is summarised in particular in sections 2.4 and 3.2.1. 

1.4. BRIEF DESCRIPTION OF PUBLICATIONS 

This section provides a very brief description of the publications of the last ten years. It gives the 
chronology and the material context for each topic of research; the interest of these topics is 
described in detail in upcoming sections 2 and 3. 

1.4.1. A multi-distribution adaptation of the existing POT framework 

During a first three-month internship in 2007, the methodology for determining extreme wave 
heights used at ARTELIA (SOGREAH at that time) was updated in line with the international state 
of the art, as described in section 2.1. 

This work earned the prize for best scientific internship of the Ecole Nationale des Ponts et 
Chaussées, awarded by Ponts Alliance, and was presented at: 

[A] the X
èmes

 Journées Nationales Génie Civil Génie Côtier at Sophia-Antipolis in 2008. 

This work was resumed after I was hired by SOGREAH in 2009. The multi-distribution methodology 
was made more sophisticated, applied to case studies and published: 

[B] a paper in the European Journal of Environmental and Civil Engineering in 2010 for a 
case study in Tangiers; 

[C] a paper in two parts in La Houille Blanche in 2010 (part 1: theory, part 2: application); 

[D] a presentation at the WISE (Waves In Shallow water Environment) conference in Brest in 
2010; 

[E] a paper in Coastal Engineering in 2011; 

[F] a reply to discussion about this last paper in Coastal Engineering. 

The paper in Coastal Engineering is reproduced as part of the present statement. 



UNIVERSITE PARIS-EST - ÉCOLE DOCTORALE SCIENCES, INGENIERIE ET ENVIRONNEMENT (SIE) 

Extreme meteo-oceanographic events 
P h . D .  b y  p u b l i s h e d  w o r k s  –  F r a n c k  M A Z A S  

SUPPORTING STATEMENT 

 

EXTREME METEO-OCEANOGRAPHIC EVENTS | FRANCK MAZAS | NOVEMBER 2017  19
 

1.4.2. A two-step framework for over-threshold modelling 

Following publication of the updated methodology in Coastal Engineering in 2011, a working group 
was set up between ARTELIA (Luc Hamm, Franck Mazas), the LHSV6 (Michel Benoit), EDF R&D 
(Pietro Bernardara, Marc Andreewsky, Jérôme Weiss) and the CEREMA/DTecEMF, then CETMEF 
(Xavier Kergadallan). It was later christened OSSË (Ocean and Sea Statistics for Extremes) and 
was a privileged place for in-depth reflection on and discussion of meteo-oceanic extremes. At the 
beginning of his PhD, Roberto Frau also joined the group and became a valuable contributor. 

 

Figure 9. Logo of the OSSË group 

The double threshold introduced in the methodology of univariate extremes was identified as a 
topic that could be further discussed and justified. Dr Pietro Bernardara and I were the leaders on 
that topic and we refined and strengthened the approach that was presented in two conferences 
and then published in a peer-reviewed journal with the broadest possible scope in the field of 
environmental sciences: 

[G] a presentation at the ICCE (International Conference on Coastal Engineering) at 
Santander in 2012; 

[H] a presentation at the EGU (European Geosciences Union General Assembly) in Vienna in 
2013; 

[I] a paper in Natural Hazards and Earth System Sciences in 2014. 

The paper in Natural Hazard and Earth System Sciences is reproduced as part of the present 
statement. 

1.4.3. Maximum Likelihood Estimator and its virgae 

In parallel, the use of the Maximum Likelihood Estimator for over-threshold modelling was closely 
examined. The refinement in the sensitivity study to determine the threshold that had been allowed 
by the double-threshold approach had made strange patterns appear in the estimation of the 
distribution of the parameters and hence of the quantiles. 

A question that was asked by Belgian scientists at the WISE congress in Brest in 2010 made me 
take a close look at that topic and its relationship with the threshold. A collaboration began with 
Dr Philippe Garat from the Jean-Kuntzmann Laboratory at the University of Grenoble-Alpes, back 
then called the University Pierre-Mendès-France. 

This work led to the following publications: 

 [J] a presentation at the EVA (Extreme Value Analysis) conference in Lyons in 2011; 

[K] a presentation at the ICCE (International Conference on Coastal Engineering) in 
Santander in 2012; 

[L] a paper in Ocean Engineering in 2014. 

The paper in Ocean Engineering is reproduced as part of the present statement. 
                                                      

6 Laboratoire d’Hydraulique de Saint-Venant, Université Paris-Est 
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1.4.4. Extreme sea levels: a first approach to bivariate analysis 

In February 2010, the surge generated by storm Xynthia occurred quasi-simultaneously with the 
high water of a spring tide (tide coefficient of 1037, corresponding to a tidal range of 5.86 m and a 
high water level of + 6.49 m CD). This caused widespread coastal flooding in the pertuis 
charentais, along the French coast of the Bay of Biscay. The need for an accurate estimation of 
extreme sea levels was abruptly highlighted. 

We applied the results established in the univariate case to the so-called Joint Probability Method. 
The site of Brest was chosen as a case study to be presented in the publications because of the 
length of the dataset of sea level measurements there, but the method was applied to sea level 
measurement at La Rochelle to estimate the return period associated with Xynthia for an appraisal 
ordered by the district court of Les Sables-d’Olonne. 

The methodology was presented in the following publications: 

[M] a first paper presenting an overview of the state of the art in La Houille Blanche in 2011; 

[N] a presentation at the Journées REFMAR conference in St-Mandé (France) in 2013; 

[O] a presentation at the EGU (European Geosciences Union General Assembly) in Vienna 
in 2013; 

[P] a paper in Coastal Engineering in 2014.  

The paper in Coastal Engineering is reproduced as part of the present statement. 

1.4.5. Joint occurrence of extreme waves and sea levels: from bivariate to 

multivariate 

During coastal flooding events, waves often play an important role by adding an extra component 
at the coastline related to their breaking: wave set-up. Waves can also influence the surge through 
complex mechanisms. Moreover, many coastal structures such as breakwaters, seawalls and 
quays are very sensitive to the joint effect of waves and sea levels that results in overtopping or 
structural damage. 

Studying the joint occurrence of waves and sea levels was hence the logical next step and an 
intern, Vincent Auger, was hired in 2014 for six months under the joint supervision of Dr Luc Hamm 
and myself to extend our methodologies to this case. The internship benefited from the help and 
advice of Pr. Clémentine Prieur (University of Grenoble-Alpes – LJK) and Pr. Anne-Catherine 
Favre (ENSE3/INPG, LTHE). Pr. Peter Hawkes (HR Wallingford) also kindly provided assistance. 

The work carried out during the internship was then extended and continued over the couple of 
years that followed. 

As a result, the methodologies were presented in the following publications: 

[Q] a presentation at the EVAN conference (International Conference on Advances in 
Extreme Value Analysis and Application to Natural Hazards) in Santander in 2015; 

[R] a presentation at the ICCE (International Conference on Coastal Engineering) in Istanbul 
in 2016; 

                                                      

7 In France, the amplitude of the tidal range is expressed in terms of tidal coefficients, introduced by Laplace in 
1799. The coefficient can take values from 20 (lowest astronomical tidal range) to 120 (highest astronomical 
tidal range). The mean spring tides, respectively mean neap tides, correspond to coefficients of 95, 
respectively 45. The mean tidal range corresponds to a coefficient of 70. 
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[S] a paper in Coastal Engineering in 2017; 

[T] a submission (accepted) for the ICE conference to be held in Liverpool in 2017; 

[U] a submission for the EVAN conference to be held in Southampton in 2017. 

The paper in Coastal Engineering is reproduced as part of the present statement. 

oOo  
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2. FROM STORM PEAKS TO EXTREME 

UNIVARIATE EVENTS 

2.1. A MULTI-DISTRIBUTION ADAPTATION OF THE EXISTING POT 

FRAMEWORK 

The works presented in section 1.4.1 lasted from 2007 to 2014. They began with a simple updating 
of a methodology for determining extreme wave heights to bring it in line with the state of the art. 

The methodology used at the time by SOGREAH consisted of the following four steps, as per the 
recommendations of the IAHR Working Group (Mathiesen et al., 1994): 

� processing of the time series and identification of directional wave sectors; 

� selection of storm peaks using the Peaks-Over-Threshold (POT) approach; 

� fitting of a Weibull distribution to the peaks using the least square method; 

� computation of quantiles (extreme wave heights). 

This approach was updated by incorporating the Extreme Value Theory (EVT) described in detail in 
Coles (2001). At the end of the internship, the following methodological improvements had been 
implemented: 

� introduction of the Generalized Pareto Distribution (GPD); 

� use of the Maximum Likelihood Estimator (MLE); 

� extension to a multi-distribution framework by considering other distributions such as Weibull 
and Gamma/Pearson-III; 

� goodness-of-fit assessment using the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). 

These improvements did not significantly alter the general framework of the methodology. In 
particular, the POT approach was kept, as it is particularly well suited to the maritime field where 
the number of significant storms per year is generally large enough for it to be deemed preferable 
to the annual maxima method (Cunnane, 1973). However, almost every step of the methodology 
was closely examined and new ideas arose from the discussions with fellow scientists and 
engineers. It must also be said that the dual approach of academic research on one hand and 
everyday coastal engineering on the other hand was particularly fruitful for setting up methods 
capable of blending the rigor of the theory and the flexibility required to deal with real-world 
projects. 

This dual approach appeared right at the beginning of the work. On one side, the literature had 
already been proposing many very rigorous references to the Extreme Value Theory for a number 
of years. The GPD-Poisson model in particular was justified and detailed. On the other side, the 
literature more specific to the coastal community included the IAHR Working Group and the works 
by Pr. Yoshimi Gōda (Gōda, 1988, Gōda and Kobune, 1990). Decades of experience had taught 
the engineers to keep several options at hand to deal with wave datasets, which sometimes 
present strange behaviours (Gōda, 2011). In particular, the need to deal with homogeneous 
populations, or identically distributed datasets, was highlighted through the recommendation to 
consider wave directional sectors, associated with distinct fetches, wave ages and / or 
meteorological phenomena. Figure 10 illustrates a case study off Bastia, where it appears clearly 
that waves from the NE or SSW are limited by a short fetch compared with sea states from the SE. 
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Figure 10. Identification of homogeneous wave populations through the use of 
directional sectors off Bastia 

Another meaningful example takes place at Réunion island, where three very distinct wave 
populations can be observed (Figure 11): 

� wind waves generated by trade winds from the south-east; these are very regular winds that 
cause very regular and gentle waves; 

� southerly swell generated in the roaring fifties by powerful storms and that propagate for 
thousands of kilometres in very marked wave groups with very large periods and very small 
steepness and directional spreading; 

� cyclonic waves generated by tropical cyclones in the vicinity of the island, with a very large 
steepness and directional spreading. 
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Figure 11. Wave populations at Réunion island 

source: Météo-France 

The diversity in the meteorological phenomena (trade winds, mid-latitude lows, tropical cyclones) 
and in the wave characteristics (spreading, steepness) is such (Figure 12) that the assumption of 
identical distribution cannot hold: these populations must be analysed separately (it is always 
possible to eventually combine the result of the analyses). 
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Figure 12. Wave populations at Réunion island. Top: southerly swell in July 2017; 
bottom: cyclonic waves from tropical storm Chezda in January 2015 

source: Cyril Giraudel, http://reunion-extreme.re 

Regarding the choice of threshold, we attempted to reconcile: 

� the engineer-based recommendations of the IAHR Working Group: choose the threshold on 
the basis of physical and meteorological information (e.g. using weather charts) and set its 
value so as to obtain a mean number of peaks per year corresponding to the average 
number of (significant) storm events per year; 

� the tools based on the EVT provided by Coles (2001), such as the mean excess life plot and 
the stability plots of the GPD parameters. 
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The latter approach requires sensitivity studies to be performed on the threshold, which creates a 
practical difficulty: environmental time series often present fluctuations, and a sequence of large 
wave heights that are known to have been generated by a single storm can present secondary 
peaks that are not independent of the largest peak, as illustrated in Figure 13 below. 

Figure 13. Fluctuations of the time series of significant wave height 

It can be clearly seen in this illustration that if the threshold varies between 1 and 3 m, some of the 
storms that can be easily identified visually (such as the last one) will exhibit first one threshold 
exceedance, then two, then another, and will eventually fall below the threshold. If we wish to 
select independent peaks as required by the EVT, sub-parameters have to be set, such as minimal 
duration between two peaks, minimal duration between the end of a storm and the beginning of the 
next one, minimal storm duration, or the value falling back below a fraction of the threshold. All 
these sub-parameters, which may be combined, aim to ensure that peaks are independent, but 
most of them also have in common the fact that their value depends on the threshold value. So if 
we wish to carry out a broad sensitivity study on the threshold, we should constantly adapt these 
parameters, which is an obvious practical difficulty. 

It thus seemed quite convenient to propose an approach that could at the same time account for 
the recommendations of both the engineers and the statisticians and avoid the fluctuation problem: 
the double threshold. A first threshold 9: is used to decluster the time series, identify storms and 
extract their peaks. The sub-parameters ensuring that the selected storms are independent can be 
set once and for all, accounting for the oceano-meteorological characteristics of the site. This step 
yields a small i.i.d. sample on which a sensitivity study can be carried out in order to determine a 
second threshold 9;. A statistical distribution can then be fitted to the peak exceedances over 9;. 

In the paper of 2011, we presented this approach with additional recommendations based on the 
mean number of peaks per year. Based on our experience, setting 9: so as to obtain 5 to 10 
storms per year and 9; so as to obtain 2 to 5 storms per year seemed reasonable, in particular in 
mid-latitude areas. Of course it had to be adapted to the local wave climate, particularly in cyclonic 
areas. The plots of the stability of the GPD shape and modified scale parameters with regard to the 
threshold, proposed by Coles, were adapted in order to include the variation in sample size when 9; increases (Figure 14). Lastly, we developed the logic of the plot by suggesting identifying 
“domains of stability”, i.e. threshold ranges within which the parameters do not vary, and selecting 
the lowest threshold of the highest domain: since the GPD is the asymptotic distribution towards 
which the law of the exceedances over a threshold tends when 9 is large, choosing the highest 
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domain should minimize the bias; then, within this domain, selecting the lower bound should not 
change the estimation (since the parameters do not vary). It should minimize the variance and 
uncertainties, however, since it maximizes the sample size. This is a classic case of the bias-
variance dilemma. 

Figure 14. Stability plot for choosing the high threshold proposed in Mazas and Hamm 
(2011) 

These plots are a useful tool for choosing the statistical threshold, but they are to be used in 
conjunction with other tools (evolution with respect to the threshold of the extreme quantiles, of 
goodness-of-fit criteria…) discussed in particular in Bernardara et al. (2014), as presented in 
section 2.2 below. Nevertheless, it should not be forgotten that the choice of the threshold remains 
somehow arbitrary, and choosing a threshold means choosing a model. In that sense, considering 
a wide number of distributions and criteria is better than relying on a single statistical optimization 
(goodness-of-fit between a sample and one pre-chosen statistical distribution) that potentially can 
introduce bias. This is why distributions such as the Weibull, Gamma or exponential distributions 
are considered in addition to the theoretical law, namely the GPD (Figure 15). 
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Figure 15. Plots showing the evolution of the fits to the GPD, Weibull, Gamma and 
exponential distributions with respect to the threshold: 100-yr Hs quantile (top right), 

Chi2 statistic (bottom left), p-value of the Kolmogorov-Smirnov test (bottom right) 

Lastly, it was proposed to compute the confidence intervals using the parametric bootstrap method 
rather than the conventional delta method. This latter method depends on an assumption that the 
estimated parameters have a normal distribution, which yields symmetrical confidence intervals 
around the most probable value of the quantiles, and in some cases a lower bound for the interval 
that decreases as the return period increases. The parametric bootstrap method eliminates this 
Gaussian assumption and provides more credible, asymmetrical confidence intervals for the 
extreme quantiles. 

2.2. A TWO-STEP FRAMEWORK FOR OVER-THRESHOLD MODELLING 

The multi-distribution model presented above, and in particular this double threshold approach, 
seemed very convenient, and it appeared to be rather popular in the literature in the following 
years. However, at the time it was merely considered practical, with no conceptual consequences. 

Nevertheless, discussions within the OSSË working group and other engineers and researchers 
led to work focusing on that double-threshold approach. The related concepts were also examined. 

First of all, it was obvious that this approach was not restricted to wave heights, or to the meteo-
oceanic field, but could be applied to hydrology and to all kind of environmental data. 

Secondly, an in-depth literature review showed that the choice of threshold was based sometimes 
on physical arguments, sometimes on statistical ones, and sometimes on both (see for instance the 
paper of Lang (1999) for a literature review). The need for clarification became obvious. 

We based our reasoning on the observation that the analyst deals with a time series of 
observations of the variable (from measurements or modelling) at a given time step, while the 
conventional tools provided by the EVT assume that the dataset is independent and identically 
distributed (i.i.d.). Consequently, a step is needed to go from the former to the latter. This step is a 
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declustering process (Smith, 1989). Once the i.i.d. sample has been set up, a new step of 
statistical optimization can begin in order to find the best statistical model to fit to the data. 

At this point, the solution becomes clear: independent and identically distributed peaks must be 
extracted from the original time series using physical considerations, and statistical tools may then 
be used in order to determine the optimal threshold above which a statistical law is fitted to the 
exceedances.  

The first step thus consists in extracting i.i.d. peaks from the time series. Of course, considering the 
exceedances over a threshold is very practical tool to achieve this goal. But it is necessary to think 
further about the significance of this operation. The time series provides discrete values, at a given 
time step, of a continuous environmental variable, i.e. discrete observations of a physical quantity 
describing a physical phenomenon: wave height, temperature, wind speed, river discharge, rainfall, 
etc. The basic laws of physics (ultimately the conservation of mass and energy) are such that these 
quantities are temporally autocorrelated, and their temporal rate of variation is usually bounded. 
The finer the time step of the series, the stronger the correlation. So setting a threshold will not 
extract individual values: it will identify time intervals within which the observation is far from its 
average value. In other words, it will identify a storm, a flood, a heatwave, etc. These anomalies 
have a duration and a magnitude, and the peak is a very partial description of these. 

We now see that we can no longer reason only in terms of discrete values. We have identified 
“something that happens” to a physical quantity, linked to physical phenomena: in other words, as 
seen in the introduction, a physical event. And so far we have chosen, very simply, to describe this 
event in terms of the maximum value or the associated quantity: the peak value. 

This yields another consequence: the peak value is a different kind of variable than the variable 
observed at each time step. This is no longer the quantification of a physical quantity but a 
description of a physical event. Besides, other descriptions could be imagined, such as the average 
value over the duration of the event, or temporal integration (the temporal integration of river 
discharge during a flood event, for instance, will give the flood volume). So at this point we 
introduce some new terminology: 

� the time series is made up of sequential variables, i.e. discrete observations of the 
temporal variations in the environmental variable; 

� the i.i.d. sample is made up of event-describing variables (most of the time, event peaks). 

Another point is that the sub-parameters for ensuring independence must be set according to the 
comprehension of the physical event. 

To sum up, this first-step processing is a physical declustering with the aim of identifying and 
describing independent events, by extracting an i.i.d. sample of the event-describing variable from 
the autocorrelated time series of sequential values. This is why the “low threshold 9:” introduced in 
Mazas and Hamm (2011) was renamed “physical threshold 9<”. 

As a matter of fact, the use of a threshold is not always necessary. For instance, cyclonic studies 
can be carried out by modelling the sea states generated by the cyclones, each of which is 
archived by the cyclonic warning centres. There is no continuous time series but a set of already 
clearly identified events. Selecting the maximum wave height generated by the cyclonic 
atmospheric fields is enough to set up the i.i.d. sample. 

Once this i.i.d. sample has been set up, the EVT can be applied and the reasoning becomes purely 
statistical. In the framework of extreme estimation through over-threshold modelling, the threshold 
can thus be called “statistical threshold 9�”. Physical arguments are of no use here, with the 
possible exception of recommendations about the mean number of events per year: for instance, 
when considering the case of extreme discharge of large plain rivers, selecting an average of four 
floods per year seems contradictory to the physics of the phenomenon. 

The conceptual framework exposed in the NHESS paper of 2014 can be summed up as follows: 
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Figure 16. Two-step framework for over-threshold modelling, after Bernardara et al. 
(2014) 

2.3. MAXIMUM LIKELIHOOD ESTIMATOR AND ITS VIRGAE 

A technical point also arose in relation to over-threshold modelling. The use of a double threshold 
allows for a detailed sensitivity study with respect to the statistical threshold, since it is no longer 
necessary to decluster the time series at each threshold value, a process that can be rather time-
consuming. 

If we consider the classic case study of Haltenbanken wave height peaks provided by the IAHR 
Working Group on Extreme Wave Analysis (van Vledder et al., 1994). The accuracy of the data is 
0.01 m and the dataset is such that the range of thresholds can be between 7 and 10 m. Instead of 
letting the threshold value vary with an approximate step of, say, 0.2 m, we can now make the step 
match the accuracy of the data and let the threshold vary between 7 and 10 m every 0.01 m, i.e. a 
total of 301 values to be examined. More specifically, for each value, a GPD is fitted to the peak 
excesses over this value and the changes in the shape and modified scale parameters and the 
quantile value (e.g. the 100-yr �� peak) with respect to 9� are analysed. In accordance with the 
literature (in particular Coles, 2001), in Mazas and Hamm (2011) we had used the Maximum 
Likelihood Estimator (MLE), notably for its asymptotic properties of robustness, consistency and 
efficiency. But using MLE for such refined sensitivity studies led to the surprising plots shown in 
Figure 17. 
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Figure 17. Haltenbanken dataset: change in the ML-estimated GPD shape parameter (top 
plot, above curve), in 100-yr Hs (top plot, below curve) and in the log-likelihood (down 
plot, zoom) with respect to the statistical threshold. Dots represent the peak values 

The results of the parameter estimation, and hence of the quantile estimation, turned out to be 
quite unstable, with a distinctive pattern that we named virgae, after the shafts of precipitation 
falling from a cloud that evaporate or sublimate before reaching the ground (Figure 18). A close 
look shows that a virga occurs between two successive values of the dataset of peaks. This means 
that when 9� increases between two peak values, the estimation of the quantile can vary widely, 
between 0.1 and 1 m in the example above! In other words, the 100-year �� can be very different 
whereas a GPD is fitted to the very same peaks. 
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Figure 18. Meteorological virgae 

source: © Roger Edwards 

This seems very counter-intuitive. But it should be borne in mind that it is not to the peaks %= that 
the distribution is fitted but to the peak excesses over the threshold >= = %= − 9�. So when 9� varies 
between two peak values, the dataset of %= exceeding 9� does not change whereas the dataset of >= does. 

This means that we have a problem of model choice: within such an interval, which value of 9� 
provides the best model? Looking at the model likelihood would appear to be the natural choice. 
But as illustrated by the bottom plot in Figure 17, we can see that the likelihood increases 
constantly and monotonically between two successive peaks. The maximum value is reached at 
the open upper bound of the interval -%=; %=�:-, i.e. for 9� = %=�: − @. So should the value of @ be 
0.1, 0.01, 0.001…? Furthermore, at this maximum, the derivative of the log-likelihood is not nil. Yet 
proving the asymptotic properties (consistency, efficiency) of the Maximum Likelihood Estimator 
requires that the true (and unknown) vector of parameters be an interior point of an open set 
(Lehmann, 1983, chapter 6), and that the likelihood function converges towards a global (and 
finite) maximum on this point with locally nil derivatives. This behaviour occurs because the density 
of distributions such as the GPD is maximal at the lower bound of their domain of validity. 
Necessarily, the closer the threshold is to the first value of exceedance, the higher the density 
associated with this value and, thus, the higher the model likelihood. 

We can also see that when we set a threshold value we do not only select peaks; we also set the 
origin of the distribution: if the random variable > > 0, then the random variable % > 9�. 
To solve this issue we propose to introduce a location parameter ( whose function is to set the 
origin of the statistical distribution while 9� is restricted to peak selection. For instance, the 
cumulative distribution function of the 3-parameter GPD is: 

 �B;C,D,E1F2 = 1 − G1 + I F − (J KL:C (5)
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with F = / − 9�. 
The three-parameter version of these distributions cannot be estimated using the MLE: because of 
the aforementioned maximum density at the origin, the location parameter necessarily tends to the 
minimum exceedance: ( → min >= = >::P. In parallel, the estimated vector of GPD parameters QR = SIR, JTU does not converge towards any “target point” when ( → >::PL , or equivalently when @ →0�, as shown by Figure 19 (the plot is drawn for a dataset of simulated data from a GPD with 
known parameters in order to compare the estimated parameters with the true values). 

Figure 19. Change in the ML-estimated vector of GPD parameters �V = S�V, �WU for a 
simulated dataset of size 100. True vector of parameters indicated in red. 

We hence propose using the L-moments estimator proposed by Hosking (1990). Interestingly, any 
shift of 9� between two peak values is strictly offset by an opposite translation of (, so the sample 1>= − (2 always remains constant.  
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Figure 20. Haltenbanken dataset: change in the L-moments estimated GPD shape 
parameter (top plot, above curve), in 100-yr Hs (top plot, below curve) and in the log-

likelihood (down plot, zoom) with respect to the statistical threshold. 

Figure 20 shows that when fitting a 3-parameter GPD estimated using the L-moments, changes in 
the parameter estimation and hence in extreme value (quantile) estimation are only caused by a 
change in the sample of the peaks %=. The conclusion is the same with other distributions such as 
Weibull or Gamma (named log-Pearson III in its 3-parameter formulation). The log-likelihood 
remains constant between two data points, but this is no longer a maximized value. 

2.4. CONCLUSIONS 

The works performed regarding the estimation of univariate extremes have progressively revealed 
important distinctions, namely the difference between the sequential observations from the event-
describing variables and the complementary role of physical and statistical approaches. 

At this stage, we can define univariate events as an anomaly of a physical quantity that takes 
values far from the average over a certain period of time. 

Although the physical quantity, or environmental variable, describes a physical phenomenon (e.g. 
wave height for sea states, wind speed for wind, etc.), it is also quite legitimate to consider the 
event itself as a physical phenomenon (a storm, flood, etc.). Therefore, even in the simple 
univariate case, the non-definability of the concepts of event, phenomenon etc. referred to in the 
introduction can be experienced.  

oOo 
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3. EXTREME MULTIVARIATE EVENTS: FROM 

SAMPLING TO RETURN PERIOD, A MATTER OF 

POINT OF VIEW 

3.1. EXTREME SEA LEVELS: A FIRST APPROACH TO BIVARIATE 

ANALYSIS 

Extreme sea level determination is a very good example of a “simple bivariate analysis”: it can be 
easily assumed that it is only necessary to consider two physical phenomena described by two 
physical quantities of the same kind: 

� astronomical tide 	, a deterministic, predictable variation in sea level generated by 
astronomical forcing; 

� meteorological surge X, a stochastic variation in sea level generated by atmospheric fields 
(wind and pressure). 

The analysis may be made more sophisticated by accounting for the eustatic trend in mean sea 
level, another quantity of the same kind, or in wave set-up, which is also of the same kind but 
requires an analysis of sea states. However, we will consider the simple approach above and can 
write: 

Y = 	 + X 

where Y is sea level, 	 is astronomical tide and X is surge (in m). Note that one can either consider Y and 	 as fluctuations (in m) around the mean sea level (a level relative to a given datum), or 
include the mean sea level both in Y and 	, which become a level relative to a datum. 

It is easy to understand that in macrotidal environments, in which the range of variation in the 
astronomical tide (6 to 14 m) is far larger than the range of variation in the meteorological surge 
(2 to 3 m), a direct extrapolation of the sea levels observed is meaningless. Haigh (2010) 
demonstrated that the extreme sea levels induced by this direct approach in macrotidal 
environments are underestimated. This is why the so-called indirect approaches were developed 
as early as 1979 (Pugh and Vassie, 1979) and made more sophisticated in the decades that 
followed (Tawn and Vassie, 1989, Tawn, 1992, Dixon and Tawn, 1994, 1999). The method was 
called the Joint Probability Method (JPM), in its various forms: Revised JPM (RJPM), Spatial 
Revised JPM (SRJPM), etc. The basic idea consists in extrapolating the extreme meteorological 
surge values and then combining this extrapolation with the (known) distribution of astronomical 
tide to obtain the distribution of sea level. 

A first key point of the methodology is the probabilistic model used for extrapolating extreme 
surges. The models proposed in the RJPM are based on the annual maxima or r-largest 
declustering methods combined with a GEV distribution. Applying the methodology for univariate 
extremes presented in section 2, namely a combination of two-step POT declustering along with a 
multidistribution approach, was a first rationale to update the methodology for determining extreme 
sea levels. 

A second difficulty was quite interesting as it was linked to the concept of events. The observations 
of sea level (and of its components) exhibit strong temporal dependence (auto-correlation). That is 
what the distinction made between sequential values and event-describing variables (storm peaks) 
is all about. In order to obtain the full distribution of extreme sea levels, we have to: 

1. extrapolate the extreme surge peaks; 
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2. determine the distribution of sequential values of surge; 

3. determine the distribution of sequential values of astronomical tide; 

4. determine the distribution of sequential values of sea level by combining the distributions of 
sequential values of surge and tide; 

5. derive the distribution of extreme sea level peaks. 

Step 1 is easily dealt with thanks to the univariate methodology. Step 3 does not present any 
difficulty provided that the astronomical tide is known: an empirical distribution (estimated by a 
kernel density estimator) of tide levels over a saros period (6585.32 days, i.e. 18 years and 10 or 
11 days8) can be assumed to represent almost perfectly the distribution of tide between LAT 
(Lowest Astronomical Tide) and HAT (Highest Astronomical Tide). Step 4 is also straightforward: 
the probability theory tells us that the distribution (probability density function) of the sum of two 
independent variables is the convolution of their individual densities. 

This leaves us with two main difficulties: 

1. transforming the distribution of the event-describing variable (peak) into the distribution of the 
sequential value, and vice-versa; 

2. modelling accurately both the frequent values (bulk of the distribution) and the extreme 
values (tails of the distribution). 

The literature provided help with these two difficulties. The extremal index, introduced in the JPM 
by Tawn and Vassie (1989), accounts for the clustering of sequential values around the peak. It 
can be seen as the reciprocal of the mean number of sequential values per peak, or as the mean 
duration of events if the step Z[ of the time series is accounted for. However, it had to be adapted 
to a POT approach. With the invaluable help of Dr Xavier Kergadallan, it was possible to derive the 
distribution �\ of the sequential surges X above the statistical threshold 9� (the limit between the 
empirical and the parametric domains) from the distribution ]^_ of the extreme surge peaks `\: 

 �\1a2 = 1 + P
νb c\1a2d]^_1a2 − 1e, for a > 9� (6)

where f is the number of surge peaks, g the duration of the time series, h the number of 
sequential values per year and c\1a2 the mean number of sequential surges per event, a number 
that varies with a. Note that ]^_ is a conditional distribution: it is first transformed into the 
conditional distribution of sequential surges above 9� given that X > 9� (the integral of its density is 
1), and then it is transformed into the distribution of sequential surges above 9� by assuming that 
the probability of X > 9� is given by the ratio of the number of sequential values in the parametric 
domain over the total number of observations. 

Last, a model is needed for the variations in c\1a2 with a, i.e. the mean number of values per event 
when the threshold defining the event varies. We identified three distinct regimes in c\1a2: first a 
decrease from c\19�2 to 1, though not generally monotonic; then a range in which it stays equal to 
1 (each event has a single value); and lastly, a range in which the maximum observed peak is 
exceeded and c\1a2 can no longer be defined. We proposed to fit a linear regression model for the 
first regime in log-log scale, while for the second and third regimes c\1a2 = 1, as illustrated in 
Figure 21 below. 

                                                      

8 depending on the number of leap years in the 18-year period 
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Figure 21. Mean number of sequential values per event with respect to surge height: 
observations (circles), model (lines). 

Source of data: cf. Figure 6 

Figure 22 compares the tail of the empirical distribution of hourly surges with the parametric tail 
distribution �\1a2, for a > 9�. The interest of the extrapolation and the accuracy of the limit value at 
the boundary between the empirical and parametric domains are obvious from this plot. 
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Figure 22. Upper tail of the hourly surge values probability density function. 

The second difficulty was easily overcome by using a mixture model that connects a kernel-density 
estimated empirical distribution for the bulk values (frequent observations) to the parametric tail 
derived from the extrapolation of surge peaks as presented above. Furthermore, extreme negative 
surges may also be extrapolated and a lower parametric tail included in the surge distribution. This 
is of great interest for estimating extreme low sea levels, an item of information that is needed in 
regard to the toe stability of rubble mound breakwaters or to the cooling circuits of nuclear power 
plants built by the sea. 

The distribution of sequential surges can then be convoluted with the distribution of sequential tidal 
levels in order to obtain the distribution of sequential sea levels, as illustrated in Figure 23. 



UNIVERSITE PARIS-EST - ÉCOLE DOCTORALE SCIENCES, INGENIERIE ET ENVIRONNEMENT (SIE) 

Extreme meteo-oceanographic events 
P h . D .  b y  p u b l i s h e d  w o r k s  –  F r a n c k  M A Z A S  

SUPPORTING STATEMENT 

 

EXTREME METEO-OCEANOGRAPHIC EVENTS | FRANCK MAZAS | NOVEMBER 2017  41
 

Figure 23. Probability density functions of hourly surge (empirical bulk and parametric 
tails), astronomical tide and sea level. 

Last, the extreme values of sea level for return periods of 1, 10, 100, 1,000 years, etc. are usually 
requested. This means that we have to define events again, once more by means of POT 
declustering, but not followed by a fit to the identified peak values. The event identification is used 
to define an extremal index for sea levels or its reciprocal, the mean number of sequential values 
per event, ci1j2. The inverse of the transformation from peaks to sequential values presented 
above then yields the distribution of extreme sea level peaks. 

Temporal autocorrelation is not the only type of dependence to be accounted for; in some places 
the surge value depends on the tide value, and vice-versa. This is especially true of shallow 
locations because the celerity of long waves depends on water depth (see equation (1)). Generally 
speaking, larger surges are expected at low tide because they tend to rise in shallower waters. In 
parallel, a higher sea level caused by a large surge can modify both the phase and the amplitude of 
the astronomical component (Flather, 2001). Moreover, this interaction can step into the equations 
of momentum conservation in several terms, namely the advection term, the bottom friction term 
and the surface stress term (Jones and Davies, 2008, Zhang et al., 2010, Idier et al., 2012).  

Dixon and Tawn (1994) have proposed a statistic based on a k; test statistic to assess tide-surge 
dependence, along with a normalization to account for it in the extreme analysis. In our paper we 
proposed an alternative normalization, based on the average of the surge values exceeding the 
95% quantile of tidal bands. This was found to perform better at several sites along the French 
Atlantic / Channel coasts. 
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Figure 24. Return periods for sea level events. From the upper to the lower curve: 
indirect approach without tide–surge interaction, indirect approach with equi-probable 

tidal bands, indirect approach with equi-probable surge bands, direct approach. 

Figure 24 displays the extrapolation plots for extreme sea level peaks with respect to return period 
for a direct POT extrapolation of sea level peaks and the new POT-JPM indirect approach. Tide-
surge independence is either considered negligible (brown curve) or handled with two different 
methods. The observed peaks are also drawn. 

Although an offset appears for small return periods (between 0.1 and 10 years), the interest of the 
indirect approach is obvious for large return periods. The shape of the curve from the direct 
extrapolation (a GPD with negative shape parameter, which yields a concave curve) is quite 
different from the straighter asymptotic behaviour of the fits from the indirect approach. The 
underestimation noticed by Haigh et al. (2010) is found again. Although we are more interested 
here in the methodology itself rather than in the quantitative results, they can be compared to the 
results of other studies (Pirazzoli and Tomasin, 2007, SHOM - CETMEF, 2008, Haigh et al., 
2010) gathered in our overview paper published in 2011 in La Houille Blanche ([M]). In particular, 
the 100-year sea levels are very close to those found by SHOM - CETMEF (2008) after the method 
developed by Simon (1994), and a bit higher (0.10 to 0.15 m) than those found by Fortunato et al. 
(2016). 

This offset can be observed on the many sites on both sides of the Channel analysed in Haigh et 
al. (2010), and has also been found when applying this methodology on high tide sea levels (skew 
surges and astronomical high water) at La Rochelle – La Pallice (Bay of Biscay), Brest (Atlantic 
Ocean), Cherbourg and Saint-Malo (Channel). However this offset is smaller when working on high 
water values than on hourly observations; for Brest the overestimation can be estimated at 
~ 0.03 m in the former case versus ~ 0.08 m (accounting for tide-surge dependence) to ~ 0.10 m 
(independence assumption) in the latter. A significant difference between the high water values and 
the hourly values is that the extremal index is always very close to 1 in the former case: the 
transformations between the distributions of sequential and event-describing values are thus much 
easier and better modelled. Thus we can expect this offset to be caused, at least, by an extremal 
index model that is not accurate enough on the one hand, and by an incomplete handling of tide-
surge interaction on the other hand. 
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We thus have a methodology for determining the univariate distribution of a phenomenon made of 
two components that can be dependent by combining their marginal distributions. The joint 
distribution of tide and surge is not required for the analysis because the information relating to joint 
occurrence is somehow included and reduced in the convolution operation. Thanks to the effort 
made above in regard to the terms, definitions and vocabulary (section 1.3), we can now say that 
we are considering the joint occurrence of two physical quantities that are of the same kind. 

3.2. JOINT OCCURRENCE OF EXTREME WAVES AND SEA LEVELS: 

FROM BIVARIATE TO MULTIVARIATE 

3.2.1. A new classification for multivariate analyses 

The influence of sea states on the sea level at the shoreline through wave run-up (set-up and 
swash) or complex mechanisms described by Bertin et al. (2012); the combined effect of waves 
and sea level for coastal flooding, beach erosion, wave overtopping of coastal structures such as 
breakwaters, dykes and quays; the design of offshore structures submitted to concomitant loads 
from waves and wind: these are just some of the issues potentially called into play, and for which a 
methodology is required in order to estimate the extreme joint probabilities of two phenomena such 
as waves and sea levels. 

Though the joint occurrence of wave height and sea level is a bivariate problem just like the joint 
occurrence of surge and tide, the difference obviously lies in the fact that we cannot eventually 
reduce the problem to the probability distribution of a single variable, such as sea level: the sum of 
significant wave height and sea level or, even more, the sum of significant wave height and wind 
speed or current velocity, is meaningless. We now consider the joint occurrence of two physical 
quantities that are not of the same kind. 

More generally, and more importantly for this thesis, we can now see clear distinctions in bivariate 
analyses that are directly linked to what we call events. 

In the Coastal Engineering paper ([S]), the following classification of multivariate analyses was 
proposed: 

� Type A: a metocean process described by several parameters (e.g.: a sea state described 
by its significant wave height ��, its peak period 	<, its peak direction Q<, its directional 
spreading, etc.); 

� Type B: a metocean process that can be broken down into several elementary processes 
(e.g. a sea state made of a swell system and a wind sea system; or the sea level made of a 
mean sea level, astronomical tide, meteorological surge, wave set-up, etc.); 

� Type C: the joint occurrence of several distinct metocean processes (e.g. waves, sea level, 
wind, current). 

We can now rewrite this classification, which is illustrated in Figure 24: 

� Type A: a single phenomenon described by different physical quantities that are possibly not 
of the same kind; 

� Type B: a phenomenon made of different components, described by physical quantities of 
the same kind between one component and another (e.g. �� and 	< are not of the same 
kind, but ��,l=mn	lpqr and ��,�lrss are); 

� Type C: several phenomena described by physical quantities that are possibly not of the 
same kind. 
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Figure 25. Illustration of the classification for multivariate analyses 

Two main issues lie at the core of the analyses: sampling and dependence. They are intimately 
linked because dependence is assessed on the sample. Sampling itself is nothing more than 
event definition, identification and description. 

3.2.2. Sampling: a description of events 

In Type A analyses, sampling is generally straightforward. When dealing with directional extreme 
winds or ��/	< correlation, it is intuitive to define the event as an anomalous value of the quantity 
that measures the energy most directly, such as wave height, wind speed, current velocity, sea 
temperature, etc. The choice of reference variable or event-defining variable is easily made and 
the other variable is a mere covariate; the value concomitant to the peak of the reference variable 
is generally taken. 

In Type B analyses, the components can be dealt with separately before being reduced to a single 
variable (the general phenomenon), and sampling can be performed on each component within the 
univariate framework described in section 2.2. 

Things become much trickier in Type-C analyses. For instance, both wave height and wind speed 
are closely linked to energy and there is no obvious choice for setting a reference variable. In 
addition, it must be borne in mind that the joint occurrence of two (or more) phenomena is usually 
required because their combination causes a distinct phenomenon: beach erosion, wave 
overtopping, coastal flooding, dune breaching, etc. Furthermore, these response phenomena do 
not necessarily require the joint occurrence of large values of the source phenomena: the 
combination of a large value of one with a frequent value of the other may generate an event as far 
as the response phenomenon is concerned. 

We thus begin to see that a point of view needs to be chosen. This also explains the variety of 
sampling methods found in the literature. Generally speaking, they differ in the answer they offer to 
the following question: should the method focus on the exceedance of one variable only, of both, or 
of one or the other? Figure 26 illustrates these possibilities: an event selection limited to domain 2 
means a selection of simultaneous large values for both variables; domains 1+2 (resp. 2+3) 
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correspond to a selection for large values of a single variable; domains 1+2+3 correspond to a 
selection for large values of at least one of the two variables. 

Figure 26. Possible domains for event selection on a Hs / sea level scatterplot 

Source of data: cf. Figure 6 

High tide sampling for wave / sea level analyses in a macrotidal environment, which consists in 
selecting the sea level at high water along with the concomitant �� value (Figure 27), is based on 
the postulate that the analysis is performed for phenomena that can only occur at high tide 
(Kergadallan, 2015), which would not be the case with supplying seawater to cool nuclear power 
plants. The bivariate threshold proposed by Li et al. (2014) tries to consider both variables 
equivalently by selecting pairs that correspond to large values for both phenomena (Figure 28). 
Covariates such as wave period or direction may also be to be accounted for, notably to ensure 
that the selected events are identically distributed. This is why we proposed an additional sampling 
method, which consists first in using analytical formulae to calculate the nearshore wave height ��′ 
as a function of offshore wave height ��, period 	< and direction Q<, and then summing it to the sea 
level Y resulting in a “total water level” function9	Y + ��′ that is physically meaningless but 
unidimensional: a conventional univariate POT declustering process can be applied (Figure 29). In 
other words, we use a univariate response function whose desired properties are: (i) it selects large 
values of both source variables; (ii) it selects large combinations of the source variables; (iii) it 
accounts for covariates for the i.d. assumption (e.g. wave covariates so that waves that do not 
propagate nearshore are not selected); (iv) a response function that is “neutral”, i.e. it is relevant for 
any true response function such as wave overtopping, wave load on a seawall, etc. 

                                                      

9 An improvement to this function would be a normalization of the nearshore wave height ��u and of the sea 
level so that both components have approximately the same weight in the response function. It has been 
checked that the resulting sampling is very close. 
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Figure 27. High tide sampling of sea level and wave height 

Source of data: cf. Figure 6 
 

Figure 28. Definition of independent storm events with a bivariate threshold 

source: Li et al. (2014) 
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Figure 29. Top: time series of a univariate response function (sum of sea level and 
nearshore wave height) with threshold and peak of the selected events; bottom: 

sequential pairs (Hs, Z) of the time series (in grey) and selected event-describing pairs 
(in red) 

Source of data: cf. Figure 6 

Of course, we should not expect to find the perfect function for this. Nonetheless, this function was 
introduced as an additional approach and in order to stress the main point of the sampling step: it 
all depends on the event definition that is chosen by the analyst. 
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An important change is that the event-describing variable of the univariate framework, most of the 
time a peak, is now an event-describing tuple, or pair in the bivariate case. Once again, it may be 
that none of its elements is a peak of its variable. 

The three dimensions of sampling, namely event definition, identification and description, can thus 
be illustrated with one of the aforementioned methods: high tide sampling. It is clear that choosing 
this sampling necessarily defines an event as what happens at high tide; and vice-versa. 
Identification consists in finding the maxima of the variable “sea level”. Last, the description of such 
events requires choices: should we consider the instantaneous surge at the time of the high tide or 
the skew surge, should we consider the wave height at the time of the high tide or its maximum 
value within a time window centred on the high tide, etc. The bivariate threshold method also 
illustrates these three sides: an event is defined as the joint occurrence of a large value for each 
variable; it is identified by the joint exceedance of a physical threshold for each one along with 
temporal criteria (minimum storm duration, maximal duration for fluctuations, etc.); and it is 
described by the peak values of each variable. 

Once the choice of sampling method has been made, the i.i.d. bivariate (or multivariate) sample is 
set up and the rest of the methodology, though technical, is more straightforward. 

3.2.3. Dependence: assessment and modelling 

First the marginal distributions are determined. The mixture model introduced for the surges in 
section 3.1 is called upon: for the variable % (resp. >), the i.i.d. sample of the event-describing tuple 
is reduced to a univariate sample made of the elements corresponding to % (resp. >). The elements 
exceeding a statistical threshold are extrapolated by an extreme value distribution, then the 
parametric tail is connected to the empirical distribution of the elements below that threshold. Note 
that an extremal index is no longer needed: there is no temporal autocorrelation between the 
elements of the i.i.d. sample. 

Next, dependence is assessed on the event-describing pairs 1%= , >=2	. To begin with, dependence 
may be analysed through various coefficients, statistics and plots, of which the scatterplot and the 
conventional correlation coefficients (Pearson’s v, Spearman’s w, Kendall’s x) are the simplest. Two 
tools are particularly interesting. The first one is the chi-plot introduced by Fisher and Switzer 
(1985) and further detailed in Fisher and Switzer (2001). Figure 30 displays an illustration of the 
chi-plot associated with a scatterplot showing a sample with positive dependence (correlation 
coefficient 0.5). 

 

Figure 30. Chi-plot (right) for a sample with positive dependence 

source: Fisher and Switzer (2001) 

The second one is the upper tail dependence coefficient 'y, which describes the limit probability 
that a variable exceeds a threshold when the other one does the same. Independence translates 
into 'y tending to 0 whereas complete dependence translates into 'y tending to 1. 
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To model dependence, we can use a mathematical object designed to describe the dependence 
structure between random variables: a copula. According to Sklar’s theorem (Sklar, 1959), a 
multivariate distribution function � can be described by univariate marginal distributions � and a 
copula z:  

 �1/:, … , /n2 = ℙ-%: | /:, … , %n | /n0 = z1�:1/:2, … , �n1/n22 (7)

Among all the existing copulas, the extreme value copula family is particularly suitable for our 
analyses, namely the copulas of Gumbel-Hougaard (logistic), Galambos (negative logistic) and 
Hüsler-Reiss. Goodness-of-fit tests such as the Cramér-Von Mises statistic allow the best-fitting 
copula to be selected. 

3.2.4. Joint distribution: a first interpretation 

Lastly, the estimated copula and the marginal distributions can be combined to get the joint 
probability distribution. The joint return period # associated with the event (% > / and > > F) is 
given by the following formula: 

 #1/, F2 = 1'<ℙ-% > /, > > F0 = 1
'<d1 + z}VS�&1/2, �B1F2U − �&1/2 − �B1F2e (8)

The overall methodology is summarized in Figure 31 below. 

Figure 31. Sketch of the bivariate methodology for determining extreme joint 
probabilities of wave height and sea level 

In the Coastal Engineering paper ([S]), this methodology was applied to a case study in Brest and 
compared with results from the JOIN-SEA software (the analysis being kindly performed and 
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provided by Dr P. Hawkes, HR Wallingford), which is widely considered as a technical reference in 
the domain (Hawkes et al., 2002, Figure 32). 

Figure 32. Comparison of joint return periods between the JOIN-SEA simulations (red 
dashed lines) and the bivariate methodology (blue plain lines) 

Source of data: cf. Figure 6 

In the paper, this methodology was refined in order to implement the POT-JPM approach for 
determining extreme sea levels presented in section 3.1 and to assess the dependence between 
wave heights and meteorological surge, instead of wave height and sea level. Indeed it may be 
expected, at least in environments such as the coasts of north-western Europe, that waves and 
surge are generated by the same kind of meteorological phenomenon, while the generation of the 
astronomical tide is totally independent of atmospheric processes10. The analysis is thus performed 
on wave height %, tide 	 and surge X, as depicted by the sketch in Figure 33. A convolution 
between the marginal distribution of X and 	 yields the distribution of sea level Y (possibly 
accounting for tide-surge interaction) while dependence is modelled between % and X, which 
provides the joint distribution of % and X. A 2D1D convolution between these two distribution (i.e. a 
convolution with the distribution of Y for each row of the joint distribution of % and X) then provides 
the joint distribution of % and Y = X + 	. 

                                                      

10 As seen and discussed in section 3.1, this is not true of its propagation in shallow areas. 
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Figure 33. Sketch of the multivariate methodology for determining extreme joint 
probabilities of wave height and sea level 

Figure 34 shows the scatterplots of the ��/Y and ��/X pairs selected from the time series by the 
sampling. Visually, �� and X appear notably to be more correlated than �� and Y. 

 

Figure 34. Scatterplot sequential values (grey) and event-defining pairs of Hs / sea level 
(left) and Hs / surge (right) 

Source of data: cf. Figure 6 

Indeed the chi-plot shows that this dependence between % and X is much stronger than between % 
and Yplot. We have also modified the appearance of the chi-plot in order to explain the two lobes 
that can be seen on the right-hand side of the plot. The upper one was found to correspond to 1%, >2 pairs that are both larger than their respective medians, and the lower one to pairs that are 
both smaller. The plot display proposed in Figure 35 clearly shows that the positive dependence is 
stronger with the largest values. 
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Figure 35. Modified Hs / surge chi-plot of the i.i.d. sample 

The change in the results (Figure 36) can be observed on the extreme values of Y, which is now 
modelled using an indirect approach (JPM), and on the curvature of the contours, which directly 
depends on dependence. 

