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Titre : Acoustique du piano : double polarisation de la corde et identification de sources
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Résumé : Liobjectif de cette thése est d’améliorer la compréhension de 'acoustique du piano dans le contexte de
la synthése sonore par modeles physiques. Le manuscrit est décomposé en trois parties principales, dont les deux
premieéres ont pour but la compréhension de I'origine de la double polarisation de la corde de piano, tandis que la
derniere se focalise sur I'identification de sources d’un piano complet.

Dans la premiere partie, la non linéarité géométrique, intervenant lorsque les amplitudes de vibration sont
grandes, est étudiée afin de comprendre si le couplage non linéaire peut transmettre de I’énergie a une polarisa-
tion non initialement excitée et mener ainsi au phénomene de double polarisation. Un développement en échelles
multiples est mené sur un modele de corde de Kirchhoff-Carrier avec les deux extrémités fixes, restreint au mode
fondamental de chacune des polarisations. Les deux oscillateurs ont alors des fréquences trés proches, on parle
de résonance 1:1. La condition d’existence et le critére de stabilité pour 'apparition de double polarisation sont
obtenus et validés numériquement sur la base des équations de Kirchhoff-Carrier, ainsi qu’avec un modele de
corde enrichi. Des expériences sont menées sur un dispositif monocorde ol les angles de polarisation naturelle de
la corde, le désaccord entre les deux polarisations et le comportement non linéaire son observés et identifiés.

La seconde partie se concentre sur le couplage entre la corde et le chevalet. Les degrés de liberté de la
corde sont couplés au chevalet dont les mouvements (translation/rotation) sont représentés par un ensemble
d’oscillateurs. Les fréquences propres des différents systémes couplés sont analysés. Des schémas numériques
sont proposés et mis en ceuvre pour une résolution directe. Ces schémas résolvent les équations de corde par
une méthode d’éléments finis d’ordre élevé et les équations du chevalet analytiquement. Les conditions de cou-
plage entre corde et chevalet sont assurées par des multiplicateurs de Lagrange. Expérimentalement, la corde
est tendue sur le chevalet dans une configuration de type zig-zag et excitée verticalement ou horizontalement.
Dans les deux cas, les phénomeénes de double polarisation et de double décroissance sont observés et des résultats
qualitativement similaires sont obtenus avec les modéles numériques.

La derniére partie s’attache a décrire quantitativement les différentes sources vibro-acoustiques d’un pi-
ano complet. Une étude est menée en utilisant une analyse des chemins de transfert (transfer path analysis
en anglais) sur un piano Bosendorfer 280VC-9. Les contributions de la table d’harmonie, des parties interne et
externe de la ceinture, du cadre en fonte et du couvercle sont étudiées dans le domaine fréquentiel. Lanalyse
montre que la table d’harmonie est le principal contributeur mais que le cadre en fonte et le couvercle jouent
également un réle significatif, en particulier a hautes fréquences.

Title : Piano acoustics: string’s double polarisation and piano source identification
Keywords : physical modelling of piano, numerical simulation, string, bridge, source identification

Abstract : The objective of this thesis is to improve the understanding of the acoustics of the piano in the context
of physically-based sound synthesis. The manuscript is decomposed in three parts, the first two being devoted to
the understanding of the origin of the double polarisation in piano string, while the third one is dedicated to the
identification of sound sources of a complete piano.

In the first part, the geometric (large-amplitude) nonlinearity is studied in order to understand if the nonlin-
ear coupling can transfer energy to an initially non excited polarisation, thus leading to the double polarisation
phenomenon. A multiple-scale analysis is conducted on a Kirchhoff-Carrier string model with fixed boundary
conditions at both ends. Each polarisation is restrained to its fundamental mode and thus presenting a 1:1 in-
ternal resonance. The existence condition and stability criteria for double polarisation to occur are obtained and
validated numerically based on the Kirchhoff-Carrier equations, as well as a more enriched geometrically exact
string model. Experiments are carried out on a monochord setup where the natural polarisation angles of the
string, detuning between the two polarisations and its nonlinear behaviour are observed and identified.

The second part is devoted to the string/bridge coupling. The degrees of freedom of the string are coupled to
the bridge whose translational and rotational motions are represented by a set of oscillators. The eigenfrequencies
of various coupled systems are analysed. Numerical schemes are proposed and implemented where the string is
solved via high-order finite-element method while the lumped bridge is solved analytically and coupled to the
string by Lagrange multipliers. Experimentally, the string is strung over a bridge in a zig-zag configuration and
excited vertically and horizontally. In both cases, double polarisation and double decay are observed and similar
results are also obtained qualitatively in numerical models.

The last part is devoted to a quantitative description of the vibroacoustic sources of a Bosendorfer 280VC-9
piano via operational transfer path analysis. The contribution of the soundboard, inner and outer rim, iron frame
and lid are investigated in the frequency domain. It is found out that the soundboard is the primary contributor
but the iron frame and the lid also play a significant role, especially at high frequencies.
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1

Introduction

Piano is a musical instrument and an engineering wonder. Composers like Mau-
rice Ravel, Frédéric Chopin and Claude Debussy have completed acclaimed musi-
cal masterpieces on a piano and have moved emotions of the world. At the core of
these amazing works! is the engineering marvel in the form of a piano. As shown
in Figure 1.1, piano is made up of several key components. Each plays a role in the
production of the desired piano sound. They have been through centuries of evolu-
tion yet there are new innovations to improve piano. The study of piano spans a
long time and over several domains of research. To provide an informed overview, it
is perhaps useful to first understand the mechanism of sound production in a piano.
It is easy to make sound from a piano: when a key on a piano is pushed, a sound
could then be heard. However, series of events happen right after the key push
before the sound is actually heard. First, the energy spent to push the key (K in
Figure 1.2) is transferred to the "hammer" (H in Figure 1.2) via a mechanical de-
vice called the "action" as is shown in detail in Figure 1.2. The hammer, covered
in felt, travels upwards and hits the "piano string” (C in Figure 1.2). As a result
of the impact, the string vibrates. At one end of the string, it is connected to the
"soundboard" via the "bridge" (see Figure 1.1). Thus, as the string vibrates, the
soundboard also vibrates. The vibration of the soundboard compresses and pushes
the air around it which forms sound waves that are transmitted to a listener’s ear.
The physical movement of the sound waves are captured by inner ear before it is
being converted to neural signals that are sent to the human brain. The human
brain registers these signals as sound, and thus it is heard.

