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Titre : Acoustique du piano : double polarisation de la corde et identification de sources
Mots clefs : modele physique de piano, simulation numerique, corde, chevalet, identification de sources
Résumé : L’objectif de cette thèse est d’améliorer la compréhension de l’acoustique du piano dans le contexte de
la synthèse sonore par modèles physiques. Le manuscrit est décomposé en trois parties principales, dont les deux
premières ont pour but la compréhension de l’origine de la double polarisation de la corde de piano, tandis que la
dernière se focalise sur l’identification de sources d’un piano complet.

Dans la première partie, la non linéarité géométrique, intervenant lorsque les amplitudes de vibration sont
grandes, est étudiée afin de comprendre si le couplage non linéaire peut transmettre de l’énergie à une polarisa-
tion non initialement excitée et mener ainsi au phénomène de double polarisation. Un développement en échelles
multiples est mené sur un modèle de corde de Kirchhoff-Carrier avec les deux extrémités fixes, restreint au mode
fondamental de chacune des polarisations. Les deux oscillateurs ont alors des fréquences très proches, on parle
de résonance 1:1. La condition d’existence et le critère de stabilité pour l’apparition de double polarisation sont
obtenus et validés numériquement sur la base des équations de Kirchhoff-Carrier, ainsi qu’avec un modèle de
corde enrichi. Des expériences sont menées sur un dispositif monocorde où les angles de polarisation naturelle de
la corde, le désaccord entre les deux polarisations et le comportement non linéaire son observés et identifiés.

La seconde partie se concentre sur le couplage entre la corde et le chevalet. Les degrés de liberté de la
corde sont couplés au chevalet dont les mouvements (translation/rotation) sont représentés par un ensemble
d’oscillateurs. Les fréquences propres des différents systèmes couplés sont analysés. Des schémas numériques
sont proposés et mis en œuvre pour une résolution directe. Ces schémas résolvent les équations de corde par
une méthode d’éléments finis d’ordre élevé et les équations du chevalet analytiquement. Les conditions de cou-
plage entre corde et chevalet sont assurées par des multiplicateurs de Lagrange. Expérimentalement, la corde
est tendue sur le chevalet dans une configuration de type zig-zag et excitée verticalement ou horizontalement.
Dans les deux cas, les phénomènes de double polarisation et de double décroissance sont observés et des résultats
qualitativement similaires sont obtenus avec les modèles numériques.

La dernière partie s’attache à décrire quantitativement les différentes sources vibro-acoustiques d’un pi-
ano complet. Une étude est menée en utilisant une analyse des chemins de transfert (transfer path analysis
en anglais) sur un piano Bösendorfer 280VC-9. Les contributions de la table d’harmonie, des parties interne et
externe de la ceinture, du cadre en fonte et du couvercle sont étudiées dans le domaine fréquentiel. L’analyse
montre que la table d’harmonie est le principal contributeur mais que le cadre en fonte et le couvercle jouent
également un rôle significatif, en particulier à hautes fréquences.

Title : Piano acoustics: string’s double polarisation and piano source identification
Keywords : physical modelling of piano, numerical simulation, string, bridge, source identification
Abstract : The objective of this thesis is to improve the understanding of the acoustics of the piano in the context
of physically-based sound synthesis. The manuscript is decomposed in three parts, the first two being devoted to
the understanding of the origin of the double polarisation in piano string, while the third one is dedicated to the
identification of sound sources of a complete piano.

In the first part, the geometric (large-amplitude) nonlinearity is studied in order to understand if the nonlin-
ear coupling can transfer energy to an initially non excited polarisation, thus leading to the double polarisation
phenomenon. A multiple-scale analysis is conducted on a Kirchhoff-Carrier string model with fixed boundary
conditions at both ends. Each polarisation is restrained to its fundamental mode and thus presenting a 1:1 in-
ternal resonance. The existence condition and stability criteria for double polarisation to occur are obtained and
validated numerically based on the Kirchhoff-Carrier equations, as well as a more enriched geometrically exact
string model. Experiments are carried out on a monochord setup where the natural polarisation angles of the
string, detuning between the two polarisations and its nonlinear behaviour are observed and identified.

The second part is devoted to the string/bridge coupling. The degrees of freedom of the string are coupled to
the bridge whose translational and rotational motions are represented by a set of oscillators. The eigenfrequencies
of various coupled systems are analysed. Numerical schemes are proposed and implemented where the string is
solved via high-order finite-element method while the lumped bridge is solved analytically and coupled to the
string by Lagrange multipliers. Experimentally, the string is strung over a bridge in a zig-zag configuration and
excited vertically and horizontally. In both cases, double polarisation and double decay are observed and similar
results are also obtained qualitatively in numerical models.

The last part is devoted to a quantitative description of the vibroacoustic sources of a Bösendorfer 280VC-9
piano via operational transfer path analysis. The contribution of the soundboard, inner and outer rim, iron frame
and lid are investigated in the frequency domain. It is found out that the soundboard is the primary contributor
but the iron frame and the lid also play a significant role, especially at high frequencies.
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1

Introduction

Piano is a musical instrument and an engineering wonder. Composers like Mau-
rice Ravel, Frédéric Chopin and Claude Debussy have completed acclaimed musi-
cal masterpieces on a piano and have moved emotions of the world. At the core of
these amazing works1 is the engineering marvel in the form of a piano. As shown
in Figure 1.1, piano is made up of several key components. Each plays a role in the
production of the desired piano sound. They have been through centuries of evolu-
tion yet there are new innovations to improve piano. The study of piano spans a
long time and over several domains of research. To provide an informed overview, it
is perhaps useful to first understand the mechanism of sound production in a piano.
It is easy to make sound from a piano: when a key on a piano is pushed, a sound
could then be heard. However, series of events happen right after the key push
before the sound is actually heard. First, the energy spent to push the key (K in
Figure 1.2) is transferred to the "hammer" (H in Figure 1.2) via a mechanical de-
vice called the "action" as is shown in detail in Figure 1.2. The hammer, covered
in felt, travels upwards and hits the "piano string" (C in Figure 1.2). As a result
of the impact, the string vibrates. At one end of the string, it is connected to the
"soundboard" via the "bridge" (see Figure 1.1). Thus, as the string vibrates, the
soundboard also vibrates. The vibration of the soundboard compresses and pushes
the air around it which forms sound waves that are transmitted to a listener’s ear.
The physical movement of the sound waves are captured by inner ear before it is
being converted to neural signals that are sent to the human brain. The human
brain registers these signals as sound, and thus it is heard.
It is no coincidence that a piano could sound pleasant. Piano is about 300 years old
and has went through countless design iterations and refinements until today. In
the 1700s, piano was invented by Bartolomeo Cristofori in need of an improvement
to the existing clavichord and harpsichord that could be played more expressively
with different loudness. Cristofori designed and built a piano that came with a
hammer striking action with escapement device that allows the playing of pianis-

1Personal favourites: Ravel’s Piano Concerto in G, Chopin’s "Heroic" Polonaise and Debussy’s "L’île
joyeuse".
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Figure 1.1: Exploded view of a piano, image extracted and edited from Blackham [1].

simo (soft sound) and fortissimo (loud sound) [2]. This gives the original name "pi-
anoforte" that is later shortened to be simply "piano". By the 1820s, piano needed
to be louder and richer in tone. To cope with the use of heavier strings, Alpheus
Babcock invented the full cast iron frame. Steinway & Sons further developed the
full iron frame and introduced the overstrung technique where the bass strings are
strung above the treble strings [2]. Also in the 1820s, Erard developed the "double
escapement" action which allows fast repetition of the notes to be played. The full
iron frame, overstrung setup and Erard action are still in use despite being tech-
nologies from the 19th century. However, they have also evolved by incorporating
new materials and manufacturing methods [3, 4] as well as with innovative engi-
neering designs [5, 6]. These mixtures of new and old technologies are the perfect
testament of how piano is a marvellous combination of scientific knowledge and
traditional know-how.
Scientific studies of piano was pioneered by Hermann Helmholtz in the late 19th
century [7] although active research only began in the 1920s as reported in [8].
That being said, the most relevant literature are probably published within the
past 40 years or so. In the next section, a comprehensive review of the research and
development on piano acoustics is presented. The review is by no means exhaustive

2



1.1. State-of-the-art of piano acoustics

Figure 1.2: Grand piano action. The label C, H, L, S, J, W and K represent the
string (corde in French), hammer, repetition lever, shank, jack, whippen and key
respectively. The original image "Piano mechanism — english type" is created by
Olek Remesz (wiki-pl: Orem, commons: Orem) and is licensed under GFDL ver. 1.2
and CC-BY-SA ver. 2.5, 2.0, 1.0.

as a lot of research and development activities of piano manufacturers are carried
out in-house and the outcomes are not shared in the public domain. It is, however,
relevant and would provide a context on why this PhD thesis is necessary and how
it could contribute to the growing knowledge pool of musical acoustics.

1.1 State-of-the-art of piano acoustics
Piano is a multi-component device and each component itself presents a physics
problem and warrants research efforts. They can be loosely categorised into the
following areas:

• piano action,

• hammer and its interaction with string,

• string vibrations,

• soundboard vibrations and acoustic radiation.

The categorisation is based on the review paper by Suzuki and Nakamura [8] where
pre-1990s research work conducted have been comprehensively summarised. To be
more relevant, an additional category of "modelling and sound synthesis" is also
studied to reflect the latest research effort.

3



1.1. State-of-the-art of piano acoustics

Piano Action

Research on piano action is motivated by a need of understanding how the touch
input applied to a key will affect the key travel time, hammer velocity and subse-
quently its impact on the string. The main challenge of studying the piano action
mechanism is its intrinsic nonlinear behaviour and also difficulty in predicting fric-
tion constants. In earlier works summarised by Suzuki and Nakamura [8], most
of them are restricted to experimental studies. For instance, Lieber’s effort inves-
tigated the relationship between the energy input to the key and the key travel
time [9]. It is observed that the key takes less time to travel with increasing energy.
Similar finding is echoed by Askenfelt & Jannson [10], whose work investigated
the contact timing and motions of various components in piano action. Ultimately,
these shed lights on the dynamic behaviour of a piano action before computational
studies became feasible.
Gillespie has developed a few grand piano action models, each with different num-
ber of components and complexity [11,12]. Hirschkorn et al. developed a model with
5 rigid body components (key, whippen, jack, repetition lever, and hammer, see Fig-
ure 1.2) with experimentally determined parameters [13]. A further extension of the
model was done by Izadbakhsh et al. [14] where a flexible shank is also considered.
In the same research group led by Birkett, Masoudi has recently developed and val-
idated a vertical piano action model [15, 16]. Thorin et al. [17, 18] also presented a
grand piano model based on non-smooth dynamics where the forces instead of the
displacements of the components are simulated. Although the piano action does not
directly affect the piano sound, it holds an important role as it is the main input for
pianists to control the sound. Thus, it is important to have accurate models of the
action, which could aid in the study of the interaction between hammer and string.

Hammer-string interaction

The interaction between hammer and string is an important subject as it is where
vibrations start. Information on the hammer force like its amplitude and contact
point over the contact duration could influence the excitation of the string, and sub-
sequently the soundboard dynamics. The interaction is complicated as hammer is
covered by felt which compresses upon impact. This results in a nonlinear relation-
ship between the hammer force and displacement. In addition to that, accounting
for the flexibility of the hammer shank also influences the interaction between the
hammer and string [14,19].
In Suzuki and Nakamura’s review [8], some of the very early models can be at-
tributed to Helmholtz [7] and Kaufmann [20] which could still be useful for simple
analysis. Early experimental work are also reported in the review, such as those
done by Boutillon [21]. He developed a nonlinear finite-difference hammer model
by modelling the felt with a hysteretic spring. With advances in computation power
in the 1990s, more sophisticated models are developed where modelling parame-
ters are extracted from experiments [22–24]. In recent years, detailed experimen-
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tal framework has been established to more accurately and consistently study the
hammer-string interaction [25]. A numerical method has also been proposed to re-
construct the hammer forces from string velocity measurements [26]. Research on
the hammer-string interaction is still very much active and ongoing in pursue of
accurate representation of the phenomenon.

String

The piano strings are one of the most important components in a piano. It is the
cornerstone of the pitch and tonal colour of the piano sound. The piano sound can
be characterised by acoustic features like the double decay, inharmonicity, precursor
signals and phantom partials.
The double decay gains its name as the piano sound can be loosely grouped into the
initial "attack" phase followed by the "sustain" phase, each decaying at a different
rate as is shown in Figure 1.3. Weinreich proposed two mechanisms that cause the
double decay rate [27, 28], one applicable to a single string and one applicable for
duplets or triplets of strings. Following the reference of a grand piano, when the
hammer strikes the string vertically, the string not only vibrates vertically but also
horizontally. The two vibrations have different decay rates. As the string is coupled
to the bridge, its energy is dissipated quickly and this makes up the initial fast
decay. As the vertical displacement reduces, horizontal displacement becomes more
dominant and exhibits the second slower decay. The phenomenon where there are
both vertical and horizontal vibrations are known as "double polarisation". When
the hammer strikes duplets or triplets of strings, the initial vibrations of the strings
are in phase with each other. The forces exerted to the bridge are also in phase and
more energy is transmitted to the bridge. However, due to detuning among the
strings, the vibrations slowly get out of phase. The out-of-phase forces cancel each
other which reduces the net bridge forces, and consequently slow down the energy
transfer. The different energy transfer rate thus results in the different decay rates
of the strings. In addition to that, as the vibrations go in and out of phase, beat-
ings can also be observed as is shown in Figure 1.3b. These mechanisms have been
validated by various authors [29–31].
Inharmonicity is the phenomenon when the partials of the string are not exact
integer multiples of the fundamental frequency. Inharmonicity occurs due to the
stiffness of the string and is an essential feature for accurate description of pi-
ano string. The stiffness of the string can be described by various models such as
the Euler-Bernoulli beam theory [21, 22], Timoshenko beam theory [32] or more
recently by shear beam theory [33] which is a slightly reduced version of the Timo-
shenko model.
The precursor is a small initial signal that precedes the transverse displacement
while the phantom partials are additional partials observed on the spectrum of
a string that are sum of the longitudinal and transverse frequency [34]. Precur-
sor signals and phantom partials can be attributed to the nonlinear vibrations of
the string, where longitudinal displacement is generated even though the string

5



1.1. State-of-the-art of piano acoustics

(a) Single string C1. (b) Two strings C3.

Figure 1.3: Root-mean squared sound pressure of different piano notes, extracted
from [28]. Approximate decay rates are shown as dotted lines.

is struck vertically (i.e. transverse displacement) [35]. These two phenomena con-
tribute to the characteristic piano sound and have drawn research efforts from au-
thors like Bank and Sujbert [36], Chabassier and Joly [37] and Kurmyshev [38].

Soundboard and radiation

In a piano, the soundboard is essentially a resonator which "receives" the string
vibration at the bridge and amplifies it so that the vibration is audible to the human
ear. Despite its simple mechanism, the soundboard is more than just a diaphragm.
Ribs are glued to the soundboard to improve its stiffness and longevity while treble
and bass bridges are glued to it in order to couple the strings and the soundboard.
The soundboard is also tapered and curved slightly upwards forming a frown (_)
shape. The frown shape is more commonly known as a "crown" [39]. The soundboard
can be evaluated by its many characteristics, such as its vibrational patterns in
different frequency ranges, mechanical mobility and its radiation pattern.
As summarised by Ege [40], the first few resonant frequencies are influenced by the
presence of rim, bridge and downbearing forces from the string. It also appears that
the average modal frequency spacing is between 20 to 30Hz regardless of the dimen-
sion of the piano up to 500Hz. Indeed, Askenfelt remarked that global soundboard
properties might be more important than actually investigating the precise eigen-
frequencies [41]. Among other studies conducted by Berthaut et al. [42], Suzuki [43]
and Ege et al. [44], consistent modal loss factor between 2 to 3% is also identified.
Modal shapes are also experimentally studied by Moore et al. [45], Ege et al. [44]
and Chaigne et al. [46] where interestingly, at higher frequencies, vibration is lo-
calised between the ribs.
The mechanical mobility defines the loudness and sustain of a piano tone. Ideally,
strings will have to transmit an initial bulk of energy quickly to the soundboard
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to make up the loud "attack" tone of a piano and follow up with a slower energy
transmission for the slow-decaying "sustain" tone. The admittance of the string
forces at the bridge of a piano are studied by Wogram [47], Nakamura [48], Conklin
[49] and Giordano [50]. A general trend of higher bridge fundamental frequency
and reduced mobility is observed when strings are loaded onto the bridge as shown
in Figure 1.4. Measurement of admittance of a bridge remains a challenge even for
other musical instruments [51].

(a) (b)

Figure 1.4: Treble bridge mobility measurement in the direction normal to sound-
board at terminating point of string C6 (a) before and (b) after the strings and plate
are assembled, extracted from [49].

Early soundboard radiation study is completed by Suzuki [43]. In his experimental
study, it is observed that acoustical short-circuit occurred below 80Hz, which results
in very low radiation efficiency. The efficiency fluctuates up to 1kHz as it hits a
plateau of 16%. More recently, radiation study has been conducted [46,52,53] with
aids from numerical tools in which the effect of the ribs or string coupling points on
the soundboard’s radiation has been discussed.
A special mention for the work by Debut et al. [54] is also necessary. While the
work is based on the 12-string Portuguese guitar, they showed numerically that a
bridge could induce a horizontal vibration even if the string is excited vertically (see
Figure 1.5). The coupling is achieved by the rotational motion of the bridge. As the
string forces act on the top of the bridge (instead of through its centre of gravity), it
introduces a moment to the bridge and thus a rotational motion.

Modelling and sound synthesis

A common trend can be observed in the direction of research on the acoustics of
piano. As computational effort becomes cheaper, modelling becomes more viable.
Complicated problems like nonlinear string vibration can be studied more easily
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Figure 1.5: Time history of the string vibration on a linear one-string/body model in
Z-direction (vertical) and Y-direction (horizontal) when it is first excited vertically.
The top two plots show the displacement-time plots and the bottom plot presents
the snapshots of displacement in Y-Z plane at various times. [54].

and accurately without the need of excessive simplification. This also unlocks the
possibility of synthesising piano sound based on physical models.
Physics-based piano sound synthesis can be achieved by several methods. A popular
technique used for sound synthesis is the digital waveguide method [55]. Digital
waveguide synthesis models the motion of the string based on known traveling
wave solutions where each traveling wave has its own "delay line" to describe its
spatial and temporal coordinates. It has been used by numerous authors [36, 56–
59] and is also featured in commercial synthesiser such as the Yamaha VL1 [60].
Another popular method is the finite difference method. Finite difference method
transforms a partial differential equation to an ordinary differential equation that
can be solved by approximating the derivatives in the differential equations [60].
Some of the early uses of this method are pioneered by Boutillon [21] and Chaigne &
Askenfelt [61]. It is also used by Giordano & Jiang to simulate a complete piano [62]
(more on that later).
To date, there are two complete physics-based time-domain piano models that are
published, namely by Giordano & Jiang [62] and by Chabassier et al. [63]. For the
purpose of clarification, a complete model is defined where the hammer, string,
soundboard and the room/surrounding air are all simulated. The action can be
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omitted as it does not directly affect the sound production of a piano tone. In Gior-
dano and Jiang’s work, the string is based on a linear stiff string equation that is
struck by a hammer model proposed by Stulov [64]. The string is coupled to a simple
soundboard model that includes the ribs and bridges such that the stiffness of the
soundboard is position dependent [65]. The room model is the three-dimensional
linearised Euler equations which is driven by the vibration of the soundboard. All
of the components are coupled and solved by finite difference methods. The main
challenge is that there are a large number of room elements to be solved and the
soundboard model is highly dispersive and requires small time step for stability. To
cope with it, multiple time steps are used: the soundboard and strings are iterated
for 6 and 4 times respectively before an iteration is carried out for the room.
Almost a decade after Giordano & Jiang’s work [62], Chabassier et al. published the
second complete time-domain piano model [63]. The model is a significant improve-
ment with more accurate descriptions of the physics. While the hammer model is
still based on Stulov’s work [64], the string model is significantly enriched. In addi-
tion to solving the transverse displacement, Chabassier et al.’s model is nonlinear
and solves for the longitudinal displacement as well as the string cross-sectional
area’s rotation. The string rotation is a result of including the stiffness contribu-
tion by Timoshenko beam theory. By solving for the longitudinal displacement, the
model can thus replicate the precursor signal and phantom partial phenomena.
The soundboard is modeled as a Reissner-Mindlin plate, which is essentially a 2D
version of the Timoshenko formulation. Thus, in addition to the transverse sound-
board displacement, its cross-sectional area’s rotation is solved as well. Similar to
Giordano & Jiang’s implementation, ribs and bridges are modeled by modifying the
thicknesses and material parameters at different parts of the soundboard to ac-
count for its heterogeneous material properties. Lastly, for the room, it is modeled
the same way as Giordano & Jiang’s using the three-dimensional linearised Euler
equations.
Chabassier et al. choose to solve their model by high-order finite element method.
An implicit energy-preserving numerical scheme is proposed to solve the nonlin-
ear string [37]. The soundboard is solved semi-analytically. The modes are first
determined before it is coupled to the nonlinear string. To ensure stability for the
coupling, the vertical string forces are solved at interleaved time steps before it is
being input to the soundboard. Finally, the soundboard is coupled to the air which
is solved by finite element method explicitly.

Remarks

In light of Chabassier et al.’s achievement [63], new research opportunities arise.
With its ability to model piano of any dimension, systematic study on historical
pianos becomes possible [26, 66]. The multi-component structure of the numeri-
cal models also make it possible to study and improve specific components. New
improvement like consideration of the hammer shank vibration has since been in-
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cluded [67]. Nonetheless, the work by Chabassier et al. [63] is not without room for
improvement:

1. The string model employed is a nonlinear stiff string model that solves only
one transverse (vertical), one longitudinal and one rotational displacement of
the string. Weinreich proposed that the horizontal polarisation of the string
also plays a role in the double decay phenomenon [27]. By omitting the second
transverse (horizontal) displacement of the string, the model thus fails to in-
clude any interaction between the horizontal and vertical displacement of the
string.

2. The bridge model is a rigid body that moves in a vertical direction only as is
shown in Figure 1.6. As remarked by Chabassier et al. in another paper [68],
the bridge model is "probably oversimplified compared to reality and would
deserve to be improved in a future work".

3. The reproduction of the spectral contents at the low register was not satisfac-
tory when compared against measured piano sound samples. Despite efforts
in adjusting parameters (e.g. soundboard’s damping), the origin of the problem
remains unknown.

Figure 1.6: Rigid vertical bridge used in Chabassier et al. model [63], as extracted
from [68].

1.2 Motivation and Objectives

The three concerns in Chabassier et al.’s model as outlined in the "Remarks" sub-
section of Section 1.1 are the inspiration of this PhD thesis. While the thesis shares
the global vision of improving the realism in piano sound synthesis, efforts are con-
centrated to inspect thoroughly the local phenomena happening on the string and
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the bridge, which tackle the first two flaws of the model. To overcome the third is-
sue, an exploratory project is engaged. With these in mind, the thesis sets out to
achieve the following objectives:

1. to investigate the nonlinear interaction between the horizontal and
vertical vibration of the string, or otherwise known as the double po-
larisation effect.
The origin of double polarisation in musical instruments is not exactly clear.
Weinreich postulated that double polarisation can be due to irregularities
of the hammer face or the position of the string which causes the horizon-
tal vibration to be excited [69]. However, similar double polarisation effect
can also be seen in nonlinear vibrating string that is excited by an exter-
nal force [70, 71]. In piano, the strings are struck by the hammer and are
allowed to vibrate freely which is different from forced excitation. However,
this could still lead to a hypothesis that the double polarisation of a freely vi-
brating string is caused by the nonlinear relationship between the two trans-
verse modes (horizontal and vertical). A dinstinction must be made from the
nonlinear string in Chabassier et al.’s model which couples the longitudinal
displacement to the vertical transverse displacement [63].

2. to study the coupling between a freely vibrating string with double
polarisation and a lumped bridge.
Debut et al. [54] has shown that the rotation of the bridge on a Portuguese gui-
tar can provide coupling between the string’s polarisation. On the other hand,
Weinreich also remarked that the horizontal and vertical string vibration de-
cay at different rates due to different admittances at the bridge [27]. Owing
to these observations, rather than directly attempting to improve the bridge
model in Chabassier et al.’s work [63], a first step is to understand properly
the coupling between the string and the bridge. To achieve that, the bridge can
be represented by a lumped bridge, which is essentially a set of oscillator(s) in
different direction(s) that are all located on a single point.

3. to determine the contribution of other constitutive components of the
piano in the production of the sound.
To mitigate the third issue of Chabassier et al.’s model [63], one of the strate-
gies could be to identify additional vibrational parts in a piano that remains
unmodeled in the model. When a piano is played, vibration can be felt not only
on the soundboard but also the rim, the frame, the lid etc. In a Bösendorfer pi-
ano, spruce, a wood commonly used for soundboard by other manufacturers, is
used extensively in building the case of the piano. Bösendorfer claims that the
use of spruce, especially on the rim of the piano, allows the whole instrument
to vibrate and is the reason that gives the unique Bösendorfer sound [72].
Based on the fact that vibration is felt on other parts of the piano and how
Bösendorfer uses spruce extensively, it is thus justified to investigate those
vibrating components.
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1.3 Structure of thesis
To be in line with the three objectives proposed, the thesis is divided into three main
parts.
Part I (named "String") is divided into three chapters. In Chapter 2, several string
equations that are used in this thesis are derived. The equations include the ge-
ometrical exact equations, third-order nonlinear string equations, the Kirchhoff-
Carrier nonlinear string equations and the linear wave equation. To complement
the derivations, energy conservation properties of these equations are also shown.
In what follows, modal solution of the linear wave equation is presented and numer-
ical schemes to solve the two nonlinear equations are introduced and compared. In
Chapter 3, the nonlinear coupling between the string polarisations are analytically
studied via multiple-scale analysis to determine the conditions double polarisation
could occur. Relevant case studies are included and the finding is numerically val-
idated. The chapter ends with a short excerpt on double polarisation that could be
observed in a linear regime. The final chapter (i.e. Chapter 4) presents the exper-
iments conducted, where various string properties such as the string polarisation
angles and damping parameters are determined. These results pave the ground-
work for the experimental validation of the finding in Chapter 3 as is presented in
Section 4.4.
In Part II (named "Bridge"), the study of the coupling between the string and the
bridge is presented over three chapters. In Chapter 5, several analytical coupled
models are presented. The coupled models range from the simplest model where
a single transversely vibrating string is coupled to a single oscillator to the most
complex model where the string with 5 variables is coupled to 6 oscillators (three
translations, three rotations). The eigenfrequencies of the models are derived and
analyses are made as to how the coupling could affect the frequencies. Numerical
schemes are subsequently devised and validated in Chapter 6. In Chapter 7, ex-
periments are conducted on a simple single string and bridge setup to observe the
double polarisation effect. Double decay is also observed and the results are sup-
plemented by simulated data from numerical models where qualitative agreements
between the experiments and simulations are achieved.
In Part III (named "Source identification of piano") which contains only Chapter 8,
an experimental source identification investigation on the piano is presented. In
conjunction with the submission to Applied Acoustics, the chapter presents the pre-
pared manuscript complete with its own abstract and conclusion. The study is based
on operational transfer path analysis (OTPA) which is a noise identification tech-
nique commonly used for automotive applications. The theory and experimental
implementation of OTPA are introduced and the chapter is completed by present-
ing the findings.
At the end of the thesis, a conclusion is drawn along with some perspectives. Ap-
pendix and bibliography are also included at the end of the thesis for any interested
readers.
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A wise man once said that to do a great and im-
portant work, two things are necessary: a definite
plan, and not quite enough time.

R. C. SCHAFER, 1977

PART I:

STRING
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2

Modelling string vibration

The vibration of a string under tension is an important subject in musical acous-
tics as it forms the basis of the sound producing mechanism of numerous musical
instruments like piano, cello and guitar. As with most physical systems, the vibra-
tion of the string can be studied and modelled with varying degrees of complexity.
In this chapter, several equations governing the string vibration are derived, be-
ginning with the most complex models before trickling down to simpler models.
Attention has been given to nonlinear string models, as the nonlinearity is under-
stood to have contributed to the double polarisation effect - a primary focus of this
thesis.
The chapter begins with a derivation of the various string models in Section 2.1
and their energy conservation properties in Section 2.2. Modal solution of the sim-
plest equation, i.e. the linear wave equation, is presented in the subsequent Section
2.3. Numerical schemes to solve the more complicated problems are proposed and
investigated in Section 2.4.

2.1 Derivations of string models

In this section, the geometrically exact model is first derived based on physical laws.
It is then simplified, with additional assumptions, to three other sets of equations,
i.e.:

• third-order nonlinear string equations,

• Kirchhoff-Carrier nonlinear string equations,

• linear wave equations.

2.1.1 Geometrically exact string equations

The derivation of the geometrically exact string equations are based on the ap-
proaches found in several text books [73, 74]. To begin, consider a small element of
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a string with a length dx as is shown in Figure 2.1. At the two ends of this element
are two points, denoted F and G. When the string is subjected to a displacement,
F and G are displaced to F ∗ and G∗ respectively and the length of the element be-
comes ds. For the Cartesian coordinate system (x, y, z), unit vectors are defined as
î, ĵ and k̂ respectively. The vector linking F and F ∗ is:

FF∗ = wî + ûj + vk̂, (2.1)

where u, v and w are the displacements in the two transverse and longitudinal
directions respectively. For G and G∗, the finite length of the element dx induces a
small perturbation in addition to the displacement of u, v and w. The vector linking
G and G∗ can be written as:

GG∗ = w(x+ dx)̂i + u(x+ dx)̂j + v(x+ dx)k̂. (2.2)

dx

ds

x

y

z

u

v

w w(x+dx)

v(x+dx)

u(x+dx)

F

G

F* G*

Figure 2.1: Element of a string in its original and displaced position.

For sufficiently small dx, GG∗ can be rewritten as:

GG∗ = (w + w′dx)̂i + (u+ u′dx)̂j + (v + v′dx)k̂, (2.3)

where the superscript ′ indicates differentiation with respect to x. The vector link-
ing F ∗ and G∗ can thus be easily deduced by vectorial relations, where:

F∗G∗ = −FF∗ + dx̂i + GG∗ = dx
[
(1 + w′)̂i + u′̂j + v′k̂)

]
. (2.4)

The length of this vector is also ds, such that:

ds = |F∗G∗| = dx

√
(1 + w′)2 + u′2 + v′2. (2.5)
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The induced strain ε due to the displacement is simply:

ε =
ds− dx

dx
=

√
(1 + w′)2 + u′2 + v′2 − 1. (2.6)

Assuming that the behaviour of the material is elastic, from Hooke’s law, the strain
ε is proportional to the stress σ:

σ =
F

A
= Eε, (2.7)

where E is the Young’s modulus, A the cross-sectional area of the element and F
the force applied to the element due to the strain that acts in the same direction.
For a string at rest that is under a uniform tension T0, a displaced string will thus
have a variable tension T as described by :

T (x, t) = T0 + EA

(√
(1 + w′)2 + u′2 + v′2 − 1

)
. (2.8)

By Newton’s second law, the force balance of an infinitesimal string element at point
x is:

ρAq̈ =
∂

∂x
[T (x, t)n̂] , (2.9)

where ρA is the density per length of the string, q̈ the vector of the acceleration of
the string in three dimensions and n̂ the unit displacement vector at point x. They
can be expressed as:

q̈ = ẅî + ü̂j + v̈k̂, (2.10)

and

n̂ =
F′G′

|F′G′| =
(1 + w′)̂i + u′̂j + v′k̂√
(1 + w′)2 + u′2 + v′2

. (2.11)

Substituting Equation (2.10), (2.8), and (2.11) into Equation (2.9), one can obtain
the set of geometrically exact string equations [75]:

ρAü− ∂

∂x

EAu′ − (EA− T0)
u′√

(1 + w′)2 + u′2 + v′2

 = 0, (2.12a)

ρAv̈ − ∂

∂x

EAv′ − (EA− T0)
v′√

(1 + w′)2 + u′2 + v′2

 = 0, (2.12b)

ρAẅ − ∂

∂x

EA(1 + w′)− (EA− T0)
1 + w′√

(1 + w′)2 + u′2 + v′2

 = 0. (2.12c)
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To complete the equations, for a string with two fixed ends, a Dirichlet boundary
conditions can be imposed such that:

u(0, t) = v(0, t) = w(0, t) =0, (2.13a)
u(L, t) = v(L, t) = w(L, t) =0. (2.13b)

The main feature of Equation (2.12) is that it not only describes the nonlinear in-
teraction between the two transverse displacements, but also the coupling with the
longitudinal displacement as well. The longitudinal displacement is responsible for
the precursor signal in a piano tone and it is this nonlinear coupling that explains
the origin of it from an excitation of hammer in a transverse direction.

2.1.2 Third-order nonlinear string equations

The geometrically exact equation (Equation (2.12)) is notoriously difficult to solve
due to the square root terms at the numerator, i.e.(

(1 + w′)2 + u′2 + v′2
)− 1

2
. (2.14)

Fortunately, it is possible to expand and truncate expression (2.14) to simplify the
equation. Expression (2.14) can be expanded by binomial series, which is defined
as:

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + · · · . (2.15)

Truncating up to cubic terms, this will lead to:(
(1 + w′)2 + u′2 + v′2

)− 1
2

= 1− w′ + w′2 + (
3

2
w′ − 1

2
)(u′2 + v′2) +

3

2
w′3. (2.16)

Substituting Equation (2.16) into (2.12), again truncating up to cubic terms, the
equations can be rewritten as [73–75]:

ρAü− T0u
′′ − (EA− T0)

∂

∂x

[
u′
(
w′ − w′2 +

u′2 + v′2

2

)]
= 0, (2.17a)

ρAv̈ − T0v
′′ − (EA− T0)

∂

∂x

[
v′
(
w′ − w′2 +

u′2 + v′2

2

)]
= 0, (2.17b)

ρAẅ − EAw′′ − (EA− T0)
∂

∂x

[(
1

2
− w′

)(
u′2 + v′2

)]
= 0. (2.17c)

A further reduction can be made. From Equation (2.17c), it can be deduced that w′

is of the same order of magnitude as u′2 and v′2. For accuracy up until the order
of magnitude of O(u′3) and O(v′3), the w′2 term (in Equation (2.17a) and (2.17b))
and the product between w′ and u′2 + v′2 (in Equation (2.17c)) are canceled as they
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would otherwise be at the order of O(u′4). Equation (2.17) can then be simplified to:

ρAü− T0u
′′ − (EA− T0)

∂

∂x

[
u′
(
w′ +

u′2 + v′2

2

)]
= 0, (2.18a)

ρAv̈ − T0v
′′ − (EA− T0)

∂

∂x

[
v′
(
w′ +

u′2 + v′2

2

)]
= 0, (2.18b)

ρAẅ − EAw′′ − (EA− T0)
∂

∂x

[
1

2

(
u′2 + v′2

)]
= 0. (2.18c)

Equation (2.18) is known as the third-order nonlinear string equations and serve
as an intermediate step in reducing the geometrically exact equation to Kirchhoff-
Carrier equation. The third-order string equations are extensively studied, such as
by [36] and [76], in which simpler planar version of Equation (2.18) where v = 0 is
assumed.