Figure 36. Contours of joint Hs / sea level return periods for the extended bivariate 
methodology 

Source of data: cf. Figure 6 
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3.3. CONSIDERATIONS ON RETURN PERIODS 

The two publications presented above, ([P] and [S]), describe methodologies for estimating the 
probability distributions of the sum of two components, or the joint occurrence of two quantities that 
are not of the same kind. Dependence is dealt with thanks to sophisticated statistical tools such as 
normalization by band, extremal index, extreme value copulas and so on. Different families of 
distributions and different estimators were compared. 

But the main issue is still the correct interpretation of the analysis output. We present below 
different considerations and outputs that have not been published yet but that are the results of 
further work and engineering studies during 2017. 

3.3.1. What is a multivariate return period? 

The univariate return period can be given by Equation (2) because the definition of the event is 
generally unambiguous: it is an exceedance. 

However, two variables offer a wider range of possible combinations to define the event �., i.e. the 
subset of all possible outcomes. Serinaldi (2015) lists the possibilities of probabilities to consider, 
which include the following: 

  3P6 = ℙ-~ > 9	 ∩ � > �0 = 1 − 9 − � + z19, �2 = (#3P6 (9)

  �� = ℙ-~ > 9	 ∪ � > �0 = 1 − z19, �2 = (#�� (10)

  ��P6: = ℙ-� > �	|~ > 90 = 1 − 9 − � + z19, �21 − 9 = (#��P6: (11)

  ��P6; = ℙ-� > �	|~ | 90 = 1 − z19, �29 = (#��P6; (12)

  ��P6� = ℙ-� > �	|~ = 90 = 1 − �z19, �2�9 = (#��P6� (13)

where ( = 1/' is the average inter-arrival time between two events, % and > are two random 
variables, �& and �B their marginal distributions, z their copula and ~ = �1%2 and � = ]1>2 are 
standard uniform random variables that allow us to work in the unit square -0,10; where z is 
defined. In particular, we can reformulate the bivariate joint distribution function of % and > as 
follows: �1/, F2 = zS�&1/2, �B1F2U = z19, �2. 
These probabilities are illustrated in Figure 37. The bold black lines delimit the domains in which 
probability is computed (universe Ω), while the grey areas denote the critical regions fulfilling the 
condition related to each type of probability (event �). 
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Figure 37. Domains and critical regions of several bivariate probabilities 

source: Serinaldi (2015) 

Considering the univariate return periods #& and #B of % and > and their associated probabilities of 
exceedance  & and  B, the following relations can easily be derived (Yue and Rasmussen, 2002): 

  �� � max1 & ,  B2 � min1 & ,  B2 �  3P6 (14)

 #�� | min1#& , #B2 | max1#&, #B2 | #3P6 (15)

However, although the above relations are mathematically true, they are the results of the ordering 
and comparison of events whose ordering and comparison is somewhat meaningless. A choice 
thus has to be made between these different probabilities, depending on the aim of the study. The 
plots in Figure 32 and Figure 36 correspond to the #3P6 definition. 

In particular, this choice actually has to be made between the source variables and the response 
variables: the conditions of the probability (the definition of event �) may no longer depend on the 
source variables % and >, but on a response variable Y = �1%, >2. For instance, Volpi and Fiori 
(2014) defined a so-called “structure-based” return period: 

  \ = ℙ-Y > j0 = ℙ-�1~, �2 > j0 = 1 − �i1j2 = (#\ (16)

� is a function that links the source (environmental forcing) variables % and > to one specific 
response (structural) variable Y. It can be seen that this is a reduction from the bivariate case back 
to the univariate definition of the probability of exceedance and the associated #. 
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3.3.2. Bivariate return period of source variables vs. univariate return periods 

of response variables 

The return period #\ associated with the (structural) response function is thus different from the joint 
return period associated with the source variables #3P6. It is generally lower. We will illustrate this 
using two examples. 

First let us consider the case of overtopping assessed on the basis of joint probabilities of wave 
height and sea level, as illustrated in Figure 38 from Hawkes et al. (2002). Let the design criteria 
be defined by the 10-year overtopping volume. Thanks to the methodology defined in this paper, 
we can accurately estimate the contour of the 10-year joint return period #3P6 of �� and Y. Along 
this contour, a single pair 1�� , Y2 is associated with a worst case for overtopping (circled dot). We 
can then draw the contour of overtopping corresponding to this value11, and we see a discrepancy 
between the hatched area of the joint exceedance probability of ��/Y and the dotted area of 
overtopping probability. The latter is larger: it means the probability of the overtopping value being 
exceeded is higher and, as a consequence, its return period is lower. 

Figure 38. Joint exceedance probability and structure variable probabilities 

source: Hawkes et al. (2002) 

Another illustration is provided in Figure 39 with a very simple bivariate analysis ��/Y, without 
accounting for covariates of any kind, and a very simple response function, �� + Y. The extreme 
values can be extrapolated directly for this return function and drawn as contour lines in the 1�� , Y2 
plane. A colour code based on these extreme values is also applied to the event points. We find 
that the lines of equal univariate return period are almost tangential to the contours of equal joint 

                                                      

11 For a given structure, overtopping depends on wave height and sea level, but also on wave period and 
obliquity. So in order to draw the contour of overtopping, assumptions must be made on the wave period and 
direction values to associate with each wave height value (or a full multivariate analysis). This is why a simpler 
example in which no covariates are involved is presented hereafter. 



UNIVERSITE PARIS-EST - ÉCOLE DOCTORALE SCIENCES, INGENIERIE ET ENVIRONNEMENT (SIE) 

Extreme meteo-oceanographic events 
P h . D .  b y  p u b l i s h e d  w o r k s  –  F r a n c k  M A Z A S  

SUPPORTING STATEMENT 

 

EXTREME METEO-OCEANOGRAPHIC EVENTS | FRANCK MAZAS | NOVEMBER 2017  56
 

return period: when running along a bivariate return period contour, the univariate return period is 
lower, and equal (or close) on a single point. 

Figure 39. Contours of joint exceedance probabilities and lines of equal univariate return 
period of the response function (total water level) 

Source of data: cf. Figure 6 

3.3.3. Return periods and contours 

3.3.3.1. Contours for event-describing values 

It may be requested in some engineering studies to draw bivariate contours for return periods of 1, 
10, 100 years or more. This is generally on account of a need to define a large number of load 
cases for the design of the structures. Because there may be different kind of loads to study, it is 
generally implicit that the return period refers to the source variables, and that it is #3P6. 

We defined return period hereinabove as the inverse probability of exceedance (univariate case) or 
as a joint or conditional exceedance (multivariate case), expressed in years using the Poisson 
parameter. A bivariate contour is related not to a notion of exceedance, but to one of inside / 
outside. 

A proposed answer consists in drawing the contour associated with the quantile of the given return 
period of one of the source variables, named the reference variable. This kind of contour has 
been proposed by other authors (Galiatsatou and Prinos, 2007) but the need to choose the 
reference variable does not appear clearly. More specifically, for a return period of # years and 
with > being the reference variable, the method is as follows. First, the #-year quantile F#  of the 
reference variable is determined from its marginal distribution �B. Then the most probable value of % given > = F#  is selected: this is the maximum of the joint density of % and > along the line > =F# . A contour of the density  &,B1/�p� , F#2 can then be drawn in the 1%, >2 plane. 

This approach is illustrated in Figure 40 for a bivariate analysis of storm duration / storm peak �� 
off Cotonou, Benin. The top plot provides the #3P6 isolines calculated on the event-describing pair ��-peak / storm duration. The bottom plot displays bivariate contours, �� being the reference 
variable. The horizontal dashed lines represent the marginal extreme values of ��. The /-
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coordinate of the maximum density values along these lines corresponds to the most probable 
storm duration for this �� quantile and a contour of joint density can be drawn. 

These two plots are drawn from the exact same joint distribution �&,B, just as a univariate 
distribution can be illustrated by its density, its cumulative distribution function or its survival 
function. We can understand from these figures that when contours of #3P6 are horizontal or 
vertical, this means that the probability of joint exceedance  3P6 does not vary along this part of the 
contour: this is because the joint density is nil in these areas. For instance, according to the plot 
below, the probability of observing a 1�� = 3, 59v�[��� = 252 pair is negligible. 
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Figure 40. Top: isolines of joint return period; bottom: contours of density associated 
with extreme Hs for Hs / storm duration bivariate analysis 

Source of data: 1992-2007 sea state hindcast by GlobOcean for ARTELIA (2008) 

Interpreting the plots above is fairly straightforward (or at least not too confusing) because the 
contours are drawn from the joint density of the event-describing pairs. Whereas the peak value of �� during a storm can be confused with the sequential values of ��, storm duration is an event-
describing variable that has no sequential equivalent. It is hence easy to understand that the 
analyses correspond to events only. Furthermore, this is a Type A analysis (one single 
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phenomenon described by several quantities) and the reference variable that defines the storm 
(here ��) is obvious. 

However, things become more complicated when the following contours are requested: 

� in Type A analyses, two event-describing variables that directly derive from a sequential 
variable, such as ��/	< analyses; 

� in Type C analyses, two variables describing different phenomena, each of which being 
legitimate to be a reference variable defining an event, such as wave height / wind speed 
analyses. 

In the former case, the reference variable (event-defining variable) remains generally univocal; 
whereas in the latter case a choice is to be made, as will be illustrated further below. 

3.3.3.2. Contours for sequential values 

However, the contours may be requested no longer merely on events but for the full range of 
sequential observations. This is the bivariate equivalence of the univariate mixture model 
presented in section 3.1 and illustrated for the surge distribution in Figure 23. Of course, defining a 
bivariate tail is not straightforward and connecting the bulk of the distribution to this tail while 
handling the transformation from event-describing pairs to sequential values presents serious 
difficulties. Furthermore, we have seen that the concept of return period is linked to the concept of 
event: here it is used, and somehow confused, for the sequential values. This contradiction will be 
circumvented as follows: the bivariate density is derived for the sequential pairs, and the maximum 
value of the sequential density along the line associated to the extreme quantile of the event-
describing reference variable is used for drawing the corresponding contour. 

A preliminary method is exposed below, illustrated by a ���/	< analysis off the coast of Groix 
island (French Atlantic coast). Hourly values of spectral sea state parameters are available for a 
20-year duration (175,320 sequential pairs). A POT declustering is applied on ��� and a sample of 
297 peaks (event-describing pairs) is selected, as shown in Figure 41 below. 
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Figure 41. Sampling of the Hm0/Tp time series off Groix: scatterplot of the sequential 
pairs (grey dots) and event-describing pairs (red dots) 

Source of data: 1996-2015 sea state hindcast by GlobOcean for ARTELIA (2016) 

Figure 42 is the heat map (the highest values are transparent, and the lowest are in red) of the 
density of the parametric joint distribution of the event-describing pairs 1���; 	<2. From this 
bivariate density, it is easy to draw the isolines of density associated to the extreme ��� peaks 
similarly to Figure 40, but we now aim at obtaining the joint distribution of the sequential pairs 
displayed in Figure 41. 
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Figure 42. Joint density Hm0/Tp for event-describing pairs 

Source of data: 1996-2015 sea state hindcast by GlobOcean for ARTELIA (2016) 
Heat map: joint density values, from red (lowest) to transparent (highest) 

The proposed approach consists in connecting the parametric distribution from the joint distribution 
of events to the empirical density estimated on the sequential (e.g. hourly) observations. It is thus 
necessary to define a parametric domain and an empirical domain. We propose a simple definition: 
the parametric domain is defined by the joint exceedance of a threshold in ���, noted 9���, and a 
threshold in 	<, noted 9�� (upper right-hand corner of the ���/	< plane, similar to domain 2 in 
Figure 26). Within this domain, the joint density of the event-describing pairs needs to be 
transformed into the joint density of the sequential pairs belonging to this domain. This is done by 
multiplying the joint density of events by a factor equal to the ratio of the number of sequential pairs 
belonging to this domain over the total number of observations. In other words, if 5% of the pairs 
are located within the limits of the parametric domain, then the integration of the joint density within 
this domain is 0.05, while the integration within the empirical domain is 0.95. 

It is thus necessary to set 9��� and 9�� in order to define this parametric domain. At first it seems 
natural to use the physical or statistical thresholds used for event identification or statistical 
extrapolation of ��� and 	<, but numerous sensitivity tests have led us to set the following 
thresholds: 

� 9���: a value above which 10 storms/year on average are observed; 

� 9��: the minimum period associated with storms that occur 5 times/year on average. 

The density of the sequential pairs within the parametric domain is illustrated in Figure 43. 
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Figure 43. Parametric domain of the joint distribution for sequential pairs of Hm0 and Tp 

Source of data: 1996-2015 sea state hindcast by GlobOcean for ARTELIA (2016)  
Heat map: joint density values, from red (lowest) to transparent (highest) 

The total joint distribution of hourly values of ��� and 	< is thus the combination of the empirical 
bivariate density for ��� < 9��� or 	< < 9�� and the parametric joint density of the events for ��� � 9��� and 	< � 9��. Figure 44 shows: 

� the sequential pairs S���, 	<U in grey; 

� the colour map of the bivariate density of S���, 	<U: 
� the parametric domain in the upper right-hand corner (i.e. the density displayed in Figure 

43), 

� the empirical domain in the other three corners with the empirical bivariate density 
estimated by the kernel density estimator. 
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Figure 44. Joint distribution for sequential pairs of Hm0 and Tp 

Source of data: 1996-2015 sea state hindcast by GlobOcean for ARTELIA (2016)  
Heat map: joint density values, from red (lowest) to transparent (highest) 

The isolines of bivariate density associated with the maximum of density along the lines of the 
extreme quantiles of the reference variable �� can then be plotted, as previously described (Figure 
45). 

Figure 45. Contours of sequential Hm0/Tp density associated with extreme Hm0 peaks 

Source of data: 1996-2015 sea state hindcast by GlobOcean for ARTELIA (2016) 
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However, it can be seen that the connections between the parametric and empirical domains are 
far from smooth. This is due partly to the clustering of the smoothed peak periods around the 
discrete values from the numerical modelling, partly to the mixture of populations that can easily be 
observed with the presence of both steep wind waves and long swells and lastly to the fact that the 
connecting approach is not quite accurate and requires improvements. Figure 46 shows, however, 
that the connection looks much better when the sample can be considered identically distributed, 
thanks for instance to a separation in fetch-based directional sectors. 

Figure 46. Contours of sequential Hm0/Tp density associated with extreme Hm0 peaks 
for a homogeneous directional sector 

Source of data: 1996-2015 sea state hindcast by GlobOcean for ARTELIA (2016) 

In the case of contours for Type-C analyses, we are faced once again with the issue of event 
definition and, hence, with the choice of an event-defining variable. This choice drives the 
sampling; thereafter, the methodology is similar to that described above. Two plots may hence be 
issued, as illustrated in Figure 47 for ��� / wind speed �� bivariate analyses. 
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Figure 47. Contours of sequential Hm0/Ws density associated with extreme Hm0 peaks 
(top) and extreme wind speed peaks (bottom) 

Source of data: 1996-2015 sea state hindcast and CFSR wind fields calibrated against satellite 
measurements by GlobOcean for ARTELIA (2016) 

In the top plot, sampling was performed on the ��� variable only, using the univariate declustering 
method presented in section 2.2. The concomitant wind speed is associated with the peak ��� to 
constitute the event-describing pair. The marginal distributions, copula and joint distribution are 
then determined from this sample as presented above, and the contours of bivariate density are 
then drawn from the extreme quantiles of ���. 
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The method is exactly the same for the bottom plot, but the roles of ��� and �� have been 
exchanged. �� is now the event-defining variable and the sampling is based on a declustering on 
wind speed peaks, with the associated ���. As a consequence, there is a difference not only in the 
reference variables between the two plots (from the marginal distribution of which we calculate the 
extreme quantiles and then find the maximum density and draw the contours), but also in the 
event-defining variables: this means that the joint distribution is not identical. In the former case, we 
are interested in wind speeds associated with wave events; in the latter we are interested in wave 
heights associated with wind events. 

This is our final illustration of the importance of event definition, identification and description in 
extreme meteo-oceanic analyses (and in extreme environmental analyses more generally), and of 
the crucial fact that this choice to be made by the analyst depending on the aim of the study, takes 
place in the sampling (declustering) stage. 

oOo 
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4. CONCLUSIONS AND PERSPECTIVES 

4.1. MAIN RESULTS 

The main results of the works carried out in the last decade are as follows: 

� updating of the methodology for determining extreme wave heights or wind speeds: 

� development and justification of a two-step framework for extreme univariate over-
threshold modelling introducing the concept of event and the separation of the physical 
and statistical thresholds, 

� proposal of practical tools for choosing the statistical threshold, 

� introduction of the parametric bootstrap approach for computing confidence intervals, 

� identification of a problematic issue in the behaviour of the Maximum Likelihood Estimator 
and proposal of a solution: use of 3-parameter distributions along with the L-moments 
estimator, 

� application of the POT framework to the Joint Probability Method for determining extreme 
sea levels: 

� distinction between sequential values and event peaks through extremal indexes for 
surge and sea level, 

� construction of a mixture model for the surge distribution, 

� refinements for handling tide-surge dependence, 

� application of the POT-JPM framework for the joint analysis of wave height and sea level: 

� proposal of an alternative sampling procedure, 

� separate analysis of tide and surge in order to model the dependence between wave 
height and surge to be incorporated in the joint distribution of wave height and sea level 
thanks to a 2D1D convolution operation, 

� use of extreme-value copulas, 

� improved presentation of the chi-plot, 

� introduction of a new classification for multivariate analyses: 

� Type A: a single phenomenon described by different physical quantities that are possibly 
not of the same kind, 

� Type B: a phenomenon made of different components, described by physical quantities 
of the same kind between one component and another, 

� Type C: several phenomena described by physical quantities that are possibly not of the 
same kind, 

� interpretation of the meaning of multivariate events: 

� link with the sampling procedure, 

� link with the different definitions of the return period, 

� in the bivariate case: transformation of the joint distribution of event-describing variables 
into the joint distribution of sequential pairs, 

� generation of alternative output plots such as contours of density for sequential pairs; 

� a dedicated R package, artextreme, for implementing the methodologies presented above. 
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4.2. DISCUSSION 

Even though it took years to appear clearly, the concept of “event” became central to our 
developments of probabilistic methodologies for determining extreme meteo-oceanic conditions. 
The main result of this centrality was a very practical and convenient approach in the univariate 
case. But when considering multivariate events, it was not merely useful; it required clear choices 
to be made in order to pursue the analysis, which made it essential. 

Far beyond the important but in fine quite technical matters pertaining to choosing the distributions, 
determining the statistical threshold, the estimator, the computation of confidence intervals, the 
copula, etc. - all topics that can be discussed, improved and substituted - we believe that the 
originality of the work presented here consists of the intimate link between sampling, event 
definition and description, and the definition adopted for the return period, probability of 
exceedance or probability of encounter. 

These steps cannot be automated in a universal method but must be tailored completely to the final 
objectives of the study in hand, which is precisely what is expected of an engineer. This is why the 
event definition was stated to be a matter of point of view. 

Among many possible images, the following framework may be helpful to comprehend this: the 
Source-Pathway-Receptor (SPR) concept. It was forged originally to describe the flow of 
environmental pollutants from a source through different pathways to potential receptors 
(Holdgate, 1979) and later applied to coastal flooding by the UK Environment Agency (HR 
Wallingford, 2002) to describe the propagation of a flood from a source through flood defenses 
(pathways) to the floodplain beyond (receptors). We propose here to use this framework to 
visualize the different possibilities for defining the event. In our latest example, the sources may be 
the atmosphere (wind and pressure fields) and the astronomical forcing, the pathway would be the 
ocean (where the energy from the atmosphere and celestial bodies propagates through short and 
long waves) and the receptor would be the breakwater where overtopping occurs. Here, it is more 
intuitive that the return period associated with a pathway event (joint probabilities of waves and sea 
level) will differ from the one associated with a receptor event (overtopping) or source event (storm 
or exceptional syzygy12). Of course we may shift the terms of the SPR and consider the ocean as 
the source, the overtopping as the pathway and the buildings behind the levees as the receptors, 
but this does not change the idea. 

Whatever the way to visualize this, it should always be made clear in engineering whether the 
design criteria are to be based upon the source variables or the response function. This will drive 
the choices of event, sampling and, possibly, methodology. 

Lastly, the qualification of multivariate may be discussed. Indeed, the dimensions of the joint 
distributions and copulas have not exceeded two and it may be argued that only bivariate analyses 
have been presented up to now. This is true; however, we have seen how to select multiple 
covariates in addition to the two main source variables. They could be dealt with using �-
dimensional copulas, of course, but also as covariates upon which the distribution parameters will 
depend. The latter approach has been widely explored by authors such as Jonathan et al. (2013). 
As regards the former, we do not have any knowledge of the use of genuine �-dimensional copulas 
in the field of meteo-oceanic extremes. Research is active on that topic, however, and a very good 
reference is Li et al. (2014). 

                                                      

12 In astronomy, a syzygy (from the Ancient Greek σύζυγος "yoked together") is a straight-line configuration of 
three celestial bodies in a gravitational system. 
Syzygy causes the bimonthly phenomena of spring and neap tides. At the new and full moon, the Sun and 
Moon are in syzygy. Their tidal forces act to reinforce each other, and the ocean both rises higher and falls 
lower than the average. 
When a syzygy occurs when the Moon is close to its perigee and / or when it is crossing the ecliptic plane, the 
combination of the gravitational effects is further enhanced. 
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4.3. PERSPECTIVES 

In the illustration above, it may be noted that the receptor (the breakwater) is local while the source 
event (storm) does not only extend in time but also in space. This is why the idea of going further 
into the spatial definition of event is quite appealing. A fair amount of work has already been done 
at the LHSV with the thesis of Jérôme Weiss (Weiss et al., 2014, Weiss, 2014, chapter 3), notably 
regarding the spatio-temporal declustering of meteo-oceanic storms that allows for a broader view 
of the regional frequency analyses (Hosking and Wallis, 1997, Bardet et al., 2011, Bernardara et 
al., 2011) A logical and conceptual link with the concepts exposed here would certainly be most 
welcome. 

Spatial extension naturally calls for temporal extension in addition. The interest of historical data 
has already been highlighted (see section 1.1.3). At the LHSV, a new thesis is ongoing with the 
efforts of Roberto Frau regarding the use of historical data in regional analyses (Frau et al., 2017). 
There again, the definition of event in the context of incomplete historical data (such as the number 
of events within a range of years, and the intensity of an event only known as a range or a minimal 
value) would probably require some clarifications. 

Estimating the uncertainties is also a key part of extreme value analyses and they must be 
accounted for in engineering studies, particularly for design purposes. Introducing the parametric 
bootstrap method for estimating the confidence intervals was a first step forward, as it avoids 
obtaining symmetrical confidence intervals that are physically meaningless. However, the very 
framework of frequentist inference with the associated confidence intervals can be questioned and 
replaced with a Bayesian approach (see the discussion in section 1.3.2), which naturally integrates 
uncertainties in the inference process. The Bayesian framework is widely used in hydrology 
(Gaume et al., 2010) and is beginning to appear in maritime studies (Egozcue et al., 2005, 
Galiatsatou et al., 2008, Bulteau et al., 2015). In any case, it is always necessary to keep in mind 
the multiple sources of uncertainties: 

� uncertainties relating to the data (accuracy of measurements or model outputs); 

� uncertainties relating to the sampling (duration of the time series / sample size); 

� uncertainties relating to sample representativeness (non-stationarity in particular); 

� uncertainties relating to the choice of model. 

In particular, the uncertainties relating to the choice of model were highlighted by an experiment 
carried out by the OSSË group at the initiative of Dr Kergadallan at a conference of the Société 
Hydrotechnique de France (SHF) in Lyons in 2013. 

It was stated in section 0 that the mixture model for the joint distribution, particularly the connection 
between the parametric and empirical domains, was not very accurate. In particular, the 
dependence structure could be extended to the sequential pairs. This is definitely an interesting 
mathematical problem going forward. 

Lastly, it has been said that even though the reasoning makes more than two variables intervene, 
the copulas and joint distributions used up to now do not go beyond the second dimension and are, 
strictly speaking, bivariate distributions. 

The concepts and classifications presented here lay the groundwork for determining fully 
multivariate analyses that would include, in a single joint distribution, the different physical 
quantities describing two distinct phenomena: here again, a fine challenge for mathematicians who 
are aware of the beautiful complexities of the physics of extreme meteo-oceanographic events.  

oOo 
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GLOSSARY 

Symbol Unit Description 

� - Probabilistic event (subset of Ω) 

� m.s-1 Wave celerity 

z - Copula function 

c - Mean number of sequential values per year 

5 yr Lifetime duration 

� - Univariate probability distribution function 

� - Univariate cumulative distribution function  

� m.s-2 Gravity acceleration 

ℎ m Water depth 

� - Multivariate cumulative distribution function 

�� m Significant wave height 

��� m Spectral significant wave height 

I - Shape parameter 

g yr Duration of a time series 

f - Size of the sample of peek exceedances over 9� 
f< - Size of the sample of event-describing variables 

 & - Probability of exceedance of the random variable X:  & = 1 − �& 

v - Pearson’s correlation coefficient 

X m Surge height (non-tidal residual) 

[ s Time 

	 m CD Astronomical tide level 

	< s Peak period of sea sate spectral or wave system density 

9, � - Uniformly distributed marginal of the copula: 9 = �&1/2, � = �B1F2 
9< - Physical threshold for event identification 

9� - Statistical threshold 

%, >, Y - Event-describing variables 

> = % − 9� - Exceedance over the statistical threshold 

Y m CD Sea level 
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Q - Vector of parameters of the statistical distribution 

Q< °N Peak direction of sea state or wave system spectral density 

' yr-1 Poisson rate parameter: mean number of threshold exceedances per year 

'< yr-1 Mean number of events per year 

'y - Upper tail dependence coefficient 

( - Location parameter 

( yr Inter-arrival time (reciprocal of Poisson parameter) 

w - Spearman’s correlation coefficient 

J - Scale parameter 

x - Kendall’s correlation coefficient 

h yr-1 Number of sequential values per year 

Ω - Probabilistic universe: set of possible outcomes 

# yr Return period 

ℙ - Probability 
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1. Introduction

Statistical methods to determine extreme wave heights using the

Peaks-Over-Threshold approach (POT) have been significantly im-

proved for several years. The IAHR Working Group on Extreme Wave

Analysis issued recommendations about the most appropriate way to

proceed when determining extreme wave heights (Mathiesen et al.,

1994). They recommended the use of the POT method along with a

Weibull distribution estimated by maximum likelihood. A little later,

several authors introduced the GPD-Poisson model (e.g. Coles, 2001),

which is themost naturalway toproceedwhenusing the POTapproach.

While respecting the general guidelines of the IAHR Maritime

Hydraulics-Working Group on Extreme Wave Analysis (Mathiesen et

al., 1994), this model notably improves several key steps of the analysis,

particularly by fitting a Generalized Pareto Distribution (GPD) to storm

peaks while assuming that the number of storms in one year follows a

Poisson distribution. It is now recommended (Hawkes et al., 2008) and

widely used (e.g. Méndez et al., 2006; Thompson et al., 2009), although

many authors still prefer other distributions, mainly the classical

extreme distributions: GEV, Weibull, and Gumbel.

However, it should be recalled that the GPD-Poisson model is an

asymptotic model. For this reason, other distributionsmight give better

results.

We therefore propose to extend this model to a multi-distribution

approach, using theWeibull and Gammadistributions in addition to the

GPD. Objective criteria for choosing themost appropriate threshold and

determining the best-fitting distribution are also presented.

This method is illustrated by case studies in the Northern Atlantic

and in the Strait of Gibraltar.

2. POT method revisited

2.1. Brief justification of the GPD-Poisson model

Let us consider a sample of wave height data (X1,…, Xn). These

data follow an unknown continuous distribution, say F. Let u be a

threshold and y=x|xNu−u the exceedance by x of the threshold u. So

Y=(Y1,…, YN) is the sample of the N threshold exceedances. The law

of threshold exceedance is given by:

P Yby½ � = P Xbu + y jX N u½ � =
F u + yð Þ−F uð Þ

1−F uð Þ
ð1Þ

According to Pickands, 1975 (see also Embrechts et al., 1997),

when u is large, this law is very nearly in the form of the Generalized

Pareto Distribution defined as:

GY;k;σ yð Þ = 1− 1 + k
y

σ

� �

−

1

k if k≠0

GY;σ yð Þ = 1−exp −
y

σ

� �

if k = 0

8

>

>

<

>

>

:

ð2Þ

where k is the shape parameter and σ is a scale parameter.When kN0,

the distribution has a heavy and unbounded tail and belongs to the
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Fréchet domain of attraction (a heavy tail is not exponentially

bounded, and extreme values are more likely to occur than in

distributions with exponential or lighter tails). When kb0, the

distribution is bounded by xmax=u+σ/k and belongs to the Weibull

domain of attraction. Finally, when this parameter is zero, the GPD is

the exponential distribution with scale parameter σ.

Still, it must be kept in mind that the GPD is an asymptotic law.

This means we must be in its range of validity, i.e. u must be high

enough. However, the higher the threshold, the greater the uncer-

tainties because of the very small number of data left. It is the well

known dilemma between bias and variance.

If we consider that the number of events (i.e. storms) in one year

follows a Poisson distribution with parameter λ, we obtain the so-

called GPD-Poisson model: the law of the exceedances is a

Generalized Pareto Distribution and the storm occurrence is a Poisson

process.

A Poisson distribution should thus be fitted to the data. However,

the most common estimator for its unique parameter (e.g. the

maximum likelihood estimator) is the empirical mean. We are thus

able to link the number of storm occurrences with the return period T.

2.2. The multi-distribution POT model

2.2.1. Data homogenization

The first step in the analysis is to extract homogenous time series

from the main continuous sea states time series (buoy measurement,

hindcast data, etc.). If this step is omitted, storms from very different

meteorological phenomena will be treated together, although it is

most likely they are not identically distributed. Such homogenization

can be carried out by separation in carefully chosen directional

sectors, seasonal analysis (e.g. summer/winter monsoon) and

separation of sea states into independent wave systems. Rare but

very strong events such as hurricanes should also be checked if

necessary. Actually, homogenization may be the most important step

in the analysis (this point was stressed by Mathiesen et al., 1994),

although it is often the least considered: the best statistical analysis

cannot extract the “truth” out of wrongly prepared data (“Garbage In,

Garbage Out”).

2.2.2. Peak selection and double threshold

Once we have time series of homogenous sea states, we have to

extract storm peaks. If we keep in mind that a rigorous statistical

analysis requires independent and identically distributed (i.i.d.) data,

we will pay special attention to obtaining independent storm peaks.

Firstly, we should be careful concerning possible fluctuations in

storms around the threshold. If the wave height falls below the

threshold for a short period, say 3 h in a 24-hour storm, we should not

cut the storm in two. Secondly, we should set a minimum period

between two storms to ensure their peaks are independent. Finally,

once the storm peaks are identified, outliers (i.e. values significantly

larger than the other ones) must be checked carefully in order to be

sure they really belong to the population and are not the result of

some measurement error. If so, they could have a return period T

much larger than the duration of the time series K. Thus they provide

valuable information andwe recommend keeping them in the sample.

The interest of a threshold is to consider that storm peaks above it

have a statistically extreme behavior, i.e. they follow the same

extreme distribution. However, we do not know the threshold value a

priori. A simple way to proceed is therefore to use a double threshold

(u1,u2 ). A low value u1 is set to select both weak and strong storms.

There is no need for precise criteria in the choice of u1 because the

procedure relies more heavily on u2 (see below). Its aim is only to

extract the storm peaks from the time series, reducing the sample size

from 10,000 to 100,000 values to a few hundreds of peaks. u1 shall be

high enough to discriminate two consecutive storms and low enough

to be below the “extreme area”, i.e. the strong storms showing

genuine statistically extreme behavior.

We obtain NT peaks over a period of K years. Hence, the mean

number of storms per year above u1 is:

λT =
NT

K
ð3Þ

Our experience in extra-tropical areas led us to set u1 so as to have

λT approximately between 5 and 10, although it is not an absolute

constraint.

We have now to determine the high threshold u2 above which

storms have a statistically extreme behavior. As the GPD is the

asymptotic law, it seems quite reasonable to use its properties to

determine u2. In particular, if a sample follows a GPD, the shape

parameter k and the modified scale parameter σ⁎=σ−ku2 remain

constant when u2 increases. So if we fit a GPD to the exceedances of a

threshold varying between u1 and, for instance, a threshold

corresponding to one storm per year, we can draw graphs of shape

and modified scale parameters with respect to u2 and search for

“domains of stability”where they will remain roughly constant. As we

want to be in the asymptotic domain, we are interested in the highest

domain of stability. And as we want to have as much information as

possible, we will choose the lowest threshold of this highest domain.

Thus we select N storm peaks over K years, namely λ=N/K storms

per year (as we have seen, this empirical mean is also the estimator of

the Poisson parameter). After many tests, we believe it is appropriate

for λ to stand approximately between 2 and 5. If K is low, a value

around 5 is more advisable in order to ensure that N is large enough

(with a minimum of 20–30). In contrast, if K is quite large (around

40–50), a value of around 2 is more appropriate.

2.2.3. Fit to multiple distributions

Stormpeaks aboveu2 are now to be fitted to a statistical distribution.

As we have seen, the GPD is the asymptotic law, and thus a natural

candidate. However, we do not know whether we are within the

asymptotic domain. Thus, other distributions might fit the data better.

We can try many of them and then determine the best-fitting one.

When looking for suitable distributions, it is useful to know their

domain of attraction for maxima (Castillo and Sarabia, 1992). If they

belong to the Fréchet domain (e.g. Pareto or beta laws), their tails are

heavy and unbounded, which means they give too much weight to

extreme events. Practice shows they are not appropriate for coastal

engineering applications where the wave heights are physically

bounded. If they belong to the Gumbel domain, their tails decrease

exponentially. If they belong to the Weibull domain (e.g. GPD with

negative shape parameter), their tails are bounded. We can thus limit

our study to distributions belonging to Weibull or Gumbel domains of

attraction for maxima.

Our tests have shown that along with the GPD, the Gamma

distribution and 2-parameter Weibull distribution for minima often

behave quite well. Although other distributions may be studied, we

will work here with these two laws, whose cumulative distribution

functions are respectively:

Gamma : FY;k;σ yð Þ = P Y≤yf g =
γ k; yσ
� �

Γ kð Þ
ð4Þ

Weibull : FY;k;σ yð Þ = P Y≤yf g = 1−exp −
y

σ

� �k
� �

ð5Þ

As for the GPD, we work with y, that is the threshold exceedance

x−u2, provided xNu2. k and σ are respectively the shape and the

scale parameters. Γ is the Gamma function, and γ is the lower

incomplete gamma function.
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The choice of the estimator is also quite important. Mathiesen et al.

(1994) mention three estimators: least squares methods, the method

of moments and the Maximum Likelihood Estimator (MLE). The

statistical theory says that an estimator must be robust, i.e. it is not

disturbed by an outlier and it must be consistent, i.e. the bias and the

variance tend to zero when the sample size increases. Least squares

methods, though easy to implement, are neither robust nor

consistent. In particular, they are found to be sensitive to outliers

(Mathiesen et al., 1994). They are therefore rejected. It is nevertheless

noteworthy that Goda (2000) recommends this method with

modified plotting position formulae. The method of moments may

be used as first approximations but the small sample sizes hinder it. In

particular, the method of moments gives too much bias for the typical

sample sizes we are handling (Goda, 2000). To handle this difficulty,

Hosking and Wallis (1987) have proposed an estimator based upon

the Probability Weighted Moments. But it is known to be less efficient

than the MLE. Finally, the most handy and appropriate method is to

use the Maximum Likelihood Estimator (MLE). This estimator

maximizes the likelihood function of the fit, which is defined by:

L X1;…; XN jθð Þ = Π
N
i = 1fθ Xi; θð Þ ð6Þ

where fθ is the joint density function (with parameter vector θ) at the

sample observations Xi. The log-likelihood function is usually used,

since it is much easier to derive:

l X1;…; XN jθð Þ = Σ
N
i = 1ln fθ Xi; θð Þð Þ ð7Þ

Thus we have an optimization problem, as the likelihood function

has as many variables as the distribution has parameters. In some

cases, optimization algorithms may fail to maximize the likelihood.

However, the use of the MLE for two-parameter distributions such

as the Weibull and Gamma distributions has a very disturbing

drawback. These distributions are very sensitive to the distance

between u2 and the first peak. In other words, the estimated

parameters will be quite different if the smallest value of the ordered

sample of the threshold exceedances Y1 is 0.1, 0.01 or 0.001. When we

look at the 100-year wave height, the result varies between 14 and

16 m! The GPD is much less sensitive to this phenomenon. We think

the explanation could be related to the shape of the density functions

just above 0. A comparison with the method of moments estimator

was carried out. From these tests, it appeared that the two-parameter

distributions could be used withMLE, but only when u2meets a storm

peak. As this peak is excluded, the first value of the exceedance sample

is as far from u2 as possible.

A solutionwould be to use the three-parameterWeibull andGamma

distributions (the latter being known as Pearson-III distribution) by

adding a location parameter μ (μbY1, thefirst and smallest exceedance):

Pearson� III ð3� parameter GammaÞ: FY;k;σ yð Þ = P Y≤yf g =
γ k; y−μ

σ

� �

Γ kð Þ

ð8Þ

Weibull : FY;k;σ;μ yð Þ = P Y≤yf g = 1−exp −
y−μ

σ

� �k
� �

ð9Þ

However, ML estimation of such distributions is very difficult, and

the algorithms usually fit two-parameter distributions inside a

discrete range of location parameters (Panchang and Gupta, 1989).

Actually, it appears that quite often the maximum likelihood with

respect to this location parameter μ is obtained for μ→Y1 (with μbY1).

Now, the Maximum Likelihood Estimator is known to provide poor

results when the maximum is at the limit of the interval of validity of

one of the parameters. In our applications, this is a major drawback of

this estimator. We are currently carrying out further investigation on

this subject and shall soon submit our results.

2.2.4. Best fit selection

Once several distributions are fitted to the data, we have to

determine the best fit. For this purpose, we use objective Bayesian

criteria. The first one is the Bayesian Information Criterion (BIC), also

known as the Schwarz Criterion (Schwarz, 1978). It minimizes the

bias between the fitted model and the unknown “true” model.

Assuming asymptotic conditions (N large enough), BIC is given by:

BIC = −2InL + kpInN ð10Þ

where L is the likelihood of the fit, N is the sample size (number of

storm peaks above u2) and kp is the number of parameters of the

distribution.

We can also use the closely related Akaike Information Criterion

(AIC), which gives themodel providing the best compromise between

bias and variance (Akaike, 1973). It can be interpreted as the sum of

two terms, the first one measuring bias and the second onemeasuring

variance. Under the same assumptions as BIC, AIC is given by:

AIC = −2InL + 2kp ð11Þ

For BIC as for AIC, the lower the criterion, the better the fit, so we

will select the distribution providing the lowest criteria. Most of the

time, both criteria give the same result. If they do not, we recommend

keeping the distribution giving the most conservative return values.

2.2.5. Return values and confidence intervals

We now have only one distribution left, with MLE estimated

parameters. We are interested in wave heights of return period T. It is

actually a quantile of the estimated distribution, whose non-

exceedance probability is 1−1/λT. These quantiles for GPD, Gamma

and Weibull distributions are given by:

GPD : HsT = u2 +
σ̂

k̂
λTð Þ

k̂
−1

� �

ð12Þ

Gamma : HsT = u2 + Γ
−1
kˆ ;σ̂ 1−

1

λT

� 	

ð13Þ

Weibull : HsT = u2 + σ̂ ln λTð Þ½ �
1

k̂ ð14Þ

Finally, confidence intervals are to be computed. Many authors

(Coles, 2001) use the classical asymptotic method. Mathiesen et al.

(1994) advocate the use of Monte-Carlo simulation techniques. A

robust way is to use parametric bootstrap methods (Thompson et al.,

2009). The principle is quite simple (see for instance Efron and

Tibshirani, 1993a,b). From the estimated distribution with estimated

parameter vector θ̂0, a random sample of size N is generated and the

same distribution is then fitted to this sample, leading to a slightly

different estimated parameter vector θ̂1, which will give a slightly

different quantile HsT, 1. After 100,000 iterations, a sample of 100,000

HsT, i is obtained. The 90% confidence interval will be given by the

percentiles [HsT, 5% ;HsT, 95%]. It is advisable to correct the bias of the

bootstrap. Bias is given by the difference between the empirical mean

ofHsT, i andHsT, 0, and it simply has to be removed from the percentiles

previously obtained.

3. Case studies

3.1. Datasets

We shall study two different locations. The first one is the historical

Haltenbanken dataset, provided by the IAHR Working Group on

Extreme Wave Analysis (van Vledder et al., 1994). The Haltenbanken
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buoy is located off the coast of Norway. Its coordinates are 65°5′N; 7°34′

E (Fig. 1a). The original dataset consists of 128 buoy-measured storm

peaks above 7 m for a period of 9 years, so no pre-treatment on this

samplewas done and the peakswere considered to be independent and

identically distributed. The shortness of the periodmust be stressed and

will be discussed later.

Fig. 1. a) Location of the Haltenbanken dataset. b) Location of the Gibraltar dataset.
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Fig. 2. Haltenbanken dataset: stability of shape and modified scale parameters for Generalized Pareto Distribution.
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The second dataset comes from the SIMAR-44 hindcast database

provided by Puertos del Estado. We chose point 1056044, whose

coordinates are 36°N; 6°W (Fig. 1b). It is located at the western entry

of the Strait of Gibraltar. Wave and wind data are provided every 3 h

from 1958 to 2001 for a total of 44 years. In contrast to Haltenbanken,

the storm peaks have to be extracted here. As has been said above, the

first and most important step is to homogenize the sample. A simple

method, directional analysis, will be used. We will only consider the

western sector, facing the Atlantic. From the model point, we can

draw lines to Cape St-Vincent, Portugal north-westwards and towards

the Moroccan coast near El-Jadida. Thus we obtain the following

sector: [220°; 295°]. It is not a very wide sector, but unsurprisingly it is

the dominant one, as 86% of the hindcasted waves come from this

sector. We consider that all these waves are homogenous and, in

particular, that all these western storms are generated by the same

kind of Atlantic depressions and thus are identically distributed.

If we set a low threshold u1 equal to 3 m, we select NT=288 storm

peaks. As K=44 years, we then have a mean number of total storms

per year λT=6.55, which seems quite reasonable.

3.2. Selection of high thresholds

We will now try to determine the best high threshold. For this

purpose, as has been explained in Section 2.2.2, we will adjust a GPD

to the data over a wide range of thresholds and look at the stability of

the shape parameter k and of themodified scale parameter σ* (Fig. 2).

As has been previously discussed, the thresholds tested are those

meeting the dataset values. We use tools available in the “ismev”

package (Coles and Stephenson, 2006) developed for the R language

(R Development Core Team, 2009). We modified these tools in order

to take into account the remarks made previously. On the secondary

axis, we draw the change in λ, so as to see easily the thresholds

corresponding to a value of λ between 2 (u2=9.94) and 5 (u2=8.63).

These limit thresholds are written in italics.

We can see two domains of stability where the parameters remain

approximately constant. The lowest threshold of the highest domain,

just below the value of 8.63, is 8.57 m. For this threshold, λ is 5.11,

which is slightly higher than 5, but as K is very low (9 years), we can

allow this small exceedance in order to have N large enough (46).

For Gibraltar, the choice is more difficult (see Fig. 3). The curves are

rather flat when u2 is higher than 3.5. (corresponding to λ=5) This

value could therefore be adopted. However, it is important to bear in

mind that here K is large (44 years). A value closer to λ=2

(corresponding to u2=4.5 m) may therefore be more appropriate.

Since there is small bump for 4.5 m, we will choose u2=4.3 m. It is

clear that choosing the right threshold is not always a straightforward

matter. Thompson et al. (2009) presented methods for automated

threshold selection, but these should be used rather when working

with too many datasets for visual examination.

Table 1 recapitulates the characteristics of the samples.

3.3. Fit

For both datasets, the three distributions (GPD, Weibull, Gamma)

are now fitted to the exceedances of the high threshold with the

Maximum Likelihood Estimator. Table 2 provides BIC and AIC criteria

for the two locations and the three distributions.

We can see that both criteria give the same result. For

Haltenbanken, GPD is clearly selected, with Weibull then Gamma

quite far off. In contrast, for Gibraltar, GPD gives poor results with

respect to these criteria. The Gamma distribution is selected since it

minimizes both BIC and AIC criteria.

Actually, as we use distributions with the same number of

parameters (two), we could consider only the (log-)likelihood of

the fit: this would give the same results as BIC and AIC. However, it is

convenient to have a means of discriminating between fits for

distributions with one, two or three parameters together.
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Fig. 3. Gibraltar dataset: stability of shape (above) and modified scale (below) parameters for Generalized Pareto Distribution.

Table 1

Characteristics of the samples.

Haltenbanken Gibraltar

K (years) 9 44

u1 (m) 7 3

NT (−) 128 288

λT (yr
−1) 14.22 6.55

u2 (m) 8.57 4.3

N (−) 46 104

λ (yr−1) 5.11 2.37

Table 2

BIC and AIC criteria for the fits of the three distributions for both datasets.

GPD Weibull Gamma

Haltenbanken BIC 120.0 122.0 122.4

AIC 116.3 118.3 118.8

Gibraltar BIC 216.6 212.4 211.4

AIC 211.3 207.1 206.1
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3.4. Return values and confidence intervals

The last step of the analysis is now to compute the return values for

the return periods of interest using the quantile functions defined

above for the best-fitting distribution. 90% confidence intervals are

also computed using a parametric bootstrap approach with 100,000

iterations (bootstrap bias is corrected). Table 3 gives the results for 1,

2, 5, 10, 20, 50 and 100 years.

It can be seen that the Haltenbanken results are much lower than

those given in van Vledder et al. (1994), where Hs100 varies between

14.2 and 15.8 m. The methods used in this paper were quite different,

and nobody used a GPD at that time. The closest analysis was carried

out by member D, who applied a 3-parameter Weibull distribution to

the 46 storm peaks above 8.6 m. This member obtained a Hs100 of

14.7 m (12.6–16.9 90% CI). In our analysis, the 2-parameter Weibull

distribution also gives 14.7 m for Hs100 (13.1–16.6 90% CI) but is

rejected by the BIC/AIC criteria. It is also noteworthy that bootstrap

confidence intervals for this GPD fit are much narrower than in the

case of the Working Group analysis (1.5 m versus 2.5 to 5 m).

Nonetheless, an explanation of such differences will be given later.

As for Gibraltar, the confidence intervals remain quite narrow; the

fit seems reasonable.

4. Sensitivity analysis with respect to the high threshold

4.1. Purpose of the analysis

We have proposed an objective method for determining the high

threshold. Nevertheless, the case of Gibraltar shows that a part of

subjectivity may remain when choosing it. It follows that studying the

Table 3

Return values for the best-fitting distribution with 90% confidence intervals.

Return period (years) Haltenbanken (GPD) Gibraltar (Gamma)

100 12.7

12.0–13.5

8.8

8.0–9.6

50 12.6

11.9–13.3

8.3

7.6–8.9

20 12.4

11.8–13.0

7.6

7.1–8.1

10 12.2

11.7–12.7

7.1

6.7–7.5

5 11.9

11.5–12.3

6.5

6.2–6.9

2 11.4

11.0–11.8

5.8

5.6–6.0

1 10.8

10.4–11.2

5.3

5.1–5.4
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change in return values and goodness of fit (i.e. in BIC/AIC criteria) can

provide interesting information for validating the results or, con-

versely, reconsidering the choice of threshold.

Let us draw similar plots to those showing the stability of the GPD

parameters, but this time with Hs100 and BIC/AIC criteria for each

distribution. As for the criteria, it is actually necessary to normalize
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Fig. 6. Gibraltar: storm peaks above the low threshold u1 with respect to the calendar years. Choice of the 9-year period 1978–1986 (dashed line) and of the 17-year period 1974–1990

(dashed-dotted line).
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them in order to have clear graphs. Indeed, they will depend on the

sample size and so direct comparison between all the tested

thresholds is difficult. For each threshold, the criteria are computed

for the three distributions studied, and theminimum criterion is set at

100. The relative difference of the other criteria with respect to the

minimum are then added to 100.

5. Results

For the Haltenbanken dataset, we can see that from 8.57 m, that is

the high thresholdwe chose previously, the GPD quantile is extremely

stable, which is quite a remarkable result (Fig. 4a). The Weibull and

Gamma distributions are much more unstable and seem to tend

downwards towards the GPD value. The change in the normalized BIC

criterion (Fig. 4b) shows that the GPD is almost always the best-fitting

distribution in this case. Thus, the choice of u2 on the basis of the

stability of the GPD parameters appears to be particularly relevant

here. It is even probable that the asymptotic domain starts at 8.57 m,

thus giving further argument for choosing the GPD.

As in the case of the Gibraltar dataset, Fig. 5a shows that the three

distributions converge towards a common value of Hs100. Similarly to

Haltenbanken, the GPD quantiles are below those of the other

distributions. This pattern was observed in many tests: the GPD

value is clearly not conservative compared to other distributions. As a

matter of fact, the Weibull and Gamma distributions often behave

well when no saturation (i.e. no “flattening” of the highest peaks) is

observed in the data, whereas the GPD with a strongly negative shape

parameter generally fits well when saturation occurs. Here, the

(normalized) AIC criterion shows that the Gamma distribution is

always the best-fitting one (see Fig. 5b). Once again, the choice of

threshold appears to be relevant.

These stability plots for Hs100 and normalized criteria are a very

helpful way of checking the results obtained previously. If it seems

obvious that the return value is not at all representative, the choice of

threshold will have to be reconsidered.

6. Sample duration

6.1. Purpose of the analysis

We have studied two datasets, one very short compared to the

usual available duration (around 20 years) and the other quite long. It

is likely that the very short duration of the Haltenbanken dataset

(9 years) is the cause of the huge differences between the return

values given by the three statistical distributions.

The Gibraltar dataset provides an opportunity to test the

sensitivity of the return values with respect to the sample duration.

Fig. 6 shows thewesterly storm peaks above the low threshold u1with

respect to the calendar years.