It is no coincidence that a piano could sound pleasant. Piano is about 300 years old
and has went through countless design iterations and refinements until today. In
the 1700s, piano was invented by Bartolomeo Cristofori in need of an improvement
to the existing clavichord and harpsichord that could be played more expressively
with different loudness. Cristofori designed and built a piano that came with a
hammer striking action with escapement device that allows the playing of pianis-

Personal favourites: Ravel’s Piano Concerto in G, Chopin’s "Heroic" Polonaise and Debussy’s "Liile
joyeuse".



reble strings

Figure 1.1: Exploded view of a piano, image extracted and edited from Blackham [1].

simo (soft sound) and fortissimo (loud sound) [2]. This gives the original name "pi-
anoforte" that is later shortened to be simply "piano". By the 1820s, piano needed
to be louder and richer in tone. To cope with the use of heavier strings, Alpheus
Babcock invented the full cast iron frame. Steinway & Sons further developed the
full iron frame and introduced the overstrung technique where the bass strings are
strung above the treble strings [2]. Also in the 1820s, Erard developed the "double
escapement” action which allows fast repetition of the notes to be played. The full
iron frame, overstrung setup and Erard action are still in use despite being tech-
nologies from the 19th century. However, they have also evolved by incorporating
new materials and manufacturing methods [3, 4] as well as with innovative engi-
neering designs [5, 6]. These mixtures of new and old technologies are the perfect
testament of how piano is a marvellous combination of scientific knowledge and
traditional know-how.

Scientific studies of piano was pioneered by Hermann Helmholtz in the late 19th
century [7] although active research only began in the 1920s as reported in [8].
That being said, the most relevant literature are probably published within the
past 40 years or so. In the next section, a comprehensive review of the research and
development on piano acoustics is presented. The review is by no means exhaustive

2



1.1. State-of-the-art of piano acoustics

Figure 1.2: Grand piano action. The label C, H, L, S, J, W and K represent the
string (corde in French), hammer, repetition lever, shank, jack, whippen and key
respectively. The original image "Piano mechanism — english type" is created by

Olek Remesz (wiki-pl: Orem, commons: Orem) and is licensed under GFDL ver. 1.2
and CC-BY-SA ver. 2.5, 2.0, 1.0.

as a lot of research and development activities of piano manufacturers are carried
out in-house and the outcomes are not shared in the public domain. It is, however,
relevant and would provide a context on why this PhD thesis is necessary and how
it could contribute to the growing knowledge pool of musical acoustics.

1.1 State-of-the-art of piano acoustics

Piano is a multi-component device and each component itself presents a physics
problem and warrants research efforts. They can be loosely categorised into the
following areas:

® piano action,

* hammer and its interaction with string,

¢ string vibrations,

¢ soundboard vibrations and acoustic radiation.

The categorisation is based on the review paper by Suzuki and Nakamura [8] where
pre-1990s research work conducted have been comprehensively summarised. To be
more relevant, an additional category of "modelling and sound synthesis" is also
studied to reflect the latest research effort.



1.1. State-of-the-art of piano acoustics

Piano Action

Research on piano action is motivated by a need of understanding how the touch
input applied to a key will affect the key travel time, hammer velocity and subse-
quently its impact on the string. The main challenge of studying the piano action
mechanism is its intrinsic nonlinear behaviour and also difficulty in predicting fric-
tion constants. In earlier works summarised by Suzuki and Nakamura [8], most
of them are restricted to experimental studies. For instance, Lieber’s effort inves-
tigated the relationship between the energy input to the key and the key travel
time [9]. It is observed that the key takes less time to travel with increasing energy.
Similar finding is echoed by Askenfelt & Jannson [10], whose work investigated
the contact timing and motions of various components in piano action. Ultimately,
these shed lights on the dynamic behaviour of a piano action before computational
studies became feasible.

Gillespie has developed a few grand piano action models, each with different num-
ber of components and complexity [11,12]. Hirschkorn et al. developed a model with
5 rigid body components (key, whippen, jack, repetition lever, and hammer, see Fig-
ure 1.2) with experimentally determined parameters [13]. A further extension of the
model was done by Izadbakhsh et al. [14] where a flexible shank is also considered.
In the same research group led by Birkett, Masoudi has recently developed and val-
idated a vertical piano action model [15,16]. Thorin et al. [17, 18] also presented a
grand piano model based on non-smooth dynamics where the forces instead of the
displacements of the components are simulated. Although the piano action does not
directly affect the piano sound, it holds an important role as it is the main input for
pianists to control the sound. Thus, it is important to have accurate models of the
action, which could aid in the study of the interaction between hammer and string.

Hammer-string interaction

The interaction between hammer and string is an important subject as it is where
vibrations start. Information on the hammer force like its amplitude and contact
point over the contact duration could influence the excitation of the string, and sub-
sequently the soundboard dynamics. The interaction is complicated as hammer is
covered by felt which compresses upon impact. This results in a nonlinear relation-
ship between the hammer force and displacement. In addition to that, accounting
for the flexibility of the hammer shank also influences the interaction between the
hammer and string [14,19].

In Suzuki and Nakamura’s review [8], some of the very early models can be at-
tributed to Helmholtz [7] and Kaufmann [20] which could still be useful for simple
analysis. Early experimental work are also reported in the review, such as those
done by Boutillon [21]. He developed a nonlinear finite-difference hammer model
by modelling the felt with a hysteretic spring. With advances in computation power
in the 1990s, more sophisticated models are developed where modelling parame-
ters are extracted from experiments [22—24]. In recent years, detailed experimen-

4



1.1. State-of-the-art of piano acoustics

tal framework has been established to more accurately and consistently study the
hammer-string interaction [25]. A numerical method has also been proposed to re-
construct the hammer forces from string velocity measurements [26]. Research on
the hammer-string interaction is still very much active and ongoing in pursue of
accurate representation of the phenomenon.

String

The piano strings are one of the most important components in a piano. It is the
cornerstone of the pitch and tonal colour of the piano sound. The piano sound can
be characterised by acoustic features like the double decay, inharmonicity, precursor
signals and phantom partials.

The double decay gains its name as the piano sound can be loosely grouped into the
initial "attack" phase followed by the "sustain" phase, each decaying at a different
rate as is shown in Figure 1.3. Weinreich proposed two mechanisms that cause the
double decay rate [27,28], one applicable to a single string and one applicable for
duplets or triplets of strings. Following the reference of a grand piano, when the
hammer strikes the string vertically, the string not only vibrates vertically but also
horizontally. The two vibrations have different decay rates. As the string is coupled
to the bridge, its energy is dissipated quickly and this makes up the initial fast
decay. As the vertical displacement reduces, horizontal displacement becomes more
dominant and exhibits the second slower decay. The phenomenon where there are
both vertical and horizontal vibrations are known as "double polarisation". When
the hammer strikes duplets or triplets of strings, the initial vibrations of the strings
are in phase with each other. The forces exerted to the bridge are also in phase and
more energy is transmitted to the bridge. However, due to detuning among the
strings, the vibrations slowly get out of phase. The out-of-phase forces cancel each
other which reduces the net bridge forces, and consequently slow down the energy
transfer. The different energy transfer rate thus results in the different decay rates
of the strings. In addition to that, as the vibrations go in and out of phase, beat-
ings can also be observed as is shown in Figure 1.3b. These mechanisms have been
validated by various authors [29-31].

Inharmonicity is the phenomenon when the partials of the string are not exact
integer multiples of the fundamental frequency. Inharmonicity occurs due to the
stiffness of the string and is an essential feature for accurate description of pi-
ano string. The stiffness of the string can be described by various models such as
the Euler-Bernoulli beam theory [21, 22], Timoshenko beam theory [32] or more
recently by shear beam theory [33] which is a slightly reduced version of the Timo-
shenko model.

