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Summary

This thesis is dedicated to the study of (K x M) Multiple Input Multiple Output (MIMO)

synchronization in frequency selective channels, in presence of interference.

Time synchronization of MIMO systems have been strongly studied in the last fifteen years,
but most of the existing techniques assume an absence of interference. The current most powerful
statistics robust to interference seems to be the one based on the Generalized Likelihood Ratio
Test (GLRT'). We therefore study the behaviour of the multi-antenna GLRT statistics ngrLrr of
a known signal corrupted by a multi-path deterministic channel in additive white Gaussian noise
with unknown spatial covariance. However, for complexity reasons, it is not always considered
realistic for practical situations. An often-quoted and less complex alternative is the MMSE
statistics nyvse which, on the other hand, performs worse than the GLRT. A part of this work
has thus been devoted to showing that there exist non-GLRT statistics that are less complex to
implement than the ngrrr, while having similar performance. We also propose other approaches
aiming at lowering the complexity of ngrrr. We introduce alternative expressions of ngrLrT,
and do its determinant computation explicitly for K = 2, showing that this allows a direct
comparison between ngrrr and nyvse. We introduce two new low-complexity statistics, narL.rTo
and ngrrT1, and show that their performance is very close to that of ngrrr for a wide range
of parameter choices. Furthermore, we perform a comparative parameter analysis, taking into
consideration the noise type, channel type, the number of transmit and receive antennas, and
the orthogonality of the synchronization sequence. To further reduce complexity, a powerful
procedure of computation rate reduction of the data correlation matrix is proposed. Lastly, the
problem of optimization of the number of transmit antennas K for time synchronization has
been investigated. showing, for high SNR, increasing performance with K as long as KM does
not become greater than 8. All these approaches have been presented with the goal of optimizing

the performance-complexity tradeoff.

Another aspect of MIMO synchronization studied in thesis is asymptotic analysis of the

same GLRT, but for signals of high dimension. Due to the development of sensor networks
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and acquisition devices, it has become common to be faced with multivariate signals of high
dimension. Very often, the sample size that can be used in practice in order to perform statistical
inference cannot be much larger than the signal dimension. In this context, it is well established
that a number of fundamental existing statistical signal processing methods fail. It is therefore
of crucial importance to revisit certain classical problems in the high-dimensional signals setting.
We address the case where the number of sensors M and the number of samples N of the
training sequence converge towards oo at the same rate. When the number of paths L does not
scale with M and N, we establish that ngprrr has a Gaussian behaviour with asymptotic mean
Llog m and variance #% This is in contrast with the standard asymptotic regime
N — 400 and M fixed where narrt has a x% behaviour. Under hypothesis Hy, ngrrr still has
a Gaussian behaviour. The corresponding asymptotic mean and variance are obtained as the
sum of the asymptotic mean and variance in the standard regime N — +o0o0 and M fixed, and
Llog m and %% respectively, i.e. the asymptotic mean and variance under Hy. We
also consider the case where the number of paths L converges towards oo at the same rate as M
and N. Using known results of concerning the behaviour of linear statistics of the eigenvalues
of large F-matrices, we deduce that in the regime where L, M, N converge to oo at the same
rate, naLrr still has a Gaussian behaviour under Hy, but with a different mean and variance.
The analysis of ngrrr under H; when L, M, N converge to co needs to establish a central limit
theorem for linear statistics of the eigenvalues of large non zero-mean F-matrices, a difficult
task that will be addressed in a future work. Motivated by the results obtained in the case
where L remains finite, we propose to approximate the asymptotic distribution of ngrrt by a
Gaussian distribution whose mean and variance are the sum of the asymptotic mean and variance
under Hy when L — +oo with the asymptotic mean and variance under H; in the standard
regime N — +o0o and M fixed. Numerical experiments show that the Gaussian approximation

corresponding to the standard regime N — +oo0 and M fixed completely fails as soon as % is

not small enough. The large system approximations provide better results when % increases,
while also allowing to capture the actual performance for small values of % We also observe
that, for finite values of L, M, N, the Gaussian approximation obtained in the regime L, M, N
converge towards oo is more accurate than the approximation in which L is fixed. We trace the
ROC curves obtained through the limiting distributions, and note that the ROC curves that
are obtained using the former large system approximation are accurate approximations of the

empirical ones in a reasonable range of Pra and Pyp.

Keywords: MIMO, GLRT, Time Synchronization, Interference, Multichannel detection, asymp-

totic analysis, random matrix theory.



Resumé

Cette these est consacrée a ’étude de la synchronisation des systémes de communication multi-

antennes (systemes MIMO) en présence d’interférences.

La synchronisation temporelle des systemes MIMO a été abondemment étudiée dans les
quinze dernieres années, mais la plupart des techniques existantes supposent que le bruit est blanc
temporellement et spatialement, ce qui ne permet pas de modéliser la présence d’interférence.
Nous considérons donc le cas de bruits blancs temporellement mais pas spatialement, dont la
matrice de covariance spatiale est inconnue. En formulant le probleme de ’estimation de I'instant
de synchronisation comme un test d’hypothéses, nous aboutissons naturellement au test du
rapport de vraisemblance généralisé (GLRT) qui donne lieu & la comparaison avec un seuil d’une
statistique de test ngLrr. Cependant, pour des raisons de complexité, 1'utilisation de cette
statistique n’est pas toujours considérée comme réaliste. La premiere partie de ce travail a donc
été consacrée a mettre en évidence des tests alternatifs moins complexes a mettre en oeuvre,
tout en ayant des performances similaires. Une analyse comparative exhaustive, prenant en
considération le bruit et I'interférence, le type de canal, le nombre d’antennes en émission et en
réception, et 'orthogonalité de la séquence de synchronisation est réalisée. Enfin, nous étudions
le probleme de I'optimisation du nombre d’antennes en émission K pour la synchronisation
temporelle, montrant que pour un RSB élevé, les performances augmentent avec K deés que le

produit de K avec le nombre d’antennes de réception M n’est pas supérieur a 8.

Le deuxieme aspect de ce travail est une analyse statistique de ngrrT dans le cas ot le nombre
d’antennes de réception M est élevé. Dans ce contexte, la taille de la séquence d’apprentissage N
est du méme ordre de grandeur que M, et cela conduit naturellement a étudier le comportement
de ngrrr dans le régime asymptotique des grands systéemes M — 400, N — 400 de telle sorte
que % tende vers une constante non nulle. Nous considérons le cadre applicatif d’un systéme
muni d’une unique antenne d’émission et d’un canal & trajets multiples, qui est formellement
identique a celui d’un systéeme MIMO dont le nombre d’antennes d’émissions correspondrait au

nombre de trajets. Lorsque le nombre de trajets L est beaucoup plus faible que N et M, nous

vii
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établissons que ngrrT @ un comportement Gaussien avec 1’esperance asymptotique L log % et

la variance %% Ceci est en contraste avec le régime asymptotique standard N — 400 et M
et L fixe oll ngrrT @ un comportement y2. Sous 'hypothése Hy, narrr a aussi un comportement
gaussien. L’espérance et la variance asymptotique correspondantes sont obtenues comme la
somme de P'esperance et la variance asymptotique dans le régime standard N — 400 et M, L fixe,
et Llog % et %% respectivement, soit 1’esperance et la variance asymptotique sous Hy.
Nous considérons également le cas ou le nombre de trajets L tend vers oo a la méme vitesse
que M et N. Nous utilisons des résultats connus concernant le comportement des statistiques
linéaires des valeurs propres des grandes F matrices, et déduisons que dans le régime ou L, M, N
tendent vers co a la méme vitesse, ngLrT @ encore un comportement Gaussien sous Hg, mais avec
une esperance et variance différentes. L’analyse de ngrrr sous H; lorsque N, M, L convergent
vers +0o nécessite I'établissement d’un théoréme central limite pour les statistiques linéaires des
valeurs propres de matrices F' de moyennes non-nulles, une tache difficile. Motivé par les résultats
obtenus dans le cas ou L reste fini, nous proposons d’approximer la distribution asymptotique
de ngrLrr par une distribution Gaussienne dont I’esperance et la variance sont la somme de la
I’esperance et la variance asymptotique sous Hg quand L — 400 avec l'esperance et la variance
asymptotique sous Hy dans le régime classique N — 400 et M fixé. Des simulations numériques
permettent de comparer les courbes ROC des différents approximants avec des courbes ROC
empiriques. Les résultats montrent que 'approximation Gaussienne correspondante au régime
classique N — +4o00 et M fixé échoue completement des que % n’est pas assez petit. Nos
approximants de grandes dimensions fournissent de meilleurs résultats quand % augmente, tout
en permettant de capturer la performance réelle pour les petites valeurs de % Nous observons
également que I'approximation Gaussienne obtenue pour le régime ou L, M, N tendent vers oo
donne des résultats plus proches de la réalité que ceux qui sont fournis par le régime ou L est

fixé.

Mots-clés: MIMO, GLRT, synchronisation temporelle, interférences, Détection multivoie,

analyse asymptotique, théorie des matrices aléatoires.
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List of notations

General notations

For a complex matrix A, we denote by AT and A* its transpose and its conjugate transpose,
and by Tr(A) and ||A|| its trace and spectral norm. I will represent the identity matrix and e,
will refer to a vector having all its components equal to 0 except the n-th which is equal to 1.
If we need to be precise, we denote by Ik the (K x K) identity matrix. We denote by det(A)
its. determinant, and by Diag(A) the diagonal matrix D where the elements (,7) of D are the
elements (i,7) of A, and the other elements are zero. Ay or a(k) are used to denote its k:th

column, and A; ; the element on its i:th row and j:th column

For a complex vector a, we denote by Diag(a) the diagonal matrix D where element (4,4) of

D is the element 7 of a and the other elements are zero.

The real normal distribution with mean m and variance o2 is denoted Ng(m,o?). A complex
random variable Z = X +iY follows the distribution Ng(a+1i3,0?) if X and Y are independent
with respective distributions Ng(a, %2) and Ng(5, %2)

For a sequence of random variables (X;,),en and a random variable X, we write
X, - Xa.s. and X,, >p X

when X, converges almost surely and in distribution, respectively, to X when n — +o00. Finally,
if (apn)nen is a sequence of positive real numbers, X,, = op(a,) will stand for the convergence
of (X, /an)nen to 0 in probability, and X,, = Op(a,) denotes boundedness in probability (i.e.
tightness) of the sequence (X,,/an)nen-

Xi
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Paper-specific notation

K : Number of transmit antennas
e M : Number of receive antennas
N

: Synchronization sequence length

e L : Number of paths in the frequency selective channel
e 7 : A synchronization statistics

e Y : Received signal matrix

e H : Channel matrix

e S : Synchronization sequence matrix

° : Noise matrix

A\
e R : Noise covariance matrix R = E(v,Vv})
e o2 : Noise power

e |af;j : Spatial correlation between deterministic channels ¢ and j

e |plij : Temporal correlation between the synchronization sequences sent from transmit

antennas ¢ and j
e 0; : Direction of arrival of the signal from transmit antenna ¢, in degrees

e h;(0;) : Deterministic channel ¢ with its direction of arrival in degrees



Correlation matrices used in this paper

xiii

For the reader’s convenience, Table 1 gathers all the correlation matrices and vectors used in

this paper.
Notation | Interpretation Definition
f{yy Empirical correlation of the received sequence. % Z]kvz_ol Y.Y; = %YY*
Tty Power of the received sequence. + Z,]CV;(} YY), =Tr(Ry,)
" . . 1 \~N-1 — (R .
Ty, Power of received sequence on receive antenna | « >°1—g YY) = (Ryy)j
j-
R Intercorrelation between the received sequence | 4 SN -1y, S = ¥S
ys N k=0 Tk N
and the useful samples.
. . . . 1 «—N-1 « _ YT
Tys, Intercorrelation between the received signal and | + > 215 Y& Si, = —x«
the useful samples associated to transmit an-
tenna .
TV . (QT\*
Ty;s; Intercorrelation between the received signal at % Zivzfol Y 1S, = W
receive antenna j and the useful samples asso-
ciated to transmit antenna .
R, Correlation matrix of the useful samples. % Zivz_ol S.S; = Slf’,* o
; |1 N1 (87):(8%);
s Intercorrelation between useful samples associ- | + >1 Si,ij’k = —5—2 = (Rss)iy

ated to transmit antennas ¢ and j.

Table 1: Paper-specific notations
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Chapter 1

Introduction

his thesis has been carried out within the framework of a CIFRE convention between
Thales Communications, Université Paris Est and CNAM, and is dedicated to the study
of Multiple Input Multiple Output (MIMO) synchronization in frequency selective channels, in

the presence of interference.

The first area of research is the optimization of system parameters in MIMO synchronization
(especially optimizing the number of transmit antennas) as well as an investigation of the
complexity-performance trade-off in the design of such systems. More specifically, Generalized
Likelihood Ratio Tests (GLRTS) are studied, with the goal of simplifying the complexity of

synchronization.

The second area of research is an asymptotic analysis of the same GLRT, using random
matrix methods. The goal of the asymptotic analysis is to propose asymptotic distribution of

the synchronization statistics with different large system assumptions.

1.1 MIMO in synchronization: Friend or foe?

1.1.1 Introduction: Evolution and advantages of MIMO

During the past decades, there has been an explosion in the number of receiver and transmitter
architectures aiming at taking advantage of several antennas in transmission and reception in
wireless systems. Wireless systems experience different challenges than wireline systems, and the
main challenges are multipath and fading channels, which make it challenging to achieve very

high data rates and good error performance. Multiple-input-multiple-output (MIMO) has been
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hailed as a breakthrough in wireless communication, and has been proposed as a solution to this

so-called bottleneck of wireless communications.

The possible gain obtained from using multiple antennas can be divided into three main

categories:

1. Beamforming gain, obtained by steering the signal in a certain direction, and nulling
certain directions. Beamforming, a classical multi-antenna technique, can either be done at

transmission or reception.

2. Diversity gain, which is obtained by sending the information through channels with different
characteristics. For example, in order to take advantage of the different fading characteristics
of the channels experienced by the independent antennas, we can send the same information
from all transmit antennas. Diversity gain increases the robustness of the system by
eliminating fading. In a certain sense, it converts the channel from a fading to a non-fading

one, and thus increases the reliability of transmission.

3. Multiplexing gain, specific to a MIMO system, is obtained by spatial multiplexing. The
transmitted data is divided into independent data streams which can be decoded at the
receiver. The separability at reception makes use of rich multipath, which makes the
channel spatially selective. Instead of seeing it as a problem, spatial multiplexing actually
exploits multipath. The main goal of spatial multiplexing is to maximize transmission rate,

as opposed to transmit/receive diversity where the main goal is to increase reliability.

However, when wireless communication was mainly used for voice-based systems, the practical
interest for MIMO systems was weak; there was no real need for very high data rates. Due to
the difficult characteristics of the wireless channel, rate-intense applications such as high-rate
video streaming has traditionally been done with wireline technology. Furthermore, the interest
in MIMO was low due to practical problems such as increased hardware costs and challenges in
implementation, especially in the handsets. Nevertheless, with the recent upswing in smartphones
and other mobile devices, we have been obliged to solve the problem of increasing the data
rate even for wireless applications. On the other hand, now that the handsets have become
more sophisticated, the constraints on the size of the MIMO system are less severe, and it has
become practically feasible to have multiple antennas on both sides of the link. MIMO is thus
not only a theoretical consideration, and it has indeed been successfully implemented in several
well-established standards. Some examples include CDMA which uses Alamouti space-time-codes,
MIMO transmissions in WLAN, and MIMO in the 3GPP LTE standard.

What are the alternatives to MIMO, and why are they not enough for high data-rate wireless

communication? A conventional approach to wireless communication is the single-input-single-
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output (SISO) system. A SISO system, however, is unable to reject interference, or take advantage
of spatial diversity. One approach to solving the problem of fading or multipath in a SIMO system
is using channel coding combined with interleaving, to achieve time diversity. But this only
works up to a certain point, and cannot produce very high data rates. Traditional multi-antenna
systems which have been around for decades have several antennas in either transmission or
reception, generally at the base station. These systems use mainly beamforming or spatial
diversity at either emission or reception. They can also perform interference reduction by taking
advantage of several receive antennas, through for example receive beamforming. In theory,
high data-rate communication can be implemented with a SIMO system, but this requires very
high bandwidth, which is not easy to obtain since bandwidth is an expensive resource. In short,

despite its advantages, a SIMO system is also unfeasible for Gigabit internet.

The basis of a MIMO system, on the other hand, is having multiple spatially distributed
antennas at both sides of the link. This transform the system from a vector system to a matrix
system, and adds additional degrees of freedom through the so-called spatial dimension which
can then be exploited to perform spatial multiplexing. A MIMO system also has a joint transmit
and receive diversity gain. Theoretical results show that the maximum bit rate of a (K x M)
MIMO system grows linearly with min(K, M). As a summary, the benefits of smart antennas

are retained, and new benefits are added.

Nevertheless, as with any system, the gains mentioned for a multi-antenna system do not
come for free. Some of the challenges that exist in MIMO synchronization are summarized in the

next subsection.

1.1.2 Challenges in MIMO synchronization

An important challenge in MIMO synchronization is that there exists a performance-complexity
trade-off; when the number of antennas increases, so does the complexity of the algorithms.
From a complexity point of view, it is thus appropriate to ask the question whether we should
add extra antennas for the specific system and application under study. Complexity is of course
also a problem from the hardware cost and compatibility point of view. Increasing the number
of antennas in a system is an important system decision, and the advantages and possible

disadvantages should be carefully weighed.

Another important consideration in MIMO systems is the assumptions on interference of
the system. Point-to-point systems can be a reasonable assumption in certain applications,
for example the IEEE 802.11n standard, since it is designed to ensure that its short range

links do not suffer from interference. But in general, MIMO cellular systems are interference
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limited, suffering from internal and other cell interference. As the number of interfering streams
increases, the interference cannot be suppressed by spatial signal processing, and is treated as
noise. Therefore, as opposed to what one may believe, adding transmit antennas in the system

can actually decrease the throughput at low SINR.

An additional important system feature is the channel characteristics. A common, often
simplified, assumption is that of uncorrelated antenna arrays and Rayleigh fading channels. To
fully cover the problem, there is a need for investigating the performance of MIMO systems even
for deterministic channels, and understanding which system parameters to choose according to a

suitable channel model.

Considering the above challenges, the following section outlines the state of the art in MIMO

synchronization, with the goal of validating the need for our study.

1.1.3 State of the art in MIMO synchronization

Time and frequency synchronization of MIMO systems have been strongly studied in the last
fifteen years, mainly in the context of direct-sequence coded division multiple access (DS-CDMA)
and orthogonal frequency division multiplex (OFDM) links. Both coarse and fine time syn-
chronization jointly with frequency offset estimation and compensation have been analyzed,
and many techniques have been proposed either for time-frequency synchronization [1-4] or
time synchronization only [5-9]. Nevertheless, most of these techniques assume an absence of
interference. The scarce papers of the literature dealing with MIMO synchronization in the
presence of interference correspond to [2,7-9]. However, [2] and [7] only consider the problem of
MIMO synchronization in the presence of multi-user interference (MUI), and [8] seems to be the
only paper dealing with MIMO synchronization in the presence of interference of any kind, such
as hostile jammers. In [8], several statistics are proposed for time synchronization for both flat
fading and frequency selective fading channels. Despite the numerous existing algorithms for
MIMO time synchronization, many important questions about their optimality, performance and

complexity have arisen.

First of all, none of the receivers developed for MIMO synchronization in the absence of
interference [1,3-6,10-27] has been developed through a GLRT approach in the general case
of an SC non-DS-CDMA link and arbitrary potentially non-orthogonal sequences. It is well-
known [28], however, that contrary to likelihood ratio test (LRT) statistics, GLRT statistics
may be suboptimal from a detection point of view. With this in mind, one may wonder if a

non-GLRT statistics can be equal or better than existing GLRT statistics.
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While the GLRT statistics in presence of interference has already been presented [8], questions
regarding its practical usefulness arise. In [8], two statistics for flat fading channels, robust
to interferences, are derived from an MMSE and a GLRT approach respectively. The GLRT
statistics, called ngrrr in the following, assumes unknown, Gaussian, spatially colored and
temporally white total noise. We note that the GLRT receiver may be very costly to implement,
for a large number of antennas in particular, since for a (K x M) MIMO system, it requires
both an (M x M) matrix inversion and an (M x M) or (K x K) determinant computation at
each tested sample position. An alternative to ngrrr is the MMSE statistics proposed in [§].
However, the MMSE approach will be shown to be very sensitive to training sequence correlation,

which may limit its practical use in this context.

Before going on to describe our proposition to resolve the above problems, we will introduce
the considered system model, and briefly recall the concept of synchronization as a hypothesis
testing problem. We will also introduce the concept of Generalized Likelihood Ratio Test (GLRT).

1.2 Model and problem formulation

1.2.1 Hypotheses

We consider a (K x M) MIMO radiocommunication link with K and M narrow-band antennas at
transmission and reception respectively, and denote by s(k) the (K x 1) complex synchronization
sequence, known by the receiver, transmitted on the transmit antennas at time k. Assuming
a perfect time and frequency synchronization, the vector y(k) of the complex envelopes of the

signals at the output of the M receive antennas at time k£ can be written as

L—1
y(k) => Hs(k —1) + v(k) (1.1)
=0

Here, H; and [ are the (K x M) channel matrix of the path [, and v(k) is the sampled total noise
vector, which contains the potential contribution of MUI interferences, jammers and background
noise. The samples v(k) are assumed to be zero-mean, temporally white, i.i.d, circular, and

Gaussian with covariance matrix R = E[v(k)v(k)*].

Let us denote by Y and V the (M x N) observation and total noise matrices Y =
[y(1),...,y(N)] and V = [v(1),...,v(N)] respectively. Let us denote by S the (KL x N)
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synchronization sequence matrix

S1 S92 e SN
0 S1 PN SN—1
S = . (1.2)
0 . SN-L+1
where [s1,s2,...,sy] is the matrix of synchronization sequences on the first path, and let

H = [Hy,Hy,...,Hr_;] be the frequency selective channel matrix. With these definitions, we
obtain the matrix model
Y=HS+V (1.3)

Note that for frequency selective channels, a priori information about the maximal number of
paths L is required. What is more interesting is that this model can be used for any other

application that can be written in the above matrix form, and is not limited to synchronization.

1.2.2 Synchronization as hypothesis testing

The problem of time synchronization of a MIMO link may be viewed as a detection problem
with three hypotheses. The first hypothesis (H;) is that the signal matrix S is perfectly aligned

in time with the observation matrix Y, and corresponds to model (1.3), or
Hi:Y=HS+V (1.4)

The second hypothesis (Hp) is that there is no signal in the observation matrix Y, and corresponds
to model (4.5) given by
Hy: Y=V (1.5)

The third hypothesis is the intermediate hypothesis, which supposes that a part of the received
signal is only noise, while another part contains the useful signal. Let us define the (KL x N)

partial synchronization sequence matrix as

Sp = [0(xLx4),S1]; (1.6)

where S; is a (KL x (N — A)) matrix with A < N which contains a subset of the synchronization

sequence matrix defined in (4.2). The intermediate hypothesis is then given by
H,:Y =HS,+V (1.7)

The hypothesis H, is important, since especially in a frequency selective channel there may be

several good detections, arising from only a part of the signal being present.
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Nevertheless, to simplify the problem, we assume a binary hypothesis testing model with only
Hp and H;. The problem of synchronization as detection then consists in elaborating a statistical
test n which is a function of the observations Y, and in comparing its value to a threshold s. If
the threshold is exceeded, detection is considered. The threshold is used to choose between Hy
and Hy, by

H,
p 2 s (18)
Hop

If the threshold is exceeded several times, a decision rule must be applied to choose the

moment of detection.

1.2.3 Generalized Likelihood Ratio Test (GLRT)

According to the Neyman-Pearson theory of detection, the optimal statistical test for the detection
of matrix S from matrix Y is the likelihood ratio test (LRT), which consists in comparing the
function LRT £ py, (Y|H,S,R)/pu,(Y|R) to a threshold, where py, (Y]|...) (i = 0,1) is the
conditional probability density of Y under H;. For our noise model, the expression of the LRT

takes the form

Lr = T oo (k) | s(k), HLR).

