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Résumé
Cette thèse traite du problème de la réduction de modèle pour les systèmes quantiques
ouverts possédant différentes échelles de temps, également connu sous le nom d’élimination
adiabatique. L’objectif est d’obtenir une méthode générale d’élimination adiabatique
assurant la structure quantique du modèle réduit.

On considère un système quantique ouvert, décrit par une équation maîtresse de
Lindblad possédant deux échelles de temps, la dynamique rapide faisant converger le
système vers un état d’équilibre. Les systèmes associés à un état d’équilibre unique ou
une variété d’états d’équilibre ("decoherence-free space") sont considérés. La dynamique
lente est traitée comme une perturbation. En utilisant la séparation des échelles de temps,
on développe une nouvelle technique d’élimination adiabatique pour obtenir, à n’importe
quel ordre, le modèle réduit décrivant les variables lentes. Cette méthode, basée sur un
développement asymptotique et la théorie géométrique des perturbations singulières, assure
une bonne interprétation physique du modèle réduit au second ordre en exprimant la
dynamique réduite sous une forme de Lindblad et la paramétrisation définissant la variété
lente dans une forme de Kraus (préservant la trace et complètement positif). On obtient
ainsi des formules explicites, pour calculer le modèle réduit jusqu’au second ordre, dans le
cas des systèmes composites faiblement couplés, de façon Hamiltonienne ou en cascade;
des premiers résultats au troisième ordre sont présentés. Pour les systèmes possédant une
variété d’états d’équilibre, des formules explicites pour calculer le modèle réduit jusqu’au
second ordre sont également obtenues.

Mots-clés

Élimination adiabatique ; Perturbations singulières ; Systèmes quantiques ouverts ; Sys-
tèmes quantiques composites ; Systèmes multi-échelles ; Réduction de modèle ; Équation
maîtresse de Lindblad
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Abstract
This thesis addresses the model reduction problem for open quantum systems with different
time-scales, also called adiabatic elimination. The objective is to derive a generic adiabatic
elimination technique preserving the quantum structure for the reduced model.

We consider an open quantum system, described by a Lindblad master equation with
two time-scales, where the fast time-scale drives the system towards an equilibrium state.
The cases of a unique steady state and a manifold of steady states (decoherence-free space)
are considered. The slow dynamics is treated as a perturbation. Using the time-scale
separation, we developed a new adiabatic elimination technique to derive at any order
the reduced model describing the slow variables. The method, based on an asymptotic
expansion and geometric singular perturbation theory, ensures the physical interpretation
of the reduced second-order model by giving the reduced dynamics in a Lindblad form
and the mapping defining the slow manifold as a completely positive trace-preserving map
(Kraus map) form. We give explicit second-order formulas, to compute the reduced model,
for composite systems with weak - Hamiltonian or cascade - coupling between the two
subsystems and preliminary results on the third order. For systems with decoherence-free
space, explicit second order formulas are as well derived.

Keywords

Adiabatic elimination ; Singular perturbations ; Open quantum systems ; Quantum
composite systems ; Different time-scales ; Model reduction ; Lindblad master equation
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Chapter 0

Introduction (version française)

Présentation du problème
Du fait que tout système quantique interagit avec son environnement, la façon rigoureuse
pour décrire son évolution serait d’utiliser l’équation de Schrödinger sur l’ensemble sys-
tème et environnement. Étudier cet ensemble n’est généralement pas possible en raison
de la complexité de l’environnement. Ainsi, en utilisant des hypothèses classiques sur
l’environnement (notamment des approximations de Markov), il est possible d’obtenir
une équation maîtresse de Lindblad [BP06] concernant seulement le système d’intérêt
et donc n’incluant pas l’environnement. Une situation similaire apparaît naturellement
au sein d’un système quantique composé de plusieurs sous-systèmes interagissant: on
peut souhaiter obtenir la dynamique d’un sous-système particulier d’intérêt en utilisant
certaines hypothèses pour ne pas prendre en compte les autres sous-systèmes. Lorsque
le sous-système d’intérêt a des taux de dissipation (c’est-à-dire des échelles de temps)
bien plus lents que les autres sous-systèmes et est faiblement couplé à ceux-ci, une telle
procédure est appelée élimination adiabatique (correspondant à la théorie des perturbations
en théorie des systèmes dynamiques). Ce problème de réduction de modèle apparaît dans
de nombreux champs de la physique quantique pour différentes raisons :

• Cette question est étroitement liée à l’ingénierie de réservoir (reservoir engineering)
[PCZ96] où le but est de choisir la dynamique d’un système cible en choisissant de
façon appropriée ses interactions avec d’autres sous-systèmes. L’interaction est conçue
de telle manière que la dynamique du système cible est, après élimination adiabatique
des autres sous-systèmes, celle désirée. Calculer rigoureusement la dynamique réduite
associée au sous-système d’intérêt est une tâche difficile. Ceci souligne le besoin de
développer des procédures systématiques d’élimination adiabatique. Ces procédures
doivent préserver la structure quantique afin d’assurer une interprétation physique
du modèle réduit.

• Lorsque l’on connecte plusieurs systèmes quantiques, l’espace de Hilbert du système
complet est le produit tensoriel des espaces des systèmes individuels. Les dimensions
se multiplient, amenant rapidement à un système difficile à étudier en raison du grand
nombre de variables. Dans le but d’obtenir une meilleure compréhension physique
d’un phénomène particulier dans un ensemble de systèmes, ou simplement afin de
pouvoir simuler numériquement un tel système, il faut développer des méthodes
génériques de réduction de modèles.
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État de l’art

Les techniques d’élimination adiabatique pour les systèmes quantiques fermés, gouvernés
par l’équation de Schrödinger sont standard. Dans de tels cas, l’évolution quantique est
unitaire et la théorie des perturbations régulières est utilisée ([Sak94]): suivre l’évolution
des valeurs propres et vecteurs propres du Hamiltonien suite à une faible perturbation est
bien connu. Le cas des systèmes quantiques ouverts, décrits par une équation maîtresse de
Lindblad ([BP06]) est cependant beaucoup plus complexe et implique d’utiliser la théorie
des perturbations singulières.

Dans la littérature, de nombreux exemples particuliers de systèmes quantiques ouverts
ont été traités avec succès. Dans [BPM07], l’élimination adiabatique pour des systèmes en
lambda avec un état excité et deux états fondamentaux est étudiée. Pour de tels systèmes,
les auteurs illustrent clairement comment certaines techniques standard d’élimination
adiabatique de l’optique quantique peuvent amener à des résultats ambiguës. Cela
souligne la nécessité de développer des approches rigoureuses. Ils proposent ensuite deux
techniques d’élimination adiabatique pour ces systèmes à trois dimensions en considérant
des perturbations Hamiltoniennes. La première technique est basée sur une solution
explicite de l’amplitude de l’état excité; la seconde utilise le formalisme des fonctions de
Green pour obtenir une expression du propagateur associé à la dynamique. Des systèmes
en lambda où un état excité se dissipe rapidement vers un nombre arbitraire d’états
fondamentaux sont considérés dans [MR09]. A partir de l’équation maîtresse de Lindblad
du système complet décrit par l’opérateur densité ρ, les auteurs présentent un changement
de variable ρ → (ρf , ρs), correspondant à une séparation état excité/fondamentaux et
permettant d’obtenir une dynamique dans la forme normale de Tikhonov. Ensuite, en
utilisant le théorème de Tikhonov, ils obtiennent une dynamique réduite au premier ordre
pour tout type de perturbation. L’extension aux systèmes en lambda avec plusieurs états
excités est considérée dans [RS12]. Les auteurs proposent une approche similaire, en
décomposant l’espace de Hilbert en deux sous-espaces, un pour les états fondamentaux et
un pour les états excités. En utilisant un développement asymptotique, en puissance du
paramètre séparant les deux échelles de temps, ils obtiennent une équation maîtresse de
Lindblad effective pour les états fondamentaux jusqu’au second ordre. Différents types de
rétroactions (cohérentes et incohérentes) entre un système d’intérêt et un système auxiliaire
(un qubit ou une cavité) sont étudiés dans [WW00]. Lorsque le système auxiliaire est sur
une échelle de temps rapide, une technique d’élimination adiabatique similaire à l’approche
de [Car93a] est utilisée pour obtenir la dynamique réduite au premier ordre du système
d’intérêt et ainsi étudier l’effet de la rétroaction. Pour les systèmes composés de deux
sous-systèmes distincts, sujets à une mesure continue et dans lesquels le sous-système
rapide a une dynamique Gaussienne et le sous-système lent est dépourvu de dynamique
interne, une technique d’élimination adiabatique est présentée dans [ČVH15]. En utilisant
le fait que la dynamique rapide Gaussienne peut être décrite seulement par ses moments
statistiques d’ordre un et deux, les auteurs obtiennent une équation maîtresse stochastique
pour le sous-système lent en calculant explicitement la trace partielle par rapport au
sous-système rapide de la dynamique complète.

En revanche, le développement de techniques génériques d’élimination adiabatique est
bien plus complexe et a attiré moins d’attention. Une généralisation aux systèmes quan-
tiques ouverts du formalisme de Schrieffer-Wolff est développée dans [Kes12]. L’équation
maîtresse de Lindblad est traitée comme un système linéaire standard et un changement de
variables général est proposé dans le but d’exprimer la dynamique dans la forme normale
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de Tikhonov. La dynamique réduite est exprimée sous forme de Lindblad, au second ordre,
dans le cas des systèmes composites avec perturbations Hamiltoniennes. Les systèmes
fortement dissipatifs possédant une variété d’états d’équilibre (decoherence-free space) sont
étudiés dans [ZV14]. En utilisant la théorie des perturbations pour les opérateurs linéaires
présentée dans [Kat66], les auteurs obtiennent la dynamique réduite au premier ordre sur
l’espace sans décohérence causée par une faible perturbation. Des bornes sur l’erreur entre
le modèle complet et réduit sont également données. Une approche similaire est utilisée
dans [MGLG16] pour traiter les systèmes avec des états métastables, c’est-à-dire des états
à grande durée de vie mais distincts des états d’équilibre. Leur spécificité est d’obtenir la
dynamique réduite dans le régime métastable. Dans le cadre général du formalisme des
modèles quantiques stochastiques introduit par Hudson et Parthasarathy, une méthode de
calcul de la dynamique réduite lente est proposée dans [GvH07, BS08] puis généralisée
aux opérateurs non bornés dans [BvHS08]. Il y est prouvé que la dynamique d’origine du
système complet converge vers la dynamique réduite lente lorsque la vitesse du système
rapide tend vers l’infini.

Contributions
Dans cette thèse, nous proposons une nouvelle approche géométrique d’élimination adia-
batique pour n’importe quel système quantique ouvert possédant des échelles de temps
différentes: une rapide et une lente. En utilisant cette approche géométrique, nous traitons
la dynamique lente comme une perturbation de la dynamique rapide. Voici nos principales
contributions au problème. Premièrement, nous utilisons un développement asymptotique
permettant de choisir l’ordre d’approximation, pour la dynamique réduite et la carac-
térisation de la variété lente, en fonction de la séparation des échelles de temps entre la
dynamique rapide et la perturbation lente. Ceci est motivé par le fait que dans certaines
expériences quantiques récentes, visant grâce à l’ingénierie de réservoir la stabilisation
indirecte de systèmes quantiques [LTP+15], une bonne connaissance de l’ordre de validité
des approximations devient nécessaire: l’augmentation de la précision des expériences
implique un besoin de calculer des modèles d’ordre élevé afin de décrire correctement la
dynamique lente. Deuxièmement, contrairement à l’approche standard utilisant la théorie
des perturbations, nous proposons une méthode préservant les propriétés structurelles des
systèmes quantiques ouverts. Ce point est crucial afin de permettre une interprétation
physique du modèle réduit. Nous imposons donc les contraintes suivantes pour ce problème
de réduction de modèle :

• La dynamique réduite, paramétrisée par un opérateur densité réduit, est décrite par
une équation maîtresse de Lindblad [BP06].

• La paramétrisation de la variété lente est explicitement donnée sous forme d’une
application complètement positive et préservant la trace, aussi appelé Kraus map
[Cho75].

La paramétrisation peut être vue comme une application de l’opérateur densité réduit
vers l’opérateur densité du système complet. La forme de Kraus assure la préservation
des propriétés de l’opérateur densité. De plus, le calcul de cette forme de Kraus permet
par exemple d’estimer l’intrication résiduelle entre deux sous-systèmes, ce qui peut avoir
d’importantes conséquences pratiques.
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Une telle attention sur l’application liant le système complet et réduit est une nouveauté
dans les techniques d’élimination adiabatique. La combinaison d’un développement
asymptotique, avec à la fois une expression sous forme de Lindblad pour la dynamique
et une application sous forme de Kraus, n’a jamais été abordée précédemment. Nous
proposons des formules directement applicables, avec contrôle de l’ordre de l’approximation
et une expression explicite de la façon dont le système réduit est intégré dans l’espace de
Hilbert de l’ensemble. Enfin, nous soulignons que notre approche s’appuie sur le cadre
de la théorie des variétés centres [Car81] et de la théorie géométrique des perturbations
singulières [Fen79] pour obtenir des équations de récurrence entre les approximations à
différents ordres. Ces équations de récurrence ouvrent ainsi une voie claire pour calculer
les termes d’ordre supérieur à partir de ceux d’ordre inférieur. Dans ce manuscrit, nous
obtenons des résultats généraux, concernant une large gamme de systèmes, pour calculer
le modèle réduit jusqu’au second ordre et des résultats préliminaires sur le troisième ordre.
La généralisation à d’autres cas et pour des ordres plus élevés nécessite des développements
complémentaires importants, mathématiquement intéressants et non usuels pour aborder
ce problème de réduction de modèle tout en préservant la structure non commutative de
l’équation maîtresse de Lindblad.

Dans le chapitre 2, nous décrivons le cadre mathématique de cette thèse. Nous présen-
tons des notions standard sur les systèmes quantiques et sur la théorie des perturbations
singulières. Ensuite, nous introduisons la structure des systèmes quantiques ouverts de
dimension fini composés de deux échelles de temps qui sera étudiée tout au long de ce
manuscrit, ainsi que la formulation mathématique des contraintes imposées sur le modèle
réduit afin de lui assurer une signification physique; à savoir une dynamique réduite sous
forme de Lindblad et une paramétrisation de la variété lente sous une forme de Kraus. Pour
résoudre ce problème, nous traitons la dynamique lente comme une perturbation. Nous
effectuons un développement asymptotique en fonction des puissances du petit paramètre
décrivant la différence des échelles de temps puis utilisons la théorie des variétés centres et
la théorie géométrique des perturbations singulières. Nous obtenons ainsi des relations de
récurrence liant le modèle complet et réduit qui doivent être résolues.

Le chapitre 3 présente la solution de ces relations de récurrences jusqu’au second ordre.
Nous considérons un modèle quantique standard dans lequel les variables lentes et rapides
correspondent à deux différents sous-systèmes quantiques interagissant. Les variétés lente
et rapide sont donc factorisées sous forme d’un produit tensoriel et non pas d’un produit
cartésien, qui est standard dans les systèmes dynamiques classiques. Dans ce cas, la
dynamique réduite peut être interprétée comme la dynamique du sous-système quantique
lent. Au premier ordre, nous obtenons des formules explicites pour calculer la dynamique
réduite sous forme de Lindblad. Nous retrouvons immédiatement la dynamique Zeno pour
n’importe quel type de couplage entre le système lent et le système rapide. Nous obtenons
également une formule explicite pour la paramétrisation de la variété lente sous forme de
Kraus. Elle montre que l’intrication entre le système lent et rapide apparait déjà à cet ordre;
à notre connaissance c’est la première fois qu’une telle intrication au premier ordre est
systématiquement montrée dans une technique d’élimination adiabatique. Ensuite, en se
concentrant sur les deux formes usuelles de couplage, à savoir une interaction Hamiltonienne
et une interaction en cascade, nous obtenons des formules explicites pour l’approximation
au second ordre tout en assurant une dynamique réduite sous forme de Lindblad et une
paramétrisation sous forme de Kraus. Les formules montrent clairement qu’une interaction
Hamiltonienne avec un système rapide dissipatif implique de la décohérence au second ordre.
Ces formules explicites nous permettent de plus d’établir plusieurs résultats structurels
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généraux, sur le nombre de canaux de décohérence et sur la structure des opérateurs de
décohérence associés.

Dans le chapitre 4, nous nous concentrons sur un système quantique standard :
l’oscillateur harmonique quantique. Après une brève présentation d’un tel système, nous
présentons plusieurs techniques permettant de calculer le modèle réduit lorsque le système
rapide est un oscillateur harmonique amorti. Premièrement, nous montrons comment
utiliser le point de vue d’Heisenberg afin d’effectuer les calculs pour des oscillateurs
harmoniques quantiques linéaires. Ensuite, nous utilisons une formulation explicite du
propagateur pour les oscillateurs non-linéaires à condition d’effectuer des hypothèses
supplémentaires sur la dynamique rapide. Les systèmes considérés étant de dimension
infinie, cela illustre également comment notre méthode, développée rigoureusement pour les
systèmes de dimension finie dans les chapitres précédents, peut en principe être appliquée
également aux systèmes de dimension infinie. Nous traitons plusieurs exemples, permettant
d’apprécier la relative simplicité calculatoire de l’application de nos formules.

Dans le dernier chapitre 5, nous présentons une extension de l’approximation au
troisième ordre pour les systèmes dont la dynamique correspond à celle décrite dans le
chapitre 3 et en supposant que l’interaction Hamiltonienne ne contient qu’un seul terme
sous forme de produit tensoriel. Nous obtenons une formule explicite pour calculer le
troisième ordre, qui nous permet déjà de donner des résultats structurels sur le modèle
réduit au troisième ordre: il n’y a pas de nouveau canal de décohérence au troisième ordre,
seulement de légères modifications de ceux pré-existants. Nous considérons ensuite un type
de système complètement différent, pas nécessairement composite, où la dynamique rapide
fait converger le système vers un sous-espace de l’espace de Hilbert complet (decoherence-
free space). De tels systèmes sont amenés à jouer un rôle important dans le traitement
quantique de l’information [LCW98]. Pour une dynamique rapide générique, nous obtenons
des formules explicites des opérateurs de Lindblad décrivant le développement au premier
ordre. Dans le cas particulier d’une perturbation Hamiltonienne, nous retrouvons l’effet
Zeno. De plus, pour une dynamique rapide décrite par un unique opérateur de décohérence
et sujette à une perturbation Hamiltonienne, nous présentons des formules explicites pour
calculer la paramétrisation de la variété lente sous forme de Kraus au premier ordre et
la dynamique réduite au second ordre. Cela souligne que dans ce cas également, un effet
Zeno au premier ordre est associé à une décohérence au second ordre.

Une conclusion et des perspectives sont discutées dans le chapitre 6

Note. Les travaux présentés dans cette thèse ont fait l’objet des publications suivantes :

• [ASR15] R. Azouit, A. Sarlette and P. Rouchon. Convergence and adiabatic elimina-
tion for a driven dissipative quantum harmonic oscillator. In Proceeding of the 54th
IEEE Conference on Decision and Control, CDC, 2015.

• [ASR16a] R. Azouit, A. Sarlette and P. Rouchon. Adiabatic elimination for open
quantum systems with effective Lindblad master equations. In Proceeding of the
55th IEEE Conference on Decision and Control, CDC, 2016.

• [ACSR17a] R. Azouit, F. Chittaro, A. Sarlette and P. Rouchon. Structure-preserving
adiabatic elimination for open bipartite quantum systems. In Proceeding of the IFAC
World Congress, 2017.

• [ACSR17b] R. Azouit, F. Chittaro, A. Sarlette and P. Rouchon. Towards generic
Adiabatic elimination for composite open quantum systems. IOP-Quantum Science
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and Technology, 2017.

Au début de ma thèse, j’ai également participé dans une moindre mesure à la publication
suivante. J’ai été principalement impliqué dans la caractérisation du taux de convergence
via une fonction Lyapunov:

• [ASR16b] R. Azouit, A. Sarlette and P. Rouchon. Well-posedness and convergence of
the Lindblad master equation for a quantum harmonic oscillator with multi-photon
drive and damping. In ESAIM: Control, Optimisation and Calculus of Variations,
2016.

J’ai également eu une participation mineure, dans l’analyse des données pour :

• [CJB+17] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J.
Anders, A. Auffèves, R. Azouit, P. Rouchon and B. Huard. Observing a quantum
Maxwell demon at work. Proceedings of the National Academy of Sciences, 2017.

Notations
Nous présentons ici les différentes notations utilisées tout au long de ce manuscrit.

Les espaces de Hilbert sont désignés par H, éventuellement avec un indice lorsque qu’il
y en a plusieurs. L(H) dénote l’ensemble des opérateurs linéaires sur H. Les opérateurs sur
un espace de Hilbert sont désignés avec des lettres latines en gras, majuscules ou minuscules
(par exemple a ou X). Les super-operateurs, c’est-à-dire des fonctions de L(H) vers L(H)
sont désignés avec des lettres latines capitales et calligraphiques (comme D ou K). •† est le
dual de •. Pour n’importe quel opérateurX, DX(•) = X•X†− 1

2

(
X†X •+ •X†X

)
. 1H

est l’opérateur identité sur l’espace de Hilbert H. Lorsque le contexte est clair, l’indice sera
omis. Le commutateur entre deux opérateurs sur H est désigné par [X,Y ] = XY −Y X.



Chapter 1

Introduction

1.1 Presentation of the problem
As any quantum system interacts with an environment, the rigorous way to describe its
evolution would be a Schrödinger equation including the environment. Studying this
whole system is usually not possible due to the complexity of the environment. Therefore,
using typical assumptions on the environment one can get rid of it by some Markov
approximations and obtain a Lindblad master equation [BP06] governing only the system
of interest. A similar situation arises naturally within a quantum system composed of
several interacting subsystems: one may want to get the dynamics of a particular subsystem
of interest by using some assumptions to get rid of the other ones. When the subsystem
of interest has much slower dissipation rates (i.e. time scales) than the other ones and
is weakly coupled to the other ones, such procedure is known as adiabatic elimination
(corresponding to perturbation theory in the field of system-theory). This model reduction
problem arises naturally within different fields of quantum physics for various reasons :

• It is closely related to reservoir engineering [PCZ96] where the goal is to design the
dynamics of a target subsystem by properly choosing its interaction with the other
subsystems. The interaction is engineered in such a way that the dynamics of the
target subsystem is, after adiabatic elimination of the other subsystems, the desired
one. Rigorously computing the reduced dynamics associated with the subsystem of
interest is not straightforward emphasizing the need to develop systematic adiabatic
elimination procedure. These procedures must preserve the quantum structure in
order to ensure a physical interpretation of the reduced model.

• When connecting several quantum systems, the Hilbert space of the complete system
is the tensor product of the spaces of the individual systems. Hence the dimensions
are multiplied, quickly leading to an intractable system due to the number of variables.
In order to get better physical insight on some particular phenomenon within the
ensemble of systems, or simply in order to be able to simulate numerically such
system, we need to be able to develop generic model reduction methods.

1.2 State of the art
Adiabatic elimination in the case of closed quantum systems, described by the Schrödinger
equation is standard. In such case, the quantum evolution is unitary and regular perturba-
tion theory is routinely applied ([Sak94]): it is well known how to follow the evolution of
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the eigenvalues and eigenvectors of the Hamiltonian due to a small perturbation. The case
of open quantum systems, described by a Lindblad master equation ([BP06]), is much
more complicated and involves singular perturbation theory.

A lot of particular examples of open quantum systems have been successfully treated
in the literature. In [BPM07], adiabatic elimination for lambda systems with an excited
state and two ground states is investigated. For such systems, the authors clearly illustrate
how some standard adiabatic elimination techniques from quantum optics may lead
to ambiguous results and thus the need to use rigorous approach. They propose two
adiabatic elimination techniques for these three dimension systems considering Hamiltonian
perturbations. The first one is based on an explicit solution for the amplitude of the
excited state; the second one uses the Green’s function formalism to derive an expression
of the propagator of the dynamics. Lambda systems where an excited state is decaying
fast towards an arbitrary number of ground states is considered in [MR09]. From the
Lindblad master equation of the complete system described by the density operator ρ,
the authors derived a suitable change of variables ρ → (ρf , ρs), corresponding to the
separation excited/ground states and leading to a dynamics in the Tikhonov normal form.
Then, by applying the Tikhonov’s theorem, they obtained the first order reduced dynamics
for Hamiltonian and/or Lindblad perturbations. The extension to lambda systems with
several excited states is considered in [RS12]. The authors have a similar approach by
decomposing the Hilbert space into two subspaces, one for the ground states and one for
the excited states. Using an asymptotic expansion in power of the small parameter, they
derive an effective Lindblad master equation for the ground states up to second order.
Different type of feedback (coherent and incoherent) between a system of interest and an
ancilla (either a qubit or a cavity) are investigated in [WW00]. When the ancilla is on a
fast time-scale, an adiabatic elimination technique similar to the standard approach of
[Car93a] is performed to derive the first order reduced dynamics concerning the system of
interest only and study the effect of the feedback. For bipartite systems under continuous
measurement - where the fast subsystem has a Gaussian dynamics and the slow subsystem
is assumed without internal dynamics - an adiabatic elimination technique is presented
in [ČVH15]. Using the fact that the fast Gaussian dynamics can be described only by
means of the first and second order statistical moments, they derived a quantum stochastic
master equation for the slow subsystem by computing the partial trace with respect to
the fast subsystem of the complete dynamics.

In contrast, the development of generic techniques for adiabatic elimination is much
more complicated and have attract less attention. A generalisation to open quantum
systems of the Schrieffer-Wolff formalism is developed in [Kes12]. The Lindblad master
equation is treated as a standard linear system and a general change of variables is derived
in order to express the dynamics in the Tikhonov normal form. The reduced dynamics is
ensured to be in a Lindblad form for composite systems with Hamiltonian perturbations
up to second order. Strongly dissipative systems admitting a decoherence-free space i.e. a
manifold of steady states are investigated in [ZV14]. Using perturbation theory for linear
operators from [Kat66], they derived the first order reduced dynamics on the decoherence-
free space induced by a small perturbation. Error bounds between the complete and
reduced system are given. A similar approach is used in [MGLG16] to tackle systems with
metastable states i.e. long-lived states that are distinct from the steady states and derive
a reduced dynamics in the metastable regime. The slow dynamics has been derived for the
formalism of quantum stochastic models introduced by Hudson and Parthasarathy, first
in [GvH07, BS08] then generalized for unbounded operators in [BvHS08]. The original
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dynamics, of the full system, is proven to converge to the reduced slow dynamics as the
speed of the fast dynamics tends to infinity.

1.3 Contributions
In this thesis, we propose a new geometric approach to perform adiabatic elimination for
any open quantum system featuring different time-scales: a fast and a slow one. Using
this geometric approach, we treat the slow dynamics as a perturbation of the fast one.
Our main contributions are the following. First, we provide an asymptotic expansion
that allows to choose the order of approximation, both for the reduced dynamics and
for the characterization of the slow manifold, as a function of the time-scale separation
between the fast dynamics and its perturbation. This is motivated by the fact that in
some recent quantum experiments aiming via reservoir engineering at strong indirect
stabilization of quantum systems [LTP+15], a good knowledge of the order of validity of
such approximations is becoming necessary : the increase in the accuracy of experiments
implies the need to compute higher order model in order to properly describe the slow
dynamics. Second, in contrary to standard perturbation theory from system theory, we
preserve the structural properties of open quantum systems. This is crutial in order to
allow a physical interpretation of the reduced model. Therefore, we impose the following
constraints on the model reduction problem :

• The reduced dynamics, parametrised by a reduced density operator follows a Lindblad
master equation [BP06].

• The parametrisation of the slow manifold is explicitly given as a trace preserving
completely positive map, also called Kraus map [Cho75].

The parametrisation may be seen as a mapping from the reduced density operator to the
density operator of the entire system. The Kraus map form ensures the preservation of
the density operator properties. Moreover, the computation of the Kraus map allows to
estimate for instance the residual entanglement, between the two subsystems of a reservoir
engineering setup, which may have important practical consequences.

Such care about the mapping between the complete and reduced systems is new in
adiabatic elimination techniques. Combining asymptotic expansion with both completely
positive map and Lindbladian formulation has never been addressed before. We provide
formulas with direct applicability, control on the order of approximation, and explicit
expression of how the reduced system is embedded in the full Hilbert space. Last, we
emphasize that our approach builds on the framework of center manifold theory [Car81]
and geometric singular perturbations theory [Fen79] to obtain recurrence relations between
the approximations at different orders. These recurrence relations thus open a clear path
to compute higher order terms from lower ones. In this manuscript, we derive general
results, considering a large class of systems, for the reduced model up to second order and
partial results for the third order. The extension to more general cases and arbitrary order
requires further investigations and to develop non-usual and mathematically interesting
tools in order to tackle the model reduction problem preserving the non-commutative
structure of the Lindblad master equation.

In chapter 2, we begin by a mathematical presentation of the framework of this thesis.
We present standard textbook material on quantum systems and singular perturbation
theory. Then, we introduce the two-time scales structure of considered finite-dimension
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open quantum, as well as the mathematical formulation of the constrains we impose on the
reduced model in order to ensure a physical significance; namely a reduced dynamics in a
Lindblad form and a parametrisation of the slow manifold in a Kraus map form. To solve
this problem, we treat the slow dynamics as a perturbation. We perform an asymptotic
expansion in terms of powers of the small parameter describing the time-scales and use
center manifold theory and geometric singular perturbation theory. It yields recurrence
relations between the complete and the reduced model that have to be solved.

