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Abstract

Deflickering consists of removing rapid, artifactual changes of luminosity and
colorimetry from image sequences and improving luminosity consistency between
video frames. It is a necessary and fundamental task in multiple applications,
for instance in archived film sequences, compressed videos and time-lapse videos.
In recent years, there has been a renewal of interest for improving luminosity
consistency acquisition technology in the flicker removal problem, in particular
for periodic flickering. In this context, flicker corresponds to undesirable intensity
and chroma variations due to the interaction between the acquisition frequencies
on the one hand, and the alternating current powering the light sources on the
other hand. The present thesis formulates the periodic deflickering problem in
high speed videos, studies the physical properties of flicker and suggests both
theoretical and experimental solutions for its removal from image sequences.
Finally, a new flicker removal approach is proposed performing jointly motion
tracking and color correction.

Résumé

Le deflickering consiste à supprimer le scintillement présent dans les séquences
d’images afin de réduire les variations lumineuses entre chacune des images de
la vidéo. Il s’agit d’une tâche essentielle, nécessaire dans plusieurs applications,
en particulier dans les séquences de films archivés, les vidéos comprimées et les
vidéos time-lapse. Au cours de ces dernières années, avec le développement des
technologies d’acquisition à haute vitesse, il y a eu un regain d’intérêt pour le
problème de suppression de flicker, en particulier le flicker périodique. Dans
ce contexte, le flicker correspond à des variations indésirables de luminosité et
des couleurs dues à l’interaction entre la vitesse d’acquisition d’une part, et
d’autre part le courant alternatif alimentant les sources lumineuses. La présente
thèse formule le problème du déflickering périodique dans les vidéos à haute
vitesse, étudie les propriétés physiques du flicker et propose à la fois des solutions
théoriques et expérimentales pour sa suppression des séquences d’images. Enfin,
une nouvelle approche est proposée permettant d’effectuer simultanément le suivi
de mouvement et la correction des couleurs.
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Chapter 1

Introduction

1 Context

Image acquisition technology has improved significantly over the last few years,
both at the scientific and industrial levels. These improvements had considerable
impact on the consumer market.

First, over the last two decades, the entire pipeline of video production from
acquisition to playback via editing has moved from analog to digital tools, allowing
perfect replay and archiving.

Secondly, both spatial and temporal resolutions have increased tremendously
from the old PAL/NTSC standards of the 20th century, where VGA resolution
and 25 frames per second (fps) were the norm.

As a consequence, it is possible now to acquire videos at 4k resolution
(3840 × 2160) and 1000 fps.
While increased spatial resolution induces few drawbacks besides necessitating
significant computing power to process: increased temporal resolution may pro-
duce artifact, particularly when using artificial lighting, and when the camera
frame rate approaches or exceeds the power frequency of the AC current. In
this case, the illumination artifacts and chrominance changes may become visible
over the whole frame. These variations are commonly termed “periodic flicker”.
Indeed, when the motion in the sequence is complex and the scene is illuminated
from several light sources with potentially different properties (incandescent,
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fluorescent, etc..), or itself contains lighting appliances, avoiding or correcting
these artefacts can be a difficult problem.
This problem is likely to become more prevalent with the recent advent of
consumer-level high speed video acquisition devices, for instance in newer smart-
phone generations or with sports/action cameras providing high speed acquisition
options.

The aim of the present manuscript, is to contribute to a better understanding
of the flickering problem and properties in general, and to suggest new meth-
ods for the periodic and aperiodic flicker removal in high speed videos in particular.

The first strategy for flicker removal considers a global, frame-based correction,
especially if the lighting conditions and motion are not very complex, i.e. it
consists of processing all the pixels of an image in a uniform manner. We
propose a method based on histogram matching for color correction, and another
global method based on the image registration using key points detection. These
methods are promising in terms of real time constraints. This strategy will be
examined in chapter 4.
The second strategy, is local, able to deal with multiple light sources illuminating
the scene and in the presence of complex motions. We propose a first local
approach for color correction, based on a block matching algorithm that is able to
include the constraints of illumination and chroma variations. A second approach
is suggested, which is based on superpixels tracking for motion estimation and
color correction. This local strategy will be studied in chapters 5 and 6.

2 Collaboration

The presented work in this manuscript was carried out at Laboratoire d’Informatique
Gaspard Monge of the University of Paris-Est Marne-la-Vallée, in collaboration
with Sublab production, a service provider company based in France and Spain,
that offers support for the most complex technical aspects of audiovisual projects.
Sublab provides high speed imaging equipment, a packshot studio, and solutions
for lighting, underwater shooting, post-production workflow, moving shots, etc.
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Thanks to the technical team in Sublab, this collaboration led me to under-
stand the techniques of high-speed video acquisition and to create our database
of image sequences on which our different algorithms have been tested.

3 Organization of the manuscript

Chapter 2: Generalities on color acquisition devices, and introduction
to the flicker removal problem
Chapter 2 will be divided into four main sections. First, a quick reminder

about the color acquisition devices for computer vision applications will be
presented in order to familiarize the reader with some useful basics such as
color perception, optical sensors. The second section will describe the history of
high speed acquisition and its applications. The third section will describe and
interprete flicker problems for multiple applications, and then specifically in high
speed videos. In the last part of this chapter, we will propose a general strategy
for video color correction and flicker removal for periodic and pseudo-periodic
flicker in high speed videos.

Chapter 3: State of the art - Preliminaries
Chapter 3 will present an overview of existing motion estimation and color

correction techniques for images in different contexts.
In this chapter, we will first briefly describe the classical set of methods

for motion estimation. We will turn to methods adapted to the presence of
illumination variations. We will then describe some color correction approaches,
in particular the model-based and non-parametric based techniques.

Chapter 4: Global methods for color correction
In chapter 4, periodic flicker in high speed videos will be considered. A

reasonable approach considering a global frame-based correction will be proposed,
which is applicable when the lighting conditions and motions are not very complex.

Two global flicker removal methods will be described. The first method is
based on histogram matching for color correction. The second method is based
on the image registration using keypoint detection.
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Chapter 5: Block matching-based colorimetric correction
In chapter 5, we will propose a flexible local color correction technique to remove

flickering artifact, qualified as periodic/non-periodic, suitable for correcting high-
speed color video taken under artificial lighting, with more complex motions and
lighting conditions.

We will describe a causal (with single reference frame) and non-causal (with
multiple reference frames) tracking methods involving per block color correction
matrix estimation, and followed by a per-pixel post-processing / block artifact
removal approach.

Finally, we will introduce a pyramidal strategy based on the causal approach,
to estimate tracking and correction parameters at reduced scales. This principle
will be useful to reduce the method computational time both for real time
implementations and for offline applications.

Chapter 6: Local method based on superpixels and spatial interpola-
tion
In chapter 6, we will propose new avenues for video color correction, and

typically for flicker removal applications. We will take the viewpoint that it is
not always necessary to track and model the color correction for all image regions
in a video for local color correction.

We will suggest another local method based on superpixels segmentation,
that is able to track objects with undefined and complex shapes, and find the
corresponding local color correction. We will also describe one dimensional and
two dimensional spatial interpolation methods in order to use one of them in the
post-processing step.

Chapter 7: A comparative chapter
In chapter 7, a comparison between all proposed methods will be made in order

to present the advantages and disadvantages of each method. We will compare
our three proposed approaches. The global image registration based method (in
chapter 4), the local block-based colorimetric correction method (in chapter 5)
and the local superpixel tracking based flicker removal approach (in chapter 6).
We will test these methods on four real, studio-lit videos affected with periodic
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flicker and featuring multiple light sources and global/local complex motions and
also on three synthetic periodic flicker sequences produced from a flicker-free,
naturally lit video, in order to quantitatively compare the processing results in
terms of signal to noise ratio, and to prove the efficiency of each method against
different colorimetric, illumination, motion and acquisition conditions.

Chapter 8: Conclusion and openings
In chapter 8, a general conclusion will be drawn and the potential future

enhancements will be listed.

4 Publications

Published conference papers:

• A. Kanj, H. Talbot, and R. Rodriguez Luparello. Global image reg-
istration and video color correction in presence of illumination
variations. IEEE Fifth International Conference on Digital Information
and Communication Technology and its Applications, pages 92-95, Beirut,
Lebanon, 29 April - 1 May 2015.

• A. Kanj, H. Talbot, J-C. Pesquet, and R. Rodriguez Luparello. Color
deflickering for high-speed video in the presence of artificial light-
ing. IEEE International Conference on Image Processing, pages 976-980,
Quebec city, Canada, 27-30 September 2015.

• A. Kanj, H. Talbot, J-C. Pesquet, and R. Rodriguez Luparello. Correction
des variations colorimétriques pseudo-périodiques en vidéo haute
vitesse. XXVème colloque GRETSI, Ecole Normale Supérieure de Lyon,
Lyon, 8-11 September 2015.

Accepted conference papers:

• A. Kanj, H. Talbot and R. Rodriguez Luparello. Flicker removal and
superpixel-based motion tracking for high speed videos. IEEE In-
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ternational Conference on Image Processing, Beijing, China, 17-20 Septem-
ber 2017.

Patent:
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correcting flicker in an image sequence. United Kingdom Intellectual
Property Office, 1615349.6, 9 Sep 2016, United Kingdom.

Journal paper:

• A. Kanj, H. Talbot, J-C. Pesquet, and R. Rodriguez Luparello. A varia-
tional method for flicker removal in high speed video sequences,
to be submitted to IEEE Transactions on image processing.



Chapter 2

Generalities on color acquisition
devices, and introduction to the
flicker removal problem

1 Color cameras

The principal element of a camera is the image sensor. It is constituted of a
set of photoreceptors which convert the received light rays into electrical output
information to provide signals to the digitization system. These photoreceptors
are arranged on a plane (matrix camera). Thus, the obtained image is constituted
of a set of points called pixels that correspond to the photoreceptors.

In this work, we only consider color sequences, which have become standard
for a long time.

Color is a very complex concept because it involves on the one hand human
physiology and psychology, and physical phenomena on the other hand. Various
theories and studies have been proposed in order to model this rich and complex
information. They provided many color representation systems, in which any
color can be represented by its digital coordinates.
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1.1 Color representation systems

Most humans (at least 90% of the population) have three types of color sensors
in the eye, each with a different spectral response, suggesting a representation of
three stimuli. Thus, one can indeed reproduce most colors seen in nature from
one to three monochromatic sources with different wavelengths.

The first color representation systems (psychological systems) were inspired
by the study of human psycho properties to develop color classifications such as
CIE (Commission Internationale de l’Eclairage), NCS (Natural Color System),
OSA (Optical Society of America) and DIN (Deutsches Institut für Normung).
These representations are rarely used for the analysis of color images.

In the acquired image, the color information is defined numerically. Thus, in
the image analysis process, colorimetric systems are used in order to distinguish
between different colors.
These colorimetric systems could be grouped into four categories: primary systems,
luminance-chrominance systems, perceptual system and independent axis systems.
We describe below some of the most used color systems.

1.1.1 Standard CIE RGB

In 1931, the International Commission on Illumination (CIE) conducted color
matching experiments with 3 monochromatic sources: red (645.2nm), green
(526.31nm) and blue (444.4nm) to yield the CIE RGB system. With this system,
it is possible to reproduce most of natural colors. However reproducing some
natural colors, such as produced by some monochromatic wavelength sources,
requires negative weights.

1.1.2 Standard CIE XYZ

To avoid the negative weights, the CIE has developed a tri-stimulus based system,
called XY Z, which is derived from RGB system, independent of any physical
source, in which all weights are nonnegative. This system is a superset of all
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visible colours: ⎡⎢⎢⎢⎢⎢⎢⎢⎣
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(2.1)

This improvement of RGB system was the first step to a color description
system consistent with the human vision. Independently to color, XY Z system
introduces the concept of luminance (brightness intensity), yielding directly the Y
component. It uses two other positive variables X and Z, to describe visible colors.
This opened the way for CIE the xzY system, which purposefully separates the
luminance Y and chrominance xz notions.

1.1.3 Standard CIE L*a*b*

In 1976, the CIE showed that in the color space XY Z, the visual difference is
more or less important depending on the examined hues. Our eye has greater
sensitivity in the blue and can distinguish slight hue variations. Conversely our
eye has a low sensitivity in the green and yellow. Therefore, CIE proposed a
widely used uniform color space, which is the L∗a∗b∗ space defined from XY Z

system:
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b∗ = 200
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(2.4)

where (Xn, Yn, Zn) are the coordinates of a white reference point.

1.1.4 System CIE Lu*v*

CIE L∗u∗v∗ is a color space based on the CIE color space U ′V ′W ′ (1976), itself
based on the CIE XY Z color space. It belongs to the family of uniform color
systems: it is derived from a non-linear transformation providing a more uniform
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color distribution with respect to human perception.

To compute L,u∗ and v∗ we must first go through u′v′ space, which are
derived from XY Z:

(u′, v′) = ( 4X
X + 15Y + 3Z ,

9Y
X + 15Y + 3Z ) (2.5)

The non-linear relations for L∗, u∗, and v∗ are given below:

L∗ =
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3 (2.6)

u∗ = 13L∗(u′ − u′n) (2.7)

v∗ = 13L∗(v′ − v′n) (2.8)

1.1.5 System YUV

Y UV system was invented for the transition from black-and-white television
to color. This system avoids the color/illumination representation limits in the
RGB space. It allows to send the same analog video signal for black-and-white
and color televisions.

Y is derived from XY Z system and represents the luminance intensity, and
can be directly displayed on a black and white station. U and V represent the
chrominance values.

The Y UV system is computed from RGB system as follows:
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V
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(2.9)

The Y UV system is usually used for the encoding of a composite video signal.
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1.2 Acquisition systems

The main element of a camera is the image sensor. It is a photosensitive electronic
component for converting electromagnetic radiation (UV, visible or IR) into an
analog electrical signal. This signal is then amplified and digitized by an analog-
digital converter and then processed to obtain a digital image. The most known
sensors are described below.

1.2.1 The FOVEON sensor

Using the capacity of light absorption of silicon, this sensor consists of three
photodiodes layers, each at a given depth and corresponding to one of RGB
channels.
The Foveon sensor captures the colors vertically, registering the hue, value and
chroma for each pixel in the final image. Unlike other conventional sensors that
are equipped with RGB demosaicing filters and capture color information in the
horizontal plane.
In the Foveon sensor, image data for each pixel are complete and do not require
any interpolation.

1.2.2 CCD sensor

The first purely digital technology for image sensors is the CCD (Charge Coupled
Device) whose photoreceptors produce an electrical potential proportional to
the received light intensity. The color information is sampled using three filters
that are sensitive to red, green and blue wavelengths analogously to the human
perception system.
CCD sensors have been used very early in the areas of high performance image
quality, such as astronomy, photography, scientific and industrial applications.
Nowadays, it is very common in cameras, scanners...

There are two main types of CCD color camera:

• Mono-CCD camera: They are equipped with a single CCD sensor over-
laid with a mosaic of color filters. Thus, photoreceptors that are located
at different sites are associated with red, green and blue filters, which are
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typically arranged in a regular structure. The color information obtained
by these several photoreceptors is incomplete, and requires an interpolation
for restoring missing color information.

• Tri-CCD camera: It is equipped with three registered CCD sensors that
are mounted on an optical system of prisms. Each of the three sensors
receives respectively the red, green and blue components. Pixel color is
given by the response of three photoreceptors, which potentially can offer
better resolution and image quality compared with the Mono-CCD sensor
cameras. However as resolution increases, it becomes increasingly diffcult
to register the 3 sensors to benefit from the extra hardware.

1.2.3 CMOS sensor

CMOS sensor (Complementary Metal Oxide Semiconductors) are micro circuits
on a silicon basis. The manufacturing of CMOS sensors is much less expensive
than producing CCD sensors. In addition, CMOS consumes much less power
than the CCD sencors and can be more reactive. The principle of CMOS is
based on the active pixel concept. It combines in each pixel, a photoreceptor,
a reading diode and an amplifier circuit. A switching matrix distributed over
the entire chip provides access to each pixel independently which is not the case
with the CCD sensors. A major difference between CCD and CMOS sensor is
in the way images are acquired. CCD cameras typically work with a full frame
shutter, meaning that a frame is exposed at once in its entirety. In low lights or
high movement, this can result in blur artifacts. Conversely, a CMOS sensor is
exposed with a so-called "rolling shutter", meaning that a small and changing
area of the image is read while the remainder is continuously exposed, improving
light sensitivity. This can result in image distortion rather than blur.

Next, we will describe the color filter array which is placed over the pixel
sensors, it is needed because the typical photoreceptors in cameras only detect
light intensity, and therefore cannot separate color information.
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1.3 Color filter array

The photosites of camera sensors do feature a response spectrum, which is not
necessarily flat, but is identical from photosite to photosite. Indeed this response
can be thought as a brightness response. To reproduce colors in single-sensor
systems, a filter system is used (CFA filter: Color Filter Array) on the sensor
surface.

There exists a large variety of CFA setups, but the most commonly used filter
is the Bayer from 1976. The Bayer matrix consists of 50% green, 25% red and
25% blue filters. It is often justified by some arguments of resemblance to the
human eye physiology, but its main virtues are its simplicity and the fact that it
is no longer protected by patents. It is not very efficient however, since it throws
away 2/3rd of the incoming light power.

Figure 2.1. Bayer filter

2 High speed acquisition

High-speed acquisition is used to capture fast motion in order to play back
recordings in slow motion. It can record phenomena that are too fast to be
perceived with the naked eye. This technique is used in several areas: defense,
industrial product development, manufacturing, automotive, scientific research,
bio-medical applications and entertainment.
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2.1 Brief history

Chronophotography is the first high-speed acquisition technique; invented by
Eadweard Muybridge in 1878; it consists of taking a rapid succession of pho-
tographs to chronologically decompose successive phases of a movement or a
physical phenomenon, that is too short to be observed by the naked eye. Today
chronophotography is still used, both in science and in advertising or art photog-
raphy.

Figure 2.2. Chronophotography: First high speed sequence

The first high-speed cameras used recording film. This recording technique is
now considered obsolete, all recent cameras use CCD and CMOS sensors, able to
record at high frame rates up to and exceeding 2500 fps, and record them to a
digital memory.

Previously, the sampling frequencies of materials, limited by the analog/digital
conversion speed, physically restricted the volume of data acquired. In recent
years, hardware manufacturers have increased the speed of data collection and
allowed engineers and scientists to cross new boundaries in terms of speed and
resolution.
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2.2 Applications

2.2.1 Scientific research

A large number of scientific studies have been conducted using high-speed imaging
techniques. These facilitate understanding and allow a better analysis of many
key problems in several fields. It is often used in medical imaging applications, for
example to study human and animal blood flow, for retinal imaging, for tracking
cells in human body or for studying the living being anatomy.
In addition, high speed imaging is of great interest for military and defense
research, because it is able to record explosions, bullets trajectories, guns action,
etc. It is also known in underwater researches, for example, to study drops and

(a) Bullet trajectory (b) Bubble motion

Figure 2.3. High speed imaging examples

bubbles, or to track underwater projectiles.

High speed imaging is increasingly frequently used in a large variety of research,
because analysing and tracking motion can be an interesting pathway to resolve
or better understand the problem under study.

2.2.2 Sport events

High speed acquisition has been involved for a long time in all sports broadcastings,
it allows to play back interesting actions in slow motion, and sometimes helps the
referee to make some decisions (in Tennis, Rugby, ...), so it has become essential
to most television watchers.
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Figure 2.4. Rugby action in slow motion.

2.2.3 Advertising and media

Advertising is a form of mass communication, which aims to fix the attention
of a target audience (consumer, user, etc.) for encouraging people to adopt a
desired behavior such as buying a product. To help in this regard, the use of
slow motion may be able to ensure acceptance and the attraction to the product.

Figure 2.5. The use of high speed imaging in advertising photography

Next, we shall describe the flicker problem for multiple applications in the
state of the art, and specifically in high speed videos.
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3 The flicker problem

Flicker in video processing is generally defined as a measurable and undesirable
brightness fluctuation in a video sequence. It can happen at any acquisition
frequency and can be due to a wide variety of phenomena such as sensor artifacts,
sudden illumination changes, video transmission problems, and more. It can be
transient or periodic, it may affect the whole frame or just a small portion of it.
The general problem of flicker removal is highly challenging since it is linked to
an objective brightness change in a sequence, which is not sufficient to identify it.
Illumination can change in a sequence for desirable reasons.