2.1.3 Kirchhoff-Carrier nonlinear string equations

The third-order nonlinear string equations can be further reduced to the Kirchhoff-
Carrier nonlinear string equations. The Kirchhoff-Carrier equations are simpler,
yet retain the nonlinear coupling between the two transverse modes u and v and
are also extensively studied ( [73,74,77–79]). Despite needing a few assumptions to
simplify the third-order nonlinear string equations to the Kirchhoff-Carrier equa-
tions, the main coupling of interest, i.e. between the two transverse modes, is re-
tained and thus the use of it is justified.
The first assumption to be made is that the inertia of the longitudinal displacement
is negligible. Nayfeh and Mook [74] reported that the n-th transverse mode inter-
acts with the m-th longitudinal mode if the longitudinal frequency is approximately
twice the transverse frequency. This gives a relation:

mcL ≈ 2ncT , (2.19)

where:

cL =

√
E

ρ
, (2.20a)

cT =

√
T0

ρA
. (2.20b)

The relation can be rewritten as:

n ≈ m

2

√
EA

T0
. (2.21)
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Using nominal values for the physical parameters, the ratio n/m would be about 10
to 161. This means that the first longitudinal mode will only have tangible interac-
tion with the 10th or higher transverse mode. At the most extreme case, using the
ultimate tensile strength (UTS) for a piano string, where UTS = T0/A = 2, 600MPa,
the ratio n/m = 4.4. This means that the first longitudinal mode will only have
tangible interaction with the 4th or higher transverse mode. In other words, under
the most extreme condition, longitudinal inertia has no influence at all for the first
three modes; under a nominal condition, longitudinal inertia has no influence at
least on the first 10th or higher transverse modes.
Essentially, omitting the longitudinal inertia (i.e. ẅ = 0) does not affect the non-
linear coupling between the first few transverse modes. This property thus allows
analyses to be carried out on a set of Kirchhoff-Carrier equations that consider only
the first few modes. From a simulation perspective though, it would mean that the
higher modes would be modelled slightly less accurately with the absence of longi-
tudinal modes.
The second assumption for the Kirchhoff-Carrier equation is that the ultimate ten-
sile strength of the string is insignificant compared to its Young’s modulus. The
nominal value for the Young’s modulus of a steel string is approximately 200GPa.
This allows a simplification where:

EA− T0 ≈ EA. (2.22)

This can be justified because even if UTS value is used where T0/A = 2, 600MPa, it
is still two orders of magnitude lower than Young’s modulus.
With both assumptions, Equation (2.18) can be rewritten as:

ρAü− T0u
′′ − EA ∂

∂x

[
u′
(
w′ +

u′2 + v′2

2

)]
= 0, (2.23a)

ρAv̈ − T0v
′′ − EA ∂

∂x

[
v′
(
w′ +

u′2 + v′2

2

)]
= 0, (2.23b)

−EAw′′ − EA ∂

∂x

[
1

2

(
u′2 + v′2

)]
= 0. (2.23c)

Integrating Equation (2.23c) with respect to x once, one obtains the following equa-
tion:

w′ +
1

2

(
u′2 + v′2

)
= C(t). (2.24)

Integrating Equation (2.24) again will yield:

w(L)− w(0) +
1

2

∫ L

0

(
u′2 + v′2

)
dx = C(t)L. (2.25)

1Nominal values for musical acoustics:E = 200GPa, A = 10−6m2, T0 = 500N would yield n/m = 10.
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Applying the boundary condition from Equation (2.13), one gets an expression for
C(t) and consequently, Equation (2.24) becomes

w′ =
1

2L

∫ L

0

(
u′2 + v′2

)
dx− 1

2

(
u′2 + v′2

)
. (2.26)

Substituting Equation (2.26) into Equation (2.23a) and (2.23b), keeping up to order
of magnitude of O(u′3) and O(v′3), one gets a standard form of the Kirchhoff-Carrier
equations:

ρAü− (T0 +N)u′′ = 0, (2.27a)
ρAv̈ − (T0 +N)v′′ = 0, (2.27b)

where

N =
EA

2L

∫ L

0

(
u′2 + v′2

)
dx. (2.28)

The boundary conditions for Equation (2.27), as simplified from Equation (2.13) by
dropping the w terms, are:

u(0, t) = v(0, t) =0, (2.29a)
u(L, t) = v(L, t) =0. (2.29b)

2.1.4 Linear wave equation

In Equation (2.27), if the displacements u and v are small as compared to the diam-
eter of the string, u′ and v′ are also very small such that:

u′2 ≈ v′2 ≈ 0, (2.30)

thus N = 0 and one can recover the linearised vibrating string equation, more
commonly known as the "wave equation":

ρAü− T0u
′′ = 0. (2.31)

The same equation can also be recovered from the geometrically exact string equa-
tions (2.12). Expanding the expression (2.14) and keeping only up to the linear term,
one could invariably recover three uncoupled linear wave equations in the same
form of Equation (2.31) (although the longitudinal equation would have different
constants). To complete Equation (2.31), the boundary conditions at both ends are:

u(0, t) =0, (2.32a)
u(L, t) =0. (2.32b)

Due to its simplicity, the wave equation can be solved by various methods, such as
by modal method (see Section 2.3), by d’Alembert method (see [73]) or numerically
(see [60]).
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2.1.5 Stiffness effect of a string

In Sections 2.1.2, 2.1.3 and 2.1.4, all of the models disregard the stiffness of the
string, which can be easily observed in a piano string by bending it at its unstrung
state. The stiffness causes inharmonicity in piano strings, where the partials are
not an integer multiple of the fundamental frequency. Inharmonicity is an also im-
portant feature of the piano sound and it is modelled in this thesis by two stiffness
models, namely the Euler-Bernoulli model and Timoshenko model.
A linear wave equation with stiffness modeled by Euler-Bernoulli theory can be
written as [33]:

ρAü− T0u
′′ + EIu′′′′ = 0, (2.33)

where E is the Young’s modulus and I is the area moment of inertia. The stiffness
effect can be included by simply concatenating an extra term to the original string
equation. On the other hand, the Timoshenko model is more complicated and can
be written as an extension of the linear wave equation as [32]:

ρAü− T0u
′′ +AGκ

∂

∂x
(φ− u′) = 0, (2.34a)

ρIφ̈− EIφ′′ +AGκ(φ− u′) = 0, (2.34b)

where κ is the shear coefficient, G is the shear modulus and φ is the rotational
displacement of the cross-sectional area of the string at point x. The boundary con-
ditions are given by:

u(0, t) =0, (2.35a)
u(L, t) =0, (2.35b)
φ′(0, t) = 0, (2.35c)
φ′(L, t) = 0. (2.35d)

Similar to Euler-Bernoulli model, Timoshenko model can essentially be a concate-
nation to existing string equation in addition to solving φ.
The two models are based on different assumptions and their derivations are out of
the scope of this thesis2. However, it is important to highlight that Euler-Bernoulli
model neglects the shear deformation of the string. As a result, plane sections re-
main planar and normal to the longitudinal axis. On the other hand, shear deforma-
tion is considered in the Timoshenko model and the shear angle φ−u′ is solved. The
Timoshenko model can be simplified to yield the Euler-Bernoulli model by means
of nondimensional analysis and making the assumption that the ratio between the
diameter and length of the string, i.e. d/L is small [68].
More practically, the phase and group velocities of the Euler-Bernoulli model are
unbounded which could result in non-physical values at high frequencies [33]. In

2See [33] for derivations of the Timoshenko and Euler-Bernoulli models.
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contrast, the Timoshenko model predicts finite velocities. Nevertheless, for the ap-
plication of piano strings, the frequencies computed are very similar at low fre-
quencies [33, 68]. The choice of the stiffness model is essentially somewhat arbi-
trary as despite the different assumptions, their differences are only noticeable at
sufficiently high frequencies. Thus, for this thesis, the simpler Kirchhoff-Carrier
nonlinear equations are paired with the simpler Euler-Bernoulli model and the ge-
ometrically exact nonlinear equations are enriched by the Timoshenko model.
The Kirchhoff-Carrier nonlinear stiff string equation can be written as:

ρAü− (T0 +N)u′′ + EIu′′′′ = 0, (2.36a)
ρAv̈ − (T0 +N)v′′ + EIv′′′′ = 0, (2.36b)

where N is as defined in Equation (2.28) and the boundary conditions remain un-
changed from Equation (2.29).
The geometrically exact nonlinear stiff string model can be written as:

ρAü− ∂

∂x

EAu′ − (EA− T0)
u′√

(1 + w′)2 + u′2 + v′2

+AGκ
∂

∂x
(φ− u′) = 0,

(2.37a)

ρAv̈ − ∂

∂x

EAv′ − (EA− T0)
v′√

(1 + w′)2 + u′2 + v′2

+AGκ
∂

∂x
(ψ − v′) = 0,

(2.37b)

ρAẅ − ∂

∂x

EA(1 + w′)− (EA− T0)
1 + w′√

(1 + w′)2 + u′2 + v′2

 = 0,

(2.37c)

ρIφ̈− EIφ′′ +AGκ(φ− u′) = 0,
(2.37d)

ρIψ̈ − EIψ′′ +AGκ(ψ − v′) = 0,
(2.37e)

with its boundary conditions as:

u(0, t) = v(0, t) = w(0, t) =0, (2.38a)
u(L, t) = v(L, t) = w(L, t) =0, (2.38b)

φ′(0, t) = ψ′(0, t) = 0, (2.38c)
φ′(L, t) = ψ′(L, t) = 0. (2.38d)

2.2 Energy conservation of the string models
In this section, the derivation of the energy conservation properties of the three
string models in Section 2.1 is presented. To demonstrate the steps, one can begin

23



2.2. Energy conservation of the string models

with the simplest linear wave equation.
The linear wave equation is essentially a force equation over the string length. To
obtain an energy expression, one can multiply the equation with velocity and inte-
grate the whole equation over the string length. In doing so, an equation expressing
power can be obtained. Power is the rate of change of energy. Energy is conserved if
it can be shown that the energy is constant and positive.
Multiplying Equation (2.31) with u̇ and integrating over the string length, one ob-
tains: ∫ L

0
ρAüu̇dx−

∫ L

0
T0u

′′u̇dx = 0. (2.39)

Using integration by part to break down the second term in Equation (2.39) and
knowing that:

∂

∂t

(
u̇2
)

= 2u̇ü, (2.40a)

∂

∂t

(
u′2
)

= 2u′u̇′, (2.40b)

eventually, one will obtain that:

d

dt

{
1

2

∫ L

0
ρA (u̇)2 +

1

2

∫ L

0
T0

(
u′
)2}

= T0

[
u̇u′
]L
0
. (2.41)

On the left hand side (LHS), the first and second term of the equation represent the
kinetic energy and potential energy respectively. On the right hand side (RHS) lies
the boundary term. In the case of a string with two fixed ends, using boundary con-
dition (2.32), the boundary terms vanish. Thus, the conservation of energy equation
is written as:

d

dt
{KEs + PEs} = 0, (2.42)

where

KEs =
1

2

∫ L

0
ρA (u̇)2 dx, (2.43a)

PEs =
1

2

∫ L

0
T0

(
u′
)2

dx. (2.43b)

Each term is positive and the rate of change of energy equals to zero.
A similar strategy could be followed for subsequently more complicated equations
with additional treatments given to the extra terms. In the linear Timoshenko
string model, multiplying Equation (2.34a) and (2.34b) with u̇ and φ̇ respectively
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and integrating both of them over the string length L, one would obtain:

d

dt

[
1

2

∫ L

0
ρA (u̇)2 dx+

1

2

∫ L

0
T0

(
u′
)2

dx

]
−AGκ

∫ L

0

(
φ− u′

)
u̇′dx

= T0

[
u̇u′
]L
0
−AGκ

[(
φ− u′

)
u̇
]L
0
,

(2.44a)

d

dt

[
1

2

∫ L

0
ρI
(
φ̇
)2

dx+
1

2

∫ L

0
EI
(
φ′
)2

dx

]
−AGκ

∫ L

0

(
φ− u′

)
φ̇dx = EI

[
φ̇φ′
]L

0
.

(2.44b)

The boundary terms at RHS vanish when the boundary condition of Equation (2.35)
is applied. Summing both equations and knowing that:

∂

∂t
(φ− u′)2 = 2(φ− u′)(φ̇− u̇′), (2.45)

one can arrive at the same form as Equation (2.42) with:

KEs =
1

2

∫ L

0
ρA (u̇)2 dx+

1

2

∫ L

0
ρI
(
φ̇
)2

dx, (2.46a)

PEs =
1

2

∫ L

0
T0

(
u′
)2

dx+
1

2

∫ L

0
EI
(
φ′
)2

dx+
1

2

∫ L

0
AGκ(φ− u′)2dx. (2.46b)

All terms are positive and the sum of the rate of change is zero, indicating that
energy is conserved.
Next is the Kirchhoff-Carrier nonlinear stiff string equation. Similar to the pre-
vious models, the two equations in Equation (2.36) can be multiplied by u̇ and v̇
respectively. The term EIu′′′′u̇ can be integrated by parts twice to show:∫ L

0
EIu′′u̇′′dx =

[
u′′′′u̇− u′′u̇′

]L
0
, (2.47)

and similarly for EIv′′′′v̇. Again, from the boundary conditions, the boundary terms
equate to zero. This leads to the energy conservation in the same form of Equa-
tion (2.42) where:

KEs =
1

2

∫ L

0
ρA (u̇)2 dx+

1

2

∫ L

0
ρA (v̇)2 dx,

PEs =
1

2

∫ L

0
(T0 +N)

(
u′
)2

dx+
1

2

∫ L

0
(T0 +N)

(
v′
)2

dx+
1

2

∫ L

0
EI
(
u′′
)2

dx.

It is interesting to note that despite the nonlinear coupling in the term N , it is
nonetheless obvious that PEs is positive as N is always positive. Subsequently, it is
elementary to show that the rest of the terms are positive to prove the conservation
of energy.
The final string equation to prove the conservation of energy is the geometrically
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exact nonlinear stiff string equation (i.e. Equation (2.37)). It is possible to rewrite
the equation into a general form of matrix equations, as is done in Chabassier’s
thesis [75]. For q = [u, v, w, φ, ψ], the equation can be written as:

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ = 0, (2.49a)

qk(0, t) = 0 for k = 1, 2, 3; (2.49b)
qk(L, t) = 0 for k = 1, 2, 3; (2.49c)
q′k(0, t) = 0 for k = 4, 5; (2.49d)
q′k(L, t) = 0 for k = 4, 5; (2.49e)

where A = At + Ar and

Ms =


ρA 0 0 0 0
0 ρA 0 0 0
0 0 ρA 0 0
0 0 0 ρI 0
0 0 0 0 ρI

 ,B =


0 0 0 −AGκ 0
0 0 0 0 −AGκ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,C =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 AGκ 0
0 0 0 0 AGκ

 ,

At =


T0 0 0 0 0
0 T0 0 0 0
0 0 EA 0 0
0 0 0 EI 0
0 0 0 0 EI

 and Ar =


AGκ 0 0 0 0

0 AGκ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (2.50)

H is a functional and is defined as:

H(u, v, w) = (EA− T0)

[
1

2

(
u2 + v2

)
+ (1 + w)−

√
u2 + v2 + (1 + w)2

]
. (2.51)

Equation (2.49) can also be used to recover earlier energy conservation properties,
too. If functional H = 0, B = C = Ar = 0, one could recover the system of three
uncoupled linear equations where q = [u, v, w]. After multiplying Equation (2.49)
with q̇, one could retrieve the energy conservation where:

d

dt
{KEs + PEs} = 0, (2.52)

such that:

KEs =
1

2

∫ L

0
Ms(q̇)2dx, (2.53a)

PEs =
1

2

∫ L

0
A(q′)2dx, (2.53b)

which is analogous to Equation (2.43). However, setting only H = 0, one could re-
cover two pairs of Timoshenko stiff string equations (each associated with a trans-
verse displacement) as well as a linear decoupled longitudinal wave equation, which
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would give the conservation of energy equation for q = [u, v, w, φ, ψ], such that:

KEs =
1

2

∫ L

0
Ms(q̇)2dx, (2.54a)

PEs =
1

2

∫ L

0
At(q

′)2dx+

(
1

2

∫ L

0
Ar(q

′)2dx
1

2

∫ L

0
C(q)2dx+

1

2

∫ L

0
Bqq′dx+

1

2

∫ L

0
BTq′qdx

)
,

(2.54b)

where the term in bracket in Equation (2.54b) is analogous to the last term of Equa-
tion (2.46b) such that the sum of all these terms will be positive.
Finally, if H 6= 0 (i.e. geometrically exact nonlinear stiff string equation), one could
show that:

−
∫ L

0

∂

∂x

[
∇H(q′)

]
q̇ =

∫ L

0

∂

∂t
H(q′)−

[
∇H(q′)q̇

]L
0
, (2.55)

where the boundary terms will once more be equal to zero due to boundary condi-
tions. The kinetic and potential energy of this particular system is thus [75]:

KEs =
1

2

∫ L

0
Ms(q̇)2dx, (2.56a)

PEs =

(
1

2

∫ L

0
Ar(q

′)2dx+
1

2

∫ L

0
C(q)2dx+

1

2

∫ L

0
Bqq′dx+

1

2

∫ L

0
BTq′qdx

)
+

(
1

2

∫ L

0
At(q

′)2dx+
1

2

∫ L

0
H(q′)dx

)
.

(2.56b)

As is demonstrated in Chabassier’s thesis [75], it can be proved that:

1

2
At(q

′)2 + H(q′) ≥ K|q′|2 if K = min(T0, EI)/2, (2.57)

and thus Equation (2.56b) is positive and energy is conserved.

2.3 Modal solution of linear wave equation
The linear wave equation can be solved directly via modal method without the need
of any numerical approximations. The solution, while simple, is in fact useful in
demonstrating a lot of concepts in solving an eigenfrequency problem. It is thus
presented here as a basis for more complex work in subsequent sections and chap-
ters.
The wave equation, as rewritten here, is:

ρAü− T0u
′′ = 0,

and it has a solution where the spatial and temporal terms can be separated such
that:

u(x, t) = p(t)ξ(x). (2.58)
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Substituting Equation (2.58) into the wave equation, one would obtain:

p̈

p
=
T0

ρA

ξ′′

ξ
. (2.59)

By separation of variables, Equation (2.59) can be rewritten into two independent
equations equating to a same constant −ω2. While the constant can be defined in
any other way, it will be apparent that −ω2 is indeed a convenient choice in the
development of the solution. The two independent equations are:

p̈

p
= −ω2, (2.60a)

cT
2 ξ
′′

ξ
= −ω2, (2.60b)

where cT is the phase speed of the transverse waves already introduced in Equa-
tion 2.20b and is given by:

cT =
ω

k
=

√
T

ρA
. (2.61)

The boundary conditions of the system are thus:

u(0, t) = ξ(0)p(t) = 0, (2.62a)
u(L, t) = ξ(L)p(t) = 0. (2.62b)

The boundary condition ξ(0) = ξ(L) = 0 forms an eigenvalue problem together with
Equation (2.60b) and is written as:{

ξ′′ = −k2ξ,

ξ(0) = ξ(L) = 0,
(2.63)

where k is the wavenumber and for k ≥ 0, solution of Equation (2.63) can take the
form below:

ξ(x) = C cos(kx) +D sin(kx), (2.64)

where C and D are constants to be determined. Applying the boundary conditions
in Equation (2.62) , the mode shape ξ can be written as:

ξn(x) = Cn sin(knx) with kn =
nπ

L
, (2.65)

where the subscript n indicates there are an infinite number of solutions to the
eigenvalue problem (2.63) where the eigenvalues are kn with eigenmodes ξn(x).
For each n, there is a corresponding ωn given by the dispersion relation of Equa-
tion (2.61) and the solution of Equation (2.60a) is:

pn(t) = P 1
n cos(ωnt) + P 2

n sin(ωnt). (2.66)
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The constants P 1
n and P 2

n can be solved with the knowledge of the initial conditions.
Thus, for each n, there exists a solution of un where:

un = pn(t)ξn(x). (2.67)

Since the wave equation is linear, the solutions for the system can also be defined
as any linear combination of un, i.e.:

u(x, t) =

N∑
n=1

[
P 1
n cos(ωnt) + P 2

n sin(ωnt)
]

sin(knx). (2.68)

The constant C is no longer necessary as it can be solved together with P 1
n and P 2

n .
Suppose that the initial conditions can be defined as follows:

un(x, 0) = U0(x), (2.69a)
u̇n(x, 0) = U1(x), (2.69b)

from Equation (2.68):

U0 =

N∑
n=1

P 1
n sin(knx), (2.70a)

U1 =

N∑
n=1

ωnP
2
n sin(knx). (2.70b)

To solve for P 1
n and P 2

n , the equations can be multiplied by another eigenmode ξm
and be integrated over the string length, they then become:∫ L

0
U0ξmdx =

N∑
n=1

P 1
n

∫ L

0
ξnξmdx, (2.71a)

∫ L

0
U1ξmdx =

N∑
n=1

P 2
nωn

∫ L

0
ξnξmdx. (2.71b)

From the orthogonality properties of the eigenmodes:∫ L

0
sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
L
2 for m = n,
0 for m 6= n,

(2.72)

the solution for P 1
n and P 2

n can thus be written as:

P 1
n =

2

L

∫ L

0
sin
(nπx
L

)
U0(x)dx, (2.73a)

ωnP
2
n =

2

L

∫ L

0
sin
(nπx
L

)
U1(x)dx. (2.73b)
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2.4 Numerical methods for string vibration

This section is devoted to the presentation of numerical solutions for the Kirchhoff-
Carrier nonlinear equations and the geometrically exact nonlinear equations. To
begin with the presentation, damping models are introduced in Section 2.4.1 as
they will be used in the numerical simulations for accurate time-domain solutions.
The damping models are:

• simple viscous damping model (SVM) [57],

• Valette & Cuesta damping model (VCM) [80].

The Kirchhoff-Carrier nonlinear stiff string equations are solved by a semi-implicit
modal time-stepping scheme [60] as presented in Section 2.4.2 and the scheme is
coded in MATLAB. On the other hand, the geometrically exact nonlinear stiff string
equations are solved via finite element method as presented in Section 2.4.3 and the
scheme is implemented in MONTJOIE, a high-order finite element solver developed
in INRIA [81]. Convergence tests and comparisons between these two schemes are
also carried out.

2.4.1 Damping models

Damping is an intrinsic properties that is present in all kinds of physical systems
where the system loses energy in one way or another. In a vibrating string, the
energy is lost internally through mechanisms like thermoelasticity, viscoelasticity
or to the surroundings by air friction. The damping also displays a dependence on
string’s vibrating frequency where the higher the frequency, the higher the loss. An
excellent model where the aforementioned losses (i.e. thermoelasticity, viscoelas-
ticity and air friction) are considered is the Valette & Cuesta model (VCM) [80].
A simpler alternative is the simple viscous damping model (SVM) [57] where the
frequency-dependent damping is modeled simply by two variables that are not as-
sociated to any physical meanings. The SVM is easily applied in both time and fre-
quency domains, which is a justification of its wide use in simulations. However, it
does not rely on physical arguments as compared to VCM. VCM is easily expressed
in the frequency domain, but the complex frequency dependence makes it difficult
to express in the time domain. A recent attempt is proposed in [82]. In what follows,
the two models are presented and incorporated to the existing string equations.

Valette & Cuesta model (VCM) [80]

The Valette & Cuesta model (VCM) is a frequency-based damping model and can
be added to a string equation in its modal form. Recall that Equation (2.60a) can be
written in its modal form as:

p̈n + ωn
2pn = 0 for n = 1, 2, 3... (2.74)
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where the subscript n indicates that there is an infinite number of solutions of the
equation. When damping is added, a new term is appended to the equation:

p̈n + ωn
2pn + 2ςnṗn = 0, (2.75)

with the damping constant ςn:
ςn = σn, (2.76)

and σn is the modal damping factor with a unit of s−1. The concatenation of the
damping term 2ςnṗn can be applied to all string models expressed in modal form.
The VCM damping parameter is associated to the quality factor by:

Qn =
πfn
σn

, (2.77)

where for VCM [83]:
1

Qn
=

1

Qn,air
+

1

Qn,vis
+

1

Qther
, (2.78)

and fn = ωn/2π. Qn,air, Qn,vis and Qther are respectively the quality factors associ-
ated to losses due to air friction, viscoelasticity and thermoelasticity of the string.
In particular, Qn,air and Qn,vis can be calculated by:

1

Qn,air
=

2πηair + 2πd
√
πηairρairfn

2πρAfn
, (2.79a)

1

Qn,vis
=

4π2ρAEIfn
2

T0
2 δvis, (2.79b)

where ηair and ρair are the dynamic viscoscity and density of air respectively and
nominal values can be chosen as ηair = 1.8×10−1kgm−1s−1 and ρair = 1.2kgm−3 [83].
To completely determine Equation (2.78), it is necessary to obtain values for the
viscoelastic loss angle δvis and the thermoelastic loss quality factor Qther. These
values can be estimated by fitting experimental data to Equation (2.78) as detailed
in Section 4.3.

Simple viscous damping model (SVM) [57]

In contrast to the VCM, the simple viscous damping model (SVM) adds the following
terms to the string equations of motion:

2RρAq̇− 2ζT0q̇
′′, (2.80)

where R and ζ are the two damping constants vectors that fully describe the model
and q is the string variable. The term R defines the constant losses while ζ defines
the frequency-dependent losses. To estimate these parameters, the damping terms
are written in modal form. Appending SVM to the linear wave equation where q =
[u], the modal form with temporal coordinate pn can be written as:

p̈n + ωn
2pn + 2(Ru + ωn

2ζu)ṗn = 0, (2.81)
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which is identical to Equation (2.75), by setting the damping constant ςn:

ςn = Ru + ωn
2ζu. (2.82)

Similar to VCM, the two unknowns Ru and ζu can be determined by fitting from
experimental data as detailed in Section 4.3.
For the time domain simulation, it is also possible to append SVM to the geomet-
rically exact nonlinear stiff string equations where q = [u, v, w, φ, ψ]. This would
yield:

ρAü− T0u
′′ − ∂

∂x

EAu′ − (EA− T0)
u′√

(1 + w′)2 + u′2 + v′2


+AGκ

∂

∂x
(φ− u′) + 2RuρAu̇− 2ζuT0u̇

′′ = 0,

(2.83a)

ρAv̈ − T0v
′′ − ∂

∂x

EAv′ − (EA− T0)
v′√

(1 + w′)2 + u′2 + v′2


+AGκ

∂

∂x
(ψ − v′) + 2RvρAv̇ − 2ζvT0v̇

′′ = 0,

(2.83b)

ρAẅ − ∂

∂x

EA(1 + w′)− (EA− T0)
1 + w′√

(1 + w′)2 + u′2 + v′2

+ 2RwρAẇ − 2ζwEAẇ
′′ = 0,

(2.83c)

ρIφ̈− EIφ′′ +AGκ(φ− u′) + 2RφρIφ̇− 2ζφEIφ̇
′′ = 0,

(2.83d)

ρIψ̈ − EIψ′′ +AGκ(ψ − v′) + 2RψρIψ̇ − 2ζψEIψ̇
′′ = 0,

(2.83e)

or in its compact form, as extended from Equation (2.49a):

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ + Yq̇− Zq̇′′ = 0, (2.84)

where

Y =


ρARu 0 0 0 0

0 ρARv 0 0 0
0 0 ρARw 0 0
0 0 0 ρIRφ 0
0 0 0 0 ρIRψ

 , Z =


2T0ζu 0 0 0 0

0 2T0ζv 0 0 0
0 0 2EAζw 0 0
0 0 0 2EIζφ 0
0 0 0 0 2EIζψ

 .
(2.85)
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2.4.2 Kirchhoff-Carrier damped nonlinear string model

Recalling from Equation (2.36), the Kirchhoff-Carrier stiff string equations can be
written as:

ρAü− (T0 +N)u′′ + EIu′′′′ = 0, (2.86a)
ρAv̈ − (T0 +N)v′′ + EIv′′′′ = 0, (2.86b)

where

N =
EA

2L

∫ L

0

(
u′2 + v′2

)
dx,

and the boundary conditions are

u(0, t) = v(0, t) =0,

u(L, t) = v(L, t) =0.

Equation (2.86) can be approximated by Galerkin’s formulation such that:

u(x, t) =
K∑
k=1

ξk(x)pk(t), v(x, t) =
K∑
k=1

ξk(x)qk(t), (2.88)

and the eigenmodes ξk can be expressed as:

ξk(x) = sin

(
kπx

L

)
. (2.89)

Substituting Equation (2.88) into (2.86), one can obtain:

ρAp̈kξk + EIpkξk
′′′′ − (T0 +N)pkξk

′′ + 2ςkṗk = 0, (2.90a)
ρAq̈kξk + EIqkξk

′′′′ − (T0 +N)qkξk
′′ + 2ςkq̇k = 0, (2.90b)

and

N =
EA

2L

∫ L

0
(p2
m + q2

m)ξ′m
2
dx, (2.91)

where 2ςkṗk and 2ςkq̇k are the damping terms appended for both displacements.
Knowing that: ∫ L

0
ξm
′2dx = L/2, (2.92)

it is possible to eliminate all the terms associated to ξk and obtain:

p̈k + Ω2
kp̃k +Dkṗk +Nkpk

K∑
m=1

[
m2(p2

m + q2
m)
]

= 0, (2.93a)

q̈k + Ω̄2
kq̃k +Dkq̇k +Nkqk

K∑
m=1

[
m2(p2

m + q2
m)
]

= 0, (2.93b)
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where

Ω2
k = Ω̄2

k =
EIk4π4

ρAL4
+
T0k

2π2

ρAL2
, (2.94a)

Dk =
2ςk
ρA

, (2.94b)

Nk =
Ek2π4

4ρL4
, (2.94c)

and Ω2
k and Ω̄2

k are the eigenfrequencies of pk and qk respectively. In Chapter 3, it
will be clear why a distinction is made between the two sets of eigenfrequencies. On
the other hand,Dk andNk represent the damping and nonlinear terms respectively.

The scheme at Equation 2.93 can be numerically integrated such that:

p̈k =
pn+1
k − 2pn + pn−1

k

∆t2
, (2.95a)

ṗk =
pn+1
k − pn−1

k

2∆t
, (2.95b)

p̃k = αpnk + (1− α)
pn+1
k + pn−1

k

2
. (2.95c)

For p̈k and ṗk, a standard time-stepping scheme is proposed and for the term p̃k, a
family of scheme with α acting as an averaging parameter is introduced [60]. Such
implementation allows the control of stability of the scheme, as will be evident later.
The same treatments can be made similarly for q̈k, q̇k and q̃k and to ensure an energy
conserving scheme, the nonlinear term in the summation sign is approximated by:

K∑
m=1

(m2(p2
m + q2

m)) =
K∑
m=1

m2

[
pnm

(
pn+1
m + pn−1

m

2

)
+ qnm

(
qn+1
m + qn−1

m

2

)]
. (2.96)

Substituting Equations (2.95) and (2.96) into (2.93), one could get a scheme for p
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and q that writes as:

(
1

∆t2
+ Ω2

k

1− α
2

+
D

2∆t

)
pk
n+1

+ (− 2

∆t2
+ αΩ2

k +Nk

K∑
m=1

(
m2

2
(pn+1
m pnm + qn+1

m qnm)

)
pk
n

= −
(
− 2

∆t2
αΩ2

k +Nk

K∑
m=1

(
m2

2
(pn−1
m pnm + qn−1

m qnm)

))
pk
n

−
(

1

∆t2
+ Ω2

k

1− α
2
− D

2∆t

)
pk
n−1,

(2.97a)

(
1

∆t2
+ Ω̄2

k

1− α
2

+
D

2∆t

)
qk
n+1

+ (− 2

∆t2
+ αΩ̄2

k +Nk

K∑
m=1

(
m2

2
(pn+1
m pnm + qn+1

m qnm)

)
qk
n

= −
(
− 2

∆t2
αΩ̄2

k +Nk

K∑
m=1

(
m2

2
(pn−1
m pnm + qn−1

m qnm)

))
qk
n

−
(

1

∆t2
+ Ω̄2

k

1− α
2
− D

2∆t

)
qk
n−1.

(2.97b)

At the LHS of Equation (2.97), the unknowns are all the terms with superscript
n+ 1. This makes the scheme implicit as there are more than one term to be solved
at the LHS. Fortunately, at each time step n, the scheme can be arranged in a
matrix form and be solved as a system of linear equations, i.e. AX = B such that for
all k = 1, 2, · · · ,K and all m = 1, 2, · · · ,K:



b11 + a1 b12 · · · b1k c11 c12 · · · c1k

b21 b22 + a2 · · · b2k c21 c22 · · · c2k
...

... . . . ...
...

... . . . ...
bk1 bk2 · · · bkk + ak ck1 ck2 · · · ckk
e11 e12 · · · e1k f11 + d1 f12 · · · f1k

e21 e22 · · · e2k f21 f22 + d2 · · · f2k
...

... . . . ...
...

... . . . ...
ek1 ek2 · · · ekk fk1 fk2 · · · fkk + dk





pn+1
1

pn+1
2
...

pn+1
k

qn+1
1

qn+1
2
...

qn+1
k


=



G1

G2
...
Gk
H1

H2
...
Hk


,

(2.98)
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where

ak =
1

∆t2
+ Ω2

k

1− α
2

+
Dk

2∆t
, (2.99a)

bkm = Nkp
n
k

[
m2

2
pnm

]
, (2.99b)

ckm = Nkp
n
k

[
m2

2
qnm

]
, (2.99c)

dk =
1

∆t2
+ Ω̄2

k

1− α
2

+
Dk

2∆t
, (2.99d)

ekm = Nkq
n
k

[
m2

2
pnm

]
, (2.99e)

fkm = Nkq
n
k

[
m2

2
qnm

]
, (2.99f)

and

Gk = −
(
− 2

∆t2
αΩ2

k +Nk

K∑
m=1

(
m2

2
(pn−1
m pnm + qn−1

m qnm)

))
pnk

−
(

1

∆t2
+ Ω2

k

1− α
2
− D

2∆t

)
pn−1
k ,

(2.100a)

Hk = −
(
− 2

∆t2
αΩ̄2

k +Nk

K∑
m=1

(
m2

2
(pn−1
m pnm + qn−1

m qnm)

))
qnk

−
(

1

∆t2
+ Ω̄2

k

1− α
2
− D

2∆t

)
qn−1
k .

(2.100b)

X can thus be solved by taking:
X = A−1B. (2.101)

The corresponding energy of the scheme at time step n, i.e. εn, with damping terms
Dk = 0, is:

εn =
K∑
k


[
1 +

(
1− 2α

4

)
Ω2
k∆t

2

](
pnk − pn−1

k

∆t

)2

+ Ωk
2

(
pnk + pn−1

k

2

)2

+

[
1 +

(
1− 2α

4

)
Ω̄2
k∆t

2

](
qnk − qn−1

k

∆t

)2

+ Ω̄2
k

(
qnk + qn−1

k

2

)2

+
Eπ4

8ρL4

[
k2(pn−1

k pnk + qn−1
k qnk )

]2}
,

(2.102)

where conservation of energy can be shown such that:
1

∆t

[
εn+1 − εn

]
= 0, (2.103)
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by multiplying both Equation (2.97a) and (2.97b) with the discrete velocity, i.e.
(pn+1
k − pn−1

k )/2∆t and (qn+1
k − qn−1

k )/2∆t respectively. The proof is simply algebraic
but tedious and is thus omitted for brevity.
Equation (2.4.2) is positive-definite when both:[

1 +

(
1− 2α

4

)
Ω2
k∆t

2

]
> 0, (2.104a)[

1 +

(
1− 2α

4

)
Ω̄2
k∆t

2

]
> 0, (2.104b)

are satisfied. It is easy to infer that when:

α ≤ 1

2
, (2.105)

Equation (2.104) is unconditionally satisfied and thus positive definiteness of Equa-
tion (2.4.2) and consequently the stability of the scheme can be guaranteed. Other-
wise, as can be determined from Equation (2.104), the scheme is stable only when:

∆t <
1

max([ΩK , Ω̄K ])

√
2(

α− 1
2

) . (2.106)

The energy conservation property of the scheme can be demonstrated at Figure 2.2.
A sample undamped simulation with α = 0.5 is shown and it can be seen that the
rate of change of numerical energy is at the vicinity of 10−12J/s. The conservation
properties could be further improved with fine tuning of simulation parameters
α [60] but it is beyond the scope of the current work.

2.4.3 Geometrically exact damped nonlinear string model

Recalling that from Equation (2.49) and Equation (2.84), the geometrically exact
nonlinear string model can be written as, for q = [u, v, w, φ, ψ],

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ + Yq̇− Zq̇′′ = 0, (2.107a)

qk(0, t) = 0 for k = 1, 2, 3; (2.107b)
qk(L, t) = 0 for k = 1, 2, 3; (2.107c)
q′k(0, t) = 0 for k = 4, 5; (2.107d)
q′k(L, t) = 0 for k = 4, 5; (2.107e)

with the matrices and functional as defined in (2.50) and (2.51) respectively. The
equation can be written in a variational form and thus be readily solved by finite-
element method in the spatial domain. In the temporal domain, a ϑ-scheme, which
is a class of the more general Newmark scheme, can be used to improve accuracy
and ensure stability. Such approach has been attempted by Chabassier [63] and is
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Figure 2.2: The computation simulates an undamped string subjected to a plucked
initial condition (a.k.a triangle initial condition) with computational time steps, ∆t
= 10−6s, total modes considered, K = 40 and α = 1/2. String parameters: T0 =
895.3N, E = 190GPa, d = 1.3mm, ρ = 7, 850kg.m−3 and L = 0.668m.

implemented into MONTJOIE which is used in the current PhD work. MONTJOIE
is a high-order finite element solver package developed Marc Duruflé in INRIA [81].
In this section, the finite element approach is briefly recapped while highlighting
certain aspects of the problems faced and solutions proposed. However, to begin
the explanation, it is useful to start with the linear wave equation, which can be
retrieved from Equation (2.107a) by setting B = C = Ar = Y = Z = 0 and H = 0
with q = [u]. One could obtain:

q̈ + cT
2q′′ = 0 (2.108)

The solution begins with multiplying the wave equation with an arbitrary test func-
tion q∗(x) and integrating the whole equation over the length L. One obtains:∫ L

0
q̈q∗dx− cT 2

∫ L

0
q′′q∗dx = 0. (2.109)

After integrating the second term by part, one could recover the variational formu-
lation (also known as "weak form") of the solution:∫ L

0
q̈q∗dx+ cT

2

∫ L

0
q′q∗′dx = cT

2
[
q′q∗

]L
0
. (2.110)

Over the string length L, the string can be discretised into J number of nodes, with
J-1 elements of a length h. The string variable x can thus be defined in a discretised
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form:
xj = jh for j = 1, 2, 3..., J, (2.111)

such that x1 = 0, and xJ = L. At each node j, the variable q or simply just u can be
approximated as piecewise polynomial functions:

q(xj , t) = u(xj , t) ≈
J∑
j=1

Uj(t)χj(xj), (2.112)

with j being the node point number and χj is the basis function that takes the value
of 1 at node j and 0 otherwise. In finite element method, the basis function is also
known as the shape function. Next, the arbitrary test function q∗(x) or simply u∗(x)
can be chosen to be a basis function of index i, i.e. χi(x). Equation (2.109), after
integration by part, can be written as:

∫ L

0

J∑
j=1

Üjχjχidx+ cT
2

∫ L

0

J∑
j=1

Ujχj
′χi′dx = cT

2

 J∑
j=1

Ujχj
′χi

L
0

. (2.113)

At the RHS, the boundary terms vanish after applying the boundary conditions and
Equation (2.113) can thus be written in matrix form:

MjiÜj +AjiUj = 0, (2.114)

where

Mji =

∫ L

0
χjχidx and Aji = cT

2

∫ L

0
χj
′χi′dx. (2.115)

Mji and Aji can be obtained if the basis function is defined. To solve both terms in
discrete form, the integral can be approximated by various numerical integration
methods, such as the rectangle or trapezoidal rule. The boundary conditions are
also resolved such that:

u(0, t) = U1χ1 = 0, (2.116a)
u(L, t) = UJχJ = 0. (2.116b)

With Mji and Aji known and the boundary condition resolved, Uj can then be solved
by the time stepping method where:

{
Üj

}n
=
Un+1
j − 2Unj + Un−1

j

∆t2
, (2.117a)

{Uj}n = Unj . (2.117b)

The subscript n indicates the time step point, such that for time t,

tn = n∆t. (2.118)
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Substituting Equation (2.117) into (2.114), one then obtains an equation that is
readily to be solved at every time step n:

Mji

Un+1
j − 2Unj + Un−1

j

∆t2
+AjiU

n
j = 0. (2.119)

For this example, the scheme in 2.119 can be solved explicitly such that:

Un+1
j = (−M−1

ji Aji + 2)Unj − Un−1
j (2.120)

For the geometrically exact nonlinear stiff string equation, i.e. Equation (2.107a),
multiplying it with a test function q∗ and integrating it over length L, performing
integration by parts where necessary, the equation can be written as:∫ L

0
Msq̈q∗ −

∫ L

0

(
Aq′ + Bq +∇H(q′)

)
q∗′ +

∫ L

0
Cqq∗ +

∫ L

0
BTq′q∗

+

∫ L

0
Yq̇q∗′ +

∫ L

0
Zq̇′q∗′ =

[
Aq′ + Bq +∇H(q′) + Zq̇′

]L
0

q∗, (2.121)

Equation (2.121) can be written into semi-discrete form where the semi-discrete
string variable, qh can be given such that:

for all qh, lim
h→0
||q− qh|| = 0, (2.122)

for which the string of length L is discretised into elements of size h as is defined in
Equation (2.111). It is then possible to write Equation (2.121) in its semi-discrete
form:∮ L

0
Msq̈hq

∗
h −

∮ L

0

(
Aq′h + Bqh +∇H(q′h)

)
q∗h
′ +
∮ L

0
Cqhq

∗
h +

∮ L

0
BTq′hq

∗
h

+

∮ L

0
Yq̇hq

∗
h
′ +
∮ L

0
Zq̇′hq

∗
h
′ =

[
Aq′h + Bqh +∇H(q′h) + Zq̇′h

]L
0

q∗h, (2.123)

where the circular integral
∮

indicates a numerical integral via Gauss-Lobatto
quadratures instead of a continuous integral. The advantage of using Gauss-Lobatto
quadratures as a numerical integration method is to eliminate interpolation as the
quadrature points can be defined to coincide with the nodal points of the elements.
The semi-discrete variable qh can be approximated by:

qh(xj , t) ≈
J∑
j

Qh(t)χh(xj), (2.124)

which is analogous to Equation (2.112), where Qh is a vector which represents the
discrete form of qh and χh is the basis function. Using Equation (2.124) to write
correspondingly q∗h, the fully discretised scheme for Equation (2.123) is:

MhQ̈h +RhQ̇h +KhQh +∇H°(Qh) = 0, (2.125)
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such that:

MhQhQ
∗
h =

∮ L

0
Msqhq

∗
h, (2.126a)

AhQhQ
∗
h =

∮ L

0
Aq′hq

∗
h
′, (2.126b)

BhQhQ
∗
h =

∮ L

0
Bqhq

∗
h
′, (2.126c)

ChQhQ
∗
h =

∮ L

0
Cqhq

∗
h, (2.126d)

RhQhQ
∗
h =

∮ L

0
Yqq∗ +

∮ L

0
Zq′hq

∗
h
′, (2.126e)

∇H°(Qh)(Q∗h) =

∮ L

0
∇H(q′h)q∗h

′, (2.126f)

where Kh = Ah + Bh + Ch + Bh
T . The RHS of Equation (2.123) vanishes when

boundary conditions are applied. To solve Equation (2.125), it is necessary to ob-
tain an energy conserving scheme where the energy is not only conserved but also
positive-definite. For that, Q̈h and Q̇h could take a form at time step n:{

Q̈h

}n
=

Qn+1
h − 2Qn

h + Qn−1
h

∆t2
,{

Q̇h

}n
=

Qn+1
h −Qn−1

h

2∆t
.

For stability purposes, Qh could be written in a ϑ-scheme where:

[Qh]nϑ = ϑQn+1
h + (1− 2ϑ)Qn

h + ϑQn−1
h , (2.127)

for ϑ ∈ [0, 0.5] and acts like an averaging parameter.
To complete Equation (2.125), ∇H°(Qh) can be approximated in discrete form as:

∇H°(Qh) ≈ ∇hH°(Qn+ 1
2

h ,Q
n+ 1

2
h ), (2.128)

and

∇hH°(Q+
h ,Q

−
h ).Q∗h =

1

6

∮ L

0

∑
π∈P

3∑
k=1

δkH(q+
k
′
,q−k

′
,q

s(k,j)
j 6=k

′
).qk

′, (2.129)

where s(k, j) = sign(j−k) and q+ and q− relates respectively to qn+ 1
2 and qn−

1
2 [68].

The δk operator is defined as below:

δkH(a, b, c) =

{
H(a,c)−H(b,c)

a−b for a 6= b,

∂kH(a, c) for a = b,
(2.130)
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and
H(a, b) =

1

2
(H(a) + H(b)). (2.131)

The complete scheme in fully discrete form can thus be written as:

Mh
Qn+1
h − 2Qn

h + Qn−1
h

∆t2
+Rh

Qn+1
h −Qn−1

h

2∆t
+Kh[Qh]nϑ +∇H°(Qh) = 0. (2.132)

For more details including the derivation of the scheme and the proof of its en-
ergy conservation and positive definiteness (and thus stability), readers are advised
to consult [37, 75]. The scheme presented has been implemented in MONTJOIE,
a finite-element solver package with application to the modelling of piano. What
has been contributed to MONTJOIE in this thesis is the implementation of the
geometrically exact nonlinear stiff string equation where q = [u, v, w, φ, ψ] (Equa-
tion (2.107a)), a variant of the equation without stiffness (i.e. B = C = Ar = 0), and
a pair of uncoupled linear wave equations (each representing u and v), all of which
were previously not present in the solver.
From MONTJOIE, it is possible to calculate the discrete energy. The scheme is
unconditionally stable when ϑ ≥ 1/4 [37]. Figure 2.3 shows the rate of change of
numerical energy for a simulation of the geometrically exact nonlinear stiff string
equation. As can be seen, the rate of change of the energy varies between three
points (±1.10−7 and 0), which confirms the conservation of energy. It is possible to
further reduce the variation of the numerical energy and improve the accuracy of
the scheme by manipulating ϑ [37] but it is beyond the scope of the thesis.