The chapter 3 derives the solution of these recurrence relations up to second order. We
consider a standard quantum model, where the slow and fast variables correspond to two
different interacting quantum subsystems. The slow and fast manifolds are hence factored
in tensor product form, rather than the Cartesian product which is standard in classical
dynamical systems. We can then interpret the reduced dynamics as the dynamics of the
slow quantum subsystem. At the first order, we derive explicit formulas to compute the
reduced dynamics in a Lindblad form. We readily retrieve the so-called Zeno dynamics
for any type of coupling between the fast and slow subsystems. We also derive explicit
formulas for the parametrisation of the slow manifold in a Kraus map form. It shows
that entanglement already appears at this order; to our knowledge, this is the first time
that such systematic first order entanglement is shown in adiabatic elimination. Then,
focusing on two standard forms of coupling, namely Hamiltonian interaction and cascade
interaction, we derive formulas for the second order approximations while ensuring a
Lindblad form for the reduced dynamics and a mapping in Kraus map form. The formulas
show that the Hamiltonian interaction with a decohering subsystem leads to decoherence
at the second order. In addition to the explicit formulas, it establishes several general
structural result; on the number of decoherence channels and on the structure of the
associated decoherence operators.

In chapter 4 we focus on a standard quantum system: the quantum harmonic oscillator.
After the presentation of brief notion on such systems, we present several techniques
allowing to compute the reduced model when the fast relaxing part corresponds to a
damped harmonic oscillator. First, we show how using the Heisenberg picture allow to
perform the computation on linear quantum harmonic oscillators. Second, we present and
use an explicit formula of the propagator for non-linear harmonic oscillators provided some
assumptions on the dynamics of the fast subsystem. As these systems are infinite-dimension
systems, it illustrates how our method, rigorously developed in the previous chapter for
finite dimension systems, can in principle, be applied to infinite dimension ones. We treat
several examples, leading one to appreciate the computational simplicity of applying our
formulas.

In the last chapter 5, we present an extension to the third order approximation
of systems with dynamics corresponding to chapter 3 provided that the Hamiltonian
interaction includes only one tensor-product term. We obtain a formula in order to
compute the third order, which already allows to make structural result on the third
order reduced model: at the third order, there is no new decoherence channel, only slight
modification of the second order ones. We consider then a completely different type of
system, not necessarily bipartite, where the fast Lindbladian makes the system converge
to a decoherence-free subspace of the overall Hilbert space. Such systems are believed
to play an important role in quantum information processing [LCW98]. For general
fast dynamics satisfying this setting, we get explicit formulas for the Lindblad operators
describing the first order expansion. In the particular case of a Hamiltonian perturbation,
we retrieve the well known Zeno effect. Furthermore, for a fast Lindbladian described by a
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single decoherence operator and subject to a Hamiltonian perturbation, we derive explicit
formulas for the first-order effect on the location of the center manifold and for Lindblad
operators describing the second order expansion of the dynamics. This allows to highlight
that in this type of structure, a first-order Zeno effect is also associated to second-order
decoherence.

Perspectives and conclusions are discussed in chapter 6.

Note. The works presented in this thesis have been the subject of the following publica-
tions :

• [ASR15] R. Azouit, A. Sarlette and P. Rouchon. Convergence and adiabatic elimina-
tion for a driven dissipative quantum harmonic oscillator. In Proceeding of the 54th
IEEE Conference on Decision and Control, CDC, 2015.

• [ASR16a] R. Azouit, A. Sarlette and P. Rouchon. Adiabatic elimination for open
quantum systems with effective Lindblad master equations. In Proceeding of the
55th IEEE Conference on Decision and Control, CDC, 2016.

• [ACSR17a] R. Azouit, F. Chittaro, A. Sarlette and P. Rouchon. Structure-preserving
adiabatic elimination for open bipartite quantum systems. In Proceeding of the IFAC
World Congress, 2017.

• [ACSR17b] R. Azouit, F. Chittaro, A. Sarlette and P. Rouchon. Towards generic
Adiabatic elimination for composite open quantum systems. IOP-Quantum Science
and Technology, 2017.

In the beginning of my thesis, I participated with a lesser contribution to the following
publication. I was mainly involved in the characterisation of the convergence rate via a
Lyapunov function:

• [ASR16b] R. Azouit, A. Sarlette and P. Rouchon. Well-posedness and convergence of
the Lindblad master equation for a quantum harmonic oscillator with multi-photon
drive and damping. In ESAIM: Control, Optimisation and Calculus of Variations,
2016.

I also had a minor participation, in the analysis of the data in :
• [CJB+17] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J.

Anders, A. Auffèves, R. Azouit, P. Rouchon and B. Huard. Observing a quantum
Maxwell demon at work. Proceedings of the National Academy of Sciences, 2017.

1.4 Notations
We present here the different notations used through this manuscript.

Hilbert spaces are denoted by H, eventually with a subscript when different ones
are considered. L(H) denotes the set of linear operators on H. Operators on Hilbert
spaces are denoted with bold Latin letters either uppercase or lowercase (e.g. a or
X). Super-operators i.e. functions from L(H) to L(H) are denote with calligraphic
capital Latin letters (e.g. D or K). •† is the dual of •. For any operator X, DX(•) =
X •X† − 1

2

(
X†X •+ •X†X

)
. 1H is the identity operator on the Hilbert space H.

When the context is clear we omit the subscript dependence. The commutator between
two operators on H is denoted [X,Y ] = XY − Y X.





Chapter 2

Adiabatic elimination for open
quantum systems

The goal of this chapter is to derive our method to perform adiabatic elimination on open
quantum systems with two time-scales. We begin in Section 2.1 with some textbook notions
on quantum systems. In Section 2.2, after an introduction on model reduction we present
the two time-scales structure of quantum systems considered throughout this manuscript.
Section 2.3 introduces some mathematical theory for model reduction, mainly geometric
singular perturbation theory in the classical context of finite dimensional system theory.
We illustrate then the main difficulties to perform adiabatic elimination (model reduction
for systems with different time-scales) on open quantum systems. Readers familiar with
quantum systems and singular perturbation theory may skip these sections as all crucial
informations for the model reduction problem on open quantum systems are reminded in
the beginning of Section 2.4. We present our new method, based on the mathematical tools
previously introduced, to tackle such problem of adiabatic elimination for open quantum
systems in Section 2.4 where the quantum structure is preserved (dynamics of Lindblad
form and mapping of Kraus form).
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2.1 Structure of quantum systems
We present in this section standard textbook material on quantum systems. Our goal is
to introduce some notions of quantum physics used in this manuscript for readers not
familiar with quantum mechanics. For a complete and detailed introduction to quantum
physics see e.g. [BD02], [CTDL77]. See also [HR06] for a presentation including recent
experiments and results, also [NC00], focusing on quantum information.

2.1.1 Closed quantum systems
An isolated or closed quantum system corresponds to a system which does not interact
with its environment. The state of a closed quantum system, the wave function, is a vector
of an Hilbert space H of finite or infinite dimension. It is usually denoted by the ket |ψ(t)〉
and may be seen as a column vector. Its adjoint, the bra 〈ψ(t)| can be seen as a row
vector. We adopt this notation introduced by Dirac as it simplifies some expressions and
computations. For example, the scalar product between two states |ψ1〉 and |ψ2〉 is given
by the compact notation 〈ψ1| ψ2〉.

The notion of quantum state is closely related to probability. For each dimension of
the Hilbert space H we can associate a quantum state of the physical system. Then, the
components of the wave function can be seen as the probability amplitude for the system to
be in the corresponding state. We use the term probability amplitude to emphasize that
it may include a phase in the complex plane. This relationship with probability implies
that for any wave function |ψ〉, we have

〈ψ| ψ〉 = 1 (2.1)

The dynamics of a closed quantum system is governed by the Schrödinger equation :

d

dt
|ψ(t)〉 = −i

~
H(t) |ψ(t)〉 (2.2)

where H is a Hermitian operator on H. ~ is the Planck constant, in the following we
will consider ~ = 1. One easily verifies that property (2.1) is conserved by an evolution
through (2.2) using standard derivation rules:

d

dt
(〈ψ(t)| ψ(t)〉) = 〈ψ(t)| d

dt
(|ψ(t)〉) + d

dt
(〈ψ(t)|) |ψ(t)〉

= 0

2.1.2 The density operator
The wave function formalism is unfortunately not suitable to model every possible quantum
state. In the presence of uncertainty or partial information on the system, we have to use
the density operator formalism as illustrated in the example below.

Consider a two level system (or so called qubit for "quantum bit" with analogy to
classical bits) on a Hilbert space H isomorphic to C2. This corresponds for example to the
spin of an electron which can be either "up", denoted with the ket |↑〉 or "down", denoted
with |↓〉. By using wave functions we can’t describe an electron which is up or down
with a classical probability of 1/2: the ket |↑ + ↓〉 = |↑〉+ |↓〉 corresponds to a quantum
superposition of these states and not a classical uncertainty.
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Generally speaking, a quantum system may be in a state |ψ1〉 with some probability p1,
in a state |ψ2〉 with some probability p2 etc... Such states are very common in quantum
experiments for example when one wants to design several times the same state. Due to
physical imperfections one will never obtain rigorously the exact same state but rather
a probability distribution of states. As it can’t be described by a single ket, we need to
introduce the formalism of density operators.

The density operator (or density matrix) is a non-negative trace-class operator on
a Hilbert space H (see e.g. [Tar08]) . For a statistical mixture of states |ψ1〉 , |ψ2〉 , . . .
associated with the probabilities p1, p2, . . . it is defined as such :

ρ =
∑
i

pi |ψi〉〈ψi|

where ∑i pi = 1. When ρ is of rank one, corresponding to a state described by a single
ket, the state is said to be pure. Otherwise, it is a mixted state. Any quantum state
can be described by an appropriate density operator. It has the following properties :

• Hermiticity : ρ = ρ†

• Positivity : ρ ≥ 0

• Normalized : Tr (ρ) = 1

Moreover, it verifies Tr (ρ2) ≤ 1, with equality if and only if ρ is a pure state. We denote
by D the closed convex set of density operators on the Hilbert space H equipped with the
nuclear norm (see [Tar08]): ||A||nucl = Tr

(√
A†A

)
.

Using density operators, the Schrödinger equation (2.2) becomes :

d

dt
ρ = d

dt

∑
i

pi |ψi〉 〈ψi|

=
∑
i

pi

(
d

dt
(|ψi〉) 〈ψi|+ |ψi〉

d

dt
(〈ψi|)

)
= −i

∑
i

pi (H(t) |ψi〉 〈ψi| − |ψi〉 〈ψi|H(t))

= −i[H(t), ρ]

Resulting in the Liouville/Von Newmann master equation:

d

dt
ρ = −i[H(t), ρ] (2.3)

For such master equation, we can define an evolution operator or propagator.
Consider a density operator ρ(t0) at time t0 evolving according to (2.3) up to time t1.
Then the propagator U(t0, t1) is defined by :

ρ(t1) = U (t0, t1)ρ(t0)U(t0, t1)† (2.4)

formally given by the integral equation

U(t1, t0) = 1− i
∫ t1

t0
H(t)U(t, t0)dt
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This operator has many important properties [CTDL77]. Among them, for any time
t2, t1, t0 we have :

U(t2, t1)U(t1, t0) = U(t2, t0)

In particular for t2 = t0, U(t0, t1)U(t1, t0) = 1 which implies the reversibility of the
evolution. This operator is unitary: U−1(t1, t0) = U †(t1, t0). In the particular case of time-
independent Hamiltonian, it is readily given by U(t1, t0) = e−iH(t1−t0). This reversibility
of the evolution highlights the fact that Hamiltonian evolutions associated with closed
quantum systems are processes without loss of information.

We present in the next section how to model systems with loss of information known
as open quantum systems.

2.1.3 The Lindblad master equation
Until now, we considered perfectly closed quantum systems without any interaction with
the environment. In quantum experiments, this is never true. Due to inevitable coupling
with the environment, a part of the information of the system of interest leaks into the
environment, resulting in a loss of information. Moreover, to perform any measurement
on the system, one needs to interact with it and therefore we cannot consider the system
as closed. One possible way to circumvent this problem would be to consider not only the
evolution of the system of interest but the evolution of the system and its environment. As
the ensemble {system+environment} is closed, its dynamics is given by the Schrödinger
equation (2.2) on a Hilbert space H = Hsyst⊗Henvironment

1. As the environment is usually
a complex and large dimensional system, studying this whole dynamics is impossible in
practice.

It is possible, with some commonly verified assumptions, to derive a master equation
governing the system of interest only while taking into consideration its coupling with
the environment. The system will therefore be considered as an open quantum system
[BP06].

Using the Born-Markov approximation (corresponding to the assumption that any
information leaked into the environment is lost and never comes back into the system),
the dynamics of an open quantum system is given by the Lindblad master equation first
introduced in [Lin76] and independently in [GKS76] (see e.g. [CTDRG92], [Car93a] for
its rigorous derivation from the Schrödinger equation or [HR06] for a more deductive
approach focusing on the physical interpretation):

d

dt
ρ = −i [H , ρ] +

∑
k

LkρL
†
k −

1
2
(
L†kLkρ+ ρL†kLk

)
(2.5)

where H is a Hermitian operator on H, Lk are some operators on H, not necessarily
hermitian and they might be time-dependant, ρ is a density operator. The operators
Lk correspond to the different dissipation channels through which the information in
the system leaks into the environment. They are named dissipation or decoherence
operators.

If the initial condition ρ(0) belongs to D, then the solution ρ(t) of (2.5) remains in D
and is defined for all t ≥ 0.

1See section 2.1.5 for more details on this structure
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It is convenient to introduce the Lindblad super-operator: for any operator X on H
we define :

DX(•) = X •X† − 1
2
(
X†X •+ •X†X

)
thus leading to a compact notation for the Lindblad master equation (2.5) :

d

dt
ρ = −i [H , ρ] +

∑
k

DLk(ρ)

Similarly to (2.4) for closed quantum systems, we are interested in the characterisation
of the evolution of the density operator from a time t0 to t1. In the case of open quantum
systems, it is not given by an unitary operator but rather by a set of operators {M k} on
H :

ρ(t1) =
∑
k

M k(t1, t0)ρ(t0)M †
k(t1, t0)

and verifying the completeness relation∑
k

M †
kM k = 1

This structure is in fact much more general as any linear quantum process transforming a
density operator into another one (through evolution, measurement, coupling to another
system, etc...) can be expressed using this formalism [NC00]. More precisely, for any
density operator ρ ∈ D and for any quantum transformation E : D → D, there exists a
family of operator {M k} verifying the completeness relation such that

E(ρ) =
∑
k

M kρM
†
k

This elegant representation is known as the Kraus sum representation or Kraus map
[Cho75]. The operators M k are known as Kraus operators. It is a completely positive
trace preserving mapping and therefore preserves the properties of the density operator
[Cho75].

2.1.4 Schrödinger versus Heisenberg picture
Measurement and observables

We saw previously that the introduction of the density operator formalism is essential
in order to be able to completely describe any quantum system. If the system is closed,
its dynamics is governed by the Liouville/Von Newmann equation, while if the system
is open it is governed by the Lindblad master equation. We first make more precise the
meaning of "completely describe the system" or "contains all the information needed on
the systems" for the density operator.

As the nature of quantum systems is probabilistic, the perfect knowledge of the density
operator does not mean being able to predict the outcome of any measurement. Instead,
it means that the density operator contains all the information needed to predict the
statistics of the outcome of an observation on the system. Consider an observable OA, an
operator on H, corresponding to some measurement A on the system. Assume that the
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system is described by the density operator ρ ∈ D. Then, the probability of finding the
eigenvalue εj of OA is given by

πj = Tr
(
ρP A

j

)
(2.6)

where P A
j is the orthogonal projector on the corresponding eigenspace. The expectation

value of OA is given by

〈OA〉ρ =
∑
j

πjεj = Tr (OAρ) (2.7)

We can therefore explain the properties of the density operator in this context to give
them more insight: the hermiticity and positivity correspond to the fact that a probability
must always be positive (2.6). The normalisation ensures that all probabilities sum to one.

The Heisenberg picture

Until now, we have implicitly considered the evolution of a quantum system in the
Schrödinger picture. This may be the most "natural" point of view because, in this
picture, the state evolves through time while the observables are time independent, as
usually considered in classical systems. In the dual approach, known as Heisenberg
picture, the observables are evolving through some dynamics while the state remains
unchanged:

Consider a density operator ρ ∈ D with dynamics given by a Lindblad master equation

d

dt
ρ = −i [H , ρ] +

∑
k

LkρL
†
k −

1
2
(
L†kLkρ+ ρL†kLk

)
For some time-independent operators H ,Lk on H. We denote by ρ(t) its solution
at time t with initial condition ρ(0) = ρ0. We saw on the previous section that the
knowledge of ρ(t) is sufficient to predict the expected value of the measurement of any
observable OA : 〈OA〉t = Tr (OAρ(t)). Now we use the Kraus map representation
ρ(t) = ∑

kM k(t)ρ(0)M †
k(t) for some operators M k on H. Therefore we get

〈OA〉t =
∑
k

Tr
(
OAM k(t)ρ(0)M †

k(t)
)

Then using the cyclic property of the trace,

〈OA〉t =
∑
k

Tr
(
M †

k(t)OAM k(t)ρ(0)
)

With this reformulation, one may see the operator∑kM
†
k(t)OAM k(t) as the time evolution

of the observable operator OA while the density operator is given at any time by ρ(0).
This is the Heisenberg picture. By a small abuse of notation we denote by OA(t) this
operator. The dynamics of OA(t) is given by the adjoint Lindblad master equation :

d

dt
OA(t) = i [H ,OA(t)] +

∑
k

L†kOA(t)Lk −
1
2
(
L†kLkOA(t) +OA(t)L†kLk

)
with OA(0) = OA. Note that in the particular case OA(0) = 1 then we directly get
OA(t) = OA(0) = 1 corresponding to the fact that the trace of the density operator is
preserved through any evolution.
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This point of view is particularly useful when one wants to compute the expectation
values of some particular operators: while solving the Lindblad master equation for ρ -
thus obtaining every possible information on the system - might be tedious, the adjoint
Lindblad master equation only gives information about a particular observable but may
be easier to solve. See chapter 4 for several applications.

2.1.5 Entanglement
Consider two distinct quantum systems A and B on some Hilbert space respectively HA

and HB. Then, the underlying Hilbert space H of the composite {A,B} system is given
by the tensor product: H = HA ⊗ HB. This important quantum feature has essential
implications. Contrary to Cartesian product where dimensions add, we have dim(H) =
dim(HA) × dim(HB), expressing the quick growth in dimensions when interconnecting
several quantum devices.

Assume that the density operator ρ of the composite system {A,B} is given by :

ρ = ρA ⊗ ρB (2.8)

for some density operator ρA on HA and ρB on HB. It is then possible from ρ to compute
ρA and ρB from corresponding respectively to the density operator of the systems A and
B by using the partial trace (with respect to A or B):

TrA (ρ) = ρB

TrB (ρ) = ρA

Note that, in this case, ρ = TrB (ρ)⊗ TrA (ρ).
The partial trace operation has the following properties. Denote by OA (OB) any

operator on HA (HB) and OAB any operator on H. Then :

TrB (OA ⊗OB) = Tr (OB)OA

TrB ((OA ⊗ 1HB)OAB) = OA · TrB (OAB)

The density operator of the composite system {A+B} is said to be separable if it can
be expressed as

ρ =
∑
k

pk ρkA ⊗ ρkB

for some set of density operators {ρkA} on HA and similarly for B, ∀k pk ≥ 0 and they
verify ∑k pk = 1. If a state is not separable then it said to be an entangled states.
Note that in this case ρ 6= TrB (ρ)TrA (ρ) : the state of the complete system is different
from the state of each subsystem taken individually. An entangled state signifies the
existence of quantum correlations between both subsystems is considered to be the most
non-classical manifestations of quantum physics. The quantum correlations between two
quantum systems are the core of advantage of quantum systems over classical systems,
allowing e.g. quantum teleportation [BBC+93]. For this reason, entangled states have
attracted a lot attention. However, their characterisation and quantification remain a
difficult task. For more details on entanglement see e.g. [HHHH09] for a complete review,
or [BT17] discussing more general type of quantum correlations.
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2.2 Model reduction in considered quantum systems
The goal of this section is to present the structure of considered quantum systems for
model reduction. We begin by a general presentation of the notion of model reduction,
emphasising why it is necessary to develop model reduction techniques in 2.2.1. The
considered systems with different time-scales are introduced in 2.2.2 leading to the notion
of adiabatic elimination. They are mathematically described in 2.2.3. In this manuscript,
we will rigorously consider only finite-dimensional systems, for which definitions and
theorems of section 2.3 are rigorously stated. In chapter 4 we show how we can also treat
infinite dimension systems. We emphasize that this treatment is solely formal, in order to
be rigorous, one need to take care of problems related to the infinite dimension, which is
not the aim of this manuscript.

2.2.1 Notion of model reduction
Mathematical model of a system

In order to study the properties of a physical system the first task is to derive a mathematical
model that describes the behaviour (well enough) of the system of interest. This system
may come from a large variety of scientific domains (e.g. physics, biology, control theory,
etc.) and the modelling could be a difficult task. It usually comes from basic physical
principles and/or experiments. Commonly, the dynamics of the system is described by a
set of differential equations [Kha92]. The number of first order differential equations used
in the model is referred as the order of the model: it represents the "complexity" of the
model. If the studied system includes some complex phenomenons, a high order model
will be needed in order to correctly describe these complicated dynamics. This order may
even be infinite for systems described by partial differential equations (corresponding to
an infinity of ordinary differential equations) appearing in a large variety of fields.

The need of a reduced model

From the preceding paragraph, it emerges that it might be interesting to consider a very
high order model in order to accurately describe a physical system. However, in practice,
this is not always the case and frequently we are interested in a low order model describing
the dynamics of the system. There are numerous reasons to this requirement, we will list
several important ones:

• Studying the evolution of a high order system may be difficult, and an analytic
solution could be hard to find. A reduced model therefore simplifies this demand.

• Some particular phenomenon or behaviour of the system may be clouded by a
complex model with high order. A reduced model may thus highlight a dominant
dynamics and give better physical insight on a specific process at work within the
system of interest.

• The exact modelling of the system may imply to take into account several undesired
systems coupled with the interesting one. A lower order model can approximate the
dynamics of the system of interest only.

• For numerical simulations or any numerical procedure, a high order system is
computationally expensive in resources and/or in time.
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The idea of reduced model

This shows that we have to develop methods to compute a reduced order model from
a complex high order model. As the reduced order model will be an approximation of the
complete model, we will rely on some assumptions on the complete model in order to make
this approximation valid. We emphasize that in practice we start from the assumptions
and compute a reduced model accordingly. These assumptions are usually suggested by
some physical properties or expected behaviour of the system.

Nevertheless, after the model reduction, some degree of details will inevitably be
lost resulting in some errors between the dynamics of the reduced model and the exact
dynamics. A key element of model reduction is then to find a way to characterise this
error in order to track the amount of difference we can expect between the two models.

2.2.2 Time-scales separation
Using different time-scales

For all the reasons presented in the last paragraph, we want to compute a rigorous reduced
model for quantum systems governed by Lindblad dynamics (2.5). We present here the type
of assumption considered for the complete quantum system throughout this manuscript.

A first example of reduced model was presented in section 2.1 to derive the Lindblad
master equation. From a complete high order model consisting of a system of interest
coupled with an environment, the use of the Born-Markov approximation allows us to get
rid of the environment and therefore get a reduced dynamics for the system of interest
only. An analogous situation emerges naturally within a quantum system: we may be
interested in the evolution of some part of the variables describing the system while the
other ones are less relevant.

In typical systems, there is a time-scale separation between the interesting variables
and the other ones : the variables of interest evolve on slow time-scale while the other ones
evolve on a fast time-scale. In this case, one can derive a reduced model with guaranteed
approximations, by eliminating the fast variables with so-called adiabatic elimination
techniques. We essentially treat the slow dynamics of interest as a small perturbation to
the fast dynamics, and solve for the effect of this perturbation. This is the assumption
used throughout this manuscript to perform the model reduction. We will often refer to
adiabatic elimination as it is the standard vocabulary in quantum physics for model
reduction in the presence of different time-scales. We present more precisely the model
of two time-scales quantum systems in the next section 2.2.3. The mathematical ideas
behind methods using different time-scales to compute a reduced model are illustrated in
2.3.1.

Reservoir engineering

This two time-scales structure is common in quantum experiments where a system of
interest is often coupled to a low quality (fast dissipative) harmonic oscillator that acts
as a filter. Another important need for generic adiabatic elimination methods is in the
upcoming field of reservoir engineering [SBRR11]. It comes from the non-intuitive idea
from [PCZ96] that dissipation may help to stabilise a desired state (in analogy with Watt
governor for classical systems) but also to preserve the quantum properties in a system.

The goal of reservoir engineering is to design the dynamics of a target subsystem by
properly choosing its interaction with the other subsystems. The interaction is engineered
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in such a way that the dynamics of the target subsystem is, after adiabatic elimination
of the other subsystems, the desired one. It is therefore necessary to develop methods to
rigorously compute the reduced dynamics associated with the subsystem of interest in the
presence of different time-scales.

2.2.3 Considered quantum structure
We consider an open quantum system whose dynamics is governed by a Lindblad master
equation. We introduce a small parameter ε in the dynamics leading to a separation
between fast and slow variables. This small parameter will be treated as a perturbation
of the initial (ε = 0) system called the unperturbed system. The dynamics of the
unperturbed system is assumed to be stable and converging towards a steady state.

As stated in the introduction of this section, we restrict ourself to finite dimension
systems. This assumption is necessary in order to be able to rigorously use the mathematical
tools presented in 2.4. Whereas several standard quantum systems (such as the quantum
harmonic oscillator, see 4) are infinite dimension systems, they can be approximated by
finite dimension ones by truncating the higher dimensions. This corresponds to neglecting
high energy states which in practice are not populated. We refer to [ACS15], for a
rigorous study of the effect of the truncation and the derivation of error bounds on the
finite-dimensional approximation.

We will come back on this finite-dimension assumption in chapter 4 to show how our
method may also leads to consider infinite dimension systems.

Formal description

Denote by H a Hilbert space of finite dimension, by D the compact convex set of density
operators ρ onH (ρ is Hermitian, nonnegative and trace one). We consider a two time-scales
dynamics on D described by the master differential equation

d

dt
ρ = L0(ρ) + εL1(ρ) (2.9)

where ε is a small positive parameter (0 < ε� 1) giving rise to the two time-scales. The
linear super-operators L0 and L1 are of Lindbladian forms. That is, there exist two finite
families of operators on H, denoted by (L0,ν) and (L1,ν), and two Hermitian operators
H0 and H1 (called Hamiltonians) such that, for r = 0, 1, we have

Lr(ρ) = −i[Hr, ρ] +
∑
ν

Lr,νρL
†
r,ν −

1
2

(
L†r,νLr,νρ+ ρL†r,νLr,ν

)
. (2.10)

Note that all these operators are assumed time-independent. We assume that, for ε = 0,
the unperturbed master equation d

dt
ρ = L0(ρ) converges to a stationary regime (which

may depend of the initial condition). More precisely, we assume that the unperturbed
master equation admits a set of stationary operators coinciding with the Ω-limit set of its
trajectories. We refer to [BNT08, BN08] for detailed informations on the existence and
characterization of stationary states for Lindblad master equations. We denote by

D0 =
{
ρ ∈ D

∣∣∣ L0(ρ) = 0
}

the compact and convex set of stationary operators. We thus assume that, for all ρ0 ∈ D,
the solution of ρ̇ = L0(ρ) with ρ(0) = ρ0 converges for t tending to +∞ towards an element
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of D0 denoted by R(ρ0) with

R(ρ0) = lim
t→+∞

ρ(t) = lim
t→+∞

etL0ρ0 (2.11)

where etL0 is the propagator associated with L0 i.e. etL0ρ0 is the solution at time t of
the differential equation (2.9) when ε = 0 for ρ(0) = ρ0 . In particular, it implies that
all the eigenvalues of L0 are nonpositive. Since, for any t ≥ 0, the propagator etL0 is a
completely positive linear map [NC00, Chap.8], R is also a completely positive map. By
Choi’s theorem [Cho75] there exists a finite set of Kraus operators on H denoted by (Mµ)
such that

R(ρ0) =
∑
µ

Mµρ0M
†
µ

with ∑µM
†
µMµ = 1. We thus assume that

D0 =
{
R(ρ)

∣∣∣ ρ ∈ D} and ∀ρ ∈ D0, R(ρ) = ρ.

This generic structure of quantum systems will be refined in chapter 3 to specifically
address composite systems.
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2.3 Model reduction problem
We present in this section the mathematical tools used in order to solve the model reduction
problem for finite-dimension open quantum systems. In 2.3.1 we make more precise the
notion of reduced model. This allows in 2.3.3 to specifically expose some constraints
needed to ensure a physical relevance of the reduced model. Standard model reduction
methods do not ensure the respect of these constraints, therefore, we present in 2.3.2 the
results from geometric singular perturbation theory used to tackle this problem. We use
the framework of system theory to present these methods, see 2.4 for their adaptation to
quantum systems.

There exists a large variety of literature on model reduction and singular perturbation
theory for finite-dimension systems. See e.g. [KKO99, chap. 9] on singular perturbation
theory. Tikhonov’s theorem was initially introduced in [Tik52], we refer to [Klo83] for a
survey. An extension of this theorem for a class of infinite-dimension systems can be found
in [TPG15]. Geometric singular perturbation theory was introduced by Fenichel [Fen79],
see [Jon95] or [Kap99] for detailed surveys. We follow an approach inspired from [DR96].

2.3.1 Mathematical definition of reduced model
Consider a dynamical system of finite dimension whose smooth dynamics is given by :

d

dt
x = v(x) (2.12)

where x ∈ Rn and v is a regular function of x.
In order to define the notion of reduced model for the system (2.12) we introduce two

definitions :
Definition 1. A smooth manifold Σ is said to be a locally invariant manifold for (2.12)
(or with respect to the vector field v(x)) if there exists T > 0 such that for any x0 ∈ Σ,
the solution x(t) of (2.12) initialised with x(0) = x0 stays in Σ for all t ∈ (−T, T ). If t
can be chosen arbitrarily, then Σ is said to be an invariant manifold.
Definition 2. An invariant manifold Σ is called locally attractive if it has a neighbourhood
S such that for any x0 ∈ S, the trajectory t→ x(t) of (2.12) initialised with x(0) = x0 is
defined for all t > 0 and tends towards Σ when t goes to infinity. If S = Rn then Σ is an
attractive manifold.