3.1 State of the art

Methods for video luminosity stabilization have been studied in the literature,
for instance in underwater image sensing, surveillance systems, camcorder videos,
archived videos, image-video compression and time lapse videos. However, modes
for the flicker effect differ from one application to another.

3.1.1 Underwater image sensing

Sunflicker effect, which is a challenge in underwater image sensing, is non-periodic,
it is created from refracted sunlight casting fast moving patterns on the seafloor.
Shihavuddin et al. (2012) proposed a sunflicker removal method which considers
sunflicker effect as a dynamic texture. They proposed to warp the previous
illumination field to the current frame, then to predict the current illumination
field, by finding the homography between previous and current frames, and finally
removing sunflicker patterns from images. It can be considered as a local flicker
effect in images.

3.1.2 Video surveillance

Flicker is also annoying in the indoor smart surveillance cameras in presence of
fluorescent lamps, which makes tracking persons more complicated, Ozer and
Wolf (2014) proposed to eliminate background which contains reflective surfaces
and shadows, and track the regions of interest only.
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3.1.3 Camcorded videos

Camcorded videos are flicker affected when scrolling stripes are observed with
the video. This problem is due the fact that the higher frequency backlight of
the screen is sampled at a lower rate by the camcorder. In this case, flicker is
periodic and it is defined as a rectangular signal. Baudry et al. (2015) used the
temporal discrete Fourier transform (DFT) to estimate flicker parameters.

3.1.4 Archived films

Fuh and Maragos (1991) developed a model allowing for affine shape and intensity
transformations. They proposed a method for motion estimation in image
sequences, which is robust to affine transformations at motion or light intensity
levels. They implemented a block matching algorithm taking into account
brightness variations between two images. This method can predict motion
and illumination variation parameters between two grayscale images, i.e. the
rotation angle, two translation components and a brightness amplitude factor. A
pixel-recursive model was developed by Hampson and Pesquet (2000) to estimate
simultaneously motion and illumination variation parameters.

We can classify existing methods for flicker removal in archived videos into
two categories depending on whether they use a linear or a non-linear model.
Decencière (1997) proposed a linear model linking the observed image to the
original image. Van Roosmalen et al. (1999) used also an affine model taking
into account spatial dependency. Yang and Chong (2000) and Van Roosmalen
et al. (1999) estimated flicker parameters by interpolation, and Rosmalen and
Yang suggested to resolve block mismatching problems caused by occlusions or
blotches, but their methods may fail to detect outliers. Ohuchi et al. (2000) used
the same affine model together with an M-estimator to find flicker parameters.
They considered objects in motion as outliers, which may lead to failures in the
presence of large objects. Kokaram et al. (2003) proposed a model to reduce the
accumulating error taking the previous restored frame as reference. They used
also a linear model with a robust regression together with registration. Zhang
et al. (2011) offer a method to generate reference images followed by a proposal to
correct flicker using a linear model involving an M-estimator. Non-linear models
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have also been studied. Among them, Naranjo and Albiol (2000) and Delon
(2006) find flicker parameters by optimizing a non-linear model using histogram
matching. Pitié et al. (2004) used Naranjo’s model, taking spatial variations into
account. Pitié et al. (2006) expanded these works by developing a method for
finding parameters on a pixel-wise basis, allowing for non-linear flicker distortions.
Separately, Vlachos (2004), Forbin et al. (2006) and Forbin and Vlachos (2008)
computed differences of grey-scale histograms between degraded and reference
images.

3.1.5 Video coding

In image sequence coding, flicker may appear when similar regions between two
images are incoherently encoded. Ren et al. (2013) proposed a block-matching,
adaptive multiscale motion method. This method may encounter problems in pres-
ence of thin objects or outliers and tends to smooth image details. Jimenez Moreno
et al. (2014) used a low pass filtering approach to compensate flicker. Unfortu-
nately, most of these works consider grey-level sequences and none specifically
deals with periodic flicker.

3.1.6 High speed videos

The flicker problem is relatively recent in high speed acquisition. In this specific
context relatively little research has been conducted, except for a few patents
published in the last few years. For instance, Sorkine Hornung and Schelker
(2015) provide techniques for stabilizing coloration in high speed videos based on
reference points. The coloration adjustment component applies a per frame color
mapping based on sparse color samples tracked through all frames of the video.
It identifies reference frame, and computes color histograms for the reference
and subsequent frames. From the reference histogram, they select a number
of colors and consider them as reference colors for the remaining frames in the
video. This performs a kind of image registration by tracking locations of the
selected reference points in the reference frame through the sequence of frames.
In their work, the moving foreground object is ignored supposing that the camera



20
Chapter 2. Generalities on color acquisition devices, and

introduction to the flicker removal problem

motion is very small in high speed videos and outlier reference points are out of
consideration.

In another patent application by Asano and Matsusaka (2007), moving
averages of accumulative histograms are calculated for each frame on image data.
Then, gamma tables for correcting the image data of a frame in the plurality of
frames are built so that the accumulative histograms after corrected with the
gamma tables match with the moving averages of the accumulative histograms.
Then, the image data of the frame in the plurality of frames is corrected with the
gamma tables. In some cases, each frame is divided into areas, and the flicker
correction is performed for each area if necessary. In summary, this patent ignores
colorimetric variations, does not take local motions into account and performs
intra-channel histogram matching providing some brightness artifacts.

3.2 Flicker in high speed acquisition under artificial light-
ing

In all video shootings, sufficient lighting is essential to achieve a successful
recording, to illuminate the scene first, and then to adjust brightness and contrast
in images.

3.2.1 Natural light

Sunlight is neither constant nor uniform. The height of the sun, clouds, pollution
etc. are all factors that affect this natural light source and cause endless variations.
Moreover, the sun color temperature also varies depending on the time of day. It
is therefore possible to achieve different visual appearances with respect to the
shooting time. These variations are clearly perceptible in time lapse videos, that
are created from a large amount of images taken for the same place and at a
specific time interval. However, the natural light can be considered uniform for
small periods.
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3.2.2 Artificial light

We use artificial light sources when the light level is no longer sufficient. This
occurs while shooting indoor or at night, and sometimes when a more controlled
lighting is needed. The common types of artificial light sources existing today
are: incandescent, fluorescent, LED, and studio strobe.

Most lighting devices do not emit a regular light flux. The induced lighting
variation is generally called periodic flicker. If a lamp is turned on and off at
a very fast rate, there comes a threshold where we feel that the light stays on
without interruption. This phenomenon is due to the persistence of the image on
the retina. For most people, the illusion starts when the frequency of the lighting
intensity variation is above 60 Hz.

The electrical current supplied by a standard European socket (230V / 50Hz)
is called "alternating current AC" because the flow of electrical charge inside
periodically reverses direction, whereas in direct current (DC), the flow of electrical
charge is constant in one direction. If an incandescent lamp is operated on a
low-frequency current, the filament cools on each half-cycle of the alternating
current, leading to perceptible change in brightness and flicker of the lamps; the
effect is more pronounced with arc lamps, and fluorescent lamps.

In high speed video acquisition, camera can record with very high frame
rates, at any speed from 64 frames-per-second (fps), which allows to capture all
lower frequencies, especially those which may not be noticeable to the human
eye (around 25 fps).

3.3 Flicker analysis

Flicker analysis differs from one application to the next. With respect to archived
movies, flicker is defined as unnatural temporal fluctuations in perceived im-
age intensity that do not originate from the original scene, and it is due to
variations in shutter time. This artifact presents global, sudden and random
variations of luminance and contrast between consecutive frames of a sequence
(See Figure 2.6(a)).

Time-lapse acquisitions are very slow and sometime irregular sequence acqui-
sitions, that are used in animations, advertisement or documentary films. They
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(a) Flicker in archived videos
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(b) Flicker in time-lapse videos
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(c) Flicker in high speed imaging videos

Figure 2.6. Comparison between several types of flicker

are typically used to accelerate rates of changes, for instance to show how a plant
grows. Flicker may occurs when luminosity is varying depending on the time
of day under natural lighting, or because of artificial lighting if the recording
takes place at night and also according to the weather. This kind of flicker is
defined as a random luminosity variation (see Figure 2.6(b)), and usually it is
compensated in a causal manner refering to a past frame in each sequence portion
which induces some luminosity distortions in the corrected sequence.
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3.3.1 Brightness variations

In high speed video acquisition, flicker corresponds to an undesirable periodic
intensity and chroma variations due to the interaction between the lighting and
acquisition frequencies (See Figure 2.6(c)). Assuming negligible motion and
a simple camera model, at the acquisition speed, each pixel value on a frame
corresponds to the integration of a lighting function. Standard light sources
such as incandescent or fluorescent lamps powered by an alternating current are
subject to power variations at a frequency ν of about 100 or 120Hz. At usual
video rates (25 frames per second), these variations are integrated over a long
enough period. Assuming approximately sinusoidal variations, we have at a given
pixel s and time t:

f(s, t) = f0(s, t)
T

ˆ t+T

t

(1 +∆(s) cos(2πντ + ϕ))dτ

= f0(s, t)(1 +∆(s)sin(2πν(t + T ) + ϕ) − sin(2πνt + ϕ)
2πνT )

∼ f0(s, t) (2.10)

where T ≫ 1/ν is the exposure time, ϕ ∈ [0,2π[ is a phase shift, f0(s, t) is the
field intensity in the absence of illumination variations, and ∆(s) is the magnitude
of these variations. Therefore, the intensity / chroma variations are usually not
perceptible.

In contrast, at high acquisition frame rates, the integration of the lighting
function is performed over a very short interval T ≪ 1/ν. Then, we get

f(s, t) ∼ f0(s, t)(1 + ∆(s)( cos(2πνt + ϕ) − πνT sin(2πνt + ϕ))) (2.11)

and the intensity variations are no longer negligible.

3.3.2 Chromatic variations

In the lighting field, the color temperature provides information on the general
hue of the emitted light: from the "warm" hues - where the red is dominating - like
sunrise or sunset colors, to the "cold" hues - where the blue color is dominating -
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like in the intense midday sun colors, or over a snow field. The color temperature
is given usually in Kelvin degrees (○K), as the color temperature increases, so does
the proportion of blue in light. These temperatures are those of the equivalent
black body radiation that would be producing the perceived color.

Figure 2.7. Chroma alterations with light temperature variations

With most light sources, power variations are accompanied with changes in
lighting temperature, inducing visible chroma alterations. For example, while
using the classical incandescent lamps (see Figure 2.8), the lamp filament tem-
perature is proportionately varying to the power alterations, so with each AC
period, the light color becomes first red and gradually transforms into blue.

Figure 2.8. Rapid illumination / chromatic changes in a high-speed video sequence.



4. General strategy for video correction 25

In contrast, fluorescent and LED light sources do not use a filament to produce
lights, so the excitation of the chemical substances containing phosphorus, allows
the perception of the emitted visible light (see an example is Figure 3.7).

Figure 2.9. Illumination / chromatic changes in a high-speed video sequence under
fluorescent lighting.

4 General strategy for video correction

To address this periodic illumination and color variations problem, we assume
that we know the acquisition frame rate and the local mains AC frequency. We
therefore can estimate the period of the flickering effect. We also assume that
general intensity variation integrated over few flickering periods is slow. Given
this, it is easy to find the peak illumination intensity in the local period. In
Figure 2.10, the acquisition frame rate is 1000 images/second and the AC mains
power frequency is 100Hz. As expected, the period of the flicker is 10 frames
long.

4.1 Selecting reference frames

In theory, any frame in a flicker period could serve as a reference, but we expect
the reference frame to be the richest in information. However, it is easier to
detect peak illumination in a period, and use the last maximum intensity frame
in a period, at time tref, as a reference image. This frame may be considered as a
good choice in terms of signal-to-acquisition noise ratio.

In this goal, we computed the average of pixel intensities in each image along
the sequence, so a selected reference frame in such a flicker period should be the
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Figure 2.10. The blue curve shows the luminosity variation in an affected image
sequence. In red we show the intensity variation in the absence of periodic flicker.

one having the highest average in this period.
As seen in Figure 2.10, changes in global illumination not related to flicker

may induce low frequency variations in the luminosity of the scene.

4.2 Cross-channel correlation study

In order to check our assumption regarding the influence of periodic flicker on
illumination, we acquired a sequence affected with periodic flicker due to a single
source and no motion. In Figure 2.11, we plotted the cross-channel correlations
between a pixel in a manually selected reference image and a subsequent frame
in the same period. We observe that the vast majority of pixel colors transform
linearly from the flicker-affected frame to the reference image, except at the
extremal range values, due to sensor saturation effects. In the remainder, we thus
assume a linear color transformation model between a reference and flicker-affected
frame.

4.3 Flicker correction model

We model the color illumination transform by a 3×3 matrix M s,t between two
pixels s and s′ referring to the same physical area in the scene at times t and tref
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Figure 2.11. Cross-channel correlation between a flicker-affected frame and a reference
image.

respectively:

M s,t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1(s, t) g1(s, t) b1(s, t)
r2(s, t) g2(s, t) b2(s, t)
r3(s, t) g3(s, t) b3(s, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.12)

Using this matrix, we have

f(s′, tref) = M s,t f(s, t) (2.13)

where f(s, t) ∈ R3 is the vector of chrominance values of pixel s at time t. This
vector model will play a prominent role in the approaches developed in the
remainder of the thesis.





Chapter 3

A short overview of
state-of-the-art techniques

In this manuscript, we are studying the problem of video color correction in
the presence of complex motions. In this chapter, we first briefly describe the
classical set of methods for motion estimation. We then turn to methods for
dealing with illumination variations.

1 Motion estimation

The motion estimation in temporal sequences of two-dimensional images is a
fundamental problem in image processing. Application areas are numerous and
include image compression using motion information, robotics, meteorology with
tracking cloud masses, motion tracking in medical imaging (e.g. of the heart
or lungs), tracking in surveillance video systems, etc. The images are typically
the projection of 3D real scenes. For this reason, we can identify three types
of motion: the real motion, the apparent motion and the estimated motion.
The apparent motion is often very different from the real motion and generally
represents the projection of the real movement in the image plane. For example
the Barber’s pole illusion, the apparent and real motion fields of a rotational
motion are different.
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To obtain the estimated motion, several types of methods exist. We have
classified them in this chapter into four categories: feature based methods,
frequency based methods, differential methods and block matching based methods.

1.1 Feature based methods

Feature based methods for object tracking is performed in two steps: the detection
of features in the acquired image sequence, the matching of the detected features.
The matching step should be accurate and invariant to several parameters such
as the illumination variation or the occlusion of the object in order to detect
efficiently the object motion.

Many approaches considering object tracking and motion detection were
studied in the literature. A classification of these methods is presented by Yilmaz
et al. (2006). The authors distinguished 3 categories: keypoints based tracking
Serby et al. (2004), template based tracking Veenman et al. (2001); Birchfield
(1998) and shape based tracking Yilmaz et al. (2004).

Points of interest (called keypoints) in an image correspond to discontinuities
of the intensity function. These can be caused, by discontinuities of the reflectance
function or by depth discontinuities. They can be for example: the corners, the
junctions in T or the points of strong variations of texture. A major advantage
of the tracking methods based on keypoints detection is that these keypoints are
in general invariant to multiple factors. Several examples of tracking based on
feature points detection were proposed by Moravec (1977), Harris and Stephens
(1988) and Schmid et al. (2000).

An obvious approach for tracking an object is based on the use of a template.
Indeed, if the object to be followed is of known shape (such as a car, face, etc), it
is relatively simple to find the part of the image most similar to the template
considered. To do this, a search is carried out exhaustively on all or part of the
image. The information used can simply be intensity or color. The major disad-
vantages of this method are the slowness of exhaustive search and its sensitivity
to brightness variations.
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The representation of an object by a simple form such as a rectangle or an
ellipse may be unsuitable if the target object is of a very complex shape (e.g.
hand, human body, animal, tree, etc.). The representation of such an object
by a corresponding shape allows to precisely take into account the shape of the
object. The goal of shape based tracking methods is to estimate the shape of the
objects of interest for each image of the video. This approach is related to image
segmentation.

1.2 Frequency based methods

1.2.1 Fourier shift based method

This method uses the Fourier transform properties to compute the global motion
between two images. It does not allow to measure the image displacement directly,
but it searches in the image Fourier transform the traces of motion in order to
compute the corresponding parameters. The used Fourier transform to model
the problem is the continuous Fourier transform in two dimensions.

The Fourier transform preserves the rotations, and transforms a translation
into a frequency shift. To calculate the translation between two images, it is
sufficient to observe the phase shift between their two respective transforms.

Let F the Fourier operator, f(x, y) is an image and F (u, v) is its Fourier
transformation:

F (u, v) = F[f(x, y)]. (3.1)

Let g the translation of f with a translation vector t⃗ = (δx, δy), its Fourier
transform is given by

G(u, v) =F[g(x, y)]
=F[f(x + δx, y + δy)]
=e−2iπ(uδx+vδy)F (u, v). (3.2)

The ratio G/F is directly related to the translation vector t⃗.
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A more appropriate method can be used, the phase correlation approach, as
explained in the next section.

1.2.2 Phase correlation method

The phase correlation method is based on the Fourier Shift theorem (Yang et al.
(2004)) and was originally proposed for the registration of translated images. It
is used for estimating the difference between two similar images or other relative
translational datasets. It is commonly used in image registration and relies on a
representation of data in the frequency domain, it is generally implemented by
using the fast Fourier transform. The term is applied to a particular subset of
cross-correlation techniques that separate the phase information from the Fourier
representation space of the cross-correlogram defined below.

Definition 1. The cross-correlogram, called also cross-power spectrum is the
resulting image of cross-correlation statistics:

F(f)F(g)∗
∣ F(f) ∣∣ F(g) ∣ = e

2iπ(uδx+vδy),

where ∗ indicates the complex conjugate.

In practice, we compute the two dimensional discrete Fourier transform (DFT)
for both images and we can apply a Hamming window on the DFT result of
both images to reduce boundary effects. A one dimensional Hamming function is
being applied on all rows and columns separately.

Definition 2. The Hamming windowing, also called weighting window, is a clas-
sical technique used to focus on a section of measured signal, in order to minimize
the distortions that cause a spectral leakage of the Fast Fourier Transform. The
associated one-dimensional window is given by

h(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.54 − 0.46 cos 2π t
T , if t ∈ [0, T ]

0, otherwise.
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The normalized cross correlation between the two transforms is then calculated.
The best phase shift is the one that minimizes the cross correlation function.

Figure 3.1. Phase correlation example Zitova and Flusser (2003): the graph on the
left depicts red-red channel matching and the right one demonstrates red-blue channel
matching. The peaks correpond to the matching positions.

De Castro and Morandi (1987) extended the phase correlation method to
include the rotation transformation. An affine image registration is performed
using phase correlation and log-polar mapping based on a log-polar coordinates
system (where a point is identified by two numbers, one for the logarithm of
the distance to a certain point, and one for an angle) by Wolberg and Zokai
(2000). Foroosh et al. (2002) have introduced a phase correlation extension for
sub-pixel registration by means of the analytical expression of phase correlation
on downsampled images.

The phase correlation technique is relatively robust because all frequencies
contribute to the calculation of correlation coefficients, and it is relatively fast
thanks to the fast Fourier transform, but it is practically limited to global,
translation-only transforms on the whole image.
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1.2.3 Analytical Fourier-Mellin invariant (AFMI)

The use of the Analytical Fourier-Mellin transform (AFMT) allows us to calculate
the similarity parameters (rotation and homothety) as a translation vector, in
an analogous manner to the Fourier basic method already described in (1.2.1),
through a polar representation (r, θ) of the frequency space (u, v).