6.2. Link with the North Atlantic Oscillation

We also know that the Atlantic storm tracks are related to the

North Atlantic Oscillation (NAO), i.e. the oscillation of the atmospheric

pressure gradient between the Iceland low and the Azores high

around a long-term mean (Hurrell, 1995). Bacon and Carter (1993)

were among the first to suggest such a link. Recently, Dodet et al.

(2010) used a 57-year hindcast (1953–2009) to quantify this link.

They found correlation coefficients between the winter NAO index on

the one hand, and the 90% Hs percentile, the mean wave direction

winter-means and the peak period winter-means on the other hand.

As for Hs, the Pearson correlation coefficients are close to 1 off the

British Isles, close to zero off Galicia and become negative off the

Moroccan coast. The coefficient is around−0.3 at the western entry of

the Strait of Gibraltar. Taking account of the winter NAO index for this

location thus provides valuable information.

If we look at the change in the (PC-based) winter NAO index from

1950 to 2005 (see Fig. 7), we see that from 1950 to approximately

1980 (except for 1973 to 1975), the index is mostly negative, which

means the Atlantic storm tracks go preferentially southwards. After

1980, the index is mostly positive and storms sweep preferentially

over northern Europe.

Fig. 7. PC-based winter NAO index from 1950 to 2005.

Table 4

Gibraltar: fit characteristics and 100-year significant wave height with 90% confidence

intervals for the 9-year, 17-year and 44-year periods centered on 1982.

9 years

(1978–1986)

17 years

(1974–1990)

44 years

(1958–2001)

u2 (m) 3.1 3.3 4.3

N (−) 44 79 104

λ (yr−1) 4.89 4.65 2.37

Min BIC/AIC distribution Gamma Gamma Gamma

Hs100 GPD (m) 90% CI 9.3

7.3–12.0

9.1

7.4–11.2

8.3

7.6–9.2

Hs100 Weibull (m) 90% CI 10.0

8.1–12.3

9.4

8.1–11.0

8.5

7.8–9.3

Hs100 Gamma (m) 90% CI 10.5

8.6–12.6

9.6

8.4–11.0

8.8

8.0–9.6
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Méndez et al. (2006) use a non-stationary POT model to take into

account the NAO index by allowing the GPD parameters to be time-

dependent. However, it is not easy to determine the period of such an

index, and the more parameters the distribution has, the more

uncertainties there are in the final result. We thus kept on working

with a stationary POT model.

7. Results

As the highest peak is reached in 1982 (not far from the switch

between the negative and positive indices), this will be taken as a

pivotal year. We will therefore study a 9-year period (1978–1986)

and a 17-year (1974–1990) period, both centered on 1982, and the

results will be compared with the 44-year dataset. The results are

given in Table 4.

The main conclusion that may be drawn is that the return values

are lower when the duration of the dataset increases. The extreme

peak of 1982 (most probably very close to the 100-year wave height)

clearly plays a role in this phenomenon, as its weight is greatly

enhanced in the 9-year dataset compared to the 44-year one. The

confidence intervals are therefore much wider in the short duration

dataset. Another important fact is that the Gamma distribution is

considered the best-fitting distribution by both the BIC and AIC

criteria for the three datasets.

It is also noteworthy that the deviation between the 100-year

wave heights for the three distributions is only 11% in the case of the

9-year sample and no more than 5–6% in that of the 17-year and the

44-year datasets.

The interest of a long dataset is clear, as the deviation between the

best 100-year wave heights is around 9% between the 17-year and 44-

year datasets. This interest is all the greater when the presence of an

outlier is evident, as is the case here. A long period also allows cyclical

regional climatic patterns with long (decadal or multidecadal)

periods, such as the NAO, to be taken into account. However,

engineers usually work with datasets whose duration is rather 15 to

20 years. Special attention should therefore be paid to such climatic

patterns, as the dataset could cover periods with storm peaks that are

lower or higher than a long-term mean.

If we choose now to study a 9-year and a 17-year period with

weaker storms, the results are quite different. Let us carry out the

analysis for the periods 1993–2001 (9 years) and 1985–2001

(17 years), when the NAO index is mostly positive and the storms

rather weak (see Fig. 8). Results are given in Table 5.

BIC and AIC criteria now select the GPD for these two periods,

though it gives far lower return values than the Weibull and Gamma

distributions, whose return values remain by chance quite constant.

Surprisingly, the GPD confidence intervals are narrower for the 9-year

period whereas they are wider for the other two distributions.

Actually, it seems that when there is an outlier in a short-duration

dataset, the GPD is much less sensitive to it than the Gamma and

Weibull distributions. But when such a short duration corresponds to

a calmer than usual period, the GPD returns wave heights that are too

low, although it fits the data very well. This may well be the case for

the Haltenbanken dataset, where no outlier appears. In spite of the

likelihood-based criteria discrimination, a conservative choice for

Haltenbanken would be to choose another distribution, say the

Weibull one, with Hs100 around 15 m, which would be in accordance

with observations (see for instance Magnusson et al., 2006).

It is clear that 9 years is definitely too short a period for a robust

extreme wave heights analysis. When storms are thought to be stronger

than usual in this period (or if the dataset contains an outlier), the GPD-

Poisson model gives good results and seems quite stable. In contrast, if

storms are thought to be rather weaker than usual, the GPD-Poisson

modelmay produce return values that are too low, in spite of a very good

statistical fit. In such a case, it is imperative to extend the duration of the

dataset. If it is not possible, choosing the most conservative distribution

could be safer than relying on the BIC/AIC criteria for design purposes.

Two conclusions may be drawn from this analysis when working

with very short datasets (less than 10 years). Firstly, the interest of

extending the GPD-Poisson model to other statistical distributions is

manifest as we may obtain return values that are too low with this

Fig. 8. Gibraltar: storm peaks above the low threshold u1 with respect to the calendar years. Choice of the 9-year period 1993–2001 (dashed line) and of the 17-year period 1985–

2001 (dashed-dotted line).

Table 5

Gibraltar: fit characteristics and 100-year significant wave height with 90% confidence

intervals for the calmer 9-year, 17-year and 44-year periods.

9 years

(1993–2001)

17 years

(1985–2001)

44 years

(1958–2001)

u2 (m) 3.9 4.2 4.3

N (−) 32 43 104

λ (yr−1) 3.55 2.53 2.37

Min BIC/AIC distribution GPD GPD Gamma

Hs100 GPD (m) 90% CI 6.6

6.3–6.8

7.0

6.6–7.3

8.3

7.6–9.2

Hs100 Weibull (m) 90% CI 7.9

6.9–9.2

7.9

7.1–8.9

8.5

7.8–9.3

Hs100 Gamma (m) 90% CI 8.7

7.4–10.1

8.4

7.4–9.5

8.8

8.0–9.6
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model. Secondly, in this case criteria based upon likelihood fail since

the data are not fully representative of the local climate: engineers

have to keep in mind that the ultimate goal is to provide safe design

criteria and not the “purest” statistical fit.

To conclude with regard to the duration of the dataset, it may be

said that a limit to the ratio between T and K, i.e. the return period and

this duration, is necessary but not enough (this ratio is generally close

to 5). This analysis has shown that K must be large enough with

respect to the local climate in order to avoid covering only particularly

weak or strong periods. We believe twenty years is a minimum period

for a reasonably robust extreme wave analysis.

8. Conclusions

We carried out a complete review of a rigorous method for

determining extreme wave heights using the GPD-Poisson model, in

particular for choosing the high threshold. Although objective

methods exist, it is clear that the choice may still be difficult.

Parameters such as N and λ should be kept in mind when choosing u2.

Even so, several thresholds sometimes need to be tested.

It was also seen that although the GPD has the best theoretical

justification for being selected as the asymptotic law, other distributions

may give better results. Criteria for selecting the best-fitting distribution

are presented. They are based upon the fit likelihood. However, analysts

must always be very careful about the location of the high threshold

with respect to the first exceedances, as instabilities can occur for both

Gamma and Weibull distributions. We recommend using only high

thresholds equal to the data values, but a better understanding of this

purely mathematical phenomenon is necessary.

Sensitivity analyses for the return value and/or the criteria with

respect to high thresholds are very helpful for post-checking the

relevance of the choice made for u2. However, these graphs should

only be used as a verification tool, and not for decision-making.

This method was tested for two locations. As for the Haltenbanken

dataset, the GPD-Poisson model had the best behavior and led to

significantly lower 100-year wave heights than those calculated by

the IAHR Working Group in 1993 (van Vledder et al., 1994), probably

due to too short dataset duration. As for the Gibraltar location, the

Gamma distribution was considered the best in relation to both the

BIC and AIC criteria. Graphs illustrating the sensitivity analyses

reinforced these estimations.

The interest of working on long duration datasets was also

demonstrated. This interest is enhancedwhen the presence of outliers

is suspected or when decadal or multidecadal climatic patterns may

play a role. The multi-distribution approach appears to be necessary

for very short datasets, although the means for discriminating the

best-fitting distribution requires improvement. Indeed, we have

shown that the GPD-Poisson model can lead to dangerously low

return values when the analysis is carried out for a very short and

rather calm period. In this particular case, if the period cannot be

extended, BIC/AIC criteria may be put aside and the most conservative

results may be chosen. Consequently, a dataset covering at least

20 years is strongly recommended.

We have thus a robust enlargement of the stationary GPD-Poisson

model. It may be useful for engineers wishing to cover a wide range of

situations. The choice of distributions proposed here is not exclusive,

and others may be used. Engineers should remember that their aim is

to determine safe design criteria rather than perfect statistical fits, so

they must always be careful to ensure that the available data are fully

representative of the local climate.
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Abstract. The evaluation of the probability of occurrence of
extreme natural events is important for the protection of ur-
ban areas, industrial facilities and others. Traditionally, the
extreme value theory (EVT) offers a valid theoretical frame-
work on this topic. In an over-threshold modelling (OTM)
approach, Pickands’ theorem, (Pickands, 1975) states that,
for a sample composed by independent and identically dis-
tributed (i.i.d.) values, the distribution of the data exceeding
a given threshold converges through a generalized Pareto dis-
tribution (GPD). Following this theoretical result, the anal-
ysis of realizations of environmental variables exceeding a
threshold spread widely in the literature. However, applying
this theorem to an auto-correlated time series logically in-
volves two successive and complementary steps: the first one
is required to build a sample of i.i.d. values from the avail-
able information, as required by the EVT; the second to set
the threshold for the optimal convergence toward the GPD.
In the past, the same threshold was often employed both for
sampling observations and for meeting the hypothesis of ex-
treme value convergence. This confusion can lead to an er-
roneous understanding of methodologies and tools available
in the literature. This paper aims at clarifying the concep-
tual framework involved in threshold selection, reviewing the
available methods for the application of both steps and illus-
trating it with a double threshold approach.

1 Introduction

A reliable estimation of extreme natural hazard is important
for the protection of remarkable natural sites, urban areas,
industrial facilities, etc. In particular, extreme natural events
include floods, heavy rainfalls, high and low temperatures,
strong winds, high sea levels or sea surges, oceanic waves,
among many others.

Traditionally, the estimation of the probability of occur-
rence of such extreme events is performed by fitting a
probability distribution to a sample of historical observa-
tions for a given phenomenon observed at a given site,
usually recorded as a time series of observations. In this
framework, the extreme value theory (EVT) (Fréchet, 1928;
Gnedenko, 1943; Gumbel, 1958; Pickands, 1975) offers a
sound theoretical framework.

In particular, Pickands’ theorem (that can be seen as a
central limit theorem for extreme values) states that, in a
sample composed by independent and identically distributed
(i.i.d.) values, the distribution of the data exceeding a given
threshold converges towards a generalized Pareto distribu-
tion (GPD) (Pickands, 1975). Following this theoretical re-
sult, the over-threshold modelling (OTM) approach widely
spread in extreme value analyses, together with the appli-
cation of the GPD, (Davison and Smith, 1990; Simiu and
Heckert, 1995; Embrechts et al., 1997; Palutikof et al., 1999;
Coles, 2001; Mackay et al., 2001; Pandey et al., 2001; Ros-
bjerg and Madsen, 2004; Ribatet et al., 2007). It is widely
recognized that the choice of the threshold is a critical point

Published by Copernicus Publications on behalf of the European Geosciences Union.



636 P. Bernardara et al.: A two-step framework for over-threshold modelling of environmental extremes

in this approach and the final estimation could significantly
depend on its value (Onoz and Bayazit, 2001; Li et al., 2012).

In this theoretical framework, the choice of the appropri-
ate threshold should be a statistical optimization procedure.
Given an empirical sample of i.i.d. observations, the selected
threshold must be high enough to meet the hypothesis of con-
vergence on the GPD but it should be low enough to limit
the variability of the GPD parameter calibration on the sub-
sample of observations over the threshold (Beirlant et al.,
1996). This is the well-known dilemma between bias and
variance.

However, environmental variables are often handled as
time series, i.e. discrete realizations of this variable, com-
ing from either observation or modelling, far from being
i.i.d. More precisely, environmental time series are often
composed by dependent values because of the strong tem-
poral autocorrelation (e.g. Zawadzky, 1987; Smith, 1988;
Colombo et al., 1999; Walton, 2000; Marani, 2003; Bernar-
dara et al., 2006). The autocorrelation is indeed explained
by the dynamical behaviour of the subjacent physical sys-
tem and its momentum. Since the pioneering works of Hurst
(1951), some studies even suggest that the autocorrelation of
some environmental time series could be infinite (Schertzer
and Lovejoy, 1997; Elek and Markus, 2004; Koscielny-
Bunde et al., 2006).

An attempt to cope at the same time with EVT and au-
tocorrelated data is the introduction of the extremal index,
(Leadbetter et al., 1983; Smith and Weissman, 1994; Em-
brechts et al., 1997; Ancona-Navarrete and Tawn, 2000;
Coles, 2001; Beirlant et al., 2004). The extremal index is an
extra parameter that allows taking into account data auto cor-
relation on the extreme value theorem. The extremal index
represents the reciprocal of the mean size of event clusters.
Estimating this index allow to apply the EVT theorem results
directly on a series of auto correlated observations.

However, in general, the EVT cannot be applied directly to
the observed data and a data pre-processing is needed in or-
der to build the i.i.d. sample required by its hypothesis. This
data pre-processing is often called physical declustering, be-
cause it tends to extract independent observations from the
time series, which are naturally (physically) clustered.

Moreover, environmental time series can be composed
by nonidentically distributed (nonhomogeneous) values. In-
deed, natural phenomena can have very different physical
genesis, they can exhibit strong seasonality of the observed
phenomena or they can depend on other covariates. Among
others, Adamowski (2000), Garavaglia et al. (2010) and
Allamano et al. (2011) show that mixing heterogeneous sam-
ples can lead to biased estimation of extreme value probabil-
ity of occurrence. Garavaglia et al. (2010) introduced a com-
pound distribution for extreme rainfalls taking into account
seasonality and different physical genesis. For wave heights,
probability distribution and even time series autocorrelation
may depend on direction, fetch, water depth and other co-
variates (Mathiesen et al., 1994; Jonathan and Ewans, 2007;

Taylor et al., 2009; MacKay et al., 2010; Mazas and Hamm,
2011). Many possibilities exist for getting time series of ho-
mogeneous physical phenomena (clipping, decomposition,
cleaning, etc.) but they are beyond the scope if this paper.
In the following, if not stated differently, it will be consid-
ered that the time series are identically distributed, but they
are still not composed of independent values.

Accordingly to the previous considerations and within the
framework of the OTM, the constitution of the sample for
the statistical inference of the extreme return levels of the
environmental variable logically requires two successive and
complementary steps: the physical declustering and the sta-
tistical optimization.

The need for both declustering and statistical optimization
was generally recognized in the past. However they were
often confused or merged together, arising methodological
questions and confusing the meaning of the two operations.
For instance, Lang et al. (1999) stated that “two different ap-
proaches can be adopted for threshold selection: the first one
is based on physical criteria [. . .] and the second one is based
on purely mathematical and physical considerations”, but
they neither separate both steps, nor recognized their com-
plementarity. It is indeed important to clarify which, among
the numerous parameters to be defined for an OTM anal-
ysis, often largely arbitrary (Takvor and Panagiota, 2001),
are involved in the physical declustering and which ones are
involved in the optimization procedure. Even when in the
past the two steps were performed separately (Dupuis, 1998;
Egozcue et al., 2005; Bernardara et al., 2008, 2011; Gar-
avaglia et al., 2010; Bardet et al., 2011; Mazas and Hamm,
2011; Wahl et al., 2011), or when approaching the two steps
at the same time (i.e. the extremal index approach), the un-
derlying concepts were not clearly exposed.

With the previous considerations in mind, this paper aims
at clarifying the general conceptual framework of threshold
selection for over-threshold modelling, distinguishing in par-
ticular the physical declustering procedure from the statis-
tical optimization. A large literature review of the existing
methods for both steps is given.

The main improvement of this effort of review and clarifi-
cation is that, distinguishing both steps, the existing methods
can be used in the right context, namely the physical declus-
tering can be done based on physical arguments and the sta-
tistical optimization is performed later with purely statistical
methods.

Note that this theoretical discussion is relevant in a multi-
disciplinary context, including different environmental appli-
cations (e.g. hydrology, meteorology, ocean sciences). This is
an important point toward sharing of the knowledge of OTM
techniques between different domains and different scientific
communities. As a consequence, in this paper literature re-
view and examples are based on environmental phenomena
as different as floods, heavy rainfalls, extreme winds, high
sea levels, extreme sea surges, and oceanic waves.
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The paper is organized as follows. In Sect. 2, the two steps
are depicted and the methodological framework is clarified.
In Sect. 3 a review of the current methodology for physi-
cal declustering and statistical optimization of the statistical
threshold is given. It is also shown that often in the past the
two steps were merged together and sometimes confused. In
Sect. 4 this general framework is applied to two different case
studies for the estimation of hydrological and maritime ex-
treme observations. In particular a double threshold is intro-
duced. In Sect. 5 some final conclusions are drawn.

2 Distinguishing two steps for OTM

Let Z(t) be a time series (or, more generally, a spatial field)
of discrete realizations of a given environmental variable,Z

(e.g. a river discharge, a significant wave height, a sea level,
a surge, a temperature, a wind speed, etc.) at a given resolu-
tion, 1t (i.e. time step, either regular or irregular). This can
be the result of observation or modelling. The time series is
assumed to be identically distributed.

For extreme value estimation applications, times series
lasting several years are generally needed. For this reason,
their size can be very important, depending on its duration,
K, and time step,1t . For example, a daily series lasting 20 yr
contains around 7000 values, while an hourly series lasting
5 yr contains more than 40 000 values. Note also that envi-
ronmental measures are often submitted to failure of mea-
surement device, thus the time series can be incomplete.

2.1 Step 1: physical declustering

The physical declustering aims at extracting a sample of
i.i.d. values,Xi , from the time series,Z(t). This step can be
viewed as an identification procedure, through purely phys-
ical consideration, of independent events. We claim that the
notion of event and its correct understanding is a fundamen-
tal concept of EVT analysis applied to a time series. An event
is defined here as a continuous physical phenomenon of the
environmental variable, notably out of its mean regime, as
can be instinctively comprehended by anyone: a storm for
wind speed or wave height, a flood for river discharge, a heat
or cold wave for temperature, a drought for rainfall, etc.

The events have a given duration that is often longer that
the resolution1t of the time series. In this case an event is
composed of a set of consecutive discrete realizations of the
variable, called cluster. The analyst should then define a ran-
dom variableX describing the events. Very often this event-
describing variableX represents the maximum value ofZ(t)

within the event, or cluster, and is often called the “peak” of
the event. However,X may also be the result of any mathe-
matical transformation of the cluster values: this is the case
for the volume of a flood, for example. Generally speaking,X

can be any characteristic of the event. The actual definition of

X will depend mainly on the natural phenomenon involved,
on the available data and on the aim of the study.

The appropriate physical declustering technique also de-
pends on the characteristics of the given natural variable, of
the time step of the series and on the physic and dynamic
characteristics of the observed process. For instance, the
declustering of a daily temperature time series will require
different techniques than the declustering of hourly rainfall
observations. In general, the knowledge of the physics of the
studied phenomenon drives the physical declustering choices
that should guarantee: first the independence of the selected
events and second that no event is omitted in the process.

It is quite important to stress thatZ andX are per se differ-
ent random variables. It is quite clear in the case of daily river
discharge vs. flood volume, but it is also true in the case of
three-hourly wind speed vs. the peak wind speed of a storm,
for instance. In particular, even if each event can be associ-
ated to a particular instant of occurrence on the time line,X

does not depend on time any more.
A sample ofNT i.i.d. valuesXi is thus obtained. Its size is

much lower than the size of the time seriesZ(t), generally in
the order of few hundreds instead of several thousands.

In Sect. 3 a review of practical methods for physical
declustering of environmental time series is given.

2.2 Step 2: statistical optimization

The physical declustering allowed the setting up of an i.i.d.
sample: the EVT hypothesis is now met and the well-known
statistical models can be applied.

Let us introduceus, which stands for statistical thresh-
old and let us define the random variableY = X − us, given
X > us. Y is the exceedance ofX above the thresholdus.
Thus a sampleYi of sizeN can be defined from the sample
Xi : Yi = Xi −us, givenXi > us. Note the sample size reduc-
tion (N ≤ NT) as theXi values falling below (or equal to)us
are excluded from the analysis.

Within the theoretical framework of OTM, and in partic-
ular according to Pickands’ theorem, whenus increases, the
probability distribution of the sampleYi converges toward
the generalized Pareto distribution (GPD) whose cumulative
distribution function of the GPD, in its three parameter for-
mulation, is given by

F (y)= 1−

[

1+k

(

y−µ

σ

)]− 1
k

, (1)

where k, k 6= 0, is the shape parameter, also indicated as
ξ (or −ξ) in statistic literature,σ is the scale parameter
and µ is the location parameter, withy > µ for k > 0 and
µ< y < µ− σ/k for k < 0. Note that following Pickand’s
theorem, the location parameter is generally set equal to zero.
Note also that the modified scale parameter,σ ∗ = σ −kus, is
often used as scale indicator.us is thus the optimal threshold
providing the best compromise between the convergence of
theYi through a GPD (bias minimization) and the necessity
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Autocorrelated time series of observations � �  

 Temporal evolution of the environmental variable � 

i.i.d. sample �� (size ��) 

 �: Event-describing random variable 

GPD-convergent sample �� = �� − ��|��>�� (size �) 

Exceedances over the statistical threshold of the « extreme » �� 

Physical Declustering 
 

Aim: identifying and characterizing independent 
events 

Statistical Optimization 
 
Aim: setting a threshold for the convergence of the �� towards the GPD by determining the extreme 

domain in a statistical meaning 

Fig. 1. General framework for identifying extreme data for over-
threshold modelling (OTM).

to keep enough dataYi for the estimation of its parameters
(variance minimization). The extrapolation of the estimated
GPD will yield the estimated return levels (or extreme quan-
tiles). Theus threshold selection step is called here statisti-
cal optimization. The statistical optimization step is a purely
statistical problem for which several methods have been pro-
posed in the literature; see Sect. 3 for a general review. It does
not depend on the particular random variable (environmental
or not) and it is general for every extreme value application.

A general overview on the two-step framework is depicted
in Fig. 1.

3 Review of methods for physical declustering and for
statistical optimization

In this section a literature review of the physical declustering
and the statistical optimization techniques is given. Its aim is
not to particularly recommend any of these to the detriment
of the others, but rather to catalogue the different practices.
At the end of this section a discussion is proposed to under-
stand why and how these two steps were often merged and
confused in the past and we point out that this knowledge is
important in order to perform correctly both steps.

3.1 Methods for physical declustering (Step 1)

3.1.1 General principles

As stated in the previous sections, the physical declustering
procedure aims at building the i.i.d. sampleXi , on which all
the statistical analyses are based, by identifying and charac-
terizing the events.

Generally speaking, this procedure does not require the
“over-threshold” concepts per se. One could imagine, for
instance, manually extracting a sample of extreme and in-
dependent events from a historical record of observations.
Garavaglia et al. (2010) introduced the concept of central
rainfall, defined as the rainfall observationZ(t) for which
z(t −1) < z(t) > z(t +1) for declustering the rainfall obser-
vations series.

However, an overview of the literature (see in particu-
lar Lang et al., 1999) shows that the techniques based on
the definition of a threshold to be exceeded spread widely.
Adamowski (2000) claims, moreover, that the choice of the
threshold for declustering is also a critical step in order to se-
lect homogenous events and to avoid merging different pop-
ulations of observations (this is the concept of identical dis-
tribution mentioned above).

Following such an approach, the clusters (events) are usu-
ally defined as the series of consecutive values ofZ(t) above
a given threshold, which is called hereup, for physical
threshold. Note that this approach was often called partial du-
ration series sampling in the past (Cunnane, 1973; Rosbjerg,
1985; Rosbjerg et al., 1992; Madsen and Rosbjerg, 1997).

As mentioned in Sect. 2.1, the event-describing variable
X could be any transformation of the values ofZ within the
cluster. For example, a temporal integration of the consec-
utive value of river discharge over the physical threshold is
sometimes used in hydrology to characterize the volume of
a flood. However, in most environmental applications, the
maximum value ofZ(t) observed during the clusteri, or
event peakXi , is retained to describe the event. For this rea-
son the name of peak over threshold (POT) spread widely in
the literature for this sampling technique.

It has been stressed above that the physical declustering
must not only identify the events, but also guarantee their
independence. As a consequence, the actual definition of a
cluster (event) generally relies upon two different families
of parameters: on the one hand, the physical thresholdup,
whose value is expressed in the same units asZ(t) (but not
necessarily asXi , e.g. the volume of a flood); on the other
hand, one or several parameters needed for ensuring the in-
dependence of the different clusters.

Several physically based criteria are available in the liter-
ature for the definition of the physical threshold and for the
characterization of the independence of the clusters.
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3.1.2 Physical threshold

The choice of the thresholdup is a key step for the identifica-
tion of events. Several approaches were proposed in the past
for the definition of the physical threshold.

First, and quite simply, the choice of the physical thresh-
old can be defined by an expert prior knowledge. Expert
prior knowledge can be based, in a heuristic approach, on the
practical consequences for the phenomenon to cross a given
threshold value. For example, Bonazzi et al. (2012) define a
wind velocity threshold corresponding to the level at which
damage to buildings is likely to occur. Perception threshold,
defined by expert estimation, is used to perform OTM for his-
torical and non-systematic observation, (Ouarda et al., 1998;
Barriendos et al., 2003; Payrastre et al., 2005, 2011; Hamdi
et al., 2013).

For threshold selection, Lang et al. (1999) defined the
mean number of events per year,λT = NT/K, whereK is the
total duration of the time series, in years, andNT is the num-
ber of physical events to be selected (and also the sample size
of theXi). Then they discussed the evolution ofλT when the
threshold increases and they identified four domains. First,
the threshold is below the minimum of the time series: thus
the entire time series is considered as an event, though it has
no physical sense. Second, as the threshold value raises be-
tween the minimum and (roughly) the mean value of the se-
ries λT increases: the higher the threshold, the more events
there are. This actually means that just shortfalls below a low
threshold are identified. Third,λT reaches a maximum (when
the threshold is close to the mean of the series) and begins to
decrease. Fourth, when the threshold is larger than the maxi-
mum of the series, no more exceedances can be extracted and
λT = 0. The authors require thatλT be in the third domain,
though far from both the lower and upper limits of the do-
main. In the proposed conceptual framework, it can be stated
that events (as defined above) are identified in the third do-
main. However, though this recommendation is relevant, it is
easily fulfilled and is not specific enough to be really useful
in practical applications.

Another widely used approach relies on the idea thatup
can be tuned in order to obtain a physically reasonable value
of λT. More generally, the choice of the actual numberλT
is based on expert knowledge of the physics and the dynam-
ics of the process. For example, in hydrological applications
it is suggested to chooseλT < 5, which is a large number
of floods to observe, for a given site, on average, per year.
Obviously, this number should depend on an on-site hydro-
logical regime. Working on skew surges, in a regional anal-
ysis framework, (Bernardara et al., 2011) suggested to set
up so thatλT = 1, while for local analysis Walton (2000)
fixed λT = 3. Analyzing significant wave heights, (Mazas
and Hamm, 2011) suggested that the value ofλT should be
roughly between 5 and 10, also depending on the value of the
time series duration (closer to 5 for long time series, closer to
10 for short ones). Tawn and Vassie (1989) suggested a value

of λT around 5 for extreme sea surge. Floris et al. (2010) an-
alyzedλT in a framework of extreme rainfall analysis.

Some authors set the threshold using a given quantile of
the time seriesZ(t). Ruggiero et al. (2010) set it to the 99.5th
percentile of the data, working with wave heights. Rosbjerg
et al. (1992) suggest calculating the physical threshold as the
mean value of the observed series plus three standard devia-
tions. Notice that, though it looks like a statistical approach,
there is no optimization process in it.

These criteria for the selection of the relevant physical
threshold were compared and simultaneously used in the
past, for instance Ntegeka and Willems (2008) stated that “an
extreme event can be selected based on frequency, intensity,
threshold exceedances or physical expected impacts”.

3.1.3 Parameters for ensuring the independence
of the events

In order to ensure the independence of the selected events,
many physically based criteria have been developed. Several
of these criteria are recurrent in the literature and will be pre-
sented here.

The most common techniques consist in setting temporal
parameters, most of the time based on the minimal time lag
between two events. The idea is quite simple: after a given
period of time, the autocorrelation between the observations
becomes negligible and two events can be safely considered
independent. The definition of this time lag is directly de-
rived from the physics of the natural phenomenon: it should
be longer than the typical duration of the physical processes
(usually meteorological ones) generating the events. Thus
it can be set by an expert prior knowledge. However, the
time lag should not be too long in order to avoid discarding
independent events and thus missing valuable information.
For instance, in north-eastern Europe, extreme wave heights
may be generated by successive storms moving along the
storm track every 24 h or so; therefore setting the time lag to
48–72 h could lead to miss information. Many applications
of this approach are available in the literature: Egozcue et
al. (2005) studied wave height hazards along the Mediter-
ranean coast of Spain and set the time lag to 4 days; Haigh
et al. (2010) studied the extreme sea levels along the En-
glish Channel and required the surge peaks to be separated
by 30 h at least; USWRC (1976), Cunnane (1979) and Lang
et al. (1999) imposes that successive river flood events be
separated by at least as many days as five plus the natural
logarithm of square miles of the basin area. Willems (2000)
required that two rainfall events are separated by at least a
12 h lag.

The time lag can also be defined using the autocorrelation
function of the time seriesZ(t). For extreme wave heights,
Mathiesen et al. (1994), propose requiring that it cannot
be longer than the time interval for which the autocorrela-
tion function of the series drops under 0.3–0.5. In a similar
way, while studying storm surge extremes along the US East
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Coast, Walton (2000) established the typical duration of an
event via the autocorrelation of the surge series and found
that the drop off of the autocorrelation function to a noise
level value close to zero was on the order of 24–72 h. Note
that some authors define the time lag between the end of an
event and the beginning of another while others define it be-
tween two peaks.

In general, both physical and statistical methods aim at the
definition of the correlation length, thus they should naturally
converge.

Other temporal parameters can be used; for instance, in
their atlas of waves along the Italian coasts, (Franco et al.,
2004) allowed short fluctuations of the time series below the
thresholdup up to a maximal duration (6 h) and also set a
minimal storm duration (12 h). This last parameter may be
useful for some applications; for instance, waves generated
by a very short storm will not cause damage to a breakwater.
In the sea wave analysis field, (Takvor and Panagiota, 2001)
extracted independent the sea state by looking at wave en-
ergy reductions between consecutive time steps. In contrast,
(Smith, 1988) examined the typical duration of extreme wave
conditions and did not see any rationale for using such a pa-
rameter.

Another technique consists in using a secondary thresh-
old: in this approach, two events are considered independent
when the signalZ(t) falls below this value. In particular, this
secondary threshold may be defined as a fraction of the phys-
ical thresholdup (in this case the value of this fraction can
indeed be considered as the parameter to set) or as a frac-
tion of the peak value of one of these events. For instance,
(USWRC, 1976) requires (among other criteria) that the in-
termediate flows between two consecutive flood peaks must
drop below 75 % of the lowest of these two peaks, while
(Cunnane, 1979) imposes that the flow must drop below 2/3
of the first peak value.

The independence of the selected events (or more gen-
erally the independence of the selected clusters) has been
checked in the past via the analysis of the probability distri-
bution of the occurrences of the events for a given time inter-
val. In fact, the Poisson distribution (Haight, 1967) is a dis-
crete probability distribution that expresses the probability of
a given number of events occurring in a fixed interval of time
if these events occur with a known average rate and indepen-
dently. Thus, if the number of occurrences of events follows
a Poisson distribution, the events are supposed to be inde-
pendent (Cunnane, 1979; Rosbjerg et al., 1992; Lang et al.,
1999). Some authors, (e.g. Ashkar and Ouarda, 1996, Silva
et al., 2011) selected the physical threshold corresponding
to the best adaptation of the number of occurrences to the
Poisson distribution and checked the independence hypothe-
sis looking at the uniform distribution of the arrival time of
events depending on the observation period support.

Note that for several of these parameters, their value
should be somehow dependent on the value ofup. For in-
stance, if the time lag between two events is defined between

the end of the first and the beginning of the second one, or
if a fraction of up is used to ensure the independency, the
values to be considered could be different ifup is rather low
or rather high. This is particularly true for the minimal event
duration or the maximal duration of fluctuations belowup,
even though these parameters are quite scarcely used.

3.2 Methods for statistical optimization (Step 2)

Once the sample of the i.i.d. dataXi is built, the statistical
optimization consists in choosing the relevant value of the
statistical thresholdus to take into account for the estima-
tion of the GPD model on the observations exceeding the
threshold, toward which the sample is supposed to converge
(Beirlant et al., 1996).

The threshold selection criteria here are statistically based
and they aim at meeting the EVT hypothesis and the best
compromise between bias and variance. In this step, the ques-
tion is which ones of these events are extreme from a statis-
tical point of view?

A first class of such methods is based on the maximization
of the goodness of fit between the probability distribution and
the data or the minimization of the asymptotic mean square
error of the estimators. Several authors suggested choosing
the value ofus providing the best GPD adaptation to the em-
pirical data. That can be done through the optimization ofχ2

or the Kolmogorov–Smirnov test. For instance, (Bernardara
et al., 2011) used this approach for fitting a regional surge
probability distribution. Anderson–Darling (AD) goodness-
of-fit test is suggested and employed by Choulakian and
Stephens (2001) and Haylock (2011). The adaptation of GPD
to empirical data above the threshold could also be checked
via the L-moments. In particular, for GPD the relation be-
tween L-moments of order 3 and 4 is known and L-moments
plot technique can be used (Hosking and Wallis, 1997).

A similar class of methods are based on the minimization
of the variance estimation of the Hill semi-parametric esti-
mator of the tail index, (Hill, 1975; Hall, 1982; De Haan and
Peng, 1998). (Beirlant et al., 1996) and (Willems 1998) intro-
duced a systematic methodology based on these principles.
In (Willems, 2000) an application to rainfall observations is
given. (Neves and Fraga Alves, 2004) give a short review on
these methods and they propose an automatic selection pro-
cedure.

A well-known property of the GPD is that the shape and
modified scale parameters will remain constant when the
threshold increases. Following this property, (Davison and
Smith, 1990; Lang et al., 1999; Egozcue et al., 2005) sug-
gested choosing the threshold so that the mean of the ex-
ceedances above the threshold,E(X − us), is a linear func-
tion of the threshold value, indicating a range where the GPD
parameters are not depending on the threshold selection. This
technique is also known as MRL (Mean Residual Life) plot,
(Coles, 2001). In this framework, (Beguéria, 2005) chose the
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value ofus in maximizing the fit of a linear function on the
mean excess function.

(Coles, 2001) also proposed the STM (stability method)
consisting in defining an optimum where the shape parameter
of the GPD distribution is approximately constant for small
threshold changes. (Mazas and Hamm, 2011) performed a
sensitivity analysis of shape and modified scale parameters
with respect to the (statistical) threshold in order to identify
domains of stability. Then they selected the lowest thresh-
old (minimization of variance) of the highest domain of sta-
bility (minimization of bias). (Thompson et al., 2009) used
the property of stability of the GPD modified scale param-
eter to introduce a procedure for automatizing the threshold
selection. They define 100 equally spaced threshold values
between the median of the time seriesZ(t) and its 98th per-
centile. For each value, the stability of the modified scale pa-
rameter is tested by the Pearson normality tests. The first (i.e.
lowest) value satisfying the test is retained as the statistical
threshold.

The stability of some relevant quantiles of the GPD distri-
bution has been used in the past for the selection of the opti-
mal us value, for instance by Rosbjerg et al. (1992), among
many others.

3.3 Review discussion

The concept of the exceedances over a given threshold was
used both for physical declustering and statistical optimiza-
tion (Smith, 1984; Lang et al., 1999; Parent and Bernier,
2003).

This is explained by the fact that this concept is, on the
one hand, useful for defining events as independent clusters
of observations and, on the other hand, is also consistent with
the EVT concepts of GPD convergence.

However, the use of the same concept of “exceedances
over a threshold” for the two different steps of the analyses
led to some incoherencies and confusions.

First of all, as pointed out in the previous section, it should
be highlighted that the domains of application of the two
steps are different. The declustering procedure applies to
highly correlated data, such as the environmental time series
of observations and it was studied mainly by earth scientists
in the past. The statistical threshold optimization applies to
a large number of statistical problems as it was treated in
the past mainly by the statistical community. That leads to
some incoherencies on the vocabulary used and on the con-
cepts definition. For example, (Takvor and Panagiota, 2001),
in a review of declustering techniques, called the physical
declustering “statistical pre-processing”, a definition that can
confuse the reader. In a similar way, the concept of “POT
method” often includes the whole methodology for the deter-
mination of the probability of occurrence of the extremes val-
ues, including the GPD model, while it should be restricted to
the declustering step. The same comment holds for the “par-
tial duration series” definition which refers to the first part

of physical declustering but it was used in the past to indi-
cate the whole analysis. Also, note that following the EVT
vocabulary, the word “extreme” is restricted to the values
exceeding the thresholdus while the full sample of theXi

represent the whole i.i.d. population describing the different
events. However, in practice, theXi are often arbitrarily con-
sidered as an “extreme” population, which may be confusing.

Another example of incoherencies can be found in the
number of data to be selected. As explained in section 3.1,
(Lang et al., 1999) pointed out that the number of peaks over
the threshold,Xi can decrease but also increase when the
thresholdup increases. This is logical in a physical point of
view, because the sample of theXi completely changes de-
pending on the value ofup. However, for the statistical op-
timization thresholdus the number of exceedances over the
thresholdYi must decrease when the thresholdus increases.
Introducing the concept of physical event to be identified in
the time series is thus much relevant for understanding such
a behaviour.

Note also that, following the statistical theory (Pickands,
1975), the EVT requires choosing all the values over a given
threshold,us, and not only some of them, as in the case of
physical declustering using the peaks overup.

Moreover, the EVT states that theYi sample converges to-
wards a GPD distribution, while theXi sample, representing
a whole population of i.i.d. events could be described by any
statistical model. Indeed, several authors (Goda, 1988, 2010,
2011; Mathiesen et al., 1994; Goda et al., 2010) considered
other distributions than the GPD (or GPD family).

In practice, another strong rationale arises for separating
both steps. As shown by the literature review in Sect. 3.2,
most of the methods for determining the statistical thresh-
old require testing many values ofus. If the physical declus-
tering has not been performed prior to this, it will have to
be done as many times as there are tested values ofus, in-
stead of just once. If one keeps in mind that the declustering
of time series, whose size can be up to several hundreds of
thousands of data, can be quite computer intensive, the inter-
est of running this step once for all instead of 10 to 100 times
is obvious. Furthermore, it has been shown in Sect. 3.1 that
during the declustering process, the parameters ensuring the
independence of the events may depend on theup threshold
value, or be relevant for a small range ofup values only. Then
there is much interest in setting them accurately with regard
to the value ofup once and for all, instead of repeating this
many times. This will be illustrated in the second case study
in Sect. 4.3.

Note that the clusters population, namely the structure of
the events, described by the clusters ofZ(t) overup, present
an interest in itself. It is important, for some application to
calculate some statistics such as the probability distribution
of the event size or duration, the internal correlation or the
shape characteristics of a general event. This shows again the
interest in separating the two steps.
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Fig. 2.Swell significant wave height time series off Marseille.

Even though the methodological framework was not yet
clarified, in the past few authors highlighted some points
which direct attention to the different meaning and applica-
tion of the two steps. A very good illustration is provided
by Cruise and Arora (1990) who noticed that the threshold
level for physical declustering often had to be raised signifi-
cantly to meet exponentially based tests on the POT distribu-
tion (Lang et al., 1999).

Some other authors in the past proposed extreme value
analyses in which the two steps are well distinguished. For
example (Dupuis, 1998; Egozcue et al., 2005; Bardet et al.,
2011; Bernardara et al., 2011; Mazas and Hamm, 2011) ap-
plied two different thresholds, one for the physical declus-
tering, the other for the statistical optimization. (Garavaglia
et al., 2010) used the central rainfall concept for physical
declustering and arbitrarily fixed theus at the 70 % quantile
of the distribution, without any optimization. (Bernardara et
al., 2008) used classical declustering criteria for daily dis-
charge series and a specific optimization for the shape pa-
rameter of the GPD distribution.

However, the theoretical framework distinguishing two
steps was not clearly defined. Hence, as a conclusion of this
review effort, we deem that the lack of the concept of event is
a major cause of the confusion observed in the past. It is use-
ful for the understanding of EVT analyses of auto-correlated
time series and it has a sound physical basis.

4 Applications to environmental variables

4.1 The double threshold approach

In order to illustrate the proposed framework, and in coher-
ence with the literature, we propose here to provide both
physical declustering and statistical optimization through a
threshold approach.

This approach is applied to two case studies, a wave height
study and an extreme discharge study, in order to illustrate

Table 1.Summary of parameters for the two case studies.

Wave heights, Discharge/flood
Marseille volume, Rieutord

K [yr] 13 19.33
1t 3 h 1 day
n 38 005 7062
up 1.4 m 10 m3 s−1

λ [events yr−1] 10 3.6
NT 130 70
us 1.87 m 6.48 Mm3

N 43 25

that the methodological framework is valid in different fields
of natural hazard estimation.

It is shown that this approach allows selecting the correct
techniques and carrying out a complete analysis, extracting
all the relevant information.

4.2 Wave heights

We consider in this first illustrative example a time se-
ries of simulated three-hourly significant wave heightsHs
offshore Marseille, France (5.3104◦ W, 43.3460◦ N; water
depth: 34 m). The duration of the data isK = 13 yr, and the
size of the time series isn = 38,005 data. In order to en-
sure the homogeneity of the data, a decomposition of the sea
states have been performed and only the swell component
have been retained. TheHs time series is plotted in Fig. 2.

In this case study,Z is a three-hourly significant wave
height of the swell component (in metres), the events to be
identified are swell storms and they are classically described
by the random variableX “storm peak” (in metres), that is,
the maximum value within the cluster. A physical threshold
has been set in order to obtain a sample ofλT = 10 storms
per year in average, which is a physically sounding num-
ber of extreme events per year for the region. The physical
threshold is thus set toup = 1.4 m. The declustering has been
performed by using a minimal duration of 24 h between two
storms to ensure their independence. Furthermore, a mini-
mal storm duration of 6 h has been set (because very short
events do not cause important damage to coastal structures)
and fluctuations below the threshold within a same storm
have been allowed for less than 12 h. These parameters can
be considered relevant for the chosen physical threshold but
it would not be the case for a higher or lower threshold. It
is important to notice that this first step allowed defining a
population of events which can be analyzed to extract rele-
vant statistics. In particular, the extraction yieldsNT = 130
events, the mean storm duration of the events is around 15 h.
In all, 96 % of the events last less than 36 h, which is consis-
tent with the physics. Unsurprisingly, a strong seasonality is
observed: 28 storms in fall, 38 in winter, 23 in spring and 4
in summer.
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Fig. 3. Stability of shape parameter and modified scale parameter
for Marseille series of swell waves.

Fig. 4.GPD fit for the swell off Marseille.

The statistical optimization is then performed on the sam-
ple Xi . Note that in this case,Z and X have the same
dimension; sinceXi ≥ up it can thus be written thatup ≤ us
(meaning that testing values ofus < up would be useless).
The stability of the GPD shape parameterk and modified
scale parameterσ ∗ = σ − ku with respect to the statistical
thresholdus is illustrated in Fig. 3, along with the associ-
ated 95 % confidence intervals computed by the asymptotic
method. A first “domain of stability” can be seen between
roughly 1.5 and 1.8 m, then a second one between 1.87 and
2.2 m. Afterwards the sample size is too short and the param-
eter uncertainty is too great. The bias minimization requires
to choose the highest domain of stability while the vari-
ance minimization needs as much data as possible; conse-
quently, the statistical threshold is set tous = 1.87 m, yield-
ing N = 43. Note that, hereus = up+0.47 m and the number
of observation has been reduced fromn = 38,005 toN = 43.

The GPD parameters are estimated by the L-moments es-
timator (Hosking and Wallis, 1997). The fit is illustrated in
Fig. 4. A summary of the parameters estimate for this case
study is given in Table 1.

Fig. 5.Discharge series of the Loire river at Rieutord.

Fig. 6. Stability of shape and modified scale parameters of Loire
river sample.

4.3 Discharge and flood volumes

The selected time series is the Loire river discharge daily
series at Rieutord, from 01/09/1983 to 31/12/2002. The du-
ration of the data isK = 19.33 yr, and the size of the time
series isn = 7062 data. The discharge series is plotted in
Fig. 5. The local modulus of the river is estimated around
2.7 m3 s−1. A physical threshold ofup = 10 m3/s based on
an expert judgment has been applied. The inter-event dura-
tion has been set to 10 days. That leads to an average num-
ber of flood events per yearλT = 3.6, which is physically
acceptable and coherent with expert prior knowledge based
on physical characteristics of the discharge phenomenon.
NT = 70 flood events are thus retained. Their mean duration
is around 103 h. 50 % of the flood peaks last only one day,
while 9 % last two days and 14 % last three days. A strong
seasonality can be observed, with 27 flood peaks in fall, 23
in winter, 19 in spring and only one in summer.

It is decided to describe these flood events by their volume:
X is the temporal integration of the discharge over the flood
duration. In particular, the physical threshold is assumed to
define completely the flood, allowing the computation of its
volume. In this case study,Z is a daily discharge in m3 s−1,
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Table 2.Evolution of the size of the upper part of theXi sample with respect toup.

Number of events whose peak is above

up 5 m3 s−1 10 m3 s−1 15 m3 s−1 20 m3 s−1 25 m3 s−1

5 m3 s−1 75 52 37 33 26
10 m3 s−1 – 70 47 40 32
15 m3 s−1 – – 49 41 33
20 m3 s−1 – – – 42 34
25 m3 s−1 – – – – 34

Fig. 7. Mean residual life plot for the flood volumes of Loire river
sample.

an event is a flood andX is the volume of the flood, in Mm3.
This is of course a very rough estimate of the flood volume:
in a genuine hydrological study, it should be computed based
on the hydrogram of each flood. This application is for illus-
trative purpose.

The stability of GPD parameters with respect to the statis-
tical thresholdus is given in Fig. 6. The shape (resp. modi-
fied scale) parameter slowly decreases (resp. increases) from
about 1 Mm3 to 6.48 Mm3, then remains remarkably con-
stant. This result is confirmed by MRL Plot, Fig. 7.L mo-
ment analysis depending on the statistical thresholdus is
shown in Fig. 8. Here it is found that the threshold value
of 6.48 Mm3 is the only one for which theL moments are
almost lying on the theoretical GPD curve. Thus the statis-
tical threshold is set tous = 6.48 Mm3, yielding a sample
of N = 25 flood volume exceedancesYi . In Fig. 9, the cor-
responding GPD calibration is shown, along with the 90 %
confidence interval. A summary of the parameters estimate
for this case study is given in Table 1.

In this case study, the inter-event duration is defined be-
tween the end of an event and the beginning of another. As

Fig. 8.L-moments plot for the flood volumes of the Loire river sam-
ple.

has been stressed in Sect. 3.1.3, a consequence is that not
only the lower part but also the upper part of theXi sample,
and thus ultimately of theYi sample to be fit, may vary when
a broad range ofup values is tested while the independence
criteria remain constant. This is the case for this declustering
procedure on this sample. Different values ofup have been
tested: 5, 10, 15, 20 and 25 m3 s−1. For each value, a number
of events are identified. Then, for each of theseXi samples
(the events are here described by the discharge peaks), the
number of events exceeding a higher value than the thresh-
old is counted. The results are given in the Table 2. For in-
stance, if the physical threshold is set to 5 m3 s−1, the num-
ber of peaks exceeding 25 m3 s−1 is 26, while, if the phys-
ical threshold is set to 25 m3 s−1, their number increase to
34. This illustrates that one should be careful when choosing
or tuning the independence criteria and this is an additional
reason for separating the physical declustering step from the
statistical optimization step, all the more since the latter one
often requires investigating a wide range of threshold values.
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Fig. 9.GPD fit for the flood volumes of the Loire river at Rieutord.

5 Conclusions

This paper clarifies the general framework for “over the
threshold” exceedance modelling, distinguishing in partic-
ular the physical declustering procedure to the statistical
optimization. The two steps have a very different meaning
and very different techniques have been proposed in the
past for the application of these two steps. The literature
is wide and an effort of review of the existing methods for
both steps is done. It allows choosing the most appropriate
methods for each step. In particular, we highlighted that
declustering techniques are mostly based on the analysis and
on the characterization of the physics of the phenomenon,
while statistical optimization is a purely statistical problem.
A consequence is the importance of the notion of physical
event. It was often underlying in the literature, but we deem
it most important to make it explicit. From our point of view,
the distinction between the auto-correlated observations, at
a regular time step, of the time series and the independent
and self-consistent physical events should become central
in the extreme value analysis of environmental variables.
We also claim that fully apprehending both the difference
and complementarity of these two steps allows a clearer
understanding of the meaning of the different available tools
and of the parameters needed for the rest of the analysis (i.e.
the independence criteria parameters) and thus, ultimately,
the appropriate application of the existing threshold selection
methods. Through two simple practical examples, we show
that each step has a clearly distinct role. It is also worthy to
note that this discussion is relevant for several domains of
natural hazard estimation, and even more generally to any
EVT analysis of auto-correlated time series.