Then assume that there exists an attractive invariant manifold Σ for (2.12). By
definition, all trajectories x(t) will converge and then stay on Σ. This is schematically
illustrated on figure 2.1 taken from [DR96]. Therefore, we will approximate trajectories
of the complete system with trajectories on Σ. This approach leads us to the following
definition of a reduced model :
Definition 3. Assume the existence of an attractive invariant manifold Σ associated with
the system whose dynamics is given by (2.12). Denote by nΣ < n the dimension of this
manifold. Then the reduced dynamics of (2.12) corresponds to the restriction of the
complete dynamics to the attractive invariant manifold. This reduced dynamics will be
given by a set of nΣ < n first order differential equations.

The main problem is therefore to rigorously characterise and define Σ which is unknown
in practice. The goal of model reduction techniques is thus twofold :

• compute the reduced dynamics on Σ.
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Figure 2.1: Representation of the attractive invariant manifold Σ for the dynamics
ẋ = v(x).

• derive the parametrisation of Σ in Rn.

These objectives are difficult to achieve as only the vector field v(x) is known. Finding the
exact expression is generally as difficult as solving the initial complete problem (2.12). We
will therefore look for approximations of them.

2.3.2 Singular perturbation theory

We present in this section different ways to approach the problem of model reduction.
They are based on the two time-scales structure and known as singular perturbation theory.
We begin with the first results from Tikhonov [Tik52] relying on a particular form for the
complete dynamics and then introduce the geometric singular perturbation theory from
Fenichel [Fen79] to deal with more general structures.

The need to use such theories for the problem of model reduction in open quantum
systems is discussed in 2.3.3.

Tikhonov’s theorem

We now focus more precisely on autonomous dynamical systems described by two time-
scales and having an invariant attractive manifold. We introduce a small parameter
0 < ε� 1 describing the two time-scales. We consider a system described in the so-called
Tikhonov normal form :

d

dt
xs = εf(xs, xf , ε) xs(0) = x0

s

d

dt
xf = g(xs, xf , ε) xf (0) = x0

f

(2.13)

where xs ∈ Rn, xf ∈ Rm, the vector functions f and g are assumed to be sufficiently many
times continuously differentiable functions of their arguments.

It is convenient to reformulate (2.13) with the change of variable εt = τ , valid for any
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ε 6= 0:
d

dτ
xs = f(xs, xf , ε) (2.14)

ε
d

dτ
xf = g(xs, xf , ε) (2.15)

The terminology singular can be seen in (2.15) : in the limit ε = 0 the differential
equation ε d

dτ
xf = g(xs, xf , ε) degenerates into the algebraic equation g(xs, xf , 0) = 0.

An intuitive way to compute the reduced model is the following:
We begin by roughly set ε = 0 in equations (2.14), (2.15). We obtain the differential-

algebraic system :
d

dτ
xs = f(xs, xf , 0) xs(0) = x0

s

0 = g(xs, xf , 0)
(2.16)

Assume, for any xs, the existence of a root xf = Φ(xs) for the equation 0 = g(xs, xf , 0),
where Φ is a smooth function of xs. Then the reduced dynamics would be given by

d

dτ
xs = f(xs,Φ(xs), 0) xs(0) = x0

s (2.17)

This intuitive approximation turns out to be true up to the first order in ε as stated
by the Tikhonov’s theorem (we give here the version from [KKO99] ), under suitable
assumptions :
Theorem 1. (Tikhonov 1952) Denote xf = Φ(xs), with Φ a smooth function of xs, a root
for the equation g(xs, xf , 0) = 0. Let x̄s(t) be a solution of the reduced problem (2.17).
Assume that the initial system (2.13) verifies the following assumptions :

• the eigenvalues of the linearisation of g evaluated for ε = 0 along xf = Φ(xs) have a
strictly negative real part i.e :

∂g

∂xf

∣∣∣∣∣(xs,xf=Φ(xs),0)
has strictly negative eigenvalues

• the initial value x0
f lies in the domain of attraction of the root xf = Φ(xs) for initial

values (x0
s, 0) i.e. trajectories of

d

dt
xf = g(xs, xf , 0) xf (0) = x0

f

when xs is considered as a fixed parameter, tend to xf = Φ(xs) when τ goes to
infinity.

Then, when ε → 0, the solution of the initial system [(2.14),(2.15)] tends to solution of
the degenerated system (2.16). More precisely, there exists T > 0, such that the solution
(xs(t, ε), xf (t, ε)) of the initial system [(2.14),(2.15)] verifies :

∀t ∈ [0, T ] lim
ε→0+

xs(t, ε) = x̄s(t)

∀t ∈ ]0, T ] lim
ε→0+

xf (t, ε) = Φ(x̄s(t))

The convergence is uniform in the interval 0 ≤ t ≤ T for xs and in any interval 0 < t1 ≤
t ≤ T for xf .
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Figure 2.2: Evolution of a dynamical system in the Tikhonov normal form: during the
transient dynamics, the evolution is quasi-vertical.

The schematic result of this theorem is illustrated in figure 2.2: in the phase space
(xs, xf), due to the fast and stable dynamics vf , the system nearly evolves along lines
xs = constant before being caught by the slow manifold.

The theorem depicted here leads to a first order approximation in ε, however it can be
refined, using asymptotic expansions, to be at the desired precision (see e.g. [Ver05]).

In order to apply the Tikhonov’s theory, the dynamics of the system have to be in the
particular form (2.13) with an explicit decomposition between the fast and slow variables.
As the dynamics of the considered quantum systems (2.9) isn’t in the Tikhonov normal
form, a possible way to approach the model reduction for open quantum is to find an
appropriate change of variable in order to decompose the quantum dynamics into fast
and slow variables. We made a first attempt using this approach in [ASR15] (see also
[MR09] for a similar approach with lambda systems). While we were able to perform
model reduction up to first order in ε for some class of linear quantum systems, it seems
difficult to extend this approach and find explicitly the appropriate change of coordinate
for an arbitrary quantum system.

We are therefore interested in a coordinate-free theory in order to compute the reduced
model.

Geometric singular perturbation theory

The geometric approach to singular perturbation theory leads to the desired coordinate-free
method for model reduction. It was first introduced by Fenichel in [Fen79], see also a
survey by Jones [Jon95].

Consider the system of differential equations

d

dt
x = v(x, ε) (2.18)

where x ∈ Rn, 0 < ε� 1 and v is a smooth function.
Then assume :

• (H1) In the case ε = 0, equation (2.18) has an l-dimensional manifold Σ0 which is
contained in the set {v(x, 0) = 0}.
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• (H2) For ε = 0 and any x0 ∈ Σ0, the linearisation of (2.18) around x0 has exactly
m = n− l eigenvalues with strictly negative real part2.

Under these two assumptions, the system (2.18) is said to have a slow and an asymptotically
stable fast time-scales. We can then state the following theorem from Fenichel :
Theorem 2. (Fenichel’s Invariant Manifold Theorem): Under the assumptions (H1),
(H2), if ε > 0, but sufficiently small, there exists a manifold Σε that lies within O(ε) of Σ0
and is diffeomorphic to Σ0. Moreover it is locally invariant and attractive under the flow
of (2.18).

This theorem ensures the persistence of an invariant attractive manifold when ε is non
zero but sufficiently small. We will call Σε the slow manifold. The goal is therefore to
compute the equations defining this slow manifold and deduce the reduced dynamics.

Then for each x0 ∈ Σ0 it is possible to locally decompose the state vector x into two
components (xs, xf ) with dim(xs) = l = dim(Σ0) and dim(xf ) = m = n− l such that the
projection of the slow manifold Σε on the slow coordinates xs is a local diffeomorphism
around x0.

The dynamics of system (2.18) is then given by

d

dt
xs = f(xs, xf , ε)

d

dt
xf = g(xs, xf , ε)

where xs ∈ Rl, xf ∈ Rm, 0 < ε� 1.
The following theorem from Carr [Car81] allows to compute an approximation of Σε

up to the desired accuracy.
Theorem 3. (Carr 1981) Assume that for k ∈ N, one knows a function Φk(xs, ε) satisfying
the following equation corresponding to the invariance of the slow manifold Σε :

f(xs,Φk(xs, ε), ε) = ∂Φk(xs, ε)
∂xs

∣∣∣∣∣
(xs,ε)

g(xs,Φk(xs, ε), ε) +O(εk+1) (2.19)

Then, the equation xf = Φk(xs, ε) is an approximation of Σε up to order k + 1 in ε. The
reduced dynamics is given by

d

dt
xs = f(xs,Φk(xs, ε), ε) +O(εk+1)

2.3.3 Specific quantum constraints
As presented in section 2.2, our goal is to compute a reduced model of the dynamics (2.9)
by taking advantage of the difference between the fast and slow time-scales. We emphasize
here that (2.9) is a linear ordinary differential equation : the operator ρ on H may be
represented by a matrix of dimension dim(H)× dim(H) and therefore, by concatenating

2the necessary assumption is : the set Σ0 is normally hyperbolic relative to (2.18) i.e. for any x0 ∈ Σ0,
the linearisation of (2.18) around x0 has exactly l purely imaginary eigenvalues. However, since we are
interested in stable manifold we consider our assumption.
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all the variables of the density operator ρ into a single vector x (called the coherence
vector) the dynamics can be reformulated as :

d

dt
x = (A+ εB)x (2.20)

for some time-independent matrix A and B . It can easily be solved analytically, moreover,
following the perturbations of the eigenvalues and eigenstates of A+ εB is well known
when the spectrum of A is non-degenerate and the construction of the reduced model
to various order of approximation is standard [Sak94]. However, in considered quantum
systems (see e.g. section 3.1) the spectrum of A is degenerated, leading to complications
for applying similar perturbative methods.

Note that if the considered system is closed then (2.9) can be transformed into (2.2)
which is already in the form (2.20) (where x is replaced with the wave function |ψ〉 and
A is the Hamiltonian usually denoted H) and therefore the computation of the reduced
model is standard (if the spectrum of H is non-degenerate). However, the case of open
quantum systems is much more complicated as presented below.

The main problem of performing a similar approach for open quantum systems described
by Lindblad master equation is how to interpret the reduced model:

• What does physically represent the reduced variables obtained after a model reduction
on the coherence vector ?

• Is it possible to give some physical meaning to the reduced dynamics ?
Both these questions are crucial and the standard approach of model reduction for linear
differential equations does not give satisfactory answers. For example, the reduced dynamics
would not be in a Lindblad form, preventing any quantum interpretation of the reduced
dynamics, and thus the reduced model does not convey a physical meaning.

In order to ensure a physical interpretation of the reduced model, we therefore impose
several conditions to preserve the quantum structure. Firstly, we are looking for
reduced dynamics in a Lindblad form as only this type of dynamics conveys a physical
sense. Secondly, the mapping from the reduced space to the complete space, i.e. the
equations defining the slow manifold, must be in Kraus map form. This property ensures
that we map density operators to density operators or equivalently that there exists a
quantum process linking the reduced and the complete model. In the spirit of the Carr
approximation lemma [Car81] we will perform an asymptotic expansion in power of the
small parameter ε describing the two time-scales of the researched functions.

More precisely, if we parametrise the slow invariant attractive manifold Σε corresponding
to the perturbation of Σ0 by a density operator ρs of the same dimension as Σ0, then we
are searching for a reduced dynamics in the form of a linear function of ρs given by a linear
super-operator Ls. It will be developed in power of ε in order to obtain an asymptotic
expansion of d

dt
ρs :

d

dt
ρs = Ls(ρs) =

∑
k≥0

εkLs,k (2.21)

For any finite k̄ ∈ N, the reduced dynamics resulting from the truncation of the series up
to k̄ must be expressed in a Lindblad form up to higher order terms :

k̄∑
k=0

εkLs,k(ρs) = −i[H k̄, ρs] +
∑
ν

Lk̄,νρsL
†
k̄,ν
− 1

2
(
L†
k̄,ν
Lk̄,νρs + ρsL

†
k̄,ν
Lk̄,ν

)
+ o(εk̄)
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for some hermitian operatorsHk and some non necessarily hermitian operators Lk,ν . They
both are time-independent but might depend on ε. The equations defining Σε are linear
in ρs and given by the super-operator K, leading after a development in power of ε to :

ρ(t) = K(ρs(t)) =
∑
k≥0

εkKk(ρs(t)) (2.22)

The truncation of the series up to k̄ ∈ N leads to a Kraus map expression of the equations
(up to higher order terms) :

k̄∑
k=0

εkKk(ρs(t)) =
∑
l

M l(ε)ρs(t)M †
l (ε) + o(εk̄)

where {M l(ε)} are Kraus operators, they are time-independent functions of ε. Note
that this particular linear form in ρs is valid because we are considering linear systems.
Therefore, the solution ρs of the reduced master equation (2.21) yields via the completely
positive mapping K a trajectory of the perturbed system (2.9).

The fact that the model reduction method for open quantum systems must preserve the
quantum structure represented by the constraints (2.21) and (2.22) leads to a nontrivial
problem even if the initial system is a linear differential equation. To tackle this problem,
we will use the geometric singular perturbation theory presented in 2.3.2.
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2.4 Presentation of our method
We begin this section by briefly describing the considered system with two-time scales on
which we perform adiabatic elimination, as well as the constrains imposed on the reduced
model in order to ensure a physical meaning of the computed reduced system. This has
already been presented respectively in section 2.2.3 and 2.3.3 with more details but is
given here in order to make this section self-consistent. Then, we present our adiabatic
elimination method based on singular perturbation theory and asymptotic expansion to
compute the reduced dynamics. Our goal, in this section, is to derive the recurrence
relations that have to be solved in order to compute the reduced model. The resolution of
these recurrence relations is developed in chapter 3.

The two time-scales dynamics of the considered quantum system is given by the master
equation

d

dt
ρ = L0(ρ) + εL1(ρ)

where ρ is the density operator on a finite dimension Hilbert space H, 0 < ε � 1. For
ε = 0 and any initial condition ρ0 ∈ D there exists an attractive invariant manifold of
steady states D0 =

{
ρ ∈ D

∣∣∣ L0(ρ) = 0
}
. We denote R(ρ0) = limt→∞ e

tL0(ρ0).
The adiabatic elimination method must preserve the quantum structure by :

• ensuring a reduced dynamics in a Lindblad form for the reduced density operator ρs

d

dt
ρs = Ls(ρs) =

∑
k≥0

εkLs,k(ρs)

∀k̄ ∈ N,
k̄∑
k=0

εkLs,k(ρs) = −i [H k̄, ρs] +
∑
ν

DLk̄,ν (ρs) + o(εk̄)

• expressing the parametrisation of the slow manifold as a Kraus map

ρ = K(ρs(t)) =
∑
k≥0

εkKk(ρs(t))

∀k̄ ∈ N,
k̄∑
k=0

εkKk(ρs(t)) =
∑
l

M l(ε)ρs(t)M †
l (ε) + o(εk̄)

This is summarised in the schematic figure 2.3.
By definition, the unperturbed system is linear and features an attractive invariant

manifold D0, ensuring the existence of an attractive invariant manifold - the slow manifold
- in the presence of a sufficiently small perturbation described the small parameter ε using
the persistence Fenichel’s theorem (2).

Noting that the mapping K is linear and time-invariant, an adaptation of the Carr’s
theorem 3 (ρ↔ (xs, xf )) leads to the following equation corresponding to the invariance
of the attractive manifold :

d

dt
ρ = L0(K(ρs)) + εL1(K(ρs)) = d

dt
(K(ρs)) = K

(
d

dt
ρs

)
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Figure 2.3: Schematic representation of the presented method of adiabatic elimination for
open quantum systems based on geometric singular perturbation theory. The dynamics of
the complete density operator ρ ∈ D is given by d

dt
= L0(ρ) + εL1(ρ). We use the density

operator ρs (the "reduced" density operator) to parametrise the slow invariant attractive
submanifold via the mapping ρ = K(ρs) = cK0(ρs) + εK1(ρs) + . . . . The slow dynamics of
ρs ∈ Ds (dim(Ds) < dim(D)) is given by d

dt
ρs = Ls(ρs)) = Ls,0(ρs) + εLs,1(ρs) + . . . .

Then, using the asymptotic expansion in power of ε for K and Ls yields

L0
(
K0(ρs) + εK1(ρs) + ε2K2(ρs) + . . .

)
+ εL1

(
K0(ρs) + εK1(ρs) + ε2K2(ρs) + . . .

)
= K0

(
Ls,0(ρs) + εLs,1(ρs) + ε2Ls,2(ρs) + . . .

)
+εK1

(
Ls,0(ρs) + εLs,1(ρs) + ε2Ls,2(ρs) + . . .

)
+ ε2K2

(
Ls,0(ρs) + εLs,1(ρs) + ε2Ls,2(ρs) + . . .

)
+ . . .

Identifying terms of same order versus ε yields equations to compute higher order terms
from lower order terms:

• Zero order in ε:
L0(K0(ρs)) = K0(Ls,0(ρs)) (2.23)

The zero order expansion corresponds to the initialisation of the recurrence. The
zero order means we are considering the unperturbed system and therefore we expect
a null zero order dynamics: Ls,0 ≡ 0. From now we will adopt this initialisation,
resulting in simpler higher order expansion. The mapping K0 must therefore verifies
L0 ◦ K0 = 0. It will be explicitly given in chapter 3 when addressing composite
systems.

• First order in ε:
L0(K1(ρs)) + L1(K0(ρs)) = K0(Ls,1(ρs)) (2.24)

• Second order in ε:

L0(K2(ρs)) + L1(K1(ρs)) = K0(Ls,2(ρs)) +K1(Ls,1(ρs)) , (2.25)
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• Third order in ε:

L0(K3(ρs)) + L1(K2(ρs)) = K0(Ls,3(ρs)) +K1(Ls,2(ρs)) +K2(Ls,1(ρs)) (2.26)
...

This leads to recurrence relations that have to be solved at any order while ensuring
the desired structure for the reduced model. One may see that for each recurrence relation
(2.23)- (2.26), we have two unknown super-operator to find: Ls,i and Ki with respectively
i = {0, 1, 2, 3, . . . }. To solve each equation with two unknown terms, we will begin by
applying the mapping R defined in (2.11) to get rid of the Ki term as illustrated on the
first order expansion in ε (2.23):

R
(
L0(K1(ρs)) + L1(K0(ρs))

)
= R

(
K0(Ls,1(ρs))

)

Using the fact that R = e+∞L0 , R and L0 commute and by definition, L0 ◦ R ≡ 0, it
results:

R
(
L1(K0(ρs))

)
= R

(
K0(Ls,1(ρs))

)
(2.27)

= K0(Ls,1(ρs))

where K0 is derived using the zero order expansion (2.23) thus only Ls,1 is unknown and
can be computed. We refer to chapter 3 to see how we can ensure a Lindblad form for the
reduced dynamics.

Once the first order reduced dynamics Ls,1 is derived, then, going back to (2.24), only
K1 remains unknown. It appears through the super-operator L0. Therefore, we need to
be able to define and compute the inverse of the super-operator L0. This inverse is given
by the map K which is linear, trace-preserving and completely positive as shown in the
following lemma.
Lemma 1. There exists τ̄ > 0 such that the super-operator K sending operator X to

K(X) = 1
τ̄

∫ +∞

0
etL0

(
X −R(X)

)
dt+R(X) (2.28)

is a linear, trace-preserving and completely positive mapping with

−L0
(
τ̄K(X)

)
= X −R(X).

The proof is developed in appendix A.
Remark 1. When for any initial density operator the solution of ρ̇ = L0(ρ) converges
toward a unique density operator ρ, we have R(X) = Tr (X) ρ. In this case, for any given
operator W with Tr (W ) = 0, the general solution of −L0(X) = W reads

X =
∫ +∞

0
etL0(W ) dt+ λρ = τ̄K(W ) + λρ

where λ is an arbitrary complex number. Moreover X = τ̄K(W ) is the unique solution
with zero trace. The parameter λ corresponds to a gauge degree of freedom. We will show
in the following chapter how to fix the gauge in order to guarantee different properties
(e.g. trace preservation, complete positivity, or a simple expression) of the expansion.
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Remark 2. Note that for any operator X verifying R(X) = 0, the term τK(X) is actually
independant of τ . Such expressions will frequently appear in the following chapters and
thus do not require the computation of τ .

The same procedure will be applied at any order to compute the reduced model. This
method provides a clear path to compute the reduced dynamics up to any desired order
in ε. The challenging task to ensure a dynamics in a Lindblad form and a completely
positive mapping is addressed in chapter 3 for composite systems up to second order.
Some preliminaries results on the third order approximation are presented in chapter 5.



Chapter 3

Adiabatic elimination in bipartite
quantum systems

In this chapter, we focus on two time-scales bipartite systems. In this type of setting,
the system can be physically decomposed in two subsystems. The first one is a stable
subsystem converging towards a unique steady state and associated with the fast time-scale
while the other subsystem is associated with the slow one. We want to study the dynamics
of the slow subsystem of interest in the presence of a small coupling with the fast system.
This coupling will be treated as a perturbation of the original, uncoupled system. It may
come for example, from inevitable interaction with an environment, or for an interaction
specifically designed to shape the reduced dynamics of the system of interest (see section
2.2.2 on reservoir engineering). This type of structure with a physical decomposition
between a fast system and a slow one is very common and arises naturally in quantum
physics, underlining the need to develop rigorous generic adiabatic elimination techniques.
This chapter contains our main results from [ACSR17b] and [ACSR17a] on adiabatic
elimination. We solve the recurrence relations presented in 2.4 with specific constraints
2.3.3 up to second order. We derive explicit formulas for the reduced model. On the one
hand, they readily give structural results on adiabatic elimination for bipartite systems
without any computations. On the other hand, they allow the exact computation of the
second order reduced model.

We first present the structure of such bipartite systems in 3.1 and give general results
on the first order reduced model. Then, we investigate different types of weak coupling
between the two subsystems through this chapter. Section 3.2 is devoted to the general
case of Hamiltonian coupling, with special care to the dispersive and resonant interaction.
Section 3.3 focuses on cascaded interaction between the subsystems. Some of the considered
examples are infinite dimension systems, we postpone the discussion on the application of
our method to infinite dimension systems in chapter 4.
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3.1 Structure of bipartite systems

3.1.1 Structure
We consider two distinct quantum systems A and B. The state of the system A (respectively
B) is described by the density operator ρA on HA (resp. ρB on HB) of finite dimension
and their dynamics are given by :

d

dt
ρA = LA(ρA)

d

dt
ρB = εLB(ρB)

where

• 0 < ε� 1 is a small parameter describing the different time scales: the system A is
on a fast time-scale while the system B is on a slow time-scale.

• LA and LB are Lindblad-form super-operators on HA and HB respectively, describing
any possible quantum dynamics and defined by :

Lξ(ρ) = −i[Hξ, ρ] +
∑
µ

DLξ,µ(ρ), ξ = A,B (3.1)

with Hξ a Hermitian operator on Hξ, Lξ,µ operators on Hξ (not necessarily Hermi-
tian), both time-independent. DX denotes the dissipation super-operator associated
with operator X,

DX(ρ) = XρX† − 1
2
(
X†Xρ+ ρX†X

)
.

• For any initial density operator, the system A asymptotically converges towards
a unique equilibrium state denoted by ρA = ∑n̄

n=1 rn |χn〉〈χn|, where the second
expression is the spectral decomposition with rn > 0 for all n and n̄ is the rank of ρA.
Note that asymptotic convergence requires the presence of at least one dissipative
(i.e., non Hamiltonian) term in the dynamics. The case of a fast dynamics with a
subspace of steady states (corresponding to a decoherence-free space) in investigated
in Chapter 5.

In the following, we add a small coupling between both subsystems. The goal is to
derive a slow dynamics for the subsystem B only, by adiabatically eliminating the fast
variables associated with the system A. In other words, we are interested in the behaviour
of the slow system B in the presence of a weak coupling with the subsystem A. The Hilbert
space associated with the composite system is the tensor product space H = HA ⊗HB

whose dimension is the product of the individual dimensions. Denoting with {|aj〉}j,
{|bj〉}j some orthonormal bases for HA and HB respectively, an orthonormal basis for
HA ⊗HB is given by {|aj〉 ⊗ |bk〉}j,k. The state of the composite system is described by a
density operator ρ on H 1 whose dynamics is given by :

d

dt
ρ = LA(ρ) + εLint(ρ) + εLB(ρ) (3.2)

1Note that a given state ρ of the composite system on H cannot always be described in terms of
one state on HA and one on HB , the dimensions of the Hilbert spaces readily show that the considered
composite state can contain more information.
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Subsystem A 

(Fast) 

Subsystem B 

(Slow) 

  Fast dynamics: 

ℒ𝐴 = −𝑖  𝐻𝐴 ,∙ + 𝒟𝐿𝐴,𝑗
𝑗

  

Unique steady 

state  𝜌 𝐴 

Interaction 
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𝜖ℒ𝐵  
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Figure 3.1: We consider a fast system A with stable dynamics LA converging towards
a unique steady state ρA. It is coupled through the super-operator εLint to the slow
subsystem B with internal dynamics εLB. We investigate the perturbative effect of this
coupling on the system of interest B by performing adiabatic elimination of the fast
variables associated to the subsystem A. We particularly pay attention to the standard
Hamiltonian and cascaded coupling in the next sections.

where Lint is an interaction Lindbladian super-operator acting on both HA and HB. This
two time-scales structure for bipartite system will be considered throughout this chapter
in order to perform adiabatic elimination. At this point no further assumption is made on
the form of the interaction. It will be refined in the forthcoming sections to focus on the
most standard coupling : in 3.2 we will address Hamiltonian interactions and in section 3.3
cascaded interaction. Figure 3.1.1 schematically represents the structure of the considered
systems.

We make here a slight and common abuse of notation in order to simplify the notations.
The super-operator Lξ defined in (3.1) acts on operators-on-Hξ while the super-operator
Lξ in (3.2) is an extension acting on operators-on-H. It must be understood like the fact
that the super-operator Lξ act nontrivially only on Hξ i.e. for any operators X on HA

and Y on HB, LA(X ⊗ Y ) := LA(X) ⊗ Y and LB(X ⊗ Y ) := X ⊗ LB(Y ). In other
words, when considering LA as a super-operator acting on operators-on-H, the operators
HA and LA,µ from (3.1) are replaced by HA ⊗ 1HB and LA,µ ⊗ 1HB (similarly for LB).

Consider the solution of (3.2) starting from a density operator ρ0 on H = HA ⊗HB.
When ε = 0, the solution of the unperturbed system converges exponentially towards the
separable state :

ρ∞ = R(ρ0) = e+∞LA(ρ0) = ρA ⊗ TrA (ρ0) (3.3)

where e+∞LA(•) is the propagator (see Section 2.3), TrA (ρ0) is the partial trace over HA

of the initial density operator ρ0. Therefore the unperturbed system features an attractive
invariant manifold D0. It can be parametrised by ρs, a density operator on HB, by

D0 = ker(LA) = {ρ = ρA ⊗ ρs,∀ρs ∈ DS}
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with DS the set of density operators on HB.
Thus, we are in the framework presented in 2.4. Thus, in the presence of a small

perturbation corresponding to the weak coupling (ε 6= 0), there exists a slow manifold
close to D0. We parametrise the slow manifold, i.e. the perturbation of D0 by a density
operator ρs of the same dimension as D0, and thus of the density operators on HB. This
reduced density operator ρs will then be interpreted as approximately the state of the
subsystem B (though this is not exact, as in general, both system will be entangled and
one cannot properly define the state of one subsystem). Therefore, the slow dynamics
Ls will be interpreted as the effective dynamics governing the slow subsystem of interest
B. Our goal is to compute this reduced dynamics Ls and the application K mapping the
reduced density operator to the complete one, for ε 6= 0 but sufficiently small. With this
composite structure, the recurrence relations defining the second order reduced model
(2.23), (2.24), (2.25) that have to be solved turn into

LA(K0(ρs)) = K0(Ls,0(ρs)) (3.4)
LA(K1(ρs)) + Lint(K0(ρs)) + LB(K0(ρs)) = K0(Ls,1(ρs)) (3.5)
LA(K2(ρs)) + Lint(K1(ρs)) + LB(K1(ρs)) = K0(Ls,2(ρs)) +K1(Ls,1(ρs)) (3.6)

3.1.2 First order adiabatic elimination
We solve in this section the zero order and first order reduced model corresponding
respectively to solutions of equations (3.4) and (3.5).

The zero order terms in (3.4) initialises the recurrence. The most natural choice for
the zero order reduced dynamics Ls,0 is, as presented in 2.4, Ls,0 ≡ 0 due to the fact that
for ε = 0 the state of the subsystem B does not evolve. Then the zero order mapping K0
must verify LA(K0(ρs)) = 0. The simplest choice is:

K0(ρs) = ρA ⊗ ρs

To solve the first order approximation we use the approach presented in 2.4 and apply the
mapping R defined in (3.3) on the whole equation (3.5). It yields, after plugging the zero
order results in :

R
(
Lint(ρA ⊗ ρs) + ρA ⊗ LB(ρs)

)
= R

(
ρA ⊗ Ls,1(ρs)

)
(3.7)

And readily gives the first order reduced dynamics :

Ls,1 = LB(ρs) + TrA (Lint(ρA ⊗ ρs)) (3.8)

The following lemma ensures the Lindblad form of the first order reduced dynamics.
Lemma 2. For any super-operator Lint in Lindblad form (2.10) and any density operator
ρA on HA, the super-operator given by

ρB → TrA (Lint(ρA ⊗ ρB))

remains a Lindblad super-operator.

Proof. By linearity of the partial trace, it is sufficient to consider the following two cases :

Lint(ρ) = −i[H , ρ] and Lint(ρ) = LρL† − 1
2

(
L†Lρ+ ρL†L

)
.
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• Consider first Lint(ρ) = −i[H , ρ]. The Hermitian operator H can be decomposed
without loss of generality as H = ∑

kAk ⊗Bk, for some Hermitian operators Ak on
HA and Bk on HB. We then have

TrA ([H , ρA ⊗ ρB]) = [HB, ρB]

where HB = ∑
k Tr (AkρA)Bk is a Hermitian operator on HB.

