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Abstract

Energy Supply and Demand Side Management
in Industrial Microgrid Context

Due to increased energy costs and environmental concerns such as elevated carbon
footprints, centralized power generation systems are restructuring themselves
to reap benefits of distributed generation in order to meet the ever growing
energy demands. Microgrids are considered as a possible solution to deploy
distributed generation which includes Distributed Energy Resources (DERs)
(e.g., solar, wind, battery, etc). In this thesis, we are interested in addressing
energy management challenges in an industrial microgrid where energy loads
consist of industrial processes. Our plan of attack is to divide the microgrid
energy management into supply and demand sides.

In supply side, the challenges include modeling of power generations and smooth-
ing out fluctuations of the DERs. To model power generations, we propose a
model based on service curve concepts of Network Calculus (NC). Using this
mathematical tool, we determine a minimum amount of power the DERs can gen-
erate and aggregating them will give us total power production in the microgrid.
After that, if there is an imbalance between energy supply and demand, we put
forward different strategies to minimize energy procurement costs. Based on real
power consumption data of an industrial site located in France, significant cost
savings can be achieved by adopting the strategies. In this thesis, we also study
how to mitigate the effects of power fluctuations of DERs in conjunction with
Energy Storage Systems (ESSs). For this purpose, we propose a Gaussian-based
smoothing algorithm and compare it with state-of-the-art smoothing algorithms.
We found out that the proposed algorithm uses less battery size for smoothing
purposes when compared to other algorithms. To this end, we are also interested
in investigating effects of allowable range of fluctuations on battery sizes.

In demand side, the aim is to reduce energy costs through Demand Side
Management (DSM) approaches such as Demand Response (DR) and Energy
Efficiency (EE). As industrial processes are power-hungry consumers, a small
power consumption reduction using the DSM approaches could translate into
crucial savings. This thesis focuses on DR approach that can leverage time
varying electricity prices to move energy demands from peak to off-peak hours.
To attain this goal, we rely on a queuing theory-based model to characterize
temporal behaviors (arrival and departure of jobs) of a manufacturing system.
After defining job arrival and departure processes, an effective utilization function
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is used to predict workstation’s (or machine’s) behavior in temporal domain
that can show its status (working or idle) at any time. Taking the status of
every machine in a production line as an input, we also propose a DR scheduling
algorithm that adapts power consumption of a production line to available power
and production rate constraints. The algorithm is coded using Deterministic
Finite State Machine (DFSM) in which state transitions happen by inserting a
job (or not inserting) at conveyor input. We provide conditions for existence of
feasible schedules and conditions to accept DR requests positively.

To verify analytical computations on the queuing part, we have enhanced
Objective Modular Network Testbed in C++ (OMNET++) discrete event
simulator for fitting it to our needs. We modified various libraries in OMNET++
to add machine and conveyor modules. In this thesis, we also setup a testbed
to experiment with a smart DR protocol called Open Automated Demand
Response (OpenADR) that enables energy providers (e.g., utility grid) to ask
consumers to reduce their power consumption for a given time. The objective is
to explore how to implement our DR scheduling algorithm on top of OpenADR.
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General Introduction
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1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Introduction
Current power system is dominated by centralized generation in which electricity
is distributed to consumers through a macrogrid (e.g., utility grid). Due to
challenges such as increased energy costs and global emissions of greenhouse gases
(e.g., carbon dioxide (CO2), chlorofluorocarbons (CFCs), etc), the centralized
generation systems need to be restructured in order to meet the ever growing
energy demands [CN09]. A possible solution to these challenges is to deploy
distributed generation systems including Distributed Energy Resources (DERs)
(e.g., solar, wind, battery, etc) which are normally small in generation capacity
(from kW to a few MW capacity range). These resources can be installed close to
consumers’ premises. Being considered as an alternative to centralized generation,
microgrids are emerging power systems to manage distributed generations.

Microgrids are relatively small-scale power systems that include electrical
loads (any device that consumes electric power, e.g., refrigerators, industrial
machines, etc), DERs and a control system (a formal definition of microgrid is
given in section 2.2 of the next chapter). A microgrid can operate as a single
system (island mode) or it can be connected to a utility grid (grid-connected
mode). Due to introduction of Information and Communications Technologies
(ICT) to microgrids, a two-way communication of energy data between producers
and consumers is made possible [SW12]. Hence, informed decisions can be taken
based on the information gathered on microgrid components.
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According to Hayden [Hay13], microgrids are categorized into 5 types: campus
environment/institutional, remote off-grid, military base, community/utility and
commercial and industrial (C&I) microgrids. In this thesis, we consider an
industrial microgrid where electrical loads comprise of industrial machines which
are intensive power consumers. The motivation to consider this type of microgrid
is that we have access to real power consumption data of an industrial plant
located in France. Thanks to METRON’s platform, we can exploit the data for
analytical and simulation purposes throughout the thesis.