(1.9)
[T pro (y() | R)
For our Gaussian model, the probability density functions take the form
1 *R —1
IR = — YRR y(k) 1.10
pao(y (k) | R) = e (110
and )

k B HR)= — o~ (y(k)—Hs(k))"R™! (y(k)—Hs(k)) 1.11
i () | (k) HLR) = e S o

As, in practice, R, H or one of the two are unknown, they have to be replaced in (1.9) by their
maximum likelihood (ML) estimates under each of the two hypotheses H; and Hy, which gives
rise to the Generalized Likehood Ratio Test (GLRT). In the case where both R and H are

unknown, the GLRT test statistic becomes

arg max [Ty p, (y(k) | s(k), H,R)

TIGLRT = (1.12)

arg max [T pa, (y () | R)

1.2.4 Performance of a binary hypothesis test

The performance of a synchronization test statistic n is characterized by the probability of

non-detection under H; (Pnp) for a given false alarm probability (Pga ), which is the probability
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of exceeding the threshold s under Hy. More formally,

Pra =P(n >t | Hy)
Pnp :P(n <t | Hl) (1.13)

Figure 1.1 illustrates the concept of Ppa and Pnp for the case where both Hy and H; correspond
to statistics that follow a Gaussian distribution, for a Ppa = 1073. In our work, the threshold s

threshold

Figure 1.1: Pxp and Ppa in binary hypothesis testing

for a given Pga will be set empirically by generating a large number of samples under Hg. This

threshold will then be used in the simulations to determine the Pyp.



1.3. OBJECTIVE 9

1.3 Objective

The objective of this PhD thesis is to obtain responses to some of the open problems in

synchronization in MIMO systems, namely:

1. Choice of synchronization algorithms for MIMO systems, and analysis of the complexity-

performance trade-off.

2. Possible advantages of MIMO over SIMO, and investigation of the need for transition from
SIMO to MIMO in the synchronization context.

3. Characterization of the asymptotic behavior of MIMO synchronization statistics.

4. Prediction of performance of MIMO synchronization.
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1.4 Parameter optimization and complexity reduction for time

synchronization

1.4.1 Introduction to the problem

The first part of the PhD thesis, fully described in chapter 2, concerns parameter optimization
and complexity reduction of MIMO synchronization. As mentioned in subsection 1.1.3, the
current most powerful receiver is based on a generalized likelihood ratio test (GLRT), which
assumes unknown, circular, temporally white and spatially colored Gaussian noise. Nevertheless,
the computational complexity of this statistics is higher than its non-GLRT counterparts, which,
unfortunately, do not perform as well in most cases. As complexity is an important issue for
practical implementations and may be prohibitive for a large number of antennas, the purpose of
this study is to propose several ways of decreasing the complexity of the GLR test while retaining

its performance.

1.4.2 Synchronization statistics studied in the thesis

A first straightforward way of optimizing performance, and if applicable, decreasing the complexity,
of MIMO synchronization is based on applying the knowledge we have about the system. If we
know that the noise is spatially and temporally independent, we may use the following GLRTs
(derived in Appendices 2.6 and 2.7), optimized for either equal or unequal noise power at each

receiver antenna:

e Both R and H are unknown, but R is known to be in the form R = oI (spatially white

noise with equal noise power at all receive antennas):

arg max I p, (v (k) | s(k), H,0%T)

" i (1.14)
GLRT,we = . .
e arg max [T pay (y(k) | 02I)

[

e Both R and H are unknown, but R is known to be in the form R = Diag[o?,03,...,0%,]
(spatially white noise with unequal powers at the different receive antennas):
argmax [[i2, pa, (y(k) | s(k), H,R)
(rf,...,o‘%l,H
TIGLRT,wu = (1.15)

arg max [TiLy pa, ((K) | R)

2
010y
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Nevertheless, if both R and the channel matrix H are unknown, the GLRT synchronization
statistics is calculated using (1.18), which is the starting point of both chapters 2 and 3. This
GLRT statistics, already present in the literature [8], is given by

nerrr = det[Iy — S*(SS*)7ISY*(YY*) "1y, (1.16)

A sufficient statistic is the log-likelihood ratio ngrrr = log(ngprr)/N. Using det(I — AB) =

det(I — BA), we have the statistics in the form that we will use from now on:

SY* /YY*\ 'YS* /SS*\ !
neLrr = — log det [IL_ N ( N ) N (N) ] (1.17)

= — logdet (T — Ry Ry R3'R;,) (1.18)

The GLR is generally considered an optimal test, but it can be seen from equation (1.18) that its
complexity quickly gets prohibitive when K, M, N increase in size. To compute ngrrt we have
to, at each time index, compute and invert a (M x M) matrix f{yy, and compute a determinant

of a square matrix of size min(M, K, N).

An alternative to the GLRT statistics is the MMSE statistics, which is also robust to
interferences. The MMSE statistics minimizes the LS error between the known synchronization
sequence S and its LS estimation from a spatial filtering of the data Y, and is given by
Tr(R; R, 'Ry

Tr(Rss)

TIMMSE = (1.19)

It is easy to see that mysg is less computationally complex than ngrrr. It still requires
a matrix inversion at each time index, but does not necessitate a determinant computation.
However, as will be shown in chapter 2, the MMSE becomes suboptimal for non-orthogonal

training sequences.

A third interesting statistics robust to interference is the GLRT test statistics optimized for

the theoretical case where R is known and H is unknown.
arg max TTaly pa, (y(k) | s(k), H,R)

Ly pro (y() | R)
=Tr [RT'R,RRy,|. (1.21)

MGLRT kn = (1.20)

This is of course an entirely theoretical criterion, since it is practically impossible to know the
exact noise covariance matrix R. The interest in this criterion stems from the idea that R may
be replaced with an estimate. The performance of the obtained non-GLRT statistics can then be

compared with that of the GLRT statistics ngrrr-
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1.4.3 Complexity reduction and parameter optimization of MIMO synchro-

nization

With these considerations as a starting point, we therefore propose in chapter 2 several ways of

optimizing and reducing the complexity of MIMO synchronization, summarized as follows:

1. Introduction of explicit expressions for GLRT synchronization in the absence of interference,

for two types of spatially white noise.

2. Introduction of alternative expressions of ngrrr optimized for presence of interference,

where the determinant computation is done explicitly for K = 2. These expressions are

mainly useful since they allow for a direct comparison of ngrrr With nvMsE-

3. Introduction of two new low-complexity statistics, ngrrTo and ngrLrr1, based on the GLRT

optimized for the theoretical case where the covariance of the noise R is known.

4. Proposition of a procedure of computation rate reduction of the data correlation matrix.

5. Investigation of the problem of optimization of the number of transmit antennas for time

synchronization.

Table 1.1 summarizes the different GLRT or non-GLRT statistics that are studied or intro-
duced in this thesis.

Name Interpretation Sufficient statistics
TIGLRT GLRT statistics for unknown R and H — log det (I M — f{y_ylfiysR;;f{;S)
p— =
NGLRT,we GLRT statistics for spatially white noise with W
vy
R=o¢ 21 M
. . . o [, Ryy)nn
NGLRT,wu GLRT statistics for spatially white noise with T (Rus—Ry.Ro R
R = Diag[o?,...,0%,| 1y nere e
TGLRT,kn GLRT statistics for known R and unknown H | Tr _RflﬁysR;;f{;s_
NGLRTO Non-GLRT statistics based on ngrrTkn, but | Tr _lf{;ylf{ysR;SIf{;s_
with estimated R = Ry,
NGLRT1 Non-GLRT statistics based on ngLRT kn, but | Tr _(f{yy — f{yngslf{;S)_lf{yngslf{;s}

with estimated R = Ryy — Ryngslﬁ;s

Table 1.1: Synchronization statistics studied in this thesis
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1.5 Large system analysis using random matrix methods

1.5.1 Introduction to the problem

The second part of the PhD, treated in chapter 3, addresses the behavior of a classical multi-
antenna GLRT that is able to detect the presence of a known signal corrupted by a multi-path
propagation channel and by an additive temporally white Gaussian noise with unknown spatial
covariance matrix. The chapter is focused on the case where the number of sensors M and
possibly also the number of paths L is large, and of the same order of magnitude as the sample
size N. This context is modeled by two large system asymptotic regimes. The first is M — o0,
N — 400 in such a way that M /N — ¢ for ¢ € (0, +00). The second asymptotic regime under
study is N, M,L — +oo, in such a way that M/N — ¢ for ¢ € (0,+o0), and L/N — d for
d € (0,400). The purpose of this chapter is to study the behavior of a GLRT statistics in these
regimes, and to show that the corresponding theoretical analysis allows one to accurately predict

the performance of the test when M, N and possibly L are of the same order of magnitude.

1.5.2 Why large system approximation?

To see that the problem studied in chapter 3 is not only a theoretical consideration, consider
as an example today’s multi-antenna systems. The sample size that can in practice be used to
perform statistical inference cannot be much larger than the signal dimension, which corresponds

to the number of receive antennas.

We therefore distinguish between two kinds of limiting results: The so-called classical limiting
problem, where only one of the dimensions is assumed to be large, and the large dimensional
limiting problem, where several dimensions are assumed to go to infinity. It can be expected
that classical limiting analysis performs poorly when several dimensions are of the same order of
magnitude. One of the purposes of this study is therefore to show that classical limiting results

are no longer valid for large dimensional systems.

A possible way of approaching the problem of asymptotic analysis in high dimension is random
matrix theory (RMT). The underlying motivation for using this framework is the non-obvious
behavior of large random matrices. As an introductory example, let us study the empirical
covariance matrix of a high-dimensional observation matrix. Given N (M x 1) observation

vectors (Yn)n=1,.. N, we want to study their empirical covariance matrix, given by

| N
Ry =— > yiyi- (1.22)
N
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If M is fixed as N — oo, Ry — R = E[|y1y]]], and |R — Ry|| — 0 for any matrix norm [29].
We have that the empirical covariance matrix Ry is a consistent estimator of the population
covariance matrix R. However, in many practical applications, the number of available observa-
tions NV is of the same order of magnitude as M. In this case, ||[R — Ry/|| can be far from zero
even when N is large. For example, if M > N, the sample covariance matrix is rank-deficient
(while R can be of full rank), and is therefore not a good approximation of R. If N and M
are both large compared to 1, but of the same order of magnitude, it has been shown that the
empirical eigenvalue distribution of Ry is different from the eigenvalue distribution of R. For
example, if R = I/, the histogram of the eigenvalues of Ry tends to approach the probability
density of the so-called Marcenko-Pastur distribution [30]. This is in contrast with the case

where N >> M, where the eigenvalues of Ry are concentrated around o?.

What is infinity? As mentioned before, the asymptotic analysis is done for the case where the
dimensions N, K (and possibly also L) — oo. However, the results obtained with these methods
are applicable even in the small dimensional case. In other words: For theoretical convenience,
the dimensions are assumed large, but it can be shown by simulation that the results are valid

even for small dimensions.

1.5.3 Preliminaries

In chapter 3, we perform an asymptotic analysis to study the limit distribution of the GLRT
synchronization statistics studied in chapter 2. We study the case of a single transmit antenna
(K = 1) sending a length N known synchronization sequence through a frequency selective
deterministic channel H with L paths. We remind the reader that a sufficient statistic is the

log-likelihood ratio log(n¢ gr)/N, which we here and in chapter 3 call ny, given by

SY* /YY*\ 1 YS* /8S*\ !
nN——logdetlIL— N ( N) N (N) ], (1.23)

Before starting the derivation of the asymptotic, we remark that it is possible to assume
without restriction that % = I, and that E(v,v’) = 021, i.e. R is reduced to the identity
matrix. If this is not the case, we denote by S the matrix

B xy\ —1/2
S— (SE ) s (1.24)

and by Y and V the whitened observation and noise matrices

Y =R 7Y,
V=R"12V (1.25)
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It is clear that % = I, and that E(¥,v%) = o?I. Moreover, under Hy, it holds that Y =V,
while under H;, Y = HS + V where the channel matrix H is defined by

H =R 2H(SS*/N)/? (1.26)

Finally, it holds that the statistics ny can also be written as

SV (YY*)l YS]

(1.27)

This shows that it is possible to replace S, R and H by S, I, and H without modifying the value
of the statistics . The results will be valid replacing H with ﬁ, and we can without restriction

make the calculations with the assumption that

SS* ~
=1 =1, 1.2
N L, R (1.28)

A second preliminary step is introducing auxiliary variables that we call V1 and V. We
denote by W a (N — L) x N matrix for which the matrix ® = (W7, S—JTV)T is unitary and define
the M x (N — L) and M x L matrices V1 and Vy by

g*
VN
It is clear that V1 and V5 are complex Gaussian random matrices with independent identically
distributed Mg (0,0?) entries, and that the entries of Vi and Vy are mutually independent. We
notice that since N > M + L, the matrix ViVi is invertible almost surely. We can now express

N
the statistics nn in terms of V1 and Vs. Under Hy, it is shown in chapter 3 that the statistics

(V1, V) = VO* = (VW*, V) (1.29)

can be written as
ny = logdet (I + V3/V/N (ViVi/N) ™! V3/VN) (1.30)
and similarly under H; as
nv = log det (IL + (Vo + H)*/\/N (Vivi/N) T (Vo + H)NN) . (1.31)

The key point here is the independence between Vi and Vo, which can be exploited to simplify

the calculations of the limit distributions.

Note that the asymptotic of this kind of statistics have been studied in the past, but in the

classical regime, defined by

Asymptotic regime (a): L, M is fixed
N —
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When the size of M and L increase, the assumptions that M << N and/or L << N are no
longer valid, which is the case for several practical applications. Therefore, we consider two new

asymptotic regimes:

Asymptotic regime (b): L is fixed
N, M — o
M/N =cy —¢, 0<c<1

Asymptotic regime (c): | N,M,L — oo
M/N=cy —¢, 0<c<1
L/N=dy—d, 0<d<1
c+d<1

1.5.4 Example of asymptotic analysis: Expected value of ny under H

To get an idea of the differences between the asymptotic analyses in the asymptotic regimes, we
will present as an example the asymptotic analysis to obtain the expected value of 1y under Hg,

for the asymptotic regimes (a) and (b).

Let us start with the analysis in the classical regime (a). We use (1.30) and remark that
when N — +o00 and M and L remain fixed, the matrices V1 V}/N and V3 (VIVI/N)1V,

converge a.s. towards oI and the zero matrix respectively. Moreover,

L . A — 1, 1
V3 (VIVi/N) v, = —5V3Va/N +op(5) (1.32)
and a standard second order expansion of ny leads to
1 . 1

This implies immediately that the limit distribution of N ny is a chi-squared distribution with

2M L degrees of freedom. Informally, this implies that E(ny) ~ LY and Var(ny) ~ %X

The analysis of ny in the asymptotic regime (b) differs deeply from the analysis in the
standard asymptotic regime (a). In particular, it is no longer true that the empirical covariance
matrix V1 Vi/N converges in the spectral norm sense towards ¢I. This is due to the fact that
the number of entries of this M x M matrix is of the same order of magnitude as the number
of available scalar observations. We also note that for any deterministic M x M matrix A,
the diagonal entries of the L x L matrix %V;AVQ converge towards 0 when N — +o00 and M

remains fixed, while this does not hold when M and N are of the same order of magnitude.
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We now want to calculate the asymptotic expected value of 7y in the asymptotic region (b),
and show that

nn — L log ( ) — 0a.s. (1.34)
1—cn
First, let us denote by Fx the L x L matrix
Fy = Vi/VN (ViVi/N)™' Vo /VN. (1.35)

and remark that under Hp, (1.30) can be written as
nn = logdet (I, + Fy) (1.36)

As L does not increase with M and N, it is sufficient to establish that

CN

Fv —
N 1—CN

I, —0a.s. (1.37)

Our approach is based on the observation that if Ay is a M x M deterministic Hermitian matrix

verifying supy [|An|| < a < +o0, then

. o? C(a)
(V3/VN ANV /VN) = Tr(An) 6(k — 1) e

<
kIl N -

(1.38)

4
Ev, ‘

where C(a) is a constant term depending on a, and where Ev, represents the mathematical
expectation operator w.r.t. V. This is a consequence of Proposition 4 in Appendix 3.7. Assume

for the moment that there exists a deterministic constant a such that
| (ViVi/N) ' <a (1.39)

for each N greater than a non random integer Ny. Then, as V1 and Vs are independent, it is
possible to use (4.38) for Ay = (V1 V%/N)~! and to take the mathematical expectation w.r.t.
V1 of (4.38) to obtain that

9 4
g * -1 C((I)
E|(Fn)y, — NTY (ViVI/N)" 6k —=1)| < NE (1.40)
for each N > Ny, and, using the Borel-Cantelli lemma, that
0'2 -1
Fy — ﬁTr (ViVI/N)"" I, — 0a.s. (1.41)

To conclude, we use known results related to the almost sure convergence of the eigenvalue
distribution of matrix V;V}i/N towards the so-called Marcenko-Pastur distribution (see Eq.
(3.77) in Appendix 3.7 ) which imply that

1 -1 CN
—Tr(V,Vi/N) — —N 0 1.42
N r( v/ ) 21 —cn) (142)
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almost surely. This, in conjunction with (4.41), leads to (1.37) and eventually to (1.34).

However, there does not exist a deterministic constant a satisfying (3.36) for each N greater
than a non-random integer. In order to solve this issue, it is sufficient to replace matrix
(V1V#/N)~! by a convenient regularized version. The details of the regularization will be given

in chapter 3

1.5.5 Limit distributions

The main results of this work are the limit distributions summarized in Table 1.2. Note that the
limit distribution for region (c) needs to establish a central limit theorem for linear statistics of
the eigenvalues of large non-zero-mean F-matrices, a difficult task that has not been addressed
in this work. Instead, in this work, we have proposed an approximation which will be described

in detail in chapter 3.

Asymptotic | Distribution under Hj Distribution under H;
regime

(a) Classical, | ny ~ %X%ML NN ~ ./\/[R(log det (I + HGI'QI* ), %)
N — o0 (IE[77N] = Len

Var[ny]| = Len - %)
(b) Proposed, | ny ~ Nk (L log ——, Len . L ) nn ~ Ngr (L log ——— +log det (I+ HUI_QI*>,

l—cn’ 1—cpn ‘N l—cn
M,N — L 1
> % + 1—cc]\jlv ) N)
(C) Proposed, | ny ~ Nr (77]\], SN) nN ~ Nr (ﬁN—HOg det (I-i—HUI_zI* ), %-i—(g]v)

L,M,N — oo

Table 1.2: Asymptotic distributions of nn for the three asymptotic regimes, under Hy and Hy



Chapter 2

Parameter optimization for time
synchronization of multi-antenna

systems

2.1 Introduction

wo decades ago MIMO systems, which use multiple antennas at both transmitter and

receiver, were developed to increase the throughput (bit rate) and reliability of com-
munications over fading channels through spatial multiplexing [31, 32] and space-time coding
(STC) [33,34] at transmission, without the need of increasing the receiver bandwidth. This
powerful technology has been adopted in several wireless standards such as IEEE 802.11n, IEEE
802.16 [35], LTE [36] or LTE-Advanced [37] in particular. Nevertheless, as wireless spectrum is
an expensive resource, increasing network capacity without requiring additional bandwidth is a

great challenge for wireless networks.

This has motivated the development of Interference Mitigation (IM) techniques at both the
transmitter and the receiver, allowing several MIMO links to share the same spectral resources
without impacting the transmission quality of each link. IM techniques at transmission require
informations at transmission about the propagation channels of the links sharing the same
resources. On the contrary, IM at reception may also be implemented for MIMO schemes
which do not require any information at transmission about the propagation channels. This
has motivated the development of Interference Cancellation techniques at reception for MIMO
systems using the V-BLAST scheme [38] or STC ( [39,40] and references herein) in particular.

19
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However, in order to be efficient, all these MIMO schemes require a preliminary step of time
and frequency synchronization which has to be also robust to interferences. Time and frequency
synchronization of MIMO systems have been strongly studied in the last fifteen years, mainly
in the context of direct-sequence coded division multiple access (DS-CDMA) and orthogonal
frequency division multiplex (OFDM) links. Both coarse and fine time synchronization jointly
with frequency offset estimation and compensation have been analyzed, and many techniques
have been proposed either for time-frequency synchronization [1-4] or time synchronization
only [5-9]. Nevertheless, most of these techniques assume an absence of interference. The scarce
papers of the literature dealing with MIMO synchronization in the presence of interference
correspond to [2,7-9]. However, [2] and [7] only consider the problem of MIMO synchronization
in the presence of multi-users interference (MUI), and [8] seems to be the only paper dealing with
MIMO synchronization in the presence of interference of any kind, such as hostile jammers. In [8],
several statistics are proposed for time synchronization for both flat fading and frequency selective
fading channels. Despite the numerous existing statistics for MIMO time synchronization, many

important questions about their optimality, performance and complexity have arisen.

First of all, none of the statistics developed for MIMO systems in the absence of interfer-
ence [1,10-17] [3-6,18-27] has been developed through a GLRT approach in the general case
of a SC non DS-CDMA link and arbitrary potentially non-orthogonal sequences. Although it
is well-known [28] that, contrary to likelihood ratio test (LRT) statistics, GLRT statistics are
suboptimal from a detection point of view, one may wonder if a GLRT statistics may be better
than existing ones in this context. To adress this question, we derive in this paper the GLRT
statistics for absence of interference, which assumes, Gaussian, temporally and spatially white
noise. In the following, this statistics will be called ngrRrT,we. We will point out the links between
NGLRT,we and the statistics in the state of the art, and investigate its performance in absence of

interference through numerical simulation.

While the GLRT statistics in presence of interference has already been presented [8], questions
regarding its practical usefulness arise. In [8], two statistics for flat fading channels, robust
to interferences, are derived from an MMSE and a GLRT approach respectively. The GLRT
statistics, called ngrrr in the following, assumes unknown, Gaussian, spatially colored and
temporally white total noise. We note that this GLRT statistics may be very costly to implement,
for a large number of antennas in particular, since for a (K x M) MIMO system, it requires
both an (M x M) matrix inversion and an (M x M) or (K x K) determinant computation at
each tested sample position. An alternative to ngrrr is the MMSE statistics proposed in [8].

However, the MMSE statistics is shown in this paper to be very sensitive to training sequence
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correlation, which may limit its practical use in this context.

In order to optimize the performance-complexity trade-off, we start by the analysis in the
case of fixed number of antennas, and propose several ways to decrease the complexity of ngrrr
while retaining its performance. The first way concerns MIMO systems with K = 2 transmit
antennas and consists in computing explicitly the determinant appearing in the formulation of
neLrT, allowing in particular a direct comparison with both the MMSE test proposed in [§]
and SIMO statistics [41,42]. As the direct computation of the determinant is complicated for
K > 2, a second proposition to decrease synchronization complexity consists in introducing two
new low-complexity MIMO statistics which are robust to interference. These two new statistics,
naLrTo and NarrT1, correspond to two estimates of the GLRT statistics in known, Gaussian,
spatially correlated and temporally white total noise, called ngrrT kn. For stationary interference,
a third way of decreasing the complexity of the statistics is to compute and inverse at a lower
rate the data correlation matrix appearing in the expressions of the statistics by computing it
on an observation interval greater than the synchronization sequence length. Finally, we want
to optimize the number of transmit antennas used for synchronization for a given number of
receive antennas and for given kinds of propagation channels. Note that such a problem has been
preliminarily investigated in [6] in the DS-CDMA context and in [43] for precoded synchronization
schemes. The goal is to enlighten in particular the conditions under which it becomes sub-optimal
to implement MIMO synchronization with respect to SIMO synchronization [41,42], without and

with interference.

In order to corroborate our results, we perform numerical simulations. For the sake of
comparison, we introduce some of the statistics in the literature for the absence of interference,
and show that the gain in performance for using the statistics optimized for this scenario is not
very large. In both presence and absence of interference, we show that our proposed statistics
perform well compared with ngrrr. We also show that the computation rate decrease does not
decrease the performance by too much, and that its complexity gains are significant, especially
for large values of K, M. We also show by simulation that the optimal number of transmit

antennas is dependent on the number of antennas under study.

This chapter is organized as follows: Section 2.2 is devoted to the current state of the art in
time synchronization with interference, with an introduction to the MMSE and GLRT statistics.
In section 2.3, we assume that the number of transmit and receive antennas is fixed, and present
ways to reduce the complexity while retaining the performance. We derive the simplified form

of narLrT, and the expressions of the two new low-complexity non-GLRT statistics ngrrTo and



22CHAPTER 2. PARAMETER OPTIMIZATION FOR TIME SYNCHRONIZATION OF MULTI-ANTENNA SY

noLrT1- We also perform a comparative performance analysis of the above-mentioned statistics
for different system parameters. We then go on to describe how to perform the computational
rate decrease, and show its performance by simulation. We finish the section with a complexity
analysis of the presented statistics for different kinds of systems. In Section 2.4, we describe
how to optimize the number of transmit antennas, and show by simulation the optimal number
of antennas for absence and presence of interference, for different channel types. Section 2.5

concludes the chapter.

2.2 Statistics optimized for the presence of interference

In this section, we briefly recall the GLRT and MMSE statistics introduced in [8].

