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Abstract i

Abstract

Breast cancer is the second most common cancer worldwide and the leading
cause of women’s death from cancer. Improving cancer prognosis has been one
of the problems of primary interest towards better clinical management and
treatment decision making for cancer patients. With the rapid advancement
of genomic profiling technologies in the past decades, easy availability of a
substantial amount of genomic data for medical research has been motivating
the currently popular trend of using computational tools, especially machine
learning in the era of data science, to discover molecular biomarkers regard-
ing prognosis improvement. This thesis is conceived following two lines of
approaches intended to address two major challenges arising in genomic data
analysis for breast cancer prognosis from a methodological standpoint of ma-
chine learning: rank-based approaches for improved molecular prognosis and
network-guided approaches for enhanced biomarker discovery. Furthermore,
the methodologies developed and investigated in this thesis, pertaining respec-
tively to learning with rank data and learning on graphs, have a significant
contribution to several branches of machine learning, concerning applications
across but not limited to cancer biology and social choice theory.
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Résumé

Le cancer du sein est le deuxième cancer le plus répandu dans le monde et
la principale cause de décès due à un cancer chez les femmes. L’amélioration
du pronostic du cancer a été l’une des principales préoccupations afin de per-
mettre une meilleure gestion et un meilleur traitement clinique des patients.
Avec l’avancement rapide des technologies de profilage génomique durant ces
dernières décennies, la disponibilité aisée d’une grande quantité de données
génomiques pour la recherche médicale a motivé la tendance actuelle qui con-
siste à utiliser des outils informatiques tels que l’apprentissage statistique
dans le domaine de la science des données afin de découvrir les biomarqueurs
moléculaires en lien avec l’amélioration du pronostic. Cette thèse est conçue
suivant deux directions d’approches destinées à répondre à deux défis ma-
jeurs dans l’analyse de données génomiques pour le pronostic du cancer du
sein d’un point de vue méthodologique de l’apprentissage statistique : les ap-
proches basées sur le classement pour améliorer le pronostic moléculaire et
les approches guidées par un réseau donné pour améliorer la découverte de
biomarqueurs. D’autre part, les méthodologies développées et étudiées dans
cette thèse, qui concernent respectivement l’apprentissage à partir de données
de classements et l’apprentissage sur un graphe, apportent une contribution
significative à plusieurs branches de l’apprentissage statistique, concernant au
moins les applications à la biologie du cancer et la théorie du choix social.
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Chapter 1

Introduction

Abstract: Breast cancer is the second most common cancer
worldwide and the leading cause of women’s death from cancer.
Improving cancer prognosis has been one of the problems of
primary interest towards better clinical management and treatment
decision making for cancer patients. With the rapid advancement
of genomic profiling technologies in the past decades, easy
availability of a substantial amount of genomic data for medical
research has been motivating the currently popular trend of using
computational tools, especially machine learning in the era of data
science, to discover molecular biomarkers regarding prognosis
improvement. This chapter briefly summarizes the general
background of breast cancer with a particular focus on breast cancer
prognosis, reviews the prospects and challenges in genomic data
analysis, and overviews the methodologies and contribution of the
thesis work in this research area.

Résumé : Le cancer du sein est le deuxième cancer le plus
répandu dans le monde et la principale cause de décès due à un
cancer chez les femmes. L’amélioration du pronostic du cancer a
été l’une des principales préoccupations afin de permettre une
meilleure gestion et un meilleur traitement clinique des patients.
Avec l’avancement rapide des technologies de profilage génomique
durant ces dernières décennies, la disponibilité aisée d’une grande
quantité de données génomiques pour la recherche médicale a
motivé la tendance actuelle qui consiste à utiliser des outils
informatiques tels que l’apprentissage statistique dans le domaine
de la science des données afin de découvrir les biomarqueurs
moléculaires en lien avec l’amélioration du pronostic. Ce chapitre
résume brièvement le contexte général du cancer du sein avec un
point particulier sur son pronostic, détaille les perspectives et les
défis dans l’analyse des données génomiques, et présente les
méthodologies et contributions de la thèse dans ce domaine de
recherche.
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1.1 General Background of Breast Cancer

Breast cancer refers to a malignant tumor that has developed from cells in the
breast. Uncontrolled growth of cancer cells can invade nearby healthy breast tissue
over time, and if cancer cells get into the lymph nodes that are small organs that
filter out foreign substances in the body, they could then have a system of spread-
ing further into other parts of the body and form new tumors in distant organs or
tissues, a process called distant metastasis that aggravates the situation to a signif-
icant extent. Breast cancer is the most common cancer in women worldwide and
second most common cancer overall for both genders in terms of incidence rates
(following lung cancer), and it is the leading cause of cancer death among women in
developing countries and the second leading cause of cancer death (following lung
cancer) among women in developed countries [Torre 2015].1 Over 521,900 women
worldwide were estimated to have died in 2012 due to breast cancer [Ferlay 2013].2
Survival rates have in general been improving over the past decades, as a result of
increased awareness, earlier detection through mammographic screening, adequate
medical care and cancer treatment advances, with the caveat that rates vary greatly
worldwide and still remain quite low in less developed countries.

Diagnosis of cancer, determination of the presence (or extent) of the disease, is
performed by means of (incisional) biopsy, a medical test in which surgeons extract
sample cells or tissues for pathologists to examine under microscope or further ana-
lyze chemically. If diagnosed early, the initial treatment for breast cancer is usually
accomplished by complete removal of tumor by surgery or radiation (mastectomy
or less-extensive breast-conserving surgery) without damage to the rest of the body.
After the initial treatment (or in case that the initial treatment should not be appli-
cable), many patients receive additional treatment, including adjuvant chemother-
apy, hormone therapy and targeted therapy, to lower the risk of relapse, that is the
recurrence risk of cancer-related conditions, and/or to prevent metastasis. However,
as the most common type of adjuvant therapy, chemotherapy usually involves cyto-
toxic drugs and has strong deleterious side effects, and the intake of such aggressive
treatment should hence be minimized for those that will not necessarily need it.
Therefore, to identify those patients who should receive adjuvant chemotherapy is
of chief importance in improving the feasibility of treatment deployment in routine
clinical management of cancer. The decision of whether to receive such treatment
or not is made based on prognosis of the cancer patient, that is the estimation of
the risk of relapse or likely course of outcome if no additional treatment is given
after the initial treatment, and further treatments are considered most beneficial for
patients with poor prognosis and some cases of good prognosis can even choose the
option to forgo chemotherapy.3 In order to quantify prognosis results, a patient is

1See more cancer facts and statistics summary at https://www.cancer.org/research/
cancer-facts-statistics.html.

2See more of contemporary estimates of the incidence of, mortality and prevalence from major
types of cancer at http://globocan.iarc.fr/.

3In fact, two questions need to be addressed in decision making for cancer treatment: prognosis

https://www.cancer.org/research/cancer-facts-statistics.html
https://www.cancer.org/research/cancer-facts-statistics.html
http://globocan.iarc.fr/
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usually categorized into prognostic groups of high or low risk corresponding to one
of the four common types of survival risk: distant metastasis-free survival, (local or
distant) recurrence-free survival, disease-free survival, overall survival. Note that
the following discussion applies to any specific survival unless specified otherwise.

Conventionally, breast cancer prognosis is based solely on clinico-pathological
information collected from patients and tumors. Several commonly used clinico-
pathological parameters have been well established to be indicative of likely prog-
nosis of patients, and thus widely adopted in the clinical management of breast
cancer. For example, it is known that breast cancer with cancer cells detected in
lymph nodes has a higher risk of relapse than breast cancer in situ, and thus re-
quires to be treated with certain adjuvant chemotherapies that are usually more
aggressive [Moffat 2014]. In fact, doctors most often evaluate the severity of breast
cancer based on the Nottingham grading system, a score-based grading system us-
ing clinico-pathological parameters such as the size and shape of the nucleus in the
tumor cells and how many dividing cells are present [on Cancer 2010]. High-grade
tumors look the most abnormal from normal cells and tend to be the most invasive,
and are thus classified with poor prognosis. As another example, hormone receptors
in breast cancer, estrogen-receptor (ER) and progesterone-receptor (PR), play an
important role in normal glandular development and in breast cancer progression,
and their status is therefore highly prognostic (as well as predictive to the respon-
siveness of hormone and endocrine therapies) [Moffat 2014]. Some online tools exist
to perform prognosis of cancer patients and aid physicians weigh against the risks
and benefits of adjuvant treatments, among which stands out the renowned Adju-
vant! Online4. Notably, the six predictors that are shown highly prognostic and
used by Adjuvant! Online to predict cancer-related mortality and relapse are: pa-
tient age, tumor size, grade, hormone receptor status, number of positive lymph
nodes and comorbidity level.

Due to the intrinsic heterogeneity across breast cancer tumors, patients of sim-
ilar clinico-pathological type can have remarkably different survival outcome. An
example constituted by [van ’t Veer 2008] will be quoted here. Large meta-analyses
show that recurrence is likely in 20–30% of young women with early-stage (lymph
node-negative) breast cancer, but in the United States 85–90% of women with
this type of cancer receive adjuvant chemotherapy, among whom 55–75% therefore
undergo a toxic therapy that they would very likely not benefit from but may ex-
perience the undesirable side effects. Since cancer is a inherently complex disease,
the unwanted situation is mostly due to the fact that clinico-pathological informa-
tion alone is far from sufficient to reliably identify those patients who are likely to

that is the estimation of the course of outcome if no additional treatment is given and hence
the identification of those patients who are most likely to need additional treatment; prediction
that is the identification of patients who are most likely to benefit from a specific treatment and
hence the determination on which treatment should be most responsive and effective for a patient.
While prognosis and prediction are equally important and usually discussed together in literature,
prediction will be mostly omitted from discussion for ease of the presentation of this thesis.

4https://www.adjuvantonline.com/.

https://www.adjuvantonline.com/
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relapse, let alone to accurately characterize the outcome of each particular case in
order to personalize the best therapeutic option. It is recognized as an important
yet challenging task to improve prognosis for each diseased individual and identify
more efficient prognostic features, burgeoning the research of interest in interrogat-
ing breast cancer at the molecular level.

1.2 Towards Molecular Prognosis

As [Vogelstein 2004] put it, who are pioneers in cancer molecular biology research:

“The revolution in cancer research can be summed up in a single
sentence: cancer is, in essence, a genetic disease.”

Among many explanations on cancer biology, a widely accepted one states that
cancer is caused by genomic abnormalities, such as the accumulation of mutations
or the dysregulation of gene expression involving tumor suppressor genes and onco-
genes in cancer cells. For decades, the number of genes with established involvement
in cancer development has been increasing significantly, and it has been appreciated
that their biological functions are organized by a few principles, named the hall-
marks of cancer, which rationalize the complexities of cancer and are all underlaid
by genome instability generating genetic diversity [Hanahan 2000, Hanahan 2011].
It is now common knowledge that genomic features contain unique characteristics
of each individual being and offer the opportunity of scrutinizing the individuality
of each breast tumor. Often termed by biomarkers are such molecular features,
typically genes, whose abnormal presence or dysfunctional behavior characterizes
the biological heterogeneity of tumours, leading to molecular subtyping of cancer,
and can thus be indicative of prognosis. While biomarkers can be associated to any
phenotype of interest in general, the discussion will particularly focus on biomarkers
related to breast cancer prognosis in accordance with the objective of the present
thesis.

Many biomarkers related to breast cancer survival have been reported in the
literature. For example, somatic mutations in gene TP53 show association with
worse survival, independent of other risk predictors, see for instance a meta-analysis
by [Pharoah 1999]. Worse breast cancer survival of gene BRCA mutation carri-
ers versus non-carriers have been confirmed by several meta-analyses [Zhong 2015,
Zhu 2016]. Over-expression of gene HER2, pathologically termed as HER2-positive,
is linked to poorer outcome of node-negative breast cancers [Chia 2008], a widely-
observed association that has led to the advent of several HER2-directed therapies
[Arteaga 2012]. Notably, major molecular subtypes of breast cancer are determined
by the gene expression status, over- or under-expression, of hormone receptors and
HER2, based on which physicians usually perform prognosis and plan treatments
[Schnitt 2010]. For a review on currently established and emerging biomarkers for
breast cancer prognosis, see [Weigel 2010].

From the foundation and completion of Human Genome Project (HGP) to the
foundation of The Cancer Genome Atlas Research Network (TCGA), the rapid
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advancement of genomic profiling technologies in the past decades have paved way
to the advent of the current “omics” revolution. Nowadays, thousands up to millions
of genomic features can be efficiently collected from biological samples available for
medical research. Taking gene expression profiling as an example, DNA microarray,
a hybridization-based technology, measures the relative expression activity of a
large number of predetermined list of target genes in a single experiment (Figure
1.1) [Lockhart 1996]. RNA-seq, a next-generation sequencing-based technology,
was later invented to provide expression measurements of gene sequences at lower
cost and higher throughput (or larger genome coverage) with many advantages
benchmarked against previous technologies [Wang 2009].

Figure 1.1: This image from [Commons 2017] illustrates an example of gene expression
values from microarray experiments represented as a heatmap of two color dyes, with pa-
tients in rows and probes in columns, to visualize results of data analysis.

The revolution of gene expression profiling technologies fostered the development
of multigene expression signatures for breast cancer prognosis, a group of biomarker
genes whose combined expression pattern refines prognosis (usually with incremen-
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tal value added to the use of standard clinico-pathological parameters). The re-
search of prognostic signatures has resulted in many success stories [Sotiriou 2009].
Notably, as of today there exist at least six different prognostic multigene expression
signatures commercially available to aid clinical decision making of breast cancer:5

• MammaPrint R© (Agendia, Amsterdam, The Netherlands) [van ’t Veer 2002]
is a 70-gene microarray-based expression profile for stratifying breast cancer
into high- or low-risk prognostic groups. As one of the earliest success stories,
it was the first test approved by the Food and Drug Administration (FDA)
in the United States and by regulators in the European Union as an ad-
junct prognostic assay for women patients satisfying criteria6 including stage
I/II, invasive infiltrating carcinoma, tumor size less than 5.0 cm, lymph node
negative (or up to three lymph nodes positive).

• Prosigna R© Breast Cancer Prognostic Gene Signature Assay or PAM50 (Nanos-
tring Technologies, Seattle, WA, USA) [Parker 2009] is a 50-gene assay for
classifying breast tumors into five intrinsic subtypes (luminal A, luminal B,
HER2-enriched, basal-like, normal-like) that are prognostic independent of
standard clinico-pathological parameters. It is the second FDA-approved test
in the United States to estimate distant recurrence risk for stage I/II (includ-
ing one to three positive nodes), ER-positive breast cancer in postmenopausal
women treated with adjuvant endocrine therapy, and it also received clear-
ance in the European Union.

• Oncotype DX R© (Genomic Health, Redwood City, CA, USA) [Paik 2004] is
a 21-gene signature for categorizing tamoxifen-treated breast cancer patients
into groups of low-, intermediate- or high-risk recurrence. It is the most
widely used prognostic assay for ER-positive cancers in the United States.

• MapQuant DxTM Genomic Grade Index (Ipsogen, France) [Sotiriou 2006] is
a microarray-based 97-gene assay for reclassifying histologically intermediate-
grade ER-positive cancers into high or low molecular grade with significantly
different prognosis.

• Breast Cancer IndexSM (BioTheranostics, San Diego, CA, USA) [Ma 2008]
is comprised of two signatures, a 5-gene molecular grade index and the ratio
of two independent biomarkers HOXB13:IL17BR, and can assess the risk of
distant recurrence in ER-positive, lymph node-negative breast cancers.

• EndoPredict R© (Sividon Diagnostics GmbH, Koln, Germany) [Filipits 2011] is
a 11-gene signature for stratifying patients with ER-positive cancer into high
or low risk of recurrence if treated with adjuvant endocrine therapy alone.

5See for reference http://www.breastcancer.org/symptoms/testing/types.
6Indications for ordering an assay can vary in accordance with the clearance issued by the

country of application.

http://www.breastcancer.org/symptoms/testing/types
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More details about these signatures are found in [Győrffy 2015]. Notably, another
rather famous 76-gene signature (Veridex LLC, a Johnson & Johnson company, San
Diego, CA, USA) [Wang 2005a] could be used to predict the development of distant
metastases within 5 years in lymph node-negative primary breast cancer patients
(irrespective of age and tumor size) who did not receive systemic treatment, which
was later confirmed in multiple independent studies on patient data obtained from
different institutions [Foekens 2006, Desmedt 2007, Zhang 2009].

1.3 Genomic Data Analysis: Topics, Prospects and Chal-
lenges

In order to study the substantial amount of genomic data available for medical
research, the use of computational tools such as machine learning has become a
popular trend [Barillot 2012]. In fact, machine learning is particularly suitable
for analyzing genomic data by developing algorithms or building models to dis-
cover unseen patterns, identify complex relationships and predict for phenotypic
phenomenon of interest. While genomic data analysis of cancer is a research field
encompassing a broad range of topics, the present thesis is specifically devoted to
breast cancer prognosis and related biomarker discovery.

Molecular Prognosis

In the language of machine learning, cancer prognosis is usually formulated as pre-
dictive modeling (or discriminative modeling succeeding supervised learning). In
fact, an extensive body of findings in the genre of genomic data analysis are in-
ferred from empirical evidence of relationship between the genomic features and
the survival information collected over large population of patients. Given a set of
m observations D := {(x1, y1), . . . , (xm, ym)}, where xi ∈ X denotes the feature vec-
tor of the i-th sample, typically the expression measurements of n genes (or i-th row
in Figure 1.17) in gene expression data analysis when X = Rn, and yi ∈ Y denotes
the outcome of the i-th sample, typically the survival time when Y = R× {0, 1} of
(positive) survival observation with a right-censoring flag, or the prognostic group
when Y = {1, . . . ,K} of K ≥ 2 groups categorized by thresholding the observed
survival time, the objective is then to infer a predictive function h : X → Y which
can then be used to predict survival risk or classify prognostic group for any new
sample. These two learning tasks are termed respectively as survival analysis and
classification in machine learning literature.

Survival analysis is generally referred to a set of methods for analyzing data
where the outcome variable is the time until the occurrence of an event of interest,
hereby referring to the survival time when Y = R× {0, 1}. In clinical management
of cancer, patients are usually followed for a specified time period and the focus is

7Probes are hybridization fragments of DNA, therefore probe-specific measurements in microar-
ray data usually need post-processing to estimate gene-specific measurements.
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on the time at which the event of interest occurs such as metastasis, recurrence or
death. If the event had occurred during the follow-up, the survival time is docu-
mented by the observed time to event; if the event had not occurred by the end of
the follow-up (or the patient dropped out of the study), the event had not yet been
observed and the survival time is documented by the follow-up (or drop-out) time
with a flag, meaning that survival time can only be considered at least as long as
the duration of follow-up. A survival observation is called right-censored if it is in-
complete as in the latter case. Survival time is therefore a variable consisting of two
components: the documented survival time (usually measured in days) and a right-
censoring flag indicating whether the survival is exact or lower-bounded, leading to
Y = R × {0, 1} in survival analysis. A number of methods are available in litera-
ture to analyze the relationship of the feature vector with the survival time, among
which two are worth special mention. The Kaplan-Meier method [Kaplan 1958] is
a nonparametric estimator and graphical method of depicting survival probabilities
as a function of time. It is widely used to obtain descriptive statistics for sur-
vival observations that can be further combined with statistical tests to compare
the survival experience for two or more groups of patients8. The Cox proportional
hazards model [Cox 1972] is a popular regression model for analyzing survival data
that builds an easily interpretable model associating the relationship of the survival
hazards to predictive features in order to describe the likely course of outcome. For
a textbook-oriented overview of survival analysis, see [Hosmer 1999].

Classification is another classical topic in machine learning and statistics where
the outcome variable belongs to one of a few predetermined categories, specifi-
cally Y == {1, . . . ,K} representing K ≥ 2 prognostic groups. Based on their
clinical records of survival time, cancer patients can be categorized into high-risk
and low-risk (and sometimes a third intermediate-risk) groups typically by bina-
rizing the continuous survival time at a 5-year threshold. In fact, deployment of
cancer treatment usually relies on such manageable categorization of patients into
prognostic groups. Compared to survival analysis, classification bypasses the dif-
ficulty in accurately depicting the course of survival outcome but instead seeks a
coarse yet clinically meaningful description of survival outcome. Popular classifica-
tion methods include Fisher’s linear discriminant [Fisher 1936], logistic regression
[Cox 1958], decision trees [Breiman 1984], Support Vector Machines [Cortes 1995],
Random Forests [Breiman 2001], Gradient Boosting Machines [Friedman 2001], see
[Hastie 2009] for details and many other algorithms for classification.

Biomarker Discovery

The predictive modeling framework discussed above assumes that a representation
of all sample vectors consisting of n genomic features is already determined and will
be included in building a predictive model. In the era where we have easy access
to thousands up to millions of genomic features for a biological sample albeit most

8Patients are usually grouped by molecular subtypes typically by clustering approaches based
on their genomic features.
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of which can be irrelevant or redundant for the inference task under consideration,
it is crucial to determine which features to be incorporated in the model, a ques-
tion usually termed as feature selection in machine learning or biomarker discovery
in computational biology. On one hand, inferring a predictive model with a large
number of features from a relatively small number of samples, which is usually the
case in biomedical applications, is essentially difficult from the viewpoint of sta-
tistical inference, a phenomenon referred to as the curse of dimensionality, which
often leads to unreliable models that overfit the observed samples and generalize
poorly when used to predict for future samples. Reducing the number of features
representing each sample by selecting only a few important features has proven an
efficient way to limit this difficulty.9 On another hand, the identification of a few in-
formative genomic features helps suggest discerning interpretation and key insights
into molecular cancer biology. Further, a few identified biomarkers can facilitate
the design of more affordable prognostic gene signatures as it is still cheaper and
faster to measure the activity of a few targeted genes nowadays.

Many feature selection techniques exist and are organized into three categories,
depending on how they are combined with the construction of the predictive model:
filter methods, wrapper methods and embedded methods. (Univariate) filter meth-
ods select a list of relevant features from the entire feature set independent from the
predictive models used, by assessing the relevance of each feature to the response of
interest with an importance score, typically by applying some statistical test such
as χ2-test or calculating some information measure univariately such as Information
Gain [Xing 2001], and removing those low-scoring ones. Being the computationally
fastest methods, filter methods can easily scale to a large number of features and
accommodate any predictive model, whereas they usually ignore the interaction
between features and special attributes of the predictive model considered. Taking
into account the dependencies between features and the hypothesis of the predictive
model, wrapper methods aim to directly find the best combination of features by
evaluating all possible feature subsets as input to the model and picking the one
with which the resulting model performs the best. Due to the fact that the space of
feature subsets grows exponentially with the number of features, exhaustive search
over the full space of feature subsets is in general computationally impossible, and
hence heuristic or greedy algorithms are often adopted to guide the search for a sat-
isfactory candidate of feature subset. Popular wrapper methods include simulated
annealing [Kirkpatrick 1983] and sequential elimination such as stepwise regression
[Hocking 1976]. Embedded methods enable feature selection during the process
of constructing a predictive model, and as these methods are usually tailored to
each specific model utilized, they are therefore far less computationally intensive
than wrapper methods. Popular embedded methods include a wealth of regular-
ization methods such as the lasso [Hastie 2015] and recursive feature elimination

9Besides feature selection, another efficient approach of dimensionality reduction is via feature
extraction such as principal component analysis. While feature selection finds a subset of informa-
tive features as is without altering the original representation of data, feature extraction transforms
the data in the high-dimensional feature space to a space of lower dimension.
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embedded in Support Vector Machines [Guyon 2002]. For an overview of feature
selection methods, see [Guyon 2003, Li 2016] for an introductory review from the
methodological viewpoint of machine learning and [Saeys 2007, Hira 2015] with a
particular emphasis on applications in bioinformatics.

Prospects and Challenges

While survival analysis, classification and feature selection are themselves exten-
sively studied and still active research areas of machine learning research, their
applications in genomic data analysis are a particularly demanding task. In fact, it
has been widely recognized as a challenging problem to extract potentially valuable
information from genomic data for reasons of multiple folds. To start with, cancer is
intrinsically a highly complex disease and consequently the heterogeneity underlying
cancer patients renders inevitable obstacle in analyzing cancer data, in other words,
high-throughput experimental data are noisy by nature leading to a decline in the
informativeness of such data. In addition, from the viewpoint of machine learning,
a relatively small number of clinical samples (typically at the scale of 102 ∼ 103)
versus a large number of genomic features (typically at the scale of 103 ∼ 106) adds
difficulty in making reliable inference from analyzing observed samples that could
generalize well to future samples and in identifying prognostic biomarkers reusable
for future patients. Another major concern specially regarding biomarker discovery
is the a posteriori interpretation of the computational findings in terms of biological
relevance to the mechanism of cancer. To address the challenges in genomic data
analysis, there is a pressing need for bioinformatics-oriented methods built upon
state-of-the-art machine learning algorithms as a stepping stone.

Despite the computational challenges confronted by machine learning appli-
cations in cancer prognosis, many success stories are prominent. For example,
the above-mentioned PAM50 test, the 50-gene classifier for subtyping breast can-
cer, is constructed upon a learning algorithm called the nearest shrunken cen-
troid method [Tibshirani 2002]. Another example comes from the DREAM 7 —
Sage Bionetworks–DREAM Breast Cancer Prognosis Challenge [Margolin 2013], a
competition-based crowd-source effort that systematically assessed and confirmed
the potential of computational models designed to predict breast cancer survival
by combining various types of molecular features with standard clinico-pathological
parameters to improve prognosis performance (Figure 1.2) [Bilal 2013]. Notably,
the best-performing model of the competition [Cheng 2013b] was built upon, in
addition to clinico-pathological features, such molecular features called attractor
metagenes that are pan-cancer signatures of coexpressed genes previously identi-
fied in rich gene expression datasets by an iterative attractor-finding algorithm
[Cheng 2013a]. For a recent survey on machine learning applications in cancer prog-
nosis, see [Kourou 2015]. Worth special mention are two lines of ideas to address
the difficulty in cancer prognosis and biomarker discovery, which have primarily
motivated the work presented in this thesis.

Since high-throughput high-dimensional gene expression data are often subject
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Figure 1.2: This figure from [Bilal 2013, Figure 2] illustrates that the best performer
among submissions to the pilot competition uses a combination of clinical and molecular
features that are deliberately selected subject to prior knowledge (the MPC category).
Models submitted are categorized by the type of features they use: only clinical features
(C), only molecular features (M), molecular and clinical features (MC), molecular features
selected using prior knowledge (MP), molecular features selected using prior knowledge and
clinical features (MPC).

to high measurement noise, the ranking of the expression levels of multiple genes
are presumably more robust predictors, in the sense that they can be less sensitive
to noise, than their real-valued measurements. This can be particularly beneficial
in many biomedical applications when the informativeness (or signal-to-noise ra-
tio) in data is low. Pioneering the exploration of these ideas is the top scoring
pairs (TSP) [Geman 2004], an algorithm for classifying gene expression profiles by
pairwise microarray comparison, together with successive extensions and further
investigations by [Tan 2005, Xu 2005, Lin 2009]. These methods generate simple
and accurate decision rules to discriminate cancer samples from normal ones based
on the relative reversals of pairwise ordering comparing the expression of a few
genes. However, when it comes to biomedical classification on difficult tasks such
as cancer prognosis that usually involves the collaborative functional activities of a
relatively large number of gene, the performance of TSP-family classifiers degrades
drastically, probably due to the naively simple majority voting scheme adopted by
those classifiers. In order to improve cancer outcome prediction, many studies em-
ployed TSP algorithm as a feature selection technique that is further embedded into
more complex classification methods such as Support Vector Machines [Shi 2011]
or decision trees [Czajkowski 2011] in microarry data analysis.

Cancer is a “network disease”. In fact, it has already been quoted above that
cancer is a genetic disease. As more and more cancer-related genes were iden-
tified and arranged into signaling pathways through which they act, it became
apparent that these pathways are interconnected and present crossroads at differ-
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ent levels [Vogelstein 2004], indicating that tumor progression is the consequence
of network-level dysregulation of interactions between genes, RNAs, proteins and
other molecules that control at least the hallmarks of cancer [Hanahan 2011]. More-
over, biological networks, including protein-protein interaction, coexpression and
regulatory networks, or metabolic and signaling pathways, are a common way
of depicting functional relationships between genes that have been accumulated
from decades of biomedical research, and they can be potentially valuable when
incorporated as domain-specific knowledge during the process of the computa-
tional analysis of genomic data so as to, for instance, improve stability and in-
terpretability of biomarker discovery (Figure 1.3). Approaches to pathway and
network analysis techniques range broadly, including gene set enrichment analy-
sis that identifies genes of interest appearing in pathways more frequently than
expected by chance [Subramanian 2005], network modeling that infers the activ-
ities and interactions of various genetic components in pathway or networks, see
for instance [Tarca 2008, Drier 2013, Vandin 2011, Hidalgo 2017], network-guided
predictive modeling that consults the structure of a priori known network and
constrains the predictive modeling procedures discussed above so that the “ideal”
model or biomarkers selected should be coherent with the network, see for instance
[Li 2010, Rapaport 2007, Jacob 2009]. For a recent review of pathway and net-
work analysis of cancer genomes, see [Creixell 2015] with a focus on approaches
applied to somatic single nucleotide variants (SNVs) and altered RNA expression
and [Azencott 2016] with a particular emphasis on biomarker discovery.

1.4 Contribution of the Thesis

The thesis work is conceived following the two lines of ideas intended to address
two major questions from the methodological standpoint of machine learning: rank-
based approaches for improved molecular prognosis and network-guided approaches
for enhanced biomarker discovery. Furthermore, despite their biomedical applica-
tion in cancer prognosis to which this thesis is largely devoted, the methodologies
developed and investigated in this thesis, pertaining respectively to learning with
rank data and learning on graphs, have a significant contribution to several branches
of machine learning, concerning applications across but not limited to cancer biology
and social choice theory. This thesis will be organized by projects, each presented
in one chapter.

Rank-based Approaches for Improved Molecular Prognosis

The first line of ideas is to perform gene expression data analysis based on exploiting
exclusively the ranking of the expression levels of multiple genes while their real-
valued measurements are disregarded, which integrates the idea of relative reversals
of pairwise ordering inherited from TSP-family classifiers in the paradigm of kernel
learning. From the point view of machine learning, the problem reduces to the study
of a particular type of structured data, specifically rankings. It is well-known that
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Figure 1.3: This figure from [Rapaport 2007, Figure 3] illustrates an example of metabolic
pathways, mapped by coefficients of the decision function obtained by applying a network-
free model (left) and a network-guided model (right) in color, positive in red and negative
in green with intensities reflecting absolute values, where some large highly connected func-
tional parts of the network with annotations such as proteinkinases and DNA and RNA
polymerase subunits were identified by the network-guided model, rendering readily avail-
able interpretability of the involvement of the selected genes in cancer.
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kernel methods have found many successful applications where the input data are
discrete or structured including strings and graphs [Gärtner 2004]. The first project
of my doctoral studies was focused on proposing computationally attractive kernels
for rank data and applying kernel methods to problems involving rankings. Central
to this work was the observation that the widely used Kendall tau correlation and
the Mallows similarity measure are indeed positive definite kernels for total rankings.
These kernels were further tailored to more complex types of rank data that prevail
in real-world applications, especially uncertain rankings which are converted from
real-valued vectors by keeping simply the relative ordering of the values of multiple
features thereof. Thanks to these kernels, many off-the-shelf kernel machines are
available to solve various problems at hand [Shawe-Taylor 2004, Schölkopf 2004]. It
is worth special mention that, despite that the project was initially motivated by
biomedical applications, the prospective contribution of this work concerns appli-
cations from many fields of machine learning pertaining to learning from rankings,
or learning to rank. This study will be presented in Chapter 2.

The study of the Kendall kernel for rankings has paved an unprecedented way
towards a deeper understanding of a classical problem called Kemeny aggregation
[Kemeny 1959] from the field of social choice theory. Kemeny aggregation searches
for a consensus ranking that best represents a collection of individual rankings
in the sense that the sum of the Kendall tau distance between each ranking and
the consensus is minimized. Although Kemeny aggregation is often considered to
provide the “golden” solution among all ranking aggregation criteria, the Kemeny
consensus is known to be NP-hard to find [Bartholdi III 1989]. Many tractable
approximations to the Kemeny consensus have therefore been proposed and exten-
sively studied, see for instance [Ali 2012]. Since the Kendall kernel derives from an
inner product of a Euclidean space, the Kendall tau distance derives from a squared
Euclidean distance. As a result, the combinatorial problem of Kemeny aggregation
is endowed with an intuitive interpretation from a geometric point of view. Based
on this observation, a tractable upper bound of the estimation error in terms of
the distance between the exact Kemeny consensus and an approximate solution is
established. This upper bound requires little assumption on the approximation pro-
cedure or the collection of rankings to aggregate. Due to its remote connection to
cancer prognosis or the primary objective of this thesis, this study will be presented
in Appendix A.

Network-guided Approaches for Enhanced Biomarker Discovery

The second line of ideas of performing genomic data analysis for cancer prognosis is
to consult biological networks as prior knowledge in order to improve the selection
efficacy of molecular features. Two projects were initiated on network-guided analy-
sis of genomic data for suggesting candidate biomarkers related to cancer prognosis.