• Then consider Lint(ρ) = LρL† − 1
2

(
L†Lρ+ ρL†L

)
. Decompose L = ∑

kAk ⊗Bk,
for some non-necessary Hermitian operators Ak on HA and Bk on HB. We have,
using the cyclic property of the trace,

TrA
(
LρA ⊗ ρBL† − 1

2

(
L†LρA ⊗ ρB + ρA ⊗ ρBL†L

))
=
∑
k,k′

Tr
(
AkρAA

†
k′

)(
BkρBB

†
k′ − 1

2

(
B†k′BkρB + ρBB

†
k′Bk

))
.

The square matrix (Mk,k′) =
(
Tr
(
AkρAA

†
k′

) )
is Hermitian and non-negative: since

ρA ≥ 0, we use the spectral decomposition of ρA = ∑
j |ψj〉〈ψj| and the fact that, for

any |ψj〉 ∈ HA, the matrix
(
Tr
(
Ak |ψj〉 〈ψj|A†k′

) )
is the Gram matrix associated

with the vectors Ak |ψj〉 of HA. Such Hermitian matrices are always non-negative
(see e.g. [Bha07]) ensuring the non-negativity of M . Then, take e.g. the Cholesky
decomposition M = NN †. We have

∑
k,k′

Mk,k′

(
BkρBB

†
k′ − 1

2

(
B†k′BkρB + ρBB

†
k′Bk

))

=
∑

k,k′,k′′
Nk,k”N

∗
k′,k′′

(
BkρBB

†
k′ − 1

2

(
B†k′BkρB + ρBB

†
k′Bk

))

=
∑
k′′
Xk′′ρBX

†
k′′ − 1

2

(
X†k′′Xk′′ρB + ρBX

†
k′′Xk′′

)

with Xk′′ = ∑
kNk,k′′Bk. Which is in a Lindblad form, concluding the proof.

�

The first order reduced model being computed, we can turn to the calculation of the
first order mapping K1. As stated in section 2.4, it appears through the super-operator LA
which can be inverted thanks to Lemma 1 ensuring the existence of a linear, completely
positive trace preserving (CPTP) map KA acting on operators-on-HA, with a positive
constant τ verifying KA(ρA) = ρA and corresponding to the inverse of LA in the following
sense :

For any operator W on HA and any λ ∈ C, we have

LA(X) = R(W )−W ⇒X = τKA(W ) + λρA

With a small abuse of notation, the map KA applied to operators-on-(HA ⊗HB) means
KA ⊗ 1HB .
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Using the first order recurrence relation (3.5) together with (3.7) leads to :

LA(K1(ρs)) = R
(
Lint(ρA ⊗ ρs) + ρA ⊗ LB(ρs)

)
− Lint(ρA ⊗ ρs)− ρA ⊗ LB(ρs)

= R
(
Lint(ρA ⊗ ρs)

)
− Lint(ρA ⊗ ρs)

And therefore we readily get:

K1(ρs) = τKA
(
Lint(ρA ⊗ ρs)

)
+ ρA ⊗G1,B(ρs) (3.9)

where G1,B is any Hermitian operator on HB and corresponds to the gauge degree of
freedom resulting from the fact that kerLA 6= {0}.

At this point, the gauge choice may be arbitrary, but two gauge choices lead to
interesting properties and will be considered throughout this manuscript :

• the gauge G1,B = 0 in (3.9) ensure the CPTP of the parametrisation of the slow
manifold K, guaranteeing its expression in a Kraus map form (up to higher order
terms) as imposed :

K(ρs) = K0(ρs) + εK1(ρs) +O(ε2)

= KA
(
ρA ⊗ ρs + ετLint(ρA ⊗ ρs)

)
+O(ε2)

= KA
(
eετLint(K0(ρs))

)
+O(ε2).

where we used KA(ρA) = ρA and the Taylor expansion in power of ε of the exponential.
Since KA, eετLint and K0 are linear completely positive trace-preserving maps, the
first order approximation K0 + εK1 coincides, up to second order terms, with the
linear CPTP map KA ◦ eετLint ◦ K0.

• the gauge G1,B = −τTrA (Lint(ρA ⊗ ρs)) leading to a simpler expression for K1 from
equation (2.28), namely

K1(ρs) =
∫ ∞

0
etLA

(
Lint(ρA ⊗ ρs)−R

(
Lint(ρA ⊗ ρs)

))
dt

but not ensuring a CPTP map in general for K:

K(ρs) = KA
(
ρA ⊗ ρs + ετLint(ρA ⊗ ρs)− ετ ρA ⊗ TrA (Lint(ρA ⊗ ρs))

)
+O(ε2)

= KA ◦ eετLint ◦ K0 ◦ e−ετTrA(Lint(ρA⊗ρs))(ρs) +O(ε2).

This expression is not always completely positive due to the backwards propagation
with TrA (Lint(ρA ⊗ ρs)), but it is e.g. when TrA (Lint(ρA ⊗ ρs)) is Hamiltonian (thus
in particular when Lint is Hamiltonian).

Remark 3. In the next sections, we will mainly use the gauge choiceG1,B = −τTrA (Lint(ρA ⊗ ρs)).
In order to get simpler expressions, we will use the following property, including the gauge
choice into the operator on which KA acts :

τKA
(
Lint(ρA ⊗ ρs)

)
+ ρA ⊗

(
− τTrA (Lint(ρA ⊗ ρs))

)
= τKA

(
Lint(ρA ⊗ ρs)− ρA ⊗ TrA (Lint(ρA ⊗ ρs))

)
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More generally, for any operators X on HA and Y on HB, for the gauge choice G =
−τR(X ⊗ Y ) we have,

τKA(X ⊗ Y )− τR(X ⊗ Y ) = τKA
(
(X − Tr (XρA) ρA)

)
⊗ Y .

Note that in this context of bipartite systems, the first order parametrisation of the
slow manifold ρ = K0(ρs) +K1(ρs) shows that the density operator of the complete system
cannot be decomposed as a single tensor product of a density operator on HA and on HB:
due to their interactions, both systems get entangled and this first order mapping allows
to estimate the residual entanglement

The computations of the second order corrections K2 and L2 can be done via (3.6) along
the same lines. The obtained expressions will depend on the gauge choice. We conjecture
that, at any order n versus ε, we can choose (Kj,Ls,j)1≤j≤n such that all equations
corresponding to orders less that n are satisfied, and also, such that ∑n

j=0 ε
jKj(ρs) and∑n

j=1 ε
jLs,j(ρs) coincide, up to n + 1 order terms, with a trace-preserving completely

positive map and with a Lindbladian dynamics, respectively. We have seen on several
examples that the related expressions can be quite involved and this is the topic of ongoing
research. For instance, in general, the autonomous dynamics LB undesirably appears in
L2 if we take the gauge choice G1,B = 0 which always guarantees the map (K0 + εK1) to
be completely positive trace-preserving.

We carry out in the upcoming sections further analysis leading to more explicit
expressions up to second order, for particular structures that are relevant in typical
quantum systems. The associated conclusions, e.g. expressions proving that we retrieve
trace-preserving completely positive maps and Lindblad type dynamics at this higher
order as well, are presented in the next sections.
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3.2 Hamiltonian coupling

3.2.1 Considered Structure
We focus now on the common case of Hamiltonian interaction between the fast and
the slow subsystems: weak Hamiltonian coupling of a target system HB to environment
is a standard model [HR06]. Such models are also frequently encountered in reservoir
engineering, where the fast system HA is the main dissipator allowing to stabilise the target
system HB (see example 3.2.3). For this type of coupling, we derive explicit formulas to
compute the reduced dynamics and the parametrisation of the slow manifold up to second
order. These formulas already allow us to derive general structural results on the reduced
dynamics for such systems (see 3.2.2) and to compute the reduced model on a relevant
but complex example 3.2.3.

In this case, the dynamics of the complete system, described by a density operator ρ
on H = HA ⊗HB, is governed by :

d

dt
ρ = LA(ρ) + ε

(
− i [H int, ρ] + LB(ρ)

)
(3.10)

where, without loss of generality, H int = ∑m
k=1Ak ⊗B†k is the interacting Hamiltonian.

Each individual Ak and Bk are not necessarily Hermitian operators on HA and HB,
however, H int is a Hermitian operator on H. We choose this particular decomposition
for H int as it easily addresses two typical cases of Hamiltonian interactions, namely
the dispersive coupling where m = 1, A1 and B1 are Hermitian and diagonal in the
energy bases of the respective subsystems; and the resonant coupling with m = 2 and
A2 ⊗B†2 = A†1 ⊗B1 (A1 and B1 are typically annihilation operators). We take a special
care for these two standard interactions in section 3.2.2.

Before introducing our theorem for the first order approximation in the case of Hamil-
tonian coupling, we begin by a technical Lemma on the structure of the inverse of the
super-operator LA:
Lemma 3. Denote by ρ = ρA the unique density operator solution of LA(ρ) = 0. For a
traceless operator Y such that ker(ρA) ⊆ ker(Y ), the traceless solution to X = L−1

A (Y )
also satisfies ker(ρA) ⊆ ker(X).

The proof is presented in appendix A.
This allows to state an explicit solution for the reduced dynamics and the parametrisa-

tion of the slow manifold at the first order in ε. For the remainder of this section we use the
gauge choice G1,B = −τTrA (Lint(ρA ⊗ ρs)) that will lead to simpler explicit expressions.

Theorem 4. (Hamiltonian coupling, first order): The first order reduced dynamics is
given in a Lindblad form by :

d

dt
ρs = εLs,1(ρs)

Ls,1(ρs) = −i
m∑
k=1

[
Tr (AkρA)B†k , ρs

]
+ LB(ρs) (3.11)

The parametrisation of the slow manifold is given in a Kraus form 2 (up to higher order
2The given form does not exactly correspond to a Kraus form as presented in 2.1. The exact Kraus

form can be computed by using the spectral decomposition of ρA. However, we choose this representation
as it emphasises how the first order parametrisation can be seen as a slight perturbation of the zero order
one.
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terms) by :

K(ρs) = K0(ρs) + εK1(ρs) +O(ε2) =

exp
(
-iεM

)
(ρA ⊗ ρs) exp

(
iεM †

)
+O(ε2) with M =

m∑
k=1
F k ⊗B†k (3.12)

where
F kρA = τKA (Ak ρA )− τTr (Ak ρA) ρA (3.13)

satisfies Tr (F kρA) = 0, for k = 1, 2, ...,m.

Proof. The reduced dynamics (3.11) is computed by a direct application of (3.8). From
equation (3.9), we get

K1(ρs) = τKA
(
− i

[
H int, ρA ⊗ ρs

])
+ ρA ⊗G1,B(ρs)

= −i
m∑
k=1

τKA(AkρA)⊗B†k ρs − τTr (Ak ρA) ρA ⊗B
†
k ρs + Herm. conj.

= −iM (ρA ⊗ ρs) + i(ρA ⊗ ρs)M † (3.14)

leading to (3.14) for K0(ρs) + K1(ρs) by a Taylor expansion of the exponential. The
existence of matrices F k is ensured by Lemma 3. �

One may see from (3.8) that the first order reduced dynamics can be directly computed
by simply replacing ρ by ρA ⊗ ρs in (3.10). This may be interpreted as the fact that at
this order, the system A is "frozen" in its steady state ρA. This corresponds to a Zeno
effect induced by the strong measurement of the environment. This first order reduced
dynamics corresponds to the well known Zeno dynamics [MS77, FP02]. This result even
holds for non-Hamiltonian coupling, this may be seen from equation (3.8). The first order
mapping K0 + εK1 corresponding to the entanglement between both subsystems can be
called in this context a Zeno entanglement.

Wee see through e.g. (3.14) that the abstract inversion formula has to be applied only
on the given interaction operators, instead of on any possible state. This may lead to
simpler computations in particular cases (see chapter 4). Note also that expression (3.14)
differs from the general one (3.9) by second order terms and, while the expression without
the O(ε2) terms is completely positive, M is not always Hermitian so corrections of O(ε2)
might be necessary here to exactly preserve the trace.

We now turn to the second order.

3.2.2 Second order reduced dynamics
We state in this section, our main theorem for the computation of the second order
approximation for a general Hamiltonian coupling. Then, we present corollaries which are
direct applications of the main theorem in the particular common cases of dispersive and
resonant interaction.

General case

We start by a technical Lemma needed to ensure the Lindblad form of the second order
reduced dynamics. Its proof is done in appendix B.
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Lemma 4. Consider the m×m matrices X and Y whose entries are given by

Xk,j = Tr
(
F jρAA

†
k +AjρAF

†
k

)
Yk,j = 1

2iTr
(
F jρAA

†
k −AjρAF

†
k

)
where F k is defined in (3.13). The matrixX is Hermitian and positive semi-definite. Thus
there exists a (non-unique) m×m matrix Λ with complex entries such that X = ΛΛ†.
The matrix Y is Hermitian.

We can then state our main theorem, giving an explicit expression of the second order
reduced dynamics.
Theorem 5. (Hamiltonian coupling, second order): Using the m × m matrices Y
and Λ provided by Lemma 4, the second order reduced dynamics associated with (3.10),
expressed in a Lindblad form, is given by

Ls,2(ρs) = −i
 m∑
k,j=1

Yk,jBkB
†
j , ρs

+
m∑
p=1
DLp(ρs) (3.15)

where Lp = ∑m
j=1 Λ∗j,pB

†
j. As a result, the reduced dynamics (up to second order) is given

by :

d

dt
ρs = −iε

m∑
k=1

[
Tr (AkρA)B†k , ρs

]
+ εLB(ρs)− iε2

 m∑
k,j=1

Yk,jBkB
†
j , ρs

+ ε2
m∑
p=1
DLp(ρs)

Proof. We start from the second order recurrence relation (3.6). We apply the mapping
R or similarly the partial trace over A in order to get rid of the first term including the
unknown K2, thanks to TrA (LA(•)) ≡ 0. It results

TrA
(
Lint

(
K1(ρs)

))
+ TrA

(
LB
(
K1(ρs)

))
= Ls,2(ρs) + TrA

(
K1
(
Ls,1(ρs)

))
From (3.13) and (3.14), we get that TrA (K1(•)) ≡ 0. Similar computations, using the fact
that LB acts non-trivially only on HB, leads to TrA

(
LB
(
K1(ρs)

))
= 0. Thus we readily

get :

Ls,2(ρs) = TrA
(
Lint

(
K1(ρs)

))
Note that this expression is analogous to the one describing the first order reduced
dynamics (3.11). Next, we plug the expression of K1 from (3.14) and Lint from (3.10) into
the previous equation. A direct expansion leads to

Ls,2(ρs) = TrA

− m∑
k,j=1

[
Ak ⊗B†k , F jρA ⊗B

†
jρs − ρAF

†
j ⊗ ρsBj

]
Using ∑m

k Ak ⊗B†k = ∑m
k A

†
k ⊗Bk, we get

Ls,2(ρs) =
m∑

k,j=1
−Tr

(
A†kF jρA

)
BkB

†
jρs + Tr

(
F jρAA

†
k

)
B†jρsBk

+Tr
(
AkρAF

†
j

)
B†kρsBj − Tr

(
ρAF

†
jAk

)
ρsBjB

†
k
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Finally, after separating real and imaginary coefficients, and standard algebraic manipula-
tions :

Ls,2(ρs) = −i
 m∑
k,j=1

Yk,jBkB
†
j , ρs

+
m∑

k,j=1
Xk,j

(
B†jρsBk − 1

2

(
BkB

†
jρs + ρsBkB

†
j

) )
with Xk,j and Yk,j defined in Lemma 4. Since Xk,j = ∑m

p=1 Λk,pΛ∗j,p, by gathering terms
with summation indexes (k, j), we get equation (3.15). �

Theorem 5 shows that the Hamiltonian coupling of a system of interest to a dissipative
system adds some Hamiltonian evolution corresponding to second-order correction to the
Zeno Hamiltonian, but moreover induces decoherence at the second order on the slow
system. It illustrates how the dissipation on the system HA "propagates" through the
Hamiltonian coupling, leading to dissipation on the subsystem HB.

Furthermore, from the explicit expression (3.15), and without performing any compu-
tation, we get two structural results on the second order adiabatic elimination :

• There is at most m decoherence channels, they correspond to the decoherence
operators Lp (p = 1, . . . ,m) given in (3.15). This parameter m corresponds to
the minimal number of tensor-product terms required to express the interaction
Hamiltonian in (3.10) and thus is in particular independent of the dimension of HA

associated to the fast system, of the number of decoherence operators involved in
the fast relaxation LA, etc.

• The decoherence operators of the reduced dynamics are linear combinations of
the operators on HB involved in the Hamiltonian coupling. The corresponding
coefficient given by Lemma 4 can be computed provided we integrate or invert the
super-operator LA acting only on the fast subsystem.

Note that, with this gauge choice, the initial slow dynamics of the complete system
LB play no role in the computations of reduced dynamics. It is merely copied in the first
order reduced dynamics and have no effect on the second order computations. For these
reasons, in considered examples, we will use LB ≡ 0.

Resonant coupling

We consider the case of resonant coupling where H int = A⊗B† +A† ⊗B (usually A is
the annihilation operator on the fast subsystem A). The reduced model can be computed
directly by using Theorem 5 as this interaction Hamiltonian is in the desired form . In
this case, as m = 2, the matrices X and Y from Lemma 4 are of dimension 2. While in
general no further simplifications occur for systems with resonant interaction, in several
cases when the fast system is a linear harmonic oscillator, we get a diagonal matrix X.
The two second order dissipation operators are then respectively proportional to B and
B† and are not a linear combination of both. See Chapter 4 for such examples.

Dispersive coupling

Corollary 1. (Dispersive coupling, second order) Consider a system on HA ⊗ HB

whose dynamics is governed by the following Lindblad master equation :
d

dt
ρ = LA(ρ) + ε

(
− i [A⊗B , ρ] + LB(ρ)

)
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where A and B are Hermitian operators and ρA is the unique steady state of the unper-
turbed system : LA(ρA) = 0.

The reduced dynamics, up to second in ε is given by :
d

dt
ρs =− iε [Tr (AρA)B , ρs] + εLB(ρs) (3.16)

− iε2
Tr

(
F ρAA−AρAF †

)
2i B2 , ρs

+ ε2Tr
(
F ρAA+AρAF †

)
DB(ρs) (3.17)

with F given by F ρA = −L−1
A

(
A− Tr (A ρA)ρA)

)
= τKA

(
A ρA − Tr (A ρA) ρA

)
.

In this particular case, as the Hamiltonian interaction contains only one term A⊗B,
we see that the dissipation operator of the reduced dynamics at second order is readily
given by B. When we are mainly interested in the type of dissipation (e.g. in quantum
error correction in order to know what type of error could occur), our formula readily
gives the answer without any computation.

3.2.3 Applications
A tutorial example

We start with a tutorial example of adiabatic elimination on a low quality quantum
harmonic oscillator resonantly coupled to another quantum system. For such considered
system, adiabatic elimination is standard and the reduced dynamics is well known, using
e.g. Langevin equations. Our goal is to show how to apply our method and perform
the computations on this simple system. We then apply our method on a more complex
example corresponding to a two-photon pumping scheme where adiabatic elimination is
not standard.

We consider a strongly dissipative quantum harmonic oscillator resonantly coupled
to an unspecified quantum system. The state of the complete system is described by a
density operator ρ on HA ⊗HB whose dynamics is given by :

d

dt
ρ = Da(ρ)− iε

[
a⊗B† + a† ⊗B , ρ

]
where a is the annihilation operator on HA associated with the harmonic oscillator (see
chapter 4 for more details) and B is an unspecified operator on HB. The unique steady
state of the fast system is the vacuum state: ρA = |0〉〈0|. We use Theorem 5 to compute
the reduced dynamics up to second order. The first order reduced dynamics is readily
given by

Ls,1 = −iε
[
Tr (aρA)B† + Tr

(
a†ρA

)
B , ρs

]
= 0

The Hamiltonian interaction contains two terms, thus m = 2 and the matrices X and Y
from Lemma 4 that have to be computed to get the second order reduced dynamics are
2 × 2 matrices. The main difficulty is to compute, using (3.13), F 1ρA = τKA (a ρA )−
τTr (a ρA) ρA and F 2ρA = τKA

(
a† ρA

)
− τTr

(
a† ρA

)
ρA. By definition of KA in Lemma

1 and using aρA = 0, we have :

F 1ρA =
∫ +∞

0
etLA

(
aρA

)
dt =

∫ +∞

0
etDa

(
aρA

)
dt = 0

F 2ρA =
∫ +∞

0
etDa

(
a†ρA

)
dt
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Thus, we have to compute the propagator associated with the fast dynamics for the
particular initial condition ρ0 = a†ρA. Noticing that Da(a†ρA) = −1

2a
†aa†ρA, we get

etDa

(
a†ρA

)
= e−

t
2a
†aa†ρA

As a result, F 2ρA = 2(a†a)−1 |1〉〈0| ρA, where •−1 stands for the Moore-Penrose pseudo-
inverse. Using formulae (3.12) we are now able to compute the first order parametrisation:

K(ρs) = K0(ρs) + εK1(ρs) = exp
(
− 2iε(a†a)−1 |1〉〈0|

)
(ρA ⊗ ρs)exp

(
2iε |0〉〈1| (a†a)−1

)
Straightforward computations lead to

X =
(

0 0
0 4

)
Y =

(
0 0
0 0

)

The last step is to compute Λ such that X = ΛΛ†. Here we simply choose Λ =
√
X

leading to the second order reduced dynamics :

d

dt
ρs = ε2D2B(ρs) = 4ε2DB(ρs)

Two-photon pumping scheme

We illustrate now the application of Theorem 5 on the model of the experiment presented in
[Coh17, TGL+]. Such system, following the theoretical proposal [MA+14], is a promising
way towards dynamically protected quantum processors. The reservoir is based on a
scheme that induces 2-photon loss at order ε2 on the target system, as a dominant effect.
We show how our method can calculate a more precise reduced model taking into account
all the effects at order ε2, and thereby quantify the effects of potential 2-photon excitation
and cross-Kerr non-linearity on this reservoir.

The system is composed of two interacting cavities: the first cavity (fast subsystem,
HA) is driven by an electromagnetic field and exchanges energy with the environment,
with an energy loss term dominant with respect to both the energy gain term and the
electromagnetic field drive. This implies that only the lowest energy level is significantly
populated, so we can model the cavity as a two level system, i.e. a qubit with energy
levels |g〉 (ground state),|e〉 (excited state). The second cavity (slow subsystem, HB)
weakly interacts with this qubit, with auxiliary pump fields matched such that the
resonant interaction exchanges 1 energy quantum of HA with 2 energy quanta of HB

[Coh17, TGL+]; an additional residual dispersive interaction (“cross-Kerr”) is unavoidable
in this setup.

The system model thus writes as follows. The standard Pauli matrices are denoted
by σx,σy,σz. σ- = σx−iσy

2 = |g〉〈e| and σ+ = σx+iσy

2 = |e〉〈g| denote the energy loss
operator and energy gain operator respectively, all on HA, and b, b† denote respectively
the annihilation and creation operators, on HB. The dynamics of the fast subsystem is
described by the Lindbladian operator

LA = −iu[σy, ·] + κ−Dσ- + κ+Dσ+ , (3.18)

where the coupling constants satisfy

κ+

κ−
� 1 ,

|u|
κ−
� 1. (3.19)
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The interaction of the two systems is described by

H int = gσ+ ⊗ b2 + gσ- ⊗ b†2 + χ|e〉〈e| ⊗ b†b
= A1 ⊗B†1 +A2 ⊗B†2 +A3 ⊗B†3 .

The fact that H int is much weaker than LA is expressed by |g|, |χ| � κ+, u, κ−. Thus,
the master equation for the composite system is :

d

dt
ρ = −iu [σy , ρ] + κ−Dσ-(ρ) + κ+Dσ+(ρ)− i

[
gσ+ ⊗ b2 + gσ- ⊗ b†2 + χ|e〉〈e| ⊗ b†b , ρ

]
It can be formally expressed in the form (3.10) by applying the change of variable t↔ τ/κ−
and denoting g/κ− = εg̃ and χ/κ− = εκ̃. Similarly, we can take units such that κ+, |u|, κ−
are of order 1 or larger, and g, χ are of order ε � 1. We also consider LB = 0. In the
absence of perturbation, namely g = χ = 0, the two systems are independent. The fast
system converges to the steady state

ρA = I + x∞σx + z∞σz
2

with x∞ = 4u(κ+ − κ−)
(κ+ + κ−)2 + 8u2 and z∞ = κ2

+ − κ2
−

(κ+ + κ−)2 + 8u2 ,

while the slow target system B does not move.
When g, χ are non-zero, the dynamics of the slow dynamics, approximately correspond-

ing to the second cavity HB, can be written in the form (3.15). By simple computations
this yields the first-order dynamics of system B, given by the Zeno Hamiltonian:

εLs,1(ρs) = −i
[
χ

1 + z∞
2 b†b+ gx∞

b†2 + b2

2 , ρs

]
.

We now compute the second-order dynamics, choosing in equation (3.9) the gauge
G1,B(ρs) = −τTrA (Lint(ρA ⊗ ρs)). Algebraic computations, by solving for L−1

A with the
Bloch equations for the qubit, yield X and Y of Lemma 4 in the form:

ε2X1,1 =
(
z∞
2 (3x2

∞ − 2)− x2
∞
2 + z2

∞ − (z∞ − 1)κ−−κ+
κ−+κ+

)
g2/(κ− − κ+)

ε2X2,2 =
(
z∞
2 (3x2

∞ − 2) + x2
∞
2 − z

2
∞ + (z∞ + 1)κ−−κ+

κ−+κ+

)
g2/(κ− − κ+)

ε2X3,3 = z∞
2 (z2

∞ − x2
∞ − 1) χ2/(κ− − κ+)

ε2X1,2 =
(
z∞
2 (3x2

∞ − 2)− κ−−κ+
κ−+κ+

)
g2/(κ− − κ+)

ε2X1,3 = x∞
(
z2
∞ −

x2
∞
4 −

z∞
2 + 1

2
κ−−κ+
κ−+κ+

)
χg/(κ− − κ+)

ε2X2,3 = x∞
(
z2
∞ −

x2
∞
4 + z∞

2 −
1
2
κ−−κ+
κ−+κ+

)
χg/(κ− − κ+) ;

ε2 Y1,2 = −
(
2z2
∞ − x∞ + 2z∞ κ−−κ+

κ−+κ+

)
g2/(4i(κ− − κ+))

ε2 Y1,3 =
(
x∞ − x∞z∞ − x3

∞/2− z2
∞x∞ − x∞

κ−−κ+
κ−+κ+

)
gχ/(4i(κ− − κ+))

ε2 Y2,3 =
(
x∞ + x∞z∞ − x3

∞/2− z2
∞x∞ + x∞

κ−−κ+
κ−+κ+

)
gχ/(4i(κ− − κ+)) .

Towards interpreting these expressions, we take into account the relative strengths of
the couplings (3.19). More precisely, with κ− = 1+nthermal, κ+ = nthermal and nthermal � 1,
we define δ2 = κ+/κ− ≈ nthermal and η = u/κ−, and we neglect the terms of order three
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or higher in δ, η. Note that this approximation is made independently from the one
corresponding to the adiabatic elimination.

The second order Hamiltonian operator in (3.15) then reads

ε2
∑
k,j

Yk,jBkB
†
j = 2igχ

κ−
η
(
b†3b− b†b3

)
+ 8ig2

κ−
η2
(
b†4 − b4

)

up to terms of order at least three in δ, η. For the dissipative part, up to the same terms,

ε2X = 1
κ−

(4− 8δ2 − 64η2) g2 −32η2g2 −8ηgχ
−32η2g2 4δ2g2 0
−8ηgχ 0 (2δ2 + 16η2)χ2

 .

From this form, it is already clear that the dominant effect of the dissipation involves the
two-photon annihilation operator. We next write X = ΛΛ†, choosing Λ† as an upper
triangular matrix:

εΛ† = 1
√
κ−

2(1− δ2 − 8η2)g −16η2g −4ηχ
0 2δg 0
0 0

√
2δχ


so that the three dissipation channels are given by the operators

εL1 = 1√
κ−

(
2(1-δ2-8η2) gb2 − 4η χb†b− 16η2 gb†2

)
εL2 = 1√

κ−
2δ gb†2

εL3 = 1√
κ−

√
2δ χb†b

With the same approximation, the terms in L1 involve (1 + z∞)/2 = δ2 + 4η2 and
x∞/2 = −2η. Wrapping up, the effects on the slow subsystem are thus, with units such
that κ− = 1:

• At order (gη) and (g2) respectively: a two-photon pumping Hamiltonian, in b†2 + b2,
and a two-photon dissipation, with L1 ≈ b2, precisely as intended in [MA+14];

• At order (χδ2, χη2): a Stark shift Hamiltonian b†b, which just shifts the cavity
frequency and can be compensated for;

• At order (gχη): a Hamiltonian in (b†b3 − b†3b)/i, whose precise deformation effect
would have to be investigated; and a modification of the two-photon dissipation
channel L1 by some dephasing effect, leading to terms like b2ρb†b.

• At order (χ2δ2, g2δ2, g2η2): a Hamiltonian effect in (b4 − b†4)/i, that is essentially a
4-photon drive; two new dissipation channels, namely in b†2 and b†b; and a further
modification of L1, now leading to terms like b2ρb2.

These are the dominant ones provided |g|, |χ| � |η|, |δ| � 1; once g, χ become comparable
to η, δ, effects of order ε3 might become important as well. It would therefore be necessary
to go to the next step of our asymptotic expansion method and compute the third order
reduce dynamics.
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3.2.4 Second order mapping
We now consider the second order parametrisation K0 + εK1 + ε2K2 and express it in
a Kraus form assuming the slow dynamics LB contains only Hamiltonian terms i.e.
LB(•) = −i [HB, •] for some Hermitian operator HB on HB.