2.2.1 mngrrr: GLRT synchronization statistics

To model the presence of interference, we assume zero-mean, i.i.d, temporally white and spatially
colored, circular, Gaussian samples v(k) whose covariance matrix is given by R. If both R and
the channel matrix H are unknown, the GLRT is given by equation (1.18), and gives rise to
the GLRT statistics ngrrr. The derivation of this synchronization statistics is summarized in

Appendix 2.8, but has also been shown in [8] to be
naLrr = det[Iy — PPy~ N (2.1)

where P, and 15y are (N x N) matrices corresponding to the projection operators onto the row
spaces spanned by S and Y respectively, defined by Py £ S*(SS*)~!S and f’y 2Y*(YY")Y.

From (2.1), it is clear that a sufficient statistic is given by the log-likelihood

neLrr = —Nlogdet[Iy — PPy, (2.2)

It is straighforward to show that (2.2) can also be written as

naLrr = — Nlogdet[Iyy — Ry Ry RJR,]

= — Nlogdet[Ix — RJR; R, 'R, (2.3)

Expression (2.3), not presented in [8], requires that R, is invertible, which is assumed in the
following. This is only possible if K < N, which is then assumed in the following. Under these
assumptions, expressions (2.2), (2.3) show that, at each tested sample position, ngrrT requires

the computation of at least a (M x M) matrix inversion, f{y_yl, and the determinant of a (P x P)
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matrix where P = Inf(N, M, K), which may be prohibitive for large N and a large number of

antennas.

A

In the particular case of a SIMO system (K = 1), R, reduces to the vector s, , Rss reduces

to the scalar 75, and we deduce from (2.3) that a sufficient statistic for the ngrrr is given by

Ak S5 —1a
s Ry Tysy

Tsq

NGLRT,SIMO = (2.4)

2.2.2 nyumse: MMSE synchronization statistics

MMSE time synchronization consists in finding the sample position which minimizes the least
square (LS) error between the known sampled vectors s(k) and their LS estimation from a spatial
filtering of the data y(k)(1 < k < N). After elementary computations, we obtain a sufficient
statistic for MMSE synchronization, given by [8]

N+ P —1P K ~x -1z
Tr(RySRyy Ry,) _Xim ty Ry Tys,

Tr(Rss) B Zﬁzl Tsm
Comparing (2.5) to (2.4), we deduce that, to within a constant, nymsg corresponds to the
weighted sum of K SIMO GLRT statistics, each associated with a different transmit antenna. The

computation of the MMSE statistics requires a (M x M) matrix inversion at each tested sample

TIMMSE = (2.5)

position but no determinant computation, which is less complex than the ngrrr computation.
For SIMO links (K = 1), nvuse and ngrLrr coincide, but this is a priori no longer true for K > 1

as will be shown in the next section.

2.3 Optimization of the synchronization for fixed K, M

2.3.1 Direct expression of nggrr for K=2

For K = 2, the determinant (2.3) can be easily computed and the result allows a direct comparison
with the MMSE statistics (2.5).

. . 5—1/2, 5 —1/2.
For this purpose, we define the following vectors u; = Ryy/ Pys,, U2 = Ryy/ Pys,, V1 =

f{;ylﬂfll and vy = Ry_yl/Qflg, where H = [hy, hy] = Ry Ry is the ML estimate of H under Hj.

Inserting these vectors into (2.2) for K = 2, we obtain
NGLRT,s = det(IM — ulvf — U_zvz)N £ det(IM — B)N (26)

where B £ u;v} — uyvj is a rank 2 matrix such that span(B) = span(uy,ug). It is well-known
that det[Ip; —B] = (1—A1)(1—A2) = 1—S+1I, where A\; and A are the two non-zero eigenvalues
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of B and where S £ A\ + Xy and IT £ A\ Ao, A straightforward computation of Ay and Ao from B

gives
1-S+1II=1-(viu; + vius)

+ (viur)(vauz) — (viug)(viug)

él — NGLRT (27)

Using (2.7) into (2.6) and the definitions of uy, ug, vi and vy, we deduce that a sufficient statistic
for (2.6) is given by

+ B3R, Tys, + (BTR, Fys ) (B5R Ty, ) (2.8)

For orthogonal sequences, we know that h; = W;ilf'ysi(l < i < 2). Inserting this into (2.8), we

deduce that for orthogonal sequences and K = 2, ngrL.rr becomes

A A

o P—la o B—la
P Ry Tyst | Ty Ry Tys
NGLRT,s = +
7751 7T52
s P-la ax P-la s P—la 2
By Ry Ty T, Ry Ty n 1855, Ry Tys, | (2.9)
Tsy Tsy Ts1Tsy

For K =1 (SIMO case), this further reduces to (2.4). Expressions (2.9) and (2.4) show that
noLrr for K = 2 equals to the sum of 2 SIMO synchronization statistics, and additional terms
that depend on the correlation between the training sequences. Moreover, comparing (2.5)
for K = 2 with (2.8) and (2.9), we deduce that for MIMO links (K > 1), nvusg no longer
corresponds to NgLrT, not even for orthogonal synchronization sequences having the same power,

which was not obvious a priori.

2.3.2 New low-complexity statistics

The direct computation of the determinant (2.3) is not so straightforward for K > 2 while
the MMSE statistics (2.5) has been shown in [8] to become sub-optimal for non-orthogonal
synchronization sequences. In this context, a second way of decreasing the complexity of ngrrr
for arbitrary values of K while trying to keep its performance is to develop alternative statistics.
To this aim, it seems natural to think that non-GLRT statistics corresponding to good estimates
NGLRT kn, the GLRT statistics in known total noise, have good chances of approaching the
performance of ngrrr. For this reason, in this section, we introduce ngrrT kn and propose two

new low-complexity statistics corresponding to two different estimates of this test.
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Introduction to 7GrRT kn

The statistics 7gr.RrT,kn is obtained by considering expression (1.9) and assuming an unknown
channel matrix H and a zero-mean, i.i.d, circular, Gaussian, temporally white and spatially
colored total noise whose covariance matrix R is assumed to be known. Replacing in (1.9) H by
its ML estimate H = ﬁysf{;}, valid for any K, generates 1GrRT,kn- It is shown in Appendix 2.9

that a sufficient statistic is given by
noLRTin = Tr R Ry R Ry (2.10)

In the particular case of K orthogonal synchronization sequences, expression (2.10) reduces to

K ax R—lA

iy o5
EN Ysi

NGLRT,kn = E : .

i—1

(2.11)
Tsi;

A similar problem has been considered in [44] in the context of MIMO radar. Note that narrr kn
does not require any determinant computation, and corresponds, for orthogonal sequences,
to the sum of K SIMO ngrrTkn Statistics, each associated to a different transmit antenna.
Unfortunately, it cannot be used in practice since R is unknown. It can however be estimated by

replacing R by an estimate, which is done in the following sections.

nNeLrTo: Estimated ngrLrr kn statistics under Hy

A first possibility to derive from (2.10) a low-complexity statistics useful in practice is to replace
in (2.10) the matrix R by its ML estimate under Hy, Ryo. It is easy to show that Ry = Ryy,
which gives rise to the estimated ngrrTkn Statistics under Hy, defined by

naLrTo = Tr [R;} R; R,/ Rys] (2.12)
In the particular case of K orthogonal synchronization sequences, expression (2.12) reduces to
K ~x Pp-1la
ro R Ty,
TGLRTO = Y yslﬂiyyys, (2.13)
i=1 Sii

which corresponds, to within a constant, to (2.5). In this case, the MMSE statistics can be

interpreted as an estimate of ngrrT kn under Hy. Otherwise, the MMSE statistics has no link

with ngLRTO-

ncLrT1: Estimated ngrrr,kn statistics under H;

A second possibility to derive from (2.10) a low-complexity statistics useful in practice is to
replace in (2.10) the matrix R by its ML estimate under Hy, fil. It is easy to show that fil is
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defined by

R; =R,, - R,R'R}, (2.14)

In (2.14), the estimated contributions of the transmitted synchronization sequences have been
removed from y. This gives rise to the estimated narrT kn statistics under Hy, defined by

nourrt = Tr [RGBy, Ry! Ryl (2.15)

In the particular case of K orthogonal synchronization sequences, expression (2.15) reduces to

Ysi
TIGLRT1 = Z
i=1

(2.16)

Comparative performance analysis of MIMO synchronization statistics

We present in this section a comparative performance analysis of the MIMO statistics introduced
in section 2.3, both in the absence and in the presence of interference. This analysis allows
in particular to enlighten the practical interest of the new statistics introduced in this paper
(nGLRTO, MGLRT1) With respect to ngrLrr, which has been presented as best statistics in [8]. For
this purpose we consider in this section K x M MIMO links for which the transmitting and the

receiving antennas are omnidirectional.

Assumptions For all simulations, the false alarm rate is Ppy = 1072 and the figures are built

from 10° independent realizations.

e Channel models: Two kinds of channel matrices H, corresponding to deterministic and

random channel matrices, are considered.

For the deterministic case, a possible model is a line-of-sight physical MIMO channel, with
angles of departure 0; and angles of arrival 6,.. Assuming that the antennas in both the
transmitting and receiving end are spaced close to each other, the MIMO channel can be

written as
2mjd
H=ac * e (6,) e (6;)

where a is the attenuation along the line-of-sight path, assumed to be the same for all
antenna pairs, and d the distance between transmit antenna one and receive antenna one.
In our simulations, we have a = 1. The vectors e,(6,) and e.(6;) are the spatial signatures
for the receiver and transmitter respectively, defined by

er(er) :[17 6727rjAT9T7 e efQﬂj(Nfl)ATOT]T

et(et) :[17 B*QWJAt9t7 o 6727rj(M71)At0t]T
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where A, is the carrier wavelength, A, the normalized receive antenna separation, and A;
the normalized transmit antenna separation. In the following, we assume that Az \. and
A\ are both 0.5.

In this work, we consider the scenario where the transmit antennas are assumed to be
distributed in space or well-separated from each other. In this scenario, the columns of
the channel matrix can be separated into K columns as H = [hi(6;), ..., hx(6k)]. Each
column hy(0;) (1 < k < K) is the contribution of transmit antenna k on the receive

antenna array, and is defined by

2jmdy,

hk(gk) = age Ac eT(Gk). (2.17)

ag is the attenuation along path k, and dj the distance between transmit antenna k and
the first receive antenna. Again, we set a; to 1. Note that each column of the channel

matrix can alternatively be seen as a separate SIMO system on the receive antenna array.

To quantify the degree of separation of the transmit antennas in our system, we also define

the spatial correlation coefficient c;; between the channels h;(6;) and h;(6;) as

|(hi(0) "D (6;))

aii(0: 0. 2 _
|aij (0, 05)] (hi(0:)*h;(6;)) (h;(0;)*h;(6;))

(2.18)

and note that 0 < |ay;| < 1.

For the random channel, the coefficients H; ; (1 <i < M), (1 < j < K) of H are assumed
to be zero-mean i.i.d circular Gaussian variables such that E[|H; j|*] = 1, which modelizes

a Rayleigh flat fading model with a maximal diversity.

In all cases, the receiving array is assumed to be a uniformly spaced linear array of M

antennas, whose interelement spacing is equal to half a wavelength.

Synchronization sequences: Fach synchronization sequence is composed of N samples. The
synchronization sequences have the same power (75, = 75,1 < i < K) and are normalized
such that the signal to thermal noise ratio per receive antenna, defined by SNR2 K1 /0?,

may be arbitrarily chosen.

To create orthogonal training sequences, we use Zadoff-Chu sequences. More specifically,
the rows of the training sequence matrix S are chosen as cyclic shifts of a Zadoff-Chu
sequence of length N [45]. Due to the autocorrelation properties of Zadoff-Chu sequences,
we have that SS*/N =1Ix if K < N.

To artificially create non-orthogonal sequences, the beginning of the synchronization

sequence is set to be the same for all transmit antennas. For example, to create a
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correlation of approximately 0.25 for K =2 and N = 32,

S — (srand Sl,rand) (219)

Srand  82,rand

where S,.4,4 is a length 0.25N = 8 random QPSK sequence, same for both antennas, and
S1,rand and 83 rqnq are random QPSK sequences. Finally, to quantify the exact correlation,
we define the temporal correlation between synchronization sequences from transmit antenna

1 and j by

(2.20)

In our simulations, if not otherwise stated, N = 32.

e Total noise: In the absence of interference, the total noise is assumed to be composed of a
background noise such that
v(k) = n(k). (2.21)

Here, n(k) is the sampled background noise vector, assumed to be zero-mean, Gaussian,
SO circular, spatially and temporally white with a mean power per receive antenna equal

to o2.

In the presence of interference, we also have the contribution of one single antenna
interference such that
v(k) = jr(k)hr + n(k). (2.22)

where h; the channel vector of the interference.

For the deterministic channel, the interference channel vector is defined by equation (2.17)
as hy(0r), where 67 is the direction of arrival of the interference on the receive antenna

array.

For the random channel, the components hr[i] (1 <1i < M) are zero-mean i.i.d circular

Gaussian variables verifying E[|h/[][%] = 1.

jr(k) are the complex samples of the interference, assumed to be QPSK and such that
7; = E[|57(k)|?] is the input mean power of the interference per antenna. The interference
to noise ratio per receive antenna, defined by INR£ 7; /o2, is chosen such that INRyp =
SNRgp + 15 dB.

Synchronization statistics optimized for absence of interference Several statistical
tests for time synchronization of MIMO links in the absence of interference have been proposed
in the literature [1,3-6,10-27], mainly for DS-CDMA and OFDM links. Some of them may be
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also used for non DS-CDMA SC links. To enrich the analysis of this subsection, we will introduce
two GLRT test statistics in absence of interference, and go on to describe two of the statistics

found in the literature.

e [t is shown in Appendix 2.6 that the GLRT sufficient statistics optimized for the assumption
that R = 02T where R and H are unknown is given by
Tr(RyR;IR;,)

T)GLRT,we = = (2.23)
Tr(Ryy)

In the particular case of K decorrelated (or orthogonal) training sequences, expression

(2.23) reduces to
K

NGLRTwe = )
i=1

T
Y Y (2.24)
TyTsis
Further, as shown in [41,42], the narrT,we statistic for a SIMO system is given by
f‘Zsf‘ys
IGLRT,we = —~ -
TyTs
and we see that (2.24) corresponds to the sum of K SIMO ngrrrwe statistics, each

associated to a transmit antenna.

e It is shown in Appendix 2.7 that the GLRT sufficient statistics optimized for a correlation

matrix in the form

o 0 0
0 .o
R=| (2.25)
0 ... 0 o%
with unknown parameters H and [0%,03,... ,0]2\4], where o2 is the power of the noise

received on receive antenna n, is given by

Hfzwzl(ﬁyy)n,n
HM (Ryy - RySRS_SIRZs)n,n

n=1

NGLRT wu = (2.26)

e Mody’s Test: One of the reference tests for time synchronization of MIMO links without

interference is the one proposed in [1,11,14] for OFDM links. It assumes orthogonal training

sequences, and may also be used for SC links. It consists in testing the sum, over the

K training sequences, of the normalized square modulus of the correlation between the

sequences and each component, y,(k),1 < n < M of y(k). The test can then be written as
[Ty

K
IMODY = sup { > ﬁ} (2.27)
iz1 Tyn
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Comparing (2.27) to (2.23) and (2.24), we deduce that the Mody’s test corresponds (to
within a constant) to the GLRT1 if and only if the link is a multi-input single-output
(MISO) link (M = 1) with orthogonal training sequences.

e Correlation test: Another reference test for time synchronization of MIMO links without
interference is the Correlation test proposed in [8] for SC links. It makes no assumptions
on the training sequences. It consists in testing the normalized Frobenius norm squared of
the (M x K) matrix Nf{ys = Nltys,,- .., Tys, ], which contains all the correlations between
the K training sequences and the M components of Y. It can be written as:

Tr(RysRy) S BBy,

NCOR = — = =) - (2.28)
Tr(Ryy) Tr(Rss) =1 7y Zg:l s

Comparing (2.28) with (2.23) and (2.24), we deduce that for an arbitrary (K x M) MIMO
link, the correlation test corresponds (to within a constant) to ngrrT,we if and only if the

training sequences are orthogonal and have the same power.
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Performance in the absence of interference

We assume in this section an absence of interference such that R = ¢%Iy, and consider both

orthogonal and non-orthogonal training sequences.

For orthogonal sequences having the same power, the statistical test ncor is equivalent to
NGLRT,we Whereas myivse and narrro are equivalent. We thus only consider in this case, nGLRT,we>
NMODY s MGLRT, MGeLRrTo and narrTi- Under these asumptions, Figures 2.1a and 2.1b show, for a
(2 x 2) MIMO link, the variations of the non-detection probability as a function of the SNR per
receive antenna at the output of the previous statistics for a deterministic channel matrix H.
The vector h; is associated with a direction of arrival (DOA) of 6; = 0°, which is orthogonal
to the line array, whereas hy corresponds to a DOA such that |aj2|? = 0 (2.1a) or |as|? = 0.6
(2.1b. respectively. Figures 2.2a and 2.2b show the same variations but for a random channel
matrix H of dimension (2 x 2) (2.2a) and (4 x 4) (2.2a).

For the deterministic channel, we note that for all spatial correlations, the performance
stays approximately the same. The relative performance of ngrrr we improves when the spatial
correlation increases. We also note that there is no large difference in performance between the

statistics under investigation, except for nyopy which performs slightly worse than the others.

For the random channel, we see that ngrrT,we performs slightly better than all the other
statistics. noLRT, NeLRTo and NgrrT1 are almost equivalent in performance for both M = 2 and

M = 4. Moreover, we note that the performance of miopy deteriorates when M increases.

0 Q
10 T 10
4 -1
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. +n R +Tl
0% GLRTO 10° GLRTO
"GLRT NGLRT1
~+-TGLRT,we ~*-TGLRTwe
|| MoDY ' k ||~ Mopy
10 : : 10 — :
-15 -10 -5 0 5 -15 -10 -5 0 5
NR NR
(a) Jaaaf* =0 (b) Je2|* = 0.6

Figure 2.1: Pxp as a function of SNR, N = 32, K = M = 2, Ppa = 1073, No interference,

Orthogonal sequences, Deterministic channel

For non-orthogonal sequences, we must consider 7GLRT,we; 7MODY, COR, NGLRT, "IMMSE;
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neLrTo and NgrrT1 Which are a priori not equivalent. Under these assumptions, Figures 2.3 and
2.4 consider the same scenarios as Figures 2.1 and 2.2 respectively but for non-orthogonal training
sequences, such that the temporal correlation p between the two synchronization sequences is
either 0 or 0.6.

In this scenario, we see that for the deterministic channel model, 7grRT,we i not the best
statistics, and performs systematically worse than ncor and nmymse. This illustrates the fact
that, despite a widespread misconception, the GLRT is not necessarily an optimal test when
it comes to performance. We also note that whatever the spatial correlation, the difference
between ncor and ngrrr is less than 2dB. Further, for the statistics optimized for presence of
interference, myivse has the best performance. We also note that in the deterministic channel,

the performance of ngrrT, NoLrTO and NarLrT: is almost equal.

For the random channel, for both the 2 x 2 and 4 x 4 case, we notice that there exists a
limit SNR, for which narrT,we is always better than ncor. For the low SNR regime, however,
ncor performs better. When the number of antennas goes from 2 x 2 to 4 x 4, we see that
nceLrTo drops in performance, compared with norrr and nerrri- We also note that the gain
in performance for using the ngrRrT,we increases when the number of antennas increases. In the
2 X 2 case, it is favourable to use ngrrT, since the difference in performance is small, and since it

is more robust to potential interferences, as we will see in subsection 2.3.2.
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Performance in the presence of interference

In this subsection, we assume the presence of interference, represented by the noise model of
equation (2.22) such that R = n/hsh} + 0?1, and consider both orthogonal and non-orthogonal

training sequences.

For orthogonal sequences having the same power, nyvse and ngrLrTo are equivalent, and

we therefore only consider ngrrT, eLrTo and norrr1- Under the same assumptions as before,
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Figure 2.5: Pxp as a function of SNR, N = 32, K = M = 2, Ppy = 1073, Interference,

Orthogonal sequences, Deterministic channel

Figures 2.5 and 2.6 consider the same scenarios and show the same variations as Figures 2.1
and 2.2 respectively but in the presence of one interference. For Figure 2.5, the vector hy is
associated with the DOA 6; = 20°. This means means that for figure 2.5a, |a17|? = 0.262 and
|aar|? = 0.728, whereas for 2.5b, |ay7|? = 0.262 and |asr|? = 0.022 For Figure 2.6, h; follows our

random model.

We start by stating the obvious fact that both ngrrT we and mvopy fail in this scenario, since
they are optimized for spatially white noise. We also note that for orthogonal training sequences,
for both deterministic and random channels, there is hardly any difference in performance between

NGLRTs NeLrTo and Ngrrr1, and by extension, the least complex statistics should be used.

For non-orthogonal sequences, we must consider the msg statistics in addition to the
previous ones. Figures 2.7 and 2.8 consider the same scenarios and as Figures 2.3 and 2.4
respectively but in the presence of one interference. For Figure 2.7, the vector hy is associated
with the DOA 6; = 20°, whereas for Figure 2.8, h; is random.

For the deterministic channel, we note that nyvse is the best statistics, and also that it
performs relatively better with increasing spatial correlation. For the random channel, however,
NGLRT, MeLrTo and ngrrr1 perform better. For the 4 x 4 system, We see again that there exists
a limit SNR below which mynisg performs better than the other statistics. We also see that when
the number of antennas increases, ngrrro performs slightly worse than narrr and ngrLrTI-
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2.3.3 Computation rate decrease of Ryy

At each tested sample position, the use of ngrrT, TMMSE, NcLrRT0 and NorLrT1 requires both the
computation and inversion of the (M x M) Ry, matrix defined from N observation samples.
Clearly, the resulting computation rate may become very costly for high values of M. This is the
motivation for our proposed method of decreasing the complexity of ngrrr and ngrrTo, Which is

based on decreasing the rate of computation and inversion of ﬂyy by a factor g > 1.
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Implementation of computation rate decrease

The principle is to build an (M x N’) observation matrix Y' = [y(1),...,y(N’)] from N’
observation samples such that N’ > N and, for the 8 = N’ — N + 1 tested sample positions
I (1 <1< p), to replace in ngLrr or narrro the f{yy matrix by the R;y matrix defined by
ﬁ;y =Y'Y*/N'. Note that N — N samples are now data samples instead of synchronization
samples. As the data samples associated with different antennas are uncorrelated, this strategy
to decrease the complexity of ngrrr and ngrLrro is only valid for orthogonal synchronization
sequences. Further, this strategy requires constant values of H and R over N’ samples, which
may limit the value of N’. However, it allows to compute and inverse only one (M x M) matrix
per set of 3 tested sample positions, hence a gain of § in the matrix computation and inversion.
Note that this strategy cannot be applied to narrr1 since the computation of fil requires an

update of f{ys at each time sample.

Performance analysis

Figure 2.9 shows, for (K, M) = (4,4) and (2,8), N'/N = 2 and 10, the variations of Pxp as a
function of the SNR per receive antenna at the output of norLrT, 7eLRT—CRD and NGLRTO—CRD,
where S-CRD means statistics S with a computation rate decrease. Note an increasing performance
degradation of ngrrr—crD and ngLrTO—CcRD With respect to ngrrr (equivalent in this case to
ncLrTo) as N’ /N increases, while remaining lower than 1dB for N'/N = 2, which enlightens the
interest of ngrrr—crD and neLrTO—CcrD- Note also a better performance of ngrLrT0—CcrRD With
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respect to ngLrr—crp for N'/N = 10, showing a better robustness of the former.
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Figure 2.9: Performance of statistics with computation rate decrease

2.3.4 Complexity analysis

In order to understand the relative complexities of the MIMO synchronization statistics presented
in this chapter, this subsection presents a complexity analysis of the considered statistics. An
outline of the complexity of some common matrix operations is found in Appendix 2.10. Here, we

go on to outline the approximate number of complex operations to compute each of the statistics.