2.4.4 Convergence tests

It is imperative to conduct convergence tests on numerical schemes to identify the
suitable simulation parameters. Convergence tests offer insights on the trade-off
between the accuracy and the computational efforts. Depending on the applications,
different simulation parameters could be selected for performance optimisation. For
the Kirchhoff-Carrier modal numerical scheme, there are three simulation param-
eters that can be manipulated. They are:

• averaging parameter α,

• number of modes K,

• time steps ∆t.

As discussed earlier, the scheme is unconditionally stable when α ≤ 1/2. To ensure
an unconditional stability with minimal dispersion,

α =
1

2
, (2.133)

is chosen. The number of modes K is highly dependent on the cases investigated
and the choice of time steps. For instance, ∆t = 10−5s corresponds to a sampling
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Figure 2.3: The computation simulates an undamped string subjected to a plucked
initial condition (a.k.a triangle initial condition) with computational time steps,
∆t = 10−6s, 50 elements over the string length and ϑ = 1/4. String parameters:
T0 = 895.3N, E = 190GPa, d = 1.3mm, ρ = 7, 850kg.m−3 and L = 0.668m.

frequency of 100,000Hz and effectively the bandwidth of the simulation is up to
50,000Hz. Thus, it is not necessary to include any modes higher than 50,000Hz. To
put it in a more general context, K can be chosen as long as:

max

(
ΩK

2π

)
≤ 1

2∆t
, (2.134)

where ΩK is the eigenfrequencies of the string in rad/s as described in Equation (2.94a).
However, practically, the system would have experienced numerical dispersion be-
fore hitting the limit imposed by Equation (2.134). Figure 2.4 show the differences
in percentage between the first 40 theoretical eigenfrequencies and observed fre-
quencies as obtained from the fast Fourier transform (FFT) algorithm when differ-
ent values of time steps are used. The simulation parameters are summarised in
Table 2.1. The undamped string is excited with a pluck initial condition with am-
plitude of 0.2mm at 0.3m from one end of the string and it is allowed to vibrate
for 5s. For a time step of 10−4s, dispersion is significantly more severe compared
to the other results where 0.6% difference is observed at just 500Hz. Dispersion of
up to 0.8% and 0.2% can be observed for the time step 10−5s and 5.10−6s at the
theoretical eigenfrequency of 4,931Hz. Dispersion is virtually non-existent if a time
step of 10−6s is used (0.008% difference). Thus, for highly accurate simulation, the
time step of 10−6s is ideal and to complete a simulation that lasts 5s, it takes ap-
proximately 20 minutes by using one of the cores of the Intel Xeon CPU E5-2609
clocking at 2.50GHz. For simulation where only lower modes are of concern, using
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2.4. Numerical methods for string vibration

a time step 10−5s is sufficient to obtain accurate results which takes approximately
2 minutes.
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Figure 2.4: Difference in percentage between the theoretical eigenfrequencies and
computed frequencies as observed from FFT plots when the simulations are done
in time steps of 10−4, 10−5, 5.10−6 and 10−6 seconds.

Table 2.1: String parameters used for the convergence tests.

Parameter Value
Density ρ 7850 kg.m−3

diameter 0.0013m
Young’s modulus 190GPa
Tension,T0 895.3N
Length, L 0.668m

For the geometrically exact nonlinear stiff string finite element model, simulation
parameters that can be varied are:

• averaging parameter ϑ,

• time step ∆t,

• number of elements nh.

Similar to the Kirchhoff-Carrier numerical scheme, the averaging parameter is set
to:

ϑ =
1

4
(2.135)

44



2.4. Numerical methods for string vibration

where numerical stability is guaranteed.
The convergence test is performed by varying the time step ∆t and the number of fi-
nite elements nh. The simulation parameter is the same as in the Kirchhoff-Carrier
numerical scheme (see Table 2.1) and the initial condition is also identical. The ref-
erence signal used is computed using ∆t = 10−7s and nh = 90. Figure 2.5 shows the
difference in percentage of the frequencies obtained from FFT plots against the fre-
quency of the reference simulation. The time steps used are 10−4, 10−5, 5.10−6 and
10−6 seconds and all of them are computed with 90 finite elements, i.e. nh = 90. Sim-
ilar result compared to the Kirchhoff-Carrier numerical scheme is observed where
dispersion is up to 0.8% and 0.2% for the time step 10−5s and 5.10−6s respectively
at 4,927Hz. A 0.012% dispersion is observed for time step 10−6s, which is slightly
higher compared to the Kirchhoff-Carrier numerical scheme but is nonetheless a
non-issue with such low dispersion. The slight difference is probably due to the use
of different stiffness models. As such, similar recommendations can be made that
for simulations concerning only the lower modes, a time step of 10−5s is sufficient
and for accurate simulation, a time step of time step 10−6s can be used. Accuracy
could be further improved by varying the simulation parameter ϑ but it is beyond
the scope of this thesis.
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Figure 2.5: Differences in percentage of the frequencies compared to a reference
simulation (nh = 90, ∆t = 10−7s). The frequencies are extracted from FFT plots and
the simulations are done in time steps of 10−4, 10−5, 5.10−6 and 10−6 seconds.

To investigate the influence of the number of elements, the simulations are repeated
with 10, 30, 50, 70 and 90 elements and the results, plotted as difference in frequen-
cies in percentage, are as shown in Figure 2.6. In both Figure 2.6a and 2.6b, using 10
elements yields poor performance and excellent agreements can be obtained by us-
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2.4. Numerical methods for string vibration

Table 2.2: Time taken in hour:minute:second to complete a 5-second simulation
with varying number of elements and time steps.

Time step (s)
Number of elements 10−6 10−7

10 00:19:17
30 03:16:04
50 04:22:30
70 06:47:34
90 08:11:48 49:30:35

ing 30 or more elements. Nonetheless, it appears that using 30 elements are prone
to slightly more errors. Thus, a use of at least 50 elements across the string length is
recommended. In this instance, the element size would correspond to 13.36mm and
the solution is accurate up until 4927Hz (wavelength of 59mm) which suggests that
it could cope with at least using only 4 elements per wavelength. The time taken to
complete the reference signal and the simulations with a time step of 10−6s for 5s
using 8 cores of the Intel Xeon CPU E5-2609 clocking at 2.50GHz is also presented
in Table 2.2.
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(a) ∆t = 5.10−6s.
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Figure 2.6: Differences in percentage of the frequency compared to a reference sim-
ulation (nh = 90, ∆t = 10−7s). The frequencies are extracted from FFT plots and the
simulations are done with 10, 30, 50, 70 and 90 finite elements.

2.4.5 Comparison of numerical models

A comparison is performed to cross-verify the quality of the results provided by the
two numerical models, using parameters that fit in the range consistent with the
remainder of the study. It must be stressed that the comparison is not intended
to test the assumption of the Kirchhoff-Carrier equation and in what cases it will
differ from the geometrically exact equations.
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2.4. Numerical methods for string vibration

To compare the two numerical models, the simple viscous damping model (SVM)
is appended to both the Kirchhoff-Carrier equations and the geometrically exact
equations. The damping coefficients used are:

Ru = Rv = 0.5067s−1, (2.136a)

ζu = ζv = 3.8× 10−9s, (2.136b)

where these parameters are experimentally determined as will be detailed in Sec-
tion 4.3. Additionally, to fully satisfy the geometrically exact equations,

Rφ = Rψ = 0.5067s−1, (2.137a)

ζφ = ζψ = 3.8× 10−9s, (2.137b)

Rw = 0.5s−1, (2.137c)

ζw = 10−9s, (2.137d)

as per recommended by [84].
The simulation parameters used are as shown in Table 2.1 but the initial condi-
tion has changed. The string is plucked with a 33° offset from one polarisation at
0.3335m from one end with an amplitude of 0.33mm. To be in line with simulations
done in Chapter 3, the frequency of the fundamental string mode u and v differ by
0.14Hz and the difference is accounted for by changing the density of the v string
mode. Both models set their observation points at 0.638m from one string end, and
for the Kirchhoff-Carrier numerical scheme:

K = 30, (2.138a)
α = 1/2, (2.138b)

and for the geometrically exact finite element model, ϑ = 1/4.
Figure 2.7 shows the wave envelopes of the displacements of the first 4 seconds of
the simulations for both numerical models. The top plot shows the displacements
in the plane of excitation (i.e at 33°) and the bottom plot shows the orthogonal
out-of-plane displacement. Excellent agreements between the two models are ob-
served. Zooming in to the first 20ms of the displacements (see Figure 2.8). the same
excellent agreements are also observed. The discrepancy between the two models
exists in their resonant frequencies as shown in Figure 2.9. At first glance, their
frequencies are very close to each other. However, at closer look between 5,000Hz
to 9,000Hz, the geometrically exact finite element models compute slightly lower
frequencies compared to the Kirchhoff-Carrier numerical scheme. The discrepancy
is not due to dispersion but rather to the difference of stiffness models used. As a
reminder, the Kirchhoff-Carrier equations use the Euler-Bernoulli model while the
geometrically exact equations use the Timoshenko model. It has been established
that Euler-Bernoulli model would predict a comparatively higher frequency than
the Timoshenko models at sufficiently high resonant frequencies [68]. Indeed, see-
ing that the difference is not really significant, it remains a debate whether Euler-
Bernoulli model is necessarily inferior despite not being as enriched from a physical
point of view.
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Figure 2.7: Comparison between the Kirchhoff-Carrier numerical scheme (KCM)
and the geometrically exact finite element model (GEM), showing its wave envelope
over the first 4s of the displacement-time plots. The top figure shows the dominant
vertical displacement, the bottom shows the horizontal displacement.

2.5 Summary
In this chapter, the following string equations and their energy conservation prop-
erties are derived [73,74]:

• geometrically exact nonlinear equations,

• Kirchhoff-Carrier nonlinear equations,

• linear wave equation.

The modal solution of undamped linear wave equation is shown. The nonlinear
equations are solved numerically via a modal time-stepping method for the Kirchhoff-
Carrier equations and a finite element method for the geometrically exact equa-
tions.
The following stiffness models are introduced [33,68]:

• Euler-Bernoulli model (and is included in the Kirchhoff-Carrier equations),

• Timoshenko model (and is included in the geometrically exact equations),

and these damping models are presented:

• Valette & Cuesta model [80],
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Figure 2.8: Comparison between the Kirchhoff-Carrier numerical scheme (KCM)
and the geometrically exact finite element model (GEM), showing the first 20ms of
the displacement-time plots. The top figure shows the dominant vertical displace-
ment, the bottom shows the horizontal displacement.

• simple viscous damping model [57].

Convergence tests have been performed to identify the numerical parameters to use
in the two models. A good agreement is also found between the comparison of the
two models when the same damping model (SVM) is used.
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Figure 2.9: Frequencies of both Kirchhoff-Carrier numerical scheme (KCM) and the
geometrically exact finite element model (GEM) as extracted from their respective
FFT plots.
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3

Nonlinear coupling of
polarisation

As prefaced in the introduction (Chapter 1), one of the primary causes of the double
polarisation is suspected to be the geometric nonlinearity in string when it is sub-
jected to a large amplitude excitation, such as a strike by the piano hammer. This
is especially intriguing as it is known that the two transverse modes, which form
the two polarisations, have very close eigenfrequencies. When two eigenfrequencies
are very close, 1:1 internal resonance could occur where energy can be exchanged
between vibration modes [77]. This means that if the motion is initiated along one
polarisation, the nonlinearity can make this motion unstable, so that eventually a
coupled vibration arises with the two polarisations involved. The objective of this
chapter is thus to clearly establish if the nonlinearity can be the cause of this cou-
pling, as well as to highlight the main parameters governing the transfer of energy.

A conscious and deliberate choice is made to investigate strictly the nonlinear be-
haviour of the freely vibrating string bounded by two fixed ends. This is done so
as not to be confused by the influence of other kinds of boundary conditions, such
as a movable bridge (which is investigated in Part II instead). The freely vibrating
strings with two fixed ends can be represented by the Kirchhoff-Carrier equations
(see Section 2.1.3). The 1:1 internal resonance of such freely vibrating system was
studied by Manevitch and Manevitch [79] although their study was not specific to
string vibration. Investigation of similar systems have also been studied but under
forced excitation [70,71,77,78]. Inspired by these works, this chapter first presents
a reduced and nondimensionalised form of the Kirchhoff-Carrier equations in Sec-
tion 3.1. It then continues with a nonlinear study of the equation by multiple-scale
analysis in Section 3.2 and presents some cases specific to the string in Section 3.3.
These findings are numerically validated in Section 3.4 using methods presented in
Section 2.4.2 and 2.4.3. Lastly, a simple demonstration of double polarisation on a
linear string is presented in Section 3.5.
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3.1. Reduced order model

3.1 Reduced order model
The Kirchhoff-Carrier nonlinear equation for a freely vibrating string fixed at both
ends with two polarised displacements u and v, as has been derived in Section 2.1.3,
can be written as:

ρAü− (T0 +N)u′′ = 0, (3.1a)
ρAv̈ − (T0 +N) v′′ = 0, (3.1b)

where

N =
EA

2L

∫ L

0

(
u′2 + v′2

)
dx. (3.2)

In Equation (3.1), damping and stiffness are ignored to simplify the analysis. Fol-
lowing [78], the equations can be made nondimensional for a more general treat-
ment where:

x̄ =
x

L
, ū =

u

d
, v̄ =

v

d
, t̄ =

t

T̄
, N̄ =

N

T0
, f̄i =

fi
f0
, T̄ =

L

c2
T

. (3.3)

The new equations can be written as:

ü− (1 +N)u′′ = 0, (3.4a)
v̈ − (1 +N)v′′ = 0, (3.4b)

where

N =
ε

2

∫ 1

0
(u′2 + v′2)dx and ε =

EAd2

T0L2
, (3.5)

where for clarity purposes, the overbars are dropped as all terms are now nondi-
mensional. The solutions of the nondimensional equations can be expressed by
Galerkin’s approximations:

u(x, t) =
K∑
k=1

ξk(x)pk(t), v(x, t) =
K∑
k=1

ξk(x)qk(t), (3.6)

where ξk(x) are the eigenmodes, and {pk(t), qk(t)}k≥1 the modal coordinates. Substi-
tuting Equation (3.6) into (3.4) and writing only the fundamental mode, i.e. K = 1,
one could map the two modal coordinates p1 and q1 to p and q respectively and
obtain the following nonlinear system:

p̈+ ω2
1p+ ε

[
Γ1p

3 + C1pq
2
]

= 0, (3.7a)

q̈ + ω2
2q + ε

[
Γ2q

3 + C2qp
2
]

= 0, (3.7b)

where ε is the small parameter arising from the nondimensionalisation [78] as ex-
pressed in Equation (3.5). For a perfect string, the two eigenfrequencies are equal
such that ω2 = ω1 = π [78] and the nonlinear coefficients would be Γ1 = Γ2 =
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3.2. Multiple-scale analysis

C1 = C2 = π4/2. However, such perfect string does not exist as imperfection such
as variations in manufacturing and rusting would occur. To account for this imper-
fection, a detuning parameter σ1 can be artificially introduced such that the two
eigenfrequencies of the two modes are slightly different,

ω2 = ω1 + εσ1. (3.8)

The detuning parameter σ1 can be experimentally determined by measuring the
difference in the two eigenfrequencies of the polarisation (see Section 4.4).

3.2 Multiple-scale analysis
A viable way to determine the nonlinear behaviour of the system in Equation (3.7)
is by multiple-scale analysis, a pertubative method intended for finding solution
for weakly nonlinear problems [74,85,86]. As its name suggests, the method intro-
duces new time scales and describes the original system as a function of multiple
independent time scales. For this study, the following time scales are introduced:

T0 = t, (3.9a)
T1 = εt, (3.9b)

where T0 is the fast time scale in which most of the linear events take place. T1,
on the other hand, is the slow time scale where nonlinear phenomenon could occur.
From Equation (3.7), p and q can be approximated by:

p(t) = p0(T0, T1) + εp1(T0, T1) +O(ε2), (3.10a)

q(t) = q0(T0, T1) + εq1(T0, T1) +O(ε2). (3.10b)

Using Dj = ∂/∂Tj , Equation (3.7) can be expanded into terms of different orders of
ε. Truncating the terms up to different order of ε would lead to different equations.
At order ε0:

D2
0p0 + ω2

1p0 = 0, (3.11a)

D2
0q0 + ω2

2q0 = 0, (3.11b)

and at order ε1:

D2
0p1 + ω2

1p1 = −2D0D1p0 − Γ1p
3
0 − C1p0q

2
0, (3.12a)

D2
0q1 + ω2

2q1 = −2D0D1q0 − Γ2q
3
0 − C2q0p

2
0. (3.12b)

At order ε0, the system is uncoupled and each equation corresponds to the case
of a simple undamped harmonic linear oscillator. At order ε1, the equations are
nonlinearly coupled via a cubic order term. To solve for Equation (3.12), p0 and q0

can be defined as:

p0 = A(T1) exp(iω1T0) + c.c, (3.13a)
q0 = B(T1) exp(iω2T0) + c.c, (3.13b)
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where c.c stands for complex conjugate. Substituting Equation (3.13) into Equa-
tion (3.12), on the RHS, one would obtain terms associated with exp(iω1T0), exp(iω2T0),
exp(3iω1T0) and exp(3iω2T0). Terms containing exp(iω1T0) and exp(iω2T0) are reso-
nant terms and are to be eliminated to avoid secular terms. To achieve this, the
coefficients associated to those terms are set to zero. This yields:

−2iω1A
′ − 3Γ1A

2Ā− C1B
[
2AB̄ + ĀB exp(2iσ1T1)

]
= 0, (3.14a)

−2iω2B
′ − 3Γ2B

2B̄ − C2A
[
2BĀ+ B̄A exp(−2iσ1T1)

]
= 0, (3.14b)

where the operator ()′ = ∂/∂T1 and the overbar indicates the respective complex
conjugates. Equations (3.14) are the solvability conditions and can then be solved
by writing A and B in polar form:

A(T1) = a(T1) exp(iα(T1)), (3.15a)
B(T1) = b(T1) exp(iβ(T1)). (3.15b)

Substituting Equation (3.15) into (3.14), the solvability conditions can be broken
down into a set of four dynamical equations at the T1 time scale (two for amplitude
a and b, two for their respective phases α and β):

a′ = − C1

2ω1
ab2 sin(γ2 − γ1), (3.16a)

γ′1 =
3Γ1

ω1
a2 +

C1

ω1
b2 [2 + cos(γ2 − γ1)] , (3.16b)

b′ =
C2

2ω2
ba2 sin(γ2 − γ1), (3.16c)

γ′2 =
3Γ2

ω2
b2 +

C2

ω2
a2 [2 + cos(γ2 − γ1)] + 2σ1. (3.16d)

Note that the dynamical system in Equation (3.16) has been made autonomous by
introducing the new angular variables γ1 and γ2, such that:

γ1 = 2α and γ2 = 2β + 2σ1T1. (3.17)

3.2.1 Uncoupled solutions

While the main interest lies on the coupling between the two modal coordinates p
and q (or their first order amplitude a and b), it is also important to first understand
the uncoupled solutions. In this system, there are two uncoupled solutions, namely
when b = 0 and a = 0 respectively. To facilitate upcoming discussions, the uncoupled
mode b = 0 is called the "A-mode" (as a 6= 0) while the uncoupled mode a = 0 is called
the "B-mode" (as b 6= 0).
The dynamical equations of the A-mode, which can be obtained by setting b = 0 in
Equation (3.16) are:

a′ = 0, (3.18a)

α′ =
3Γ1

2ω1
a2. (3.18b)
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Solutions can be obtained by integrating both equations with respect to T1:

a = CA, (3.19a)

α =
3Γ1

2ω1
a2T1 + αA, (3.19b)

where CA and αA are integration constants that do not depend on T1. It is then
possible to express p0 as an approximation to p:

p ≈ p0 = 2a cos [ωNLt+ αA] , (3.20)

where ωNL denotes the nonlinear frequency and is given as:

ωNL = ω1

(
1 + ε

3Γ1

2ω1
2
a2

)
. (3.21)

Equation (3.21) is known as a backbone curve. It expresses the dependency of the
frequency of the uncoupled mode p on its amplitude a, a key feature of nonlinear
oscillation. A similar exercise can be done for the B-mode, i.e. a = 0 and one would
obtain:

q0 = 2b cos [ωNLt+ βB] , (3.22)

where
ωNL = ω2

(
1 + ε

3Γ2

2ω2
2
b2
)
, (3.23)

where the frequency of the uncoupled mode q is dependent on its amplitude b. One
can notice the similarity between the two solutions, coming from the fact that the
uncoupled solutions are essentially the classical Duffing equations. The nonlinear-
ity is completely governed by coefficients Γ1 and Γ2. Figure 3.1 shows the backbone
curve (amplitude-frequency relationship, Equation (3.20) and (3.21)) for ε = 0.001.
The value Γ1 = 0 is used as an eyeguide to recall that for linear vibrations, the
oscillation frequency is independent from the amplitude. The values Γ1 = π4/2,
ω1 = π are the standard values for perfect strings [78]. The figure allows one to
estimate the deviation (in radian frequency) of the oscillations with respect to the
linear eigenfrequency, as a function of the vibration amplitude.

3.2.2 Coupled solutions

In the coupled case, i.e. when both a 6= 0, b 6= 0, as inferred from Equation (3.16a),
the fixed point solutions, i.e. when a′ = b′ = γ′1 = γ′2 = 0, for coupled stationary
modes exist only if

sin(γ2 − γ1) = 0. (3.24)

This in turn indicates that cos(γ2 − γ1) = ±1 with each case corresponding to a
different coupled stationary mode.
For cos(γ2 − γ1) = +1,

γ2 − γ1 = 2(β + σ1T1 − α) = 2kπ for k= 1, 2, 3... (3.25)
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Figure 3.1: Backbone curve showing that the oscillation frequency of the uncoupled
A-mode is dependent on its amplitude a. ω1 = π and ε = 10−3.

Assuming that the detuning between the two polarisations are insignificant, such
that σ1 = 0, one could obtain:

β = α+ kπ for k= 1, 2, 3... (3.26)

This would yield:

p = 2a cos(ω1T0 + α), (3.27a)
q = ±2b cos(ω2T0 + α). (3.27b)

Since σ1 = 0, ω1 = ω2 and p and q can be related by:

q

p
= ± b

a
. (3.28)

Similarly, if cos(γ2 − γ1) = −1 and again σ1 = 0, one could obtain:

β = α+ (2k − 1)
π

2
for k= 1, 2, 3... (3.29)

which yields:

p = 2a cos(ω1T0 + α), (3.30a)
q = −2b sin(ω2T0 + α). (3.30b)

The relation between p and q is thus:

q2

4b2
+

p2

4a2
= 1. (3.31)
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3.2. Multiple-scale analysis

Equation (3.28) corresponds to a linear straight line relationship between the two
displacements passing through the origins. On the other hand, Equation (3.31) cor-
responds to an elliptic motion around the origin. Following the study by Manevitch
and Manevitch [79], the coupled modes of Equation (3.28) and (3.31) are thus re-
ferred to as the "normal mode" and "elliptic mode", as is illustrated in Figure 3.2.

q

p
p

q

(a) normal mode (b) elliptic mode

Figure 3.2: Illustrations of the two modes of coupled solutions as inspired by [79].

From sin(γ2 − γ1) = 0, one could infer that γ2 − γ1 = nπ and thus,

γ′2 − γ′1 = 0. (3.32)

Substituting Equation (3.16b) and (3.16d) into (3.32), one could then obtain:

2σ1 =

(
3Γ1

ω1
− C2

ω2
[2 + cos(γ2 − γ1)]

)
a2 +

(
C1

ω1
[2 + cos(γ2 − γ1)]− 3Γ2

ω2

)
b2. (3.33)

For the normal mode where cos(γ2 − γ1) = +1, this yields

2σ1 =

(
3Γ1

ω1
− 3C2

ω2

)
a2 +

(
3C1

ω1
− 3Γ2

ω2

)
b2. (3.34)

For this mode to branch off from A-mode (i.e. b = 0), the system must satisfy:

a2 =
2σ1

3Γ1
ω1
− 3C2

ω2

, (3.35)

and to branch off from B-mode (i.e. a = 0), it would then have to satisfy:

b2 =
2σ1

3C1
ω1
− 3Γ2

ω2

. (3.36)

For string vibrations where imperfection in the system is small where the detuning
σ1 6= 0 and the nonlinear coefficients are similar, i.e. Γ1 ≈ C2 or C1 ≈ Γ2, the
denominator for both Equations (3.35) and (3.36) will be very small. This suggests
that the occurrence of coupled normal mode is practically unobservable for a system
like string.
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3.2. Multiple-scale analysis

On the other hand, for elliptic mode where cos(γ2−γ1) = −1, Equation (3.33) yields:

2σ1 =

(
3Γ1

ω1
− C2

ω2

)
a2 +

(
C1

ω1
− 3Γ2

ω2

)
b2. (3.37)

For this mode to appear from A-mode, the system must satisfy:

a2 =
2σ1

3Γ1
ω1
− C2

ω2

, (3.38)

and to appear from B-mode, it must satisfy

b2 =
2σ1

C1
ω1
− 3Γ2

ω2

. (3.39)

Elliptic mode cannot develop from the uncoupled B-mode unless C1
ω1
− 3Γ2

ω2
> 0. In

the case of a slightly imperfect string where the nonlinear coefficients are similar,
if not identical, it is then impossible to see the uncoupled B-mode to branch off
into coupled elliptic mode. As a result, the most possible coupled modes that are
physically possible for a string would be the elliptic mode that branches off from
uncoupled A-mode as dictated by Equation (3.38).

3.2.3 Stability analysis

The analysis is followed by examining the stability of the uncoupled and coupled
solutions. One of the methods to determine the stability of a dynamical system is
to evaluate the eigenvalues of its Jacobian matrix. For the dynamical system of
Equation (3.16), the Jacobian matrix of the coupled solutions J is:

J =



0 C1
2ω1

ab2γc 0 − C1
2ω1

ab2γc

6Γ1
ω1
a 0 2C1

ω1
b(2 + γc) 0

0 − C2
2ω2

ba2γc 0 C2
2ω2

ba2γc

2C2
ω2
a(2 + γc) 0 6Γ2

ω2
b 0


. (3.40)

where γc = cos(γ2 − γ1). The eigenvalues λ can be obtained by solving the determi-
nants of J − Iλ, which yields four eigenvalues, with two of them equal to zero. The
other pair, after setting cos(γ2 − γ1) to either +1 or -1, is:

λ2
NM = 3a2b2

[
C1

ω1

(
Γ1

ω1
− C2

ω2

)
+
C2

ω2

(
Γ2

ω2
− C1

ω1

)]
, (3.41a)

λ2
EM = a2b2

[
−C1

ω1

(
3Γ1

ω1
− C2

ω2

)
− C2

ω2

(
3Γ2

ω2
− C1

ω1

)]
, (3.41b)
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3.2. Multiple-scale analysis

where the subscript NM indicates normal mode (γc = +1) and EM the elliptic mode
(γc = −1). Stability is guaranteed if the terms in square brackets are less than zero.
After simplifying, the following stability condition can be obtained:

ω2Γ1

C2ω1
+

Γ2ω1

C1ω2
< 2 for normal modes, (3.42a)

ω2Γ1

C2ω1
+

Γ2ω1

C1ω2
>

2

3
for elliptic modes. (3.42b)

It is interesting to see that the stability of the coupled solutions does not depend on
the energy but rather on the physical parameters of the system (i.e. eigenfrequen-
cies and nonlinear constants). It also means that regardless of the level of excita-
tion, exhibition of stable normal or elliptic modes are already pre-determined.
To complete the analysis, the stability condition of the uncoupled modes is deter-
mined. As noted by Manevitch and Manevitch [79], the stability of the uncoupled
solutions is determined by the energy of the system. Using the same approach as
for the coupled case (i.e. by determining the eigenvalues of the Jacobian matrix)
does unfortunately not give a useful criteria for the stability of uncoupled solutions.
Furthermore, Manevitch and Manevitch do not demonstrate an explicit proof of the
stability of uncoupled solutions in [79]. The underlying problem is that when set-
ting either b = 0 or a = 0 in the system, the degeneracy is ill-conditioned so that the
phase space shrinks down to a two DOFs system where the perturbation brought
by the other oscillators are not defined and thus cannot be studied.
Fortunately, the solution can be found from the forced and damped vibration case
by canceling the damping terms and identifying the external excitation frequency
to the nonlinear oscillation frequency ωNL. Using the existence conditions derived
in [77] from a geometric analysis in phase space, one can obtain the following in-
equality relations for the uncoupled solutions that define the instability regions:
For A-mode: [

ω2 + ε
C2

2ω2
a2

]
< ωNL <

[
ω2 + ε

3C2

2ω2
a2

]
, (3.43)

and for B-mode: [
ω1 + ε

C1

2ω1
b2
]
< ωNL <

[
ω1 + ε

3C1

2ω1
b2
]
. (3.44)

The instability affecting the A-mode originates from the eigenfrequency of the other
uncoupled mode, ω2 and vice versa. This is because the existence of the B-mode
upsets the stability of the original uncoupled solution. It is also interesting to note
that the point where the uncoupled solution changes its stability (either in losing or
restoring it) is also the point where the uncoupled solution branches into a coupled
solution (or a coupled solution leaves and enters the uncoupled solution) as defined
by Equations (3.35), (3.36), (3.38) and (3.39).
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3.3. Case study

3.3 Case study
In this section, several case studies are made to demonstrate the properties of the
system. Firstly, a perfect string is considered (i.e. σ1 = 0, C1 = C2 = Γ1 = Γ2).
For this case, the two amplitude-frequency relationships for uncoupled solutions
given by Equation (3.21) and (3.23) are exactly the same but lie on different planes
as shown in Figure 3.3a. For the coupled solutions, Equation (3.42a) dictates that
the normal mode is unstable and thus no normal modes can be observed in the
perfect case. On the other hand, elliptic modes do exist, and Equation (3.37) shows
that they have the same amplitude : a = b as shown by the translucent red plane
in Figure 3.3a. Also from Equation (3.37), one obtains the backbone curve for the
coupled, elliptic modes in the perfect case as:

ωNL = ω1

(
1 + 2ε

Γ1

ω2
1

a2

)
. (3.45)

This shows that coupled solutions have a stronger hardening behaviour than un-
coupled modes (see Equation (3.21)), as shown in Figure 3.3b, a 2D version of Fig-
ure 3.3a.
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(a) 3-dimensional view.
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Figure 3.3: Backbone curves for the string, perfect case with ω1 = ω2 = π (no de-
tuning: σ1 = 0), and equal nonlinear coefficients C1 = C2 = Γ1 = Γ2 = π4/2. The
black and blue lines indicate the two uncoupled modes while the red line
indicates the elliptic mode. ε = 10−3. For the 2-dimensional view, the (ωNL, a) plane
and (ωNL, b) are plotted on top of one another.

Finally, it is possible to show that the uncoupled solutions are bounded by Equa-
tion (3.43) and (3.44) respectively while the elliptic mode satisfies (3.42b). This leads
to the conclusion that all the solutions shown in Figure 3.3a are stable. This means
that if the motion is excited on a given polarization, then it will stay on it all the
time such that there will no branching off into the elliptic mode. The coupled ellip-
tic solutions could only be excited and observed if very specific initial conditions are
given to the string such that the motion is initiated along this mode.

60



3.4. Numerical validation

The next case to be investigated is the more realistic imperfect string. A detuning
σ1 = 1 between the two eigenfrequencies of the polarisation is introduced and all
the nonlinear coupling coefficients are assumed to be equal and perfect, such that

C1 = C2 = Γ1 = Γ2 =
π4

2
. (3.46)

The backbone curves are represented in Figure 3.4, where now the two uncou-
pled solutions (black and blue lines) are different and originates respectively from
ω1 and ω2 = ω1 + εσ1. Equation (3.42a) reveals that the normal mode is always
unstable in this configuration while the elliptic mode is stable as dictated by Equa-
tion (3.42b). On the other hand, the instability conditions for uncoupled solutions
(Equation (3.43) and (3.44)) show that:

• B-mode is always stable. The uncoupled solution does not enter the instability
region as defined by Equation (3.44) (bounded by cyan lines in Figure 3.4).

• A-mode becomes unstable as it enters the instability region as defined by
Equation (3.43) (bounded by grey lines in Figure 3.4).

The crossing between the A-mode and its instability limit occurs exactly when con-
dition (3.38) is fulfilled. From this point, the uncoupled solution becomes unstable,
and it branches into the elliptic mode (red line).
The important conclusion that can be drawn from this study is that as soon as
an imperfection is taken into account, i.e. when σ1 6= 0, an unstable region for
uncoupled modes exists. Once the amplitude limit is exceeded, uncoupled solution
becomes unstable so that even though an initial condition is given for that polari-
sation, an energy transfer will occur so that eventually the system would settle on
the stable elliptic mode. A numerical validation of this phenomenon is presented in
the following section with experimental validation being presented in Chapter 4.

3.4 Numerical validation

The reduced Kirchhoff-Carrier nonlinear equation that was introduced in Equa-
tion (3.1) can be numerically integrated in time by the modal approach as intro-
duced in Section 2.4.2. It is then possible to simulate the equations with increasing
amplitude of initial conditions to validate the existence condition of coupled modes.
The system in interest is a string and it is assumed that the nonlinear coefficients
are equal, such that:

C1 = C2 = Γ1 = Γ2 =
π4

2
,

and there is detuning between the two eigenfrequencies, such that:

ω2 = ω1 + εσ1,
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Figure 3.4: Amplitude-frequency relationships for periodic solutions of the nonlin-
ear string, imperfect case with σ1 = 1, all other coefficients being the same as in
Figure 3.3a: C1 = C2 = Γ1 = Γ2 = π4/2, ω1 = π, ε = 10−3. Black : uncou-
pled solution a 6= 0, blue uncoupled solution b 6= 0, red coupled elliptic mode.
Dashed lines indicates instability. In grey and cyan lines are the instability limits
predicted by Eq. (3.43) and (3.44) respectively.

as previously defined in Equation (3.8). The nonlinear phenomenon that can be
observed is the transition of uncoupled A-mode into the elliptic mode when Equa-
tion (3.38) is satisfied, as rewritten here:

a2 =
2σ1

3Γ1
ω1
− C2

ω2

.

Using σ1 = 6.1372, ε = 3.3905× 10−4 and the physical parameters outlined in Table
3.1, A-mode can branch into elliptic mode if the following condition is satisfied:

uinit ≥ 1.64mm, (3.47)

where uinit indicates the initial amplitude of the first mode of the u (or p or a) po-
larisation. To prescribe a different frequency between the u and v polarisation, they
are both given slightly different density, i.e. ρ and ρ̃ respectively for Equation (3.1a)
and (3.1b). The simulations are made with a time step of ∆t = 10−5s as only the
first mode is being solved.
Figure 3.5 shows the maximum amplitude achieved by the two polarisations when
an undamped string is excited with a half-sine wave (i.e. first mode shape) of in-
creasing initial displacement using the Kirchhoff-Carrier numerical scheme. Only
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Table 3.1: Simulation parameters used for the simulation.

Parameters Values
Tension, T0 895.2N
Young’s modulus, E 189.7 GPa
diameter, d 1.3mm
length, L 0.668m
density for u polarisation, ρ 7850kg.m−3

density for v polarisation, ρ̃ 7840kg.m−3

the first mode of each polarisation is considered (i.e. total number of modes, K = 1)
such that it would resemble the reduced order model as presented in Equation (3.7).
The excitation is made such that the u polarisation (A-mode) is always 16 order of
magnitude larger than the v polarisation (B-mode) so that B-mode would be very
lightly excited. This is necessary for numerical purposes as the B-mode would oth-
erwise always remain as 0 and exchange of energy would not have occurred.
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Figure 3.5: Maximum amplitude achieved by the two polarisations when an un-
damped string is excited with a half-sine wave (i.e. first mode shape) of increasing
initial displacement when solving the reduced order Kirchhoff-Carrier equation.
Observed point is at 30mm from one end of the string.

At low excitations, v increases at the same rate as u. However, as it approaches
the threshold as defined in Equation (3.47), the maximum amplitude of v increases
much more rapidly compared to the increase of u. This is because as the threshold is
exceeded, 1:1 internal resonance condition is met and there is an energy exchange
from the u polarisation to the v polarisation. At sufficiently high initial displace-
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3.4. Numerical validation

ment level (uinit > 4mm), energy exchange occurred in a way that v would achieve
the same maximum amplitude as u as is shown in Figure 3.6. At that point, the
energy remaining at the u polarisation would be minimal before it regains the en-
ergy from v. This is followed by an exchange of energy back to the u polarisation.
In an undamped system, this nonlinear exchange of energy between u and v occurs
repetitively (not shown in Figure 3.6).

0 2 4 6 8 10 12 14 16 18 20

−5

0

5

·10−4

time (s)

am
pl

it
ud

e
(m

)

u
v

Figure 3.6: Wave envelopes of the displacement-time plot of the nonlinear
Kirchhoff-Carrier equation when it is subjected to an initial condition of a half-
sine wave at an amplitude of 5mm. Observed point is at 30mm from one end of
string and the amplitude is thus approximately 0.14 times of the initial condition
amplitude.

A similar numerical experiment is re-conducted but instead of solving only the re-
duced order model, the geometrically exact nonlinear string model is solved instead
using MONTJOIE finite-element solver. The time step used is 10−6s and 50 finite
elements are used over the string length. The string remains undamped.
Figure 3.7a shows the maximum displacement of the u and v polarisations with
increasing amplitude of a half-sine wave initial condition at u. A small difference
as compared to previous simulations on the reduced order Kirchhoff-Carrier equa-
tions is that the v polarisation is given a constant half-sine wave initial condition
with amplitude of 10−16m and does not scale with u. Similar result compared to Fig-
ure 3.5 is observed but the energy gain of the v polarisation occurs at smaller initial
amplitude. At the initial amplitude of 1.5mm, the finite-element model already pre-
dicts a maximum displacement of v at the order of 10−10m but it was still at the
order of 10−16m for the Kirchhoff-Carrier reduced order model. The difference could
be due to the development of other nonlinear phenomenon that was not modeled by
the Kirchhoff-Carrier model.
To testify that elliptic mode cannot be originated from B-mode as defined in Equa-
tion (3.39) and that there is also no stable normal modes, a similar numerical ex-
periment, is conducted using MONTJOIE for the geometrically exact string model.
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(a) Excitation at u polarisation.
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(b) Excitation at v polarisation.

Figure 3.7: Maximum amplitude achieved by the two polarisations when an un-
damped string is excited with a half-sine wave (i.e. first mode shape) of increasing
initial displacement at the (a) u polarisaion and (b) v polarisation respectively when
solving the geometrically exact equation via the MONTJOIE finite-element solver.
Observed point is at 30mm from one end of the string.

The difference compared to the previous MONTJOIE simulation is that instead of
exciting the u polarisation with increasing amplitude, the v polarisation is excited.
Figure 3.7b shows the maximum displacement of both the v and u polarisations. De-
spite increasing initial displacement of v, u remains at the order of 10−14m, which
invariably confirms that there are no coupled modes that could originate from the
B-mode.

To further understand the nonlinear phenomenon, two more numerical experi-
ments are conducted using the MONTJOIE finite-element solver. The viscous damp-
ing model [57] is prescribed to the string equation and the same experiment where
the u polarisation is excited with increasing amplitude is repeated. The experi-
ments are repeated twice, with different initial amplitude of the v polarisation at
10−6m and 10−9m respectively. The idea here is to obtain a basic understanding on
the influence of damping on the geometrically exact string model, which is a more
accurate representation of a physical string. The two new sets of data are plot-
ted together with the undamped data in Figure 3.8. vmax,damped1 and vmax,damped2

indicate that the v polarisations are initialised at 10−6m and 10−9m respectively.
The maximum amplitude of the u polarisation, as indicated by umax,all remains un-
changed for all undamped and damped cases as it is the amplitude of the initial
conditions. Both the damped v polarisations responded in a similar fashion. There
is no increment in its maximum amplitude until an initial displacement of 2mm.
In comparison, in the undamped case, increase would have been observed at least
from 1.5mm. Such difference is expected; as damping is present in the system, en-
ergy is dissipated and thus more initial energy is required to trigger the nonlinear
phenomenon of 1:1 internal resonance.
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Figure 3.8: Maximum amplitude achieved by the two polarisations when undamped
and damped strings are excited with a half-sine wave (i.e. first mode shape) of in-
creasing initial displacement at the u polarisation when solving the geometrically
exact equation via MONTJOIE finite-element solver. Observed point is at 30mm
from one end of the string.