Let g and f two gray-level images related by an homothetic 4-parameter
geometric transformation that maps each point (xg, yg) in g to a corresponding
point (xf , yf) in f according to the matrix equation

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xf

yf

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α cosβ α sinβ −δx
−α sinβ α cosβ −δy

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xg

yg

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3)

where δx and δy are the translation vector coordinates, α is the uniform scale
factor, and β is the rotation angle. Equivalently, for any pixel (x, y) we have:

g(x, y) = f(α(x cosβ + y sinβ) − δx,α(−x sinβ + y cosβ) − δy). (3.4)

By assuming that the translation is null and reparamterizing the spatial coordi-
nates with (r, θ), the relationship between f and g in form of the polar coordinate
system can be written as

g(r, θ) = f(αr, θ + β). (3.5)

The AFMT (Ghorbel (1994)) of f and g can be written in this way:

Mf(q, s) =
ˆ ∞

r=0

ˆ 2π

θ=0
f(r, θ)rσ−ise−iqθ dθ dr

r
(3.6)

Mg(q, s) =
ˆ ∞

r=0

ˆ 2π

θ=0
f(αr, θ + β)rσ−ise−iqθ dθ dr

r
(3.7)

where (q, s) ∈ Z ×R and σ > 0 is a parameter necessary for the existence of the
AFMT in the case of finite domain images. Performing a simple change of the
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variables r and θ in (3.6), (3.7) yields the following relation:

Mg(q, s) = α−σ+iseiqβMf(q, s). (3.8)

Equation (3.8) makes the AFMT appropriate for extracting features that are
invariant to scale and rotation changes. In particular by considering the norm of
Mg(q, s).

When applying the AFMT on images, we lose the translation parameters and
the phase information. The complementary method SPOMF (Symmetric Phase
Only-Matched Filtering) provides the rotation and homothety information. This
can be followed by a phase correlation between the original images (Chen et al.
(1994); Reddy and Chatterji (1996)).

Note that similarly to the phase correlation method, this method is used in
practice to estimate global transformations because it uses the contribution of
the whole frequency spectrum (or at least a large part of it) for estimating the
transformation parameters.

1.3 Differential methods

The differential methods for motion estimation are based on the spatial and
temporal gradients of light intensity of the pixels. The principle of these methods
is based on the assumption of conservation of the pixel intensity along the motion
path. This conservation hypothesis can be written as:

df(s(t), t)
dt

= 0 (3.9)

where s(t) is the pixel position.
The pattern of apparent motion of objects is also called Optical Flow; it is

used for motion detection and shares some similarity with the measurement of
stereoscopic disparity. It relies on the texture movement of objects and their
edges. The optical flow allows us to approximately calculate motion vectors using
the intensity variation of the image over time. Up to the aperture problem (which
is linked to partial knowledge of objects in motion Wu (2001)), optical flow is
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equivalent to the image motion if the following conditions are respected:

• It is assumed that the light intensity of an image is preserved from an image
to another.

• The scene may not include reflective surfaces.

• There is only one light source.

In the case of real images, these conditions may not be strictly respected.
However, they are assumed locally verified.

Several methods have been proposed in this context. Fleet and Weiss (2006)
presented a comparison between different optical flow methods including differen-
tial methods, which are based on local Taylor series approximations to the image
signal.

1.3.1 Gradient based Methods

The assumption of luminance conservation means that variations of temporal
luminance are due to the motion. According to this hypothesis, we can conclude
that the intensity of each pixel is shifted from an image to another.

I(x, y, t) = I(x +∆x, y +∆y, t +∆t) (3.10)

This equation can be written in vector form:

I(x⃗, t) = I(x⃗ + d⃗, t +∆t) (3.11)

where I is the pixel intensity which is a function of position x⃗ = (x, y), time t
and the displacement vector d⃗ = (∆x,∆y).

Assuming the movement to be small, the image constraint at I(x, y, t) can
be simplified through a Taylor expansion yielding the following approximation:

I(x +∆x, y +∆y, t +∆t) = I(x, y, t) + ∂I
∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t (3.12)
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Since the luminance intensity is kept, the gradient constraint equation at I(x, y, t)
can be given by:

∇I(x⃗, t).u⃗ + It(x⃗, t) = 0 (3.13)

where u⃗ = (u1, u2) = (∆x∆t ,
∆y
∆t )T is the optical flow (or velocity vector), ∇I = (Ix, Iy)

and It represent the spatial and temporal derivatives of the image I.

Equation (3.13) has two unknowns (the components u1 and u2 of u⃗) and
cannot be solved as such. This is known as the aperture problem of the optical
flow algorithms.
To solve it, we can minimize the error

E(u⃗) =∑
x⃗

[u⃗.∇I(x⃗, t) + It(x⃗, t)]2, (3.14)

where u⃗ that minimizes E(u⃗) is the estimated optical flow.

To find this optical flow (here assumed to be constant over the image), we
must set the derivatives of E(u⃗) to zero with respect to u1 and u2:

dE(u1, u2)
du1

= 0 (3.15)

dE(u1, u2)
du2

= 0 (3.16)

and we can re-write these two equations in matrix form:

M.u⃗ = b⃗ (3.17)

where M =
⎡⎢⎢⎢⎢⎣

∑ I2
x ∑ IxIy

∑ IxIy ∑ I2
y

⎤⎥⎥⎥⎥⎦
and b⃗ = −

⎛
⎝
∑ IxIt
∑ IyIt

⎞
⎠
.

Using over-determined Least Squares, the estimated optical flow can thus be
written as follows:

û = (M⊺M)†M⊺b⃗, (3.18)

where † is the pseudo-inverse operator.
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1.3.2 Iterative Methods

It is desirable to improve the gradient method for more accurate results. Iterative
methods minimize the difference between two successive images; they repeat the
following steps:

• estimate the motion vector between two images,

• register one image toward the other,

i.e. they use the current estimate to undo the motion, and then reapply the
estimator to the warped images to find the residual motion. The method converges
when the residual flow no longer changes. Let

u⃗ = u⃗0 + δu⃗, (3.19)

where u⃗0 is the first estimated optical flow. We can then create a warped image
sequence I0 from u⃗0 and the motion constraint can be reexpressed as

I(x⃗, t) = I0(x⃗ + δu⃗, t +∆t) (3.20)

where we will assume that ∆t is normalized to 1. The increment δu is calculated
by using

δû =M−1b⃗ (3.21)

where M and b are calculated using the spatial and temporal derivatives of I0.
We find then the re-estimated optical flow u⃗1

u⃗1 = u⃗0 + δû (3.22)

This new estimated optical flow will be used to warp the original image sequence
such as in (3.20), and another residual flow can be estimated.

Iteratively, this new residual flow estimate is used to rewarp the original
sequence, and another residual flow can be estimated. At iteration j, given the
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estimate uj and the warped sequence Ij , we obtain a new objective error function

E(δu⃗) =∑
x⃗

w(x⃗)[I(x⃗, t) − I(x⃗ + u⃗j + δu⃗, t + 1)]2

=∑
x⃗

w(x⃗)[I(x⃗, t) − Ij(x⃗ + δu⃗, t + 1)]2

≈∑
x⃗

w(x⃗)[∇Ij(x⃗, t + 1).δu⃗ + Ij(x⃗, t + 1) − I(x⃗, t)]2 ≡ Ẽ(δu⃗), (3.23)

where w is some nonnegative spatial weighting function.

We repeat these operations to obtain a minimal value for the residual flow,
and we expect the optical flow to converge to an optimal value.

1.3.3 Lucas & Kanade

We present here the differential method developed by Lucas and Kanade (1981).
It assumes that the flow is essentially constant in a local neighborhood Nx⃗ of a
pixel under consideration at the position x⃗ and resolves the optical flow equation
for all the pixels in that neighborhood using a weighted Least Squares method:

E(u⃗) = ∑
y⃗∈Nx⃗

w(y⃗ − x⃗, t)[u⃗.∇I(y⃗, t) + It(y⃗, t)]2, (3.24)

and w(⋅, t) is commonly a Gaussian weighting function in order to weight con-
straints in the center of the neighborhood more highly, giving them more influence.

Minimizing (3.24) can be performed by a standard weighted least squares
approach, which leads to expressions similar to (3.17).

1.3.4 Horn & Shunck

This method was developed by Horn and Schunck (1981). It represents the flow
as a global energy functional. It attempts to solve the aperture problem by
minimizing the functional below, which is based on the optical flow equation:

E =
¨

[(Ixu1 + Iyu2 + It)2 + α2(∣∣∇u1∣∣2 + ∣∣∇u2∣∣2)]dxdy (3.25)
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where Ix, Iy and It the derivatives with respect to x, y and t, u1 and u2 are the
components of optical flow vector, and α is a positive regularization constant
which controls the flow smoothness.

Although this method yields a dense vector field, it is more sensitive to noise
than local methods and small movements may not be properly identified.

In the next section, we elaborate another dense optical flow estimation which
was introduced by Farnebäck (2003), and which can be more accurate.

1.3.5 Farnebäck

Gunnar Farnebäck proposed a dense optical flow method which finds motion
vectors for all pixels in a target image, with respect to a reference image. It
is based on a quadratic polynomial expansion of an image, e.g. approximating
some neighborhood of each image pixel with a polynomial. He considers a multi-
scale displacement estimation approach. It follows an iterative strategy to use
estimated displacements in an iteration as a priori displacements in the next
iteration.

Large displacements are taken into account while using multiple scales. It
starts at a coarse scale to get a rough but reasonable displacement estimate
and propagates this through finer scales to obtain increasingly more accurate
estimates.

The next section shows some tests on optical flow estimation using the three
detailed methods.

1.3.6 Experimental tests

The already detailed optical flow methods are tested on two different real se-
quences, one containing small movements in Figure 3.2, and another with larger
motions in Figure 3.3. Figure 3.2 shows that classical methods by Horn&Shunck
and Lucas&Kanade are successful when illumination is stable between two images,
and Horn&Shunck method presents a slight advantage concerning the provided
dense vector field.
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(a) Horn & Shunck tracking (b) Lucas & Kanade tracking

Figure 3.2. Classical variational methods for motion estimation between two images
with illumination constancy.

Figure 3.3 shows that the assumption of luminance conservation has limited
the efficiency of motion tracking when brightness is varying, and the presence
of saturation artifacts makes the optical flow estimation more complicated in
both Horn&Shunck and Lucas&Kanade methods. Finally, Figure 3.4 proves that

(a) Horn & Shunck tracking (b) Lucas & Kanade tracking

Figure 3.3. Classical variational methods for motion estimation between two images
acquired from a naturally lit scene with a slight additionnal arficial flicker

Farnebäck’s method significantly provides a better motion estimation, and with
higher accuracy with respect to the previous methods. The second row images
present the motion field in HSV space, and show that the estimation accuracy
of magnitude and direction of motion is decreasing when flicker is affecting the
target image, and also in the presence of saturation artifacts.
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(a) On target frame

(b) On target frame + synthetic flicker

Figure 3.4. Farnebäck optical flow method: the first row corresponds to the plots
of some samples of motion vectors. Images in second row show the motion vectors in
HSV space, and present the direction (corresponding the hue value) and magnitude
(corresponding to the lightness value ) on motion vectors.

1.4 Block matching based methods

Block matching methods are among the most used methods for motion estima-
tion. They are often employed in video compression standards such as H.261
(Seferidis and Ghanbari (1994)), MPEG-1,2 or 4 (Noguchi et al. (1999)). The
basic principle of block matching methods is to regularly divide the reference
image into blocks of pixels, also called regions of interest (ROI). For each of these
blocks, a search area is defined in the target image, the most ressembling ROI in
the search area is retained as best candidate, depending on a given criterion.

Several criteria of similarity are used to find the best candidate block in a
search area. These criteria can be expressed either in the image plane (directly
using the pixels intensity) or in a frequency domain representation (in the Fourier
transform).

For each block Bk (k designates the block label in a regular grid) of size w ×h
and centered on the pixel of coordinates s = (x, y) in the current image, the
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displacement shift between this block and the candidate block in the reference
frame is noted dk = (dx, dy), and the best candidate yields the estimated motion
vector d̂k = (d̂x, d̂y).

Matching in the image plane

Disparity measurements For a given block Bk in frame f(⋅, t), the best
block candidate corresponds to the optimal geometrical transform parameters
dk,t that minimize the following energy functions:

• Sum of absolute differences:

SAD(dk,t) = ∑
s∈Bk

∣f(s, t) − f(s − dk,t, tref)∣ (3.26)

d̂k,t = argmin
dk,t

(SAD(dk,t))

• Sum of squared differences:

SSD(dk,t) = ∑
s∈Bk

(f(s, t) − f(s − dk,t, tref))2 (3.27)

d̂k,t = argmin
dk,t

(SSD(dk,t)).

These two displacement measures do not take into account the luminosity
and colorimetric variations between images. Thus, the widely used SAD and
SSD are modified by Giachetti (2000) to consider the effect of global gray-level
variations, setting the average gray level difference equal to 0 (ZSSD, ZSAD):

ZSAD(dk,t) = ∑
s∈Bk

∣f(s, t) − Bk(t) − f(s − dk,t, tref) − B′k(tref)∣ (3.28)

d̂k,t = argmin
dk,t

(ZSAD(dk,t))

ZSSD(dk,t) = ∑
s∈Bk

(f(s, t) − Bk(t) − f(s − dk,t, tref) − B′k(tref))2 (3.29)
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d̂k,t = argmin
dk,t

(ZSSD(dk,t))

where Bk(t) and B′k(tref) are the pixel average values of the block Bk(t) in
the current image and the candidate block B′k(tref) in the reference image
respectively.

Similarity measurements

• Cross-Correlation criteria (CC):

In signal processing, the cross-correlation, is a dependency measure between
two signals. This tool can also be employed for images. A cross-correlation
approach looks for f(s − dk,t, tref) maximizing the correlation with f(s, t).
This technique is often used under the principle of block matching. This
method has been adapted for some special cases, citing for example the dis-
continuous movements, loss of information in images, etc, but it was widely
applied on images in grayscale, and with normal brightness conditions:

CC(dk,t) = ∑
s∈Bk

[f(s, t) − Bk(t)][f(s − dk,t, tref) − B′k(tref)] (3.30)

d̂k,t = argmin
dk,t

(CC(dk,t))

• Normalized Cross-Correlation criteria (NCC) that ranges between −1 (no
dependency) and 1 (full dependency) can be used alternatively:

NCC(dk,t) = 1− ∑s∈Bk
[f(s, t) − Bk(t)][f(s − dk,t, tref) − B′k(tref)]√

∑s∈Bk
[f(s, t) − Bk(t)]2∑s∈Bk

[f(s − dk,t, tref) − B′k(tref)]2

(3.31)
d̂k,t = argmin

dk,t

(NCC(dk,t)).

Statistical measurements
Mutual information is a measure of statistical dependence between two random

variables, it is often measured in bits. The mutual information is zero if the
variables are independent, and increases with dependency.
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The mutual information I(X,Y ) measures the average amount of information
provided by an occurence of X on the occurence of Y .

Considering that a probability distribution represents our knowledge on a
random phenomenon, we measure the lack of information by the entropy of this
distribution.

The mutual information is expressed via:

I(X,Y ) =H(X) +H(Y ) −H(X,Y ) (3.32)

where H(X) et H(Y ) are the respective entropies of X and Y , and H(X,Y ) is
the joint entropy between X and Y .

H(X) is defined as

H(X) = −
n

∑
i=1
P (xi) log2P (xi) (3.33)

where x1, . . . , xn are the pixel intensities in each bloc, and P (xi) are their proba-
bilities.

The joint entropy is defined as follows:

H(X,Y ) = −∑
i,j

P (X = xi, Y = yj) log2P (X = xi, Y = yj) (3.34)

Based on the block matching algorithm, we look for similar blocks by maxi-
mizing the mutual information indicating a maximum of dependence between
them. Since the mutual information depends on the probability of occurence of
pixel intensities between images, we act on grayscale images because it involves
simpler computation. According to the mutual information expression, X and
Y can correspond to the block intensities in the current frame and those of the
candidate block in the reference frame respectively.

The entropies H(X) and H(Y ) can be found by computing the histogram
that tabulates the total number of pixels observed for every possible intensity
found in the block. This histogram is normalized by the total number of pixels
to get the probability distribution function.

To find the joint entropy H(X,Y ), we need to calculate the joint two dimen-
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sional histogram between the two images. The joint histogram is essentially the
same as a normal 1D histogram but the first dimension logs intensities for the
first image and the second dimension logs intensities for the second image. At
location (i, j) in the joint histogram, it provides how many intensity values we
have encountered that have intensity xi in the first image and intensity xj in the
second image.

We tested this method on two naturally lit real sequences affected with
synthetic flicker. The first sequence in Figure 3.5 shows that mutual information
criteria is almost effective for motion estimation but it fails with saturation
artifacts and some redundant similar regions, for example, the building windows.

(a) Reference frame (b) Target frame: shifted
reference frame with artifi-
cial flicker

(c) Optical flow result

Figure 3.5. Block matching using the mutual information criterion, (b) is the reference
frame manually shifted for few pixels, (c) shows motion vectors of blocks from the
reference frame to the target frame.

In addition, this similarity measure is globaly effective even if illumination
is not conserved between the two images except for homogenous, saturation
areas and some over-textured areas, and as Figure 3.6 shows, mutual information
requires a large size of blocks, in order to obtain more information on intensity
distribution, and to be able to match blocks more accurately between two images.
We can see that motion estimation results using 32 × 32 blocks (3.6-d) are
significantly more accurate than those of 16× 16 blocks (3.6-f). Moreover, adding
artificial flicker on the target image also affects the precision of motion estimation
(3.6-g).
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(a) Reference frame

(b) Target frame (c) Target frame + synthetic flicker

(d) Motion estimation result of (b), block
size of 16×16

(e) Motion estimation result of (c), block
size of 16×16

(f) Motion estimation result of (b) with
larger block size 32×32

(g) Motion estimation result of (c) with
larger block size 32×32

Figure 3.6. Test on the car sequence: the horizontal motion of the car is well
estimated, but it fails on some homogenous regions. It is recommended to increase the
block size in order to include more texture information.
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2 Color correction approaches

The main target of color correction algorithms is to transform the color distri-
bution in a source image to a target image. In the context of high speed videos
under artificial lightings, the source image corresponds to the selected reference
image having the highest luminosity average in a flicker period, and the target
image corresponds to another period frame whose color is to be corrected.

With the growing demand of high definition images and videos, the field of
color correction has become of increasing importance in the computer vision and
video processing communities.

Color correction approaches are widely studied in the context of multi-view
imaging, which consists of correcting the color differences between neighboring
views due to different exposure levels and view angles. Xu and Mulligan provided
an interesting comparative study for the performance evaluation of color correction
approaches in the context of automatic multi-view image and video stitching.
Color correction approaches are classified into two categories: parametric (model-
based) and non-parametric.

2.1 Model-based techniques

2.1.1 Global color transfer

Model based techniques for color correction includes global and local approaches.
Global color transfer methods assume a global relation between the whole source
and target images, and use a 3×3 color correction matrix which is almost diagonal,
but can be an affine transformation matrix or arbitrary matrix. Funt and Lewis
(2000) compared between affine and diagonal-based matrices for color correction.
Tian et al. (2002) provided a colour histogram based colour correction, the
process consists of matching the histograms of colours in the overlapping region
of panoramic images. The simplest global approach was provided by Reinhard
et al. (2001), it transforms color space between the source and target image
with a unique color transfer matrix, authors demonstrated that by utilizing the
L∗a∗b∗ color space and the mean and standard deviation of each L∗, a∗, and
b∗ channel, respectively, that the color can be transferred between two images.
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Ruderman et al. (1998) worked on a decorrelated color space lαβ instead of the
RGB color space, where l is the luminance channel and αβ are the chromatic
channels. In order to transfer colors to grayscale images, Welsh et al. (2002)
used this approach to colorize grayscale images, matched the luminance and
texture information between a source and target image, and retained the original
luminance values while transfering only the chromatic information to the target
image.

However, most global color transfer methods do not take into account local
color distributions in different regions of image.

(a) Source image (b) Target image (c) Destination image

Figure 3.7. Global color transfer example: Basing on the paper of Reinhard et al.
(2001), this method requires only the mean and standard deviation of pixel intensities
for each channel in the L*a*b* color space. The transfer fails to resynthesise the colour
scheme of the target image.

2.1.2 Local color transfer

When processing an image with different color regions, global color transfer
cannot distinguish the color statistics of the regions. Thus, the color transfer
techniques with complex contents is still a problem that needs further study.
Some local methods are proposed to provide a better mapping between the source
and the target images. Unlike global-based methods, Tai et al. (2005) used
probabilistic segmentation and region mapping for color transfer, and takes local



50 Chapter 3. A short overview of state-of-the-art techniques

color information into consideration. Reinhard’s method is used to perform the
color transfer on the matched local regions. Xiang et al. (2009) adapted the
latter method to multiple source images.