In one project, we focused on the study of structured regularization in gen-
eralized linear models [McCullagh 1989] and the Cox proportional hazards model
[Cox 1972] where the regularization method is designed so that genes closer on
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the biological network are encouraged to be selected simultaneously as candidate
biomarkers. In fact, in order to achieve simultaneous modularity and sparsity coher-
ent with the presumed network structure, a popular method called network-based
wavelet smoothing has been successfully applied in many applications from the field
of signal processing [Shuman 2013]. Therefore, we were intrigued to investigate the
potential of this method in survival analysis of breast cancer with a gene expression
dataset guided by a protein-protein interaction network, albeit the methodology is
generally applicable to various types of genomic data and biological networks. In
particular, the method allows to designate genes as candidates for biomarkers in
form of gene modules with intra-collaborative functionality rendering readily inter-
pretable insights related to cancer survival. Numerical results demonstrated that,
compared to several network-free and some established network-based regulariza-
tion methods, network-based wavelet smoothing was able to improve the selection
efficacy of genes related to cancer survival in terms of stability, connectivity and
interpretability, while achieving competitive performance of survival risk prediction.
This study will be presented in Chapter 3.

In another project, we focused on a particular type of biological network namely
signaling pathway network. Based on a modeling framework of cell signaling pro-
posed by [Hidalgo 2017], gene expression profiles can be translated into personalized
profiles of signaling pathway activities by integrating known signaling pathways.
When gene-level profiles are replaced by these derived pathway-level profiles as
input to many off-the-shelf computational tools, a simple scheme emerges where
gene-level analysis is easily promoted to pathway-level analysis of gene expression
data. The advantage is remarkable in that, when combined with feature selection
methods, the proposed scheme enables direct identification of pathway-level mech-
anistic signatures as an alternative to conventional gene-based signatures, which
provides more informative insights into the cellular functions and biological pro-
cesses involved in cancer. This study will be presented in Chapter 4.

Other Contributions

During the course of my doctoral studies, I have undertaken some other projects
as well. In 2013, Elsa Bernard, Erwan Scornet, Véronique Stoven, Thomas Wal-
ter, Jean-Philippe Vert from our laboratory and I participated in the DREAM
8 NIEHS–NCATS–UNC Toxicogenetics Challenge, an international bioinformatics
competition where participants were asked to predict the response of human cell
lines exposed to various toxic chemical compounds based on the molecular charac-
terization of chemicals and the transcriptome of cell lines. Finally our team won
second place with a kernel bilinear regression model. Oral presentation was accepted
to NIPS Workshop on Machine Learning in Computational Biology (MLCB) and
later invited to RECOMB Conference on Regulatory and Systems Genomics. This
work has been accepted for publication in [Bernard 2017] and it has also been pub-
lished as part of the crowd-source collaboration as a result of the competition in
[Eduati 2015], whereas this work will be excluded from this thesis due to the fact
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that it was not well polished by the time of drafting the manuscript.
During my internship at Roche Diagnostics GmbH, Penzberg, Germany, I worked

on failure state prediction for automated analyzers for analyzing biological samples
in collaboration with Jean-Philippe Vert, Fabian Heinemann, Sven Dahlmanns and
Stefan Kobel, and a European patent regarding the application was filed by Roche
Diagnostics GmbH, F. Hoffmann–La Roche AG in December 2016 and is currently
pending approval [Jiao 2016c]. Due to corporate confidentiality policies, this study
will not be included in this thesis.



Chapter 2

The Kendall and Mallows
Kernels for Permutations

Publication and Dissemination: The work in this chapter has
been published as joint work with Jean-Philippe Vert in [Jiao 2015],
orally presented at ICML 2015 and accepted for publication in
[Jiao 2017b].

Abstract: We show that the widely used Kendall tau correlation
coefficient and the related Mallows kernel are positive definite
kernels for permutations. They offer computationally attractive
alternatives to more complex kernels on the symmetric group to
learn from rankings, or learn to rank. We show how to extend these
kernels to partial rankings, multivariate rankings and uncertain
rankings. Examples are presented on how to formulate typical
problems of learning from rankings such that they can be solved
with state-of-the-art kernel algorithms. We demonstrate promising
results on clustering heterogeneous rank data and high-dimensional
classification problems in biomedical applications.

Résumé : Nous prouvons ici que le tau de Kendall, un coefficient
de corrélation populaire, et le noyau de Mallows sont deux noyaux
définis positifs pour les permutations. Ils offrent des alternatives
computationnellement intéressantes comparés à d’autres noyaux
plus complexes sur le groupe symétrique pour apprendre à partir de
données de classements, ou apprendre à classer. Nous montrons
comment étendre ces noyaux à des classements partiels, des
classements multivariés et des classements incertains. Nous
présentons des exemples sur comment formuler des problèmes
classiques pour apprendre à partir de données de classements afin
qu’ils puissent être résolus par les algorithmes à noyaux de l’état de
l’art. Nous obtenons des résultats prometteurs sur le regroupement
de données hétérogènes de classements et sur les problèmes de
classification en grande dimension dans les applications
biomédicales.
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2.1 Introduction

A permutation is a 1-to-1 mapping from a finite set into itself. Assuming the finite
set is ordered, a permutation can equivalently be represented by a total ranking
of the elements of the set. Permutations are ubiquitous in many applications in-
volving preferences, rankings or matching, such as modeling and analyzing data
describing the preferences or votes of a population [Diaconis 1988, Marden 1996],
learning or tracking correspondences between sets of objects [Huang 2009], or esti-
mating a consensus ranking that best represents a collection of individual rankings
[Dwork 2001, Ailon 2008, Arrow 2012]. Another potentially rich source of rank
data comes from real-valued vectors in which the relative ordering of the values of
multiple features is more important than their absolute magnitude. For example,
in the case of high-dimensional gene expression data, [Geman 2004] showed that
simple classifiers based on binary comparisons between the expression of different
genes in a sample show competitive prediction accuracy with much more complex
classifiers built on quantitative gene expression levels, a line of thoughts that have
been further investigated by [Tan 2005, Xu 2005, Lin 2009]. In these approaches,
an n-dimensional feature vector is first transformed into a vector of ranks by sorting
its entries, which are presented as input to training a classifier.

Working with permutations is, however, computationally challenging. There
are n! permutations over n items, suggesting that various simplifications or ap-
proximations are necessary in pursuit of efficient algorithms to analyze or learn
permutations. Such simplifications include for example, reducing ranks to a series
of binary decisions [Ailon 2008, Balcan 2008], or estimating a parametric distribu-
tion over permutations [Lebanon 2008, Helmbold 2009, Huang 2009].

Kernel algorithms form a class of methods that have been proved successful
in numerous applications and enjoy great popularity in the machine learning com-
munity [Cortes 1995, Vapnik 1998, Schölkopf 2002, Shawe-Taylor 2004]. The es-
sential idea behind these methods is to define a symmetric positive definite kernel
K : X × X → R over an input space X , which expresses our belief of similarities
between pairs of points in the input space, and which implicitly defines an embed-
ding Φ : X → F of the input space X to a Hilbert space F in which the kernel
becomes an inner product:

∀x,x′ ∈ X , K(x,x′) = 〈Φ(x),Φ(x′)〉F .

Key to kernel methods is the fact that kernel algorithms only manipulate data
through evaluation of the kernel function, allowing to work implicitly in the poten-
tially high- or even infinite-dimensional space F . This kernel trick is particularly
interesting when K(x,x′) is inexpensive to evaluate, compared to Φ(x) and Φ(x′).
In particular, kernel methods have found many applications where the input data
are discrete or structured, such as strings or graphs, thanks to the development
of numerous kernels for these data [Haussler 1999, Kashima 2003, Gärtner 2004,
Shawe-Taylor 2004, Schölkopf 2004, Vishwanathan 2009].
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In this context, it is surprising that relatively little attention has been paid
to the problem of defining positive definite kernels between permutations, which
could pave the way to benefiting from computationally efficient kernel methods in
problems involving permutations. A notable exception is the work of [Kondor 2008,
Kondor 2010], who exploit the fact that the right-invariant positive definite kernels
on the symmetric group are fully characterized by Bochner’s theorem [Kondor 2008,
Fukumizu 2008]. They derive interesting kernels, such as a diffusion kernel for rank-
ings or partial rankings, and demonstrate that kernel methods are flexible to handle
rank data of diverse types. However, the kernels proposed in their papers have typ-
ically a computational complexity that grows exponentially with the number of
items to rank, and remain prohibitive to compute for more than a few items.

Here we study new computationally attractive positive definite kernels for per-
mutations and rankings. Our main contribution is to show that two widely-used and
computationally efficient measures of similarity between permutations, the Kendall
tau correlation coefficient and the Mallows kernel, are positive definite. Although
these measures compare two permutations of n items in terms of

(n
2
)
pairwise com-

parisons, they can be computed in O(n logn), which allows us to use kernel methods
for problems involving rank data over a large number of items. We show how these
kernels can be extended to partial rankings, multivariate rankings, and uncertain
rankings which are particularly relevant when the rankings are obtained by sorting
a real-valued vector where ties or almost-ties occur. We illustrate the benefit of
kernel learning with the new kernels on two applications, one concerning the unsu-
pervised clustering of rank data with kernel k-means, one focusing on the supervised
classification of genomic data with Support Vector Machines (SVMs), reaching in
both cases state-of-the-art performances.

The chapter is organized as follows. In Section 2.2, we prove our main theorem
showing that the Kendall and Mallows kernels are positive definite. We extend them
to partial, multivariate and uncertain rankings respectively in Section 2.3.1, 2.3.2
and 2.3.3. We highlight the relation to the diffusion kernel of [Kondor 2010] in Sec-
tion 2.4. Finally we illustrate the relevance of kernel methods for unsupervised (Sec-
tion 2.5) and supervised (Section 2.6) tasks. Data and R code for reproducing the
experiments in this chapter are available via https://github.com/YunlongJiao/
kendallkernel_demo. I have also developed kernrank, an R package implementing
kernel functions and kernel methods for analyzing rank data [Jiao 2016a].

2.2 The Kendall and Mallows Kernels for Permutations

Let us first fix some notations. Given a list of n items {x1, x2, . . . , xn}, a total
ranking is a strict ordering on the n items of the form

xi1 � xi2 � · · · � xin , (2.1)

where {i1, . . . , in} are distinct indices in {1, 2, . . . , n} =: JnK. A permutation is a
1-to-1 mapping from a finite set into itself, i.e., σ : JnK→ JnK such that σ(i) 6= σ(j)

https://github.com/YunlongJiao/kendallkernel_demo
https://github.com/YunlongJiao/kendallkernel_demo
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for i 6= j. Each total ranking can be equivalently represented by a permutation σ in
the sense that σ(i) = j indicates that a ranker assigns rank j to item i where higher
rank coincides higher preference. For example, the ranking x2 � x4 � x3 � x1 is

associated to the permutation σ =
(

1 2 3 4
1 4 2 3

)
, meaning σ(1) = 1, σ(2) = 4,

σ(3) = 2 and σ(4) = 3. There are n! different total rankings, and we denote by Sn
the set of all permutations over n items. Endowed with the composition operation
(σ1σ2)(i) = σ1(σ2(i)), Sn is a group called the symmetric group.

Given two permutations σ, σ′ ∈ Sn, the number of concordant and discordant
pairs between σ and σ′ are respectively

nc(σ, σ′) =
∑
i<j

[
1{σ(i)<σ(j)}1{σ′(i)<σ′(j)} + 1{σ(i)>σ(j)}1{σ′(i)>σ′(j)}

]
,

nd(σ, σ′) =
∑
i<j

[
1{σ(i)<σ(j)}1{σ′(i)>σ′(j)} + 1{σ(i)>σ(j)}1{σ′(i)<σ′(j)}

]
.

As their names suggest, nc(σ, σ′) and nd(σ, σ′) count how many pairs of items are
respectively in the same or opposite order in the two rankings σ and σ′. nd is
frequently used as a distance between permutations, often under the name Kendall
tau distance, and underlies two popular similarity measures between permutations:

• The Mallows kernel defined for any λ ≥ 0 by

Kλ
M (σ, σ′) = e−λnd(σ,σ′) , (2.2)

• The Kendall kernel defined as

Kτ (σ, σ′) = nc(σ, σ′)− nd(σ, σ′)(n
2
) . (2.3)

The Mallows kernel plays a role on the symmetric group similar to the Gaus-
sian kernel on Euclidean space, for example for statistical modeling of permuta-
tions [Mallows 1957, Critchlow 1985, Fligner 1986, Meilă 2007] or nonparametric
smoothing [Lebanon 2008], and the Kendall kernel [Kendall 1938, Kendall 1948] is
probably the most widely-used measure of rank correlation coefficient. In spite of
their pervasiveness, to the best of our knowledge the following property has been
overlooked:

Theorem 2.1. The Mallows kernel Kλ
M , for any λ ≥ 0, and the Kendall kernel Kτ

are positive definite.

Proof. Consider the Kendall mapping Φ : Sn → R(n
2) defined by

Φ(σ) =
( 1√(n

2
)(1{σ(i)>σ(j)} − 1{σ(i)<σ(j)})

)
1≤i<j≤n

.

Then one immediately sees that, for any σ, σ′ ∈ Sn,

Kτ (σ, σ′) = Φ(σ)>Φ(σ′) ,
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showing that Kτ is positive definite, and that

‖Φ(σ)− Φ(σ′)‖2 = Kτ (σ, σ) +Kτ (σ′, σ′)− 2Kτ (σ, σ′)

= 1 + 1− 2
(nc(σ, σ′)− nd(σ, σ′)(n

2
) )

= 4(n
2
)nd(σ, σ′) ,

(2.4)

showing that −nd is conditionally positive definite and therefore thatKλ
M is positive

definite for all λ ≥ 0 [Schoenberg 1938].

Although the Kendall and Mallows kernels correspond respectively to a linear
and Gaussian kernel on an

(n
2
)
-dimensional embedding of Sn such that they can in

particular be computed in O(n2) time by a naive implementation of pair-by-pair
comparison, it is interesting to notice that more efficient algorithms based on divide-
and-conquer strategy can significantly speed up the computation, up to O(n logn)
using a technique based on Merge Sort algorithm [Knight 1966]. Computing in
O(n logn) a kernel corresponding to an O(n2)-dimensional embedding of Sn is a
typical example of the kernel trick, which allows to scale kernel methods to larger
values of n than what would be possible for methods working with the explicit
embedding.

2.3 Extensions of the Kendall Kernel to Rank Data

2.3.1 Extension to Partial Rankings

In this section we show how the Kendall and Mallows kernels can efficiently be
adapted to partial rankings, a situation frequently encountered in practice. For
example, in a movie recommender system, each user only grades a few movies
that he has watched based on personal interest. As another example, in a chess
tournament, each game results in a relative ordering between two contestants, and
one would typically like to find a single ranking of all players that globally best
represents the large collection of binary outcomes.

As opposed to a total ranking (2.1), partial rankings arise in diverse form which
can be generally described by

X1 � X2 � · · · � Xk,

where X1, . . . , Xk are k disjoint subsets of n items {x1, . . . , xn}. For example,
{x2, x4} � x6 � {x3, x8} in a social survey could represent the fact that items
2 and 4 are ranked higher by an interviewee than item 6, which itself is ranked
higher than items 3 and 8. Note that it is uninformative of the relative order be-
tween items 2 and 4, and of how item 1 is rated. For ease of analysis, a partial
ranking is often associated with a subset R ⊂ Sn of permutations which are com-
patible with all partial orders described by the partial ranking. In this study, two
particularly interesting types are:
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(i) Interleaving partial rankings. Such a partial ranking is of the form

xi1 � xi2 � · · · � xik , k ≤ n,

where we have a total ranking for k out of n items. This type of partial ranking
is frequently encountered in real life, for example in a social survey an interviewer
is inexperienced to rank all items listed so that there exist interleaved inaccessible
values. The interleaving partial ranking corresponds to the set of permutations
compatible with it:

Ai1,...,ik = {σ ∈ Sn|σ(ia) > σ(ib) if a < b, a, b ∈ [1, k]}. (2.5)

(ii) Top-k partial rankings. Such a partial ranking is of the form

xi1 � xi2 � · · · � xik � Xrest, k ≤ n,

where we have a total ranking for k out of n items and also know that these k
items are ranked higher than all the other items. For example, the top k hits
returned by a search engine leads to a top k partial ranking; under a voting system
in election, voters express their vote by ranking some (or all) of the candidates in
order of preference. The top-k partial ranking corresponds to the set of compatible
permutations:

Bi1,...,ik = {σ ∈ Sn|σ(ia) = n+ 1− a, a ∈ [1, k]}. (2.6)

To extend any kernel K over Sn to a kernel over the set of partial rankings, we
propose to represent a partial ranking by its compatible subset R ⊂ Sn of permu-
tations, and define a kernel between two partial rankings R and R′ by adopting the
convolution kernel, written with a slight abuse of notations as

K(R,R′) = 1
|R||R′|

∑
σ∈R

∑
σ′∈R′

K(σ, σ′). (2.7)

As a convolution kernel, it is positive definite as long as K is positive definite
[Haussler 1999]. However, a naive implementation to compute (2.7) typically re-
quires O((n−k)!(n−k′)!) operations when the number of observed items in partial
rankings R,R′ is respectively k, k′ < n, which can quickly become prohibitive. For-
tunately Theorem 2.2 guarantees that we can circumvent the computational burden
of naively implementing (2.7) with the Kendall kernel Kτ on at least the two par-
ticular cases of partial rankings (2.5) or (2.6).

Theorem 2.2. The Kendall kernel Kτ between two interleaving partial rankings of
respectively k and m observed items, or between a top-k partial ranking and a top-m
partial ranking, of form (2.7) can be computed in O(k log k +m logm) operations.

Proof. The proof is constructive. We show here explicitly how to compute the
Kendall kernel between two interleaving partial rankings while the idea remains
similar for the case of top-k partial rankings. Denote by JnK the item set to be
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ranked and by Ai1,...,ik , Aj1,...,jm ⊂ Sn two interleaving partial rankings of size k,m
respectively, whose subsets of item indices are denoted by I := {i1, . . . , ik} and
J := {j1, . . . , jm}. We will lighten the notation by writing AI := Ai1,...,ik and
AJ := Aj1,...,jm and recall that by definition,

AI = {π ∈ Sn|π(ia) > π(ib) if a < b, a, b ∈ [1, k]} ,
AJ = {π′ ∈ Sn|π′(ja) > π′(jb) if a < b, a, b ∈ [1,m]}

are subsets of Sn compatible with the two partial rankings respectively. In partic-
ular, |AI | = n!/k! and |AJ | = n!/m!. Note that every item that does not appear in
the partial ranking corresponding to AI (or AJ) can be interleaved at any possible
order with the other items for some permutation in that set.

Key observation to our proof is the “symmetry” of AI (or AJ) in the sense
that (i) for every item pair {i, j} such that i, j ∈ I, all permutations in AI are
identical on the relative order of items i and j; (ii) for every item pair {i, j} such
that i, j ∈ I{, there exists a unique permutation ρ = (i, j) ◦ π ∈ AI for each π ∈ AI
by swapping the ranks of items i, j in π such that (π(i)−π(j))(ρ(i)−ρ(j)) < 0 and
ρ is identical with π on the absolute ranks of all the other items.

By the definition of convolution kernel and Theorem 2.1, we have

Kτ (AI , AJ) = 1
|AI ||AJ |

∑
π∈AI
π′∈AJ

1(n
2
) ∑

1≤i<j≤n
sgn(π(i)− π(j)) sgn(π′(i)− π′(j))

=
∑

1≤i<j≤n

k!m!
(n!)2(n

2
) ∑
π∈AI
π′∈AJ

sgn(π(i)− π(j)) sgn(π′(i)− π′(j)) . (2.8)

As we will always regard the item set JnK as the universe, we will write the com-
plement of set S ⊂ JnK as S{ := JnK \S. Since the item set can be divided into four
disjoint subsets that are JnK = (I ∩ J)t (I \ J)t (J \ I)t (I ∪ J){, any (unordered)
item pair {i, j} can be categorized uniquely into one out of ten cases:

1. both items in I ∩ J .

2. one item in I ∩ J , the other in I \ J .

3. one item in I ∩ J , the other in J \ I.

4. one item in I ∩ J , the other in (I ∪ J){.

5. one item in I \ J , the other in J \ I.

6. both items in I \ J .

7. both items in J \ I.

8. both items in (I ∪ J){.

9. one item in I \ J , the other in (I ∪ J){.
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10. one item in J \ I, the other in (I ∪ J){.

Now we can split and case-by-case regroup the additive terms in (2.8) into ten parts.
We denote by s1 to s10 the subtotal corresponding to cases 1 to 10, i.e.,

Kτ (AI , AJ) =
10∑
l=1

sl :=
10∑
l=1

{ ∑
{i,j} in
case l

k!m!
(n!)2(n

2
)

×
∑
π∈AI
π′∈AJ

sgn(π(i)− π(j)) sgn(π′(i)− π′(j))
}
.

It is straightforward to see that s6 to s10 are all equal to 0 due to the symmetry
of AI and/or AJ . For example for every item pair {i, j} in case 6, since both items
i and j appear in I, their relative order is fixed in the sense that sgn(π(i) − π(j))
remains constant for all π ∈ AI ; since both items are absent from J , we can pair
up permutations π′, ρ′ ∈ AJ such that sgn(π′(i)− π′(j)) = − sgn(ρ′(i)− ρ′(j)). As
a result all additive terms in s6 cancel out each other and thus s6 = 0.

Now we will take efforts to compute s1 to s5. For every item pair {i, j} in
case 1 such that i, j ∈ I ∩ J , since i, j ∈ I, their relative order remains unchanged
for all π ∈ AI and let us denote by τ ∈ S|I∩J | the total ranking of the observed
items indexed by I ∩ J with respect to AI . Since also i, j ∈ J , we can denote by
τ ′ ∈ S|I∩J | the total ranking of the observed items indexed by I ∩ J with respect to
AJ . Therefore we have

s1 =
∑

1≤i<j≤n
i,j∈I∩J

k!m!
(n!)2(n

2
) ∑
π∈AI
π′∈AJ

sgn(π(i)− π(j)) sgn(π′(i)− π′(j))

= 1(n
2
) ∑

1≤i<j≤n
i,j∈I∩J

sgn(τ(i)− τ(j)) sgn(τ ′(i)− τ ′(j))

=
(|I∩J |

2
)(n

2
) Kτ (τ, τ ′) ,

where the last line is by the definition of Kendall kernel between τ and τ ′ on the
common items in I ∩ J .

For every item pair {i, j} in case 2, we may assume without loss of generality
that i ∈ I ∩ J, j ∈ I \ J , or equivalently i, j ∈ I and i ∈ J, j /∈ J . The relative
order of i, j in π ∈ AI is thus determined by τ but not fixed for all π′ ∈ AJ . Let
us denote by σ ∈ Sk the total ranking corresponding to the k observed items in AI
and by σ′ ∈ Sm the total ranking of the m observed items in AJ . In fact, there are
(m + 1) possible positions for j to interleave in some π′ ∈ AJ and the number of
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positions with a lower relative order of j to i is σ′(i). Therefore we have

s2 =
∑
i∈I∩J
j∈I\J

k!m!
(n!)2(n

2
) ∑
π∈AI
π′∈AJ

sgn(π(i)− π(j)) sgn(π′(i)− π′(j))

= 1(n
2
) ∑
i∈I∩J
j∈I\J

sgn(τ(i)− τ(j))m!
n!

∑
π′∈AJ

sgn(π′(i)− π′(j))

= 1(n
2
) ∑
i∈I∩J

∑
j∈I\J

{
sgn(τ(i)− τ(j))m!

n!

× n!
(m+ 1)!

[
σ′(i)− ((m+ 1)− σ′(i))

]}
= 1(n

2
)
(m+ 1)

∑
i∈I∩J

[
2σ′(i)−m− 1

]∑
j∈I\J

sgn(τ(i)− τ(j))

= 1(n
2
)
(m+ 1)

∑
i∈I∩J

{[
2σ′(i)−m− 1

]
×
[
2(σ(i)− τ(i))− k + |I ∩ J |

]}
,

where the last line concludes from basic deductive calculation. Similarly we have
for case 3,

s3 = 1(n
2
)
(k + 1)

∑
i∈I∩J

{[
2σ(i)− k − 1

]
×
[
2(σ′(i)− τ ′(i))−m+ |I ∩ J |

]}
.

For every item pair {i, j} in case 4, we may assume without loss of generality
that i ∈ I ∩ J, j ∈ (I ∪ J){. As j is absent from I (or J respectively), there are
(k + 1) (or (m + 1) resp.) possible positions for j to interleave in some π ∈ AI
(or π′ ∈ AJ resp.) and the number of positions with a lower relative order of j to
i is σ(i) (or σ′(i) resp.). The times we get (π(i) − π(j))(π′(i) − π′(j)) > 0 for all
possible interleaved positions of j in some π ∈ AI , π′ ∈ AJ is in total [σ(i)σ′(i) +
(k+ 1− σ(i))(m+ 1− σ′(i))], and the times we get (π(i)− π(j))(π′(i)− π′(j)) < 0
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is in total [σ(i)(m+ 1− σ′(i)) + σ′(i)(k + 1− σ(i))]. Therefore we have

s4 =
∑
i∈I∩J

j∈(I∪J){

k!m!
(n!)2(n

2
) ∑
π∈AI
π′∈AJ

sgn(π(i)− π(j)) sgn(π′(i)− π′(j))

=
∑
i∈I∩J

k!m!
(n!)2(n

2
) (n!)2

(k + 1)!(m+ 1)! |(I ∪ J){|

×
{[
σ(i)σ′(i) + (k + 1− σ(i))(m+ 1− σ′(i))

]
−
[
σ(i)(m+ 1− σ′(i)) + σ′(i)(k + 1− σ(i))

]}
= |(I ∪ J){|(n

2
)
(k + 1)(m+ 1)

×
∑
i∈I∩J

[
2σ(i)− k − 1

][
2σ′(i)−m− 1

]
.

For case 5, similar derivation (as case 4) with interleaving i in AJ and interleav-
ing j in AI leads to

s5 =
∑
i∈I\J
j∈J\I

k!m!
(n!)2(n

2
) ∑
π∈AI
π′∈AJ

sgn(π(i)− π(j)) sgn(π′(i)− π′(j))

=
∑
i∈I\J

∑
j∈J\I

k!m!
(n!)2(n

2
) (n!)2

(k + 1)!(m+ 1)!

×
{[
σ(i)(m+ 1− σ′(j)) + σ′(j)(k + 1− σ(i))

]
−
[
σ(i)σ′(j) + (k + 1− σ(i))(m+ 1− σ′(j))

]}
= −1(n

2
)
(k + 1)(m+ 1)

×
∑
i∈I\J

[
2σ(i)− k − 1

] ∑
j∈J\I

[
2σ′(j)−m− 1

]
.

Finally Kτ (Ai1,...,ik , Aj1,...,jm) = s1 + s2 + s3 + s4 + s5 concludes the proof. The
algorithms are summarized in Algorithm 2.1 for interleaving partial rankings and
Algorithm 2.2 for top-k rankings. Note that in both algorithms, the first step is the
computationally most intensive one, where we need to identify the total ranking
restricted to the items present in the partial rankings. This can be achieved by
any sorting algorithm, leading the algorithms to a time complexity O(k log k +
m logm).

Note that the convolution kernel (2.7) taking the Mallows kernel Kλ
M is not

straightforward to evaluate, which will be further discussed in Section 2.4. However,
since we have extended the Kendall kernel to partial rankings, an exponential kernel
can be constructed trivially following (2.4), for which the computation remains just
as simple as the extended Kendall kernel. Since this technique also applies in
following sections, we focus mainly on extending Kendall kernel henceforth.
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Algorithm 2.1 Kendall kernel for two interleaving partial rankings.
Input: two partial rankings Ai1,...,ik , Aj1,...,jm ⊂ Sn, correspond-
ing to subsets of item indices I := {i1, . . . , ik} and J :=
{j1, . . . , jm}.
1: Let σ ∈ Sk be the total ranking corresponding to the k observed items in
Ai1,...,ik , and σ′ ∈ Sm be the total ranking corresponding to the m observed
items in Aj1,...,jm .

2: Let τ ∈ S|I∩J | be the total ranking of the observed items indexed by I ∩ J in
Ai1,...,ik , and τ ′ ∈ S|I∩J | the total ranking of the observed items indexed by I∩J
in partial ranking Aj1,...,jm .

3: Initialize s1 = s2 = s3 = s4 = s5 = 0.
4: If |I ∩ J | ≥ 2, update

s1 =
(|I∩J |

2
)(n

2
) Kτ (τ, τ ′).

5: If |I ∩ J | ≥ 1 and |I \ J | ≥ 1, update

s2 = 1(n
2
)
(m+ 1)

∑
i∈I∩J

{[
2σ′(i)−m− 1

]
×
[
2(σ(i)− τ(i))− k + |I ∩ J |

]}
.

6: If |I ∩ J | ≥ 1 and |J \ I| ≥ 1, update

s3 = 1(n
2
)
(k + 1)

∑
i∈I∩J

{[
2σ(i)− k − 1

]
×
[
2(σ′(i)− τ ′(i))−m+ |I ∩ J |

]}
.

7: If |I ∩ J | ≥ 1 and |(I ∪ J){| ≥ 1, update

s4 = |(I ∪ J){|(n
2
)
(k + 1)(m+ 1)

×
∑
i∈I∩J

[
2σ(i)− k − 1

][
2σ′(i)−m− 1

]
.

8: If |I \ J | ≥ 1 and |J \ I| ≥ 1, update

s5 = −1(n
2
)
(k + 1)(m+ 1)

×
∑
i∈I\J

[
2σ(i)− k − 1

] ∑
j∈J\I

[
2σ′(j)−m− 1

]
.

Output: Kτ (Ai1,...,ik , Aj1,...,jm) = s1 + s2 + s3 + s4 + s5.
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Algorithm 2.2 Kendall kernel for a top-k partial ranking and a top-m partial
ranking.
Input: a top-k partial ranking and a top-m partial ranking Bi1,...,ik , Bj1,...,jm ⊂
Sn, corresponding to subsets of item indices I := {i1, . . . , ik} and J :=
{j1, . . . , jm}.
1: Let σ ∈ Sk be the total ranking corresponding to the k observed items in
Bi1,...,ik , and σ′ ∈ Sm be the total ranking corresponding to the m observed
items in Bj1,...,jm .

2: Let τ ∈ S|I∩J | be the total ranking of the observed items indexed by I ∩ J in
Bi1,...,ik , and τ ′ ∈ S|I∩J | the total ranking of the observed items indexed by I∩J
in partial ranking Bj1,...,jm .

3: Initialize s1 = s2 = s3 = s4 = s5 = 0.
4: If |I ∩ J | ≥ 2, update

s1 =
(|I∩J |

2
)(n

2
) Kτ (τ, τ ′) .

5: If |I ∩ J | ≥ 1 and |I \ J | ≥ 1, update

s2 = 1(n
2
) ∑
i∈I∩J

[
2(σ(i)− τ(i))− k + |I ∩ J |

]
.

6: If |I ∩ J | ≥ 1 and |J \ I| ≥ 1, update

s3 = 1(n
2
) ∑
i∈I∩J

[
2(σ′(i)− τ ′(i))−m+ |I ∩ J |

]
.

7: If |I ∩ J | ≥ 1 and |(I ∪ J){| ≥ 1, update

s4 = |I ∩ J | · |(I ∪ J){|(n
2
) .

8: If |I \ J | ≥ 1 and |J \ I| ≥ 1, update

s5 = −|I \ J | · |J \ I|(n
2
) .

Output: Kτ (Bi1,...,ik , Bj1,...,jm) = s1 + s2 + s3 + s4 + s5.
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2.3.2 Extension to Multivariate Rankings

In contrast to the rankings defined in previous sections, a multivariate ranking
can be seen as a collection of multiple (univariate) partial/total rankings from
the same ranker based on different sources. For example, a commercial survey is
designed to analyze the preference routines of a customer based on various categories
such as music, movies and novels, where the item sets are generally incomparable
in crossing categories; an electoral system asks a voter to express his opinion in
consecutive sessions across years, where the candidates are usually different across
elections. In that case, it is desirable to process and integrate the rank data from
different sources when extensively comparing the similarity between two rankers.
Known as “data fusion”, this problem is well studied in the kernel learning literature
[Lanckriet 2004b, Schölkopf 2004].

Let us now denote that a ranker is represented by a multivariate ranking R =
(R1, . . . , Rp), in which each component Rj for 1 ≤ j ≤ p is a partial ranking over
nj items, i.e., a subset of permutations (or exactly one permutation when all nj
items are totally ranked) in Snj . Suppose K is any kernel for univariate rankings,
a kernel for multivariate rankings that integrates information from several variates
can be constructed by a weighted average of the kernels evaluated individually for
each variate, written with a slight abuse of notations as

K(R,R′) =
p∑
j=1

µjK(Rj , R′j) s.t.
p∑
j=1

µj = 1 , (2.9)

where a kernel K for partial rankings has been defined in (2.7). A practically simple
approach would be to set the weights µj = 1/p for 1 ≤ j ≤ p in (2.9), but the weights
can be learned as well through multiple kernel learning under appropriate setting
[Lanckriet 2004a, Bach 2004, Sonnenburg 2006, Gönen 2011].