3.5 Double polarisation in linear wave equation

In Section 3.2 and 3.3, it has been shown that if a threshold amplitude is exceeded,
double polarisation would occur due to the nonlinearity of the string. The string
enters the coupled elliptic mode and energy is exchanged between the two modes
of the string. However, double polarisation could also occur even if the string is be-
ing excited linearly with small amplitude. Such non-planar motion is distinctively
different from the aforementioned phenomenon as there is no energy exchange be-
tween the two polarisations at all. For the linear double polarisation to occur, the
following conditions must be met:

• the two polarisations must be slightly detuned from one another,

• the two polarisations are excited at the same time.

It is intuitive to acknowledge that these conditions can easily be met. On one hand,
string is prone to imperfection with variability in manufacturing or by natural rust-
ing in metallic objects. The imperfection would invariably introduce detuning be-
tween the two polarisations of the string. On the other hand, it is very easy to
excite both polarisations, albeit at different amplitudes. Given that both polarisa-
tions are at right angle between each other, chances are an excitation could trigger
both modes with non-negligible amplitudes. To demonstrate the non-planar motion,
one can write two linear wave equations for two transverse displacements u and v
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3.5. Double polarisation in linear wave equation

where:

ρAü− T0u
′′ = 0, (3.48a)

ρAv̈ − T0v
′′ = 0, (3.48b)

with a boundary condition where the string is fixed at both ends:

u(0, t) = v(0, t) = 0, (3.49a)
u(L, t) = v(L, t) = 0. (3.49b)

For simplicity purposes, only the first mode is considered and the string is excited
with an initial displacement and has no initial velocity. Under these assumptions,
the solution to the two wave equations are:

u(x, t) = sin
(πx
L

)
P cos(ωut), (3.50a)

v(x, t) = sin
(πx
L

)
Q cos(ωvt), (3.50b)

where ωu and ωv are the two fundamental frequencies of the two transverse modes
respectively. If ωu = ωv, Equation (3.50) can be transformed into polar coordinates
(r, θ) where:

r(x, t) =
√

1 +R2P sin
(nπx
L

)
cos(ωut), (3.51a)

θ(x, t) = arctan(R), (3.51b)

where R = Q/P . From Equation (3.51), it can be seen that θ is constant and is
dependent on the ratio between the excited amplitude of the two displacements.
If only either mode is excited, R will either be 0 or very large where θ will either
be at 0 or π/2 rad. On the other hand, the radius r is determined entirely by the
initial displacement condition of the two modes and oscillates at the rate of ωu. For
example, if R = 1, the string oscillates at π/4 rad and remains in the same plane all
the time.
If the two fundamental frequencies are slightly different either in the form of slight
variation in tension or density, ωu and ωv can be defined such that:

ωv = ωu + δ, (3.52)

where δ is a detuning between the two frequencies. The radius r and angle θ in
polar coordinates thus become:

r(x, t) = sin
(nπx
L

)√
u2 +R2∆2(u− η/(R∆)), (3.53a)

θ(x, t) = arctan(R∆(1− tan(ωut) tan(δt))), (3.53b)

where ∆ = cos(δt) and η = Q sin(ωut) sin(δt). One could see that the angle is no
longer constant and is a function of time. This invariably confirms that if there is a
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3.5. Double polarisation in linear wave equation

detuning between the two fundamental frequencies, the oscillation no longer stays
planar but follows a path. This is because as the two wave equations are oscillating
at different frequencies, they will eventually go out of phase and thus they do not
remain in the same plane. Depending on the parameters, this non-planar motion
can thus be observable and complicate the readings from experiment.
Figure 3.9 shows a few examples of the trajectories as predicted by Equation (3.50)
for a string where ωu = 13, 786rad/s at x = L/2.
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Figure 3.9: Sample trajectories based on Equation (3.50) under different conditions
for a string where ωu = 13, 786rad/s at x = L/2.

The blue ( ) line shown is for R = 0 (i.e. P = 1, Q = 0), δ = 0.1. This shows that even
if there is a detuning between the two modes, both modes need to be excited. In this
case, Q = 0 and thus only a straight line trajectory is observed instead. The red ( )
line shown is for R = 1/

√
3, δ = 0.1. The ratio R = 1/

√
3 results in a 30° counter-

clockwise rotation from the horizon and both modes are being excited. Under the
presence of a small detuning of δ = 0.1, an elliptical non-planar trajectory can be
seen. The ( ) line shown is for R =

√
3, δ = 0.5. The ratio R =

√
3 corresponds to

a 60° counter-clockwise rotation from the horizon and under a bigger detuning at
δ = 0.5, the elliptical non-planar trajectory is more pronounced. Finally, at the same
angle, the black ( ) line shown is for R =

√
3 but it is defined such that there is no

detuning between the mode, i.e. δ = 0. When there is no longer any detuning, the
modes do not go out-of-phase and thus no double polarisation can be observed. In
short, the examples demonstrate that the two following criteria:

• the two polarisations must be slightly detuned from one another,

• the two polarisations are excited at the same time,
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3.6. Summary

must be met before double polarisation can be observed in linear string vibrations.

3.6 Summary
In this chapter, the condition where nonlinear strings can exhibit double polari-
sation is determined by multiple-scale analysis. For a string with two slightly de-
tuned modes, as an initial amplitude threshold is exceeded, nonlinear elliptic cou-
pled mode could occur where the in-plane polarisation could exchange energy with
the out-of-plane polarisation. The situation where this could arise is first studied by
theoretical case studies and is also numerically validated. Lastly, it is also demon-
strated that double polarisation could occur in a linear string.
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4

Experiments on string

In Chapter 2, string equations and their numerical models are introduced. In Chap-
ter 3, the double polarisation as caused by the string’s nonlinearity is studied. The
idea of detuning is also introduced. In this final chapter of Part I, several experi-
ments are conducted to demonstrate the presence of detuning and nonlinearity in
a piano string. In what follows, the experimental setup will be presented in Sec-
tion 4.1 followed by the introduction and identification of the polarisation angle,
a physical parameter that is closely related to the detuning of the string in Sec-
tion 4.2. String’s material parameters are then identified in Section 4.3 and the
chapter closes by demonstrating the nonlinear behaviour of the piano string in Sec-
tion 4.4.

4.1 Experimental setup

To validate the analytical findings in Section 3.2, A monochord experimental rig
is built as shown in Figure 4.1. A great deal of attention has been given to set up
the experiment so that accurate results can be extracted. The following items have
been used to ensure the accuracy of the experiment:

• Measuring device (green arrow): A KEYENCE 9030-D optical micrometer is
being used as it allows the measurement of the two transverse displacements
of a string at a single point. This is achieved by placing two orthogonal optical
micrometers, H1 and H2, where the shadow casted by the string is tracked
independently for both micrometers. The evolution of the double polarisation
can thus be accurately captured. In addition to that, the device can sample up
to 16,000Hz with ±2µm accuracy and does not require calibration between its
voltage output and actual displacement.

• String (blue arrow): The string of choice is a piano string manufactured by
French piano maker Stephen Paulello [87]. The string is tin-plated and clas-
sified as type M by the manufacturer and has a diameter of 1.3mm. While the
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4.1. Experimental setup

string is plated by tin to minimise rusting, it still suffers from rusting that
can be considered as a source of imperfection.

• Boundary condition (red arrows): A pair of custom-made clamps that im-
itate the clamping mechanism of a collet is being used as the boundary con-
dition of the string. The motivation behind the use of such clamps is to be as
close to an actual fixed-fixed boundary condition as possible. A quick check
of the boundary condition can be performed by exciting the string right in
the middle. If a fixed-fixed boundary condition is ensured, any even num-
bers of modes will not be observed in the frequency responses of the displace-
ment [80].

• Initial condition: The string is excited via the use of thin copper wire. Thin
copper wire is passed over the string and pulled to form a triangular shape
initial condition. As the pulling force increases, the copper wire will break and
thus triggering the free vibration of the piano string. The excitation method
is highly repeatable and consistent [83]. If a higher initial displacement is
needed, a thicker copper wire can be used instead so that the string can be
displaced more before the copper wire breaks. The use of copper wire also
allows the excitation of the string at different angles.

Figure 4.1: Actual experimental setup. The green, blue and red arrows show the
Keyence 9030-D, piano string and the boundary conditions respectively.

Figure 4.2 shows the schematic diagram of the experiment. The string is fixed onto a
bolt at each end and is screwed onto a steel plate. It is then stretched under tension
by tightening the bolts. The custom clamps are then used to fix its vibrating length
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4.2. Identification of polarisation angle

to L = 0.668m and the Keyence 9030-D is placed at 0.03m from one end (marked K
in Figure 4.2) to measure the string vibrations.

M KC

Figure 4.2: Simplified diagram of the experimental setup.

4.2 Identification of polarisation angle

The first experiment to be conducted for the validation purpose is to identify the
natural polarisation angles of the string. In an analytical or numerical context, it
is convenient, albeit arbitrarily, to define that the polarisations lie on the vertical
or horizontal plane. However, this is not necessarily the case for a string in the ex-
periment. Intrinsic material properties in the string have already defined its own
natural polarisation angles that are to be discovered. In addition to that, the nat-
ural polarisation of each eigenmode may not be identical as well. However, for the
context of this thesis, only the first mode is of concern to validate the analytical
finding as presented in Chapter 3, where nonlinear energy exchange between the
two polarisations are expected.
To determine the polarisation angles, the string is lightly excited using 0.07mm-
thick copper wire at its midpoint (marked M in Figure 4.2) so that most of the
energy is concentrated on the first mode. The 0.07mm copper wire will displace the
string by about 0.55mm before it breaks and set it to vibrate freely and linearly. This
excitation is repeated multiple times, each time pulling at a different angle and the
vibration is recorded for 5 seconds. For reference, 0° is defined at the measurement
axis of the H2 optical micrometer. Correspondingly, the measurement axis of the
H1 optical micrometer is thus +90°.
In most cases, both string modes will be excited as the string’s natural polarisation
angle falls on a very specific angle. If both string modes are slightly different from
one another in terms of frequency, both of them will be present in the displacement
signals. A way to observe them is to rotate all signals that are excited in differ-
ent angles to have their maximum amplitudes at the H2 axis, with an example as
shown in Figure 4.3. The signal at H2 is then named as the "dominant" mode and
the corresponding orthogonal signal at H1 as "orthogonal". Theoretically speaking,
if the string is excited over 180°, there will be two angles for which the dominant
signal contains only one mode and there is no orthogonal displacement at all. At
each of these angles, the single mode observed in the dominant signal is different
from one another. In practice, this is virtually impossible to achieve. Instead, it is
possible to observe a very strong mode in the dominant signal accompanied by a
very weak mode in the orthogonal signal at certain angles. When this is observed,
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4.2. Identification of polarisation angle

that angle is then identified as the natural polarisation angle of the specific mode
observed in the dominant signal.
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Figure 4.3: Comparison of raw signal and rotated signal. This particular raw signal
was rotated by -33°. The "dominant" and "orthogonal" signal are the vertical and
horizontal displacements of the rotated signal respectively.

To identify the frequency of the dominant and orthogonal signals, a high-resolution
parameter identification method is necessary due to the small detuning in the
string. It would be very difficult to obtain linear displacement signals that are long
enough to have the frequency resolution that can identify clearly the difference be-
tween the two string’s frequencies. Thus, the ESPRIT method is employed where a
signal, u(t) can be decomposed into:

u(t) =
K∑
k=1

ake
ςktej(2πfk+ϕk), (4.1)

where ak, ςk, fk and ϕk are the amplitude, damping constant, frequency and phase
of the k-th identified mode up to a maximum of K modes [88, 89]. For the purpose
of this set of data, only the first mode is consider and thus K = 1. To optimise the
processing requirement of the ESPRIT method, only a 0.3s-long signal is processed.
The time t0 when the orthogonal displacement is the largest is first identified and a
0.3s-long signal centered at t0 is then extracted and analysed by ESPRIT algorithm.
This allows accurate identification of the orthogonal mode as the signal is usually
very weak.
Figure 4.4 shows the amplitude of the dominant and orthogonal modes at each
transformed angle. The top figure shows its absolute amplitude while the bottom
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4.2. Identification of polarisation angle

figure displays the relative ratio between the dominant and orthogonal mode. At
around -85° and +5°, the orthogonal mode is at its weakest and the dominant mode
is the strongest. As mentioned before, these two angles can be identified as the
string’s natural polarisation angles. This is because when the string is excited along
this angle, one polarisation is very strongly excited and the other very weakly ex-
cited. These excitations would be analogous to exciting the uncoupled system in the
(ωNL, a) plane or the (ωNL, b) plane in Figure 3.4. At sections around -40° and +50°,
it can be seen that both the dominant and orthogonal modes are equally strong.
This is because they are both similarly excited in strength.
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Figure 4.4: Amplitude of dominant and orthogonal modes from -90° to +90°.

Figure 4.5 shows the frequency of both the dominant and orthogonal modes as pre-
dicted by ESPRIT algorithm. On the top figure, the actual frequency of the modes
are shown and the difference between these modes are shown at the bottom. It can
be seen that the difference between the two modes are about 0.1Hz at most. At -85°,
the dominant mode is about 0.1Hz higher than the orthogonal mode and vice versa
at +5°. This suggests that the two eigenfrequencies of the string are 0.1Hz apart.
However, the absolute dominant frequency is approximately 219.8Hz at -85° but
219.6Hz at +5°, which would otherwise suggests that the two eigenfrequencies are
0.2Hz different. It is inconclusive to suggest which theory is valid and thus a further
study is required to determine the detuning between the two eigenfrequencies.
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Figure 4.5: Frequency of dominant and orthogonal modes across the tested angle
range.

A similar experiment is being conducted numerically in the finite-element solver
MONTJOIE and the result is being shown in Figure 4.6. Simulations are run for
different angles and they are passed to ESPRIT for extraction of frequency and am-
plitude of the fundamental mode. The top plot shows the amplitude as extracted
while the bottom plot shows frequency. Since it is a numerical simulation, the de-
fault polarisations are at 0° (or +180°) and +90°. First, it is reassuring to see the
resemblance between the top amplitude plot and Figure 4.4 where the dominant
polarisation is shown to be the highest at its natural polarisation (i.e. at 0° and
+90°). At the midpoint between the two polarisations, i.e. at +45°, it can be seen
that the strengths are comparable, which is consistent to the experimental finding.
As for the frequency, it is artificially implemented that the two eigenfrequencies
are separated by 0.07Hz and this difference is clearly shown. At 0° (or +180°), the
lower eigenfrequency mode, ω1 sits at 223.02Hz and at +90°, the eigenfrequency ω2

is 223.78Hz. As one sweeps from +0° to +90°, it can be seen that several orthogonal
modes are detected at the vicinity of the two eigenfrequencies and are increasing in
strength. At +45°, the dominant mode swaps to the higher eigenfrequency ω2, while
the lower eigenfrequency ω1 decreases in strength until it becomes non-existent at
+90°. The same phenomenon is then mirrored from +90° to +180° where ω1 regains
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Figure 4.6: Amplitude(top) and frequency(bottom) of dominant and orthogonal
modes across the tested angle range in MONTJOIE. In both plots, the marker size
also indicates the amplitude level, with bigger marker indicating higher amplitude
level. In instances where more than one dominant or orthogonal modes are reported
(with slightly lesser amplitudes), the second dominant or orthogonal modes are also
shown.

the strength. In this plot, the two eigenfrequencies do not shift around and stay
mostly at its own value. It makes it easy to identify the detuning. The difference
between the two frequencies are the same value across the whole angle range. This
is in contrast with the experimental data where there is a noticeable shift with no
clear indication of the detuning difference.
In short, while the simulation result does not give a hint on identifying the de-
tuning between the two experimental eigenfrequencies, it does cross-validate the
amplitude result obtained from the experiment. With that, the natural polarisation
is identified to be at +5° and -85° for the string inspected. Despite the fact that the
detuning difference is not clearly determined, it is important to note that the mode
at +5° has a lower frequency compared to the one at -85° and their difference is
less than 0.2Hz. The eigenfrequency +5° corresponds to the lower eigenfrequency
mode ω1 in Equation (3.8), i.e. the black curve in Figure 3.4 while the one at -85°
corresponds to ω2, the blue curve in Figure 3.4.

77



4.3. Identification of string parameters

4.3 Identification of string parameters

Tension and Young’s modulus

After identifying the natural polarisation of the first eigenmode of each transverse
displacement, the string can be further characterised. Using the data from the
multi-angle excitations is not suitable as they were done at the midpoint on the
string, thus missing out information on every even modes. To mitigate this, a new
set of experiments are done with an excitation near the boundary of the string,
specifically 19mm from the end of the string (marked C in Figure 4.2). This is a
strategic location as it is only a nodal point for multiple of the 35th mode, which
has an eigenfrequency that exceeds 8,000Hz, the half of the sampling frequency.
The excitation is made along the natural polarisation at +5°. The measurement is
repeated 6 times and the signals are passed to an ESPRIT algorithm to extract
information on its frequencies and damping constants.
The tension and the Young’s modulus of the string can be identified by experimen-
tally determining the eigenfrequencies of the string. As derived by Chabassier for
a linear Timoshenko stiff string equation [75], the eigenfrequency equation can be
approximated by:

fn = nf0 +Bn3, (4.2)

where

f0 =
1

2L

√
T0

ρA
and B =

π2EI

4L3

√
T0

ρA

[
1− T0

EA

]
.

The two unknowns (f0 and B) in Equation (4.2) can be completely determined if
n = 2. If n > 2, it becomes an overdetermined system and a matrix equation can be
constructed for Equation (4.2) such that:

f1

f2

f3
...
fn

 =


1 1
2 8
3 9
...

...
n n3


[
f0

B

]
. (4.3)

The two unknowns f0 and B can thus be determined by fitting the data via the
least-square method. The least-square method minimises the squared residual, S
between the fitted and experimental data and S defined as:

S =

N∑
n=1

(fn,exp − fn,fit)2 , (4.4)

where fn,exp and fn,fit are the experimental and fitted eigenfrequencies from a data
set with N entries. The least-square fit method can be performed in MATLAB by
the "\" (blackslash) operator.
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4.3. Identification of string parameters

In this experiment, up to 22 eigenfrequencies are identified consistently in 6 sets
of measurement data by ESPRIT with a standard deviation of less than 0.8Hz as
shown in table 4.1. Taking the average of each eigenfrequency and performing a
least-square fit, f0 and B can be determined. Subsequently the two material pa-
rameters T0 and E can be calculated and they are presented in table 4.2.

Table 4.1: Averaged eigenfrequencies as extracted by ESPRIT and their standard
deviation (STD).

n Average frequency, fn (Hz) STD (Hz)
1 187.54 0.05
2 375.51 0.10
3 564.52 0.15
4 879.25 0.19
5 1102.57 0.23
6 1328.61 0.28
7 1556.60 0.33
8 1788.28 0.41
9 2023.71 0.28

10 2262.33 0.73
11 2507.24 0.51
12 2754.25 0.53
13 3007.90 0.60
14 3267.32 0.64
15 3530.87 0.65
16 3802.52 0.60
17 4080.50 0.65
18 4364.43 0.72
19 4655.34 0.74
20 4954.45 0.77
21 5259.43 0.71
22 5572.88 0.80

Table 4.2: Model parameters obtained from experimental data.

Parameter Value
T0 (N) 895.2
E (GPa) 189.7

Damping parameters

A similar strategy can be followed to obtain the damping parameters. Frequency-
dependent damping constants, ςn can be extracted by ESPRIT algorithm. They are
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4.3. Identification of string parameters

then substituted into Equation (2.76) and (2.82). For convenience, they are be-
ing rewritten below. For the Valette & Cuesta models (VCM) models [80], Equa-
tion (2.76) is:

ςn = σn, (4.5)

where
σn
πfn

=
1

Qn,air
+

1

Qn,vis
+

1

Qther
,

and

1

Qn,air
=

2πηair + 2πd
√
πηairρairfn

2πρAfn
,

1

Qn,vis
=

4π2ρAEIfn
2

T0
2 δvis.

The unknowns to be solved in Equation (4.5) is viscoelastic loss angle δvis and the
thermoelastic loss quality factor Qther. Meanwhile, for the simple viscous damping
model (SVM) [57], Equation (2.82) is:

ςn = Ru + ωn
2ζu, (4.7)

where Ru and ζu are two unknowns that characterise the damping models. Both
Equation (4.5) and (4.7) are written in frequency-dependent forms and as such,
they can be written as an overdetermined system like Equation (4.3) and have the
unknowns be determined by fitting the data via least-square method.
Figure 4.7 shows the 22 extracted experimental damping constants and two differ-
ent VCMs that are obtained based on the fitting of those data. The first VCM model,
as shown as grey curve, is obtained by fitting Equation (4.5) using all 22 experimen-
tal damping constants, i.e. n = 22. However, that results in a negative δvis which is
not realistic. If δvis is negative, it would have meant that the string is gaining en-
ergy rather than losing it. Thus, this model cannot be used and must be discarded.
An alternative is to use less modes, i.e. reducing n. When n = 16, by least-square
method, the fitted δvis is positive. The VCM obtained using this value and the cor-
responding Qther is as shown as the black curve in Figure 4.7. One can argue that
the 16-mode VCM is more realistic even though it uses less data points. Indeed,
considering only the first 16 modes, the 16-mode VCM does not differ greatly from
the 22-mode VCM. From mode 17 and above, the 16-mode VCM fits the experimen-
tal values poorly. In spite of that, for most purposes, the lower modes are usually
more strongly excited and the higher modes are more strongly attenuated. Thus,
between having unrealistic damping constant and a poor fit at higher modes, it is
more appropriate to opt for the latter and adopt the 16-mode VCM.
Figure 4.8 shows again the 22 extracted experimental damping constants and two
different SVMs that are obtained based on the fitting of those experimental data.
The two SVMs that are shown are obtained by considering all 22 modes or the
first 16 modes. As can be seen, the 22-mode model is also suboptimal with strong
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Figure 4.7: Comparison between the 22-mode and 16-mode estimation of Valette &
Cuesta model against the experimental data.

overestimation (by a factor of 2) for the first 5 modes. In contrast, the 16-mode SVM
models the lower modes more accurately and is thus preferred.
All the determined damping parameters are as shown in Table 4.3. When SVM
is being used for the geometrically exact finite-element model in MONTJOIE, the
other damping parameters are chosen as:

Rφ = Rψ = Rv = Ru = 0.5067s−1, (4.8a)

ζφ = ζψ = ζv = ζu = 3.8× 10−9s, (4.8b)

Rw = 0.5s−1, (4.8c)

ζw = 10−9s, (4.8d)

as per recommended by [84].

Table 4.3: Damping parameters of SVM and VCM.

Parameter Value
δvis 1.2208e-4
Qther 5941
Ru 0.5067 1/s−1
ζu 3.800e-9 s

Since VCM is used exclusively for the Kirchhoff-Carrier numerical scheme (see
Section 2.4.2), it is possible to further improve the modelling of the damping phe-
nomenon using a "hybrid VCM". For the first 22 modes, experimental damping con-
stants are used and if modelling of the 23rd mode and above is necessary, the 16-
mode VCM is used instead. An example of the hybrid VCM is as shown alongside
with the 16-mode SVM in Figure 4.9 up until the audible limit of 20kHz.
The hybrid VCM and SVM can both be used in the Kirchhoff-Carrier numerical
scheme. The same simulation performed in Section 2.4.5 is repeated for the scheme
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Figure 4.8: Comparison between the 22-mode and 16-mode estimation of the simple
viscous damping model against the experimental data.
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Figure 4.9: Comparison between the hybrid Valette & Cuesta model and 16-mode
the simple viscous damping model within the audible frequency range.

with hybrid VCM. To recap, the simulation parameters used are as shown in Ta-
ble 2.1 and the string is plucked with a 33° offset from one polarisation at 0.3335m
from one end with an amplitude of 0.33mm. A detuning between the two funda-
mental frequencies of the string polarisation u and v is given at 0.14Hz and the
difference is accounted for by changing the density of the v string mode. Observa-
tion point is at 0.638m from one end of the string.
The simulation is configured to match an experimental measurement that are con-
ducted under very similar condition. The simulated displacements for both damping
models are as shown together with the experimental data. The top plot shows the
displacements in the plane of excitation (i.e at 33°) and the bottom plot shows the
orthogonal out-of-plane displacement. Comparing between hybrid VCM and SVM,
the string is more strongly damped by SVM which is not surprising as SVM has
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4.4. Nonlinear effect and detuning identification

consistently higher damping constants than hybrid VCM as is shown in Figure 4.9.
Comparing between the simulation done with hybrid VCM and the experimental
data, the numerical simulation exhibits a stronger attenuation which is perplexing
as the hybrid VCM uses experimental damping constants for the first 16 modes.
Since the string is only lightly excited, it is not expected that the discrepancy orig-
inates from the high frequency modes. The discrepancy between the simulations
using the hybrid VCM and the measurements could be attributed to experimental
errors of inaccuracy in extracting the damping constants using ESPRIT algorithm.
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Figure 4.10: Comparison between the experimental data (labeled ’experiment’), the
Kirchhoff-Carrier numerical scheme with hybrid VCM and with SVM, showing its
wave envelope over the first 4 seconds after excitation. The envelope is obtained by
determining the maximum and minimum displacements over a short time sample
of 10ms.

4.4 Nonlinear effect and detuning identification

From the findings of Section 3.2 via multiple-scale analysis, if the two eigenfre-
quencies of a string are slightly detuned from each other, it is possible that an
uncoupled polarisation can lose its stability due to 1:1 internal resonance if it is
being excited above a threshold amplitude as is defined in Equations (3.43) and
(3.44). As the uncoupled polarisation loses its stability, it could then branch into a
stable coupled mode as dictated by Equations (3.38), (3.39), (3.35) and (3.36). From
earlier analysis, it can be understood that for a coupled system like the two string
polarisations, Equations (3.39), (3.35) and (3.36) could not be satisfied. Thus, from
Equation (3.38), only the polarisation u, with dimensionless eigenfrequency ω1 and
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4.4. Nonlinear effect and detuning identification

amplitude 2a, can branch into a stable elliptic mode. The stability of the elliptic
mode is guaranteed as is defined in Equation (3.42b). Rewriting Equation (3.38):

a2 =
2σ1

3Γ1
ω1
− C2

ω2

, (4.9)

where Γ1 and C2 are the two nonlinear coefficients and can be assumed to be π4/2;
σ1 is the detuning parameter that relates the two polarisations’ frequency by ω2 =
ω1 + εσ1, and ε is a small parameter as defined in Equation (3.5).
A closer look at Equation (4.9) reveals that the RHS is entirely dependent on σ1. As
such, theoretically speaking, if the minimum a where elliptic mode could occur is
found, it is thus possible to determine σ1 and consequently the difference between
the two polarisations’ frequency. To obtain a, the string needs to be excited with
increasing initial amplitude until vibration of the second polarisation is observed.
This is achieved by pulling the string with copper wire of increasing thickness, or
with multiple copper wires so that the string would be displaced more before the
copper wires break and send the string free to vibrate.
Figure 4.11a shows the amplitude spectral density of the fundamental frequency
of both the dominant and orthogonal modes when the string is excited at +5° with
variable initial amplitudes. It is imperative to excite at +5° (with tolerance of ±1°)
instead of -85° because the elliptic mode originates only from the uncoupled mode
with lower eigenfrequency, as is shown in Equation (4.9). The data are plotted on
the x-axis based on the initial excited amplitude of each measurement, similar to
the numerical experiments performed in Section 3.4. On the y-axis, the amplitude
spectral densities (ASD) of the fundamental mode are plotted instead. To obtain
ASD over the full frequency spectrum, two different 0.1s signals are then obtained
for both the in-plane dominant signal and out-of-plane orthogonal signal, for when
their amplitudes are the largest. For the dominant signal, this corresponds to the
beginning of the signal. The ASD of these signals are then estimated using the
following equation:

ASD =

√
|FFT|2∆t2

T
, (4.10)

where FFT represents the Fourier transform of the signals using the fast Fourier-
Transform algorithm, ∆t the time resolution of the signal (1/16000s) and T the
length of the signal (0.1s). Finally, the ASD of fundamental modes are extracted
and plotted. The main advantage of using amplitude spectral density instead of
simply a Fourier transform is to obtain results that are independent from influence
of frequency resolution.
At low initial excited amplitude (i.e. <0.6mm), the dominant and orthogonal compo-
nents are at least an order of magnitude apart from each other. This is because it is
impossible to completely isolate the orthogonal mode. As such, the orthogonal mode
is always very lightly excited. When the string is strongly excited (i.e. >1.3mm),
orthogonal modes vibrate in the same order of magnitude as the initial dominant
modes and confirm the findings where nonlinear exchange of energy between the

84



4.4. Nonlinear effect and detuning identification

two polarisations could occur if the string is excited beyond a certain amplitude
threshold. At moderate excitation (between 0.7mm and 1.0mm), an intermediate
regime is observed where the difference in magnitude has reduced, suggesting that
nonlinear exchange of energy took place but is not strong enough to develop fully.
This observation could be due to the influence of string’s damping. As such, it is
difficult to recommend the usage of these data to obtain the detuning parameters
as shown in Equation (4.9).
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(a) Excitation at +5°.
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(b) Excitation at -85°.

Figure 4.11: Dominant and orthogonal amplitude spectral densities, plotted against
increasing initial amplitudes.

To further validate the finding from multiple-scale analysis, the other polarisa-
tion is also excited with increasing initial amplitude. As has been discussed ear-
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4.5. Summary

lier, from Equations (3.36) and (3.39), when one excites the other polarisation v
with frequency ω2 and amplitude 2b, neither elliptic nor normal mode could occur.
Figure 4.11b shows the amplitude of the fundamental frequency of both the domi-
nant and orthogonal modes when the string is excited at -85° with variable initial
amplitude. These amplitudes are extracted based on the same methods as in Fig-
ure 4.11a. Unfortunately, only data up to 0.7mm are shown. Higher excitation data
for this polarisation is not available due to difficulty in exciting the string as it re-
quires pulling the string with a downward motion at a slightly awkward angle. It
also requires the use of multiple copper wire which further reduces the precision
of the pulling action. As a result, several sets of data obtained for the higher exci-
tation are not satisfactory as they are not excited within the tolerance of the angle
and are thus not included.

4.5 Summary
In this chapter, experiments are conducted on a monochord test bench. An original
method is proposed to identify the natural polarisation angles of the string’s funda-
mental mode. The two identified polarisation angles are +5° and -85° respectively.
The detuning between the two modes is found to be between 0.1Hz and 0.2Hz.
The material and damping parameters of the string are also identified. Lastly, the
findings from Chapter 3 is experimentally validated where double polarisation is
observed once an amplitude threshold is exceeded.
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Your problem is to bridge the gap which exists be-
tween where you are now and the goal you intend
to reach.

EARL NIGHTINGALE

PART II:

BRIDGE
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5

Modelling the coupling between
the string and a lumped bridge

In most pianos, strings are strung over the bridge in a horizontal zig-zag configu-
ration. Weinreich [27] noted that when a string is excited vertically by a hammer,
energy in the vertical direction decays and is transferred through the bridge to
the soundboard more rapidly compared to the energy in the horizontal direction.
Consequently, despite being a weaker polarisation in the beginning, the horizontal
vibration becomes dominant and provides the characteristic double decay of a pi-
ano. In Chabassier et al.’s work [63,75], both the string and bridge are only allowed
to move in the vertical plane. One of the main idea of the thesis is to extend the
work by considering vibrations in the horizontal plane. The horizontal vibration of
the string was studied in Part I and in this part, the focus is on the bridge and its
coupling with the string.
In this chapter, a bottom-up approach is adopted where the coupling between the
string and a lumped bridge is built from the simplest model to the most complicated
in Section 5.1. As a reminder, the lumped bridge is considered as a set of oscillators
in different directions that are all in the same point. A modal approach is taken
where the eigenfrequencies of these models are determined in Section 5.2. For the
simplest cases, the exact modal solutions are also proposed.

5.1 Derivation of coupled models of the string and a
lumped bridge

To facilitate the identification of the various models of varying degree-of-freedom
(DOF) used throughout the chapter, a unique naming scheme is proposed with a
format of:

ST1L1R1-BT2L2R2 (5.1)

where T1,T2,L1,L2,R1 and R2 are integers between 0 and 2. The prefixes S and
B indicate the string and bridge subsystem respectively and the three digits that
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5.1. Derivation of coupled models of the string and a lumped bridge

follow after the alphabet indicate the number of DOF in transverse motion, longi-
tudinal motion and rotational motion respectively. For example, the most complex
coupled model built in this thesis, S212-B213 would consider all 2 transverse, 1
longitudinal and 2 rotational displacements of the strings coupled to a bridge with
freedom to move in all 3 translational and 3 rotational directions.

5.1.1 S100-B100: Linear wave equation coupled to a
single-oscillator lumped bridge

The simplest possible case involving the string and bridge is when both of them
only have a single displacement in the same direction, e.g. in the vertical direction.
The string has its transverse displacement described by the linear wave equation
(Equation (2.31)) while the bridge can be described as a simple harmonic oscillator
with an external force from the string. If the string is attached to the bridge at
x = L as illustrated in Figure 5.1, the equation of the coupled system is thus [90]:

ρAü− T0u
′′ = 0, (5.2a)

M1λ̈1 + S1λ̇1 +K1λ1 = −T0u
′(L, t), (5.2b)

where u is the transverse displacement of the string and λ1 is the vertical displace-
ment of the bridge oscillator. M1, S1 and K1 are the bridge’s mass, damping coef-
ficient and stiffness coefficient respectively. The subscript 1 is appended to all the
oscillators’ terms so as to be consistent with models proposed later in this section.

M1

S1K1

x

λ1(t)
u(x, t)

Figure 5.1: Illustration of the coupling between a transversely vibrating string and
its bridge (S100-B100).

At x = 0, the string is fixed and thus its boundary condition can be written as:

u(0, t) = 0. (5.3)

At x = L, the string is attached to the bridge. The boundary condition can be ob-
tained by writing the energy equation of the system. To obtain an energy expres-
sion, the same approach as in Chapter 2 is used here as well. Equation (5.2a) is first
multiplied by u̇ and then integrated over the string length. For Equation (5.2b), it
is only necessary to multiply the equation by λ̇1 and set S1 = 0 for a conservative
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5.1. Derivation of coupled models of the string and a lumped bridge

system. The equations become

d

dt

[
1

2

∫ L

0
ρA (u̇)2 +

1

2

∫ L

0
T0

(
u′
)2]

= T0

[
u̇u′
]L
0
, (5.4a)

d

dt

[
1

2
M1(λ̇1)2 +

1

2
K1 (λ1)2

]
= −T0u

′(L, t)λ̇1. (5.4b)

It is useful to recall that in a string with both fixed ends, the boundary terms at
the RHS of Equation (5.4a) go to zero due to the boundary conditions. In a coupled
system, the sum of all the terms at the RHS of both equations (5.4a) and (5.4b) go
to zero. This yields:

u̇(L, t) = λ̇1, (5.5)

which corresponds to the continuity of velocity and the boundary condition at x = L.
The energy of this system can thus be written as:

d

dt
[KEs + PEs + KEb + PEb] = 0, (5.6)

where

KEs =
1

2

∫ L

0
ρA (u̇)2 dx, (5.7a)

PEs =
1

2

∫ L

0
T0

(
u′
)2

dx, (5.7b)

KEb =
1

2
M1λ̇

2
1, (5.7c)

PEb =
1

2
K1λ

2
1. (5.7d)

5.1.2 S100-B101: Linear wave equation coupled to a two-oscillator
lumped bridge

It is possible to extend the 1DOF bridge model slightly by including an offset be-
tween the attachment point of the string and the mass centre of the bridge. The
offset forms a rigid link between the two points and allows the lumped bridge to
rotate as it is subjected to a moment induced by the offset and string force. The
system is illustrated in Figure 5.2 and its equation is written as:

ρAü− T0u
′′ = 0, (5.8a)

M1λ̈1 + S1λ̇1 +K1λ1 = −T0u
′(L, t), (5.8b)

I2θ̈2 +R2θ̇2 + J2θ2 = −T0u
′(L, t)(−h3). (5.8c)

In Equation (5.8c), the offset h3 is preceded with a negative sign. This is done so
that it would be consistent with models that are derived subsequently. Compared
to S100-B100, it is obvious that the same boundary condition remains at x = 0
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5.1. Derivation of coupled models of the string and a lumped bridge

M1, I2

S1, R2K1, J2

x h3

λ1(t)
u(x, t) θ2(t)

Figure 5.2: S100-B101 model

where u(0, t) = 0. At x = L, the boundary condition can be similarly obtained by
writing the energy equations. Multiplying Equation (5.8a), (5.8b) and (5.8c) with u̇,
λ̇1 and θ̇2 respectively, integrating only Equation (5.8a) over length L and setting
S1 = R2 = 0, one would obtain:

d

dt

[
1

2

∫ L

0
ρA (u̇)2 +

1

2

∫ L

0
T0

(
u′
)2]

= T0

[
u̇u′
]L
0
, (5.9a)

d

dt

[
1

2
M1(λ̇1)2 +

1

2
K1(λ1)2

]
= −T0u

′(L, t)λ̇1, (5.9b)

d

dt

[
1

2
I2(θ̇2)2 +

1

2
J2(θ2)2

]
= −T0u

′(L, t)(−h3)θ̇2. (5.9c)

The LHS and RHS define the energy of the system and boundary terms respectively.
For conservation of energy, the sum of all RHS terms equate to zero and this yields
the boundary condition:

u̇(L, t) = λ̇1 + (−h3)θ̇2, (5.10)

and the energy of the system is the same as Equation (5.6) where KEs and PEs are
as expressed in Equation (5.7) and:

KEb =
1

2
M1λ̇1

2 +
1

2
I2θ̇

2
2,

PEb =
1

2
K1λ1

2 +
1

2
J2θ

2
2.

5.1.3 S101-B101: Linear Timoshenko string equation coupled to a
two-oscillator lumped bridge

Another factor that could induce a rotation in the lumped bridge is the rotation
of the string cross-sectional area. The rotation of the string arises when the Tim-
oshenko string is considered. Coupling a Timoshenko string model to a lumped
bridge with one translational and rotational oscillator, the system as illustrated in
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5.1. Derivation of coupled models of the string and a lumped bridge

Figure 5.3 have the following equations of motion:

ρAü− T0u
′′ +AGκ

∂

∂x
(φ− u′) = 0, (5.12a)

ρIφ̈− EIφ′′ +AGκ(φ− u′) = 0, (5.12b)

M1λ̈1 + S1λ̇1 +K1λ1 = −T0u
′(L, t) +AGκ

[
φ(L, t)− u′(L, t)

]
, (5.12c)

I2θ̈2 +R2θ̇2 + J2θ2 = −EIφ′(L, t) +
[
−T0u

′(L, t) +AGκ(φ(L, t)− u′(L, t))
]

(−h3),
(5.12d)

with boundary conditions:

u(0, t) = 0, (5.13a)
φ′(0, t) = 0 (5.13b)

M1, I2

S1, R2K1, J2

x h3

λ1(t)
u(x, t) θ2(t)

φ(x, t)

Figure 5.3: S101-B101 model.

Writing the same energy equation, one would obtain the boundary condition:

u̇(L, t) = λ̇1 + (−h3)θ̇2, (5.14a)

φ̇(L, t) = θ̇2. (5.14b)

The energy of the system has the same form as Equation (5.6) where

KEs =
1

2

∫ L

0
ρA (u̇)2 dx+

1

2

∫ L

0
ρI
(
φ̇
)2

dx, (5.15a)

PEs =
1

2

∫ L

0
T0

(
u′
)2

dx+
1

2

∫ L

0
EI
(
φ′
)2

dx+
1

2

∫ L

0
AGκ(φ− u′)2dx, (5.15b)

KEb =
1

2
M1λ̇1

2 +
1

2
I2θ̇

2
2, (5.15c)

PEb =
1

2
K1λ1

2 +
1

2
J2θ

2
2. (5.15d)

5.1.4 S200-B201: Non-planar linear string coupled to a
three-oscillator lumped bridge

The coupling case can be extended to include non-planar motion of the string. The
simplest non-planar string equation considered is a pair of uncoupled linear wave
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5.1. Derivation of coupled models of the string and a lumped bridge

equation that are coupled at x = L to two translational oscillators respectively,
forming effectively two uncoupled S100-B100 systems. Given an offset between the
attachment point and mass centre of the bridge as is shown in Figure 5.4, the two
uncoupled S100-B100 system can be coupled by the additional rotational oscillator
with the following equations of motion:

ρAü− T0u
′′ = 0, (5.16a)

ρAv̈ − T0v
′′ = 0, (5.16b)

M1λ̈1 + S1λ̇1 +K1λ1 = −T0u
′(L, t), (5.16c)

M2λ̈2 + S2λ̇2 +K2λ2 = −T0v
′(L, t), (5.16d)

I3θ̈3 +R3θ̇3 + J3θ3 = T0u
′(L, t)h2 − T0v

′(L, t)h1. (5.16e)

zb
yb

xb

u(x, t)

v(x, t)

λ1

λ2

h1
h2

θ3

Figure 5.4: S200-B201 model.