In this chapter, we discuss some potential benefits of microgrids in section 1.2.
Then, section 1.3 highlights the challenges in microgrids. After that, we provide
our motivations and contributions of this thesis in section 1.4. Finally, section
1.5 gives a bird’s eye view of contents of the remaining chapters.

1.2 Why microgrids?
According to Parhizi et al. [Par+15], the installed microgrid capacity has
estimated growth of 1.1 GW in 2012 to 4.7 GW in 2017 with an estimated
market opportunity of $17.3 billion. The significant benefits associated with
microgrids have led to vast efforts to expand their penetration in power systems.
Based on a report in [VEZ14], potential benefits of microgrids include:

• Renewable integration: Renewable Energy Sources (RESs) play major roles
in satisfying some parts of global energy consumption. From Figure 1.1, we
notice that the average growth rate of modern RESs (except biomass) is
more than twice (around 4.7%) the rate of energy demand in the period
between 2004 and 2014. In 2016, the RESs’ share increased to 24.5%
according to a report by REN21 (Renewable Energy Policy Network for the
21st Century) [ZL17] which is based in Paris, France. Hence, to reap the
benefits of RESs, microgrids are becoming indispensable.

• Increased reliability and resilience: The ability of microgrids to island
enables them to continue providing power to their consumers during events
of power outage. The ability to island can also be effective in partitioning
distribution feeders in order to isolate faults.

• Relationship of the microgrid to the utility grid: To create smart grids,
microgrids can be viewed as fundamental building blocks. This is to say
that future utility grids could be a collection of networked microgrids based
on interactions among control systems that balance energy demand and
supply at micro and macro levels.

• Microgrids as a grid resource: From the utility grid’s view, microgrids can
serve as a reliable energy resource, an ancillary service resource, a Demand
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Figure 1.1 – Share of renewables in satisfying global energy consumption over 10
years (from 2004 to 2014) [ZL17].

Response (DR) (shedding loads in response to requests from utility grid, see
formal definition in section 2.3 of chapter 2) resource or a power consumption
resource (in case of excess generation). Microgrids can also participate in
electricity wholesale markets in order to generate revenues by exporting
surplus power productions.

1.3 Challenges in two sides of a microgrid
Based on the side of energy generation or consumption, we divide the industrial
microgrid in two sides: supply and demand sides. In this thesis, we consider two
RESs, namely, solar Photovoltaics (PV) panels and wind turbines in the supply
side. The other side consists of industrial loads. Energy Storage Systems (ESSs)
can be in both sides: in supply side when discharging and in demand side when
charging. The following sections describe the challenges we address in both sides
of industrial microgrid energy management.

1.3.1 Supply side challenges

As mentioned above, RESs offer a considerable amount of energy in meeting the
global energy consumption. However, these resources are intermittent in nature.
For instance, the output of solar PV power changes frequently depending on
the position of the sun and clouds. In the same way, wind power is subject to
some of the same types of daily and seasonal variations. The variability in power
productions of these resources poses challenges to seamlessly integrate them to
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Figure 1.2 – Hourly electricity prices in France, Germany and Switzerland on
31/07/2017 (from EPEX spot [EPE17]).

a microgrid. The challenges can be categorized into two: how to model RESs’
power production and ways to reduce power fluctuations.

Regarding power generation modeling of RESs, we can ask a question like
how to mathematically model the minimum amount of energy that an energy
resource can provide? Furthermore, there is also a question of supply and demand
balance: how can we minimize energy costs when demand is greater than supply?
To reduce power fluctuations, important questions include how to smooth out the
fluctuations using ESSs? What is the size of ESSs to smooth intermittency given
allowable ranges of fluctuations?

1.3.2 Demand side challenges

In the demand side, the concern is how to reduce energy costs. Based on a survey
by the International Energy Agency [IEA16], the industrial plants are accounted
for 42.5% of global electricity consumption in 2015. This will cost them dearly
if cost minimization mechanisms are not put in place. The potential to reduce
energy costs can be gained through implementing Demand Side Management
(DSM) approaches such as Energy Efficiency (EE) and DR. The focus of this
thesis is on DR that can leverage the varying electricity prices as shown in
Figure 1.2. A cost saving can be achieved through DR mechanisms which include
peak-shaving and load shifting for moving loads from peak to off-peak hours.

Considering DR mechanisms, a scheduling problem could arise: which machine
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to turn ON or OFF according to a given power threshold? What are the conditions
for existence of feasible schedules? Conditions to accept a DR positively? Another
question could be how to characterize temporal behaviors (arrival and departure
of jobs) of a manufacturing system?