2.3.3 Extension to Uncertain Rankings

When data to analyze are n-dimensional real-valued quantitative vectors, convert-
ing them to permutations in Sn by ranking their entries can be beneficial in cases
where we trust more the relative ordering of the values than their absolute magni-
tudes. For example in social surveys or recommender systems, users are sometimes
asked to rate a score for each item individually instead of providing a preference
order on the item set. The scale of ratings usually varies according to personal pref-
erence of each user and it can therefore be safer to adopt ranking-based methods
to analyze such score-based rating data [Kamishima 2003]. As another example, an
interesting line of work in the analysis of gene expression data promotes the devel-
opment of classifiers based on relative gene expression within a sample, based on
the observations that gene expression measurements are subject to various measure-
ment errors such as technological biases and normalization issues, while assessing
whether a gene is more expressed than another gene is generally a more robust task
[Geman 2004, Tan 2005, Xu 2005, Lin 2009]. This suggests that the Kendall kernel
can be relevant for analyzing quantitative vectors.
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The Kendall kernel for quantitative vectors now takes exactly the same form as
for permutations, i.e.,

Kτ (x,x′) = Φ(x)>Φ(x′) , (2.10)

where Φ : Rn → R(n
2) is defined for x = (x1, . . . , xn)> ∈ Rn by

Φ(x) =
( 1√(n

2
)(1{xi>xj} − 1{xi<xj})

)
1≤i<j≤n

. (2.11)

In this case, the interpretation of the Kendall kernel in terms of concordant and
discordant pairs (2.3) is still valid, with the caveats that in the presence of ties
between entries of x, say two coordinates i and j such that xi = xj , the tied pair
{xi, xj} will be neither concordant nor discordant. This implies in particular that
if x has ties or so does x′, then |Kτ (x,x′)| < 1 strictly. Notably in the presence of
ties, the fast implementation of Kendall kernel still applies to quantitative vectors in
O(n logn) time [Knight 1966]. However, feature mapping (2.11) is by construction
very sensitive to the presence of entry pairs that are ties or almost-ties. In fact,
each entry of Φ(x) is, up to a normalization constant, the Heaviside step function
which takes discrete values in {−1, 0,+1}, and thus can change abruptly even when
x changes slightly but reverses the ordering of two entries whose values are close.
In addition to pairwise relative ordering as defined in (2.11), it can be wise to also
exploit the information given by pairwise absolute difference in the feature values.

We propose to make the mapping more robust by assuming a random noise ε ∼
P added to the feature vector x and checking where Φ(x+ε) is on average (similarly
to, e.g., [Muandet 2012]). In other words, we consider a smoother mapping Ψ :
Rn → R(n

2) defined by
Ψ(x) = EΦ(x + ε) =: EΦ(x̃), (2.12)

where ε is an n-dimensional random noise and x̃ := x + ε denotes the random-
jittered vector of x. The corresponding kernel is the underlying dot product as
usual:

G
(
x,x′

)
= Ψ(x)>Ψ(x′) = EΦ(x̃)>EΦ(x̃′) = EKτ (x̃, x̃′) , (2.13)

where x̃ and x̃′ are independently noise-perturbed versions of x and x′. In fact, we
can deduce from (2.11) that Ψ is equivalently written as

Ψ(x) =
( 1√(n

2
)(P (x̃i > x̃j)− P (x̃i < x̃j))

)
1≤i<j≤n

.

Depending on the noise distribution, various kernels are thus obtained. For exam-
ple, assuming specifically that ε ∼ (U [−a

2 ,
a
2 ])n the n-dimensional uniform noise of

window size a centered at 0, the (i, j)-th entry of Ψ(x) for all i < j becomes

Ψij(x) = 1√(n
2
)ga(xi − xj) , (2.14)
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where

ga(t) :=


1 t ≥ a
2( ta)− ( ta)2 0 ≤ t ≤ a
2( ta) + ( ta)2 −a ≤ t ≤ 0
−1 t ≤ −a

.

Note that ga is odd, continuous, piecewise quadratic between [−a, a] and constant
elsewhere at ±1, and thus can be viewed as smoothed version of the Heaviside step
function to compare any two entries xi and xj from their difference xi− xj (Figure
2.1).

−3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

1.
0

xi − xj

Φij
Ψij

Figure 2.1: Smooth approximation (in red) of the Heaviside function (in black) used to
define the mapping (2.14) for a = 1.

Although the smoothed kernel (2.13) can be an interesting alternative to the
Kendall kernel (2.10), we unfortunately lose for G the computational trick that
allows to compute Kτ in O(n logn). Specifically, we have two ways to compute G:
(i) Exact evaluation. The first alternative is to compute explicitly the

(n
2
)
-vector

representation Ψ in the feature space, and then take the dot product to obtain G.
While the kernel evaluation is exact, an analytic form of the smoothed mapping
(2.12) is required and the computational cost is linear with the dimension of the
feature space, i.e., O(n2).
(ii) Monte Carlo approximation. The second alternative requires the observa-
tion that the smoothed mapping Ψ(x) = EΦ(x̃) appears in the form of expectation
and can thus be approximated by a D-sample mean of jittered points mapped by
Φ into the feature space:

ΨD(x) = 1
D

D∑
j=1

Φ(x̃j) ,

where x̃1, . . . , x̃D are i.i.d. noisy versions of x. The dot product induces a kernel:

GD(x,x′) = ΨD(x)>ΨD(x′) = 1
D2

D∑
i=1

D∑
j=1

Kτ

(
x̃i, x̃′j

)
, (2.15)
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which is a D2-sample empirical estimate of G(x,x′) = EKτ (x̃, x̃′) when x,x′ are
independently jittered with identically distributed noise. Since Kτ is of computa-
tional complexity O(n logn), computing GD requires O(D2n logn).

Note that the second alternative is faster to compute than the first one as long
as, up to constants, D2 < n/ logn, and small values of D are thus favored on
account of computational consideration. In that case, however, the approximation
performance can be unappealing. To better understand the trade-off between the
two alternatives, the question should be addressed upon how large D should be so
that the approximation error is not detrimental to the performance of a learning
algorithm if we use the approximate kernel GD instead of G. Lemma 2.1 provides
a first answer to this question, showing that the approximation error of the kernel
is upper bounded by O(1/

√
D) with high probability:

Lemma 2.1. For any 0 < δ < 1, the following holds:
(a) For any x ∈ Rn, with probability greater than 1− δ,

‖ΨD(x)−Ψ(x)‖ ≤ 1√
D

(
2 +

√
8 log 1

δ

)
.

(b) For any x1, . . . ,xm ∈ Rn, with probability greater than 1− δ,

sup
i=1,...,m

‖ΨD(xi)−Ψ(xi)‖ ≤
1√
D

(
2 +

√
8 log m

δ

)
.

Proof. For any x ∈ Rn, note that ‖Φ(x)‖ ≤ 1. We can therefore apply [Boucheron 2013,
Example 6.3] to the random vector Xj = Φ(x̃j)−Ψ(x) that satisfies EXj = 0 and
‖Xj‖ ≤ 2 a.s. to get, for any u ≥ 2/

√
D,

P (‖ΨD(x)−Ψ(x)‖ ≥ u) ≤ exp
(
−

(
u
√
D − 2

)2

8

)
.

We recover (a) by setting the right-hand side equal to δ and solving for u. (b) then
follows by a simple union bound.

The uniform approximation bound of Lemma 2.1 in turn implies that learning
with the approximate kernel GD can be almost as good with the kernel G, as
we now discuss. For that purpose, let us consider for example the case where
the smoothed kernel G is used to train a Support Vector Machine (SVM) from
a training set D = {(xi, yi)}mi=1 ⊂ (Rn × {−1,+1})m, specifically to estimate a
function h(x) = w>Ψ(x) by solving

min
w

F (w) = λ

2 ‖w‖
2 + R̂(w), (2.16)

where R̂(w) = 1
m

∑m
i=1 `(yiw>Ψ(xi)) is the empirical loss, with `(yiw>Ψ(xi)) =

max(0, 1 − yiw>Ψ(xi)) the hinge loss associated to the i-th point, λ the regular-
ization parameter. Now suppose that instead of training the SVM with smoothed
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feature mapping on the original points {Ψ(xi)}i=1,...,m, we first randomly jitter
{xi}i=1,...,m D times at each point, resulting in {x̃ji}i=1,...,m;j=1,...,D, and then re-
place each Ψ(xi) by the D-sample empirical average of jittered points mapped by
Φ into the feature space, that is

ΨD(xi) := 1
D

D∑
j=1

Φ(x̃ji ) .

Note that ΨD(xi)>ΨD(xj) = GD(xi,xj), hence training an SVM with the Monte
Carlo approximate GD instead of exact version G is equivalent to solving (2.16)
with {ΨD(xi)}i=1,...,m in the hinge loss instead of {Ψ(xi)}i=1,...,m. Theorem 2.3
quantifies the approximation performance in terms of objective function F which
helps to answer the question on the trade-off between G and GD in computational
complexity and learning accuracy.

Theorem 2.3. For any 0 ≤ δ ≤ 1, the solution ŵD of the SVM trained with the
Monte Carlo approximation (2.15) with D random-jittered samples for each training
point satisfies, with probability greater than 1− δ,

F (ŵD) ≤ min
w

F (w) +
√

8
λD

(
2 +

√
8 log m

δ

)
.

Proof. Let ŵ be a solution to the original SVM optimization problem, and ŵD a
solution to the perturbed SVM, i.e., a solution of

min
w

FD(w) = λ

2 ‖w‖
2 + R̂D(w), (2.17)

with R̂D(w) = 1
m

∑m
i=1 `(yiw>ΨD(xi)). Since the hinge loss is 1-Lipschitz, i.e.,

|`(a)− `(b)| ≤ |a− b| for any a, b ∈ R, we obtain that for any u ∈ R(n
2):

∣∣∣R̂(u)− R̂D(u)
∣∣∣ ≤ 1

m

m∑
i=1

∣∣∣u> (Ψ(xi)−ΨD(xi))
∣∣∣

≤ ‖u‖ sup
i=1,...,m

‖ΨD(xi)−Ψ(xi)‖ .
(2.18)

Now, since ŵD is a solution of (2.17), it satisfies

‖ŵD‖ ≤

√
2FD(ŵD)

λ
≤

√
2FD(0)
λ

=
√

2
λ
,

and similarly ‖ŵ‖ ≤
√

2/λ because ŵ is a solution of the original SVM optimization
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problem. Using (2.18) and these bounds on ‖ŵD‖ and ‖ŵ‖, we get

F (ŵD)− F (ŵ)
= F (ŵD)− FD(ŵD) + FD(ŵD)− F (ŵ)
≤ F (ŵD)− FD(ŵD) + FD(ŵ)− F (ŵ)
= R̂(ŵD)− R̂D(ŵD) + R̂D(ŵ)− R̂(ŵ)
≤ (‖ŵD‖+ ‖ŵ‖) sup

i=1,...,m
‖ΨD(xi)−Ψ(xi)‖

≤
√

8
λ

sup
i=1,...,m

‖ΨD(xi)−Ψ(xi)‖ .

Theorem 2.3 then follows from Lemma 2.1.

It is known that compared to the exact solution of (2.16), anO(m−1/2)-approximate
solution is sufficient to reach the optimal statistical accuracy [Bottou 2008]. This
accuracy can be attained in our analysis when D = O(m/λ), and since typically
λ ∼ m−1/2 [Steinwart 2005], this suggests that it is sufficient to take D of order
m3/2. Going back to the comparison strategy of the two alternatives G and GD, we
see that the computational cost of computing the full m×m Gram matrix with the
exact evaluation is O(m2n2), while the cost of computing the approximate Gram
matrix with D = O(m3/2) random samples is O(m2D2n logn) = O(m5n logn).
This shows that, up to constants and logarithmic terms, the Monte Carlo approx-
imation is interesting when m = o(n1/3), otherwise the exact evaluation using
explicit computation in the feature space is preferable.

Interestingly we can look at the extended Kendall kernel (2.13) to uncertain
rankings from the perspective of Hilbert space embeddings of probability distribu-
tions [Smola 2007]. In fact, for x fixed, the smoothed mapping Ψ(x) = EΦ(x +ε) is
exactly an embedding for the distribution P of an additive noise ε in the reproduc-
ing kernel Hilbert space (RKHS) associated with Kendall kernel. As a consequence,
the idea of smoothed kernel G(x,x′) for x,x′ ∈ X is essentially equivalent to how
[Muandet 2012, Lemma 4] defines kernels on two probability distributions from
{P + x|x ∈ X} using the Kendall kernel as the level-1 embedding kernel and linear
inner product as the level-2 kernel in the feature space. As a result, given a fixed
training set D, training an SVM with G in place of Kτ is equivalent to training
a Flex-SVM instead of an ordinary SVM with Kτ [Muandet 2012]. In this case,
Theorem 2.3 provides an error bound in terms of the optimal accuracy for cases
when training a Flex-SVM if exact evaluation of G is intractable and its Monte
Carlo approximate GD is employed. This serves to obtain a trade-off between com-
putation complexity and approximation accuracy which is particularly interesting
when we are working in high dimensions.
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2.4 Relation of the Mallows Kernel and the Diffusion
Kernel on Sn

It is interesting to relate the Mallows kernel (2.2) to the diffusion kernel on the sym-
metric group proposed by [Kondor 2010], which is the diffusion kernel [Kondor 2002]
on the Cayley graph of Sn generated by adjacent transpositions with left-multiplication.
This graph, illustrated for a specific case of n = 4 in Figure 2.2, is defined by
G = (V, E) with V = Sn as vertices, and undirected edge set E =

{
{σ, πσ} : σ ∈

Sn, π ∈ Q
}
, where Q = {(i, i + 1)|i = 1, . . . , n − 1} the set of all adjacent transpo-

sitions. Note Q is symmetric in the sense that π ∈ Q ⇔ π−1 ∈ Q, and the graph
adjacency relation is a right-invariant relation, that is σ ∼ σ′ ⇔ σ′σ−1 ∈ Q. The
corresponding graph Laplacian is the matrix ∆ with

∆σ,σ′ =


1 if σ ∼ σ′
−(n− 1) if σ = σ′

0 otherwise
,

where n − 1 is the degree of vertex σ (number of edges connected with vertex σ),
and the diffusion kernel on Sn is finally defined as

Kβ
dif(σ, σ

′) = [eβ∆]σ,σ′ (2.19)

for some diffusion parameter β ∈ R, where eβ∆ is the matrix exponential. Kβ
dif

is a right-invariant kernel on the symmetric group [Kondor 2010, Proposition 2],
and we denote by κβdif the positive definite function induced by Kβ

dif such that
Kβ

dif(σ, σ′) = κβdif(σ′σ−1). Since the Mallows kernel Kλ
M is straightforwardly right-

invariant, we denote by κλM the positive definite function induced by the Mallows
kernel Kλ

M such that Kλ
M (σ, σ′) = κλM (σ′σ−1). One way to interpret the diffusion

kernel (2.19) is by the heat equation on the Cayley graph

d

dβ
Kβ

dif = ∆Kβ
dif s.t. Kβ

dif|β=0 = I.

Kβ
dif is thus the product of a continuous process, expressed by the graph Laplacian

∆, gradually transforming local structure Kβ
dif|β=0 = I to a kernel with stronger

and stronger off-diagonal effects as β increases.
Interestingly, the Mallows kernel can also be interpreted with the help of the

Cayley graph. Indeed, it is well-known that the Kendall tau distance nd(σ, σ′) is the
minimum number of adjacent swaps required to bring σ to σ′, i.e. nd(σ, σ′) equals
to the shortest path distance on the Cayley graph [Drutu 2017, Exercise 7.73], or
simply written

nd(σ, σ′) = dG(σ, σ′) .

Different from the diffusion kernel for which communication between permutations
is a diffusion process over the graph, the Mallows kernel

Kλ
M (σ, σ′) = e−λnd(σ,σ′) = e−λdG(σ,σ′)
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Figure 2.2: Cayley graph of S4, generated by the transpositions (1 2) in blue, (2 3) in
green, and (3 4) in red.

considers exclusively the shortest path over the graph when expressing the similarity
between permutations σ, σ′.

A notable advantage of the Mallows kernel over the diffusion kernel is that the
Mallows kernel enjoys faster evaluation. On one hand if data instances are total
rankings, i.e. σ, σ′ ∈ Sn, evaluating Kβ

dif(σ, σ′) would require exponentiating an
n!-dimensional Laplacian matrix by naive implementation, and can reduce to expo-
nentiating matrices of smaller sizes by careful analysis in the Fourier space, which
still remains problematic if working dimension n is large [Kondor 2010]. However,
evaluating Kλ

M (σ, σ′) only takes O(n logn) time. On the other hand if data in-
stances are partial ranking of size k � n, i.e. R,R′ ⊂ Sn, and we take convolution
kernel (2.7) to extend the two kernels, the analysis of exploring the sparsity of the
Fourier coefficients of the group algebra of partial rankings R,R′ of size k reduces
the evaluation of both the diffusion kernel and the Mallows kernel to O((2k)2k+3)
time, provided that the exponential kernel Fourier matrices [κ̂(µ)]≥[... ]n−k

are pre-
computed before any kernel evaluations take place [Kondor 2010, Theorem 13].

2.5 Application: Clustering and Modeling Rank Data

In this section we illustrate the potential benefit of kernel-based algorithms using the
Kendall and Mallows kernels for the purpose of unsupervised cluster analysis, i.e.,
partitioning a collection of rank data into sub-groups and/or estimating densities
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of a collection of rank data. This is in particular of great practical interest in social
choice theory in order to explore the heterogeneity and identify typical sub-groups of
voters with a common behavior to understand, for example, their political support
for various parties [Gormley 2006, Gormley 2008, Marden 1996].

2.5.1 Clustering with Kernel k-means

Let {σi}mi=1 ⊂ Sn be a collection ofm permutations representing, say, the preferences
of customers over n products or the votes of electorate over n candidates. We aim
at partitioning these permutations into c ≤ m clusters {Sj}cj=1. One approach
to cluster rank data is to follow a method similar to k-means in the symmetric
group. Assuming that each cluster Sj has a “center” πj ∈ Sn serving as a prototype
permutation of that cluster, the classic k-means clustering attempts to put each
point in the cluster with the nearest center so as to minimize the sum of Kendall tau
distance of each permutation to the corresponding center of its cluster. Specifically,
when the number of clusters c is fixed, the objective is to find:

arg min
{Sj ,πj∈Sn}

c∑
j=1

∑
i:σi∈Sj

nd(σi, πj) . (2.20)

Note that (2.20) reduces to a single-ranking aggregation problem when c = 1,
where the center π is commonly known as Kemeny consensus [Kemeny 1962] which
is NP-hard to find [Bartholdi III 1989]. With the objective in (2.20) being non
convex, Lloyd’s algorithm is usually employed to find local minima in an iterative
manner consisting of two steps: the assignment step assigns each point to its closest
cluster, and the update step updates each of the c cluster centers using the points
assigned to that cluster; the algorithm repeats until all the cluster centers remain
unchanged in an iteration. While the assignment step is usually fast, the update
step is indeed equivalent to solving a Kemeny consensus problem for each cluster,
i.e., arg minπj∈Sn

∑
i:σi∈Sj

nd(σi, πj). Since the exact Kemeny-optimal ranking is
difficult to find, approximate techniques are usually employed in practice such as
Borda Count [de Borda 1781] or Copeland’s method [Copeland 1951].

As the Kendall tau distance is conditionally positive definite, we can propose
as an alternative to use the kernel k-means approach [Girolami 2002, Zhang 2002]
that relaxes the assumption that the cluster center are permutations, and instead
works implicitly in the feature space where cluster centers can be any vector in R(n

2)
by considering the problem:

arg min{
Sj ,µj∈R(n

2)}
c∑
j=1

∑
i:σi∈Sj

‖Φ(σi)− µj‖2 ,

for which local minima can be found efficiently by Algorithm 2.3. Note that µj
does not match a true permutation πj ∈ Sn in general, and the Kemeny consensus
problem in the update step is thus bypassed. It is worthwhile to note that the
algorithm is not exclusive for clustering permutations, kernel k-means clustering
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can be applied respectively to total/partial/multivariate/uncertain rankings with
appropriate kernels defined.

Algorithm 2.3 Kernel k-means for clustering heterogeneous rank data.
Input: a collection of permutations {σi}mi=1 and a kernel function K over Sn, or a
kernel matrix evaluated between pairwise data points K = (K(σi, σj))1≤i,j≤m; the
number of clusters c ≤ m.
1: Randomly initialize cluster assignment for each data points and form c clusters
S1, . . . , Sc.

2: For each data point, find its new cluster assignment, i.e., for i = 1, . . . ,m,

j∗(σi) = arg min
j
dij ,

where

dij :=

∥∥∥∥∥∥Φ(σi)−
1
|Sj |

∑
σ`∈Sj

Φ(σ`)

∥∥∥∥∥∥
2

= K(σi, σi)−
2
|Sj |

∑
σ`∈Sj

K(σi, σ`) + 1
|Sj |2

∑
σv ,σ`∈Sj

K(σv, σ`) .

3: Form updated clusters, i.e., for j = 1, . . . , c,

Sj = {σi : j = j∗(σi), i = 1, . . . ,m} .

4: Repeat 2-3 until all cluster assignments remain unchanged in an iteration.
Output: Cluster assignments {Sj}cj=1 .

2.5.2 Mallows Mixture Model with Kernel Trick

An alternative to k-means clustering is to consider mixture models, which provide
a method for modeling heterogeneous population in data by assuming a mixture of
standard models for rankings in each homogeneous sub-population. Mixture models
not only allow to cluster data, but more generally to estimate a distribution on the
space of permutation that can then be used for other purposes, such as combining
evidences. One popular choice of probabilistic distribution over Sn is the Mallows
model [Mallows 1957], which takes the form in expressing the occurring probability
of σ by

f(σ|π, λ) = C(λ) exp[−λnd(σ, π)] , (2.21)

where the central ranking π ∈ Sn and the precision λ ≥ 0 are model parameters,
and the normalization constant C(λ) = 1/

∑
σ′∈Sn

exp[−λnd(σ′, π)] is chosen so
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that f(·|π, λ) is a valid probability mass function over Sn. Notably, C(λ) does not
depend on the center π due to the symmetry of Sn.

We follow the mixture modeling setup in [Murphy 2003]. Now suppose that a
population consists of c sub-populations, a Mallows mixture model assumes that an
observation comes from group j with probability pj ≥ 0 for j = 1, . . . , c and, given
that the observation belongs to sub-population j, it is generated from a Mallows
model with central ranking πj and precision λj , i.e., the occurring probability of σ
in the Mallows mixture model is written as

f(σ) =
c∑
j=1

pjf(σ|πj , λj) =
c∑
j=1

pjC(λj) exp[−λjnd(σ, πj)] . (2.22)

Denoting π = {πj}cj=1, λ = {λj}cj=1, p = {pj}cj=1 such that
∑c
j=1 pj = 1, the

log-likelihood of a collection of m i.i.d. permutations σ = {σi}mi=1 is therefore:

L(π, λ, p|σ) =
m∑
i=1

log f(σi) =
m∑
i=1

log


c∑
j=1

pjC(λj) exp[−λjnd(σi, πj)]

 . (2.23)

The Mallows mixture model is usually fitted by maximum likelihood using the
EM algorithm. Specifically, by introducing latent (membership) variables z =
{zij : i = 1, . . . ,m, j = 1, . . . , c} where zij = 1 if σi belongs to group j and 0 other-
wise, the complete log-likelihood of data is

LC(π, λ, p|σ, z) =
m∑
i=1

c∑
j=1

zij [log pj + logC(λj)− λjnd(σi, πj)] .

The EM algorithm can be implemented to find local maximum likelihood esti-
mates following two steps iteratively until convergence: the E-step calculates the
expected value of membership variables ẑ conditioned on the current estimates of
the model parameters π, λ, p, and the M-step updates the model parameters π, λ, p
by maximizing the expected complete log-likelihood L̂C = LC(π, λ, p|σ, ẑ) where
membership variables are replaced by their expected values. The final estimate ẑij
amounts to our belief of σi belonging to group j, and can thus be used to form
clusters {Sj}cj=1 serving a partition of data where

Sj =
{
σi : ẑij = max

`
ẑi`, i = 1, . . . ,m

}
. (2.24)

A closer look at the EM algorithm reveals that optimizing L̂C with respect to π
alone in the M-step is indeed equivalent to finding a (weighted) Kemeny consensus
for each group, i.e., solving arg minπj∈Sn

∑m
i=1 ẑijnd(σi, πj), for which exact solution

is difficult as above-mentioned in the context of k-means clustering. Similarly to
the idea of kernel k-means in contrast to classic k-means, we propose to seek ways
to bypass the Kemeny consensus problem by working in the feature space instead.
Note that the Mallows probability mass function (2.21) is equivalently written as
f(σ|π, λ) ∝ exp

[
−λ ‖Φ(σ)− Φ(π)‖2

]
up to a constant scaling on λ by using (2.4),
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we propose to relax the constraint that the center has to match a true permutation
π ∈ Sn and consider the following two alternatives in place of f following the
mixture modeling approach stated above:
(i) Kernel Mallows. The Mallows probability mass function over Sn (2.21) is
generalized to admit any point in the feature space µ ∈ R(n

2) to be the population
center, i.e.,

g(σ|µ, λ) = C(µ, λ) exp
[
−λ ‖Φ(σ)− µ‖2

]
, (2.25)

where the normalization constant C(µ, λ) = 1/
∑
σ′∈Sn

exp
[
−λ ‖Φ(σ′)− µ‖2

]
is

chosen so that g(·|µ, λ) is a valid probability mass function over Sn. Notably,
C(µ, λ) now depends on the center µ as well.

If we replace the probability mass function of classic Mallows f in (2.23) by
that of kernel Mallows g, the Kemeny consensus problem is averted when the EM
algorithm is used to fit a local maximum likelihood estimate. However, another
computational setback arises that the expected complete log-likelihood L̂C to max-
imize in the M-step of the EM algorithm is separately concave with respect to µ or
λ, but not jointly concave. Hence alternating optimization is often used in practice
with the caveats of intensive computation and no guarantee to attain global optima
for the M-step optimization at each iteration.
(ii) Kernel Gaussian. Note that (2.25) has a similar form to the Gaussian density,
therefore we consider for σ ∈ Sn,

g†(σ|µ, λ) =

√√√√(λ
π

)(n
2)

exp
[
−λ ‖Φ(σ)− µ‖2

]
, (2.26)

which is exactly N (Φ(σ)|µ, (2λ)−1I), i.e., the
(n

2
)
-dimensional Gaussian distribution

with mean µ and isotropic covariance matrix (2λ)−1I injected by Φ(σ). Notably,
g†(·|µ, λ) is not a valid probability mass function over Sn.

The mixture modeling approach stated above using g† instead of f is in fact
equivalently stated in Algorithm 2.4. It is worthwhile to note that the algorithm also
applies to total/partial/multivariate/uncertain rankings with appropriate kernels
defined as [Wang 2003, Table 2] provides the counterpart of Algorithm 2.4 in case
that a kernel matrix evaluated between data points is given instead. However, since
g† itself is not a valid probability mass function over Sn, an evident drawback is
that we now lose the probabilistic interpretation of the mixture distribution as in
(2.22).

2.5.3 Experiments

Clustering 1980 APA election data. In the 1980 American Psychological Asso-
ciation (APA) presidential election, voters were asked to rank 5 candidates in order
of preference, and 5738 votes in form of total rankings were reported and thus used
in our experiment. The dataset was thoroughly studied by [Diaconis 1988].

We first use k-means approaches to cluster the data. We compare the proposed
kernel k-means algorithm (Algorithm 2.3 with Kendall kernel Kτ ) to the classic
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Algorithm 2.4 Kernel trick embedded Gaussian mixture model for clustering het-
erogeneous rank data.
Input: a collection of permutations {σi}mi=1 and a kernel function K over Sn; the
number of clusters c ≤ m.
1: Compute feature points Φ(σi) ∈ R(n

2) mapped by the Kendall embedding.
2: Fit a Gaussian mixture model for {Φ(σi)}mi=1 in R(n

2) using maximum likelihood
with the EM algorithm under the constraint of isotropic covariance matrix, i.e.,
Σ = (2λ)−1I.

3: Use the membership estimates ẑ to form clusters by (2.24).
Output: Cluster assignments {Sj}cj=1 .

k-means algorithm formulated as (2.20). For the classic k-means where cluster
centers are required to be a prototype permutation, three methods are employed
in the center-update step for each iteration: brute-force search of Kemeny-optimal
ranking, approximate ranking induced by Borda Count and Copeland’s method. In
each case, we vary the number of clusters ranging from 2 to 10 and the algorithm is
repeated 50 times with randomly initialized configurations for each fixed number of
clusters. We observe from Figure 2.3 that the kernel k-means or classic k-means with
approximate centers runs much faster than optimal k-means for which the Kemeny-
optimal ranking is time-consuming to find by a brute-force search. Further, Figure
2.4 shows that the kernel k-means outperforms all three methods based on classic
k-means in terms of the average silhouette scores of the clustering results, which
justifies that the kernel k-means splits the data into more consistent sub-groups in
the sense that instances, measured by Kendall tau distance on average, are more
similar in the same cluster and more dissimilar in different clusters.
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Figure 2.3: Computational time (in seconds) of k-means algorithms per run across differ-
ent number of clusters.
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Figure 2.4: Average silhouette scores of k-means methods across different number of
clusters.

Further, good clustering algorithms are supposed be robust to “perturbation”
in data, in the sense that clusters formed by running an algorithm on bootstrap
replicas of the original data should be similar. In other words, if we bootstrap the
complete dataset twice and form a clustering with respect to each, the two cluster-
ing assignments should be close to each other. Note that in order to measure the
similarity of two clustering assignments, we use the (adjusted) Rand index defined
by the percentage of instance pairs falling in the same or in different clusters by the
two assignments [Hubert 1985]. We now compare the stability performance of the
proposed kernel k-means and other k-means algorithms. Specifically, for each fixed
number of clusters, we repeatedly use a bootstrap replica of the dataset to search
for centroids returned by running k-means algorithms, and partition the original
dataset with these identified centroids. The Rand index for two such clustering
assignments is computed and the computation is repeated for 100 times accounting
for the random process of bootstrapping. Results are shown in Figure 2.5. We
observe that, for each fixed number of clusters, kernel k-means has higher stability
scores than the classic k-means algorithms in general. Notably, the discrepancy be-
tween kernel k-means and the others in terms of their stability performance is even
sharper when the number of clusters becomes large. In conclusion, evidence advo-
cates again the use of kernel k-means over classic k-means algorithms in clustering
rank data.

Mixture modeling is then used to fit the data and a partition of the votes is
converted from the fitted models forming a clustering result. Baseline models are
the Mallows mixture models fitted by the EM algorithm [Murphy 2003] using three
different center-update algorithms at each iteration: brute-force search for Kemeny-
optimal ranking, approximate ranking induced by Borda Count and Copeland’s
method. As proposed in this chapter, we embed the kernel trick in Mallows mixture
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Figure 2.5: Across different number of clusters, Rand index between clustering assign-
ments by running k-means algorithm on bootstrap replicas of the 1980 APA election data.
For each fixed number of clusters, the boxplot represents the variance over 100 repeated
runs.

modeling with two alternatives g (2.25) and g† (2.26) in place of f (2.21). In each
case, we vary the number of clusters ranging from 2 to 10 and the algorithm is
repeated 50 times with randomly initialized configurations for each fixed number
of clusters. As shown in Figure 2.6, modeling a Gaussian mixture to data in the
feature space, or equivalently using g† instead of f , provides a preferable split of the
data into sub-groups with higher average silhouette scores across different number
of clusters selected a priori.
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Figure 2.6: Average silhouette scores of Mallows mixture modeling methods across differ-
ent number of clusters.
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Clustering ESC voting data. We finally perform clustering on a dataset of
multivariate partial rankings. In the finale of Eurovision Song Contest (ESC), each
participating country casts one top-k vote over the finalists who represent their
home country. Taken from [Jacques 2014], the dataset consists of 34 multivariate
ranking instances, each being a series of 6 partial votes over top 8 finalists from
2007 to 2012 respectively.

In comparison with the mixture of Insertion Sorting Rank (ISR) model for clus-
tering multivariate partial rank data proposed by [Jacques 2014], we implement the
kernel k-means algorithm (Algorithm 2.3) with the extended Kendall kernel to mul-
tivariate rankings (2.9) and equal weights µj = 1/p where p = 6 corresponding to
the six contests across years. For each fixed number of clusters, the kernel k-means
algorithm is repeated 100 times with randomly initialized configurations while 10
times for the ISR mixture modeling approach. We vary the number of clusters rang-
ing from 2 to 6, and the optimal number is selected to be 2 for kernel k-means with
respect to highest average silhouette score while 5 for the ISR mixture model with
respect to highest BIC value. It consumes 2 hours in total to fit the ISR mixture
model in order for clustering while it only takes less than 10 seconds to form the
partition of data with kernel k-means. Although it is beyond the scope of this study
to further explore the meaningful voting blocs, the colored map of Asia-Europe in
terms of clustering results of participating countries to the ESC according to their
voting behavior (Figure 2.7, Left) depicts that there exists interesting geographical
alliances between countries in the voting data. For example, country-clusters re-
turned by both algorithms present a sign of strong amity within Eastern Europe.
Silhouette plots for both algorithms are shown in Figure 2.7 (Right). Despite a rel-
atively small number of clusters selected for the kernel k-means, the silhouette plot
(Figure 2.7a, Right) attests that the underlying clusters are well formed. Note that
both silhouette plots opt for the same distance used by kernel k-means, which may
show bias against a clustering scheme based on probabilistic modeling with ISR
mixtures. However, the two approaches behave distinctly in identifying subgroups.
For example, the ISR mixture model distinguishes Portugal as a singleton among
all countries, while interpreting such clustering results remains to be studied. On
the other hand, the k-means based approach tends to find more evenly distributed
subgroups, in the sense that the number of individuals in each subgroup is more
consistent. Therefore kernel k-means clustering is favored if the study of interest
lies in populous behaviors in voting despite of potential outlier individuals. Notably
the detection of outliers can be done by other kernel algorithms (Section 2.7).