The precursor is a small initial signal that precedes the transverse displacement
while the phantom partials are additional partials observed on the spectrum of
a string that are sum of the longitudinal and transverse frequency [34]. Precur-
sor signals and phantom partials can be attributed to the nonlinear vibrations of
the string, where longitudinal displacement is generated even though the string

5
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Figure 1.3: Root-mean squared sound pressure of different piano notes, extracted
from [28]. Approximate decay rates are shown as dotted lines.

is struck vertically (i.e. transverse displacement) [35]. These two phenomena con-
tribute to the characteristic piano sound and have drawn research efforts from au-
thors like Bank and Sujbert [36], Chabassier and Joly [37] and Kurmyshev [38].

Soundboard and radiation

In a piano, the soundboard is essentially a resonator which "receives" the string
vibration at the bridge and amplifies it so that the vibration is audible to the human
ear. Despite its simple mechanism, the soundboard is more than just a diaphragm.
Ribs are glued to the soundboard to improve its stiffness and longevity while treble
and bass bridges are glued to it in order to couple the strings and the soundboard.
The soundboard is also tapered and curved slightly upwards forming a frown (—~)
shape. The frown shape is more commonly known as a "crown" [39]. The soundboard
can be evaluated by its many characteristics, such as its vibrational patterns in
different frequency ranges, mechanical mobility and its radiation pattern.

As summarised by Ege [40], the first few resonant frequencies are influenced by the
presence of rim, bridge and downbearing forces from the string. It also appears that
the average modal frequency spacing is between 20 to 30Hz regardless of the dimen-
sion of the piano up to 500Hz. Indeed, Askenfelt remarked that global soundboard
properties might be more important than actually investigating the precise eigen-
frequencies [41]. Among other studies conducted by Berthaut et al. [42], Suzuki [43]
and Ege et al. [44], consistent modal loss factor between 2 to 3% is also identified.
Modal shapes are also experimentally studied by Moore et al. [45], Ege et al. [44]
and Chaigne et al. [46] where interestingly, at higher frequencies, vibration is lo-
calised between the ribs.

The mechanical mobility defines the loudness and sustain of a piano tone. Ideally,
strings will have to transmit an initial bulk of energy quickly to the soundboard
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1.1. State-of-the-art of piano acoustics

to make up the loud "attack" tone of a piano and follow up with a slower energy
transmission for the slow-decaying "sustain" tone. The admittance of the string
forces at the bridge of a piano are studied by Wogram [47], Nakamura [48], Conklin
[49] and Giordano [50]. A general trend of higher bridge fundamental frequency
and reduced mobility is observed when strings are loaded onto the bridge as shown
in Figure 1.4. Measurement of admittance of a bridge remains a challenge even for
other musical instruments [51].

28 Wz 3.8000 K .8 He 3. 8800 K
-48. 008 . A . A . -48. 208

LGMAG LGMAG |
[1:] i3]

~ge. oen T T T T T T -~98. 808
2.0 HZ 3.0000 K s W 26600 X

(a) (b)

Figure 1.4: Treble bridge mobility measurement in the direction normal to sound-
board at terminating point of string C6 (a) before and (b) after the strings and plate
are assembled, extracted from [49].

Early soundboard radiation study is completed by Suzuki [43]. In his experimental
study, it is observed that acoustical short-circuit occurred below 80Hz, which results
in very low radiation efficiency. The efficiency fluctuates up to 1kHz as it hits a
plateau of 16%. More recently, radiation study has been conducted [46,52,53] with
aids from numerical tools in which the effect of the ribs or string coupling points on
the soundboard’s radiation has been discussed.

A special mention for the work by Debut et al. [54] is also necessary. While the
work is based on the 12-string Portuguese guitar, they showed numerically that a
bridge could induce a horizontal vibration even if the string is excited vertically (see
Figure 1.5). The coupling is achieved by the rotational motion of the bridge. As the
string forces act on the top of the bridge (instead of through its centre of gravity), it
introduces a moment to the bridge and thus a rotational motion.

Modelling and sound synthesis

A common trend can be observed in the direction of research on the acoustics of
piano. As computational effort becomes cheaper, modelling becomes more viable.
Complicated problems like nonlinear string vibration can be studied more easily

7
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Figure 1.5: Time history of the string vibration on a linear one-string/body model in
Z-direction (vertical) and Y-direction (horizontal) when it is first excited vertically.
The top two plots show the displacement-time plots and the bottom plot presents
the snapshots of displacement in Y-Z plane at various times. [54].

and accurately without the need of excessive simplification. This also unlocks the
possibility of synthesising piano sound based on physical models.

Physics-based piano sound synthesis can be achieved by several methods. A popular
technique used for sound synthesis is the digital waveguide method [55]. Digital
waveguide synthesis models the motion of the string based on known traveling
wave solutions where each traveling wave has its own "delay line" to describe its
spatial and temporal coordinates. It has been used by numerous authors [36, 56—
59] and is also featured in commercial synthesiser such as the Yamaha VL1 [60].
Another popular method is the finite difference method. Finite difference method
transforms a partial differential equation to an ordinary differential equation that
can be solved by approximating the derivatives in the differential equations [60].
Some of the early uses of this method are pioneered by Boutillon [21] and Chaigne &
Askenfelt [61]. It is also used by Giordano & Jiang to simulate a complete piano [62]
(more on that later).

To date, there are two complete physics-based time-domain piano models that are
published, namely by Giordano & Jiang [62] and by Chabassier et al. [63]. For the
purpose of clarification, a complete model is defined where the hammer, string,
soundboard and the room/surrounding air are all simulated. The action can be
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1.1. State-of-the-art of piano acoustics

omitted as it does not directly affect the sound production of a piano tone. In Gior-
dano and Jiang’s work, the string is based on a linear stiff string equation that is
struck by a hammer model proposed by Stulov [64]. The string is coupled to a simple
soundboard model that includes the ribs and bridges such that the stiffness of the
soundboard is position dependent [65]. The room model is the three-dimensional
linearised Euler equations which is driven by the vibration of the soundboard. All
of the components are coupled and solved by finite difference methods. The main
challenge is that there are a large number of room elements to be solved and the
soundboard model is highly dispersive and requires small time step for stability. To
cope with it, multiple time steps are used: the soundboard and strings are iterated
for 6 and 4 times respectively before an iteration is carried out for the room.
Almost a decade after Giordano & Jiang’s work [62], Chabassier et al. published the
second complete time-domain piano model [63]. The model is a significant improve-
ment with more accurate descriptions of the physics. While the hammer model is
still based on Stulov’s work [64], the string model is significantly enriched. In addi-
tion to solving the transverse displacement, Chabassier et al.’s model is nonlinear
and solves for the longitudinal displacement as well as the string cross-sectional
area’s rotation. The string rotation is a result of including the stiffness contribu-
tion by Timoshenko beam theory. By solving for the longitudinal displacement, the
model can thus replicate the precursor signal and phantom partial phenomena.
The soundboard is modeled as a Reissner-Mindlin plate, which is essentially a 2D
version of the Timoshenko formulation. Thus, in addition to the transverse sound-
board displacement, its cross-sectional area’s rotation is solved as well. Similar to
Giordano & Jiang’s implementation, ribs and bridges are modeled by modifying the
thicknesses and material parameters at different parts of the soundboard to ac-
count for its heterogeneous material properties. Lastly, for the room, it is modeled
the same way as Giordano & Jiang’s using the three-dimensional linearised Euler
equations.