2.2 Non-parametric based techniques

Unlike the parametric color transfer techniques, the non-parametric methods
do not use a particular parametric mapping function for color transfer, and
most of these methods use a look-up table to estimate color mapping between
images. This look-up table is usually computed from 2D joint histogram of image
feature correspondences or pixel pairs in the overlapped area of two images. Most
existing non-parametric approaches perform a matching step between the source
image and the target image, because data are often sensitive to outliers, noise
and saturation effects, due to the different view angles, climate change, different
lighting conditions and reflection properties of scene objects. Thus, matching is
required to estimate mapping function from histogram.

Yamamoto and Oi (2008) use scale invariant feature transform (SIFT) to
match two neighboring views in a multi-view camera network, use a diagonal
weight matrix to treat RGB channels independently, calculate lookup tables with
a non-linear energy-minimization approach and use these tables to transfer colors
between images.

Jia and Tang (2003) globally and locally adjust luminance of two overlapping
images. Authors proposed a two-step approach to maintain monotonicity. First,
a denoising and filling the data gaps are performed using 2D tensor voting, which
produces an initial estimate of the mapping function. In the second stage, an
iterative local alignment scheme is proposed to adjust the initial estimate. The
estimation of the replacement mapping functions using the tensor voting provides
a fast convergence of the iterative scheme.

Fecker et al. (2008) suggested the use of cumulative color histogram to
compensate the differences of luminance and chrominance between different
camera views. A histogram matching between the distorted and the reference
sequences is performed to estimate the mapping function for color correction.
To avoid some visual artifacts on the luminance component, the authors also
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proposed a post-processing step consisting on the correction of the first and the
last histogram bins.

Pitié et al. (2005, 2007) proposed an original non-linear, iterative approach
for the color distribution transfer. It presents the distribution of colors of an
image in a high dimensional space, and authors project this distribution into
random 1D marginal distributions. They repeatedly map these new distributions
of the target image to those of the source image in order to transfer the color
distribution of the source image into the target image. They also proposed a
post-processing method for grading colors between various images.

3 An outline

This chapter presented an overview of existing motion estimation and color
correction techniques for the image sequences in several different contexts. How-
ever, classical motion estimation is based on the assumption of preservation of
brightness over time, especially in the conventional methods of optical flow, which
implies that the use of these methods in the presence of light and chromatic
variations is not useful. Another statistical approach basing on the mutual
information criterion was studied but its lack of robustness to saturation artifacts
and redundant information is proved. In addition, the studied block matching
based methods do not take into account colorimetric variations between images,
and deal only with illumination variations. In the next chapters, we are inspired
by this wide state of the art in order to find a solution for the flicker removal
problem in the context of high speed imaging.





Chapter 4

Global methods for color
correction

In video processing, it is necessary to take into account the constraints of
processing time, especially as most video applications deliver a large amount of
data, which needs to be processed in a timely manner. Some applications may
require close to real-time processing. This functionality requires to use efficient
algorithms.

For video color correction, a reasonable approach is to consider a global,
frame-based correction, especially if the lighting conditions and motion are not
very complex.

The purpose of this chapter is to present two different approaches for global
video color correction. The first is based on histogram computations. The second
is based on feature tracking and image registration.

1 Histogram matching based method

Most videos contain background and object motion, but in this chapter, we
assume that motion is (a) global between frames in high speed videos (e.g. due
to the camera motion) and (b) small compared with the frame size, and so
the contents of two contiguous frames does not vary significantly. In this way,
matching pixels may not be necessary and estimating the motion between frames



54 Chapter 4. Global methods for color correction

may not be needed.

Color features are among the most important features used in image database
retrieval. Techniques for comparing color distributions are fundamental in pattern
recognition, image retrieval and image restoration. This is due to a compact
representation and low complexity in measuring color similarity of images.

We propose to compare the global distribution of colors between a target
image and a previous reference frame in order to compute the corresponding
color transformation matrix for all image pixels. Matching regions are required
to estimate the most appropriate color transform between images.

For this purpose, we use an histogram matching technique, a well known
method in image processing to find similarities between digital images, acquired at
the same global illumination. Our approach involves applying a global brightness
transformation to all pixels of the target image, and thus obtaining a new image
from the same operation on each pixel. This transformation is built from the cu-
mulative histograms of the target and reference images. The transformation takes
into account the intensity variations of color channels separately, so colorimetric
variations are handled correctly by this process.

In the next paragraph, we briefly recall some specifications about histograms
in image processing.

1.1 Histogram specifications

In image processing, the histogram is a fundamental tool that represents the
distribution of intensities (or colors) of the image. Histograms are often used
to adjust intensities (e.g. contrast, brightness etc) in images. The histogram is
defined as a discrete function that associates to each intensity value the number
of pixels that have this value. The determination of the histogram is carried out
in a single pass on the image by counting the number of pixels for each image
intensity. Optionally, the histogram may be normalized, by dividing the values of
each class by the total number of pixels of the image. Then, the value of a class
ranges between 0 and 1, and can be interpreted as an estimate of its probability
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of occurrence in the image. The normalized histogram is defined by:

H(xk) = px(xk) =
nk
n
, 0 ≤ k < L (4.1)

where n is the total number of pixels, nk is the occurence number of the intensity
xk and L is the number of intensity levels.

We also recall that the normalized cumulative histogram can be defined by:

Ĥ(xk) =
k

∑
j=0
px(xj) (4.2)

The following section describes the methodology of flicker enhancement using
different approaches of histogram matching.

1.2 Methodology

1.2.1 1st approach: Illumination is enhanced separately

In this section we assume that each color channel can be processed separately,
i.e. that the color correction matrix M is diagonal. This is essential to explain
the histogram matching technique in a simpler case.
Each sub-sequent frame (in a flicker period sequence) can be processed inde-
pendently with respect to its previous reference frame. First, we compute the
normalised cumulative histograms ĤR

ref, ĤG
ref and ĤB

ref of the RGB channels of the
reference frame f(⋅, tref) respectively. Similarly, for a frame f(⋅, t), we compute
its corresponding normalised cumulative histograms, ĤR

t , ĤG
t and ĤB

t . Figure
4.2-a illustrates why discrete cumulative histograms can hardly be used to match
different distributions. Indeed, while all discrete values in the input domain are
associated with an output value, the reverse is not true. We will see later that
we need to make this reverse association.
To correct for this problem, we use a nearest-neighbor interpolated version of
the discrete histogram, which results in a linearly interpolated version of the
cumulated histogram, as seen in Figure 4.2-b.
Because the interpolated histogram contains only positive values, the cumulated
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Reference color distribution

Current color distribution

(a) Discrete histogram

255

1

0

(b) Discrete cumulative histogram

Figure 4.1. An example of the computation of the discrete cumulative histograms to
present the color distributions in two images.

255
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0

(a) Discrete cumulative histogram
matching

255

1

0

(b) Interpolated cumulative histogram
matching

Figure 4.2. An example of the matching between different data sets in discrete and
interpolated cumulative histograms

histogram is a monotonically increasing piecewise affine function. As a result, we
can redefine the cumulative histogram function as an integral rather than a sum.
We now show how using the cumulated histogram can be used for color matching.
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So far we have assumed a linear relationship between color channels, i.e. for all
pixels in the color channel c, the intensity lc of the same point in the reference
image f(⋅, tref) and the target image f(⋅, t) is

lcref = αc lct (4.3)

where αc is the gain parameter between the two matched data sets of such color
channel in the target and reference frames. Then, for each color channel c, and
for each intensity level lct , we can write:

Hc
ref(αcl

c
t) =Hc

t (lct). (4.4)

The normalized cumulative histogram Hctcum on lct is then provided by:

Ĥc
t (lct) =

´ lct
0 Hc

t (u)du´ max lct
0 Hc

t (u)du

=
´ lct

0 Hc
ref(αcu)du´ max lct

0 Hc
t (u)du

, (4.5)

where the denominator in (4.5) is the normalization factor and max lct designates
the maximum of grayscale level acquired in the image f(⋅, t). It can be assumed
such that ˆ max lct

0
Hc
t (u)du =

ˆ max lct

0
Hc

ref(αcu)du, (4.6)

which by performing the change of variable v = αcu⇒ dv = αc du, yields:
ˆ max lct

0
Hc
t (u)du = 1

αc

ˆ max lcref

0
Hc

ref(v)dv. (4.7)



58 Chapter 4. Global methods for color correction

Similarly, the same change of variable is used on the numerator term of (4.5),
and this equation becomes:

Ĥc
t (lct) =

1
αc

´ αclct
0 Hc

ref(v)dv
1
αc

´ max lcref
0 Hc

ref(v)dv

= Ĥc
ref(αclct). (4.8)

Then, for all levels lc in both target and reference, we have

Ĥc
t (lct) = Ĥc

ref(lcref) (4.9)

where from any value in the output domain of the normalized cumulated his-
tograms, we can associate two values lct and lcref, for which the relationship
lcref = αclct should hold for all of them.

We can consider a number of such pair of points and estimate αc by linear
regression, as illustrated in Figure 4.3. We recall that c designates the color
channels R, G and B. Then we can independently estimate the three enhancement

lct

lcref

Figure 4.3. lcref vs. lct .
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parameters for each color channel by minimizing the following criterion:

JH(α̃c)
c∈(R,G,B)

=
S

∑
i=0

Φ(lcref(i) − α̃c lct(i)) (4.10)

where i ranges between 0 and S the number of sampled values in the cumulated
histogram and Φ is some cost function. In practice, the cumulated histograms
may not be strictly increasing so an interval of image values may match a given
output value. We specifically avoid these flat regions in the cumulated histograms.
Also values near the extremities of the histograms may be affected by saturation,
so we only use the central values (Figure 4.4).

255

1

0

i=0
i = 1
i = 2

i = S

i = k

lcref(k) lct(k)

Figure 4.4. The choice of data sets samples from the central part of histograms.

If Φ is the quadratic functional, then minimizing JH is very easy, it is simply
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the average of all the individual ratios:

α̂c =
∑Si=0 l

c
ref(i)lct(i)

∑Si=0 l
c
t(i)2

(4.11)

The described method in the present section is limited, because it considers
the three color channels separately. The next section provides a second approach
that deals with inter-channel variations and enhances colors as well as illumination
flicker in image sequences.

1.2.2 2nd approach: Inter-channel correlation

In order to better take into account chromatic variations in our correction
approach, the cumulated histogram for the three color channels is used again to
generate two 3D vectors (corresponding to the RGB values), Lref and Lt, of level
intensities that verify an extension of the linear relationship in (4.9):

Lref = M̃Lt, (4.12)

where Lt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

lRt

lGt

lBt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Lref =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

lRref

lGref

lBref

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and M̃ is the flicker correction matrix, containing

three illumination parameters (diagonal elements) and six parameters for chroma
correction:

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α̃r11 α̃r12 α̃r13

α̃g11 α̃g12 α̃g13

α̃b11 α̃b12 α̃b13

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (4.13)

Similarly, we can estimate the flicker enhancement parameters for the three
color channels by minimizing the following criterion:

JH(M̃) =
S

∑
i=0

Φ(Lref(i) − M̃Lt(i)), (4.14)

where Φ is now a function defined on R3.
For minimizing this new energy function JH , a common choice of Φ is the

quadratic functional where Φ = ∥.∥2, and the estimated correction matrix is
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Figure 4.5. The normalized cumulative histograms representing the color distribution
of three color channels in the reference and target frames f(⋅, tref) and f(⋅, t).

provided by the least square estimate given by

M̂α =∑LrefL
⊺
t (∑LtL

⊺
t )†. (4.15)

Now we are going to present some results on the histogram based approach for
color correction.

1.3 Results and discussion

In this section, we present some results of flicker correction applied to various
image sequences with artificial and real flicker. It is not possible to precisely
evaluate the performance of the method by just visualizing the images before
and after correction, because temporal variations are the main issue. Thus, in
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the section b of the figures below, we plot the intensity averages of images before
and after correction, this shows that global artificial flicker is almost perfectly
corrected (Figure 4.6-b,), as expected, even in the presence of large chromatic
variations.
However local artificial flicker is not well corrected in some cases, especially
for the real, studio-lit videos affected with periodic flicker, when multiple light
sources are illuminating the scene (Figures 4.8-b, 4.9-b, 4.10-b). This is due to the
important sensitivity of this method to illumination variations and outliers, and
the presence of varying flicker characteristics depending on the image location.
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(b)

Figure 4.6. Falcon sequence with global artificial flicker
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Figure 4.7. Falcon sequence with local artificial flicker

(a)

10 20 30 40 50 60 70
Frame number

50

55

60

65

70

75

80

85

90

95

In
te

ns
ity

 a
ve

ra
ge

Degraded frames
Histogram matching based solution

(b)

Figure 4.8. Flower sequence
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Figure 4.9. Real flickering sequence 1
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Figure 4.10. Real flickering sequence 2
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1.4 Conclusion

In this section we have presented a global, histogram-based correction method,
which is simple and fast, flicker removal is satisfactory when a single light source
is illuminating the scene, and when motion is well approximated with a global
transform.

The advantages of this method are its efficiency and simplicity compared
to other techniques, but this method remains limited with respect to complex
motions in videos, the presence of multiple light sources and the presence of
noise. We provided two parametric approaches for flicker enhancement: the
first takes into account the intensity variations of color channels separately, so
colorimetric variations are not dealt with in this specific process, and the second
approach takes into account the interchannel correlation in order to provide a
joint illumination/chroma correction for image sequences. Unfortunately, this
technique is very sensitive to saturation in the high and low color ranges. This
method can nonetheless be used as a preprocessing to reduce the flicker in videos.

In the next section, we present another global approach using image registra-
tion techniques based on keypoints matching.

2 Image registration based method

2.1 Generalities

Image registration consists of mapping images to compare their information.
This technique aims to find the geometric transformation that best physically
aligns the similar pixels between two images (the reference and sensed images)
acquired in different imaging conditions (at different times, from different sensors
or viewpoints).

Image registration has many applications: in medical imaging it is used to
merge multiple imaging modalities for example combining computer tomography
(CT) and NMR data to obtain complementary information about the patient,
automated cell tracking, monitoring tumor growth, treatment verification, com-
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parison of the patient’s data with anatomical atlases. In video processing, multiple
applications require the use of registration technique, typically for motion track-
ing and automated detection and tracking of forms and objects. It is also an
essential stage in image stitching consisting in combining multiple photographic
images with overlapping fields of view to produce a segmented panorama or
high-resolution image. In remote sensing, image registration is used in mosaicing
of images of the surveyed area. There are multiple problems that pose some
particular challenges while performing image registration, for instance:

• sensors noise that is sometimes due to the temperature or humidity

• occlusions, objects movements, deformations and scale changes

• lighting and atmospheric changes inducing brightness and chroma variations
in images

• the target images to register may come from multiple sources.

2.2 About image registration theory

The alignment of pixels between a reference and moving image in simple terms is a
change in the coordinate system so that the coordinate system of the moving image
adopts that of the reference image. The types of transformations of an image can
go through translation, rotation, a similarity transformation including translation,
rotation and scaling of the image to be processed, and affine transforms. More
complex deformations can also be sought for but will not be considered in this
work. The mapping between two images f1 and f2 can be expressed as:

f2(x, y) = g(f1(x′, y′)) (4.16)

where g is a 1D intensity or radiometric transformation and (x′, y′) is the 2D
spatial coordinate transformation result of (x, y)

(x′, y′) = T (x, y). (4.17)

The choice of spatial transformation type is a fundamental step for image regis-
tration. In addition, the best transform should distinguish between the spatial



2. Image registration based method 67

distortions due to different acquisitions and those due to differences in scene
characteristics. The transformation that is most often used for image registration
is the affine transformation, which is able to match two images acquired from
the same viewing angle but from different positions. It is a global transformation
which is often performed for rigid registration, i.e. the geometric relationships
between pixels in the whole image do not change. This transformation is com-
posed of four parameters, tx, ty, s and θ representing the horizontal and vertical
translations, the scale and the rotation angle respectively, these parameters map
a point (x, y) of the image f1 to the point (x′, y′) of the image f2 as follows:

⎛
⎝
x′

y′
⎞
⎠
=
⎛
⎝
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⎞
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+ s

⎛
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cos θ − sin θ
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⎠
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⎝
x

y

⎞
⎠

(4.18)

Equation (4.18) can be generalized to yield the following 2D homothety transfor-
mation:
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(4.19)

or in so-called homogeneous coordinates (Jia (Iowa State University, 2013)):
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Registration methods are classified into three categories (Brown (1992); Zitova
and Flusser (2003); Maintz and Viergever (1998)): geometric methods (also called
feature based methods) based on matching the geometric primitives (corners,
edges, ...) extracted from images, intensity-based methods that do not require
any pre-segmentation and are directly based on pixel intensities of the two images
via the use of a similarity measure without taking into account the geometrical
information, and finally hybrid methods combining the previous two approaches.
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2.3 Feature-based approach

Usually, registering images that are acquired by the same sensor type and with
ideal acquisition conditions, can be performed with simple algorithms such as
block matching and using some defined similarity criteria. Nevertheless, in multi-
modality methods and in our case, while using the same camera for all images
acquisitions and in the presence of brightness and chroma variations in images,
the similarity search criteria quickly becomes problematic. Therefore geometric
registration seems more suitable.

However, in order to apply this technique, it is essential to estimate the
geometric transformation between images, hence feature matching algorithms
are well suited for this. Good quality keypoints can be provided by the SIFT
(Lowe (1999, 2004)) and SURF (Bay et al. (2006)) algorithms. These use local
descriptors that are insensitive to affine transform (mostly rotation and change
of scale). There is theoretically little need to pre-process images. These methods
propose keypoints together with their descriptors from images and measure a
number of geometric characteristics depending on a scale factor. First, we used
the keypoints detection and matching by the SIFT method to perform a rigid
registration, and a global color correction is performed in the second stage.

2.3.1 An overview on SIFT

SIFT method (scale-invariant feature transform) was developed by David Lowe,
to transform an image into a set of features vectors that are invariant to the usual
geometric transformations (scaling, rotation) and to affine transformations and
to some degree on illumination. The strength of this method is that it is able to
match distant points with important camera movements. The algorithm of SIFT
largely fills the limitions of methods of features extraction already developed
earlier by Harris and Stephens (1988), and later by Schmid and Mohr (1997).
Indeed, it has contributed to an improvement of information extraction techniques
in an image.

The computation of SIFT keypoints requires two main steps. First, it is neces-
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sary to extract the characteristics of an object in the image and compute an associ-
ated descriptor, i.e. detect the features that are most representing/discriminating
this object from others. Second, it must establish a matching procedure that is
the ultimate goal of the method.

2.3.2 Scale-space construction for keypoints detection

Scale-space is an important theory in artificial vision. This theory is based on the
fact that in the real world, objects have properties that are associated with notion
of scale, i.e. a geometric magnification. Hence the need for tools that allow us to
describe this object at varying scales. The basic idea is to decompose the original
signal into a family of signals depending on a gradually smoothed parameter, in
which details at a very small scale are successively removed. SIFT represents
grayscale signal data using a Gaussian pyramid by combining sub-sampling
operations with a smoothing step.

The scale-space is a discrete space wherein is assigned to each pixel, in addition
to its cartesian coordinates (x, y), a third component σ, which represents the scale
factor. For this, a conventional convolution is performed between the original
image f , and a Gaussian function G that takes x, y and σ as arguments:

L(x, y, σ) = G(x, y, σ) ∗ f(x, y) (4.21)

where G is a gaussian filter and "∗" refers to the spatial convolution product
between the Gaussian filter and the target image f , and L is the smoothed image.
G can be expressed as follows:

G(x, y, σ) = 1
2πσ exp−(x2+y2)/(2σ2) (4.22)

where σ is a smoothness factor.
Then the difference of Gaussians (DoG) between two consecutive images of

the same octave in the Gaussian pyramid is computed to obtain the DoG pyramid
(Figure 4.12).

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ f(x, y) (4.23)



70 Chapter 4. Global methods for color correction

2𝑛+1 x  2𝑛+1 

2𝑛 x  2𝑛 

2𝑛−1 x  2𝑛−1 

Figure 4.11. Scale space construction: Gaussian pyramid

D(x, y, σ) = L(x, y, kσ) −L(x, y, σ) (4.24)

The difference between two consecutive smoothed images by a Gaussian filter
is the result of a high pass filter, useful for the edge detection.