2.6 Application: Supervised Classification of Biomedi-
cal Data

In this section we illustrate the relevance of supervised classification of rank data
with an SVM using the Kendall kernel, when the ranking are derived from a high-
dimensional real-valued vector. More precisely, we investigate the performance of
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classifying high-dimensional biomedical data, motivated by previous work demon-
strating the relevance of replacing numerical features by pairwise comparisons in
this context [Geman 2004, Tan 2005, Xu 2005, Lin 2009].

For that purpose, we collected 10 datasets related to human cancer research pub-
licly available online [Li 2003, Schroeder 2011, Shi 2011], as summarized in Table
2.1. The features are proteomic spectra relative intensities for the Ovarian Cancer
dataset and gene expression levels for all the others. The contrasting classes are
typically “Non-relapse v.s. Relapse” in terms of cancer prognosis, or “Normal v.s.
Tumor” in terms of cancer identification. The datasets have no missing values, ex-
cept the Breast Cancer 1 dataset for which we performed additional preprocessing
to remove missing values as follows: first we removed two samples (both labeled
“relapse”) from the training set that have around 10% and 45% of missing gene
values; next we discarded any gene whose value was missing in at least one sample,
amounting to a total of 3.5% of all genes.

Table 2.1: Summary of biomedial datasets.

Dataset No. of features No. of samples (training/test) Reference
C1 C2

Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse) [van ’t Veer 2002]
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse) [Desmedt 2007]
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis) [Wang 2005b]

Colon Tumor 2000 40 (Tumor) 22 (Normal) [Alon 1999]
Lung Adenocarcinoma 1 7129 24 (Poor Prognosis) 62 (Good Prognosis) [Beer 2002]

Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM) [Gordon 2002]
Medulloblastoma 7129 39 (Failure) 21 (Survivor) [Pomeroy 2002]
Ovarian Cancer 15154 162 (Cancer) 91 (Normal) [Petricoin 2002]

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor) [Singh 2002]
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse) [Singh 2002]

We compare the Kendall kernel to three standard kernels, namely linear kernel,
homogeneous 2nd-order polynomial kernel and Gaussian RBF kernel with band-
width set with “median trick”, using SVM (with regularization parameter C) and
Kernel Fisher Discriminant (KFD, without tuning parameter) as classifiers. In ad-
dition, we include in the benchmark classifiers based on Top Scoring Pairs (TSP)
[Geman 2004], namely (1-)TSP, k-TSP [Tan 2005]1 and APMV (all-pairs majority
votes, i.e.

(n
2
)
-TSP). Finally we also test SVM with various kernels using as input

only top features selected by TSP [Shi 2011].
In all experiments, each kernel is centered (on the training set) and scaled to unit

norm in the feature space. For KFD-based models, we add 10−3 on the diagonal of
the centered and scaled kernel matrix, as suggested by [Mika 1999]. The Kendall
kernel we use in practice is a soft version to (2.10) in the sense that the extremes

1While the original k-TSP algorithm selects only top k disjoint pairs with the constraint that k
is less than 10, we do not restrict ourselves to any of these two conditions since we consider k-TSP
in this study essentially a feature pair scoring algorithm.
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±1 can still be attained in the presence of ties, specifically we use

Kτ (x,x′) = nc(x,x′)− nd(x,x′)√
(n0 − n1)(n0 − n2)

,

where n0 =
(n

2
)
and n1, n2 are the number of tied pairs in x,x′ respectively.

For the three datasets that are split into training and test sets, we report the
performance on the test set; otherwise we perform a 5-fold cross-validation repeated
10 times and report the mean performance over the 5×10 = 50 splits to evaluate the
performance of the different methods. In addition, on each training set, an internal
5-fold cross-validation is performed to tune parameters, namely the C parameter of
SVM-based models (optimized over a grid ranging from 10−2 to 103 in log scale),
and the number k of k-TSP in case of feature selection (ranging from 1 to 5000 in
log scale).

Table 2.2 and Figure 2.8 summarize the performance of each model across the
datasets. An SVM with the Kendall kernel achieves the highest average prediction
accuracy overall (79.39%), followed by a linear SVM trained on a subset of features
selected from the top scoring pairs (77.16%) and a standard linear SVM (76.09%).
The SVM with Kendall kernel outperforms all the other methods at a p-value
of 0.07 according to a Wilcoxon rank test. We note that even though models
based on KFD generally are less accurate than those based on SVMs, the relative
order of the different kernels is consistent between KFD and SVM, adding evidence
that the Kendall kernel provides an interesting alternative to other kernels in this
context. The performance of TSP and k-TSP, based on majority vote rules, are
comparatively worse than SVMs using the same features, as already observed by
[Shi 2011].

We further studied how the performance of different kernels depends on the
choice of the C parameter or the SVM (Figure 2.9), and on the number of features
used (Figure 2.10), on some representative datasets. We observe that compared to
other kernels, an SVM with the Kendall kernel is relatively insensitive to hyper-
parameter C especially when C is large, which corresponds to a hard-margin SVM.
This may explain in part the success of SVMs in this setting, since the risk of
choosing a bad C during training is reduced. Regarding the number of features
used in case of feature selection, we notice that it does not seem to be beneficial to
perform feature selection in this problem, explaining why the Kendall kernel which
uses all pairwise comparisons between features outperforms other kernels restricted
to a subset of these pairs. In particular, the feature space of the Kendall and
Mallows kernels is precisely the space of binary pairwise comparisons defined by
[Geman 2004], and the results show that instead of selecting a few features in this
space as the Top Scoring Pairs (TSP)-family classifiers do [Geman 2004, Tan 2005,
Xu 2005, Lin 2009], one can simply work with all pairs with the kernel trick.

Finally, as a proof of concept we empirically compare on one dataset the smooth
alternative (2.13) and its Monte Carlo approximate (2.15) with the original Kendall
kernel. We studied how the performance varies with the amount of noise added to
the samples (Figure 2.11), and how the performance varies with the number of
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Table 2.2: Prediction accuracy (%) of different methods across biomedical datasets (or-
dered by decreasing average accuracy across datasets). Models are named after candiate
methods (SVM or KFD) and candiate kernels, namely linear kernel (linear), 2nd-order ho-
mogeneous polynomial kernel (poly), Gaussian RBF kernel (rbf) or Kendall kernel (kdt),
and whether feature selection is combined (TOP) or not (ALL). Prediction accuracy of the
best-performing models for each dataset is in boldface.

Average BC1 BC2 BC3 CT LA1 LC2 MB OC PC1 PC2
SVMkdtALL 79.39 78.95 71.31 67.34 85.78 70.98 97.99 63.67 99.48 100.00 58.40

SVMlinearTOP 77.16 84.21 69.29 67.11 84.19 63.92 97.32 65.17 99.41 85.29 55.70
SVMlinearALL 76.09 78.95 71.67 64.27 86.73 70.23 97.99 62.67 99.64 73.53 55.17
SVMkdtTOP 75.50 52.63 70.61 65.81 85.46 67.70 97.99 58.33 99.92 97.06 59.47
SVMpolyALL 74.54 68.42 71.62 63.66 78.43 70.53 98.66 61.17 99.28 79.41 54.23
KFDkdtALL 74.33 63.16 59.41 67.22 85.46 59.08 99.33 59.33 98.73 97.06 54.57

kTSP 74.03 57.89 58.22 64.47 87.23 61.70 97.99 56.00 99.92 100.00 56.83
SVMpolyTOP 73.99 63.16 69.44 66.26 79.14 65.98 99.33 60.00 99.21 88.24 49.10
KFDlinearALL 71.81 63.16 60.43 67.52 77.26 57.24 97.99 59.50 100.00 73.53 61.43
KFDpolyALL 71.39 63.16 60.48 67.38 75.10 58.52 97.99 60.33 100.00 73.53 57.43

TSP 69.71 68.42 49.58 57.80 85.61 58.96 95.97 52.67 99.80 76.47 51.83
SVMrbfALL 69.31 63.16 71.41 65.87 81.18 70.84 93.96 63.83 98.85 26.47 57.50
KFDrbfALL 66.50 63.16 60.38 66.17 84.33 58.62 97.32 60.17 98.34 26.47 50.00

APMV 61.91 84.21 65.98 33.96 64.49 33.60 89.93 42.17 85.19 73.53 46.00

●

●

●

S
V

M
kd

tA
LL

S
V

M
lin

ea
rT

O
P

S
V

M
lin

ea
rA

LL

S
V

M
kd

tT
O

P

S
V

M
po

ly
no

m
ia

lA
LL

K
F

D
kd

tA
LL

kT
S

P

S
V

M
po

ly
no

m
ia

lT
O

P

K
F

D
lin

ea
rA

LL

K
F

D
po

ly
no

m
ia

lA
LL T
S

P

S
V

M
rb

f

K
F

D
rb

f

A
P

M
V

0.4

0.6

0.8

1.0

ac
c

Figure 2.8: Model performance comparison (ordered by decreasing average accuracy
across datasets).
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Figure 2.9: Sensitivity of kernel SVMs to C parameter on the Breast Cancer 1 dataset.
(Special marks on SVM lines denote the parameter returned by cross-validation.)
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marks on SVM lines denote the parameter returned by cross-validation.)
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samples in the Monte Carlo scheme for a given amount of noise (Figure 2.12). It
confirms that the smooth alternative (2.13) can improve the performance of the
Kendall kernel, and that the amount of noise (window size) should be considered as
a parameter of the kernel to be optimized. Although the D2-sample Monte Carlo
approximate kernel (2.15) mainly serves as a fast estimate to the exact evaluation
of (2.13), it shows that the idea of jittered input with specific noise can also bring
a tempting benefit for data analysis with Kendall kernel, even when D is small.
This also justifies the motivation of our proposed smooth alternative (2.13). Last
but not least, despite the fact that the convergence rate of D2-sample Monte Carlo
approximate to the exact kernel evaluation is guaranteed by Theorem 2.3, experi-
ments show that the convergence in practice is typically faster than the theoretical
bound, and even faster in case that the window size a is small. This is due to the
fact that the convergence rate is also dependent of the observed data distribution
in the input space, for which we have not made any specific assumption in our
analysis.
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Figure 2.11: Empirical performance of smoothed alternative to Kendall kernel on the
Medulloblastoma dataset.

2.7 Discussion

Based on the observation that the popular Kendall tau correlation between total
rankings is a positive definite kernel, we presented some extensions and applications
pertaining to learning with the Kendall kernel and the related Mallows kernel. We
showed that both kernels can be evaluated efficiently in O(n logn) time, and that
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Figure 2.12: Empirical convergence of Monte Carlo approximate at the fixed window size
attaining maximum underlying accuracy from the left plot.

the Kendall kernel can be extended to partial rankings containing k items out of
n in O(k log k) time as well as to multivariate rankings. When permutations are
obtained by sorting real-valued vectors, we proposed an extension of the Kendall
kernel based on random perturbations of the input vector to increase its robustness
to small variations, and discussed two possible algorithms to compute it. We further
highlighted a connection between the fast Mallow kernel and the diffusion kernel
of [Kondor 2010]. We also reported promising experimental results on clustering
of heterogeneous rank data and classifying biomedical data demonstrating that for
highly noisy data, the Kendall kernel is competitive or even outperforms other
state-of-the-art kernels.

We believe that computationally efficient kernels over the symmetric group pave
the way to numerous applications beyond the ones we pursued in this chapter. In
unsupervised data mining, kernel density estimation for example can be applied
to modeling the distribution over a collection of rankings, and by the representer
theorem the resulting distribution depends solely on the observed data points cir-
cumventing the exponentially large cardinality of the symmetric group, from which
a consensus ranking that best represents the data is the one with the highest prob-
ability. As more complicated cases, there is much interest beyond finding a single
consensus ranking typically in the context of political votes or social choices: groups
of homogeneous sub-populations in data can be clustered by algorithms such as ker-
nel k-means or spectral clustering [Filippone 2008]; dependencies or principle struc-
tural factors in data can be found by kernel canonical correlation analysis [Lai 2000]
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or kernel principle component analysis [Schölkopf 1999a]; outliers in a collection of
rank data can be detected with one-class SVMs [Schölkopf 1999b, Tax 2004]. In a
more predictive setting, Support Vector Machines and kernel ridge regression are
representative delegates for solving classification and regression problems amongst
many other kernel algorithms [Schölkopf 2002]. Notably, the input/output kernels
formalism allows us to predict rankings as well as learn from rankings where a
wealth of algorithms such as multi-class SVMs or structural SVMs [Crammer 2002,
Tsochantaridis 2005, Bakir 2007] are ready to suit the problem at hand.

Deeper understanding of the Kendall and Mallows kernels calls for more theoret-
ical work of the proposed kernels. In particular, a detailed analysis of the Fourier
spectra of the Kendall and Mallows kernels is provided in [Mania 2016]. Those
authors also introduced a tractable family of normalized polynomial kernels of de-
gree p that interpolates between Kendall (degree one) and Mallows (infinite degree)
kernels.

There are many interesting extensions of the current work. One direction would
be to include high-order comparisons in measuring the similarity between permuta-
tions. Since the fast computation of the Kendall and Mallows kernels is balanced by
the fact that they only rely on pairwise statistics between the ranks, computation-
ally tractable extension to higher-order statistics, such as three-way comparisons,
could potentially enhance the discriminative power of the proposed kernels. An-
other interesting direction would be to extend the proposed kernels to rankings
on partially ordered set. In fact, the current work lies on the assumption that a
(strict) total order can be associated with the (finite) set of items given to rank
{x1, . . . , xn}, which is implicitly presumed when we label the items by the sub-
scripts JnK and then define the Kendall and Mallows kernels by comparing all item
pairs (i, j) for i < j (Section 2.2). However, there are cases when the item set is
intrinsically associated with a (strict) partial order such that some item pairs are
conceptually incomparable. In that case, we can collect all comparable item pairs
into a set denoted by E and define the kernels by comparing only those item pairs
(i, j) in E. Notably evaluating the extended kernels is still fast as we can simply
replace the Merge Sort algorithm for total orders (Section 2.2) by a topological
sort algorithm for partial orders [Cormen 2009, Section 22.4]. We leave further
investigations of this generalization to future work.
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Network-based Wavelet
Smoothing for Analysis of

Genomic Data

Publication and Dissemination: The work in this chapter is
under preparation for submission as joint work with Jean-Philippe
Vert in [Jiao 2017c].

Abstract: Biological networks are a common way of describing
information on relationships between genes that are accumulated
from many years of biomedical research, and they are thus
potentially valuable when incorporated as prior knowledge to guide
biomarker discovery in genomic data analysis. In this chapter, we
focus on network-based regularization methods through a predictive
framework with linear models, and propose to use a class of
methods based on wavelet smoothing over undirected graphs that
directly detect subnetworks composing of collaboratively functional
gene modules. We perform breast cancer survival analysis using a
large gene expression dataset and a protein-protein interaction
network obtained from a public database, and demonstrate that the
proposed methods are able to improve gene selection in terms of
stability, connectivity and interpretability while achieving
competitive performance of survival risk prediction. Our results
also serve a comparative study benchmarking several network-free
and network-based regularization methods for gene selection related
to breast cancer survival.

Résumé : Les réseaux biologiques sont un moyen classique de
représenter l’information sur les relations entre les gènes qui sont
accumulées depuis de nombreuses années en recherche biomédicale.
Il est donc intéressant de les incorporés comme connaissances
préalables pour aider à la découverte de biomarqueurs dans
l’analyse des données génomiques. Dans ce chapitre, nous nous
concentrons sur les méthodes de régularisation par de tels réseaux
dans un cadre prédictif avec des modèles linéaires, dans de tels cas
nous proposons d’utiliser une classe de méthodes basées sur le
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débruitage par ondelettes sur un graphe non orienté qui détectent
directement les sous-réseaux composés de modules de gènes qui sont
collaborativement fonctionnels. Nous effectuons une analyse de
survie du cancer du sein à l’aide d’un grand ensemble de données
d’expression génétique et d’un réseau d’interactions
protéine-protéine obtenu à l’aide d’une base de données publique.
Nous démontrons que les méthodes proposées sont capables
d’améliorer la sélection de gènes en termes de robustesse, de
connectivité et d’interprétation à performance égale en prédiction
du risque de survie. Nos résultats fournissent également une étude
comparative de plusieurs méthodes de régularisation sans réseau et
basées sur un réseau donné pour la sélection de gènes liés à la
survie du cancer du sein.

3.1 Introduction

Genomic data analysis is a rapidly developing research area that receives increasing
attention, thanks to the recent advancement of technologies in gene expression
profiling that monitors the activity of a large number of genes in a single experiment.
Recall from Section 1.3, identifying genes related to a clinical phenotype of interest,
such as drug resistance or disease progression, is a central yet challenging topic
in genomic research commonly known as biomarker discovery. A typical approach
follows a predictive framework that builds a predictive model linking genomic data
to a clinical outcome further combined with a regularization method for feature
selection and to address the high-dimensionality of high-throughput genomic data.
For example, linear regression can be used to model the relationship between the
quantitative measurements of toxicity response to a drug and the expression levels
of all genes, and many regularization methods have been proposed in literature
for identifying a few genes that are potentially related to the targets of the drug,
including the well-studied and widely-used lasso [Tibshirani 1996] and elastic net
[Zou 2005].

Despite the usefulness of the lasso-type regularization methods, the genes se-
lected purely by such algorithmic approaches often lack proper mechanistic in-
terpretation in terms of biological relevance and it remains a demanding task to
determine a posteriori whether and how the selected genes cooperate in some
biological process. In fact, plentiful information about the interaction between
gene products and the underlying biological functions is accumulated from exten-
sive biomedical research over the years and can be obtained through many pub-
licly available databases, including Human Protein Reference Database (HPRD)
[Keshava Prasad 2009], Gene Ontology (GO) [Ashburner 2000] and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [Kanehisa 2000]. Although these databases
can help verify the collaborative functionality of a list of selected genes, the inter-
pretation is usually non-trivial as many selected genes may seem unrelated or even
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unreliable.
To overcome the difficulty of a posteriori interpretation of selected genes, there

is therefore a need to develop methods that integrate prior knowledge in the pro-
cess of biomarker detection in genomic data analysis in order to promote biological
relevance. Although various databases register different aspects of interaction be-
tween gene products, this information is usually provided in the form of biological
networks, which can be represented by graphs where vertices are genes and edges
indicate some notion of interaction between the gene products of connected vertices.
It has been demonstrated that genes closer on the network are more likely to be
involved in similar biological functions and vice versa (see, e.g., [Stuart 2003]). The
incorporation of biological networks to enhance biomarker discovery consequently
follows the principle that genes closer on the network should tend to be selected
simultaneously. Note that this research topic is commonly phrased as network-
guided biomarker discovery, for which we refer to a tutorial-oriented survey by
[Azencott 2016].

In particular, we are interested in network-guided feature selection under a pre-
dictive framework via regularization methods. This network-based regularization
should encourage that genes closer on the network contribute similarly to the pre-
dictive model built for some clinical phenotype and then, if selected, tend to be se-
lected simultaneously. Notably, Laplacian regularization (Section 3.2.2) is a classic
method that attempts to encourage smoothness between the coefficients of a linear
model corresponding to neighboring features on the given network [Belkin 2004]
but the regularization itself does not enforce sparsity nor enable feature selection.
[Li 2008] proposed to combine sparsity-inducing penalties such as lasso with the
Laplacian regularization for network-constrained feature selection with an appli-
cation in genomic data analysis, and is further generalized in an adaptive fashion
by [Li 2010]. Besides Laplacian-based methods, many others stem from extending
the standard lasso to structured regularization for identifying genes by groups. If
meaningful gene groups can be defined by known functional gene modules on the
network for instance, Group lasso [Jacob 2009, Yuan 2006] can be used to force
that genes belonging to the same groups are selected or disregarded simultaneously.
Graph-fused lasso [Tibshirani 2005] encourages that the direct neighboring genes
on the network share the same coefficients in a linear model, leading to the a par-
tition of the network into subnetworks as functional gene modules. Pairwise Lγ
penalty [Pan 2010] aims to model the intuition that direct neighboring genes in a
network should be more likely to participate in the same biological process and
thus tend to be selected simultaneously. Note that Laplacian regularization, which
is intended for global smoothness, and group lasso, which is designed for group-wise
gene signature selection, can also be combined [Tian 2013].

We propose in this study to use a class of regularization methods for network-
guided feature selection under a predictive modeling framework that simultaneously
enjoy global smoothness over the network and directly identify subnetworks con-
sisting of a few connected features. In fact, since the Laplacian regularization is
known to be equivalent to a quadratic penalty with respect to the graph spectral
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domain [Belkin 2004], the method essentially performs a graph Fourier transform
on the coefficients of the linear models and then attenuates the high-frequency com-
ponents thereof, therefore inducing global smoothness for the predictive models. A
wealth of studies in the field of signal processing have been devoted to extending
Fourier smoothing in order to simultaneously achieve spatial-temporal sparse cod-
ing, a topic that has been well established for data of regular structure such as time
series or images [Mallat 1999] and has attracted much attention for data residing on
irregular structure such as general graphs or manifolds [Shuman 2013]. Following
this trend, we propose to study network-based wavelet smoothing with an applica-
tion to gemonic data analysis. Notably, when applied to biological networks, the
global smoothness as well as localization properties of the network-based wavelet
smoothing estimates a predictive model that directly enables the detection of sub-
networks readily translated into functional gene modules, rendering interpretable
biological insights concerning the particular phenotype of interest.

The chapter is organized as follows. In Section 3.2 we first elaborate the pre-
dictive modeling framework with regularization, with a particular emphasis on re-
viewing the network-based methods in literature, and then propose to use a class of
novel methods based on wavelet smoothing on graphs. In Section 3.3, we perform
simulated experiments and breast cancer survival analysis with gene expression
data guided by a protein-protein interaction (PPI) network obtained from HPRD
database. Promising results demonstrate the usefulness of the proposed methods
for biomarker discovery related to breast cancer survival, while they serve a com-
parative study benchmarking several methods of network-free and network-guided
biomarker discovery. Finally we conclude and discuss in Section 3.4.

3.2 Methods

3.2.1 Feature Selection Under Predictive Modeling Framework

In supervised learning, let D := {(xi, yi) : i = 1, . . . ,m} denote a dataset of m
observations where each xi ∈ Rn is an n-dimensional feature vector that is paired
with a quantitative measurement of some clinical phenotype yi to predict depending
on the particular application. For instance, the feature values in xi = (xi1, . . . , xin)>
can denote the expression levels of n genes of sample i, while the quantity of the
clinical phenotype can be a response yi ∈ R measuring the resistance to a drug of
the sample, or a binary label yi ∈ {−1,+1} denoting whether a specific treatment
is applied to the cancer patient, or a right-censored survival time yi = (Ti,∆i) ∈
R × {0, 1} where, for some predetermined censoring time C, (Ti|∆i = 1) denotes
the observed survival time of the diseased patient prior to C or (Ti|∆i = 0) is equal
to the censoring time C meaning that the information is censored. Typically in
biomedical applications, the number of genes is usually larger than the number of
observations, i.e., n > m or even n� m. We further assume that the feature data
are standardized to have zero mean and unit variance, i.e.,

∑m
i=1 xij/m = 0 and∑m

i=1 x
2
ij/(m− 1) = 1 for j = 1, . . . , n.
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We consider linear models in this study where the quantity y is linked with the
underlying feature vector x via a linear combination β>x for some coefficient vector
β ∈ Rn. For simplicity of notations, we do not consider intercepts explicitly in the
discussion, but it can be easily included in the model by augmenting the feature
vector with a dummy variable that takes constant value 1. Given the dataset D,
an empirical procedure to estimate the coefficients β is by solving optimization
problems of the form:

min
β∈Rn

`(y1, . . . , ym, β
>x1, . . . , β

>xm) , (3.1)

where ` is a loss function measuring the empirical cost on the training data and
should be carefully designed for specific application. For example, when yi ∈ R and

`(y1, . . . , ym, β
>x1, . . . , β

>xm) = 1
m

m∑
i=1

(yi − β>xi)2 , (3.2)

it recovers linear regression and returns the least squares solution; when yi ∈
{−1,+1} and

`(y1, . . . , ym, β
>x1, . . . , β

>xm) = 1
m

m∑
i=1

log(1 + exp(−yiβ>xi)) , (3.3)

it recovers logistic regression for binary classification; when yi = (Ti,∆i) ∈ R×{0, 1}
and

`(y1, . . . , ym, β
>x1, . . . , β

>xm) = − 1
m

m∑
i=1

∆i{β>xi − log(
∑

j:Tj>Ti

exp(β>xj))} ,

(3.4)
it recovers the Cox proportional hazards model for survival analysis [Cox 1972]. We
would like to point out that the choice of the loss function is mostly application-
oriented and is primarily not the concern of this study. In particular, the following
discussion and our proposed methods will not depend on the choice of the loss
function.

In order to avoid overfitting or to enable feature selection, it is usually suggested
to incorporate appropriate regularization in (3.1). Specifically, we aim to solve
optimization problems of the form:

min
β∈Rn

`(y1, . . . , ym, β
>x1, . . . , β

>xm) + λP (β) , (3.5)

where P is a penalty term, especially one that induces sparsity for feature selection,
and λ ≥ 0 is a regularization parameter that trades off between the loss term and the
penalty term. Classic penalty terms include the ridge [Hoerl 1970] which penalizes
the squared L2 norm of the coefficient vector, i.e.,

P ridge(β) = ‖β‖22 . (3.6)
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It is well-known that the ridge regularization is a shrinkage method that usu-
ally yields more robust estimate but does not enable feature selection. The lasso
[Tibshirani 1996] is probably the simplest and most widely used sparsity-inducing
regularization method which penalizes the L1 norm of the coefficient vector, i.e.,

P lasso(β) = ‖β‖1 . (3.7)

The lasso enables feature selection by allowing a few non-zero coefficients in the
estimate of β. Another widely used penalty extends the lasso by penalizing a
weighted sum of the L1 norm and squared L2 norm on the coefficient vector that
leads to a regularization method called elastic net [Zou 2005], i.e.,

P e-net(β; ν) = ν‖β‖1 + (1− ν)1
2‖β‖

2
2 , (3.8)

where 0 ≤ ν ≤ 1 is a regularization parameter balacing between the two norms.
In particular, the elastic net regularization reduces to the ridge when ν = 0, and
enables feature selection for 0 < ν ≤ 1 including as a special case the lasso when ν =
1. Despite the fact that the elastic net regularization usually helps produce more
reliable solutions when applied to biomedical data, the selected genes corresponding
to non-zero coefficients often give no clear biological meaning in terms of their
collaborative functionality. One possible solution is to devise a L2,1 mixed norm,
often termed as group lasso [Yuan 2006, Jacob 2009], to force that eventually certain
genes that belong to the same group, if selected, will be selected simultaneously.
The groups of genes are defined a priori by external knowledge. For example, genes
that belong to the same pathway or contribute to the same biological process can be
grouped together. However, as most biomedical databases provide domain-specific
knowledge on gene interactions in the form of biological networks, we are interested
in directly exploiting the network structure in order to guide biomarker discovery.

3.2.2 Network-guided Feature Selection: A Review of RelatedWork

Suppose a network that specifies the relationships between features is represented
by an undirected weighted graph G = (V, E , A), where V denotes the set of vertices
representing the n features indexed by {1, . . . , n}, E ⊂ V × V denotes the set of
edges with (u, v) ∈ E representing a link between vertices u and v, A ∈ Rn×n is
the weighted adjacency matrix such that Auv = Avu =: a(u, v) with a(u, v) > 0 the
weight assigned to an edge (u, v) ∈ E and a(u, v) = 0 if (u, v) /∈ E . In particular,
we assume that no self-loop exists, i.e., (u, u) /∈ E for any vertex u. Depending on
the network under consideration, the weighted edges can be used to register the
uncertainty of the existence of a link or the strength of the interaction between
connected vertices.

Recall that a common assumption for network-guided feature selection under
predictive framework is that we would like to devise penalty terms that encourage
the coefficients corresponding to those features closer on the network to be similar
so that, if selected, they tend to be selected together. To this end, let us first
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define the graph Laplacian L = D − A where D is a diagonal matrix with Duu =∑
v 6=u a(u, v) =: d(u) the degree of the vertex u, i.e.,

Luv =


d(u) if u = v,

−a(u, v) if (u, v) ∈ E ,
0 otherwise.

The graph Laplacian is a key concept in spectral graph theory that shares many
properties with the Laplace operator on compact Riemannian manifolds and re-
flects many properties of the graph structure [Chung 1997]. For example, L is
a symmetric, positive semi-definite matrix whose number of zero eigenvalues is
equal to the number of maximally connected components of the graph. Note that
some authors prefer to use alternatively the normalized graph Laplacian defined as
L = D−

1
2LD−

1
2 , particularly accounting for the degrees of different vertices. While

the discussion in this study does not depend on which version of Laplacian (normal-
ized or non-normalized) is used, they usually give very different results in practice as
we will empirically demonstrate in Section 3.3. An important observation regarding
the graph Laplacian is that it can be used to define measure of smoothness with
respect to the graph structure for any vector whose covariates naturally reside on
the vertices of the graph. We define the penalty term for Laplacian regularization
as

P lap(β) = β>Lβ =
∑

(u,v)∈E
(βu − βv)2a(u, v) . (3.9)

In words, the Laplacian regularization method “shrinks” the pairwise difference
between neighboring features to be small taking into account the edge weights and
hence encourages solutions to be smooth over the graph.

It is very interesting to understand how the Laplacian regularization (3.9)
achieves global smoothness from a spectral perspective. As L ∈ Rn×n is symmetric
and semi-positive, we have the eigendecomposition

L = XΛX>

for an orthogonal matrix X = (χ1| . . . |χn) where χi denotes the i-th column of X
and a diagonal matrix Λ = diag(λ1, . . . , λn) with 0 = λ1 ≤ · · · ≤ λn. By analogy
to the Laplace operator on Riemannian manifolds, the eigenbasis of L, namely
χ1, . . . , χn, forms the Fourier basis of the graph spectral domain with “frequencies”
λ1, . . . , λn respectively. β̂ := X>β with coordinates β̂i = χ>i β is called the Fourier
transform of β, and β = Xβ̂ =

∑n
i=1 β̂iχi gives the inverse Fourier transform. Since

we have
β>Lβ = ‖XΛ

1
2X>β‖22 = β̂>Λβ̂ =

n∑
i=1

λiβ̂
2
i , (3.10)

the penalty term of the Laplacian regularization is essentially a weighted squared
L2 norm of the Fourier transform of β in the graph spectral domain with frequen-
cies acting as the weights. In other words, the Laplacian regularization attenuates
the high-frequency components, thereby inducing global smoothness of β over the
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graph. Following this direction, [Rapaport 2007] studied a spectral method gen-
eralizing the Laplacian regularization by considering functions of the frequencies
as weights in the norm that allow finer control over the estimated coefficients and
applied the method to classify microarray data.

However, due to the non-singularity of its quadratic form, the Laplacian reg-
ularization (3.9) alone does not enable feature selection. [Li 2008] suggested to
combine it with the lasso leading to a penalty that enables network-constrained
feature selection which we call Laplacian lasso, i.e.,

P laplasso(β; ν) = ν‖β‖1 + (1− ν)β>Lβ , (3.11)

where 0 ≤ ν ≤ 1 is a regularization parameter balancing between the lasso term
for sparsity and the Laplacian term for smoothness. Specifically, the Laplacian
term achieves global smoothness by attenuating high-frequency components in β

and the lasso term allows selection of a few relevant features potentially connected
on the network. Detailed analysis on the grouping effect and asymptotic properties
of the penalty is found in [Li 2010]. Note that the penalty proposed by the au-
thors appears with the normalized Laplacian instead. A possible extension of the
Laplacian lasso regularization is to replace the lasso term by a group lasso term in
(3.11) so that features are forced to be selected effectively by predetermined groups
[Tian 2013]. However, to define such meaningful groups requires extra effort and
domain expertise concerning specific application.

Another strategy, often termed as graph-fused lasso [Tibshirani 2005], directly
extends the Laplacian regularization (3.9) by replacing the squared 2-norm by 1-
norm on the pairwise difference of connected features, i.e.,

Pgflasso(β) =
∑

(u,v)∈E
|βu − βv|a(u, v) . (3.12)

This regularization method results in a piece-wise constant estimate of the coef-
ficient vector that achieves smoothness and structured sparsity simultaneously. A
general class of penalties that induce structured sparsity, often termed as generalized
lasso [Tibshirani 2011], is written in the form of

Pgenlasso(β) = ‖D>β‖1 , (3.13)

where D ∈ Rn×d is predefined and reflects the structure of desired sparsity in β

by d linear constraints. In particular, the generalized lasso (3.13) reduces to the
ordinary lasso (3.7) when D take the identity matrix, and encapsulates the graph-
fused lasso (3.12) as a special case whenD takes the oriented incidence matrix of the
undirected graph G = (V, E , A) with any orientation, i.e., D ∈ R|V|×|E| such that,
for each column indexed by edge e connecting vertices u and v, a(u, v) appears in
the row corresponding to one vertex of e, −a(u, v) appears in the row corresponding
to the other vertex of e, 0 appears in all other rows. As we will see shortly, another
interesting choice of D takes in columns an orthogonal system of wavelet basis in
order to promote structured spatial smoothness, in which case the generalized lasso
recovers special cases of wavelet smoothing. This last observation motivates us to
study two wavelet-based regularization methods.
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3.2.3 Network-based Wavelet Smoothing for Feature Selection

All the above-mentioned network-based regularization methods share the objective
of obtaining an estimate of the coefficient vector that enjoys global smoothness
and selects features that preferably form subnetworks over the graph. Towards the
same goal, our idea is to consult graph wavelets and wavelet smoothing that are
well-known in the field of signal processing to achieve simultaneous localization in
both frequency and space, former attempting global smoothness over the graph and
latter granting the ability to detect subnetwork directly.