Theorem 6. The map K0 + εK1 + ε2K2 corresponding to the parametrisation of the slow
manifold admits the following Kraus-form decomposition (up to higher order terms in ε):

K0(ρs) + εK1(ρs) + ε2K2(ρs) = (1− iεM + ε2N )(ρA ⊗ ρs)(1 + iεM + ε2N )
+ε2

∑
θ,µ

P θ,µ(ρA ⊗ ρs)P
†
θ,µ

(3.20)

WithM = ∑m
k=1 F k⊗B†k; N = ∑m+1

k,j=1U k,j⊗BkB
†
j−V j⊗Tr

(
A†kρA

)
B†jBk +∑k V k⊗[

HB , B
†
k

]
and P θ,µ = ∑m+1

k=1 W θ[LA,µ,F k]⊗B†k.

Remark 4. One may notice that the second order parametrisation include a slight shift
of the first order parametrisation - described by the operator N - similarly than the
passage from the zero to first order parametrisation. Moreover, it adds extra terms P θ,µ

corresponding to new Kraus operators. This expression highlights that in general we have
TrA (K0 + εK1 + ε2K2) + O(ε3) 6= ρs. It means that, as both subsystems get entangled,
the dynamics of the slow system can be expressed in a Lindblad form (corresponding to a
Markovian evolution) at the expense of a direct interpretation of the parameter ρs as the
density operator (via partial trace) of the subsystem B.

Proof. The strategy of the proof is as follows. We start from the recurrence relation (3.6)
defining K2 through the super-operator LA. First, we solve this equation assuming LB ≡ 0
to get K̃2. Second, we consider only the terms added in (3.6) when LB(•) = −i [HB, •] in
order to derive K̂2. The solution is then given by linearity as K2 = K̃2 + K̂2.

In each case we will expand expression (3.6) and then invert LA on each expanded
term by linearity. Each time we perform an inversion, we take the gauge choice G = 0
ensuring via Lemma 1 a completely positive trace preserving mapping L−1

A . Finally we
show how all resulting terms combine in order to get equation (3.20).

Assuming LB ≡ 0, equation (3.6) reads:

LA(K̃2(ρs)) = K0(Ls,2(ρs))− Lint(K1(ρs)) +K1(Ls,1(ρs))

We define the super-operator S(X) = X − Tr (X) ρA = X −R(X) for any operator X
on HA, simplifying the notations. A direct expansion of the previous expression using
(3.14) and the fact that H int = ∑m

k=1Ak ⊗B†k is Hermitian leads to :

LA(K̃2(ρs)) =
m∑

k,j=1
−
(
S(AkρAF

†
j) + S(F kρAA

†
j)
)
⊗B†kρsBj

+ S(ρAF
†
jAk)⊗ ρsBjB

†
k + S(A†kF jρA)⊗BkB

†
jρs

− F jρA ⊗B
†
j

[
Tr
(
A†kρA

)
Bk , ρs

]
+ ρAF

†
j ⊗

[
Tr (AkρA)B†k , ρs

]
Bj

(3.21)

where F k is defined in (3.13). By inverting the index notations j and k in the last line, it
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can be partially recombined with the first one to get, denoting Ak = Ak − Tr (AkρA) :

LA(K̃2(ρs)) =
m∑

k,j=1
−
(
S(AkρAF

†
j) + S(F kρAA

†
j)
)
⊗B†kρsBj (3.22)

+ S(ρAF
†
jAk)⊗ ρsBjB

†
k + S(A†kF jρA)⊗BkB

†
jρs

− F jρA ⊗ Tr
(
A†kρA

)
B†jBkρs − ρAF

†
j ⊗ Tr (AkρA) ρsB†kBj

By virtue of Lemma 3, there exists two set of matrices {U kj} and {V j} such that for all
{j, k} ∈ {1, 2, . . . ,m}2,

L−1
A

(
S(A†kF jρA)

)
= −τKA(A†kF jρA) , U kjρA (3.23)

L−1
A

(
F jρA

)
, V jρA (3.24)

We now turn to the operator acting on HA in (3.22): −
(
S(AkρAF

†
j)+S(F kρAA

†
j)
)
. From

the definition of KA and F k, we have LA(F kρA) = LA(τK(AkρA)) = −AkρA +R(AkρA).
Therefore we get,

−
(
S(AkρAF

†
j) + S(F kρAA

†
j)
)

= S
(
LA(F kρA)F †j

)
+ S

(
F kLA(ρAF

†
j)
)

The Lemma 14 presented in appendix B allows to reformulate the previous equation as :

S
(
LA(F kρA)F †j

)
+ S

(
F kLA(ρAF

†
j)
)

= LA(F kρAF
†
j)− S

(∑
µ

[LA,µ,F k]ρA[LA,µ,F j]†
)
.

where LA,µ are the decoherence operators associated to the fast dynamics LA and we used
the fact that Tr (LA(•)) = 0. Then we apply the inverse of LA which yields

L−1
A

(
S
(
LA(F kρA)F †j

)
+ S

(
F kLA(ρAF

†
j)
))

= F kρAF
†
j + τKA

(∑
µ

[LA,µ,F k]ρA[LA,µ,F j]†
)

(3.25)

Note that τKA is a completely positive map. Therefore there exists a set of matrices
{W θ} such that τKA(•) = ∑m

θ=1W θ •W †
θ. By gathering equations (3.23),(3.24),(3.25)

we get the following expression K̃2 :

K̃2(ρs) =
∑
k,j,θ,µ

(
F kρAF

†
j +W θ[LA,µ,F k]ρA[LA,µ,F j]†W †

θ

)
⊗B†kρsBj

+ ρAU
†
k,j ⊗ ρsBjB

†
k +U k,jρA ⊗BkB

†
jρs

− V jρA ⊗ Tr
(
A†kρA

)
B†jBkρs − ρAV

†
j ⊗ Tr (AkρA) ρsB†kBj

We now consider the existence of a dynamics on the slow subsystem LB. Without
taking into account the previously computed terms, equation (3.6) yields :

LA(K̂2(ρs)) + LB(K1(ρs)) = K1(LB(ρs))

By using the computation of K1 in (3.14) and that LB(•) = −i [HB, •], a direct develop-
ment yields

LA(K̂2(ρs)) =
m∑
k=1
F kρA ⊗

( [
HB , B

†
k ρs

]
−B†k [HB , ρs]

)
+ Herm. conj.

=
m∑
k=1
F kρA ⊗

[
HB , B

†
k

]
ρs + ρAF

†
k ⊗ ρs

[
HB , B

†
k

]†
(3.26)
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We inverse then the fast dynamics and use the definition of V k in equation (3.24) to get :

K̂2(ρs) =
m∑
k=1
V kρA ⊗

[
HB , B

†
k

]
ρs + ρAV

†
k ⊗ ρs

[
HB , B

†
k

]†
A direct expansion of (3.20) leads to the previous equation for K2 = K̃2 + K̂2 up to

order-three-terms in ε. We emphasise here that the first order parametrisation K0 + εK1
given in (3.12) already included (neglected up to now) order two terms. These terms aren’t
neglected at this order of precision and exactly appears in the expression of K̃2. �
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Subsystem A 

(Fast) 

Subsystem B 

(Slow) 

  

Fast dynamics 

Unique steady 

state  𝜌 𝐴 

Slow dynamics: 

𝜖ℒ𝐵  

Vacuum 
|0 > 

 

𝜅𝐴 𝐚 𝜅𝐵 𝐛 

Circulator 

dissipation 

Figure 3.2: Schematic representation of a cascade interconnection between a fast system
A and a slow system B. This coupling is obtain by introducing a circulator between an
input/output port of the system A associated with the operator√κAa and an input/output
port of the system B associated with the operator √κBb. The dynamics of the fast system
A summed to the dynamics due to the cascade interaction is assumed to be stable and to
converge towards a unique steady state ρA in the absence of perturbation.

3.3 Cascaded interaction

We consider in this section a different kind of interaction between the fast and the slow
subsystem. Instead of the standard reciprocal Hamiltonian coupling of Section 3.2 we
consider a unidirectional coupling which allows the output of the first system to feed the
second system while forbidding the reverse process. This is performed by means of a
circulator, a 3-port device transferring each input to the next one, as illustrated in figure
3.3. It can be used e.g. in quantum networks in order to create entanglement or to transfer
quantum states from different nodes [CZK97, SRZ12].

The expression cascaded system was first introduced in [Car93b], see also e.g. [GZ10]
for more details on this type of interaction. A standard assumption is to consider that the
transmissions between the devices are instantaneous. Under this assumption, the SLH
formalism developed in [GJ09] is particularly useful to handle this kind of interaction or
any network extension and write down the associated dynamics. The study of commutation
between the limit of instantaneous transmissions and the adiabatic elimination limit can
be found in [GNW10, NG12].

We consider a general system A ( respectively B) on a Hilbert space HA ( resp. HB),
with internal dynamics LA (resp. LB) and an output channel with associated operator√
κAa (resp. √κBb). The coefficients κA and κB describe the relative strength of the

output channels, ρ is the density operator on HA⊗HB. Using [GJ09], the master equation
describing the cascade connection of the system A towards the system B represented in
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figure 3.3 is given by :

d

dt
ρ = LA(ρ) +D√κAa+√κBb(ρ) +

√
κA
√
κB

2 [a†b− ab†, ρ] + L̃B(ρ) (3.27)

where LA and L̃B are Lindbladian super-operators acting only on HA and HB, respectively,
and where a and b are operators acting only on HA and HB respectively. In order to be
able to perform our adiabatic elimination technique we will consider that the system A
is fast, while the system B is slow. There is however two different ways to make such a
distinction. We will treat both cases with our approach to derive a reduced dynamics in a
Lindblad-form up to second order in the small parameter:

• In the first case, considered in section 3.3.1, we take κA = κB = ε : the fast system
A features a weak outcoming field coupled to the subsystem B. The dynamics on
the system B is assumed to be slow, thus L̃B = εLB. The subsystem A is barely
perturbed by the coupling and we can investigate e.g. how a purely quantum state
in A propagates to the subsystem B (see chapter 5).

• In the second case, we take √κA = 1 and √κB = ε, with 0 < ε� 1. It corresponds
to the fact that the outcoming field of the system A is mostly reflected at the input
of the system B and only a small part will get through and interact with the system
B. This case is treated in section 3.3.2. It has been shown that it is possible for
instance to engineer to coherence times of the subsystem B using a squeezed input
field [Gar86].

3.3.1 Cascade with weak outcoming field
We consider equation (3.27) with κA = κB := ε and L̃B := εLB. The Lindblad master
equation of the studied system reads :

d

dt
ρ = LA(ρ) + ε

2
[
a†b− ab† , ρ

]
+ εDa+b(ρ) + εLB(ρ)

= LA(ρ) + ε
(
Da(ρ) +Db(ρ) + aρb† + bρa† − b†aρ− ρa†b

)
+ εLB(ρ) (3.28)

We assume the existence of a unique steady state ρA for the unperturbed system i.e. when
ε = 0 verifying LA(ρA) = 0.
Theorem 7. The second order reduced dynamics of two systems with cascaded interactions
whose dynamics is given by (3.28) reads :

d

dt
ρs = ε

( [
Tr
(
ρAa

†
)
b− Tr (aρA) b† , ρs

]
+ LB(ρs)

)
+ εD√1+ε(α+α∗)b−2εβ∗b†(ρs)

+ε2
(

(α + α∗)Db†(ρs) + α∗ − α
2

[
b†b− bb† , ρs

]
+
[
γ∗b− γb† , ρs

] ) (3.29)

where α = Tr
(
aτKA

[
ρA
(
a† − Tr

(
a†ρA

)) ])
, β = Tr

(
a†τKA

[
ρA
(
a† − Tr

(
a†ρA

)) ])
and γ = Tr

(
aτKA(Da(ρA))

)
.

Proof. In order to be consistent with initial notations one would take the coupling operator
as :

Lint(ρ) = Da(ρ) +Db(ρ) + aρb† + bρa† − b†aρ− ρa†b
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The zero order terms are straightforwardly given by Ls,0 ≡ 0 and K0(ρs) = ρA ⊗ ρs. Then,
by a direct application of equation (3.8) we readily get the first order reduced dynamics,
parametrised by the slow density operator ρs :

Ls,1(ρs) =
[
Tr
(
ρAa

†
)
b− Tr (aρA) b† , ρs

]
+Db(ρs) + LB(ρs)

As stated in section 3.1, the gauge degree of freedom resulting from the inversion of the
super-operator LA allows us to select between systems properties. Using the gauge choice
G1,B = 0 leads in a Kraus form for the first order parametrisation of the slow manifold.
Indeed, we have

K1(ρs) = τKA
(
Da(ρA)⊗ ρs + aρA ⊗ ρsb† − aρA ⊗ b†ρs + ρAa

† ⊗ bρs − ρAa† ⊗ ρsb+ ρA ⊗Db(ρs)
)

And thus K0 + εK1 can be expressed in the Kraus form

K0(ρs) + εK1(ρs) = τKA
((

1H + εM
)
ρ⊗ ρs

(
1H + εM †

)
+ εN (ρA ⊗ ρs)N †

))
with M = −a⊗ b† − 1

2a
†a⊗ 1HB − 1

21HA ⊗ b
†b and N = a⊗ 1HB + 1HA ⊗ b.

The gauge choice G1,B = −τTrA (Lint(ρA ⊗ ρs)) leads however to a simpler expression
of the second order reduced dynamics and will be used in the remaining of the proof. This
choice leads to

K1(ρs) = F ρA ⊗ ρsb† + ρAF
† ⊗ bρs − F ρA ⊗ b†ρs − ρAF † ⊗ ρsb+Q⊗ ρs

where F ρA = τKA (a ρA )− τTr (a ρA) ρA satisfies Tr (F ρA) = 0 and Q = τKA(Da(ρA)).
Similar to the computation of the second order reduced dynamics in the case of

Hamiltonian coupling, taking the partial trace over the subsystem A in equation (3.6)
yields:

Ls,2 = TrA
(
Lint

(
K1(ρs)

)
+ LB(K1(ρs))

)
Noticing that LB and Db acts non-trivially only on HB and that Tr (K1(•)) ≡ 0 together
with the fact that Tr (Da(•)) ≡ 0 we get,

Ls,2 = TrA
(
aK1(ρs)b† + bK1(ρs)a† − b†aK1(ρs)−K1(ρs)a†b

))
We denote α = Tr

(
aρAF

†
)
and β = Tr

(
a†ρAF

†
)
and γ = Tr (aQ). A direct expansion

yields

Ls,2 = β∗ρsb
†b† + αbρsb

† − β∗b†ρsb† − αρsbb† + γρsb
†

+α∗bρsb† + βbbρs − α∗bb†ρs − βbρsb+ γ∗bρs

−β∗b†ρsb† − αb†bρs + β∗b†b†ρs + αb†ρsb− γb†ρs
−α∗ρsb†b− βbρsb+ α∗b†ρsb+ βρsbb− γ∗ρsb

Contrary to Hamiltonian coupling, it is possible to show on particular examples that the
super-operator Ls,2 can’t be cast in a Lindblad-form. However we show that εLs,1 + ε2Ls,2
can be expressed in a Lindblad-form (up to order three terms), as imposed in Section 2.3.3.
The intuitive reason is that the super-operator Db appearing in Ls,1 is entirely related
to the cascaded structure (in opposition, the term LB is independent of it and can be
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chosen arbitrarily) and as so, has to be taken into account while performing adiabatic
elimination. We are thus looking for a Lindblad-form expression for the super-operator
Db(ρs) + εLs,2(ρs). The expression of Ls,2 contains only two different operators on HB: b
and b†. Therefore, we search a second order reduced dynamics in the following form :

Db(ρs) + εLs,2(ρs) =
jmax=2∑
j=1

Dxjb+yjb†(ρs)− i [Hs,2 , ρs] + o(ε) (3.30)

whereHs,2 = −i
[
ω1b

†b+ ω2bb
† , ρs

]
+
[
θb− θ∗b† , ρs

]
with {xj}, {yj}, θ ∈ C and ω1, ω2 ∈

R.
In principle jmax can be arbitrary large. However from the computations of the reduced

dynamics for the Hamiltonian case, we saw that there were at most as much decoherence
channel as the number of operators appearing in the coupling. We may assume that it is
true also for the case of cascaded coupling, which turn out to be true as presented below.

We expand the right and expression and using a term-by-terms identification we have
to solve the following system of equations :

1 + ε(α + α∗) =
∑
j

|xj|2 + o(ε)

−1
2 − εα =

∑
j

−1
2 |xj|

2 − iω1 + o(ε)

−2εβ =
∑
j

xjy
∗
j + o(ε)

ε(α + α∗) =
∑
j

|yj|2 + o(ε)

−εα∗ =
∑
j

−1
2 |yj|

2 − iω2 + o(ε)

εγ∗ = θ + o(ε)

Using a slight adaptation of Lemma 15 to this case we get that α + α∗ ≥ 0. Therefore
this set of equation admits a solution. There may be several solutions as the Lindblad
decomposition (3.30) is not unique. A simple solution is given e.g. by :

x1 =
√

1 + ε(α + α∗) x2 = 0

y1 = −2εβ∗ y2 =
√
ε(α + α∗)

ω1 = iε

2 (α∗ − α) ω2 = iε

2 (α− α∗)

Inserting these expressions into (3.30), one gets equation (3.29), concluding the proof.
�

3.3.2 Cascade with strongly reflected field
Second order adiabatic elimination

We consider now equation (3.27) with κA = 1 and √κB = ε. corresponding to a composite
system with cascaded interaction where the outcoming field of the fast system is strongly
reflected at the input of the slow system. The corresponding master equation governing
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the dynamics of the density operator ρ on HA ⊗HB is given by:

d

dt
ρ = LA(ρ) +Da+εb(ρ) + ε

2[a†b− ab†, ρ] + ε2LB(ρ)

= LA(ρ) +Da(ρ) + ε
(
a[ρ, b†] + [b, ρ]a†

)
+ ε2

(
Db(ρ) + LB(ρ)

)
(3.31)

We assume that there exists a unique steady state density operator ρA solution of LA(ρ) +
Da(ρ) = 0. Note that unlike the Hamiltonian interaction case, the fast dynamics is given
by the super-operator LA(ρ) but also by Da(ρ) due to the unidirectional coupling. The
completely positive map KA of Lemma 1 is defined accordingly. Thus for any operator X
on HA we have,

−LA
(
τKA(X)

)
−Da

(
τKA(X)

)
= X −R(X)

Before presenting the second order reduced dynamics associated with system (3.31),
we introduce an assumption needed to ensure the Lindblad form of the reduced model.
Assumption 1. For a = a − Tr (aρA) 1HA , we define α = τTr

(
aKA

(
ρAa

†
))

and β =
τTr

(
a†KA(ρAa†)

)
. We assume that they verify :

(α + α∗ + 1)(α + α) ≥ 4|β|2

We conjecture that this assumption is true for any quantum system whose dynamics is
governed by (3.31). However, even if α and β seems closely related, the complexity of the
mapping KA make the analysis difficult for a general setting.
Theorem 8. The reduced dynamics of the cascaded system whose dynamics is given by
(3.31) can be expressed in a Lindblad-form if assumption 1 holds. In this case, it is given
by the following expression :

d

dt
ρs =ε

[
Tr
(
ρAa

†
)
b− Tr (aρA) b†, ρs

]
+ ε2

(
LB(ρs) +Dx1b+y1b

†(ρs) +Dy2b
†(ρs)

)
− i(α− α∗)

[
b†b− bb† , ρs

]
(3.32)

where {x1, y1, y2} ∈ C3 are given by

x1 =
√

1 + α + α∗

y1 = −2β∗√
1 + α + α∗

y2 =
√

(1 + α + α∗)(α + α∗)− 4|β|2
1 + α + α∗

(3.33)

with α = τTr
(
aKA

(
ρAa

†
))

and β = τTr
(
a†KA(ρAa†)

)
.

Proof. As usually, from (3.4), the zero order approximation is readily given by Ls,0(ρs) = 0
and K0(ρs) = ρA ⊗ ρs.

The first order reduced dynamics can be directly computed using equation (3.8). A
straightforward calculation yields:

Ls,1(ρs) =
[
Tr
(
ρAa

†
)
b− Tr (aρA) b†, ρs

]
(3.34)
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The super-operator K1 corresponding to the first order parametrisation of the slow manifold
and that can be interpreted as the entanglement between the two subsystems is given by
(3.9). From this expression, with the gauge choice G1,B(ρs) = −τTrA (Lint(ρA ⊗ ρs)) we
get

K1(ρs) = τKA (a ρA)⊗
(
ρsb
† − b†ρs

)
+ τKA

(
ρAa

†
)
⊗ (bρs − ρsb)

where a = a − Tr (aρA) 1HA . We made this particular gauge choice in order to ensure
TrA (K(ρs)) = ρs and therefore, we may in this sense associate ρs with the density operator
of the subsystem B. As presented in section 3.1, this gauge choice does not ensure in
general a Kraus map for the first order parametrisation of the slow manifold. However,
we show that with this cascaded structure, the map K(ρs) = K0(ρs) + εK1(ρs) with this
gauge choice is also a completely positive trace-preserving map up-to second order terms.
To exhibit such property, we express this map in an explicit Kraus operator form.

Using Lemma 3 and Corollary 2 we get that KA (a ρA) = KA (a ρA) ρ−1
A ρA and also

KA
(
ρAa

†
)

= KA
(
ρAa

†
)
ρ−1
A ρA where ρ−1

A stands for the Moore-Penrose pseudo-inverse of
ρA. Therefore we derive the following Kraus operator form for the first order entanglement:

ρ = K0(ρs) + εK1(ρs) +O(ε2) = M(ρA ⊗ ρs)M †

M =
(
I + ετ

(
KA

(
ρAa

†
)
ρ−1
A ⊗ b−KA (a ρA) ρ−1

A ⊗ b†
))

In order to compute the second order dynamics we proceed in the same manner as the
Hamiltonian interaction case: first, we choose the gauge G1,B(ρs) = −τTrA (Lint(ρA ⊗ ρs))
in order to facilitate the expression of Ls,2. Then, take the partial trace TrA on equation
(3.6) leading to the cancellation of the unknown term LA(K2(ρs)). Using TrA (LA(•)) ≡ 0
with TrA (K0(•)) ≡ • and the fact that TrA (K1(•)) ≡ 0 due to our choice of the gauge
degree of freedom we get:

Ls,2(ρs) = TrA
(
a[b†,K1(ρs)] + [K1(ρs), b]a†

)
+
(
Db(ρs) + LB(ρs)

)
Note that the term Db is intrinsically related to the cascaded structure while LB represents
the slow dynamics on the subsystem B and is independent of it (in particular, it could
satisfy LB ≡ 0). Therefore the term LB must be treated independently from the other
terms. For this reason we impose Ls,2 = L̃s,2 + LB with

L̃s,2 = TrA
(
a[b†,K1(ρs)] + [K1(ρs), b]a†

)
) +Db

A direct expansion leads to the following expression:

L̃s,2(ρs) = Dx1b+y1b
†(ρs) +Dx2b+y2b

†(ρs) + α∗ − α
2

[
b†b− bb† , ρs

]
(3.35)

where {x1, x2, y1, y2} ∈ C4 are solutions of the set of equations:
|x1|2 + |x2|2 = α + α∗ + 1
|y1|2 + |y2|2 = α + α∗

x1y
∗
1 + x2y

∗
2 = −2β

(3.36)

with α = τTr
(
aKA

(
ρAa

†
))

and β = τTr
(
a†KA(ρAa†)

)
.
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This set of equation can be viewed as the norm and the scalar product between the two
vectors {x1, x2}ᵀ ∈ C2 and {y1, y2}ᵀ ∈ C2. Therefore, there exists a (non-unique) solution
to (3.36) if and only if holds:

α + α∗ ≥ 0 (3.37)
(α + α∗ + 1)(α + α∗) ≥ 4|β|2 (3.38)

Using a slight adaptation of Lemma 15, we get that condition (3.37) holds for any system
described by the master equation (3.31). Condition (3.38) corresponds to the assumption
1. The non-unique solution of the system of equations (3.36) is expected due to the fact
that the Lindblad decomposition is also not unique. A solution is given by

x1 =
√

1 + α + α∗

x2 = 0

y1 = −2β∗√
1 + α + α∗

y2 =
√

(1 + α + α∗)(α + α∗)− 4|β|2
1 + α + α∗

Therefore, gathering equations (3.34) and (3.35) we get the second order reduced
dynamics (3.32), concluding the proof.

�

Application to an arbitrary system with a squeezed drive

To illustrate these results, we consider a driven linear cavity producing a squeezed output
field, unidirectionally "feeding" the slow subsystem. Such kind system was first studied in
[Gar86] considering the slow subsystem as a qubit and shows how one can engineer the
coherence times of this qubit using a squeezed input field. It has recently been realized
experimentally in [MWB+13] validating the theoretical results. Our aim is to show through
this example, how to apply our method, emphasizing that it doesn’t need the specification
of the slow subsystem and readily retrieve the known results of the adiabatic elimination
of the linear cavity when the slow subsystem is a qubit.

Using e.g. [GJ09] , we get the following dynamics for the system:

d

dt
ρ = g[a2 − a†2, ρ] +D√κa+εb(ρ) + ε

2[a†b− ab†, ρ] (3.39)

where a is the annihilation operator on the cavity, b is an operator on the unspecified slow
subsystem (usually the annihilation operator for a cavity and the energy loss operator for
a qubit). The term g[a2 − a†2, ρ] corresponds to the standard squeezing Hamiltonian by
an appropriate phase choice for a (g is real here). The parameter κ is the dissipation rate
of the cavity. The time-scale separation is given by κ � ε2. This model is valid under
the assumption κ > 4g, otherwise the cavity subsystem is unstable and its energy grows
to infinity (and therefore additional phenomenon such as Kerr effect have to be taken
into account). As any dynamics LB on the slow subsystem plays no role for second order
computations, we assume for simplicity LB ≡ 0.

To derive the reduced dynamics up to second order on this example, we use formula
(3.32) where the fast system A is the cavity and the slow system B is unspecified. Therefore
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we have only to compute the three coefficients Tr (
√
κaρA), α = κτTr

(
aKA

(
ρAa

†
))

and
β = κτTr

(
a†KA(ρAa†

)
. As the fast dynamics of (3.39) corresponds to the evolution of

a linear quantum harmonic oscillator, these coefficients are easier to compute by taking
their Heisenberg representation counterpart i.e:

Tr (aρA) = Tr
(
a e∞LA(ρ0)

)
= Tr

(
e∞L

∗
A(a) ρ0

)
α = κTr

(
e∞L

∗
A

(
a†
∫ ∞

0
etL
∗
A(a) dt

)
ρ0

)
β = κTr

(
e∞L

∗
A

(
a†
∫ ∞

0
etL
∗
A(a†)dt

)
ρ0

)

where ρ0 is the initial state, LA∗ is the dual of LA. With a small abuse of notation, e∞LA∗

means limt→∞ e
tLA∗ .

Then, some usual computations lead to (see chapter 4 for the key elements of the
computation):

Tr
(
e∞L

∗
A(a) ρ0

)
= 0

α = 32κ2g2

((κ+ 4g)(κ− 4g))2

β = − 64g3κ+ 4gκ3

((κ+ 4g)(κ− 4g))2

In this case one can check that (α + α∗ + 1)(α + α∗) = 4|β|2 verifies condition (3.38).
The coefficients to be commputed are therefore given by (3.33) and we get, y2 = 0, x1 =√

2α + 1, y1 = −
√

2α. Using the commutation property of the annihilation operator[
b, b†

]
= 1, the Hamiltonian term in (3.32) vanishes. As a result we get the second order

reduced dynamics:
d

dt
ρs = ε2D√2α+1b−

√
2αb†(ρs) (3.40)

Recovering the result of [Gar86] when the slow subsystem is a qubit and b = σ- the energy
loss operator.
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3.4 Summary
In this chapter, we have considered finite dimension bipartite quantum systems. Using the
different time-scales, we used the method presented in chapter 2 in order to compute the
reduced model while ensuring a physical meaning of the reduced system. This corresponds
to find a solution for the recurrence relations (3.4), (3.5) and (3.6). We showed how our
method ensure a Lindblad master equation for the reduced dynamics and a completely
positive trace preserving map (Kraus map) for the parametrisation of the slow manifold
at the first order in the small parameter describing the different time-scales. Then, we
focused on different usual coupling between the fast stable subsystem and the slow one
namely any Hamiltonian interactions or cascaded interactions. We were able to derive
explicit formulas allowing to compute the second order reduced dynamics by solving the
second order recurrence relation. These formulas are given by Theorem 5 for Hamiltonian
interactions and by Theorems 7 and 8 for cascaded interactions. They already allows to
give general structural results on the second order adiabatic elimination especially on the
number and the type of decoherence operators we may expect for the reduced dynamics.
Moreover, they permit to precisely compute the reduced dynamics on relevant examples
with non-trivial interactions. The key element of these computations is to be able to
calculate the inverse of the fast dynamics LA. This is a very difficult problem for a general
setting. We show in the next chapter 4 how to perform such computations for several class
of quantum systems.

Our method opens a clear path to compute higher order models using the recurrence
relations and we conjecture that it ensures a reduced dynamics in a Lindblad form at any
order. The key element to do so would be to properly choose the gauge degree of freedom
associated with the inversion of the fast dynamics. Some preliminary results on the third
order are presented in chapter 5.