Chabassier et al. choose to solve their model by high-order finite element method.
An implicit energy-preserving numerical scheme is proposed to solve the nonlin-
ear string [37]. The soundboard is solved semi-analytically. The modes are first
determined before it is coupled to the nonlinear string. To ensure stability for the
coupling, the vertical string forces are solved at interleaved time steps before it is
being input to the soundboard. Finally, the soundboard is coupled to the air which
is solved by finite element method explicitly.

Remarks

In light of Chabassier et al.’s achievement [63], new research opportunities arise.
With its ability to model piano of any dimension, systematic study on historical
pianos becomes possible [26, 66]. The multi-component structure of the numeri-
cal models also make it possible to study and improve specific components. New
improvement like consideration of the hammer shank vibration has since been in-
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cluded [67]. Nonetheless, the work by Chabassier et al. [63] is not without room for
improvement:

1. The string model employed is a nonlinear stiff string model that solves only
one transverse (vertical), one longitudinal and one rotational displacement of
the string. Weinreich proposed that the horizontal polarisation of the string
also plays a role in the double decay phenomenon [27]. By omitting the second
transverse (horizontal) displacement of the string, the model thus fails to in-
clude any interaction between the horizontal and vertical displacement of the
string.

2. The bridge model is a rigid body that moves in a vertical direction only as is
shown in Figure 1.6. As remarked by Chabassier et al. in another paper [68],
the bridge model is "probably oversimplified compared to reality and would
deserve to be improved in a future work".

3. The reproduction of the spectral contents at the low register was not satisfac-
tory when compared against measured piano sound samples. Despite efforts
in adjusting parameters (e.g. soundboard’s damping), the origin of the problem
remains unknown.

_________________________________ 7’

oo vertical rigid motion

Q | N

v

Xg D,

Figure 1.6: Rigid vertical bridge used in Chabassier et al. model [63], as extracted
from [68].

1.2 Motivation and Objectives

The three concerns in Chabassier et al.’s model as outlined in the "Remarks" sub-
section of Section 1.1 are the inspiration of this PhD thesis. While the thesis shares
the global vision of improving the realism in piano sound synthesis, efforts are con-
centrated to inspect thoroughly the local phenomena happening on the string and
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the bridge, which tackle the first two flaws of the model. To overcome the third is-
sue, an exploratory project is engaged. With these in mind, the thesis sets out to
achieve the following objectives:

1. to investigate the nonlinear interaction between the horizontal and

vertical vibration of the string, or otherwise known as the double po-
larisation effect.
The origin of double polarisation in musical instruments is not exactly clear.
Weinreich postulated that double polarisation can be due to irregularities
of the hammer face or the position of the string which causes the horizon-
tal vibration to be excited [69]. However, similar double polarisation effect
can also be seen in nonlinear vibrating string that is excited by an exter-
nal force [70, 71]. In piano, the strings are struck by the hammer and are
allowed to vibrate freely which is different from forced excitation. However,
this could still lead to a hypothesis that the double polarisation of a freely vi-
brating string is caused by the nonlinear relationship between the two trans-
verse modes (horizontal and vertical). A dinstinction must be made from the
nonlinear string in Chabassier et al.’s model which couples the longitudinal
displacement to the vertical transverse displacement [63].

2. to study the coupling between a freely vibrating string with double
polarisation and a lumped bridge.
Debut et al. [564] has shown that the rotation of the bridge on a Portuguese gui-
tar can provide coupling between the string’s polarisation. On the other hand,
Weinreich also remarked that the horizontal and vertical string vibration de-
cay at different rates due to different admittances at the bridge [27]. Owing
to these observations, rather than directly attempting to improve the bridge
model in Chabassier et al.’s work [63], a first step is to understand properly
the coupling between the string and the bridge. To achieve that, the bridge can
be represented by a lumped bridge, which is essentially a set of oscillator(s) in
different direction(s) that are all located on a single point.

3. to determine the contribution of other constitutive components of the
piano in the production of the sound.
To mitigate the third issue of Chabassier et al.’s model [63], one of the strate-
gies could be to identify additional vibrational parts in a piano that remains
unmodeled in the model. When a piano is played, vibration can be felt not only
on the soundboard but also the rim, the frame, the lid etc. In a Bésendorfer pi-
ano, spruce, a wood commonly used for soundboard by other manufacturers, is
used extensively in building the case of the piano. Bésendorfer claims that the
use of spruce, especially on the rim of the piano, allows the whole instrument
to vibrate and is the reason that gives the unique Bésendorfer sound [72].
Based on the fact that vibration is felt on other parts of the piano and how
Bosendorfer uses spruce extensively, it is thus justified to investigate those
vibrating components.
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1.3 Structure of thesis

To be in line with the three objectives proposed, the thesis is divided into three main
parts.

Part I (named "String") is divided into three chapters. In Chapter 2, several string
equations that are used in this thesis are derived. The equations include the ge-
ometrical exact equations, third-order nonlinear string equations, the Kirchhoff-
Carrier nonlinear string equations and the linear wave equation. To complement
the derivations, energy conservation properties of these equations are also shown.
In what follows, modal solution of the linear wave equation is presented and numer-
ical schemes to solve the two nonlinear equations are introduced and compared. In
Chapter 3, the nonlinear coupling between the string polarisations are analytically
studied via multiple-scale analysis to determine the conditions double polarisation
could occur. Relevant case studies are included and the finding is numerically val-
idated. The chapter ends with a short excerpt on double polarisation that could be
observed in a linear regime. The final chapter (i.e. Chapter 4) presents the exper-
iments conducted, where various string properties such as the string polarisation
angles and damping parameters are determined. These results pave the ground-
work for the experimental validation of the finding in Chapter 3 as is presented in
Section 4.4.

In Part II (named "Bridge"), the study of the coupling between the string and the
bridge is presented over three chapters. In Chapter 5, several analytical coupled
models are presented. The coupled models range from the simplest model where
a single transversely vibrating string is coupled to a single oscillator to the most
complex model where the string with 5 variables is coupled to 6 oscillators (three
translations, three rotations). The eigenfrequencies of the models are derived and
analyses are made as to how the coupling could affect the frequencies. Numerical
schemes are subsequently devised and validated in Chapter 6. In Chapter 7, ex-
periments are conducted on a simple single string and bridge setup to observe the
double polarisation effect. Double decay is also observed and the results are sup-
plemented by simulated data from numerical models where qualitative agreements
between the experiments and simulations are achieved.

In Part ITI (named "Source identification of piano") which contains only Chapter 8,
an experimental source identification investigation on the piano is presented. In
conjunction with the submission to Applied Acoustics, the chapter presents the pre-
pared manuscript complete with its own abstract and conclusion. The study is based
on operational transfer path analysis (OTPA) which is a noise identification tech-
nique commonly used for automotive applications. The theory and experimental
implementation of OTPA are introduced and the chapter is completed by present-
ing the findings.