To simplify the analysis, and since the statistics with computation rate decrease are only
applicable for orthogonal synchronization sequences, we perform this analysis assuming that
R, is diagonal, i.e. that the sequences are orthogonal. Further, we note that by defining

Gy = f{;ylf{ysfigs and Gg = lf{;;sf{y_ylf{ys we can rewrite ngLrT as
N'GLRT — det(IM — GM) = det(IK — GK) (2.29)

and ngrrTO a8

nerrro = Tr(Gar) = Tr(G). (2.30)

Thus, the computation of both statistics requires the computation of either G ; or Gg. Depending
of the values of M, K, we can therefore choose which statistics to use in order to reduce complexity.
For the statistics with computation rate decrease, ngr.rT—crp and NgrLrT0—CRD, the calculation

of Ry, and its inversion is done less often, which makes it less complex.
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Trace / Det Inverse | Matrix products
TGLRT-K 2R3 42K —1 | SM3 | MK(2N — 1)+ MM (ON — 1)+ MK (2M —1) +
K2(2M —1)
NGLRTO0-K K—1 SM3 | MK@2N —1)+ MM (9N — 1)+ MK(2M —1) +
K2?2(2M —1)

neLRT—cRD—k | 2K +2K — 1| SM® | MK(2N — 1) + M2 (oN — 1) 4 MK (2M —
1)+ K2(2M — 1)

NGLRTO—CRD-K | K —1 s M? | MK(2N — 1) + MEEM (9K — L) + MK (2M —

1)+ K?(2M — 1)

Table 2.1: Number of complex operations required for computing the considered statistics

To illustrate the relative complexities, Table 2.1 summarizes the number of complex operations
required to compute the considered statistics. Further, figure 2.10 shows, for N = 32, N'/N = 10,
K =2 and K = 8, the number of complex operations required by ngrLRrRT, TGLRT—CRD, TGLRTO
and ngLrRTO—CRD as a function of M. Note the increasing complexity with K and M of all the
statistics and the great interest of optimizing K for both performance and complexity reasons.
Note the lower complexities of the statistics with CRD and the lowest complexity of ngLrT0—CRD-
Note finally the lower complexity of ngrrro With respect to ngrrr as K increases.
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Figure 2.10: Number of operations as a function of M, N' = 10N = 320
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2.4 Optimization of K for a fixed M and statistics

As the complexity of all MIMO synchronization statistics increases with the number of transmit

antennas K, it is important in practice to wonder whether this parameter can be optimized
for synchronization purposes. We first note that in the presence of one interference, to reject
interferences, at least two receive antennas are required. In this section, we show, for orthogonal
sequences of N = 32 QPSK samples, M = 2 and different values of K, the variations of Pnxp as
a function of the SNR per receive antenna at the output of ngrrr. The figures in presence of

interference are performed for for INR = SNR + 15 dB. Similar results are obtained for narrTo
and NGLRT1-

2.4.1 Deterministic channel

Adding transmit antennas in the deterministic case does not improve the performance. For a
deterministic channel, since there is no fading to begin with, additional transmit antennas do

not create any diversity gain. Additionally, they can be seen as additional interference, which
deteriorates the performance.

Figures 2.11 and 2.12 illustrate this effect, for absence and presence of interference, respectively.

Adding transmit antennas while keeping the number of receive antennas constant leads to a
performance loss.
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Figure 2.11: Determistic channel, absence of interference
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Figure 2.12: Deterministic channel, presence of interference.

2.4.2 Random channel

For fading channels, for a given value of M and at least for high SNR, increasing K while
transmitting the same global power increases the spatial diversity order of the MIMO system.
However, increasing K also increases the number of transmitted sequences and thus the amount
of interference at reception. A compromize between diversity and interferences should then
be found. Figures 2.13 and 2.14 show the performance for varying K and M for absence and
presence of interference, respectively. In both absence and presence of interference, for low
SNR, we note the optimality of the SIMO scheme for synchronization, proving in this case that
the dominant limitation parameter are the internal interferences from the additional transmit
antennas. On the contrary at high SNR, we note the sub-optimality of the SIMO scheme due to
fading and increasing performance with K as long as KM < 8, due to an increase of the system
diversity order up to 8. For this value, the fading has practically disappeared. Above a system
diversity order of 8, the increase in the diversity gain is very weak while the interference level
increases, hence the non-increasing or even decreasing performance with increasing K. Similar
results are obtained for other values of M.
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2.5 Conclusion

In this chapter, new insights into the time synchronization of K x M MIMO systems, corrupted
by interferences of any kind, have been given. Several schemes aiming at reducing the complexity
of ngLrT, the GLRT statistics optimized for presence of temporally white interference [8], have
been proposed. Alternative expressions of ngrrr have been introduced and the determinant
computation has been done explicitly for K = 2, allowing a direct comparison of ngrrr with
nvuMSE. Two new low-complexity statistics, ngLrro and ngrrT1, have been introduced, and have
been shown to have a performance very close to that of narrr for a wide range of parameter
choices. A comparative parameter analysis has been performed, taking into consideration the noise

type, channel type, the number of transmit and receive antennas, and the orthogonality of the
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synchronization sequence. To further reduce complexity, a powerful procedure of computation rate
reduction of the data correlation matrix has been proposed for orthogonal sequences. Furthermore,
the problem of optimization of K for time synchronization has been investigated. showing, for
high SNR, increasing performance with K as long as KM does not become greater than 8.

All these results have been presented with the goal of optimizing the performance-complexity
tradeoft.
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2.6 Appendix: Derivation of ngrLrT,we

It is shown in this appendix that expression (2.23) is a sufficient statistic for the GLRT detection
of the known synchronization sequence matrix S from the observation matrix Y, assuming
zero-mean, stationary, i.i.d, spatially white, circular Gaussian samples v(k) (0 < k < K — 1),
with correlation matrix in the form R = ¢2I, and unknown parameters H and o2. To this aim,
let us first compute the ML estimates of (H, o) under H; and of o2 under Hy respectively. Using
(1.11), the Log-likelihood, log(L1), of (H, 0?) under Hy, observing Y, can be written as
N-1
log(L1) = —M N log() — MNlog(o?) — > ((y(k) — Hs(k))*(y(k) — Hs(k)))/o®  (2.31)
k=0
Derivating this expression with respect to o and setting the result to zero, we obtain the ML
estimate 62 of ¢ under Hy, given by

1 N-1

TN L (V) ~ Hs()"(v(4) ~ Hs(h) (2:32)

67 =

In a similar way, it is easy to show that the ML estimate 63 of o under Hy is given by

1 N-—1 1 .
~2 E H —

Inserting (2.32) into (2.31) , we get the ML estimate, H, of H which maximizes (2.31) as

H=R,R' (2.34)

Developing (2.32), using (2.34) and taking the trace, it is straightforward to show that 63 takes
the form .

61 = 77 Tr(Ryy — Ry RIRY). (2.35)

Replacing in (1.9) (H,0?) by (H,4?) under H; and ¢ by 62 under Hy, we obtain the GLRT

test, given by
5—3 NM
TIGLRT ,we = (TQ)
o1

(2.36)

Inserting the expressions for 62 and 62 into (2.36), we deduce that

A

( Tr(Ryy) )NM
Tr(Ry, — IZ{ysRS?S1 25

TIGLRT,we = (2.37)

and that a sufficient statistic for the problem is given by

Tr(RyRR},)
NGLRT,we = = (2.38)
Tr(Ryy)
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2.7 Appendix: Derivation of ngLRrT,wu

It is shown in this Appendix that expression (1.15) is a sufficient statistic for the GLRT detection
of the known synchronization sequence matrix S from the observation matrix Y, assuming
zero-mean, stationary, i.i.d, spatially white, circular Gaussian samples v(k) (0 < k < N — 1),

and a correlation matrix in the form

a2 0 0
0 .o
R=| (2.39)
. . t. 0
0 0 o3
with unknown parameters H and R = Diag[o?,03,...,03%,], where o2 is the power of the noise

received on receive antenna n.

Let us first compute the ML estimates of (H,R) under H; and of R under Hy respectively.
Since the probability density function is known, the Log-likelihood, log(L;), of (H, R) under Hj,

observing Y, can be written as

M N—-1
log(L1) = — MNlog(w) — N log ( 11 aﬁ) + > (Yp —HS,)*R7(Y, — HS)) (2.40)
p=1 k=0

The derivative of this expression with respect to o2 is

0 ... 0
dlog(L N N2 00 o
ag(2 ) _ =+ Z (Y, — HSy) o5 (Y, — HS) (2.41)
On On k—0 0
o ... 0

1 N-—1
= S+ > (Yp—HSp)L (Y, — HSp), (2.42)

o5 Tn 120

setting the result to zero, we obtain that the ML estimate 6%” of o2 under Hj is given by
1 N-
6%, = = Z Y — HSy);, (Y, — HSp). (2.43)

To get the ML estimate, H, of H which maximizes (2.40), is again given by

=R,.R;" (2.44)
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Developing (2.43) and using (2.44), 67, takes the form

6%, = Ryy — RysRL' R Do (2.45)

In a similar way, it is easy to show that the ML estimate 6(2)771 of 02 under Hy is given by

Z wkYnk = Ryy)nn (2.46)

Replacing in (1.9) (H,R) by (H, Diag[67 1, . ..,087 5]) under Hy and R by Diag[67 1, - .-, 5/])
under Hy, we obtain the GLRT test, given by

Hfrjyzl (Ryy)n,n
(Ryy — RyR' RS )

NGLRT,wu = =7}
n=1
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2.8 Appendix: Derivation of ngrrr

It is shown in this appendix that expression (2.2) is a sufficient statistic for the GLRT detection
of the known synchronization sequence matrix S from the observation matrix Y, assuming zero-
mean, stationary, i.i.d, spatially colored, circular, Gaussian samples v(k)(0 < k < N — 1), and
unknown parameters H and R. To this aim, let us first compute the ML estimates of (H,R)
under H; and of R under Hy respectively. Using (1.11), the Log-likelihood, log(L1), of (H,R)

under Hj, observing Y, can be written as

log(L1) = — M N log(w) — N log(det(R)) (2.47)
N-1

= > (y(k) — Hs(k))"R™ (y(k) — Hs(k)) (2.48)
k=0

It is then straightforward to show that the ML estimate, H, of H i.e. the H which maximizes
(2.48), is still given by (2.34). Moreover, it is well-known [22,23] that the ML estimate, R1, of R
under Hy, i.e. the matrix R which maximizes (2.48) is given by

A 1 N-1

Ri= v 3 (/06) ~ Hs(h) ()~ Hs(h) (2.49)
Developing (2.49) and using (2.34), it is straightforward to show that R; takes the form
Ri = Ryy — f{ysR;}f{;S. In a similar way, it is straightforward to show that the ML estimate
Ry of R under Hy is given by

A

R 1 N—-1
Ro =+ > y(k)y(k)* =Ry, (2.50)
N k=0

Replacing in (1.9) (H,R) by (H,R;) under H; and R by Ry under Hy and using (1.10) and
(1.11), we obtain the GLRT test, given by

det(f{O))N (2.51)

TIGLRT = (det(fil)

Inserting the expressions for R and R, into (2.51), we deduce that a sufficient statistic for the

previous problem is given by

A

_ ydet(Ry)\—N
NGLRT = ( dot (Ro))
Taking the logarithm, we have
norrr = —N logdet (Tnr — Ry, Ry RS R}, ) (2.52)

which corresponds to equation (2.2).
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2.9 Appendix: Derivation of ngrLRrT kn

It is shown in this appendix that expression (2.10) is a sufficient statistic for the GLRT detection
of the known synchronization sequence matrix S from the observation matrix Y assuming
zero-mean, stationary, i.i.d, spatially colored, circular, Gaussian samples v(k) (0 <k < N —1)
with a known covariance matrix R, and an unknown channel matrix H. The ML estimate, ﬂ, of
H under H; is still given by (2.34). Using (1.10) and (1.11) and taking the logarithm of (1.9),
we obtain a sufficient statistic for our problem as

N-1

GLRT3 = Y (s(k)"H'R™'s(k)H — y(k)"R ™ His(k)
k=0

~s(k)"H'Ry(k)) (2.53)

Replacing in (2.53) the channel matrix H by its ML estimate H= f{ysRs_sl, and taking the trace,

we deduce that the sufficient statistic GLRT3 is defined by (2.10).



48CHAPTER 2. PARAMETER OPTIMIZATION FOR TIME SYNCHRONIZATION OF MULTI-ANTENNA SY

2.10 Appendix: Complexity of common matrix operations

In this Appendix, we remind the reader of the complexity of some common matrix operations,

which are used as a basis of our computations of complexity, used for Table 2.1.

LU decomposition

Consider the (N x N) matrix A and its LU-decomposition
A=LU (2.54)

where L is a lower-diagonal matrix and U an upper-diagonal matrix. It is well known that the

cost of performing this decomposition is approximately %N 3.

Determinant

A common way of calculating the determinant is using the LU-decomposition, since the decom-
position into upper and lower diagonal matrices simplifies the computation. We can easily see
that

det(A) =det(LU) = det(L) det(U) (2.55)
= ﬁ L;; ﬁ Ui (2'56)
i=1 =1

The total number of operations for calculating the determinant using LU-decomposition is
EN34+2(N—-1)+1.

Matrix inverse

To simplify the calculation of the inverse, we start by LU-decomposition of the matrix A that

we want to invert. We then calculate the inverse of the matrix
Al=Uu)t=Uu"L! (2.57)

The calculation of the inverse then requires solving a system of equations of IV equations. The
cost of solving this system of equations is 2N3. The total cost of inverting a matrix is thus
ZN3 4+ 2N3 = 8N3.
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Matrix product

Each element of a matrix product C = AB where A is a (N x K) matrix and B a (K x M)
matrix requires K multiplications and K — 1 additions. Therefore, to compute the N M elements,
we have a computational complexity of NM (2K —1). If A and B are both (N x N), the cost is
N2(2N — 1) = 2N3 — N2,

Product of a matrix with its conjugate transpose

When calculating a matrix product of the type C = YY¥ some of the products are the same
up to conjugation, and we can save on the number of multiplications. In fact, we only need

to calculate the terms on the diagonal and the diagonals below it, and take their conjugate to

N24N
2

calculate each element of C, we still need to perform K + (K — 1) = 2K — 1 multiplications and

fill the remaining elements. If Y is N x K, we need to compute >~ i = elements. To

additions per element. This results in a total computational complexity of L;N@K —1).
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Chapter 3

Large system analysis of a GLRT for
detection with large sensor arrays in

temporally white noise

3.1 Introduction

ue to the spectacular development of sensor networks and acquisition devices, it has

become common to be faced with multivariate signals of high dimension. Very often,
the sample size that can be used in practice in order to perform statistical inference cannot be
much larger than the signal dimension. In this context, it is well established that a number
of fundamental existing statistical signal processing methods fail. It is therefore of crucial
importance to revisit certain classical problems in the high-dimensional signals setting. Previous
works in this direction include e.g. [46] and [47] in source localization using a subspace method,
or [48], [49], [50], [51] in the context of unsupervised detection.

In the present chapter, we address the problem of detecting the presence of a known signal
using a large array of sensors. We assume that the observations are corrupted by a tempo-
rally white, but spatially correlated (with unknown spatial covariance matrix) additive complex
Gaussian noise, and study the generalized likelihood ratio test (GLRT). Although our results
can be used in more general situations, we focus on the detection of a known synchronization
sequence transmitted by a single transmitter in an unknown multipath propagation channel. The
behaviour of the GLRT in this context has been extensively addressed in previous works, but
for the low dimensional signal case (see e.g. [52], [8], [53], [54], [55], [56], [9]). The asymptotic

o1
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behaviour of the relevant statistics has thus been studied in the past, but it has been assumed
that the number of samples of the training sequence IN converges towards +oo while the number
of sensors M remains fixed. This is a regime which in practice makes sense when M << N.
When the number of sensors M is large, this regime is however often unrealistic, since in order to
avoid wasting resources, the size N of the training sequence is usually chosen of the same order
of magnitude as M. Therefore, we consider in this chapter the asymptotic regime in which both

M and N converge towards co at the same rate.

We consider both the case where the number of paths L remains fixed, and the case where
L converges towards oo at the same rate as M and N. When L is fixed, we prove that the
GLRT statistics ny converges under hypothesis Hy towards a Gaussian distribution with mean
Llog m and variance #% This is in contrast with the standard asymptotic regime
N — 400 and M fixed in which the distribution of ny converges towards a x? distribution.
Under hypothesis Hy, we prove that ny has a similar behaviour than in the standard asymptotic
regime N — +o00 and M fixed, except that the terms L log % and %% are added to
the asymptotic mean and the asymptotic variance, respectively. When L converges towards
oo at the same rate as M and N, we use existing results (see [57] and [58]) characterizing the
behaviour of linear statistics of the eigenvalues of large multivariate F—matrices, and infer that
the distribution of nx under Hy is also asymptotically Gaussian. The asymptotic mean converges
towards oo at the same rate as L, M, N while the asymptotic variance is a O(1) term. The
asymptotic behaviour of ny under hypothesis H; when L scales with M, N is not covered by the
existing literature. The derivation of the corresponding new mathematical results would need an
extensive work that is not in the scope of the present chapter. We rather propose a pragmatic
approximate distribution for 7y, motivated by the additive structure of its asymptotic mean and

variance in the regime where L is fixed.

We evaluate the accuracy of the various Gaussian approximations by numerical simulations,
by comparing the asymptotic means and variances with their empirical counterparts evaluated
by Monte-Carlo simulations. Further, we compare the ROC curves corresponding to the var-
ious approximations with the empirical ones. The numerical results show that the standard
approximations obtained when N — +o0o and M is fixed completely fail if % is greater than
%. The large system approximations corresponding to a fixed L and L — 400 appear reliable
for small values of %,
are considered, the approximations obtained in the regime L — 400 at the same rate as M

and, of course, for larger values of % For the values of L, M, N that

and N appear to be the most accurate, and the corresponding ROC-curves are shown to be
good approximations of the empirical ones. Therefore, the proposed Gaussian approximations

allow to reliably predict the performance of the GLRT when the number of array elements is large.
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This chapter is organized as follows. In section 3.2 we recall the expression of the statistics ny
corresponding to the GLRT, and explain that, in order to study 7y, assuming that the additive
noise is spatially white and that the training sequence matrix is orthogonal is not a restriction.
In section 3.3, we recall the asymptotic behaviour of ny in the traditional asymptotic regime
N — 400 and M fixed. The main results of this chapter, concerning the asymptotic behaviour
of ny in the regime M, N converge towards oo at the same rate, are presented in section 3.4. In
this section, we only give outlines of the proofs, while providing the remaining technical details in

Appendices. Section 3.5 is devoted to the numerical results, and section 3.6 concludes the chapter.

3.2 Presentation of the problem.

In the following, we assume that a single transmitter sends a known synchronization sequence
(sn)nzl’,_.7 ~ through a fixed channel with L paths, and that the corresponding signal is received
on a receiver with M sensors. The received M-dimensional signal is denoted by (yn)n=1,.. N-
When the transmitter and the receiver are perfectly synchronized, y, is assumed to be given for

eachn=1,...,N by
L-1
Vo = Z his,—1+ vy (3.1)
1=0

where (vy,)nez is an additive independent identically distributed complex Gaussian noise verifying

E(vn,) =0
E(v,vl) =0
E(v,vi) =R = ¢°R (3.2)

where R > 0 and ﬁTr(f{) = 1. Denoting by H the M x L matrix H = (hy,...,hr_1), the

received signal matrix Y = (y1,...,yn) in the presence of a useful signal can be written as
Y=HS+V (3.3)
where V = (vy,...,vy) and where S represents the known signal matrix. We assume from

now on that the size N of the training sequence satisfies N > M + L. We remark that the
forthcoming results are valid as soon as the matrix collecting the observations can be written as
in Eq. (3.3). In particular, by appropriately modifying the matrices H and S, this system model

can equivalently be used for a link with multiple transmit antennas.
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Furthermore, in the absence of a useful signal, the received signal matrix is given by
Y=V. (3.4)

In this chapter, we study the classical problem of testing the hypothesis H; characterized by
Equation (3.3) against the hypothesis Hy defined by equation (3.4), in the aim of testing whether

there is a useful signal present in the received signal. The hypotheses are

HQZY:V
H :Y=HS+V, (3.5)

where we assume from now on that H and R are unknown at the receiver side. In the following,
we will review the expression of the corresponding generalized maximum likelihood test (GLRT)
derived in [8]. The generalized likelihood ratio ry is, as mentioned in chapter 1, defined by [55]

maxpm, (Y [ S, H,R)

T frd 36
N mP%XpHO(Y | R) (3.6)

We recall that the probability density functions are given by

]. *R—1
Y | R) = e—Tr[Y RY] 37
pHo( ‘ ) NM (det(R))N ( )
1 *R—1
Y S’H’R — e—Tr[(Y—HS) R (Y—HS)}‘
le( | ) NM (det( ))N

The first step to calculate ry is to determine Rl and I:I, the R and H that maximize the

numerator, and Ry, the R, that maximizes the denominator, of equation (1.18). Straightforward
calculations show that H = ¥3-(8%°)~! and Ry = XX — (X5)(55°) " 1(2¥5). Similarly, Ry is

given by Ro = %

Inserting these estimates into equation (1.18) leads to ry = (det(filf{o_ 1)) . Therefore,

logry

the log-likelihood ratio ny, defined by ny = =5, is given by

~—1/2YS* (SS*\TISY* . i
nv = — log det lIM—RO / ~ <N> ~ Ra / (3.8)
or, using the identity det(I — AB) = det(I — BA), by
ny = —logdet [I, — Ty] (3.9)

where Ty is the L x L matrix defined by

*x\ —1/2 * x\ —1 * *\ —1/2
Ty — (SS) SY (YY > YS (SS ) (3.10)

N N N N N
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The generalized maximum likelihood test consists then in comparing 7y to a threshold.

In order to study the behaviour of the test in Eq. (3.9), we study the limit distribution of ny
under each hypothesis. For this, we remark that it is possible to assume without restriction that
% =1, is verified and that E(v,v*) = 021, i.e. R is reduced to the identity matrix. If this is

not the case, we denote by S the matrix

B x\ —1/2
S = (S]\S[ > S (3.11)

and by Y and V the whitened observation and noise matrices

Y =R %Y,

V=R"2V (3.12)

It is clear that % = I, and that E(¥,¥") = o2I. Moreover, under Hy, it holds that Y =V,
while under H;, Y = HS + V where the channel matrix H is defined by

H=R2H(SS*/N)/? (3.13)

Finally, it holds that the statistics ny can also be written as

SY (W*)‘l ?S*]

(3.14)

= —logdet |I} —
NN Oge[L N N N

This shows that it is possible to replace S, R and H by S, I, and H without modifying the value

of statistics ny. Therefore, without restriction, we assume from now on that

SS* ~
=I;, R=1 N
=1 R=Ty (3.15)

In the following, we denote by W a (N — L) x N matrix for which the matrix @ = (W7, %)T
is unitary and define the M x (N — L) and M x L matrices V1 and Vy by

S*
vN
It is clear that V1 and V5 are complex Gaussian random matrices with independent identically

distributed Ng (0, 02) entries, and that the entries of V1 and Vg are mutually independent. We

notice that since N > M + L, the matrix V1]\?/{ is invertible almost surely. We now express the

(V1,Vy) = VO* = (VW*, V) (3.16)

statistics nn in terms of Vi and V,. We observe that

VV'_ViVi | VaVi

~ ¥ 7 (3.17)
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and that

N VN VN

VS* 1 \)\% S*
= — (V1,Vy) ( S ) — (3.18)
VN

.. . AV * . .
coincides with \/—% because W% = 0. Therefore, under hypothesis Hg, ny can be written as

(3.19)

Vi (V{VE VoVEN LV
nN:—logdet(I— 2( L1 2 2) 2>

VN\ N N VN

Using the identity
A* (BB* + AA") ' =
A*(BB)'A (I +A*(BB*)'A)  (3.20)
we obtain that, under hypothesis Hy, nn can be written as
ny = logdet (I, + V3/V/N (ViVi/N) ™! V3/VN) (3.21)
Similarly, it is easy to check that, under Hy, ny is given by
ny = logdet (Ir, + Gy) (3.22)
where the matrix Gy is defined by

Gy = (H+V5/VN) (ViVi/N)™! (H+Va/VN) (3.23)

3.3 Standard asymptotic analysis of ny.

In order to give a better understanding of the similarities and differences with the more complicated
case where M and N converge towards +oco at the same rate, we first recall some standard
results concerning the asymptotic distribution of ny under Hy and H; when N — 400 but M

remains fixed.