Via this step, it is possible to detect keypoints at various resolutions, and
so this detection method is approximately scale-invariant. The keypoints are
the local extrema of DoG images across scales. Each pixel of the DoG images is
compared with its eight neighbors in the same scale level and to its nine neighbors
respectively in each of nearest two scale levels.
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Figure 4.12. DoG pyramid

2.3.3 Descriptors calculation

Only the useful keypoints are restored, that are robust to noise, due to the exten-
sive use of Gaussian blurring. In addition, an interpolation of the coordinates is
performed by a second-order Taylor expansion of the DoG function D(x) where
x = (x, y, σ) is a selected candidate point in the previous step.
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One or more orientations (descriptors) locally determined in the image are
assigned to each keypoint, using the direction of the gradients in a surrounding
neighborhood. This step is essential to ensure the rotation invariance. Following
this step, a keypoint is defined by four parameters (x, y, σ, θ), where θ is the
rotation parameter. On the same image, keypoint may differ by only one of these
four parameters (for example the scale factor or the orientation factor, this is
particularly true for zones of textures).

2.4 Methodology

We use the SIFT keypoints descriptors to register each subsequent frame to its
reference image in the same flicker period. The SIFT algorithm generates a
number of keypoints, which are invariant to image translation, rotation and scale,
and so yields matches between two images even in the presence of illumination
variations. The management of these matches allows us to estimate better
geometrical transformations.

2.4.1 Image matching

We extract SIFT keypoints from each subsequent reference frame, which are
stored in a database. Similarly, we extract the keypoints for each image in
the sequence. We find matching keys between each subsequent frame and its
reference. For each keypoint, we have a location vector, which provides the
keypoint position (row, column, scale, orientation). We compute translations
that each keypoint undergoes, by subtracting the corresponding location vectors
in the reference frame and the target frame respectively. In our case, we can
neglect the rotations which are very small.

Figure 4.13 shows vertical plotted against horizontal translations in order to
check whether or not there are bad matches estimated. We can see that most
points are centered in a narrow range, but some keypoints seem to undergo a
larger translations than the others. In addition, as we study videos with global
motion, we expect all translations to be similar, so we can consider that there
was a mismatch in the previous step.
To compute the exact geometric transformations, first, we propose to eliminate
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Figure 4.13. Vertical vs. horizontal translations of matched keypoints

outlier translations, and then calculate the average of all translations. We add
a condition which examines whether or not a translation value will be taken
into account. In our case, we propose that the Euclidean distance between its
translation parameters and those of its neighbors should be less than a given
threshold.

This Euclidean distance between two different points a and b in the plot in
Figure 4.13 is defined as follows:

Dab =
√

(dX(a) − dX(b))2 + (dY (a) − dY (b))2 (4.25)

where (dX,dY ) are the horizontal and vertical translations.
We plot again dY with respect to dX after applying the Euclidean distance

constraint: Figure 4.14 shows that remaining points have very close translation
averages, and all points with large translations are eliminated. Then we calcu-
late the average of the translations as the most accurate estimate of the true
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Figure 4.14. Vertical vs. horizontal translations of matched keypoints with Euclidean
distance

translation.

2.4.2 Application of the transformation matrix

Now we have enough information to form the geometric transformation matrix
between each image its corresponding reference, and it takes the following form:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos θ̂ − sin θ̂ Tx

sin θ̂ cos θ̂ Ty

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.26)

where θ̂ is the rotation mean of all keypoints which is almost negligible (in our
case), Tx and Ty are the translation means with respect to x and y, i.e. those are
the mean of vectors dX and dY respectively.

The inversion of this matrix shifts geometrically the image f(⋅, t) to the
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reference image f(⋅, tref). Once the transformation matrix between the reference
and each current frame has been found, it is applied to each.

2.4.3 Color correction step

Sampling data
There is no need to consider all the points in the image. We sample a few

thousand points randomly placed on the image, as in Figure 4.15. At each
sampled point we associate a vector V ref = (Rref,Gref,Bref) in the reference image
to a vector V reg = (Rreg,Greg,Breg) in the registered image. Because they are
registered, we expect both sets of vector to correlate well.

Figure 4.15. Random sampling on the image

Multiple least-square regression
We build a multiple least-square regression model fitting the reference vs. the

registered image.
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Given a vector V reg corresponding to a point s in the registered image, we
try to estimate the color correction matrix M such that

V ref = MV reg +O (4.27)

we recall that M is always a 3 × 3 matrix representing the luminance from the
diagonal elements and chroma parameters from the others, and O is an offset for
modeling additive noise.

Color correction model
The linear model is very easy to apply using equation (4.27). In accordance

with our experimental model, for a given frame f(⋅, t), the optimal transform
matrix M̂ t is that minimizes the following energy function:

J(M̃ t) =∑
s
∥M̃ t Vreg(s) −Vref(s)∥2, (4.28)

For each frame, 9 scalar parameters for the color correction have to be
estimated. For minimizing the energy function J , we use the standard least
square method:

M̂ t =∑
s
(Vref(s)V⊺

reg(s)) (∑
s

Vreg(s)V⊺
reg(s))

† (4.29)

Once the optimal color transform between the reference and the current frame
warped to the reference has been found, it is applied onto the original one. This
yields a flicker-compensated frame. Reproducing the same procedure for each
frame yields a flicker-compensated sequence.

However some data will exceed the range of the image. We clip data above
255 to that value, and also negative values to zero. We find very few negative
values, but corrected values exceeding 255 are expected in areas of high intensity.

Although this is not obvious on the printed page, the correction is quite
effective when we compare the reference and corrected images pixel per pixel.
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2.4.4 Results and performances

In this section, we present some experimental results to show the performance
of this global method. The registration method was tested on a real sequence,
the disparity images before and after registration show that the global motion is
well estimated (see Figure 4.16(d, e)). Our color correction model was tested on

(a) Reference frame (b) Current frame (c) Registration result

(d) Disparity before regis-
tration

(e) Disparity after registra-
tion

Figure 4.16. Image sequence with periodic flicker from studio lighting.

a synthetic flicker sequence produced from a flicker-free, naturally lit video and
also on a real, studio-lit video affected with global flicker and motion. Figure 4.17
shows the processing result for the real degraded image sequence.

(a) Real sequence

(b) Processing result

Figure 4.17. Global color correction using image registration based method
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The luminosity variation graph (Figure 4.18) shows that brightness levels
are enhanced in the processed frames, but there are still few variations between
luminosity averages.
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Figure 4.18. A comparison between luminosity average before and after flicker
correction using image registration based method

As we do not have access to a flicker-free reference sequence, we cannot
precisely estimate similarity measures only from the luminosity variation graph.
So we performed our global processing approach on a sequence with synthetic
flicker. We use the structural similarity index (SSIM), and signal-to-noise ratio
(SNR) estimators to measure the similarity between the original and degraded
images on the one hand, and then between the original and restored sequences on
the other hand. Figure 4.19 represents a restoration example on a sequence with
artificial flicker. This example features global motion between frames. The PSNR
average increases from 21 to 32 dB after color correction (see Figure 4.20(b)),
so the gain is significant. Similarly, the SSIM index is very close to 1 after
restoration (see Figure 4.20(c)).
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(a) Original image (b) Degraded image (c) Color correction result

Figure 4.19. Sequence with global motion and artificial flicker.
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Figure 4.20. Artificial flicker: similarity measures

3 Summary

In this chapter, first we used histogram matching for flicker correction. This
method has some limitations with respect to the saturation effects and outliers,
but we showed that it can be used to efficiently reduce flicker in videos. We
also proposed a different global approach using keypoints matching for image
registration followed by a least-squares linear color correction. The restoration
method works well in the presence of single light source, global flicker and simple
motion.

Both methods are efficient in terms of computation time and are useful for
reducing flicker in most acquisition conditions. The registration-based method
has an advantage with respect to the histogram-based method. It is more robust
to outliers, and yields a better estimate of the color correction parameters. This
is due to the fact that a registration match, even inaccurate, provides more
information than a histogram match.

In the next chapters, we develop more sophisticated methods that deal with
videos affected with flicker featuring multiple light sources and complex motion.



Chapter 5

Block matching-based
colorimetric correction

1 Introduction

In the case of multiple light sources illuminating the scene, we observe a composite
flicker effect in image sequences depending on the location of each light source.
This means that we cannot model the illumination variation by a single correction
matrix for all pixels in the frame. We demonstrate this in Figure 5.1 which shows
the layout of flicker in different regions in the scene. Flicker can be modeled
in a different manner from one region to another, depending on several factors,
for instance the position of the region with respect to the light source in the
scene, the random noise distribution over images for various reasons (high/low
luminosity, compression artifacts, etc) or due to the different light absorption
characteristics between the multiple scene regions and materials. For example, a
black material absorbs all wavelengths, whereas a white material reflects them.
To handle situations where the flicker varies across the image, we propose a joint
tracking/color correction scheme using a block matching technique paired with
color variation estimation.

As previously presented in the litterature review, local colorimetric and
luminosity variations constitute a significant challenge for motion tracking on
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the one hand, and for color restoration on the other hand. Most videos contain
background and object motion, and so matching pixels between frames needs
to be performed, although most tracking methods assume consistency of color
between frames.

Region 3
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Region 2
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Figure 5.1. An illustration of flicker effects in different regions of a single sequence.
Luminosity variations vary significantly between regions, and so cannot be corrected in
the same way everywhere.
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In this chapter, we propose local approaches for color correction, based on a
block matching algorithm that is able to include the constraints of illumination
and chroma variations. A post-processing step is also proposed in order to
deal with blocking artifacts. Firstly, a classical causal strategy is proposed for
correcting an image with respect to its previous reference frame. Secondly, a non-
causal strategy is implemented to take into account multiple reference frames in
order to handle pseudo/non-periodic illimination and chroma variations. Finally,
a multi resolution strategy is adopted to accelerate processing.

2 Causal method for periodic flicker removal

2.1 Causal definition

In signal processing, a system is called causal if it has, at time t, an output signal
which depends only on the previous values and optionally on current values of
the input signal. Future signal values cannot be used. This means in our case
that a current frame in the video sequence should be processed with respect only
to previous reference frames. This classical approach is widely used in video
processing. This approach is suitable for periodic flicker because in this case the
past and present overlap to some degree. However it is less suitable to spurious
flicker and does not cope well with low frequency illumination variations.

2.2 Tracking step

Classical optical flow methods assume constancy of illumination as we have seen
in Chapter 3. They are sensitive to the presence of these illumination variations,
whereas keypoint-based methods are more robust to illumination changes and so
are more robust for global motion estimation. In order to generalize our procedure,
we propose a localized color transformation estimation method. Since tracking
single pixels is impractical, we use a block-matching method, assuming that each
spatial block Bk indexed by k can be assigned its own model parameters, i.e.
(∀s ∈ Bk) M s,t = M̃ k,t, which means that all pixels indexed by s of the block Bk
are processed using the same color transformation matrix M̃ k,t. More precisely,
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we propose to divide all frames into disjoint blocks of identical sizes, typically
64 × 64, and to perform a joint block-matching / color transform estimation
between flicker-affected frames and the previous reference frame.

In accordance with our experimental model, for a given block Bk in frame t,
the optimal transform matrix M̂ k,t and displacement vector d̂k,t ∈ R2 are those
that minimize the following energy function:

J(M̃ k,t,dk,t) = ∑
s∈Bk

Φ(M̃ k,t f(s, t) − f(s − dk,t, tref)), (5.1)

where dk,t is a candidate displacement vector between two corresponding blocks
and Φ∶R3 → [0,+∞[ is a cost function. Usually, a typical choice for Φ is the
squared Euclidean norm where Φ = ∥ ⋅ ∥2/2. J can thus be expressed as follows:

J(M̃ k,t,dk,t) =
1
2 ∑s∈Bk

∥M̃ k,t f(s, t) − f(s − dk,t, tref)∥
2
, (5.2)

The minimization of (5.2) can be performed by the standard least squares
strategy, i.e. setting to zero its derivative with respect to the sought parameter
M̃ k,t,

∂J(M̃ k,t,dk,t)
∂M̃ k,t

= ∑
s∈Bk

(M̃ k,t f(s, t) − f(s − dk,t, tref))f(s, t)⊺ = 0. (5.3)

Hence, the solution to the quadratic minimization problem is provided by

M̂ k,t = ( ∑
s∈Bk

f(s − dk,t, tref)f(s, t)⊺) ⋅ ( ∑
s∈Bk

f(s, t) f(s, t)⊺)
†
. (5.4)

Otherwise, with more complex choices of the cost function Φ, the previous
convex optimization problem defined in (5.1) can be solved by an iterative strategy
(typically, a Majorization-Minimization strategy). This choice of optimization
strategy is briefly explained below.
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2.3 An iterative optimization strategy

Generally, the optimization of a function g(u) with respect to a given parameter u,
consists of looking for an estimation of the unknown parameter û that minimizes
or maximizes the cost function. In our context, our cost function Φ represents
the error of matching blocks between the target image and the reference image,
hence we are interested in finding the minimization strategy:

û = argmin
u∈RN

g(u), (5.5)

where g could include multiple terms, the first term to represent the relation
between the target and reference data, and other regularization terms to improve
the conditioning of the problem, and for finding a better solution for the sought
variables. It should be noted that most optimization algorithms operate within
a general iterative strategy, consisting, at each iteration to get closer to the
minimum by solving a sub-problem minimization. Obviously, this strategy makes
sense only if these sub-problems are easier to solve than the original problem.
There are exceptions for some very specific cases, for instance fully quadratic
problems, as seen above.

2.3.1 Majorization-Minimization approaches

The general MM algorithm was first proposed by Ortega and Rheinboldt (1970).
It consists of finding a solution to the optimization problem (5.5), where Φ is
assumed to be differentiable, in an iterative manner. It relies upon the following
concept:

Definition 3. Let g: RN →]−∞,+∞]. Let υ ∈ RN . q(⋅ ∣ υ): RN →]−∞,+∞] is
a tangent majorant function of g at υ if (∀u ∈ RN) f(u) ≤ q(u ∣ υ), and
f(υ) = q(υ ∣ υ).

The MM algorithm minimizes a tangent majorant function q of g at each
iteration k ∈ N. It can be summarized by the following algorithm and Figure 5.2.

A typical choice of majorant function is a stricly convex quadratic function.
It ensures a unique solution to sub-problems of Algorithm 1.
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Algorithm 1: Majorization-Minimization algorithm
Initialization: Set u0 ∈ RN

for k= 0,1, .. do
uk+1 ∈ argmin

u∈RN

q(u ∣ uk)

end

ukuk+1

q(.|uk)
g(u)

Figure 5.2. Illustration of MM algorithm for the minimization of a function g ∶ RN
→] −∞,+∞]. At iteration k ∈ N, we use a majorant function q(⋅ ∣ uk) of g at a point
uk, and then we define uk+1 as a minimizer of q(⋅ ∣ uk).

Property If g is β-Lipschitz differentiable on RN , according to the so-called
Descent Lemma, a tangent majorant function of g at υ is defined by

q(u ∣ υ) = g(υ) + ⟨u − υ,∇g(υ)⟩ + µ2 ∥u − υ∥2 (5.6)

where µ ∈ [β,+∞[.
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Consequently, this property holds in our context, provided that Φ is a differ-
entiable cost function with a Lipschitzian gradient.

Our aim is to construct a majorant function Q of J such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J(M (n+1)
k,t ,d(n+1)

k,t ) ≤ Q
M
(n)
k,t

,d(n)
k,t

(M (n+1)
k,t ,d(n+1)

k,t )

J(M (n)
k,t ,d

(n)
k,t ) = QM

(n)
k,t

,d(n)
k,t

(M (n)
k,t ,d

(n)
k,t ),

(5.7)

for every (M (n)
k,t ,d

(n)
k,t ,M

(n+1)
k,t ,d(n+1)

k,t ).
The proposed algorithm then reads:

Algorithm 2: Majorization-Minimization algorithm
for n= 0,1, .. do

d̂(n+1)
k,t = argmin

d∈W
J(M̃ (n+1)

k,t (d),d),

where M̃
(n+1)
k,t (d) = argmin

M
Q

M̂
(n)
k,t ,d̂

(n)
k,t

(M ,d)

and M̂
(n)
k,t = M̃

(n)
k,t (d̂

(n)
k,t ).

end

Note that this algorithm constitutes an original contribution of this thesis
since it mixes a discrete optimization step with respect to d with a continuous
optimization with respect to M . The first step is performed in an exact manner,
while the second one employs the surrogate function Q. The majorization-
minimization property is instrumental for proving the convergence of our cost
function J as shown below:

J(M̂ (n+1)
k,t , d̂(n+1)

k,t ) = J(M̃ (n+1)
k,t (d̂(n+1)

k,t ), d̂(n+1)
k,t )

≤ J(M̃ (n+1)
k,t (d̂(n)k,t ), d̂

(n)
k,t )

≤ Q
M̂
(n)
k,t ,d̂

(n)
k,t

(M̃ (n+1)
k,t (d̂(n)k,t ), d̂

(n)
k,t )

≤ Q
M̂
(n)
k,t ,d̂

(n)
k,t

(M̂ (n)
k,t , d̂

(n)
k,t ) = J(M̂

(n)
k,t , d̂

(n)
k,t ). (5.8)

These inequalities show that J is a decreasing sequence, hence converging because
it is lower bounded by zero.
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In our particular case, we optimize (5.1). The property (5.6) holds since
Φ is a differentiable cost function with a Lipschitzian gradient. Without loss
of generality, the Lipschitz constant is normalized to 1. Applying the Descent
Lemma to Φ yields:

Φ(ϕ) ≤ Φ(ϕ∗) +∇Φ(ϕ∗)⊺(ϕ − ϕ∗) + 1
2∥ϕ − ϕ ∗ ∥2 (5.9)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ = M
(n+1)
k,t f(s, t) − f(s − d(n+1)

k,t , tref),
ϕ∗ = M̂

(n)
k,t f(s, t) − f(s − d̂(n)k,t , tref) = e(n)(s, t).

(5.10)

This yields the following inequality:

J(M (n+1)
k,t ,d(n+1)

k,t ) ≤ ∑
s∈Bk

Φ(e(n)(s, t))

+ ∑
s∈Bk

∇Φ(e(n)(s, t))⊺(M (n+1)
k,t f(s, t) − f(s − d(n+1)

k,t , tref) − e(n)(s, t))

+1
2 ∑s∈Bk

∥M (n+1)
k,t f(s, t) − f(s − d(n+1)

k,t , tref) − e(n)(s, t)∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

M̂
(n)
k,t

,d̂(n)
k,t

(M
(n+1)
k,t ,d(n+1)

k,t )

,

(5.11)

where Q
M̂
(n)
k,t ,d̂

(n)
k,t

(M (n+1)
k,t ,d(n+1)

k,t ) is thus the majorant function of J at iteration
n + 1, and it can be simplified as follows:

Q
M̂
(n)
k,t ,d̂

(n)
k,t

(M (n+1)
k,t ,d(n+1)

k,t ) = C + ∑
s∈Bk

∇Φ(e(n)(s, t))⊺M (n+1)
k,t f(s, t)

+ 1
2 ∑s∈Bk

(∥M (n+1)
k,t f(s, t)∥2 − 2(f(s − d(n+1)

k,t , tref) − e(n)(s, t))⊺M (n+1)
k,t f(s, t))

(5.12)

where C is a constant independent from M
(n+1)
k,t .
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This can be rewritten as

Q
M̂
(n)
k,t ,d̂

(n)
k,t

(M (n+1)
k,t ,d(n+1)

k,t )

= C + ∑
s∈Bk

tr[M (n+1)
k,t f(s, t)(∇Φ(e(n)(s, t) − f(s − d(n+1)

k,t , tref) − e(n)(s, t))⊺]

+ 1
2 ∑s∈Bk

tr(M (n+1)
k,t f(s, t) f(s, t)⊺ M

(n+1)
k,t

⊺
)

= C + ⟨M (n+1)
k,t , ∑

s∈Bk

(∇Φ(e(n)(s, t) − f(s − d(n+1)
k,t , tref) − e(n)(s, t))f(s, t)⊺⟩F

+ 1
2
⟨M (n+1)

k,t ,M
(n+1)
k,t ∑

s∈Bk

f(s, t) f(s, t)⊺⟩F

where ⟨⋅ , ⋅⟩F is the Frobenius scalar product, defined by ⟨A,B⟩F = tr(AB⊺).