Edited by: T. Glade
Reviewed by: P. Jonathan and one anonymous referee
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In determining extreme environmental variables, such as wave heights, with the Peaks-Over-Threshold

(POT) method, it has become common practice in the metocean community to use the GPD–Poisson

model fitted by the Maximum Likelihood Estimator (MLE). However, Mazas and Hamm (2011) pointed

out some difficulties in getting stable estimations of extreme quantiles with this method. Further

investigation reported in the present paper enable to understand that this problem is linked to the

behavior of the likelihood function and to solve it by introducing a location parameter and replacing

maximum likelihood estimated two-parameter distributions by L-moments estimated three-parameter

distributions. Applications on real and simulated data highlight the distinction between the location

parameter of a statistical distribution and the statistical threshold chosen in the POT context. With three-

parameter distributions, MLE is no more suitable and it is found that the L-moments estimator can be a

valid alternative. With these two improvements, stable quantiles are obtained not only with the GPD but

also with other distributions such as Weibull and Gamma (Pearson-III).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Determining extreme univariate environmental variables, such

as wave heights, wind speeds or river discharges, is a complex

methodology requiring a good knowledge of the physics involved

and the use of sound and reliable statistical methods.

In the coastal engineering field where we are operating, an

international joint effort was carried out twenty years ago to

provide practical recommendations for performing such an ana-

lysis (Mathiesen et al., 1994, see also Goda et al., 2010). In this

state-of-the-art paper, the following five steps were advised:

� selection of the sample: the Peaks-Over-Threshold (POT)

method was recommended. It was highlighted that the storm

peaks above the chosen threshold represent a censored sample

of all storm peaks;
� choice of model distributions: a three-parameter Weibull-min

distribution was recommended in general while advising to

choose a Gumbel distribution when the shape parameter of the

Weibull is found to be near 1;

� choice of fitting methods: the maximum likelihood estimator

(MLE) was favored without excluding the least squares method

with suitable plotting position formula;
� goodness of fit tests: visual inspection of quantile-quantile plots

together with various numerical tests were recommended;
� return value and encounter probability: a Poisson distribution

was recommended to estimate the encounter probability; and
� computation of confidence limits: a Monte-Carlo approach was

suggested.

Since that work, new statistical approaches for modeling of

extreme values (see Coles, 2001 for a broad overview) dissemi-

nated widely in our community including in particular the Gen-

eralized Pareto distribution (GPD). As a result, the methodology

combining the POT declustering technique with a GPD–Poisson

model fit by the maximum likelihood estimator (MLE) is now the

most widely used approach in present day research in the field of

oceanographic and coastal engineering (see for instance, among

many other examples, Tancredi et al., 2006; Thompson et al., 2009;

Mackay et al., 2010; Solari and Losada, 2012).

Much appreciated for its sound theoretical justifications, this

model is now used as the basis for numerous developments concern-

ing in particular the use of covariates to take into account phenomena

such as temporal non-stationarity at multiple time scales (see for

example Méndez et al. (2006, 2008), Nogaj et al. (2007)) or the
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influence of the direction of sea states (see for example Jonathan and

Ewans, 2007).

However, intensive practice of this model over a wide range of

meteo-oceanographic conditions encountered in our international

engineering practice as well as the diversity of available data led

us to unexpected difficulties not reported in the literature that are

shortly summarized hereafter.

First, the unique choice of the GPD as a candidate for the choice

of a model distribution appeared to be too restrictive. It can

provide underestimations of design conditions as observed in

several cases. Our analysis of this difficulty led us to suggest an

extension of the model to a multi-distribution approach including

objective criteria of choice (Mazas and Hamm, 2011, hereinafter

referred to as MH2011). Such an extension was also favored by

other authors, see for instance Goda and Kudaka (2009) and Van

Vledder et al. (1994).

Secondly, a clarification was needed regarding the identifica-

tion and extraction of storms from the sequential time series for

setting up the i.i.d. sample required for meeting the hypotheses of

the Extreme Value Theory (EVT). A first step was the introduction

of a double threshold approach as explained in MH2011. The

discussion by You (2012) of this point and the preparation of our

reply (Mazas and Hamm, 2012) was the starting point of a joint

research work where we elaborated in details the reasons for a

two-step framework for threshold selection in Over-Threshold

Modeling (OTM) (Bernardara et al., 2014, hereinafter referred to

as BM2014).

Thirdly, accurate sensitivity tests with respect to the threshold

revealed an instability of the quantiles linked to the behavior of

the MLE itself for which the help of a statistician was needed. The

results of this joint research questioning MLE as the best estimator

for fitting extreme distributions in the OTM framework is the main

subject of this paper. In order to understand this difficulty and,

ultimately, to solve it, it appeared that we have to question three

choices that are actually intimately linked:

� setting the threshold;
� accounting for a location parameter;
� choosing a reliable estimator.

We shall consider one specific variable, namely the wave

heights, but the following is also applicable to all environmental

variables: wind speed, surge height, river discharge, temperature.

To smoothly report the results of this work, the paper is

organized as follows. First, the multi-distribution model proposed

in Mazas and Hamm (2011) is briefly recalled in Section 2. The

limits of the MLE are then illustrated with reference to the case

studies of Haltenbanken (Northern Atlantic) and simulated GPD

datasets in Section 3. Alternative estimators based on probability

weighted moments and L-moments are briefly introduced in

Section 4 (and detailed in Appendix). Lastly, a comparison

between the fit of 2-parameter distributions estimated by MLE

and 3-parameter distributions estimated by L-moments is pre-

sented in Section 5. Results are discussed in Section 6. This leads to

the proposal of an improved, more reliable methodology.

2. The multi-distribution stationary model

The present section is a brief abstract of the model presented in

MH2011, complemented by the considerations and clarifications

about the declustering methodology described in BM2014. For

more details, justification and illustrations please refer to these

papers.

2.1. Data processing and physical declustering

Oceanographic or coastal engineers work with time series of

sea states. These may be buoy measurements, numerically hind-

cast time series, etc. The first task is therefore to identify the

various populations composing the sea states on site and then

separate them in order to work on homogeneous – that is to say

identically distributed – data. For instance, ocean swell, local wind

seas or cyclonic events, among other possible populations, should

be analyzed separately.

Though identically distributed, these time series of sequential

values (e.g. every 1 h) still show strong temporal autocorrelation.

In particular extreme values are likely to occur in clusters,

corresponding to storms, or more generally physical events. This

is true when the time step of the series is shorter than the typical

duration of the event. Consequently, a step of physical declustering

is required to grant the independence of extreme data. A popular

approach in various engineering fields is the Peaks-Over-Threshold

(POT) approach. Physical events (storms) are defined by exceeding

a value termed physical threshold and denoted up, following the

nomenclature of BM2014. Additionally, temporal parameters

should be used to make sure that the selected events are

independent, for instance by requiring a minimal duration

between two successive events (typically 24–48 h for sea states).

This threshold must be physically meaningful and linked to the

underlying physics of the phenomenon. BM2014 present an

extensive review of different possibilities for its determination;

in this paper we will set up so as to get between 5 and 10 events

per year in average, which is consistent with the physics of

significant storms in western Europe. Then, the storm is character-

ized by its maximum value, or peak, denoted X. The result of this

step of physical declustering consists of a sample of NT indepen-

dent and identically distributed (i.i.d.) storm peak data Xi larger

than up.

2.2. Optimization of the statistical threshold

Having reduced the working sample from a few tens of

thousands of data to a few tens or hundreds, it is then necessary

to determine the optimal threshold of the i.i.d. sample, i.e. the

threshold that has a statistical meaning and above which it can be

assumed that the peaks have an “extreme behavior”. Still following

BM2014, it may be termed the statistical threshold, denoted us. In

particular, and in contrast with the physical threshold, determining

us requires a statistical optimization to be performed on an i.i.d.

sample and not on an auto-correlated time series.

As explained in Coles (2001) and many other papers, the GPD–

Poisson model is the natural candidate for the extreme analysis of

an i.i.d. sample issued from a POT declustering. Indeed, the

Generalized Pareto Distribution is the law that asymptotically

(i.e. for a fairly high threshold) approximates the exceedance law

of a threshold. In addition, it is considered that the number of

events during a year follows a Poisson process. Consequently, the

determination of us is usually based on theoretical properties of

the GPD: see BM2014 for a review of different methods.

In this paper, the following property will be used: if a sample is

derived from a GPD, the shape parameter k remains constant

when the threshold rises. Hence a GPD is fit to the peak

exceedances for a broad range of us values and “domains of

stability” where k is roughly constant are looked for. Since the

GPD law is asymptotic, the bias should be lowest within the

domain of stability corresponding to the highest thresholds.

However, to limit the increase in variance due to the reduction

in sample size and thus loss of information, the aim is to select the

lowest threshold of this highest domain of stability; or in other

words, to find the best compromise between bias and variance.

F. Mazas et al. / Ocean Engineering 92 (2014) 44–54 45



Finally, N storm peaks exceed the statistical threshold us, from

which can be derived a sample of N threshold exceedances

ðY1; …; YNÞ, where Y ¼ X�us, given X4us. MH2011 recom-

mended studying only values of us equal to the storm peaks

(explanations will be provided in Section 3.2).

2.3. Choice of statistical distributions

The GPD is particularly suitable for OTM analyses due to its

asymptotic properties. However, given the very large number of

cases that may occur, other distributions may be more suitable. For

instance, Goda and Kudaka (2009) pointed out the risk of under-

estimation of return levels due to finite upper bounds and favor a

multi-distribution approach. Van Vledder et al. (1994) also encour-

aged the analysts to try several candidate distributions, a recom-

mendation that was expressed by the 1993 IAHR Working Group

(Mathiesen et al., 1994). Furthermore, it should be kept in mind

that the GPD is an approximation of the law of threshold

exceedances (see Eq. (1) in MH2011), only valid within the

asymptotic domain (Pickands, 1975). Consequently, it cannot be

guaranteed a priori that this domain will be reached and thus that

the GPD will be appropriate. For many practical case studies, the

difficulty in determining the statistical threshold us as explained

above suggests such a situation. This is another argument for a

multi-distribution approach.

Through our practical work we have adopted the Weibull

distribution (traditionally used by many authors, see for example

Mathiesen et al., 1994 or Goda, 2000) and the Gamma distribution

(Dorsch et al., 2008). However, in a multi-distribution approach,

analysts should feel free to test other distributions that could give

good results for their particular datasets. The cumulative distribu-

tion functions of these three laws are as follows:

2� parameter GPD :
FY ;k;σ yð Þ ¼ 1� 1þky

σ

� ��1=k
if ka0

F yð Þ ¼ 1�exp �y
σ

� �
if k¼ 0

8
<

: ð1Þ

2� parameter Weibull : FY ;k;σ yð Þ ¼ 1�exp �
y

σ

� �k
� �

ð2Þ

2� parameter Gamma : FY ;k;σ yð Þ ¼
γ k; y

σ

� �

ΓðkÞ
ð3Þ

In the three cases, k is a shape parameter and σ a scale parameter.

If k o 0, the GPD law has a finite terminal point ω¼ �σ=k, that is

to say that the probability of y4ω is nil. It should be noted that if y

is replaced by x � us, it can be seen immediately that us plays a

similar role to that of a location parameter. However, it is set

before the estimation; this means they are indeed two-

parameter laws.

2.4. Fitting the data to the distributions

There are various estimation methods, the best known being

the least squares, moments and maximum likelihood (MLE)

estimators. The last of these is very widespread. It is in particular

asymptotically unbiased, robust and consistent. For these reasons,

in spite of the reservations already expressed in MH2011, it is this

estimator that was chosen in this previous study. The choice of the

estimator was also discussed in You (2012) and our reply (Mazas

and Hamm, 2012).

2.5. Calculation of quantiles and confidence intervals

Once the fits have been performed, it is easy to determine the

wave heights for a given return period T by means of the quantile

function applied to the probability of non-exceedance 1�1=ðλTÞ,

where λ is the average number of storm peaks larger than us

per year.

The confidence intervals are calculated by using the parametric

bootstrap technique, based on numerous resampling operations

(see for example Efron and Tibshirani, 1993).

Because these three distributions have the same number of

parameters (2), the model with the largest likelihood can be

selected as the best-fitting distribution.

3. Limitations of the Maximum Likelihood Estimator

3.1. Order statistics and formalism

Here, we examine the influence of the careful choice of the

statistical threshold us on the fit of a distribution and more

specifically when us varies between two consecutive values of

the i.i.d. sample of the storm peaks. The following formalism is

introduced for this purpose.

The sample X1; …; XNT

� �
of the NT storm peaks above the

physical threshold up may be sorted in ascending order so as to work

on order statistics and denoted X1:NT
; …; XNT :NT

� �
, so that

upoX1:NT
r…rXi:NT

r…rXNT :NT
. The sample of the N extreme

peaks above the statistical threshold us is then X NT �Nþ1ð Þ:NT
;…;

�

XNT :NT
Þ with X NT �Nð Þ:NT

rusoX NT �Nþ1ð Þ:NT
r…rXNT :NT

. It is impor-

tant to note that this sample is strictly identical for any threshold us

within the interval ℐu ¼ X NT �Nð Þ:NT
;X NT �Nþ1ð Þ:NT

½
�

. (It should be

recalled that when us is strictly equal to a data value, this data is

excluded from the sample of the threshold excesses in order to have

only strictly positive exceedance values.)

Similarly, we can sort the sample Y1; …; YNð Þ of the N peak

exceedances above the threshold us in ascending order:

0oY1:Nr…rYN:N , with Y i:N ¼ Xi:N�us. But in contrast with the

extreme peaks above, this sample Y1:N ; …; YN:Nð Þ will vary and be

translated when us varies in ℐu. In particular, the first value Y1:N

can take any value within �0;X NT �Nþ1ð Þ:NT
�X NT �Nð Þ:NT

� (i.e.

ℐu�X NT �Nð Þ:NT
).

Keeping in mind that the statistical fit is performed on the Y i:N

data, the consequence is that selecting the same storm peaks (i.e.

the same physical events) can yield infinity of samples to be fitted.

Because the physics of the phenomenon is invariant it should

therefore be expected that this infinity of possible fits when us

runs through ℐu results in the same results concerning the

quantiles (wave heights for any return period); the following

section will show it that this is not the case with the MLE.

3.2. Illustrations on site

First, these limits will be illustrated with one of the case studies

performed by MH2011: the classical Haltenbanken dataset provided

by the IAHR Maritime Hydraulics – Working Group on Extreme Wave

Analysis (Van Vledder et al., 1994), which consists of 128 storm peaks

higher than up ¼ 7 m, measured by a buoy over a 9-year period.

The statistical threshold was determined by a sensitivity analysis

on the GPD shape parameter and set at us ¼ 8:57 m (meeting four

storm peaks at the same value). The following data peak equals

8.63 m, so with this choice of us, Y1:N ¼ 0:06 m and ℐu ¼ 8:57;8:63½½ .

At this stage, it can be assigned to each ordered data Xi:NT
above up an

empirical probability of non-exceedance (or plotting position formula),

for instance the Weibull formula pi ¼ i=ðNT þ1Þ, which can be

transformed into an empirical return period: T i ¼ 1= λT 1�pi
� �� 	

. This

allows a visualization of the sample, as illustrated in Fig. 1.

Let us note us the optimal value of the statistical threshold as

chosen with the classical methods (8.57 m). However, this value

was determined here with a fine step of 0.01 m, corresponding to

the number of digits of the available data. One could imagine that
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with a coarser step of 0.05 or 0.1 m, for instance, a value of 8.60 m

would have been chosen. Because the peak following us is higher

than 8.60 m, strictly the same N peaks Xi would have been

selected with this choice, but the sample of peak exceedances Y i

would have been translated of 0.03 m. So a question arises: what is

the influence of this shift on the fit and eventually on the results?

If us runs through ℐu by a very fine step, say 0.0001m (i.e.

between us and X NT �Nþ1ð Þ:NT
�0:0001), the fit can be performed for

the corresponding sample Y1:N ; …; YN:Nð Þ at each step and the 1-in-

100-year Hs and log-likelihood can be calculated for each distribution

and each step. The results are presented in Figs. 2 and 3.

Fig. 2a clearly shows that the GPD is not quite sensitive to the

position of us in ℐu as far as the quantile is concerned, with a slight

(but not nil) increase in Hs100, whereas the Weibull and Gamma

distributions may increase considerably on approaching the upper

bound. In the log-likelihood profiles presented in Fig. 2b, it can be seen

that the maximum is reached on the open upper bound with a strictly

positive derivative, except in the case of the Weibull distribution for

which a global maximum exists. It may be added that when examin-

ing the second dataset of MH2011 (see also Section 5.3), the quantiles

and log-likelihood profiles of all three distributions, Weibull included,

show this behavior of monotonous increase.

Focusing on the GPD, this behavior can be observed between

any values of the peak sample. The above plot of Fig. 3 shows the

evolution of the 1-in-100-year Hs (curve below, primary axis) and

of the shape parameter (curve above, secondary axis). Data values

are represented by points. It can clearly be seen that both the

shape parameter and the quantile can be quite unstable when the

threshold varies between two peaks, with very distinct sub-curves.

These typical sub-curves may be called “virgae”, referring to a

virga: a cloud whose shape is similar to a comma. These virgae also

appear for the log-likelihood: for the sake of clarity, the below plot

of Fig. 3 is limited to a zoom around 8.57 m.

In MH2011 these instabilities were considered to be a good

reason for restricting the possible values of us to those taken by

the sample data, but no further investigations were made. The

results of those are presented below.

3.3. Introduction of a location parameter

Letting us vary within ℐu is equivalent to the following

procedure: first, setting the value of us equal to X NT �Nð Þ:NT
, and

second, introducing a location parameter μ that can take any

value between 0 (included) and Y1:N ¼ X NT �Nþ1ð Þ:NT
�X NT �Nð Þ:NT

(excluded). Actually, μ can also be negative and varies within

ℐμ ¼ ��1;X NT �Nþ1ð Þ:NT
�X NT �Nð Þ:NT

½. The cumulative distribution

functions of the 3-parameter distributions are then written as

follows:

3� parameter GPD :
FY ;k;σ;μ yð Þ ¼ 1� 1þky�μ

σ

� ��1=k
if ka0

FY ;σ;μ yð Þ ¼ 1�exp �y�μ

σ

� �
if k¼ 0

8
<

: ð4Þ

Fig. 1. Haltenbanken: storm peaks as a function of their empirical return period
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F. Mazas et al. / Ocean Engineering 92 (2014) 44–54 47



3� parameter Weibull : FY ;k;σ;μ yð Þ ¼ 1�exp �
y�μ

σ

� �k
� �

ð5Þ

3� parameter Gamma : FY ;k;σ;μ yð Þ ¼
γ k; y�μ

σ

� �

ΓðkÞ
ð6Þ

with μoY1:N . It should be noted that the 3-parameter Gamma

distribution is more widely known as the Pearson-III distribu-

tion. In the following, we will focus on the 3-parameter GPD.

3.4. Behavior of log-likelihood maxima on simulated GPD datasets

Let us randomly generate a sample of size N¼ 100 from a

theoretical 3-parameter GPD with the following set of parameters:

k¼ �0:25, σ ¼ 1:5, μ¼ 0:05, and let us estimate the parameters

from this sample using the Maximum Likelihood Estimator. Let us

recall that the domains of validity of the parameters are as follows:

μoY1:N , σ40 and k4�σ= YN:N�μð Þ. Note that we examine the

case ko0, corresponding to a finite upper endpoint, because it is

the most frequent case in environmental applications (for

instance, the wave height or wind speed is expected to be

physically limited).

The log-likelihood is computed for a large number of discre-

tized parameters set: ki; σj; μl
� �

. In particular, μ takes a finite

number of discrete values between a lower bound, say �0.5,

and Y1:N�ϵ, where ϵ is the discretization step, say 0.002. This

operation results in a large number of discrete log-likelihood

values within the 3-dimensional parameter space. This exercise

aims at analyzing and understanding the behavior of the log-

likelihood within this space, in particular regarding the value of μ.

For this purpose, we will first examine its local maximum when μ

is constant (i.e. for each hyperplane k; σð Þ of the parameter space

k; σ; μð Þ) then its global maximum. Conclusions will be drawn in

Section 3.5.

Besides, it is noteworthy that standard algorithms for

3-parameter laws make the location parameter vary within its

discretized validity interval (Panchang and Gupta, 1989) and then,

for each scanned value of μ, solve the classical 2-parameter set of

equations.

Fig. 4 displays the contours of the log-likelihood values for two

hyperplanes of the parameter space: μ¼ 0 and μ¼ Y1:N�ϵ. The line

σ ¼ �k YN:N�μð Þ is drawn as it is a limit of the domain of validity.

The local maximumwithin this hyperplane is marked by a cross. It

can be seen that for each hyperplane, the local (2-dimensional)

maximum is reached within the domain of validity and not at one

of its bound. It implies that the derivatives at this local maximum

are nil.

Fig. 5 shows the variation of this local maximum log-likelihood

for each hyperplane μ¼ constant of the parameter space with

respect to the value of μ. The global maximum is reached for

μ¼ Y1:N�ϵ, i.e. when μ tends to its open upper bound. It can also

be observed that the derivative ∂l=∂μ is strictly positive, not nil.

This is fully consistent with what can be observed for real

environmental datasets (see Fig. 2b).

Lastly, Fig. 6 displays the evolution of the pair k; σð Þ correspond-

ing to the local maximum of the log-likelihood for each hyper-

plane. It can be observed that when μ-Y1:N , the pair k; σð Þ does

not converge towards any stable value. It should be noted that this

exercise has been repeated with a positive value of k (0.05 and

0.15) as well as with different sample sizes of N¼ 25 and N¼ 50:

the same results can be observed.

3.5. Conclusions on the validity of the Maximum Likelihood Estimator

In the previous sections, it has been shown both for environ-

mental and simulated datasets of different sample sizes that the

global maximum likelihood is reached at an open upper bound of

the parameter space, with a non-nil local derivative and without

any convergence of the values of the estimated set of parameters

ðbk; bσ ; bμÞ. It is actually not surprising for the GPD because the

maximum of its probability density function is for y¼ 0. Yet
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proving the asymptotic properties (consistency, efficiency) of the

Maximum Likelihood Estimator requires that the true (and

unknown) vector of parameters be an interior point of an open

set (Lehmann, 1983, chapter 6), and that the likelihood function

converges towards a global (and finite) maximum on this point

with locally nil derivatives.

In other words, the conclusion can be drawn that using distribu-

tions with no location parameter but fixing the threshold arbitrarily

between two data values is in fact implicitly equivalent to fixing the

location parameter and that, in this case, the conditions for the

Maximum Likelihood Estimator to be valid are not met, which can

produce instabilities in the quantiles being investigated.

As a consequence, and this is a key result of our study, it is

essential to dissociate two clearly distinct concepts: that of

selecting data via the statistical threshold us and that of carefully

determining the origin of the distribution, which is the role of the

location parameter μ. Note also that if the estimate of μ is negative,

the origin of the distribution may be lower than some peaks below

us: however, these peaks are not to be included in the fit, which

highlights the difference between us and μ. Practically speaking,

during the step of statistical optimization of the threshold (see

Section 2.2), this is a justification that limiting the values of us to

be tested to the values of the peaks X i:NT
is necessary and

sufficient: for each of these values, the same exceeding peaks will

be fit, including an estimation of the location parameter. Thus this

step should be considered as a sensitivity study to the dataset, in

contrast with a sensitivity study to a parameter.

It is therefore recommended to work with distributions that

include this parameter. Because the MLE does not produce proper

parameter estimation, alternative estimators will be examined.

4. Alternative estimators for 3-parameter distributions

4.1. Quick review

In addition to the Maximum Likelihood Estimator, the other

classic estimator is that of the method of moments. This involves

relating the theoretical moments of the distribution, which

depend on its parameters, with the empirical moments of the

sample, namely its empirical mean, variance, etc. This very simple

method is however unsuited to small samples (typically less than

50–80 data for environmental applications). In particular, it has a

severe bias, poor variance and sometimes slow convergence. It is

therefore unwise to use it for applications such as determining

extreme waves. Generalizations have been made, see for example

Bera and Bilias (2002) for a history of the estimation and a

summary of the estimators connected with the method of

moments and those connected with the likelihood function.

There are numerous other estimators, such as for example the

likelihood moment estimator (Zhang, 2007), the generalized

moments method (Hansen, 1982) or the generalized empirical

likelihood method (Owen, 2001). de Zea Bermudez and Kotz

(2010a, 2010b) have reviewed many estimators for the GPD, with

a particular focus on the 2-parameter form. However, this study

suggests the use of a relatively simple method: the Probability

Weighted Moments and L-moments estimators. These were used

by Van Gelder et al. (2000) in the Dutch North Sea, by Goda and

Kudaka (2009) and Goda et al. (2010) in the Japan Sea and by

Pandey et al. (2001) for determining extreme wind velocities.

In the latter paper, the authors studied these estimators with and

without a location parameter and they favored its inclusion.

4.2. Probability Weighted Moments and L-moments

An alternative to the method of moments was proposed by

Greenwood et al. (1979). They defined the Probability Weighted

Moments (PWM) as moments weighted by non-exceedance prob-

abilities. The disadvantage of probability weighted moments is

that they have no immediate statistical meaning. To remedy the

situation, Hosking (1990) defined L-moments. The idea is to

combine the PWMs linearly (hence the L in the name L-moments)

so that they can be interpreted more easily. The L-moments λr are

linear functions of the expected order statistics of a random

sample derived from a distribution and hence can be related quite

simply to its parameters.

A consequence is that estimating the L-moments allows an

estimation of the parameters just like the classical method of

moments, including the location parameter. Thus the L-moments

estimator is used for estimating 3-parameter distributions in the

following. The definition and estimation of PWMs and L-moments

are extensively presented in Appendix.

5. Comparison of 2- and 3-parameter distributions

5.1. Sensitivity study to the statistical threshold

When estimating 3-parameter distributions by the L-moments

and letting the statistical threshold us vary in ℐu in the same way
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as in Section 3.2, the shift in the threshold is strictly compensated

by an identical shift in the location parameter, meaning that all the

different samples Y i�μð Þ remain constant, in contrast with the

different samples of the Y i. As a consequence, the shape and scale

parameters, quantiles (Hs100) and log-likelihood remain strictly

constant in ℐu. The estimator of the L-moments coupled with the

introduction of a location parameter is therefore insensitive to any

“artificial”, or non-physical, translation of the sample. This stability

is illustrated for the GPD fit of the Haltenbanken dataset in Fig. 7,

to be linked with Fig. 3.

In Section 5.2–5.4, further comparison of the performance of

2-parameter MLE (hereinafter referred to as MLE2) and 3-

parameter L-moments estimator (hereinafter referred to as

LMOM3) is presented for the GPD, Weibull and Gamma laws,

based both on simulated and real-world environmental datasets.

5.2. Sub-sampling of environmental datasets

From the N peaks above us of the Haltenbanken dataset, n

storm peaks are randomly selected (N ¼ 46, n ¼ 35, i.e. a rate of

76% and more than 13 billion possible combinations), then the

resulting sub-sample is fitted to the GPD, Weibull and Gamma

laws by MLE2 and LMOM3. The sub-sampling is performed

100,000 times. This technique is used for studying the variability

of the estimators using boxplots, which allow visualization of the

median and variance of the estimated parameters, the quantiles,

the likelihood of the fit, etc., or more specifically the position of

the quartiles and hence their relative spacing. The boxplots of

quantile Hs100 for each distribution are plotted in Fig. 8. From a

physical point of view, sub-sampling can be seen as the equivalent

of random breakdowns of the buoy or any measurement devices.

It can be seen that for the same law (in its 2- or 3-parameter

formulation), the differences with regard to the medians of Hs100
may be significant (up to 6–7%) from one estimator to another

(compare boxplot 1 with 2, 3 with 4, 5 with 6). In particular, the

MLE2–GPD yields Hs100 that are significantly lower than the

LMOM3-GPD, and therefore non-conservative from an engineering

point of view. For this case study, using the L-moments estimator

greatly reduces the difference between the Hs100 from one dis-

tribution to another: it falls from 20% between the GPD law and

Gamma law with the MLE to 9% between the 3-parameter GPD law

and the Pearson-III law with the L-moments (compare boxplots 1,

3 and 5 on the one hand with 2, 4 and 6 on the other). The

variance or scatter of the MLE2 estimates is significantly less than

with LMOM3 for the GPD (see first two boxplots) while it is

roughly the same for Weibull and Gamma.

To compare the three fits using MLE2 in order to select the best

one, BIC and AIC were used in MH2011. However, these criteria

involve maximizing the likelihood (Schwarz, 1978; Akaike, 1973)

and this is no longer the case with the L-moments. Focusing on

likelihood is thus no longer the most pertinent way to get a

descriptive measure of goodness-of-fit. Other measures are there-

fore necessary. Among many authors, Mathiesen et al. (1994)

provide a review of the most commonly used goodness of fit

tests: Kolmogorov–Smirnov or Chi-square tests, Cramér–von

Mises or Anderson–Darling statistics, etc. We choose the Kolmo-

gorov–Smirnov (KS) distance, that is the maximum distance

between the empirical distribution function curve FN of the

sample and the theoretical cumulative distribution function F of

the law estimated using the same sample. It is written as follows:

DN ¼ sup
y

FN yð Þ�FðyÞ


 

 ð7Þ

The empirical distribution function of the sample of the Y i is

written as follows:

FNðyÞ ¼
1

N
∑
N

i ¼ 1

IY i ry ð8Þ

I is the indicator function, which has a value of 0 or 1. On the

basis of DN , a p-value can be derived bijectively. This is more

significant as it relates this distance to the size N of the sample.

The closer it is to 1, the more the hypothesis that “the sample is

derived from the distribution studied” is likely to be true. It is

therefore a good way of discriminating the distributions fitted to a

sample. In this exercise, it is used for comparing the goodness of fit

of a statistical law with and without a location parameter. The

boxplots of the KS p-values computed for the fits of the 100,000

sub-samplings are presented in Fig. 9. It can be seen that for each

law, LMOM3 obtains much better p-values than MLE2: the

boxplots are narrower and closer to 1. This is particularly obvious

for the GPD. Hence, as far as the GPD, Weibull and Gamma laws

are concerned, introducing and estimating the location parameter

improved the fits.

5.3. Further justification for the location parameter by a hybrid

KS–ML estimator

The analysis carried out in Section 3.2 (Fig. 2) can be extended,

this time studying the change in this KS p-value when us varies.

At each step, 2-parameter distributions are fitted by MLE. us is now

allowed to be smaller than the lower bound X NT �Nð Þ:NT
, but without

including the corresponding peaks. It can also be seen as setting

discrete values of μ in ℐμ, possibly negative, and fitting

2-parameter distributions for each discrete value.

Statistical Threshold us (m)

1
0

0
−

y
e

a
r 
H
s
 (

m
)

8.50 8.55 8.60 8.65 8.70

Statistical Threshold us (m)

L
o

g
−

lik
e

lih
o

o
d

12

13

14

15

−65

−60

−55

−50

7.0 7.5 8.0 8.5 9.0 9.5 10.0

−1.5

−1.0

−0.5

0.0

S
h

a
p

e
 p

a
ra

m
e

te
r 
k

Fig. 7. Haltenbanken – change in the L-moments estimated 3-parameter GPD

shape parameter and in Hs100 (above) and in the log-likelihood (below, zoom) with

respect to us . Points represent the data values Xi:NT
.

11

12

13

14

15

16

11

12

13

14

15

16

MLE2

GPD

LMOM3

GPD

MLE2

Weibull

LMOM3

Weibull

MLE2

Gamma

LMOM3

Gamma

1
0

0
−

y
e

a
r 
H
s
 (

m
)

Fig. 8. Haltenbanken: Boxplots of Hs100 for 100,000 sub-samplings.

F. Mazas et al. / Ocean Engineering 92 (2014) 44–5450



The case study of Haltenbanken is supplemented by the second

case study of MH2011, consisting of 44 years of hindcast data at a

point located at the western entrance to the Strait of Gibraltar,

extracted from the SIMAR-44 database from Puertos del Estado,

Madrid, Spain. There are NT ¼ 288 i.i.d. peaks Xi:NT
above the

physical threshold up ¼ 3 m and the statistical threshold is set at

us ¼ 4:3 m. The first peak above us is at 4.4 m (Y1:N ¼ 0:1 m). The

results are presented in Fig. 10 (once again, us is the original choice

of the statistical threshold determined as explained in Section 2.2).

In addition, the estimate of μ by LMOM3 associated the KS p-value

of the fit are plotted (dots).

While there was no maximum log-likelihood in two cases out of

three (Fig. 2b), the KS p-value here exhibits global maxima. Hence one

may estimate μ on the basis of this criterion: this is actually a hybrid

“ML–KS estimator”, with ML-estimated shape and scale parameters

and KS-estimated location parameter. This estimation can be com-

pared with the estimates by LMOM3, summed up in Table 1.

It is noteworthy that the estimates are consistent between the

two estimators: in particular, all estimates are negative for the

Haltenbanken dataset and positive (except for LMOM3 Gamma)

for the Gibraltar dataset. Even though the choice of the KS test

may not be the best one, it appears that the introduction of a

location parameter improves the fit. The Haltenbanken case also

shows that μ can be negative, making it necessary to distinguish it

from the statistical threshold us whose role should be limited to

extreme data selection or censorship.

5.4. Monte-Carlo simulations

The performance of MLE2 and LMOM3 is further examined by

using simulated datasets in a Monte-Carlo approach. For each law

(GPD, Weibull, Gamma), a set of shape and scale parameters is

chosen so as to be typical of environmental applications:

k0 ¼ �0:25; σ0 ¼ 1:5ð Þ for the GPD, k0 ¼ 1:25; σ0 ¼ 1:5ð Þ for Weibull

and k0 ¼ 2; σ0 ¼ 0:75ð Þ for Gamma. A sensitivity study is performed

on the location parameter μ0 which can take five values: �0.01, 0,

0.01, 0.025 and 0.05. Considering that these samples may corre-

spond to datasets of Hs peaks with duration of K ¼ 20 years and

mean number of events per year of λ¼ 5, the 100-year Hs quantile

can be computed for each law. Depending on the value of μ0, its

value is around 9.75 m for the GPD, 11.5 m for Weibull and 11.35 m

for Gamma. For each law and set of parameters, 10,000 samples of

size N¼ Kλ¼ 100 are randomly generated and fit by MLE2 and

LMOM3. Last, the bias and root mean square error (RMSE) are

computed for the 100-year Hs quantile (Table 2).

For the GPD and Gamma laws, there is a significant decrease of

the absolute value of the bias when using the 3-parameter

L-moments (typically 2–4 times smaller). For the Weibull law,

such a decrease is less obvious when μ0 is close to 0. It is quite

noteworthy that 2-parameter MLE yields negatively biased quan-

tiles, that is under-estimated 100-year Hs, while 3-parameter

L-moments tend to yield positively biased quantiles for the GPD

and Weibull laws, which is conservative for engineering purposes.

This is consistent with the results of the sub-sampling on envir-

onmental datasets (see Fig. 8, Section 5.2). Last, RMSE is typically

20–30% larger with 3-parameter L-moments.

6. Discussion

This study aims at highlighting instabilities of parameter estimation

by the Maximum Likelihood Estimator while following the classical

methodology of extreme wave heights (or other environmental

variables) extrapolation, combining POT declustering and GPD–Pois-

son model; but also with other distributions widely spread in the

Fig. 9. Haltenbanken: Boxplots of the Kolmogorov–Smirnov p-value for 100,000

sub-samplings.

8.2 8.3 8.4 8.5 8.6

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Statistical Threshold u
s
 (m) 

Statistical Threshold u
s
 (m) 

K
S

 p
−

v
a

lu
e

4.20 4.25 4.30 4.35 4.40

0.0

0.2

0.4

0.6

0.8

1.0

K
S

 p
−

v
a

lu
e

Fig. 10. Change in Kolmogorov–Smirnov p-value when μ runs through ℐμ –

(a) Haltenbanken and (b) Gibraltar.

Table 1

Location parameter estimates and KS p-value using hybrid ML–KS estimator and

L-moments estimator.

ML–KS L-moments

μ̂ KS p-value μ̂ KS p-value

Haltenbanken

GPD �0.090 0.9728 �0.010 0.9999

Weibull �0.069 0.9918 �0.167 0.9957

Gamma �0.225 0.9817 �0.351 0.9920

Gibraltar

GPD 0.077 0.7717 0.077 0.9936

Weibull 0.035 0.9331 0.032 0.9996

Gamma 0.034 0.9133 �0.008 0.9996
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literature. These instabilities on the parameters logically affect the

quantile computation: in other words, different threshold values

falling between two storm peaks yield different extremewave heights,

though it seems counterintuitive.

Based both on real environmental and simulated datasets, this

study shows that these instabilities are linked with the likelihood

of the statistical distributions which tends to increase as the

threshold tends to the lowest storm peak exceedance Y1:N . As for

the GPD, this can be explained by the shape of the probability

density function whose maximum is reached at y¼ 0, whatever

the sign of k (positive or negative). However, as a consequence, the

hypotheses necessary for proving the MLE asymptotic properties,

in particular its consistency, are not met. We introduce the use of a

location parameter so as to make a clear distinction between

selecting extreme storm peaks to be extrapolated (the role of us)

and estimating the origin of the distribution of the extreme

sample (the role of μ). Actually, one could argue that letting us

vary between two peaks is exactly the same as setting the

threshold and introducing μ. Thus this could seem a superfluous

sophistication of the vocabulary: however, it has been shown that

the optimal value of μ could be negative and fall below a storm

peak that is not included in the extreme sample. Hence introdu-

cing μ not only clarifies the concepts but is also necessary for

determining the optimal set of parameters.

Using 3-parameter distributions require an alternative estimator to

the MLE. Estimators based on PWMs or L-moments appear to be

highly suitable and have been used in this study for comparative

purposes. Parameter estimates are easily computed and any shift, or

translation, in the sample of the extreme peak excesses Y i:N is strictly

compensated by an inverse shift in the location parameter. Hence, the

shape and scale parameters and, as a consequence, the quantiles

(wave heights for any return period) are constant as far as the same

storm peaks are fitted. Accounting for a location parameter also leads

to a notable improvement in the goodness of fit for real-world

environmental datasets, as evaluated by the Kolmogorov–Smirnov

distance (or p-value), as well as for simulated datasets, as evaluated by

the bias and RMSE of the 100-year Hs quantile. Future work could

include an extension of this comparison with other goodness-of-fit

criteria. Comparing the behavior of the log-likelihood and of the KS

p-value (Figs. 2b and 10) is an extra clue that the likelihood is not

appropriate for estimating the location parameter. Future work could

also include a more in-depth comparison of the performance of 2-

parameter MLE vs. 3-parameter L-moments with extended sets of

parameters and with different sample sizes.

It is also necessary to question the practical usefulness and

relevance of this work. Does the application of our recommenda-

tions improve the results? If there is such an improvement, is it

really worth bothering with both us and μ (not to mention up)? Or,

in other words, how severe is the problem? The answer depends

on the distribution (GPD, Weibull, Gamma or others) and on how

the threshold is set. In particular, the real-world examples above

(Figs. 2 and 3) show that if us is reasonably well chosen, the

quantile of the GPD, though not constant, is rather stable, the

amplitude of the virgae being limited. Regarding Weibull and

Gamma, the divergence appears for threshold values just below

the first peak. Thus it can be considered that this point has

generally little effect on the final results. Nonetheless, we consider

that the analysts should be aware of this issue, especially when the

threshold is set using techniques implying a sensitivity study with

respect to us: in such a case, it implicitly plays the role of a location

parameter. Attention should also be paid to the step of this

sensitivity study, in relation with the number of significant digits

of the data. Moreover, the severity of the problem has been found

to be more acute on other environmental datasets, in particular for

the Gibraltar dataset with 100-year Hs variations when us varies

between two data values up to 0.2 m for the GPD and up to 1 m for

Weibull and Gamma.

In any case, it has been shown that 3-parameter distributions

could yield significantly different extreme quantiles while per-

forming better in goodness-of-fit tests. In addition to the mere

knowledge of the causes of this virga phenomenon, this should

favor introducing μ.

7. Conclusions

The presence of virgae in the estimation of parameters and

quantiles is linked to the non-existence of a global maximum of

the likelihood function within the domain of validity of the

parameters of the distribution. This study shows that strictly

speaking, the location parameter should not be confused with

the statistical threshold. Their respective roles: selecting the data

to be fitted for the statistical threshold; accurately setting the

origin of the distribution for the location parameter; should be

clearly differentiated in order to avoid producing unstable estima-

tions. Such a conclusion is valid for any POT data or OTM analysis.

The methodology for determining extreme wave heights

presented in MH2011 can thus be improved by replacing

ML-estimated 2-parameter distributions by L-moments-estimated

3-parameter distributions using the KS p-value instead of BIC/AIC.

This methodology can then be summarized as follows:

(1) Homogenization of time series;

(2) physical declustering and selection of i.i.d. storm peaks by POT

approach using a physical threshold up;

(3) determination of an optimal statistical threshold us by a

stability analysis of the GPD shape and modified scale

parameters;

(3) Simulation and experimental results are provided to demon-

strate the efficiency of the method.

(4) fit by L-moments of 3-parameter GPD, Weibull and Gamma

distributions;

(5) selection of the best fit using the Kolmogorov–Smirnov

p-value; and

Table 2

Simulated data: bias and RMSE of the estimated 100-year Hs .

2-parameter MLE 3-parameter L-moments

Bias RMSE Bias RMSE

μ0¼�0.01

GPD �0.177 0.593 0.066 0.724

Weibull �0.056 0.765 0.028 0.933

Gamma �0.032 0.625 0.016 0.829

μ0¼0

GPD �0.167 0.596 0.077 0.739

Weibull �0.048 0.768 0.042 0.924

Gamma �0.039 0.619 0.009 0.819

μ0¼0.01

GPD �0.191 0.593 0.079 0.737

Weibull �0.047 0.764 0.050 0.932

Gamma �0.060 0.617 �0.009 0.820

μ0¼0.025

GPD �0.217 0.588 0.074 0.741

Weibull �0.067 0.757 0.024 0.926

Gamma �0.068 0.625 �0.026 0.844

μ0¼0.05

GPD �0.270 0.584 0.061 0.727

Weibull �0.097 0.773 �0.011 0.916

Gamma �0.101 0.630 �0.045 0.816
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(6) computation of return levels (quantiles) and confidence inter-

vals (by parametric bootstrap).

Future works could include further investigations for determin-

ing the best estimator for 3-parameter distributions, as well as the

best goodness-of-fit criterion. In particular, it could be explored

whether hybrid estimators similar to the one presented in Section

5.3 could perform better than the L-moments.
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Appendix. Definition and estimation of L-moments

Definition of PWMs and L-moments

Greenwood et al. (1979) defined the Probability Weighted

Moments (PWM) as follows:

Mp;r;s � E½Xp FðXÞ
� �r

1�FðXÞ
� �s

� ¼

Z
xp F xð Þ
� �r

1�F xð Þ
� �s

dFðxÞ ð9Þ

where p, r and s are real numbers. The moments are therefore

weighted by exceedance probabilities 1 � F and/or non-

exceedance probabilities F. More particularly, we shall consider

the following PWMs:

αr �M1;0;r ¼ E½X 1�FðXÞ
� �r

�; rAℕ ð10Þ

βr �M1;r;0 ¼ E½X FðXÞ
� �r

�; rAℕ ð11Þ

Each of these two forms of PWMs is sufficient to characterize the

distribution F completely and they are interchangeable:

αr ¼ ∑
r

k ¼ 0

�1ð Þ
k r

k

 �
βk ; βr ¼ ∑

r

k ¼ 0

�1ð Þ
k r

k

 �
αk ð12Þ

The disadvantage of probability weighted moments is that they

have no immediate statistical meaning. To remedy the situation,

Hosking (1990) defined L-moments. The idea is to combine the

PWMs linearly (hence the L in the name L-moments) so that they

can be interpreted more easily. Considering an ordered sample,

the L-moments are then defined as follows:

λr �
1

r
∑
r�1

k ¼ 0

�1ð Þ
k r�1

k

 �
E Xr�k:r½ � ; rAℕ

n ð13Þ

where Xk:N is the kth order statistic of a random sample of size N

derived from the distribution F. The λr are therefore linear functions of

the expected order statistics. In particular, λ1 is the expected value of

the distribution, and hence a measurement of the location, and λ2 is a

measurement of the range or scatter of the data, in a similar way to

the conventional second moment, variance. Because of this, the

higher-order moments can be normalized by λ2; the ratios of the L-

moments are thus defined in the following manner:

τr �
λr

λ2
; r¼ 3;4;… ð14Þ

τ3 may thus be interpreted as a measurement of asymmetry and τ4 as

a measurement of flatness (or, conversely, of “peakedness”). λ1, λ2, τ3
and τ4 are therefore referred to respectively as the L-location, L-scale,

L-skewness and L-kurtosis.

L-moments are connected to PWMs as follows:

λr ¼ �1ð Þ
r�1 ∑

r�1

k ¼ 0

pn

r�1;kαk ¼ ∑
r�1

k ¼ 0

pn

r�1;kβk ; rAℕ
n ð15Þ

with

pn

r;k ¼ �1ð Þ
r�k r

k

 �
rþk

k

 �
ð16Þ

This means that working with αr , βr or λr is strictly equivalent.

Therefore, for each distribution studied, it is a case of choosing the

formulation that expresses the PWMs or L-moments as simply as

possible depending on the parameters. As an example, there is the

following relation for the 3-parameter Weibull distribution:

αr ¼
μ

1þr
þσ

Γ 1þ1
k

� �

1þrð Þ
1þ 1

k

; rAℕ ð17Þ

In the same way, the relation between the L-moments and the

three parameters of the GPD is written in the following way:

λ1 ¼ μþ σ
1�k

λr ¼ σ
Γ 1�kð ÞΓ r�1þkð Þ
Γ 1þkð ÞΓ rþ1�kð Þ

; r¼ 2; 3;…

8
<

: ð18Þ

Conversely, the simplest formulation will be used to express the

parameters as a function of the PWMs or L-moments. Explicit

expressions may be established when the cumulative distribution

function of the distribution is invertible, as is the case with the

GPD and Weibull law

3� parameter GPD :

k¼ 3τ3 �1
1þ τ3

σ ¼ λ2 1�kð Þ 2�kð Þ

μ¼ λ1�
σ

1�k

8
>><

>>:
ð19Þ

3� parameter Weibull :

μ¼ 4
α0α3 �α2

1

4α3 þα0 �4α1

σ ¼ α0 �μ

Γ

ln
α0 � 2α1
α1 � 2α3

� �

ln 2

0

@

1

A

k¼ ln 2

ln
α0 � 2α1

2 α1 � 2α3ð Þ

� �

8
>>>>>>>>>><

>>>>>>>>>>:

ð20Þ

It is therefore simply a question of estimating α0, α1 and α3 in

order to calculate the three parameters μ, k and σ of the Weibull

distribution, and to do the same with λ1, λ2 and τ3 for the GPD.

In contrast, other distributions have a non-reversible cumula-

tive distribution function. This is the case for example with the

Gamma distribution with two or three parameters (Pearson-III).

In such cases, it is not possible to express the parameters as a

function of the PWMs and/or L-moments, and the equations must

be solved numerically by iterative methods.

Estimation of PWMs and L-moments

Given a sample sorted in ascending order and of size N, the

PWMs are estimated in the following form (Landwehr et al., 1979):

ar �
1

N
∑
N

i ¼ 1

N� i

r

 �

N�1

r

 �Xi:N ð21Þ

br �
1

N
∑
N

i ¼ 1

i�1

r

 �

N�1

r

 �Xi:N ð22Þ
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ar and br are unbiased estimators of αr and βr , which also verify

the identities (12). By analogy with (15), an unbiased estimator of

the L-moments is immediately deduced from this

lr � �1ð Þ
r�1 ∑

r�1

k ¼ 0

pn

r�1;kak ¼ ∑
r�1

k ¼ 0

pn

r�1;kbk ð23Þ

Another option is to use other estimators of PWMs defined by

using empirical plotting-position formulae pi:N

~ar �
1

N
∑
N

i ¼ 1

1�pi:N
� �r

Xi:N ð24Þ

~br �
1

N
∑
N

i ¼ 1

pri:NXi:N ð25Þ

~lr �
1

N
∑
N

i ¼ 1

∑
r�1

k ¼ 0

pn

r�1;k pi:N
� �k

" #

Xi:N ð26Þ

pi:N is usually of the form

pi:N ¼
iþa

Nþb
ð27Þ

Various formulations exist (see for instance Seckin et al., 2010,

for a detailed comparison), such as the Weibull or Cunnane (1978)

formulae: a; bð Þ ¼ ð0;1Þ for the former and ð�0:4;0:2Þ for the latter.

Hosking and Wallis (1987) suggest a; bð Þ ¼ ð�0:35;0Þ.

The parameters are then estimated as in the case of the

conventional moments method, i.e. by equating the theoretical

PWMs or L-moments of the distribution, which depend on these

parameters, with the estimators ar , br , lr , or ~ar , ~br , ~lr .

If the unbiased formulation is chosen, it is then strictly

equivalent to estimate the parameters of a distribution by ar , br
or lr and if an empirical probability formula is chosen, the same is

true with ~ar , ~br or ~lr (in both cases, the identities (12) and (15) may

be used).

Theoretically, there is no reason to prefer formula (27) and the

associated estimators (24)–(26) to the unbiased formulations .

In certain ranges of shape parameter, Hosking and Wallis (1987)

showed that this formula could give better results for the GPD law.