To facilitate subsequent discussion, the coordinate system of the lumped bridge is
finally introduced (see Figure 5.4) where the direction zb coincides with the axial
direction of the string, i.e. x.
Similar to earlier case, a fixed boundary condition can be imposed at x = 0 where:

u(0, t) = v(0, t) = 0. (5.17)

The boundary condition at x = L can be similarly recovered from the energy equa-
tions, and is written as:

u̇(L, t) = λ̇1 − h2θ̇3, (5.18a)

v̇(L, t) = λ̇2 + h1θ̇3. (5.18b)
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5.1. Derivation of coupled models of the string and a lumped bridge

For a conservative system where S1 = S2 = R3 = 0, the energy equation retains the
same form as Equation (5.6) where:

KEs =
1

2

∫ L

0
ρA (u̇)2 dx+

1

2

∫ L

0
ρA (v̇)2 dx, (5.19a)

PEs =
1

2

∫ L

0
T0

(
u′
)2

dx+
1

2

∫ L

0
T0

(
v′
)2

dx, (5.19b)

KEb =
1

2
M2λ̇2

2 +
1

2
M1λ̇1

2 +
1

2
I3θ̇

2
3, (5.19c)

PEb =
1

2
K2λ2

2 +
1

2
K1λ1

2 +
1

2
J3θ

2
3. (5.19d)

5.1.5 S212-B213: 5DOF string coupled to a lumped bridge with
three translational and three rotational oscillators

In earlier subsections, various models have been built to understand how the cou-
pled string and bridge model varies in different situations. They can be summarised
as follows:

• In Section 5.1.1, the simplest model is built with only one transverse displace-
ment on the string and the bridge. The boundary condition is:

u̇(L, t) = λ̇1.

• In Section 5.1.2, an offset between the string attachment point and centre of
bridge mass is introduced. This induces a torque on the bridge and allows
the bridge to rotate by an θ2 about the yb-axis. The boundary condition, after
accounting for the offset h3, is:

u̇(L, t) = λ̇1 + (−h3)θ̇2.

• In 5.1.3, string vibrates transversely and also rotates along its cross-sectional
area. The rotational displacement of the string is coupled to the rotational
displacement of the bridge. The boundary conditions are:

u̇(L, t) = λ̇+ (−h3)θ̇2,

φ̇(L, t) = θ̇.

• In Section 5.1.4, string vibrates in both transverse directions and each trans-
verse displacement is coupled to a translational oscillator, essentially forming
two S100-B100 systems. The two systems are coupled together by the rota-
tional oscillator when there is an offset between the string attachment point
and the bridge mass centre. The boundary conditions become:

u̇(L, t) = λ̇1 − h2θ̇3,

v̇(L, t) = λ̇2 + h1θ̇3.
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5.1. Derivation of coupled models of the string and a lumped bridge

Inferring from all of the results above, it is possible to build a model where the
string is attached to a lumped bridge in 3D as is shown in Figure 5.5. The hori-
zontal, vertical and longitudinal offsets are shown in blue, red and green lines re-
spectively. The equations of motion, for a geometrically exact nonlinear stiff string
equation coupled to the said lumped bridge, are:

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ + Yq̇− Zq̇′′ = 0, (5.22a)

Mbλ̈ + Sbλ̇ + Kbλ = −FB, (5.22b)

Ibθ̈ + Rbθ̇ + Jbθ = −MB + h× (−FB),
(5.22c)

where q = [u, v, w, φ, ψ], and Ms, A, B, C, Y, Z and ∇H remain the same as de-
scribed in the Chapter 2 (see Equation (2.50)). The other matrices are:

Mb =

M1 0 0
0 M2 0
0 0 M3

 , Sb =

S1 0 0
0 S2 0
0 0 S3

 , Kb =

K1 0 0
0 K2 0
0 0 K3


Ib =

I1 0 0
0 I2 0
0 0 I3

 , Rb =

R1 0 0
0 R2 0
0 0 R3

 , Jb =

J1 0 0
0 J2 0
0 0 J3

 , h =

h1

h2

h3

 ,
(5.23)

and

FB = [F1 F2 F3]T , (5.24a)

MB = [F5 F4 0]T , (5.24b)

where

F = [Aq′ + Bq +∇H(q′) + Zq̇′]x=L. (5.25)

Note that the third term of MB is zero. This is because the rotation about the
string’s axial axis is not considered and thus there is no corresponding moment for
θ3. The boundary condition at x = 0 is:

u(0, t) = v(0, t) = w(0, t) = 0, (5.26a)
φ′(0, t) = ψ′(0, t) = 0. (5.26b)

It is possible to recover the boundary condition at x = L by writing out the en-
ergy equation and equating all the boundary terms to zero. This would yield the
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h3

h3

h1
h1

h2

h2

u(x, t)

w(x, t)

v(x, t)

w(x, t)

u(x, t)

v(x, t)

zb
yb

xb

zb

yb

zb

xb

yb

xb

Figure 5.5: From top left, counter-clockwise: Top view, side view, front view and iso-
metric overview. Isometric view is not to scale to the orthographic figures. Note that
h3 would have a negative value but h1 and h2 would be positive in this configuration.

following boundary conditions:

u̇(L, t) = λ̇1 + h3θ̇2 − h2θ̇3, (5.27a)

v̇(L, t) = λ̇2 + h1θ̇3 − h3θ̇1, (5.27b)

ẇ(L, t) = λ̇3 + h2θ̇1 − h1θ̇2, (5.27c)

φ̇(L, t) = θ̇2, (5.27d)

ψ̇(L, t) = θ̇1. (5.27e)

Equation (5.22) and boundary condition (5.27) are actually a general form for all the
previous cases when different h, q, λ and θ values are considered as summarised
in Table 5.1.

Up until this point, all the models are derived based on the assumption that the
coordinate axis of the string coincides with the coordinate axis of the bridge. How-
ever, it can be inferred from a piano that the string does not terminate at the bridge
at such perfection but at certain incident angles. The incident angles α and β can
be observed when seen from the side or from the top respectively as shown in Fig-
ure 5.6. Angle α is present in the piano so that the string could exert its down-
bearing forces to transmit its energy to the soundboard. Angle β can be most easily
seen from triplets of string. At one end, all the strings terminate at the tuning pins
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5.1. Derivation of coupled models of the string and a lumped bridge

Table 5.1: Various cases with different h, q, λ and θ values.

Case h q λ θ

S100-B100 [0, 0, 0] [u, 0, 0, 0, 0] [λ1, 0, 0] [0, 0, 0]
S100-B101 [0, 0, h3] [u, 0, 0, 0, 0] [λ1, 0, 0] [0, θ2, 0]
S101-B101 [0, 0, h3] [u, 0, 0, φ, 0] [λ1, 0, 0] [0, θ2, 0]
S200-B201 [h1, h2, 0] [u, v, 0, 0, 0] [λ1, λ2, 0] [0, 0, θ3]
S212-B213 [h1, h2, h3] [u, v, w, φ, ψ] [λ1, λ2, λ3] [θ1, θ2, θ3]

α

β

γ

h3

h3

h1
h1

h2

h2

u(x, t
)

w(x, t
)

v(x, t)

w(x, t)

u(x, t)

v(x, t)

yb

xb

zb

xb

zb

yb
zb
yb

xb

Figure 5.6: From top left, counter-clockwise: Top view, side view, front view and iso-
metric overview. Isometric view is not to scale to the orthographic figures. Note that
h3 would have a negative value but h1 and h2 would be positive in this configuration.

fastened to the pinblock and each of these pins are closely placed together. As the
strings terminate at the other end, i.e. at the bridge, each of the string terminates
more widely apart from each other, and thus all the strings would have a slightly
different incident angle β. Last but not least, from result obtained in Section 4.2,
it is unlikely that the string natural polarisation would match the bridge horizon-
tal and vertical axis perfectly. Thus, an angular offset of γ is needed to properly
describe the interaction between these polarisations and the bridge.

Considering each offset angle individually, the transformation matrix, writing only
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5.1. Derivation of coupled models of the string and a lumped bridge

the translational displacements, are:

λ̇1

λ̇2

λ̇3

 =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

u̇v̇
ẇ

 , (5.28a)

λ̇1

λ̇2

λ̇3

 =

1 0 0
0 cos(β) − sin(β)
0 sin(β) cos(β)

u̇v̇
ẇ

 , (5.28b)

λ̇1

λ̇2

λ̇3

 =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

u̇v̇
ẇ

 . (5.28c)

These transformations are first introduced by Euler with the angles α, β and γ
known as the Euler angles. It is tempting to simply multiply all three transforma-
tion matrix together to describe the angular transformation from the string vari-
ables [u, v, w] to the bridge variables [λ1, λ2, λ3] axis. However, since these matrix
are not commutative, the order of multiplication of the transformation matrices
would affect the final transformation matrix. For the context of the transformation
from string axis to bridge axis, all angles ought to be transformed simultaneously.
Describing the transformations via Euler angle formulations is unfortunately not
sufficient as each of the transformation matrix do not share the same eigenvectors
(in a 2D transformation, the rotation eigenvectors are ±i).
In the context of this PhD work, the interest is on the double polarisation of the
string. It can also be learned from Section 4.2 that γ can take any value as the
string natural polarisation is not necessarily horizontal and vertical. It can also be
deduced that α and β are usually very small and thus one can neglect their influence
by setting the values to be zero. Thus, the full coupling conditions at x = L, after
taking into account only the transformation angle γ is:


cos(γ) − sin(γ) 0 −h3 0
sin(γ) cos(γ) 0 0 h3

0 0 1 h1 cos(γ)− h2 sin(γ) −h2 cos(γ)− h1 sin(γ)
0 0 0 sin(γ) cos(γ)
0 0 0 cos(γ) − sin(γ)


︸ ︷︷ ︸

τ


u̇
v̇
ẇ

φ̇

ψ̇

 =


λ̇1

λ̇2

λ̇3

θ̇1

θ̇2

+


−h2θ̇3

h1θ̇3

0
0
0

 .

(5.29)
It is possible to redefine the equations of motion in Equation (5.22) to also consider
the angle γ. For the lumped bridge, instead of expressing them as two vectors in λ
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5.1. Derivation of coupled models of the string and a lumped bridge

and θ, one could express them in a vector Υ and a variable θ3:

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ + Yq̇− Zq̇′′ = 0, (5.30a)

MbΫ + SbΥ̇ + KbΥ = −FR, (5.30b)

I3θ̈3 +R3θ̇3 + J3θ3 = FR1 h2 − FR2 h1,
(5.30c)

where:
Υ = [λ1 λ2 λ3 θ1 θ2]T , (5.31)

and

Mb =


M1 0 0 0 0
0 M2 0 0 0
0 0 M3 0 0
0 0 0 I1 0
0 0 0 0 I2

 , Sb =


S1 0 0 0 0
0 S2 0 0 0
0 0 S3 0 0
0 0 0 R1 0
0 0 0 0 R2

 , Kb =


K1 0 0 0 0
0 K2 0 0 0
0 0 K3 0 0
0 0 0 J1 0
0 0 0 0 J2

 .
(5.32)

FR is the resolved string forces or moments onto the bridge and is given by:

FR = τF (5.33)

The reason why the lumped bridge unknowns are rewritten from λ and θ to Υ and
θ3 is to facilitate the explanation of its numerical schemes in Chapter 6. In this
form, θ3 can be viewed as an extra oscillator in the coupled system between q and
Υ.
The energy of the conservative system (i.e. Y = 0, Z = 0, Sb = 0, R3 = 0) can be
defined as:

d

dt
[KEs + PEs + KEb + PEb] = 0, (5.34)

where

KEs =
1

2

∫ L

0
M(q̇)2dx,

PEs =

(
1

2

∫ L

0
Ar(q

′)2dx+
1

2

∫ L

0
C(q)2dx+

1

2

∫ L

0
Bqq′dx+

1

2

∫ L

0
BTq′qdx

)
+

(
1

2

∫ L

0
At(q

′)2dx+
1

2

∫ L

0
H(q′)dx

)
.

KEb =
1

2
MbΥ̇

2 +
1

2
I3θ̇

2
3,

PEb =
1

2
KbΥ2 +

1

2
J3θ

2
3.
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5.2. Eigenfrequencies and analysis

5.2 Eigenfrequencies and analysis
In this section, the eigenfrequency equations of the presented models in Section 5.1
are derived, and the modal solutions are obtained where practically possible. The
idea of this section is to establish the changes brought by the addition of lumped
bridge models to the vibrating strings on their eigenfrequencies. The eigenfrequen-
cies obtained are also used to validate numerical schemes that are proposed in
Section 6.1. To ease the derivation and analysis, only conservative models are con-
sidered, i.e. damping is ignored.

5.2.1 S100-B100: Linear wave equation coupled to a
single-oscillator lumped bridge

Eigenfrequency and modal solution

Equation (5.2) can be solved completely by modal method where u and λ1 can be
defined as: [

u(x, t)
λ1(t)

]
= p(t)

[
ξ(x)
Λ1

]
. (5.36)

Following the steps in Section 2.3, one can recover the mode shape:

ξ(x) = sin(kTx), (5.37)

where kT is the wavenumber and is defined as:

kT =
ω

cT
with cT =

√
T0

ρA
. (5.38)

Applying the boundary condition (5.5), one can easily get:

Λ1 = ξ(L). (5.39)

Substituting these relations into Equation (5.2), one could reach:

− ω2M1 +K1 = −T0
ξ′(L)

ξ(L)
(5.40)

with can be further simplified into the eigenfrequency equation:

tan

(
ωnL

cT

)
=

T0ωn
cT (M1ω2

n −K1)
, (5.41)

where the subscript n indicates that there are infinite numbers of eigenfrequencies
ωn that satisfies the equation. The corresponding eigenmodes for the string are
thus:

ξn(x) = sin(kT,nx), (5.42)
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5.2. Eigenfrequencies and analysis

and the modal coordinates are

pn(t) = P 1
n cos(ωnt) + P 2

n sin(ωnt). (5.43)

Considering only the first N modes, solutions for u and λ can thus be written as:

u(x, t) =
N∑
n=1

[
P 1
n cos(ωnt) + P 2

n sin(ωnt)
]

sin(knx), (5.44a)

λ1(t) =
N∑
n=1

[
P 1
n cos(ωnt) + P 2

n sin(ωnt)
]

sin(knL). (5.44b)

To solve for P 1
n and P 2

n , initial conditions are needed. For this case, the initial con-
ditions can be defined as:

u(x, 0) = U0, (5.45a)
λ1(0) = V0, (5.45b)
u̇(x, 0) = U1, (5.45c)

λ̇1(0) = B1. (5.45d)

This gives:

U0 =
N∑
n=1

P 1
n sin(knx), (5.46a)

B0 =
N∑
n=1

P 1
n sin(knL), (5.46b)

U1 =
N∑
n=1

ωnP
2
n sin(knx), (5.46c)

B1 =
N∑
n=1

ωnP
2
n sin(knL). (5.46d)

Multiplying the first and third equations with another eigenmode ξm and integrat-
ing over the string length, and multiplying second and fourth equations with ξm(L),
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5.2. Eigenfrequencies and analysis

they become: ∫ L

0
U0ξmdx =

N∑
n=1

P 1
n

∫ L

0
ξnξmdx, (5.47a)

B0ξm(L) =
N∑
n=1

P 1
nξn(L)ξm(L), (5.47b)

∫ L

0
U1ξmdx =

N∑
n=1

P 2
nωn

∫ L

0
ξnξmdx, (5.47c)

B1ξm(L) =

N∑
n=1

ωnP
2
nξn(L)ξm(L). (5.47d)

To solve for P 1
n and P 2

n , it is necessary to obtain the orthogonality properties of the
modes so that

∫ L
0 ξnξmdx and ξn(L)ξm(L) are defined. Thus, using Equation (5.44),

Equation (5.2a) can be written in ξn as:

− ω2
nρAξn − T0ξ

′′
n = 0. (5.48)

Multiplying Equation (5.48) with ξm and integrating over the length, one obtains:

− ω2
n

∫ L

0
ρAξnξmdx− T0

∫ L

0
ξ′′nξmdx = 0. (5.49)

The equation can be decomposed by integration by part:

ω2
n

∫ L

0
ρAξnξmdx− T0

∫ L

0
ξ′nξ
′
mdx = −T0[ξ′nξm]L0 , (5.50)

where the boundary term at RHS can be written as:

− T0ξ
′
n(L)ξm(L) +

���
���

�:0
T0ξ
′
n(0)ξm(0) = (−ω2

nM1 +K1)ξn(L)ξm(L), (5.51)

as inferred from Equation (5.40). Rearranging, one can write:

ω2
nPM − PT = 0, (5.52)

where the following orthogonality products are introduced [90]:

PM(m,n) =

∫ L

0
ρAξnξmdx+M1ξn(L)ξm(L), (5.53a)

PT (m,n) =

∫ L

0
T0ξ
′
nξ
′
mdx+K1ξn(L)ξm(L). (5.53b)

Rewriting Equation (5.52) for index m, it can be shown that:

(ω2
n − ω2

m)PM = 0, (5.54)
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5.2. Eigenfrequencies and analysis

where for n 6= m,
PM = 0, (5.55)

and for n = m,

PM(m) =

∫ L

0
ρAξm

2dx+M1ξm
2(L). (5.56)

This shows that the modes are orthogonal with respect to the mass. Similarly,
rewriting Equation (5.52) in index m can also yield:

(ω2
m − ω2

n)PT = 0, (5.57)

where for n 6= m,
PT = 0, (5.58)

and for n = m,

PT (m) =

∫ L

0
T0ξ
′
m

2
dx+K1ξm

2(L). (5.59)

This shows that the modes are orthogonal to each other with respect to stiffness.
With these orthogonality relations, it is now possible to solve Equation (5.47).
Multiplying Equation (5.47a) with ρA and Equation (5.47b) with M and summing
them together, it yields:

ρA

∫ L

0
U0ξm(x)dx+M1B0ξm(L) = P 1

m

[∫ L

0
ρAξm

2dx+M1ξm
2(L)

]
, (5.60)

where P 1
m can be solved, for each index m, by:

P 1
m =

ρA
∫ L

0 U0ξm(x)dx+M1B0ξm(L)

PM
. (5.61)

Similarly, P 2
m can be solved by:

ωmP
2
m =

ρA
∫ L

0 U1ξm(x)dx+M1B1ξm(L)

PM
. (5.62)

Substituting both Equations (5.61) and (5.62) into Equation (5.44), one could thus
obtain the modal solutions of the S100-B100 system.

Analysis

It is useful to recall that for a fixed-fixed string, the eigenfrequencies can be found
from:

sin

(
ωnL

ct

)
= 0, (5.63)

which gives:
ωn =

nπcT
L

. (5.64)
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5.2. Eigenfrequencies and analysis

Equation (5.64) is also recoverable if RHS of Equation (5.41) equals to zero, i.e.:

tan

(
ωnL

cT

)
= 0. (5.65)

The case in which this happens is when either K1 or M1 is infinitely large. Intu-
itively, if a string is attached to an extremely stiff or massive end, that end could be
considered fixed.
Before proceeding further, it is useful to first define the fundamental frequency of
the string in a fixed-fixed case, fs:

fs =
1

2L

√
T0

ρA
. (5.66)

In the coupled system, the RHS of Equation (5.41) is not zero. However, since a tan-
gent function always have asymptotes, it can be inferred that between the asymp-
totes, there will always be a solution to Equation (5.41). In this case, a solution is
present between (n− 1/2)fs and (n+ 1/2)fs.
A sample case is presented in Figure 5.7 with the used parameters shown in Table
5.2. The values of M1 and K1 may not necessarily be realistic but are exaggerated
to demonstrate their influences to the system. When M1 = 0, the RHS of Equa-
tion (5.41) becomes −ωcTT0/K1 and this is plotted as the green line in Figure 5.7
where the x-axis is defined in multiples of fs. As the green line intersects the tan-
gent curves below the x-axis, it will always reduce the eigenfrequencies as compared
to a fixed-fixed case. Physically, introducing a finite stiffness essentially introduces
more flexibility and the whole system becomes less stiff, thus reduces the eigen-
frequencies. It can be verified that as K1 increases, the slope becomes less steep
and the intersection occurs closer to nπcT

L and as K approaches infinity, −ωcTT0/K1

tends to zero and Equation (5.65) is recovered.

Table 5.2: Physical parameters used for the analysis of S100-B100 system.

Parameter Value
T0 880 N
ρ 7,850 kg.m−3

A 9.7993.10−7 m2

M1 0.001 kg
K1 4,500 kg.s−2

L 1.05 m

When K1 = 0, the RHS of Equation (5.41) becomes ρAcT /M1ω and this is repre-
sented as the red curve in Figure 5.7. Interestingly, when a mass is introduced to
a system, a new eigenfrequency is found between 0 and 1

2
πcT
L as the red curve first

intersects it. At higher frequencies, the curve will always intersect above the x-axis
and thus introducing a finite mass increases the eigenfrequencies when compared
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0 0.5 1 1.5 2 2.5 3 3.5 4

−5

0

5

Normalised frequency, f/fs

LHS
M1=0
K1=0

Figure 5.7: Eigenfrequency analysis. Blue represents the tangent function at LHS
of Equation (5.41) and green represents the RHS when M = 0 and red for K = 0.
The cyan line is the asymptote of the tangent function.

to a fixed-fixed case. As M1 approaches infinity, ρAcT /M1ω tends to zero and Equa-
tion (5.65) is recovered.
Lastly, for an oscillator with a finite mass and stiffness, i.e. K1 6= 0,M1 6= 0, the
RHS becomes a rational function with a vertical asymptote at f = f∗ where

f∗ =
1

2π

√
K1

M1
, (5.67)

is the eigenfrequency of the harmonic oscillator as shown in Figure 5.8 where f∗ =
2.1fs. The addition of an oscillator brings the following changes:

1. All eigenfrequencies of the string that are smaller than f∗ are reduced.

2. All eigenfrequencies of the string that are larger than f∗ are increased.

3. For sufficiently large n, the RHS of Equation (5.41) tends to zero and the eigen-
frequencies converge to the eigenfrequencies of a fixed-fixed string.

4. For any n, if f∗ falls between (n− 1/2)fs and (n+ 1/2)fs, there exists an addi-
tional eigenfrequency in that range.

5. If f∗ falls exactly on (n− 1/2)fs or (n+ 1/2)fs, this additional eigenfrequency
then would not exist.
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Figure 5.8: Graphical plot for Equation (5.41) using parameters from Table 5.2.
Blue and black curves represent the LHS and RHS respectively. The intersections
between the two curves are solutions to Equation (5.41), marked with black circles.
Asymptotes of LHS and RHS are shown as cyan and grey lines respectively.

Using the same parameter in Table 5.2 except that M1 and K1 are both increased
by a factor of 10 to 0.01kg and 45,000kg/s2 respectively, the graphical plot for the
LHS and RHS of Equation (5.41) is shown in Figure 5.9. Since both M1 and K1 are
increased by the same factor, the oscillator frequency does not change. Comparing it
to Figure 5.8, one could see that the eigenfrequencies of the system are much closer
to multiples of the string’s frequency, fs. This is because as the oscillator becomes
more massive and stiff, it resembles more closely as a fixed boundary condition. As
such, the perturbation introduced by the oscillator onto the string’s eigenfrequen-
cies becomes less significant.

5.2.2 S100-B101: Linear wave equation coupled to a two-oscillator
lumped bridge

Eigenfrequency and modal solution

Defining that:  uλ1

θ2

 = p(t)

ξ(x)
Λ1

Θ2

 , (5.68)
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Figure 5.9: Graphical plot for Equation (5.41) using parameters from Table 5.2 ex-
cept that M1 and K1 are 0.01kg and 45,000kg/s2 respectively. Blue and black curves
represent the LHS and RHS respectively. The intersections between the two curves
are solutions to Equation (5.41), marked with black circles. Asymptotes of LHS and
RHS are shown as cyan and grey lines respectively.

one can follow the same strategy as in Section 5.2.1 and obtain the eigenfrequency
equation for Equation (5.8):

tan

(
ωnL

cT

)
=
T0ωn
cT

(
1

ω2
nM1 −K1

+
h3

2

ω2
nI2 − J2

)
, (5.69)

where the subscript n indicates that there is an infinite number of solutions to the
equation, just like Equation (5.41). The expressions for Λ1 and Θ2 are:

Λ1 =
−T0ξ

′(L)

−ω2M1 +K1
, (5.70a)

Θ2 =
−h3T0ξ

′(L)

−ω2I2 + J2
, (5.70b)

ξ(L) = Λ1 + h3Θ2. (5.70c)
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Similarly, one would obtain the solutions for u, λ1 and θ2 in the following form:

u(x, t) =

N∑
n=1

[
P 1
n cos(ωnt) + P 2

n sin(ωnt)
]

sin(knx), (5.71a)

λ1(t) =

N∑
n=1

[
P 1
n cos(ωnt) + P 2

n sin(ωnt)
] −T0kn cos(knL)

−ω2
nM1 +K1

, (5.71b)

θ2(t) =

N∑
n=1

[
P 1
n cos(ωnt) + P 2

n sin(ωnt)
] −h3T0kn cos(knL)

−ω2
nI2 + J2

. (5.71c)

Compared to Equation (5.44), the expression of u is the same but it differs for λ1.
This is because the boundary condition has changed from u(L, t) = λ1(t) to u(L, t) =
λ1(t) + h3θ2(t). To solve for P 1

n and P 2
n , initial conditions are needed. For this case,

the initial conditions are:

u(x, 0) = U0, (5.72a)

λ1(0) = B0
1 , (5.72b)

θ2(0) = Θ0
2, (5.72c)

u̇(x, 0) = U1, (5.72d)

λ̇1(0) = B1
1 , (5.72e)

θ̇2(0) = Θ1
2. (5.72f)

The approach is essentially the same as in previous section. However, it is necessary
to obtain the expression of PT and PM. Rewriting Equation (5.50)

ω2
n

∫ L

0
ρAξnξmdx− T0

∫ L

0
ξ′nξ
′
mdx = −T0[ξ′nξm]L0 , (5.73)

and rewriting Equation (5.70c) into an indexable form such that:

ξm(L) = Λ1,m + h3Θ2,m, (5.74)

the boundary terms on the RHS then become:

T0ξ
′
n(L)ξm(L)−

��
���

��:0
T0ξ
′
n(0)ξm(0) = T0ξ

′
n(L)Λ1,m + h3T0ξ

′
n(L)Θ2,m. (5.75)

From Equation (5.70a) and (5.70b), Equation (5.75) becomes:

T0ξ
′
n(L)Λ1,m + h3T0ξ

′
n(L)Θ2,m

=
[
Λ1,n(−ω2

nM1 +K1)
]

Λ1,m +
[
Θ2,n(−ω2

nI2 + J2)
]

Θ2,m. (5.76)

Equation (5.73) can then be written as:

ω2
nPM = PT , (5.77)
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where

PM(m,n) =

∫ L

0
ρAξnξmdx+M2ξn(L)ξm(L) + I2Θ2,mΘ2,n, (5.78a)

PT (m,n) =

∫ L

0
T0ξ
′
nξ
′
mdx+K1ξn(L)ξm(L) + J2Θ2,mΘ2,n. (5.78b)

Since Equation (5.77) is the same as Equation (5.52), similar orthogonality relations
can be obtained, such that for n = m:

PM(m) =

∫ L

0
ρAξm

2dx+M1Λ1,m
2 + I2Θ2,m

2, (5.79a)

PT (m) =

∫ L

0
T0ξ
′
m

2
dx+K1Λ1,m

2 + J2Θ2,m
2, (5.79b)

and for n 6= m:

PM = 0, (5.80a)
PT = 0. (5.80b)

These relations are then applied to obtain P 1
m and P 2

m, where:

P 1
m =

ρA
∫ L

0 U0ξm(x)dx+M1B
0
1Λ1,m + I2Θ0

2Θ2,m

PM
, (5.81a)

ωmP
2
m =

ρA
∫ L

0 U1ξm(x)dx+M1B
1
1Λ1,m + I2Θ1

2Θ2,m

PM
. (5.81b)

Equation (5.71) is thus fully defined with the eigenfrequencies given by Equa-
tion (5.69).

Analysis

Qualitatively, the addition of the rotational oscillator affects the eigenfrequencies
in a similar manner as with the translational oscillator. For convenience, one can
define the eigenfrequency of the rotational oscillator as:

f r∗ =
1

2π

√
I2

J2
. (5.82)

As shown in Figure 5.10 with f∗ = 2.1fs and f r∗ = 3.8fs, the addition of rotational
oscillator brings the following changes:

1. There exists only one solution bounded between (n − 1/2)fs and (n + 1/2)fs
except when the "oscillator frequencies" f∗ or f r∗ falls in the same range. In
that case, there will be three solutions if both f∗ and f r∗ fall in the same range,
or two if they are not in the same range.
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2. If the string frequencies are less than the smallest frequency between the two
oscillators, they will be reduced.

3. If the string frequencies are greater than the largest frequency between the
two oscillators, they will be increased.

4. If the string frequencies are between the two oscillator frequencies, it may
increase or decrease when compared to the fixed-fixed case.

5. If f r∗ falls on exactly (n − 1/2)fs or (n + 1/2)fs or on f∗, there will not be any
additional eigenfrequency.

0 1 2 3 4 5 6
−10

−5

0

5

10

Normalised frequency, f/fs

LHS
RHS-B100
RHS-B101

Figure 5.10: Graphical plot for Equation (5.69). The LHS and RHS (labeled as RHS-
B101) are represented by blue and red curves respectively. The solutions of Equa-
tion (5.69) are marked as black circles. The black curve of Figure 5.8 (i.e. the RHS of
Equation (5.41)) is also shown as dotted black curves (labeled RHS-B100) to high-
light the effect of the additional rotational oscillator.. The paramaters are outlined
in Table 5.3 as Case 1.

Figure 5.11 shows an example of when there are two oscillators’ frequencies bounded
within (n − 1/2)fs and (n + 1/2)fs. The parameters of this particular example are
presented as Case 2 in Table 5.2. Between 1.5fs and 2.5fs, there are now three so-
lutions to Equation (5.69). One of it belongs originally to the string, and the other
two are the oscillators. The other features of such system are also retained outside
of that range, i.e. string frequencies reduce if they are smaller than the oscillators’
frequencies and increase if larger.
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Table 5.3: Physical parameters used for the analysis of S100-B101 system.

Parameter Case 1 Case 2
T0 880 N
ρ 7,850 kg.m−3

A 9.7993.10−7 m2

M1 0.001 kg
K1 4,500 kg.s−2

L 1.05 m
I2 0.001 kg.m2

J2 15,000 kgm2.s−2 3,000 kgm2.s−2

h3 1m
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Figure 5.11: Graphical plot for Equation (5.69) for a special case when J2 = 3, 000
kgm2. The LHS and RHS are represented by blue and red curves respectively. The
solutions of Equation (5.69) are marked as black circles. As can be seen, there are
three solutions bounded between 1.5fs and 2.5fs. The parameters are outlined in
Table 5.3 as Case 2.

5.2.3 S200-B201: Non-planar linear string coupled to a
three-oscillator lumped bridge

The S200-B201 is perhaps the most interesting case to be investigated as it involves
the two polarisations, one of the main focuses of the thesis.
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Eigenfrequencies

The general solutions of the system can be written as:
u
v
λ1

λ2

θ3

 = q(t)


ξu(x)
ξv(x)
Λ1

Λ3

Θ

 , (5.83)

where

ξu(x) = sin(kux), (5.84a)
ξv(x) = Ξ sin(kvx), (5.84b)

after applying the boundary condition at x = 0. For ξu, the constant term is omitted.
Instead, a constant Ξ is defined to relate the amplitude between ξu and ξv that can
be complex to include any phase. The use of two different mode shapes for the two
different polarisations result in two different wavenumbers ku and kv related to the
angular frequencies ω by the following dispersion relations:

cT,u =
ω

ku
=

√
T0

ρA
, (5.85a)

cT,v =
ω

kv
=

√
T0

ρ̃A
, (5.85b)

where the v polarisation is prescribed with a slightly different density ρ̃ which re-
sults in different velocity compared to the u polarisation.
Substituting Equation (5.83) into (5.16c), (5.16d), (5.16e) and (5.18), it yields:

Λ1 = −T0 cos(kuL)ku
K1 − ω2M1

, (5.86a)

Λ∗2 = −T0 cos(kvL)kv
K2 − ω2M2

, (5.86b)

(−ω2I3 + J3) = Λ1(K1 − ω2M1)h2 − Λ∗2(K2 − ω2M2)h1, (5.86c)

Θ =
sin(kuL)− Λ1

h2
, (5.86d)

Ξ =
h1

h2

sin(kuL− Λ1)

Λ∗2 − sin(kvL)
, (5.86e)

where:
Λ∗2 =

Λ2

Ξ
. (5.87)

The introduction of Λ∗2 is essentially for simplification purposes as the derivation
would otherwise be more tedious. It is possible to substitute Equation (5.86a), (5.86b),
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5.2. Eigenfrequencies and analysis

(5.86d) and (5.86e) into (5.86c), and by further simplification and rearranging, to ob-
tain the eigenfrequency equation:

1 = −h2
2

T0ku,n
(J3 − ω2

nI3)F(ku,n)
− h2

1

T0kv,n
(J3 − ω2

nI3)G(kv,n)
, (5.88)

where:

F(ku,n) = tan(ku,nL) +
T0ku,n

K1 − ω2
nM1

, (5.89a)

G(kv,n) = tan(kv,nL) +
T0kv,n

K2 − ω2
nM2

. (5.89b)

The addition of the subscript n indicates that there is an infinite number of solu-
tions for Equation (5.88). Setting either h1 or h2 to zero yields two decoupled sys-
tems, each representing a case of S100-B100 (see Equation (5.41)) and S100-B101
(see Equation (5.69)). For instance, if h2 = 0, one could recover the two equations:

tan

(
ωnL

cT,u

)
=

T0ωn
cT,u(M1ω2

n −K1)
, (5.90a)

tan

(
ωnL

cT,v

)
=
T0ωn
cT,v

(
1

ω2
nM2 −K2

+
h1

2

ω2
nI3 − J3

)
, (5.90b)

and if h1 = 0:

tan

(
ωnL

cT,v

)
=

T0ωn
cT,v(M2ω2

n −K2)
, (5.91a)

tan

(
ωnL

cT,u

)
=
T0ωn
cT,u

(
1

ω2
nM1 −K1

+
h2

2

ω2
nI3 − J3

)
. (5.91b)

Analysis

In this section, as the system becomes more complex, instead of presenting graph-
ical plots (such as Figure 5.8), the solutions for the eigenfrequencies are presented
in number lines instead. To bridge the differences between the two types of presen-
tation, the example of Figure 5.11 is repeated in Figure 5.12 where both methods
are shown top and bottom. For the number line, from left to right, each increasing
number represents a multiple of fs, the string eigenfrequencies. The eigenfrequen-
cies will be marked using black circular markers on the line. Notable other features
like the oscillator frequencies will be shown as well in green and gray lines.
Due to the complexity of the system, five different cases of increasing complexities
are analysed.

I. Both polarisations have the same eigenfrequencies and both the translational
oscillators have the same parameters. Essentially, this is a pair of identical
S100-B100 systems being coupled by the rotational oscillator.
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Figure 5.12: Comparison between the graphical plot of Figure 5.11 and its frequency
number line counterpart.

II. Case I is repeated but with ρ 6= ρ̃. This would introduce a difference of eigen-
frequencies between the two string’s polarisation even in a fixed-fixed case. In
essence, this represents a case of two S100-B100 systems being coupled by the
rotational oscillator.

III. Case I is repeated but the parameters of the translational oscillators have been
varied.

IV. Case III is repeated but the parameters of the two translational and one rota-
tional oscillators have been varied to be of higher frequencies. The rational of
this case will be justified as it is discussed.

V. Case IV is repeated but with ρ 6= ρ̃. In this case, the polarisations and the
oscillators all have different parameters.

All of the physical parameters used to complete the five cases are presented in
Table 5.4. Some of these values are not physical such as the exaggerated values for
the offset h1 and h2. They are chosen simply to "amplify" its effect on the system.
The most important outcome of the analysis is to identify the general changes the
system brings as compared to a fixed-fixed string, rather than finding the exact
eigenfrequency for an arbitrarily defined system.
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5.2. Eigenfrequencies and analysis

Table 5.4: Physical parameters used for the analysis of S200-B201 systems, all five
cases.

Case
Parameter I II III IV V
T0 (N) 880
ρ (kg.m−3) 7850
ρ̃ (kg.m−3) 7850 7457 7850 7457
A (m2) 9.7993×10−7

L (m) 0.61
M1 (kg) 0.003735
K1 (kg.s−2) 5607 56070
M2 (kg) 0.003735
K2 (kg.s−2) 5607 3917 33300
I3 (kgm2) 0.001
J3 (kgm2.s−2) 4888 48888
h1 (m) 1
h2 (m) 1

Case I The parameters used are presented as Case I in Table 5.4. In Figure 5.13,
three sets of eigenfrequencies are shown on the number line with their exact val-
ues (in Hz) shown in Table 5.5. The blue and red markers represent the eigen-
frequencies as determined from Equations (5.90b) and (5.91b) respectively while
the black markers display the eigenfrequencies for the complete system, i.e. from
Equation (5.88). Equations (5.90a) and (5.91a) are not shown as they represent the
S100-B100 case which have been fully decoupled from the system when h2 or h1 is
zero. To ease any further discussion, the blue and red markers will represent the
"v-λ2" and "u-λ1" system while the black markers would represent the "complete"
system.

0 1 2 3 4

f∗ fr
∗

fs

Figure 5.13: Eigenfrequencies plotted on a number line for Case I in units of the fun-
damental string mode, fs =238.2Hz. The blue and red markers represent the eigen-
frequencies as determined from Equation (5.90b) and (5.91b) respectively while the
black markers display the eigenfrequencies for the complete system, i.e. from Equa-
tion (5.88).

Since all other parameters are the same, both "v-λ2" and "u-λ1" system have the
same eigenfrequencies. When both h2 and h1 are not zero, i.e. the complete system,
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5.2. Eigenfrequencies and analysis

Table 5.5: Eigenfrequencies for Case I and as plotted in Figure 5.13. fs = 238.2Hz.

Eigenfrequency (Hz)
n 1 2 3 4 5
complete 147.4 221.2 356.6 571 793.1
v-λ2 153 237.2 356 555.5 772.9
u-λ1 153 237.2 356 555.5 772.9

both F and G as defined in Equation (5.88) become the same and the equation
becomes essentially the same as Equation (5.69) for a S100-B101 system, such that:

tan

(
ωnL

cT

)
=
T0ωn
cT

(
1

ω2
nM1 −K1

+
h2

1 + h2
2

ω2
nI3 − J3

)
. (5.92)

Thus, the system is just another case of S100-B101 system where the eigenfre-
quencies would increase if they are above the rotational oscillators f r∗ or decrease
otherwise. The extent of these adjustments are then influenced by the combined
offset h2

1 + h2
2 and the rotational oscillator’s parameters.

Case II The second case looks at the influence of a detuning between the two
strings’ polarisations on the eigenfrequencies of the system. All of the parameters
are presented as Case II in Table 5.4. The only change from Case I is that ρ̃ =
0.95ρ = 7, 457kgm−3. The effect of the artificial difference of density between the
two polarisations cause the second polarisation v to have a higher eigenfrequency,
increasing from 238.2Hz to 244.4Hz. Such difference is again exaggerated so as to
easily capture and present the changes a detuning could bring.
Figure 5.14 presents the number line with the respective eigenfrequencies tabu-
lated in Table 5.6. The identical translational oscillators are shown as a cyan line.
In this case, the v-λ2 and u-λ1 systems are no longer identical, as the strings have
different eigenfrequencies despite being coupled to oscillators with the same pa-
rameters. When the complete system is considered, the modes from one decoupled
system (for example, the v-λ2 system) perturb the other decoupled system (u-λ1). As
a result, the modes appear to "repel" each other and cause the eigenfrequencies of
the complete system to be further apart. A clear example is marked with a overhead
square bracket between 2fs and 2.5fs where independently the uncoupled systems
have modes at 2.33fs and 2.38fs (see the red and blue lollipops) but once they are
coupled, they become further apart at 2.11fs and 2.42fs (see the black dots) respec-
tively (see n = 6, 7 in Table 5.6). However, there is an exception for the rotational
oscillator. Since both decoupled systems "share" the same mode, and as such the
complete system only have one mode (see n = 5 in Table 5.6).