1.4 Motivations and contributions of the thesis
Our motivations are two fold. First, to address the challenges detailed above,
we believe that concepts from different disciplines should come together. In
the beginning of this thesis, our area of expertise includes Computer Science,
Network Communication and Telecommunication. From these fields, we rely
on important concepts such as Network Calculus (NC) and queuing theory to
address the challenges in energy domain which broaden our field of expertise.
Second, nowadays researches on renewables and energy cost reduction are hot
topics as a means of securing our energy future. Hence, we want to contribute
our part to this global cause.

Contributions of this thesis are classified according to supply and demand
sides of industrial microgrid energy management. They are listed below:

• Supply side:

– To attain the minimum power generation of DERs, we proposed a
model based on service curves of NC. Based on actual power con-
sumption data of a factory, we also proposed different strategies for
minimizing energy costs.

– To mitigate power fluctuations using ESSs, a Gaussian-based smooth-
ing algorithm is proposed. The algorithm attains lower ESSs size when
compared to other smoothing algorithms.

• Demand side:

– For characterizing a production system in a temporal domain, we
proposed a queuing theory-based model. The model is used to describe
system temporal behaviors such as job/task arrivals and departures
and utilization of a station (or machine). To verify our analytical
works, we have developed multiple modules in Objective Modular
Network Testbed in C++ (OMNET++) discrete event simulator.

– For respecting available power and production rate constraints, a graph
activity model is proposed. This model adapts power consumption of
industrial processes when a utility grid emits a DR signal to consumers
in order to reduce power consumption. We also provide conditions of
accepting DR requests positively and existence of feasible schedules.
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1.5 Thesis organization
The remaining of this thesis consists of four chapters. Contents of each chapter
are briefly introduced as follows:

Chapter 2 presents relevant concepts to understand this work. In section 2.2, we
discuss basic concepts of microgrid and models of microgrid elements such
as solar and wind powers, ESSs and electrical loads. Then, section 2.3
details DR concepts together with DR program types, benefits of DR,
approaches and mathematical problems in DR and a DR protocol which
is called Open Automated Demand Response (OpenADR). After that,
we present concepts of service curves of NC that are used to model power
generation of RESs. Finally, for an objective of modeling a manufacturing
system, we describe a queuing model with its notations in section 2.5.

Chapter 3 details our works in the supply side of industrial microgrid energy man-
agement. The works in the chapter are modeling of DERs and smoothing
power production of RESs. In section 3.3, we provide our model of DERs
based on concepts of service curves of NC. In this context, we use service
curves to obtain minimum power production of the energy sources. Then,
to reduce power generation fluctuations of RESs, we propose a smooth-
ing algorithm in section 3.4. We compare its performances against other
smoothing algorithms.

Chapter 4 proposes a queuing model of manufacturing systems and a DR scheduling
algorithm. These two works are categorized under the demand side of
industrial microgrid energy management. In section 4.3, we detail modeling
of a Synchronous Production Line (SPL) system based on a queuing model.
We use the model to define SPL system’s temporal characteristics such as
job arrival and departure processes to/from a machine. Then, section 4.4
presents our DR scheduling algorithm that adapts SPL’s power consumption
to constraints of available power and production rate. We also provide our
experiments with OpenADR in section 4.6.

Chapter 5 concludes the works of this thesis by highlighting important points that are
raised in each chapter and the corresponding publications. Perspectives of
the thesis are also provided in the chapter.

In this chapter, we provided research contexts of this thesis and our motivations
to pursue energy management in industrial microgrid. The next chapter discusses
essential concepts such as microgrid, service curves of Network Calculus (NC),
Demand Response (DR) and queuing theory. These concepts will be used in
chapter 3 and 4.
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2.1 Introduction
This chapter discusses fundamental concepts including microgrid,DemandResponse
(DR), service curves and queuing theory. These concepts are relevant to our works
in the following chapters. We begin with the concept of microgrid in section 2.2.
For understanding the characteristics of microgrids, we provide generic models on
Distributed Energy Resources (DERs) such as wind turbines, solar Photovoltaics
(PV) panels and Energy Storage Systems (ESSs). Then, in section 2.3, we detail
concepts of DR focusing on DR programs, DR mathematical problems, and an
automated DR enabler technology. Focusing on DR concepts, chapter 4 presents
a DR scheduling algorithm that adapts production in a manufacturing system
according to available power and production rate constraints. After that, section
2.4 discusses concepts of service curves of Network Calculus (NC) together with
basic mathematical notations and theories. Based on the service curve concepts,
chapter 3 details modeling of energy generations of DERs. Next, in section 2.5,
we provide an overview of queuing theory by highlighting performance measures
of a relevant queuing model which is used to characterize temporal evolution of a
manufacturing system in chapter 4. Finally, section 2.6 summarizes this chapter
by mentioning the main points discussed in the chapter.