Q
M̂
(n)
k,t ,d̂

(n)
k,t

(⋅,d(n+1)
k,t ) is a convex function whose gradient with respect to M

(n+1)
k,t

is given by

∇
M
(n+1)
k,t

Q
M̂
(n)
k,t ,d̂

(n)
k,t

(M (n+1)
k,t ,d(n+1)

k,t ) = ∑
s∈Bk

(∇Φ(e(n)(s, t)) − f(s − d(n+1)
k,t , tref) − e(n)(s, t))⊺)f(s, t)⊺

+M
(n+1)
k,t ∑

s∈Bk

f(s, t) f(s, t)⊺, (5.13)

and for every candidate vector dk,t ∈W, it admits as minimizer:

M̃
(n+1)
k,t (dk,t) = ( ∑

s∈Bk

(f(s − dk,t, tref) + e(n)(s, t) −∇Φ(e(n)(s, t)))f(s, t)⊺)

×( ∑
s∈Bk

f(s, t)f(s, t)⊺)
†
. (5.14)

For each block, 11 scalar parameters need to be estimated: 9 for the color
correction and 2 translation parameters. If estimates (M̂ (n)

k,t , d̂(n)k,t ) are available
at iteration n, updates of the sought parameters are obtained by Algorithm 2.
For any translation vector, this algorithm was shown to generate a convergent
decaying sequence of energy values as a result of Property (5.8). We then select
the translation vector with lowest energy obtained at convergence.
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s0 = s � dk,tBks Bk0
s0

f(·, t)

B1 B2 B3

Bn

B1 B2 B3

Bn

f(·, tref)

Figure 5.3. Block matching scheme

The result of this process is the transformation matrix and displacement
vectors that best match the correspondence between blocks.

2.4 Choice for the cost function Φ

Typical choices for Φ are the squared Euclidean norm, yielding a standard least
squares approach, the separable Huber function, which constitutes a smoothed
version of the `1 norm and is useful for performing robust regression as well as
smooth approximations of the `0 pseudo-norm.

2.4.1 Quadratic norm

When Φ = ∥ ⋅ ∥2/2, we obtain ∇Φ(e(n)(s, t)) = e(n)(s, t) and the standard least
squares solution is recovered, and so the convergence is ensured in one iteration.
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2.4.2 Huber function

The Huber function is useful in robust regression. As a differentiable approxi-
mation of the `1 norm, it is well known to be less sensitive to outliers than the
quadratic norm, which makes the estimation of displacement and color trans-
formation parameters more precise, and thus block artifacts are reduced in the
corrected sequence.

We can write e(s, t) in matrix form as follows:

e(s, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

eR(s, t)
eG(s, t)
eB(s, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (5.15)

Using Peter J. Huber definition (Huber et al. (1964)):

Φh(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2a

2 for ∣a∣ ≤ ε,
ε(∣a∣ − 1

2ε), otherwise,
(5.16)

the gradient of our cost function is defined by:

∇Φ(e(s, t)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ′
h(eR(s, t))

Φ′
h(eG(s, t))

Φ′
h(eB(s, t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε, if eR(s, t) > ε
−ε, if eR(s, t) < −ε
eR(s, t), if ∣eR(s, t)∣ ≤ ε

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε, if eG(s, t) > ε
−ε, if eG(s, t) < −ε
eG(s, t), if ∣eG(s, t)∣ ≤ ε

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε, if eB(s, t) > ε
−ε, if eB(s, t) < −ε
eB(s, t), if ∣eB(s, t)∣ ≤ ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.17)

Using this cost function, if the initialization of parameters is performed
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arbitrarily, the convergence can be somewhat slow (more than 100 iterations),
therefore the initialization step is very important. We proposed to estimate initial
parameters, in particular the translation vectors, using the quadratic approach,
and reuse them as initial values for the subsequent iterations. This procedure
reduces the number of required iterations by a factor of more than 20.
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(a) With arbitrary parameters initialization
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(b) Initialization with the quadratic solution

Figure 5.4. The convergence of our iterative algorithm depends of the parameters
initialization. This test was performed on an image for the Bird sequence.
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In qualitative terms, the smaller ε, the more effective the algorithm is at
reducing the outliers and the algorithm converges more slowly to an optimal best
corrected solution. As shown in Figure 5.4, the optimal choice for ε appears to
be around 0.2.
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Epsilon
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Figure 5.5. Huber norm: The PSNR of the processed image for the Bird sequence
while increasing ε.

2.4.3 Other error functions

We tested our iterative optimization strategy with other more complex criteria.
We will consider some non-convex functions for the majorant function, typically
the Welsch and Geman-McClure approximations of the `0 pseudo-norm.

Welsch function

Using Welsch definition (Holland and Welsch (1977)), we can write:

Φ(e(s, t) = ∑
c∈{R,G,B}

Φw(ec(s, t)), (5.18)

where
Φw(ec(s, t)) =

λw
2 [1 − exp (−e

2
c(s, t)
C2
w

)], (5.19)



94 Chapter 5. Block matching-based colorimetric correction

Cw and λw are constant variables. Its derivative, called influence function, is
expressed as follows:

Φ′
w(ec(s, t)) =

λw
C2
w

ec(s, t) exp (−e
2
c(s, t)
C2
w

), (5.20)

and its second-order derivative is given by

Φ′′
w(ec(s, t)) =

λw
C2
w

(1 − 2e2
c(s, t)
C2
w

) exp (−e
2
c(s, t)
C2
w

). (5.21)

λw is fixed while ensuring that the Lipschitz constant Lw of the derivative (Hessian
maximum value) is normalized to 1:

Lw = Φ′′
w(0) =

λw
C2
w

= 1

⇒ λw = C2
w. (5.22)

According to our experiments, the best choice for the parameter Cw is then given
by Cw = 0.15.

Geman-McClure function

We test also the Geman-McClure M-estimator proposed by Geman and
McClure (1987). It is defined as:

Φ(e(s, t) = ∑
c∈{R,G,B}

Φg(ec(s, t)), (5.23)

where
Φg(ec(s, t)) = λg

e2
c(s, t)

2Cg2 + e2
c(s, t)

, (5.24)

Φ′
g(ec(s, t)) = λg

4ec(s, t)Cg2

(2Cg2 + e2
c(s, t))2

, (5.25)

Φ′′
g (ec(s, t)) = 4λgC2

g

2C2
g − 3e2

c(s, t)
(2C2

g + e2
c(s, t))3 . (5.26)
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λg must also be chosen so as to ensure that the Lipschitz constant Lg is normalized
to 1:

Lg = Φ′′
g (0) =

λg
C2
g

= 1

⇒ λg = C2
g (5.27)

The choice of the parameter which appears to provide the best results when
running the MM algorithm is Cg = 0.11.

2.4.4 Comparison between different cost functions

In order to test the performance of the color correction strategy using our iterative
algorithm with different cost functions, a PSNR similarity measure is performed
on the processing results of a synthetic flicker sequences produced from a flicker-
free, naturally lit video. We constructed the majorant function Q using the
different approximations of norms/pseudo-norms with convexity (quadratic and
Huber norms) and non-convexity properties (Welsch and Geman-McClure norms).

It is noted that Huber function provides the best PSNR ratio comparing to
the other norms. It allows us to gain approximately 4 dB along the processed
sequence (Figure 5.6). This is due to its robustness to limiting the influence of
outliers in the observed data, and its hybridity of squared error for relatively
small errors and absolute error for relative large ones.

2.5 Flicker compensation

Once the optimal color transform between the reference and the current frames
has been found for each block, it is applied on each. This yields a flicker-
compensated frame. Reproducing the same procedure for each frame yields a
flicker-compensated sequence.

This procedure is pretty simple, however there is no expectation for the
optimization procedure that we have just described to yield similar color-correction
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Figure 5.6. Similarity comparison: PSNR average of the processed sequence using
different cost functions. The sequence is acquired with large local motion and a periodic
artificial flicker has been added.

matrices for neighboring blocks. As a result, the boundary between blocks may
become perceptible in the flicker-compensated results. This may happen for
instance when the translation parameters are not estimated precisely enough
due to the arbitrary process of image division into blocks, which implies that
some blocks may include strong intensity edges or outliers. A variable-size block
matching could be implemented to alleviate this issue, but at the expense of an
increased complexity. For this purpose, a post processing step is required.

2.6 Block artifact removal

Following the flicker compensation step, we propose to re-process each frame of
the affected video to remove block artifacts in an efficient manner. We base our
approach on the color transformation matrices and translation parameters that
we have already found. A simple idea could be to interpolate the color matrices
near the boundaries of the blocks, however, we have found that this method does
not yield accurate enough results in practice.
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Instead, we re-estimate a new color correction matrix for each pixel in a frame,
taking into account its neighborhood and its position in the block relative to
neighboring blocks. For each pixel s, we reuse the pair (M̂ ks,t, d̂ks,t) already
estimated for its corresponding block. In the optimization process, we now include
a regularization term weighted by a constant λ ∈]0,+∞[. A new energy function
is then defined as

K(M s,t) = ∑
s′∈Bks

Φ(M s,t f(s′, t) − f(s′ − d̂ks,t, tref)) +
λ

2 ∑s′∈Vs

∥M s,t − M̂ ks′ ,t∥2
F

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rg(Ms,t)

,

(5.28)

where s is the position of the pixel to be processed, Vs is a neighbourhood of
it, and ∥ ⋅ ∥F denotes the Frobenius norm. The previous optimization problem
can also be solved by the iterative Majorize-Minimize strategy, since the Descent
Lemma 5.6 holds again. We construct a new majorant function called P defined
as follows:

P = Q +Rg. (5.29)

At an iteration n + 1, the minimizer of (5.29) is given by setting to zero the
derivative of P with respect to M s,t. The derivative function can be expressed
by

∇
M
(n+1)
s,t

P
M̂
(n)

,d̂
(n)(M (n+1)

s,t ) = ∇
M
(n+1)
s,t

Q
M̂
(n)

,d̂
(n)(M (n+1)

s,t ) +∇
M
(n+1)
s,t

Rg(M (n+1)
k,t ).
(5.30)

Rg is expanded as follows,

Rg(M s,t) =
λ

2 ∑s′∈Vs

(∥M s,t∥2
F − 2 < M̂ ks′ ,t,M s,t >F +∥M̂ ks′ ,t∥2

F) (5.31)

This step facilitates the computation of the derivative of regularization term at
an iteration n + 1,

∇
M
(n+1)
s,t

Rg(M (n+1)
s,t ) = λ ∑

s′∈Vs

I3 M
(n+1)
s,t − λ ∑

s′∈Vs

M̂ ks′ ,t (5.32)



98 Chapter 5. Block matching-based colorimetric correction

Refering to (5.13) and (5.32), (5.30) becomes:

∇
M
(n+1)
s,t

P
M̂
(n)

,d̂
(n)(M (n+1)

s,t ) =

∑
s∈Bk

(∇Φ(e(n)(s, t))−f(s−d(n+1)
s,t , tref)−e(n)(s, t))⊺)f(s, t)⊺+M

(n+1)
s,t ∑

s∈Bk

f(s, t) f(s, t)⊺

+ λ ∑
s′∈Vs

I3 M
(n+1)
s,t − λ ∑

s′∈Vs

M̂ ks′ ,t (5.33)

with d(n)s,t = d(n+1)
s,t = d̂ks,t. Equation (5.33) thus admits as minimizer:

M̌
(n+1)
s,t = ( ∑

s′∈Bks

(f(s′ − d̂ks,t, tref) + e(n)(s′, t) −∇Φ(e(n)(s′, t)))f(s′, t)⊺+

λ ∑
s′∈Vs

M̂ ks′ ,t)( ∑
s′∈Bks

f(s′, t)f(s′, t)⊺ + λ∣Vs∣I3)
−1
, (5.34)

where
e(n)(s′, t) = M̌

(n)
s,t f(s′, t) − f(s′ − d̂ks,t, tref). (5.35)

Note that this formulation ensures that, if we set λ to zero, we recover the
previous solution computed on block Bks .

2.7 An outline

This causal method compensates well the periodic flicker in an image with respect
to a previous reference frame. When flicker is not uniform in some image regions,
for some reasons (different light source, higher noise level, etc..), the flicker layout
of Region 2 in Figure 5.1 varies between areas, the reference frames along the
sequence have different illumination averages. This creates some local luminosity
distortions between flicker periods in the corrected sequence. In the next section,
we propose a new method which is suitable for aperiodic flicker removal.
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(a) Reference frame (b) Flicker-affected frame

(c) Color correction result (d) Deblocking result

(e) Zoom before deblocking (f) Zoom after deblocking

Figure 5.7. Image sequence with periodic flicker from studio lighting.

3 Non-causal method using two reference sources

As seen in chapter 1, most state of the art methods use a single reference to
process the current frame. Some consider the previous corrected frame as a
reference to maintain constancy in luminosity variation, and especially when
processing non-periodic flicker, this approach may accumulate the restoration
errors from one image to another.
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In this context, in order to avoid luminosity distortions between flicker periods
in the corrected sequences, we propose a new strategy consisting of processing each
frame with respect to a preceeding and a following reference frames, depending on
its position between these two, this approach is called "non-causal" because it uses
both past and future frames. Obviously it can only be used offline, so the moniker
"non-causal" is only descriptive. As already explained in Section 4.1, previous
and next reference frames are respectively the last and next maximum intensity
frames in the current period, to be more reliable which are better in terms of
signal-to-acquisition noise ratio and in terms of matching similar contents.
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Figure 5.8. Blue curve shows the brightness variation of images in a flicker affected
sequence. In black, we display the intensity averages of the corrected frames using a
single reference image by flicker period (causal approach). The red curve shows the
desired solution that better aligns brightness levels using two reference frames through
a non-causal approach.
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3.1 Tracking step

We continue to use the same joint block-matching / color transform estimation
principle. More precisely, we find for each spatial block Bk indexed by k its two
similar blocks in the previous and next reference frames respectively, and we
assign to this block its own model parameters:

M k,t = αtM k,t/tref1 + (1 − αt)M k,t/tref2 , (5.36)

where αt = tref2−t
tref2−tref1

is a linear interpolation factor, M k,t/tref1 and M k,t/tref2 are
the same correction matrices for all pixels of the block Bk, which are computed
with respect to their similar blocks in the two reference sources at instants tref1

et tref2.

Following the same methodology as described above, for a block Bk in a frame
at an instant t, we minimise the following energy function:

J(M k,t/trefi
,dk,t/trefi

) = ∑
s′∈Bk

Φ(M k,t/trefi
f(s′, t) − f(s′ − dk,t/trefi

, trefi)), (5.37)

where i ∈ {1,2}, dk,t/trefi
is a translation vector between two spatial blocs cor-

responding to instants t and trefi and Φ∶R3 → [0,+∞[ is a differentiable cost
function with a Lipschitzian gradient.

Although various choices for Φ are possible, the simplest one is Φ = ∥ ⋅ ∥2/2
leading to a least squares approach. Similarly to the previous section, the Huber
error function is also a suitable choice.

For each block in the current image, two color correction matrices (each
comprising 9 parameters) and two translation vectors are estimated with respect
to the two associated reference frames, the final color correction parameters are
estimated by a linear interpolation using the factor αt.

In order to solve the previous optimization problem, we note that, for a fixed
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f(t)

↵t 1 � ↵t

{Mk,t/tref2
, dk,t/tref2

}{Mk,t/tref1
, dk,t/tref1

}
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f(·, tref1) f(·, tref2)

Bks01 Bks02

Bks

f(·, t)

Figure 5.9. Two reference sources tracking method

dk,t/trefi
the least squares solution is

M̃ k,t/trefi
(dk,t/trefi

) = ( ∑
s′∈Bk

f(s′ − dk,t/trefi
, trefi)f(s′, t)⊺)R†

k,t (5.38)

where Rk,t = ∑s′∈Bk
f(s′, t)f(s′, t)⊺ and (⋅)† is the pseudo-inverse operator.

It follows that the optimal pair (M̂ k,t/tref1 ,M̂ k,t/tref2) is equal to (M̃ k,t/tref1(d̂k,t/tref1),
M̃ k,t/tref2(d̂k,t/tref2)) where d̂k,t/trefi

, i ∈ {1,2}, is the minimizer, in a finite search
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window, of
dk,t/trefi

↦ J(M̃ k,t/trefi
(dk,t/trefi

),dk,t/trefi
). (5.39)

3.2 Block artifact removal step

For each pixel s in the block Bks , we re-use the two pairs (M̂ s,t/tref1 , d̂ks,t/tref1)
and (M̂ s,t/tref2 , d̂ks,t/tref2) already found. As in the artifact removal step for the
causal method, we include to the optimization process a regularization term
weighted by a multiplicative constant λ ∈]0,+∞[.

The new energy function is defined by

K(M s,t/tref1 ,M s,t/tref2) = ∑
s′∈Bks

Φ(M s,t/tref1 f(s′, t) − f(s′ − dks,t/tref1 , tref1))

+ ∑
s′∈Bks

Φ(M s,t/tref2 f(s′, t) − f(s′ − dks,t/tref2 , tref2))

+λ2 ∑s′∈Vs

∥αtM s,t/tref1 + (1 − αt)M s,t/tref2 − M̂ s′,t∥2
F, (5.40)

where ∥ ⋅∥F is the Frobenius norm. M̂ s′,t is the estimate of color correction matrix
for the block containing the pixel s′.

When Φ = ∥ ⋅ ∥2/2, this quadratic optimization problem is solved by setting to
zero the partial derivatives with respect to the two correction matrices M s,t/tref1

and M s,t/tref2 which we can estimate again. This solution is given by

⎡⎢⎢⎢⎢⎣

M s,t/tref1

M s,t/tref2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

∑
s′∈Bks

f(s′ − dks,t/tref1 , tref1)f(s′ , t)⊺ + λαt ∑
s′∈Vs

M̂ s′,t

∑
s′∈Bks

f(s′ − dks,t/tref2 , tref2)f(s′ , t)⊺ + λ(1 − αt) ∑
s′∈Vs

M̂ s′,t

⎤⎥⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎣

Rks,t + λα2
t ∣Vs∣I3 λαt(1 − αt)∣Vs∣I3

λαt(1 − αt)∣Vs∣I3 Rks,t + λ(1 − αt)2∣Vs∣I3

⎤⎥⎥⎥⎥⎦

−1

. (5.41)
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It is noted that this formulation ensures that if we set λ to zero, we recover
the previous solution estimated for the block Bks .

The comparison results with causal approach are shown and discussed in
the final section of this chapter. Due to the important amount of processing
time required by block matching algorithm, we propose in the next section a
multiresolution approach for flicker correction.

4 Pyramidal approach to accelerate processing

Processing time is particularly important in video processing, and thus for
high speed imaging, it is a challenge to meet real time constraints during the
processing of long image sequences. Block matching and the pixel-wise block
artifact removal algorithms are more of a time-wise challenge, and especially
when we are processing HD images (1920 × 1080 pixels). So, we propose a
multi-resolution algorithm to accelerate the tracking step.

4.1 The adopted strategy

In image processing, pyramidal approaches are multiresolution representations of
images. These strategies are often used for image segmentation.

4.2 Algorithm

In order to process a current image with respect to a previous reference, (without
loss of generality, we consider here only the causal approach), for each block
Bk, we estimate first the translation parameters represented by d̂SN

k = (d̂SN

kx
, d̂SN

ky
)

between the two images at the most reduced scale (SN = 1
2N ), using a small search

grid for the displacement vector, say for instance ((−2,−2), ..., (+2,+2)). At the
next higher resolution SN−1 = 1

2N−1 , these estimated parameters become the new
centers of the search grid ((2d̂SN

kx
− 2,2d̂SN

ky
− 2), ..., (2d̂SN

kx
+ 2,2d̂SN

ky
+ 2)), which

are used to improve the estimate of the displacement vector. We repeat this
process at all the scale levels up to scale S0 = 1

20 = 1, to find the final estimation
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of displacement vector and color transformation parameters (d̂S0
k ,M̂

S0
k ) in the

current original frame. Figure 5.10 illustrates the proposed approach.
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(bdS1
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Figure 5.10. Multi resolution scheme with the most reduced scale is SN = 1
4 .