Suppose G is a graph with vertex set V = {1, . . . , n} and we call a graph vector
an n-dimensional real-valued vector whose covariates reside on the vertices of the
graph. Intuitively, a graph wavelet is a graph vector such that is purposefully crafted
to reflect the information regarding some local structure underlying the graph and,
when combined with any graph vector, to extract its locally irregular behavior.1
Before delving into the technical details of how to construct wavelets on general
graphs, let us denote by Ψ ∈ Rn×d whose columns ψ1, . . . , ψd form a set of graph
wavelets. We assume that d ≥ n and Ψ has full row rank, and we call the set of
wavelets complete if d = n or overcomplete if d > n. Any graph vector f ∈ Rn can
thus be represented by a linear combination of the building-block wavelets such that
f = Ψw where w ∈ Rd is a (possibly non-uniquely) representation of f that reflects
details of its locally irregular behavior. Notably, wavelets should be determined
exclusively by the graph G regardless of any graph vectors considered. Let us now
write Ω ∈ Rn×d whose columns ω1, . . . , ωd are another set of graph vectors lying
on G, provided that d ≥ n and Ω has full row rank. Given the graph wavelets in
Ψ ∈ Rn×d, we say Ω ∈ Rn×d record the dual wavelets of the graph if Ω> is the
Moore-Penrose pseudoinverse of Ψ, i.e.

Ω> = Ψ+ = Ψ>(ΨΨ>)−1 .

Now, for any graph vector f ∈ Rn, we define the (unique) wavelet representation of
f by applying the wavelet transform

w = Ω>f ∈ Rd ,

and the inverse wavelet transform

f = Ψw ∈ Rn

reconstructs f . It is worth noting that, in this definition the set of dual wavelets
are defined according to a set of (primal) wavelets. In fact, equivalently we can
first define a set of dual wavelets and then obtain the set of corresponding (primal)
wavelets, due to the full rank assumption and the fact that (Ω+)+ = Ω always
holds.

1See [Hammond 2011] for an example of rigorous definition of graph wavelets in terms of
frequency-spatial localization in small-scale limit.
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Now we introduce two regularization methods based on graph wavelet smooth-
ing. The first method is largely motivated by sparse basis pursuit methods [Chen 2001].
We assume that the idealized coefficients β in the predictive model should have a
sparse wavelet representation θ implying that only a few wavelets are involved in
building the prediction. Under the regularization framework of this study, we pro-
pose to solve (3.5) with a penalty that reads:

Pw-synthesis(β) = min
θ∈Rd
‖θ‖1 s.t. β = Ψθ . (3.14)

Specifically, we aim to solve the following optimization problem:

min
θ∈Rd

`(y1, . . . , ym, (Ψθ)>x1, . . . , (Ψθ)>xm) + λ‖θ‖1 , (3.15)

in which β = Ψθ reconstructs the coefficient vector in the underlying linear model
from its wavelet representation that is sought to be sparse. We term (3.15) as a
synthesis approach to wavelet smoothing or simply wavelet-synthesis method, and
hence we call (3.14) the wavelet-synthesis penalty. By analogy to the lasso penalty
(3.7) which is defined as the L1 norm of the coefficient vector with respect to the
Euclidean basis, wavelet-synthesis penalty (3.14) is the L1 “norm” of the coefficient
vector with respect to the wavelet “basis”, indeed an (over)complete system of
wavelets. By the definition of wavelets, the estimated coefficient vector β should
be globally smooth and localized on the graph, such that after thresholding small
values in β, the remaining coordinates of β should result in a few subnetworks
identified. In particular, the location, size and shape of the potential subnetworks
are inherently specified by the wavelets which in turn rely solely on the underlying
graph.

The second wavelet-based method exploits the advantages of using wavelet rep-
resentation for the feature vectors in data. So far, we have been focusing on di-
rectly seeking for a coefficient vector β ∈ Rn in the predictive model with struc-
tured sparsity, both in the overview of previous work and in the first wavelet-based
method we introduced. In fact, the wavelet representation can also be applied
to the feature vector x ∈ Rn to obtain a relatively compact representation of
data that “decorrelates” the feature vector concerning local behaviors with regard
to the graph structure, a trick that has shown advantages in many applications
[Kim 2014, Tremblay 2014]. To this end, we propose to first transform all feature
vectors in data to their wavelet representation and build regularized linear mod-
els in the wavelet domain. Specifically, we aim to solve the following optimization
problem:

min
θ∈Rd

`(y1, . . . , ym, θ
>(Ω>x1), . . . , θ>(Ω>xm)) + λ‖θ‖1 , (3.16)

in which β = Ωθ is the coefficient vector of the underlying linear model in terms
of the original feature vectors. This problem can also be formulated as one in the
regularization framework (3.5) with a penalty term that reads:

Pw-analysis(β) = min
θ∈Rd
‖θ‖1 s.t. β = Ωθ . (3.17)
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We term (3.16) as an analysis approach to wavelet smoothing or simply wavelet-
analysis method, and hence we call (3.17) the wavelet-analysis penalty.

The synthesis approach (3.15) and the analysis approach (3.16) elaborated above
are special cases of two popular alternatives when performing wavelet smoothing in
the field of signal processing [Elad 2007]. If Ψ and Ω form a complete bi-orthogonal
system of primal and dual wavelet basis of the graph, i.e., Ψ is invertible and
Ω> = Ψ−1, it is easy to verify that both the wavelet-synthesis penalty (3.14) and
the wavelet-analysis penalty (3.17) are special cases of the generalized lasso (3.13).
In particular, the synthesis approach (3.15) and the analysis approach (3.16) are
equivalent when Ψ(= Ω) form a complete orthogonal system of wavelet basis of the
graph. However, the two approaches give very different results generally in practice,
which we will empirically demonstrate in Section 3.3.

3.2.4 Implementation

Efficient algorithms for optimization problems of the form (3.5) depend on the
particular choices of the loss function and the penalty term. In this study, we are
interested in path algorithms that produce the entire solution path varying the
regularization parameter λ, or path-wise algorithms that produce solutions over a
grid of regularization parameters efficiently.2 For example, linear regression (3.2)
penalized with the elastic net (3.8), including the lasso (3.7), can be efficiently
solved by the path algorithm such as Least Angle Regression (LARS) [Efron 2004].
Path-wise algorithms for a broad class of loss functions penalized by the elastic
net have been extensively studied, among which many are implemented in the R
CRAN package glmnet [Friedman 2010, Simon 2011]. Further, for generalized lasso
penalties (3.13), including the graph-fused lasso (3.12), [Tibshirani 2011] proposed
a path algorithm and the implementation is available via the R CRAN package
genlasso. However, the implementation is subject to the squared loss function of
linear regression (3.2) and relatively computationally intensive.

For network-based Laplacian regularization (3.9), we opted for a slightly differ-
ent penalty by adding a small ridge term that reads

P̃ lap = β>(L+ µI)β = ‖θ‖22 s.t. β = X(Λ + µI)−
1
2X>θ ,

where µ = 10−3 is a small number added to the diagonal of the Laplacian matrix for
numeric stability and better performance as suggested by [Zhang 2013], and the last
equality is due to (3.10) and the fact that (L+ µI) is invertible. The optimization
problem (3.5) with P̃ lap now becomes equivalent to

min
θ∈Rn

`(y1, . . . , ym, (X(Λ + µI)−
1
2X>θ)>x1, . . . , (X(Λ + µI)−

1
2X>θ)>xm) + λ‖θ‖22 ,

where β = X(Λ + µI)−
1
2X>θ reconstructs the coefficient vector in the underlying

linear model. Therefore, in case that an exact eigendecomposition of the Laplacian
2For penalty functions that involve an additional regularization parameter ν, ν is always deter-

mined by cross-validation on the training set and then used to generate the solution path varying
only λ.
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is affordable, an algorithm is straightforward where each feature vector xi for i =
1, . . . ,m is first transformed by left-multiplication of a “preconditioning” matrix
X(Λ + µI)−

1
2X> and then a linear model is fitted to the transformed data with

the standard ridge. An implementation of such a two-step algorithm adapted for
various loss functions is easy to build upon off-the-shelf R CRAN package glmnet.
Further, a path-wise algorithm for the Laplacian lasso penalty (3.11) combined
with linear regression and the Cox model is proposed and analyzed respectively
by [Li 2008] and [Sun 2014] with implementation available from R CRAN packages
glmgraph and Coxnet.

For the methods based on graph wavelet smoothing, after the graph wavelets
Ψ and dual wavelets Ω on a given graph are obtained, both the synthesis approach
(3.15) and analysis approach (3.16) to wavelet smoothing are essentially equivalent
to a simple two-step procedure where each feature vector xi for i = 1, . . . ,m is first
transformed by left-multiplication of a “preconditioning” matrix Ψ> or Ω> respec-
tively and then a linear model is fitted to the transformed data with the standard
lasso. Therefore a path algorithm implementing both approaches is straightforward
by modifying that for the standard lasso, and an implementation is easy to build
upon R CRAN package glmnet for instance.

For the sake of self-containment of the chapter, we will briefly review two tech-
niques developed for constructing wavelets on general graphs, namely the graph
wavelet transform based on spectral graph theory by [Hammond 2011] or a lifting
procedure by [Jansen 2009]. In fact, a wealth of studies in signal processing have
been devoted to designing wavelets for data aligned on a uniform lattice such as
time series data (1-dimensional line) or images (2-dimensional grid) [Mallat 1999].
However, it is a non-trivial task to construct graph wavelets that capture locally
irregular structure on general graphs, a topic that has received much attention
and been explored in many studies [Hammond 2011, Section 1.1. Related work].
As demonstrated partly in Section 3.3, different approaches of constructing graph
wavelets usually result in distinct characteristics and behaviors in practice.

Spectral graph wavelets. Here we first define the dual wavelets and then ob-
tain the corresponding (primal) wavelets. Spectral graph dual wavelets3 were pro-
posed by [Hammond 2011] based on defining translation in the graph vertex domain
and scaling on the Fourier modes in the graph spectral domain. Intuitively, they
are formed by applying a scaled spectral band-pass filter to indicator functions at
every vertex of the graph such that: at small scales, the filter lets through high-
frequency modes to good localization and the corresponding wavelets only reach
to their close neighborhood on the graph; at large scales, the filter compresses
around low-frequency modes and the corresponding wavelets encode coarser de-
scription of the local structure. Recall from Section 3.2.2 that the graph Laplacian
is decomposed as L = XΛX> for an orthogonal matrix X with Fourier basis in

3The authors of [Hammond 2011] simply call them wavelets whereas we specifically call them
dual wavelets following our definition above.
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columns and a diagonal matrix Λ = diag(λ1, . . . , λn) with respective frequencies
0 = λ1 ≤ · · · ≤ λn. Given the wavelet generating function g : R → R and a scale
s > 0, the stretched spectral band-pass filter at scale s has a matrix representation
that is diagonal on the Fourier modes, i.e.,

Λs,g = diag(g(sλ1), . . . , g(sλn)) .

Let us denote by Ωs,g ∈ Rn×n the spectral graph dual wavelet basis at scale s
defined by

Ωs,g = (ωs,g1 | . . . |ω
s,g
n ) = XΛs,gX> ,

where the u-th column ωs,gu is the dual wavelet centered around vertex u ∈ V
providing a local view of the graph structure, and when convolved with any graph
vector in the wavelet transform, extracts its local behaviors. In order to ensure
stability for reconstruction purpose, it is convenient to introduce a second class of
waveforms that arise from a scaling function h : R → R, analogous to low-pass
residual scaling functions in classical wavelet analysis. In practice, it is advised to
form an overcomplete system of dual wavelets by combining the dual wavelet basis
corresponding to h at a single scale s = 1 and g at multiple scales. Suppose S =
{s1, . . . , sJ} are J scales that are adapted to the eigenspectrum of graph Laplacian
L, an overcomplete system of spectral graph dual wavelets Ωspec ∈ Rn×(J+1)n are
given by concatenating column-wisely all the underlying dual wavelets, i.e.,

Ωspec = (Ω1,h|Ωs1,g| . . . |ΩsJ ,g) .

An efficient algorithm of bypassing the eigendecomposition of the Laplacian and
obtaining an approximation of the wavelets by using Chebychev polynomials to
approximate the filters is proposed by [Hammond 2011]. Finally, the corresponding
spectral graph (primal) wavelets Ψspec ∈ Rn×(J+1)n are defined by

(Ψspec)> = (Ωspec)+ ,

and the wavelet transform as well as the inverse transform follows from the defini-
tion. Note that in all experiments in Section 3.3, we simply compute the spectral
graph wavelets by performing an exact eigendecomposition of the graph Laplacian L
and take the largest eigenvalue λn to determine the following parameters suggested
by [Hammond 2011]: S = {s1, . . . , sJ} where the maximum scale s1 = 200/λn, the
minimum scale sJ = 1/λn, the other scales in S are logarithmically equispaced
between them for J = 4, and the wavelet generating function

g(x) =


x2 if x < 1,
−5 + 11x− 6x2 + x3 if 1 ≤ x ≤ 2,
(2/x)2 if x > 2,

and the scaling function

h(x) =
(

1 + 2
√

3
9

)
exp

(
−
(

x

0.006λn

)4
)
.

For interested readers, we refer to [Hammond 2011] on details about how these
parameters and wavelet generating function are constructed.
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Lifting-based graph wavelets. A second approach to wavelet construction is
based on the lifting scheme [Sweldens 1998], which allows to obtain a complete
bi-orthogonal system of wavelets and dual wavelets. The distinguishing merit of
lifting-based design of wavelets is that it provides a more intuitive interpretation
of the wavelet transform as well as the inverse transform, and the implementation
has linear complexity both in time and in storage. Intuitively, the lifting scheme
factorizes the (discrete) wavelet transform of any graph vector into a sequence of
so-called “lifting” steps: at each step, the current “scales” which are indexed by
presently remaining vertices are divided into two sets, of which one is processed to
give the “wavelet residuals” and thus lifted out and then the other is updated to
give coarser “scales” for the next step. This way, the wavelet residuals found by
the end of each step reflect details of locally irregular behavior of the underlying
graph vector. An inverse transform is straightforward by essentially inverting all
the lifting steps. When the lifting-based wavelet transform and inverse transform
are applied to an indicator function at some vertex, we obtain the primal and dual
wavelets centered around that vertex of the underlying graph. For a lifting-based
design of wavelets on general graphs, we adopt the “lifting one at a time” method
proposed by [Jansen 2009], which is summarized in Algorithm 3.1. Notably, the
algorithm only involves arithmetic computations that consumes linear time and can
be implemented fully in space. Following the algorithm, we can obtain the lifting-
based graph wavelets Ψlift ∈ Rn×n and correspondingly the lifting-based graph dual
wavelets Ωlift ∈ Rn×n for a given graph G that satisfy

(Ωlift)> = (Ψlift)−1 .

In other words, Ψlift and Ωlift form a complete bi-orthogonal system of primal and
dual wavelets of the graph. The wavelet transform and the inverse transform for
any graph vector follow from the definition.

3.3 Results

3.3.1 Experiment Set-ups: Data, Network and Methods

We demonstrate the above-mentioned regularization methods by analyzing the gene
expression data derived from breast tumors collected from participants of the Molec-
ular Taxonomy of Breast Cancer International Consortium (METABRIC) trial
[Curtis 2012]. The dataset contains expression data corresponding to the mRNA
measurements of 24, 771 genes for 1, 981 breast cancer patients.

The biological network we consult in this study to guide the gene selection as
well as subnetwork detection is a protein-protein interaction (PPI) network from
HPRD. After keeping the maximally connected component of the network com-
posed by the genes available from the METABRIC dataset, we obtained a network
consisting of 9, 117 genes as vertices and 36, 326 pairwise interactions as undirected
edges where the (unweighted) edge is assigned a weight 1 if there exists a known
interaction between the connected genes and 0 otherwise. In the resulting network,
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Algorithm 3.1 Lifting-based wavelets and dual wavelets on general graphs
[Jansen 2009].
Input: An undirected graph G = (V, E , A) where V is indexed by {1, . . . , n} and
A is the weighted adjacency matrix encoding the non-negative weights assigned to
each pair of vertices. Assume that G has no self-loops or A has 0 on diagonal.
Initialize: Let W be the index set of wavelets already found, initialized to be the
empty set, and let S be the index set of wavelets yet to be found, initialized to be
V. For i = 1, . . . , n, let ιi ∈ R be the “integral of scales” [Jansen 2009] associated
to vertex i, initialized to be the vertex degree

∑n
j=1Aji, and let ψi ∈ Rn, ωi ∈ Rn

respectively be the graph wavelet and the corresponding dual wavelet centered
around vertex i, both initialized to be indicator function at vertex i.
For r = n, . . . , 1, repeat:
1: Pick the next vertex to be lifted indexed by ir such that it has the smallest

current integral of scales in the remaining set, i.e., ir = arg mini∈S ιi.
2: The “predict” and “update” equations for the primal and dual wavelets at step
r are respectively{

ψj ← ψj + arjψir for j ∼ ir ,
ψir ← ψir −

∑
j∼ir b

r
jψj ,

and
{
ωir ← ωir −

∑
j∼ir a

r
jωj ,

ωj ← ωj + brjωir for j ∼ ir ,

where j ∼ ir denotes that j and ir are currently direct neighbors connected by
an edge, i.e., Ajir > 0, the “predict” weights arj are user-defined such that the
weighted average of direct neighbors detects locally irregular behavior for any
graph vector, i.e.,

arj = Ajir/
∑
k∼ir

Akir for j ∼ ir ,

and the “update” weights brj must satisfy the requirement of vanishing moments
of wavelet filters, i.e.,

brj = ιir ιj/
∑
k∼ir

ι2k for j ∼ ir ,

in which the integral of scales for the direct neighbors of ir have been refined
to be

ιj ← ιj + arjιir for j ∼ ir .

and then
3: Lift the vertex indexed by ir from the graph and reweight its direct neighbor-

hood, i.e., modify the adjacency matrix A by assigning

Ajir = Airj ← 0 for j ∼ ir ,
Ajk = Akj ← max{Ajk, AjirAkir} for j ∼ ir and k ∼ ir .

4: Set S ← S \{ir} and D ← D∪{ir} meaning the wavelet indexed by ir has been
found.

Output: Ψlift := (ψ1| . . . |ψn) ∈ Rn×n are the lifting-based graph wavelets and
Ωlift := (ω1| . . . |ωn) ∈ Rn×n are the corresponding dual wavelets.
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the distribution of the vertex degree ranges from 1 to 267 with the median at 4
and the two quantiles 25% and 75% at 2 and 8 respectively. Note that for network-
based regularization methods, only the subset of genes found on the network can be
used. Therefore for the sake of fair comparison of different methods, our numerical
analysis is constrained to the genes underlying the given network.

Table 3.1: Summary of different regularization methods in our numerical experiments.

Label Penalty function J(β) Network-based Feature selection
ridge ‖β‖2

2
lasso ‖β‖1 X
e-net ν‖β‖1 + (1− ν)‖β‖2

2 X
lap

∑
i∼j(βi − βj)2 X

laplasso ν‖β‖1 + (1− ν)
∑
i∼j(βi − βj)2 X X

gflasso
∑
i∼j |βi − βj | X X

w-synthesis minθ ‖θ‖1 s.t. β = Ψθ X X
w-analysis minθ ‖θ‖1 s.t. β = Ωθ X X

Our numerical experiments aim to provide a benchmark study that compares
several above-mentioned regularization methods, with a particular focus on those
based on wavelet smoothing. Specifically, we study the prediction performance and
feature selection of different methods under the regularized predictive framework
(3.5), where the loss function takes (3.2) for linear regression in simulation studies
(Section 3.3.2) or (3.4) for breast cancer survival analysis (Section 3.3.3). Details on
different regularization methods are found in Section 3.2 and summarized in Table
3.1. A few variants of the listed methods are also considered and will be denoted
by a suffix appended to the label of the corresponding method. For all methods,
genes underlying the given network are by default used, unless a suffix “org” is
added to the label of network-free methods indicating that the entire set of genes in
the METABRIC dataset are used instead. For methods involving graph Laplacian,
the non-normalized graph Laplacian is used by default, unless a suffix “norm” is
added to the label indicating that the normalized Laplacian is used instead. For
wavelet-based methods, a suffix “spec” indicates spectral graph wavelets are used
and a suffix “lift” indicates the lifting-based graph wavelets are used.

All numerical experiments in this chapter are performed in R.

3.3.2 Simulation Studies

Our simulation set-ups follow a simple linear regression framework where simulated
responses are generated using the real biological network and real gene expression
data. To start with, the network we used in the simulation studies is a subnetwork
of the HPRD PPI network that has n = 1, 744 genes and 15, 911 edges with a
distribution of the vertex degrees ranging from 4 to 184 with the median at 12
and the two quantiles 25% and 75% at 9 and 20 respectively. The subnetwork
was deduced from the complete HPRD PPI network by iteratively removing genes
with the smallest vertex degree among those currently remaining on the network,
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and the rationale for trimming the network in simulation studies is to drastically
reduce the computation time by reducing the number of features for training some
computationally intensive methods such as graph-fused lasso. Data generation then
proceed in three steps as follows:

1. The coefficient vector β ∈ Rn is generated by β = Ψspecθ, where the spectral
graph wavelets Ψspec are obtained on the trimmed network while the wavelet
representation of synthesized coefficients θ is designed to be sparse. Note that
the number of non-zero coordinates in θ is a design parameter that takes 1,
10 or 100 intending for different levels of structured sparsity. The positions of
these non-zero coordinates in θ are randomly sampled one-by-one following a
categorical distribution where the probability of a coordinate being non-zero
is proportional to the vertex degree of the corresponding gene on the network
transformed by a logistic function, which aims to synthesize the fact that
genes with more known interactions tend to have higher biological impor-
tance. The values of these non-zero coordinates in θ are designed to be either
constant +1 or random +1/− 1 following a Rademacher distribution, which
takes on the assumption that the contribution from different gene modules
might occur in the opposite direction. Finally β is reconstructed from the
synthesized θ and normalized to have unit variance. Note that consequently
the coefficients β are supposed to be globally smooth and localized on the
network.

2. To resemble the “large n, small m” situation in most biomedical applications,
we randomly sampled m = 500 patients from the METABRIC data, and the
expression profiles of these samples are constrained on the n = 1, 774 genes
from the trimmed network. These feature data are further standardized to
have zero mean and unit variance, denoted by {xi}mi=1 where xi ∈ Rn.

3. For i = 1, . . . ,m, a responses yi ∈ R is simulated by yi = β>xi + εi, where
εi is an additive i.i.d. random noise following a normal distribution of zero
mean and variance σ2 such that the signal-to-noise ratio for the cohort of
samples is estimated to be 5.

For each combination of simulation set-up given a fixed number of non-zero coor-
dinates in θ (1, 10 or 100) and a type of values in θ (constant +1 or Rademacher
+1/ − 1), these data generation steps are repeated 20 times to address the ran-
domness therein, and hence we obtained a total of 20 simulated datasets for each
combination of simulation set-up.

On each simulated dataset, we performed 5-fold cross-validation and evaluated
the prediction mean squared error (PMSE) on each test fold, while the regularization
parameters (λ and ν) were determined by nested cross-validation on each training
fold. Results are shown in Figure 3.1 where, under each combination of simulation
set-up, boxplots present the PMSE over the 20 × 5 = 100 training and test splits
of simulated data for a total of 10 regularization methods including related vari-
ants. For all simulation set-ups, the wavelet-synthesis method with spectral graph
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Figure 3.1: Boxplots on regression performance evaluated by prediction mean squared
error over the 100 training and test splits of the simulated data.

wavelets denoted by “w-synthesis (spec)” is the consistent winner as expected, due
to the fact that the simulated data are generated so that the informative features
form locally connected subnetworks whose shapes and sizes are coherent with the
spectral graph wavelets by design. The superiority is most striking when θ takes a
reasonably intermediate number of non-zero coordinates, denoted by “nzero.theta:
10”, and values that oscillate in sign, denoted by “value.theta: rademacher”. Fur-
ther, we observed that the same method with lifting-based graph wavelets instead
of spectral graph wavelets, denoted by “w-synthesis (lift)”, surprisingly exhibits the
worst performance overall among all wavelet-based methods, which suggests that
different approaches for constructing graph wavelets result in distinct characteristics
and behaviors of underlying wavelets. However, the wavelet-analysis method is bet-
ter suited with lifting-based graph wavelets than with spectral graph wavelets under
our simulation set-ups, for which reasons remain unclear. Although the lasso and
the elastic net are network-free methods, they still give competitive performance
compared to the network-based Laplacian lasso or even outperform the network-
based graph-fused lasso in general in terms of PMSE. The two methods that do
not allow for feature selection, namely the ridge and the Laplacian regularization,
yield the worst prediction performance, due to the fact that the simulated data are
generated by a sparse model involving only a few informative features.

We further studied the sparsity-inducing methods which allow for feature se-
lection regarding their ability to recover the informative features as well as the
connecting edges over the network. Specifically, under a specific combination of
simulation set-up, we applied each regularization method to each simulated dataset
and obtained an estimate of β. We then compared the support as well as the con-
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(a) Support recovery of the coefficient vector β.

●

●

●

●

●

●

value.theta: constant value.theta: rademacher

nzero.theta: 1
nzero.theta: 10

nzero.theta: 100

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

recall

pr
ec

is
io

n

label

●

lasso

e−net

laplasso (norm)

gflasso

w−synthesis (lift)

w−synthesis (spec)

w−analysis (lift)

w−analysis (spec)

(b) Support recovery of the connecting edges over the network.

Figure 3.2: Precision-recall plots on the recovery of simulated support of the coefficient
vector β and the connecting edges over the network.
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necting edges over the network underlying the estimated and true β in terms of
precision (the fraction of selected features that are truly informative) and recall
(the fraction of truly informative features that are selected). In fact, as most values
in β are very small but not exactly zero in some cases, the “non-zero” support of
β is defined as the coordinates whose values are greater than one-hundredth of the
largest value in β. For ease of visualization, we fit an ellipse over all the precision-
recall points over the total of 20 simulated datasets for each method, and the ellipse
centers are shown in Figure 3.2 for a total of 8 methods including related variants.
Again, the method denoted by “w-synthesis (spec)” is predominant as expected in
terms of support recovery, most remarkably when θ takes a reasonably intermedi-
ate number of non-zero coordinates, denoted by “nzero.theta: 10”, resulting in a
modest number of connected subnetworks formed by the support of β. Compared
to other methods, the wavelet-based methods generally tend to achieve competitive
precision but much higher recall for the recovery of β and the connecting edges over
the network. Surprisingly, when the number of informative features becomes large
and hence more connected over the network, the network-based Laplacian lasso and
graph-fused lasso does not distinguishingly outperform the network-free lasso and
elastic net in terms of feature selection or even edge identification.

3.3.3 Breast Cancer Survival Analysis

For in vivo experiments, we performed survival analysis for breast cancer using the
METABRIC data guided by the HPRD PPI network. In fact, for each breast tumor
sample, the METABRIC dataset additionally provides clinical information on the
overall survival time of the underlying patient, that is either the exact number of
days dating from initial consultation until the patient passed away or the number
of days until the patient is last seen alive. This clinical information was converted
to right-censored survival data and we performed survival risk prediction for breast
cancer.

The first objective of the in vivo investigation is to compare the survival risk pre-
diction performance of different regularization methods. To this end, we performed
5-fold cross-validation repeated 10 times on the full METABRIC dataset and eval-
uated the concordance index (CI) scores on each test fold, while the regularization
parameters (λ and ν) were determined by nested cross-validation on each training
fold. Note that CI is a measure of rank-based consistency between the predicted sur-
vival risk and observed survival time for a cohort of patients, in the sense that it is
an estimate of the probability that, given two randomly drawn patients, the patient
who survives longer is predicted with a lower risk. Results are shown in Figure 3.3
with boxplots over the 10× 5 = 50 splits of training and test data and in Table 3.2
with mean CI scores (± standard deviation) for a total of 15 regularization meth-
ods including related variants. The ridge is the best-performing model in terms of
mean CI scores but it does not allow for feature selection, and among methods that
enable feature selection, the elastic net is the best-performing one. Notably, both
methods do not make use of the prior knowledge encoded in the network. Among



3.3. Results 73

0.50

0.55

0.60

0.65

label

co
nc

or
da

nc
e 

in
de

x

label
ridge (org)

lasso (org)

e−net (org)

ridge

lasso

e−net

lap

lap (norm)

laplasso (norm)

w−synthesis (lift)

w−synthesis (spec)

w−synthesis (spec, norm)

w−analysis (lift)

w−analysis (spec)

w−analysis (spec, norm)

Figure 3.3: Boxplots on survival risk prediction performance evaluated by concordance
index scores over 5-fold cross-validation repeated 10 times of the METABRIC data.

Table 3.2: Mean concordance index (CI) scores (± standard deviation) of survival risk
prediction over 5-fold cross-validation repeated 10 times of the METABRIC data. Methods
are ordered by decreasing mean CI scores.

Label Mean CI scores (± SD) Network-based Feature selection
ridge (org) 0.6370 (±0.0178)

ridge 0.6360 (±0.0180)
e-net (org) 0.6345 (±0.0185) X
lap (norm) 0.6330 (±0.0196) X

lap 0.6320 (±0.0193) X
laplasso (norm) 0.6312 (±0.0185) X X

e-net 0.6304 (±0.0183) X
w-analysis (spec) 0.6295 (±0.0198) X X

w-synthesis (spec, norm) 0.6264 (±0.0180) X X
lasso 0.6260 (±0.0177) X

lasso (org) 0.6257 (±0.0172) X
w-analysis (spec, norm) 0.6216 (±0.0228) X X

w-analysis (lift) 0.6163 (±0.0182) X X
w-synthesis (spec) 0.6157 (±0.0184) X X
w-synthesis (lift) 0.5587 (±0.0232) X X
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network-based methods that enable feature selection, the best-performing one is
the Laplacian lasso, followed by the wavelet-analysis method with spectral graph
dual wavelets. We observed that the wavelet-based methods provide relatively less
accurate survival risk prediction in terms of CI scores compared to other methods.
We performed two-sided t-tests to statistically quantify the difference of the cross-
validation CI scores between each pair of methods. FDR-adjusted p-values suggest
that, at the significance level 0.05, there is no significant decrease in the prediction
performance for the best-performing wavelet-based method, namely the method
denoted by “w-analysis (spec)”, compared to any of the methods tested. Notably,
network-free methods using the entire list of genes available from the METABRIC
data does not significantly improve the survival risk prediction performance, com-
pared to those using the subset of genes only found on the HPRD PPI network.
This justifies that the loss is not significant when our analysis is restrained to the
subset of genes found on the network. Another interesting observation regarding
wavelet-based methods is that, as the spectral graph wavelets are constructed using
graph Laplacian that appear in either normalized or non-normalized version, the
wavelet-analysis method is better suited with the non-normalized version while the
wavelet-synthesis method is better suited with the normalized version, for which
reasons remain unclear.

The focus of in vivo experiments in this study is to select genes that are related
to breast cancer survival, and in particular we favor methods that result in a list
of selected genes that tend to form gene modules on the HPRD PPI network po-
tentially by making use of their biological interaction known a priori. To this end,
we then compared the goodness of gene selection of different methods from several
aspects, namely stability, connectivity and interpretability. Note that only those 9
methods including related variants that enable feature selection are discussed for
the remainder of this section.

Stability is an important concept that advocates reproducibility of selecting
the significant features across independent studies. In order to compare stability
of feature selection by different methods, we randomly split the full METABRIC
dataset evenly into two halves and obtained a pair of models independently trained
on the two disjoint subsets with the same method. Then constraining on each fixed
number of genes selected, we computed the number of commonly selected genes
between the two independent models as a score indicating stability. We repeat-
edly split the data 100 times to address the randomness in splitting the data. For
ease of visualization, we applied locally weighted scatterplot smoothing (LOESS)
[Cleveland 1979] to all the stability scores for each method and thus obtained a
curve of stability scores along the solution path. Results are shown in Figure 3.4.
We observed that the number of commonly selected genes between pairs of inde-
pendent models tends to become larger as the number of selected genes increases.
As we are most interested in selecting typically a few hundreds of genes that could
interestingly form subnetworks of modest sizes, the wavelet-based method denoted
by “w-analysis (spec, norm)” distinguishingly won in terms of stability at the scale
of 102 genes selected, followed by two other wavelet-based methods denoted by
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Figure 3.4: Stability performance of gene selection related to breast cancer survival,
estimated over 100 random experiments. The black dotted curve denotes random selection.

“w-analysis (spec)” and “w-synthesis (spec)”. Recall that the method denoted by
“w-analysis (spec)” is the best-performing method in terms of CI scores for survival
risk prediction. Last but not least, the network-free methods, namely the lasso and
elastic net, and network-based Laplacian lasso provide feature selection procedures
that are overall less stable. Further, as negative-control experiment, we randomly
selected twice the same number of genes along the solution path and counted the
number of commonly selected genes. At each fixed number of genes selected, the
number of commonly selected genes is averaged over 100 repeats to address the ran-
domness. A stability curve for random selection is shown by the black dotted curve
in the figure. Note that all methods tested in this study outperform the random
selection in terms of stability, especially strikingly at the scale of 102 genes selected.