Chapter 4

Application to quantum oscillators

The aim of this chapter is to show the practical appliance of our formulas in order to
compute the second order reduced model for various dynamics. In a wide class of quantum
experiments, the fast subsystem is a low-quality (strongly damped) quantum harmonic
oscillator. As such system plays an important role in quantum physics, we devote this
chapter to the study of systems where the fast system is a quantum harmonic oscillator.
We begin this chapter by notions and general textbook material on the quantum harmonic
oscillator in section 4.1. We proceed then in section 4.2 to the computation of the reduced
dynamics for linear1 harmonic oscillators. The goal of this section is twofold. First, we
illustrate more precisely how to practically compute the second order reduced dynamics on
relevant systems. The main difficulty to get the reduced model by using our results from
chapter 3 is being able the computation of the inverse of the fast dynamics corresponding
to the super-operator KA. We present several techniques to perform such computations
namely by going into the Heisenberg picture when dealing with linear quantum harmonic
oscillators and using an explicit expression of the propagator when it is possible. Such
techniques were used to get the results of the examples presented in 3. Second, we emphasise
that harmonic oscillators are infinite dimension systems. While our adiabatic elimination
technique is rigorous only for finite dimension systems, we show how it can readily be
applied on infinite dimension systems and how we are able to perform the computations by
using the different properties of the infinite dimension operators. Although the extension of
Fenichel’s 2 and Carr’s 3 theorems to infinite dimension have to be carefully studied (which
is not the aim of this manuscript) we retrieve the expected results on known examples. In
the last section 4.3 we consider non-linear harmonic oscillators. We show on a class of
non-linear oscillator how our method allows the computation of the reduced dynamics.
We first consider a system where the non-linearity lies within the interaction between the
fast and the slow subsystem. Then we consider a system where the fast dynamics includes
non-linear terms. We emphasise that for such system, the computation of the reduced
dynamics using the Heisenberg picture of section 4.2 or Langevin equations as it is usually
performed in physics is impossible.

1A quantum harmonic oscillator is said linear if its dynamics can be describe with an Hamiltonian
quadratic and some decoherence operators linear with respect to the system coordinates
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4.1 The quantum harmonic oscillator
Quantum harmonic oscillators play a central role in quantum systems. It may be seen as
one of the main "building block", together with two-level systems, in quantum physics to
describe a large variety of setup. By linearisation, all kinds of systems close to equilibrium
can be approximate by harmonic oscillator. Complex systems such as the environment of
a quantum system undergoing some relaxation process can be modelled using oscillators.
A simple description of an environment is made of an infinite set of quantum oscillators
weakly coupled with the system of interest and spanning a large frequency range. The
quantum harmonic oscillator is one of the few quantum systems with explicit solutions,
highlighting the interest of such modelling of various systems with harmonic oscillator.
We refer to [HR06] for an excellent presentation of harmonic oscillators.

4.1.1 From classical to quantum harmonic oscillator
We consider a one dimension classical harmonic oscillator consisting a particle of mass m
coupled to a spring with associated spring constant k. The system can be described by
the dynamical variables {x, p} where x represents the position of the particle and p its
momentum related by p = mdx

dt
= mv with v the velocity. The dynamics of such system is

described by the familiar Newtonian equations :

p = m
dx

dt

dp

dt
= −kx

The mechanical energy of the system is given by

• The quadratic potential associated to the spring V (x) = 1
2kx

2 .

• The kinetic energy T = 1
2mv

2 = p2

2m .

Leading to the well known Hamiltonian associated with an harmonic oscillator :

Hclassical = V + T = 1
2kx

2 + p2

2m

From Hooke’s law, we know that the oscillation frequency is ω =
√

k
m
. The Hamiltonian

can thus be expressed as

Hclassical = mω2

2 x2 + p2

2m (4.1)

We are now able to go from the description of a classical harmonic oscillator to a quantum
one. Such quantisation procedure consists in this case by replacing classical variables
by their quantum counterpart. The goal is that the dynamics of the quantum harmonic
oscillator corresponds, in the classical limit, as the one presented above.

In quantum physics, the momentum p and the position x become the Hermitian
operators P and X. Similarly, the Hamiltonian becomes

Hquant = mω2

2 X2 + P 2

2m.

The operators X and P verify the commutation relation

[X , P ] = XP − PX = i~
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where ~ is Planck constant. It is convenient from now to define two non-Hermitian
operators a and a† by :

a =
√
mω

2~

(
X + iP

mω

)
a† =

√
mω

2~

(
X − iP

mω

)

Using the commutation relation between P and X we readily get[
a , a†

]
= 1

These operators allow to advantageously reformulate the Hamiltonian (4.1) :

Hquant = ~ω
(
a†a+ 1

2

)
The constant term in the previous expression represents the vacuum fluctuation energy. It
can be cancelled by an appropriate choice of the origin energy. The Hamiltonian of the
quantum harmonic oscillator is thus described by the operator a†a:

H̃quant = ~ω
(
a†a

)
The operator N = a†a is called the number operator. The eigenstates and eigenvalues
of this operator corresponds to the one of the Hamiltonian and are therefore of interest.
The spectrum of N is non-degenerate and contains all the non-negative integers. We
denote its eigenstates by |n〉 such that N |n〉 = n |n〉. They are called the Fock states and
verifies 〈n| m〉 = δn,m,

∑
n |n〉 〈n| = 1 thus they form an orthogonal basis (the Fock basis)

of the Hilbert space associated with the harmonic oscillator. We define the energy En of
the Fock state |n〉 as the eigenvalue of the Hamiltonian H̃quant associated to this state.
We readily get En = n~ω, corresponding to the energy of n quanta ~ω. This explain the
name number operator for N as it counts the number of energy quanta, in unit of ~ω ,
associated with the system. An energy quanta is also called photon. For any function f ,
we have the following commutation property :

af(N ) = f(N + 1)a a†f(N ) = f(N − 1)a†

The use of this Fock basis is suitable for the study of the quantum harmonic oscillator
and the operator a and a† have a simple effect on the Fock states :

a |n〉 =
√
n |n− 1〉

a† |n〉 =
√
n+ 1 |n+ 1〉

One see from these expression that the effect of the operator a (respectively a†) is to destroy
(create) an energy quanta. For this reason they are respectively called the annihilation
operator and creation operator.

Conversely, the Fock states can be defined only by use of the creation operator a† and
the ground state |0〉 corresponding to the lower energy of the system by :

|n〉 = (a†)n√
n!
|0〉 (4.2)
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4.1.2 Coherent states
Another type of states playing an important role in the description of quantum harmonic
oscillator are the coherent states (or Glauber states). The state of a classical harmonic
oscillator can be described by using the variables x and p and is represented in the phase
space diagram by the complex variable x+ip. The coherent state |α〉 with α = α′+iα” ∈ C
is its quantum counterpart. It is defined as the eigenstate of the annihilation operator a
associated with the eigenvalue α :

a |α〉 = α |α〉 α ∈ C

These coherent states minimise the Heisenberg uncertainty principle, verifying ∆X∆P =
~/2. Their decomposition in the Fock basis is given by :

|α〉 = exp
(
−|α|

2

2

) ∞∑
k=0

αk√
k!
|k〉 (4.3)

We can see from this expression that the distribution along the Fock states is a Poissonian
distribution. The coherent state is also normalised as 〈α| α〉 = 1. By taking advantage of
equation (4.2) we can define a coherent state only by means of the annihilation operator
and the ground state :

|α〉 = exp
(
−|α|

2

2

)
exp(αa†) |0〉 (4.4)

We emphasise here that a coherent state |α〉 with α = n ∈ N is different from the Fock
state |n〉. From equation (4.4) we see that they are equal if and only if α = 0. We will use
Greek letters to denote coherent states and Latin letters to denote Fock states. When the
context may be not clear, we will use a subscript c (for coherent) or f (for Fock) in order
to distinguish both of them (e.g. |2〉c ). The scalar product between two coherent states,
representing their overlap is given by

〈α| β〉 = e
−|α|2

2 e
−|β|2

2 eα
∗β (4.5)

Now we introduce the displacement operator Dα which is widely use when considering
coherent state and quantum harmonic oscillator. Its name come from the fact that it
displaces the vacuum state (ground state |0〉) towards a coherent state of amplitude α :

Dα |0〉 = |α〉 α ∈ C

The displacement operator is unitary and defined by

Dα = exp
[
αa† − α∗a

]
As a and a† do not commute, we have to be careful when manipulating this expression. It
can be expended by using the Glauber identities [BR03]. Consider two operators A and
B which commutes with their commutator: [A, [A,B]] = [B, [A,B]] = 0, then we have :

exp[A+B] = eAeBe−[A,B]/2

Noting that [a,a†] = 1 we can use this formula to get, for the displacement operator :

Dα = e
−|α|2

2 eαa
†
eα
∗a
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Note that we have D†α = D−α. The displacement operator is closely related to the
annihilation and creation operators and has a simple action on them. To derive this action,
we compute DαaD

†
α. To do so, we introduce the Baker-Campbell-Hausdorff formula very

useful to perform computations with non-commuting operators. It states that for any
operator A and B we have :

eABe−A = B + [A,B] + 1
2[A, [A,B]] + . . .

Using this formula with the commutation relations between a and a† we readily get that

DαaD
†
α = a− α1

The displacement operator will appear frequently when dealing with linear quantum
harmonic oscillators and we summary here several properties which will be widely used
throughout the computations :

D†α = D−1
α = D−α

Dαa
†D−α = a† − α∗1
Dα+β = DαDβe

−i=(α∗β)

where = denotes the imaginary part.
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4.2 Linear harmonic oscillator
We consider in this Section a linear quantum harmonic oscillator acting as the fast
subsystem interacting via linear coupling to a unspecified slow subsystem. In this type
of setting, thanks to the linearity of the fast oscillator, it is possible to perform the
computations of the second order reduced dynamics by going into the Heisenberg picture
in order to calculate the required coefficients depicted in Theorem 5. The aim of this
section is to present, through a concrete example how to perform these computations.
This example is chosen in order to cover several standard linear harmonic oscillators and
therefore readily gives the computational results for systems with such fast dynamics. The
method can however be applied to more general systems provided that the fast subsystem
is a linear harmonic oscillator and that the coupling is also a linear one. It was used
in chapter 3 to perform the computations of the second order reduced dynamics on the
illustrative examples. We present in this section the detail of the calculations.

4.2.1 Second order reduced dynamics
We consider a fast system A, which is a strongly damped linear quantum harmonic
oscillator. The associated Hilbert space is HA = {∑n≥0 ψn |n〉 |(ψn) ∈ `2} (where {|n〉} is
the Fock basis, `2 the space of square summable series). This subsystem is weakly coupled
to a system B on a Hilbert space HB with no internal dynamics (this assumption is only
for simplicity as any dynamics on the slow subsystem plays no role in the computations of
the reduced model). For the sake of clearness we consider that the subsystem B is a qubit,
thought it doesn’t matter for the computations.

As usually, we assume that the typical dissipation rate of the cavity κ is much greater
than the coupling rate g. This gives rise to two time scales : a fast one for the quantum
harmonic oscillator A and a slower one for the subsystem B, corresponding to the structure
presented in 3.1. We will consider the standard resonant Hamiltonian coupling between the
cavity and the qubit. If we are mainly interest in the evolution of the qubit, we can apply
our adiabatic elimination technique to eliminate the cavity and study the perturbation
effect of the coupling on the qubit.

The Lindblad master equation governing the dynamics of the considered example is
given by :

dρ

dt
= u[a† − a, ρ] + κ(1 + nth)

(
aρa† − 1

2(a†aρ+ ρa†a)
)

+κnth
(
a†ρa− 1

2(aa†ρ+ ρaa†)
)
− ig[aσ+ + a†σ-, ρ]

where a is the annihilation operator of the subsystem A. κ is the dissipation rate
corresponding to the strong damping of the harmonic oscillator. It is driven by a coherent
field of amplitude u ∈ C and subject to thermal noise, with nth the number of thermal
photons. σ+ and σ- are respectively the energy gain and loss operators. The coefficient g
represents the coupling strength between the two subsystems, with the relation κ� g.

The unique steady state of the harmonic oscillator is ρA = DαρthD−α. Where Dα

is the displacement operator of amplitude α = 2u/κ ∈ C and ρth is the thermal state
associated to nth:

ρth = 1
1 + nth

∞∑
n=0

(
nth

1 + nth

)n
|n〉〈n|
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We are therefore able to use Theorem 5 in order to compute the second order reduced
dynamics. We show how to perform the computations by going into the Heisenberg picture.

A straightforward computation yields Tr (aρA) = Tr (aρth) + α = α. Theorem (5)
immediately gives the first order approximation :

Ls,1(ρS) = −i
[
ασ+ + α∗σ-, ρS

]

In order to get the second order approximation we have to compute the 4 coefficients defined
in Lemma (4). We will detail the computations of the first coefficient (corresponding
to A1 = a) : Tr

(
τKA(aρA − Tr (aρA) ρA)a†

)
. The other coefficients are computed in a

similar way. By virtue of definition (2.28) we have :

Tr
(
τKA(aρA − Tr (aρA) ρA)a†

)
= Tr

(
a†
∫ ∞

0
etLA

(
(a− α1)ρA

)
dt
)

= Tr
(

(a† − α∗1)
∫ ∞

0
etLA

(
(a− α1)ρA

)
dt
)

Where we used the fact that Tr
(
etLA

(
(a− α1)ρA

))
= 0. Using the cyclic property of the

trace, the trick is to go from the Schrödinger evolution of the operator (a− α1)ρA to the
Heisenberg evolution of a†, as briefly mentioned in section 3.3.1 :

Tr
(
τKA(aρA − Tr (aρA) ρA)a†

)
= Tr

(
(a− α1)ρA

∫ ∞
0

etL
∗
A(a† − α∗1)dt

)
where L∗A is the adjoint of LA (see section 2.1.4). Thanks to the linearity of the fast
harmonic oscillator, it possible to explicitly compute etL∗A . The way to perform such
computation is illustrated in section 4.2.2. From equation (4.6), we get that

Tr
(
τKA(aρA − Tr (aρA) ρA)a†

)
= Tr

(
(a− α1)ρA

∫ ∞
0

e−κt/2(a† − α∗)dt
)

= nth

After completely similar calculations, we get the matrices X and Y from Lemma 4:

X =
(

2nth 1
0 2(1 + nth)

)
Y = 0

Choosing for simplicity Λ =
√
X, we get the following second order reduced dynamics :

d

dt
ρs = −ig

[
ασ+ + α∗σ-, ρS

]
+ 4g2

κ

(
nthDσ+(ρs) + (1 + nth)Dσ-(ρs)

)

Note that here, contrary to the general case, the second order dissipation operators
correspond exactly to the interaction operators and are not a mixture of them.

4.2.2 Computations in the Heisenberg picture
The aim of this section is to illustrate how to compute the Heisenberg evolution of an
operator for a linear harmonic oscillator. We show the method on this example (which
includes a drive and thermal noise), this can however be extended to any linear dynamics.
These computations are standard, they are given here as they are helpful for anyone
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interest in the computation of the reduced model of a linear harmonic oscillator. We
perform the computations for the operators N and a as they frequently appears in the
interaction Hamiltonian (corresponding to dispersive or resonant coupling).

For any operator X on HA, we denote X t , etL
∗
A(X). Therefore X t stand for the

evolving operator in the Heisenberg picture while X is a standard (non evolving) operator.
They are related by X0 = X.

We start by solving the adjoint master equation for the annihilation operator at :

dat
dt

= −[ua† − u∗a,at] + κ(1 + nth)
(
a†ata−

1
2(a†aat + ata†a)

)

+κnth
(
aata

† − 1
2(aa†at + ataa†)

)

Then assume that at = f(t)a+ g(t) with f(0) = 1 and g(0) = 0. Using the commutation
relations of section 4.1 we get :

df(t)
dt

a+ dg(t)
dt

= uf(t)− f(t)κ2a

Denoting α = 2u/κ, we straightforwardly get

at = etL
∗
A(a) = e−κt/2(a− α) + α (4.6)

If we are interested in the evolution of the number operator N t in the Heisenberg
picture, we have :

dN t

dt
= L∗A(N t) = −[ua† − u∗a,N t] + κ(1 + nth)

(
a†N ta−

1
2(a†aN t +N ta

†a)
)

+κnth
(
aN ta

† − 1
2(aa†N t +N taa

†)
)

Now assume N t = f(t)N + g(t)a+ g∗(t)a† + h(t) with f(0) = 1 and g(0) = h(0) = 0.
Once again using commutation relations we get :

dN t

dt
= f(t)

(
ua† + u∗a− κN + κnth

)
+ g(t)

(
u− κ

2a
)

+ g∗(t)
(
u∗ − κ

2a
†
)

Therefore we have to solve :

df(t)
dt

= −κf(t)

dg(t)
dt

= f(t)u∗ − κ

2g(t)

dh(t)
dt

= f(t)κnth + g(t)u+ g∗(t)u∗

A direct computation leads to the following solution :

etL
∗
A(N ) = e−κtN + α∗(e−κt/2 − e−κt)a+ α(e−κt/2 − e−κt)a† − e−κtnth

+ |α|2(e−κt − 2e−κt/2) + nth + |α|2
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4.3 Non-linear quantum oscillator

4.3.1 A class of non-linear oscillators
We consider in this section the class of bipartite composite system considered in 3.1 : a
subsystem A associated with a Hilbert space HA = {∑n≥0 ψn |n〉 |(ψn) ∈ `2} (where {|n〉}
is the Fock basis) evolves on a fast time-scale and converges towards a unique steady state
while the subsystem B on a Hilbert space HB is on a slow time-scale. Moreover we assume
that the dynamics of the fast subsystem can be described by using only one dissipation
operator. In other word, we consider the following fast dynamics :

LA(•) = κ
(
L •L† − 1

2
(
L†L •+ •L†L

))
(4.7)

for some operator L on HA verifying eL
†LL = LeL

†L+1eiθ, for any θ ∈ R (note that
in particular the annihilation operator a verifies this property). The dynamics of the
complete composite system is given accordingly to section 3.1 by :

d

dt
ρ = LA(ρ) + εLint(ρ) + εLslow(ρ)

where ρ is the density operator on HA ⊗HB, Lslow is a super-operator acting non-trivially
only on HB and Lint is the interaction between the subsystem A and B. The small
parameter 0 < ε� 1 emphasize the different time-scales in the composite system.

It is possible in this case to get an explicit expression of the propagator associated
with the subsystem A [Ued89, MSB+16] as stated by the following lemma.
Lemma 5. For a density operator ρA on HA and any initial state ρA(0), the solution of the
Lindblad master equation

d

dt
ρA = LA(ρA)

where LA is in the form (4.7), is given by the following series formulation of the propagator
:

ρA(t) = etLA(ρA(0)) =
∞∑
p=0

(1− e−κt)p
p! e−

κt
2 L
†LLpρA(0)L†pe−κt2 L†L (4.8)

Proof. The proof is immediate by computing the derivative with respect to t and using
the properties of the operator L. �

This explicit formulae for the propagator allows to readily compute the inverse of
the super-operator LA needed in order to calculate the reduced dynamics. According
to equation (2.28), for any operator W verifying Tr (W ) = 0, the zero trace solution of
LA(X) = −W is given by :

X , −L−1
A (W )

=
∞∑
p=0

∫ ∞
0

(1− e−κt)p
p! e−

κt
2 L
†LLpWL†

p
e−

κt
2 L
†Ldt (4.9)

We illustrate how these formulas readily allow to compute the second order reduced
model, using results from chapter 3 on composite systems with some non-linearities.
We begin by an example where the non-linearity lies within the coupling term Lint
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corresponding to a small anharmonicity of the oscillator. Then, we study a case with a
cascaded coupling and a non-linear fast dynamics. For the last system, it is not possible
to use the approach presented in 4.2 as we can’t get a closed set of equations to solve. To
our knowledge, using this formulae is currently the only way to compute a reduced model
on quantum harmonic oscillator with this type of non-linear elements.

4.3.2 Application to non-linear coupling
We consider the two-photon pumping scheme from [MA+14] whose goal is to induce
2-photon loss at order ε2 on the target slow subsystem. This system was used in section
3.2 to illustrate the application of theorem 5 (we refer to this section for a more detailed
presentation of this system). We assumed there that the fast subsystem had thermal noise
but was sufficiently low-quality in order to consider that only the lowest energy levels were
populated and therefore can be treated as a two-level system. Here we consider that the
thermal noise is negligible but we will treat the fast subsystem as an harmonic oscillator
thus relax the two-level system assumption. Moreover, we take into account a small
detuning ∆ between the frequencies of the two cavities. As the driving field on the fast
subsystem needs to be strong in order to guarantee satisfying error protection, we have to
take into account the (small) anharmonicity of the fast oscillator. This non-linearity results
in a Kerr-effect corresponding to an Hamiltonian term (a†a)2 acting on the fast subsystem.
The non-linearity of this term makes the model reduction model more complicated. We
illustrate here how to perform the computations by using the explicit formulas of the
propagator.

We denote a the annihilation operator on HA (similarly, b on HB), N = a†a the
number operator, u is the complex drive amplitude, κ ∈ R the dissipation rate of the fast
subsystem and ∆ ∈ R is the detuning.

The dynamics of the fast subsystem are described by the Lindblad super-operator :

LA(ρ) = [ua† − u∗a, ρ]− i∆[N , ρ] + κ
(
aρa† − 1

2

(
ρa†a+ a†aρ

))
It is well known that for any initial density operator, the solution of ρ̇ = LA(ρ) converges
towards the unique steady state ρA = |α〉〈α|, the coherent state of complex amplitude
α = u/(κ/2 + i∆).

Before turning to the computation of the reduced dynamics, we show how to apply the
explicit formulas for the propagator on this system. Note that the fast dynamics LA is not in
the form (4.7). In order to use (4.8) we apply the change of variable ρ = Dαe−i∆Ntξei∆NtD†α,
where Dα is the displacement operator of amplitude α = u/(κ/2 + i∆). From ρ̇ = LA(ρ)
it results after standard computations to :

d

dt
ξ = κ

(
aξa† − 1

2

(
ξa†a+ a†aξ

))
(4.10)

We are now being able to use equation (4.8) to compute the propagator associated
with (4.10). By using then the backward change of variables we get, for any initial density
operator ρ :

etLA(ρ) =
+∞∑
n=0

(
(1−e−κt)n

n!

)
Dα

(
e−(κ2 +i∆)tNan

)
D†α ρ Dα

((
a†
)n
e−(κ2−i∆)tN

)
D†α (4.11)
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where Dα is the displacement operator of amplitude α. As a result, the inversion formula
(4.9) yields for any traceless operator W ,

X , −L−1
A (W )

=
+∞∑
n=0

∫ +∞

0

( (1−e−κt)n
n!

)
Dα

(
e−(κ2 +i∆)tNan

)
D†α W Dα

((
a†
)n
e−(κ2−i∆)tN

)
D†α

 dt

We now turn to the computation of the second order dynamics and use these formulas to
get the reduced model.

The dynamics of the composite system is given by :

d

dt
ρ = LA(ρ) +

(
− i[Hint, ρ] + LB(ρ)

)
As the slow dynamics LB plays no role in the computations of the reduced model (see
chapter 3) we take LB ≡ 0 for simplicity. The Hamiltonian coupling is given by :

Hint =
4∑

k=1
Ak ⊗B†k = g[a(b†)2 + a†b2, ρ] + χ(a†a)(b†b) + χa

2 (a†a)2

where g is the resonant coupling rate, χ is the cross-Kerr rate and χa the self-Kerr rate.
We assume the following ordering of the parameters : κ� max(|g|, |χ|, |χa|) corresponding
to the standard assumption that the subsystem A is strongly dissipative i.e. on a fast
time-scale. As the interaction is Hamiltonian, we can therefore apply theorem 5 to derive
the second order reduced dynamics.

Using the notations of Theorem 5, we take

(A1,B1) = (a, gb2), (A2,B2) = (a†, g(b†)2),
(A3,B3) = (a†a, χb†b), (A4,B4) = ((a†a)2, χa2 I).

The first order reduced dynamics is readily given by :

Ls,1(ρs) = −iαg[b2 + (b†)2, ρs]− i
[
α2χb†b, ρs

]
In order to get the second order reduced dynamics we compute the operators F kρA
(k = 1, . . . , 4) defined in equation (3.13):

F kρA =
∫ ∞

0
etLA

(
AkρA − Tr (AkρA) ρA

)
dt

Using the fact that for any n ≥ 1, we have 〈α| Dα(a†)n = 0 and the explicit expression of
the propagator (4.11) we get :

F kρa =
∫ +∞

0

Dα

(
e−(κ2 +i∆)tN

)
D†αAk |α〉〈α| − 〈α|Ak |α〉 |α〉〈α|

 dt.

Direct computations then lead to

F 1 = 0, F 2 = 1
κ
2 +i∆

(a† − α∗), F 3 = αF 2,

F 4 = α(1+2|α|2)
κ
2 +i∆

(a† − α∗) + 1
2

α2
κ
2 +i∆

(a† − α∗)2
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We are now being able to compute the 4× 4 matrices X and Y defined in Lemma 4 and
needed to compute the second order reduced dynamics through Theorem 5.

After standard calculations, we get the following matrices X and Y :

X = 4κ
κ2 + 4∆2


0 0 0 0
0 1 α α(1 + 2|α|2)
0 α∗ |α|2 |α|2(1 + 2|α|2)
0 α∗(1 + 2|α|2) |α|2(1 + 2|α|2) |α|2(1 + 2|α|2)2 + |α|4



Y = −∆
κ2 + 4∆2


0 0 0 0
0 1 α α(1 + 2|α|2)
0 α∗ |α|2 |α|2(1 + 2|α|2)
0 α∗(1 + 2|α|2) |α|2(1 + 2|α|2) |α|2(1 + 2|α|2)2 + |α|4


The last step to get the second order reduced dynamics is to compute the matrix Λ
verifying X = ΛΛ†. This decomposition is not unique. Using the fact that X is positive
semi-definite, we use the Cholesky decomposition leading to a triangular matrix Λ :

Λ =
√

4κ
κ2 + 4∆2


0 0 0 0
0 1 0 0
0 α∗ 0 0
0 α∗(1 + 2|α|2) 0 |α|2

 .

From the structural results presented after Theorem 5, we know that there is at most 4
slow-dissipation operators. In this case, we see that there is only one as two vanishes and
one is co-linear to identity. Gathering first and second order results, we get the following
slow second-order evolution:

d

dt
ρs = −iαg[b2 + (b†)2, ρs]− i

[
α2χb†b, ρs

]
− i[Hs,2, ρs] +

(
4κ

κ2+4∆2

)
DLs(ρ)

with

Ls = gb2 + α∗
(
χb†b+ χa(1+2|α|2

2 I
)

+O(|α|2)

Hs,2 = −∆g2

κ2 + 4∆2

(
(b†)2b2 + α(b†)2

(
χ
g
b†b+ χa

2g I
)

+ α∗
(
χ
g
b†b+ χa

2g I
)

(b†)2
)

+O(|α|2)

The terms of order |α|2 have not been included in the Hamiltonian for convenience as the
complete expression involves nine different terms . It is however possible to retrieve the
exact expression using and Y .

By using equation (3.12) we get the first-order Kraus map relating the parametrisation
via ρs of the physical ρ. reads

ρ =
(
I − iM

)(
|α〉〈α| ⊗ ρs

)(
I + iM †

)
where

M = (a† − α∗)⊗
(

g
κ
2 +i∆

b2 + αχ
κ
2 +i∆

b†b+ α(1+2|α|2)χa
κ
2 +i∆

I
)

+ α2χa
κ
2 +i∆

(a† − α∗)2 ⊗ I.
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By taking advantage of the fact that M † |α〉〈α| ⊗ ρs ≡ 0, such parametrisation can be
reformulated, up to second order terms as,

ρ = e−i(M+M†)
(
|α〉〈α| ⊗ ρs

)
ei(M+M†)

where the unitary transformation e−i(M+M†) induces first-order entanglement between the
fast and the slow subsystems.

We emphasise that due to the fact that the fast dynamics is linear and that the non-
linearity is simply caused by the operator N 2, it would have been possible to compute the
second order reduced dynamics using the approach of section 4.2 by solving the Heisenberg
equations. However, with such approach, the calculation of the parametrisation via ρs
of the physical complete density operator ρ would not be possible. We now turn to an
example where even the second order reduced dynamics cannot be computed using the
linear approach of section 4.2.

4.3.3 Application to non-linear fast dynamics
We consider in this section a fast quantum harmonic oscillator A on HA with a non-linear
dynamics and weakly coupled in a cascade way to a slow subsystem B corresponding to
the case considered in section 3.3.1. The unique steady state of the fast subsystem is
a purely quantum state, a cat state (see below). Due to the cascade coupling, the slow
subsystem is "driven" by this quantum state. This system thus allows to study the effect
of a purely quantum drive on a system of interest. The state of the system is described by
the density operator ρ on HA ⊗HB whose dynamics is given by :

d

dt
ρ = [ua†k − u∗ak, ρ] +

√
κAκB
2 [ab† − a†b, ρ] + κDak(ρ) +D√κAa+√κBb(ρ) (4.12)

where a is the annihilation operator on the fast subsystem. The operator ak = eiπa
†aa

corresponds to the subsystem being in a non-linear medium. Due to this non-linearity,
obtaining the reduced dynamics through Langevin equations or using the Heinsenberg
picture is impossible. u is the complex drive amplitude, κ, κA, κB are the dissipation rates.
The operator b is an unspecified operator on HB (typically the annihilation operator when
the subsystem B is a harmonic oscillator). The two time-scales are given by the parameter
ordering κ � max{κA, κB}. In the absence of perturbation (ε = 0) the fast subsystem
converges towards the unique steady state, called cat-phase state :

ρA = 1√
2
(
|iα〉+ i |−iα〉

)(
〈iα| − i 〈−iα|

)
with α = 2u

κ
. (4.13)

To show this, use the change of variables ρ = UξU †, where U is the Kerr transformation
defined by U = exp

[
−iπ2 (N 2 −N )

]
, on the unperturbed system

d

dt
ρ = [ua†k − u∗ak, ρ] + κDak(ρ).

Using the properties of the Kerr transform

a†kU = Ua†

akU = Ua
(4.14)
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we derive the following master equation for the density operator ξ :

d

dt
ξ = [ua† − u∗a, ρ] + κDa(ρ).

Therefore, we get that ξ converges towards the unique steady state |α〉〈α| with α = 2u
κ
.

The unique steady state for ρ is thus given by U |α〉〈α| U † = ρA. Direct computations
leads to equation (4.13).

We now turn to the computation of the reduced dynamics. By using Theorem 7, to
get the first order we only have to compute Tr (aρA) :

Tr (aρA) = α 〈α| eiπN |α〉 = 〈α| −α〉 = αe−2|α|2

where we used the properties of the Kerr transform (4.14) and of the coherent states
presented in section 4.1.2.