At the end of the thesis, a conclusion is drawn along with some perspectives. Ap-
pendix and bibliography are also included at the end of the thesis for any interested
readers.
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PART I:

STRING

A wise man once said that to do a great and im-
portant work, two things are necessary: a definite
plan, and not quite enough time.

R. C. SCHAFER, 1977
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Modelling string vibration

The vibration of a string under tension is an important subject in musical acous-
tics as it forms the basis of the sound producing mechanism of numerous musical
instruments like piano, cello and guitar. As with most physical systems, the vibra-
tion of the string can be studied and modelled with varying degrees of complexity.
In this chapter, several equations governing the string vibration are derived, be-
ginning with the most complex models before trickling down to simpler models.
Attention has been given to nonlinear string models, as the nonlinearity is under-
stood to have contributed to the double polarisation effect - a primary focus of this
thesis.

The chapter begins with a derivation of the various string models in Section 2.1
and their energy conservation properties in Section 2.2. Modal solution of the sim-
plest equation, i.e. the linear wave equation, is presented in the subsequent Section
2.3. Numerical schemes to solve the more complicated problems are proposed and
investigated in Section 2.4.

2.1 Derivations of string models

In this section, the geometrically exact model is first derived based on physical laws.
It is then simplified, with additional assumptions, to three other sets of equations,
ie.:

¢ third-order nonlinear string equations,
¢ Kirchhoff-Carrier nonlinear string equations,

* linear wave equations.

2.1.1 Geometrically exact string equations

The derivation of the geometrically exact string equations are based on the ap-
proaches found in several text books [73,74]. To begin, consider a small element of
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2.1. Derivations of string models

a string with a length dz as is shown in Figure 2.1. At the two ends of this element
are two points, denoted F' and G. When the string is subjected to a displacement,
F and G are displaced to F* and G* respectively and the length of the element be-
comes ds. For the Cartesian coordinate system (z,y, z), unit vectors are defined as
i, j and k respectively. The vector linking F' and F* is:

FF* = wi + uj + Uﬁ, 2.1)

where u, v and w are the displacements in the two transverse and longitudinal
directions respectively. For G and G*, the finite length of the element dz induces a
small perturbation in addition to the displacement of u, v and w. The vector linking
G and G* can be written as:

GG* = w(z + dz)i + u(x + dz)j + v(z + dz)k. (2.2)

y
A

W gs pwlr+dy)

.S

X

Figure 2.1: Element of a string in its original and displaced position.

For sufficiently small dz, GG* can be rewritten as:
GG* = (w+ w'dz)i+ (u+ u'dz)j + (v + v'da)k, (2.3)

where the superscript / indicates differentiation with respect to x. The vector link-
ing I* and G* can thus be easily deduced by vectorial relations, where:

F*'G* = —FF* + dui + GG* = du [(1 r)i+ )+ U'R)] . (2.4)

The length of this vector is also ds, such that:

ds = [F*G*| = doy/(1 +w)? + w2 4 72 2.5)
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2.1. Derivations of string models

The induced strain ¢ due to the displacement is simply:

_ds—d:v

T \/(1+w’)2+u’2+v’2*1- (2.6)

5
Assuming that the behaviour of the material is elastic, from Hooke’s law, the strain
¢ is proportional to the stress o:

g = Z = EE, (27)
where F is the Young’s modulus, A the cross-sectional area of the element and F
the force applied to the element due to the strain that acts in the same direction.
For a string at rest that is under a uniform tension 7}, a displaced string will thus
have a variable tension T as described by :

T(x,t) =Ty + FA (\/(1+w’)2—|—u’2+v’2—1> . (2.8)

By Newton’s second law, the force balance of an infinitesimal string element at point
x is:

. 0 .
pAq = I [T(x,t)n], (2.9)

where pA is the density per length of the string, § the vector of the acceleration of
the string in three dimensions and i the unit displacement vector at point x. They
can be expressed as:

§ = wi + i) + ok, (2.10)

and

FG'  (14+w)i+dj+uk
QT )
[F'G| \/(1+w’)2+u’2+v’2

Substituting Equation (2.10), (2.8), and (2.11) into Equation (2.9), one can obtain
the set of geometrically exact string equations [75]:

(2.11)

ﬁ:

/
pAii — aﬂ EAY — (BA - Tp) “ =0, (2.12a)
T i \/(1+w’)2+u’2+v’2_
. 0 , v’
pAD — E EAv' — (EA—Tp) =0, (2.12b)
“ \/(1+w’)2+u’2+v’2_
/
p A — 88 EA(1+w) — (BA—Tp) Lrw = 0. (2.12¢)
v \/(1+w’)2+U’2+v’2_
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To complete the equations, for a string with two fixed ends, a Dirichlet boundary
conditions can be imposed such that:

u(0,t) = v(0,t) = w(0,t) =0, (2.13a)
u(L,t) =v(L,t) = w(L,t) =0. (2.13b)

The main feature of Equation (2.12) is that it not only describes the nonlinear in-
teraction between the two transverse displacements, but also the coupling with the
longitudinal displacement as well. The longitudinal displacement is responsible for
the precursor signal in a piano tone and it is this nonlinear coupling that explains
the origin of it from an excitation of hammer in a transverse direction.

2.1.2 Third-order nonlinear string equations

The geometrically exact equation (Equation (2.12)) is notoriously difficult to solve
due to the square root terms at the numerator, i.e.

((1 + u/)2 + u'? + 1/2> . (2.14)

N

Fortunately, it is possible to expand and truncate expression (2.14) to simplify the
equation. Expression (2.14) can be expanded by binomial series, which is defined

as:
(1+x)a—1+aw+0é(o;'_1)x2+-~. (2.15)

Truncating up to cubic terms, this will lead to:

1
= 1—w'+w'2—|—(gw'—5)(1/2—1—1/2)—1—%10'3. (2.16)

N[

((1 + ') +u? v’2>

Substituting Equation (2.16) into (2.12), again truncating up to cubic terms, the
equations can be rewritten as [73-75]:

. /i a / / 12 u,2 + UI2
pAi —Tou" — (EA—-Ty)— |v' [w —w" + —— =0, (2.17a)
ox 2
12 12
p Al — Tyt — (BA — Ty) -2 [v’ (w’ —w? “”) =0, (2.17b)
ox 2
- " 0 1 / 12 12 ]
pis — BAw" — (BA—To)5— | (5 —w (u +o ) ~0. (2.17c)
xz

A further reduction can be made. From Equation (2.17¢), it can be deduced that w’
is of the same order of magnitude as «/* and v'*. For accuracy up until the order
of magnitude of O(v/*) and O(v'®), the w'* term (in Equation (2.17a) and (2.17b))
and the product between v’ and «'* + v (in Equation (2.17¢c)) are canceled as they
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would otherwise be at the order of O(u'*). Equation (2.17) can then be simplified to:

9 u/2 —1-1)/2
pAu . Tou// N (EA _ TO)i oW 4+ - = O, (2.18a)
ox 2
12 2\ ]
pAD — Tov" — (EA — To)2 v (w' + M) =0, (2.18b)
ox 2
. " 9 Ly 2 12 -
pdis — EAw’ — (BA=Ty) o |- (u” +0) | =0. (2.18¢)

Equation (2.18) is known as the third-order nonlinear string equations and serve
as an intermediate step in reducing the geometrically exact equation to Kirchhoff-
Carrier equation. The third-order string equations are extensively studied, such as
by [36] and [76], in which simpler planar version of Equation (2.18) where v = 0 is
assumed.