Our tests showed, however, that the differences between the two

formulations in the following comparisons are not significant. For

greater clarity we shall therefore restrict ourselves to the unbiased

estimators ar , br or lr .
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Newly exposed concepts of POT declustering (Bernardara et al., 2014) within the GPD-Poissonmodel are applied

to the joint probability of tide and surge for determining extreme sea levels, as a variation of the Revised Joint

Probability Method (RJPM, Tawn and Vassie, 1989). Amixturemodel is proposed for the meteorological residual

(surge) component with a non-parametric (empirical) density for the bulk values and parametric models for

both the lower and upper tails. In particular, a distinction is made between values observed at regular time

steps, called sequential values, and the clusters of extreme values, or events, onwhich the statistical extrapolations

are performed. The sea level distribution is obtained by convolution of the tide and surge density functions.

Confidence intervals are also proposed. This model is applied to the case study of Brest, France using both hourly

and high water values. Two methods for handling tide–surge interaction are presented and discussed and a

comparison with a direct approach is made.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate estimation of extreme sea levels is crucial for assessing risk

in coastal areas and particularly for ensuring the safety of the people

living there. In France, Atlantic storm Xynthia of February 27–28th,

2010 caused extensive flooding because of the joint occurrence of a

large storm surge with the high water of a spring tide, highlighting

the need to predict such events accurately by properly taking into

account both the tidal and surge components of the sea level.

There are two traditional ways of determining extreme sea levels.

The first includes what are called direct methods: they deal with the

sea level variable by directly extrapolating observations. In contrast,

the second family includes indirect methods: considering that the astro-

nomical tide is a fully deterministic variablewhile the surge is a stochastic

one, they are dealt with separately then recombined by convolution.

Pugh and Vassie (1979) proposed the first indirect approach with

the Joint Probability Method (JPM). The empirical probability density

functions of the hourly observations of both the tidal and surge compo-

nents were computed then convoluted. One of the main drawbacks of

the method was that a null probability was assumed for surges larger

than the highest observation: thus the highest predicted sea level was

simply the addition of the maximum surge observation and of the

Highest Astronomical Tide (HAT). It is clear that such a procedure can

yield dangerous underestimations, particularly in the case of short

datasets. Furthermore, hourly surge values are strongly correlated and

thus dependent, which can affect the estimation of extreme value

return periods.

Tawn andVassie (1989) proposed an extension of the JPM, called the

Revised Joint Probability Method (RJPM), to correct these deficiencies.

Tawn (1992) gives a detailed presentation of the RJPM. In particular

the extreme value theory is called on to fit a parametric model to the

upper tail of the surge distribution by extrapolating thehighest observa-

tions. These extreme values can be extracted either by identifying the

highest data peaks of the time series, with approximately 5 peaks per

year on average, or by an r-largest approach. Therefore the annual

maxima of hourly surges follow aGeneralized Extreme Value (GEV) dis-

tribution, or one of its special cases: the Gumbel distribution. The clus-

tering of surge and sea level extremes is then accounted for by an

extremal index for converting the distribution of hourly values into

return periods. As a result, the return level is parameterized as the

GEV parameters and two extremal indices representative of the mean

duration of surge and sea level events.

Tide–surge interaction has also been included in the RJPM (Tawn,

1992; Dixon and Tawn, 1994, hereinafter referred to as DT94; Dixon

and Tawn, 1999), improving in particular the reliability of the results
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for shallow water sites. Spatial extensions of these different methods

have also arisen, such as the Spatial Revised Joint Probability Method

(SRJPM) (Dixon and Tawn, 1995, 1997), but this paper will remained

focused on site-by-site analyses (DT94). A good presentation of these

methods along with a comparison of their results for eighteen sites

around the English Channel can be found in Haigh et al. (2010).

One of the key points of an indirect method is thus the statistical

model for the tail(s) of the surge distribution. In other words, it is a prob-

lem of extrapolating the extreme surge values and then transforming

them into extreme sea level values. Another difficulty lies in the neces-

sary distinction between events, such as storms, that can be considered

as independent and are fit for a proper statistical extrapolation, and

observations or realizations of the variable (sea level or surge) at a

regular time step δt, called sequential values, that are usually highly

auto-correlated and occur in clusters (the events). This distinction be-

tween events and sequential values has been thoroughly discussed by

Bernardara et al. (2014).

Determining the extremes of environmental variables is a widely

studied topic. Over the past decade, a broad consensus has emerged in

favor of the joint use of the POT (Peaks-Over-Threshold) approach for

declustering extreme events and of the Poisson-GPD model for fitting

their peaks (see for instance Coles, 2001, for an overview of the extreme

value theory), especially when the observation period is short com-

pared with the return periods to be studied. Two of the present authors

have also presented an extension of this model in the form of a multi-

distribution approach for determining extreme wave heights (Mazas

and Hamm, 2011, hereinafter referred to as MH2011).

This paper aims to apply the approach of POT declustering based on

events as described by Bernardara et al. (2014) and the GPD-Poisson

model to the family of JPM-type approaches, and in particular the

RJPM, for determining extreme sea level values. Particular attention is

paid to themixturemodel for the surge component, which allows prob-

abilities to be quantified for the entire range of sea level values, not just

for the extreme ones. Methods for estimating the confidence intervals

are also proposed. Indeed the proposed methodology can be viewed

as a variation of the classical RJPM.

The sea level components and processing of the time series of obser-

vations are discussed in Section 2. Themixturemodel for the surge com-

ponent is described in Section 3. The distribution of sea levels alongwith

confidence intervals is given in Section 4. The issue of tide–surge inter-

action is briefly presented in Section 5. The proposed methodology is

applied to Brest in Section 6 for hourly sea levels and high tide levels.

The results are discussed in Section 7.

2. Sea level observations

2.1. Components of the sea level

This paper focuses on the twomain components of the sea level: the

astronomical tide and the meteorological surge. However, in practice,

the analyst deals with a time series of sea level measurements and it

is necessary to be fully aware of all the possible components. Indeed,

the sea level is influenced by many physical processes and thus can be

considered as the sum of the following:

• mean sea level: can be defined over different periods of time and is

subject to fluctuations at these same timescales: long-term trend

(e.g. climate change or isostatic rebound), decadal oscillations

(e.g. due to geostrophic currents), seasonal oscillations, etc.;

• astronomical tide: a purely deterministic phenomenon that can be

predicted very accurately at local level;

• meteorologically induced surges: caused by wind and pressure

(both static and dynamic) effects on the free surface of the sea;

• coastal seiches: low-frequency waves whose periods typically

range from 10 to 50 min and are generated by abrupt meteorological

changes;

• wave set-up (or set-down): caused by the action of waves, whose

high-frequency fluctuations are filtered by tide gauges but whose

breaking can generate low-frequency waves (periods of 1 to 5 min);

• exceptional phenomena such as tidal waves caused by earthquakes,

volcanic eruptions, and submarine landslides, which can easily be

removed from the analysis.

Note that the first component is a level relative to a datum whereas

the following are extra elevations, which may be either positive or

negative.

Current practice is to filter the signal of sea level observations to

calculate the mean value and center the signal on it. If the period is

long enough, a spectral or harmonic analysis is performed to extract

the different tidal constituents and re-build the time series of the astro-

nomical tide, then remove it from the centered signal to get the non-

tidal residual.

For the sake of simplicity, it will be assumed in this paper that the

non-tidal residual is uniquely the meteorologically induced elevation,

whichwill simply be called the surge component and can be either neg-

ative or positive. Themean sea level is included in the astronomical tidal

component, which is relative to a datum thatmay be a local chart datum

or the mean sea level. We can then write:

Z tð Þ ¼ T tð Þ þ S tð Þ ð1Þ

where Z is the sea level (in m relative to the datum), T the tidal level

(inm relative to the datum), S the surge component (non-tidal residual,

in m) and t the time.

2.2. Processing of the dataset of sea level observations

Some authors (e.g. Bardet et al., 2011; Bernardara et al., 2011)

only use the maxima of sea levels over one tide, i.e. the predicted as-

tronomical high tide and the skew surge (defined as the highest sea

level observed around the predicted time of high tide, minus the pre-

dicted astronomical high tide), in order both to reduce the depen-

dency of the two components and to improve the reliability and

quality of the data. The present method can easily be adapted to

such an approach by using the high water values of Z, T and S instead

of their observations at a regular time step: it will be illustrated with

the case study of Brest, with a comparison of analyses based on hourly

sea levels on the one hand, and high water levels on the other hand.

In the following presentation of the methodology (Sections 2 to 4),

the full range of sea level data will be considered, i.e. sequential values

at a regular time step δt, or for the sake of simplicity “hourly values”

whatever the value of δt.

Let K be the duration of the time series of observations, in years, and

v be the number of observations per year. In the case of hourly values,

v = 365.25 × 24 = 8766. Computing the predicted astronomical tide

over the duration of the dataset eventually yields three time series of

vK data: Z (t), T (t) and S (t).

2.3. Distribution of astronomical tidal levels

The first step is to compute the deterministic variable, i.e. the astro-

nomical tide. In order to (almost) fully determine its density function, it

is necessary and (almost) sufficient to get the tidal level values over a

continuous period of 18.6 years, corresponding to the lunar nodal

cycle. If a different period is chosen, the density function will be biased,

unless it is a multiple of 18.6 years. However, it can be considered that

any period lasting more than a few years will give a very good

approximation.

Let us define the interval XT = [xT,min; xT,max] covering the entire

range of the tidal level values T (t). xT,min is equal to or slightly lower

than the Lowest Astronomical Tide (LAT) and xT,max is equal to or slight-

ly higher than the Highest Astronomical Tide (HAT). For computation
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purposes, XT is discretized at a regular step, denoted δx. Typically, δx can

be 0.01, 0.05 or 0.1 m. XT is called the support of the tidal level

distribution.

The empirical density function pT is then computed over XT by a non-

parametric kernel density estimator. It is recommended that the esti-

mated density should be assumed to be nil for values outside the

range [LAT; HAT] (bounded support).

2.4. Distribution of frequently observed surges (bulk distribution)

The same processing as for the tidal signal is applied to the surge

observations S (t), but this time over the entire length of the dataset.

In a similar way to above, and again for practical computation purposes,

let us define XS = [xS,min; xS,max] the support of the surge distributions.

xS,max (resp. xS,min) is a positive (resp. negative) value that must be

higher (resp. lower) than the extreme values that will be extrapolated

(it could be, for instance, the expected 1000-year or 10,000-year

surge value), including the confidence intervals if computed. When

discretizing XS, δx is taken to be the same as for discretizing XT in

order to make discrete convolution of the two distributions easier. The

empirical density function of the observed surges over the support XS

is denoted pS.

3. Mixture model for the distribution of surges

3.1. Overview of the mixture model

With regard to the surge component, a mixture model is built:

• modeling of the bulk (frequently observed values) by an empirical

(non-parametric) density function as described in Section 2.4;

• extrapolation of the upper and lower tails (high and low extreme

values) by a parametric model based on Peaks-Over-Threshold

(POT) declustering and Extreme Value Theory (EVT);

• connection of the bulk and tail distributions.

Manymixturemodels have been presented in the literature for both

the central and extreme domains: Mendes and Lopes (2004) propose a

modelwhere the central domain is assumed to be normalwhile the tails

are fitted by two GPDs; Behrens et al. (2004) also combine a parametric

distribution (either Gamma, Weibull or Normal) for the bulk values

with a GPD for the tail above a certain threshold; Tancredi et al.

(2006) present a semi-parametric mixture model with piecewise uni-

form distributions from a low threshold up to a high threshold above

which a Point Process model is fitted to the tail; MacDonald et al.

(2011) propose a flexible extreme value mixture model combining a

non-parametric kernel density estimator for the bulk domain with a

tail model based on Bayesian inference.

However, these models do not directly account for the distinction

between sequential (e.g. hourly) and auto-correlated observations and

independent events. The presentmixturemodel performs the statistical

extrapolation on i.i.d. events. A transformation between events and

sequential values is thus necessary.

The extrapolation is applied to both tails of the distribution, i.e. both

highest and lowest values of the non-tidal residual. The methodology

for the lower tail can easily be derived from the upper tail; hence, for

the sake of simplicity, only themethodology for extremepositive surges

will be presented.

Furthermore, Bernardara et al. (2014) presented a justification of the

double-threshold approach of MH2011, establishing a clear distinction

between the physical declustering (see Section 3.2) and the statistical

optimization (see Section 3.3), while slightly changing the nomencla-

ture of both thresholds. The notations of Bernardara et al. (2014) will

be used here.

3.2. Physical declustering of extreme surge events

The extreme values of environmental variables generally occur in

clusters, particularlywhen the time step of the time series is significantly

smaller than the typical duration of the physical process that generates

this variable. In the case of sea levels, and under temperate latitudes

(for instance in the North-East Atlantic), hourly measured surges are

generated by low-pressure areas, or storms, whose local effect typically

lasts around 12–36 h. A consequence is that the successive sequential

values are strongly auto-correlated and cannot be considered as inde-

pendent. It is noteworthy that the clustering is accounted for in the

RJPM (see Section 3.4).

Still, an extreme statistical analysis (within the simple univariate

model) requires a sample of independent and identically distributed

(i.i.d.) data. First, it will be assumed that the extreme surges are all

generated by the same type of meteorological processes so that the

data can be considered as identically distributed, or homogeneous.

This assumption can quite easily be considered as valid in Western

Europe, for instance, but a classical example of heterogeneity in coastal

areas such as the East Coast of the US could be the presence of

hurricane-generated surges in the time series. In such cases, heteroge-

neous populations should be considered separately.

Second, the independence condition will be fulfilled thanks to physi-

cal declustering. The most widely used method is the Peaks-Over-

Threshold (POT) method. Following the vocabulary of Bernardara et al.

(2014), clusters of sequential values exceeding a threshold, denoted up
for physical threshold, are defined as events (i.e. storms). Temporal criteria

are applied to ensure their independence: two events are considered

independent if there is a time lag of at least 24 h between the end of an

exceedance and the beginning of another. Short fluctuations below the

threshold during a storm are also allowed. The events are then described

by their maximum value, or peak.

Eventually, a sample of NT i.i.d. peaks higher than up is built:

PS
1;…; PS

i ;…; PS
NT

� �

where PS is the random variable “surge peak”. A

simple guideline derived from our practical experience is that the physi-

cal threshold should be set so that the mean number of storms per year

λT = NT/K is roughly between 5 and 10 (see MH2011).

3.3. Statistical extrapolation of extreme surge peaks

Once this i.i.d. sample is extracted from the time series, the extreme

value theory (EVT) can be called on for the extrapolation. The distribu-

tion of the Pi
S is unknown. Let us be a statistical threshold, in contrastwith

the physical one. us is applied to the sample of surge peaks, so us ≥ up.

This defines the sample of the N peak exceedances over us: Y
Ps

i ¼

PS
i−us

� �

PSi Nusj
. Thus YPS is the random variable “surge peak excess

over the (statistical) threshold”.

Under the i.i.d. assumption, the EVT states (Pickands, 1975) that the

asymptotic form (i.e. when us is high enough) of the distribution of the

YPS

i tends toward the Generalized Pareto Distribution (GPD), whose

cumulative distribution function is:

G
YPS ;k;σ

yð Þ ¼ 1− 1þ k
y

σ

� �

−1
k

ð2Þ

where k and σ are respectively the shape and scale parameters, with

y N 0 and y ≤ −σ/k if k b 0.

The statistical threshold must now be determined. There are many

methods: a first class is based onmaximization of the goodness of fit be-

tween the probability distribution and the data or minimization of the

asymptotic mean square error of the estimators (Bernardara et al.,

2011); some are based on graphical visualization of certain theoretical

properties of the GPD (see in particular Coles, 2001) while others aim

at automatic threshold selection (Thompson et al., 2009). Each analyst

142 F. Mazas et al. / Coastal Engineering 91 (2014) 140–150



should feel free to use their favorite methodology; in this paper us will

be determined by using the stability plots of the GPD shape and modi-

fied scale parameters.

As presented by Bernardara et al. (2014), this statistical threshold us
should not be confused with the physical one up. The latter is applied to

a highly auto-correlated time series of sequential values and requires

physical considerations in order to identify independent events and

build an i.i.d. sample of the event-describing variable, such as the

storm peak. In particular, during this step, particular attention should

be paid to the independence criteria: time lag between two events,

maximum duration of fluctuations below the threshold during the

event, minimum storm duration, etc. In contrast, the choice of the for-

mer aims at identifying the extreme domain of the peaks in a statistical

sense and consequently requires genuine statistical optimization based

on an i.i.d. sample. Furthermore, this optimization step is generally per-

formed by testing many threshold values over a broad range; thus

merging these two thresholds would have two consequences: first it

would be highly inefficient from a computing standpoint (declustering

of the entire time series would be performed at each threshold tested)

and second it could yield different samples for the same final statistical

threshold because the independence criteriamaydependon the thresh-

old value.

Once this extreme sample is built, a GPD can be fitted to the N

exceedances YPs

i over us. In this study, the L-moments estimator defined

by Hosking (1990) is adopted. It has been used to estimate GPD parame-

ters for environmental variables such as wave heights (Goda, 2011) and

wind velocities (Pandey et al., 2001).

The confidence intervals for the parameters and the quantiles of the

estimateddistribution are computedby the parametric bootstrapmethod

(see for instance Efron and Tibshirani, 1993).

MH2011 proposed an extension of the GPDmodel to other distribu-

tions (namely the Weibull and Gamma distributions), arguing that it

cannot be granted that the asymptotic domain of the EVT is reached.

Such multi-distribution approaches are adopted by different authors

(e.g. Goda, 2011; Hosking and Wallis, 1997). However, although the

use of other distributions can very easily be included into this method-

ology, this paper will be restricted to the single use of the GPD.

Eventually, the distributions of the peak excesses YPs

i and, hence, of

the extreme surge peaks over us, Pi
S, are obtained. They are characterized

by theprobability density functionsG
YPS

;k̂;σ̂
orG

PS ;k̂;σ̂
; and the cumulative

distribution functionsG
YPS

;k̂;σ̂
orG

PS ;k̂;σ̂
, where k̂ and σ̂ are the parameter

estimates. It should be noted that the density is null for surge peak

values falling below the origin of the distribution us, while its sum for

values above it is equal to 1. The limit between the empirical domain

for the bulk values and the parametric domain for extreme values is

thus defined by us.

3.4. Distribution of extreme surges

The next step is to transform the distribution of the extreme surge

peaks PS into the distribution of the extreme hourly surges S. In other

words, the parametric law of all the hourly exceedances over us, is

looked for. Reference may be made to Leadbetter (1983) and the

use of the extremal index for local clustering of extreme values

(see Eq. (4) in Tawn and Vassie, 1989):

Pr max Y1;…;YNð Þb xf g ¼ F
nθn xð Þ

xð Þ ð3Þ

with the finite version of θn introduced by Tawn and Vassie (1989).

These authors highlighted that in an intuitive and simple approach,

the extremal index θ may be interpreted as being the reciprocal of

dS (s), the mean number of hourly surges per peak, i.e. the mean

duration of surge events in hours. dS (s) can be estimated directly

from the original time series of hourly surges (see below).

Let (Si) be a sample of data whose unknown distribution is FS, and

Yi
S = Si − us, given Si N us. Y

S is the random variable “exceedances of S

over us, given S larger than us”. The law of the exceedances of S over

the threshold us, i.e. the probability of having S N s = us + y, is:

Pr SNsjSNusf g ¼ Pr SNus þ yjSNusf g ¼ Pr Y
S
Ny

n o
¼

1−FS us þ yð Þ

1−FS usð Þ
: ð4Þ

Knowing that 1−Pr YS
Ny

n o
¼ Pr YS

≤y
n o

¼ GYS yð Þ, it is possible to

write:

GYS yð Þ ¼
FS us þ yð Þ−FS usð Þ

1−FS usð Þ
: ð5Þ

Thus, the first step consists in determiningGYS, the conditional lawof

hourly surge excesses above u. It can be derived from the conditional

law of extreme surge peak excesses, G
YPS , and from the mean number

of hourly observations per peak, or per event, dS.

For the sake of simplicity, we will work with the conditional vari-

ables S and PS, and their conditional distributions GS and GPS , given

S N us and PS N us. Let nS (s) (resp.nPS sð Þ) be the number of hourly surges

(resp. surge peaks) above s: nS sð Þ ¼ nPS sð Þ� d sð Þ. Dividing both sides of

this equation by: nS usð Þ ¼ nPS usð Þ � d usð Þ, we have:

nS sð Þ

nS usð Þ
¼

nPS sð Þ

nPS usð Þ
�

dS sð Þ

dS usð Þ
: ð6Þ

The ratio nS(s)/nS(us) is taken as an estimate of the probability of

exceedances of hourly surge values above s, given s N us, and thus as

an estimate of 1 − GS(s), while nPS sð Þ=nPS usð Þ is taken as an estimate

of 1−GPS sð Þ . Furthermore, dS usð Þ ¼ nS usð Þ=nPS usð Þ ¼ nS usð Þ=N . Thus

Eq. (6) yields:

G
S;k̂;σ̂

sð Þ ¼ 1−
N

nS usð Þ
dS sð Þ 1−G

PS ;k̂;σ̂
sð Þ

h i
: ð7Þ

Now let us fit a parametric distribution to the observations of d (s).

Three distinct regimes can be identified. First, between s = us and s =

s1, the values of dS (s) steadily decrease from dS (us) (typically between

5 and 15) to 1. Second, between s= s1 and s=max (PS), the number of

observed hourly surges is the same as the number of observed peaks

and dS (s) = 1. Third, no more values are observed and dS (s) cannot

be computed. When log [dS (s)] is plotted against log (s), a linear

trend appears for the first regime. Hence we propose to fit a linear

regression model for the first regime in log–log scale while for the

second and third regimes dS (s) = 1.

We now seek to determine FS (s) for s N us, which is nothing else

than FS (us + y). From Eq. (5):

FS us þ yð Þ ¼ 1−FS usð Þ½ � � GYS yð Þ þ FS usð Þ: ð8Þ

1 − FS(us) is the probability that the surge observations exceed us.

Intuitively, it can be seen that a very good approximation of this proba-

bility will be given by the ratio of the number of observations above us,

nS (us), to the total number of observations vK:

1−FS usð Þ≃
nS usð Þ

νK
: ð9Þ

Thus, Eqs. (8) and (9) yield:

FS us þ yð Þ ¼ 1þ
nS usð Þ

νK
GYS yð Þ−1
� �

: ð10Þ

With respect to s, this gives:

FS sð Þ ¼ 1þ
nS usð Þ

νK
GS sð Þ−1½ �; for sNus: ð11Þ
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Finally, Eqs. (7) and (11) yield:

FS sð Þ ¼ 1þ
N

νK
d sð Þ GPS sð Þ−1

� �
; for sN us: ð12Þ

This eventually yields the cumulative distribution function FS of the

hourly surges of the extreme regime, that can easily be transformed

into the corresponding probability density function fS.

The approach used here is very similar to that of the RJPM, except

that the index varies with s above the threshold. Also, it has been

adapted to the law of threshold exceedance (Eq. (4)).

3.5. Connection of surge distributions of central and extreme regimes

The last step in determining theprobability distribution of the surges

is to connect the distributions for the bulk, or central regime (empirical

distribution pS of observed surges) and the extreme regime (estimated

distribution fS of extreme surges). The probability density function epS
can thus be defined over the support XS as follows:

epS ¼
pS for s≤us

f S for sNus
:

�
ð13Þ

It is to be noted that if a parametric distribution is also fitted to the

lower tail, it will also be connected to the bulk regime distribution

below an appropriate threshold, quite similarly to the upper tail.

4. Distribution of sea levels

4.1. Distribution of sequential sea levels

The probability density function fZ of the hourly sea level Z can now

be computed by convoluting the empirical pdf pT of the tidal levels and

the final pdf epS of the hourly surges.

The cumulative distribution function FZ can easily be derived from fZ,

as well as the return periods of hourly sea levels. Let Tr be any return

period, in years. The relationships between Tr and the correspond-

ing quantile z (Tr), i.e. the hourly sea level of return period Tr, are

the following:

Tr zð Þ ¼
1

ν 1−FZ zð Þ½ �

z T rð Þ ¼ F
−1
Z 1−

1

νTr

� � :

8
>><
>>:

ð14Þ

4.2. Distribution of sea level events

This last equation provides return periods associated with a given

sea level value. However, extreme sea levels also occur within clusters,

i.e. events, that may be storms or simply high tides. Confusion over

the return period associated with an event should again be avoided, as

required for coastal engineering applications.

The approach for obtaining return periods for extreme sea level

peaks is simply the inverse of the transformation presented in

Section 3.4., where the distribution of extreme surge peaks was to be

converted into a distribution of extreme hourly surge values. Let PZ be

the random variable “sea level peak”, and GPZ its (conditional) cumula-

tive distribution function. The sea level peaks Pi
Z are defined with

respect to a threshold uZ, which is a physical threshold identifying

extreme sea level events, similarly to up for storm surge events (see

Section 3.2). Thus its value does not come from an optimization proce-

dure and does not need to be accurate, but it must be physically mean-

ingful. We propose using a level whose return period is about 0.1 to

1 year (i.e. 1 to 10 “sea level events” per year). We also define NZ, the

number of events exceeding uZ, λZ = NZ/K, the mean number of sea

level events per year, nZ uZð Þ , the number of hourly observations

exceeding uZ, and dZ (z), the mean number of hourly sea level observa-

tions per event above z, that is the reciprocal of the extremal index for

the sea level (Leadbetter, 1983; Tawn and Vassie, 1989). Adapting

Eq. (12) yields:

GPZ zð Þ ¼ 1þ
νK

NZ

1

dZ zð Þ
FZ zð Þ−1½ �; for z N u

Z
: ð15Þ

The fit of dZ (z) is similar to the fit of dS (s). However, it may happen

that no clear trend can be seen in the first regime. In that case, a simple

mean value could be substituted for the linear regression.

The return period of these events is:

Tr zð Þ ¼
1

λZ 1−GPZ zð Þ
� � : ð16Þ

Combining Eqs. (15) and (16) eventually yields:

Tr zð Þjevents ¼
1

ν

dZ zð Þ
1−FZ zð Þ½ �

z Trð Þjevents ¼ F
−1
Z 1−

1
ν

dZ zð Þ
Tr

0
BB@

1
CCA

:

8
>>>>>>>><
>>>>>>>>:

ð17Þ

The extreme sea level peak associated with an event can then be

computed for any return period Tr.

4.3. Confidence intervals for return levels

It would be useful to be able account for the uncertainty associated

with the estimation of extreme surgeswhen determining the probability

distribution of sea levels.

The confidence interval for the quantiles of the extreme surge peak

distribution is computed by parametric bootstrapping. The typical

number of iterations is 10,000–100,000. In this method, a new set of

parameters (k, σ, μ) is estimated at each iteration. A rigorous method

would be to follow the methodology from Sections 3.4 to 4.2 for, say,

10,000 iterations. The result would be 10,000 slightly different sea

level pdfs and, for each return period, a sample of 10,000 slightly dif-

ferent quantiles whose 5% and 95% percentiles would provide the 90%

confidence interval. However, discrete convolution is very computer-

intensive, and so is parametric bootstrapping. This solution, though

quite rigorous, would be way too computer-intensive.

A good andmuch less demanding approximation consists in defining

“equivalent GP distributions” for both the lower and upper bounds of

the confidence interval for the quantiles. The three parameters of the

equivalent GPDs are estimated by least square methods by simple inter-

polation between three pairs (quantile; return period). These equivalent

distributions for extreme surge peaks can then be transformed into

equivalent distributions for the extreme hourly surge values, then even-

tually convoluted with the tidal levels to provide a confidence interval

for the extreme quantiles of the sea level. In thiswayonly two additional

convolution operations are performed instead of 10,000–100,000 for

each tail.

5. Tide–surge interaction

5.1. Characterization of tide–surge dependence

Both the tide and the surge components behave as longwaves during

their propagation to the shore. So their celerity and amplitude at a defi-

nite location, say a tide gauge, depend on the total water depth: as a con-

sequence, the value of one of the components influences the other and

both interact. Generally speaking, larger surges are expected at low

tide because they tend to rise in shallower waters. This interaction is in
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contradictionwith the convolution hypotheses, where independence is

assumed. Furthermore, storm surges tend to occur during winter, while

the largest tide amplitudes occur around the equinoxes. This is a sea-

sonal non-stationarity.

A first step is to characterize this interaction so as to determine

whether it has an influence at the study site. Different diagnostics

have been proposed, among which the test proposed by DT94. First,

the tidal range is split into five bands of equal probability. The surges

are then separated into five samples of approximately the same size,

depending on the band within which the concomitant tidal level falls.

If there is no interaction, the number of surges per tidal band exceeding

a high value η, say the 99.75% empirical quantile of the total surge distri-

bution, should be close to the expected value e = νK × 0.0025/5, with

vK being the total number of surge observations. In reality, nS,i (η)

surge values exceed η for each tidal band i, i=1…5. A test for interaction

using a standard χ2 test statistic can thus be proposed:

χ
2
¼

X5

i¼1

nS;i ηð Þ−e
� �2

e
: ð18Þ

If this statistic exceeds the 95% significance level of the test χ4,0.95
2 =

9.49, then it can be considered that tide and surge interact.

5.2. Accounting for tide–surge interaction

There are several possibilities for handling tide–surge interaction.

They all have their advantages and drawbacks. An extensive study is

beyond the scope of this paper, nonetheless some of themwill be briefly

presented here.

A first possibility is described in DT94 (see also Dixon and Tawn,

1999). The parametric upper tail of the surge distribution is modeled

conditional on the tide. An appropriate transformation of the surge

variable with the tidal level as a covariate yields a normalized surge

series that is stationary with respect to the tide. Like the independence

test presented above, this transformation implies splitting the tidal

range into several equi-probable tidal bands, within which the empiri-

cal distribution of the associated surges is characterized in order to

determine the coefficients for the normalization to be performed:

S
�
t ¼

St−a T tð Þ

b T tð Þ
ð19Þ

where a (Tt) and b (Tt) are linear functions of the empirical 98% and 99%

quantiles for each tidal band. Thismethodology has been tested atmany

sites on theUK coast and is said towork adequately by the authors. Here

we propose a different normalization: a (Tt) = 0 and b (Tt) is the mean

of the surge values exceeding the empirical 95% quantile of the corre-

sponding tidal band. This normalization has been found to perform

better at several sites on the French Atlantic/Channel coast, according

to the χ2 test statistic proposed by DT94.

An alternative approach consists in reversing the reasoning: instead

of defining equi-probable tidal bands yielding sub-samples of the surge

component, let us define bands of surge observations (e.g. based on the

0.05, 0.5, 0.9 and 0.99 surge quantiles) and yield sub-samples of the

observed tidal levels. The tide distribution is then modeled by a non-

parametric density estimator for each band. During the convolution

operation, the tidal distribution to be associated with the surgemixture

model will depend on the surge value. This method has its advantages,

in particular for the mixture model presented in this paper, which is

based upon the distinction event vs. sequential values. During an

event, the tidal level typically varies between a low tide and a high

tide; hence the sequential surge values during the same event are

scattered in the different sub-samples with the approach of the tidal

bands. However this approach also has its drawback. When the entire

range of tidal levels is considered, the bounds of the support of the

variable are known, i.e. LAT and HAT. Furthermore, when a complete

lunar nodal cycle is available, the full distribution is known. So it can

be expected that the empirical density estimation (e.g. by kernel density

estimators) will be very accurate. In contrast, splitting the tidal levels

into several sub-samples implies that the distribution and its bounds

are not completely known (for instance it is expected that the tidal

levels associated with the highest surges will not reach HAT level).

Thus the estimation of the tide distribution is likely to be less accurate.

6. Case study: Brest

6.1. Presentation of the dataset

The model is illustrated with a dataset of sea level observations at

Brest, France. Two approaches are tested: first with hourly sea levels,

second with high tides and skew surges. At first tide and surge are as-

sumed to be independent; then the tide–surge interaction is examined.

The location of Brest is presented in Fig. 1. The exact coordinates of the

station are 4.49503994°W; 48.38290024°N. The local datum is the Zéro

Hydrographique (ZH), or Hydrographic Datum, defined in 1996 (0.5 m

higher than the previous ZH).

A continuous time series of hourly sea level observations from 1953/

01/01 to today is available from REFMAR (Réseaux de référence des

observations marégraphiques, http://refmar.shom.fr/). In the present

study, the time series lasts until 1992/12/31; i.e. 40 years. The precision

of the data is 0.01m. The eustatic trend is analyzed following themethod-

ology presented by Bernardara et al. (2011). A positive trend of

+1.48 mm/y is identified and removed from the analysis so as to get a

stationary time series with a mean sea level (MSL) of +4.14 m ZH.

The hourly tidal levels have been computed with the SHOMAR soft-

ware developed by the Service Hydrographique de la Marine (SHOM)

over a saros period of 18.6 years (from 1963/01/01 to 1981/08/08) for

the determination of the tide probability density function. High tides

and skew surges were extracted following the methodology described

in Bernardara et al. (2011).

6.2. Hourly sea levels — Tide–surge independence assumption

6.2.1. Empirical probability density function of the observations

The official Lowest andHighest Astronomical Tides at Brest are+0.25

m ZH and +7.93 m ZH. Over the 18.6-year long period considered, the

minimum and maximum values predicted are +0.31 m ZH and +7.90

m ZH. xT,min and xT,max are set respectively at LAT and HAT, with δx =

0.01 m.

The minimum and maximum values of the surge time series are

respectively −1.50 and 1.42 m. The latter value corresponds to the

storm of October 15th–16th, 1987, which is known to have produced

a much higher storm surge than anything ever recorded there. The

second largest peak is 1.14m. It can thus be considered that the highest

possible surge value will not be much higher than 1.5 m. In order to ac-

count for the confidence interval to be computed later, xS,min and xSmax

are set respectively at −3 and 3 m. It is recalled that these bounded

and discretized supports are used for computing the convolution of

the density functions.

6.2.2. Mixture model for the surge distribution

The time series of hourly observed surges is physically declustered

by using a physical threshold up = 0.4 m. A minimum event duration

is set at 3 h and there must be at least 24 h between two consecutive

events in order to assume their independence. The result is NT = 308

storm peaks, i.e. λT = NT/K = 7.7 events per year on average.

The statistical threshold us is determined by studying the stability

of the GPD shape and modified scale parameters with respect to us
(see Coles, 2001) with the guidelines of MH2011: first, domains of

stability (ranges of uswithin which these parameters remain roughly

constant) are identified; second, the lowest value (minimization of
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variance) of the highest domain of stability (minimization of bias) is

set at us. Because of the influence of the event of 1987 (which obviously

is an outlier), no clear domains of stability can be identified; so this

event is removed from the sample for this analysis. Two regions

can be distinguished (Fig. 2): the first one from 0.4 to 0.6 m or so,

and the second one above 0.67 m. In order to minimize the bias,

the highest region is chosen, and in order to minimize the variance

its lower value of 0.67 m is taken as the statistical threshold. Since

the domains of stability are not particularly clear for this case, this

choice was cross-checked with other diagnostic tools such as the

mean excess life plot (Coles, 2001) and the L-moments plot

(Hosking, 1990), which support this choice. Such a threshold yields

N = 45 events, corresponding to a mean number of storms per

year of λ= N/K= 1.13. This is slightly below the range 2 to 5 recom-

mended by MH2011, but the period (40 years) is long enough to

accept it.

Fig. 1. Location of Brest.
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The GPD parameters are estimated by the unbiased L-moments esti-

mator (Hosking, 1990). The fit with the 90% confidence intervals is illus-

trated in Fig. 3.

The extreme storm surge peak distribution is transformed into the

extreme surge distribution as described in Section 3.4. Fig. 4 illustrates

the modeling of the mean number of hourly surge values per event dS
while Fig. 5 illustrates the modeling of the upper tail of the hourly

surge values by extrapolation in contrast with the empirical density.

The advantage of extrapolation is clearly visible in this figure: a non–

nil probability is assigned to values above 1.5 m. In the empirical pdf,

there is also a gap around 1.25m: this is because the four highest values

(whose corresponding “bumps”, which were smoothed by the kernel

density estimator, are quite visible in the figure) are 1.44, 1.38 (second

highest hourly surge value of the October 1987 storm), 1.19 (November

10, 1963) and 1.12 m (October 1987 again).

The method of “equivalent distributions” described in Section 4.3 is

used. The plot of the quantile function (with respect to the return period)

for the 90% confidence interval is presented in Fig. 6. It shows good agree-

ment with the discrete values computed for five return periods with the

parametric bootstrap method for return periods up to 100 years.

6.2.3. Distribution of sea levels

The probability density functions of the hourly surges (both observed

and extreme regimes), astronomical tide and sea levels are plotted in

Fig. 7, with the associated 90% confidence intervals.

The effect of extrapolating both tails of the surge distribution is

clearly visible on the lower and upper tails of the sea level distribution.

The distribution of hourly sea level is converted into the distribution of

sea level peaks, defined by the exceedance of the sea level threshold

uZ = 7.7 m. The change in mean number of observed hourly sea levels

per event and its fit is given in Fig. 8. The sea level density is then to

be transformed into return levels for event peaks with respect to return

periods, as shown in Fig. 9.

The extreme sea level events for return periods of 1, 5, 10, 50, 100,

500 and1000 years can then bederived,with their confidence intervals.

They are summed up in Table 1.

Because the astronomical tide is predominant at Brest, the confi-

dence intervals are reduced to a few centimeters for return periods of

less than 50 years. It would be otherwise in locations where the sto-

chastic component (surge) would be of greater relative importance.

6.3. High water levels — Tide–surge independence assumption

The analysis is performed with skew surges and high tide levels.

Results are given in Table 2. Both approaches show good agreement

(maximum difference of ±0.03 m). The confidence interval width is

very similar for return periods up to 500 years.

6.4. Tide–surge interaction

The dependence between tidal levels and meteorological surges can

be assessed as described in Section 5.1. The value of the χ2 statistic is

found to be 42.39 for the hourly values dataset and 2.78 for the high

water levels dataset. Hence the former dataset exhibits significant de-

pendence while the latter can be considered as independent. This is

not surprising: actually, the entire high water levels dataset is not very

different from the sub-sample built from the upper tidal band for the

hourly values.
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If the extrapolation of high water levels is considered to be sound

and reliable, this would suggest that the tide–surge interaction has no

significant effect on the estimation of extreme hourly sea levels, since

both approaches converge. However, high water levels are somewhat

higher than the maxima of hourly sea levels over a tidal cycle because

they are the maximum value of a spline function interpolated between

these hourly values. As a consequence, extreme hourly sea levels should

be slightly lower than extreme high water levels. This means that the

assumption of independence yields an overestimation of extreme

sequential sea levels, which is a conservative approach for engineering

projects aiming to protect coastal areas.

Nonetheless, the influence of tide–surge interactions was explored

for the case of hourly values. A first approach involved splitting the

dataset into five equi-probable tidal bands with the new surge normal-

ization procedure described in Section 5.2. This procedure is found to

perform better than the one proposed by DT94: the χ2 statistic is re-

duced from 42.39 to 2.66, well below the 95% significance level of the

test χ4,0.95
2 = 9.49, while it is reduced to 5.35 with the method of

DT94. This greater reduction of the statistic was also observed at other

sites on the French coast of the Channel. Furthermore, the bounds of

the stationary surge dataset are much more reduced: −3.18 ≤ S*

≤ 4.09 vs. −24.23 ≤ S* ≤ 17, which is much easier to handle from a

practical point of view.

Statistical extrapolation for both tails is applied to the stationary

dataset of normalized surges S⁎ (Sections 3.2 to 3.4). Then for each

band (i.e. for each surge sub-dataset), the resulting tail distributions

are transformed back to the original surge value S and connected to

the empirical bulk distribution of the corresponding band. This yields

five surge distributions: the surge distribution to be used during convo-

lution with the tide distribution depends on the value of the tidal level.

A second approach involved splitting the dataset of surge observa-

tions into five bands defined by the 0.05, 0.5, 0.9 and 0.99 surge

quantiles. The χ2 statistic is now 12.96, which is far lower than 42.39

but still above χ4,0.95
2 (though just below the 99% confidence level

χ4,0.99
2 = 13.28). The empirical distribution of the tidal levels is estimated

for each of these bands over the full period of observations (not just over a

saros), with a nil density for values below the minimum or above the

maximum tidal level of the corresponding band. This yields five tidal

level distributions: the tide distribution to be used during the convolution

procedure depends on the value of the surge.

Results for both approaches are given in Table 3 (confidence inter-

vals were not computed). A slight decrease can be observed with the

first approach (tidal bands): −0.07 m for a return period of

1000 years,−0.05m for 100 years and−0.04m for 10 years. However,

it is likely that the dependence is not completely accounted for and that

this estimation is still somewhat conservative. In contrast, the decrease is

much more noticeable with the second approach. One could argue that

the support of the tidal level distributions is too narrow; hence the prob-

ability of high tidal levels is too low and the sea level peaks would be

under-estimated. It is also noteworthy that the estimates with both ap-

proaches fall below the lower bound of the 90% confidence interval of

the results yielded by the tide–surge independence assumption: this is

another strong argument in favor of modeling the tide–surge interaction

for this case study.

6.5. Comparison with a direct approach

The extreme hourly sea level peaks were also estimated using a

classical direct approach (POT declustering along with the Poisson-GPD

model, as described in Sections 3.2 and 3.3 for surge peaks) for compari-

son purposes, though this approach is known to yield underestimated

results (Haigh et al., 2010). Results are given in Table 4 and the extrapo-

lation curve is compared with the different indirect approaches (with

and without tide–surge interaction) in Fig. 10.
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Table 1

Extreme sea level events at Brest as computed by the POT-JPMwith hourly values assum-

ing tide–surge independence.

Return period (years) Hourly values— Independence assumption

Sea level peak (m ZH) 90% confidence interval

1000 +8.67 +8.59; +8.86

500 +8.59 +8.53; +8.70

100 +8.41 +8.39; +8.43

50 +8.35 +8.33; +8.35

10 +8.19 +8.18; +8.19

5 +8.12 +8.12; +8.12

1 +7.95 +7.95; +7.95
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As expected, extreme sea level peaks are much lower in the case

of return periods. However, the offset is already considerable with the

1-year sea level peak: around−0.1 m in comparison with the indirect

approach. This is far from negligible, in particular for a 40-year long

time series. It is likely that a kind of tide–surge interaction has not

been properly accounted for. It may be that the two proposed treat-

ments of tide–surge dependency do not deal correctly with the tempo-

ral dependence of seasonality. Future works should attempt to identify

and characterize this hidden mechanism. Meanwhile, a somewhat

rough and arbitrary correction, or calibration, could be made by reduc-

ing the results of the indirect approaches (with hourly values) by the

value of this offset:−0.1 m for Table 1 and −0.08 m for Table 3.

7. Conclusions

This model aims to include the latest developments of POT

declustering and of the Poisson-GPD model into the general framework

of the RJPM. In particular, the mixture model for the surge distribution

makes a clear distinction between auto-correlated values observed at a

regular time step, and events, i.e. clusters of extreme values (Bernardara

et al., 2014). Such a mixture model can also be applied to other variables,

such as wave heights (Solari and Losada, 2012), when it is necessary to

assign a probability density to the entire range of possible realizations of

the variable. Also, this model can be used to determine the density func-

tion over the entire range of sea levels,whichmaybe very useful for prob-

abilistic design methods which require probabilities for the extreme

domain but also for frequent values (Solari and Losada, 2012). Further-

more, a good approximation of confidence intervals can be provided.

This model was applied to sea level measurements from Brest, France.

The 1-in-100-year hourly sea level peak is estimated to be +8.41 m ZH

with a 90% confidence interval of [+8.39; +8.43]. An analysis based on

highwater levels yields very similar results with a 1-in-100-year level es-

timation of +8.40 m ZH with a 90% confidence interval of [+8.37;

+8.46]. However, an analysis of different possibilities for handling tide–

surge interaction suggests that these results are over-estimated in the

case of hourly values. Furthermore, it appears from comparison with a

direct analysis that this interaction is not fully accounted for: a notable off-

set remains within the interpolation domain, not to speak of the extrapo-

lation domain. Future work will therefore focus on understanding this

offset and the associatedmechanism,whichmay be related to seasonality

effects. Meanwhile, a simple correction can be considered.
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Fig. 10. Return levels for sea level events. From the upper to the lower curve: indirect

approach without tide–surge interaction, indirect approach with equi-probable tidal

bands, indirect approach with equi-probable surge bands, direct approach.
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A B S T R A C T

A methodology for determining extreme joint probabilities of two metocean variables, in particular wave height

and sea level, is presented in the paper. This methodology focuses in particular on the sampling of the time

series, which should be based on the notion of event: either the event generating the variables whose joint

probabilities are wanted (such as a storm generating waves and surges) or the event that is a result of the

combination of these variables (such as a beach erosion event generated by waves at high sea level). A

classification is proposed for multivariate analyses in order to help the choice of the sampling method. The

dependence between the variables is analysed using tools such as the chi-plot, of which an enhanced

presentation is proposed, then is modelled by extreme-value copulas (Gumbel-Hougaard, Galambos and

Hüsler-Reiss) estimated by Canonical Maximum Likelihood or by the upper tail dependence coefficient. Joint

return periods are then computed. A comparison is made with a simulation from the JOIN-SEA software on a

dataset of wave height and sea levels offshore Brest, France. Then the bivariate methodology is extended to a

multivariate framework. The distribution of sea level is determined by an indirect approach (extrapolation of

extreme surges then convolution with the astronomical tide) and the dependence is analysed between the wave

height and the surge component only. A bidimensional convolution between the joint distribution of wave

height and surge and the distribution of the astronomical tide yields the joint distribution of wave height and sea

level. The application of this method to the dataset of Brest and its comparison with the bivariate approach are

finally discussed.

1. Introduction

The estimation of extreme environmental variables has been widely

studied in the univariate cases. In the field of coastal engineering, the

methodologies have been progressively enhanced and now provide

reliable estimates of extreme wave heights, storm surges, wind speed…,

provided the quantity of data is sufficient. Looking back, a gradual

convergence towards the so-called “GPD-Poisson” model appears.

Fitting a Fisher-Tippett distribution (now known as GEV distribution)

to a sample of annual maxima was among the first popular methodol-

ogies. In the mid-1990s, the IAHR Working Group on Extreme Wave

Analysis recommended using Peaks-Over-Threshold (POT) decluster-

ing along with a Weibull distribution estimated by maximum likelihood

[50]. A few years later, the logics of the POT declustering was pushed a

step further by fitting a Generalized Pareto Distribution (GPD) to the

peak excesses, since the law of the exceedances over a threshold u

asymptotically tends to a GPD when u is high enough [55]. The GPD-

Poisson model is now widely recommended [36] for univariate

extremes and a detailed description can be found in Coles [9].

Along with fellow researchers, the authors proposed several im-

provements within this general framework, based upon their daily

practice of determining design waves and sea levels for coastal

engineering projects. First, Mazas and Hamm [52] advocated a

multi-distribution approach in order to deal with their experience that

the GPD often has a tendency to under-estimate the quantiles such as

100-year Hs if u is not high enough. This approach considers additional

distributions to the GPD (e.g. the Weibull, Exponential or Gamma

distributions), following other authors (e.g. Gōda and Kudaka [27] or

Van Vledder et al. [72]). Second, Mazas et al. [51] investigated the

behaviour of the Maximum Likelihood Estimator (MLE) when u varies,

concluding that the conditions for the MLE to be valid ([47], chapter 6)

are not met and proposing to use the L-moments estimator [39]

instead along with a location parameter μ (3-parameter GPD). Last,

Bernardara et al. [2] provided a deeper justification of the recommen-

dation by Mazas and Hamm [52] for a two-step framework for over-

threshold modelling. The first step consists of event identification and

characterization, based on physical considerations, in order to set up an

i.i.d. (independent and identically distributed) sample from the time
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series. The POT declustering that selects peaks over a physical thresh-

old up is the most frequent method. The second step is a statistical

optimization aiming at determining the optimal threshold us above

which the peak excesses should be fitted by a proper statistical

distribution such as the GPD.

However, many coastal phenomena, such as overtopping, beach

erosion, load on a structure, coastal flooding or others are the result of

the combined actions of two physical processes or more such as sea

level, waves, currents or winds. The most common cases are the

combination of high sea levels and large wave heights and the joint

occurrence of a storm surge along with a high astronomical tide level.

Thus the univariate extreme models must be extended to a bivariate

and more generally multivariate dimension.

However multivariate analyses may be quite different as regards

sampling, dependence modelling, output… Generally speaking, three

types of multivariate cases may be distinguished and we propose the

following classification:

• Type A: a metocean process described by several parameters (e.g.: a

sea state described by its significant wave height Hs, its peak period

Tp, its peak direction θp, its directional spreading…);

• Type B: a metocean process that can be broken down in several

elementary processes (e.g. a sea state made of a swell system and a

wind sea system; or the sea level made of a mean sea level, the

astronomical tide, the meteorological surge, the wave set-up…);

• Type C: the joint occurrence of several distinct metocean processes

(e.g. waves, sea level, wind, current).

In the literature, the joint probabilities of tide and surge are among

the soonest to have drawn deep attention, which is not surprising

considering the stakes in safety associated with coastal flooding in

macrotidal environments: this requires a Type B analysis. A methodol-

ogy was built and progressively enhanced for determining extreme sea

levels by what is called an indirect approach [31], i.e. a separate

analysis of the deterministic astronomical tide component T and of the

stochastic meteorological surge component S. Pugh and Vassie [57]

introduced the Joint Probability Method (JPM), extended to the

Revised Joint Probability Method (RJPM) by Tawn and Vassie [70]

who introduced a GEV for fitting extreme surges and the extremal

index. Tawn [69], Dixon and Tawn [16] then refined the RJPM by

accounting for tide-surge dependence.

Indeed, the dependence that may exist between the different

variables is a key issue of multivariate analysis. This dependence may

be of different types: it may exist because large values of metocean

processes such as waves, surges and winds are often generated together

by a larger scale process (a storm), or because of interactions between

two metocean processes: e.g. onshore wave height or surge magnitude

depend on the water depth and thus on the water level.

The modelling of the dependence is at the core of the models built

for Type C analyses: estimating the joint occurrence of two (or more)

distinct metocean processes such as waves and sea levels. Tawn [67]

was amongst the first to apply the parametric models for the

dependence function discovered by Gumbel [30], particularly the

logistic model, in the field of coastal engineering. The word “copula”

was not present yet, though it was used by Sklar [62] as soon as the late

1950s, but here we have a mathematical object that links the distribu-

tions of the variables via their dependence. The logistic model is now

widely known as the Gumbel-Hougaard copula.