Recall from the introduction that the motivation of this study is to encourage se-
lected features to be connected given a network, and for that purpose, we would like
to quantitatively compare feature selection in terms of connectivity over the given
network. A model is trained by applying each method to the full METABRIC
dataset and, constraining on each fixed number of genes selected, a connectivity
score is defined as the number of connecting edges between the selected genes. Thus
for each method we obtained a curve of connectivity scores along the solution path.
Results are shown in Figure 3.5, where special marks indicate the number of genes
and connecting edges that was determined by tuning the regularization parameter
λ by cross-validation. We observed that the wavelet-based methods remarkably
outperform other methods in terms of connectivity in general. In particular, the
method denoted by “w-analysis (spec, norm)” that has stood out in terms of sta-
bility remains to be one of the top-performing methods in terms of connectivity,
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Figure 3.5: Connectivity performance of gene selection related to breast cancer survival,
where special marks correspond to the number tuned by cross-validation. The black dotted
curve denotes random selection.

whereas it selected a relatively large number of genes by cross-validation. It is worth
special mention that the method denoted by “w-analysis (spec)” selected around
102 genes by cross-validation that attain a reasonably good number of connecting
edges, and it has been one of the top-performing methods in terms of stability in
feature selection when this number of genes is selected, and it also remains com-
petitive to all other methods in terms of CI scores for survival risk prediction. A
side note on the strange performance of the method denoted by “w-synthesis (lift)”
is that this method output an estimate of β that is constant4 when fitted to the
full METABRIC dataset particularly, and consequently the full list of genes were
considered as selected. Further, as negative-control experiment, we randomly se-
lected a certain number of genes regardless of a network, and counted the number
of connecting edges over the given network. At each fixed number of genes selected,
the number of connecting edges is averaged over 100 repeats to address the random-
ness. A connectivity curve for random selection is shown by the black dotted curve
in the figure. Note that the network-free methods, namely the lasso and the elastic
net, and network-based Laplacian lasso do not seem to significantly outperform the
random selection in terms of connectivity.

It is interesting to investigate from a biological point of view the genes selected
by our survival analysis for breast cancer using the METABRIC gene expression
data and the HPRD PPI network, where the regularization parameter λ and thus
the number of genes selected is determined by cross-validation. In particular, we

4Due to numerical instability in computation, there may exist infinitesimal variations in the
values of estimated β output by the method.
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(a) Gene subnetworks identified by the elastic net (10 genes connected out of 112
selected) or the Laplacian lasso (10 genes connected out of 100 selected).

(b) Gene subnetworks identified by the wavelet-analysis method with spectral
graph dual wavelets (82 genes connected out of 109 selected).

Figure 3.6: Gene subnetworks related to breast cancer survival identified by regularization
methods using the METABRIC data and HPRD PPI network.
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focus on comparing the three methods denoted by “e-net”, “laplasso (norm)” and
“w-analysis (spec)” for the reminder of the section, each representing a class of
methods. The network-free elastic net identified a total of 112 genes, among which
only 10 genes are not isolated from one another on the HPRD PPI network that
form 5 connected gene pairs (Figure 3.6a). The network-based Laplacian lasso iden-
tified a total of 100 genes, among which 10 genes are connected and they coincide
exactly with the the connected genes identified by the elastic net (Figure 3.6a). Our
network-based wavelet-analysis method with spectral graph dual wavelets identified
a total of 109 genes, among which 82 genes are connected that form 23 gene mod-
ules of various sizes and shapes (Figure 3.6b). Here we focus on the genes selected
by each method which are connected and thus form collaboratively functional gene
modules.

The wavelet-based method is able to select more genes that form larger subnet-
works than the other two methods. Specifically, there are two pairs of connected
genes that are commonly selected by the three methods. First, while the other two
methods detected the relation to cancer survival of GSTM2 and GSTM3 genes,
the wavelet-based method was able to detect the involvement of three genes from
the same gene family that are GSTM1, GSTM2 and GSTM3. In fact, glutathione
metabolism is able to play both protective and pathogenic roles with respect to can-
cer [Balendiran 2004, Wu 2004], and the human GSTM gene family encodes the mu
class of metabolic isoenzymes of glutathione S-transferase, consisting of five differ-
ent but closely related isotypes GSTM1 to GSTM5. It has been reported that cer-
tain GSTM genes are correlated with the likelihood of breast cancer recurrence and
functionally contribute prognostic information [Kiefer 2014]. In particular, GSTM1,
which was detected only by the wavelet-based method, has been extensively stud-
ied in breast cancer risk especially due to its null genotype [Roodi 2004, Sull 2004],
but the absence of a functional GSTM1 enzyme in a null variant can be mean-
ingfully compensated for by GSTM2 [Bhattacharjee 2013]. Second, while the other
two methods selected ZBED1 and SORBS3 genes simultaneously, the wavelet-based
method detected through interactions documented in HPRD a star-shaped subnet-
work in which the hub gene ZBED1 is centered around by 9 other genes SORBS3,
FANCG, GPSM1, NUDT18, SPEF1, NIP7, GPN1, RENBP, NIF3L1. This is in
fact the largest subnetwork identified by the wavelet-based method, in which some
genes are of particular interest. In fact, the ZBED1 gene encodes a protein which
binds to DNA elements found in the promoter regions of a number of genes related
to cell proliferation [Matsukage 2008, Yamashita 2007]. The FANCG gene„ which
was detected only by the wavelet-based method, provides instructions for making a
protein complex involved in the Fanconi anemia (FA) pathway responsible for DNA
repair and it has been reported to directly interact with BRCA2 gene that plays
an important role in homologous recombination repair and survival risk in breast
cancer [Hussain 2003, Wilson 2008].

Among the subnetworks identified exclusively by our wavelet-based method,
some are of particular interest and the involvement of the connected genes in
cancer biology was previously reported in literature. For example, an interest-
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ing subnetwork is composed of 7 genes DRD2, DRD3, DRD4, CLIC6, KCNJ6,
KCNJ9, GABRA1. In fact, the D2-like family of the dopamine receptors, encoded
by genes DRD2, DRD3 and DRD4, are coupled to certain guanine nucleotide-
binding proteins (G proteins) which directly inhibits adenylate cyclase activity and
cyclic adenosine monophosphate (cAMP) formation [Neves 2002], and whose signal-
ing has been linked to cancer progression and cancer risk [Murphy 2009, Mao 2015]
leading to many preclinical studies on the antitumor effects sought by antagonizing
DRD2 signaling [Pornour 2015, Hoeppner 2015]. Notably, all three genes DRD2,
DRD3 and DRD4 are simultaneously selected due to their common interactor gene
CLIC6. The second interesting subnetwork of interest is composed of 5 genes AKT2,
ATF4, DDIT3, GSK3B, TRIB3. In this subnetwork, three genes AKT2, ATF4
and DDIT3 are present in the mitogen-activated protein kinase (MAPK) signaling
pathway whose relevance to cancer has been profoundly studied and we refer to
[Dhillon 2007] for an overview; three genes AKT2, ATF4 and GSK3B are found in
the PI3K/Akt signaling pathway whose role in breast cancer has been reported in
[Fresno Vara 2004, Paplomata 2014] for instance, and two genes AKT2 and GSK3B
are included in the KEGG pathways in cancer. The third interesting subnetwork is a
star-shaped gene module composed of 4 genes CCND2, DMTF1, AKAP8, PCGF2.
In fact, the hub gene CCND2 encodes cyclin D2, a protein belonging to a highly
conserved family of cyclin proteins that control cell progression through regulating
cell cycle. There exists an extensive body of literature on the role of D-type cyclins
as a biomarker in cancer phenotype and progression, see [Musgrove 2011] for a re-
cent review. Connected to gene CCND2 is gene DMTF1 which encodes a cyclin
D-binding myb-like transcription factor. DMTF1 was known for its tumor suppres-
sive role linked to the regulation of many signaling pathways involving the tumor
protein 53 (TP53) as well as CCND1, see [Tian 2017] for a recent review. The last
subnetwork worth special mention is the gene triplet of FLT3, FLT3LG and FIZ1,
among which two genes FLT3LG and FLT3 are included in the KEGG pathways in
cancer. The gene FLT3 encodes a class III receptor tyrosine kinase that regulates
hematopoiesis whose role in the pathogenesis of acute myeloid leukemia (AML) in
particular has been long recognized [Levis 2003]. Besides, FLT3LG, namely the
FLT3 ligand, also plays a role in the immune response, and hence it was inves-
tigated in the pursuit of promising immuno-therapy against cancer by means of
vaccine adjuvant [Lynch 1997, Kreiter 2011]. Notably, gene FLT3 was selected by
all three methods under consideration, but its connected gene FLT3LG was selected
exclusively by the wavelet-based method.

3.4 Discussion

In the present chapter, we have studied network-based regularization methods un-
der a predictive framework with linear models in order to incorporate relationships
between features presumably encoded by a known network, and proposed to use
network-based wavelet smoothing in order for subnetwork detection by structured
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feature selection. Notably, the proposed methods are essentially a class of penalty
terms that are readily combined with any loss function appropriately chosen de-
pending on the application in fitting linear models, and path-wise algorithms for
solving the underlying optimization problems are straightforwardly available by
modifying those solving the standard lasso. Finally, we demonstrated the pro-
posed methods by performing survival analysis for breast cancer using METABRIC
gene expression data guided by a PPI network obtained from HPRD. Results show
that, compared to several state-of-the-art methods, the wavelet-analysis method
with spectral graph dual wavelets, as a representative of wavelet-based methods,
was able to improve gene selection in terms of stability, connectivity and inter-
pretability, while achieving competitive performance of survival risk prediction. In
particular, the wavelet-based method identified larger subnetworks involving more
connected genes, and the relevance of many genes to breast cancer survival have
been previously reported by independent studies.

Key insights into the superiority of network-based wavelet smoothing to other
network-based regularization methods regarding feature selection lie in the prop-
erties of graph wavelets. Recall that graph wavelets are graph vectors that are
localized on the graph and fully determined by the local structure of the graph. In
particular, the construction of graph wavelets conceals an automated procedure of
designating subnetworks whose location, size and shape are inherently specified by
the underlying graph wavelets. When any graph vector is decomposed into a linear
combination of graph wavelets, we obtain a new representation of the graph vector
that are decorrelated and modularized with respect to graph wavelets. The idea
of wavelet smoothing originates from seeking for a coefficient vector of the linear
model that is sparse in its wavelet representation, and the modularized sparsity
of the coefficient vector consequently enables direct identification of subnetworks
adapted to optimizing the prediction. Contrariwise, the sparsity-inducing term
for feature selection in the Laplacian lasso is a standard lasso term that regards
features rather individually, despite an additional Laplacian term that controls the
global smoothness of the coefficients and thus encourages features closer on the net-
work to be selected simultaneously. Likewise, the spirit of feature selection for the
graph-fused lasso is indeed direct identification of subnetworks. This is achieved,
however, through an estimate of the coefficient vector that is forced piece-wise con-
stant over the network. Therefore, the resulting subnetwork is only data-adaptive
but not adapted to the locally irregular structure of the network. Besides, when we
expect that the relationships between features conform to the network structure,
the compulsory constrain seems too strong an assumption that all features in each
subnetwork should share exactly the same coefficient.

When performing network-based analysis of gene expression data, we highlighted
the benefits of using a PPI network to guide gene selection related to breast cancer
survival. An important issue is that our knowledge of protein-protein interaction is
undoubtedly incomplete and the edges of the known biological network can possibly
be subject to errors or misspecifications, especially when it comes to the biology of
cancer mechanism. Future research of pressing need would be to investigate how
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sensitive the results are to perturbation of the network structure. A potentially
helpful trick to improve our trust in the external knowledge provided by the net-
work could be to adapt the given network to data by modifying edges from the
network, for instance removing certain edges if the correlation of the expression
levels between the two connected genes is very small. Another issue prior to em-
ploying network-based analysis is to decide which biological network to use, which
in principle depends on domain expertise. In fact, the methods considered in this
study, including the wavelet-based methods, can be applied with various biological
networks such as coexpression networks. However, an open question is to compare
the list of selected genes and detected subnetworks when guided by different biolog-
ical networks or from different databases. Finally, we would like to point out that,
despite the findings of this study and many others that have demonstrated improved
gene selection in breast cancer outcome prediction (see, e.g., [Allahyar 2015]), the
rationale for network-guided genomic data analysis for improving the prediction
performance remains a controversial topic [Staiger 2013]. Comprehensive studies
benchmarking the breast cancer survival analysis with more datasets, networks,
regularization methods and prediction tasks, such as those that follow the evalua-
tion pipeline of [Staiger 2013], is called for in future research.

For the methods of network-based wavelet smoothing, many variants exist and
have been empirically tested in the numerical experiments of this study, raising a
few points worth discussion and further investigation. First, we observed distinct
performance with respect to which version of graph Laplacian (normalized or non-
normalized) is used for the construction of spectral graph wavelets. In fact, there
are many theoretical guarantees that favor the normalized Laplacian [Chung 1997]
but a debate is ongoing over which version should be used in practice. Although we
opted for the non-normalized Laplacian by default, we do not conclude definitively
on the choice of Laplacian that is better suited for the construction of spectral
graph wavelets integrated in network-based wavelet smoothing. Second, this study
provides an empirical benchmark comparing the performance of two particular types
of graph wavelets, that are spectral graph wavelets and lifting-based graph wavelets.
Evidences from all experiments strongly advocate the use of spectral graph wavelets
over lifting-based graph wavelets, and the substantially deficient performance of
latter is somewhat surprising. In fact, if data are time series that reside on 1-
dimensional chain graph, it has been proven that any discrete wavelet transform
with all classical wavelet filter banks can be factored into a sequence of lifting
steps [Daubechies 1998]. Therefore, it calls for theoretical studies that provide a
unifying overview of different techniques of performing wavelet transform on general
graphs. Third, we proposed to use two approaches to wavelet smoothing, namely the
synthesis approach (3.15) and the analysis approach (3.16). Despite the similarity in
their mathematical formulation, the motivation underlying both approaches differ
fundamentally. The synthesis approach seeks a reconstruction of the coefficient
vector as a sparse combination of graph wavelets, while the analysis approach aspires
to build sparse predictive models on the wavelet-transformed feature data. Our real-
data experiments on survival analysis for breast cancer particularly suggest that the
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analysis approach usually outperforms the synthesis approach, as observed also by
[Elad 2007] concerning applications in signal processing.

There are many interesting extensions of the current work. One direction would
be to perform wavelet smoothing on directed graphs or graphs with some edge at-
tributes. This is particularly relevant when we would like to explore relationships
between features associated with irreversible direction and meaningful attributes.
For example, in a signaling pathway network, each edge is associated with a direc-
tion (indicating cell signaling is transduced from one gene to another but cannot be
reversed) as well as an annotated type of interaction (activation or inhibition). An-
other direction would be to explore the possibility of adopting, besides graph wavelet
transform, other types of localized or multiscale transforms specifically designed to
analyze data on graphs, such as windowed graph Fourier transform [Shuman 2012]
or multiscale graph pyramid transform [Shuman 2016]. In particular when the two
directions engage in one application, deeper understanding of the network utilized
can be enlightening for the applicability of the methods and transforms employed.
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Publication and Dissemination: The work in this chapter has
been submitted as joint work with Marta R. Hidalgo, Cankut
Çubuk, Alicia Amadoz, José Carbonell-Caballero, Jean-Philippe
Vert and Joaquín Dopazo in [Jiao 2017a].

Abstract: With the advent of high-throughput technologies for
genome-wide expression profiling, a large number of methods have
been proposed to discover gene-based signatures as biomarkers to
guide cancer prognosis. However, it is often difficult to interpret
the list of genes in a prognostic signature regarding the underlying
biological processes responsible for disease progression or
therapeutic response. A particularly interesting alternative to
gene-based biomarkers is mechanistic biomarkers, derived from
signaling pathway activities, which are known to play a key role in
cancer progression and thus provide more informative insights into
cellular functions involved in cancer mechanism. In this chapter,
we demonstrate that a pathway-level feature, such as the activity of
signaling circuits, outperform conventional gene-level features in
prediction performance in breast cancer prognosis. We also show
that the proposed classification scheme can even suggest, in
addition to relevant signaling circuits related to disease outcome, a
list of genes that do not code for signaling proteins whose
contribution to cancer prognosis potentially supplements the
mechanisms detected by pathway analysis.

Résumé : Avec l’avènement des technologies à haut débit pour le
profilage d’expression génomique, un grand nombre de méthodes
ont été proposées pour découvrir des signatures basées sur les gènes
en tant que biomarqueurs pour aider le pronostic du cancer.
Cependant, il est souvent difficile d’interpréter la liste des gènes
dans une signature pronostique et ce à cause des processus
biologiques sous-jacents responsables de la progression de la maladie
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ou de la réponse thérapeutique. Une alternative particulièrement
intéressante aux biomarqueurs génétiques est le biomarqueur
mécanique, dérivé des activités des voies de signalisation, qui est
connu pour jouer un rôle clé dans la progression du cancer et ainsi
fournir des informations plus pertinentes sur les fonctions
cellulaires impliquées dans le mécanisme du cancer. Dans ce
chapitre, nous démontrons que les variables issues du réseau,
comme l’activité des circuits de signalisation, surpasse les variables
classiques au niveau du gène en termes de prédiction du pronostic
du cancer du sein. Nous montrons également que notre méthode de
classification permet de proposer, en plus de la pertinence des
variables issues du réseau liées au résultat de la maladie, une liste
des gènes qui ne codent pas de protéines de signalisation dont la
contribution au pronostic du cancer peut compléter les mécanismes
détectés par l’analyse du réseau.

4.1 Introduction

Over the past decades, many efforts have been addressed to the identification
of gene-based signatures to predict patient prognosis using gene expression data
[van ’t Veer 2002, Paik 2004, Wang 2005a, Sotiriou 2009, Reis-Filho 2011]. Despite
the success of its use, gene expression signatures have not been exempt of prob-
lems [Ein-Dor 2006, Iwamoto 2010]. Specifically, one major drawback of multi-gene
biomarkers is that they often lack proper interpretation in terms of mechanistic
link to the fundamental cell processes responsible for disease progression or thera-
peutic response [van ’t Veer 2008, Dopazo 2010]. Actually, it is increasingly recog-
nized that complex traits, such as disease or drug response, are better understood
as alterations in the operation of functional modules caused by different combi-
nations of gene perturbations [Barabási 2004, Oti 2007, Barabási 2011]. To ad-
dress this inherent complexity different methodologies have tried to exploit several
functional module conceptual representations, such as protein interaction networks
or pathways, to interpret gene expression data within a systems biology context
[Barabási 2011, Vidal 2011, Hood 2013, Fryburg 2014].

Here we focus on consulting prior knowledge of signaling pathways to guide
cancer prognosis. It is well understood that cell signaling is a system of within-cell
communication and signal transduction process between gene products, mostly pro-
teins, that coordinates cell activities to perceive and correctly respond to microen-
vironment, resulting in signaling pathways that form a particular type of functional
gene modules and play a key role in disease progression (Figure 4.1). Consequently
as a tempting solution to the limitation of conventional analysis at the level of
individual genes, analysis at the level of pathways renders great interest in pro-
viding informative insights into cellular functions that facilitates understanding of
the disease mechanism. Actually, it has recently been shown that the pathway-
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level representation generates clinically relevant stratifications and outcome pre-
dictors for glioblastoma and colorectal cancer [Drier 2013] and also breast cancer
[Livshits 2015]. Moreover, mathematical models of the activity of a pathway have
demonstrated a significantly better association to poor prognosis in neuroblastoma
patients than the activity of their constituent genes, including MICN, a conven-
tional biomarker [Fey 2015]. This observation has recently been extended to other
cancers [Hidalgo 2017] and to the prediction of drug effects [Amadoz 2015].

Figure 4.1: An illustration of cell signaling process. Typically the signal transduction
begins at receptor proteins that receive molecular stimuli from cell microenvironment and
ends at effector proteins that execute specific actions in response to the stimulation.

Given that the inferred activity of the pathway should be closely related to
its cellular mechanism for disease progression, its use to guide cancer prognosis
seems promising. Recently, a number of pathway activity inference methods have
been proposed [Hidalgo 2017, Jacob 2012, Li 2015, Martini 2013]. Here, we use the
hiPathia method proposed in [Hidalgo 2017], as it has been demonstrated to have
a superior performance finding significant associations of specific circuit1 activities,
directly responsible for triggering the prominent cancer hallmarks [Hanahan 2011],
to patient survival. This method recodes gene expression values into measurements
of signaling circuit activities that ultimately account for cell responses to specific
stimuli. Such activity values can be considered multigenic mechanistic biomarkers
that can be used as features for cancer prognosis.

In this chapter, we demonstrate that the activity of signaling circuits yields
comparable or even better prediction in breast cancer prognosis than the expression

1Circuits can be understood as sub-pathways with specific structure in stimulus-response sig-
naling pathways, while definitions are postponed to Section 4.2.2.
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of individual genes, while detected mechanistic biomarkers enjoy the compelling
advantage of readily available interpretation in terms of the corresponding cellular
functions they trigger. Moreover, we show that the proposed prediction scheme
can even suggest, in addition to interesting signaling circuits related to disease
outcome, a list of genes that do not code for signaling proteins whose contribution to
cancer prognosis potentially supplements the mechanism included in the pathways
modeled. All numerical results are produced with R and code for reproducing the
experiments is available in the online supplementaries at https://github.com/
YunlongJiao/hipathiaCancerPrognosis.

4.2 Methods

4.2.1 Data Source and Processing

Our interest in this study lies in predicting the overall survival outcome of breast
cancer patients making use of gene expression data. The breast cancer gene ex-
pression and survival data here were downloaded from The Cancer Genome Atlas
(TCGA), release No. 20 of the International Cancer Genome Consortium (ICGC)
data portal under project name BRCA-US2. This dataset provides the RNA-seq
counts of 18,708 genes for 879 tumor samples in which we also have records of
the vital status of corresponding donors, namely the overall survival outcome of
the cancer patients being alive or deceased at the end of clinical treatment (Table
4.1). This way we deal with a binary classification problem distinguishing good vs
poor prognosis based on gene expression measurements of breast tumor samples.
Since TCGA cancer data are collected from different origins and underwent different
management processes, non-biological experimental variations, commonly known as
batch effect, associated to Genome Characterization Center (GCC) and plate ID
must be removed from the RNA-seq data. The COMBAT method [Johnson 2007]
was used for this purpose. We then applied the trimmed mean of M-values nor-
malization method (TMM) method [Robinson 2010] for data normalization which
is essential in applying the hiPathia method. The resulting normalized values were
finally entered to the pathway analysis method.

Table 4.1: Summary of survival outcome of the breast cancer patients in the TCGA
dataset.

Donor vital status Pseudo label No. of samples Percentage
Deceased (poor prognosis) Positive 124 14.1%
Alive (good prognosis) Negative 755 85.9%

Total 879 100.0%

In order to explore the potential of utilizing external knowledge of cell signal-
ing to enhance prognosis, we consulted Kyoto Encyclopedia of Genes and Genomes

2More information can be found at https://dcc.icgc.org/releases/release_20/Projects/
BRCA-US.

https://github.com/YunlongJiao/hipathiaCancerPrognosis
https://github.com/YunlongJiao/hipathiaCancerPrognosis
https://dcc.icgc.org/releases/release_20/Projects/BRCA-US
https://dcc.icgc.org/releases/release_20/Projects/BRCA-US
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(KEGG) repository [Kanehisa 2012] to retrieve relationships between proteins within
signaling pathways. A total of 60 KEGG pathways were used (Table 4.2), compre-
hending 2,212 gene products that participate in 3,379 nodes. Note that most gene
products are proteins, and two types of nodes are defined in KEGG: plain nodes
which may contain one or more proteins and complex nodes. These pathways each
compose into a directed network where nodes are connected with edges labeled by
either activation or inhibition depending on the action in transmitting signals along
the path. In particular, input nodes that have no incoming edges represent receptor
proteins which receive molecular stimuli from cell microenvironment, and output
nodes that have no outgoing edges represent effector proteins which carry out spe-
cific cellular functions. We will elaborate in the following subsection on how to
decompose the complex structure of KEGG pathways in order to effectively apply
the hiPathia method.

Table 4.2: The 60 KEGG pathways for which signaling activity is modeled.

KEGG identifier Pathway name
hsa04014 Ras signaling pathway
hsa04015 Rap1 signaling pathway
hsa04010 MAPK signaling pathway
hsa04012 ErbB signaling pathway
hsa04310 Wnt signaling pathway
hsa04330 Notch signaling pathway
hsa04340 Hedgehog signaling pathway
hsa04350 TGF-beta signaling pathway
hsa04390 Hippo signaling pathway
hsa04370 VEGF signaling pathway
hsa04630 Jak-STAT signaling pathway
hsa04064 NF-kappa B signaling pathway
hsa04668 TNF signaling pathway
hsa04066 HIF-1 signaling pathway
hsa04068 FoxO signaling pathway
hsa04020 Calcium signaling pathway
hsa04071 Sphingolipid signaling pathway
hsa04024 cAMP signaling pathway
hsa04022 cGMP-PKG signaling pathway
hsa04151 PI3K-Akt signaling pathway
hsa04152 AMPK signaling pathway
hsa04150 mTOR signaling pathway
hsa04110 Cell cycle
hsa04114 Oocyte meiosis
hsa04210 Apoptosis

Continued on next page
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Table 4.2 – continued from previous page
KEGG identifier Pathway name
hsa04115 p53 signaling pathway
hsa04510 Focal adhesion
hsa04520 Adherens junction
hsa04530 Tight junction
hsa04540 Gap junction
hsa04611 Platelet activation
hsa04620 Toll-like receptor signaling pathway
hsa04621 NOD-like receptor signaling pathway
hsa04622 RIG-I-like receptor signaling pathway
hsa04650 Natural killer cell mediated cytotoxicity
hsa04660 T cell receptor signaling pathway
hsa04662 B cell receptor signaling pathway
hsa04664 Fc epsilon RI signaling pathway
hsa04666 Fc gamma R-mediated phagocytosis
hsa04670 Leukocyte transendothelial migration
hsa04062 Chemokine signaling pathway
hsa04910 Insulin signaling pathway
hsa04922 Glucagon signaling pathway
hsa04920 Adipocytokine signaling pathway
hsa03320 PPAR signaling pathway
hsa04912 GnRH signaling pathway
hsa04915 Estrogen signaling pathway
hsa04914 Progesterone-mediated oocyte maturation
hsa04921 Oxytocin signaling pathway
hsa04919 Thyroid hormone signaling pathway
hsa04916 Melanogenesis
hsa04261 Adrenergic signaling in cardiomyocytes
hsa04270 Vascular smooth muscle contraction
hsa04722 Neurotrophin signaling pathway
hsa05200 Pathways in cancer
hsa05231 Choline metabolism in cancer
hsa05202 Transcriptional misregulation in cancer
hsa05205 Proteoglycans in cancer
hsa04971 Gastric acid secretion
hsa05160 Hepatitis C
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4.2.2 Modeling Framework for Signaling Pathways

We applied the hiPathia method3 proposed by [Hidalgo 2017] in pursuit of modeling
signaling activity. Overall, hiPathia is a method that estimates the level of activ-
ity within a signaling circuit by modeling cell signaling process in order to recode
gene expression values into measurements that ultimately account for cell responses
caused by pathway activities. Essentially the hiPathia method computes an activity
value for each stimulus-response sub-pathway within signaling circuits. This way,
the sub-pathways which associate naturally with cell functionalities can be consid-
ered as mechanistic features that are modularized from multigenic signatures, and
their activity values connected to the activation or deactivation of specific cellular
functions thus provide quantitative clues to understand disease mechanisms when
further related to phenotypes of interest such as cancer survival.

Recall that in cell signaling processes represented in KEGG pathways, cell signal
arrives to an initial input node and starts to transmit along any path following the
direction of the edges until it reaches an output node that finally triggers a cellular
action. In particular, from different input nodes the signal may follow different
routes to reach different output nodes. Within the modeling context, a circuit is
naturally defined as all possible routes the signal can traverse to be transmitted
from a particular input node to a particular output node (Figure 4.2, A). A total
of 6,101 circuits are identified and modeled in this study. Now we take efforts to
describe first how hiPathia estimates the signaling activity of a circuit.

Figure 4.2: The different levels of abstraction within pathways: A) Circuits that commu-
nicate one receptor to one effector; B) Effector circuits that communicate all the receptors
that signal a specific effector; C) Function circuits that collect the signal from all the ef-
fectors that trigger a specific function (according to UniProt or GO keywords); D) Cancer
hallmarks, a sub-selection of only those functions related to cancer hallmarks.

3Available as an R package at https://github.com/babelomics/hipathia and via a web inter-
face at http://hipathia.babelomics.org/.

https://github.com/babelomics/hipathia
http://hipathia.babelomics.org/
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In a signaling circuit, the transmission of the signal depends on the integrity
of the chain of nodes that connect the receptor to the effector and the capability
of transmitting signals of each node involved intuitively depends on two folds: the
abundance of the proteins corresponding to that node and its activity status due
to the interaction with its parent nodes. First, we need to estimate a value for
each node in the pathways in regard to the presence of proteins involved in the
node. Following the convention of [Bhardwaj 2005, Efroni 2007, Montaner 2009,
Sebastian-Leon 2014], the presence of the mRNA (the normalized RNA-seq counts
rescaled between 0 and 1) is taken as a proxy for the presence of the proteins
involved in each node. Notably, for different types of nodes defined in KEGG, the
value of a plain node in the pathways is defined as the ninetieth percentile of the
values of the proteins contained, and the value of a complex node is taken as the
minimum value of the proteins contained (the limiting component of the complex).
Then, the degree of integrity of the circuit is estimated by modeling the signal flow
across it, transmitting node-by-node following the path while its intensity value
gets propagated along the way taking into account the current node value and the
intensity of the signals arriving to it. Specifically, we initialize an incoming signal
of intensity value of 1 received by the input (receptor) node of the circuit, and then
for each node n of the circuit, the signal value sn is updated by the following rule:

sn = vn ·

1−
∏
a∈An

(1− sa)

 · ∏
i∈In

(1− si) ,

where An denotes the set of signals arriving to the current node n from activation
edges, In denotes the set of signals arriving to the current node n from inhibition
edges, and vn is the (normalized) value of the current node n. In case of loops
present in the circuit, a node may be visited multiple times, until the difference in
the updates of the signal value at that node is below certain threshold, before the
signal exits the loop and continues to propagate down the cascade. Finally, the
activity value for the circuit is defined by the signal intensity transmitted through
the last (effector) protein of the circuit which quantifies the cell function ultimately
activated by the circuit. See Figure 4.3 for an example of deducing the activity
value of an artificial circuit by the hiPathia method.

Besides, the hiPathia method straightforwardly allows to explore pathway-level
analysis at different levels of abstraction by applying to different notions of signal-
ing circuits. As the output nodes at the end of circuits are the ultimate responsible
to carry out specific cellular actions, an effector circuit is defined from a functional
viewpoint as a higher-level signaling entity that compose all circuits ending at the
same output node (Figure 4.2, B). When applied to an effector circuit, the hiPathia
method returns the joint intensity of the signal arriving to the corresponding ef-
fector node. Furthermore, the known functions triggered in cell by each effector
protein can be derived from their functional annotations. Here we use UniProt
[Consortium 2015b] and Gene Ontology (GO) [Consortium 2015a] annotations. Fi-
nally, inferred signaling activity values of those effector circuits ending at proteins
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Figure 4.3: An example of computing the activity value of an artificial circuit by the
hiPathia method. In Step 1, node values are derived from the normalized mRNA measure-
ments. In Step 2, signal is propagated along the path while its intensity value gets updated
according to the rule of the hiPathia method. Finally, The signal value attained after the
last protein is visited accounts for the signaling activity of the circuit.

with the same annotated functions are averaged to quantify the activity of the func-
tion realized in cell. This way we obtain estimated activity values directly connected
to a list of cellular functions (Figure 4.2, C). Figure 4.2 depicts the different levels
of abstraction from circuits, to effector circuits and finally functions. Eventually for
the sake of interpretation, a subset of curated functions can be used for a specific
scenario in which the relevant functions are known to interpret the cancer biology,
for which we use cancer hallmarks [Hanahan 2011] (Figure 4.2, D).

4.2.3 Cancer Prognosis with Inferred Signaling Pathway Activity

In this study, we are interested in comparing the prognostic power of pathway-level
mechanistic features and gene-based features, both separately and in combination,
in order to distinguish good vs poor prognosis. Using the hiPathia method, we re-
coded the list of gene expression values of each tumor sample into the corresponding
lists of signaling activity values for the three levels of abstraction: circuits, effector
circuits and functions, as described in UniProt and GO annotations. Therefore
for each tumor sample, we end up with a profile of gene expression, a profile of
circuit signaling activity, a profile of effector circuit signaling activity, a profile of
UniProt-based cellular function activity and a profile of GO-based cellular function
activity. These profiles are sample-specific, or so-called personalized, profiles that
can be straightforwardly used as prognostic features for cancer prognosis follow-
ing any off-the-shelf classification algorithm. Note that pathway-level profiles are
derived with no regard to any information provided by the genes whose products
do not participate in cell signaling, and the prognostic power of pathway-level pro-
files may thus be limited by the coverage of genes in known biological pathways.
In order to understand the relative contribution to the pathway-level profiles and
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gene-level profiles to the accurate separation between good vs poor prognosis, we
devised 4 artificial profiles: path-gene expression profile containing only genes that
are involved in the KEGG signaling pathways, other-gene expression profile con-
taining only genes that are absent from the KEGG pathways, a combined profile
consisting of signaling activity of effector circuits and expression of other-genes,
and a combined profile consisting of signaling activity of circuits and expression of
other-genes. Thus we obtained a total of 9 types of profiles (detailed in Table 4.3).

Table 4.3: Summary of 9 different types of profiles used as predictive features for breast
cancer prognosis.