2.1.3 Kirchhoff-Carrier nonlinear string equations

The third-order nonlinear string equations can be further reduced to the Kirchhoff-
Carrier nonlinear string equations. The Kirchhoff-Carrier equations are simpler,
yet retain the nonlinear coupling between the two transverse modes » and v and
are also extensively studied ( [73,74,77-79]). Despite needing a few assumptions to
simplify the third-order nonlinear string equations to the Kirchhoff-Carrier equa-
tions, the main coupling of interest, i.e. between the two transverse modes, is re-
tained and thus the use of it is justified.

The first assumption to be made is that the inertia of the longitudinal displacement
is negligible. Nayfeh and Mook [74] reported that the n-th transverse mode inter-
acts with the m-th longitudinal mode if the longitudinal frequency is approximately
twice the transverse frequency. This gives a relation:

mey, = 2ner, (2.19)
where:
E
cr, = —, (2203.)
\/ P
To
=] —. 2.20b
cr A ( )
The relation can be rewritten as:
m |EFA
N —y | —. 2.21
"o\ T, (2.21)
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Using nominal values for the physical parameters, the ratio n/m would be about 10
to 161. This means that the first longitudinal mode will only have tangible interac-
tion with the 10th or higher transverse mode. At the most extreme case, using the
ultimate tensile strength (UTS) for a piano string, where UTS = T/A = 2,600MPa,
the ratio n/m = 4.4. This means that the first longitudinal mode will only have
tangible interaction with the 4th or higher transverse mode. In other words, under
the most extreme condition, longitudinal inertia has no influence at all for the first
three modes; under a nominal condition, longitudinal inertia has no influence at
least on the first 10th or higher transverse modes.

Essentially, omitting the longitudinal inertia (i.e. & = 0) does not affect the non-
linear coupling between the first few transverse modes. This property thus allows
analyses to be carried out on a set of Kirchhoff-Carrier equations that consider only
the first few modes. From a simulation perspective though, it would mean that the
higher modes would be modelled slightly less accurately with the absence of longi-
tudinal modes.

The second assumption for the Kirchhoff-Carrier equation is that the ultimate ten-
sile strength of the string is insignificant compared to its Young’s modulus. The
nominal value for the Young’s modulus of a steel string is approximately 200GPa.
This allows a simplification where:

EA—-Ty=~ FEA. (2.22)

This can be justified because even if UTS value is used where 7j/A = 2,600MPa, it
is still two orders of magnitude lower than Young’s modulus.
With both assumptions, Equation (2.18) can be rewritten as:

12 2\
12 12 .
pAU _ TOU” _ EA% ,U/ (w/ + ’U/—;_,U> = 0’ (2.23b)
0 [1/ 2 ]
_ n_ I Bl / =
BAu' — BAZ- [2 (w?+v ) 0. (2.23¢)

Integrating Equation (2.23c) with respect to x once, one obtains the following equa-
tion:

/ 1 !/ /
w' + 3 (u2 +wv 2) = C(t). (2.24)

Integrating Equation (2.24) again will yield:

w(L) — w(0) + % /0 ' (u'2 v U'Q) dz = C(t)L. (2.25)

!Nominal values for musical acoustics:E = 200GPa, A = 10~°m?, T = 500N would yield n/m = 10.
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Applying the boundary condition from Equation (2.13), one gets an expression for
C'(t) and consequently, Equation (2.24) becomes

1 [, 5 2 1 2 2
r_ / / = /
w =57 ; (u +U>dx 2(u +v>. (2.26)
Substituting Equation (2.26) into Equation (2.23a) and (2.23b), keeping up to order
of magnitude of O(«v/*) and O(v'*), one gets a standard form of the Kirchhoff-Carrier
equations:

pAii — (Tp + N)u" =0, (2.27a)
pAv — (To + N)v" =0, (2.27b)
where .
. FA /2 12
N = 5T /0 (u +v )dx. (2.28)

The boundary conditions for Equation (2.27), as simplified from Equation (2.13) by
dropping the w terms, are:
u(0,t) = v(0,t) =0, (2.29a)
u(L,t) = v(L,t) =0. (2.29b)

2.1.4 Linear wave equation

In Equation (2.27), if the displacements u and v are small as compared to the diam-
eter of the string, v’ and v’ are also very small such that:

W 0 0, (2.30)

thus N = 0 and one can recover the linearised vibrating string equation, more
commonly known as the "wave equation":

pAii — Tou"” = 0. (2.31)

The same equation can also be recovered from the geometrically exact string equa-
tions (2.12). Expanding the expression (2.14) and keeping only up to the linear term,
one could invariably recover three uncoupled linear wave equations in the same
form of Equation (2.31) (although the longitudinal equation would have different
constants). To complete Equation (2.31), the boundary conditions at both ends are:

u(0,t) =0, (2.32a)
u(L,t) =0. (2.32b)

Due to its simplicity, the wave equation can be solved by various methods, such as
by modal method (see Section 2.3), by d’Alembert method (see [73]) or numerically
(see [60]).
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2.1. Derivations of string models

2.1.5 Stiffness effect of a string

In Sections 2.1.2, 2.1.3 and 2.1.4, all of the models disregard the stiffness of the
string, which can be easily observed in a piano string by bending it at its unstrung
state. The stiffness causes inharmonicity in piano strings, where the partials are
not an integer multiple of the fundamental frequency. Inharmonicity is an also im-
portant feature of the piano sound and it is modelled in this thesis by two stiffness
models, namely the Euler-Bernoulli model and Timoshenko model.

A linear wave equation with stiffness modeled by Euler-Bernoulli theory can be
written as [33]:

pAii — Tou” + EIV"" =0, (2.33)

where E is the Young’s modulus and I is the area moment of inertia. The stiffness
effect can be included by simply concatenating an extra term to the original string
equation. On the other hand, the Timoshenko model is more complicated and can
be written as an extension of the linear wave equation as [32]:

pAii — Tou" + AGH%((b —u') =0, (2.34a)

pld — EI¢" + AGK(¢p —u') = 0, (2.34Db)
where « is the shear coefficient, G is the shear modulus and ¢ is the rotational
displacement of the cross-sectional area of the string at point z. The boundary con-
ditions are given by:

u(0,¢) =0, (2.352)
w(L,t) =0, (2.35b)
¢'(0,t) = 0, (2.35¢)
¢'(L,t) = 0. (2.35d)

Similar to Euler-Bernoulli model, Timoshenko model can essentially be a concate-
nation to existing string equation in addition to solving ¢.