In 1994, the UK Ministry of Agriculture, Fisheries and Food

(MAFF, now DEFRA) started the funding of joint research projects at

HR Wallingford and Lancaster University. A complete methodology for

determining the joint probability of waves and sea levels was estab-

lished ([10,32–34,54], among other references) and the software

JOIN-SEA was developed and spread. Joe et al. [41], Zachary et al.

[78] and De Haan and De Ronde [13] also applied these “dependence

functions” for multivariate environmental extremes. Last, Heffernan

and Tawn [37] proposed a semi-parametric approach which applies

whether the variables are asymptotically dependent or asymptotically

independent and is suitable for highly multidimensional analyses.

During the last decade or so, the copula functions spread into the

field of coastal engineering and were used for analysing the combina-

tion of two or more variables: wave heights and periods [14]; storm

surges and wind waves [15,73]; wave height, wave period and storm

duration [12]; wave height, wave period, storm duration and storm

surge [48].

Sampling and dependence are closely linked and here it is assumed

that a sampling approach based on the notion of event is relevant for a

thorough understanding of the physics. Callaghan et al. [5] highlight

the interest of working with meteorological events, defined by the peak

wave and sea level conditions but also by their duration and the spacing

between two successive events, in order to understand the occurrence

of beach erosion events. Li et al. [48] also consider events (storms) for

the assessment of coastal flooding hazard in the Netherlands. Mazas

et al. [53] proposed a “POT-JPM” approach for determining extreme

sea levels (Type B analysis), distinguishing the distribution of events

(surge events and sea level events) from the distribution of sequential

values (e.g. hourly surges or high tide sea levels). The POT-JPM

approach also provides confidence intervals for extreme sea levels

(the uncertainty coming from the extrapolation of extreme surges) and

can account for tide-surge dependence.

On February 2010, 28th, the storm Xynthia wreaked havoc on the

French Atlantic coastline, causing more than 30 casualties because of

coastal flooding in inhabited low areas and reminding coastal engineers

the terrible effect of the combination of a storm surge occurring at the

high water of a spring tide. But an in-depth analysis also shown the role

played by the waves, that increased the ocean roughness and whose

breaking added a set-up component [3]. As a consequence, an accurate

estimation of such an event requires considering waves and sea levels

on the one hand, and a separate analysis of storm surge and

astronomical tide on the other hand.

The present paper is the result of the attempts by the authors to

extend their event-based framework to the joint occurrence of two

distinct metocean processes (Type C analysis), while applying an

indirect approach for determining extreme sea levels. It should then

be understood as a continuity of the work presented in the aforemen-

tioned references.

In Section 2, a bivariate methodology is presented, which can be

applied for determining extreme joint probabilities of waves and sea

levels (Type C), storm duration and peak Hs, storm peak Hs and Tp

(Type A)… While following a classical four-step framework, the

different stages are made consistent with previous publications and a

particular focus is made on data sampling. Different methods are

discussed, among which high tide sampling, bivariate threshold and the

use of a univariate response function that allows accounting for

covariates.

In Section 3, this methodology is extended to incorporate an

indirect approach for determining extreme sea levels (separate analysis

of tide and surge, then recombined by convolution). The main interest

consists in the dependence that is modelled between the waves and the

meteorological surge, instead of the total sea level.

In Section 4, the dataset of the case study of Brest, France is

presented and applied first to the bivariate methodology with compar-

ison with JOIN-SEA results, kindly provided by Dr Peter Hawkes (HR

Wallingford), then to the multivariate methodology. The differences

between the methodologies and the extension to other applications are

discussed in Section 5.

2. Bivariate methodology

In the U.K., current advanced engineering practice largely relies on

the approach implemented in the JOIN-SEA software [34]. Despite the

practical difficulties in routinely using this software, which thus is not

F. Mazas, L. Hamm Coastal Engineering 122 (2017) 44–59
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to be regarded as a universal reference, the principles of this approach

have largely spread in neighbouring countries. This methodology

involves the following four steps:

1. Data selection/Sampling of the joint time series for extreme analysis.

2. Modelling of marginal distributions of Hs and Still Water Level

(SWL).

3. Analysis and modelling of the dependence structure (Hs, SWL).

4. Computation of joint probabilities and curves of joint return periods.

The present study addresses alternatives to original choices im-

plemented in JOIN-SEA.

2.1. Sampling

The sampling of the time series is a critical point of any extreme

analysis, be it univariate or multivariate. The analyst usually deals with

time series of the variables, observed (i.e. measured or modelled) at

regular time steps: they can be called sequential values. Because the

physical phenomena have a non-nil duration and a momentum, the

sequential values are usually auto-correlated (see, among others, ,

Smith [63] or Walton [74]). The finer the time step and the longer the

duration of the physical phenomenon, the more auto-correlated the

sequential data. Still, the extreme value theory requires (at least in a

first step) working with an i.i.d. sample. Homogeneous subsets of the

time series must thus be identified (in order to consider i.d. data) then

declustering selects independent data.

Bernardara et al. [2] detail a two-step framework in the univariate

case. In a first step, considering the underlying physical (e.g. metocean)

processes, the aim is to identify physical events such as a storm, a flood,

a heatwave… within the time series of the sequential observations.

Using exceedances over a physical threshold up is a practical way to

perform this identification. The independence of the identified events is

checked using criteria such as minimal duration between events or

others. An event has a certain duration that is typically longer than the

time step of the series: this is why threshold exceedances in a time

series occur in clusters. The events are then characterized by an event-

describing random variable, most frequently their peak value. This

step results in the extraction of an i.i.d. sample from the auto-

correlated time series. Note that the event-describing variable and

the sequential observations are two different random variables (e.g.

peak Hs vs. hourly Hs). In a second step, the Extreme Value Theory

(EVT) is called upon for determining the statistical threshold us above

which the exceedances of the event-describing variable may be

modelled by a proper statistical distribution such as the GPD.

In the multivariate case, setting up an i.i.d. multivariate sample

from the time series may be the first source for headaches to the

analyst. A first trick is that it is not necessary that all the variables be

extreme: average wave heights occurring at an extreme sea level may

cause coastal flooding, for instance. As a consequence, the frequently

observed values (the bulk of the distribution) will have to be included

in the analysis which seems contradictory with the event-based, peaks-

over-threshold approach.

In order to overcome this contradiction, it is first necessary to be

aware that bivariate or multivariate analyses may be relevant for quite

different cases.

Sampling for Type A cases can be reduced to the univariate case

when a single parameter is enough for identifying the event. For

instance, it can be interesting for designing breakwaters to complement

the knowledge of extreme wave heights by the joint probabilities Hs/Tp

or Hs/storm duration. In that case, the storm is defined by the

exceedances of Hs over the physical threshold up and the i.i.d. sample

is made of the peak Hs, the associated Tp and the duration of the

exceedances of Hs over up. Note that unlike Hs and Tp, storm duration is

an event-describing variable that has no sequential equivalent: this

highlights the fact that sequential observations and event-describing

variables are indeed different random variables. When such a simple

sampling is irrelevant, Type A cases become similar to Type C cases

(see below).

When considering the most common of Type B analyses, i.e. joint

occurrence of tide and surge, it appears that, because the variables are

considered separately before being recombined by convolution, there

again sampling can be reduced to the univariate case and a surge event

is easily distinguished from a sea level event. The “POT-JPM” approach

proposed by Mazas et al. [53] clearly distinguishes the distribution of

events (surge events and sea level events) from the distribution of

sequential values (e.g. hourly surges or high tide sea levels). The link

between the distribution of peak and sequential values is provided by

the extremal index θ (interpreted as the reciprocal of the mean

duration of an event), introduced by Leadbetter [45] and incorporated

by Tawn and Vassie [70] into the RJPM.

Though an analysis of the physics of the phenomena and a Peaks-

Over-Threshold approach provides a very practical framework in the

univariate case, it is much more difficult in the multivariate case of

Type C. A combination of high level and moderate waves may cause

overtopping, for instance: it is thus necessary to select data for both

variables representative of both usual and rare conditions, while

granting the independence of data. In some cases, the analysis may

be even more delicate: Callaghan et al. [5] show the importance of

event duration and duration between events when considering beach

erosion. Hence the conceptual approach of threshold exceedances must

be adapted. This is illustrated by the scatterplot Hs/Z (sea level)

offshore Brest in Fig. 1. Should we select independent pairs H Z( , )s

above a threshold relative to a single variable (domains 1+2 or 2+3), or

when both variables exceed their own threshold (domain 2)? Or should

we be a little more sophisticated?

A first approach in the literature is specific to the joint occurrence of

waves and sea levels, especially in tide-dominant areas. It is based on

the postulate that for coastal structures, flooding or overtopping will

only occur at high water. Consequently, the high-tide sampling is quite

straightforward: the sea level at high tide (or closest to) is selected

along with the associated Hs. Thus only one record per tidal cycle is

extracted (i.e. nearly 2 per day). It is thus assumed that the lag between

two successive high waters is long enough to consider that two

successive records are independent. It seems acceptable for areas

where the tide is diurnal (24 h 50 mn between two high waters); it is

probably a rather strong assumption for semi-diurnal areas (12 h

25 mn): Walton [74] found that the autocorrelation function of a

hourly surge series measured at Sandy Hook, NJ, dropped to a noise

level close to zero after 24–72 h. Nonetheless, this method is used in

JOIN-SEA [54] (along with a recommendation to separate the data in

two or three separate populations if needed for dealing with different

sectors, seasons, wave systems…) and is also recommended in France:

CETMEF [8], among other examples. However, the selection of Hs is

not necessarily straightforward with this sampling: [44] highlights the

difficulties to examine and proposes practical solutions. If sea states are

available offshore and sea levels onshore (e.g. at a tide gauge), the wave

propagation time should be accounted for. Waves may also be spatially

variable, and / or subject to uncertainty if the data is the output of a

numerical model. Therefore it may be safe to select the maximum Hs

value within a time window centred on the time of high water, +/− 3 h

for instance. This sampling is akin both to POT and block maxima

approaches: on the one hand, it takes the maximum in a constant time

period (12 h 25), on the other hand, high water level can be seen as the

peak level over a threshold applied to this variable (domains 2+3 on

Fig. 1).

Another approach, more directly linked to the POT declustering

framework, consists of using a multivariate threshold. Li et al. [48]

applied a bivariate threshold for selecting 4-uplets of Hs, Tp, sea level Z

and storm duration. An event (i.e. a storm) is defined when both Hs and

the tidal anomaly TA (the sea level minus the astronomical tide level,

i.e. the meteorological surge) exceed a threshold value. To guarantee
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the independency of selected storms, a minimum time interval between

two events is set. The following parameters are selected for setting up

the i.i.d. sample: the maximum Hs value over the storm, the associated

Tp value, the maximum sea level over the storm and the event duration

(including possible fluctuations). This method is illustrated in Fig. 2

that comes from Li et al. [48]. Of course, the difficulty of the method is

choosing the values for the thresholds. Following the recommendations

of Bernardara et al. [2] for the univariate case and transposing them to

the multivariate case, we can consider these thresholds as multivariate

physical thresholds (e.g. u u{ ; }p
H

p
TAs ) and set their values based upon

physical considerations. Li et al. [48] do not provide specific informa-

tion about the size of the selected sample, but the number of storms per

month seems to be around 3 in average. This sampling has the

advantage of being event-based, a framework that allows for instance

to work on storm duration and to set the parameters granting

independence the most adapted to the site and to the physical

phenomenon: see also Sanchez-Arcilla et al. [58] or Lin-Ye et al. [49].

We propose here to test a new sampling method. In contrast to

the bivariate threshold method presented above that focuses on the

events of the input variables, we consider the effect of the combina-

tion of variables while reducing them into a univariate response

variable. The notion of event is shifted from the input to the output.

This function can be overtopping over a breakwater, efforts on a

seawall, beach erosion, etc.… A classical POT declustering can then

be applied and the peak of the univariate response function gives

the date and time of the event: the i.i.d. sample is made of the

n-uplets of the variables corresponding to these timestamps. The

main advantage of this sampling is that covariates can be accounted

for. Let us consider the following case: we want to estimate the joint

probabilities of wave height Hs and sea level Z for assessing coastal

flooding hazard. Sea states data are available offshore and wave

direction and periods are very variable. If we only consider offshore

wave height, the analysis will be influenced by waves that propagate

far from the location of the study. Wave refraction (that depends on

wave direction θ and period Tp) can be accounted for by using the

following univariate response function (among others):

f Z H θ T Z H Z K T θ K T θ H( , , , )= + ′= + ( , , …) ( , , …)s p s r p s p s, where H′s is the near-

shore (refracted) wave height, Kr the refraction coefficient and Ks the

shoaling coefficient. Gōda [28] provides analytical expressions of Kr

and Ks (wave breaking is also accounted for). Fig. 3 illustrates the

time series of this univariate response variable with a threshold set

at 12 m and the selected peaks. The number of peaks is much lower

than the number of high waters (in this example, around 18 per year

vs 706 high waters per year). Thus the analysis will only consider

independent conditions that have a significant effect at the coastline

because they combine large nearshore wave heights with high sea

levels. This “total water level” Z H+ s was used by Hawkes et al. [35]

but as a structure function (output of the analysis), and thus without

including the effect of wave covariates.

Generally speaking, the sampling method is to be adapted to the

aim of the study and to the available data. The simple univariate POT

sampling can be applied for multivariate analyses of Type A, e.g. aiming

Fig. 1. scatterplot H Z/s offshore Brest, France and associated possible thresholds.

Fig. 2. Definition of independent storm events by a bivariate threshold, after Li et al. [48].

F. Mazas, L. Hamm Coastal Engineering 122 (2017) 44–59

47



at determining joint probabilities H T/s p, H Duration/s , etc. For Type C

analyses, the bivariate/multivariate threshold method is based upon

physical considerations and greatly reduces the i.i.d sample compared

with the high water sampling. The univariate response function method

may be more appropriate when covariates play an important role and

should be accounted for. Therefore, we will not recommend any of

these methods; nevertheless the case study will consider the univariate

response function as it is a newly proposed method.

The sampling step results in an i.i.d. multivariate sample of size Np.

λ N K= /p p is the mean number of selected events per year, where K is

the duration of the time series, in years. The size of this sample is

matter to discussion. In the univariate case, Bernardara et al. [2]

suggested that a value of λp between 5 and 10, in order to have a sample

size Np above 100, depending on the duration of time series (typically

20–25 years in engineering applications). In the multivariate case, it

can be argued that more information is necessary in order to capture

the dependence between variables. Therefore it is suggested to increase

the sample size, with a value of λp in the range 15–25, to be adapted to

the duration of the available time series, to the site and to the physical

processes under study.

2.2. Marginal distributions

In contrast with univariate extreme analyses, multivariate studies

must consider frequent values of the marginal variables. Thus the

marginal distributions must cover both the frequent domain (bulk of

the distribution) and the extreme domain (tail of the distribution). A

logical solution consists of using a mixture distribution: an extreme

value analysis is carried out for modelling the tail of the distribution

while the bulk is modelled by the empirical (sample) distribution. This

mixture model has been used, among others, by Hawkes et al. [34], Li

et al. [48], Solari and Losada [64,65], Mazas et al. [51] and Kergadallan

[44].

More specifically, for each variable X , a statistical threshold us is set

above which the N exceedances are modelled by a Generalized Pareto

Distribution (GPD). The value of this threshold can be determined

using one or several of the methods reviewed by Bernardara et al. [2] in

the second step of their framework. A multi-distribution approach may

be adopted [52] in order to check whether other distributions (e.g.

Weibull distribution) provide a better fit than the GPD.

The conditional distribution of the tail (distribution of X given

X u> s) is then weighed by ζ X u= [ ≤ ]u ss
 , estimated by the empirical ratio

of the number of observations below us over the sample size, and

connected to the sample distribution used for X u< s.

2.3. Dependence structure

2.3.1. Dependence coefficients

Several methods are available for analysing the dependence struc-

ture between two random variables X and Y . The most simple and

obvious one is the scatterplot of the bivariate sample. A shapeless cloud

will suggest independence, while an ovoid shape oriented towards the

upper-right corner is typical of positive dependence.

This visual interpretation of the scatterplot may be complemented

by the usual correlation coefficients. Pearson's r correlation coefficient

describes the relationship between linear related variables; Spearman's

ρ coefficient provides information about the possibility to model the

dependence by a monotone function; Kendall's τ coefficient describes

the correlation between the samples of the ranks of the variables. These

coefficients tend to zero in the independence case (see Genest and

Favre [26] for examples and interpretation of these coefficients).

For an extreme study, it is desirable to focus the analysis of the

dependence on the extreme values of the sample. The usual correlation

coefficients are less adapted to capture the asymptotic dependency and

other measures should be used. The Chi-Plot (Λ , Χi i) introduced by

Fisher and Switzer [17] is a graphical tool for detecting dependence. Χ

and Λ are data transforms defined as a combination of the sample

bivariate and marginal distribution functions. Λi measures the distance

of the pair X Y( ,i i) from the pair of the medians X Y( , ): a positive (resp.

negative) value on the x-axis of the chi-plot means that both Xi and Yi

are on the same (resp. opposite) side of their respective medians, and a

value close to 1 (resp. 0) means that are large or small relative to (resp.

close to) their respective medians. Χi measures the dependence: a

positive (resp. negative) value on the y-axis describes a positive (resp.

negative) dependence, while a value close to zero suggests indepen-

dence. Thus, it can be seen whether the dependence varies from the

mean values to the tail regions. Illustrative examples of the chi-plot for

samples with various types of independence are presented in Fisher

and Switzer [17] and Fisher and Switzer [18]. However the plot does

not make the distinction between pairs with both large values and those

with both small values: this is discussed in the case study presented in

Section 4.3.

The upper tail dependence coefficient λU was introduced by Sibuya

[61]. It is defined by Joe [42] as follows:

λ F x t F y t= lim [ ( ) > | ( ) > ]U
t

X Y
→1−


(1)

Eq. (1) describes the limit probability that a variable exceeds a

threshold when the other does the same. λU approaches 0 for

independence and 1 for complete dependence. It provides the analyst

Fig. 3. Time series of a univariate response function (sum of sea level and nearshore wave height) with threshold and peak of the selected events.
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with a coefficient dedicated to the area of interest, which will be linked

to the copulas used for modelling the dependence structure (see

below). Different methods are available for estimating λU from the

sample. Poulin et al. [56] recommend using the non-parametric CFG

estimator (especially in the case of extreme-value copulas). This

approach, based on the empirical copula, has the benefit of avoiding

any assumption on the copula and the marginal distribution and as

such is much more general. The CFG (Capéraà-Fougères-Genest)

estimator has been proposed by Frahm et al. [19], based on the work

of Capéraà et al. [6]. It is defined by:

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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∑λ
N U V U V

ˆ = 2 − 2exp
1

log log
1

log
1

/log
1

max( , )
U

CFG

i

N

i i i i=1
2

(2)

where U V( , )i i is the sample of the normalized ranks.

Another popular notation of λU is χ , following Coles et al. [11]. The

authors also proposed a second dependence measure χ , sometimes

called weak tail dependence coefficient, in order to provide information

on the relative strength of dependence in the tails for asymptotically

independent models, for which λ =0U :

χ
U t

U t V t
= lim

2ln [ > ]

ln [ > , > ]
−1

t→1−



 (3)

χ takes values in the range [ − 1,1]. Ledford and Tawn [46] also

proposed the index of tail dependence κ .

2.3.2. Copulas

According to Sklar's theorem [62], the joint cumulative distribution

function H x y X x Y y( , )= [ ≤ , ≤ ]X Y,  can be linked to the marginal

distributions of X and Y , FX and FY , via a copula C:

H x y C F x F y( , ) = ( ( ), ( ))X Y X Y, (4)

This result can be extended to the multivariate case.

Gudendorf and Segers [29] provide a sound theoretical justification

for using extreme-value copulas in the domain of extreme value

multivariate analysis. In particular, a key advantage of the extreme

value copulas with respect to the popular class of the Archimedean

copulas is that they are not symmetric (note that the class of the

Archimax copulas contains both the Archimedean copulas and the EV

copulas as a special case [7]. Parametric extreme-value copulas include

the following distributions (among others): the Gumbel-Hougaard or

logistic copula, the Galambos or negative logistic copula and the

Hüsler-Reiss copula.

The distribution function of the Gumbel-Hougaard or logistic

copula is given by (in the bivariate case):

⎧
⎨
⎩

⎫
⎬
⎭

C u v u v( , ) = exp −((−log ) + (−log ) )θ
θ θ θ

1

(5)

where u v( , ) ∈ [0,1]2 and θ ≥ 1 is a parameter measuring the degree of

dependence, ranging from independence (θ = 1) to complete depen-

dence (θ = ∞). It allows positive dependence only (strong dependence

for the right tail and weak dependence for the left tail). It is the only

copula that is both Archimedean and extreme-value. Tawn [68]

introduced a bivariate asymmetric logistic model, adding further

flexibility to the basic logistic model.

The distribution function of the negative logistic or Galambos

copula is given by (in the bivariate case):

⎧
⎨
⎩

⎫
⎬
⎭

C u v u v u v( , ) = × × exp ((−log ) + (−log ) )θ
θ θ θ− − − 1

(6)

θ > 0 approaches zero in the independent case and tends to infinity for

complete dependence. It has been introduced by Galambos [20].

The distribution function of the Hüsler-Reiss copula is given by (in

the bivariate case):
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(7)

where u u=−log∼ , v v=−log∼ , Φ() is the standard normal distribution

function and the dependence parameter θ ranges from 0 (indepen-

dence) to infinity (complete dependence).

These three copulas are fully described by a single parameter: the

dependence coefficient θ (or association parameter). It can be analy-

tically linked to the upper tail dependence coefficient as follows:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

λ =

2−2 (Gumbel-Hougaard copula)

2 (Galambos copula)

2 − 2Φ( )(Hüsler-Reiss copula)

U

θ

θ

1

−

1

θ
1

(8)

Other extreme value copulas are available, such as the Tawn copula,

the t-EV copula ([29] The present study is limited to the three copulas

detailed above but any extreme value copula could be used in the

proposed methodology.

Asymptotically independent models are sometimes advocated (e.g.

Coles et al. [11], Hawkes et al. [32], among others). The bivariate

normal copula, or Gauss copula, is one of the most widely used models

for this class. It is in particular used in the JOIN-SEA software [34].

However the multivariate methodology presented in Section 3 below

aims at modelling the dependence structure between wave height and

surges, two variables for which the underlying physics provide argu-

ment for asymptotic dependence in the case of mid-latitude storms.

Indeed, although large wave heights can be observed without signifi-

cant surges, a very extreme storm generating extreme wave heights will

tend to induce large storm surges as well. Therefore the methodology

will be applied to extreme value copulas only.

2.3.3. Estimation

Similarly to the univariate case, many estimators are available for

copula estimation, i.e. for estimating the dependence parameter θ .

These methods can be parametric, non-parametric or semi-parametric.

The empirical copula, the method of moments and the Maximum

Likelihood Estimator (provided the density of the copula can be

differentiated) are available, among others.

In particular, maximum likelihood methods can be carried out in

different ways, depending on the model used for the marginal

distributions and on the confidence in the estimation of the parameters

of these distributions. The classical maximum likelihood estimator

groups the parameter θ and the parameters of the marginal distribu-

tions in a single vector to be estimated by maximisation of the complete

likelihood function. The IFM (Inference From Margins) method [60]

first estimates separately the marginal parameters by MLE, whose

estimates are inserted into the copula likelihood: the dependence

parameter can then be easily determined by simple maximisation. In

order to avoid possible misspecification of marginal distributions, the

Canonical Maximum Likelihood (CML) method, also known as

Maximum Pseudo-Likelihood, estimates these by their (rescaled)

empirical distribution functions then the dependence parameter is

estimated by maximising the (pseudo-) likelihood [24].

A non-parametric method is also provided by the CFG estimator

[6]. It is also possible to estimate the dependence parameter from

Spearman's ρ and Kendall's τ coefficients, for which an analytical

relationship with θ can be written [26].

Estimating θ from Kendall and Spearman dependence coefficients

makes naturally arise the idea of using the upper tail dependence

coefficient λU for the estimation of extreme value copulas. Such a fit

may be less performing on the bulk of the data but may be expected to

catch better the dependence in the extreme region. It is also very easy

to compute when there is an analytical expression between λU and the

copula parameters, as is the case for the extreme-value copulas:
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1/Φ (1− )(Hüsler-Reiss copula)

λ

λ

λ

log2

log(2 − )

log2

log

−1

2

U

U

U

(9)

However, the literature is very poor about this possibility. While

this paper does not intend to make a qualitative comparison of

estimators (which would depend on sample size, copulas, marginal,

type of dependence…), it is proposed to compare this estimator with

another that uses a different approach, well documented in the

literature, such as the CML estimator. Because the former focuses on

the upper limit of the distribution in contrast with the latter that

optimizes the fit over the entire distribution, such a comparison is

valuable (see also the discussion section).

2.3.4. Goodness-of-fit and choice of the copula

When several copulas are tested against a sample, here the Gumbel-

Hougaard, Galambos and Hüsler-Reiss copulas, it is necessary to assess

the best-fitting one, thanks to goodness-of-fit tools. Genest and Favre

[26] provide a wide review of available methods.

First, graphical diagnostics include the comparison of the copula

fits with the empirical copula [66]; or generating large samples for

comparing them with the base data.

Second, formal tests of goodness-of-fit may be used. Inspired by

Genest and Rivest [23], Wang and Wells [75] proposed to compute a

Cramér-von Mises statistic of the form:

∑S C U V C U V= [ ( , ) − ( , )]n

i

N

n i i θ i i

=1

ˆ
2

(10)

where N is the sample size, U V( , )i i is the sample of the normalized

ranks, Cn is the empirical copula, Cθ̂ is the parametric copula. However,

the p-values for the statistic cannot be computed and the authors

recommended using the model yielding the lowest statistic. This

difficulty was overcome by Genest et al. [25] who proposed a variant

of the statistic with a bootstrap procedure allowing the computation of

p-values. For the sake of simplicity, this procedure is not implemented

in this study and only the statistic is examined.

When the copula parameter is not estimated by the upper tail

dependence coefficient, it is also possible to compare the values of λU

yielded by the fits (based on θ̂) with the sample λU : the closer the

values, the better the fit.

In the following, the choice of the copula will be based on the

Cramér-Von Mises (CVM) statistic.

2.4. Joint return period

The joint return period T of X and Y associated to the event (X x>

and Y y> ) is given in the context of annual maxima widely used in

hydrology by Yue and Rasmussen [77], and Poulin et al. [56]:

T x y
X x Y y

( , ) =
1

[ > , > ] (11)

In a POT context, this formula has to be corrected by the mean

number of events per year λp. The formula now reads:

T x y
λ X x Y y

( , ) =
1

[ > , > ]p (12)

Remembering that X x Y y C F x F y[ ≤ , ≤ ] = ( ( ), ( ))θ X Y , T x y( , ) can be

expressed as follows:

T x y
λ C F x F y F x F y

( , ) =
1

[1+ ( ( ), ( )) − ( ) − ( )]p θ X Y X Yˆ (13)

This expression links the return period to the copula and the

marginal distributions and the pairs x y( , )T T
can be determined for any

value of return period.

Another methodology is used, in particular in the JOIN-SEA

software: large samples of X and Y are simulated from the estimated

copula and marginal distributions (equivalent to thousands of years of

virtual observations) and the extreme values can be found by simple

interpolation.

It may be noted that the very concept of return period may be

confusing and even misleading, in particular in a multivariate frame-

work. Serinaldi [59] presents a thorough analysis of the misconcep-

tions associated to T . However, despite these true remarks, return

period is still a basic tool of design in coastal engineering [22]. This is

why we use it, while agreeing with Serinaldi. The bivariate return

period in this paper is to be understood as the return period associated

to the joint exceedances of both variables, as defined above.

Furthermore, other variables may be output from such a study

rather than isolines of joint return period. Winterstein et al. [76] and

Galiatsatou and Prinos [21] provide environmental contours, i.e. lines

of equal density probability. It is also possible to draw these contours

for density values corresponding to the return periods associated to one

of the two variables.

3. Multivariate methodology for waves and sea level

The bivariate methodology presented above can be directly adapted

to wave height Hs and sea level Z . In this case, the copula will model the

dependence structure between these two variables. However, the

physical processes that cause this dependence are not straightforward

at all.

A first cause of dependence is the “storminess”: in mid-latitudes

areas, a storm system will generate both large waves and a surge S,

increasing the total sea level. In contrast, the astronomic tide level T is

deterministic and does not depend on the weather conditions. Thus

physical considerations advocate for focusing on the dependence

between Hs and S only.

It should be noted that the remarks above hold in the offshore zone.

Nearshore, propagation effects induce a new dependence. First, wave

height will depend on the water depth, thus on the total sea level Z .

Second, in shallow areas, there is an interaction between surge and

astronomic tide because their celerity varies with the water depth: this

is a dependence that is internal to sea level.

Hence, when the primary cause of dependence between waves and

sea level is storminess, it is useful to refine the modelling of the

dependence structure by analysing surge and wave height only. In this

section we propose a combination of the bivariate methodology

presented above with the POT-JPM approach for determining extreme

sea levels presented by Mazas et al. [53] that allows accounting for tide-

surge interaction.

Furthermore, this approach allows for a better estimation of the

marginal distribution of the total sea level Z , using an indirect

approach dealing separately with tide and surge: Haigh et al. [31]

have shown the interest of this approach for tide-dominant areas.

Fig. 4 illustrates the methodology. First, the sampling step does not

change and the discussion of Section 2.1 is still valid. Second, the steps

2 (marginal distributions FX and FS) and 3 (modelling of the depen-

dence structure using a copula C) of the bivariate methodology are

carried out for the wave height X and the meteorological surge S. The

result is the joint distribution of wave height and surge HX S, . In parallel,
the POT-JPM approach is applied for determining the marginal

distribution FZ of sea level Z by convolution of the surge S and

astronomical tide T . If needed, tide-surge interaction can be incorpo-

rated into the analysis (full details in Mazas et al. [53]).

The joint distribution of X and Z , HX Z, is still needed. It is
determined by a bidimensional convolution of the joint distribution

of X and S on the one hand, and of the astronomical tide T on the other

hand. More precisely, this is a convolution of surge and tide conditional

to the wave height. In practice, these distributions are discretised over

their support. For each discrete bin of wave height δXj, a classical
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convolution is performed between the (univariate) distribution of S

given X δX∈ j and the (univariate) distribution of T . Nowadays, a

standard laptop is able to perform the computations for these

convolutions within a few minutes with a satisfactorily fine bin width

of 0.01 m for all variables, which corresponds more or less to the

accuracy of available data.

At the end of the process, we have the marginal distribution of wave

height FX (determined as explained in Section 2.2), the marginal

distribution of sea level FZ (determined by the indirect approach

described in Mazas et al. [53]) and the joint distribution of wave

height and sea level HX Z, , that includes both the dependence between X

and S modelled by the copulaC and the convolution between surge and

tide.

It is then straightforward to calculate the joint return period of

wave height and sea level, as presented in Section 2.4.

4. Case study

4.1. Presentation of the dataset

A dataset of sea states and sea level has been prepared for the case

of Brest, France (Fig. 5).

The time series of hourly sea levels Z measured at the tide gauge of

Brest from 1953/01/01 to today is available from REFMAR (Réseaux

de référence des observations marégraphiques, http://refmar.shom.

fr/). The exact coordinates of the station are 4.4950 °W; 48.3829 °N.

The local datum is the Zéro Hydrographique (ZH), or Chart Datum

(CD), defined in 1996 (0.5 m higher than the previous ZH). In the

present study, the time series lasts until 2010/12/31; i.e. 58 years. The

accuracy of the data is 0.01 m. The eustatic trend is analysed following

the methodology presented by Bernardara et al. [1]. A positive trend of

+1.48 mm/y is identified and removed from the analysis so as to get a

stationary time series with a mean sea level (MSL) of +4.14 m ZH. The

hourly tidal levels T have been computed with the SHOMAR software

developed by the Service Hydrographique de la Marine (SHOM) and

the residual (Z T− ) is considered as the meteorological surge S.

Xavier Bertin (University of La Rochelle) has kindly provided the

authors with a 6-hourly database of sea states offshore Brest (output

point at 48.5 °N, 5 °W, see Fig. 5) over the period 1948–2012 from a

numerical model built with the WaveWatch III code [71], forced over

the Atlantic ocean by NCEP wind fields [43] and run with the European

“Cycle 4” parameterization (see Bertin et al. [4]). The following wave

parameters are available: spectral significant wave height Hm0 (or

simply Hs), peak direction θp, peak period/frequency Tp / f
p
. A linear

interpolation of the wave parameters has been performed in order to

get a time series of hourly sea states matching the sea level measure-

ments. Because of this simple interpolation, the accuracy of Hs is poor;

however this case study is for illustrative purpose only, not for design

purpose.

As a result, a joint time series of hourly sea levels Z , tide level T ,

meteorological surge S, offshore wave height Hs, peak direction θp and

peak period Tp from 1953/01/01 to 2010/12/31 (58 years, 501,363

data) is used as the dataset for the case study.

4.2. Bivariate methodology: comparison with JOIN-SEA software

4.2.1. JOIN-SEA analysis

First, a direct comparison with the JOIN-SEA software is carried

out. It is thus decided to use the bivariate methodology (joint analysis

of Z and Hs, without separate analysis of tide and surge) and to choose

the high tide sampling used by JOIN-SEA.

Dr Peter Hawkes (HR Wallingford) kindly performed a JOIN-SEA

analysis of the dataset presented above. The high tide sampling

resulted in the selection of 40,694 pairs H Z( , )s
HT HT . However, this

sample, though i.i.d. and significantly smaller than the time series, was

still too large for running JOIN-SEA with satisfactory results. In

particular, the available joint distributions (a Bivariate Normal

Distribution (BVN) and a mixture of two BVNs) were unable to capture

the significantly higher dependence amongst the highest quartile of

records. Consequently, Dr Hawkes decided to select a sub-set of the

sample, conditional upon Hs being above a threshold value correspond-

ing to an average of 100 records per year, that is 5753 records with

H >4.12s m. The result of this hybrid sampling (high tide sampling

associated with a threshold on one of the variables) is presented in

Fig. 6 that is the scatterplot of both the original time series of hourly

observations and the i.i.d. sample.

Based on Dr Hawkes's expertise, thresholds of 5% (top 288 records)

were chosen for the marginal extremes (fitted by a GPD), and 1% (top

58 wave heights and top 58 sea levels) for the level above which the

dependence is assumed to remain constant. The dependence was

Fig. 4. Sketch of the multivariate methodology for determining extreme joint probabil-

ities of wave height and sea level. Fig. 5. Location of the case study.
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modelled by a threshold Bi-Variate Normal distribution, with a user-

chosen correlation coefficient. A 10,000 year sample (1,000,000

records of wave height, sea level, wave period) was simulated for the

upper range of wave height (H >4.12s m).

4.2.2. Analysis using the bivariate methodology

For comparison purpose, the same sub-sample was used. Following

the multi-distribution approach advocated in Mazas and Hamm [52],

the extreme sea levels were fitted by a GPD, while the extreme wave

heights were fitted by an Exponential distribution. In both cases, the

choice of the statistical thresholds us was based upon statistical criteria

such as those described by Bernardara et al. [2] and were close to the

95% percentile of the data. The extreme Hs and Z extrapolated by the

marginal distributions are provided in Table 1.

The dependence between Hs and Z is illustrated by the chi-plot

presented in Fig. 7. A positive association (positive values on the

y-axis) seems to appear but to be more present for median values

(values close to 0 on the x-axis) than for pairs with large or small values

for both Hs and Z (values close to 1 on the x-axis). The upper tail

dependence coefficient λU of the sample, estimated by the CFG

estimator, is weak: λ̂ =0.069U .

The copulas of Gumbel-Hougaard, Galambos and Hüsler-Reiss are

estimated by the CML estimator and using λU . Table 2 below provides

the results of the fits, along with the statistic of Cramér-von Mises and

the upper tail dependence coefficient deduced from the estimation of

the dependence parameter θ̂ . When θ is estimated by λU , the result is

the sample coefficient.

Both estimators provide very similar results for all the copulas.

Regarding the Galambos and Hüsler-reiss copulas, the estimation by λU

is slightly better than the CML estimator, according to the CVM

statistic. The Galambos copula estimated by λU is chosen.

Because JOIN-SEA uses a Bivariate Normal distribution (with

asymptotic independence), a Gaussian copula has also been fitted for

comparative purposes. The statistic of Cramér-von Mises is larger

(0.047), indicating poorer fitting. This result may be linked to the

difficulties made by JOIN-SEA to capture the dependence amongst the

highest quartile of records (see above).

Fig. 8 illustrates the fit of the three extreme value copulas estimated

by CML and UTDC, along with the empirical copula and the Gaussian

copula estimated by CML. It is shown that the extreme-value copulas

provide a very similar fit whatever the estimator, all better than the

Gaussian copula which is further from the empirical copula. This

justifies using extreme value copulas for modelling the dependence in

the tail region.

4.3. Comparison of joint return periods

Fig. 9 illustrates the difference between the results of the two

methods. The lines (dashed lines for JOIN-SEA, plain lines for the

bivariate methodology) represent the contours of equal joint excee-

dance probability corresponding to joint return periods of 1, 5, 10, 50,

100 and 500 years.

There is fair agreement for the marginal distributions (especially for

Hs), but less good agreement for the dependence in the upper tail of the

distribution. While JOIN-SEA is constrained to assume a constant level

of dependence above a chosen threshold, the use of an extreme-value

copula such as Gumbel-Hougaard copula makes the dependence

between large wave heights and high sea levels continue to increase

in the upper tail. It is to be noted that the correlation coefficient

calculated by JOIN-SEA for the source data shows the coefficient to be

still increasing into the upper tail: the use of extreme value copulas

thus seems to be an appropriate approach for this dataset.

4.4. Multivariate methodology

A sampling based on the univariate response function

f Z H T θ Z H Z K K H( , , , )= + ′= +s p p s r s s is used. Kr and Ks are calculated at a

seabed level (−5 m CD) such that the nearshore wave height H ′s is of the

same order of magnitude than Z , so that both variables have a similar

weight in the sampling process. A physical threshold u =12p m is chosen

(see Fig. 3), yielding an i.i.d. sample of the tuples Z S T H( , , , )s of size

N =1082p , i.e. λ =18.7p events per year in average (see Fig. 10).

A GPD is chosen for modelling the upper tail of the marginal

distributions of S and an exponential distribution for Hs. The tail

distributions are connected to the bulk of the distributions modelled by

Fig. 6. scatterplot of the time series of hourly observations and of the iid sample (bivariate methodology).

Table 1

Extreme wave height and sea level from the marginal distributions (bivariate

methodology).

Return period (yr) Hs (m) Z (m CD)

1 10.14 +7.85

5 11.92 +8.04

10 12.68 +8.10

50 14.46 +8.20

100 15.23 +8.23
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the empirical distribution of the observations. The astronomical tide T

is modelled by the empirical distribution of the 1082 observations from

the i.i.d. sample. A convolution yields the distribution of the sea level

Z T S= + . Table 3 provides the return periods computed for Hs, S and

Z .

The dependence is analysed between Hs and the surge component S.

It is illustrated by the chi-plot presented in Fig. 11. The positive

association is much more apparent than between Hs and Z . The upper

tail dependence coefficient λU of the sample, estimated by the CFG

estimator, is logically much larger: λ̂ =0.231U . However two different

populations seem to appear when it comes to the tail dependence: one

which tends to independence, the other that exhibits positive depen-

dence.

An in-depth analysis shows that the upper “lobe” (as named by

Fisher and Switzer [18]) corresponds to pairs where both Hs and S are

large while the lower lobe corresponds to pair where both Hs and S are

small (relative to their medians). This is a further indication that

positive dependence is stronger in the upper tail region, and a further

justification for using extreme value copulas. In order to ease this

graphical interpretation, we propose a new presentation of the chi-plot

that clearly distinguishes the pairs depending on their position from

the medians, as illustrated in Fig. 12.

Table 4 below provides the results of the fits for the three copulas.

Both estimators provide similar results for each copula, and a graphical

comparison (Fig. 13) shows that the six estimated copulas (three

families, two estimators) are very close. The Galambos copula esti-

mated by Canonical Maximum Likelihood is chosen: its Cramér-von

Mises statistic is the smallest and its λU value is closer to the sample

estimate. It has also been checked that the Gaussian copula provides a

much poorer fit according to the CVM statistic (0.070), which is also

visible on the graphical comparison.

The contours of equal return period associated to the joint

exceedance probabilities of Hs and Z are provided in Fig. 14.

Fig. 7. Chi-plot Hs/sea level of the iid sample (bivariate methodology).

Table 2

Results of the fits (bivariate methodology).

Estimation by Canonical

Maximum Likelihood

Estimation by λU

Copula θ̂ λU
CVM

statistic
θ̂ λU

CVM

statistic

Gumbel-

Hougaard

1.053 0.069 0.036 1.053 0.069 0.036

Galambos 0.254 0.065 0.038 0.259 0.069 0.034

Hüsler-Reiss 0.539 0.064 0.040 0.549 0.069 0.034

Fig. 8. Comparison of empirical copula with extreme value copulas estimated by CML and UTDC and Gaussian copula fitted by CML (bivariate methodology).
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5. Discussion

The use of extreme value copulas provide the analyst with math-

ematical functions that are adapted for modelling the structure of the

dependence between two variables, particularly when the study aims at

determining joint extremes. In particular, they allow for a varying level

of dependence in the upper tail of the joint distribution. The modified

version of the chi-plot proposed in this paper provides an easier

visualisation of the variation of the dependence between the bulk and

the tails. The upper tail dependence coefficient λU is also a useful tool

for choosing the model.

The two estimators that were applied in this study, namely the

Canonical Maximum Likelihood estimator and the estimation by λU ,

provided very similar results for the three families of extreme value

copulas. This result was found for many samplings (high tide sampling,

univariate response function such as “total water level” or wave

overtopping, various sample size…). Thus this study suggests that λU

allows for an easy analytic estimation of the copula parameter θ , getting

rid of the sometimes laborious optimisation of a system of differential

equations.

The multivariate methodology presented in this paper allows for a

proper estimation of extreme sea levels Z in tide-dominant areas.

Indeed, the extreme sea levels resulting from this methodology

(marginal distribution for Z ) are much closer to the results of Mazas

et al. [53], who illustrated the POT-JPM methodology with the same

case study: the difference is just 0.03 m for the 1-in-100-year sea level.

In contrast, the bivariate methodology applies a simple direct extra-

polation to the sea levels that yields an underestimation of extreme

values [31]: the 1-in-100-year sea level is found to be 0.15 m lower

than with the multivariate methodology.

A second advantage of this new multivariate methodology is that

the dependence between surge and wave height is much stronger than

between total sea level and wave height, at least for tide-dominant

areas such as Brest. This can be seen on the chi-plots, the sample upper

tail dependence coefficients and the values of the copula parameter θ

that takes values close to the independence case when considering Hs

and Z directly, whereas θ notably increases in the multivariate

Fig. 9. Comparison of joint return periods between the JOIN-SEA simulations (dashed lines) and the bivariate methodology (plain lines).

Fig. 10. scatterplot of the time series of hourly observations and of the iid sample (multivariate methodology).

Table 3

Extreme wave height, surge and sea level from the marginal distributions (multivariate

methodology).

Return period (yr) Hs (m) S (m) Z (m CD)

1 9.43 0.51 +7.75

5 11.24 0.67 +8.02

10 12.00 0.73 +8.12

50 13.75 0.84 +8.31

100 14.50 0.88 +8.38
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approach. Modelling the dependence between surge and wave height

has more sense and in more consistent with the physics.

The multivariate methodology has been built for a better modelling

of the dependence and for a better estimation of the marginal

distribution of the sea level. However, it can be seen that another

major difference between the results of the bivariate and multivariate

methodology lies in the marginal distribution of Hs. This is due to the

uncertainties associated to the fit (choice of the distribution and of the

statistical threshold), but also to the sampling. Indeed, the high tide

sampling performed here does not make any distinction between the

different wave populations and selects sea states coming from all

directions: as a consequence, the extrapolation may be made on non-

identically distributed observations [50]. In contrast, the sampling

based on the “total water level” univariate response function selects

only sea states coming from the directional sector [200 °N, 330 °N],

corresponding to the Atlantic ocean. Sea states from the Channel, the

Irish Sea and the Iroise Sea are excluded from the analysis. Thus it can

be said that the modelling of Hs is limited to an homogeneous wave

population, that is more consistent with the assumptions required by

the Extreme Value Theory, and more generally by the fit of a

distribution to a sample.

Sampling is most probably the hardest issue when determining

joint probabilities. Sampling must be linked to the concept of event,

which needs to be defined in a multivariate case. It was highlighted in

Bernardara et al. [2] in the univariate case that the i.i.d. sample is made

of a different random variable than the time series of sequential

observations (e.g. Hs storm peak is a different random variable from

hourly Hs). This is particularly visible for multivariate analysis of Type

C: the statistical model is applied to pairs (or tuples) describing the

events identified by the sampling. In our case study, we have thus

determined the joint probabilities of sea levels and offshore waves

which result in a noticeable “total water level” nearshore, as defined by

the univariate response function used for the sampling. It is obvious

that other response functions, high tide sampling or the bivariate

threshold sampling would give different results. First, it must be made

Fig. 11. Chi-plot Hs/surge of the iid sample (multivariate methodology).

Fig. 12. Modified chi-plot Hs/surge of the iid sample (multivariate methodology).

Table 4

Results of the fits (multivariate methodology).

Estimation by Canonical

Maximum Likelihood

Estimation by λU

Copula θ̂ λU
CVM

statistic
θ̂ λU

CVM

statistic

Gumbel-

Hougaard

1.221 0.235 0.036 1.215 0.231 0.041

Galambos 0.476 0.233 0.035 0.473 0.231 0.036

Hüsler-Reiss 0.829 0.227 0.038 0.835 0.231 0.035
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clear that sampling by a univariate response function has both its pros

(it accounts for covariates; it reduces to the univariate case which

makes it easy to select independent tuples; different functions can be

chosen or even combined) and cons (it is quite difficult to find a

function that represents moderate and high values for both variables;

results may change significantly from one function to the other). The

aim of the present paper is to introduce it as an additional tool

available for the analyst. Indeed, it is the responsibility of the analyst to

choose the sampling method that is the most adapted to his analysis

and there is no universal solution.

Sample size is also to be considered. In Mazas et al. [52] the authors

suggested to set the physical threshold up so as to get a mean number of

event peaks per year λp between 5 and 10. In a multivariate analysis,

more information is to be extracted from the sample in order to analyse

and model the dependence structure. A sensitivity study was performed

on sample size and a value of λp close to 18 was found to provide good

results. Because the duration of this time series is quite long (58 years),

it could be necessary to increase this value for shorter datasets and a

range of 15 to 25 events per year is suggested.

Another question arises when considering the marginal distribu-

tions. Should the marginal distributions be modelled from the multi-

variate i.i.d. sample or should they come from a classical analysis of the

time series? The question seems particularly relevant for the distribu-

tion of sea level when using the multivariate methodology. In the POT-

JPM approach [53], the empirical distribution of tide T is derived from

a time series over a saros period (223 synodic months, i.e. 6585.32

days or 18 years, 10–11 days, 8 hours: astronomical tide is assumed to

be nearly identical after a saros), which should be more accurate than

the distribution derived from the multivariate i.i.d. sample. However,

as noted above, the distribution of sea level obtained from the i.i.d.

sample is very close to that from the POT-JPM analysis and it does not

seem necessary to further complicate the methodology. Regarding Hs, a

classical univariate POT analysis from the time series would require

working on the same wave population than the one selected by the

multivariate sampling step. Without further investigation, it seems

safer to work on the multivariate i.i.d. sample for modelling the

marginal distribution of Hs.

Last, the interest of a bivariate or multivariate methodology when

the design focuses on a single univariate response function such as

overtopping or beach overwash may be questioned. Wouldn’t it be

more efficient to compute directly the time series of overtopping from

the original time series of sea level and wave height, period and

direction, before extrapolating the result? Different answers can be

made to this question. First, the analytical formulas used for computing

such complex and non-linear phenomena may be unable to cover

complicated situations caused by complex bathymetry or coastal

structures. In that case, the formulas provide a rough estimate that is

sufficient for the sampling stage, then the multivariate methodology

Fig. 13. Comparison of empirical copula with extreme value copulas estimated by CML and UTDC and Gaussian copula fitted by CML (multivariate methodology).

Fig. 14. joint return periods of wave height and sea level (multivariate methodology).
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provides the contours of equal joint exceedance probability that can be

used for defining a small set of input conditions for physical modelling

in a wave basin or detailed numerical modelling. In that regard, the

multivariate methodology may be useful for overcoming practical

difficulties.

Still the respective pros and cons of the univariate vs. multivariate

approaches cannot be properly comprehended without a full under-

standing of the concepts of return period and event. It has already been

shown by others [34,44] that the return period associated to the

response function is lower than the joint return period associated to the

source variables. Let us consider the case of overtopping assessed from

wave height/sea level joint probabilities, as illustrated in Fig. 15 from

Hawkes et al. [34]. Let the design criteria be defined by the 10-year

overtopping volume. Thanks to the methodology defined in this paper,

we can precisely estimate the contour of the 10-year joint return period

of Hs and Z . Along this contour, a single pair H Z( , )s is associated to a

worst case for overtopping (circled dot). We can then draw the contour

of overtopping corresponding to this value and we see a discrepancy

between the hatched area of H Z/s joint exceedance probability and the

dotted area of overtopping probability. The latter is larger: it means its

probability of exceedance is higher and by consequence its return

period lower.

What does this mean? The first lesson is that when defining design

criteria, it must be decided whether the return period (and hence the

encounter probability, which is the truly important indicator) is applied

to the source variables or to the response function(s). An example for

the former case may be the estimation of meteo-oceanic conditions

(wind, waves, levels, currents) in an offshore wind farm for which

multivariate analyses are useful for many purposes from choice of

location to structural design. This leads us back to our definition of

events: are they related to environmental conditions or to structural

response, to what comes or to what results?