Alias Profile type No. of
features

Analysis level

fun.vals UniProt-based func-
tions

81 Pathway-level cellular
function values

go.vals GO-based functions 370

eff.vals Effector circuits 1,038 Pathway-level signaling
activity valuespath.vals Circuits 6,101

path.genes.vals Path-genes 2,212
Gene-level expression
valuesother.genes.vals Other-genes 16,496

genes.vals All genes 18,708

eff.and.other.-
genes.vals

Effector circuits and
other-genes

17,534 Combination of
pathway-level signaling
activity values and
gene-level expression valuespath.and.other.-

genes.vals
Circuits and other-
genes

22,597

From the viewpoint of machine learning, this study is formulated as a typical
binary classification problem where we determine a positive or negative pseudo label
for each sample. Based on the data available in this study (Table 4.1), we perform
a 5-fold cross-validation repeated 10 times on the dataset and report the mean
performance over the 5 × 10 = 50 splits to assess the prognostic power for each
type of profile. The performance is evaluated by the Area Under the ROC Curve
(AUROC) criteria [Sing 2005]. Note that usually a classifier returns a continuous
prediction between 0 and 1 for each sample denoting the probability of that sample
being in the positive class rather than in the negative class, and then assigns either
label to the sample according to some cutoff value thresholding the prediction.
AUROC is a cutoff-free score that measures the probability that the classifier will
score a randomly drawn positive sample higher than a randomly drawn negative
sample.

In this study, we considered a total of 12 classification algorithms as candi-
date classifiers, most of which are state-of-the-art (Table 4.4). When we assess the
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prognosis performance for a specific type of profile on a specific (external) cross-
validation split of the data, we perform an internal 5-fold cross-validation on the
training set to determine which classifier returns the highest cross-validated perfor-
mance and the best classifier is then used on the test set to obtain the performance
score. The rationale behind the nested cross-validation is that, although any classi-
fication algorithm from the machine learning literature can be used to discriminate
good vs poor prognosis with any profile type considered as predictive features, in
practice, however, we do not have a definitive concept of which classifier suits the
best universally for all types of profiles. In other words, it will be a confusing factor
if we predetermine just one classifier throughout the study. In fact, the underlying
hypotheses of different classifiers vary, for instance linear or non-linear relationships
can be assumed between features and labels, and some classifiers can be particularly
sensitive to the presence of a large number of noisy features. As a consequence, the
procedure of choosing the best suited algorithm for different types of profiles by a
nested cross-validation guarantees that the prediction performance is evaluated in
an impartial fashion.

4.3 Results

4.3.1 Signaling Pathway Activities Lead to Improved Prognosis for
Breast Tumor Samples

The performance of using different types of profiles (Table 4.3) as predictive features
to classify survival outcome for breast cancer patients is shown in Figure 4.4 while
mean scores with standard deviation are reported in Table 4.5. Under the criterion
of AUROC to evaluate the classification performance, we observe that the activ-
ity values of signaling circuits, denoted by path.vals, yield the best performance
overall. In particular, they outperform the profiles based solely on gene expres-
sion values, denoted by path.genes.vals, other.genes.vals and genes.vals. In other
words, we are able to integrate the expression values of path-genes with the prior
knowledge of cell signaling to obtain pathway-level features that achieve improved
prognosis. Interestingly, these pathway-level features relate to biological processes
and cellular functions per se. Although the pathway-level features are derived from
the expression of path-genes and thus agnostic to the expression of other-genes,
the inclusion of other-genes to the signaling circuits, inducing the profiles denoted
by eff.and.other.genes.vals and path.and.other.genes.vals, does not significantly im-
prove the performance by performing a two-sided t-test comparing the difference
between the cross-validation AUROC scores obtained by each pair of profiles further
FDR-adjusted for multiple testing [Benjamini 1995] (Table 4.6).

When comparing the prognostic power between pathway-level and gene-level
profiles, we have also derived cellular function activity profiles, denoted by fun.vals
and go.vals (Table 4.3), and observed that the performance of these profiles are
slightly worse than other pathway-level profiles (Figure 4.4). This is probably due
to the excessively simplistic procedure that basically averages the signaling activity
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Table 4.4: The 12 candidate classifiers used to discriminate prognosis classes for breast
tumor samples.

Alias Classifier Reference

LDA Linear discriminant analysis [Venables 2002, Ripley 2007]

LogitLasso L1-regularized logistic regres-
sion

[Friedman 2010]

LinearSVM Support Vector Machines with
linear kernel

[Chang 2011]

RadialSVM Support Vector Machines with
Gaussian RBF kernel

[Chang 2011]

KendallSVM Support Vector Machines with
Kendall kernel

[Zeileis 2004, Jiao 2015]

KNN k-nearest neighbor classifier [Venables 2002, Ripley 2007]

NB Naive Bayes classifier [Ripley 2007]

GBM Gradient Boosting Machines [Friedman 2001]

RF Random Forests [Liaw 2002, Breiman 2001]

SparseSVM L1-regularized L2-loss Support
Vector Machines

[Fan 2008]

PAM Nearest shrunken centroid clas-
sifier

[Tibshirani 2002]

Constant Majority voting classifier Outputs constant label of
the dominant class (negative-
control)

Table 4.5: Mean AUROC scores with standard deviation (SD) and the top 2 most fre-
quently selected classifiers by internal cross-validation for each type of prognostic profile in
classifying breast cancer prognosis.

Profile alias Mean SD Classifier 1 Classifier 2
fun.vals 0.6962 0.05438 RadialSVM GBM
go.vals 0.6807 0.06095 RadialSVM LinearSVM
eff.vals 0.7087 0.05099 RadialSVM LinearSVM
path.vals 0.7211 0.06316 RadialSVM LinearSVM
path.genes.vals 0.6938 0.05636 RadialSVM LinearSVM
other.genes.vals 0.7075 0.05254 LinearSVM RadialSVM
genes.vals 0.7075 0.05272 LinearSVM RadialSVM
eff.and.other.genes.vals 0.7127 0.05838 LinearSVM RadialSVM
path.and.other.genes.vals 0.7246 0.05359 LinearSVM RadialSVM
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Figure 4.4: The AUROC performance of using different types of profiles as predictive
features to classify survival outcome for breast cancer patients. Boxplot represents the
variance of the performance on 50 cross-validation splits. Dotted vertical lines separate
profiles by the underlying analysis levels.

values of effector circuits ending at proteins with the same annotated keywords
according to UniProt or GO [Hidalgo 2017], annotations that can be incomplete
and ambiguous to some extent.

Table 4.5 summarizes the best-performing classifiers for each type of prognos-
tic profile in the sense that they are most frequently selected by internal cross-
validation. Notably, it evidences that Support Vector Machines with various kernels
are recurrently selected as the competent classifier in breast cancer prognosis that
suits well for both gene-level and pathway-level features.

4.3.2 Signaling Circuits Selected as Features Relevant for Cancer
Prognosis Account for Cancer Hallmarks

From the clinical standpoint of cancer prognosis, we are interested in identifying a
small set of biomarkers that can guide decision making in cancer prognosis. As our
analysis is made at the level of pathways, we would like to detect a few signaling
circuits whose activity, and thus the underlying cell functionality, has a significant
impact on discriminating the prognosis classes of cancer patients. We opted for the
Random Forests classifier to perform this analysis, since it simultaneously predicts
the survival outcome of tumor samples and scores the importance of each feature
that is ultimately used in the prediction. We focus on the feature importance
measure returned by fitting a Random Forest which accounts for the mean decrease
in classification performance if we randomly permute the data of the corresponding
feature.

Table 4.7 lists the 5 top-scored circuits by fitting Random Forests with the pro-
files of circuit activities, denoted by path.vals. The role played by each signaling
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circuit in cancer progression can be inferred from the underlying cellular functions
(taken from GO annotations) triggered by the last (effector) protein on the cir-
cuit. Thus, the first circuit, belonging to the HIF-1 signaling pathway, starts with
the TLR4 receptor, which is known to be related to progression of several cancers
(breast, ovarian, prostate and head and neck) via lipopolysaccharide stimulation
[Yang 2014] and ends in the EDN1 effector, an hypoxia-inducible factor that me-
diates cancer progression [Semenza 2012]. Another relevant circuit belongs to the
NF-kappa B signaling pathway and has the IL1B protein as receptor and the CXCL2
as effector. Polymorphisms in the receptor have been linked to several cancers in
different populations [El-Omar 2000, Lu 2005] and it has been demonstrated the
role of CXCL2 in tumor growth and angiogenesis [Keane 2004]. Similarly, polymor-
phisms in the LEP protein, the receptor of another circuit in the Adipocytokine
signaling pathway, have been linked to cancer [Cleveland 2010], and its effector,
the tyrosine phosphatase Shp2 (PTPN11), contributes to the pathogenesis of many
cancers and other human diseases [Chan 2008]. The Cell cycle signaling pathway
contains another relevant circuit whose receptor TTK transmits the signal until the
cohesin complex. This four proteins complex is essential for chromosome segregation
and DNA repair and mutations in its component genes have recently been identified
in several types of tumors [Losada 2014]. Finally, the last relevant circuit, belong-
ing to the Tight junction pathway, contains the AKT3 serine/threonine kinase with
a known role in tumorigenesis [Testa 2001], is signaled by the receptor ACTN4, a
protein which has been related to cell invasion and metastasis [Honda 2015]. An
expanded list of top-scored 50 circuits can be found in online supplementaries.

Table 4.8 lists the 5 top-scored effector circuits by fitting Random Forests with
the profiles of effector circuit activities, denoted by eff.vals. Although the cohe-
sion complex effector is again selected, the effector circuit level analysis provided a
slightly different perspective of relevant aspects of signaling in cancer patient sur-
vival. Thus, two effector circuits with effector proteins LEPR and PPARα, from
the AMPK and the Adipocytokine signaling pathways, respectively, are activators
of the fatty acid metabolism. Two more effector pathways ending in the Interleukin
6 (IL6), related to inflammatory processes and immune response in the Toll-like re-
ceptor pathway, seem more likely to be involved in blocking the cell differentiation
through the Pathways in cancer (KEGG ID hsa05200). Actually, it has been de-
scribed that IL6 blocks apoptosis in cells during the inflammatory process, keeping
them alive in toxic environments, but the same process protects cells from apoptosis
and chemotherapeutic drugs during neoplastic growth [Hodge 2005]. An expanded
list of top-scored 50 effector circuits can be found in the online supplementaries.

4.3.3 The Classification Algorithm Suggests Additional Prognostic
Genes That Do Not Code for Signaling Proteins

In order to find genes that could be relevant for patient survival that are not in
the signal pathways, we have constructed a profile by combining signaling circuit
activity profiles and gene expression profiles corresponding to other-genes absent
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Table 4.7: Top 5 circuits with the highest feature importance measure by fitting Ran-
dom Forests with path.vals in classifying breast cancer prognosis, along their functions as
annotated in Gene Ontology (GO).

Rank Pathway
name

Receptor
genes

Effector
genes

Effector pro-
tein GO func-
tion

1 HIF-1 signaling
pathway

TLR4 EDN1 Growth/survival
factor in cancer

2 NF-kappa
B signaling
pathway

IL1B CXCL2 Inflammatory
response and
angiogenesis

3 Adipocytokine
signaling path-
way

LEP PTPN11 Protein phos-
phatase

4 Cell cycle TTK Cohesin com-
plex (SMC1B,
SMC3, STAG1,
RAD21)

Chromosome
segregation and
DNA repair

5 Tight junction ACTN4,
MAGI3

AKT3 Cell invasion
and metastasis

Table 4.8: Top 5 effector circuits with the highest feature importance measure by fitting
Random Forests with eff.vals in classifying breast cancer prognosis, along their functions
as annotated in Gene Ontology (GO).

Rank Pathway name Effector genes Effector protein
GO function

1 AMPK signaling
pathway

LEPR Regulation of fatty
acid metabolism

2 Adipocytokine sig-
naling pathway

PPARα Peroxisome prolif-
eration and fatty
acid metabolism

3 Pathways in cancer IL6 Blockage of dif-
ferentiation, Anti-
apoptosis

4 Cell cycle Cohesin complex
(SMC1B, SMC3,
STAG1, RAD21)

Chromosome segre-
gation and DNA
repair

5 Toll-like receptor
signaling pathway

IL6 Inflamation, Im-
mune response,
Anti-apoptosis
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from signaling pathways, denoted by path.and.other.genes.vals. A feature selection
procedure in breast cancer prognosis based on such a profile can select signaling
circuits along with genes whose activity is unrelated to cell signaling but nonetheless
related to patient survival. To this end, Random Forests was again used to score
feature importance when fitted with the path.and.other.genes.vals profile in the
classification of breast cancer survival outcome.

Table 4.9 lists the 5 top-scored other-genes that are part of the path.and.other.genes.vals
composed profile. These genes are of particular interest given that they might rep-
resent relevant cancer processes not included in cell signaling. Notably, the gene
ABCB5 belongs to the ATP-binding cassette subfamily B which is well known to be
involved in multiple drug resistance in cancer therapy [Dean 2001], probably due to
its functionality of efflux transmembrane transporter. It has also been reported that
ABCB5 could mediate cell-to-cell fusion and contribute to breast cancer chemoresis-
tance in expressing breast tumors [Frank 2003, Frank 2005]. In addition, ABCB5, as
a “pro-survival” gene, has been suggested to be a potential target against drug resis-
tant breast cancer cells [Yang 2010]. Besides, ABCB5 has been linked to melanoma
[Wilson 2014]. LMO4 encodes a LIM-domain protein that has been reported as
an essential mediator of cell cycle progression in ErbB2/HER2/Neu-induced breast
cancer which is characterized by poor survival due to high proliferation and metas-
tasis rates [Montañez-Wiscovich 2009, Matthews 2013]. It has been reported that
LMO4 interacts with the renowned tumor suppressor BRCA1 and inhibits BRCA1
activity [Sum 2002, Sutherland 2003]. OPA1 encodes a mitochondrial fusion pro-
tein which might be a target for mitochondrial apoptotic effectors [Olichon 2003],
such as sorafenib [Zhao 2013]. The role in cancer survival played by two most im-
portant genes according to the results, VPS72 and CHADL, is not as clear from
the literature. It is worth mentioning that a mutation in VPS72 in cervix can-
cer with a high FATHMM pathogenicity score [Shihab 2015] is described in the
COSMIC database (entry COSM458603). Regarding CHADL, it has been related
to chondrocyte differentiation [Tillgren 2015] and extracellular matrix remodeling
[Barallobre-Barreiro 2012]. Therefore, both genes are potentially involved in cancer
processes, which suggest that further investigation of the complete list of top-ranked
other-genes could render new cancer drivers and potential therapeutic targets. An
expanded list containing the top 50 most important features among the other-genes
can be found in online supplementaries, in which many genes with cancer-related
functions4 can be seen.

4.4 Discussion

In this study we have proposed a novel scheme to classify survival outcome for
breast cancer patients based on mechanistic features consisting of signaling path-
way activity profiles. We applied a pathway activity analysis method hiPathia

4Functions for those genes were taken from their UniProt annotations and, when absent, from
GeneCards annotations [Stelzer 2016].
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Table 4.9: Top 5 other-genes (genes unrelated to cell signaling) with the highest feature
importance measure by fitting Random Forests with path.and.other.genes.vals in classifying
breast cancer prognosis, along their functions as annotated in Gene Ontology (GO).

Rank Gene ID Gene symbol Full name GO function
1 6944 VPS72 Vacuolar protein

sorting 72 homolog
DNA binding

2 150356 CHADL Chondroadherin
like

Collagen binding

3 340273 ABCB5 ATP binding cas-
sette subfamily B
member 5

ATP binding,
Efflux transmem-
brane transporter
activity

4 8543 LMO4 LIM domain only 4 Transcription
factor activity,
Sequence-specific
DNA binding

5 4976 OPA1 OPA1, mitochon-
drial dynamin like
GTPase

GTPase activity

[Hidalgo 2017] to recode gene expression profiles into activity values of signaling
circuits, and demonstrated that, making use of the state-of-the-art computational
tools, signaling circuit activity yields better prediction in breast cancer prognosis
than gene expression. An additional advantage is that the identified pathway-level
biomarkers are mechanistic signatures whose contribution to cancer progression can
be readily interpreted in terms of the underlying cellular functions and biological
processes.

The three feature sets path.genes.vals, eff.vals and path.vals are composed by
the same set of genes, path-genes that are present in the pathways. However, path-
way activity values recoded from these genes with the hiPathia method, eff.vals and
path.vals, clearly outperforms (see Table 4.6) the original path-genes, path.genes.vals,
in terms of prediction performance. Moreover, compared to the prediction perfor-
mance with features based on all the genes, genes.vals, that indeed carry more infor-
mation than the subset of path-genes, features based on path-genes, path.genes.vals,
are significantly worse while features based on circuits of path-genes, eff.vals and
path.vals, are competitive (see Table 4.6). It is worth noting that genes in the cir-
cuits assume only 12% of the total number of genes. Therefore, it suggests that
combining the genes into circuits provides a real added value for prediction pur-
poses.

Although a significant improvement of the performance was not observed when
the expression values of other-genes were concatenated to the activity values of
signaling circuits, the analysis based on the combination of the two provides an
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interesting perspective regarding the interpretation of the biomarkers detected. In
fact, the selected genes from the category of other-genes represent other aspects of
the mechanism of the disease not explained by cell signaling. This approach allows
expanding the scope of the analysis beyond the processes included in the pathways
modeled.

Central to this study is the idea of promoting gene-level analysis to pathway-
level analysis by obtaining personalized profiles of signaling circuit activity by ap-
plying the hiPathia method. We deem that reliable models of pathway activity
have the potential be used to derive robust multigenic biomarkers, in the spirit of
renowned MammaPrint [van ’t Veer 2008], which in addition account properly for
the underlying disease mechanisms or mechanisms of drug action.





Chapter 5

Conclusion and Perspectives

To summarize, the work presented in this thesis has been driven mainly by the
development and investigation of machine learning methods to address the compu-
tational challenges confronted in genomic data analysis for breast cancer progno-
sis: ranked-based approaches for improved molecular prognosis and network-guided
approaches for enhanced biomarker discovery. In fact, it is noteworthy that the
theoretical and methodological contribution is significant and lies fundamentally in
several branches of machine learning concerning applications across but not limited
to cancer biology and social choice theory, specifically:

Learning with Rank Data. We have proposed two computationally attractive
positive definite kernels between permutations, namely the Kendall and Mallows
kernels, and further extended these kernels to rank data of complex structure that
prevail in real-world applications including partial rankings, multivariate rankings
and uncertain rankings (Chapter 2). The significance of this work is of at least two
folds:

1. Thanks to these kernels, many kernel machines serve as off-the-shelf alter-
natives available to solve various problems pertaining to learning from rank-
ings, or learning to rank, and can yield state-of-the-art performance that were
demonstrated with an unsupervised cluster analysis of heterogeneous voting
data and supervised biomedical classification tasks (Chapter 2).

2. The Kendall embedding of the symmetric group brings forth novel incen-
tives of learning on the symmetric group from unprecedented aspects. For
instance, the Kendall embedding has motivated a geometric interpretation of
the combinatorial problem of Kemeny aggregation based on which a tractable
approximation bound was derived (Appendix A) and can offer the opportu-
nity of studying permutation problems such as seriation with yet another
embedding following [Fogel 2013, Lim 2014].

Learning on Graphs. Given a network, we focused on network-guided feature
selection coherent with the presumed network structure in two cases:

1. In case that the network is represented by an undirected graph and it encodes
codependent relationships between features, assuming that neighboring fea-
tures are encouraged to be selected simultaneously, we formalized the use
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of network-based wavelet smoothing as a regularization method for induc-
ing structured sparsity with network-adaptive modularity in linear predictive
models (Chapter 3).

2. In case that the network is represented by a directed graph and each circuit in
it encodes the transduction of signal between features, assuming that circuit-
level groups of features, if selected, are always selected simultaneously, we
investigated the idea of first transforming the original representation of fea-
ture data into a circuit-level representation based on mathematical modeling
of the network structure and then applying any standard feature selection
algorithm to select relevant circuits which now becomes straightforwardly
viable (Chapter 4).

Proof-of-methodology survival analysis of breast cancer was performed guided by a
protein-protein interaction network (undirected-graph case, Chapter 3) or a signal-
ing pathway network (directed-graph case, Chapter 4), and in both cases empirical
superiority was demonstrated where feature selection for molecular prognosis is en-
hanced using a biological network as prior knowledge.

While the investigation of these machine learning topics covered in the present
thesis and their applications in cancer prognosis is certainly unfinished as remarked
in the discussion sections in each corresponding chapter, many interesting perspec-
tives that were not covered in the present thesis remain to be explored. For exam-
ple, while the thesis work concerns general prognosis for all breast cancer patients,
there exist molecular subtypes of breast cancer based on specific genomic defects for
which distinct prognostic tests or treatment strategies apply, and computational ap-
proaches such as unsupervised clustering or factor analysis [Hastie 2009] can be used
to stratify patients based on their genomic data beforehand, which would bring us
one step further towards less costly and more effective personalized prognosis, per-
sonalized medicine and personalized treatment. Notably, all prognostic signatures
elaborated in Section 1.2 only apply to patients under specific clinico-pathological
conditions. As another example, while the thesis work deals primarily with gene
expression data, many other types of genomic data are available for analysis, among
which DNA copy number variation (CNV) in array comparative genomic hybridiza-
tion (aCGH) analysis and single-nucleotide polymorphism (SNP) in genome-wide
association study (GWAS) are particularly widespread in active research in can-
cer biology, along with many other types of “omics” data including, to name just
a few, epigenomics, proteomics, transcriptomics, metabolomics and microbiomics,
and standard clinico-pathological parameters which incontrovertibly still dominate
clinical practice of breast cancer prognosis until today. To make use of multi-omics
data in an integrative analysis, multi-view learning [Sun 2013] is such a branch in
machine learning that studies how to combine different and heterogeneous views
of a sample. In particular, within the paradigm of kernel learning, if a kernel is
defined for each view of the data, multiple kernel learning [Gönen 2011] has been
shown relevant for genomic data fusion [Lanckriet 2004b].
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One thing that needs to be explicitly pointed out is that the contribution of the
thesis work to genomic data analysis for breast cancer prognosis has been mainly
theoretical and methodological with efforts to propose new ideas of improving molec-
ular prognosis and designing new forms of biomarkers, but the numerical results are
far from reaching clinical significance. In particular, we do not claim to have iden-
tified any multigene signature for breast cancer prognosis, and we treat the lists
of prognostic genes identified from our studies with certain extent of skepticism.
A somehow discouraging fact in the field of computational cancer research is that
a voluminous literature of more than 150,000 papers documenting thousands of
claimed biomarkers has been produced in medicine of which fewer than 100 have
been validated for routine clinical practice [Poste 2011], and even fewer than 20
are recognized with variable levels of evidence in the 2014 European Society of
Medical Oncology (ESMO) clinical practice guidelines for lung, breast, colon and
prostate cancer [Schneider 2015]. Compared to the number of research findings in
this area, the very few number of gene expression-based breast cancer prognostic
signatures successfully implemented in clinical routines (Section 1.2) has inevitably
raised controversies on the practical validity of molecular signatures. This is mainly
because the vast majority of those findings lack a proper validation procedure, not
to mention validation oriented for clinical implication, resulting in an exaggeration
of trivial findings and their clinical utility so that a large number of claimed signa-
tures could very likely fail to add significantly incremental values assisting progno-
sis assessment and therapeutic decision making in addition to the use of standard
clinico-pathological parameters. Notwithstanding, the research community gener-
ally holds an optimistic prospective towards the future, as long as proper validation
pipelines are taken systematically in all forthcoming research [Michiels 2016]. Since
objectives oriented towards clinical utility were not at all accounted for in the first
place and neither meta-analysis-based validation with multiple datasets nor cross-
study validation was performed during the course of my doctoral studies, we cannot
conclude with any convincing prognostic signatures. However, we will try our best
to venture some caveats suggesting pitfalls in analyzing genomic data specifically
for biomarker discovery in cancer prognosis, in line with many previous attempts
[Ambroise 2002, Simon 2003, Issaq 2011, Weigelt 2012]:

Should We Engage in Biomarker Discovery to Improve Prognosis? Re-
garding prognosis improvement, a currently held belief rationalizing biomarker dis-
covery by the research community is that a prognostic model based on only a few
molecular features should better capture and explain the biological complexity re-
lated to cancer survival. However, an anti-intuitive yet intriguing phenomenon
already observed by previous studies [Haury 2011] arises that inference based on a
few selected ones compared to the use of all molecular features available underlying
a much larger spectrum of genome often does not lead to drastic improvement and
sometimes even lead to slight deterioration, as reported across all three studies in
this thesis: in Section 2.6 it did not seem to be beneficial to perform feature se-
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lection in the biomedical applications thereof when Support Vector Machines with
the Kendall kernel is used to classify genomic profiles, in Section 3.3.3 the best-
performing model with the highest accuracy of survival risk prediction was the
simplest ridge regression in which no feature selection was carried out, in Section
4.3.1 the most frequently selected or best suited classifiers for all predictive pro-
files in the breast cancer prognosis classification task are Support Vector Machines
with various kernels none of which involve feature selection. Fortunately, model
performance did not degrade significantly when the initiative of performing feature
selection is supplemented in the predictive models at least in the latter two cases.
In particular, another disagreeably striking observation is that in the benchmark
study in Section 3.3.3, although they indeed show superiority with respect to sev-
eral evaluation criteria of feature selection efficacy such as stability, connectivity
and interpretability, all tested network-guided feature selection methods performed
worse in terms of survival risk prediction, albeit insignificantly, than the simple
and network-free elastic net. In a nutshell, it is not supported by existing evidence
that feature selection in genomic data analysis could guarantee to make prognosis
more accurate, and this convention is merely an assumption still awaiting to be
confirmed, which therefore should be taken cautiously.

Should We Trust the Biomarkers Discovered? The trust we should invest in
the biological values of the biomarkers discovered from cancer research can be lim-
ited by many factors and thus their merits in the development of clinical prognostic
assays (or to further suggest therapeutic targets) should be taken with extreme
caution. One issue regarding insignificant improvement of prognosis accuracy due
to feature selection has been discussed in the last paragraph. Other factors that can
influence the validity of feature selection and should also be considered as indispens-
able requirements for the candidate molecular features to be considered biomarkers
of interest include cross-study reproducibility and functional interpretability of the
identified biomarkers. Unfortunately, these issues are indeed demanding challenges.
It is rarely the case that two prognostic signatures identified with different ana-
lytical methods and/or based on different datasets have a significant overlap, for
instance only three genes are in common in the now famous 70-gene signature of
[van ’t Veer 2002] versus the 76-gene signature of [Wang 2005a]. Even surprisingly,
[Venet 2011] reported that most random gene expression signatures are significantly
associated with breast cancer outcome, criticizing on a hypothesis that the perfor-
mance of prognostic models using deliberately selected features can be within the
range of likely values based on random selection of features. Several studies analyzed
the difficulty in selecting robust signatures, and overall concluded that the lack of ro-
bustness is mainly due to the fact that many different sets of genes with little overlap
can nonetheless collectively have similar predictive power and the situation should
be expected to be ameliorated when in the future we can gather a much larger num-
ber of samples to draw conclusion on [Michiels 2005, Ein-Dor 2006, Haury 2011].
A major drawback is that nowadays numerous discoveries that are based on small
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and unrepresentative datasets hardly sustain independent validation so that their
clinical utility remains out of reach. In particular, the numerical results presented in
this thesis requires cross-study validation too as already mentioned above, subject
to many impending issues arising in cross-study validation such as test set bias that
could affect reproducibility and needs meticulous attention as well [Patil 2015].

Some Last Words...

Our knowledge and understanding of cancer biology is still far incomplete but we
are given the extraordinary opportunity in the era of “omics” revolution and data
science to study cancer with machine learning. Just bear in mind that opportunities
come with caveats that it necessarily calls for comprehensive study and proper
validation as well as concerns such as clinical utility and cost-effectiveness of the
computational findings on the road to breakthrough discoveries and success in the
fight against cancer.
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A Tractable Bound on
Approximating Kemeny

Aggregation

Publication and Dissemination: The work in this chapter has
been published as joint work with Anna Korba and Eric Sibony in
[Jiao 2016b] and orally presented at ICML 2016 by Anna Korba.

Abstract: Due to its numerous applications, rank aggregation
has become a problem of major interest across many fields of the
computer science literature. In the vast majority of situations,
Kemeny consensus is considered as the “golden” solution. It is
however well known that its computation is NP-hard. Much
contribution have thus been devoted to establishing various results
to apprehend this complexity. In this chapter, we introduce a
practical method to predict, given a dataset and a ranking typically
output by some approximate procedure, how close this ranking is to
the Kemeny consensus of the dataset. A major strength of the
proposed method is its generality: it requires little assumption on
the dataset nor the ranking. Furthermore, it relies on a geometric
interpretation of Kemeny aggregation that we believe could paves
way to other results beyond those presented in this chapter.

Résumé : En raison de ses nombreuses applications, l’agrégation
de classements est devenue un problème d’intérêt majeur dans de
nombreux domaines de la littérature en science informatique. Dans
la grande majorité des situations, le consensus de Kemeny est
considéré comme la solution «dorée». Il est cependant bien connu
que son calcul est NP-difficile. Par conséquent, de nombreuses
contributions ont été consacrées à l’établissement de divers
résultats pour appréhender cette complexité. Dans ce chapitre, nous
introduisons une méthode pratique pour prédire, compte tenu d’un
ensemble de données et d’un classement généralement produit par
une procédure approximative, quelle est la proximité de ce
classement au consensus de Kemeny sur l’ensemble de données.
Une force majeur de la méthode proposée est sa généralité : elle
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nécessite peu d’hypothèses sur l’ensemble de données, ni sur le
classement. En outre, il repose sur une interprétation géométrique
de l’agrégation de Kemeny que nous croyons pouvoir ouvrir la voie
à d’autres résultats au-delà de ceux présentés dans ce chapitre.

A.1 Introduction

Given a collection of rankings on a set of alternatives, how to aggregate them into
one ranking? This rank aggregation problem has gained a major interest across
many research fields. Starting from elections in social choice theory [de Borda 1781,
Condorcet 1785, Arrow 1950, Xia 2015], it has been applied to meta-search engines
[Dwork 2001, Renda 2003, Desarkar 2016], competitions ranking [Davenport 2005,
Deng 2014], analysis of biological data [Kolde 2012, Patel 2013] or natural language
processing [Li 2014, Zamani 2014] among others.

Among many ways of formulating the problem of rank aggregation stands out
the Kemeny aggregation [Kemeny 1959]. Defined as the problem of minimizing a
cost function over the symmetric group (see Section A.2 for definition), its solutions,
called Kemeny consensuses, have been shown to satisfy desirable properties from
many points of view [Young 1978].

Computing a Kemeny consensus is however NP-hard, even for only four rankings
[Bartholdi 1989, Cohen 1999, Dwork 2001]. This fact has motivated the research
community to introduce many approximate procedures and to evaluate them on
datasets (see, for instance, [Schalekamp 2009, Ali 2012]). It has also triggered a
tremendous amount of work of obtaining theoretical guarantees on these proce-
dures and more generally in understanding the complexity of Kemeny aggregation
from various perspectives. Some have proven bounds on the approximation cost of
the approximate procedures [Diaconis 1977, Coppersmith 2006, Van Zuylen 2007,
Ailon 2008, Freund 2015], while some have established recovery properties [Saari 2000,
Procaccia 2012]. Notably it has been shown that exact Kemeny aggregation is
tractable if some quantity is known on the dataset [Betzler 2008, Betzler 2009,
Cornaz 2013] or if the dataset satisfies some conditions [Brandt 2015]. Besides,
some contributions have established approximation bounds that can be computed
on the dataset [Davenport 2004, Conitzer 2006, Sibony 2014].

In this chapter we introduce a novel approach to apprehend the complexity
of Kemeny aggregation. Consider the following question: Given a dataset and a
ranking typically output by some approximate procedure, can we predict how close
the ranking is to any Kemeny consensus without computing the latter? We exhibit
a tractable quantity that allows to give a positive answer to this question. The
main contribution of our results is a simple and practical method to obtain such a
guarantee for the outcome of an aggregation procedure on any dataset. A major
strength of our approach is its generality: it applies to all aggregation procedures
and to any dataset. Further, our results are based on a geometric analysis of
Kemeny aggregation (see Section A.3) that has been unprecedentedly exploited in
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the literature but constitutes a powerful tool. We thus take efforts to explain it
in details. We believe that it could pave way to many other results on Kemeny
aggregation beyond those presented here.

The chapter is structured as follows. Section A.2 introduces the general no-
tations and states the question of interest. The geometric analysis is detailed in
Section A.3 and further studied in Section A.5 while our main result is presented in
Section A.4. Finally, numerical experiments are reported in Section A.6 to address
the efficacy and usefulness of our method on datasets from real-world applications.

A.2 Kemeny Aggregation Problem

Let JnK = {1, . . . , n} be a set of alternatives to be ranked. In this study, we focus
only on total rankings. A total ranking a1 � · · · � an on JnK is interchangeably
seen as the permutation σ of JnK that maps an item to its rank: σ(ai) = i for
i ∈ JnK. The set of all permutations of JnK is called the symmetric group and
denoted by Sn. Given a collection of N permutations DN = (σ1, . . . , σN ) ∈ SNn ,
Kemeny aggregation aims at solving

min
σ∈Sn

N∑
t=1

d(σ, σt) , (A.1)

where d is the Kendall’s tau distance defined for σ, σ′ ∈ Sn as the number of their
pairwise disagreements: d(σ, σ′) =

∑
1≤i<j≤n 1{(σ(j) − σ(i))(σ′(j) − σ′(i)) < 0}.