3.3.1 Hypothesis Hy.

A general result concerning the GLRT, known as Wilk’s theorem (see e.g. [55], [59] Chapter
8-5), implies that N7y converges in distribution towards a y? distribution with 2M L degrees of

freedom. For the reader’s convenience, we provide an informal justification of this claim. We use
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(3.21) and remark that when N — 400 and M and L remain fixed, the matrices V;Vi/N and

+ V35 (V1Vi/N )"* Vy converge a.s. towards ¢2I and the zero matrix respectively. Moreover,

1

~ V3 (ViVI/N) v, = —5V3Va/N +op(5) (3.24)
and a standard second order expansion of 1y leads to
1 . 1
o N
This implies immediately that the limit distribution of N ny is a chi-squared distribution with

2M L degrees of freedom. Informally, this implies that E(ny) ~ L% and Var(ny) ~ %%

3.3.2 Hypothesis H;.

Under hypothesis Hy, ny is given by (3.22). When N — 400 and M and L remain fixed, the
matrix V1Vi/N converges a.s. towards I and it is easily seen that

*

ny = log det <I+ HJI;I ) +
HH*

o2

| (1+ )AAN} +Op(1/N) (3.26)

where the matrix Ay is given by

1 / V3 Vo
Ay =H'Y H+< 2H+H*) 3.27
N N o2 \/N \/N ( )
with Y = (V1V,/N)™' —1/02. Standard calculations show that
HH*
VN (TIN — log det (I + 2 )) — N(0, k1) (3.28)
where k7 is given by
H*H -2
o

Note that in [55] and [9], the asymptotic distribution of 7y is studied under the assumption that
the entries of the matrix H are (’)(ﬁ) terms. In that context, ny behaves as a non-central x>

distribution.

3.4 Main results.

In this section, we present the main results of this chapter related to the asymptotic behaviour of

ny when M and N converge towards oo at the same rate. The analysis of 7 in the asymptotic
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regime M and N converge towards oo at the same rate differs deeply from the standard regime
studied in section 3.3. In particular, it is no longer true that the empirical covariance matrix
V1 V% /N converges in the spectral norm sense towards ¢2I. This, of course, is due to the fact
that the number of entries of this M x M matrix is of the same order of magnitude than the
number of available scalar observations (i.e. M(N — L) = O(MN)). We also note that for any
deterministic M x M matrix A, the diagonal entries of the L x L matrix %V;AV2 converge
towards 0 when N — +oo and M remains fixed, while this does not hold when M and N are
of the same order of magnitude (see Proposition 4 in Appendix 3.7). It turns out that the
asymptotic regime where M and N converge towards oo at the same rate is more complicated
than the conventional regime of section 3.3. As the proofs of the following theorems are rather
technical, we just provide in this section the outlines of the approaches that are used to establish

them. The detailed proofs are given in the Appendix 3.8.

3.4.1 Asymptotic behaviour of 1y when the number of paths L remains fixed
when M and N increase.

All along this section, we assume that:

Assumption 1. e M and N converge towards +o0o in such a way that cy = % <1- %

converges towards ¢, where 0 < c <1

o the number of paths L remains fived when M and N increase.

In the asymptotic regime defined by Assumption 1, M can be interpreted as a function M (N)
of N. Therefore, M-dimensional vectors or matrices where one of the dimensions is M will be
indexed by N in the following. Moreover, in order to simplify the exposition, N — +oo should

be interpreted in this section as the asymptotic regime defined by Assumption 1.

As M is growing, we have to be precise with how the power of the useful signal component
HS is normalized. In the following, we assume that the norms of vectors (h;);—o . -1 remain
bounded when the number of sensors M increases. This implies that the signal to noise ratio
at the output of the matched filter S"H*Y/V/N, i.e. Tr((H*H)?) / (¢?>Tr(H*H)), is a O(1)
term in our asymptotic regime. We mention however that the received signal to noise ratio

Tr(H*H)/(Mo?) converges towards 0 at rate 1 when N increases.

Asymptotic behaviour of 1y under hypothesis Hy

Under hypothesis Hg, the following theorem holds.
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Theorem 1. It holds that

mv—Llog(1

VN

(771\/ — L log (
Len

\/ l—cn

Informally, Theorem 1 leads to E(ny) ~ —Llog(1 — c¢y) and Var(ny) ~ %lf’;’N. We recall

that if M is fixed, Nny behaves like a y? distribution with 2M L degrees of freedom. In that
context, E(ny) ~ Ley and var(ny) ~ %CN. Therefore, the behaviour of 7y in the two asymptotic

) — 0a.s. (3.30)

and that

))-+DA@aLU (3.31)

1—CN

regimes deeply differ. However, if cy — 0, —log(1 — ¢n) =~ ¢y, and the asymptotic means and

variances of ny tend to coincide.

Outline of the proof. We denote by Fy the L x L matrix
Fy =V3/VN (ViVi/N)™' Vy/VN (3.32)
and remark that under Hy, (3.21) leads to
ny = logdet (I, + Fy) (3.33)

First step: proof of (3.30). As L does not increase with M and N, it is sufficient to establish
that

CN

F —
N 1—cpn

I —0a.s. (3.34)

Our approach is based on the observation that if Ay is a M x M deterministic Hermitian matrix

verifying supy [|An|| < a < 400, then,

(V5/VN AxVa/VN)

E
Ve k,l

e

where C(a) is a constant term depending on a, and where Ev, represents the mathematical

—(]fvar(AN) 5k —1) (3.35)

expectation operator w.r.t. Vo. This is a consequence of Proposition 4 in the Appendix 3.7.

Assume for the moment that there exists a deterministic constant a such that
I(ViVi/N) " <a (3.36)

for each N greater than a non random integer Ny. Then, as V; and Vs are independent, it is
possible to use (3.35) for Ay = (V1 V%/N)~! and to take the mathematical expectation w.r.t.
V1 of (3.35) to obtain that

4

E\(FN)g: — ?ETT (ViVi/N) P ok —1) < Cla)

N2

(3.37)
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for each N > Ny, and, using the Borel-Cantelli lemma, that

2
Fy — %Tr (VIVI/N) " I, = 0 as. (3.38)

In order to conclude, we use known results related to the almost sure convergence of the eigenvalue
distribution of matrix V; Vi /N towards the so-called Marcenko-Pastur distribution (see Eq.
(3.77) in the Appendix 3.7 ) which imply that

CN

n(v,vin) o ey
N 1"( 1 1/ ) _0'2(1—CN)

=0 (3.39)

almost surely. This, in conjunction with (3.38), leads to (3.34) and eventually to (3.30).

However, there does not exist a deterministic constant a satisfying (3.36) for each N greater
than a non random integer. In order to solve this issue, it is sufficient to replace matrix
(V1V#/N)~! by a convenient regularized version. It is well known (see Proposition 1 in the
Appendix 3.7) that the smallest and the largest eigenvalue of V1 V] /N converge almost surely
towards 02(1 — /c)? > 0 and 02(1 + /c)? respectively. This implies that if &y is the event
defined by

En = {one of the eigenvalues of V1 V] /N escapes from
[0°(1 = ve)* = €,0%(1 + 1/)* + €]} (3.40)

(where € is chosen such that o2(1 — /c)? — € > 0) then, almost surely, for N larger than a
random integer, it holds that Lge = 1. Therefore, almost surely, for N large enough, it holds
that ny = 7y 1gg . These two random variables thus share the same almost sure asymptotic
behaviour. Moreover, it is clear that ny 1e¢ coincides with logdet(I+Fy1ge ). In order to study
the almost sure behaviour of nnlee , it is thus sufficient to evaluate the behaviour of matrix
Fn1gg, which has the same expression than Fy, except that matrix (V1Vj/N )_1 is replaced
by (V1Vi/N)™* 1gg . The latter matrix verifies

Jovavirm ™t | < s

for each integer N almost surely. Therefore, the regularized matrix (V,Vi/N)™*! Lge satisfies

(3.41)

(3.36) almost surely for each integer N for a = W This immediately leads to the

conclusion that Fy L¢ee has the same almost sure behaviour than 13ij Iplge,, or equivalently
that —“2—Iy. This, in turn, implies (3.30).

l—cn

Second step: proof of (3.31). As ny = nnlee, almost surely for N large enough, the asymptotic
distributions of VN [ny — Llog(=2 —)] and \/N[UN]L??V — Llog(+—-)] coincide. We thus study

c l—cn

the latter sequence of random variables because the presence of the regularization factor Leg

allows to simplify a lot the derivations.



3.4. MAIN RESULTS. 61

A standard second order expansion of logdet(I + F Nlgg ) leads to

VN[nnles — Llog(1— CN)] =

(1= en)VN (Tr(Fyleg, - : ch - 1) +op(1) (3.42)

It is thus sufficient to evaluate the asymptotic behaviour of the characteristic function ¢y o of
random variable By y = (1 —en)VN (Tr(FN]lg]cv — = I)) defined by n o(u) = E(e?*PN0). For

l—cn

this, we first evaluate [Evz(eiuﬁN 0), and using Proposition 2 and Proposition 4 in Appendix 3.7,

we establish that Ev,(e“#¥.0) has the same asymptotic behaviour as

2 1, (ViVi\~?
exp l—uz o L(1—cn)’en MTr ( }\7 1) e, (3.43)
. 1 ViV —2 1 .

It is known that MTr( w 1) behaves almost surely as = (see Eq. (3.78) in the

Appendix 3.7). From this, we obtain immediately that

2 L
YN o(u) — exp <_u N — 0 (3.44)
’ 2 1—cn

for each w, which, in turn, establishes (3.31).

Asymptotic behaviour of 1y under hypothesis H;

The behaviour of ny under hypothesis H; is given by the following result.

Theorem 2. It holds that
NN =Ty — 0 a.s. (3.45)

where Ny 1 is defined by

1
ﬁN,l = Llog 1 + log det (I + H*H/U2) (3'46)

Moreover,

VN
()

l—cn

where k1 is defined by (3.29).

7z (v = 7vp) = NR(0,1) (3.47)

Remark 1. Interestingly, it is seen that the asymptotic mean and variance of ny are equal to

the sum of the asymptotic mean and variance of ny in the standard regime N — 400 and M

fized, with the extra terms Llog (171(:1\,) and Néc_f\c’N), which coincide with the asymptotic mean

and variance of ny under Hy.
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Outline of the proof. We recall that, under Hy, ny is given by (3.22). As in the proof of

Theorem 1, it is sufficient to study the regularized statistics nnlgg which is also equal to

77N]1€]C\, = log det (IL + ]lg]cv GN) (3.48)

First step: proof of (3.45). In order to evaluate the almost sure behaviour of nnleg , we expand

GN]lg]cv as

GNllgIcV =H" (V1VT/N)_1 H ]lg]cv + FN]lgzc\r +
(V2/VN)* (V1Vi/N) " H 1 +
H* (V1Vi/N)"H (Va/VN) 1g (3.49)

The first term of the righthandside of (3.49) is known to behave as ﬁ (see (3.81) in
Appendix 3.7) while the independence between V; and Vy implies that the third and the fourth
terms converge almost surely towards the zero matrix. This is because the fourth-order moments
w.r.t. Vy of their entries are (’)(%) terms.

Second step: proof of (3.47). Using a standard second order expansion, we obtain immediately
that

VN (nnleg, —Tiva) = VN Tr (DyAy) + op(1) (3.50)

where A and Dy are defined by

H*H CN
Ay = Gylge — I 51
v=Cvte (e e ) (350
and
Dy = (1 —cy)Ip +HH/0?) ! (3.52)

In order to establish (3.47), it is therefore sufficient to evaluate the asymptotic behaviour of the
characteristic function ¢y 1 of random variable Sy, = VN Tr (DnApN). We define ky and wy
by

iy =Tr (Cy (VIVi/N) ) (3.53)
and
wy =Tr {DNFN]lg]cV} -+

Tr [Dy(Va/VN)* (VIV]/N) " H 1gg | +
Tr [Dy H* (ViVi/N) ™ (Vo/vV/N) 1| (3.54)
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where Cpy the M x M matrix given by
Cy = (1—cy)H(I, +H*H/c?) 'H* (3.55)

Then, Sn,1 can be written as

Bnvg = VN (mv — Tr(CN))> + (3.56)

o?(1 —cn
VN (wN — 3 iNcN Tr(DN)>

Using the equation above as well as Proposition 2 and Proposition 4 from Appendix 3.7, we
establish that Ev,(e™?N1) behaves as
. TI‘(C N) u2
exp (ZU\/N (HN - 0'2<1—C]V)>) eXp(—?C) (357)
where ( = (CiNTr(D%V) + 22 Tr(D%H*H). In order to obtain the limiting behaviour of

1—cn)3 (1—cn)
Yn1(u), it is thus sufficient to evaluate the limit of

. Tr(Cn)
[E\/1 [exp <ZU/\/N (K/N — 0_2(1_CJV)>):| (358)
This technical point is addressed in Appendix 3.7, Proposition 3.

Remark 2. It is useful to recall that the expression of the asymptotic mean and variance of Ny
provided in Theorem 2 assumes that R = I and that S]%* = 1. If this is not the case, we have to
replace H by R™1/?H (SS*/N)l/2 in Theorem 2.

Remark 3. We note that Theorem 2 allows to quantify the influence of an overdetermination of
L on the asymptotic distribution of ny under Hy. This analysis is interesting from a practical
point of view, since it is not always possible to know the eract number of paths and their delays.
If L is overestimated, i.e. if the true number of paths is L1 < L, then, matrix H can be written
as H= (H1,0). We also denote by S1 and S the Ly x N and (L — L1) X N matrices such that
S = (SIT, SQT)T. It is easy to check that the second term of Ny 1, i.e.

log det (I, + (SS*/N)"/*H*RH(SS"/N)"/?) (3.59)
coincides with
log det (I, + (S187/N)/?H{R"H,(S:S}/N)"/?) (3.60)

and is thus not affected by the overdetermination of L. Therefore, choosing L > Ly increases Ty ;
by the factor (L — L) log (ﬁ) As for the asymptotic variance, it is also easy to verify that k1

is not affected by the overdetermination of the number of paths, and that the asymptotic variance

is increased by the factor (L — L) 1fJZN. It is interesting to notice that the standard asymptotic
analysis of subsection 3.3.2 does not allow to predict any influence of the overdetermination of L

on the asymptotic distribution of nn .
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3.4.2 Asymptotic behaviour of ny when the number of paths L converges
towards oo at the same rate as M and N.

The asymptotic regime considered in section 3.4.1 is relevant when the number of paths L is much
smaller than M and N. This hypothesis may however be restrictive, so that it is of potential

interest to study the following regime:

Assumption 2. L, M and N converge towards +oco in such a way that cy = % and dy = %

converge towards ¢ and d, where 0 < c+d < 1

As explained below in Paragraph 3.4.2, the behaviour of ny under Hy in this regime is a
consequence of existing results. The behaviour of ny under H; is however not covered by the
existing litterature. The derivation of the corresponding new mathematical results needs extensive
work that is not in the scope of the present chapter. Motivated by the additive structure of the
asymptotic mean and variance of iy under H; under assumption 1, we propose in Paragraph

3.4.2 a pragmatic Gaussian approximation of the distribution of ny under H;

Asymptotic behaviour of 1y under hypothesis Hy
Theorem 3. We define 7y by

ﬁN = — N((l — CN) log(l — CN)
+ (1 —dn)log(1l —dn))

—I—N(l — CN —dN) log(l — CN —dN) (3.61)
and o by
. 24/a% — b3
Sy = —log NN (3.62)
an + 1/&?\; — b?v
where
cN 2 dn en(1 —cen)
=(1- 1 3.63
ax = 1—dN) l—dN( +dN(1_dN)) (3.63)
dN CN(l — CN)
by =2 3.64
N dy Vde(1 = dy) (364)
Then, it holds that E(ny) = iin + O(+;) and that
1 .
Tre (nv = iin) = Ngr(0,1) (3.65)
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Justification. The eigenvalues of Fy coincide with the non-zero eigenvalues of (Vo V3)/N (Vi Vi/N) ™t
Therefore, ny appears a linear statistics of the eigenvalues of this matrix. (VoV3)/N (V,Vi/N)™*
is a multivariate F—matrix. The asymptotic behaviour of the empirical eigenvalue distribution
of this kind of random matrix as well as the corresponding central limit theorems are well
established (see e.g. Theorem 4-10 and Theorem 9-14 in [57] as well as [58]) when the dimensions

of V1 and V5 converge towards +oo at the same rate. Theorem 3 follows from these results.

Remark 4. We notice that the results of Theorem 3 differ deeply from the results of Theorem 1.
We first remark that 7, and thus E(ny), converge towards oo at the same rate that L, M,N.
Moreover, nny — E(nn) is an Op(1) term under assumption 2, while it is an Op(\/%) term when
L does not scale with M, N. However, it is possible to informally obtain the expressions of the
asymptotic mean and variance of ny in Theorem 1 from (3.61) and (3.62). For this, we remark

that a first order expansion w.r.t. dy = % of in and oy leads to

iv = L (log(——) + O(L/) ) (3.66)
and to
Sy = % : fNCN +0 ((L/N)Q) (3.67)

which, of course, is in accordance with Theorem 1.

Asymptotic behaviour of 7y under hypothesis H;

Under Hi, nn is a linear statistics of the eigenvalues of matrix
(H+Vo/VN) (H+Vo/VN) (ViVi/N) ™! (3.68)

To the best of our knowledge, the asymptotic behaviour of the linear statistics of the eigenvalues
of this matrix has not yet been studied in the asymptotic regime where L, M, N converge towards
oo at the same rate. It is rather easy to evaluate an approximation of the empirical mean of 1y
under H; using the results of [60]. However, to establish the asymptotic gaussianity of ny and
the expression of the corresponding variance, we need to establish a central limit theorem for
linear statistics of the eigenvalues of non-zero mean large F-matrices. This needs an important
work that is not in the scope of the present chapter, which is why we propose the following

pragmatic approximation of the distribution of ny.

Claim 1. [t is relevant to approximate the distribution of nyx under Hy by a real Gaussian
distribution with mean fx + logdet (I + H*H/0?) and variance ox + r1/N.
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Justification of Claim 1. As mentioned in Remark 1, when M, N — oo and L is fixed,
under Hj, the asymptotic mean 7y ; is the sum of the asymptotic mean under Hy given by
(3.30) and the second term log det (I + H*H/0?). Thus, in the regime where N, M, L — oo, it
seems reasonable to approximate the asymptotic mean of 7y by the sum of 7y defined by (3.61)
with the second term logdet (I+H*H/0?). We can reason similarly with the variance. The
asymptotic variance under Hy, (3.47), is the sum of the asymptotic variance under Hy, outlined
in Theorem 1, and the extra term . Therefore, the asymptotic variance under Hj in the
regime where N, M, L — oo can be approximated by the asymptotic variance under Hy for the
same regime, plus the extra term St. The results provided by this approximation are evaluated

numerically in section 3.5.

For the reader’s convenience, the main results of this chapter are summarized in Table 3.1,

where dy is given by equation (3.62), k1 by equation (3.29) and 7y by equation (3.61).

Assumption| Distribution under Hgy Distribution under Hy
on parame-
ters

(a) Classi- | ny ~ % X301 NN ~ ./\/'[R(log det (I + HO-I_QI*)a %)
cal, N — ([E[mv] = Len, Var[ny] = Ley - %)
00
(b)  Pro-| ny ~ Ng (L log —L—, Len l) N ~ Ngr (L log ———+log det (I—i— HH*) m gy Loy -i)

"N TI—en N

I—cy’1l-cy N T—cn o2

posed,
M,N —
00

(¢) Pro-| nn NNR<1?N,5N) NN NNR(ﬁN+logdet (I+ HJI_QI*),% —i—gN)
posed,

L, M,N —

o0

Table 3.1: Asymptotic distribution of nn for different assumptions, under Hy and Hy
3.5 Numerical results.

In this section, we validate the relevance of the Gaussian approximations of section 3.4. In our
numerical experiments, we have calculated the asymptotic expected values and variances as well
as their empirical counterparts, evaluated by Monte Carlo simulations with 100.000 trials. In this

section, to refer to the different approximations, we use the (a), (b) and (c) defined in table 3.1.
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The fixed channel H is equal to H = 73 H where H is a realization of a M x L

1
(Te(HH"))
Gaussian random matrix with i.i.d. N(0, §7) entries. We remark that Tr(HH*) = 1.

The rows of the training sequence matrix S are chosen as cyclic shifts of a Zadoff-Chu sequence
of length N [45]. Due to the autocorrelation properties of Zadoff-Chu sequences, designed so
that the correlation between any shift of the sequence with itself is zero, we have SS*/N = I, if
L <N.

3.5.1 Influence of cy = X on the asymptotic means and variances.

N

We first evaluate the behaviour of the means and variances of the three Gaussian approximations
M

in terms of ¢y = 7. We only show the results for the asymptotic variance under Hy, but note
that the results are similar for the expected values and under hypothesis Hy. Figure 1 compares
the theoretical variances with the empirical variances obtained by simulation, under hypothesis
Hi, as a function of ¢y, the ratio between M and N. In this simulation, M = 10, L = 5 and
N = 20,40, 60,80,160,320. When ¢y is small, the three approximations (a), (b) and (c) give
the same variance, as expected, and are very close to the empirical variance. When cy > %,
the assumption that M is small compared to N is no longer valid, and the classical asymptotic
analysis (a) fails. The two large system approximations (b) and (c) provide similar results when
ey < %, i.e. when N = 40, or equivalently when % < %. However, when N = 20, i.e. % = %, (c),
the approximation corresponding to the regime where L, M, N converge towards oo leads to a
much more accurate prediction of the empirical variance. We remark that the approximation (c)
is also reliable for rather small values of L, M, N, i.e. L =5, M =10, N = 20. We also remark
that the regimes (b) and (c) where M, N are of the same order of magnitude capture the actual
performance even when cy is small, which, by extension, implies that the standard asymptotic
analysis (a) always performs worse compared to the two large system approximations. If N, M
increase while ¢y stays the same, the results will be even closer to the theoretical values, since

the number of samples is larger.

In the simulations that follow, we will use ¢y = 1/2 with N = 300, M = 150 and L = 10, if

not otherwise stated.
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& Empirical variance
Theoretical variance {a)
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0ar

Variance
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N

Figure 3.1: Proposed asymptotic analysis with standard asymptotic analysis

3.5.2 Comparison of the asymptotic means and variances of the approxima-

tions of 7y under H

We first compare in figures 2 and 3 the asymptotic expected values and variances with the
empirical ones when L increases from L = 1 to L = 30 while M = 150 and N = 300, i.e.
ey = 1/2. The figures show that the standard asymptotic analysis of section 3.3 completely fails
for all values of L. This is expected, given the value of % As L increases, the assumption that
L is small becomes increasingly invalid, and the only model that functions well in this regime is
the model (c). This is valid both for the expected value and variance, and the theoretical values
are very close to their empirical counterparts. We remark that the approximation (c), valid when

L — 400, also allows to capture the actual empirical performance when L is small.

Expected value under HD

fts]

~—®— Empirical mean
Theoretical exp. value (a)
20 | = = Theoretical exp. value (b) Fe

—® = Thearetical exp. value (c) -

Expected value
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Wariance under HD

o1z

& Empirical variance

o1 b Theoretical variance {a)
) == Theoretical variance (b} ra

=+ = Theorstical variance () ./'

Wariance

an

3.5.3 Validation of asymptotic distribution under H,

Although the expected values and variances can be very accurate, this does not necessarily mean
that the empirical distribution is Gaussian. Therefore, we need to validate also the distribution
under Hy. The asymptotic distribution under Hy can be validated by analyzing its accuracy
when calculating a threshold used to obtain ROC-curves. Note that this analysis also shows the

applicability of the results for a practical case of timing synchronization.

We calculate the ROC curves in two different ways. The first is the ROC curve calculated
empirically. We determine a threshold s from the empirical distribution under Hy which gives
a given probability of false alarm as Py, = P(ny > s). Its corresponding probability of non-
detection, P,,q4, is then obtained as the probability that the empirical values of the synchronization
statistics under H; pass this threshold. The other ROC-curves are obtained by calculating the
threshold s from the asymptotic Gaussian distributions under Hg, and using this theoretical

threshold to calculate the P,4 from the empirical distribution under Hj.

Figure 4 shows the ROC-curves obtained with the approaches mentioned above when L =
10, M = 150, N = 300. Since the standard asymptotic analysis (a) gives very bad results, its
results are omitted. It is clear that ROC-curve obtained by using the asymptotic distribution
(b), obtained with the assumption that L is small, differs greatly from the results from the
approximation (c), even for this relatively small value of L. This is because the theoretical
threshold depends greatly on the expected value, and if it is not precisely evaluated, it gives
erroneous results. In (c), the model where N, M, L — oo, the expected value and variance are
very close to their empirical counterparts, and the resulting threshold can be used to precisely
predict the synchronization performance for the set of parameters used when Pr, > 1073 and
Pynq > 1073, Figure 5 shows, for the regime (c), the ROC curves obtained with the theoretical
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—®—Empirical ROC
— = "ROC with theoretical threshald (b}
=+ =ROC with theoretical threshold (c)

threshold, together with the empirical results. In the figure, L goes from 1 to 20, while M = 15L
goes from 15 to 300 and N = 30L goes from 30 to 600. It is seen that when the three parameters

grow, the distance between the theoretical and empirical ROC curves decreases.