The following framework may be helpful to comprehend this: the

source-pathway-receptor concept. It was forged originally to describe

the flow of environmental pollutants from a source, through different

pathways to potential receptors [38] and later applied to coastal

flooding by the UK Environment Agency [40] to describe the propaga-

tion of a flood from a source through flood defences (pathways) to the

floodplain beyond (receptors). We propose here to use this framework

for visualizing the different possibilities to define the event. In our

latest example, the sources may be the atmosphere (wind and pressure

fields) and the astronomical forcing, the pathway would be the ocean

(where the energy from the atmosphere and celestial bodies propagates

through short and long waves) and the receptor would be the break-

water where overtopping occurs. Here it is more intuitive that the

return period associated to a pathway event (joint probabilities of

waves and sea level) will differ from the one associated to a receptor

event (overtopping) or source event (storm or exceptional syzygy). Of

course we may shift the terms of the SPR and consider the ocean as the

source, the overtopping as the pathway and the buildings behind the

levees as the receptors, but this does not change the idea.

Whatever the way to visualize this, it should always be made clear in

engineering whether the design criteria are to be based upon the source

variables or the response function. This will drive the choices of the

event, sampling and possibly methodology.

6. Conclusions

The comparison between JOIN-SEA and the bivariate methodology

presented in this paper has shown the interest in using extreme value

copulas for modelling the dependence between two environmental

variables. This methodology can be used applied for many cases such as

the description of a storm event by two parameters (H T/s p, H Duration/s ,

H /s wind speed…), or the joint exceedances of wave height and sea level

in surge dominant areas such as the Mediterranean Sea.

When considering the joint exceedances of wave height and sea

levels in tide-dominant areas, the multivariate methodology introduced

here provides two valuable advantages. First, it allows determining

extreme sea levels using a specific indirect approach combining surge

and astronomical tide. This approach avoids the underestimation of

extreme sea levels induced by direct extrapolation, as highlighted by

several authors such as Haigh et al. [31] (though it may overestimate

them, but this yields conservative values). Second, the dependence is

analysed between two fully stochastic values, which are usually

generated by the same physical event, i.e. a storm. The comparison

of both methods has shown the significant increase in the dependence

levels. This methodology needs a bidimensional convolution operation,

that is no more than a classical convolution conditional to the wave

height.

A wide variety of sampling choices has shown that the three families

of extreme value copulas considered in this paper, namely the Gumbel-

Hougaard, Galambos and Hüsler-Reiss families, provide close results

and are suitable for such analyses. Furthermore, it has shown that

estimating the copula dependence parameter θ from the CFG estimate

of the upper tail dependence coefficient λU of the sample yields values

of θ̂ very close to the CML estimates. This estimator only needs the

Fig. 15. joint exceedance probability and structure variable probabilities, after Hawkes et al. [34].
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solving of a simple analytic expression, without involving the implicit

optimisation of a system of differential equations as requested by ML-

based methods.

As often in such extreme studies of environmental variables,

sampling is a key step of the study, and it may even be the most

critical. While it is relatively easy to ensure the independence of the

data, the assumption of identical distribution becomes quite difficult to

ensure when studying the joint occurrence of two (or more) distinct

metocean processes (Type C multivariate analysis). We have presented

different possibilities in Section 2.1, though this list is far from being

exhaustive: further work is necessary to better understand the advan-

tages and drawbacks of each sampling method, depending on the type

of analysis. But this is the responsibility of the analyst to choose the

sampling that is the most adapted to the meteo-oceanic environment

and to the final aim of his study. In particular, a clear understanding of

the concept of event and return period is key to a proper definition of

design criteria for an engineering application.
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Bastia Wave Time Series off Bastia

Description

Sea state 3-hourly time series (time, Hs, peak direction and peak period) of hindcast sea states off

Bastia.

Usage

data(Bastia)

Format

A data frame with 29224 observations of the following 4 variables.

Time Julian time, Excel format.

Hs Spectral significant wave height Hm0, in m.

Dir Peak wave direction, in °N.

Tp Peak period, in s.

Details

Time series from GlobOcean for the Carbonite study (8713512) in 2015. Hindcast period reduced

to 01/01/1992 to 31/12/2011.

Source

Hindcast by GlobOcean.

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC1")

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2), Tr = c(1, 2, 5, 10,

20, 50, 100), conf.IC = 90, boot.iter = 1000)

Dir.envir <- list(var = list(id = "Dir", name = "Direction", unit = "°N", varcol = 3))

Tp.envir <- list(var = list(id = "Tp", name = "Tp", unit = "s", varcol = 4))

graphenvir <- list(lang = "EN", color = TRUE, saveplots = TRUE, fileformat = "png", cex = 1)

covar.plot(Bastia, xvar.envir = Dir.envir, yvar.envir = Hs.envir)

covar.plot(Bastia, xvar.envir = Tp.envir, yvar.envir = Hs.envir)
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Brest Sea Level and Wave Time Series off Brest

Description

The dataset is a joint time series of sea level at Brest tide gauge and of sea states offshore Brest

from 01/01/1953 to 31/12/2010 (58 years). The dataset provides a case study for extreme sea levels

and joint occurrence of waves and sea levels.

Usage

data(Brest)

Format

A data frame with 505363 values of the following variables.

Y Year.

M Month.

D Day.

h Hour.

Time Julian time, Excel format.

Z Sea level, in m ZH.

T Level of astronomical tide, in m ZH.

S Non-tidal residual (meteorological surge), in m.

Hs Spectral significant wave height Hm0, in m.

fp Peak frequency, in Hz.

Dir Peak wave direction, in °N.

Details

Sea state data from X. Bertin (University of La Rochelle). 6-hourly time series of sea states offshore

Brest (48.5°N, 5°W) over the period 1948-2012. Numerical model built on WaveWatch III forced

by NCEP wind fields and run with the European ’Cycle 4’ parameterization. Linear interpolation

carried out to get hourly sea states from 01/01/1992 to 31/12/2011.

Sea level hourly time series from SHOM / REFMAR. Local datum: Zero Hydrographique (defined

in 1996). Eustatic trend removed: +1.48 mm/yr. Mean sea level: +4.14 m ZH. Hourly tidal levels

computed with SHOMAR software (SHOM). Hindcast period reduced to 01/01/1992 to 31/12/2011.

Source

See Details section.
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Examples

data(Brest)

envir <- list(site = "Brest", K = 57, origin = "1899-12-30", tz = "UTC1")

Z.envir <- list(var = list(id = "Z", name = "Level", unit = "m ZH", varcol = 2))

T.envir <- list(var = list(id = "T", name = "Tide", unit = "m ZH", varcol = 3))

S.envir <- list(var = list(id = "S", name = "Surge", unit = "m", varcol = 4))

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 5))

graphenvir <- list(lang = "EN", color = TRUE, saveplots = FALSE, fileformat = "png", cex = 1)

serie <- Brest[, -(1:4)]

covar.plot(serie, xvar.envir = Z.envir, yvar.envir = Hs.envir)

climat Determination of the climate of meteo-oceanic phenomena

Description

This function makes a discreta analysis of a phenomenon (sea states, wind, current...) described

by two or three quantities: a magnitude (height, velocity...), a direction and possibly a third one

(period...).

Usage

climat(dataset, mag.envir, dir.envir, zvar.envir = NULL, mag.bins = NULL,

dir.bins = NULL, z.bins = NULL, is.magcalm = TRUE, is.center = c(FALSE, TRUE, FALSE),

with_lowbound = c(FALSE, FALSE, FALSE), g.envir = envir, export.cli = FALSE)

Arguments

dataset A table (numeric matrix or data frame) containing the data (by column). For

tserie.plot, it must have a column with the time. The safest is to have the

time in julian days in first column. The data frame may also have a column

named "Horodate" in POSIX format. Other columns include the main variable

and possibly covariates.

mag.envir, dir.envir, zvar.envir

A list regrouping the variable descriptions and properties for the magnitude vari-

able, the direction and opssibly the third variable. The variable description is a

sub-list var containing its symbol id, its name name, its unit unit, the column

number in the dataset varcol, the number of sequential observations per year

nu, the number of significant digits ndig...

mag.bins, dir.bins, z.bins

The discrete bins for the variable. It can be: - a sequency vector of length 3

with minimum, maximum, increment; - a numeric scalar: the increment (step),

the minimum and maximum values being automatically determined; - NULL: the

bins are fully automatically determined.

is.magcalm Logical TRUE / FALSE. If TRUE, the magnitude variable is considered to be a calm

when it is 0.

is.center Logical vector TRUE / FALSE, for each variable. If TRUE, the bin limits given by

mag.bins are considered as the center of the bins and not the bounds.

with_lowbound Logical vector TRUE / FALSE, for each variable. Defines how the bounds of the

bins are. If TRUE, the lower bound of the range is included and the upper bound

is not.
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g.envir A list describing the global environment of the study: site name $site, duration

of observations K (in years), origin $origin and time zone $tz of the time...

export.cli Logical TRUE / FALSE. If TRUE, a *.cli file is output for Excel processing.

Details

-

Value

A list providing the arguments of the function, the discretization of the dataset (definition of bins)

and the series of the two or three variables considered. If export.cli=TRUE, a .cli file is written in

the working directory with the formatting allowing Excel to import it.

Author(s)

Franck Mazas

See Also

dataplots

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC")

serie <- as.data.frame(Bastia)

serie$Horodate <- temps2horodate(Bastia[, 1], origin = envir$origin, tz = envir$tz)

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2))

Dir.envir <- list(var = list(id = "Dir", name = "Direction", unit = "°N"))

Tp.envir <- list(var = list(id = "Tp", name = "Tp", unit = "s"))

graphenvir <- list(lang = "EN", color = TRUE, saveplots = FALSE, fileformat = "png", cex = 1)

climat(dataset = serie, mag.envir = Hs.envir, dir.envir = Dir.envir, zvar.envir = Tp.envir,

mag.bins = c(0, 4, 0.5), dir.bins = 10, z.bins = NULL,

is.magcalm = TRUE, is.center = c(FALSE, TRUE, FALSE), with_lowbound = c(FALSE, FALSE, FALSE),

g.envir = envir, export.cli = FALSE)

Data Plots Plots for Data Display and Characterisation

Description

A set of plotting functions for displaying and characterizing the data, often from a time series: time

series plot, scatterplot of two variables, logarithmic exceedance curve, histogram of occurrences,

directional roses.
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Usage

tserie.plot(dataset, tri = NULL, g.envir = envir, var.envir = varenvir,

graph.envir = graphenvir, saison = NA, with_points = FALSE, datesinflnm = FALSE, ...)

covar.plot(dataset, xvar.envir, yvar.envir, g.envir = envir, graph.envir = graphenvir,

dir.lim = c(0, 360), dir.tick = 22.5, dir.lab = 45, withdens = FALSE, ...)

logdep.plot(dataset, var.envir, res, coeff = 1, is.calm = TRUE, with_lowbound = FALSE,

g.envir = envir, graph.envir = graphenvir, ...)

histoapp.plot(dataset, var.envir, res, coeff = 1, is.calm = TRUE, with_lowbound = FALSE,

g.envir = envir, graph.envir = graphenvir, ...)

roseplot(dataset, var.envir, dir.envir, mag.bins, dir.res = 20, labels.dir = 0,

is.calm = TRUE, is.center = c(FALSE, TRUE), with_lowbound = c(FALSE, FALSE), pcmax = NULL,

delta.pc = NULL, g.envir = envir, graph.envir = graphenvir, palette = "RdYlGn")

roseplot.facet(rose, varname)

compar.plot(dataset, xvar.envir, yvar.envir, point1, point2, g.envir = envir,

graph.envir = graphenvir, scatterplot = TRUE, qqplot = FALSE, plotreg = FALSE, dp = 0.01, ...)

Arguments

dataset A table (numeric matrix or data frame) containing the data (by column). For

tserie.plot, it must have a column with the time. The safest is to have the

time in julian days in first column. The data frame may also have a column

named "Horodate" in POSIX format. Other columns include the main variable

and possibly covariates.

tri A list of POT or MAX data of class ’tri’, as returned by the functions triPOT,

triMAXor dataset2tri. If this argument is provided, the threshold and peaks

(POT data) or maxima (MAX data) will be added to the plot of the time series.

If NULL, just the time series is plotted.

g.envir A list describing the global environment of the study: site name $site, duration

of observations K (in years), origin $origin and time zone $tz of the time...

var.envir, xvar.envir, yvar.envir, dir.envir

A list regrouping the variable descriptions and properties. The variable descrip-

tion is a sub-list var containing its symbol id, its name name, its unit unit, the

column number in the dataset varcol, the number of sequential observations

per year nu, the number of significant digits ndig...

graph.envir A list grouping different graphical options: which language (either "FR" or

"EN"); should the plots be in colour (color=TRUE) or in black and white; should

they be saved (saveplots=TRUE); in which format (to be chosen among "wmf",

"emf", "png", "jpg", "jpeg", "bmp", "tif", "tiff", "ps", "eps" or "pdf");

should they be magnified (use a numeric value for cex).

saison If the time series has been declustered by block maximum within a season, a list

with the name and time limits of the season.

with_points Logical TRUE / FALSE. If TRUE, add points to the line at each data value.

datesinflnm Logical TRUE / FALSE. If TRUE, add to the name of the exported plot file the initial

and final dates pf the plot, in format YYYYMMDD.

... Additional graphical parameters from function par.graphe.

dir.lim The limits for the direction axis (whether it is x- or y-axis).

dir.tick, dir.lab

The step between two consecutive ticks / labels along the direction axis.

withdens Logical TRUE / FALSE. If TRUE, the empirical bivariate density is estimated and

visualized through a colour code for the points.
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res The resolution of the variable bins.

coeff A coefficient applied to the percentage of the bins. Useful when studying a sub-

sample, such as a directional sector that includes 30% of the total observations.

is.calm Logical vector TRUE / FALSE, for each variable. If TRUE, the considered variable

is considered to be a calm when it is 0.

with_lowbound Logical vector TRUE / FALSE, for each variable. Defines how the bounds of the

bins are. If TRUE, the lower bound of the range is included and the upper bound

is not.

is.center Logical vector TRUE / FALSE, for each variable. If TRUE, the bin limits given by

mag.bins are considered as the center of the bins and not the bounds.

mag.bins The sequency (vector of length 3 with minimum, maximum, increment) defining

the bins of the variable magnitude (speed, height...). Note that the maximum of

the sequency may be lower than the maximum of the variable.

dir.res The resolution of the directional bins for the rose.

labels.dir The direction (in °N) of the radial along which the magnitude labels should be

drawn. Scalar between 0 and 360.

pcmax The upper limit of the radial axis of the rose, i.e. the maximum percentage.

Numeric between 0 and 1.

delta.pc The step, in percentage, for the ticks of the radial axis of the rose. Numeric

between 0 and 1.

palette The palette to be used for the magnitude bins of the rose. See documentation of

ggplot2 package.

rose The rose plot object returned by function roseplot to be used for faceting.

point1 The name of the covariate used for rose faceting. It must be a column name of

the input data frame.

point2 The name of the covariate used for rose faceting. It must be a column name of

the input data frame.

scatterplot Logical TRUE / FALSE. If TRUE, the scatterplot of both variables is provided.

qqplot Logical TRUE / FALSE. If TRUE, the quantile-quantile plot of both variables is

provided.

plotreg Logical TRUE / FALSE. If TRUE, a linear regression is fitted and added to the plot.

dp The step of quantile probabilities for the qqplot.

Details

tserie.plot may be used either for simple display of one variable with respect to time, or for

showing the (POT or MAX) declustering with the i.i.d. sample of the peaks or maxima in ad-

dition to the sequential variable. logdep.plot and histoapp.plot characterize only one vari-

able, plotting respectively the curve of exceedance frequency and the histogram of the occurrence

frequency. covar.plot is a scatterplot useful for covariates. compar.plot proposes a scatter-

plot and a quantile-quantile plot for comparing the same kind of variable, from two different ori-

gins. roseplot is a directional rose for vectorial physical variables having a direction (waves,

wind, current...). The rose can be faceted (display of multiple roses) against a covariate using

roseplot.facet. For plots other than roses, the input data my be a numeric matrix. However good

practice suggest using data frames. Data frames also allow for a POSIX-format column, that can be

used for identifying months or seasons.
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Value

These functions return a plot in a graphic device. Roses (functions roseplot and roseplot.facet)

are displayed in a separate graphic device. These functions also return a list object, that contains

the plot object characteristics (see package ggplot2).

Author(s)

Franck Mazas

See Also

par.graphe, read.input

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC")

serie <- as.data.frame(Bastia)

serie$Horodate <- temps2horodate(Bastia[, 1], origin = envir$origin, tz = envir$tz)

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2))

Dir.envir <- list(var = list(id = "Dir", name = "Direction", unit = "°N"))

Tp.envir <- list(var = list(id = "Tp", name = "Tp", unit = "s"))

graphenvir <- list(lang = "EN", color = TRUE, saveplots = FALSE, fileformat = "png", cex = 1)

covar.plot(serie, xvar.envir = Dir.envir, yvar.envir = Hs.envir)

covar.plot(serie, xvar.envir = Dir.envir, yvar.envir = Tp.envir)

covar.plot(serie, xvar.envir = Tp.envir, yvar.envir = Hs.envir)

p.Hs <- roseplot(serie, var.envir = Hs.envir, dir.envir = Dir.envir, dir.res = 10,

mag.bins = seq(0, 4, 0.25), labels.dir = 0, g.envir = envir, graph.envir = graphenvir)

Dubai.SOT SOT Data From A Location Off Dubai

Description

Contains Time, Hs, Wave Direction and Storm Duration of hindcasted sea states above 1 meter for

a loocation off Dubai.

Usage

data(Dubai.SOT)

Format

A data frame with 3557 observations on the following 4 variables.

Time A numeric vector.

Hs A numeric vector of the significant wave height in meters of the storms above 1 m.

Dir A numeric vector with the peak direction of the sea states.

Dur A numeric vector with the on-going storm duration.
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Details

This data is to be sorted with SOrT function to identify storms and extract maxima for each con-

sidered directional sector. Location coordinates are (25°23’60.00"N, 54°17’60.00"E). The hindcast

period is February 1958 - February 2008 (50 years).

Source

Hindcast by GlobOcean.

Examples

data(Dubai.SOT)

graphenvir <- list(lang = "EN", color = TRUE, saveplots = FALSE, fileformat = "png", cex = 1)

envir <- list(site = "Dubaï SOT", K = 50, origin = "1899-12-30", tz = "UTC")

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m"))

Dir.envir <- list(var = list(id = "Dir", name = "Direction", unit = "°N"))

covar.plot(Dubai.SOT, xvar.envir = Dir.envir, yvar.envir = Hs.envir)

Exponential distribution

Functions for the Exponential distribution

Description

Density, cumulative distribution and quantile functions. Functions for random generation, quantile

gradient, likelihood and derivatives.

Usage

dEXP(x, par = c(sigma, mu = 0), verif = TRUE)

pEXP(x, par = c(sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

qEXP(p, par = c(sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

rEXP(N, par = c(sigma, mu = 0), verif = TRUE)

EXP.grad.F(x, par, verif = FALSE)

EXP.hess.F(x, par, verif = FALSE)

EXP.grad.q(par, lambda, Tr = 100, verif = TRUE)

EXP.loglik(par, dat, verif = TRUE)

EXP.grad.loglik(par, dat, verif = TRUE)

EXP.hess.loglik(par, dat, verif = TRUE)

verif.EXP(par, dat = NULL, p = NULL)

Arguments

x Vector of quantiles or support of the distribution.

p Vector of probabilities.

par Parameters of the distribution: scale parameter σ and location parameter µ.

N The sample size or number of observations.

lambda The Poisson rate parameter (mean number of events per year).

Tr The return period, in years, associated to the quantile q.
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dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.EXP.

Details

The cumulative distribution function of the Exponential distribution is given by:

F (x) = 1− exp

(

−
x− µ

σ

)

with scale parameter σ and location parameter µ.

Value

dEXP returns the density of the quantiles x for Exponential distribution with parameters par. pEXP

returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE) of the

quantiles x for Exponential distribution with parameters par. qEXP returns the quantiles associated

to the probabilities p for Exponential distribution with parameters par. rEXP randomly generates a

sample of size N for Exponential distribution with parameters par. EXP.grad.F returns the gradient

of the cumulative distribution function, useful for the historical likelihood. EXP.hess.F returns the

hessian of the cumulative distribution function, useful for the historical likelihood. EXP.grad.q

returns the gradient of the quantile function, useful for computing the confidence intervals by the

Delta method. EXP.loglik returns the likelihood of the sample dat following a Exponential distri-

bution with parameters par. EXP.grad.loglik returns the gradient of the likelihood of the sample

dat following a Exponential distribution with parameters par. EXP.hess.loglik returns the hes-

sian of the likelihood of the sample dat following a Exponential distribution with parameters par.

verif.EXP checks the arguments of the above functions and returns a logical value TRUE/FALSE. It

checks whether the probabilities are in the range [0,1] and whether the parameters are within their

interval of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT

Examples

p <- seq(0, 1, 0.1)

x <- seq(0, 5, 0.2)

x2 <- seq(-5, 15, 1)

x3 <- seq(-5, 5, 0.25)

k1 <- -0.5

k2 <- 0.5

sigma1 <- 1.75

sigma2 <- 0.5

mu1 <- 0.1

mu2 <- 0.5
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N <- 50

dEXP(x, par = sigma1)

dEXP(x, par = c(sigma = sigma1, mu = mu1))

pEXP(x, par = sigma1)

pEXP(x, par = c(sigma = sigma1, mu = mu1))

qEXP(p, par = sigma1)

Y2 <- rEXP(N, c(sigma = sigma1))

fit.MOM(Y2, "EXP", mu0 = TRUE)

fit.LMOM(Y2, "EXP", mu0 = TRUE)

fit.MLE(Y2, "EXP", optim.method = "Brent", lower = 0, upper = 10)

EXP.loglik(c(sigma = sigma1, mu = mu1), Y2)

EXP.grad.loglik(c(sigma = sigma1, mu = mu1), Y2)

EXP.hess.loglik(c(sigma = sigma1, mu = mu1), Y2)

Fit Plots Plots for Fit Display and Characterization

Description

A set of plotting functions for displaying and characterizing the fits to extreme peaks or maxima by

a statistical distribution.

Usage

plots.fit(tri, var.envir = varenvir, tail = "upper", multiplots = TRUE, g.envir = envir,

Lois = NULL, saison = NA, graph.envir = graphenvir, coeff.p_empir = c(alpha = 0, beta = 1),

histo.arg = NA, Tr_Labels = FALSE, IC_Labels = FALSE, disable.saveplots = FALSE, ...)

dens.plot(fit.envir, loi, nbar = 20, var.envir = varenvir, graph.envir = graphenvir,

xlimit = NULL)

pp.plot(fit.envir, loi, graph.envir = graphenvir, colpoints = "darkblue")

qq.plot(fit.envir, loi, var.envir = varenvir, xylimit = NULL, graph.envir = graphenvir,

colpoints = "darkblue")

qT.plot(fit.envir, loi, coeff.p_empir = c(alpha = 0, beta = 1), histo.arg = NA,

var.envir = varenvir, xlimit = c(0.1, 100), ylimit = NULL, graph.envir = graphenvir,

colpoints = "darkblue", colpoints.histo = "darkred", pchpoints = 3, pchpoints.histo = 4,

print_titre = TRUE, Tr_Labels = FALSE, IC_Labels = FALSE)

Arguments

tri A list of POT or MAX data of class ’tri’, as returned by the functions triPOT,

triMAXor dataset2tri.

var.envir A list regrouping the variable descriptions and properties. It may contain a list of

type peaks.upper, peaks.lower or minima with the declustered peaks / max-

ima and possibly fit details.

tail The extrapolation tail (for POT approach only). If "upper", selection of the

maxima; if "lower", selection of the minima.
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multiplots Logical TRUE/FALSE. If TRUE, four plots are displayed: the quantile vs. return

period plot (qT.plot), the density plot (dens.plot), the probability-probability

plot (pp.plot) and the quantile-quantile plot (qq.plot). If FALSE, only the first

plot is displayed.

g.envir A list describing the global environment of the study: site name $site, duration

of observations K (in years), origin $origin and time zone $tz of the time...

Lois A character vector with the statistical laws whose fit is to be plotted. There is

one plotting window per law. Must match values of function liste.lois.

saison If the time series has been declustered by block maximum within a season, a list

with the name and time limits of the season.

graph.envir A list grouping different graphical options: which language (either "FR" or

"EN"); should the plots be in colour (color=TRUE) or in black and white; should

they be saved (saveplots=TRUE); in which format (to be chosen among "wmf",

"emf", "png", "jpg", "jpeg", "bmp", "tif", "tiff", "ps", "eps" or "pdf");

should they be magnified (use a numeric value for cex).

coeff.p_empir The coefficients for the empirical plotting position formula. A numeric vector

of length 2 c(alpha, beta. The epp formula is (i-alpha/(N+beta).

histo.arg If historical data is used, a list of these data for plotting.

Tr_Labels Logical TRUE/FALSE. If TRUE, a label is written with the quantile value for the

set of return periods provided in var.envir.

IC_Labels Logical TRUE/FALSE. If TRUE, labels are written with the bounds of the confi-

dence intervals for the set of return periods provided in var.envir.

disable.saveplots

Logical. If TRUE, the plots are not saved, whatever the value of graph.envir$saveplots.

... Other arguments to be passed for the functions qT.plot, dens.plot, qq.plot

and pp.plot (see below).

fit.envir A list of type peaks.upper, peaks.lower or minima with the declustered peaks

/ maxima and fit details. This list is a sub-list of var.envir.

loi The statistical distribution whose fit is to be plotted. Must match a value of

function liste.lois.

nbar The number of bars for the histogram.

xlimit, xylimit, ylimit

The axis limits relative to the quantiles. For function qT.plot, xlimit is relative

to the return period.

colpoints The colour for the points of the plot.

colpoints.histo

The colour for plotting the historical data.

pchpoints A pch parameter as defined by par(): the symbol to be used for plotting the

peaks or maxima.

pchpoints.histo

A pch parameter as defined by par(): the symbol to be used for plotting the

historical data.

print_titre Logical: should the title of the qT-plot be printed?

Value

For the function plots.fit: one or several windows with either the qT-plot (if multiplots=FALSE

or the four plots.
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Author(s)

Franck Mazas

See Also

multiPOT

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC1")

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2), Tr = c(1, 2, 5, 10, 20,

50, 100), conf.IC = 90, boot.iter = 1000)

graphenvir <- list(lang = "EN", color = TRUE, saveplots = TRUE, fileformat = "png", cex = 1)

Lois <- c("GPD", "WEI", "GAM", "EXP")

tri <- tri.POT(Bastia, up = 1.5, delta_t = 1, g.envir = envir, var.envir = Hs.envir, tail = "upper",

strict = FALSE, pbar = FALSE)

multiPOT(tri, us = 2.44, lois = Lois, est = "LMOM", IC_methode = "boot", envir, Hs.envir, graphenvir,

tail = "upper", smooth = FALSE)

plots.fit(tri, var.envir = Hs.envir, tail = "upper", g.envir = envir, Lois = Lois,

graph.envir = graphenvir)

graphenvir$xylimTplot <- list(NULL, c(0, 8))

plots.fit(tri, var.envir = Hs.envir, tail = "upper", g.envir = envir, Lois = Lois,

graph.envir = graphenvir, multiplots = FALSE, Tr_Labels = TRUE, IC_Labels = TRUE)

Gamma distribution Functions for the Gamma distribution

Description

Density, cumulative distribution and quantile functions. Functions for random generation, quantile

gradient, likelihood and derivatives.

Usage

dGAM(x, par = c(k, sigma, mu = 0), verif = TRUE)

pGAM(x, par = c(k, sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

qGAM(p, par = c(k, sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

rGAM(N, par = c(k, sigma, mu = 0), verif = TRUE)

GAM.grad.F(x, par, verif = FALSE)

GAM.hess.F(x, par, verif = FALSE)

GAM.grad.q(par, lambda, Tr = 100, verif = TRUE)

GAM.loglik(par, dat, verif = TRUE)

GAM.grad.loglik(par, dat, verif = TRUE)

GAM.hess.loglik(par, dat, verif = TRUE)

verif.GAM(par, dat = NULL, p = NULL)
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Arguments

x Vector of quantiles or support of the distribution.

p Vector of probabilities.

par Parameters of the distribution: shape parameter k, scale parameter σ and loca-

tion parameter µ.

N The sample size or number of observations.

lambda The Poisson rate parameter (mean number of events per year).

Tr The return period, in years, associated to the quantile q.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.GAM.

Details

The cumulative distribution function of the Gamma distribution is given by:

F (x) =
γ
(

x−µ
σ

)

Γ(k)

with shape parameter k, scale parameter σ and location parameter µ. Γ() is the Gamma function

and γ() is the lower incomplete Gamma function.

Value

dGAM returns the density of the quantiles x for Gamma distribution with parameters par. pGAM

returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE) of

the quantiles x for Gamma distribution with parameters par. qGAM returns the quantiles associated

to the probabilities p for Gamma distribution with parameters par. rGAM randomly generates a

sample of size N for Gamma distribution with parameters par. GAM.grad.F returns the gradient of

the cumulative distribution function, useful for the historical likelihood. GAM.hess.F returns the

hessian of the cumulative distribution function, useful for the historical likelihood. GAM.grad.q

returns the gradient of the quantile function, useful for computing the confidence intervals by the

Delta method. GAM.loglik returns the likelihood of the sample dat following a Gamma distribution

with parameters par. GAM.grad.loglik returns the gradient of the likelihood of the sample dat

following a Gamma distribution with parameters par. GAM.hess.loglik returns the hessian of the

likelihood of the sample dat following a Gamma distribution with parameters par. verif.GAM

checks the arguments of the above functions and returns a logical value TRUE/FALSE. It checks

whether the probabilities are in the range [0,1] and whether the parameters are within their interval

of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT
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Examples

parGAM <- c(k = 1.5, sigma = 1.5, mu = 2)

dGAM(seq(0, 8, 0.1), par = parGAM) # Validé avec la fonction R dgamma

pGAM(seq(0, 8, 0.1), par = parGAM) # Validé avec la fonction R pgamma

qGAM(seq(0, 1, 0.05), par = parGAM) # Validé avec la fonction R qgamma

Y6 <- rGAM(500, parGAM)

fit.MOM(Y6, "GAM")

fit.MOM(Y6 - 2, "GAM", mu0 = TRUE)

fit.LMOM(Y6, "GAM")

fitGAM <- fit.MLE(Y6, "GAM", u = parGAM["mu"])#, optim.method = "Nelder-Mead")

GAM.loglik(Y6 - parGAM["mu"], par = fitGAM$par)

GAM.grad.loglik(Y6 - parGAM["mu"], par = fitGAM$par)

GAM.hess.loglik(Y6 - parGAM["mu"], par = fitGAM$par)

Generalized Extreme Value distribution

Functions for the Generalized Extreme Value distribution

Description

Density, cumulative distribution and quantile functions. Functions for random generation, quantile

gradient, likelihood and derivatives.

Usage

dGEV(x, par = c(k = 0, sigma = 1, mu = 0), verif = TRUE)

pGEV(x, par = c(k = 0, sigma = 1, mu = 0), lower.tail = TRUE, verif = TRUE)

qGEV(p, par = c(k = 0, sigma = 1, mu = 0), lower.tail = TRUE, verif = TRUE)

rGEV(N, par = c(k = 0, sigma = 1, mu = 0), verif = TRUE)

GEV.grad.F(x, par, verif = FALSE)

GEV.hess.F(x, par, verif = FALSE)

GEV.grad.q(par, lambda, Tr = 100, verif = TRUE)

GEV.loglik(par, dat, verif = TRUE)

GEV.grad.loglik(par, dat, verif = TRUE)

GEV.hess.loglik(par, dat, verif = TRUE)

verif.GEV(par, dat = NULL, p = NULL)

Arguments

x Vector of quantiles or support of the distribution.

p Vector of probabilities.

par Parameters of the distribution: shape parameter k, scale parameter σ and loca-

tion parameter µ.

N The sample size or number of observations.

lambda The Poisson rate parameter (mean number of events per year).

Tr The return period, in years, associated to the quantile q.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.GEV.
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Details

The cumulative distribution function of the Generalized Extreme Value distribution is given by:

F (x) = exp

[

−

[

1 + k
x− µ

σ

]

−1/k
]

with shape parameter k, scale parameter σ and location parameter µ.

Value

dGEV returns the density of the quantiles x for Generalized Extreme Value distribution with parame-

ters par. pGEV returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE)

of the quantiles x for Generalized Extreme Value distribution with parameters par. qGEV returns the

quantiles associated to the probabilities p for Generalized Extreme Value distribution with param-

eters par. rGEV randomly generates a sample of size N for Generalized Extreme Value distribution

with parameters par. GEV.grad.F returns the gradient of the cumulative distribution function,

useful for the historical likelihood. GEV.hess.F returns the hessian of the cumulative distribution

function, useful for the historical likelihood. GEV.grad.q returns the gradient of the quantile func-

tion, useful for computing the confidence intervals by the Delta method. GEV.loglik returns the

likelihood of the sample dat following a Generalized Extreme Value distribution with parameters

par. GEV.grad.loglik returns the gradient of the likelihood of the sample dat following a Gen-

eralized Extreme Value distribution with parameters par. GEV.hess.loglik returns the hessian

of the likelihood of the sample dat following a Generalized Extreme Value distribution with pa-

rameters par. verif.GEV checks the arguments of the above functions and returns a logical value

TRUE/FALSE. It checks whether the probabilities are in the range [0,1] and whether the parameters

are within their interval of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT

Examples

p <- seq(0, 1, 0.1)

x <- seq(0, 5, 0.2)

x2 <- seq(-5, 15, 1)

x3 <- seq(-5, 5, 0.25)

k1 <- -0.5

k2 <- 0.5

sigma1 <- 1.75

sigma2 <- 0.5

mu1 <- 0.1

mu2 <- 0.5

N <- 50

dGEV(x3, c(k = k1, sigma = 1, mu = 0))
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dGEV(x3, c(k = k2, sigma = 1, mu = 0))

dGEV(x3, c(k = 0, sigma = sigma1, mu = 0))

dGUM(x3, c(sigma = sigma1, mu = 0))

Y4 <- rGEV(500, c(k = -k1, sigma = sigma1, mu = 2))

fit.MOM(Y4, "GEV")

fit.LMOM(Y4, "GEV")

fit.MLE(Y4, "GEV") # ATTENTION : ajustement MLE de la GEV non fiable

fit.MLE(Y4, "GEV", optim.method = "Nelder-Mead")

fit.MLE(Y4, "GEV", par.init = c(k = 0.1, sigma = sqrt(6 * var(Y4)) / pi,

mu = mean(Y4) - 0.57722 * sqrt(6 * var(Y4)) / pi), optim.method = "Nelder-Mead")

fit.MLE(Y4, "GEV", par.init = c(k = 0.1, sigma = sqrt(6 * var(Y4)) / pi,

mu = mean(Y4) - 0.57722 * sqrt(6 * var(Y4)) / pi), optim.method = "BFGS")

GEV.loglik(fit.MLE(Y4, "GEV", show = FALSE)$par, Y4)

GEV.grad.loglik(fit.MLE(Y4, "GEV", show = FALSE)$par, Y4)

GEV.hess.loglik(fit.MLE(Y4, "GEV", show = FALSE)$par, Y4)

Generalized Pareto distribution

Functions for the Generalized Pareto distribution

Description

Density, cumulative distribution and quantile functions. Functions for random generation, quantile

gradient, likelihood and derivatives.

Usage

dGPD(x, par = c(k, sigma, mu = 0), verif = TRUE)

pGPD(x, par = c(k, sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

qGPD(p, par = c(k, sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

rGPD(N, par = c(k, sigma, mu = 0), verif = TRUE)

GPD.grad.F(x, par, verif = FALSE)

GPD.hess.F(x, par, verif = FALSE)

GPD.grad.q(par, lambda, Tr = 100, verif = TRUE)

GPD.loglik(par, dat, verif = TRUE)

GPD.grad.loglik(par, dat, verif = TRUE)

GPD.hess.loglik(par, dat, verif = TRUE)

verif.GPD(par, dat = NULL, p = NULL)

Arguments

x Vector of quantiles or support of the distribution.

p Vector of probabilities.

par Parameters of the distribution: shape parameter k, scale parameter σ and loca-

tion parameter µ.

N The sample size or number of observations.

lambda The Poisson rate parameter (mean number of events per year).

Tr The return period, in years, associated to the quantile q.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.GPD.
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Details

The cumulative distribution function of the Generalized Pareto distribution is given by:

F (x) = 1−

[

1 + k
x− µ

σ

]

−1/k

with shape parameter k, scale parameter σ and location parameter µ.

Value

dGPD returns the density of the quantiles x for Generalized Pareto distribution with parameters par.

pGPD returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE)

of the quantiles x for Generalized Pareto distribution with parameters par. qGPD returns the quan-

tiles associated to the probabilities p for Generalized Pareto distribution with parameters par. rGPD

randomly generates a sample of size N for Generalized Pareto distribution with parameters par.

GPD.grad.F returns the gradient of the cumulative distribution function, useful for the historical

likelihood. GPD.hess.F returns the hessian of the cumulative distribution function, useful for the

historical likelihood. GPD.grad.q returns the gradient of the quantile function, useful for comput-

ing the confidence intervals by the Delta method. GPD.loglik returns the likelihood of the sample

dat following a Generalized Pareto distribution with parameters par. GPD.grad.loglik returns

the gradient of the likelihood of the sample dat following a Generalized Pareto distribution with

parameters par. GPD.hess.loglik returns the hessian of the likelihood of the sample dat follow-

ing a Generalized Pareto distribution with parameters par. verif.GPD checks the arguments of the

above functions and returns a logical value TRUE / FALSE. It checks whether the probabilities are

in the range [0,1] and whether the parameters are within their interval of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT

Examples

p <- seq(0, 1, 0.1)

x <- seq(0, 5, 0.2)

x2 <- seq(-5, 15, 1)

x3 <- seq(-5, 5, 0.25)

k1 <- -0.5

k2 <- 0.5

sigma1 <- 1.75

sigma2 <- 0.5

mu1 <- 0.1

mu2 <- 0.5

N <- 50

dGPD(x, c(k = k1, sigma = sigma1))

dGPD(x, c(k = k2, sigma = sigma1, mu = mu1))
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pGPD(x, c(k = k1, sigma = sigma1))

pGPD(x, c(k = k2, sigma = sigma1))

qGPD(p, c(k = k1, sigma = sigma1))

qGPD(p, c(k = k2, sigma = sigma1))

qGPD(p, c(k = 0, sigma = sigma1))

Y <- rGPD(N, c(k = k1, sigma = sigma1))

GPD.loglik(c(k = k1, sigma = sigma1, mu = 0), Y)

GPD.grad.loglik(c(k = k1, sigma = sigma1, mu = 0), Y)

GPD.hess.loglik(c(k = k1, sigma = sigma1, mu = 0), Y)

fit.MOM(Y, "GPD")

fit.LMOM(Y, "GPD")

fit.MLE(Y, "GPD")

fit.MLE(Y, "GPD", optim.method = "Nelder-Mead")

test.chi2(fit.MLE(Y, "GPD", show = FALSE))

Graphical Parameters Graphical Parameters for Plots Customization

Description

A set of graphical parameters to adjust the settings of the plots.

Usage

par.graphe(marges = "blt", xlimit = NULL, ylimit = NULL, legend.loc = "topleft",

cex = 1, cex.main = 1.75, cex.font = 1, cex.leg = 1.25,

cex.lab = 1.75, cex.xlab = 1, cex.ylab = 1,

cex.axis = 1.75, cex.xaxis = 1, cex.yaxis = 1, las = 1,

col.line = "black", col.points = couleurs("ARTELIA")["Bleu"], col.box = "darkblue",

lwd = 2, lty = 1,

cex.points = 1, pch.points = 16, transp = 0.33,

add = FALSE, disable.saveplots = FALSE)

couleurs(palette)

Arguments

marges A combination of ’b’ (bottom), ’l’ (left), ’t’ (top) and ’r’ right: for plot margins.

xlimit The limits for the time axis, in POSIXct format. Vector of length 2.

ylimit The limits for the y-axis. Vector of length 2.

legend.loc The location of the legend from the list "bottomright", "bottom", "bottomleft",

"left", "topleft", "top", "topright", "right" and "center".

cex A numerical value giving the amount by which plotting text and symbols should

be magnified relative to the default.

cex.main Magnifying factor for main titles relative to the current setting of cex.

cex.font Magnifying factor for text on the plot, such as correlogram.plot or histoapp.plot.

cex.leg Magnifying factor for the legend.
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cex.lab, cex.xlab, cex.ylab

Magnifying factor for x and y labels, x label or y label relative to the current

setting of cex.

cex.axis, cex.xtick, cex.ytick

Magnifying factor for x and y axis, x axis and y axis annotation relative to the

current setting of cex.

las The style of axis labels. 0: always parallel to the axis, 1: always horizontal, 2:

always perpendicular to the axis, 4: always vertical.

col.points, col.line, col.box

The color of the points, lines or boxes.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid

(default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one

of the character strings "blank", "solid", "dashed", "dotted", "dotdash",

"longdash", or "twodash", where "blank" uses ’invisible lines’ (i.e., does not

draw them).

lwd The line width, a positive number.

transp The transparency factor of the points of the scatter plot. Scalar between 0 and 1.

add Logical TRUE/FALSE. If TRUE, the line or points are added to an existing plot.

disable.saveplots

Logical. If TRUE, the plots are not saved, whatever the value of graph.envir$saveplots.

palette The name of a list of predefined colours: - "ARTELIA": the blue and green from

ARTELIA graphic chart; - "lois": default colours for statistical distributions; -

"mois": a set of 12 colours; - "secteurs": a set of 8 colours.

Details

For each plot function detailed in dataplots, only some of the above arguments may be used. See

also help(par) for further details.

Value

A list with list components returned invisibly for par.graph; a vector of colours for couleurs.

Author(s)

Franck Mazas

See Also

dataplots, correlogram.plot

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC")

serie <- as.data.frame(Bastia)

serie$Horodate <- temps2horodate(Bastia[, 1], origin = envir$origin, tz = envir$tz)

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2))

Dir.envir <- list(var = list(id = "Dir", name = "Direction", unit = "°N"))

Tp.envir <- list(var = list(id = "Tp", name = "Tp", unit = "s"))
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graphenvir <- list(lang = "EN", color = TRUE, saveplots = FALSE, fileformat = "png", cex = 1)

tserie.plot(serie, var.envir = Hs.envir, graph.envir = graphenvir)

tserie.plot(serie, var.envir = Hs.envir, graph.envir = graphenvir, col.line = "darkgreen",

cex.main = 1.25, cex.xtick = 0.8, cex.ytick = 0.8, cex.ylab = 0.75)

covar.plot(serie, xvar.envir = Dir.envir, yvar.envir = Hs.envir)

covar.plot(serie, xvar.envir = Dir.envir, yvar.envir = Hs.envir, transp = 1,

col.points = "royalblue", pch.points = 17)

Gumbel distribution Functions for the Gumbel distribution

Description

Density, cumulative distribution and quantile functions. Functions for random generation, quantile

gradient, likelihood and derivatives.

Usage

dGUM(x, par = c(sigma = 1, mu = 0), verif = TRUE)

pGUM(x, par = c(sigma = 1, mu = 0), lower.tail = TRUE, verif = TRUE)

qGUM(p, par = c(sigma = 1, mu = 0), lower.tail = TRUE, verif = TRUE)

rGUM(N, par = c(sigma = 1, mu = 0), verif = TRUE)

GUM.grad.F(x, par, verif = FALSE)

GUM.hess.F(x, par, verif = FALSE)

GUM.grad.q(par, lambda, Tr = 100, verif = TRUE)

GUM.loglik(par, dat, verif = TRUE)

GUM.grad.loglik(par, dat, verif = TRUE)

GUM.hess.loglik(par, dat, verif = TRUE)

verif.GUM(par, p = NULL)

Arguments

x Vector of quantiles or support of the distribution.

p Vector of probabilities.

par Parameters of the distribution: scale parameter σ and location parameter µ.

N The sample size or number of observations.

lambda The Poisson rate parameter (mean number of events per year).

Tr The return period, in years, associated to the quantile q.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.GUM.

Details

The cumulative distribution function of the Gumbel distribution is given by:

F (x) = exp

[

− exp

(

−
x− µ

σ

)]

with scale parameter σ and location parameter µ.
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Value

dGUM returns the density of the quantiles x for Gumbel distribution with parameters par. pGUM re-

turns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE) of the

quantiles x for Gumbel distribution with parameters par. qGUM returns the quantiles associated to

the probabilities p for Gumbel distribution with parameters par. rGUM randomly generates a sample

of size N for Gumbel distribution with parameters par. GUM.grad.F returns the gradient of the cu-

mulative distribution function, useful for the historical likelihood. GUM.hess.F returns the hessian

of the cumulative distribution function, useful for the historical likelihood. GUM.grad.q returns the

gradient of the quantile function, useful for computing the confidence intervals by the Delta method.

GUM.loglik returns the likelihood of the sample dat following a Gumbel distribution with param-

eters par. GUM.grad.loglik returns the gradient of the likelihood of the sample dat following a

Gumbel distribution with parameters par. GUM.hess.loglik returns the hessian of the likelihood

of the sample dat following a Gumbel distribution with parameters par. verif.GUM checks the

arguments of the above functions and returns a logical value TRUE/FALSE. It checks whether the

probabilities are in the range [0,1] and whether the parameters are within their interval of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT

Examples

p <- seq(0, 1, 0.1)

x <- seq(0, 5, 0.2)

x2 <- seq(-5, 15, 1)

x3 <- seq(-5, 5, 0.25)

k1 <- -0.5

k2 <- 0.5

sigma1 <- 1.75

sigma2 <- 0.5

mu1 <- 0.1

mu2 <- 0.5

N <- 50

dGUM(x2, c(sigma = sigma2, mu = mu2))

pGUM(x2, c(sigma = sigma2, mu = mu2))

Y3 <- rGUM(N, c(sigma = sigma2, mu = 2))

fit.MOM(Y3, "GUM")

fit.LMOM(Y3, "GUM")

fit.MLE(Y3, "GUM")

fit.MLE(Y3, "GUM", optim.method = "Nelder-Mead")

GUM.loglik(fit.MLE(Y3, "GUM", show = FALSE)$par, Y3)

GUM.grad.loglik(fit.MLE(Y3, "GUM", show = FALSE)$par, Y3)

GUM.hess.loglik(fit.MLE(Y3, "GUM", show = FALSE)$par, Y3)
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multiPOT Fitting of Extreme POT Values to Distributions

Description

Fits POT data to distributions. Three estimators are available: Maximum Likelihood Estimator,

L-moments estimator with Landwehr’s unbiased formula (Landwehr et al., 1979a) et the Method

of Moments.

Usage

multiPOT(tri, us, var.envir, lois = c("GPD", "WEI", "GAM"), est = "LMOM", IC_methode = "boot",

g.envir = envir, graph.envir = graphenvir, tail = "upper", smooth = FALSE, round_quant = TRUE,

show = FALSE, ...)

Arguments

tri A list of POT data of class ’tri’, as returned by the functions triPOT or dataset2tri.

us Numeric. The statistical threshold us above which the peak exceedances are

fitted to the dsitributions.

lois The distributions to fit to the sample of exceedances over threshold. To be cho-

sen among "GPD", "WEI", "EXP", "GAM", "GEV" and "GUM".

est The estimator: to be chosen among "MLE" (Maximum Likelihood Estimator),

"LMOM" (L-moments) or "MOM" (Methods of Moments).

IC_methode The method used for computing the confidence intervals. To be chosen among

"boot" or "delta".

g.envir A list describing the global environment of the study: site name, duration of

observations K (in years), origin and time zone of the time...

var.envir A list regrouping the variable descriptions and properties. The variable descrip-

tion is a sub-list var containing its symbol id, its name name, its unit unit, the

column number in the dataset varcol, the number of sequential observations

per year nu, the number of significant digits ndig... It must also include the nu-

meric of return periods Tr, the level of confidence interval conf.IC, if needed

the number of bootstrap iterations boot.iter...

graph.envir A list grouping different graphical options: which language (either "FR" or

"EN"); should the plots be in colour (color=TRUE) or in black and white; should

they be saved (saveplots=TRUE); in which format (to be chosen among "wmf",

"emf", "png", "jpg", "jpeg", "bmp", "tif", "tiff", "ps", "eps" or "pdf");

should they be magnified (use a numeric value for cex).

tail For extrapolation of extreme maximal values, tail="upper". For extrapolation

of extreme minimal values, tail="lower".

smooth Logical TRUE / FALSE. If TRUE, the dataset is smoothed using the function dataset.smooth

with default arguments.

round_quant Logical TRUE / FALSE. Should the computed quantiles be rounded to the number

of significant digits of the variable var$ndig?

show Logical. If TRUE, print details of the fits on the R console.

... Additional arguments for function fit.MLE
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Details

If the MLE is chosen, two-parameter distributions are fitted, i.e. without location parameters. With

L-moments estimator, this third parameter is also estimated.

Value

The function returns a list of the type peak.envir, either peaks.upper or peaks.lower, depending

on the tail that is extrapolated. It is attached to the variable list var.envir. The list includes:

tail Character. The extrapolated tail, either "upper" or "lower".

up Numeric. The physical threshold.

Xp Numeric vector of the peaks above the physical threshold up.

Np The number of peaks above the physical threshold up.

lambda_p The mean number of peaks above the physical threshold up per year, with λp =
Np/K.

us Numeric. The statistical threshold us above which the fits are carried out.

X Numeric. The sample of the peaks above the statistical threshold us.

Y Numeric. The sample of the exceedances above the statistical threshold us:

Y = X − us.

N Numeric. The number of exceedances above us.

lambda Numeric. The mean number of peaks above the statistical threshold us per year,

with λ = N/K.

lois The distributions fitted to the peak exceedances.