The second order reduced dynamics is derived by means of the coefficients α̃, β and γ
defined in Theorem 72. While it’s possible to directly perform the computations by using
the explicit formulas for the propagator (4.8), (4.9), the simplest way is first to make the
change of variables associated with the Kerr transformation to the composite system. The
resulting Lindblad master equation is given by :

d

dt
ξ = [ua† − u∗a, ξ] +

√
κAκB
2 [akb† − a†kb, ξ] + κDa(ξ) +D√κAak+√κBb(ξ)

, LA(ξ) +
√
κAκB
2 [akb† − a†kb, ξ] +D√κAak+√κBb(ξ)

Where the unique steady state is ξA = |α〉〈α| and κ � max{κA, κB} > 0. By an
appropriate choice of unit and in order to match exactly the framework of Theorem 7, we
denote ε = κA. We assume for simplicity that we also have κB = ε. The general case can
be readily retrieved by considering the change b↔ κB/εb. It results,

d

dt
ξ = LA(ξ) + ε

2[akb† − a†kb, ξ] + εDak+b(ξ)

The propagator associated with the fast dynamics is given by :

etLA(ξ) =
+∞∑
n=0

(
(1−e−κt)n

n!

)
Dα

(
e−

κ
2 tNan

)
D†α ξ Dα

((
a†
)n
e−

κ
2 tN

)
D†α

We detail now the computation of the coefficient α̃ = Tr
(
a†kτKA((ak − Tr

(
akξA

)
)ξA

)
from Theorem 7 needed to get the second order reduced dynamics . The coefficient β is
computed in a similar way. From equation (2.28) in appendix, we get :

α̃ = Tr
(
a†k

∫ ∞
0

etLA
(

(ak − Tr
(
akξA

)
)ξA

)
dt
)

2The coefficient α̃ here is simply denoted α in Theorem 7, however, to avoid any confusion with the
parameter α = 2u/κ we changed the notation.
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Using the fact that for any n > 0, we have 〈α| Dα(a†)n = 0, we get

Tr
(
a†ke

tLA
(
akξA

))
= Tr

(
a†kDαe

−κ2 tND†α ak |α〉〈α| Dαe
−κ2 tND†α

)
= αTr

(
a†kDαe

−κ2 tND†α |−α〉〈0| e
−κ2 tND†α

)
= αTr

(
e−

κ
2 tN |−2α〉〈α|a†kDα

)
= |α|2 〈−2α| e−

κ
2 tN |−2α〉

= |α|2e−2|α|2e2|α|2e−κt 〈−2α| −2αe−κt/2
〉

where we used between line 1 and 2 that for any coherent state of amplitude α, we have
e−iπN |α〉 = |−α〉. To get the last line, we decompose the coherent state in the Fock basis
using (4.3) to perform the computations. By taking advantage of equation (4.5) giving
the overlap between two different coherent states, we get :

α̃ = |α|2e−4|α|2
∫ ∞

0

(
e4|α|2e−κt/2 − 1

)
dt

Finally, using equation 5.1.40 from [AS65] it can be expressed using the special function
Ei(x) and the Euler’s constant γ̄ by :

α̃ = 2|α|2e−4|α|2

κ

(
Ei(4|α|2)− ln(4|α|2)− γ̄

)
Similar computations leads to

β = α2e−4|α|2
∫ ∞

0

(
(1− 2e−κt/2)e4|α|2e−κt/2 − 1

)
dt

= α2

|α|2

(
α̃− e−4|α|2

κ

(
e4|α2| − 1

))
assuming α 6= 0

Last, we have to calculate the coefficient γ = Tr
(
akτK(Dak(ξA))

)
. After simple but

tedious computations we get :

γ =
∫ ∞

0
αe−2|α|2e−κt/2

4|α|2 − 1
2 + α|α|2e−2|α|2(−1 + (1− 2e−κt/2)e8|α|2e−κt/2e−8|α|2e−κt)

= αe−2|α|2(4|α|2 − 1)
κ

+ 2α
κ
|α|2e−2|α|2

∫ 1

0

e8|α|2(u−u2) − 1
u

du

−
√

2α
κ
|α|
√
π erf(

√
2|α|)

where erf is the error function. We can now apply Theorem 7 to get the second order
reduced dynamics associated with the dynamics (4.12) :

d

dt
ρs = εe−2|α2

( [
α∗b− αb† , ρs

] )
+ εD√

1+2εα̃b−2εβb†
(ρs)

+2ε2
(
α̃Db†(ρs) +

[
γ∗b− γb† , ρs

] )
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Remark 5. We have considered in this example the parameter ordering κ� max{κA, κB}
corresponding to a cascade with weak outcoming field presented in section 3.3.1. In a
difference case, with the other ordering permitting adiabatic elimination, namely {κ, κA} �
κB corresponding to the cascade with strongly reflected field of section 3.3.2, we see from
the definition within Theorem 8 that the coefficient to be computed in order to get the
reduced dynamics are equal to α̃ and β∗. As they verify Assumption 1, we can apply
Theorem 8 and directly derive the second order reduced dynamics.



Chapter 5

Extensions

We present in this chapter various extensions of our main results on adiabatic elimination
from chapter 3. In the first section, we completely remain in the framework of chapter
3. The goal is to extend our adiabatic elimination technique up to third order terms.
We succeed in this objective provided that the Hamiltonian interaction includes only one
tensor-product term. This already allows to make structural results on the third order
approximation and we conjecture with a strong symmetry argument, that it holds for any
type of Hamiltonian coupling. This is still the topic of ongoing research.

The second section, deals with a totally different setting than the bipartite systems
considered in chapter 3. We take interest in systems with decoherence-free spaces [LW03].
Such systems are taking more and more importance in quantum information as they are
a promising way to build a quantum computer [LCW98, MA+14]. The need to develop
generic adiabatic elimination methods for such systems is therefore becoming important.
A first order method has been presented in [ZV14]. We go further and use our approach to
develop the second order approximation and have a parametrisation of the slow manifold
in a Kraus map form. This underlines that our geometric approach presented in chapter 2
seems applicable for very different structure of two time-scales quantum systems.
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5.1 Preliminary results on the third order approxi-
mation

We present in this section preliminary results on the third order approximation for
composite systems with an Hamiltonian interaction of the form H int = A⊗B (such as in
dispersive coupling). We rely on a technical assumption needed to express the third order
reduced dynamics in a Lindblad form. We believe this assumption to be generically true.
This is the topic of ongoing research with the generalisation to any Hamiltonian coupling.

We consider the structure of a bipartite quantum system with Hamiltonian interaction
presented in Section 3.2 (Lint = −i[H int, · ]). The dynamics of the complete system,
composed of a subsytem A on a Hilbert space HA and a subsystem B on HB and described
by the density operator ρ on HA ⊗HB, is, according to (3.10):

d

dt
ρ = LA(ρ) + ε

(
− i [H int, ρ] + LB(ρ)

)
where the interaction Hamiltonian Hint is assumed to be dispersive i.e. H int = A⊗B. The
unique steady state of the fast dynamics is denote ρA, verifying LA(ρA) = 0. Moreover, we
assume that the slow dynamics LB includes only Hamiltonian terms i.e LB(•) = −i[HB, •].
This case was considered (for general Hamiltonian coupling) in Section 3.2.4 and we showed
in Theorem 6 how the second order parametrisation can be expressed in a Kraus form.

For convenience, before turning to the computation of the third order, we briefly remind
notations and results for the second order reduced model in this particular case. We refer
to Chapter 3 for more details.

Corollary 1 shows that the second order reduced dynamics described by the super-
operator Ls,2 can be expressed in the Lindblad form (3.16). Thus the reduced dynamics,
up to second in ε is given by :

d

dt
ρs =− iε [Tr (AρA)B , ρs]− iε[HB, ρs]

− iε2
Tr

(
F ρAA−AρAF †

)
2i B2 , ρs

+ ε2η2DB(ρs)
(5.1)

with η2 = Tr
(
F ρAA+AρAF †

)
and F is given by F ρA = −L−1

A

(
A− Tr (A ρA)ρA)

)
=

τKA
(
A ρA − Tr (A ρA) ρA

)
.

The second order parametrisation K2 is computed in the proof of Theorem 6. Its
expression is given by equations (3.21) and (3.26) which turn to be, for this dispersive
coupling case :

LA(K2(ρs)) =−
(
S(AρAF †) + S(F ρAA)

)
⊗BρsB

+ S(ρAF †A)⊗ ρsB2 + S(AF ρA)⊗B2ρs

− F ρA ⊗B
[
Tr (AρA)B , ρs

]
+ ρAF

† ⊗
[
Tr (AρA)B , ρs

]
B

+ F ρA ⊗ [HB , B] ρs − ρAF † ⊗ ρs [HB , B]

where S(X) = X − Tr (X) ρA = X −R(X) for any operator X on HA. We introduce
now the notation A = A− Tr (AρA) 1 and the following definition of the operators T , U
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and V :

L−1
A

(
S(AρAF †)

)
= −τKA(AρAF †) , T

L−1
A

(
S(AF ρA)

)
= −τKA(AF ρA) , U

L−1
A

(
F ρA

)
= −τKA(F ρA) , V

They lead to a simple expression of the second order parametrisation K2, namely :

K2(ρs) =−
(
T + T †)⊗BρsB

+U † ⊗ ρsB2 +U ⊗B2ρs

+ V ⊗ [HB , B] ρs − V † ⊗ ρs [HB , B] .
(5.2)

Note that this expression is different from the one ensuring a Kraus map for K0+εK1+ε2K2.
It has however the advantage of verifying TrA (K0 + εK1 + ε2K2) = ρs, facilitating the
interpretation of ρs as the density operator of the subsystem B.
Theorem 9. (Third order, one tensor-product term coupling)

Assume that the dissipative term in the second order reduced dynamics is non-zero i.e.
in (5.1) we have η 6= 0. Then the third order reduced dynamics is given by the following
Lindblad master equation :

d

dt
ρs =− iε [Tr (AρA)B , ρs]− iε[HB, ρs]− iε2

Tr
(
F ρAA−AρAF †

)
2i B2 , ρs


− iε3u+ u∗

2 [B3, ρs]− iε3
[
v

2B[HB,B]− v∗

2 [HB,B]B, ρs
]

+ ε2DL +O(ε2)

with : t = −Tr
(
τKA(AρAF †)A

)
, u = −Tr

(
τKA(AF ρA)A

)
and v = −Tr

(
τKA(F ρA)A

)
.

The dissipation operator L is defined as L = ηB + iε
η

(
(t+ t∗ + u)B2 + v[HB,B]

)
.

Proof. In order to get the third order reduced dynamics, we have to solve the third order
recurrence relation (2.26). In this case of composite structure this equation yields :

LA(K3(ρs)) + Lint(K2(ρs)) = K0(Ls,3(ρs)) +K1(Ls,2(ρs)) +K2(Ls,1(ρs)) (5.3)

We use the usual trick of taking the mapping R (or similarly the partial trace over A)
in equation (5.3) leading to the cancellation of the LA term. Using that TrA (K1(•)) ≡ 0
and from (3.21) that TrA (K2(•)) ≡ 0 we get :

Ls,3(ρs) = TrA
(
Lint

(
K2(ρs)

))
Using the expression 5.2 for K2 and that Lint(•) = −i[A⊗B, •] we get :

Ls,3(ρs) = −iTrA
(
[A⊗B,−(T + T †)⊗BρsB +U † ⊗ ρsB2 +U ⊗B2ρs

)
− iTrA

(
[A⊗B,V ⊗ [HB , B] ρs − V † ⊗ ρs [HB , B]

)
= i

(
(t+ t∗ + u)B2ρsB − (t+ t∗ + u∗)BρsB2 − uB3ρs + u∗ρsB

3

− vB [HB , B] ρs + v∗Bρs [HB , B] + v [HB , B] ρsB − v∗ρs [HB , B]B
)
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with t = Tr (AT ) , u = Tr (AU) , v = Tr (AV ).
One can see that this expression of Ls,3 is Hermitian. However, the asymmetry of this

equation due to the term BρsB
2 and its Hermitian conjugate prevent any Lindblad-form

expression for Ls,3. In order to get a Lindblad dynamics for the reduced system, we will
proceed similarly than the case of cascade coupling 3.3 and combine the second and third
order in order to get a Lindblad expression. Indeed, Ls,2 + εLs,3 admits the following
Lindblad form (up to higher order terms) :

Ls,2 + εLs,3 = −i
Tr

(
F ρAA−AρAF †

)
2i B2 , ρs

− iεu+ u∗

2 [B3, ρs]

−iε
[
v

2B[HB,B]− v∗

2 [HB,B]B, ρs
]

+DL +O(ε4)

where L = ηB+ iε
η

(
(t+ t∗ + u)B2 + v[HB,B]

)
, using that by assumption we have η 6= 0.

This can be proved by a direct expansion, concluding the proof. �

Remark 6. The Theorem 9 allows to make several structural results on the third order
reduced dynamics :

• The third order does not add new decoherence channel. It merely modifies the
existing one. This come from the asymmetry in the direct computation of Ls,3 and
we don’t see any reason why this would be different for the most general type of
Hamiltonian coupling H int = ∑

kA
k ⊗B†k. This is currently investigated.

• The initial slow dynamics LB, which played no role in the computation of the reduced
dynamics up to second order have a role in the third order. It appears both in the
third order Hamiltonian and dissipation operator, each time with the particular form
of a commutator with the interaction operator.
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5.2 Systems with decoherence-free space
The realisation of a universal quantum computer is currently an exiting goal as such
computer is intrinsically more powerful than its classical counterpart. Indeed, it has
be shown that quantum information processing allows speedup compared to classical
one [Sho94]. In order to obtain this speedup, one must be able to prepare, manipulate
and measure superposition of quantum states. This is however very difficult as these
superposition of states are usually not robust to decoherence caused by unwanted coupling
to the environment. How to cope with the decoherence is currently an important issue. A
first approach is to encode a logical qubit in several redundant physical qubits, similarly
than for classical bit. See e.g. [Ste96] for more details on the theory of quantum error
correction codes. It relies on the assumption that most occurring errors are not correlated
between the different redundant qubits encoding a single logical qubit. Such assumption
may be questionable in cases e.g. where the different qubits are spatially closed. Another
approach, is to encode a logical qubit in a so-called decoherence-free space. In such space,
due to symmetry reasons, the qubit is protected against decoherence [LW03]. It was
shown in [BKLW00] that universal quantum computation is possible. This promising
passive error-preventing scheme using decoherence-free space has been recently performed
experimentally [MA+14, LTP+15]. It is therefore of great importance to be able to
describe and characterise such systems. In this objective, we present now a generic
adiabatic elimination method for such system. Our approach is similar to [ZV14], we go
further and derive results for the second order reduced dynamics and the parametrisation
of the slow manifold.

5.2.1 A class of perturbed master equuations
We consider in this section, a Hilbert space H of finite dimension. We denote by D the
compact convex set of density operators ρ on H. The dynamics on D is described by a
Lindblad master equation. Assuming the existence of two time-scales, we have :

d

dt
ρ = L0(ρ) + εL1(ρ) (5.4)

where 0 < ε is a small positive parameter and the linear super-operators L0 and L1 are of
Lindbladian forms (2.10) characterised by two finite families of operators on H, denoted
by (L0,ν) and (L1,ν), and two Hamiltonian terms, described by two Hermitian operators
H0 and H1.

We assume as usual that, for ε = 0, the unperturbed master equation ρ̇ = L0(ρ)
converges to a stationary regime, but, contrary to the previous sections, we do not impose
a unique steady state. That is to say, we assume that the unperturbed master equation
admits a sub-manifold of stationary operators and any solution of the unperturbed system
with initial condition in D converges towards this sub-manifold. Denote by

D0 =
{
ρ ∈ D

∣∣∣ L0(ρ) = 0
}

this stationary manifold: it is compact and convex. We assume additionally that D0
coincides with the set of density operators with support in H0, a subspace of H. In other
words the unperturbed master equation features a decoherence-free space H0 . Accordingly
to previous sections we denote R(ρ0) = limt→∞ e

tL0(ρ0) corresponding to the mapping of
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any initial state to the final state and verifying, for some operator (Mµ) on H, the Kraus
map form (2.11):

R(ρ0) =
∑
µ

Mµρ0M
†
µ (5.5)

with ∑µM
†
µMµ = 1, the identity operator on H.

An invariant operator attached to the dynamics ρ̇ = L0(ρ) is a Hermitian operator J
such that for any time t ≥ 0 and any initial state ρ0 = ρ(0), we have Tr (Jρ(t)) = Tr (Jρ0).
Such invariant operators J are characterized by the fact that L∗0(J) = 0 where the adjoint
map to L0 is given by

L∗0(A) = i[H0,A] +
∑
ν

L†0,νAL0,ν − 1
2L
†
0,νL0,νA− 1

2AL
†
0,νL0,ν

for any Hermitian operator A. In other words, J is an invariant of the dynamics,
corresponding to the fact that its dynamics in the Heisenberg picture is zero.

Thus by taking the limit for t tending to +∞ in Tr (Jρ(t)) = Tr (Jρ0), we have, for
all Hermitian operators ρ0, Tr

(
JR(ρ0)

)
= Tr (Jρ0). Denote by R∗ the adjoint map

associated to R:
R∗(A) =

∑
µ

M †
µAMµ (5.6)

for any Hermitian operator A on H. Then, Tr
(
R∗(J)ρ0

)
= Tr (Jρ0) for all ρ0, implying

R∗(J) = J . I.e. invariant operators J are characterized by L∗0(J) = 0 and satisfy
R∗(J) = J .

Denote by P 0 the operator on H corresponding to orthogonal projection onto H0.
Consequently, for any Hermitian operator ρ, we have P 0R(ρ) = R(ρ)P 0 = R(ρ). Thus
Tr
(
R∗(P 0)ρ

)
= Tr

(
R(ρ)

)
= Tr (ρ) for all ρ which implies:

R∗(P 0) = 1. (5.7)

Moreover, for any vector |c〉 in H0, R(|c〉〈c|) = |c〉〈c|. This implies that, for the Kraus
map (5.5), there exists a family of complex numbers λµ such that ∑µ |λµ|2 = 1 and

∀ |c〉 ∈ H0, Mµ |c〉 = λµ |c〉 . (5.8)

5.2.2 First order expansion for arbitrary perturbations
We consider here the perturbed master equation with two time-scales (5.4) whose unper-
turbed part ρ̇ = L0(ρ) satisfies the assumptions of Section 5.2.1: any trajectory converges
to a steady-state; the set of steady-states D0 coincides with the set of density operators
with support on a subspace H0 of H. This section develops a first-order expansion versus
ε of (5.4) around D0.

Denote by Hs (subscript s for slow), an abstract Hilbert space with the same dimension
as H0. Denote by Ds the set of density operators on Hs. Denote by {|νs〉} (resp. {|ν0〉})
a Hilbert basis of Hs (resp. H0). Consider the Kraus map K0 defined by

∀ρs ∈ Ds, K0(ρs) = S0ρsS
†
0 ∈ D (5.9)

where S0 = ∑
ν |ν0〉 〈νs|. We have S0S

†
0 = P 0, the orthogonal projector onto H0 and

S†0S0 = 1s, the identity operator on Hs.
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As presented in Chapter 2, we are looking for an expansion based on linear super-
operators {Km}m≥0 between Ds and D and on Lindblad dynamics {Ls,m}m≥0 on Ds such
that any solution t 7→ ρs(t) ∈ Ds of the reduced Lindblad master equation

d

dt
ρs = Ls(ρs) =

∑
m≥0

εmLs,m(ρs) (5.10)

yields, via the map
ρ(t) = K(ρs(t)) =

∑
m≥0

εmKm(ρs(t)) , (5.11)

a trajectory of the perturbed system (5.4).
We get from Chapter 2 that the recurrence relations corresponding to the invariance

condition of the slow manifold that have to be solved are given by equations (2.24) and
(2.25) :

The first order terms in epsilon define K1 and Ls,1 by :

L0(K1(ρs)) + L1(K0(ρs)) = K0(Ls,1(ρs)) (5.12)

The second order terms in epsilon define K2 and Ls,2 by in :

L0(K2(ρs)) + L1(K1(ρs)) = K0(Ls,2(ρs)) +K1(Ls,1(ρs)) , (5.13)

Where we used the solution of the zeroth order terms (2.23). They are given by K0 defined
in (5.9), and consequently, as we have L0

(
K0(ρs)

)
≡ 0, the zero order reduced dynamics

is Ls,0(ρs) = 0.
The following lemma proves that the super-operator Ls,1(ρs) defined by equation (5.12)

is always of Lindblad form.

Lemma 6. (First order reduced dynamics, any perturbation)
The first order reduced dynamics is given by

d

dt
ρs = εLs,1(ρs)

The super-operator Ls,1 is in a Lindblad form, whose expression can be computed using
equation (5.14) or (5.15) depending on the form of the super-operator L1.

Assume that L1(ρ) = −i[H1, ρ] for some Hermitian operator H1 on H. Then, if Ls,1
satisfies (5.12), we have

Ls,1(ρs) = −i[Hs,1, ρs] (5.14)

where Hs,1 = S†0H1S0 is a Hermitian operator on Hs.
Assume that L1(ρ) = L1ρL

†
1 − 1

2

(
L†1L1ρ+ ρL†1L1

)
for some operator L1 on H. Then,

if Ls,1 satisfies (5.12), we have

Ls,1(ρs) =
∑
µ

AµρsA
†
µ − 1

2

(
A†µAµρs + ρsA

†
µAµ

)
(5.15)

with Aµ = S†0MµL1S0 and the Kraus operators Mµ defined by (5.5).
The result for a general Lindbladian dynamics (2.10) for r = 1 follows by linearity.
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Proof. By definition we have R ◦ K0 = K0 and R ◦ L0 = L0 ◦ R = 0. Therefore we have,
R
(
L1
(
K0(ρs)

))
= K0

(
Ls,1(ρs)

)
. Left multiplication by S†0 and right multiplication by S0

yields
Ls,1(ρs) = S†0R

(
L1

(
S0ρsS

†
0

))
S0

since S†0S0 = 1s is the identity operator on Hs.
For L1(ρ) = −i[H1, ρ] we have, exploiting the fact thatMµS0 = λµS0 and S†0S0 = 1s:

S†0R
(
L1

(
S0ρsS

†
0

))
S0 = −i

∑
µ

S†0Mµ

(
H1S0ρsS

†
0 − S0ρsS

†
0H1

)
M †

µS0

= −i
∑
µ

(
λ∗µS

†
0

)
MµH1S0ρs + i

∑
µ

ρsS
†
0H1M

†
µ

(
λµS0

)
= −i

∑
µ

S†0M
†
µMµH1S0ρs + i

∑
µ

ρsS
†
0H1M

†
µMµS0

= −i
[
S†0H1S0 , ρs

]
(5.16)

since ∑µM
†
µMµ = 1. We get the Zeno Hamiltonian Hs,1 = S†0H1S0.

For L1(ρ) = L1ρL
†
1 − 1

2

(
L†1L1ρ+ ρL†1L1

)
, similar computations yield

S†0R
(
L1

(
S0ρsS

†
0

))
S0 =

∑
µ

S†0MµL1S0ρsS
†
0L
†
1M

†
µS0

− 1
2

∑
µ

S†0Mµ

(
L†1L1S0ρsS

†
0 − S0ρsS

†
0L
†
1L1

)
M †

µS0

=
(∑

µ

AµρsA
†
µ

)
− 1

2S
†
0L
†
1L1S0ρs − ρsS†0L

†
1L1S0

with Aµ = S†0MµL1S0. It remains to prove that ∑µA
†
µAµ = S†0L

†
1L1S0 for showing

that we indeed have a Lindblad formulation. This results from the following computations:∑
µ

A†µAµ =
∑
µ

S†0L
†
1M

†
µS0S

†
0MµL1S0

= S†0L
†
1R
∗(S0S

†
0)L1S0

= S†0L
†
1L1S0,

where we use that S0S
†
0 = P 0 and R∗(P 0) = 1. �

5.2.3 Second order expansion for Hamiltonian perturbations
We assume here that L0 is defined by a single operator L0 :

L0(ρ) = L0ρL
†
0 − 1

2

(
L†0L0ρ+ ρL†0L0

)
,

and that the perturbation L1 is Hamiltonian, L1(ρ) = −i[H1, ρ], where H1 is a Hermitian
operator. Before turning to the computation of the second order reduced dynamics, we
show how to express the first order parametrisation of the slow manifold in a Kraus map
form under the considered assumptions.

We begin by a technical lemma, need in the different proofs of this section. It states
that attractivity and invariance of the steady states, belonging to D0 the density operators
with support on H0, implies not only L0(K0(ρs)) = 0 but even L0S0 = 0 and S†0L†0 = 0.
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Lemma 7. Denote {|ν0〉} a Hilbert basis of the decoherence-free space H0. The vectors
|ν0〉 are the eigenvectors of the operator L0 associated with the eigenvalue 0.

Proof. We construct a Hilbert basis of H containing the Hilbert basis of H0 :

{|0h〉 , |1h〉 , . . . , |m′h〉 , |00〉 , |10〉 , . . . , |ν0〉 , . . . |m0〉} , {|n〉}.

with m′h,m0 ∈ N < ∞. For any density operator |ν0〉〈ν0| ∈ D0, the decoherence-free
condition impose that L0(|ν0〉〈ν0|) = 0. Therefore for all n, ν we have ,

〈n| L0(|ν0〉〈ν0|) |n〉 = 0

Using that ∀n 6= ν0, 〈n| ν0〉 = 0 we get that

〈n|L0 |ν0〉〈ν0|L†0 |n〉 = 0

Therefore, for all ν, we have L0 |ν0〉 = λ |ν0〉 for some λ ∈ C. Note that λ is independent
of ν (this results from the same computation on |ν0〉 + |ν ′0〉 ∈ H0). We now show that
necessarily λ = 0. Straightforward computation yields that for all ν,

L0(|ν0〉〈ν0|) |ν0〉 = 0 = |λ|
2

2 |ν0〉 −
λ

2L
†
0 |ν0〉 .

If λ 6= 0 then it results L†0 |ν0〉 = λ∗ |ν0〉. This is impossible, as it implies that for any
density matrix ρ ∈ H and for all ν we have, 〈ν0| L0(ρ) |ν0〉 = 0 which contradict the
attractivity property of the decoherence-free space. �

The following lemma gives a simple expression for K1(ρs) solution of (5.12) as well as
the Kraus expression for K0 + εK1 (up to higher order terms).
Lemma 8. (First order parametrisation)

Assume that L0(ρ) = L0ρL
†
0 − 1

2

(
L†0L0ρ + ρL†0L0

)
and L1(ρ) = −i[H1, ρ]. Then

Ls,1(ρs) = −i
[
S†0H1S0 , ρs

]
and K1(ρs) = −i

[
C1,S0ρsS

†
0

]
satisfy (5.12) where C1 is the

Hermitian operator

C1 = 2(L†0L0)−1H1P 0 + 2P 0H1(L†0L0)−1

with P 0 the orthogonal projector onto H′ and (L†0L0)−1 standing for the Moore-Penrose
pseudo-inverse of the Hermitian operator L†0L0.

The associated first order ρs-parametrisation of the slow invariant attractive manifold,

K0(ρs) + εK1(ρs) =
(
1− iε(L†0L0)−1H1

)
S0ρsS

†
0

(
1 + iε(L†0L0)−1H1

)
+ O(ε2),

corresponds, up to second-order terms, to a trace-preserving completely positive map as it
is expressed in a Kraus form.

Proof. With S0Ls,1(ρs)S†0 = −i
[
P 0H1P0,S0ρsS

†
0

]
, equation (5.12) reads

L0(K1(ρs)) = −i
[
P 0H1P 0,S0ρsS

†
0

]
+ i
[
H1,S0ρsS

†
0

]
= −i

[
P 0H1P 0 −H1 , S0ρsS

†
0

]
.
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With K1(ρs) = −i
[
C1,S0ρsS

†
0

]
we have also

L0(K1(ρs)) =− iL0
[
C1,S0ρsS

†
0

]
L†0

+ i
2

(
L†0L0

[
C1,S0ρsS

†
0

]
+
[
C1,S0ρsS

†
0

]
L†0L0

)
.

It results from Lemma 7 that L0S0 = 0 and S†0L†0 = 0. We thus have

L0
[
C1,S0ρsS

†
0

]
L†0 = 0.

Since additionally, P 0S0 = S0, L†0L0P 0 = 0 and L†0L0(L†0L0)−1 = 1− P 0, we have

L†0L0
[
C1,S0ρsS

†
0

]
= 2(1− P 0)H1P 0S0ρsS

†
0.

Thus

L0(K1(ρs)) = i(1− P 0)H1P 0S0ρsS
†
0 − iS0ρsS

†
0P 0H1(1− P 0)

= −i
[
P 0H1P 0 −H1 , S0ρsS

†
0

]
.

�

The second order term Ls,2(ρs) is solution of (5.13). Using, once again, R ◦ L0 ≡ 0
and R ◦ K0 = K0, we get

Ls,2(ρs) = S†0R
(
L1 (K1(ρs))−K1 (Ls,1(ρs))

)
S0. (5.17)

The following lemma shows that Ls,2(ρs) admits a Lindbladian form.
Lemma 9. (Second order, Hamiltonian perturbation)

The super-operator Ls,2 corresponding to the second order reduced dynamics defined
by (5.17) admits the following Lindbladian formulation

Ls,2(ρs) =
∑
µ

BµρsB
†
µ − 1

2

(
B†µBµρs + ρsB

†
µBµ

)

with Bµ = 2S†0MµL0(L†0L0)−1H1S0, Mµ defined by (5.5) and (L†0L0)−1 standing for
the Moore-Penrose pseudo-inverse of L†0L0.