F| —# =Empirical ROC, L=1
— % ROC with theoretical threshold,
Empirical ROC, L=5
—*—R0OC with theoretical threshold, L=
10 F| —*—Empirical ROC, L=10

ROC with theoretical threshold, L=10
—*—Eupirical ROC, L=20
—P ~ROC with theoretical threshold, L=20

-2

-3
10 10
Fea

3.5.4 Comparison of the asymptotic means and variances of the approxima-

tions of ny under H;.

In this section, we will proceed to validate the expected value and variance under Hj.

Figures 6 and 7 validate the asymptotic expected values and variances under Hy. Similarly
to hypothesis Hp, the theoretical expected values and variances are poorly evaluated using the
standard asymptotic analysis (a). We note that the asymptotic expected values deduced for the

regime (c) are very close to the empirical expected values and variances. For an L sufficiently
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small, however, also the regime (b) gives asymptotic expected values and variances that are close

to their empirical counterparts.

Expected value under H,

25

& Empirical mean 4
Theoretical exp. value (a) -

20| = = Theoretical exp. value (b) -

=+ =Theoretical exp. value (c)

Expected value

Wariance under H]

014

& Empirical variance
01z + Theoretical variance {a)
== Theoretical variance (b}

g1t =% = Theoretical variance (c) s

Wariance

an

3.5.5 Validation of asymptotic distribution under H;

To validate the asymptotic distributions under H;, we calculate theoretical ROC-curves using
both asymptotic distributions. For each Pj,, a threshold s is calculated from the theoretical
Gaussian distribution under Hy. This threshold is then used to calculate the P,, from the
theoretical Gaussian distribution under Hi, using P,q = 1 — Py, (nn > s). Figure 8 shows these
theoretical ROC curves plotted together with the empirical ROC curve. Here, L = 10, M = 150
and N = 300. It is seen that the approximation corresponding to the regime N, M,L — oo
provides, as in the context of hypothesis Hgy, a more accurate theoretical ROC curve. It is

seen that the ROC curve associated with the regime small L (b) is closer from the empirical
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ROC curve than in the context of hypothesis Hy. This is because the corresponding asymptotic
means are, for both Hy and Hy, less than the actual empirical means. These two errors tend to
compensate in the theoretical ROC curves (b), which explains why the theoretical ROC curve

(b) of figure 8 is more accurate than the corresponding ROC curve of figure 4, for small L.

—&— Empirical ROC
— = "' Thearetical ROC i)
=+ = Theorsetical ROC (c)

We now evaluate the behaviour of the ROC curves when N, M, L grow at the same rate.
In figure 9, L goes from 1 to 20, while M = 15L goes from 15 to 300 and N = 30L goes from
30 to 600. The results show that as N, M, L grow proportionally, the theoretical results tend
to approach the empirical values, but that, in contrast with the context of figure 5, a residual
error remains. It would be interesting to evaluate more accurately the asymptotic behaviour
of nny under Hj in the regime L — 400, and to check if the residual error tends to diminish.
However, as mentioned in Paragraph 3.4.2, this needs to establish a central limit theorem for

linear statistics of the eigenvalues of non zero mean large F-matrices, which is a non trivial task.

10 f| —# ~Empirical ROC, L=1

— % 'Theoretical ROC, L=1 -~
Empirical ROC, L=G

—4 [| 7 Theoretical ROC, L=
10 p| —*—Empirical ROC, L=10

Theoretical ROC, L=10
——Enpirical ROC, L=20

=P = Theoretical ROC, =20

10 10

a
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3.6 Conclusion.

In this chapter, we have studied the behaviour of the multi-antenna GLR detection test statistics
nn of a known signal corrupted by a multi-path deterministic channel and an additive white
Gaussian noise with unknown spatial covariance. We have addressed the case where the number
of sensors M and the number of samples N of the training sequence converge towards co at the

same rate. When the number of paths L does not scale with M and N, we have established that

nn has a Gaussian behaviour with asymptotic mean L log m and variance % ﬁ/[]\/jy]v. This is

in contrast with the standard regime N — +o00 and M fixed where 1y has a x? behaviour. Under
hypothesis Hi, nny has still a Gaussian behaviour. The corresponding asymptotic mean and

variance are obtained as the sum of the asymptotic mean and variance in the standard regime
L M/N

N 1-M/N
and variance under Hy. We have also considered the case where the number of paths L converges

N — 400 and M fixed, and L log m and respectively, i.e. the asymptotic mean
towards oo at the same rate as M and N. Using known results of [57] and [58], concerning the
behaviour of linear statistics of the eigenvalues of large F-matrices, we have deduced that in
the regime where L, M, N converge to co at the same rate, ny still has a Gaussian behaviour
under Hyp, but with a different mean and variance. The analysis of ny under H; when L, M, N
converge to oo needs to establish a central limit theorem for linear statistics of the eigenvalues of
large non zero-mean F-matrices, a difficult task that we will address in a future work. Motivated
by the results obtained in the case where L remains finite, we have proposed to approximate the
asymptotic distribution of ny by a Gaussian distribution whose mean and variance are the sum
of the asymptotic mean and variance under Hy when L — 400 with the asymptotic mean and
variance under H; in the standard regime N — 400 and M fixed. Numerical experiments have
shown that the Gaussian approximation corresponding to the standard regime N — 400 and M

fixed completely fails as soon as % is not small enough. The large system approximations provide

better results when % increases, while also allowing to capture the actual performance for small
values of % We have also observed that, for finite values of L, M, N, the Gaussian approximation
obtained in the regime L, M, N converge towards co is more accurate than the approximation
in which L is fixed. In particular, the ROC curves that are obtained using the former large
system approximation are accurate approximations of the empirical ones in a reasonable range of
Ptq, Poq. We therefore believe that our results can be used to reliably predict the performance
of the GLRT, and that the tools that are developed in this chapter are useful in the context of

large antenna arrays.
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3.7 Appendix: Useful technical results.

In this appendix, we provide some useful technical results concerning the behaviour of certain

large random matrices. In the remainder of this appendix, 3 represents a M x N matrix with

Ne (0, ”—1\?) ii.d. elements. We of course assume in this section that M and N both converge

towards +oo in such a way that cy = % < 1 converges towards ¢ < 1. In the following, we give
some results concerning the behaviour of the eigenvalues 5\17 N < 5\27 N.-.. < h\ M N of the matrix
S yE} as well as on its resolvent Qu(z) defined for 2 € C — Rt by

Qn(z) = (EnZy — 2In) " (3.69)
We first state the following classical result (see e.g. [57], Theorem 5.11).

Proposition 1. When N — +oo, 5\1,]\/ converges almost surely towards 0'2(1 — ﬁ)z while S\M,N
converges a.s. to o%(1 4 \/c)?.

In the following, we denote by Z. the interval defined by
I = [0*(1 = Vo)’ —¢,0* (1 + Ve)* + ¢ (3.70)
(with € chosen in such a way that 02(1 — /c)? — € > 0) and by Ex the event defined by
En = {one of the (Xk’N)k:L._”M escapes from Z .} (3.71)
and remark that the almost sure convergence of 5\17 N and A M, N implies that

l1ge =1 almost surely for each N
N

larger than a random integer (3.72)

Proposition 1 implies that the resolvent Qx(z) is almost surely defined on C — Z, for N large

enough, and in particular for z = 0.

Another important property is the almost sure convergence of the empirical eigenvalue
distribution Ay = 47 SM (55\&]\, of XY} towards the Marcenko-Pastur distribution (see
e.g. [57] and [30] and the references therein). Formally, this means that the Stieltjes transform
mpy(z) of fiy defined by

() = [ A = L Quie) (3.73)
satisfies
lim (Mmy(z) —mey(2)) =0 (3.74)
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almost surely for each z € C — R" (and uniformly on each compact subset of C — RT), where
mey (2) represents the Stieltjes transform of the Marcenko-Pastur distribution of parameter cy,

denoted by ¢, in the following. m., (z) satisfies the following fundamental equation

1

— (1 + O'QCchN(Z)) 4 0-2(1 — CN) (3.75)

Mey (Z) =

for each 2z € C. pic, is known to be absolutely continuous, its support is the interval [o2(1 —
Ven)?, o3(1+ /en)?), and its density is given by

Jemwa) (i)

202cnTX
with 2. = 0?(1—/en)? and = 0*(1+/cN)?. As picy is supported by [02(1—/cn)?, 02 (1+
v/cn)?], the almost sure convergence (3.74) holds not only on C —R*, but also for each z € C —Z.
In particular, (3.74) is valid for z = 0. Solving the equation (3.75) for z = 0 leads immediately

1, (). (3.76)
[IchxCN]

to mey (0) = m, and to

1 . 1
li —Tr (En33 - = .
N-stoo M F(Bv ) o?(1 —en) 0 (3:77)

almost surely. Taking the derivative of (3.74) w.r.t. z at z = 0, and using that m;N (0) = m,

we also obtain that

1 1
lim —Tr (SyEy) 2

N-+o00 M ot (1—cy)? =0 (3:78)

almost surely. Moreover, it is possible to specify the convergence speed in (3.77) and (3.78). The

following proposition is a direct consequence of Theorem 9.10 in [57].

Proposition 2. It holds that

%Tr(ENZ}‘V)_l - 02(11_CN) = OP(%) (3.79)
%Tr (SaSh) % - M _ op(%) (3.80)

Theorem 9.10 in [57] implies that the left hand side of (3.79), renormalized by N, converges
in distribution towards a Gaussian distribution, which, in turn, leads to (3.79). (3.80) holds for

the same reason.

Remark 5. As ¢y — ¢, the previous results of course imply that ﬁTr(ZNZ}kV)fl (resp.

+Tr (ENEYN)"2) converge towards m (resp. Pﬁ) However, the rate of convergence is

not a (’)p(%) term if the convergence speed of cn towards c is less than (’)(%) Therefore, it is
more relevant to approximate the left hand sides of (3.79) and (3.80) by m and m.
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The above results allow to characterize the asymptotic behaviour of the normalized trace of
(En2%) " and (EnE%) "2 However, it is also useful to obtain similar results on the bilinear

forms of these matrices.

Proposition 3. We consider two deterministic M -dimensional unit norm vectors uy and vy.

Then, it holds that
uy vy

li L(ENEY) vy - A = 81
Jimuy (EnEN)T vy Y 0 (3.81)
and that .
. _ uyVvy
lim uly (EyZy) Pvy — — = 82
N$+WUN( NEN) TN YT p— 0 (3.82)

almost surely. Moreover,
u}vaN 1
NN 9, (——
2-cv) = PN
Finally, if Cn is a positive M x M matriz such that Rank(Cy) = K is independent of N, and
satisfying for each N 0 < dy < Tr(C%) < da < oo for some constants di and da, then, we

uy (SNSh) v ) (3.83)

consider the sequence of random variables (ky)n>1 defined by

pn = Tr (Cn(ZxZh) ) (3.84)
Define by Oy the term
__T(CR)

Then, it holds that

E |exp (iuV/ (1o - W))]

O'2<1 — CN)

for each u € R, and that

(o) e

The almost sure convergence result (3.81) is well known (see e.g. [61] in the context of a more
general matrix model), while (3.82) can be established by differentiating the behaviour of the
bilinear forms of Qx(z) w.r.t. z. Moreover, (3.83) is a consequence of (3.87) used for the rank 1

matrix Cy = vyuy. (3.86) and (3.87) are new and need to be established.

A technical difficulty appears in the present context because we consider the resolvent of the

matrix XX} at 2 = 0 while in previous works, z is supposed to belong to C — RT. To solve
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this issue, we use the regularization technic introduced in a more general context in [62]. For the

proof, we refer the reader to Appendix 3.9.

We finish this appendix by a standard result whose proof is omitted.

Proposition 4. We consider a M x L random matriz T with Ng (0, JWZ) i.4.d. entries, as well
as the following deterministic matrices: Ay is M x M and hermitian, By is M x L and satisfies
supy [|Bn|| < 400 while Dy is a positive L x L matriz and also verifies supy |Dn|| < +oo.

Then, if (wn)n>1 Tepresents the sequence of random variables defined by
wy =Tr [DN ( }k\fA.NI‘N + F}kVBN + B*NFN>] (388)

it holds that .
E(wn) = UQNTr(AN) Tr(Dy), (3.89)

Var(wy) = %CN

where ( is defined by

1 1 ¥
(v =" L TR(AR)Tr(DA) +20° - Tr (D3ByBx) (3.90)
Moreover,
ai a9 1 2
E |WN - [E(CL)N)|4 gm + m <NTI'(A%V))
1
+ %NTr(A%,) (3.91)

where a1, az,as are constant terms depending on L,supy |By|| and supy [|Dy||. Finally, if
limsupy (v < +00, it holds that

uz(N

E (expiu\/ﬁ (wn — [E(wN))> —e 2 =0 (3.92)

for each u € R.

3.8 Appendix: Proofs of Theorems 1 and 2

Proof of Theorem 1. In order to establish Theorem 1, we use the results of Appendix 3.7 for

the matrix Xy = \/LﬁVl. We note that \/—INVl is a M x (N — L) matrix while the results of

Appendix 3.7 have been presented in the context of a M x N matrix. In principle, it should be

necessary to exchange N by N — L in Propositions 1 to 3. However, cy — % =0 %), so that

it possible to use the results of the above propositions without exchanging N by N — L.
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We first verify (3.30). For this, we introduce the event £y defined by (3.71). We first remark
that ny —nn Leg, — 0,a.s. It is thus sufficient to study the behaviour of ny 1g¢ which is also
equal to

N Leg, = logdet (T+ Fylgy ) (3.93)

We now study the behaviour of each entry (k,[) of matrix Lge Fiy. For this, we use Proposition

4 for DN = eke;f, FN = % and AN = ]lg]% (VIVT

as Vo and V7 are independent, it is possible to use the results of Proposition 4 by replacing the

-1
) . Ay is of course not deterministic, but

mathematical expectation operator by the mathematical expectation operator Ev, w.r.t. Va.

We note that the present matrix Ay verifies

I
Anv <
V=021 — e —e

because 1ge # 0 implies that all the eigenvalues of % belong to Z. = [0%(1 — /c)? — ¢,0%(1 +

V€)% + €]. Therefore, (3.91) immediately implies that

(3.94)

a

< (3.95)

4
Fyile, — v, (FN,k,lJlSJC\,)‘

Lv,

where a is a deterministic constant. Taking the mathematical expectation of the above inequality

w.r.t. Vi, and using the Borel-Cantelli Lemma lead to

Friles, — Ev, (Fapile ) = 0 as, (3.96)
or equivalently, to
Fykileg, —0(k 1) oley %Tr <V}\Y>{>_l — 0a.s. (3.97)
(3.77) implies that F iy leg — 0(k — ) 15— — 0 almost surely, or equivalently that
Fy - - iNCNI S 0as. (3.98)

This eventually leads to (3.30).

We now establish (3.31). For this, we first remark that (3.72) implies that gy = nyleg +
@) p(ﬁ) for each integer p. Therefore, the asymptotic behaviour of the distribution of the left
hand side of (3.31) is not modified if 7y is replaced by nyleg given by (3.93). We denote by
Ay the matrix defined by

Ay =Fyleg, — iNCNI (3.99)
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We first prove that Ay = Op<ﬁ). For this, we express Ay as

1 Vivi !
Ay = (FN]lg]cV — 0201\[ MTI" }Vl) ]lg]cVI> +

1 ViViy ! c
2 1V N
—T Lec I — 1 1
O CN I‘< ) gN 1 . (3 00)

The first term of the right hand side of (3.100) is (’)p(\/%) because the fourth-order moments
of its entries are O() terms. As for the second term, (3.79) implies that it is a Op(%). A
standard second order expansion of logdet(I + F N]lgf\,) leads to

1
nvleg = Llog — el (1 —en)Tr(An) + Op(5) (3.101)
Therefore, it holds that
VN (nN]lgIcV — Llog T . ) =VN({1 —cn)Tr(AN)
—CN
1
+0p(—), 3.102
P (3102
or, using (3.100), that
1
VN (nNILgc — Llog ) =
N 1—cpn
1 ViV
2 1V
VN(1-— CN)TI‘(FN]lgIc;] —o“cN MTI‘ ( N ) ]1816\7)
1
+O0p(—= 3.103
P (3103
As
1 ViVi\ T
_ a2 L 1V] .
Ev, (Tr (FNngg)) = o’y 7 Tr << ¥ ) 115N>, (3.104)

N —1
Proposition 4 used for Ay = (%) lge, By =0and Dy = (1 — en)I leads to

1
Ev, (expiux/N(nN—Llogl - ))—
—CN

2 1 ViV -2
exp [—1;04L(1—0N)20NT1"( ! 1) lec | =0 (3.105)

M N

a.s. for each u € R. (3.78) and the dominated convergence theorem finally implies that

1
[E(expiu\/ﬁ (nN—Llogl )) —

2 LCN

u
2 1—CN

exp [— ] — 0 (3.106)
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This establishes (3.31).

Proof of Theorem 2 We recall that, under Hj, ny is given by (3.22). As in the proof of

Theorem 1, it is sufficient to study the regularized statistics nnlee, which is also equal to
nnleg, = logdet (IL + 1gg GN) (3.107)

In order to evaluate the almost sure behaviour of nyles , we expand Gnleg as

Gnle = H* (ViVi/N) "H Lge + Fylee +
(Va/VN)* (ViVi/N)"'H 1ge +
H* (V1 Vi/N)"H (V2/VN) Lec (3.108)

By (3.81), the first term of the right hand side of (3.108) behaves almost surely as —1

o2(1—cn)?

while it has been shown before that the second term converges a.s. towards lfJZNI. To address

the behaviour of entry (k,[) of the sum of the third and the fourth terms, we use Proposition 4

for I'y = \‘/%, Ay =0,By = (V. Vi/N)'H lge and Dy = erel . (3.91) implies that entry
(k,1) converges almost surely towards 0. Therefore, we have proved that

H*H CcN
Gy — I 0a.s. 3.109
N (0'2(1—6“/\[)_'_1—01\[)—> @5 ( )

from which (3.45) follows immediately.

The proof of (3.47) is similar to the proof of (3.31), thus we do not provide all the details.
We replace nn by nnleg, and remark that the matrix Ay, given by

(3.110)

HH
AN:Gleg]cv< N I)

o?(1—cn) 1-—cn

verifies Ay = Op(—=). To check this, it is sufficient to use the expansion (3.49), and to recognize

N
that:

o by (3.83),

_ H*H
H (ViVi/N) Hig — ——— = Op(

0 —ev) ), (3.111)

e by Proposition 4 and (3.91),

(V2/VN)* (VIVI/N) " H 1gg, +

HE (V,Vi/N) ™ (Vo/V) g, = Op(—<) (3.112)

2
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e it has been shown before that

c 1
Fyleg — — 1= )

. Op<ﬁ .
Using a standard linearization of log det(I + G N]lgzc\f)’ this implies that
nnleg —Tyg = Tr (DyAN) + Op(1/N)
where Dy is the L x L matrix given by
Dy = (1 —cn)(Ip +HH/0?)™?
We define kny and wy by
kn = Tr (Cw (ViVi/N) )

and

wy = Tr {DNFN]lEICV} +
Tr [Dy (Vo/VN)* (ViV]/N) " H g | +

Tr [DN H* (V{Vi/N)" (V2/VN) 15&]

where Cy the M x M matrix given by
Cy = (1 —cy)H(I, + H'H/0*) 'H

Using (3.114), we obtain that

1 - Tr(Cy)
c — = K —_——
nNLes — NN N o2(1 — en)
CN 1
— Tr(D Op(—
N = T gy THDN) + Or(g)
We also remark that (3.79) used for Xy = ﬁVl implies that
Ev,(wy) N Ty Dy) + Op()
WN — WN) = WN — T —
N v, (WN N en N Py

Therefore, it holds that

VN (nvleg —Ty,) = VN (Tr (DyAy))

81

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)
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can be written as

VN (77N]lg]cv —ﬁN,l) = VN (/%N - Tr(CN))) +

02(1 — CN

VN (wy — Ev, (wn)) + Op(—)  (3.122)

1
VN
We denote by ( the term
Cx = o LTy ((ViVi/N)2 1 ) Te(DR)+
N = N 1V1 EX N
1 * * —
20” STk (DYHA(VIVi/N)"H g ) (3.123)

We use Proposition 4 and (3.92) for Ty = V3/V/N, Ay = (V;Vi/N)~! lge and By =
(ViVi/N)"'H Lgg,, and obtain that

Ev, [eXP (W\/N (77N1155'V - ﬁN,l))} -
exp <ZU\/N (HN — Tr(CN)>> exp(—u;(]v) —0 (3.124)

02(1 — CN)

a.s. (y has almost surely the same behavior as { given by

N 2 2\ 2 *
= Tr(D%) + 2 Tr(DyH'H 3.125
C (1 — CN)S ( N) (1 - CN) ( N ) ( )
which implies that
u? u?
exp(——Cv) —exp(=—() = 0 a.s. (3.126)

Therefore, taking the mathematical expectation of (3.124) w.r.t V; and using the dominated

convergence theorem as well as (3.86), lead, after some calculations, to

E [exp (zu VN (nn — ﬁNJ))}

u? Len
— - 127
expl 5 (1_CN+/€1> —0 (3.127)

for each u. As infy({Z25 + k1) > 0, (3.47) follows from (3.127) (see Proposition 6 in [63]).

CN

3.9 Appendix: Proof of (3.87)

To establish (3.87), we follow the approach of [63] which is based on the joint use of the integration
by parts formula and of the Poincaré-Nash inequality (see section III-B of [63]). However, the
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approach of [63] allows to manage functionals of the resolvent Qy(z) for 2 € C — R*. For this,
the inequality ||Qn(2)] < m plays a fundamental role. For z = 0, ||Qn(0)|| coincides with

ﬁ which is not upper-bounded by a deterministic positive constant for IV greater than a non

random integer. This issue was solved before using the regularization term 1g . However, the use
of the integration by parts formula and the Poincaré-Nash inequality needs to consider smooth

enough functions of Xx. Motivated by [62], we consider the regularization term xn defined by

Xy = det [¢ (EnZy)] (3.128)

where ¢ is a smooth function such that
d(\) =1if A € T, = [02(1 — /©)? — €, 0%(1 4+ 1/c)? + ¢
d(N) = 0if X € [02(1 — /€)% = 2¢,02(1 + /€)% + 2¢|°
¢ € [0, 1] elsewhere

In the following, we need to use the following property: for each ¢ > 0, it holds that
1
NP
where Ey is defined by (3.71). Property (3.129) is not mentioned in Theorem 5.11 of [57] which

addresses the non Gaussian case. However, (3.129) follows directly from Gaussian concentration

P(En) = O(~) (3.129)

arguments.

It is clear that

_ I
(ENvZh) v € (3.130)

(1= va)? — 2
Lemma 3-9 of [62] also implies that, considered as a function of the entries of Xy, xn is
continuously differentiable. Moreover, it follows from Proposition 1 that almost surely, for N
large enough, xy = 1 and ky = kyxn. Therefore, it holds that kyxny = kN + (’)p(ﬁ), and
that

m(li]v— Tr(Cn) )

02(1 — CN)

=N (;WXN - M) + Op(ﬁ) (3.131)

for each p € N. In order to establish (3.86), it is thus sufficient to prove that

E [exp (zu\/ﬁ (KZNXN — Tr(CN)))]

02(1 — CN)

2
— exp (—QNQ“ ) 0 (3.132)
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for each u. To obtain (3.87), we remark that, as inf 6 > 0, it follows from (3.132) that

\/\/g (HNXN - M) —p Nr(0,1)

(see Proposition 6 in [63]). (3.87) eventually appears as a consequence of (3.131).

The above regularization trick thus allows to replace the matrix (ZxE%) " by (EnE%) " xn,
which verifies (3.130). In order to establish (3.132), it is sufficient to prove that

E(kvxn) — UQT(I;((_:JZ])V) = o(\/lﬁ)

(3.133)

and that

E [exp (zu\/ﬁ (ENXN — [E(“NXN)))}

2
—exp (—QN; ) —0 (3.134)

for each w.

In the rest of this section, to simplify the notations, we omit to write the dependence on N
of the various terms Xy, Qn(0), xn..., and denote them by 3, Q(0), x, . ... However, we keep
the notation ¢y, in order to avoid confusion between ¢y and c. Furthermore, the matrix Q(0) is
denoted by Q. If z is a random variable, 2° represents the zero mean variable 2° = x — E(z). In

the following, we denote by § the random variable defined by
§=vVNky
and by 1°(u) the characteristic function of ¢° defined by
¥°(u) = E (expiud®)
We first establish the following Proposition.
Proposition 5. It holds that

(v°(w) = —u E (Te(C*Q%Y)) ¥°(u) + O(—=) (3.135)

1
vN
where ! represents the derivative w.r.t. the variable u.