Case III The parameters used are presented in Table 5.4 as Case III. Compared
to Case II, Case III reverts back to ρ = ρ̃ but changes the stiffness for one of the two
oscillators. Specifically, K2 = 3, 917kgs−2. Essentially, Case III is similar to Case
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0 1 2 3 4

f∗ fr
∗

fs

Figure 5.14: Eigenfrequencies plotted on a number line for Case II in units of the
fundamental string mode for polarisation u, fs =238.2Hz.

Table 5.6: Eigenfrequencies for Case II and as plotted in Figure 5.14.

Eigenfrequency (Hz)
n 1 2 3 4 5 6 7 8 9
complete 148.8 161.4 221.5 292.4 360.6 504.5 577.7 737.1 803.3
u-λ1 153 237.2 356 555.5 772.9
v-λ2 155.9 238.4 363 567.4 790.6

II where two different uncoupled systems (v-λ2 and u-λ1) are coupled by the rota-
tional oscillator. Thus, the same repelling phenomenon can be expected. As shown
in Figure 5.15 and Table 5.7, the modes from one uncoupled system perturb the
modes from the other system and cause them to "repel" each other. A clear example
is marked with an overhead square bracket between 2fs and 2.5fs where indepen-
dently the uncoupled systems have a mode at 2.3fs (see the red and blue lollipops)
but once they are coupled, they become further apart at 2.1fs and 2.4fs (see the
black dots) respectively.
In Case II and III, it can be inferred that as n increases, the frequency pairs (6,7)
and (8,9) are getting closer. This is logical as they move away from the oscillators,
the perturbation brought by the oscillators become less significant. This prompts
an interesting question as to how the fundamental modes would detune from each
other if the oscillators are at higher frequencies. The is because the addition of os-
cillators can be seen as essentially a source of detuning which will cause double
polarisation as discussed extensively in Chapter 3. A high frequency pair of oscilla-
tors are thus studied in Case IV.

0 1 2 3 4

f1
∗f

2
∗ fr

∗

fs

Figure 5.15: Eigenfrequencies plotted on a number line for Case III in units of the
fundamental string mode for polarisation u, fs =238.2Hz.
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5.2. Eigenfrequencies and analysis

Table 5.7: Eigenfrequencies for Case III and as plotted in Figure 5.15.

Eigenfrequency (Hz)
n 1 2 3 4 5 6 7 8 9
complete 140.2 153.9 212.0 287 356.6 498.4 570.9 728.8 793.1
v-λ2 141.0 222.8 356 555.3 772.7
u-λ1 153 237.2 356 555.5 772.8

Case IV Figure 5.16 and Table 5.8 show the eigenfrequencies when two identical
string polarisations are coupled to three (two translational, one rotational) different
high-frequency oscillators. The parameters used are presented as Case IV in Ta-
ble 5.4. The two translational oscillators are marked in Figure 5.16 with f1

∗ = 6.3fs
and f2

∗ = 8.2fs while the rotational oscillator is marked as f r∗ = 4.7fs. The repelling
pairs of eigenfrequencies are as expectedly observed but notably, at lower frequen-
cies, the gap of the pairs are pretty small. This in turn means that the detuning
effect caused by the oscillators onto the string modes are reduced when they are
further away.

0 1 2 3 4
fs

5 6 7 8 9

f1
∗ f2

∗fr
∗

fs

Figure 5.16: Eigenfrequencies plotted on a number line for Case IV in units of the
fundamental string mode for polarisation u, fs =238.2Hz.

Table 5.8: Eigenfrequencies for Case IV and as plotted in Figure 5.16.

Eigenfrequency (Hz)
n 1 2 3 4 5 6 7 8 9 10
complete 223.8 237.4 445.3 474.6 661.9 711.6 871.9 947.8 1077.5 1181.9
v-λ2 230.1 458.3 681 891.5 1081.7 1264.4
u-λ1 230.5 459.2 682.4 892.7 1081.8
n 11 12 13 14 15 16 17 18 19
complete 1284.5 1401.1 1481.1 1527.2 1668.5 1728.8 1869.1 1943.6 1990.3
v-λ2 1429.3 1526.7 1718.7 1942.8
u-λ1 1267.5 1472.9 1687.9 1874.4 1989.6
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5.2. Eigenfrequencies and analysis

Case V The last case to be investigated is an extension of Case IV where a de-
tuning between the strings’ eigenfrequencies are also considered, i.e. ρ̃ = 0.95ρ =
7, 457kgm−3. The eigenfrequencies are as shown in Figure 5.17 and Table 5.9. The
complete lists of parameters are presented as Case V in Table 5.4. In general, Case
V behaves similarly with IV where the lower pairs of eigenfrequencies have smaller
gaps as they are further away from the oscillators’ frequencies.

0 1 2 3 4
fs

5 6 7 8 9

f1
∗ f2

∗fr
∗

fs

Figure 5.17: Eigenfrequencies plotted on a number line for Case V in units of the
fundamental string mode for polarisation u, fs =238.2Hz.

Table 5.9: Eigenfrequencies for Case V and as plotted in Figure 5.17.

Eigenfrequency (Hz)
n 1 2 3 4 5 6 7 8 9 10
complete 226.2 241 450.1 481.7 669 721.8 881.2 960.7 1089.1 1197.1
v-λ2 236.1 470 697.9 911.6 1103.1
u-λ1 230.5 459.2 682.4 892.7 1081.8 1267.5
n 11 12 13 14 15 16 17 18 19
complete 1297.9 1419 1482.2 1551.3 1675.7 1762.1 1872 1981.5 1997.7
v-λ2 1288.9 1445.5 1551.5 1758.9 1990.7
u-λ1 1472.9 1687.9 1874.4 1989.6

In short, the analysis for all the five cases of the S200-B201 system can be sum-
marised as follows:

• The S200-B201 system can be viewed as a coupling between two S100-B101
system that shares the same rotational oscillator.

• Each decoupled system, if non-identical, views another as a source of pertur-
bation and as such, pairs of eigenfrequencies can be found that pertains to
each of their original string modes.

• If the decoupled systems are identical, the system simplifies to a S100-B101
system with a combined offset h2

1 + h2
2.
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5.3. Summary

• If the oscillators’ frequencies are much further away from the string’s modes,
the detuning introduced by the oscillators are less significant (Case IV and
V) compared to when the oscillators have similar frequencies as the string’s
modes (Case III).

5.3 Summary
In this chapter, several coupled systems between a string and a lumped bridge
are proposed. Most notably, a S212-B213 system is presented where a string with
5 variables (2 transverse polarisations, 1 longitudinal vibration, 2 rotations) is
coupled to a bridge with 6 oscillators (3 translations, 3 rotations). In addition to
that, an angular offset, γ between the string’s polarisation and the bridge’s ver-
tical and horizontal displacements is prescribed. The eigenfrequency equations of
some of the simpler systems are derived, specifically the S100-B100, S100-B101
and S200-B201. These will be used in Section 6.2 later for validation of the numer-
ical schemes. Graphical analyses were performed to describe the perturbation the
oscillators bring to the string’s eigenfrequencies.
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6

Numerical schemes of the
coupled string-bridge system

In this chapter, numerical schemes are introduced to solve the coupled systems
between a string and a lumped bridge as introduced in Chapter 5. Specifically,
these systems will be solved via finite element method using the MONTJOIE finite-
element package [81]. There are two main advantages using this approach:

• Complex cases like the S212-B213 system can be solved. It is also possible to
solve other lumped bridge that was not defined, such as the S111-B111 model.

• Different string models can be used. In Chapter 5, proposed lumped bridge
models are coupled to linear strings. In MONTJOIE, it is possible to select
stiff string or nonlinear models, including the geometrically exact nonlinear
stiff string model defined in Chapter 2.

• Complex coupling conditions can be specified. For example, the angular offset
between the string’s polarisation and bridge displacement, γ, as proposed in
Section 5.1.5, can be included.

In the following Section 6.1, numerical schemes to solve the coupling problem are
proposed. They include the "general scheme" that is originally proposed by Chabassier
[75] as presented in Section 6.1.1 and the "extended scheme" that is newly proposed
in Section 6.1.2. As its name suggests, extended scheme is an extension of the gen-
eral scheme in which it allows the solution of additional oscillator vibrating in the
direction that is not solved in the string. In Section 6.2, these schemes are validated
against the eigenfrequencies as obtained from Section 5.2.

6.1 Numerical scheme
It could be prohibitively difficult to solve the equations presented in Section 5.1 di-
rectly if nonlinear strings are used to couple the lumped bridge. A viable approach
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6.1. Numerical scheme

is to solve these subsystems independently and couple them by means of Lagrange
multipliers. A convenient choice for the Lagrange multipliers is the string forces
and moments at x = L that allow solving the bridge and string variables at inter-
leaved time steps. This approach is efficient as it avoids the difficulty of solving the
whole coupled system implicitly.

6.1.1 General scheme

Recalling that the equations of motion for a complete coupled system of nonlinear
string and lumped bridge model can be written as (as copied from Equation (5.30)
to (5.33)):

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ + Yq̇− Zq̇′′ = 0, (6.1a)

MbΫ + SbΥ̇ + KbΥ = −FR, (6.1b)

I3θ̈3 +R3θ̇3 + J3θ3 = FR1 h2 − FR2 h1, (6.1c)

where:

q = [u v w φ ψ]T , (6.2a)

Υ = [λ1 λ2 λ3 θ1 θ2]T , (6.2b)

and

Mb =


M1 0 0 0 0
0 M2 0 0 0
0 0 M3 0 0
0 0 0 I1 0
0 0 0 0 I2

 , Sb =


S1 0 0 0 0
0 S2 0 0 0
0 0 S3 0 0
0 0 0 R1 0
0 0 0 0 R2

 , Kb =


K1 0 0 0 0
0 K2 0 0 0
0 0 K3 0 0
0 0 0 J1 0
0 0 0 0 J2

 .
(6.3)

The matrices Ms, A, B, C, Y, Z and functional H are from Equation (2.50) and
(2.51). The coupling conditions between the bridge and the string are given by:

τ q̇ = Υ̇, (6.4)

where τ is as expressed in Equation (5.29). Meanwhile, FR are the resolved string
forces onto the bridge and is given by:

FR = τF, (6.5)

where F is described by Equation (5.25):

F = [Aq′ + Bq +∇H(q′) + Zq̇′]x=L. (6.6)

To recap, Equation (6.1a) and (6.1b) represent the string and the lumped bridge
respectively. For the scheme discussed in this section, only these two equations
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are solved. Equation (6.1c), which represents the extra rotational oscillator in the
lumped bridge, is omitted. The scheme where Equation (6.1c) is included will be
presented in Section 6.1.2 instead.
The variational form of Equation (6.1a) can be written as (see Equation (2.121)):∫ L

0
Mq̈q∗ −

∫ L

0

(
Aq′ + Bq +∇H(q′)

)
q∗′ +

∫ L

0
Cqq∗ +

∫ L

0
BTq′q∗

+

∫ L

0
Yq̇q∗′ +

∫ L

0
Zq̇′q∗′ =

[
Aq′ + Bq +∇H(q′) + Zq̇′

]L
0

q∗, (6.7)

and for the lumped bridge:

MbΫΥ∗ + SbΥ̇Υ∗ + KbΥΥ∗ = −FRΥ∗, (6.8)

where q∗ and Υ∗ are the test functions for the string and lumped bridge respec-
tively. Substituting q∗ = q̇ and Υ∗ = Υ̇, one could yield the conservation of energy
as in Equation (5.34) where the following condition needs to be satisfied:[

Aq′ + Bq +∇H(q′) + Zq̇′
]
x=L

q̇ = FRΥ̇. (6.9)

It is then possible to rewrite the RHS of Equation (6.7):∫ L

0
Mq̈q∗ −

∫ L

0

(
Aq′ + Bq +∇H(q′)

)
q∗′ +

∫ L

0
Cqq∗ +

∫ L

0
BTq′q∗

+

∫ L

0
Yq̇q∗′ +

∫ L

0
Zq̇′q∗′ = FRτq∗, (6.10)

and as per presented in Section 2.4.3, into a discrete form where:

MhQ̈h +RhQ̇h +KhQh +∇H°(Qh) = FRh τ , (6.11)

with FRh being the discrete form of FR as indicated by the subscript h.
For Equation (6.8), the lumped bridge is essentially a single point and thus the basis
function to be substituted into the test function Υ∗ is simply an identity matrix:

Υ∗ = I. (6.12)

A conversion matrix Ph can also be introduced such that [75]:

PThMbPh = I, (6.13a)

PTh SbPh = Sh, (6.13b)

PThKbPh = Kh, (6.13c)
PhΥ = Υh, (6.13d)

PThMbΥh = Υ. (6.13e)
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Using both Equation (6.12) and (6.13), Equation (6.8) can thus be written as:

Ϋh + ShΥ̇h + KhΥh = PTFRh . (6.14)

From Equation (6.4), the discrete boundary conditions between the string (Equa-
tion (6.11)) and lumped bridge (Equation (6.14)) are thus:

τ Q̇h = PTh Υ̇h, (6.15)

A convenient method to solve the system of Equation (6.11) and (6.14) efficiently is
to couple the two equations by Lagrange multipliers and solve them at interleaved
time steps. A suitable candidate for this is the projected string forces on the lumped
bridge FRh as it appears in both equations. Discretising both equations and their
corresponding boundary conditions in time, the general scheme can be presented
as:

Mh
Qn+1
h − 2Qn

h + Qn−1
h

∆t2
+Rh

Qh
n+1 −Qn−1

h

2∆t
+Kh[Qh]nϑ +∇H°(Qh) = FRh τ ,

(6.16a)

Ϋh + ShΥ̇h + KhΥh = PTFRh ,
(6.16b)

τ
Qn+1
h −Qn−1

h

2∆t
= PTh

Υ
n+1/2
h −Υ

n−1/2
h

∆t
, (6.16c)

Equation (6.16b) can be solved analytically at time step n+ 1/2 where:

Υ
n+1/2
h = S0

∆tΥ
n−1/2
h + S1

∆tΥ̇
n−1/2
h + (−PThFRh )R∆t, (6.17a)

Υ̇
n+1/2
h = Ṡ0

∆tΥ
n−1/2
h + Ṡ1

∆tΥ̇
n−1/2
h + (−PThFRh )Ṙ∆t, (6.17b)

where expression of S0
∆t, S1

∆t, R∆t, Ṡ0
∆t, Ṡ1

∆t and Ṙ∆t, as derived and presented by
Derveaux [91] and later by Chabassier [75], can be found in Appendix A.
It is possible to rewrite Equation (6.16c) into:

τ
Qn+1
h −Qn−1

h

2∆t
= PTh

S0
∆tΥ

n−1/2
h + S1

∆tΥ̇h
n−1/2

+ PTh (−FRk )R∆t −Υ
n−1/2
h

∆t
, (6.18)

and subsequently as:

τ
Qn+1
h −Qn−1

h

2∆t
= A + (−FRh )B, (6.19)

where

A =
1

∆t
PTh (S0

∆tΥ
n−1/2
h + S1

∆tΥ̇h
n−1/2 −Υ

n−1/2
h ), (6.20a)

B =
1

∆t
PThR∆t. (6.20b)

When the scheme is in the form of Equation (6.19), B is only required to be solved
at the first time step where A will be updated at every time step.
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Example: S100-B100

The scheme proposed in Equation (6.16) can be demonstrated in the simplest case
of S100-B100 where Qh = [uh] and Υh = [λ1,h]. Equation (6.16) can be rewritten
into:

Mh
un+1
h − 2unh + un−1

h

∆t2
+Rh

un+1
h − un−1

h

2∆t
+Kh[uh]nϑ +∇H°(uh) = FR1,h, (6.21a)

Ϋh + ShΥ̇h + KhΥh = PTFRh , (6.21b)

I
un+1
h − un−1

h

2∆t
= PTh

λ
n+1/2
1,h − λn−1/2

1,h

∆t
, (6.21c)

where the transformation matrix τ is simply an identity matrix of I = [1]. The term
∇H°(uh) could be dropped for a linear problem. Equation (6.21c) could be rewritten
into:

un+1
h − un−1

h

2∆t
= A + (−FR1,h)B, (6.22)

where

A =
1

∆t
PTh (S0

∆tλ
n−1/2
1,h + S1

∆tλ̇
n−1/2
1,h − λn−1/2

1,h ), (6.23a)

B =
1

∆t
PThR∆t. (6.23b)

Other systems: S101-B101

The same scheme proposed in Equation (6.16) can also be applied to a S101-B101
system, where a linear Timoshenko string equation is coupled to a two-oscillator
lumped bridge model. In that case,

Qh = [uh, φh], (6.24a)
Υh = [λ1,h, θ2,h], (6.24b)

and the transformation matrix, ν would correspond to the boundary condition in
Equation (5.14), where:

τ =

[
1 −(−h3)
0 1

]
. (6.25)

6.1.2 Extended Scheme

In Section 6.1.1, the scheme proposed is suitable only for systems where the lumped
bridge only contains variables that corresponds to the string variables. For instance,
a S100-B100 only has λ1 as the lumped bridge and it corresponds to the transverse
displacement u of the string. However, as have been presented in Section 5.1, there
are a few models that have an additional rotational oscillator, such as in the form
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of Equation (6.1c). To solve for these systems, the General Scheme proposed in Sec-
tion 6.1.1 needs to be further extended to what will be known as the Extended
Scheme.
The variational form of Equation (6.1a) and (6.1b) are the same as Equation (6.10)
and (6.8) respectively. On the other hand, the variational form of (6.1c) can be writ-
ten as:

I3θ̈3θ
∗
3 +R3θ̇3θ

∗
3 + J3θ3θ

∗
3 =

[
FR1 h2 − FR2 h1

]
θ∗3, (6.26)

where θ∗3 is the test function. Substituting θ∗3 = θ̇3 as the test function, one can
recover the energy conservation in Equation (5.34) if the following relations are
satisfied:[

Aq′ + Bq +∇H(q′) + Zq̇′
]
x=L

q̇ = FRk Υ̇ +
[
FR1 h2 − FR2 h1

]
θ̇3. (6.27)

Using the coupling conditions of Equation (5.29)(rewritten here for convenience):
cos(γ) − sin(γ) 0 −h3 0
sin(γ) cos(γ) 0 0 h3

0 0 1 h1 cos(γ)− h2 sin(γ) −(h2 cos(γ) + h1 sin(γ))
0 0 0 sin(γ) cos(γ)
0 0 0 cos(γ) − sin(γ)


︸ ︷︷ ︸

τ


u̇
v̇
ẇ

φ̇

ψ̇

 =


λ̇1

λ̇2

λ̇3

θ̇1

θ̇2

+


−h2θ̇3

h1θ̇3

0
0
0

 ,

(6.28)
one recovers Equation (6.10) and subsequently (6.16a) for the string part. For the
original oscillators that are also present in the general scheme, it is natural that
Equation (6.16b) can be recovered. Lastly, the extra oscillator has the basis function:

θ∗3 = 1, (6.29)

and Equation (6.26) can be solved analytically in a similar manner as the original
oscillators. However, since it is just an equation, it can be simply divided by I3

to obtain a form that can be solved analytically via the method of Derveaux [91]
(see Appendix A). The complete scheme, taking into consideration of the coupling
conditions of Equation (6.28), can be written as:

Mh
Qn+1
h − 2Qn

h + Qn−1
h

∆t2
+Rh

Qh
n+1 −Qn−1

h

2∆t
+Kh[Qh]nϑ +∇H°(Qh) = FRh τ ,

(6.30a)

Ϋh + ShΥ̇h + KhΥh = PTFRh ,
(6.30b)

θ̈3,h +R3I
−1
3 θ̇3,h + J3I

−1
3 θ3,h = I−1

3

[
FR1,hh2 − FR2,hh1

]
, (6.30c)

τ
Qn+1
h −Qn−1

h

2∆t
= PTh

Υ
n+1/2
h −Υ

n−1/2
h

∆t
+ h

θ3,h
n+1/2 − θ3,h

n−1/2

∆t
,

(6.30d)
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where a subscript h is appended to Equation (6.30c) and θ3 = θ3,h. The vector h is
expressed as:

hT =
[
−h2 h1 0 0 0

]
(6.31)

Note that due to the addition of extra oscillator, the coupling condition in Equa-
tion (6.30d) is updated compared to Equation (6.16c). Solutions of Equation (6.30b)
are given in Equation (6.17) and the solutions of Equation (6.30c) are written in a
similar form:

θ
n+1/2
3,h = S0

∆tθ
n−1/2
3,h + S1

∆tθ̇
n−1/2
3,h + I−1

3 (h2F
R
1,h − h1F

R
2,h)R∆t, (6.32a)

θ̇
n+1/2
3,h = Ṡ0

∆tθ
n−1/2
3,h + Ṡ1

∆tθ̇
n−1/2
3,h + I−1

3 (h2F
R
1,h − h1F

R
2,h)Ṙ∆t. (6.32b)

It is thus possible to rewrite Equation (6.30d) as:

τ
Qn+1
h −Qn−1

h

2∆t
=
[
A + PTh (−FRh )B

]
+ h

[
C + I−1

3 (h2F
R
1,h − h1F

R
2,h)D

]
, (6.33)

where A and B are as defined in Equation (6.20); C and D are:

C =
1

∆t
PTh (S0

∆tθ
n−1/2
3,h + S1

∆tθ̇
n−1/2
3,h − θn−1/2

3,h ), (6.34a)

D =
1

∆t
I−1

3 R∆t. (6.34b)

Example: S200-B201

The schemes in Equation (6.30) can be easily adapted for other coupled string-
bridge system that uses θ3 as the extra oscillator, such as the S200-B201 system.
This system has the following coupling conditions:

u̇(L, t) = λ̇1 − h2θ̇3, (6.35a)

v̇(L, t) = λ̇2 + h1θ̇3. (6.35b)

The variables to use in the scheme of Equation (6.30) become:

Qh = [uh vh], (6.36a)
Υh = [λ1,h λ2,h], (6.36b)
τ = I, (6.36c)

hT = [−h2 h1], (6.36d)

where τ is a 2-by-2 matrix and if it is linear (as is the case shown in Section 5.1.4),

∇H° = 0. (6.37)
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Example: S100-B101

For systems where the extra oscillator is not θ3, the scheme will have to be recon-
structed but the strategy is the same. For a S100-B101 system (see Section 5.1.2),
the scheme could be written as:

Mh
Qn+1
h − 2Qn

h + Qn−1
h

∆t2
+Rh

Qh
n+1 −Qn−1

h

2∆t
+Kh[Qh]nϑ = FRh τ , (6.38a)

Ϋh + ShΥ̇h + KhΥh = PTFRh , (6.38b)

θ̈2,h +R2I
−1
2 θ̇2,h + J2I

−1
2 θ2,h = I−1

2

[
FR1,h(−h3)

]
, (6.38c)

τ
Qn+1
h −Qn−1

h

2∆t
= PTh

Υ
n+1/2
h −Υ

n−1/2
h

∆t
+ h

θ2,h
n+1/2 − θ2,h

n−1/2

∆t
, (6.38d)

where

Qh = [uh], (6.39a)
Υh = [λ1,h], (6.39b)
τ = I, (6.39c)
h = [(−h3)], (6.39d)

and solutions of θ2,h are:

θ
n+1/2
2,h = S0

∆tθ
n−1/2
2,h + S1

∆tθ̇
n−1/2
2,h + (−I−1

2 (−h3)FR1,h)R∆t, (6.40a)

θ̇
n+1/2
2,h = Ṡ0

∆tθ
n−1/2
2,h + Ṡ1

∆tθ̇
n−1/2
2,h + (−I−1

2 (−h3)FR1,h)Ṙ∆t. (6.40b)

6.2 Validation of the numerical schemes
A validation of the numerical schemes is essential to confirm that they are cor-
rectly implemented in the finite-element solver MONTJOIE. To begin, the sim-
plest scheme is first validated, followed by more complicated cases. To validate the
scheme, results from Section 5.2 are used. Specifically, the validation is achieved by
comparing the eigenfrequencies calculated analytically from the modal approach
against the frequencies obtained from the simulated time-domain displacement sig-
nals via Fast Fourier Tranform (FFT).

6.2.1 S100-B100: Linear wave equation coupled to a
single-oscillator lumped bridge

The numerical scheme of a S100-B100 system is the general scheme as expressed
in Equation (6.21). Recalling from Section 5.2.1, the eigenfrequencies of the system
can be obtained by solving for Equation (5.41), rewritten here for convenience:

tan

(
ωnL

cT

)
=

T0ωn
cT (M1ω2

n −K1)
. (6.41)
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The material parameters used for both the computation of the frequencies from
Equation (6.41) and from the numerical scheme in Equation (6.21) are as shown in
Table 6.1.

Table 6.1: Physical parameters used for the analysis for S100-B100 system.

Parameter Value
T0 880 N
ρ 7,850 kg.m−3

A 9.7993.10−7 m2

M1 0.001 kg
K1 4,500 kg.s−2

L 1.05 m

In the MONTJOIE simulation, the string is excited by a half-sine wave for x = [0, L]
at an amplitude of 10−5m. Even though a half-sine wave is used, it excites all other
frequencies as well because the half-sine wave corresponds to the first mode of the
uncoupled string, not the frequency of the coupled system. The other numerical
parameters used are as shown in Table 6.2.

Table 6.2: Simulation parameters used for the S100-B100 system.

Parameter Value
Time step, ∆t 10−6s
total time 10 s
Number of elements 50
ϑ 0.25
Observed point 0.5m from one end

The first ten frequencies as obtained from Equation (6.41) and MONTJOIE simu-
lation are as shown in Table 6.3. The resonant frequencies of the simulation are
obtained by identifying the peaks in the frequency response of the displacement
signal. The frequency response is computed by performing fast Fourier transform
(FFT) on the time-domain signal. Since the total simulated time is 10s, this would
yield a frequency resolution of 0.1Hz. Comparing between the analytical eigenfre-
quencies and frequencies from the MONTJOIE simulations, they agree completely
for all the frequencies observed. Such result indicates that the MONTJOIE simula-
tions are accurate.

6.2.2 S100-B101: Linear wave equation coupled to a two-oscillator
lumped bridge

For a S100-B101 system, the numerical scheme is extended as expressed in Equa-
tion (6.38). The eigenfrequencies of this system can be obtained by solving for Equa-
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Table 6.3: The first ten frequencies as obtained from Equation (6.41) and MON-
TJOIE for S100-B100 system.

Frequency (Hz)
n 1 2 3 4 5 6 7 8 9 10
Equation (6.41) 134.2 261.9 390.6 530.3 679.1 832.8 989.1 1146.7 1305.3 1464.4
MONTJOIE 134.2 261.9 390.6 530.3 679.1 832.8 989.1 1146.7 1305.3 1464.4

tion (5.69), repeated here for convenience:

tan

(
ωnL

cT

)
=
T0ωn
cT

(
1

ω2
nM1 −K1

+
h3

2

ω2
nI2 − J2

)
. (6.42)

The material parameters used to compute the eigenfrequencies are presented in
Table 6.1 with additional new parameters shown in Table 6.4. The numerical sim-
ulation parameters are kept the same from the previous case, i.e. the same as Ta-
ble 6.2. The same initial condition is also used.

Table 6.4: Additional parameters used for the validation of S100-B101 scheme.

Parameter Value
I2 0.001 kgm2

J2 15,000 kgm2.s−2

h3 1m

The first ten frequencies as obtained from Equation (6.42) and MONTJOIE are as
shown in Table 6.5. Once again, MONTJOIE simulations agree completely for all
the eigenfrequencies observed.

Table 6.5: The first ten frequencies as obtained from Equation (6.41) and MON-
TJOIE for S100-B100 system.

Frequency (Hz)
n 1 2 3 4 5 6 7 8 9 10
Equation (6.42) 129.7 260.0 388.8 490.6 576.5 709.0 856.8 1009.4 1164.5 1321.0
MONTJOIE 129.7 260.0 388.8 490.6 576.5 709.0 856.8 1009.4 1164.5 1321.0

To further validate the scheme of Equation (6.38), a set of simulations with differ-
ent values of h3 are performed. The material parameters used in the simulations
are different from before and are shown in Table (6.6). The numerical simulation
parameters are the same as Table 6.2 except that the time step has been reduced
to 10−5s to reduce the overall time needed to compute all the cases.
The frequencies computed from Equation (6.42) and obtained from the frequency
responses of the displacement signals from MONTJOIE simulations are shown in
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Table 6.6: Physical parameters used for further validation of S100-B101 scheme.

Parameter Value
T0 880 N
ρ 7850 kg.m−3

A 9.7993e-7 m2

M1 0.01 kg
K1 986.96 kg.s−2

I2 0.0001 kgm2

J2 3397.75 kgm2.s−2

L 1.05 m

Tables 6.7 and 6.8 respectively. Note that the values used for h3 may not necessarily
be realistic. Due to the use of a larger time step, there are numerical dispersions
in the MONTJOIE data for frequencies from around 550Hz and above. With in-
creasing frequencies, the differences between the two sets of data also increase.
Regardless of the numerical dispersion, the trends of how the frequencies change
with increasing h3 are correctly captured by the simulations of MONTJOIE. Thus,
in addition to the excellent agreement from earlier result in Table 6.3, the numeri-
cal scheme in Equation (6.38) can be considered to have been successfully validated.

Table 6.7: Eigenfrequencies as obtained from Equation (6.42) using different values
of h3.

h3 (m) Frequency (Hz) from Equation (6.42)
0.1 59.7 173.5 290.9 331.5 488.2 647.9 808.2 968.8 1129.5 1290.3
0.5 59.5 161.3 267.9 361.3 502.5 657.3 815.3 974.5 1134.3 1294.4
1 58.9 137.3 252.7 384.4 528.3 679.2 833.6 990.1 1147.9 1306.4
1.5 58.0 118.3 247.2 393.3 544.1 697.3 852.0 1007.9 1164.7 1322.2
2 57.0 106.0 244.9 397.1 551.9 707.7 864.1 1021.0 1178.3 1336.0

Table 6.8: Frequencies obtained from MONTJOIE-simulated time signals using dif-
ferent values of h3.

h3 (m) Frequency (Hz) from MONTJOIE
0.1 59.7 173.5 290.9 331.5 488.2 647.9 808.1 968.5 1129.0 1290.0
0.5 59.5 161.3 267.9 361.3 502.5 657.2 815.1 974.2 1133.8 1293.7
1 58.9 137.3 252.7 384.4 528.3 679.1 833.4 989.8 1147.4 1305.7
1.5 58.0 118.3 247.2 393.3 544.1 679.2 851.8 1007.6 1164.2 1321.4
2 57.0 106.0 244.9 397.1 551.8 707.6 863.9 1020.7 1177.8 1335.2
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6.2.3 S200-B201: Non-planar linear string coupled to a
three-oscillator lumped bridge

The third case to be conducted is to validate the extended numerical scheme pre-
sented in Equation (6.30) for a S200-B201 system. The scheme for S200-B201, al-
though similar in principle, is different from a S100-B101 system as it solves for θ3

instead of θ2. As far as the numerical scheme is concerned, the S200-B201 scheme is
essentially a reduced version of the complete S212-B213 system. Both systems solve
for the same extra oscillator, i.e. θ3, albeit the S212-B213 system also computes for
extra unknowns in the other two rotations and the longitudinal displacement of the
string and bridge. Since only the theoretical eigenfrequencies for S200-B201 system
are known, validating a S200-B201 scheme can also be viewed as a validation for
the S212-B213 scheme as well since both employ the same approach and solve for
the same extra oscillators.
To comprehensively validate the S200-B201 scheme in Equation (6.30), the five
cases that were first presented in Section 5.2.3 are being simulated in MONTJOIE.
FFT results of the displacement time signals are analysed and the frequencies of
the systems are extracted to compare against theoretical eigenfrequencies obtained
from Equation (5.88), which is rewritten as Equation (6.43) for easy reference.

1 = −h2
2

T0ku,n
(J3 − ω2

nI3)F(ku,n)
− h2

1

T0kv,n
(J3 − ω2

nI3)G(kv,n)
, (6.43)

where:

F(ku,n) = tan(ku,nL) +
T0ku,n

K1 − ω2
nM1

,

G(kv,n) = tan(kv,nL) +
T0kv,n

K2 − ω2
nM2

.

In what follows, the eigenfrequencies that were first presented in Tables 5.5, 5.6,
5.7, 5.8 and 5.9, each representing Cases I, II, III, IV and V respectively are shown
again in Tables 6.10, 6.11, 6.12, 6.13 and 6.14. For each case, the frequencies as
obtained from the MONTJOIE simulations are also shown in the same table. To
recap, the physical parameters used for each case are shown in Table 5.4, and is
reproduced here in Table 6.9 to remind the readers the differences between each
cases.
All simulations are run for 10s with a time step of 10−6s, yielding a frequency res-
olution of 0.1Hz. For Cases II to V, each simulation begins with an initial condition
of a half-sine wave with an amplitude of 10−5m for both the strings. For Case I, the
two strings have slightly different initial amplitudes of 1.5×10−5m and 10−5m. This
is because if the same initial condition is given to both the strings, the two string
forces applied to the rotational oscillator of the bridge would simply cancel out each
other. This causes the system to degenerates into two uncoupled S100-B100 sys-
tems which gives an entirely different set of frequencies.
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Table 6.9: Physical parameters used for the analysis of S200-B201 systems, all five
cases.

Case
Parameter I II III IV V
T0 (N) 880
ρ (kg.m−3) 7850
ρ̃ (kg.m−3) 7850 7457 7850 7457
A (m2) 9.7993×10−7

L (m) 0.61
M1 (kg) 0.003735
K1 (kg.s−2) 5607 56070
M2 (kg) 0.003735
K2 (kg.s−2) 5607 3917 33300
I3 (kgm2) 0.001
J3 (kgm2.s−2) 4888 48888
h1 (m) 1
h2 (m) 1

It is perhaps easier to begin the discussion by ignoring first the result from Ta-
ble 6.10 for Case I. Looking at the results in Tables 6.11, 6.12, 6.13 and 6.14, the
frequencies extracted from MONTJOIE simulations are identical to the accuracy of
0.1Hz with the sole exception of the 4th frequency for Case IV in Table 6.13 (see the
value in bold) where it is 0.1Hz higher than is computed by Equation (6.43).
The big elephant in the room is the result from Table 6.10. On one hand, all the
frequencies computed by Equation (6.43) are correctly simulated in MONTJOIE.
On the other hand, there are also additional frequencies (in bold) that show up in
the FFT plot of the displacement signal. These extra frequencies could be due to
limited accuracy of the numerical scheme where the two string modes are actually
not exactly identical. Indeed, it is possible to identify these extra modes using the
eigenfrequency equation (i.e. Equation (6.43)) if one assigns:

ρ̃ = 7849.9kg.m−3. (6.45)

In other words, there is a finite detuning between the frequencies of the two string’s
modes that are inherent in the simulation. This detuning is only noticeable in the
most perfect case. Admittedly, this represents a flaw of the numerical scheme but
in practice, such system is highly unprobable and would simply be restricted to
theoretical studies. It would require not only the same string’s parameter, but the
corresponding oscillators as well. For the purpose of this thesis, where the detuning
between the string’s modes is a main subject of study, the flaw of this scheme is
not a concern. Detuning would have been artificially introduced anyway, as it is
discovered to be present in a physical system (see Chapter 4.4).
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Table 6.10: Frequencies for Case I as obtained from Equation (6.43) and MON-
TJOIE.

Frequency (Hz)
Equation (6.43) 147.4 221.2 356.6 571.0 793.1
MONTJOIE 147.4 160.1 221.2 289.9 356.6 489.9 57.01 728.9 793.1

Table 6.11: Frequencies for Case II as obtained from Equation (6.43) and MON-
TJOIE.

Frequency (Hz)
Equation (6.43) 148.8 161.4 221.5 292.3 360.6 504.5 577.7 737.1 803.3
MONTJOIE 148.8 161.4 221.5 292.3 360.6 504.5 577.7 737.1 803.3

Table 6.12: Frequencies for Case III as obtained from Equation (6.43) and MON-
TJOIE.

Frequency (Hz)
Equation (6.43) 140.2 153.9 212.0 287.0 356.6 498.4 570.9 728.8 793.1
MONTJOIE 140.2 153.9 212.0 287.0 356.6 498.4 570.9 728.8 793.1

Table 6.13: Frequencies for Case IV as obtained from Equation (6.43) and MON-
TJOIE.

Frequency (Hz)
Equation (6.43) 223.8 237.4 445.3 474.6 661.9 711.6 871.9 947.8 1077.5 1181.9
MONTJOIE 223.8 237.4 445.3 474.7 661.9 711.6 871.9 947.8 1077.5 1181.9
Equation (6.43) 1284.5 1401.1 1481.1 1527.2 1668.5 1728.8 1869.1 1943.6 1990.3
MONTJOIE 1284.5 1401.1 1481.1 1527.2 1668.5 1728.8 1869.1 1943.6 1990.3

Table 6.14: Frequencies for Case V as obtained from Equation (6.43) and MON-
TJOIE.

Frequency (Hz)
Equation (6.43) 226.2 241.0 450.1 481.7 669.0 721.8 881.2 960.7 1089.1 1197.1
MONTJOIE 226.2 241.0 450.1 481.7 669.0 721.8 881.2 960.7 1089.1 1197.1
Equation (6.43) 1297.9 1419.0 1482.2 1551.3 1675.7 1762.1 1872.0 1981.5 1997.7
MONTJOIE 1297.9 1419.0 1482.2 1551.3 1675.7 1762.1 1872.0 1981.5 1997.7

6.3 Summary
In this chapter, two numerical schemes implemented in MONTJOIE are presented.
The general scheme that was proposed by Chabassier [75] is used for systems that
do not include an additional oscillator, such as a simple S100-B100 and S101-B101
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system. On the other hand, the extended scheme that is proposed in this PhD thesis
is used for systems that solve for an additional rotational oscillator. Examples of
them include the S100-B101, S200-B201 and the most complex S212-B213 system.
The schemes written for S100-B100, S100-B101 and S200-B201 are all successfully
validated by comparing the frequencies extracted from the displacement signals
against theoretical eigenfrequencies obtained from Section 5.2.
A short manual intended for MONTJOIE users is also included as Appendix B.
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7

Measurements and simulations
of a lumped bridge coupled to a
string

In Chapter 5, various models coupling a lumped bridge to a string are proposed and
they are numerically validated in Chapter 6. The idea is to develop a numerical
model that can be used to compare against experimental findings qualitatively so
as to understand the mechanism behind any observed phenomenon. The chapter
begins with the presentation of the experimental setup in Section 7.1, followed by
the necessary identification of modelling parameters in Section 7.2 and concludes
with the findings from experiments and numerical simulations in Section 7.3.

7.1 Experimental setup

The experimental test bench, as shown in Figure 7.1, is based on earlier string’s
experiment which was previously detailed in Chapter 4 where the string was ter-
minated by the collet-imitating clamps at both end to imitate fixed-fixed bound-
ary conditions. For the lumped bridge experiment, the string is strung over a bass
bridge cutout in a zig-zag pattern. The bass bridge is 51mm wide, 30mm tall and
20mm deep. The string’s vibrating length is reduced as compared to the fixed-fixed
configuration. It also changes its boundary condition at one end from a fixed bound-
ary condition (see Figure 7.2a) to a more complicated zig-zag boundary condition
(see Figure 7.2b). In a fixed boundary condition, vibration of the string is restricted
in all directions as it is held in place by the clamp. On the other hand, the zig-zag
pattern is a common method used to couple strings to the bridge in a piano. In such
configuration, the string is restricted by two angled bridge pins. To further imitate
the setup of a piano, the string is slightly elevated by the lumped bridge, resulting
in a vertical downbearing force applied onto the bridge. Due to the downbearing
force, the string is no longer coupled to just the lumped bridge, but also the steel
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plate. The implication of such setup will be discussed further in Section 7.2.2.

Figure 7.1: Actual experimental setup of a string coupled to a lumped bridge.

(a) Fixed boundary condition using a clamp. (b) Zig-zag boundary condition.

Figure 7.2: Boundary conditions (a) before and (b) after the bridge is mounted.