Proof. We have R
(
K1 (Ls,1(ρs))

)
= 0. This results from (Ks0 stands for S0ρsS

†
0 = K0(ρs))

K1 (Ls,1(ρs)) = −i[C1, −iS0[S†0H1S0, ρs]S†0]
= −[C1,P 0H1Ks0 −Ks0H1P 0]
= −2(L†0L0)−1H1(P 0H1Ks0 −Ks0H1P 0)

+ 2(P 0H1Ks0 −Ks0H1P 0)H1(L†0L0)−1 (5.18)

where we have used Lemma 8 and P 0K0 = K0.
Repeating computations similar to (5.16), we see that for any operator A on H,

R(AP 0) = R(P 0A) = P 0AP 0. Since P 0Ks0 = Ks0P 0 = Ks0 we moreover have R(AKs0) =
P 0AKs0 and R(Ks0A) = Ks0AP 0. This gives the result of applying R on all the terms in
(5.18), and since P 0(L†0L0)−1 = (L†0L0)−1P 0 = 0, we conclude that R(K1(Ls,1)) = 0.
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Thus Ls,2(ρs) = S†0R
(
L1 (K1(ρs))

)
S0. Exploiting similar simplifications, we have

L1 (K1(ρs)) = −H1(C1Ks0 −Ks0C1) + (C1Ks0 −Ks0C1)H1

= H1Ks0C1 +C1Ks0H1 − (H1C1Ks0 +Ks0C1H1)
= 2H1Ks0H1(L†0L0)−1 + 2(L†0L0)−1H1Ks0H1

− 2H1(L†0L0)−1H1Ks0 − 2Ks0H1(L†0L0)−1H1

and, using S†0R(AKs0) = S†0P 0AKs0 = S†0AKs0 and the definition Ks0 = S0ρsS
†
0, we get

Ls,2(ρs) = 2S†0R
(
H1Ks0H1(L†0L0)−1 + (L†0L0)−1H1Ks0H1

)
S0

− 2S†0H1(L†0L0)−1H1S0ρs − 2ρsS†0H1(L†0L0)−1H1S0.

Since for all A, R(L0(A)) = 0, we have the identity

R(L0AL
†
0) = R

(
1
2

(
L†0L0A+AL†0L0

))
.

With A = (L†0L0)−1H1Ks0H1(L†0L0)−1 we get

2R
(
L0(L†0L0)−1H1Ks0H1(L†0L0)−1L†0

)
=

R
(

(1− P 0)H1Ks0H1(L†0L0)−1 + (L†0L0)−1H1Ks0H1(1− P 0)
)

= R
(
H1Ks0H1(L†0L0)−1 + (L†0L0)−1H1Ks0H1

)

since R
(
P 0H1Ks0H1(L†0L0)−1

)
= P 0H1Ks0H1(L†0L0)−1P 0 and (L†0L0)−1P 0 = 0. Thus

Ls,2(ρs) = 4S†0R
(
L0(L†0L0)−1H1Ks0H1(L†0L0)−1L†0

)
S0

− 2S†0H1(L†0L0)−1H1S0ρs − 2ρsS†0H1(L†0L0)−1H1S0.

Using the decomposition (5.5) of R we have

4S†0R
(
L0(L†0L0)−1H1Ks0H1(L†0L0)−1L†0

)
S0 =

∑
µ

BµρsB
†
µ .

We conclude by the following computations:

1
2

∑
µ

B†µBµ = 2
∑
µ

S†0H1(L†0L0)−1L†0M
†
µS0S

†
0MµL0(L†0L0)−1H1S0

= 2S†0H1(L†0L0)−1L†0R
∗(P 0)L0(L†0L0)−1H1S0

= 2S†0H1(L†0L0)−1L†0L0(L†0L0)−1H1S0

= 2S†0H1(L†0L0)−1H1S0.

�





Chapter 6

Conclusions and perspectives

In this thesis we have studied adiabatic elimination for open quantum systems using a
geometric approach.

In chapter 2, after presenting general notions on open quantum systems and singular
perturbation theory, we introduced the model of considered quantum system throughout
this manuscript. The dynamics is assumed to be on different time-scales, a fast and a slow
one, characterised by a small parameter. One of the key issues of adiabatic elimination
is to ensure a physical meaning for the reduced model. Therefore, we imposed two
constraints, on the reduced model, to tackle this objective. First, we want to ensure that
the dynamics of the reduced system is in a Lindblad master equation form as it is the
only form of dynamics carrying a physical significance. Secondly, the parametrisation of
the slow manifold, that can be seen as a mapping from the reduced density operator to
the density operator of the entire system, is a Kraus map form i.e. completely positive
trace-preserving. To answer this problem, we presented in the last section of chapter 2
our method. We treat the slow dynamics as a perturbation and, use geometric singular
perturbation theory and center manifold theory. we have derived an asymptotic expansion
for the perturbation dynamics and for the slow manifold, in terms of powers of the time-
scale separation leading to recurrence relations linking the reduced and the complete model.
This asymptotic expansion naturally leads to the characterisation of the order of precision
of the approximation.

The chapter 3 is devoted to the resolution of the recurrence relations allowing to
compute the reduce dynamics and the parametrisation of the slow manifold. It contains
our main results stated in different Theorems. In this chapter, we considered the case of
composite open quantum systems. We consider bipartite systems, where a subsystem is
assumed to be on a fast time-scale and to converge towards a unique steady state. It is
weakly coupled to another subsystem, on a slow time-scale. We derived general formulas
for the computation of the first order reduced model. Our method ensure a reduced
dynamics in a Lindblad form as well as a parametrisation of the slow manifold in a Kraus
map form. Then, focusing on cases with Hamiltonian interaction between the fast and
the slow subsystem, as it is common, we derived explicit formula for the computation of
the second order approximation ensuring the desired constraints. This formula allowed
us to make general structural results on the second order reduced dynamics. Then, we
considered another type of standard coupling between the two subsystems, namely a
cascade interaction by means of a circulator. We got the second order reduced dynamics
in a Lindblad form as well, provided a small assumption.

We took great care in the practical application of our method of adiabatic elimination
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and chapter 4 proposes different techniques to compute the reduced model up to second
order, provided that the fast subsystem is an harmonic oscillator. These techniques are
illustrated with several examples chosen for their commonness and/or relevance.

In the last chapter 5, we presented different results which have to be completed in
some sense. First, we derived an explicit expression of the third order reduced dynamics
for composite systems with interaction between fast and slow subsystems described by
a one tensor-product term Hamiltonian. Secondly, we considered a completely different
type of systems, namely systems with decoherence-free space. For such systems, we
were able to compute the first order reduced model. We also got the second order
reduced dynamics provided that the fast dynamics is described by only one decoherence
operator. This illustrates that our method is suitable in different cases : composite systems
with Hamiltonian and cascaded interactions and systems with decoherence-free space,
representing a large variety of systems usually considered.

Now, we wish to draw some potential development paths on the presented work.
These paths can be divided into two lines. First, extend the second order results for
more general type of dynamics thus allowing to treat more quantum systems. Second,
derive explicit formulas allowing to compute higher order approximations. This would
allow to get accurate results for less significant time-scale separations and/or to bound
more precisely the effects of the coupling, for systems where higher order perturbations
become important to characterise. We conjecture that this geometric adiabatic elimination
technique will lead to formulas conveying a physical interpretation of the reduced model
(by ensuring the Lindblad form of the reduced dynamics, and by providing a completely
positive trace-preserving mapping from reduced model to actual system states) at higher
orders as well. The key element to do so, would be to properly choose a gauge degree of
freedom appearing in the computations.



Conclusions et perspectives

Dans cette thèse, nous avons étudié le problème de l’élimination adiabatique dans les
systèmes quantiques ouverts en proposant une nouvelle approche géométrique.

Dans le chapitre 2, après avoir présenté des notions générales sur les systèmes quantiques
ouverts et la théorie des perturbations singulières, nous introduisons le modèle des systèmes
quantiques considérés tout au long de ce manuscrit. Nous considérons les systèmes
quantiques dont la dynamique possède deux échelles de temps, une lente et une rapide,
caractérisée par un petit paramètre. Une des difficultés principales de l’élimination
adiabatique pour les systèmes quantiques est d’assurer une signification physique du
modèle réduit. Ainsi, nous imposons deux contraintes, sur le modèle réduit, pour satisfaire
cet objectif. Premièrement, nous devons assurer que la dynamique du système réduit soit
sous forme de Lindblad, ce qui est la seule forme ayant un sens physique. Deuxièmement, la
paramétrisation de la variété lente, qui peut être vue comme une application de l’opérateur
densité réduit vers l’opérateur densité du système complet, doit être une application
de Kraus c’est-à-dire préservant la trace et complètement positive. Pour résoudre ce
problème, nous présentons dans la dernière section du chapitre 2 notre méthode. Nous
traitons la dynamique lente comme une perturbation et utilisons la théorie géométrique
des perturbations singulières avec la théorie des variétés centres. Après un développement
asymptotique de la dynamique perturbatrice et de la variété lente, en fonction des puissances
du paramètre représentant la séparation des échelles de temps, nous obtenons des relations
de récurrence liant le modèle réduit et complet. Ce développement asymptotique amène
naturellement à la caractérisation de la précision de l’approximation.

Le chapitre 3 est consacré à la résolution des relations de récurrence permettant de
calculer la dynamique réduite et la paramétrisation de la variété lente. Il contient nos
principaux résultats présentés dans différents théorèmes. Nous considérons des systèmes
composites dans lesquels un sous-système est supposé sur une échelle de temps rapide
et convergeant vers un état d’équilibre unique. Ce sous-système est faiblement couplé à
un autre, qui est sur une échelle de temps lente. Nous obtenons des formules générales
afin de calculer le modèle réduit au premier ordre. Notre méthode assure une dynamique
réduite sous forme de Lindblad ainsi qu’une paramétrisation de la variété lente sous forme
de Kraus. Ensuite, en étudiant le cas standard d’interaction Hamiltonienne entre les
deux sous-systèmes, nous obtenons une formule explicite pour calculer l’approximation au
second tout en respectant les contraintes imposées. Cette formule nous permet de dresser
des résultats généraux sur la structure de la dynamique réduite au second ordre. Ensuite,
nous considérons un autre type de couplage standard entre les deux sous-systèmes, à savoir
un couplage en cascade effectué au moyen d’un circulateur. Nous obtenons également la
dynamique réduite au second ordre, dans une forme de Lindblad, au moyen d’une légère
hypothèse.

Un soin particulier est accordé à l’application pratique de notre méthode d’élimination
adiabatique et le chapitre 4 propose différentes techniques afin de calculer le modèle réduit
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jusqu’au second ordre dans le cas où le système rapide est un oscillateur harmonique. Ces
techniques sont illustrées par plusieurs exemples choisis pour leurs apparitions fréquentes
et/ou leur pertinence.

Dans le dernier chapitre 5, nous avons présenté différents résultats qui restent à
compléter en un certain sens. Premièrement, nous avons obtenu une expression explicite
de la dynamique réduite au troisième ordre pour les systèmes composites dans lesquels
l’interaction entre le sous-système lent et rapide est décrite par un Hamiltonien composé
d’un unique terme sous forme de produit tensoriel. Deuxièmement, nous avons considéré un
type de système complètement différent, à savoir les systèmes possédant un sous-espace ne
subissant pas de décohérence (decoherence-free space). Pour de tels systèmes, nous avons
pu calculer le modèle réduit au premier ordre. Nous avons également des formules explicites
pour calculer la dynamique réduite au second ordre lorsque la dynamique rapide est décrite
par un unique opérateur de décohérence. Cela illustre notamment que notre méthode
est applicable dans des cas très différents: les systèmes composites avec des couplages
Hamiltoniens ou en cascade et les systèmes avec espace sans décohérence, représentant
une large gamme de systèmes usuellement considérés.

Enfin, nous souhaitons présenter quelques pistes potentielles de développement du
travail présenté. Nous voyons deux principales pistes. Premièrement, étendre nos résultats
au second ordre pour des dynamiques plus générales, permettant de traiter des systèmes
quantiques généraux. Deuxièmement, obtenir des formules explicites pour calculer les
approximations aux ordres supérieurs. Cela permettrait d’obtenir des résultats précis
pour des séparations d’échelles de temps moins significatives et/ou de caractériser plus
précisément les effets du couplage, pour les systèmes dans lesquels les perturbations d’ordre
deviennent importantes à analyser. Nous conjecturons que cette méthode géométrique
d’élimination adiabatique permettra d’obtenir des formules préservant l’interprétation
physique du modèle réduit (en assurant une dynamique réduite sous forme de Lindblad et
une application du modèle réduit au système entier complètement positive et préservant
la trace) pour les ordres plus élevés également. L’élément clef pour y arriver, serait de
choisir judicieusement une liberté de jauge apparaissant dans les calculs.
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Appendix A

Inverse of Lindblad super-operators
via Kraus maps

Consider the Lindblad master equation ρ̇ = L(ρ) where ρ is a density operator on a finite
dimensional Hilbert space H. Assume that for any operator X on H, etL(X) converges
exponentially towards a fixed point depending on X. This means that there exists a
complete-positive and trace-preserving map R such that limt7→+∞ e

tL(X) = R(X). Thus
we have L(R(X)) ≡ 0 ≡ R(L(X)) ≡ 0 since etL(R(X)) ≡ R(X) ≡ R(etL(X)).
Lemma 10. There exists τ̄ > 0 such that the super-operator K sending operator X to

K(X) = 1
τ̄

∫ +∞

0
etL
(
X −R(X)

)
dt+R(X) (A.1)

is a linear, trace-preserving and completely positive mapping with

−L
(
τ̄K(X)

)
= X −R(X).

Proof. Due to exponential convergence of etL(X) towards R(X), the indefinite integral

M(X) ,
∫ +∞

0
etL
(
X −R(X)

)
dt

is absolutely convergent. Since d
dt
etL
(
X − R(X)

)
= L

(
etL
(
X −R(X)

))
, we have

L(K(X)) = −X−R(X)
τ̄

. Since, for each t ≥ 0 the propagator etL is trace preserving and
Tr (X) = Tr

(
RX

)
, simple computations yield Tr

(
M(X)

)
= 0 and thus Tr

(
K(X)

)
=

Tr (X).
To prove complete-positivity, consider the extension of L, K, R on the tensor product

H ⊗ H̃ where H̃ is any Hilbert space of finite dimension. Let us prove that for τ̄ large
enough, such extension of K is non-negative, i. e., that for any |Φ〉 , |Ψ〉 ∈ H ⊗ H̃, we
have

〈
Ψ
∣∣∣∣K (|Φ〉〈Φ|)

∣∣∣∣Ψ〉 ≥ 0. Consider an Hilbert basis (|n〉)1≤n≤d of H those dimension
is denoted by d. Take

|Φ〉 =
d∑

n=1
|n〉 ⊗ |φn〉 , |Ψ〉 =

d∑
ν=1
|ν〉 ⊗ |ψν〉

where, for each n and ν in {1, . . . , d}, |φn〉 , |ψν〉 ∈ H̃. Then standard computations give〈
Ψ
∣∣∣∣M (|Φ〉〈Φ|)

∣∣∣∣Ψ〉 =
d∑

n′,ν′,n,ν=1
z∗n′,ν′ Mn′,ν′,n,ν zn,ν
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with zn,ν = 〈φn| ψν〉 and

Mn′,ν′,n,ν =
∫ +∞

0

〈
ν ′
∣∣∣∣etL(|n′〉〈n|)−R(|n′〉〈n|)

∣∣∣∣ν〉 dt.

Similarly 〈
Ψ
∣∣∣∣R (|Φ〉〈Φ|)

∣∣∣∣Ψ〉 =
d∑

n′,ν′,n,ν=1
z∗n′,ν′ Rn′,ν′,n,ν zn,ν

with Rn′,ν′,n,ν =
〈
ν ′
∣∣∣∣R(|n′〉〈n|)

∣∣∣∣ν〉. This means that, with the vector z = (zn,ν)n,ν∈{1,...,d} of

dimension d2 andM =
(
Mn′,ν′, n,ν

)
with R =

(
Rn′,ν′, n,ν

)
considered as d2×d2 Hermitian

matrices, we have the following quadratic forms〈
Ψ
∣∣∣∣M (|Φ〉〈Φ|)

∣∣∣∣Ψ〉 = z†Mz,
〈

Ψ
∣∣∣∣R (|Φ〉〈Φ|)

∣∣∣∣Ψ〉 = z†Rz

where z depends on |Φ〉 and |Ψ〉, where M and R depend only onM and R. We have
thus to prove that exists τ̄ > 0 such that M + τ̄R ≥ 0. Since R is a complete-positive
map, the d2 × d2 Hermitian matrix R is non-negative.

Take z, such that Rz = 0. Take T > 0. We have〈
Ψ
∣∣∣∣ ∫ T

0
etL
(
|Φ〉〈Φ| − R(|Φ〉〈Φ|)

)
dt
∣∣∣∣Ψ
〉

=
〈

Ψ
∣∣∣∣ ∫ T

0
etL
(
|Φ〉〈Φ|

)
dt
∣∣∣∣Ψ
〉

since etL
(
R(|Φ〉〈Φ|)

)
= R(|Φ〉〈Φ|) and

〈
Ψ
∣∣∣∣R(|Φ〉〈Φ|)

∣∣∣∣Ψ〉 = z†Rz = 0. We have
〈

Ψ
∣∣∣∣ ∫ T

0
etL
(
|Φ〉〈Φ|

)
dt
∣∣∣∣Ψ
〉

=
∫ T

0

∑
n,ν,n′,ν′

z∗n′,ν′

〈
ν ′
∣∣∣∣etL(|n′〉〈n|)

∣∣∣∣ν〉 zn,ν dt.
Since for each t ≥ 0, etL is completely positive, then there exists a Kraus decomposition

etL(X) =
∑
µ

W µ,tXW
†
µ,t

with operators W µ,t on H such that ∑µW
†
µ,tW µ,t = I. We have〈

ν ′
∣∣∣∣etL(|n′〉〈n|)

∣∣∣∣ν〉 =
∑
µ

〈
ν ′
∣∣∣∣W µ,t

∣∣∣∣n′〉〈n∣∣∣∣W †
µ,t

∣∣∣∣ν〉 .
Consequently

∑
n,ν,n′,ν′

z∗n′,ν′

〈
ν ′
∣∣∣∣etL(|n′〉〈n|)

∣∣∣∣ν〉 zn,ν =
∑
µ

∣∣∣∣∣∣
d∑

n,ν=1

〈
n

∣∣∣∣W †
µ,t

∣∣∣∣ν〉 zn,ν
∣∣∣∣∣∣
2

.

Since z†Mz is the limit when T tends to +∞ of〈
Ψ
∣∣∣∣ ∫ T

0
etL
(
|Φ〉〈Φ|

)
dt

∣∣∣∣Ψ
〉
,

we have for any T > 0

z†Mz ≥
∑
µ

∫ T

0

∣∣∣∣∣∣
d∑

n,ν=1

〈
n
∣∣∣∣W †

µ,t

∣∣∣∣ν〉 zn,ν
∣∣∣∣∣∣
2

dt ≥ 0.
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Assume now that z†Mz = 0. The above inequality implies that for any t > 0

d∑
n,ν=1

〈
n

∣∣∣∣W †
µ,t

∣∣∣∣ν〉 zn,ν = 0.

Recall that, by assumption, ∑n,ν

〈
ν ′
∣∣∣∣R(|n′〉〈n|)

∣∣∣∣ν〉 zn,ν = 0 for any n′, ν ′ ∈ {1, . . . , d}.
Consequently

∑
n,ν

(∫ T

0

〈
ν ′
∣∣∣∣etL(|n′〉〈n|)−R(|n′〉〈n|)

∣∣∣∣ν〉 dt

)
zn,ν

=
∑
n,ν

(∫ T

0

〈
ν ′
∣∣∣∣etL(|n′〉〈n|)

∣∣∣∣ν〉 dt

)
zn,ν

=
∫ T

0

∑
µ

〈
ν ′
∣∣∣∣W µ,t

∣∣∣∣n′〉
(∑
n,ν

〈
n

∣∣∣∣W †
µ,t

∣∣∣∣ν〉 zn,ν
)

= 0.

Thus for any z such that Rz = 0 and z†Mz = 0, we have necessarily Mz = 0 by taking
the limit for T tending to +∞.

To summarize we have shown that

1. R ≥ 0 ;

2. if z†Rz = 0 then z†Mz ≥ 0;

3. if z†Rz = z†Mz = 0 then Mz = 0.

According to Lemma 11 proved below, exists τ̄ > 0 such that M + τ̄R ≥ 0.
�

Lemma 11. Consider two Hermitian matrices of same dimension R and M such that R
is non negative, such that z†Rz = 0 implies that z†Mz ≥ 0, and such z†Rz = z†Mz = 0
implies Mz = 0. Then for τ ≥ 0 large enough, M + τR ≥ 0.

Proof. Up to a unitary transformation, we have the block decomposition associated with
kerR and kerR⊥:

M =
(
A C†

C B

)
, R =

(
0 0
0 D

)
, z =

(
x
y

)
,

with A, B and D Hermitian matrices with D > 0. For any z such that z†Rz = 0 we have
z†Mz ≥ 0, this means that A ≥ 0. Up to some unitary transformation on A only, we can
always assume the following sub-block decomposition for A, C and x

A =
(

0 0
0 Ā

)
, C =

(
C̃ C̄

)
, x =

(
x̃
x̄

)
,

with Ā > 0. According to these block decompositions, z†Rz = z†Mz = 0 means that
y = 0 and x̄ = 0 with x̃ arbitrary. But Mz = 0 means that

(
C̃ C̄

)( x̃
0

)
= C̃x̃ = 0
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for all x̃. Thus C̃ = 0. To summarize, up to a unitary transformation, we have the
following decomposition for M and R

M =

 0 0 0
0 Ā C̄†

0 C̄ B

 , R =

 0 0 0
0 0 0
0 0 D


with Ā > 0 and D > 0. For τ large enough τĀ ≥ C̄†D−1C̄ and thus M + τR ≥ 0 (see,
e.g, [Bha07, Theorem 1.3.3, page 14]). �

Several times throughout the manuscript, we claim a factorization property with ρA for
the result of L−1

A . This property is a direct consequence of the following two short lemmas,
first introduced in [ACSR17a]. Then, we use these lemmas to derive Corollary 2 in the
particular case of composite systems with a cascaded structure, as presented in Section
3.3.
Lemma 12. Let LA(ρA) = 0, with ρA a density operator and LA is defined by an hermitian
operator HA and some operators LA,µ, all acting on HA by :

LA(ρ) = −i [HA , ρ] +
∑
µ

LA,µρL
†
A,µ −

1
2
(
L†A,µLA,µρ+ ρL†A,µLA,µ

)
. (A.2)

Then for any |ν〉 ∈ ker(ρA) we have √ρAL
†
A,µ |ν〉 = 0, for all µ.

Proof. For |ν〉 ∈ ker(ρA) we have 〈ν| LA(ρA) |ν〉 = ∑
k 〈ν|LA,µρAL

†
A,µ |ν〉. Since LA(ρA) =

0 each term of this positive sum must vanish. �

Lemma 13. Denote by ρ = ρA the unique density operator solution of LA(ρ) = 0. For a
traceless operator Y such that ker(ρA) ⊆ ker(Y ), the traceless solution to X = L−1

A (Y )
also satisfies ker(ρA) ⊆ ker(X).

Proof. Note that the operators have such kernels if and only if they can be written
X = X̃ρA, Y = Ỹ ρA. Since LA is a bijection on the space of traceless operators, the
property is equivalent to show that Y |ν〉 = LA(X̃ρA) |ν〉 = 0 for all |ν〉 ∈ ker(ρA). By
using ρA |ν〉 = 0 and Lemma 12, we directly get

LA(X̃ρA) |ν〉 = X

(
iρAHA − 1

2ρA
∑
µ

L†AµLAµ

)
|ν〉 .

Subtracting 0 = LA(ρA) inside the bracket, applying ρA |ν〉 = 0 and Lemma 12 once again,
we do get 0. �

Corollary 2. Let the density operator ρA be solution of LA(ρA) = L̃A(ρA) +Da(ρA) = 0
with L̃A of the form (A.2) . For the traceless operator Y = ρAa

† − Tr
(
ρAa

†
)
ρA, the

traceless solution to X = L−1
A (Y ) satisfies ker(ρA) ⊆ ker(X).

Proof. From Lemma 12 we get that for any |ν〉 ∈ ker(ρA) we have√ρAa† |ν〉 = 0. Therefore
ker(ρA) ⊆ ker(Y ), then apply Lemma 3. �



Appendix B

Computation of Ls,2: positivity of
quadratic form on {Bk,B

†
k}

We define the super-operator LA by an Hermitian operator HA and some operators LA,µ,
all acting on HA such that :

LA(ρ) = −i [HA , ρ] +
∑
µ

LA,µρL
†
A,µ −

1
2
(
L†A,µLA,µρ+ ρL†A,µLA,µ

)
.

The density operator ρA on HA verifies LA(ρA) = 0.
Lemma 14. : For any operators X and Y on HA, it holds that

LA(XρA)Y † +XLA(ρAY †) = LA(XρAY
†)−

∑
µ

[LA,µ,X]ρA[LA,µ,Y ]† .

Proof. To check this, expand both sides using the definition of LA. Using on the left hand
side the facts that

[HA , XρA]Y † +X
[
HA , ρAY

†
]

=
[
HA , XρAY

†
]

+X [HA, ρA]Y †

with −
∑
µ

ρAL
†
A,µLA,µ +L†A,µLA,µρA

2 = i [HA , ρA]−
∑
µ

LA,µρAL
†
A,µ

one gets the proof. �

Lemma 15. The matrix X defined in Lemma 4 by

Xk,j = Tr
(
F jρAA

†
k +AjρAF

†
k

)
with F jρA = τKA (Aj ρA )− τTr (Aj ρA) ρA

is always positive semidefinite. In particular, for H int = A⊗B with A and B Hermitian,
the coefficient Tr

(
F ρAA+AρAF †

)
is always non-negative.

Proof. The proof for the particular case is simple and introduces the main idea. Apply
Lemma 14 with X = Y = F ; use that −LA(F ρA) = AρA − Tr (AρA) ρA; take the trace
over HA and use that Tr (F ρA) = 0 = Tr (LA). This yields:

Tr
(
F ρAA+AρAF †

)
=
∑
µ

Tr
(
[LA,µ,F ]ρA[LA,µ,F ]†

)
where the right hand side is obviously nonnegative.
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Applying the same idea with (X,Y ) = (F j,F k), shows that the components of X can
be re-expressed as

Xj,k =
∑
µ

Tr
(
[LA,µ,F k] ρA [LA,µ,F j]†

)
=:
∑
µ

X
(µ,ρA)
j,k .

For each µ and replacing ρA by any pure state
∣∣∣ψ〉 〈ψ∣∣∣, we would thus have

X
(µ,|ψ〉〈ψ|)
j,k =

〈
v

(µ,ψ)
j

∣∣∣∣ v(µ,ψ)
k

〉
with

∣∣∣∣v(µ,ψ)
k

〉
= [LA,µ,F k]

∣∣∣ψ〉 .
The corresponding matrix X(µ,|ψ〉〈ψ|) is a Gram matrix, which is always positive semi-
definite, see e.g. [Bha07, exercise 1.1.1, page 3]. The same then obviously holds for X,
which is obtained by taking the sum over µ and a convex combination over different∣∣∣ψ〉 〈ψ∣∣∣. �





 

 

 

Résumé 
 

Cette thèse traite du problème de la réduction 

de modèle pour les systèmes quantiques 

ouverts possédant différentes échelles de 

temps, également connu sous le nom 

d'élimination adiabatique. L'objectif est 

d'obtenir une méthode générale d'élimination 

adiabatique assurant la structure quantique 

du modèle réduit. 

 

On considère un système quantique ouvert, 

décrit par une équation maîtresse de Lindblad 

possédant deux échelles de temps, la 

dynamique rapide faisant converger le 

système vers un état d'équilibre. Les 

systèmes associés à un état d'équilibre 

unique ou une variété d'états d'équilibre 

("decoherence-free space") sont considérés. 

La dynamique lente est traitée comme une 

perturbation. En utilisant la séparation des 

échelles de temps, on développe une 

nouvelle technique d'élimination adiabatique 

pour obtenir, à n'importe quel ordre, le 

modèle réduit décrivant les variables lentes. 

Cette méthode, basée sur un développement 

asymptotique et la théorie géométrique des 

perturbations singulières, assure une bonne 

interprétation physique du modèle réduit au 

second ordre en exprimant la dynamique 

réduite sous une forme de Lindblad et la 

paramétrisation définissant la variété lente 

dans une forme de Kraus (préservant la trace 

et complètement positif). On obtient ainsi des 

formules explicites, pour calculer le modèle 

réduit jusqu'au second ordre, dans le cas des 

systèmes composites faiblement couplés, de 

façon Hamiltonienne ou en cascade; des 

premiers résultats au troisième ordre sont 

présentés. Pour les systèmes possédant une 

variété d'états d'équilibre, des formules 

explicites pour calculer le modèle réduit 

jusqu'au second ordre sont également 

obtenues. 

 

Mots Clés 
 

Elimination adiabatique ; Perturbations singulières ; 

Systèmes quantiques ouverts ; Systèmes quantiques 

composites ; Systèmes multi-échelles ; Réduction de 

modèle ; Equation maîtresse de Lindblad 

Abstract 
 

This thesis addresses the model reduction problem 

for open quantum systems with different time-scales, 

also called adiabatic elimination. The objective is to 

derive a generic adiabatic elimination technique 

preserving the quantum structure for the reduced 

model. 

 

We consider an open quantum system, described by 

a Lindblad master equation with two time-scales, 

where the fast time-scale drives the system towards 

an equilibrium state. The cases of a unique steady 

state and a manifold of steady states (decoherence-

free space) are considered. The slow dynamics is 

treated as a perturbation. Using the time-scale 

separation, we developed a new adiabatic elimination 

technique to derive at any order the reduced model 

describing the slow variables. The method, based on 

an asymptotic expansion and geometric singular 

perturbation theory, ensures the physical 

interpretation of the reduced second-order model by 

giving the reduced dynamics in a Lindblad form and 

the mapping defining the slow manifold as a 

completely positive trace-preserving map (Kraus 

map) form. We give explicit second-order formulas, to 

compute the reduced model, for composite systems 

with weak - Hamiltonian or cascade - coupling 

between the two subsystems and preliminary results 

on the third order. For systems with decoherence-free 

space, explicit second order formulas are as well 

derived. 
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