Proof. We consider the characteristic function ¢ (u) of ¢, and evaluate

¥ (u) =iV NE (Tr(QCX)ei“‘S)
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We remark that QXX* =1 so that
E(QEE xe™) = E(xe™)I
We claim that

1

E(xe™) = (u) + O+

) (3.136)

for each p. We remark that
E(e™-x)| <1-Ex)

We recall that the event & is defined by (3.71) and that P(£) = O(75) for each p (see (3.129)).
lee < x leads to 1 — E(x) < P(€). This justifies (3.136). Therefore, it holds that

E (sz}*x ei“‘s) = <¢(u) + O(]ép)) I (3.137)

for each p. We now evaluate each entry of the left hand side of (3.137) using the integration by
parts formula. For this, we denote by (£;,...,&y) the columns of 3. It holds that

N

(QZE*)nS = Z(Qéj)ris,j

j=1
and that N
E[(Q€)), Supne™] = S F (QuSiySopne™)

t=1

The integration by parts formula leads to

E (Qr,tis,j){ eiuéztd) — J—Q[E [8 (Qr,tazzs;j')(ei“é)]
»J

After some algebra, we obtain that

1 (Qr,tis,jX em(szt,j) = O;[E (Qr,tX eiU6> 5(t = 8)

2 .
- %E ((ij)r Qtt is,j X ezw)
2

T~ (Qu(Qoqg) 3., xe)

2
o = ius OX

—F >, | (3.138
+ N (Q’/‘,t S,7 € azt’]> ( )
We now need to study more precisely the properties of the derivative of x w.r.t. it,j. For this,

we give the following Lemma
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Lemma 1. We denote by A the event:

A = {one of the S\M\r escapes from I}

A~

N{(AN)i=1,..m € supp(d)}  (3.139)

Then, it holds that

—— =0 on A° 3.140
o, " (3.140)
and that ,
195% 1
E|—= =0(— 3.141
|62m () (3141)
for each p.

Proof. Lemma 1 follows directly from Lemma 3.9 of [62] and from the calculations in the

proof of Proposition 3.3 of [62].

Lemma 1 implies that the last term of (3.138) is O(4) for each p. To check this, we remark

that
E 3. ud A )V F .. ud 1 s
(Qr,t 5,5 € ath) (Qr,t 5,5 € AéEt,j)

The Schwartz inequality leads to

. dx
_itud 2
E(Que By e Lage)

8)(2

&EL j

< [E(|Qr,t Ss,j‘z ]]-A)[E ‘

On event A, all the eigenvalues of X* belong to [02(1 — v/¢)? — 2¢,0%(1 + v/¢)? + 2¢]. Therefore,
|Qr 1.4 is bounded and (3.141) implies that the last term of (3.138) is O() for each p. Summing
(3.138) over t, we obtain that

2

- ((ng)ri&j X emé) - %[E (QT,SX ei“‘;
_ o2enE (m(o) (Q€)r Zaj X eiu&)

io?u 9 = s 1

\/N[E ((Q CQ¢;)r X5 j xe™ ) - O(W) (3.142)
where we recall that 112(0) = +;Tr(Q) represents the Stieltjes transform of the empirical eigenvalue
distribution fi of ¥¥* at z = 0. Using that (1 — x) < 1g, it is easy to check that for each p, it
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holds that

E((Qg), m(0) Ty x ™) =
E((QE,), 1(0) Sy i ) + O(11)

We denote by 3 the term 3 = 1(0)x, and express 3 as f = a + 3°. Replacing x by x? in the
second term of the right hand side of (3.142) and plugging 5 = « + 8° into (3.142), we obtain
that immediately that

2
3 . ud\ _ g iud
E ((QE]')TES,] Xe ) = N1+ UQCNC)()[E (Qr,sxe )
io?u — ‘
— E((Q*CQ¢;), = x ™
VN(1+ o2cya) ((Q QEj)r B X )
UZCN ud 1
- E(8°(Q€))r Zujx ™) + 0(5;) (3.143)
Summing over j, we get that
E ((sz*) Xem) __ T (Q xei“‘s)
e 1+ o2cya e
io?u .
_ E QC ZE* s elu5
VN(1 + o2cn0) ((Q Q Jrax )
JZCN ) * iud 1
" Tiotenab (5 (QXX") s xe )+O(m) (3.144)
or, using that QXX* =1,
ué o’ iud
E (Xe ) o(r=s)= m[E (Qr,sxe )
io?u :
. F QC s ezué
VN1 + o2cya) <(Q Jrs X )
o?en us 1
- — °xe™ = — 14
1 +020Na[E (’B xe ) or=s) +O(Np) (3.145)

In order to evaluate o, we take u = 0 and sum over r = s in (3.145), and obtain that

1 1 . 1
a = 0_2(1_CN) + 1—CN[E(B X)—i_o(M)

E(8° x) coincides with E (5° x°). Using (3.141), the Poincaré-Nash inequality leads immediately

to E ((x°)?) = O(55), and to X X
= e T O (3.146)
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for each p. As a consequence, we also get that
1
o2(1 —en)

We now use (3.145) in order to evaluate E ((Qnsx)o Xei“5>. For this, we first establish that the
use of (3.130) and of the Poincaré-Nash inequality implies that

L (3.147)

E(Qrsx) = o(r =s)+ O(+

NP

o 1
Var(8) = E((8°) = O(573) (3.148)
To check this, we use the Poincaré-Nash inequality:
2 2
o2 op
V. — —
o N (Z |82 Y] ‘azi,j )

We just evaluate the terms corresponding to the derivatives with respect to the terms (fm)i:l,m, M,j=1,...N-

It is easily seen that

9B 1 g, 1 o
A VA AR RS VAR s o
Therefore, it holds that
ag I° 1 1 ax I’
| <2—¢'Q%;el Q% P +2—T -
‘821’,]’ < 238 Qe QX + 2, T(Q) 0%

Using the identity QXX* =TI as well that E =14 8%? - (see (3.140)), we obtain that
0,7 Y

2
v () st )

E{—Tr(Q)1
N( r AZ‘@E,J>

On the set A, the eigenvalues of ZX* are located into [02(1 — /€)% — 2¢,0%(1 + /¢)? + 2¢].
Therefore, we get that

%TY(Q) 14 <

Using (3.141), we obtain that
o? 1 ox 2 1
2—LE | =T 1 —_— =0(—
NE| Q) ““%.: ’azm Ol

for each p. Moreover, (3.130) implies that

1
(02(1 - Vo) — 2¢)°

L1v(@?) x <
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and that
5 1

20" i E (37 TH(@) ) = Ol 3)

This establishes (3.148).

Therefore, the Schwartz inequality leads to E (60 Xei“‘s) = O(%) Writing E (Q,«,sx ei“‘s) as

13 (Qr,sX eiu§> =E (Qr,sX2 GM(;) + O(%) =
E(Qra)E ™) +E ((Quax)x ™) + O(55) =
E(Qro)E( ™) +E ((Qrax)®e™) + O(

NP)

(3.146), (3.147) and (3.145) lead to

1

E ((Qr,sX)o eiué) = ﬁ £ ((Q2C)T,s XeiuS) + O(N

Nic ) (3.149)

or equivalently to
1

o _iud\ __ , 22 ud
[E(5 e )—zu[E(Tr(QC)Xe )—i—@(—\/ﬁ)
Using the Nash-Poincaré inequality, it can be checked that

Var (Tr(QC?) ) = 0(%)

Therefore, the Schwartz inequality leads to

1

E(Te(Q2C?) xe™) = E (Tr(Q*C?) x ) E(e™) + O( %)

and we get that

E (50 em) = iul (Tr(QQC2) x) E(e™) + O(—) (3.150)

-

Plugging 6 = ¢6° + E(0) into (3.150) eventually leads to

b
VN

which is equivalent to (3.135). This, in turn, establishes Proposition 5.

E(6°e™”) = iuE (Tr(Q*C?) x) E(e™) + O(—=) (3.151)

We now complete the proof of (3.134). We integrate (3.135), and obtain that

2

¢ (u) = exp [—T‘Q[E(Tr@c?x)) +0(—=)

1
VN
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(see section V-C of [63] for more details). (3.82) implies that

Tr(C?)
7 —~ 0a.s.

M i e

As Tr(Q?C?) x — Tr(Q?C?) also converges to 0 almost surely, we obtain that

2
Tr(Q?C?)y — Tr(C7) 5 — Oa.s.

g 4(1 — C N)
As matrix Q?x is bounded and sup Tr(C?) < +oo0, it is possible to use the Lebesgue dominated

convergence theorem and to conclude that

Tr(C?)
E (Tr(Q*C? - —
( r(Q )X) 0_4(1 - CN)3
This proves (3.134).

It remains to establish (3.133). For this, we use (3.147), and obtain that

Tr(C) _0 1

E(Tr(QC) x) — 21 —cn) (W)

for each p. This, of course, implies (3.133).



Chapter 4
Conclusion

T he focus of this PhD thesis has been MIMO synchronization for frequency selective
channels in the presence of interference. During the course of these three years, we have

made numerous discoveries of great practical and theoretical interest concerning the subject.

The starting point of the study has been two GLRT statistics for different noise characteristics.
The two tests in question are 7Gr,RT,we, Optimized for temporally and spatially independent noise,
and ngrrr, optimized for temporally independent but possibly spatially dependent noise. As
opposed to popular belief, we first make the point that the GLRTs are not always optimal from
a performance point of view, and there are some situations where they perform worse than the
correlation-based or MMSE test statistics. Furthermore, we show by simulation that ngrrr is
preferrable if the noise characteristics are unknown, since the gain of ngLRT we OVer ngrLrT €ven

in spatially independent noise is small.

We then go on to remark that ngprr is often discarded in the literature, due to its high
implementation complexity. A part of this work has thus been devoted to showing that there
exist non-GLRT statistics that are less complex to implement than the ngrrr, while having
similar performance. In the literature, the MMSE statistics is often quoted as the second-best
alternative to the GLR test. The MMSE performs worse than the GLRT, but is still robust to
interference, and has lower implementation complexity. We show that the complexities of the
new non-GLRT statistics are similar to the complexity of the MMSE statistics, and show by

numerical simulations that the MMSE is inferior to the new statistics.

In addition to defining new synchronization statistics, we have investigated the possibility of
lowering the complexity of the existing ones. We have formulated a new, suboptimal, way of
performing synchronization where only a part of the statistics is updated at each time index,

by using the same empirical covariance matrix for several time indices. Even though this is a

91
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suboptimal solution and entails a slight performance loss, its use can be envisioned when system
resources are limited. The approaches for complexity reduction described above are based on

viewing the system parameters as fixed, and optimizing the synchronization for those parameters.

Another equally valid approach is viewing the system as flexible, with free choice of whether
or not to use all available resources, such as transmit antennas. Given a MIMO system, we can
choose whether it is necessary to use all transmit antennas, or if we can save resources, such
as transmit power, by only transmitting on a subset of the available antennas. To complete
the analysis, we have thus included a section which concerns the optimization of the number of
transmit antennas in MIMO synchronization. We have shown that depending on the channel
type, SNR and number of receive antennas M, increasing the number of transmit antennas K for
MIMO synchronization is only useful up to a certain K = K,,;, above which the performance

decreases.

In addition to the more applied contributions described above, this thesis also presents an
important theoretical contribution through the study of the limiting distributions of narrr. We
have investigated the asymptotic performance of a ngrrr in two asymptotic regimes that require
that the analysis is done using large random matrix methods. The asymptotic analysis shows
that in both asymptotic regions, the GLRT statistics follows a Gaussian distribution both under
Hp and Hy. We have shown that this asymptotic performance is much more accurate than the
so-called classical asymptotic analysis, since the classical asymptotic analysis assumes that M,
the number of receive antennas, and L, the number of channel paths, are of negligible size when

compared to NNV, the length of the training sequence.

These results have then been used to trace theoretical ROC curves, and shown to be very
close to the emprical ROC curves, especially for large Ppa. These final results can be seen as the
link between the first and second parts of the PhD thesis. The theoretical results can be used to
perform the parameter optimization theoretically, without the need of simulations. For example,
the question of optimization of the number of transmit antennas could be evaluated by using
these asymptotic distributions. Further, since the tools for calculating the limit distribution of
naoLrT are established, they can easily be adapted to calculate the asymptotics of other similar

statistics.



Résumé long

4.1 Synchronisation MIMO: ami ou ennemi?

4.1.1 Introduction: Evolution et avantages de MIMO

Au cours de ces derniéres décennies, de nombreuses architectures pour ’émission et la réception
de systemes sans fil ont été développées. Ces architectures, qui visent a tirer profit de plusieurs
antennes (d’émission et/ou de réception), ont eu plusieurs défis a relever, défis que n’ont pas
les systemes filaires classiques. Parmi ces défis, les trajets multiples et 'atténuation du canal
de transmission ont rendu difficile la montée en débit ainsi que la diminution du taux d’erreur.
L’arrivée des systémes Multiple-Input Multiple-Output (MIMO) a alors été vue comme une
révolution dans le monde des télécommunications sans fil car elle promettait une solution & la

congestion des communications sans fil.

Le gain apporté par les antennes multiples peut étre divisé en trois grandes catégories:

1. Le gain de beamforming (formation de faisceauz). , Il est obtenu en orientant la puissance
du signal dans une direction donnée (et en l'annulant dans les autres directions). Le
beamforming, une technique multi-antennes classique, peut étre utilisé soit a la transmission

soit a la réception.

2. Le gain de diversité. 1l est obtenu en envoyant l'information a travers plusieurs canaux de
transmission aux caractéristiques différentes. Par exemple, afin de tirer profit des différentes
caractéristiques d’évanouissement (fading) des canaux vues par différentes antennes, il
est possible d’envoyer la méme information a toutes les antennes d’émission. Le gain de
diversité augmente ainsi la robustesse du systéme en éliminant les évanouissements. Dans

un certain sens, il permet de convertir un canal avec fading en un canal sans fading.

3. Le gain de multiplexage. Ce dernier, spécifique aux systémes MIMO, est obtenu par une

technique de multiplexage spatial. Les données transmises sont donc divisées en plusieurs
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flux indépendants qui devront étre décodés au niveau du récepteur. La séparabilité a la
réception fait usage de riche multi-trajets, ce qui rend le canal spatialement sélectif. Au
lieu de voir les trajets multiples comme un probléme, le multiplexage spatial les exploite.
L’objectif principal du multiplexage spatial est de maximiser la vitesse de transmission,
un objectif nettement différent de celui de la diversité de transmission / réception dont

I’objectif principal est d’augmenter la fiabilité.

Lorsque les communications sans fil étaient principalement utilisées pour transmettre de la
voix, l'intérét des systemes MIMO restait faible. Il n’y avait pas besoin de débits élevés, ou
plutot, en raison des caractéristiques difficiles des canaux de transmission sans fil, les applications
haut débit telles que la vidéo étaient généralement transmises au moyen de technologies filaires.
L’intérét du MIMO était également faible en raison des problemes pratiques rencontrés, entre
autres le coiit et les défis matériels dans la mise en ceuvre, notamment dans les équipements
coté utilisateur. Néanmoins, avec l'utilisation croissante des téléphones et autres appareils
mobiles, il a été nécessaire de résoudre le probleme de 'augmentation du débit, méme pour les
applications sans fil. D’autre part, maintenant que les téléphones sont devenus plus sophistiqués,
les contraintes sur la taille des systéemes MIMO sont moins sévéres, et il est devenu possible
d’avoir plusieurs antennes sur les deux cotés du lien. Le MIMO n’est donc plus seulement qu’une
considération théorique; il a en effet été mis en ceuvre avec succes dans plusieurs standards bien
établis. Quelques exemples incluent le CDMA qui utilise des codes espace-temps Alamouti et le
beamforming MIMO dans le standard 3GPP LTE.

Quelles sont les alternatives au MIMO, et pourquoi ne sont-elles pas pertinentes pour les
communications sans fil & haut débit 7 Une approche classique est le systeme Single-Input
Single-Output (SISO). Mais les systémes SISO ne peuvent pas rejeter les interférences, ni profiter
de la diversité spatiale. Les systemes multi-antennes traditionnels, présents depuis des décennies,
ont plusieurs antennes, soit en émission (SIMO) soit en réception (MISO), et généralement au
niveau de la station de base. Ces systemes utilisent principalement la diversité spatiale, ou
bien le beamforming (en émission ou en réception). Ils peuvent ainsi effectuer la réduction
d’interférence en tirant profit de plusieurs antennes en réception grace au beamforming. En
théorie, des communications a tres haut débit pourraient étre mises en ceuvre avec un systeme
SIMO, mais cela nécessiterait une bande passante tres élevée, ce qui n’est pas possible dans la
pratique puisque la bande passante est une ressource cotiteuse. Bref, malgré tous ses avantages,

un systeme SIMO n’est pas envisageable pour mettre en place une liaison Gigabit Internet.

La base d’un systeme MIMO est d’avoir de multiples antennes réparties dans ’espace sur
les deux cotés du lien. Cela transforme la représentation du systéeme : on passe d’un systeme

vectoriel a un systeme matriciel. Cela ajoute également des degrés de liberté supplémentaires
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puisque la dimension spatiale peut étre exploitée pour effectuer du multiplexage spatial. Enfin, un
systeme MIMO dispose aussi d’un gain de diversité en émission et réception. Ainsi, des résultats
théoriques montrent que le débit maximum d’un systeme MIMO (K x M) croit linéairement avec
min(K, M). En résumé, les avantages des antennes intelligentes sont conservés et de nouveaux

avantages sont ajoutés.

Néanmoins, comme dans tout systéeme, ce qu'on gagne d’un c6té, on le perd de l'autre.
Certains des défis présents dans la synchronisation MIMO sont résumés dans le paragraphe

suivant.

4.1.2 Défis de la synchronisation MIMO

Un défi important dans la synchronisation MIMO est de trouver le bon compromis perfor-
mance/complexité. En effet, lorsque le nombre d’antennes augmente, la complexité des al-
gorithmes augmente en méme temps. Il convient donc de se demander si ’ajout d’antennes
supplémentaires dans un systeme est bien adapté a 'application visée. La complexité est donc
pour partie un probléme de point de vue, mais aussi de colit du matériel et de la compatibilité.
Autrement dit, augmenter le nombre d’antennes dans un systéme est une décision importante,

ou chaque avantage et chaque inconvénient doivent étre soigneusement pondérés.

Une autre considération importante dans les systemes MIMO est les hypotheses faites sur les
interférences présentes dans le systeme. Les systémes point-a-point peuvent étre une hypothese
raisonnable dans certaines applications, par exemple la norme IEEE 802.11n, car ils sont congus
pour que des liaisons a courte portée ne souffrent pas d’interférences. Mais en général, les
systemes MIMO cellulaires sont limités par des interférences, soit par des interférences provenant
de la cellule elle-méme, soit par des interférences externes. Comme le nombre d’interférences
augmente, elles ne peuvent pas étre supprimées par un traitement du signal spatial, et sont donc
traitées comme du bruit. Par conséquent, contrairement a ce que ’on pourrait croire, le fait

d’ajouter des antennes en émission peut effectivement diminuer le débit a faible SNR.

Une caractéristique supplémentaire du systéme est les caractéristiques du canal. Une hypothése
commune est de supposer que le canal est un canal de Rayleigh. Pour traiter complétement
le probleme, il est intéressant d’étudier les performances des systémes MIMO méme pour les
canaux déterministes, et comprendre quels parametres du systéme choisir selon le modele de

canal approprié.

Considérant les défis ci-dessus, la section suivante résume ’état de I’art de la synchronisation
MIMO. Cela a pour but de valider la nécessité de cette étude.
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4.1.3 Etat de ’art en synchronisation MIMO

La synchronisation en temps et en fréquence des systemes MIMO a été fortement étudiée au

cours de ces quinze dernieres années, principalement dans le cadre de liens DS-CDMA et OFDM.

OFDM. La synchronisation grossiére et fine, ainsi que la compensation du décalage en
fréquence, ont été analysées, puis de nombreuses techniques ont été proposées, soit pour la
synchronisation temps-fréquence [1-4] soit pour la synchronisation temporelle [5-9]. Néanmoins,
la plupart de ces techniques supposent ’absence d’interférences. Les rares articles de la littérature
qui traitent de la synchronisation MIMO en présence d’interférences sont [2,7-9]. Cependant, [2]
et [7] envisagent le probléme de la synchronisation MIMO en présence d’interférences multi-
utilisateurs (MUI). [8] semble étre le seul article traitant de synchronisation MIMO en présence
d’interférences de tout types, par exemple des brouilleurs hostiles. Dans [8], plusieurs statistiques
sont proposées pour la synchronisation temporelle, a la fois pour du fading plat et du fading

sélectif en fréquence.

Malgré les nombreux algorithmes existants pour la synchronisation temporelle des systémes
MIMO, de nombreuses questions importantes restent non résolues, notamment au sujet de leur

optimalité, leurs performances et leur complexité.

Tout d’abord, aucun des récepteurs mis au point pour la synchronisation MIMO dans un
environnement sans interférence [1,3-6,10-27] n’a été développé en optant une approche GLRT
dans le cas général d’un lien mono-porteuse non DS-CDMA avec des séquences d’apprentissage
potentiellement non orthogonales. De plus, il est bien connu [28] que, contrairement au test de
rapport de vraisemblance (LRT), les statistiques GLRT sont sous-optimales du point de vue de
la détection. En gardant cela a I’esprit, on peut se demander si une statistique non-GLRT peut

avoir des performances égales ou meilleures que les statistiques GLRT existantes.

Alors que la statistique GLRT dans un environnement en présence d’interférences a déja été
présentée [8], des questions concernant son utilité pratique se posent encore. Dans [8] , deux
statistiques pour les canaux a fading plat, robustes aux interférences, sont dérivées, respectivement
d’une approche MMSE et d’une approche GLRT. La statistique GLRT, qui sera appelée ngrrr
par la suite, assume un bruit total inconnu, gaussien, coloré spatialement et blanc temporellement.
Notons d’abord que cette statistique peut étre trés coliteuse a mettre en ceuvre, en particulier
pour un nombre important d’antennes. En effet, pour un systeme MIMO (K x M), il faut pour
chaque indice de I’échantillon, inverser une matrice (M x M) et calculer un déterminant (M x M)
ou (K x K). Une alternative a ngrrr est la statistique MMSE proposée dans [8]. Cependant,

cette approche se montre sensible & la corrélation des séquences d’apprentissage, ce qui peut
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limiter son utilisation pratique.

Avant de décrire notre proposition pour résoudre les problémes ci-dessus, nous allons introduire
le modele du systeme considéré, et brievement rappeler le concept de synchronisation en tant que
probléeme de test d’hypotheése. Nous allons également introduire le concept du test du rapport de

vraisemblance généralisé (GLRT).

4.2 Modele et probleme

4.2.1 Hypotheses

Nous considérons un lien de radiocommunications MIMO (K x M) avec K antennes & bande
étroite a I’émission et M a la réception. Nous notons S(k) la séquence de synchronisation
complexe (K x 1). Celle-ci, transmise sur les antennes d’émission a l'instant k, est connue du
récepteur. En supposant la synchronisation parfaite, le vecteur, y(k) des enveloppes complexes
des signaux a la sortie des M antennes de réception a l'instant k peut étre écrit comme suit :

L-1

y(k) = s(k)Hi(k —1) + v(k) (4.1)
=0

Ici, H; est la matrice (K x M) du canal le long du chemin [, et v(k) le vecteur du bruit total
échantillonné, qui contient la contribution potentielle des interférences et du bruit de fond. Les
échantillons v(k) sont supposés étre de moyenne nulle, blancs temporellement, et gaussiens avec

une matrice de covariance R = E[v(k)v(k)*].

Notons Y et V les matrices (M x N) d’observation et de bruit total avec, Y = [y(1),...,y(V)]
et V=1[v(1),...,v(N)], S la matrice (KL x N) des séquences de synchronisation

S1 S22 ... SN
0 S1 e SN—-1
S = . (4.2)
0 . SN-L1
ou [s1,S2, . .., sn] est la matrice de synchronisation sur le premier chemin, et H = [Ho, Hy, ..., Hy_4]

la matrice de canal sélectif en fréquence. Avec ces définitions, nous obtenons le modeéle matriciel
suivant :

Y=HS+V (4.3)

Notons que pour des canaux sélectifs en fréquence, une information sur le nombre maximal de

chemins L est a priori requise. Ce qui est intéressant ici c’est que ce modele peut étre appliqué a
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toutes les applications pouvant s’écrire sous la forme matricielle ci-dessus, il ne se limite donc

pas a la synchronisation.