OKfit Logical TRUE / FALSE. Specifies whether the fit succeeded.

est Character string. The estimator used for each distribution.

crit Numeric. A 3 row matrix providing BIC and AIC criteria and the Kolmogorov-

Smirnov p-value for each fit.

quantiles Numeric matrix. For each fit, returns the quantiles corresponding to the return

period var.envir$Tr.

param Numeric 3-row matrix. A 3x3 matrix returning the shape, scale and location

parameters for each fit.

Lmoments Numeric 9x2 matrix. Returns the following L-moments of the sample Y: λ1,

λ2, τ3, τ4, τ5, LCV , λ3, λ4, λ5. First column returns Landwehr’s unbiased

estimate (Landwehr et al., 1979a); second column returns the estimate based on

Landwehr’s plotting position formula (Landwehr et al., 1979b).

smooth Logical. If "TRUE", the dataset has been smoothed.

Author(s)

Franck Mazas

References

Mazas F., Hamm L., 2011. A multi-distribution approach to POT methods for determining extreme

wave heights. Coastal Engineering 58, 385-394.

See Also

us.range, dataset.smooth, fit.MLE, fit.LMOM
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Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC1")

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2), Tr = c(1, 2, 5, 10, 20,

50, 100), conf.IC = 90, boot.iter = 1000)

graphenvir <- list(lang = "EN", color = TRUE, saveplots = TRUE, fileformat = "png", cex = 1)

Lois <- c("GPD", "WEI", "GAM", "EXP")

tri <- tri.POT(Bastia, up = 1.5, delta_t = 1, g.envir = envir, var.envir = Hs.envir, tail = "upper",

strict = FALSE, pbar = FALSE)

multiPOT(tri, us = 2.44, lois = Lois, est = "LMOM", IC_methode = "boot", envir, Hs.envir, graphenvir,

tail = "upper", smooth = FALSE)

Negative Binomial distribution

Functions for the Negative Binomial distribution

Description

Probability mass, cumulative distribution and quantile functions. Functions for random generation,

likelihood and derivatives.

Usage

dNBI(x, par = c(p, k), verif = TRUE)

pNBI(x, par = c(p, k), lower.tail = TRUE, verif = TRUE)

qNBI(p, par = c(p, k), lower.tail = TRUE, verif = TRUE)

rNBI(N, par = c(p, k), verif = TRUE)

NBI.loglik(par, dat, verif = TRUE)

NBI.grad.loglik(par, dat, verif = TRUE)

NBI.hess.loglik(par, dat, verif = TRUE)

verif.NBI(par, dat = NULL, p = NULL)

Arguments

x Vector of quantiles or support of the distribution (integers).

p Vector of probabilities.

par Parameters of the distribution: p success probability in each experiment and

k > 0 number of expected successes.

N The sample size or number of observations.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.NBI.

Details

The probability mass function of the Negative Binomial distribution is given by:
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Value

dNBI returns the probability of the quantiles x for Negative Binomial distribution with parameters

par. pNBI returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE)

of the quantiles x for Negative Binomial distribution with parameters par. qNBI returns the quan-

tiles associated to the probabilities p for Negative Binomial distribution with parameters par. rNBI

randomly generates a sample of size N for Negative Binomial distribution with parameters par.

NBI.loglik returns the likelihood of the sample dat following a Negative Binomial distribution

with parameters par. NBI.grad.loglik returns the gradient of the likelihood of the sample dat

following a Negative Binomial distribution with parameters par. NBI.hess.loglik returns the

hessian of the likelihood of the sample dat following a Negative Binomial distribution with pa-

rameters par. verif.NBI checks the arguments of the above functions and returns a logical value

TRUE/FALSE. It checks whether the probabilities are in the range [0,1] and whether the parameters

are within their interval of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT

Examples

parNBI <- c(p = 0.7, k = 5)

dNBI(0:10, parNBI)

pNBI(0:10, parNBI)

qNBI(seq(0, 1, 0.1), parNBI)

Y8 <- rNBI(500, parNBI)

fit.MOM(Y8, "NBI")

fit.MLE(Y8, "NBI")

fitNBI <- fit.MLE(Y8, "NBI", optim.method = "Nelder-Mead")

NBI.loglik(fitNBI$par, Y8)

NBI.grad.loglik(fitNBI$par, Y8)

NBI.hess.loglik(fitNBI$par, Y8)

Poisson distribution Functions for the Poisson distribution

Description

Probability mass, cumulative distribution and quantile functions. Functions for random generation,

likelihood and derivatives.
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Usage

dPOI(x, par = c(lambda = 1), verif = TRUE)

pPOI(x, par = c(lambda = 1), lower.tail = TRUE, verif = TRUE)

qPOI(p, par = c(lambda = 1), lower.tail = TRUE, verif = TRUE)

rPOI(N, par = c(lambda = 1), verif = TRUE)

POI.loglik(par, dat, verif = TRUE)

POI.grad.loglik(par, dat, verif = TRUE)

POI.hess.loglik(par, dat, verif = TRUE)

verif.POI(par, dat = NULL, p = NULL)

Arguments

x Vector of quantiles or support of the distribution (integers).

p Vector of probabilities.

par Parameters of the distribution: λ rate parameter.

N The sample size or number of observations.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.POI.

Details

The probability mass function of the Poisson distribution is given by:

f(n) = exp(−λ)
λn

n!

Value

dPOI returns the probability of the quantiles x for Poisson distribution with parameters par. pPOI

returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE) of

the quantiles x for Poisson distribution with parameters par. qPOI returns the quantiles associated

to the probabilities p for Poisson distribution with parameters par. rPOI randomly generates a

sample of size N for Poisson distribution with parameters par. POI.loglik returns the likelihood

of the sample dat following a Poisson distribution with parameters par. POI.grad.loglik returns

the gradient of the likelihood of the sample dat following a Poisson distribution with parameters

par. POI.hess.loglik returns the hessian of the likelihood of the sample dat following a Poisson

distribution with parameters par. verif.POI checks the arguments of the above functions and

returns a logical value TRUE/FALSE. It checks whether the probabilities are in the range [0,1] and

whether the parameters are within their interval of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT
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Examples

parPOI <- 5

dPOI(0:10, parPOI)

pPOI(0:10, parPOI)

qPOI(seq(0, 1, 0.1), parPOI)

Y7 <- rPOI(50, parPOI)

fit.MOM(Y7, "POI")

fit.MLE(Y7, "POI")

fit.MLE(Y7, "POI", optim.method = "Brent", lower = 0, upper = 100)

(fit.MLE(Y7, "POI", show = FALSE)$par - mean(Y7)) == 0 # TRUE -> OK

POI.loglik(par = fit.MOM(Y7, "POI", show = FALSE)$par, Y7)

POI.grad.loglik(par = fit.MOM(Y7, "POI", show = FALSE)$par, Y7)

POI.hess.loglik(par = fit.MOM(Y7, "POI", show = FALSE)$par, Y7)

read.input Reads Input Data Files

Description

This function reads a file containing a table of input data (generally a time series).

Usage

read.input(file, g.envir = envir, header = NULL, col.nums = NULL, col.noms = NULL,

flag.NA = NULL, sep = "", col2horodate = 1, temps2julien = 1,

formathorodate = NULL, skip = 0, rounding = NULL, silent = FALSE, ...)

Arguments

file Path of the input file.

g.envir A list describing the global environment of the study: site name, duration of

observations K (in years), origin and time zone of the time...

header Either a logical value indicating whether the file has a header line, or the default

NULL value for automatic detection.

col.nums A numeric vector with the column numbers of the input table to import. If NULL,

all the columns are imported and returned.

col.noms A character vector with the names of the columns to set. If NULL, the headers of

the files, if present, are used.

flag.NA The flag used for the NA data in the input table. They are transformed into NA

data in the output table.

sep The field separator character. Values on each line of the file are separated by

this character. If sep = "" (the default for read.table) the separator is "white

space", that is one or more spaces, tabs, newlines or carriage returns.

col2horodate The index(es) of the column(s) containing the time information and used for

returning a timestamp (’Horodate’) column in POSIX format added to the table.

If NULL, nothing is done, or no such column. If formathorodate is specified,

then the time information is a date or date-hour, either in character string or

numeric (e.g. SWAN output). It is usually provided in a single column, but

possibly in several. Then it is transformed into julian days (origin and time
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zone provided by g.envir) and a timestamp (’Horodate’) column is binded to

the table. If formathorodate is not specified, two possibilities. If the time

information is provided in a single column, then it is a duration from an origin

(julian days, hours, seconds...) and this column is made of numeric scalars. A

transformation in julian days (origin and time zone provided by g.envir) is

made, if necessary (see temps2julien) and a timestamp (’Horodate’) column

is binded to the table. If the input table has distinct columns for at least the year,

month and day and possibly the hours, minutes and seconds, the argument is the

column indexes of these, in this order, and its length is between 3 and 6.

temps2julien To be used if the input file has a single time column that is not in julian days.

This argument is the conversion factor between days and the unit of the time col-

umn. Use 86400 for seconds, 1440 for minutes, 24 for hours... col2horodate

must be specified and of length 1.

formathorodate The format of the date-hour (character string), if needed (see col2horodate).

It must be a single character string, even when the horodate is provided in more

than 1 column (use a blank " " to separate). See the documentation of function

strptime for examples. Default value is "%Y-%m-%d %H:%M:%S".

skip The number of lines to skip before beginning to read the file.

rounding This argument is used for rounding the columns of the table. Nothing is done if

NULL (by default). Otherwise, a numeric vector of length n with the number of

digits four rounding the n-th first columns of the table. Use NA for not rounding

a particular column.

silent Logical TRUE / FALSE. If FALSE, information about the input series are printed in

the console.

... Additional arguments relative to the function read.table, such as dec, comment.char...

Details

The input file must be a table of data, possibly with a header line. If there are no headers, the

column names can be set thanks to the col.noms argument. For *.wve, *.wco and *.ven files,

if col.noms == NULL, column names are automatically set. If the durations of the time series is

not set in the g.envir list, it is computed and the list is modified in the global environment. The

statistics (number of data and quantiles) of the variables are printed in the R console.

Value

A data frame of the data. If col2horodate is not null, then a timestamp (Horodate) column is

binded to the table.

Author(s)

Franck Mazas

Examples

# Cas simple : Tous arguments par defaut - Selection du fichier via le navigateur

#envir <- list(site = "", K = NA, origin = "1899-12-30", tz = "UTC")

#serie <- read.input(file.choose(), g.envir = envir)

#head(serie)

#envir

# Separateur point-virgule - Assignation des noms de colonnes
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envir <- list(site = "", K = NA, origin = "1899-12-30", tz = "UTC")

serie <- read.input(file = system.file("extdata", "Bastia_Carbonite.csv", package = "artextreme"),

g.envir = envir, sep = ";", col.noms = c("Temps", "Hs", "Dir", "Tp"))

head(serie)

envir

# Temps fourni sous 4 colonnes - Assignation des noms de colonnes (fichier GlobOcean)

envir <- list(site = "Hamrawein", point = "E3425N2625", K = NA, origin = "1899-12-30", tz = "UTC")

systems <- c("Global", "Ww", "Sw1", "Sw2")

params <- c("Hm0", "Tm02", "Tps", "Dirm", "Dirp", "Gamma", "s")

colonnes <- c("Year", "Month", "Day", "Hour", c(t(outer(systems, params, FUN = paste))), "Ws", "Wdir")

serie <- read.input(system.file("extdata", "E3425N2625.txt", package = "artextreme"), g.envir = envir,

col.noms = colonnes, flag.NA = NULL, col2horodate = 1:4)

head(serie)

envir

# Importation de fichiers annuels de sortie SWAN (*.pnt)

envir <- list(site = "Tibar", K = 2, origin = "1899-12-30", tz = "UTC")

colonnes <- c("Temps", "Hm0", "Dirm", "Tp", "Dirp", "Tps", "s")

Annees <- 1992:1993

serie <- c()

for (annee in Annees) {

filename <- system.file("extdata", paste0("Tibar_", annee, "_EP.pnt"), package = "artextreme")

serie0 <- read.input(file = filename, g.envir = envir, header = FALSE, col.nums = 3:9,

col.noms = colonnes, col2horodate = 1, formathorodate = "%Y%m%d.%H%M%S", skip = 7,

rounding = c(NA, 2, 1, 1, 0, 2, 0))

serie <- rbind(serie, serie0)

rm(serie0)

}

head(serie)

# Importation partielle des colonnes - Temps fourni en secondes

envir <- list(site = "", K = NA, origin = "2016-01-01", tz = "UTC")

serie <- read.input(file = system.file("extdata", "Martinique_courant.txt", package = "artextreme"),

g.envir = envir, col.nums = c(1, 2, 6), col.noms = c("Temps", "U_surface", "V_surface"),

temps2julien = 86400)

head(serie)

envir

# Temps fourni sous forme d'une horodate

envir <- list(site = "Paris-Austerlitz", K = NA, origin = "1885-10-01", tz = "UTC")

serie <- read.input(system.file("extdata", "Paris_Austerlitz_QIX.csv", package = "artextreme"),

g.envir = envir, col2horodate = 1, sep = ",", col.noms = c("Temps", "QIX"),

formathorodate = "%Y-%m-%d %H:%M:%S")

head(serie)

envir

tri.POT Peaks-Over-Threshold Declustering of Time Series

Description

This function performs POT declustering of a time series. An event is defined by the exceedance

over a physical threshold up and it is described by its peak.
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Usage

tri.POT(dataset, up, var.envir, g.envir = envir, delta_t = NA, delta_t_pics = NA,

alpha = NA, dur.min = NA, strict = TRUE, tail = "upper", pbar = TRUE)

Arguments

dataset Numeric matrix or data frame. A time series of the sequential observations of the

variable to decluster. It can include covariates in other columns. Julian time (in

days) must be in first column (see Details section). The column of the variable

must be given in var.envir$var$varcol.

up The physical threshold up for event (storm) identification and declustering.

var.envir A list regrouping the variable descriptions and properties. The variable descrip-

tion is a sub-list var containing its symbol id, its name name, its unit unit, the

column number in the dataset varcol, the number of sequential observations

per year nu, the number of significant digits ndig...

g.envir A list describing the global environment of the study: site name $site, duration

of observations K (in years), origin $origin and time zone $tz of the time...

delta_t Criterion of temporal separation of clusters (events / storms). A fluctuation

shorter than delta_t is allowed within a cluster. Also useful in case of irregular

time sries: if two successive values are separated by more than delta_t, they

cannot belong to the same event. Numeric value, in days. If the criterion is not

used, delta_t = NA.

delta_t_pics Criterion of temporal separation of cluster peaks. Two peaks must be separated

by a time interval longer than delta_t_pics, otherwise the highest peak only

is kept. If the criterion is not used, delta_t_pics = NA.

alpha Criterion of down-crossing event separation. The end of a cluster is determined

by the down-crossing of α∗up. alpha is thus a fraction of the physical threshold.

When the sequential values of the variable stay between α ∗ up and up, this is

considered as a simple fluctuation. If the criterion is not used, alpha = NA.

dur.min Criterion of minimal event duration. A cluster shorter than dur.min is not ac-

cepted. If the criterion is not used, dur.min = NA.

strict Logical TRUE/FALSE. Should the peaks be strictly above up?

tail The extrapolation tail (for POT approach only). If "upper", selection of the

maxima; if "lower", selection of the minima.

pbar Logical TRUE/FALSE. Should a progress bar be displayed during the decluster-

ing?

Details

The time is in column 1, in julian days. The origin and time zone must be specified in the list

g.envir. It is also possible to add a first column named "Horodate", in POSIXlt format (e.g. from

function temps2horodate). If so, julian time must be in column 2. The variable to decluster must

be in the column var.envir$var$varcol. It is possible to add covariates.

The parameters granting independence: delta_t, delta_t_pics, alpha are not to be used together.

If so, the algorithm works as follows: 1. Identification of a new cluster by 1st exeedance of the

physical threshold up 2. For the following values: 2.1 Check of the criterion delta_t 2.2 Check of

the criterion alpha 3. Extraction of cluster peaks 4. Check of the criterion delta_t_pics 5. Check

of the criterion dur.min
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Value

A list of class triPOT with the following elements:

up The physical threshold.

Np The number of peaks.

lambda_p The mean number of peaks per year λp = Np/K.

pics A Np-row matrix listing the peaks, the associated timestamp and (numeric) co-

variates, the cluster size and duration, and the number of days since the begin-

ning of the time series.

occurrence A matrix returning the number of peaks for each year.

This list is attached to var.envir as a sub-list, called either peaks.upper or peaks.lower, de-

pending on the tail.

Author(s)

Franck Mazas

References

Bernardara P., Mazas F., Kergadallan X., Hamm L., 2014. A two-step framework for over-threshold

threshold modelling of environmental extremes. Natural Hazards and Earth System Sciences 14,

635-647.

See Also

tri.MAX

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC1")

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2),

Tr = c(1, 2, 5, 10, 20, 50, 100), conf.IC = 90, boot.iter = 1000)

tri <- tri.POT(Bastia, up = 1.5, delta_t = 1, g.envir = envir, var.envir = Hs.envir,

tail = "upper", strict = FALSE, pbar = FALSE)

us.range Determination of the statistical threshold

Description

This function provides tools to help the user to choose the statistical threshold in a sample. The

sample is sorted in the ascending order and the threshold us is set at each (unique) observation.

Properties and tests are carried out for each value and transformed into plots.
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Usage

us.range(tri, var.envir, lois = c("GPD", "WEI", "GAM"), est = "LMOM",

g.envir = envir, graph.envir = graphenvir, bornes = "auto", N.min = 10,

tail = "upper", Tr.plot = 100, smooth = FALSE, us = NULL, identify = FALSE,

remove.max = FALSE, disable.saveplots = FALSE, show = FALSE, qlim = NULL,

mle.method = "Newton-Raphson", ...)

Arguments

tri A list of POT data of class ’tri’, as returned by the functions triPOT or dataset2tri.

lois The distributions to fit to the sample of exceedances over threshold. To be cho-

sen among "GPD", "WEI", "EXP", "GAM", "GEV" and "GUM".

est The estimator: to be chosen among "MLE" (Maximum Likelihood Estimator),

"LMOM" (L-moments) or "MOM" (Methods of Moments).

g.envir A list describing the global environment of the study: site name $site, duration

of observations K (in years), origin $origin and time zone $tz of the time...

var.envir A list regrouping the variable descriptions and properties. The variable descrip-

tion is a sub-list var containing its symbol id, its name name, its unit unit, the

column number in the dataset varcol, the number of sequential observations

per year nu, the number of significant digits ndig...

graph.envir A list grouping different graphical options: which language (either "FR" or

"EN"); should the plots be in colour (color=TRUE) or in black and white; should

they be saved (saveplots=TRUE); in which format (to be chosen among "wmf",

"emf", "png", "jpg", "jpeg", "bmp", "tif", "tiff", "ps", "eps" or "pdf");

should they be magnified (use a numeric value for cex).

bornes The ranges of the interval within which the statistical threshold varies. If "auto",

they are automatically computed: the minimum tested threshold value is the

physical threshold up and the maximum value is the K-th largest value of the

dataset, where envir$K is the time series duration. Otherwhise, a numeric vec-

tor of size 2: c(us_min, us_max).

N.min The minimum sample size. If the number of exceedances over the tested thresh-

old is lower, the sensitivity study stops.

tail For extrapolation of extreme maximal values, tail="upper". For extrapolation

of extreme minimal values, tail="lower".

Tr.plot The return period (in years) to be used for the plot displaying the evolution of

the quantiles with resoect to us.

smooth Logical TRUE / FALSE. If TRUE, the dataset is smoothed using the function dataset.smooth

with default arguments.

us Null or numeric. If numeric, the value of the statistical threshold to be plotted

on graphics.

identify Logical. If TRUE, graphical function identify is enabled for the L-moments

plot.

remove.max Logical. If TRUE, the largest peak value of the dataset is not accounted for thresh-

old selection. Useful in case of outlier.

disable.saveplots

Logical. If TRUE, the plots are not saved, whatever the value of graph.envir$saveplots.

show Logical. If TRUE and if MLE has been chosen, print details of each fit.
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qlim Either NULL or numeric vector of length 2 providing the y-limits for the quantile

/ threshold plot.

mle.method The numerical method for maximization of the model likelihood when the ML

estimator is used. Default is "Newton-Raphson", otherwise the classical meth-

ods of function fit.MLE are used (see also function optim).

... Additional arguments for function fit.MLE

Details

Use of MLE along with two-parameter distributions implies to be very careful about the thresholds

used. Thus, only thresholds meeting data values (and excluding them) are studied, as they give

better estimates. When the L-moments estimator is used, a three-parameter GPD is estimated,

although the location parameter is not displayed here.

Value

A variety of plots are produced, helping the user to choose the optimal threshold us. First panel

gives the evolution of the sample: sample size, χ2 statistic for the fit of Poisson and Negative

Binomial distributions to the occurrence process, mean excess life plot. Second panel provides the

evolution of the fits of the distributions to the exceedances over the threshold: evolution of Tr-year

quantile, χ2 statistic of the fit, p-value of the Kolmogorov-Smirnov test. The evolution of the GPD

parameters k (shape parameter) and σ∗ (modified scale parameter) is provided, along with their

confidence intervals. If the estimator is the L-moments, the L-moments plot is returned. If the

estimator is MLE, a panel with the evolution of AIC, BIC and their normalized values is returned.

Author(s)

Franck Mazas

References

Bernardara P., Mazas F., Kergadallan X., Hamm L., 2014. A two-step framework for over-threshold

threshold modelling of environmental extremes. Natural Hazards and Earth System Sciences 14,

635-647. Mazas F., Hamm L., 2011. A multi-distribution approach to POT methods for determining

extreme wave heights. Coastal Engineering 58, 385-394.

See Also

multiPOT, fit.MLE, fit.LMOM

Examples

data(Bastia)

envir <- list(site = "Bastia", K = 23, origin = "1899-12-30", tz = "UTC1")

Hs.envir <- list(var = list(id = "Hs", name = "Hs", unit = "m", varcol = 2),

Tr = c(1, 2, 5, 10, 20, 50, 100), conf.IC = 90, boot.iter = 1000)

graphenvir <- list(lang = "EN", color = TRUE, saveplots = FALSE, fileformat = "png", cex = 1)

Lois <- c("GPD", "WEI", "GAM", "EXP")

tri <- tri.POT(Bastia, up = 1.5, delta_t = 1, g.envir = envir, var.envir = Hs.envir, tail = "upper",

strict = FALSE, pbar = FALSE)

us.range(tri = tri, lois = Lois, var.envir = Hs.envir)
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Weibull distribution Functions for the Weibull distribution

Description

Density, cumulative distribution and quantile functions. Functions for random generation, quantile

gradient, likelihood and derivatives.

Usage

dWEI(x, par = c(k, sigma, mu = 0), verif = TRUE)

pWEI(x, par = c(k, sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

qWEI(p, par = c(k, sigma, mu = 0), lower.tail = TRUE, verif = TRUE)

rWEI(N, par = c(k, sigma, mu = 0), verif = TRUE)

WEI.grad.F(x, par, verif = FALSE)

WEI.hess.F(x, par, verif = FALSE)

WEI.grad.q(par, lambda, Tr = 100, verif = TRUE)

WEI.loglik(par, dat, verif = TRUE)

WEI.grad.loglik(par, dat, verif = TRUE)

WEI.hess.loglik(par, dat, verif = TRUE)

verif.WEI(par, dat = NULL, p = NULL)

Arguments

x Vector of quantiles or support of the distribution.

p Vector of probabilities.

par Parameters of the distribution: shape parameter k, scale parameter σ and loca-

tion parameter µ.

N The sample size or number of observations.

lambda The Poisson rate parameter (mean number of events per year).

Tr The return period, in years, associated to the quantile q.

dat A sample to be fitted to the distribution.

lower.tail Logical: if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

verif Logical: if TRUE, arguments are checked by function verif.WEI.

Details

The cumulative distribution function of the Weibull distribution is given by:

F (x) = 1− exp

[

−

(

x− µ

σ

)k
]

with shape parameter k, scale parameter σ and location parameter µ.
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Value

dWEI returns the density of the quantiles x for Weibull distribution with parameters par. pWEI

returns the non-exceedance probabilities (or exceedance probabilities if lower.tail = TRUE) of

the quantiles x for Weibull distribution with parameters par. qWEI returns the quantiles associated

to the probabilities p for Weibull distribution with parameters par. rWEI randomly generates a

sample of size N for Weibull distribution with parameters par. WEI.grad.F returns the gradient of

the cumulative distribution function, useful for the historical likelihood. WEI.hess.F returns the

hessian of the cumulative distribution function, useful for the historical likelihood. WEI.grad.q

returns the gradient of the quantile function, useful for computing the confidence intervals by the

Delta method. WEI.loglik returns the likelihood of the sample dat following a Weibull distribution

with parameters par. WEI.grad.loglik returns the gradient of the likelihood of the sample dat

following a Weibull distribution with parameters par. WEI.hess.loglik returns the hessian of the

likelihood of the sample dat following a Weibull distribution with parameters par. verif.WEI

checks the arguments of the above functions and returns a logical value TRUE/FALSE. It checks

whether the probabilities are in the range [0,1] and whether the parameters are within their interval

of validity.

Author(s)

Franck Mazas

References

"Aide-mémoire statistique", ARTELIA

See Also

fit.MLE, fit.LMOM, fit.MOM, qIC.delta, qIC.boot, multiPOT

Examples

p <- seq(0, 1, 0.1)

x <- seq(0, 5, 0.2)

x2 <- seq(-5, 15, 1)

x3 <- seq(-5, 5, 0.25)

k1 <- -0.5

k2 <- 0.5

sigma1 <- 1.75

sigma2 <- 0.5

mu1 <- 0.1

mu2 <- 0.5

N <- 50

dWEI(x, c(k = k2, sigma = sigma1))

dWEI(x, c(k = k2, sigma = sigma1, mu = mu1))

pWEI(x, c(k = k2, sigma = sigma1))

qWEI(p, c(k = k2, sigma = sigma1))

Y5 <- rWEI(500, c(k = 1.5, sigma = sigma1, mu = 0))

fit.MOM(Y5, "WEI")

fit.MOM(Y5, "WEI", mu0 = TRUE)

fit.LMOM(Y5, "WEI")

WEI.loglik(fit.LMOM(Y5, "WEI")$par, Y5, verif = FALSE)

WEI.grad.loglik(fit.LMOM(Y5, "WEI")$par, Y5, verif = FALSE)

fit.MLE(Y5, "WEI", optim.method = "Newton-Raphson")
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WEI.grad.loglik(fit.MLE(Y5, "WEI", optim.method = "Newton-Raphson")$par, Y5, verif = FALSE)

fit.MLE(Y5, "WEI", optim.method = "Nelder-Mead")

fit.MLE(Y5, "WEI", par.init = fit.LMOM(Y5, "WEI", mu0 = TRUE)$par, optim.method = "Nelder-Mead")

WEI.grad.loglik(fit.MLE(Y5, "WEI", par.init = c(k = 1.5, sigma = sigma1),

optim.method = "Nelder-Mead")$par, Y5, verif = FALSE)
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GEV.grad.q (Generalized Extreme Value

distribution), 15

GEV.hess.F (Generalized Extreme Value

distribution), 15

GEV.hess.loglik (Generalized Extreme

Value distribution), 15
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distribution), 15
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21

GUM.grad.q (Gumbel distribution), 21

GUM.hess.F (Gumbel distribution), 21
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21
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histoapp.plot (Data Plots), 5

logdep.plot (Data Plots), 5

multiPOT, 13, 23, 34
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distribution), 25
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distribution), 25
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distribution), 25
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par.graphe, 6, 8

par.graphe (Graphical Parameters), 19

pEXP (Exponential distribution), 9

pGAM (Gamma distribution), 13

pGEV (Generalized Extreme Value

distribution), 15

pGPD (Generalized Pareto distribution),

17

pGUM (Gumbel distribution), 21

plots.fit (Fit Plots), 11

pNBI (Negative Binomial distribution),

25

POI.grad.loglik (Poisson distribution),

26

POI.hess.loglik (Poisson distribution),

26

POI.loglik (Poisson distribution), 26

Poisson distribution, 26

pp.plot (Fit Plots), 11

pPOI (Poisson distribution), 26

pWEI (Weibull distribution), 35

qEXP (Exponential distribution), 9

qGAM (Gamma distribution), 13
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distribution), 15
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17
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qNBI (Negative Binomial distribution),

25
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qq.plot (Fit Plots), 11

qT.plot (Fit Plots), 11

qWEI (Weibull distribution), 35
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rGEV (Generalized Extreme Value

distribution), 15

rGPD (Generalized Pareto distribution),

17

rGUM (Gumbel distribution), 21

rNBI (Negative Binomial distribution),

25

roseplot (Data Plots), 5

rPOI (Poisson distribution), 26

rWEI (Weibull distribution), 35

tri.MAX, 32

tri.POT, 30

tserie.plot (Data Plots), 5

us.range, 24, 32

verif.EXP (Exponential distribution), 9

verif.GAM (Gamma distribution), 13

verif.GEV (Generalized Extreme Value

distribution), 15

verif.GPD (Generalized Pareto

distribution), 17
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2.2. USER MANUAL (IN FRENCH) 
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L'ombre 
Suit 

Sombre 
Nuit ; 
Une 
Lune 
Brune 
Luit. 

Tranquille 
L'air pur 
Distille 
L'azur ; 
Le sage 
Engage 
Voyage 

Bien sûr ! 

L'atmosphère 
De la fleur 
Régénère 

La senteur, 
S'incorpore, 

Evapore 
Pour l'aurore 

Son odeur. 

Parfois la brise 
Des verts ormeaux 

Passe et se brise 
Aux doux rameaux ; 

Au fond de l'âme 
Qui le réclame 

C'est un dictame 
Pour tous les maux ! 

Un point se déclare 
Loin de la maison, 
Devient une barre ; 
C'est une cloison ; 

Longue, noire, prompte, 
Plus rien ne la dompte, 

Elle grandit, monte, 
Couvre l'horizon. 

L'obscurité s'avance 
Et double sa noirceur ; 
Sa funeste apparence 

Prend et saisit le cœur ! 
Et tremblant il présage 
Que ce sombre nuage 

Renferme un gros orage 
Dans son énorme horreur. 

Au ciel, il n'est plus d'étoiles 
Le nuage couvre tout 

De ses glaciales voiles ; 
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Il est là, seul et debout. 
Le vent le pousse, l'excite, 

Son immensité s'irrite ; 
A voir son flanc qui s'agite, 

On comprend qu'il est à bout ! 

Il se replie et s'amoncelle, 
Resserre ses vastes haillons ; 
Contient à peine l'étincelle 

Qui l'ouvre de ses aquilons ; 
Le nuage enfin se dilate, 

S'entrouvre, se déchire, éclate, 
Comme d'une teinte écarlate 

Les flots de ses noirs tourbillons. 

L'éclair jaillit ; lumière éblouissante 
Qui vous aveugle et vous brûle les yeux, 
Ne s'éteint pas, la sifflante tourmente 
Le fait briller, étinceler bien mieux ; 
Il vole ; en sa course muette et vive 
L'horrible vent le conduit et l'avive ; 

L'éclair prompt, dans sa marche fugitive 
Par ses zigzags unit la terre aux cieux. 

La foudre part soudain ; elle tempête, tonne 
Et l'air est tout rempli de ses longs roulements ; 

Dans le fond des échos, l'immense bruit bourdonne, 
Entoure, presse tout de ses cassants craquements. 

Elle triple d'efforts ; l'éclair comme la bombe, 
Se jette et rebondit sur le toit qui succombe, 
Et lé tonnerre éclate, et se répète, et tombe, 

Prolonge jusqu'aux cieux ses épouvantements. 

Un peu plus loin, mais frémissant encore 
Dans le ciel noir l'orage se poursuit, 

Et de ses feux assombrit et colore 
L'obscurité de la sifflante nuit. 

Puis par instants des Aquilons la houle 
S'apaise un peu, le tonnerre s'écoule, 

Et puis se tait, et dans le lointain roule 
Comme un écho son roulement qui fuit ; 

L'éclair aussi devient plus rare 
De loin en loin montre ses feux 
Ce n'est plus l'affreuse bagarre 

Où les vents combattaient entre eux ; 
Portant ailleurs sa sombre tête, 
L'horreur, l'éclat de la tempête 
De plus en plus tarde, s'arrête, 
Fuit enfin ses bruyants jeux. 

Au ciel le dernier nuage 
Est balayé par le vent ; 

D'horizon ce grand orage 
A changé bien promptement ; 

On ne voit au loin dans l'ombre 
Qu'une épaisseur large, sombre, 
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Qui s'enfuit, et noircit, ombre 
Tout dans son déplacement. 

La nature est tranquille, 
A perdu sa frayeur ; 

Elle est douce et docile 
Et se refait le cœur ; 
Si le tonnerre gronde 

Et de sa voix profonde 
Là-bas trouble le monde, 

Ici l'on n'a plus peur. 

Dans le ciel l'étoile 
D'un éclat plus pur 
Brille et se dévoile 
Au sein de l'azur ; 

La nuit dans la trêve, 
Qui reprend et rêve, 

Et qui se relève, 
N'a plus rien d'obscur. 

La fraîche haleine 
Du doux zéphir 
Qui se promène 

Comme un soupir, 
A la sourdine, 

La feuille incline, 
La pateline, 

Et fait plaisir. 

La nature 
Est encor 

Bien plus pure, 
Et s'endort ; 

Dans l'ivresse 
La maîtresse, 
Ainsi presse 
Un lit d'or. 

Toute aise, 
La fleur 

S'apaise ; 
Son cœur 
Tranquille 

Distille 
L'utile 
Odeur. 

Elle 
Fuit, 
Belle 
Nuit ; 
Une 
Lune 
Brune 
Luit. 

Jules Verne, Tempête et Calme 
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✖ ♣r♦♣♦s✐t✐♦♥ ❞✬♦✉t✐❧s ♣r❛t✐q✉❡s ♣♦✉r ❧❡ ❝❤♦✐① ❞✉ s❡✉✐❧ st❛t✐st✐q✉❡✱
✖ ✐♥tr♦❞✉❝t✐♦♥ ❞❡ ❧❛ ♠ét❤♦❞❡ ❞✉ ❜♦♦tstr❛♣ ♣❛r❛♠étr✐q✉❡ ♣♦✉r ❧❡ ❝❛❧❝✉❧ ❞❡s ✐♥t❡r✈❛❧❧❡s ❞❡ ❝♦♥✜❛♥❝❡✱
✖ ✐❞❡♥t✐✜❝❛t✐♦♥ ❞✬✉♥ ❝♦♠♣♦rt❡♠❡♥t ♣r♦❜❧é♠❛t✐q✉❡ ❞❡ ❧✬❊st✐♠❛t❡✉r ❞✉ ▼❛①✐♠✉♠ ❞❡ ❱r❛✐s❡♠❜❧❛♥❝❡ ❡t ♣r♦♣♦s✐t✐♦♥ ❞✬✉♥❡ s♦❧✉t✐♦♥ ✿ ✉t✐❧✐✲

s❛t✐♦♥ ❞❡ ❞✐str✐❜✉t✐♦♥s à tr♦✐s ♣❛r❛♠ètr❡s ❛✈❡❝ ❧✬❡st✐♠❛t❡✉r ❞❡s ▲✲♠♦♠❡♥ts✱
✖ ❛♣♣❧✐❝❛t✐♦♥ ❞✉ ❝❛❞r❡ P❖❚ ✭P❡❛❦s✲❖✈❡r✲❚❤r❡s❤♦❧❞✮ à ❧❛ ▼ét❤♦❞❡ ❞❡s Pr♦❜❛❜✐❧✐tés ❏♦✐♥t❡s ✭❏P▼✮ ♣♦✉r ❧❛ ❞ét❡r♠✐♥❛t✐♦♥ ❞❡s ♥✐✈❡❛✉① ♠❛r✐♥s

❡①trê♠❡s ✿
✖ ❞✐st✐♥❝t✐♦♥ ❡♥tr❡ ❧❡s ✈❛❧❡✉rs séq✉❡♥t✐❡❧❧❡s ❡t ❧❡s ♣✐❝s ❞❡s é✈è♥❡♠❡♥ts à ❧✬❛✐❞❡ ❞✬✐♥❞✐❝❡s ❡①tré♠❛✉① ♣♦✉r ❧❡s s✉r❝♦t❡s ❡t ❧❡s ♥✐✈❡❛✉① ♠❛r✐♥s✱
✖ ❝♦♥str✉❝t✐♦♥ ❞✬✉♥ ♠♦❞è❧❡ ♠✐①t❡ ♣♦✉r ❧❛ ❞✐str✐❜✉t✐♦♥ ❞❡s s✉r❝♦t❡s✱
✖ r❛✣♥❡♠❡♥ts ♣♦✉r ❧❡ tr❛✐t❡♠❡♥t ❞❡ ❧❛ ❞é♣❡♥❞❛♥❝❡ ♠❛ré❡✲s✉r❝♦t❡✱

✖ ❛♣♣❧✐❝❛t✐♦♥ ❞✉ ❝❛❞r❡ P❖❚✲❏P▼ ♣♦✉r ❧✬❛♥❛❧②s❡ ❝♦♥❥♦✐♥t❡ ❞❡s ❤❛✉t❡✉rs ❞❡ ✈❛❣✉❡s ❡t ❞❡s ♥✐✈❡❛✉① ♠❛r✐♥s ✿
✖ ♣r♦♣♦s✐t✐♦♥ ❞✬✉♥❡ ♣r♦❝é❞✉r❡ ❛❧t❡r♥❛t✐✈❡ ❞✬é❝❤❛♥t✐❧❧♦♥♥❛❣❡✱
✖ ❛♥❛❧②s❡ sé♣❛ré❡ ❞❡ ❧❛ ♠❛ré❡ ❡t ❞❡ ❧❛ s✉r❝♦t❡ ❞❛♥s ❧❡ ❜✉t ❞❡ ♠♦❞é❧✐s❡r ❧❛ ❞é♣❡♥❞❛♥❝❡ ❡♥tr❡ ❧❛ ❤❛✉t❡✉r ❞❡ ✈❛❣✉❡s ❡t ❧❛ s✉r❝♦t❡ ❀ ❛✈❡❝

✐♥❝♦r♣♦r❛t✐♦♥ ❞❛♥s ❧❛ ❞✐str✐❜✉t✐♦♥ ❝♦♥❥♦✐♥t❡ ❞❡ ❧❛ ❤❛✉t❡✉r ❞❡ ✈❛❣✉❡s ❡t ❞✉ ♥✐✈❡❛✉ ♠❛r✐♥ à ❧✬❛✐❞❡ ❞✬✉♥❡ ♦♣ér❛t✐♦♥ ❞❡ ❝♦♥✈♦❧✉t✐♦♥ ✷❉✶❉✱
✖ ✉t✐❧✐s❛t✐♦♥ ❞❡ ❝♦♣✉❧❡s ❞❡s ✈❛❧❡✉rs ❡①trê♠❡s✱
✖ ♣rés❡♥t❛t✐♦♥ ❛♠é❧✐♦ré❡ ❞✉ ❝❤✐✲♣❧♦t✱

✖ ✐♥tr♦❞✉❝t✐♦♥ ❞✬✉♥❡ ♥♦✉✈❡❧❧❡ ❝❧❛ss✐✜❝❛t✐♦♥ ♣♦✉r ❧❡s ❛♥❛❧②s❡s ♠✉❧t✐✈❛r✐é❡s ✿
✖ ❚②♣❡ ❆ ✿ ✉♥ ♣❤é♥♦♠è♥❡ ✉♥✐q✉❡ ❞é❝r✐t ♣❛r ❞✐✛ér❡♥t❡s ❣r❛♥❞❡✉rs ♣❤②s✐q✉❡s q✉✐ ♥❡ s♦♥t ♣❛s ♥é❝❡ss❛✐r❡♠❡♥t ❞✉ ♠ê♠❡ t②♣❡✱
✖ ❚②♣❡ ❇ ✿ ✉♥ ♣❤é♥♦♠è♥❡ ❢❛✐t ❞❡ ❞✐✛ér❡♥t❡s ❝♦♠♣♦s❛♥t❡s✱ ❞é❝r✐ts ♣❛r ❞❡s ❣r❛♥❞❡✉rs ♣❤②s✐q✉❡s ❞✉ ♠ê♠❡ t②♣❡ ❞✬✉♥ ❝♦♠♣♦s❛♥t à ❧✬❛✉tr❡✱
✖ ❚②♣❡ ❈ ✿ ♣❧✉s✐❡✉rs ♣❤é♥♦♠è♥❡s ❞é❝r✐ts ♣❛r ❞❡s ❣r❛♥❞❡✉rs ♣❤②s✐q✉❡s q✉✐ ♥❡ s♦♥t ♣❛s ♥é❝❡ss❛✐r❡♠❡♥t ❞✉ ♠ê♠❡ t②♣❡✱

✖ ✐♥t❡r♣rét❛t✐♦♥ ❞❡ ❧❛ s✐❣♥✐✜❝❛t✐♦♥ ❞❡s é✈è♥❡♠❡♥ts ♠✉❧t✐✈❛r✐és ✿
✖ ❧✐❡♥ ❛✈❡❝ ❧✬é❝❤❛♥t✐❧❧♦♥♥❛❣❡✱
✖ ❧✐❡♥ ❛✈❡❝ ❧❡s ❞✐✛ér❡♥t❡s ❞é✜♥✐t✐♦♥s ❞❡ ❧❛ ♣ér✐♦❞❡ ❞❡ r❡t♦✉r✱
✖ ❞❛♥s ❧❡ ❝❛s ❜✐✈❛r✐é ✿ tr❛♥s❢♦r♠❛t✐♦♥ ❞✬✉♥❡ ❞✐str✐❜✉t✐♦♥ ❝♦♥❥♦✐♥t❡ ❞❡ ✈❛r✐❛❜❧❡s ❞❡s❝r✐♣t✐✈❡s ❞❡ ❧✬é✈è♥❡♠❡♥t ✈❡rs ❧❛ ❞✐str✐❜✉t✐♦♥ ❞❡s ❝♦✉♣❧❡s

❞❡ ✈❛r✐❛❜❧❡s séq✉❡♥t✐❡❧❧❡s✱
✖ ❣é♥ér❛t✐♦♥ ❞❡ ❣r❛♣❤❡s ❞❡ s♦rt✐❡ ❛❧t❡r♥❛t✐❢s t❡❧s q✉❡ ❧❡s ❝♦♥t♦✉rs ❞✬✐s♦✲❞❡♥s✐té ♣♦✉r ❧❡s ❝♦✉♣❧❡s ❞❡ ✈❛r✐❛❜❧❡s séq✉❡♥t✐❡❧❧❡s✱

✖ ✉♥ ♣❛❝❦❛❣❡ ❘ ❞é❞✐é✱ ❛rt❡①tr❡♠❡✱ ♣♦✉r ❧✬✐♠♣❧é♠❡♥t❛t✐♦♥ ❞❡s ♠ét❤♦❞❡s ❝✐✲❞❡ss✉s✳

▼♦ts ❝❧és ✿ é✈è♥❡♠❡♥ts ❡①trê♠❡s✱ ♠été♦✲♦❝é❛♥♦❣r❛♣❤✐❡✱ ♣r♦❜❛❜✐❧✐tés ❥♦✐♥t❡s✱ s✉❜♠❡rs✐♦♥ ♠❛r✐♥❡✱ ✐♥❣é♥✐❡r✐❡ ❝ôt✐èr❡

❆❜str❛❝t

❚❤✐s P❤❉ ♦♥ ♣✉❜❧✐s❤❡❞ ✇♦r❦s ❛✐♠s ❛t ✉♥✐❢②✐♥❣ t❤❡ ✇♦r❦s ❝❛rr✐❡❞ ♦✉t ♦♥ t❤❡ t♦♣✐❝ ♦❢ ❡①tr❡♠❡ ♠❡t♦❝❡❛♥ ❡✈❡♥ts s✐♥❝❡ ✷✵✵✾✱ ✇❤✐❧❡ ✇♦r❦✐♥❣ ❢♦r
❙❖●❘❊❆❍ t❤❡♥ ❆❘❚❊▲■❆✳ ❆s t❤❡s❡ ✇♦r❦s ✇❡♥t ❛❧♦♥❣✱ ❛ ❧❡❛❞✐♥❣ t❤❡♠❡ ♣r♦❣r❡ss✐✈❡❧② ❛♣♣❡❛r❡❞✿ t❤❡ ♥♦t✐♦♥ ♦❢ ❡✈❡♥t✱ s✉❝❤ ❛s ❛ st♦r♠✳ ❚❤✐s
❝♦♥❝❡♣t ♣r♦✈✐❞❡s ❛ s♦✉♥❞ ❛♥❞ r❡❧❡✈❛♥t ❢r❛♠❡✇♦r❦ ✐♥ ♣❛rt✐❝✉❧❛r ✐♥ t❤❡ ❝❛s❡ ♦❢ ♠✉❧t✐✈❛r✐❛t❡ ❡①tr❡♠❡s ✭s✉❝❤ ❛s ❥♦✐♥t ♣r♦❜❛❜✐❧✐t✐❡s ♦❢ ✇❛✈❡s ❛♥❞ s❡❛
❧❡✈❡❧s✮✱ ❛s ✇❡❧❧ ❛s ❛ ❜❡tt❡r ✉♥❞❡rst❛♥❞✐♥❣ ♦❢ t❤❡ ♥♦t✐♦♥ ♦❢ r❡t✉r♥ ♣❡r✐♦❞✱ ♠✉❝❤ ✉s❡❞ ❢♦r ❞❡s✐❣♥ ✐♥ t❤❡ ✜❡❧❞ ♦❢ ❡♥❣✐♥❡❡r✐♥❣✳ ❚❤❡ ♠❛✐♥ r❡s✉❧ts ♦❢ t❤❡
✇♦r❦s ❝❛rr✐❡❞ ♦✉t ✐♥ t❤❡ ❧❛st ❞❡❝❛❞❡ ❛r❡ ❛s ❢♦❧❧♦✇s✿

✖ ✉♣❞❛t✐♥❣ ♦❢ t❤❡ ♠❡t❤♦❞♦❧♦❣② ❢♦r ❞❡t❡r♠✐♥✐♥❣ ❡①tr❡♠❡ ✇❛✈❡ ❤❡✐❣❤ts ♦r ✇✐♥❞ s♣❡❡❞s✿
✖ ❞❡✈❡❧♦♣♠❡♥t ❛♥❞ ❥✉st✐✜❝❛t✐♦♥ ♦❢ ❛ t✇♦✲st❡♣ ❢r❛♠❡✇♦r❦ ❢♦r ❡①tr❡♠❡ ✉♥✐✈❛r✐❛t❡ ♦✈❡r✲t❤r❡s❤♦❧❞ ♠♦❞❡❧❧✐♥❣ ✐♥tr♦❞✉❝✐♥❣ t❤❡ ❝♦♥❝❡♣t ♦❢

❡✈❡♥t ❛♥❞ t❤❡ s❡♣❛r❛t✐♦♥ ♦❢ t❤❡ ♣❤②s✐❝❛❧ ❛♥❞ st❛t✐st✐❝❛❧ t❤r❡s❤♦❧❞s✱
✖ ♣r♦♣♦s❛❧ ♦❢ ♣r❛❝t✐❝❛❧ t♦♦❧s ❢♦r ❝❤♦♦s✐♥❣ t❤❡ st❛t✐st✐❝❛❧ t❤r❡s❤♦❧❞✱
✖ ✐♥tr♦❞✉❝t✐♦♥ ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❜♦♦tstr❛♣ ❛♣♣r♦❛❝❤ ❢♦r ❝♦♠♣✉t✐♥❣ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s✱
✖ ✐❞❡♥t✐✜❝❛t✐♦♥ ♦❢ ❛ ♣r♦❜❧❡♠❛t✐❝ ✐ss✉❡ ✐♥ t❤❡ ❜❡❤❛✈✐♦✉r ♦❢ t❤❡ ▼❛①✐♠✉♠ ▲✐❦❡❧✐❤♦♦❞ ❊st✐♠❛t♦r ❛♥❞ ♣r♦♣♦s❛❧ ♦❢ ❛ s♦❧✉t✐♦♥✿ ✉s❡ ♦❢

✸✲♣❛r❛♠❡t❡r ❞✐str✐❜✉t✐♦♥s ❛❧♦♥❣ ✇✐t❤ t❤❡ ▲✲♠♦♠❡♥ts ❡st✐♠❛t♦r✱
✖ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ t❤❡ P❖❚ ❢r❛♠❡✇♦r❦ t♦ t❤❡ ❏♦✐♥t Pr♦❜❛❜✐❧✐t② ▼❡t❤♦❞ ❢♦r ❞❡t❡r♠✐♥✐♥❣ ❡①tr❡♠❡ s❡❛ ❧❡✈❡❧s✿

✖ ❞✐st✐♥❝t✐♦♥ ❜❡t✇❡❡♥ s❡q✉❡♥t✐❛❧ ✈❛❧✉❡s ❛♥❞ ❡✈❡♥t ♣❡❛❦s t❤r♦✉❣❤ ❡①tr❡♠❛❧ ✐♥❞❡①❡s ❢♦r s✉r❣❡ ❛♥❞ s❡❛ ❧❡✈❡❧✱
✖ ❝♦♥str✉❝t✐♦♥ ♦❢ ❛ ♠✐①t✉r❡ ♠♦❞❡❧ ❢♦r t❤❡ s✉r❣❡ ❞✐str✐❜✉t✐♦♥✱
✖ r❡✜♥❡♠❡♥ts ❢♦r ❤❛♥❞❧✐♥❣ t✐❞❡✲s✉r❣❡ ❞❡♣❡♥❞❡♥❝❡✱

✖ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ t❤❡ P❖❚✲❏P▼ ❢r❛♠❡✇♦r❦ ❢♦r t❤❡ ❥♦✐♥t ❛♥❛❧②s✐s ♦❢ ✇❛✈❡ ❤❡✐❣❤t ❛♥❞ s❡❛ ❧❡✈❡❧✿
✖ ♣r♦♣♦s❛❧ ♦❢ ❛♥ ❛❧t❡r♥❛t✐✈❡ s❛♠♣❧✐♥❣ ♣r♦❝❡❞✉r❡✱
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