The lumped bridge used (see Figure 7.3) is originally part of the bass bridge of a
dismantled Pleyel P-131 upright piano. A screw that attaches the lumped bridge to
the rest of the soundboard assembly was removed, leaving a cavity in the middle of
the lumped bridge. The bridge pins, however, was not removed. As the string was
strung over in a zig-zag pattern, the lumped bridge is prone to being rotated around
a vertical axis. To fix the lumped bridge in place, a custom-made G-clamp is fabri-
cated such that the lumped bridge is snugly fitted between the clamp without any
rotation. The bridge is further secured by tightening the bolts against itself care-
fully without permanently damaging it. The clamp is also made to have minimal
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contact with the bridge so that the bridge is more freely to vibrate both translation-
ally and rotationally.

λ1

λ2

θ3

Figure 7.3: Close-up look of the lumped bridge. The bridge is further secured by
tightening the bolts on the clamp. The top two bolts seen are pushed onto the bridge
and the bottom two bolts are pushed onto the steel plate. Also shown are the two
translational displacements of the bridge, λ1, λ2 and the respective in-plane rota-
tional displacement θ3.

Lastly, it is worth pointing out that the Keyence-9030D is set up such that the two
measuring axes are 45° off the horizontal and vertical datums as shown in Fig-
ure 7.4. Thus the two measuring axes, named "H2" and "H1" are denoted as 0° and
+90° respectively (see dashed lines in Figure 7.4). As a result, the vertical and hor-
izontal datums (solid lines in Figure 7.4) are at +45° and -45° respectively. From
Section 5.1.5, one could prescribe an angular offset γ between the string’s polar-
isations and the bridge’s axes (which is defined to be the vertical and horizontal
datums). An example of this γ is also shown in Figure 7.4 and defined as the angle
between the solid line (i.e. datum) and the dashed line (i.e. string’s polarisation).
As a reminder, the orientation of the angles can literally be mirrored, depending on
which side it is being viewed on.

7.2 Parameter identification
To reconstruct the numerical model presented in Chapter 5, it is necessary to ob-
tain the input parameters for the string and the lumped bridge. For the string, it is
important to determine its material parameters, i.e. viscous damping parameters
and Young’s modulus. Some parameters specific to the set up are also determined,
such as the string tension and most importantly its polarisation angle. The polari-
sation angle will determine the angular offset γ between the string’s axes and the
bridge’s axes (see Figure 7.4). On the other hand, the lumped bridge is modelled as
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0° +90°

+45°

-45°

γ

H2H1

Figure 7.4: Illustration of the various angles in the experimental set up. The mea-
suring axes H2 and H1 lie on 0° and +90° (dotted lines). The vertical and horizontal
datums are +45° and -45° respectively (solid lines). Also shown is an example of
angular offset γ between the string’s polarisations (shown as dashed lines) and the
bridge’s axes (vertical and horizontal datums).

simple harmonic oscillators of different directions. Thus, its modal mass, damping
and stiffness will have to be determined experimentally as well.

7.2.1 String

As some of the string characteristics could differ with and without the presence
of the lumped bridge, careful choice needs to be made when selecting the string
parameters for simulation. For instance, due to additional damping that will be
introduced by the lumped bridge, the identification of the string’s damping parame-
ter needs to be performed for the string before the lumped bridge is mounted. After
the string is mounted, the frequency of the string would increase due to decrease
of string vibrating length. Thus, the tension value to be input into the numerical
model needs to be based on the data after the bridge has already been mounted. For
both instances, the string’s polarisation angles are also identified.
To begin, a new set of string of the same type (1.3mm diameter, Stephen Paulello’s
string Type M [87]) used in Chapter 4 was mounted onto the setup with lower
tension and are fixed at both ends without the bridge. To identify the damping pa-
rameter, it is first necessary to identify the natural polarisation of the string using
the same technique discussed in Section 4.2. To briefly summarise the technique,
the string is lightly pulled using thin copper wire of diameter 0.05mm at one-third
of the string length until the wire breaks and the string starts vibrating. A quick
check of the linearity of the string vibration can thus be performed by observing
the absence of modes of multiple of 3. Next, the string displacement is rotated to an
angle such that the initial displacement is maximised in measuring axis H2 as is
shown in Figure 4.3. The H2 and H1 displacements are then termed the "dominant"
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and "orthogonal" signals and are analysed by the ESPRIT algorithm [88, 89]. At a
certain angle, one of the modes will be strongly observed with high amplitude while
the other mode will only be weakly excited. The angle when this is observed is thus
the string polarisation angle and two of these angles will be observed in a string.

Figure 7.5 shows the amplitude plot of the two dominant and orthogonal modes,
similar to Figure 4.4. The top plot shows the absolute displacement as extracted
by ESPRIT and the bottom plot shows the ratio between the dominant and the
orthogonal signals. The string polarisation angle corresponds to the angle where
the ratio is the largest , i.e. when only one mode is very strongly excited with the
other mode mostly negligible. It is found that the two polarisation angles are at -70°
and +20° respectively, and they are different from what is observed in Section 4.2
which is at -85° and +5°. Both strings are being inspected on the same test bench
using the same clamps as the fixed boundary conditions and the difference between
the two test cases suggest that the polarisation angle of the string is indeed an
intrinsic properties and is not influenced by the experimental setup.
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Figure 7.5: Amplitude of dominant and orthogonal modes from -90° to +90°. The top
plot shows the absolute amplitudes and the bottom plot shows the ratio between
dominant and orthogonal amplitudes.
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Figure 7.6 shows the frequency extracted by ESPRIT algorithm, with the top show-
ing the absolute frequency and the bottom the difference between both of them.
Similar to Figure 4.5, there are fluctuations across the different angles excited but
it can be observed that the difference between the two frequencies are the largest at
their natural polarisation angles. Specifically, at +20°, the dominant mode is about
0.2Hz lower than the orthogonal mode. As such, at this angle, this polarisation is
identified to be the lower fundamental mode of the string (u in Chapter 3) and the
other the slightly perturbed mode (v in Chapter 3).
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Figure 7.6: Frequency of dominant and orthogonal modes from -90° to +90°. The
top plot shows the absolute frequencies extracted and the bottom plot shows the
differences between dominant and orthogonal frequencies.

With the lower fundamental mode identified, it is then possible to identify the
string’s resonant frequencies and damping parameters. The string is plucked us-
ing the copper wire of 0.05mm at 20mm from one end of the string at +20° for 5
times. 16 string’s resonant frequencies and corresponding damping constants are
extracted using ESPRIT algorithm. The averaged experimental damping constants
are shown in Figure 7.7 alongside with two fitted simple viscous damping mod-
els (SVM) as described by Equation (2.82). The model produced by least square fit
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overestimates the damping of the lowest mode by a factor of three. Given that the
accuracy of the lower modes are more important as these modes are more strongly
excited, a custom fit model is proposed and used instead where the lower modes are
more accurately modeled with overestimation only at higher modes. The custom fit
model uses the following damping parameters:

Ru = R = v = Rφ = Rψ = 0.0957s−1, (7.1a)
Rw = 0.5s−1, (7.1b)

ζu = ζv = ζφ = ζψ = 7.10−9s, (7.1c)

ζw = 10−9s, (7.1d)

with Rw and ζw as recommended in [84]. Using the same set of frequencies, one
could also obtain the Young’s modulus to be 185GPa, lower from nominal values of
200GPa for steel.
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Figure 7.7: Comparison between experimental, least square fit and custom-fit
damping constants.

As the string is fully characterised in a fixed-fixed condition, the bridge is mounted.
To install the bridge, the string is slightly loosen before it is tighten again when
the bridge is in place. As the bridge is designated to be placed near one end of the
string, there is a safety concern that the shorter end of the string could snap due to
excessive tension. Another reason to loosen the string is that the zig-zag pattern of
the bridge inflicts a permanent distortion on the string and a failure of installation
(such as bridge gets dislodged before it is secured in the clamp) would mean redoing
the experiment with a new set of string.
After the bridge is installed, the polarisation angle experiment and post-processing
are repeated. Figure 7.8 and 7.9 show the amplitudes and frequencies of the dom-
inant and orthogonal signals similar to what is shown in Figure 7.5 and 7.6. Im-
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mediately, one can point out from the amplitude plot that the string polarisation
angles have changed to +38° and -53 ° respectively. In other word, there is a 7-8°
difference between the axes of the string polarisation and the axes of the lumped
bridge which are in the vertical (+45°) and horizontal (-45°) plane. This difference
is thus the angular offset γ that appears in the S212-B213 model of Equation (5.30)
and is shown in Figure 7.4. Certainly, the introduction of the lumped bridge has
brought a change to the string polarisation angle. However, it is not established
if the change is relative where the lumped bridge will always offset the string po-
larisation angle by approximately +18° or the change is absolute where it would
disregard any original string polarisation angle and fix the new angle to be in the
vicinity of +38° and -53°. Additional experiments would need to be repeated several
times to properly investigate and answer the question.
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Figure 7.8: Amplitude of dominant and orthogonal modes from -90° to +90°. The top
plot shows the absolute amplitudes and the bottom plot shows the ratio between
dominant and orthogonal amplitudes.

In addition to the change in polarisation angle, there are also a few differences when
the pair of Figure 7.8 and 7.9 (i.e. after the bridge is mounted) is compared to Fig-
ure 7.5 and 7.6 (i.e. before the bridge is mounted). In Figure 7.8, at +70° to +90° and
from -90° to -80°, the recorded orthogonal amplitudes exceed the dominant ampli-
tudes. The two regimes are essentially continuous, as anything outside of -90° and
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Figure 7.9: Frequency of dominant and orthogonal modes from -90° to +90°. The
top plot shows the absolute frequencies extracted and the bottom plot shows the
differences between dominant and orthogonal frequencies.

+90° can be projected inside this range but with a negative initial amplitude. The
reason why the orthogonal amplitudes would record larger dominant amplitudes
are down to the method used to obtain the plot. As explained in Section 4.2, the ES-
PRIT alrogithm is only fed with a short 0.3s signal. For consistency purposes, this
is taken to be when the orthogonal signal has the largest amplitude. This method
ultimately works fine for a fixed-fixed string scenario as the orthogonal amplitude
is always small. When the bridge is coupled to the string, the double polarisation
phenomenon is much more pronounced such that even though the excitation begins
in the -90° plane, the out-of-plane displacement can sometimes be larger than the
in-plane displacement as is shown in Figure 7.10. In essence, this shows that the
introduction of the bridge would encourage a stronger development of the double
polarisation effect as such crossovers were not presented in Figure 7.5.
Another observed difference is between Figure 7.6 and 7.9. In Figure 7.6, the largest
difference between the two frequencies of the dominant and orthogonal modes is
observed in the vicinity of the string polarisation angle (+20° and -70°) as a peak.
However, in Figure 7.9, the largest difference between the two frequencies exist
over a wider range that roughly centers around its polarisation angle (+38° and
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Figure 7.10: Wave envelope of the displacement-time signal for the dominant and
orthogonal modes with excitation beginning in the -90° plane with a temporal reso-
lution of 0.03s.

-53°)). Instead of a peak, a plateau is observed, notably between 0° to +70°1. Using
the same angular reference in Figure 7.4, the string would come into contact with
the top surface of the bridge at approximately -135° (or in other word, +45°). As the
contact surface is more regular, it is perhaps why the plateau in that vicinity (+20°
to +70°) is more flat compared to the one between -90° and -20°. Nonetheless, since
the plateau only appears after the bridge is mounted (as it is not observed in Fig-
ure 4.5), a further study using similar experimental techniques could be warranted
to further understand the zig-zag boundary condition.
Lastly, the introduction of the lumped bridge introduces a strongly observed detun-
ing of 0.2Hz between the string modes, in which this frequency difference is adopted
for subsequent numerical simulations. The choice of detuning is a dilemma where
it could be defined in as the differences between the dominant and orthogonal fre-
quencies at the polarisation angles (in which it would be +0.2Hz at -53° and -0.2Hz
at +38°) or the differences between the absolute frequencies of the dominant mode
at both -53° and +38°. Using the latter definition, the detuning could range between
0.2Hz to 0.4Hz if averaged frequencies around the polarisation angles are used for
the calculation. As a first assumption, the minimum detuning value of 0.2Hz is
adopted.
Using the same method in Section 4.3, the tension and the Young’s modulus of
the string are also determined. Up to 16 averaged frequencies are identified over
5 sets of data and a tension of 330.161N is identified with a corresponding Young’s

1Essentially, what is observed between 0° to +70° is an "anti-plateau", like a flat seabed. The term
"plateau" is used simply to mean a flat region rather than an elevated region, as is its definition as a
geographic feature.
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modulus of 181GPa.
To summarise, in this section, the following string parameters are identified:

• Angular offset between string and bridge, γ: +7°,

• String tension: 330.161N,

• String damping: see Equation (7.1) and Figure 7.7,

• Young’s modulus: 181GPa but not used in simulation.

7.2.2 Oscillators

In Section 5.1.5, a complete S212-B213 system has been proposed where a string
with 5 variables (2 translationals, 1 longitudinal, 2 rotationals) is coupled to a
lumped bridge consisting of 6 oscillators (2 translationals, 1 longitudinal, 3 rota-
tionals). There is an angular offset, γ between the two string polarisations (i.e.
translational displacements) and the two translational oscillators (see Figure 5.6).
However, to study the double polarisation of the string, the model can be simplified
to a S200-B201 system, such as those described in Section 5.1.4 yet retaining the an-
gular offset. Essentially, the general form of Equation (5.30) remains identical but
the number of variables is reduced, such that for the string variables q = [u v]T

and for the lumped bridge variables Υ = [λ1 λ2]T and θ3. The equations of mo-
tion become:

Msq̈−
∂

∂x

(
Aq′ + Bq +∇H(q′)

)
+ Cq + BTq′ + Yq̇− Zq̇′′ = 0, (7.2a)

MbΫ + SbΥ̇ + KbΥ = −FRk , (7.2b)

I3θ̈3 +R3θ̇3 + J3θ3 = FR1 h2 − FR2 h1, (7.2c)

where:

Ms =

[
ρA 0
0 ρ̃A

]
, A =

[
T0 0
0 T0

]
, Y =

[
2ρARu 0

0 2ρ̃ARv

]
, Z =

[
2T0ζu 0

0 2T0ζv

]
,

B = C = 0, H = 0, Mb =

[
M1 0
0 M2

]
, Sb =

[
S1 0
0 S2

]
, Kb =

[
K1 0
0 K2

]
. (7.3)

The reduced coupling conditions as simplified from Equation (5.29) are:[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
︸ ︷︷ ︸

τ

[
u̇
v̇

]
=

[
λ̇1

λ̇2

]
+

[
−h2θ̇3

h1θ̇3

]
, (7.4)

and the resolved string forces onto the bridge are:

FRk = τ [Aq′ + Bq +∇H(q′) + Zq̇′]x=L. (7.5)

149



7.2. Parameter identification

For the study of double polarisation, the reduced S200-B201 system is chosen be-
cause it includes all the main oscillators the string polarisations can exchange en-
ergy with. The string is modeled as a pair of linear wave equations, each for one
polarisation. The nonlinearity and stiffness effects of the string are not in consider-
ation.
The oscillators’ parameters that need to be identified are essentially its mass (or
mass moment of inertia), damping and stiffness, i.e. Mb, Sb, Kb, I3, R3 and J3. To
achieve that, the lumped bridge is struck with a PCB 086C04 impact hammer and
the bridge’s acceleration is measured by Brüel & Kjær charge accelerometers type
4374. Referring to Figure 7.3, a single accelerometer is placed at the base of the
red and green arrows to measure the vertical and horizontal motion of the bridge
respectively.
For the rotational motions, two accelerometers are placed at the two end of the
bridge (shown as blue dots in Figure 7.3) and the hammer is struck at the yellow
dot. The relative difference between the two accelerations at both ends thus con-
stitute a net rotation experienced by the bridge as inferred from Figure 7.11. The
rotational acceleration can thus be deduced by:

θ3(t) =
a1(t)− a2(t)

Lacc
. (7.6)

Lacc

θ3
a1

a2

Figure 7.11: Illustration on how the rotational displacement of the bridge can be
estimated from measuring the acceleration at two extreme points. The diagram
shows only the top surface of the bridge.

For the vertical λ1 and horizontal λ2 motion, the hammer is struck as close to the
accelerometer as possible (within 10mm from the accelerometer). Assuming that
the force and acceleration measured act through the same point, the mobility of the
bridge in these directions can be computed by:

Yad(jω) =
a(jω)

jωFh(jω)
, (7.7)

where Yad, a and Fh represent the mobility, accelerometer signal and hammer force
respectively. Figure 7.12 shows the mobility for both the vertical and horizontal
motions averaged over 4 sets of data. At very low frequencies, there are rigid body
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motions for both motions. However, there is a resonant frequency at about 58Hz
that is only observed in the vertical mobility. This is the fundamental frequency
of the steel beam under the bridge, fsb, as it can be approximated by the eigenfre-
quency equation for a simply-support beam:

2πfsb = π2

√
EsbIsb

ρsbAsbLsb
, (7.8)

where Esb, Isb, ρsb,Asb, L5
sb are the Young’s modulus, second moment of area, density,

area and approximate vibrating length of the steel beam respectively. Given that
the beam has a width of 51mm, a height of 30mm and an approximate vibrating
length of 0.7m, using nominal values where Esb = 200GPa and ρsb = 8000kg/m3, the
fundamental frequency of the steel beam fsb can be identified to be 60.8Hz, which
is very close to the 58Hz observed. As a result, the peak observed at 175Hz is iden-
tified as first the vertical bridge mode instead. As for the horizontal mobility, there
are no obvious peaks. Ignoring the first 100Hz, there are three peaks identified at
about 200Hz, 550Hz and 670Hz. It is plausible that the 200Hz peak originates from
the vertical mode that is accidentally excited. Out of the 4 measurements taken, it
is only detected in one of them. Thus, this peak is ignored and the horizontal bridge
mode is identified at the next peak, i.e. at 551Hz.
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(a) Vertical motion.
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(b) Horizontal motion.

Figure 7.12: Admittance data for (a) vertical and (b) horizontal motion.

Figure 7.13 shows the averaged frequency responses of the estimated rotational
accelerations for two different sets of data with each set of data containing 5 mea-
surements. In the set of Data 1, two clear peaks are observed at 424Hz and 560Hz
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respectively. However, they seem to be aligned with the string partials. To estab-
lish if it is a coincidence or whether the rotational modes could be influenced by
the string’s partials, the string is slightly tightened and the same procedure is car-
ried out to measure the frequency responses again, and is labeled Data 2. Both
data agreement very closely from one another, thus rejecting the hypothesis that
the string’s partials have an influence on the bridge modes. Even though there are
two clear peaks defined, only the first one, i.e. at 424Hz is used as the rotational
oscillator.
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Figure 7.13: Frequency responses of the difference between two accelerometers,
each with slightly different tension on the string.

An oscillator’s frequency can be estimated by taking the square root of the quotient
between the stiffness and the mass. For instance, the oscillator’s frequency of λi can
be computed by:

fosc,i =
1

2π

√
Ki

Mi
, for i = 1, 2. (7.9)

However, knowing only the frequency is not sufficient as one can only know the
ratio between the modal mass and stiffness. Fortunately, at first order, the modal
mass can be estimated to be the actual mass of the system. The bridge itself weighs
only 37g while the beam weights approximately 3kg. Since the beam modes are vis-
ible in the mobility data of the bridge motions, the mass of the system is chosen to
be the mass of the beam, i.e. 3kg. The choice is further supported from the analysis
in Section 5.2 where a low mass could cause a shift of the string’s frequencies. This
is not strongly observed in the experiment, thus further supporting the choice of
3kg over 37g. Consequently, as a first approximation, the mass of both vertical and
horizontal oscillators are identified as 3kg and the corresponding stiffness can be
estimated from Equation (7.9). Similarly, the mass moment of inertia of the rota-
tional motion, I3 can be computed by:

I3 =
M1,2

12

(
L2
x + L2

y

)
, (7.10)

where Lx and Ly are the height and width of the lumped bridge, which are 51mm
and 30mm respectively. With I3 known, the rotational stiffness J3 can also be de-
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termined by:

f rosc =
1

2π

√
J3

I3
. (7.11)

Last but not least, the damping of the oscillators need to be identified. This is
achieved by using the half power method. The method computes the difference be-
tween the two frequencies at 3dB below the peak of the mode in a power spectrum.
Using that difference, ∆fi, the damping coefficients (in kg.s−1) can be determined
as [89]:

Si = 2πM1∆fi for i = 1, 2. (7.12)

While the half power method is intended for mobility data, it is also used for the fre-
quency responses of the rotational displacement. This is because at up to 1,000Hz,
the force spectrum from the hammer is flat. As such, whether including the force
spectrum or not would not have made much difference. Thus, the same method is
also applied to the rotational data, where the damping R3 can be obtained by:

R3 = 2πI3∆fr, (7.13)

where ∆fr is the difference of the two frequencies at 3dB below the peak of 424Hz
in Figure 7.13.
The identified oscillator’s parameters are summarised in Table 7.1:

Table 7.1: Experimentally identified oscillators’ parameters.

Vertical Horizontal Rotational
Frequency 175.2 Hz 551.2 Hz 423.7 Hz
Mass M1 = 3 kg M2 =3 kg I3 = 7.25×10−4 kgm2

Damping S1 = 343.06 kg/s S2 =1975 kg/s R3 =0.2118 kgm2/s
Stiffness K1 = 3.635× 107 kg/s2 K2 = 3.598× 107 kg/s2 J3 =5138 kgm2/s2

7.3 Results and discussion

7.3.1 Experiment on the coupled string-bridge system

The main idea of conducting the experiment is to observe the double polarisation
and identify the cause behind it. The system is excited by plucking the string us-
ing the copper wire method where a thin wire of 0.07mm is pulled until it breaks
at 168mm from the bridge end. The use of a thin copper wire would ensure the
string vibration stays in the linear regime. Two types of excitations are made, one
vertically and one horizontally. The vertical excitation would be similar to how a
hammer strikes the string in a piano where most energy is concentrated in this
direction. The horizontal excitation would act as an opposite case where most en-
ergy would be input at an orthogonal plane to the vertical plane. Figure 7.14 shows
the root-mean squared (RMS) displacements of the string at 0.03m from the fixed
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end. The RMS displacements urms are sampled over a windows of 50ms where the
signals are calculated by:

urms =

√√√√ 1

N

N∑
n=1

u2
n, (7.14)

where N is the total number of data points in the 50ms window.
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(a) Vertical excitation.
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(b) Horizontal excitation.

Figure 7.14: RMS displacements of (a) vertical and (b) horizontal excitation. The
RMS displacement is sampled over a window of 50ms.

In both cases, double polarisation is clearly observed. In Figure 7.14a where the
string is excited vertically, horizontal displacement is initially very small but subse-
quently gains in amplitude until it is in the same order of magnitude as the vertical
displacement. Similarly, as the string is pulled horizontally (see Figure 7.14b), the
vertical displacement gains in amplitude but only within about 3dB of the horizon-
tal amplitude. Such phenomenon is not surprising as from the study in Section 3.5,
it is indeed possible to have double polarisation in the linear string motion as long
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as there is a detuning between the two string’s modes and they are both excited.
However, the double polarisation effect is also further augmented by the addition
of the bridge.
Figure 7.15 shows the RMS displacement of the string when it is excited at +27° be-
fore the bridge is mounted. From the result obtained in Section 7.2.1, the string had
a natural polarisation angle at +20° and the excitation is essentially very similar
as they are both excited at +7° from their natural polarisation. As a reminder, the
string’s natural polarisation angle after the bridge is mounted is +38° and pulling
the string vertically would be exciting it at +45°. In Figure 7.15, the dominant sig-
nal represents the displacement in the plane where the excitation is made and the
orthogonal signal represents the out-of-plane displacement. Comparing it to Fig-
ure 7.14a where both vertical and horizontal displacements are comparable, the
orthogonal out-of-plane displacement still remains at least 3dB less than the dom-
inant in-plane displacement. While the excitation is on a different string position,
with a different string length and initial amplitude, it is nonetheless clear that
qualitatively the addition of lumped bridge has introduced an extra path for the
energy to be exchanged between the modes of the string.
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Figure 7.15: RMS displacements of a string with fixed-fixed boundary condition
when excited at +27°, when the string natural polarisation falls on +20°. RMS value
is sampled over a window of 50ms.

In addition to the double polarisation effect, double decay can also be observed in
the two plots of Figure 7.14. In both figures, two straight line fit of the signals
are obtained, one within the first 1.5s after the string starts vibrating (dashed red
line), and one from after 1.5s of excitation until the 20th second of signal acquisition
(dashed green line). The equations for these straight lines are shown respectively in
the legend of the figures. For both cases, the string experiences a larger decay at the
initial 1.5 seconds than during the subsequent signal, as indicated with a steeper
gradient of the straight line. This is consistent with observation on a piano even for
a single string struck by a hammer [28]. However, in Giordano’s book [28], beats are
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only observed for a multi-string setup where duplets or triplets of slightly detuned
strings are struck at the same time. In Figure 7.14, beats are both observed on the
vertical and horizontal excitation of a single string.
Weinreich attributed the double decay phenomenon of a vertically struck string to
the presence of horizontal displacement [27]. Initial vertical displacement is trans-
mitted to the bridge quickly forming the first sharp decay before the vertical dis-
placement becomes comparable to the horizontal displacement and decays slowly.
Giordano echoed this explanation and suggested that the horizontal displacement
could be due to the movement of the bridge and soundboard [28]. Weinreich also
made an analysis to demonstrate that double decay is present if there are two
strings vibrating vertically at slightly detuned frquencies from one another [27].
This is because the two vertical string forces would eventually go out-of-phase and
reduce the net energy transfer to the bridge, thus forming two different decay char-
acteristics and beating. The same analysis involving two strings are also performed
in more details by Chaigne and Kergomard [90].
This begs the question of why double decay and beats are both observed on the sin-
gle string setup in Figure 7.14. The two-string analysis is actually applicable for a
single string as well. A single string contains two oscillating modes and unless they
are aligned perfectly with the bridge vertically and horizontally, there will always
be two different string forces acting vertically onto the bridge. The string forces
exerted vertically, like their corresponding string’s polarisation, would be slightly
detuned from one another, thereby achieving the beating and double decay charac-
teristic proposed by Weinreich [27].
The double decay phenomenon is also contributed by the presence of lower oscillator
modes in the vertical direction. As determined earlier in Section 7.2.2, the vertical
oscillation of the lumped bridge can be represented by a harmonic oscillator with
resonant frequency of 175.2Hz. On the other hand, the horizontal harmonic oscilla-
tor has a resonant frequency of 551.2Hz. Figure 7.16 shows the frequency responses
of the two displacements when excited horizontally. It can be seen that most of the
energy is concentrated on the first two modes (139.6Hz and 280Hz) whose resonant
frequencies are close to the vertical oscillator’s frequency of 175.2Hz. In contrast,
the string mode closest to the horizontal oscillator’s frequency is the fifth mode
(568.4Hz) and it is almost 30dB less than the first two modes. Thus, the energy
transfer to the bridge is also much less significant.
The presence of lower vertical oscillator mode also explains why a double decay can
be observed even if the string is initially horizontally excited. Due to detuning, even
if the string is horizontally excited, it would demonstrate double polarisation where
vertical displacement gains in amplitude. It can be thought that the initial energy
gained in the vertical displacement is subsequently leaked to the vertical oscillator,
thereby constituting a higher decay, before transitioning to slower decay like the
case of a vertical excitation. Since the energy is initiated in the horizontal plane,
less energy would eventually be transferred to the lumped bridge compared to the
vertically excited case, as evident from the higher amplitudes after 20 seconds. It
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Figure 7.16: Frequency responses of the string displacements when it is excited
horizontally.

can also be inferred from the overall lower decay rates as demonstrated by the
less steep slope of both the straight lines depicting the decay rates in Figure 7.14b
compared to Figure 7.14a.

7.3.2 Numerical simulations of the coupled string-bridge system

In Section 7.3.1, the double polarisation and double decay phenomena have been
observed experimentally. The idea of this section is to conduct a series of numerical
simulations to confirm that:

Observation I A single string with two slightly detuned fundamental modes can
induce double decay with beatings if there is an angular offset between the string’s
natural polarisation and the bridge’s oscillating direction. This angular offset can
be described by the variable γ that appears in Equation (7.4).

Observation II Even if the string is excited horizontally, the energy of the string
principally leaks through the vertical oscillator.

The simulation parameters used are all presented in Table 7.2. The choice of ρ̃
would ultimately result in a detuning of 0.2Hz between the two frequencies. The
bridge offset h1 and h2 are obtained by considering the string termination point and
the bridge mass centre. One might notice that there is no Young’s modulus, shear
modulus and Timoshenko’s parameter. This is because the string is deliberately
simulated with the ideal linear wave equation to minimise actual simulation time.
Furthermore, since only the lower string modes are in concern and the simulation
only aims to obtain a qualitative comparison against experiment, it is not a ne-
cessity to include the stiffness, longitudinal displacement and nonlinear behaviour
between the two transverse modes.
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Table 7.2: Parameters for the simulation.

Parameter Value
String length, L (m) 0.608
String diameter, d (m) 0.0013
String density, ρ (kg/m3) 7850
String density, ρ̃ (kg/m3) 7828.6
String tension, T0 (N) 330.161
String damping see Equation (7.1)
Initial condition, amplitude (m) 7.7 ×10−4

Initial condition, location (m) 0.168 from bridge end
Initial condition, excitation angle -7 ° (vertical), +83° (horizontal)
Angular offset, γ 7 °
Time step, ∆t (s) 2.5 ×10−6

Total time (s) 20
Number of elements (order 4) 50
Oscillator parameters see Table 7.1
Bridge offset,h1 (m) 0.01
Bridge offset, h2 (m) 0.001

Figure 7.17 shows the simulated RMS displacement of the vertically and horizon-
tally excited string coupled only to the vertical oscillator of 175.2Hz, constituting
what could be known as a S200-B100 system. Straight line fits are obtained for the
first 1.5s of the signal, and the rest of the 18.5s. Compared to Figure 7.14, the dou-
ble decay is much more subtle (or perhaps non-existent in the horizontal case) and
the interaction between the two displacements are comparatively weak as they are
at least 10dB apart. Adding the horizontal and rotational oscillators (which makes
it a S200-B201 system) do not introduce any tangible difference (and is thus not
shown for brevity).
To simulate a stronger interaction between the two displacements, the angular off-
set is artificially increased from +7° to +22° and the results are as shown in Fig-
ure 7.18 where only the vertical oscillator is used. Compared to Figure 7.17, double
decay is more obvious for both types of excitations. In Figure 7.18a, the horizontal
and vertical displacements are of similar amplitude and in Figure 7.18b, the verti-
cal displacement is at least 4dB below from the horizontal displacement. Although
the decay rate is not the same and the observed beating is faster, these results are
qualitatively consistent with the experimental results in Figure 7.14. Adding the
horizontal and rotational oscillators do not give any tangible differences other than
increasing the decay very slightly for both the initial and second decays. Again, the
plots for these results are not shown for brevity as they are virtually identical to
Figure 7.18.
Revisiting Observation I, while the observation remains true, it is important to add
on that having an angular offset γ does not necessarily induce an observable double
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(a) Vertical.
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Figure 7.17: RMS displacements of (a) vertical and (b) horizontal excitation in sim-
ulation with parameters from Table 7.2 and using only vertical oscillator. The RMS
displacement is sampled over a window of 50ms.

decay for a string with two slightly detuned fundamental frequencies. The double
decay is only obvious when the out-of-plane displacement would gain comparable
energy compared to the in-plane displacement. This happens naturally in the ex-
periment with an angular offset of γ = +7° but in simulation, an additional +15°
correction needs to be applied to γ for a qualitative reproduction of the experiment.
This discrepancy might be accounted by the seemingly complex zig-zag boundary
condition. As the string is not entirely secured on the bridge at the contact point,
it is possible that micro-slipping occurs between the string, the top surface of the
bridge and the bridge pin [92]. This micro-slipping could affect the transfer of en-
ergy between the vertical and horizontal displacements in which the out-of-plane
displacement would gain more energy from the zig-zag boundary condition than it
would otherwise had.
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(a) Vertical.
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Figure 7.18: RMS displacements of (a) vertical and (b) horizontal excitation in simu-
lation with parameters from Table 7.2 (except that γ = +22°) and using only vertical
oscillator. To compensate for the change in angular offset, the initial condition angle
is also changed to -22° and +68° for vertical and horizontal excitation respectively.
The RMS displacement is sampled over a window of 50ms.

Another plausible discrepancy is that the oscillator’s parameters are incorrect. In-
deed, current work resorts to several simplifications to obtain the simulation pa-
rameters. For instance, the modal mass of the horizontal λ2 oscillator is assumed
to be 3kg, which might not be exactly correct. A proper characterisation of all the
oscillators would be beyond the scope of the thesis but an idealised test case can be
performed. Reusing γ = +7°, a vertically excited string is coupled to the same ver-
tical oscillator and a less massive and stiff horizontal oscillator. The idea is to allow
more movement horizontally to observe if that would allow more energy gained in
the horizontal direction. This less rigid oscillator has the same frequency of 551.2Hz
as the previous horizontal oscillator, but its mass and stiffness are both lowered by
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a factor of 10, with a correspondingly adjusted damping coefficient. The oscillator
parameters are now:

M2 = 0.3kg, S2 = 197.51/s, K2 = 3.7× 107N/m, (7.15a)

and the simulation results are as presented in Figure 7.19. Compared to Figure 7.17a,
one could see that there is virtually no difference in the vertical displacement but
horizontally, the string vibrates in a different pattern (horizontal displacement Fig-
ure 7.17a is plotted together for easy comparison). It is nonetheless still about 10dB
less than the vertical displacement and as such double decay is not very obvious.
In other word, it appears that artificially modifying the angular offset would still
be a better choice in term of promoting energy exchange between the vertical and
horizontal displacements of the string. To further investigate the horizontally ex-
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Figure 7.19: RMS displacements of vertically excited string in simulation with
parameters from Table 7.2 but with a less rigid horizontal oscillator (see Equa-
tion (7.15) for parameter).

cited string, a simulation is made where only the horizontal oscillator is considered
and the RMS displacements are as shown in Figure 7.20. An extremely massive
and stiff undamped vertical oscillator is included where M1 = 107kg, S1 = 0 and
K1 = 1018N/m with its natural frequency at about 50,300Hz. This is in effect a fixed
boundary condition on the vertical displacement at the bridge and string contact
point. A rotational oscillator remains not included in this analysis.
From Figure 7.20, single decay with beats is observed. There is an initial sharp
drop before the decay slows down. This is because the string loses its energy to the
horizontal oscillator before the energy is passed to the vertical displacement. As
the horizontal displacement decreases due to the increase of vertical displacement,
the energy transmitted to the horizontal oscillator slows down until the horizontal
displacement increases again in which more energy is being transmitted through
the oscillator. The pattern repeats without a global double decay.
The difference between the vertically excited string with only one vertical oscilla-
tor(see Figure 7.18a) and its horizontal counterpart (Figure 7.20) is that the os-
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Figure 7.20: RMS displacements of horizontally excited string simulated with pa-
rameters from Table 7.2, except that γ = +22° and with an extremely massive and
stiff undamped vertical oscillator (i.e. M1 = 107kg, S1 = 0 and K1 = 1018N/m).

cillator the string is attached to have different frequencies (175.2Hz for vertical
oscillator and 551.2Hz for horizontal oscillator). Since it has been shown in Fig-
ure 7.16 that energy is mostly concentrated at the lower modes of the string, having
a similarly tuned vertical oscillator provides an outlet of the string’s energy. This is
because when the mobility is large, more energy would be lost to the oscillator [90].
The numerical results thus suggest that the manifestation of double decay is de-
pendent on the closeness of the oscillator frequency to the fundamental frequency
of the string. This in turn confirms that even if the string is excited horizontally, the
energy of the string principally leaks through the vertical oscillator (Observation II)
as is prefaced at the beginning of this section.

Lastly, the detuning between the two string’s modes is manipulated to identify if
it can be another source to promote double polarisation, and thus displaying more
prominent double decay. Figure 7.21 shows the RMS displacements when the string
is vertically excited and is coupled to a single vertical oscillator. The angular offset
γ is kept at the experimentally determined 7° and the difference between the two
string’s frequencies have doubled from 0.2Hz to 0.4Hz. The horizontal displace-
ment in Figure 7.17a is also replotted for easy comparison. Comparing Figure 7.21
to 7.17a where the only difference between them is the detuning, double decay re-
mains difficult to spot. This is because the horizontal displacement is still 10dB
lower than the vertical displacement. The only obvious change is the beatings of
the horizontal vibrations, which has become more frequent. In other word, a larger
detuning does not contribute to a noticeably prominent double polarisation and dou-
ble decay. In an actual piano, there are a lot of modes in a piano soundboard that
could correspond to a vertical oscillator. Considering only the bass unison strings,
it is very likely they would have an angular offset with the bridge and are detuned
within the two fundamental modes themselves. As they are struck by hammers,
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Figure 7.21: RMS displacements of vertically excited string in simulation with pa-
rameters from Table 7.2 (except that ρ̃ = 7807.3km/m3 forming a difference of 0.4Hz
between the two frequencies). Only vertical oscillator is used.

they exhibit both double polarisations and double decays due to the detuning, an-
gular offset and the presence of vertical oscillators of similar frequencies. The same
effect is likely to occur for notes with duplets and triplets of strings as well. In ad-
dition to the above mechanism, they are also affected by closely detuned strings
within their own groups of duplets or triplets. Without any further experiments or
simulations, it is not clear which mechanism could be dominating the manifestation
of the double decay effect.

7.4 Summary

In this chapter, an experiment is set up to investigate the vibration of the string
coupled to a lumped bridge. The following outcomes are obtained:

• As the string is strung over the bridge, it exhibits a detuning of 0.2Hz and it
has an angular offset, γ, of +7° between the string axes and the bridge axes
(vertical and horizontal datums).

• By measuring the mobility and frequency responses of the lumped bridge, the
parameters of 3 oscillators (vertical, horizontal and rotational) are identified.

• By initially pulling the string vertically and horizontally, double polarisation
and double decay are both observed.

• From simulation results, double decay is obvious only if the out-of-plane dis-
placement interacts strongly with the in-plane displacement. This can be ar-
tificially promoted by increasing the angular offset angle from +7° to +22°.
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7.4. Summary

• Energy is principally transmitted through the vertical oscillator even if the
string is initially excited horizontally. This is because the vertical oscillator’s
frequency is closer to the fundamental frequency of the string. This results
in a higher mobility of the oscillator, and subsequently the string loses more
energy through it.
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You’ve got your passion. You’ve got your pride,
But don’t you know that only fools are satisfied?
Dream on, but don’t imagine they’ll all come true.
When will you realize Vienna waits for you?

BILLY JOEL, 1977

PART III:

SOURCE IDENTIFICATION OF PIANO
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8

Source identification of piano

In this chapter, an exploratory study to inspect the third objective as outlined in
Section 1.2 is made. To recap, the objective is:

to determine the contribution of other constitutive components of the
piano in the production of the sound.

This study was made at Wien, Austria during a 5-month scientific secondment in
the BATWOMAN programme. As part of the BATWOMAN network which promotes
inter-disciplinary research within the domain of acoustics, the study is conducted
under the supervision of Antoine Chaigne of University of Music and Performing
Arts Vienna (MDW) and in collaboration with Antonio Acri of Virtual Vehicle Graz
and Politechnico Milano 1. The culmination of the collaboration results in a confer-
ence presentation at the International Congress of Acoustic in Buenos Aires, Ar-
gentina in September 2016 [93]. In conjunction with the preparation of this thesis,
the work was further extended submitted to Applied Acoustics. As such, this chap-
ter is identical to the submitted manuscript, with its own abstract, introduction,
contents, conclusion and acknowledgment.

8.1 Abstract

The piano sound is made audible by the vibration of its soundboard. A pianist
pushes the key to release a hammer that strikes the strings, which transfer the
energy to the soundboard, set it into vibration and the piano sound is heard due
to the compression of air surrounding the soundboard. However, as piano is being
played, other components such as the rims, cast-iron frame and the lid are also vi-
brating. This raises a question of how much their vibrations are contributing to the
sound as compared to the soundboard. To answer this question, operational trans-
fer path analysis, a noise source identification technique used widely in automotive
acoustics, is carried out on a Bösendorfer 280VC-9 grand piano. The "noise" in a

1He is now affiliated with Brugola OEB Industriale Spa.
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piano system would be the piano sound while the "sources" are soundboard and
the aforementioned components. For this particular piano, it is found out that the
soundboard is the dominant contributor, followed by the frame and the lid. Com-
paratively, the rims (inner and outer) are less significant.