The complexity of the proposed methods can be represented with respect to
multiple criteria. To perform the block matching-based method, the complexity
of the used method depends of the search grid area around the target block and
the size of this block. In order to deduce the computation time gain, we can
compare the complexity of the pyramidal approach with respect to our standard
causal block matching approach.

Considering a block Bk in the current original frame (at the full resolution),
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the complexity of applying the causal method on this block can be written as:

Co ∝ n ⋅m ⋅w ⋅ h (5.42)

where n,m are the horizontal and vertical search pixels interval respectively, and
w,h are the width and height sizes (in pixel) of the processed block (Figure 5.11).

w

h
+

n

2
�n

2

�m

2

+
m

2

Bk

Figure 5.11. An illustration of a block Bk in the current image.

Using the pyramidal approach, the complexity of processing such a block
depends on the complexities of processing this block at the different image
resolutions. We note that the horizontal and vertical search intervals are constant
at all resolution levels. Compared with the full-resolution search interval, the
search interval can be reduced by a factor 2c, where c is an arbitrary small positive
integer (Figure 5.12).
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Figure 5.12. The choice of displacement search grid in pyramidal approach.
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The complexities at all reduced scales, are presented below:

C0 ∝
n

2c ⋅
m

2c ⋅w ⋅ h

C1 ∝
n

2c ⋅
m

2c ⋅
w

2 ⋅ h2
C2 ∝

n

2c ⋅
m

2c ⋅
w

22 ⋅
h

22

⋮

CN ∝ n

2c ⋅
m

2c ⋅
w

2N ⋅ h2N (5.43)

The total complexity of the pyramidal approach is:

Cp = C0 +C1 +⋯ +CN

⇒ Cp ∝
nm

22c ⋅w ⋅ h
N

∑
i=0

1
22i . (5.44)

Then the improvement of the processing time of pyramidal approach with respect
to the standard block matching based algorithm can be given by

gr =
Co
Cp

= n ⋅m ⋅w ⋅ h
nm
22c ⋅w ⋅ h∑Ni=0

1
22i

= 22c

∑Ni=0
1

22i

. (5.45)

The denominator’s term in (5.45) is a geometric series, and can be expressed as
follows:

N

∑
i=0

1
22i =

N

∑
i=0

1
4i =

1 − 1
4N+1

1 − 1
4

= 4
3
(1 − 1

4N+1 ), (5.46)

and thus Equation (5.45) becomes:

gr =
3 ⋅ 4c−1

1 − 1
4N+1

. (5.47)

In our context, we often process HD images, we find it is sufficient to reduce
the resolution twice (N = 2), i.e. up to SN = 1

22 . For simplicity we choose to
reduce the search interval by the same factor by choosing c = 2, which is consistent
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with the case already studied in Figure 5.10 where n =m = 16 and the constant
search interval is a range of four pixels (i.e. ±2). Note that this is not mandatory.
This yields a more than 12 fold improvement in speed (256/21). The larger
the images, the more we can increase c, and so the larger the gain gr. gr does
not depend much on N , however, we may have to increase N nonetheless if
displacements are large.

5 Results and discussion

In this section, we present some experimental results to demonstrate the efficacy
of the proposed approaches. First, our color correction and deblocking models
were tested on a synthetic periodic/non-periodic flicker sequences produced from
a flicker-free, naturally lit video and also on a real, studio-lit video affected with
periodic flicker and featuring multiple light sources and complex motion. The
artificial non-periodic flicker was created in such a way that large differences
in brightness between the different periods were exhibited. Plotting the global
luminosity vs. the image sequence index allows us to evaluate the performance
of the methods. Figure 5.13 shows the result of processing the real degraded
image sequences using the causal method. The luminosity variation graphs in
Figures 5.14, 5.15, 5.16 and 5.17 show that brightness levels are well restored in the
color-corrected videos, and even at different acquisition and lighting conditions,
different geometrical motions and also at varying frame rates.
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(a) Video 1: including complex motions at 1000 fps
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(b) Video 2: including translations, scale changes at 240 fps
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(c) Video 3: including rotation, translations, scale changes, focusing and defocusing effects
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(d) Video 4: including fast rotations at 240 fps

Figure 5.13. Luminosity fluctuation and restoration in some real sequences with
different acquisition properties: complex motions, different lighting conditions and
acquisition frame rates.

(a) Degraded frames

(b) Processed frames

Figure 5.14. Video 1: Acquired at 1000 fps, illuminated by three light sources, it
includes complex motions, saturation effects, noise at the background and some outliers.
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(a) Degraded frames

(b) Processed frames

Figure 5.15. Video 2: Acquired at 240 fps, and so we have rapid illumination/
chromatic changes. It includes focusing/defocusing effects accompanied by translation
motions and scale changes.

(a) Degraded frames

(b) Processed frames

Figure 5.16. Video 3: Acquired at 240 fps, it presents high contrast variations
between image regions. Different light sources are illuminating the scene with different
flicker properties.
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(a) Degraded frames

(b) Processed frames

Figure 5.17. Video 4: Acquired at 240 fps under multiple light sources, it includes
very fast rotations.

As we do not have a flicker-free reference sequence in this case, we cannot
precisely estimate similarity measures. We then utilize the structural similarity
index (SSIM), and signal-to-noise ratio (SNR) estimators to measure the similarity
between the original and degraded images on the one hand, and then between
the original and restored sequences on the other hand. Figure 5.18 represents
a restoration example on two sequences with artificial flicker. These examples
feature large motion between frames, occlusions in the background and compound
motion: for example, in the bird sequence, the camera is moving in the opposite
of the bird’s direction.

Deblocking is used after flicker removal to alleviate blocking artifacts caused
by occlusions and complex displacements. The PSNR average increases from
21 to 48 dB after color correction. A further 1 dB is gained on average after
the deblocking step (see Figure 5.20(a)). We compared our method to another
deflickering procedure adapted from Naranjo and Albiol (2000), which was initially
tailored for old grayscale movies, and that we extended to color sequences. This
procedure compensates flicker globally and provides a single matrix for the whole
image at each timestep. It only improves the PSNR to 32 dB on average, so our
gain is significant. Similarly, our SSIM index is very close to 1 after restoration
(see Figure 5.20(b)), and its improvement after removing blocking artifacts and
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comparing to the global deflickering method is also significant.

(a) Degraded frames

(b) Causal approach

(c) Non-causal approach

(d) Degraded frames

(e) Causal approach

(f) Non-causal approach

Figure 5.18. Videos 5-6: Comparison between causal and non-causal approaches for
color correction on synthetic flicker sequences produced from a flicker-free, naturally lit
video.
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(a) Original image (b) Degraded image

(c) Color correction result (d) Deblocking result

(e) Zoom before deblocking (f) Zoom after deblocking

Figure 5.19. Sequence with large local motion and periodic artificial flicker.
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(b) Luminosity variation
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Figure 5.20. Artificial flicker: similarity measures
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Finally, in order to compare between causal and non-causal approach, the
similarity measures were computed on a non-periodic flicker affected sequence,
see Figure 5.21.
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Figure 5.21. Luminosity average vs. images sequence for the causal and non-causal
approaches, on a non-periodic flicker affected video.

It is clear in the figure above, that the non-causal approach provides a
reasonable illumination correction result, the sudden brightness changes are
removed between different flicker periods. The non-causal approach seems to be
more efficient for the non-periodic variations compared to the causal approach,
and can be used for several applications as well as high speed imaging, for instance,
to stabilize brightness variations in time lapse videos.
Finally, the pyramidal approach was tested on the causal method using Huber
solution to verify whether or not the processing results keep the same quality
while reducing the resolution of images and decreasing the computation time.
Figure 5.22 shows that PSNR average almost keeps the same value with and
without applying the pyramidal approach on the block-based causal method.
This approach has allowed us to accelerate the processing time of causal method
five times.
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Figure 5.22. PSNR measure for the pyramidal approach and the causal approach
using Huber solution on the bird sequence.

6 Conclusion

In this chapter, we have proposed a new flexible local color correction technique
to remove flickering artifact, qualified as periodic/non-periodic, suitable for
correcting high speed color video taken under artificial lighting and which can be
useful for some other video applications.

We have described a causal and non-causal tracking methods involving per
block color correction matrix estimation, followed by a per-pixel post-processing
/ block artifact removal step requiring a color correction matrix estimation and
regularization.

In order to reduce the processing time, we introduced a pyramidal strategy
based on the causal approach, to estimate tracking and correction parameters
at reduced scales, while maintaining approximately the same quality of results.
This principle is very useful to improve the method computational time both for
real time implementations and for the offline applications.



Chapter 6

Local method based on
superpixels and spatial
interpolation

1 Introduction

In computer vision, the detection of features of interest in images is a fundamental
task, since it enables tracking, stereovision, 3D reconstruction, and many other
tasks. Features can have any shape but are most often associated with point
locations in images. As described previously, some problems make the tracking
of these areas or objects difficult, depending on various factors related to the
acquired data or to the application, for instance the presence of noise in images,
illumination and chroma variations, complex motions, partial and total occlusions,
and other problems.

The representation of objects is a very important part of the tracking process.
An object can be represented by a point (center of the object for example) or
a set of points of interest (keypoints). An object may also be represented by a
simple shape such as a rectangle (as seen above in chapter 5), ellipse, etc. This
representation is robust to follow rigid objects (i.e. vehicles) but is also suitable for
non-rigid objects. An object can also be represented by its edges. This represen-
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tation is adapted for tracking non-rigid objects with a complex or undefined shape.

In this chapter, we adopt the viewpoint that it is not always necessary to
track all image regions in a video, but that it is beneficial to ignore noisy areas,
featureless regions or poorly exposed areas. We propose thus to track the regions
of interest in a video to find their corresponding color correction models, i.e.
to find a sufficient number of estimates on which we can rely to predict the
remaining local color corrections for all pixels of the entire image using spatial
interpolation.

The objective of this chapter is to propose new avenues for video color
correction, and typically for flicker removal applications. We suggest another
local method based on superpixels segmentation, that is able to track objects
with undefined and complex shapes. In other words, regions of interest will guide
the object of interest over time.

2 Preliminaries

The interpolation is a classical problem of estimating a function F (p), where
p = (x, y) is a point in the image plane, from N known values of F from the
surrounding points pi

F (p) =
N

∑
i=1
wiF (pi). (6.1)

The main issue is the determination of the weighting wi, for each of the surround-
ing points. There are several ways for choosing these weights.

For example, to make a weather map, there is not necessarily a sufficient
number of evenly distributed weather stations to cover the whole region. Inter-
polation can estimate the temperature, humidity, atmospheric pressure, etc in
different places without recorded data by using the known measurements in close
weather stations. This technique is also often used for other types of data, such
as population density, snow accumulation, etc.

There exist many interpolation methods. These methods can be classified
into two categories: one dimensional and two dimensional methods. Among the



2. Preliminaries 121

most common one dimensional methods are the quadratic interpolation, cubic
interpolation and cubic B-spline Interpolation. Higher dimensional methods are
often derived from the one dimensional methods. In our context, we are interested
in the two dimensional methods and we will briefly explain some of the most
commonly used methods in the present chapter.

2.1 Spatial interpolation

Spatial interpolation is the interpolation on functions of more than one variable.
The function to be interpolated is known at given points (xi, yi, zi, . . . ) and the
interpolation problem consists of yielding values at arbitrary points (x, y, z, . . . ).

Multivariate interpolation is particularly important in geostatistics, meteorol-
ogy and in image processing applications. We explain below some of the most
commonly used methods. We mention the nearest neighbor interpolation, bilinear
interpolation, bicubic interpolation, inverse distance weighting interpolation and
kriging interpolation method.

2.1.1 Nearest neighbor interpolation

The nearest neighbor algorithm is a multivariate interpolation method that can
be useful for interpolating irregular grids of estimated points. It selects the value
of the nearest known point and does not consider the values of neighboring points
at all, yielding a piecewise-constant interpolant related to the Voronoï diagram of
the sampled points. The algorithm is very simple to implement and is commonly
used (usually along with multi-resolution applications) in real-time 3D rendering
to select color values for a textured surface, but it yields a very heteregenous
result in terms of color and requires a large number of known estimates to provide
a reasonable results, thus its use is very much limited in our context.

2.1.2 Bilinear interpolation

The bilinear interpolation allows to calculate the intensity value of a two di-
mensional function or an image f at any point, using its four nearest neighbors
C11(x1, y1), C12(x1, y2), C21(x2, y1), C22(x2, y2). It performs a linear interpo-
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lation first in one direction, and then again in the other direction. It allows
to obtain better results than the already mentionned interpolation method by
nearest neighbor, and also remains of reasonable complexity.

Contrary to what its name suggests, the interpolation function is not linear
but is of quadratic form because of the term xy:

f(x, y) = ax + by + cxy + d (6.2)

where f(x, y) is the interpolation value of f at the position (x, y), and a, b, c
and d are four unknown variables that we can estimate by linearly interpolating
in the x direction and then interpolate in the y direction.

The linear interpolation in the x direction yields:

f(x, y1) =
x2 − x
x2 − x1

f(C11) +
x − x1

x2 − x1
f(C21) (6.3)

f(x, y2) =
x2 − x
x2 − x1

f(C12) +
x − x1

x2 − x1
f(C22) (6.4)

Then, the linear interpolation in the y direction is performed as follows and
presents the solution of the bilinear interpolation:

f(x, y) = y2 − y
y2 − y1

f(x, y1) +
y − y1

y2 − y1
f(x, y2)

= 1
(x2 − x1)(y2 − y1)

[x2 − x x − x1]
⎡⎢⎢⎢⎢⎣

f(C11) f(C12)
f(C21) f(C22)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

y2 − y
y − y1

⎤⎥⎥⎥⎥⎦
(6.5)

This interpolation is continuous, but at the connection between pixels, derivatives
are not continuous, which can introduce discontinuities between interpolated
intensity levels. The method described here is valid for a regular grid but can be
readily extended to an irregular grid.

2.1.3 Bicubic interpolation

Bicubic interpolation is an extension of the cubic interpolation to interpolate a
set of distributed points on a regular two-dimensional grid.

It is often preferred to bilinear interpolation or the nearest neighbor technique
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for image resampling even if the processing time is not critical. The bicubic
interpolation considers a neighborhood of 16 pixels (4 × 4) which ensures a
smoother interpolation result with fewer discontinuity artefacts.

This two dimensional interpolation is expressed as follows:

f(x, y) =
3
∑
i=0

3
∑
j=0
aijx

iyj (6.6)

and its partial derivatives are thus expressed as

fx(x, y) =
3
∑
i=1

3
∑
j=0
iaijx

i−1yj (6.7)

fy(x, y) =
3
∑
i=0

3
∑
j=1
jaijx

iyj−1 (6.8)

fxy(x, y) =
3
∑
i=1

3
∑
j=1
ijaijx

i−1yj−1 (6.9)

where 16 parameters have to be estimated.

Suppose that the function values f and the derivatives fx, fy and fxy are
known at the four corners C(0,0), C(0,1), C(1,0), C(1,1) of the unit square.
The solution to the unknown parameters aij is introduced by Thévenaz et al.
(2000) as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f(0, 0) f(0, 1) fy(0, 0) fy(0, 1)
f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)
fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)
fx(1, 0) fx(1, 1) fxy(1, 0) fxy(1, 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.10)
Similarly to the bilinear interpolation, this method works on a regular grid of
known points, and thus it will not be useful in the context of superpixels. These
methods can be useful for the post processing step of our block-based local method.

Beside the nearest-neighbor interpolation method, there exist other state-of-
the-art methods that are defined for scattered data on an irregular grid. For
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instance, we can mention methods based on triangulated irregular network-based
natural neighbor, radial basis function, thin plate spline, natural neighbour
interpolation, inverse distance weighting (IDW), kriging interpolation and others.

2.1.4 Inverse distance weighting IDW

IDW (Shepard (1968)) is a distance-based method, it considers that the weight of
any known point is set inversely proportional to its distance from the estimated
point.

There is a common way to find an interpolated value u from a given point x,
that uses the following interpolation function:

u(x) =
⎧⎪⎪⎨⎪⎪⎩

∑N
k=0wk(x)uk

∑N
k=0wk(x)

if d(x,xk) ≠ 0
uk if d(x,xk) = 0

(6.11)

where wk is a simple weighting function:

wk(x) =
1

d(x,xk)p
, (6.12)

x is an interpolated point, xk is a known interpolated point (estimate), d is a
given distance between x and xk, N is the total number of known points used
in the interpolation and p is a real positive number, the power parameter. The
weight of the neighboring points decreases as the distance increases. The choice
of p depends on the desired smoothing level for the interpolation. Larger values
of p give more influence for the nearest values to the interpolated point.

IDW method relies on minimizing a function related to the measurement of
the deviations between the tuples of interpolating points (x,u) and the k pairs
of interpolated points (xk, uk), defined as:

φ(x,u) = (
N

∑
k=0

(u − uk)2

d(x,xk)p
)

1
p

. (6.13)

The disadvantage of this method is that the quality of the interpolation result
may decrease if the distribution of sampled data points is irregular. Several
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modified versions of this interpolation algorithm have been developed in (Liszka
(1984); Łukaszyk (2004)).

2.1.5 Kriging Interpolation

Kriging, also named Gaussian process regression, was proposed in the master’s
thesis of Krige (1951), for mining applications. The theoretical basis for kriging
was developed by Matheron (1971).

In the previously detailed weighting methods. Only the distances between the
samples and the point to be estimated are taken into account. Instead, kriging is
an interpolation method that estimates the weights from the degree of similarity
between the values of F , e.g. from the covariance between the points with respect
to the distance separing them. There are three main types of kriging: Simple
kriging, Universal kriging and Ordinary kriging. Simple kriging is equivalent to
a linear interpolation by minimizing the mean square error of a stationary field
(Lapierre and Fortet (1953)). Ordinary kriging is the most frequently used and
will be detailed and used below.

Ordinary kriging assumes second-order stationarity, which means that the
mean and the variance of the function F are stationary, e.g. they do not depend
on the position of the points, and the correlation between two points depends
only on the distance between them. Kriging is mainly based on an estimator of
the covariance called the variogram.

Definition 4. Let Z be a random variable of a space variable x, which is assumed
to be stationary, in particular the mean and the variance of Z(x) are independent
of x. The variogram between points x and y is given by

γ(x, y) = Var[Z(x) −Z(y)] = E[∣ Z(x) −Z(y) ∣2].

In the following, we assume that the variogram can be modelled by an
isotropic function, meaning that it only depends on the distance hx,y between x
and y. Since it is isotropic, only the positive half of the variogram (called the
semi-variogram) is necessary to determine the weights in (6.1).
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Figure 6.1. The computation of the semi-variogram and its best fit exponential model

Kriging then consists of calculating the weights wi using the γ values corre-
sponding to N selected points. The sum of weights must to be one to ensure the
unbiasedness of ordinary kriging system.

Definition 5. The estimation error of the random variable Z in xp is expressed
by:

ε(xp) = Ẑ(xp) −Z(xp) =
N

∑
i

wi(xp)Z(xi) −Z(xp),

and since Z is stationary in ordinary kriging, E(Z(xi)) = E(Z(xp)) =m, with m
the mean of Z. The estimation is unbiased when E(ε(xp)) = 0, we can deduce:

N

∑
i

wi(xp)E(Z(xi)) −E(Z(xp)) = 0⇔m
N

∑
i

wi(xp) −m = 0⇔
N

∑
i

wi(xp) = 1.

For a point xp, ordinary kriging consists of finding the weights wi which
ensures that corresponding variances fit with the estimated semi-variogram.

Ordinary kriging is expressed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ ⋅W = Γ0

∑Ni wi = 1
(6.14)
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where Γ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

γ(h1,1) ⋯ γ(h1,n) 1
⋮ ⋱ ⋮ ⋮

γ(hn,1) ⋯ γ(hn,n) 1
1 ⋯ 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Γ0 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

γ(h1,p)
⋮

γ(hN,p)
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

and W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

w0

⋮
wN

%

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where % is a Lagrange factor used in the minimization of the kriging error σ2
p

to honor the unbiasedness condition and hxi,yj
represents the distance between

two points xi and yj. This variation error is computed as follows:

σ2
p =W ⊺ ⋅ Γ0. (6.15)

The minimal variance and the unbiased estimation condition shows the
advantage of using ordinary kriging for spatial interpolation instead of other
methods.