The two models are based on different assumptions and their derivations are out of
the scope of this thesis?. However, it is important to highlight that Euler-Bernoulli
model neglects the shear deformation of the string. As a result, plane sections re-
main planar and normal to the longitudinal axis. On the other hand, shear deforma-
tion is considered in the Timoshenko model and the shear angle ¢ —’ is solved. The
Timoshenko model can be simplified to yield the Euler-Bernoulli model by means
of nondimensional analysis and making the assumption that the ratio between the
diameter and length of the string, i.e. d/L is small [68].

More practically, the phase and group velocities of the Euler-Bernoulli model are
unbounded which could result in non-physical values at high frequencies [33]. In

2See [33] for derivations of the Timoshenko and Euler-Bernoulli models.
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2.2. Energy conservation of the string models

contrast, the Timoshenko model predicts finite velocities. Nevertheless, for the ap-
plication of piano strings, the frequencies computed are very similar at low fre-
quencies [33, 68]. The choice of the stiffness model is essentially somewhat arbi-
trary as despite the different assumptions, their differences are only noticeable at
sufficiently high frequencies. Thus, for this thesis, the simpler Kirchhoff-Carrier
nonlinear equations are paired with the simpler Euler-Bernoulli model and the ge-
ometrically exact nonlinear equations are enriched by the Timoshenko model.

The Kirchhoff-Carrier nonlinear stiff string equation can be written as:

pAii — (To + N)u" + EIu" = 0, (2.36a)
pAi — (Ty + N + EI"" =0, (2.36b)
where N is as defined in Equation (2.28) and the boundary conditions remain un-

changed from Equation (2.29).
The geometrically exact nonlinear stiff string model can be written as:

/
pAil — 82 EAY — (EA - Ty) Y + AGH§(¢ —u') =0,
“1 \/(1—|—w’)2+u’2+v’2_ o
(2.37a)
/
pAD — 82 EAY — (EA —Ty) Y + AGK§(¢ ') =0,
T \/(1+w’)2+u’2+v’2_ v
(2.37b)
1 /
p A — aﬁ BA(L+ ') — (EA—Tp) tw _ 0,
d \/(1 +w')? +u? 40

(2.37¢)

pld — EI¢" + AGk(¢p —u') = 0,
(2.37d)

pl) — EIY" + AGr(p — ') = 0,
(2.37e)

with its boundary conditions as:

u(0,t) = v(0,t) = w(0,t) =0, (2.38a)
u(L,t) =v(L,t) = w(L,t) =0, (2.38b)
¢'(0,t) = ¥'(0,¢) = 0, (2.38c¢)
¢ (L.t) = ¢/ (L, 1) = 0. (2.38d)

2.2 Energy conservation of the string models

In this section, the derivation of the energy conservation properties of the three
string models in Section 2.1 is presented. To demonstrate the steps, one can begin
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2.2. Energy conservation of the string models

with the simplest linear wave equation.

The linear wave equation is essentially a force equation over the string length. To
obtain an energy expression, one can multiply the equation with velocity and inte-
grate the whole equation over the string length. In doing so, an equation expressing
power can be obtained. Power is the rate of change of energy. Energy is conserved if
it can be shown that the energy is constant and positive.

Multiplying Equation (2.31) with @ and integrating over the string length, one ob-
tains:

L L
/ pAiidx — / Tou"udz = 0. (2.39)
0 0

Using integration by part to break down the second term in Equation (2.39) and
knowing that:

§(ﬁ):mm, (2.40a)
8815 (2/2) — /il (2.40Db)

eventually, one will obtain that:

) S P I ) G (2.41)
dt{Z/O pA (1) +2/0 o(u) }— g[uu]o. }

On the left hand side (LHS), the first and second term of the equation represent the
kinetic energy and potential energy respectively. On the right hand side (RHS) lies
the boundary term. In the case of a string with two fixed ends, using boundary con-
dition (2.32), the boundary terms vanish. Thus, the conservation of energy equation
is written as:

% (KE, + PE.} = 0, (2.42)
where
1 [F 9
KE; = 3 pA (1)” dx, (2.43a)
0
1 L "2
PE, = 2/ To (u) dz. (2.43b)
0

Each term is positive and the rate of change of energy equals to zero.

A similar strategy could be followed for subsequently more complicated equations
with additional treatments given to the extra terms. In the linear Timoshenko
string model, multiplying Equation (2.34a) and (2.34b) with @ and ¢ respectively
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2.2. Energy conservation of the string models

and integrating both of them over the string length L, one would obtain:

d 1 L 5 1 L 9 7 L
— / pA (4)" dx + / To (v')" dz| — AGKJ/ (¢ —u')w'dz
dt |2 Jg 2 Jo | 0

=Ty [in]y — AGK [(¢ — o) ]

(2.44a)
L
0 9y

ST () are g [ Br () an] — a6 [ (0= t) daw = 1 9]

L
0
(2.44b)

The boundary terms at RHS vanish when the boundary condition of Equation (2.35)
is applied. Summing both equations and knowing that:

0

5 (0 —u)? =2(¢ —u) (6 — W), (2.45)

one can arrive at the same form as Equation (2.42) with:

L L A\ 2
KE, = = / pA (i) da + © / ol (¢) de, (2.462)
2 J, 2 J
1 [F N2 1 [F N2 1 [k "2
PESZQ/ To (u) dx—|—2/ EI(¢) dx+2/ AGk(¢ — u')*dz. (2.46b)
0 0 0

All terms are positive and the sum of the rate of change is zero, indicating that
energy is conserved.

Next is the Kirchhoff-Carrier nonlinear stiff string equation. Similar to the pre-
vious models, the two equations in Equation (2.36) can be multiplied by @ and ©

respectively. The term EIu""u can be integrated by parts twice to show:

L
/ EIV'"dx = [u””u - u”u’]g , (2.47)
0

and similarly for E7v""v. Again, from the boundary conditions, the boundary terms

equate to zero. This leads to the energy conservation in the same form of Equa-
tion (2.42) where:

1 [E N2 1 [t .\ 2
KEs = = pA(u)*dz + - pA (0)" du,
0

2 2 Jo
1 L N2 1 L "2 1 L " 2
PES:2/ (Ty + ) () dx+2/ (To + N) (v)) dx+2/ EI (u")? de.
0 0 0

It is interesting to note that despite the nonlinear coupling in the term N, it is
nonetheless obvious that PE; is positive as N is always positive. Subsequently, it is
elementary to show that the rest of the terms are positive to prove the conservation
of energy.