4.2.2 Synchronisation comme test d’hypothese

Le probléme de la synchronisation temporelle d’une liaison MIMO peut étre considéré comme un
probléme de détection & trois hypotheéses. La premiere hypothese (H;) est que la matrice du
signal S est parfaitement alignée dans le temps avec la matrice d’observation Y. Elle correspond

au modele (1.3), ou
H:Y=HS+V (4.4)

La seconde hypothese (Hg) est qu’il n’y a pas de signal dans la matrice d’observation Y. Cela

correspond au modele (4.5) donné par :
Ho: Y=V (4.5)

La troisieme hypothése est une hypothese intermédiaire. Elle suppose qu’une partie du signal
regu est uniquement composée du bruit, tandis que 'autre partie contient une fraction du signal

utile. Définissons la matrice (KL x N) de la séquence de synchronisation partielle

Sp = [0(x1x ), S1], (4.6)

ou S; est une matrice (KL x (N — A)), A < N, qui contient une sous-partie de la matrice de la

séquence de synchronisation définie en (4.2). L’hypothése intermédiaire est alors donnée par :
H,:Y=HS,+V (4.7)

L’hypothese H,, n’est pas négligeable, en particulier dans un canal sélectif en fréquence, ou

plusieurs bonnes détections peuvent provenir de la présence de seulement une partie du signal.

Néanmoins, pour simplifier le probléme, nous considérons une hypothese binaire avec seulement
H g et H 1. Le probleme de la synchronisation comme détection consiste alors a élaborer un test
statistique 7 en fonction des observations Y, et a le comparer a un seuil s. Si le seuil est dépassé,
la détection est alors validée. Plus précisément, le seuil est utilisé pour choisir soit Hy soit Hy,

avec :
n 2 s (48)

Si le seuil est dépassé a plusieurs reprises, une regle de décision doit étre appliquée afin de choisir

le bon moment de détection.
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4.2.3 Test du rapport de vraisemblance généralisé (GLRT)

D’apres la théorie de détection de Neyman-Pearson, la statistique optimale pour la détection
d’une matrice S de la matrice Y est le test du rapport de vraisemblance (Likelihood Ratio Test,
LRT), qui consiste & comparer la fonction LRT = py, (Y/H,S,R)/pg,(Y|R) & un seuil, ot
ph,(Y]...) (1 =0,1) est la densité de probabilité conditionnelle de Y sachant H;. Pour notre

modele de bruit, I’expression de la LRT prend la forme

Lr = IS oo (Y(K) | S(k), HLR)

(4.9)
[T5o1 pro (Y (k) | R)
Pour notre modeéle gaussien, les fonctions de densité de probabilité prennent la forme
1 xR —1
Y(k)|R)= —————¢ YRRTY®) 4.10
pio(Y(R) | R) = iy opoe (110)
et )

Y (k S( HR) = — — —(Y(k)—HS(k))*R_l(Y(k)—HS(k)) 411
e (¥ (1) | 8(0). HLR) =~y SNCRE

Comme dans la pratique les matrices R, H ou les deux sont inconnues, elles doivent étre
remplacées dans (4.9) par leur estimation Maximum Likelihood (ML) sous chacune des deux
hypotheses H; et Hy, ce qui donne lieu au test du rapport de vraisemblance generalisé (GLRT).

Dans le cas ou R et H sont tous deux inconnus, la statistique GLRT devient

ar%{rlr_llax H;cvzl PHy (Y(k> ‘ S(k)7 H,R)

NGLRT = —— . (4.12)
arg max [Te P, (X () | R)

4.2.4 Performance d’un test d’hypothése binaire

La performance d’un critére de synchronisation 7 est caractérisée par sa probabilité de non-
détection sous H; (Pxp) pour une probabilité de fausse alarme (Ppy ), ¢’est-a-dire la probabilité

de dépasser le seuil s sous Hy, fixe. Plus formellement,

Ppa =P(n >t | Ho)
Pxp =P(n <t | Hy) (4.13)

La figure 4.1 illustre le concept de Pra et Pyp pour le cas ou 7 sous Hy et Hy suit une distribution
gaussienne, pour un Ppy = 1073, Dans notre travail, le seuil s pour une Pra donnée sera fixé de
maniére empirique en générant un grand nombre d’échantillons sous Hy. Ce seuil sera ensuite

utilisé dans les simulations pour déterminer la Pyp.
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threshold

Figure 4.1: P Nxp et P ga pour un test d’hypotheses binaire

4.3 Objectif

L’objectif de cette theése est d’obtenir les réponses a certains problemes ouverts sur la synchroni-
sation MIMO:

1. Choix des algorithmes de synchronisation pour les systémes MIMO, et analyse du compromis

complexité/performance.

2. Les avantages possibles du MIMO face au SIMO, et enquéte sur la nécessité de passer de

systéemes SIMO a des systemes MIMO dans un contexte de synchronisation.
3. Caractérisation du comportement asymptotique de la synchronisation MIMO.

4. Prédiction des performances de la synchronisation MIMO.
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4.4 Optimisation des parametres et réduction de la complexité

de la synchronisation temporelle

4.4.1 Introduction au probléme

La premiere partie de la these, décrit en détail dans le chapitre 2, cherche a optimiser les
parametres de la synchronisation MIMO et a en réduire sa complexité. Comme mentionné
au paragraphe 4.1.3, le récepteur le plus puissant aujourd’hui est celui basé sur le test du
rapport de vraisemblance généralisé (GLRT). On suppose alors que le bruit est inconnu, gaussien,
temporellement blanc et spatialement coloré. Néanmoins, la complexité de cette statistique est
supérieure a ses homologues non GLRT, qui, malheureusement, ne fonctionnent pas aussi bien
dans la plupart des cas. Comme la complexité est une question majeure lors des implémentations
pratiques, et qu’elle peut étre démesurée pour un grand nombre d’antennes, le but de cette étude
est de proposer plusieurs fagons de diminuer la complexité du test GLR tout en conservant sa

performance.

4.4.2 Les statistiques de synchronisation étudiées dans la these

Une premiere fagon simple d’optimiser les performances de la synchronisation MIMO, et dans
le cas échéant d’en diminuer la complexité, consiste a s’appuyer sur les connaissances que nous
avons du systeme. Si nous savons que le bruit est spatialement et temporellement indépendant,
nous pouvons alors utiliser les GLRT suivants (Voir les appendices 2.6 et 2.7 pour la preuve),

optimisés pour une puissance de bruit égale ou inégale a chaque antenne du récepteur :

e R et H sont toutes deux inconnues, mais 1’on sait tout de méme que R est sous la forme
R = 0?1 (bruit spatialement blanc avec une puissance du bruit identique sur toutes les

antennes de réception) :

arg max Hé\le pr, (Y (k) | S(k), H, 021)

o2 H

arg max [[i2, pry (Y (k) | 021)

o

TIGLRT, nous — (414)

e R et H sont inconnues, mais 'on sait tout de méme que R est sous la forme R =

Diag[o?,03,...,%2%,] (bruit spatialement blanc avec une puissance de bruit différente sur
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chaque antenne de réception) :

argmax H{CVZI PH, (Y(k) ’ S(k)7H7ﬁ')

2 2
07505 H

arg max [Tiy pig (Y () | R)

2
O15s0y

TGLRT, wu = (4.15)

Néanmoins, si R et la matrice de canal H sont inconnues, la statistique de synchronisation GLRT
est calculée en utilisant (4.18), qui est le point de départ des chapitres 2 et 3. Cette statistique
GLRT, déja présente dans la littérature [8], est donnée par :

Nerrr = det[Iy — S*(fatSFats*)'SY*(YY*) 1YV, (4.16)

Une statistique suffisante est le logarithme du rapport de vraisemblance, ngrrr = log(ngLrr)/N-
En utilisant det(I — AB) = det(I — BA), nous avons la statistique sous la forme que nous allons

utiliser a partir de maintenant :

nGLrT = — log det {IL - S;* (Y;*>_ly§* <S]3*>—1] (4.17)
= — logdet (T — Ry R, RIR;,) (4.18)

Le GLRT est généralement considéré comme un test optimal, mais d’apres 1’équation (1.18) on
peut voir que sa complexité devient rapidement démeusurée quand K, M et N deviennent grands.
Pour calculer ngrrr, nous devons, pour chaque indice, calculer et inverser une matrice (M x M)

A

Ry, et calculer le déterminant d’une matrice carrée de taille min(M, K, N).

Une alternative a la statistique GLRT est la statistique MMSE, qui est aussi robuste aux
interférences. La statistique MMSE minimise 'erreur LS entre la séquence de synchronisation
connue S et son estimation LS obtenue par filtrage spatial des données Y. Le critere MMSE est
donné par
Tr(R:R, Ry

Tr(Roo)

Il est facile de voir que nyvsE est moins complexe a calculer que ngprrr. 1l faut encore une

TIMMSE = (4.19)

inversion de matrice a chaque indice de temps, mais nous n’avons pas de déterminant a calculer.
Cependant, comme il sera montré dans le chapitre 2, la MMSE devient sous-optimale pour des

séquences d’apprentissage non-orthogonales.

Une troisieme statistique intéressante, robuste aux interférences, est la statistique GLRT
optimisée pour le cas théorique ou R est connue et H est inconnue.

arglgnaxnﬁilpmw(k) | S(k),H,R)

o 4.20
"IGLET, T o (y(F) | ) (4.20)

=Tr R R, R R;,|. (4.21)
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Ceci est bien slir un critére purement théorique puisqu’il est impossible en pratique de connaitre
la matrice de covariance du bruit R. L’intérét de ce critere découle de I'idée que la matrice R
peut étre remplacée par son estimation. Les performances des statistiques non GLRT obtenues

peuvent ensuite étre comparées avec celles de la GLRT narrr.

4.4.3 Réduction de la complexité et optimisation des parametres de synchro-
nisation MIMO

Avec ces considérations comme point de départ, nous proposons dans le chapitre 2 plusieurs

moyens d’optimiser et de réduire la complexité de la synchronisation MIMO, résumé comme suit:

1. Introduction des expressions explicites pour la synchronisation GLRT en ’absence d’interférence,

pour deux types de bruit spatialement blanc.

2. Introduction d’une expression alternative de ngrrr optimisée en présence d’interférences,
ou le calcul du déterminant est fait explicitement pour K = 2. Ces expressions sont

particulierement utiles car elles permettent la comparaison directe de ngrrT avec NvMSE-

3. Introduction de deux nouvelles statistiques de faible complexité, ngLrro €t NgLrT1, basé

sur le GLRT optimisé pour le cas théorique ou la covariance du bruit R est connue.

4. Proposition d’une procédure de réduction du taux de calcul de la matrice de corrélation du

signal recgu.

5. Etude du probléme de loptimisation du nombre d’antennes d’émission pour la synchronisa-

tion temporelle.

Le tableau 4.1 résume les différentes statistiques, GLRT ou non GLRT, qui sont étudiées ou

introduites dans cette these.
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Nom Interprétation statistiques suffisantes
TGLRT statistiques GLRT pour R et H inconnues —log det (1 M- f{y_ylﬁysR;ff{;S)
15 =
NGLRT, nous | Statistiques GLRT pour bruit spatialement W
vy
blanc avec R = 021,
. . . . H]\l (Ryy)n N
NGLRT, wu statistiques GLRT pour bruit spatialement I R n:lR R—;f{* :
blanc avec R = Djag[o-%’ . 30-]2\/[]IM n=1\""yYy ysRss Ryg)n,n
TGLRT, kn statistiques GLRT pour R connue et H incon- | Tr _RilRysR;Slﬁ';;s_
nue
TGLRTO Statistiques non-GLRT basé sur ngrrr, kn, avec | Tr _ﬁ;yl R,R;! ﬁ';s_
R=R,,.
IGLRT1 StatiStiqueS non-GLRT basé sur TIGLRT, kn, aveC Tr _(Ryy - RysR;gl RZs)ilﬁysR;gl R;/(S}
R = Ryy _ Ryng—isZs

Table 4.1: statistiques de synchronisation étudiées dans cette thése

4.5 Analyse du grand systeme avec matrices aléatoires

4.5.1 Introduction au probléme

La deuxieme partie de la these, traité dans le chapitre 3, traite le comportement d’un critere
GLRT MIMO qui permet de détecter la présence d’un signal connu corrompu par un canal de
propagation par trajets multiples et d’un bruit additif gaussian, blanc temporellement, avec une
matrice de covariance spatiale inconnue. Le chapitre se concentre sur le scenario ot le nombre de
capteurs M et éventuellement le nombre de chemins L est grand, et du méme ordre de grandeur
que le nombre d’échantillons N. Ce contexte est modélisé par deux régimes asymptotiques.
Le premier est M — 400, N — 400 de telle sorte que M/N — ¢ pour C € (0,400). Le
second régime asymptotique sous étude est N, M, L — +o0, de telle sorte que M /N — ¢ pour ¢
€ (0,+00), et L/N — d pour d € (0,+00). Le but de ce chapitre est d’étudier le comportement
de la statistique GLRT dans ces régimes, et de montrer que ’analyse théorique correspondant
permet de prédire avec précision les performances du test lorsque M, N et peut-étre L sont du

méme ordre de grandeur.

4.5.2 Pourquoi 'approximation du grand systeme?

Pour voir que le probleme étudié dans le chapitre 3 n’est pas simplement une considération

théorique, considérons comme exemple les systémes multi-antennes d’aujourd’hui. La norme
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d’échantillonnage qui peut en pratique étre utilisée pour effectuer I'inférence statistique ne
peut pas étre beaucoup plus grande que la dimension du signal, ce qui correspond au nombre

d’antennes en réception.

Nous avons donc une distinction entre deux types de résultats limitatifs: Le soi-disant probleme
de limite classique, ou seulement une des dimensions est supposée grande, et le probléme de
limite en grande dimension, ou plusieurs dimensions sont supposées tendre vers I'infini. On peut
supposer que I’analyse classique fonctionne mal lorsque plusieurs dimensions sont du méme ordre
de grandeur. L’un des objectifs de cette étude est donc de montrer que les résultats limitatifs

classiques ne sont plus valables pour les systémes en grande dimension.

Une fagon d’aborder le probleme d’analyse asymptotique en grande dimension est la théorie
des matrices aléatoires (Random matrix theory, RMT). La motivation sous-jacente de 'utilisation
de cet outil est le comportement non évident des grandes matrices aléatoires. A titre d’exemple,
étudions la matrice de covariance empirique d’une matrice d’observations des grandes dimensions.
Soit Yy )n=1,.. .~ les N (M x 1) vecteurs d’observation, nous voulons étudier la matrice de

covariance empirique donnée par
1
*
Ry =+ ;YY (4.22)

Si M est fixé quand N — oo, Ry — R = E[[Y1Y][], et |[R — Ry|| = 0 pour toute norme
matricielle [29]. Cette matrice de covariance empirique Ry est un estimateur consistant de matrice
de covariance de la population R. Cependant, dans de nombreuses applications pratiques, le
nombre d’observations disponibles N & le méme ordre de grandeur que M. Dans ce cas, | R —Ry]||
peut étre loin de zéro, méme quand N est grand. Par exemple, si M > N, Ry est de rang
incomplet (alors que R peut étre de plein rang), il n’est donc pas une bonne approximation de
R. Si N et M sont tous grands par rapport a 1, mais de la méme ordre de grandeur, il a été
démontré que la distribution empirique des valeurs propres Ry est différente de la distribution
des valeurs propres de R. Par exemple, si R = ¢?I, 'histogramme des valeurs propres de Ry
tend & se rapprocher de la densité de probabilité de la distribution Marcenko-Pastur [30]. Ceci
est en contraste avec le cas N >> M, ou les valeurs propres de Ry sont concentrées autour de

o2

Qu’est-ce que Uinfini? Comme mentionné précédemment, ’analyse asymptotique est effectuée
pour le cas ot les dimensions N, K (Et peut-étre aussi L) — oco. Cependant, les résultats obtenus
avec ces méthodes sont applicables méme avec de petites dimensions. En d’autres termes: pour
plus de commodité théorique, les dimensions sont supposées grandes, mais il peut étre démontré

par simulation, que les résultats sont valables méme pour les petites dimensions.
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4.5.3 Préliminaires

Dans le chapitre 3, nous allons effectuer 'analyse asymptotique pour étudier la distribution
limite de la statistique de synchronisation GLRT étudiée au chapitre 2. Nous étudions le cas ou
une antenne d’émission (K = 1) envoie une séquence de synchronisation connue de longueur N
par un canal sélectif en fréquence H muni de L chemins. Une statistique suffisante du critere
GLRT est etan = log(ngpgpr)/N, défini par

SY* /YY*\ ! yS* /SS*\ !
nv = — log det [IL— < > Y ( ) ] (4.23)

N N N N

Avant de démarrer le calcul de 'analyse asymptotique, on remarque qu’il est possible d’assumer
sans restriction que % =1} et que E(v,v}) = ¥?I, c’est-a-dire que R est réduite & la matrice

identité. Si ce n’est pas le cas, on note alors S la matrice

S = (S]i*)lm S (4.24)
et par Y et V les matrices d’observation et de bruit blanchies.
Y=R Y,
V=R12v (4.25)

11 est clair que % =1, et que E(¥,¥%) = ¢%I. De plus, sous Hy, Y = V, tandis que sous Hy,
Y = HS + V ou la matrice de canal H est définie par

H=R2H(SS*/N)/? (4.26)

Enfin, les statistiques ny peuvent également étre écrits comme

SY* /' YY*\-1YS*
v x) W

nn = log det [IL - (4.27)

Cela montre qu'il est possible de remplacer S, R et H par S, I et H sans modifier la valeur de
la statistique ny. Les résultats sont valables en remplagant H avec H, et nous pouvons sans

restriction faire les calculs avec I’hypothese que

SS* ~
—1;,, R=1 4.2
N L, M ( 8)

Une deuxieéme étape préliminaire est I'introduction des variables auxiliaires que nous appelons

Vi et Va. On note W la matrice (N — L) x N pour laquelle la matrice @ = (W7, %)T est
unitaire et on définit les matrices Vi et Vg aux tailles respectives M x (N — L) et M x L par
S*

V1, Vy) = VO* = (VW*, V
(V1,V2) ( Wi

) (4.29)
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Il est clair que Vi et Vy sont des matrices aléatoires gaussiennes complexes aux entrées N¢ (0, 02)

iid, et que les entrées de V1 et Vg sont mutuellement indépendantes. Nous remarquons que

si N > M + L, la matrice VIAYT est presque slirement inversible. Nous pouvons maintenant
exprimer la statistique 7y en termes de Vi et V. Sous Hy, il est montré dans le chapitre 3 que

les statistiques peuvent étre écrites comme
n = logdet (I, + V3/VN(ViVi /N)_l Vo/VN) (4.30)
et de méme sous Hy, ou
nv = log det (IL +(Va+ H)*/\/N (ViVi/N) ™ (Vo + H)/\/JV) . (4.31)
Le point clé ici est I'indépendance entre Vi et Vg, qui peut étre exploitée pour simplifier les

calculs des distributions limites.

Noton que les distributions asymptotiques de ce genre de statistiques ont été étudiées par le

passé, mais dans le régime classique, défini par

1. régime asymptotique (a)) L, M est fixé
N — o0

Lorsque la taille de M et L augmentent, 'hypotheése que M << N et / ou L << N ne sont
plus valables, ce qui est le cas pour de nombreuses applications pratiques. Par conséquent, nous

considérons deux nouveaux régimes asymptotiques:

1. régime asymptotique (b):| L est fixé

N, M —

M/N =¢, = ¢, 0<c<1
2. régime asymptotique (c):| N, M,L — oo

M/N =c¢, —¢, 0<c<1
L/N=dy —d, 0<d<1
C+d<1

4.5.4 Exemple d’analyse asymptotique: ’espérance de 7y sous de H

Pour avoir une idée des différences qu’ont les régimes en ce qui concerne leur analyse asymptotique,
nous présenterons comme exemple ’analyse asymptotique qui permet d’obtenir I’espérance de

nn sous Hy, pour les régimes asymptotiques (a) et (b).
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Commencons par l'analyse dans le régime classique (a). Nous utilisons (4.30) et remarquons
que lorsque N — 400 et que M et L restent fixes, les matrices V1 V] /N et %V; (VIVI/N)1V,

convergent respectivement vers oI et la matrice zéro. De plus,
1 * * —1 1 * 1
et une expansion du second ordre standard 7y conduit a

1 . 1
NN = pTY (V3V2/N) +op(

) (4.33)

Cela implique immédiatement que la distribution limite d’ny est une distribution chi-carré avec

2M L degrés de liberté. De maniére informel, cela implique que E(ny) ~ L% et Var(ny) ~ %%

L’analyse d'ny dans le régime asymptotique (b) différe profondément de I’analyse dans
le régime asymptotique standard (a). En particulier, il n’est plus vrai que la matrice de
covariance empirique V1 V% /N converge dans le sens de la norme spectrale vers 02I. Cela en
raison que le nombre d’entrées de cette matrice M x M est du méme ordre de grandeur que le
nombre d’observations scalaires disponibles. Nous notons également que pour toutes matrices
deterministes M x M A, les entrées diagonales de la matrice L x L %V;AVQ convergent vers (
lorsque N — +o00 et M reste fixe, ce qui n’est pas le cas lorsque M et N ont le méme ordre de

grandeur.

Nous voulons maintenant calculer ’espérance asymptotique d’ny dans la région asymptotique

(b), et montrer que
ny — Llog (%cn) — 0 p.s. (4.34)
Tout d’abord, notons F la matrice L x L
Fy =V3/VN (ViVi/N)™" Vo/V/N. (4.35)
et remarquons que, sous Hy, (4.30) peut étre écrit comme

n = logdet (I, + Fy) (4.36)

Comme L n’augmente pas avec M et N, il suffit d’établir que

Cn

Fy— 1 IL —0 p.S. (437)

n

Notre approche est basée sur ’observation que si A est une matrice hermitienne déterministe
M x M vérifiant supy [[An| < A < 400, alors

C(a)
N2

(Vi/VN ANV2/VE) (]T\jTr(AN) Ak -0

Ev, (4.38)



4.5. ANALYSE DU GRAND SYSTEME AVEC MATRICES ALEATOIRES 109

ot C'(a) est un terme constant en fonction de a, et ou Ev, représente 'espérance mathématique
par rapport a Vo. Ceci est une conséquence de la proposition 4 dans I’Appendix 3.7. Supposons

pour le moment qu’il existe une constante a déterministe telle que
-1
I(ViVi/N) [ <a (4.39)

pour chaque N supérieur a un entier non-aléatoire Ny. Ensuite, comme Vi et V5 sont in-
dépendants, il est possible d’utiliser (4.38) pour Ay = (V1V’{/N)_1 et de prendre ’espérance
mathématique par rapport a Vi (4.38) pour obtenir que

4

o . C(a)
E | (F N>k,l -y (ViVi/N) sk < e (4.40)
pour chaque N > Ny et en utilisant le lemme de Borel-Cantelli, que
0'2 1
FN — NTI’ (V1V>{/N) IL —0 p.s. (441)

Pour conclure, nous utilisons les résultats connus liés a la convergence presque sire de la
distribution des valeurs propres de la matrice V1V3/N pour la distribution Marcenko-Pastur

(voir I’équation (3.77) dans I’Annexe 3.7) qui impliquent presque slirement que

1 -1 Cn
— Tr(V1V]/N - 0 4.42
N r( 1Vi/ ) o2(1— o) — ( )

Ceci, en liaison avec (4.41), conduit & (4.37) et éventuellement a (1.34).

Cependant, il n’existe qu’une constante a déterministe satisfaisant (4.39) pour chaque N

supérieur a un nombre entier non aléatoire. Afin de résoudre ce probléme, il suffit de remplacer la
-1

matrice (VlV’{ /N ) par une version régularisée. Les détails de la régularisation seront donnés

dans le chapitre 3

4.5.5 Distributions limites

Les principaux résultats de ces travaux sont les distributions limites résumées dans le tableau
4.2. Noton que la distribution limite pour la région (c) doit établir un théoréeme de la limite
centrale pour une statistique linéaire des valeurs propres d’une matrice F (F-matrix) de moyenne
non-nulle, une tache difficile qui n’a pas été abordée dans ce travail. Au lieu de cela, nous avons

proposé une approximation qui sera décrite en détail dans le chapitre 3.
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Régime
asympto-

tique

Distribution sous Hj

Distribution sous H;

(a) Classique,

1.2
NN ~ NXaML

NN NN[R(logdet (I+ HUI‘QI*)7 %)

N — o0 ([E[mv] = Len

Var[ny]| = Len - %)
(b) Proposé, | ny ~ Nk (L log %cn, 1L_C—CNH . %) nn ~ Nr (L log %Cn + log det (I + %),
M,N —

K1 Ley | 1
N+1—cn N)

(c) Proposé,
L,M,N = oo

nn ~ Nk (ﬁN, SN)

nn ~ Nr (ﬁN-Hog det (I—l—HUI_zI*), %—l—&v)

Table 4.2: Distributions asymptotiques de ny pour les trois régimes asymptotiques, sous Hy et Hy
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