3 Superpixel based method

3.1 Superpixel definition

A superpixel is a grouping of pixels sharing similar features like color or texture
in an atomic way, which can replace the rigid structure of the classic regions of
interest. Superpixel algorithms capture redundancy in an image, provide a prac-
tical primitive for further analysis such as detection, segmentation, classification
and tracking of objects. The associated algorithms also significantly reduce the
complexity of image processing tasks, and simplify the memory usage.

Various algorithms have been used to generate superpixels, that are based on
graphs (Felzenszwalb and Huttenlocher (2004); Shi and Malik (2000); Veksler
et al. (2010)), k-means (Achanta et al. (2012)) and geometrical flows (Machairas
et al. (2014); Levinshtein et al. (2009)).

In our work, we employ the Simple Linear Iterative Clustering (SLIC) algo-
rithm which is easy to use and offers a flexibility in terms of compactness and
number of generated superpixels. This algorithm will be briefly detailed later in
the next section.
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3.2 General strategy

This section describes a local approach based on superpixels tracking for motion
estimation and color correction. The suggested method is implemented as a two
main step procedure. At the first stage, regions of interest are tracked from
the reference image to the target images in order to estimate a color correction
matrix. Secondly, an interpolation between the maintained color estimates is
performed to process the unknown estimated points.

3.3 Motion tracking

Construction of superpixels in images allows us to work locally on the extracted
information. Our method begins by calculating a superpixels segmentation of
the reference image f(⋅, tref) and the target images f(⋅, t). For this, we initialize
our algorithm with the Simple Linear Iterative Clustering algorithm (Achanta
et al. (2012)), which is briefly described below.

3.3.1 SLIC segmentation

The Simple Linear Iterative Clustering algorithm clusters pixels in the combined
five-dimensional color and image plane space to efficiently generate compact,
nearly uniform superpixels. SLIC algorithm uses color images in the CIELAB
color space.
It allows to generate superpixels regularly on the image surface. First, the
centers of superpixels Ck = [lk ak bk xk yk]⊺ are initialized on a regular

grid and spaced by S pixels, with S =
√

K
N where N is the total number of

desired superpixels and K is the approximative number of superpixels. l, a and
b designate the color components, and x and y correspond to the geometrical po-
sition. These centers can be optionally moved to avoid being on image boundaries.

SLIC is an iterative method consisting of two steps:

• assigning pixels to a center Ck basing on a similarity criteria,

• updating the centers.
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This approach seeks to minimize, in the first step, the similarity criteria
corresponding to a distance between Ck and the current pixel p = [l a b x y]⊺,
defined by:

D2
SLIC(Ck, p) = d2

lab(Ck, p) +
d2
xy(Ck, p)
S2 m2 (6.16)

wherem is the compactness, dlab is a colorimetric distance and d2
xy is the geometric

distance between Ck and p in the current image,

d2
lab(Ck, p) = (lk − l)2 + (ak − a)2 + (bk − b)2 (6.17)

d2
xy(Ck, p) = (xk − x)2 + (yk − y)2 (6.18)

Whenm is large, spatial proximity is more important and the resulting superpixels
are more compact (i.e. they have a lower area to perimeter ratio). When m is
small, the resulting superpixels adhere more tightly to image boundaries, but
have less regular size and shape. When using the CIELAB color space, m can
be in the range [1,40].

For each center, a similarity search area is defined, of 2S×2S size and centered
on Ck. Only pixels of this zone are examined.

Thereafter, we show how we can track the motion using this segmentation
process.

3.3.2 Tracking of labels

For a specific flicker period, the reference frame is segmented using the SLIC
algorithm using a regular initialization of superpixels centers (See Figure 6.2).
Updated centers are associated to all superpixels at the end of the segmentation
process. Each superpixel is identified by its own label number and its center
coordinates. SLIC parameters for the segmentation of next subsequent frames
are initialized with the last centers grid obtained from the segmentation of the
previous frame. This improves the likelihood that a tracked superpixel maintains
the same label number during the whole flicker period. A validation test is
performed in order to verify that the same label number in two consecutive
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Figure 6.2. Centers initialization for the reference frame segmentation.

images does indeed correspond to the same region of interest.

Figure 6.3. Centers initialization for a subsequent frame segmentation: It depends
on the centers grid already estimated for the previous segmented frame.

In our context, displacements are considered over a small range. As a first
check, a validation test depends on the displacement value between the corre-
sponding matched superpixels centers, i.e. if this value is higher than a given
threshold, tracking of the corresponding superpixel is considered to have failed.
It will therefore be ignored for the color correction estimation. We also assume
that a given superpixel retains the same neighbors between two successive frames



3. Superpixel based method 131

to validate its matching procedure.

mismatch

Figure 6.4. Example of some good and bad matches between segmented reference
and target frames.

Once a superpixel is successfully tracked and maintains its label number
between the reference frame and the current frame, a color correction estimation
is subsequently performed.

3.4 Color correction step

Due to the presence of motion and illumination variations between the segmented
frames, the shape and area of a superpixel Sk at label k can vary significantly.
Thus, a color distribution comparison between superpixels with the same label
would not yield good results.

In addition, the SLIC algorithm classifies the regions of interest in images based
on a color similarity criteria. As a result, superpixels tend to be homogeneous in
color. This implies that attempting to correlate the color content of superpixels
between frames would be a poorly conditioned match. We observed that classical
histogram-based approaches fail in the context of superpixel matching.
We propose a ROI based color comparison in order to estimate the colorimetric
transformation for each valid tracked superpixel.
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3.5 ROI based color matching

We consider a superpixel Sk(t) in a current frame f(⋅, t) and centered by Ck(t),
that is successfully tracked from its initial position centered on Ck(tref) in the
reference frame f(⋅, tref):

Ck(tref) = Ck(t) + d̂S (6.19)

where d̂S is the displacement vector between the initial k label position in the
reference frame and its position in the current fame. We then compare two ROI
regions Bk(t) and Bk(tref) surrounding Ck(t) and Ck(tref) respectively. The

Bk(t)Bk(tref )

Ck(tref )
Ck(t)

f(·, t)f(·, tref )

Figure 6.5. Pixel wise matching for similar superpixels.

flicker matrix is estimated by minimizing the following energy function

J(M̃ k,t,dS) = ∑
s∈Bk

Φ(M̃ k,t f(s, t) − f(s − dS, tref)), (6.20)

where Φ∶R3 → [0,+∞[ is a cost function and Bk is the pair of the blocks Bk(t)
and Bk(tref) that are matched by the labelling of superpixels. The simplest and
fastest choice for Φ is the quadratic norm where Φ = ∥ ⋅ ∥2/2. The quadratic
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solution is given by

M̂ k,t = ( ∑
s∈Bk

f(s − dS, tref)f(s, t)⊺) ⋅ ( ∑
s∈Bk

f(s, t) f(s, t)⊺)
†
. (6.21)

Once a color correction matrix M̂ k,t is computed for a successfully tracked
superpixel, we apply it uniformly on all superpixel pixels:

∀x ∈ Sk(t) , fp(x, t) = M̂ k,t ⋅ f(x, t), (6.22)

where fp(⋅, t) is the processed frame at time t.

(a) Reference (b) Degraded

(c) Correction (d) Interpolation

Figure 6.6. Superpixel based method for color correction: In (c) only superpixels with
succesfull tracking are processed, other superpixels are ignored. In (d) interpolation of
the correction matrix provides a solution for the whole image.
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3.6 Post processing step

Post-processing consists of finding the unknown transformation estimates for the
remaining superpixels on the one hand, and to remove borders artifact on the
other. For this we interpolate the transformation matrix over the whole image
using a kriging model already explained in Section 2.1.5.

Figure 6.6 shows that post processing is an essential step in order to estimate
the unknown color correction parameters for the ignored superpixels at the first
stage, and thus to perform the color correction on the whole image, and also to
eliminate some superpixel borders artifacts if they exist.

(a) Degraded frames

(b) Processing results

(c) Interpolation results

Figure 6.7. Video 2: Superpixel-based method for flicker removal.

3.7 Results and discussion

The proposed approach was tested on real studio-lit videos affected with local
flicker and various motion including rotations (see Figure 6.7). We also validate
our method on a synthetic flicker sequence in order to be able to compute
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similarity measures between original and processed sequences (see Figure 6.8).
In Figures 6.7 and 6.8, (b) presents the first processing step on the successfully
tracked superpixels, the black regions are the ignored superpixels. (c) shows
the post-processing step based on the spatial interpolation of color correction
parameters, it shows that the color correction of all image regions are succesfully
predicted.

(a) Degraded frames

(b) Processing results

(c) Interpolation results

Figure 6.8. Video 6: Superpixel-based method for flicker removal on synthetic flicker
sequence.

Figure 6.9 plots the luminosity variation of processed images of Video 1 vs.
frame index, it shows that flickering is much reduced along the sequence, even
if some very small, imperceptible fluctuations remain. Figure 6.10 indicates a
significant image quality gain after our processing. The PSNR average increases
from 20 dB to around 40 dB. These show that our approach is promising for
simultaneous motion tracking and color correction for high speed imaging.
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Figure 6.9. Luminosity variation of Video 2: Test of performance of superpixel based
method
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Figure 6.10. PSNR similarity measure on Video 6: Test of performance of superpixel
based method on synthetic flicker sequence.
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3.8 Conclusion

In this chapter, we were inspired by the superpixel-based segmentation algo-
rithms for motion tracking in image sequences in the presence of brightness
and chromatic changes. Based on this tracking, a pixel-wise matching approach
was established to compare the color distributions between tracked regions of
interest from a reference image to a target one in order to locally estimate flicker
parameters in an image sequence.

The results show that our superpixel-based method yields good results, espe-
cially in the color distribution matching step. Using multiple constraints based
on the neighboring superpixels allows for a reliable tracking method. However,
this tracking method only yields a motion vector per pair of matched superpixels.
For some applications, this may be too inaccurate. Augmenting the density of
superpixels may be an appropriate solution, however this is more demanding in
terms of computation time in very high definition videos (8k or more).





Chapter 7

A comparative chapter
In this chapter we compare our three proposed approaches. The global image
registration based method (in chapter 4), the local block-based colorimetric
correction method (in chapter 5) and the local superpixel tracking based flicker
removal approach (in chapter 6).

1 Simulation scenarios

We tested these methods on four real, studio-lit videos affected with periodic
flicker and featuring multiple light sources and complex motion. Video 1 is
acquired at 1000 fps using multiple light sources, it includes complex large
motions and high noise level. The videos 2, 3 and 4 are acquired at 240 fps.
Video 2 includes focusing/defocusing effects accompanied by translation motions
and scale changes. Video 3 presents high contrast variations and different light
sources are illuminating the scene with different flicker properties. Video 4
includes fast rotations, which helps to test the robustness of our approaches to
different motion caracteristics.
These methods are also tested on three synthetic periodic flicker sequences (the
videos 5, 6 and 7) produced from a flicker-free, naturally lit videos, in order to
quantitatively compare the processing results in terms of signal to noise ratio, and
to prove the efficiency of each method against different colorimetric, illumination,
motion and acquisition conditions. Video 5 is acquired at 300 fps and includes
global motion. The videos 6 and 7 are also acquired at 300 fps and feature large
local motion between frames.
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This chapter allows us to further analyse each method result and thus to improve
the quality of tracking and flicker removal results in the future works.

2 Quantitative results

We plot the global luminosity vs. the image sequence index in order to qualita-
tively evaluate the performance of the proposed methods.

Figure 7.1 shows that illumination levels in Video 1 are better aligned with
local approaches than global approach basing on features tracking. There is a
slight advantage for block based method compared to the superpixel-based one.
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Figure 7.1. Video 1: including complex motions at 1000 fps

Figures 7.2, 7.3, 7.4 show that the illumination degradation are well adjusted
with block-based method (red curve) in the videos 2, 3 and 4 respectively. The
superpixel method (green curve) is also suitable for the present acquisition
conditions. These two local approaches provide a continuous illumination level
after processing, but the global method cannot deal with local colorimetric
variations and only reduces the flicker artifacts (magenta curve).
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Figure 7.2. Video 2: Acquired at 240 fps, and so we have rapid illumination/
chromatic changes.
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Figure 7.3. Video 3: Acquired at 240 fps, it presents high contrast variations.
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Figure 7.4. Video 4: Acquired at 240 fps with multiple sources, including fast
rotations.

Plotting the global luminosity vs. the image sequence index allows us to
qualitatively evaluate the performance of the methods. As we do not have a
flicker-free reference sequence in the previous videos, we cannot quantitatively
estimate similarity measures. In the next section, we use the signal-to-noise ratio
(SNR) estimators to measure the similarity between the original and artificially
degraded images on the one hand, and then between the original and restored
sequences on the other hand.

We test our methods on three synthetic flicker sequences (Videos 5, 6 and 7)
produced from a flicker-free, naturally lit video.

Figure 7.5 compares our proposed approaches on the building video, which
features global motion between frames, and with global artificial flicker. We can
see that the block-matching based method yields the best similarity ratio between
processed images and original images, with a small advantage with respect to the
global solution, due to the presence of outliers and saturation regions. Superpixel
tracking is less accurate in this context.
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(a) Global luminosity vs. image index
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(b) PSNR

Figure 7.5. Video 5: The building sequence, acquired at 300 fps, including global
motion

Figure 7.6 measures the similarity on the Car sequence, which represents a
large local motion, the camera is fixed, and only the car is moving in the video.
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(b) PSNR

Figure 7.6. Video 6: The Car sequence, acquired at 300 fps

Figure 7.7 example (Bird sequence) also features large local motion between
frames, occlusions in the background but with compound motion: the camera is
moving in the opposite of the bird’s direction.
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(a) Global luminosity vs. image index
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(b) PSNR

Figure 7.7. Video 7: Bird video

In the Car and Bird sequences, we can see that the local approaches are more
suitable, and allows to gain in terms of signal to noise ratio comparing to the
global approach. In Table 7.1, we show the PSNR average values corresponding
to the processing solutions of our suggested methods. These are compared to the
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PSNR average between degraded and original frames.

Global solution Block-based solution Superpixel-based solution Degraded frames
Building seq. 52.04 53.07 48.22 33.04
Car seq. 43.08 52.05 50.32 27.51
Bird seq. 42.58 47.61 47.46 21.69

Table 7.1. PSNR comparison table

We notice that the block-based approach yields the best results in the sequence
with global motion as well as in the sequences with local motion and flickering.
This method results in a gain of around 23 dB. The superpixel-based method is
also promising for local color correction estimation, but it does not yield a highly
accurate motion estimation. This is the reason why its corresponding PSNR is
lower than the block-based approach. The global solution can be used only with
some specific conditions, it requires a global motion with single flicker frequency
on the images. It yields an ideal PSNR ratio for the building sequence (52.04
dB), but it fails when motion and flicker artifacts become more complex (in the
car and bird sequences).



Chapter 8

Conclusion and openings

1 Summary of our contributions

In this manuscript, we have studied the problem of luminosity and chroma
variations in videos in general, and more particularly in the context of high
speed video acquisition under artificial lighting. These variations are termed
"flicker". This problem is likely to become more prevalent with the recent ad-
vent at consumer level of high speed video acquisition devices, for instance
newer smartphone generations or sports/action cameras. The state of the art
has shown a lack of similar works in this context, but has presented some ap-
proaches that were useful, for example the works on flicker removal for archived
videos, the color transfer methods as well as a variety of motion tracking methods.

This manuscript recalled some fundamental and essential basics on color
perception, imaging sensors and video acquisition techniques, motion tracking
methods as well as color correction techniques in different contexts. Then, a
global strategy was introduced for the reduction and removal of periodic and
aperiodic flicker in videos.

Several approaches were proposed to stabilize chroma and luminosity varia-
tions in videos. First, a global approach was introduced consisting of uniformly
processing a subsequent frame in a video with respect to a reference image. The
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first proposed method is global, it estimates a unique color correction matrix for
all image pixels using the cumulated histogram matching. Another suggested
global method computes the desired parameters based on a rigid registration
between the target image and the reference image in order to match similar
areas. These two methods are interesting in terms of computation time because
only one correction process is performed on the whole image. Flicker is well
reduced on videos in the presence of simplified lighting and motion conditions.
On the other hand, these methods are too limited in the case of complex se-
quences, for instance in the presence of large motions, or in the presence of
multiple light sources that illuminate the scene. Multiple illumination typically
result in complex flicker patterns in different regions of the image, and must be
separately processed in order to better stabilize the brightness and color levels.
For this, a local approach is essential to improve the quality of the obtained results.

For a local color correction strategy, motion tracking is an essential step in
order to properly match the regions of a target image to a reference image. Opti-
cal flow methods that assume a luminosity consistency were not adequate in the
studied context, neither are methods that are based on the extraction of regions
of interest because they cannot always cover all regions of the image. Our first
proposed local method uses the block matching technique taking into account the
color change factor to match similar regions, in order to simultaneously estimate
a better color correction and displacement parameters. This used estimation
process is very promising because it simultaneously optimizes a continuous vari-
able (color correction matrix) and a discrete variable (displacement vector). A
post-processing step is performed to remove edge effects around the processed
blocks. A second local method was proposed, based on a superpixel segmentation
of images, in order to take into account irregular shapes and complex motions
such as rotations. This method uses the SLIC segmentation algorithm whose
initialization was modified to track the generated superpixels. The correction
matrix is computed by pixe-wisel matching of neighborhood areas around the
centers of similar superpixels between the target image and the reference im-
age. A kriging interpolation technique was applied in order to predict the color
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correction parameters on some ignored areas and to eliminate the edge effects
that appear at the first processing level. Despite the fact that this method has
advantages in terms of detecting rotations and irregular shapes compared to the
first proposed local method, it has a lower signal-to-noise ratio due to inaccurate
motion tracking. This influences the pixel-wise matching for the computation of
the color correction parameters.

The two global and local approaches were tested on video sequences with an
artificial and real flicker, and all proposed methods show remarkable restoration
performance compared to other color transfer and some global correction methods
that, although designed in different contexts, were adapted to the problem of
interest. The block-matching based method presents the best results overall,
because motion tracking and brightness/chroma variations are simultaneously
studied. This guarantees more accurate match between images.

2 Some perspectives

Some future work, in the continuation of what has been presented in this
manuscript, can be considered.

The use of 3D histogram and optimal transport methods
Several improvements can be useful in the future, especially in the histogram

matching based method in Chapter 4, particularly if we no longer require pixel-
wise matching but if the color transfer function can be deduced from the color
histogram. The use of 3D histograms can add precision to the estimation of
colorimetric variations. These 3D histograms can also be useful for matching
superpixels in the local processing approach already explained in Chapter 6,
using optimal transport methods between similar superpixels for predicting flicker
parameters (Ferradans et al. (2014)), which could accelerate the procedure and
improve the accuracy of flicker parameter estimation.

The advantage of these 3D histograms is that inter-channel correlations can
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better be taken into account, unlike methods considering separate 1D histograms
for representing color channels.

Improvements in the block matching based method
The block-matching based method, described in Chapter 5, can also take into

account the rotations that were ignored in our high-speed video context. In
addition, a new criterion can be defined in order to estimate the color correc-
tion parameters while dealing with the block artifacts simultaneously. These
improvements will pose significant challenges in meeting computational time
constraints.

Openings for multiple applications
If translations and rotations can be estimated with the block-matching based

method, this can open a new avenue for other applications. For instance, the
image registration problem.
In addition, since flicker problem exists also in video compression, which uses
block matching algorithm to estimate motion between video frames. This can
be used to discover temporal redundancy in the video sequence, increasing the
effectiveness of inter-frame video compression by defining the contents of a mac-
roblock by reference to the contents of a known macroblock which is minimally
different. Classical video compression techniques do not take into account lumi-
nosity variations between frames, which causes block artifacts in the compressed
videos. Our block-matching based flicker removal method may be useful in
this context, especially the block artifact removal algorithm which ensures the
per-block motion estimation and a per-pixel processing step.
Our global approaches that have the advantage in terms of computation time
could be an interesting solution for real time application, for example in newer
smartphone generations or sports/action cameras providing high speed acquisition
options. These devices require high performance in order to deal with real-time
acquisitions. Another possibility would be to develop an offline application or
plugin for video flicker removal.
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Implementation
In order to accelerate the computation time, it will be interesting to implement

our methods on many-core processor cards, for instance on GPGPU, FPGA
or XEON PHI. These offer a massively parallel architecture. Thus, we could
significantly accelerate a wide range of the computation steps required by our
methods.
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