The final string equation to prove the conservation of energy is the geometrically
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2.2. Energy conservation of the string models

exact nonlinear stiff string equation (i.e. Equation (2.37)). It is possible to rewrite
the equation into a general form of matrix equations, as is done in Chabassier’s
thesis [75]. For q = [u, v, w, ¢, 9], the equation can be written as:

Mg — % (Ad'+Bq+ VH(q')) + Cq + BTq =0, (2.49a)
qr(0,t) =0 for k=1,2,3; (2.49b)
qr(L,t) =0 for k=1,2,3; (2.49c¢)
7:(0,t) =0 for k=4,5; (2.49d)
qi(L,t) =0 for k=4,5; (2.49e)

where A = A; + A, and

pA 0 0 0 O 0 0 0 —AGk 0 0 0 O 0
0 pA 0 0 O 0 0O 0 —AGk 0 0O 0
Mg=1|0 0 pA 0 0|,B=1]0 0 O 0 0 ,C=10 0 0 0
0 0 0 pI O 0 0O 0 0 0 0 0 AGk
0 0 0 0 pl 0 0 O 0 0 0 0 O 0
T O 0 0 0 AGk 0 0 0 0
0 75 O 0 0 0 AGk 0 0 0
Ar=10 0 FA 0 0 and A, = 0 0 0 0 0 (2.50)
0O 0 0 EI 0 0 0 000
0O O 0 0 FEI 0 0 0 0 O
H is a functional and is defined as:
1
H(u,v,w) = (EA=T)) |5 (W +0?) + (1+w) — Vu2 +02 + (L+w)?|.  (2.51)

Equation (2.49) can also be used to recover earlier energy conservation properties,
too. If functional H = 0, B = C = A, = 0, one could recover the system of three
uncoupled linear equations where q = [u, v, w]. After multiplying Equation (2.49)
with q, one could retrieve the energy conservation where:

% {KE; + PE¢} = 0, (2.52)
such that:
1 [ o
KEs = 3 Mg (q)*de, (2.53a)
0
1 L N2
PE; = 5 A(q')“dz, (2.53b)
0

which is analogous to Equation (2.43). However, setting only H = 0, one could re-
cover two pairs of Timoshenko stiff string equations (each associated with a trans-
verse displacement) as well as a linear decoupled longitudinal wave equation, which
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2.3. Modal solution of linear wave equation

would give the conservation of energy equation for q = [u, v, w, ¢, ], such that:

L
KE, = % / M (¢)?de, (2.54a)
0

1 L N2 1 L "2 1 L 2 1 L / 1 L T ./
PE; = - Ai(q)de+ | = A, (q)*dz= C(q)“dx + = Bqq'dz + - B q'qdz
2 Jo 2 Jo 2 Jo 2 2 Jo

0
(2.54b)

where the term in bracket in Equation (2.54b) is analogous to the last term of Equa-
tion (2.46b) such that the sum of all these terms will be positive.

Finally, if H # 0 (i.e. geometrically exact nonlinear stiff string equation), one could
show that:

L L
_/0 AACCULE /0 S H(d) - [VH(A)a]] (2.55)

where the boundary terms will once more be equal to zero due to boundary condi-
tions. The kinetic and potential energy of this particular system is thus [75]:

1 L
KE, = / M, ()%de, (2.562)
0
1 L N2 1 L 2 1 L / 1 L T ./
PEs= (- [ Aid)dz+- [ C(q)*dr+- [ Baqdz+_- [ B dqdz
2 Jo 2 Jo 2.Jo 2 Jo
1t "2 1t /
+1 3 Ai(q)dx + = H(q')dx | .
2 Jo 2 Jo

As is demonstrated in Chabassier’s thesis [75], it can be proved that:

(2.56b)

%At(q’)2 VH(Q) > Kq2 i K = min(T, EI)/2, 2.57)

and thus Equation (2.56b) is positive and energy is conserved.

2.3 Modal solution of linear wave equation

The linear wave equation can be solved directly via modal method without the need
of any numerical approximations. The solution, while simple, is in fact useful in
demonstrating a lot of concepts in solving an eigenfrequency problem. It is thus
presented here as a basis for more complex work in subsequent sections and chap-
ters.

The wave equation, as rewritten here, is:

pAﬂ — T(]u” = 0,

and it has a solution where the spatial and temporal terms can be separated such
that:

u(z, t) = p(t)&(x). (2.58)
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2.3. Modal solution of linear wave equation

Substituting Equation (2.58) into the wave equation, one would obtain:

. "
p_To & (2.59)
p pAE

By separation of variables, Equation (2.59) can be rewritten into two independent

equations equating to a same constant —w?. While the constant can be defined in

any other way, it will be apparent that —w? is indeed a convenient choice in the

development of the solution. The two independent equations are:

g —_— (2.602)
1
CTzif = —w?, (2.60b)

where cr is the phase speed of the transverse waves already introduced in Equa-

tion 2.20b and is given by:
w T
cT—E—”—pA. (2.61)

The boundary conditions of the system are thus:

u(0,1) = £(0)p(t)
u(L,t) = &(L)p(t)

The boundary condition £(0) = {(L) = 0 forms an eigenvalue problem together with
Equation (2.60b) and is written as:

& ==k, (2.63)
£(0) =¢(L) =0, '

(2.62a)

0,
0. (2.62b)

where k is the wavenumber and for & > 0, solution of Equation (2.63) can take the
form below:
&(z) = C cos(kx) + Dsin(kx), (2.64)

where C and D are constants to be determined. Applying the boundary conditions
in Equation (2.62) , the mode shape £ can be written as:

&n(x) = Oy sin(kyx) with kp=— (2.65)

where the subscript n indicates there are an infinite number of solutions to the
eigenvalue problem (2.63) where the eigenvalues are k, with eigenmodes &, ().
For each n, there is a corresponding w,, given by the dispersion relation of Equa-
tion (2.61) and the solution of Equation (2.60a) is:

pu(t) = Pl cos(wnt) + P2 sin(wpt). (2.66)
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2.3. Modal solution of linear wave equation

The constants P! and P? can be solved with the knowledge of the initial conditions.
Thus, for each n, there exists a solution of u,, where:

Up, = pn(t)én(z). (2.67)

Since the wave equation is linear, the solutions for the system can also be defined
as any linear combination of u,, i.e.:

N
u(x,t) = Z [Pé cos(wnt) + P2 sin(wyt)] sin(knx). (2.68)

n=1

The constant C is no longer necessary as it can be solved together with P! and P2.
Suppose that the initial conditions can be defined as follows:

un(x,0) = Up(x), (2.69a)
Un(2,0) = Uy (z), (2.69b)
from Equation (2.68):
N
Up =Y _ Py sin(kn), (2.70a)
n=1
N
Up =Y w,P:sin(kyz). (2.70b)
n=1

To solve for P! and P2, the equations can be multiplied by another eigenmode &,
and be integrated over the string length, they then become:

L N L

/ Upbmdx = > Py / Enémda, (2.71a)
0 1 0
L N L

/ Urémdz = > Plw, / Enmda. (2.71b)
0 o 0

From the orthogonality properties of the eigenmodes:

L L
. /TN . /mnx _ 5 for m = n,
/0 s ( L ) s ( L > d { 0 for m # n, (2.72)

the solution for P! and P? can thus be written as:

L
Pl = % / sin (Lfc) Uo(z)dz, (2.73a)
0
5 2 L rnma
wp Py = T sin (T) Ui (x)dx. (2.73b)
0
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2.4. Numerical methods for string vibration

2.4 Numerical methods for string vibration

This section is devoted to the presentation of numerical solutions for the Kirchhoff-