8.2 Introduction
The study of piano acoustics has traditionally been focused on its piano action
[16, 17], interaction between a piano hammer and string [25, 26], string vibration
[32, 61, 94], soundboard vibration [42, 46, 95] and its radiation [8, 43]. As computa-
tional power becomes cheaper, it is possible to model the piano as a coupled system
that involves the string, soundboard and surrounding air [62, 63]. However, this
raises a question whether the considered system is complete enough to have a re-
alistic reproduction of the piano sound. Is there any other components that are
contributing to the piano sound production that has not been accounted for? Anec-
dotally, when a piano is played, vibration can be felt not only on the soundboard
but also on the rim, the frame, the lid etc. In a Bösendorfer piano, spruce, a wood
usually used for the soundboard by other manufacturers, is used extensively in
building the case of the piano. Bösendorfer claims that the use of spruce, especially
on the rim of the piano, allows the whole instrument to vibrate and is the reason
that gives the unique Bösendorfer sound [72]. Based on the fact that vibration is felt
on other parts of the piano and how Bösendorfer uses spruce extensively, it neces-
sitates an investigation if the vibrations of these parts contribute to the production
of the sound.
Current work takes inspiration from noise source identification techniques used
commonly in automotive acoustics [96–98]. However, in the case of piano, the "noise"
is the resulting piano sound and the "sources" to be identified are the piano compo-
nents to be investigated. These "sources" may emit different "noise" contributions
that characterise the resulting "noise", i.e. the piano sound. One technique that can
be used to identify the contribution of the piano components to the final sound is the
operational transfer path analysis (OTPA) [99]. OTPA computes a transfer function
matrix to relate a set of input/source(s) measurements to output/response(s) mea-
surements. In this case, the inputs are the vibration of the components of piano and
the output is the resulting piano sound.
In Section 8.3, the theory of OTPA is presented. The experiment designed for OTPA
is then detailed in Section 8.4 before the results are shown and discussed in Section
8.5.

8.3 The Operational Transfer Path Analysis (OTPA)
Operational transfer path analysis (OTPA) is a signal processing technique that
studies the noise source propagation pathways of a system based on its operational
data [100]. This is in contrast to classical transfer path analysis (TPA) where the
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source propagation pathways are established by means of experimental investiga-
tions with specific inputs. Indeed, OTPA was developed in wake of the need of a fast
and robust alternative to the classical TPA. In both methods, the source propagation
pathways are determined by studying the transfer functions between the sources
(inputs) and the responses (outputs). In TPA, the relationship between sources (ex-
citation signals) and responses are estimated by frequency response functions and
these are meticulously determined by series of experimental excitation of known
forces (e.g. by shaker or impact hammer). Where necessary, part of the system is
also removed or isolated. In this way, TPA is able to trace the flow of vibro-acoustic
energy from a source through a set of known structure- and air-borne pathways, to a
given receiver location by studying the frequency response functions. On the other
hand, OTPA measures directly the source and response signals when the system
is operated and establishes the source propagation pathways based on the experi-
mentally determined transfer functions. OTPA is a response-response model where
measurement data are collected and analysed while the system, when operated,
provides the excitation. Detailed comparisons between the classical TPA and OTPA
can be found in [101–103].
While OTPA may appear to be simpler to use, it is also prone to error if it is not de-
signed and analysed properly. OTPA requires prior knowledge of the system as ne-
glected pathways could not be easily detected. In a multi-component system, cross-
coupling between the components could affect the accuracy of an OTPA model. Sev-
eral techniques, which are detailed in the following Section 8.3.2, can be employed
to mitigate the effects of cross-coupling [100].

8.3.1 Theory of OTPA

In a linear system, the input X and output Y can be related by:

Y(jω) = X(jω)H(jω), (8.1)

where:
Y(jω) is the output vector/matrix at the receivers;
X(jω) is the input vector/matrix at the sources;
H(jω) is the operational transfer function matrix, also known as the transmissibil-
ity matrix.
The inputs and outputs signals can be the forces, displacements, velocities or pres-
sures of the components in the system. Given that there are m inputs and n outputs
with p set of measurements, Equation (8.1) can be written in the expanded form:y11 · · · y1n

... . . . ...
yp1 · · · ypn

 =

x11 · · · x1m
... . . . ...
xp1 · · · xpm


H11 · · · H1n

... . . . ...
Hm1 · · · Hmn

 , (8.2)

where for clarity purposes, the frequency dependency jω is dropped. In order to
quantify the contributions of the inputs to the outputs, the transfer function matrix
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needs to be solved. If the input matrix X is square and invertible, this can be solved
by simply multiplying the inverse of X on both sides:

H = X−1Y. (8.3)

However, in most cases, p 6= m. Thus, for the system to be solvable, it is required
that the number of measurement sets is larger than or equal to the number of
inputs, i.e.

p ≥ m. (8.4)

Then H can be solved by:

H = (XTX)−1XTY + µ = X+Y + µ, (8.5)

where the symbol + denotes the Moore-Penrose pseudo-inverse [104] and the term
µ is the residual vector from the overdetermined system.

8.3.2 Enhanced OTPA with singular value decomposition and
principal component analysis

In essence, the basics of OTPA is analogous to the multiple-input multiple-output
(MIMO) technique in experimental modal analysis [105]. However, solving the trans-
fer function H directly is prone to error if the input signals are highly coherent
between each other. High coherence is caused by unavoidable cross-talks between
the measurement channels as they are sampled simultaneously. To mitigate this er-
ror, an enhanced version of OTPA can be employed. Singular value decomposition
(SVD) and principal component analysis (PCA) can be carried out [99, 100]. There
are two main reasons in using SVD. Firstly, it can be used to solve for X+, even
though it is not the only way to solve for Moore-Penrose pseudo-inverse. Secondly,
the singular value matrix can later be repurposed to carry out PCA to reduce the
measurement noise.
The input matrix X, as decomposed by SVD, can be written as

X = UΣVT, (8.6)

where
U is a unitary column-orthogonal matrix;
Σ is a diagonal matrix with the singular values;
VT is the transpose of a unitary column-orthogonal matrix, V.

The singular values obtained along the diagonal of Σ are also the principal compo-
nents (PC). The PC are defined such that the one with the largest variance within
the data is the first PC (the first singular values), the next most varying is the sec-
ond PC and so on. The smallest singular value thus corresponds to the weakest PC
that has little to no variation. A matrix of PC scores can then be constructed as:

Z = XV = UΣ. (8.7)
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The contribution of each PC can be evaluated by dividing Z with the sum of all the
PC scores. For each PC, this yields a value between 0 to 1. The larger the number,
the more significant the PC is. In other words, a weakly contributing PC can be
identified and thus be removed by setting it to zero. Then, the inverse of the singular
value matrix Σ−1 can be recalculated by:

Σ−1
e =

{
1/σn if σn ≥ threshold,

0 otherwise,
(8.8)

where the subscript e indicates that the matrix has been enhanced by SVD and
PCA. Subsequently, the modified pseudo-inverse of X can be written as:

X+
e = VΣ−1

e UT. (8.9)

Introducing Equation (8.9) into Equation (8.5), the treated transmissibility matrix
He can then be written as:

He = X+
e Y. (8.10)

Lastly, it is possible to synthesise the response contributions of the measurements
Ys by performing a pointwise multiplication between XT and He [99]:

Ys = XT .He. (8.11)

It is then possible to quantify the individual contribution of each input has on the
synthesised output Ys.

8.4 Experimental setup
The soundboard, inner rim, outer rim, the cast-iron frame and the lid are all con-
sidered to be potential transmission paths of the piano sound (see Figure 8.1). The
vibrations of these components are sampled by sets of accelerometers and can be
treated to be the inputs of OTPA, X. To fully capture all the modes of interest, the
accelerations are sampled extensively over the surfaces in grids of 20cm x 20cm.
For the cast-iron frame, only the part highlighted in the green area in Figure 8.1
are sampled. The other part has a comparatively small surface area, and it is as-
sumed that its contribution does not play a significant role in the final sound. In
the same figure, the surface sampled for inner rim and outer rim are also high-
lighted (albeit partially) in blue and purple respectively. Of course, the outer rim
measurement is also extended to the straight part of the rim which is not seen in
the figure. The soundboard and lid measurement are sampled on the surface that
is visible in Figure 8.1 (i.e. the soundboard surface that faces up and the lid sur-
face that faces down) but are not highlighted so as to not obscure the presentation.
The total number of measurements for each components is outlined in Table 8.1.
Meanwhile, the output Y is the sound pressure at a point away from the piano,
recorded by a microphone, marked M in Figure 8.2. The experiment is conducted
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8.4. Experimental setup

in the anechoic chamber of the University of Music and Performing Arts Vienna on
a Bösendorfer 280VC-9 equipped with a CEUS Reproducing System. This allows
minimal interference in the sound pressure data from the wall reflections.

Figure 8.1: A Bösendorfer VC280-9. Highlighted green, blue and purple areas are
the surfaces considered in the OTPA for frame, inner rim and outer rim respectively.
Note that there are four beams at the frame that terminates at the keyboard end
which splits the key range into 5 parts.

One of the advantages of OTPA is its flexibility to use operational data rather than
controlled excitation from a shaker or impact hammer. Thus, measurement data
are collected as the piano is being played. As vibrational data need to be taken
in batches due to limited number of accelerometers, the CEUS Reproducing Sys-
tem is used where the piano playing can be reproduced with the same force and
timing. The CEUS system can be controlled via pre-produced .boe files, which con-
tains information on the keys to play, their pushing profiles and the hammer ve-
locities [106]. For this experiment, two .boe files are prepared via in-house MAT-
LAB/GNU Octave script, each corresponding to different excitation patterns.
For an OTPA, it is desired that the inputs are as incoherent as possible to minimise
cross-couplings between them. The two excitations are designed with that in mind.
The first is simply playing each of the 88 notes sequentially, from the lowest A0
(27.5Hz) to the highest C8 (4186 Hz). Each note is played for 3 seconds with a rest
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8.4. Experimental setup

x

y

M

Figure 8.2: Location of the microphone with respect to the outline of the piano
soundboard. Assuming that the origin of an (x,y) coordinate system as shown in
the figure, the microphone is at x=2.2m, y=1.0m and is the same height with the
soundboard. The image is to scale.

interval of 0.6 seconds in between. Each 3-second sequence is a unique measure-
ment and thus p = 88 as is defined in Equation (8.2). The second sets of measure-
ment contains 12 playing sequences with each of them playing all the same notes,
starting with all A (i.e. A0, A1, A2 ... A7) and followed by all of the A#s, all of the Bs,
all of the Cs until finally all of the G#s as is illustrated in Figure 8.3. Each sequence
is played for 5 seconds with a 1 second interval in between and yields p = 12. Both
sequences are played at a moderate dynamic level that gives a subjective loudness
of mezzoforte.
As outlined in Table 8.1, there are a total of 154 vibration signals that can be treated
as inputs. This would violate Equation (8.4) if m = 154. It is thus necessary to
either increase the number of measurements or reduce the number of inputs. For
this study, the latter is performed where the vibrational signals are summed via
Rayleigh integral so as to obtain an input variable with the dimension of a sound
pressure. The net pressure p at point R as summed by Rayleigh integral can be
defined as:

p(R, ω) =
ρ

2π

∑
i

ai(ω)Sn
ri

e−jkri , (8.12)

where ρ, ai, ri, k and Si represent density of the air, the acceleration, distance to
the summed point, wavenumber and area covered by source point i respectively
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Figure 8.3: Illustration of the 12-sequence excitation. Vertical axis indicates the
note number played. The dips indicate the keys being pressed.

and the term ω indicates dependence on frequency. The acceleration data of each
component are summed to the midpoint of the accelerometer locations, with an
averaged uniform area assumed (i.e. total calculated area divided by number of
measurements on each component). As a result, this yields a total of only 5 sources,
i.e. m = 5, making them suitable to be used for OTPA.

Table 8.1: Number of accelerometers for each components.

Components Number of accelerometers
Soundboard 35
Inner rim 24
Outer rim 24

Frame 25
Lid 46

The use of Rayleigh integral is an approximation as it is defined for an infinitely
large flat baffle [90]. A rapid calculation allows to estimate the frequency range for
which the Rayleigh approximation may lead to an overestimation of the sound pres-
sure. The soundboard and lid have a nominal length Ln of about 1.47m. With this
order of magnitude for the acoustic wavelength, an acoustical short circuit might
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8.5. Results and discussion

appear for wave modes below 230Hz in the reality, thus leading to a sound pressure
lower than the one predicted by the Rayleigh integral. However, the overestimation
may not be so prominent due to the complex shape of the piano and the presence of
the semi-opened cavity defined by the rim and the lid. In practice, this overestima-
tion should not have appreciable consequences in the analysis, since the Rayleigh
integral is used here for the purpose of reducing the number of inputs, only, and
also it is a comparative study. The only consequence is that the contributions of
the smaller components (such as the frame) might be slightly overestimated in the
low-frequency range, compared to the large components (soundboard, lid) through
the use of the Rayleigh integral.

8.5 Results and discussion

A quality check of OTPA can be performed by comparing the experimentally mea-
sured output against the synthesised output as obtained from Equation (8.11). In
practice, both output should be similar to each other with the discrepancies due
to noise, unidentified source or nonlinear behaviour [100]. The first 400Hz of the
outputs of the first sequence of both 88-sequence and 12-sequence excitations are
as shown in Figure 8.4. It can be seen there are very good agreements between the
data except at the frequency range below 40Hz. At this range, the modes are cor-
rectly identified at their eigenfrequencies but at lower amplitude levels. A further
check on the residual vector of Equation (8.5) reveals that the residues are large
at the low frequencies but otherwise insignificant at higher frequencies. Given that
the peaks of the eigenfrequencies are actually correctly identified, this rules out
any unidentified sources. With overall small amplitude vibrations, it is also not
expected that there is a nonlinear behaviour in the system. Thus, it could be an
inherent limitation of the current set of data or the OTPA method as it affects both
types of excitations. Regardless, the models are suitable for analysis above 40Hz.
The next part of the analysis is to study the contributions of each source in the
output. The contribution level of each input can be obtained by the average of the
synthesised output of all p measurements when multiplied with that input alone
(see Equation (8.11)). In Figure 8.5, the contribution of each source up to 220Hz
(key number 37) is shown for both sets of excitation, where each group of bars cor-
responds to an octave on a piano. For key number 14 to 37 (55 to 220Hz), both sets
of excitation show good agreement between each other where the soundboard is the
dominant contributor to the piano sound, with comparable secondary contributor
for both the cast-iron frame and the lid at 10-15dB less than soundboard. However,
at the lowest frequency group, i.e. key number 1-13 (<55Hz), the two excitations
are noticeably different. In the 12-sequence excitation, the soundboard is only 5dB
more dominant than frame and lid, with the inner and outer rim a further 5dB
behind. For 88-sequence excitation, all of the sources are less than 5dB apart. The
discrepancy is caused by the inaccuracy of the model as discussed earlier (where
the synthesised outputs do not match the measured outputs below 40Hz). For this
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(a) 88-sequence excitation, playing only A0 note.
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(b) 12-sequence excitation, playing all A note.

Figure 8.4: Comparison of the synthesised and measured output (sound pressure
at M as shown in Figure 8.2). Good agreements between the data indicate that the
models are representative of the measurements.

range, it is thus inconclusive to comment on the relative contribution of the sound-
board, frame and lid on the final sound.
The same analysis is repeated but is extended to the full frequency range of the
piano as is shown in Figure 8.6. The frequency is categorised into 5 groups which
are based on the 5 sections partitioned by the cast-iron frame as can be seen in
Figure 8.1. As a result, findings from Figure 8.5 have been replotted into the first
two groups in Figure 8.6, which shows the soundboard being the dominant contrib-
utor, followed by the lid and frame. The dominance of soundboard is also observed
up to key number 72 (1661.2Hz) and both sets of excitations also show good agree-
ment between each other, with the exception at the highest frequency range (key
number 73-88). While both excitations identify the lid as the main contributor, the
12-excitation analysis suggests that the soundboard and frame is about 2dB less
than the lid but in the 88-excitation data, the difference between the lid and both
the soundboard and frame is about 5dB. This is because in the 12-excitation mea-
surement, each excitation sequence plays notes across the whole frequency range.
As such, higher harmonics of lower modes are also excited which leads to an overall
higher estimation of contribution.
The dominance of piano soundboard is expected as it is designed to be the primary
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Figure 8.5: Average contribution level from the analysis for (on the left) 88-sequence
excitation and (on the right) 12-sequence excitation. The frequency range is defined
based on the piano key number. Key number 1, 13, 25 and 37 correspond to 27.5Hz,
55.0Hz, 110.0Hz and 220.0Hz respectively.

resonator, with appropriate characteristics in terms of thickness, density and rigid-
ity. Nonetheless, as evident from the results, not all the acoustic components are
radiated by the soundboard. Energy is leaked through the edge of the soundboard
to the rims and, subsequently, to frame and lid. At higher frequency, as the strings
are not damped past the bridge, it is possible that energy could be leaked directly
from the string to the frame as well. It is also possible that the lid prop (the beam
that supports the lid when it is being raised) could have transferred some energy
to the lid which may explain the contribution of lid vibration at higher frequencies
(see Figure 8.6 key number 73-88). As the soundboard is driven by the strings at
the right end, the energy is transferred to the lid via the prop.
The difference of the soundboard dominance between key number 1 to 72 (27.5Hz to
1661.2Hz) and 73 to 88 (1760Hz to 4186Hz) can be further illustrated in Figure 8.7
and 8.8. Figure 8.7 shows the contributions of the five inputs for the synthesised
output (labeled "Total") for the 28th sequence of the 88-sequence excitation, i.e.
playing the C3 note (130.8 Hz). On the other hand, Figure 8.8 shows the contri-
butions of the five inputs for the synthesised output when the 80th note (E7 at
2637Hz) is played. Both of the played notes’ fundamental frequencies are indicated
by a dashed line. It must be noted that both played notes’ fundamental frequen-
cies are not exactly on 130.8Hz and 2637Hz respectively but rather at 131.1Hz and
2672Hz. This could be the preference of the tuner of the piano or the piano has
gone slightly out of tune since it was last serviced. More importantly, the plotted
frequency of Figure 8.7 covers the 21st to 38th keys (the second group of bars in
top figure of Figure 8.6) while Figure 8.8 covers 81th to 84th keys and represents a
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Figure 8.6: Average contribution level from the analysis for (on the top) 88-sequence
excitation and (on the bottom) 12-sequence excitation. The frequency range is de-
fined based on the piano key number. Key number 1, 20, 38, 54, 72 and 88 corre-
spond to 27.5Hz, 82.4Hz, 233.1Hz, 587.3Hz, 1661.2Hz and 4186.0Hz respectively.

snippet of the fifth group (key number 73-88). Although each of these figures repre-
sents only one excitation, they provide insights on the contributions of each of the
components. When the peaks of a particular component matches the amplitude of
the peaks of output signal (labelled "Total"), it means that the matched frequen-
cies of the output are contributed by the particular component. At lower frequency
range (Figure 8.7), the frequencies of output are mostly contributed by soundboard.
On the other hand, at higher frequency range as shown in Figure 8.8, the output
contains largely modes from the lid, with the soundboard mostly contributing at the
note played (2672Hz). The output signal also contains modes from the frame (e.g.
at 3000Hz) which explains its contribution at the highest frequency range. For both
cases, inner and outer rim do not contribute significantly to the piano sound. This
suggests that some of the tonal properties of a piano sound could actually be origi-
nating from the vibration of the frame and lid while the rims play only a marginal
role.
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Figure 8.7: Contribution of the five inspected components for the synthesised output
(labeled "Total") for the 28th sequence of the 88-sequence excitation. The dashed
vertical line corresponds to the fundamental frequency of the played note (C3).

It is perhaps slightly surprising that the inner rim does not play a significant role
in contributing to the piano sound. In Bösendorfer piano, the inner and outer rim
are constructed separately. In their marketing material, the inner rim is specially
constructed so as to complement the soundboard in the sound formation process.
However, in the analysis conducted, both inner and outer rims are marginal in
their contributions compared to the soundboard, frame and the lid. Regarless, the
result does not necessarily invalidate Bösendorfer’s claim as the role of the rims in
sound formation might have been accounted for by another mechanism.

8.6 Conclusion
An operational transfer path analysis (OTPA) has been conducted for a Bösendor-
fer piano to identify any additional vibrating components (other than the sound-
board) that could contribute to the sound production. Across the frequency range
inspected, the soundboard has been the major contributor except for the highest
frequency range (≥ 1661.2Hz). The piano sound is also made up of vibration from
the frame and lid. The latter is the most significant contributor at the highest fre-
quency range as the frequency contents of the sound at that range are primarily
satisfied by the lid. On the other hand, both inner and outer rims appear to be
insignificant in the analysis.
Current study represents a rare interdisciplinary example of technique originally
developed for automotive analysis being applied to musical instruments. However,
it is indeed possible to apply other source identification techniques to investigate
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Figure 8.8: Contribution of the five inspected components for the synthesised output
(labeled "Total") for the 80th sequence of the 88-sequence excitation. The dashed
vertical line corresponds to the fundamental frequency of the played note (E7).

current problem and obtain a better understanding on the transfer pathways from
the strings to the listener. For recommendation, one can conduct a full-fledged clas-
sical transfer path analysis. Components like lid can be removed and boundary con-
ditions between the soundboard and the rims can be artificially modified to isolate
the components.
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Conclusion

In the grand scheme of improving realism in piano sound synthesis, advances have
been made in the understanding of double polarisation in piano strings. From the
study of multiple-scale analysis, it is shown that energy exchange occurs nonlin-
early between the two string’s polarisations due to 1:1 internal resonance under
fixed boundary conditions at both ends. Specifically, if the polarisations are slightly
detuned from one another and the polarisation with lower fundamental frequency is
excited by a sufficiently large amplitude, the other polarisation will gain energy and
begins to vibrate. However, if the polarisation with higher fundamental frequency
is excited, energy exchange does not occur. These findings have been numerically
validated from solving the Kirchhoff-Carrier equations and the geometrically exact
nonlinear equations.
Experimentally, from a monochord setup, it is found out that the two string’s po-
larisations are indeed slightly detuned from one another. In addition to the string’s
detuning, it is also identified that the string’s polarisations do not necessarily fall
on the vertical and horizontal planes. Instead, they lie on planes as defined by their
natural polarisation angles and an original method has been proposed to identify
these angles. Exciting specifically on their natural polarisation angles with increas-
ing amplitudes, the theoretical findings via multiple-scale analysis have been suc-
cessfully validated experimentally.
To relate more closely to the case of a piano, the interaction between the string and
the bridge is studied in the linear regime. This is modeled by considering a set of
oscillators coupled to one end of the string. The eigenfrequencies of such systems
are derived, analysed and they are subsequently used to validate the finite-element
numerical implementation. One hallmark feature of the numerical model is its in-
clusion of the angular offset between the string’s and bridge’s axes.
To complement the string-bridge model, a bass bridge cutout is added to the mono-
chord experimental setup in which the string is strung over in a zig-zag configura-
tion. Experimentally, two phenomena are identified. First, it has been observed that
the string’s natural polarisation angles change after the bridge is mounted. Sec-
ondly, it has been experimentally identified that the angular offset is non-negligible
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at 7°. However, numerically, the double polarisation effect is only prominent when
the angular offset is artificially increased to 22°. In addition to double polarisation,
double decay is also observed on the coupled string-bridge system both experimen-
tally and numerically. Qualitatively, the double decay phenomenon is also more
obvious if the angular offset is larger. From numerical ivnestigations, this double
decay phenomenon is largely influenced by the vertical oscillations of the bridge,
which has a resonant frequency in between the first two frequencies of the string.
In contrast, the impact of the bridge’s horizontal and rotational oscillations, both of
which are experimentally identified at higher frequencies, is insignificant.
During a research stay at MDW in Vienna, the contributions of various components
of a Bösendorfer piano to its sound have been investigated experimentally via oper-
ational transfer path analysis. At low and mid frequencies, the soundboard makes
up most of the frequency contents in the piano sound. At higher frequencies, the
vibrations of the frame and the lid are found to be significant. The study represents
a rare and novel case of interdisciplinary application of a noise source identification
technique developed originally for automotive acoustics that is applied to a research
problem in musical acoustics.

Future work

On the subject of double polarisation, there are two research directions that can
be pursued. First, the detuning and string’s polarisation angles are very difficult to
measure and further understanding on the subjects is necessary. While the origin of
these characteristics can be attributed to the imperfection on a string, there are no
predictable and reproducible methods to identify and manipulate these parameters.
To this end, several studies can be made, such as:

1. Comparison of detuning and string’s polarisation angles between tin-plated
and nickel-plated strings. Piano strings are traditionally tin-plated but are
suspectible to natural rusting. Nickel-plated strings are more resistant to
rusting and theoretically the two string’s modes will be much less detuned.
If so, it can be established that rusting is indeed a source of detuning and
strings can thus be artificially exposed to rust of different degrees or at dif-
ferent spots to investigate their influences on the detuning and polarisation
angles.

2. As the string’s polarisation angles change after it is mounted onto the bridge, a
more detailed physical interpretation of the zig-zag boundary condition could
shed light on how the polarisation angles change. The string meets the top
surface of the bridge and the bridge pin at an angle. It is likely that the geom-
etry of these physical contacts influence the polarisation angles. It is also not
known if the bridge introduces a new sets of polarisation planes or it simply
rotates the polarisation angles of the string.
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The other research directions would be on a more detailed understanding of how
detuning, nonlinear behaviour and string’s polarisation angles could affect the dou-
ble polarisation and double decay, and subsequently the piano sound. To this end,
it would be natural to extend the current numerical investigation to a more com-
prehensive model, such as the S212-B213 string-bridge system proposed. A further
extension would be to include the coupling with soundboard and air, thus consti-
tuting a complete piano model. It is also intriguing if the aforementioned string
characteristics do really play a part in shaping the piano sound. In this regard, it
would be insightful to conduct the experiments that were performed in this thesis
on an actual piano.
As for the identification of vibroacosutic sources in a piano, further verification of
the findings from the operational transfer path analysis is highly recommended.
For example, a classical transfer path analysis can be conducted where components
in the piano are isolated, individually excited and measured. The idea is to iden-
tify the physical transfer pathways from the strings to the frame and lid at higher
frequencies. Subsequently, the physical observations can thus be modeled in a nu-
merical framework for more accurate and realistic synthesis of piano sound.
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Appendix A

Analytical solution of the
lumped bridge

In Part II, the lumped bridge is modeled as a set of oscillators that can be repre-
sented in translational and rotational directions. The numerical schemes to solve
the coupling between the string and the lumped bridge are presented in Chap-
ter 6. The string is solved via a finite element method (see Section 2.4.3) and the
lumped bridge is solved analytically with the coupling between them achieved by
Lagrange multipliers. In this Appendix, the analytical solution the lumped bridge
is presented.

Consider a problem:

Ϋ(t) + AΥ̇(t) + DΥ(t) = F, (A.1a)
Υ(t0) = Υ0, (A.1b)

Υ̇(to) = Υ1, (A.1c)

where

A = diag(2ai), D = diag(di
2).

The solution to this problem is thus:

Υ(t) = S0
t−t0Υ0 + S1

t−t0Υ1 +Rt−t0F, (A.2a)

Υ̇(t) = Ṡ0
t−t0Υ0 + Ṡ1

t−t0Υ1 + Ṙt−t0F. (A.2b)

For brevity, it is convenient to define that d̃i =
√
|ai2 − di2|. The coefficients S0

∆t,
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S1
∆t, R∆t, Ṡ0

∆t, Ṡ1
∆t and Ṙ∆t can thus be defined as follows, for |ai| < di:

(S0
t )i,i = e−ait

[
cos(d̃it) +

ai

d̃i
sin(d̃it)

]
,

(S1
t )i,i =

1

d̃i
e−ait sin(d̃it),

(Rt)i,i =
1

d̃idi
2

[
d̃i(1− e−ait cos(d̃it))− aie−ait sin(d̃it)

]
,

(Ṡ0
t )i,i = −ai(S0

t )i,i + e−ait
[
−d̃i sin(d̃it) + ai cos(d̃it)

]
,

(Ṡ1
t )i,i = −ai(S1

t )i,i + e−ait cos(d̃it),

(Ṙt)i,i =
1

d̃i
e−ait sin(d̃it),

and for |ai| ≥ di:

(S0
t )i,i = e−ait

[
cosh(d̃it) +

ai

d̃i
sinh(d̃it)

]
,

(S1
t )i,i =

1

d̃i
e−ait sinh(d̃it),

(Rt)i,i =
1

d̃idi
2

[
d̃i(1− e−ait cosh(d̃it))− aie−ait sinh(d̃it)

]
,

(Ṡ0
t )i,i = −ai(S0

t )i,i + e−ait
[
−d̃i sinh(d̃it) + ai cosh(d̃it)

]
,

(Ṡ1
t )i,i = −ai(S1

t )i,i + e−ait cosh(d̃it),

(Ṙt)i,i =
1

d̃i
e−ait sinh(d̃it).
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Appendix B

Manual to use new rules related
to "*StiffNL2T" and
"StringBridge*"

The following manual is intended for users who have had experiences in using
MONTJOIE, particularly on the rules pertaining to the simulation of the whole
or part of a piano.
From the version <insert version number> onwards, MONTJOIE has a few new
rules that could carry out simulations for non-planar string vibrations as well as
its coupling to a lumped bridge model. These new rules are:

• multistringLINTL

• multistringNL2T

• multistringStiffNL2T

• StringBridgeLIN

• StringBridgeLIN2T

• StringBridgeNL

• StringBridgeStiffNL

• StringBridgeStiffLIN

• StringBridgeNL2T

• StringBridgeStiffNL2T

"multistringLINTL" would compile for the following equation:

ρAü− T0u
′′ = 0, (B.1a)

ρAẅ − EAw′′ = 0. (B.1b)
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"multistringNL2T" would compile for the following equation:

ρAü− T0u
′′ − (EA− T0)

∂

∂x

[
u′
(
w′ − w′2 +

u′2 + v′2

2

)]
= 0, (B.2a)

ρAv̈ − T0v
′′ − (EA− T0)

∂

∂x

[
v′
(
w′ − w′2 +

u′2 + v′2

2

)]
= 0, (B.2b)

ρAẅ − EAw′′ − (EA− T0)
∂

∂x

[(
1

2
− w′

)(
u′2 + v′2

)]
= 0, (B.2c)

while "multistringStiffNL2T" would include the stiffness effect by solving for the
string equation with Timoshenko stiff string modell as presented below:

ρAü− T0u
′′ − (EA− T0)

∂

∂x

[
u′
(
w′ − w′2 +

u′2 + v′2

2

)]
+AGκ

∂

∂x
(φ− u′) = 0,

(B.3a)

ρAv̈ − T0v
′′ − (EA− T0)

∂

∂x

[
v′
(
w′ − w′2 +

u′2 + v′2

2

)]
+AGκ

∂

∂x
(ψ − v′) = 0,

(B.3b)

ρAẅ − EAw′′ − (EA− T0)
∂

∂x

[(
1

2
− w′

)(
u′2 + v′2

)]
= 0,

(B.3c)

ρIφ̈− EIφ′′ +AGκ(φ− u′) = 0,
(B.3d)

ρIψ̈ − EIψ′′ +AGκ(ψ − v′) = 0.
(B.3e)

For the other rules:

• StringBridgeLIN solves for a coupled case between the linear wave equation
and a harmonic oscillator, i.e. S100-B100. It is possible to use "ExtraBridge =
TRUE" to solve for S100-B101.

• StringBridgeLIN2T solves for a coupled case between the linear transverse
and longitudinal string equation (see Equation (B.1)) and a harmonic oscil-
lator, i.e. S200-B201. It is possible to use "ExtraBridge = TRUE" to solve for
S200-B201.

• StringBridgeNL solves for a coupled case between the nonlinear string equa-
tion and a two translational harmonic oscillators, i.e. S20-B20.

• StringBridgeStiffNL solves for a coupled case between the nonlinear stiff
string equation and two translational harmonic oscillators and one rotational
harmonic oscillator, i.e. S201-B201.
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• StringBridgeStiffLIN solves for a coupled case between the linear stiff string
equation and two translational harmonic oscillators and one rotational har-
monic oscillator, i.e. S201-B201.

• StringBridgeNL2T solves for a coupled case between nonlinear nonplanar
string (Equation (B.2)) and three translational harmonic oscillators, i.e. S210-
B210. It is not possible to solve for extra rotational oscillator via "ExtraBridge
= TRUE".

• StringBridgeStiffNL2T solves for a coupled case between nonlinear nonpla-
nar stiff string (Equation (B.3) and 3 translational, 2 rotational harmonic os-
cillators, each corresponding to the displacement of the string, i.e. S212-B212.
It is possible to use "ExtraBridge = TRUE" to solve for S212-B213.

To fully utilise the family of StringBridge* and the *StiffNL2T modules, a few new
keywords can be added to the configuration .ini file.

• "LumpedBridgeHeight = h0 h1 h2"
Adding this new line will specify the height of the bridge, or otherwise under-
stood as the offset between the attachment point of the string and the bridge
mass centre. By default, MONTJOIE will assume a bridge height of zero for
all three of them if this keyword is not specified.

• "ExtraBridge = TRUE"
Adding this new line will use an extra rotational oscillator in the direction
of θ2 for StringBridgeLIN, StringBridgeNL, StringBridgeLINTL (all planar
strings) or θ3 for StringBridgeStiffNL2T (non-planar string model)

• "MatchNLaMuToStringDOF = TRUE"
Adding this new line will allow the use of more than 2 (default) Lagrange mul-
tipliers. By default, MONTJOIE solves for up to two Lagrange multipliers, i.e.
the vertical and horizontal forces. When "MatchNLaMuToStringDOF" is set to
true, MONTJOIE will attempt to solve as many Lagrange multipliers as the
dimension of the string, e.g. in StringBridgeStiffNL2T, 5 Lagrange multipliers
will be solved instead.

• "BridgeStringPolarisationAngle = gamma"
Using this keyword will set an angle for γ as defined in subsection 5.1.5. This
angle defines an offset between the string polarisation (u and v) and the trans-
lational displacement of the bridge (λ1 and λ2), see Figure 5.6.

• StringInitialData = SINUSMULTI a0 n0 d0 a1 n1 d1
To further leverage the higher dimensional string equations, it is possible to
individually excite the string with a mode shape of self-defined mode number
and amplitude. For instance, the syntax above will an initial displacement to
the string of dimension "d0" with amplitude "a0" and the "n0"-th mode shape.
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It will also apply an initial condition of amplitude "a1" of "n1"-th mode shape
to string dimension "d1". It is not possible to input more data than the avail-
able dimension of the string.

• StringInitialData = NONZERO
This is a simple initial condition where all the string is lightly excited with a
half-sine mode shape at 1e-16m amplitude. This could be necessary to observe
the nonlinear exchange of energy between the two transverse modes when
hammer is used.

• StringInitialData = PLUCK x0 a0 d0
This initial condition simulates a triangular initial condition. User is allowed
to define the pluck position "x0", pluck height "a0" and in which dimension
"d0" the initial condition is.

• StringInitialData = PLUCKANGLE x0 a0 d0 theta
An extension of the PLUCK initial condition, PLUCKANGLE allows the pluck-
ing action to occur at an angle "theta" to the initial dimension defined.

• "String = L A rho T0 E I G k_prime amo(0) amo(1) detune Nx is_struck
K_hammer R_hammer"
It is possible to define a detuning between the two polarisation by defining a
value "detune" for the string using the above syntax. The "detune" value de-
fines a proportional difference between the density ρ of the two polarisation,
such that:

detune =
ρ1

ρ0
(B.4)

where ρ0 and ρ1 are the density for the string dimension 0 (u) and 1 (v) respec-
tively. If "detune" < 1, v would have a slightly higher fundamental frequency
than u.
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Titre : Acoustique du piano : double polarisation de la corde et identification de sources
Mots clefs : modele physique de piano, simulation numerique, corde, chevalet, identification de sources
Résumé : L’objectif de cette thèse est d’améliorer la compréhension de l’acoustique du piano dans le contexte de
la synthèse sonore par modèles physiques. Le manuscrit est décomposé en trois parties principales, dont les deux
premières ont pour but la compréhension de l’origine de la double polarisation de la corde de piano, tandis que la
dernière se focalise sur l’identification de sources d’un piano complet.
Dans la première partie, la non linéarité géométrique, intervenant lorsque les amplitudes de vibration sont
grandes, est étudiée afin de comprendre si le couplage non linéaire peut transmettre de l’énergie à une polarisa-
tion non initialement excitée et mener ainsi au phénomène de double polarisation. Un développement en échelles
multiples est mené sur un modèle de corde de Kirchhoff-Carrier avec les deux extrémités fixes, restreint au mode
fondamental de chacune des polarisations. Les deux oscillateurs ont alors des fréquences très proches, on parle
de résonance 1:1. La condition d’existence et le critère de stabilité pour l’apparition de double polarisation sont
obtenus et validés numériquement sur la base des équations de Kirchhoff-Carrier, ainsi qu’avec un modèle de
corde enrichi. Des expériences sont menées sur un dispositif monocorde où les angles de polarisation naturelle de
la corde, le désaccord entre les deux polarisations et le comportement non linéaire son observés et identifiés.
La seconde partie se concentre sur le couplage entre la corde et le chevalet. Les degrés de liberté de la corde sont
couplés au chevalet dont les mouvements (translation/rotation) sont représentés par un ensemble d’oscillateurs.
Les fréquences propres des différents systèmes couplés sont analysés. Des schémas numériques sont proposés
et mis en œuvre pour une résolution directe. Ces schémas résolvent les équations de corde par une méthode
d’éléments finis d’ordre élevé et les équations du chevalet analytiquement. Les conditions de couplage entre corde
et chevalet sont assurées par des multiplicateurs de Lagrange. Expérimentalement, la corde est tendue sur le
chevalet dans une configuration de type zig-zag et excitée verticalement ou horizontalement. Dans les deux cas,
les phénomènes de double polarisation et de double décroissance sont observés et des résultats qualitativement
similaires sont obtenus avec les modèles numériques.
La dernière partie s’attache à décrire quantitativement les différentes sources vibro-acoustiques d’un piano com-
plet. Une étude est menée en utilisant une analyse des chemins de transfert (transfer path analysis en anglais)
sur un piano Bösendorfer 280VC-9. Les contributions de la table d’harmonie, des parties interne et externe de la
ceinture, du cadre en fonte et du couvercle sont étudiées dans le domaine fréquentiel. L’analyse montre que la
table d’harmonie est le principal contributeur mais que le cadre en fonte et le couvercle jouent également un rôle
significatif, en particulier à hautes fréquences.

Title : Piano acoustics: string’s double polarisation and piano source identification
Keywords : physical modelling of piano, numerical simulation, string, bridge, source identification
Abstract : The objective of this thesis is to improve the understanding of the acoustics of the piano in the context
of physically-based sound synthesis. The manuscript is decomposed in three parts, the first two being devoted to
the understanding of the origin of the double polarisation in piano string, while the third one is dedicated to the
identification of sound sources of a complete piano.
In the first part, the geometric (large-amplitude) nonlinearity is studied in order to understand if the nonlin-
ear coupling can transfer energy to an initially non excited polarisation, thus leading to the double polarisation
phenomenon. A multiple-scale analysis is conducted on a Kirchhoff-Carrier string model with fixed boundary
conditions at both ends. Each polarisation is restrained to its fundamental mode and thus presenting a 1:1 in-
ternal resonance. The existence condition and stability criteria for double polarisation to occur are obtained and
validated numerically based on the Kirchhoff-Carrier equations, as well as a more enriched geometrically exact
string model. Experiments are carried out on a monochord setup where the natural polarisation angles of the
string, detuning between the two polarisations and its nonlinear behaviour are observed and identified.
The second part is devoted to the string/bridge coupling. The degrees of freedom of the string are coupled to the
bridge whose translational and rotational motions are represented by a set of oscillators. The eigenfrequencies
of various coupled systems are analysed. Numerical schemes are proposed and implemented where the string
is solved via high-order finite-element method while the lumped bridge is solved analytically and coupled to the
string by Lagrange multipliers. Experimentally, the string is strung over a bridge in a zig-zag configuration and
excited vertically and horizontally. In both cases, double polarisation and double decay are observed and similar
results are also obtained qualitatively in numerical models.
The last part is devoted to a quantitative description of the vibroacoustic sources of a Bösendorfer 280VC-9 piano
via operational transfer path analysis. The contribution of the soundboard, inner and outer rim, iron frame and
lid are investigated in the frequency domain. It is found out that the soundboard is the primary contributor but
the iron frame and the lid also play a significant role, especially at high frequencies.
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