The objective function in (A.1) denotes the cost, and a permutation σ∗ solving (A.1)
is called a Kemeny consensus. We denote by KN the set of Kemeny consensuses on
the dataset DN .

Exact Kemeny aggregation is NP-hard: it cannot be solved efficiently with a
general procedure. This does not mean however that nothing can be done. For
example, it is clear that on a dataset where all permutations are equal to a σ0 ∈
Sn, the Kemeny consensus is trivially given by σ0. Many contributions from the
literature have thus focused on particular approaches to apprehending some part
of the complexity of Kemeny aggregation. The examples given in the introduction
generally fall in three categories:

• General guarantees for approximate procedures. These results pro-
vide a bound on the cost of a specific voting rule, valid for any dataset
[Diaconis 1977, Coppersmith 2006, Van Zuylen 2007, Ailon 2008, Freund 2015].

• Bounds on the approximation cost computed from the dataset.
These results provide a bound, either on the cost of a consensus or on the cost
of the outcome of a specific voting rule, that depends on a quantity computed
from the dataset [Davenport 2004, Conitzer 2006, Sibony 2014].

• Conditions for the exact Kemeny aggregation to become tractable.
These results ensure the tractability of exact computation of Kemeny aggre-
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gation if the dataset satisfies some condition or if some quantity is known
from the dataset [Betzler 2008, Betzler 2009, Cornaz 2013, Brandt 2015].

In this chapter, we introduce a novel approach, which falls into the second category
above, to apprehend the complexity of Kemeny aggregation by considering the
following question (henceforth referred to as The Question):

The Question. Let σ ∈ Sn be a permutation, typically output by a computation-
ally efficient aggregation procedure on DN . Can we use tractable quantities to give
an upper bound on the distance d(σ, σ∗) between σ and any Kemeny consensus σ∗
on DN?

The answer to The Question is positive as we will elaborate in this study. We
propose an upper bound, guaranteed by Theorem A.1, that reads: for any σ and
DN , we have d(σ, σ∗) ≤ kmin for all consensuses σ∗ ∈ KN , where kmin is defined
in (A.5). We would like to stress a major strength of our method compared to
those previously studied in literature that is the generality: it can be applied to
any dataset DN and any permutation σ with little assumption on neither. This
is because it exploits a powerful geometric framework for the analysis of Kemeny
aggregation.

A.3 Geometric Analysis of Kemeny Aggregation

Because of its rich mathematical structure, Kemeny aggregation can be analyzed
from many different point of views. For instance, some contributions deal di-
rectly with the combinatorics of the symmetric group [Diaconis 1977, Blin 2011],
some work on the pairwise comparison graph [Coppersmith 2006, Conitzer 2006,
Jiang 2011], and some exploit the geometry of the Permutahedron [Saari 2000]. In
this chapter, we analyze it via the Kendall embedding [Jiao 2015, Theorem 1]. For
the self-containment of this chapter, recall from the proof of Theorem 2.1 that we
have used the following definition.1

Definition A.1 (Kendall embedding). The Kendall embedding is the mapping
φ : Sn → R(n

2) defined by

φ : σ 7→


...

sgn(σ(i)− σ(j))
...


1≤i<j≤n

,

where the sign function sgn(x) = 1 if x > 0 and −1 if x < 0 and 0 otherwise.

The Kendall embedding φ maps a permutation to a vector in R(n
2) where each

coordinate is indexed by an (unordered) pair {i, j} ⊂ JnK (we choose i < j by
1We will omit the scaling constant 1

(n
2) due to its irrelevance in this study and use φ instead of

Φ to distinguish this trivial difference.
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convention). Though this vector representation is equivalent to representing a per-
mutation as a flow on the complete graph on JnK, it allows us to perform a geometric
analysis of Kemeny aggregation in the Euclidean space R(n

2). Denoting by 〈·, ·〉 the
canonical inner product and ‖·‖ the Euclidean norm, the starting point of our anal-
ysis is the following result, already brought up by [Barthelemy 1981] and rephrased
in the proof of Theorem 2.1.

Proposition A.1 (Background results). For all σ, σ′ ∈ Sn,

‖φ(σ)‖ =

√
n(n− 1)

2 := R and
∥∥φ(σ)− φ(σ′)

∥∥2 = 4d(σ, σ′) ,

and for any dataset DN = (σ1, . . . σN ) ∈ SNn , Kemeny aggregation (A.1) is equivalent
to the minimization problem

min
σ∈Sn

CN (σ) := ‖φ(σ)− φ(DN )‖2 , (A.2)

where

φ (DN ) := 1
N

N∑
t=1

φ (σt) . (A.3)

Proposition A.1 leads to the following geometric point of view of Kemeny ag-
gregation, illustrated by Figure A.1. First, as ‖φ(σ)‖ =

√
n(n− 1)/2 for all σ ∈ Sn,

the embeddings of all the permutations in Sn lie on a sphere centered at 0 with
radius R =

√
n(n− 1)/2. Notice that ‖φ(σ)− φ(σ′)‖2 = 4d(σ, σ′) for all σ, σ′ ∈ Sn

implies that φ is injective, in other words that it maps two different permutations
to two different points on the sphere. A dataset DN = (σ1, . . . , σN ) ∈ SNn is thus
mapped to a weighted point cloud on this sphere, where for any σ ∈ Sn, the weight
of φ(σ) is the number of times σ appears in DN . The vector φ(DN ), defined by
(A.3), is then equal to the barycenter of this weighted point cloud. We call it the
mean embedding of DN . Now, the reformulation of Kemeny aggregation given by
(A.2) means that a Kemeny consensus is a permutation σ∗ whose embedding φ(σ∗)
is closest to φ(DN ), with respect to the Euclidean norm in R(n

2).
From an algorithmic point of view, Proposition A.1 naturally decomposes prob-

lem (A.1) of Kemeny aggregation in two steps: first compute the mean embedding
φ(DN ) in the space R(n

2), and then find a consensus σ∗ as a solution of problem (A.2).
The first step is naturally performed in O(Nn2) operations. The NP-hardness of
Kemeny aggregation thus stems from the second step. In this regard, one may argue
that having φ(DN ) does not greatly alleviate the complexity in identifying an exact
Kemeny consensus. However, a closer look at the problem leads us to asserting
that φ(DN ) contains rich information about the location of the Kemeny consen-
suses. More specifically, we show in Theorem A.1 that the knowledge of φ(DN )
helps to provide an upper bound for the distance between a given permutation
σ ∈ Sn and any Kemeny consensus σ∗.

In fact, Proposition A.1 implies that Kemeny’s rule is a “Mean Proximity
Rule”, a family of voting rules introduced in [Zwicker 2008] and further studied
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Figure A.1: Kemeny aggregation for n = 3.

in [Lahaie 2014]. Our approach actually applies more generally to other voting
rules from this class but we focus our discussion on Kemeny’s rule in this study for
the sake of clarity.

A.4 Controlling the Distance to Kemeny Consensus

In this section, we now state our main results and demonstrate with an illustrative
example how our proposed method addresses The Question. For a permutation
σ ∈ Sn, let us define the angle θN (σ) between φ(σ) and φ(DN ) by

cos(θN (σ)) = 〈φ(σ), φ(DN )〉
‖φ(σ)‖ ‖φ(DN )‖ , (A.4)

with 0 ≤ θN (σ) ≤ π by convention.

Theorem A.1. Let DN ∈ SNn be a dataset and σ ∈ Sn a permutation. For any
integer 0 ≤ k ≤

(n
2
)
− 1, one has the following implication:

cos(θN (σ)) >
√

1− k + 1(n
2
) =⇒ max

σ∗∈KN

d(σ, σ∗) ≤ k.

The proof of Theorem A.1 along with its geometric interpretation are post-
poned to Section A.5. Broadly speaking, Theorem A.1 ensures that if the angle
θN (σ) between the embedding φ(σ) of a permutation σ ∈ Sn and the mean em-
bedding φ(DN ) is small, then the Kemeny consensuses cannot be too far from σ.
Its application in practice is straightforward. Assume that one applies an aggre-
gation procedure on DN , say the Borda Count for instance, that outputs σ. A
natural question is then: how far is it from the Kemeny consensuses in terms of
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Kendall’s tau distance? It is well known that the Kendall’s tau distance takes val-
ues in {0, . . . ,

(n
2
)
} [Stanley 1986]. Consequently, the distance is at most equal to

maxσ′,σ′′∈Sn d(σ′, σ′′) =
(n

2
)
. But if one computes the quantity cos(θN (σ)), a better

bound can be allowed due to Theorem A.1. More specifically, the best bound is
given by the minimal k ∈ {0, . . . ,

(n
2
)
−1} such that cos(θN (σ)) >

√
1− (k + 1)/

(n
2
)
.

Denoting by kmin(σ;DN ) this integer, it is easy to see that

kmin(σ;DN ) =
{ ⌊(n

2
)

sin2(θN (σ))
⌋

if 0 ≤ θN (σ) ≤ π
2(n

2
)

if π2 ≤ θN (σ) ≤ π. (A.5)

where bxc denotes the integer part of the real x. We formalize this method (hence-
forth referred to as The Method) in the following description.

The Method. Let DN ∈ SNn be a dataset and let σ ∈ Sn be a permutation
considered as an approximation of Kemeny’s rule. In practice σ is the consensus
returned by a tractable voting rule. Then by Theorem A.1, we have d(σ, σ∗) ≤
kmin(σ;DN ) for any Kemeny consenus σ∗ ∈ KN , where kmin(σ;DN ) is obtained by
(A.5).

The following proposition ensures that The Method has tractable complexity.

Proposition A.2 (Complexity of The Method). The application of The Method
has complexity in time O(Nn2).

With a concrete example, we demonstrate the applicability and the generality
of The Method.
Example A.1 (Application of The Method to the sushi dataset). We report here
the results of a case-study on the sushi dataset provided by [Kamishima 2003] to
illustrate our method. The dataset consists of N = 5000 total rankings given by
different individuals of the preference order on n = 10 sushi dishes such that a brute-
force search for the Kemeny consensus is already very computationally intensive.
To apply our method, we selected seven tractable voting rules, denoted by σ, as
approximate candidates to Kemeny’s rule to provide an initial guess (details of
voting rules can be found in Section A.6). Table A.1 summarizes the values of
cos(θN (σ)) and kmin(σ), respectively given by (A.4) and (A.5). Results show that
on this particular dataset, if we use for instance Borda Count to approximate a
Kemeny consensus, we are confident that any exact consensus has a distance of at
most 14 to the approximate ranking. We detail empirical analysis of the results
further in Section A.6.

A.5 Geometric Interpretation Revisit and Proof of The-
orem A.1

This section details the proof of Theorem A.1 based the geometric interpretation
introduced in Section A.3. We deem that our proof has indeed a standalone interest,
and that it could pave way to other profound results on Kemeny aggregation.
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Table A.1: Summary of a case-study on the applicability of The Method with the sushi
dataset (N = 5000, n = 10). Rows are ordered by increasing kmin (or decreasing cosine)
value.

Voting rule cos(θN (σ)) kmin(σ)
Borda 0.820 14

Copeland 0.822 14
QuickSort 0.822 14

Plackett-Luce 0.80 15
2-approval 0.745 20
1-approval 0.710 22
Pick-a-Perm 0.383† 34.85†

Pick-a-Random 0.377† 35.09†

†For randomized methods such as Pick-a-Perm and Pick-a-Random, results are averaged over 10,000 com-
putations.

Recall that the Kemeny consensuses of a dataset DN are the solutions of the
problem (A.2):

min
σ∈Sn

CN (σ) = ‖φ(σ)− φ(DN )‖2 .

This is an optimization problem on the discrete set Sn, naturally hard to analyze.
In particular the shape of the cost function CN is not easy to understand. However,
since all the vectors φ(σ) for σ ∈ Sn lie on the sphere

S :=
{
x ∈ R(n

2)| ‖x‖ = R
}
,

where radius R is the equal norm of the embedded point of any permutation and
by Proposition A.1,

R =

√
n(n− 1)

2 .

It is natural to consider the relaxed problem on S that reads

min
x∈S
CN (x) := ‖x− φ(DN )‖2 .

We call CN the extended cost function with domain S. The advantage of CN is that
it has a very simple shape. We denote by θN (x) the angle between a vector x ∈ S
and φ(DN ) (with the slight abuse of notations that θN (φ(σ)) ≡ θN (σ)). For any
x ∈ S, one has

CN (x) = R2 + ‖φ(DN )‖2 − 2R ‖φ(DN )‖ cos(θN (x)) .

This means that the extended cost CN (x) of a vector x ∈ S only depends on the
angle θN (x). The level sets of CN are thus of the form {x ∈ S | θN (x) = α}, for
0 ≤ α ≤ π. If n = 3, these level sets are circles in planes orthogonal to φ(DN ),
each centered around the projection of the latter on the plane (Figure A.2). This
property implies the following result.
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Lemma A.1. A Kemeny consensus of a dataset DN is a permutation σ∗ such that:

θN (σ∗) ≤ θN (σ) for all σ ∈ Sn .

Lemma A.1 means that the problem of Kemeny aggregation translates into
finding permutations σ∗ that have minimal angle θN (σ∗). This reformulation is
crucial to our approach.

Figure A.2: Level sets of the extended cost function CN over S for n = 3.

A.5.1 Interpretation of the Condition in Theorem A.1

The second element of our approach is motivated by the following observation. Let
x ∈ S be a point on the sphere and let r ≥ 0. If r is large enough, then all the
points x′ ∈ S on the sphere that have distance ‖x′ − x‖ greater than r will have a
greater angle θN (x′). Formally, we denote by B(x, r) = {x′ ∈ R(n

2) | ‖x′ − x‖ < r}
the (open) ball of center x and radius r. Then one has the following result.

Lemma A.2. For x ∈ S and r ≥ 0, one has the following implication:

cos(θN (x)) >

√
1− r2

4R2 =⇒ min
x′∈S\B(x,r)

θN (x′) > θN (x) .

Proof. Let φ̄(DN ) = φ(DN )
‖φ(DN )‖ . We discuss over two cases.

Case I:
∥∥∥φ̄(DN )− x

∥∥∥ ≥ r. By laws of cosines, this case is equivalent to:

2R2(1− cos(θN (x))) =
∥∥∥φ̄(DN )− x

∥∥∥2
≥ r2

⇐⇒ cos(θN (x)) ≤ 1− r2

2R2 ≤ 1− r2

4R2 .

Note also that in this case, we have φ̄(DN ) ∈ S\B(x, r) and hence minx′∈S\B(x,r) θN (x′) =
minx′∈S θN (x′) = 0 ≤ θN (x) always holds, where the minimum is attained at
x′ = φ̄(DN ).
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Case II: ‖φ̄(DN ) − x‖ < r, that is φ̄(DN ) ∈ B(x, r). As the function x′ 7→ θN (x′)
is convex with global minimum in B(x, r), its minimum over S \ B(x, r) is attained
at the boundary S ∩ ∂B(x, r) = {x′ ∈ R(n

2) | ‖x′‖ = R and ‖x′ − x‖ = r}, which is
formed by cutting S with the

((n
2
)
− 1

)
-dimensional hyperplane written as

L :=
{
x′ ∈ R(n

2)
∣∣∣ 〈x′, x〉 = 2R2 − r2

2
}
.

Straightforwardly one can verify that S∩ ∂B(x, r) is in fact a
((n

2
)
− 1

)
-dimensional

sphere lying in L, centered at c = 2R2−r2

2R2 x with radius γ = r
√

1− r2

4R2 . Now we
take effort to identify:

x∗ = arg min
x′∈S∩∂B(x,r)

θN (x′) = arg min
x′∈S∩∂B(x,r)

CN (x′) .

Note that φ(DN ) projected onto L is the vector (φ(DN ))L := φ(DN ) − 〈φ(DN ),x〉
R2 x.

One can easily verify by Pythagoras rule that, for any set K ⊆ L,

arg min
x′∈K

∥∥x′ − φ(DN )
∥∥ = arg min

x′∈K

∥∥x′ − (φ(DN ))L
∥∥ .

Therefore we have:

x∗ = arg min
x′∈S∩∂B(x,r)

∥∥x′ − (φ(DN ))L
∥∥ = c+ γ

(φ(DN ))L
‖(φ(DN ))L‖

= 2R2 − r2

2R2 x+ r

√
1− r2

4R2
φ(DN )− 〈φ(DN ),x〉

R2 x√
‖φ(DN )‖2 − 〈φ(DN ),x〉2

R2

.

Tedious but undemanding calculation leads to

θN (x∗) > θN (x)⇐⇒ 〈x∗, φ(DN )〉 > 〈x, φ(DN )〉 ⇐⇒ cos(θN (x)) >

√
1− r2

4R2 .

It is interesting to look at the geometric interpretation of Lemma A.2. In fact,
it is clear from the proof that x∗ should lie in the 2-dimensional subspace spanned
by φ(DN ) and x. We are thus able to properly define multiples of an angle by
summation of angles on such linear space 2θN (x) := θN (x) + θN (x). Figure A.3
provides an illustration of Lemma A.2 in this 2-dimensional subspace from the
geometric point of view. In words, provided that θN (x) ≤ π/2, x∗ has a smaller
angle than x is equivalently written using laws of cosines as

r2 = ‖x− x∗‖2 > 2R2(1− cos(2θN (x))
)

⇐⇒ cos(2θN (x)) > 1− r2

2R2 ⇐⇒ cos(θN (x)) >

√
1− r2

4R2 .
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Figure A.3: Geometric illustration of the bound in Lemma A.2 with x = φ(σ) and k = r2

4
taking integer values (representing possible Kendall’s tau distance). The smallest integer
value for k such that these inequalities hold is k = 2.

This recovers exactly the condition stated in Lemma A.2.
A final lemma necessary for the proof of Theorem A.1 is on the embedding of

a ball in the Euclidean space. For σ ∈ Sn and k ∈ {0, . . . ,
(n

2
)
}, we denote by

B(σ, k) the (closed) ball for the Kendall’s tau distance of center σ and radius k,
i.e. B(σ, k) = {σ′ ∈ Sn | d(σ, σ′) ≤ k}. The following is a direct consequence of
Proposition A.1.

Lemma A.3. For σ ∈ Sn and k ∈ {0, . . . ,
(n

2
)
},

φ (Sn \B(σ, k)) ⊂ S \ B(φ(σ), 2
√
k + 1) .

A.5.2 Proof of Theorem A.1

We can now prove Theorem A.1 by combining the previous results and observations.

Proof of Theorem A.1. Let DN ∈ SNn be a dataset and σ ∈ Sn a permutation. By
Lemma A.2, one has for any r > 0,

cos(θN (σ)) >

√
1− r2

4R2 =⇒ min
x∈S\B(φ(σ),r)

θN (x) > θN (σ) .

We take r = 2
√
k + 1. The left-hand term becomes cos(θN (σ)) >

√
1− k+1

R2 , which
is the condition in Theorem A.1. The right-hand term becomes:

min
x∈S\B(φ(σ),2

√
k+1)

θN (x) > θN (σ) ,
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which implies by Lemma A.3 that

min
σ′∈Sn\B(σ,k)

θN (σ′) > θN (σ) .

This means that for all σ′ ∈ Sn with d(σ, σ′) > k, θN (σ′) > θN (σ). Now, by Lemma
A.1, any Kemeny consensus σ∗ necessarily satisfies θN (σ∗) ≤ θN (σ). One therefore
has d(σ, σ∗) ≤ k, and the proof is concluded.

A.6 Numerical Experiments

In this section we study the tightness of the bound in Theorem A.1 and the ap-
plicability of The Method through numerical experiments. We first elaborate in
detail the voting rules used in the chapter to approximate Kemeny’s rule. Note
that if multiple consensuses are returned from a rule on a given dataset, we always
randomly pick one from these consensuses.

• Positional scoring rules. Given a scoring vector w = (w1, ..., wn) ∈ Rn
of weights respectively for each alternative in JnK, the ith alternative in a
vote scores wi. A total ranking is given by sorting the averaged scores over
all votes, for example, the winner is the alternative with highest total score
over all the votes. The plurality rule has the weight vector (1, 0, ..., 0), the
k-approval rule has (1, ..., 1, 0..., 0) containing 1s in the first k positions, and
the Borda rule [de Borda 1781] has (n, n− 1, ..., 1).

• Copeland [Copeland 1951]. A total ranking is given by sorting the Copeland
scores averaged over all votes, for which the score of alternative i is the
number of pairwise beats, or #{j 6= i : i beats j}. For example, the Copeland
winner is the alternative that wins the most pairwise elections.

• QuickSort [Ali 2012]. QuickSort recursively divides an unsorted list into
two lists – one list comprising alternatives that occur before a chosen index
(called the pivot), and another comprising alternatives that occur after, and
then sorts each of the two lists. The pivot is always chosen as the first
alternative.

• Pick-a-Perm [Ali 2012]. A total ranking is picked randomly from Sn ac-
cording to the empirical distribution of the dataset DN .

• Plackett-Luce. A Plackett-Luce ranking model defined for any σ ∈ Sn by
pw(σ) =

∏n
i=1wσ(i)/

(∑n
j=iwσ(j)

)
parameterized by w = (w1, . . . , wn) ∈ Rn,

fitted to DN by means of the MM algorithm [Hunter 2004]. A total ranking
is then given by sorting w.

• Pick-a-Random. A total ranking is picked randomly from Sn according to
uniform law (independent from DN ).



A.6. Numerical Experiments 121

Notably, Pick-a-Random is expected as a negative control experiment. To in-
tuitively understand the rationale behind Pick-a-Random, let us consider the case
conditioned on that the output of a voting rule has (at least) certain Kendall’s
tau distance to the Kemeny consensus. Compared to what Pick-a-Random would
blindly pick any permutation without accessing to the dataset DN at all, a sensible
voting rule should have a better chance to output one permutation with a smaller
angle θ with φ(DN ) among all the permutations that share the same distance to
Kemeny consensus. As we have reasoned in the geometric proof of The Method that
the smaller the angle θ is, the more applicable our method will be, Pick-a-Random
is expected to perform worse than other voting rules in terms of applicability of our
method.

A.6.1 Tightness of the Bound

Recall that we denote by n the number of alternatives, by DN ∈ SNn any dataset,
by r any voting rule, and by r(DN ) a consensus of DN given by r. For ease of
notation convenience, we assume that KN contains a single consensus (otherwise
we pick one randomly as we do in all experiments). The approximation efficiency
of r to Kemeny’s rule is exactly measured by d(r(DN ),KN ). Applying our method
with r(DN ) would return an upper bound for d(r(DN ),KN ), that is:

d(r(DN ),KN ) ≤ kmin .

Notably here we are not interested in studying the approximation efficiency of a
particular voting rule, but we are rather interested in studying the approximation
efficiency specific to our method indicated by the tightness of the bound, i.e.,

s (r,DN , n) := kmin − d(r(DN ),KN ) .

In other words, s (r,DN , n) quantifies how confident we are when we use kmin to
“approximate” the approximation efficiency d(r(DN ),KN ) of r to Kemeny’s rule on
a given dataset DN . The smaller s (r,DN , n) is, the better our method works when
it is combined with the voting rule r to pinpoint the Kemeny consensus on a given
dataset DN . Note that our notation stresses on the fact that s depends typically
on (r,DN , n).

We empirically investigate the efficiency of our proposed method by experiment-
ing s (r,DN , n) with various voting rules r, on different datasets DN , implicitly in-
volving n as well. For that purpose, in each experiment we test six prevalent voting
rules plus one negative-control method as approximate candidates to Kemeny’s rule:
three scoring rules that are Borda Count, k-approval, Copeland; two algorithmic
approaches that are QuickSort and Pick-a-Perm; one statistical approach based on
Plackett-Luce ranking model; one baseline method serving a negative control that
is Pick-a-Random.

We first look at the the effect of different voting rules r on s (r;DN , n) with the
APA dataset. In the 1980 American Psychological Association (APA) presidential
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election, voters were asked to rank n = 5 candidates in order of preference and a
total of N = 5738 complete ballots were reported. With the original collection of
ballots introduced by [Diaconis 1989], We created 500 bootstrapped pseudo-samples
following [Popova 2012]. As shown in Figure A.4, s (r;DN , n) varies across different
voting rules and our method works typically well combined with Borda Count or
Plackett-Luce, a phenomenon that constantly occurs in many experiments. For
example for Borda Count the median tightness being 3 means that our method
provides a bound that tolerates an approximation within a Kendall’s tau distance
up to 3. We also observe that on the contrary, the boxplot of Pick-a-Random always
shows a wider range and larger median as expected.
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Figure A.4: Boxplots of s (r,DN , n) over sampling collections of datasets shows the effect
from different voting rules r with 500 bootstrapped pseudo-samples of the APA dataset
(n = 5, N = 5738).

The effect of datasets DN on the measure s (DN ; r, n) is tested with the Netflix
data provided by [Mattei 2012]. We set n = 3 the number of ranked alternatives
and take two types of data with distinct characteristics to contrast their impact: we
took the 100 datasets with a Condorcet winner and randomly selected 100 datasets
from those with no Condorcet winner. The rationale for this experiment is that
Kemeny’s rule is a Condorcet method, i.e., Kemeny’s rule always yields a Condorcet
winner if it exists. Therefore we suppose that the efficiency of our method should
also depend on this particular social characteristic present in data. As expected, it
is interesting to note the clear difference shown by the two types of data shown by
Figure A.5. In words, our method is more efficient in case that a Condorcet winner
is present in the dataset than the other case that a Condorcet winner is absent in
the sense that s is generally smaller in the former case.

We finally study how the s (n; r,DN ) grows with the size of the alternative
set n using the sushi dataset found in [Kamishima 2003], originally provided as a
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Figure A.5: Boxplots of s (r,DN , n) over sampling collections of datasets shows the effect
from datasets DN . 100 Netflix datasets with the presence of Condorcet winner and 100
datasets with no Condorcet winner (n = 4 and N varies for each sample).

dataset of N = 5000 total rankings of 10 sushi dishes. As evaluating s requires
exact Kemeny consensus which can quickly become intractable when n is large, we
strict in this study the number of sushi dishes n to be relatively small, and generate
collections of datasets, indexed by combinations of n sushi dishes out of {1, . . . , 10},
by counting the total occurrences of such order present in the original dataset.
For example, when n = 3 we have a total of

(10
3
)

= 120 different combinations of
alternatives (hence 120 collections of datasets) each generated by counting the total
occurrences of preference orders of individuals restricted to these 3 alternatives.
Therefore we have a total of 120; 210; 252 datasets respectively for n = 3; 4; 5.
Figure A.6 shows that s (r,DN , n) increases as n grows, a trend that is dominant
and consistent across all voting rules. Since the maximal distance

(n
2
)
in Sn grows

quadratically with respect to n, an interesting question would remain to specify
explicitly the dependency of kmin on n, or the dependency of s (r,DN , n) on n, for
a given voting rule.

A.6.2 Applicability of The Method

We have so far focused on small n (n ≤ 5) case, and verified that our method
is efficient in using kmin to approximate d(r(DN ),KN ). We are now mostly inter-
ested in the usefulness of our method when kmin is directly combined with voting
rules in pinpointing Kemeny consensus KN particularly when n is large. Now we
employ our method by using kmin for each dataset to upper bound the approxima-
tion performance of r(DN ) to Kemeny’s rule. Moreover, suppose that we are still
interested in finding the exact Kemeny consensus despite a good approximation
r(DN ). Once we have computed an approximated ranking r(DN ) and kmin is iden-
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Figure A.6: Boxplots of s (r,DN , n) over sampling collections of datasets shows the effect
from different size of alternative set n with restricted sushi datasets (n = 3; 4; 5, N = 5000).

tified via our method, the search scope for the exact Kemeny consensuses can be
narrowed down to those permutations within a distance of kmin to r(DN ). Notably
[Wang 2013, Lemma 1] proved that the total number of such permutations in Sn is
upper bounded by

(n+kmin−1
kmin

)
which can be smaller than |Sn| = n! by orders.

We took the original sushi dataset consisting of N = 5000 individual votes
on n = 10 sushi dishes and created 500 bootstrapped pseudo-samples following the
same empirical distribution. Note that kmin should also depend on (r,DN , n). Since
our bound is established in general with any σ ∈ Sn and does take into consideration
the approximation efficiency of specific voting rules to Kemeny’s rule, the predicted
kmin should significantly rely on the approximate voting rules utilized and should
be biased more in favor to voting rules with good approximation to Kemeny’s rule
since kmin can never be inferior to d(r(DN ),KN ). As shown in Figure A.7, Pick-a-
Random and Pick-a-Perm typically performs poorly, but this is largely due to the
fact that the two voting rules are too naive to well approximate Kemeny’s rule per
se. On the contrary, we observe that Borda, Copeland and QuickSort combined with
our method best pinpoint Kemeny consensuses with kmin of a median distance 14.
This further means that in order to obtain all the exact Kemeny consensuses now,
on average we need to search through at most

(10+14−1
14

)
= 817, 190 permutations

instead of 10! = 3, 628, 800 permutations, where 77% of permutations in S10 are
removed from consideration.

A.7 Discussion

In this chapter, we have established a theoretical result that allows to control the
Kendall’s tau distance between a permutation and the Kemeny consensuses of any
dataset. In practice, this provides a simple and general method to predict, for
any ranking aggregation procedure, how close its output on a dataset is from the
Kemeny consensuses. From a broader perspective, it constitutes a novel approach
to apprehend the complexity of Kemeny aggregation.

Our results rely on some geometric properties of the Kendall embedding. Al-
though they have rarely been used in the literature, the geometric properties have
proved to provide a powerful framework to analyze Kemeny aggregation. We there-
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Figure A.7: Boxplots of kmin over 500 bootstrapped pseudo-samples of the sushi dataset
(n = 10, N = 5000).

fore believe that it could pave way to other profound results. In particular, we deem
that an analysis of how the embeddings of the permutation spread on the sphere
could lead to a finer condition in Theorem A.1, which is left as future work.

Another interesting direction would certainly be to extend our method to rank
aggregation from partial orders, such as pairwise comparisons or top-k rankings.
Two main approaches can be followed. In the first one, a partial order would be
identified with the set S ⊂ Sn of its linear extensions and its distance to a permuta-
tion σ ∈ Sn defined by the average (1/|S|)

∑
σ′∈S d(σ, σ′). The Kendall embedding

would then naturally be extended to S as (1/|S|)
∑
σ′∈S φ(σ′), the barycenter of

embeddings of its linear extensions. In the second approach, one would see a par-
tial order as a collection of pairwise comparisons {i1 � j1, . . . , im � jm} and define
its distance to a permutation σ ∈ Sn by the average number of pairwise disagree-
ments (1/m)

∑m
r=1 1{σ(ir) > σ(jr)}. The Kendall embedding would then naturally

be extended to {i1 � j1, . . . , im � jm} as the embedding of any linear extension
σ where the coordinate on {i, j} is put equal to 0 if {i, j} does not appear in the
collection. In both cases, our approach would apply with slight changes to exploit
related geometric properties.
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Résumé

Le cancer du sein est le deuxième can-
cer le plus répandu dans le monde et
la principale cause de décès due à un
cancer chez les femmes. L’amélioration
du pronostic du cancer a été l’une
des principales préoccupations afin de
permettre une meilleure gestion et un
meilleur traitement clinique des patients.
Avec l’avancement rapide des tech-
nologies de profilage génomique durant
ces dernières décennies, la disponibilité
aisée d’une grande quantité de données
génomiques pour la recherche médicale
a motivé la tendance actuelle qui con-
siste à utiliser des outils informatiques
tels que l’apprentissage statistique dans
le domaine de la science des don-
nées afin de découvrir les biomarqueurs
moléculaires en lien avec l’amélioration
du pronostic. Cette thèse est conçue
suivant deux directions d’approches des-
tinées à répondre à deux défis majeurs
dans l’analyse de données génomiques
pour le pronostic du cancer du sein
d’un point de vue méthodologique de
l’apprentissage statistique : les ap-
proches basées sur le classement pour
améliorer le pronostic moléculaire et
les approches guidées par un réseau
donné pour améliorer la découverte
de biomarqueurs. D’autre part, les
méthodologies développées et étudiées
dans cette thèse, qui concernent respec-
tivement l’apprentissage à partir de don-
nées de classements et l’apprentissage
sur un graphe, apportent une contribu-
tion significative à plusieurs branches
de l’apprentissage statistique, concer-
nant au moins les applications à la biolo-
gie du cancer et la théorie du choix so-
cial.

Mots Clés

Cancer du sein, pronostic moléculaire,
découverte de biomarqueurs, réseau
biologique, apprentissage statistique,
analyse de données génomiques

Abstract

Breast cancer is the second most com-
mon cancer worldwide and the leading
cause of women’s death from cancer.
Improving cancer prognosis has been
one of the problems of primary inter-
est towards better clinical management
and treatment decision making for can-
cer patients. With the rapid advance-
ment of genomic profiling technologies
in the past decades, easy availability of
a substantial amount of genomic data
for medical research has been motivat-
ing the currently popular trend of us-
ing computational tools, especially ma-
chine learning in the era of data sci-
ence, to discover molecular biomark-
ers regarding prognosis improvement.
This thesis is conceived following two
lines of approaches intended to address
two major challenges arising in genomic
data analysis for breast cancer prog-
nosis from a methodological standpoint
of machine learning: rank-based ap-
proaches for improved molecular progno-
sis and network-guided approaches for
enhanced biomarker discovery. Further-
more, the methodologies developed and
investigated in this thesis, pertaining re-
spectively to learning with rank data and
learning on graphs, have a significant
contribution to several branches of ma-
chine learning, concerning applications
across but not limited to cancer biology
and social choice theory.

Keywords

Breast Cancer, Molecular Prognosis,
Biomarker Discovery, Biological Net-
work, Machine Learning, Genomic Data
Analysis
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