2.2 Microgrid Concept
The term microgrid was first coined by Lasseter and Paigi [LP04]. Afterwards,
different definitions are given in the literature. We adopt a definition of microgrid
from U.S. Department of Energy (DoE) as given below.

Definition 2.1 (Microgrid [DOE11]).
A microgrid is a group of interconnected loads and DERs within clearly defined
electrical boundaries that acts as a single controllable entity with respect to the
grid and that connects and disconnects from such grid to enable it to operate in
both grid-connected (a microgrid supplies or draws power to/from a utility grid)
or island mode (a microgrid is disconnected from a utility grid).

Based on this definition, a microgrid is characterized by the following three
distinct features [Par+15]:

• DERs installations must have clearly defined boundaries, i.e., they should
be bounded to only one microgrid,

• total power generations need to exceed peak demands so that it could be
disconnected from a utility grid, i.e., it can be in island mode, and

• it must contain computer systems that monitor, control and balance energy
demand, supply and storage in response to changing energy needs.
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Hence, these characteristics show that a microgrid is a small-scale power system
with ability of self-healing when there is power interruption in a utility grid.

In the following sections, we first present an architecture of industrial microgrid
where energy demand includes industrial loads (e.g., manufacturing processes).
Then, we provide generic models of wind, solar and energy storage in section 2.2.2.
In section 2.2.3, we give notations of a manufacturing system which is relevant to
chapter 4. At last, a description of spot market is given in section 2.2.4.

2.2.1 Microgrid Architecture
An architecture of a microgrid is shown in Figure 2.1. The main microgrid
components include solar PV panels, wind turbines, ESSs, loads (industrial loads
in our case), energy spot markets, and a microgrid controller. Through a Point of
Common Coupling (PCC) circuit breaker, it is possible to connect or disconnect
the microgrid from the utility grid. Under normal conditions, the microgrid is
connected to the utility grid for the purpose of energy transactions. However,
when there is fault (e.g., power outage, low power quality, etc) in the utility grid,
the PCC disconnects the microgrid to be an autonomous system, i.e., it is in
island mode. In this case, local generations in the microgrid should support the
loads of the microgrid.

Figure 2.1 – Architecture of a microgrid.

Control and management of microgrids can be established in centralized or
distributed manner. As shown in Figure 2.1, centralized control mechanism
relies on a central controller and it coordinates the DERs in terms of energy
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generation scheduling and protection from over-current due to short circuits. For
global optimality, the centralized control manner can have the advantage of high
efficiency according to Liang and Zhuang [LZ14]. Decentralized control and
operation could be useful in case where distributed control is required (e.g., in
remote areas). In such areas, communication network between the DERs and the
central controller can be interrupted due to geographical distance or unreliable
network connections.

2.2.2 Models of Wind, Solar and Storage
This section discusses models of basic microgrid components such as wind turbines,
solar PV panels and ESSs.

2.2.2.1 Wind power

Wind turbines generate electrical power by extracting kinetic energy from air
flow using rotors and blades (refer to Figure 2.2.1). If the turbines are installed
in locations with strong and sustainable winds, the generated power could be of
a significant amount to meet some energy demands.

A typical wind turbine is characterized by its power curve [Car+13] as shown
in Figure 2.2.2. The power curve relates wind power to wind speed. The power
Pwind (W) extracted from wind speed is proportional to the density of the air,
the rotor area, and the cube of the wind speed as in [SPK03]:

Pwind = ρ

2 ∗ Aw ∗ cp(λw, θ) ∗ v3 (2.1)

where

• ρ is air density (kg/m3),

• cp is performance or power coefficient,

• λw is ratio vt/vw (ratio between blade tip speed vt(m/s) and wind speed at
hub height upstream the rotor vw(m/s)),

• θ is angle of the blade chord to the plane of rotation (or pitch angle), and

• Aw is area covered by rotor of wind turbine (m2).

A conventional way of characterizing the ability of a wind turbine to capture
wind power is to use the power coefficient cp which is a function of tip speed
ratio (λw) and pitch angle (θ). According to Betz’s limit [RR11], the maximum
achievable value of cp is 16/27 (59.3%). This upper-bound applies for any type of
wind turbine, i.e., no wind turbine can extract kinetic energy from wind speed
higher than this coefficient. The power coefficient of modern commercial wind
turbines reaches values between 40 to 50% according to [EBL08].
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2.2.1: Air flow through rotor area A (m2) at
speed V (m/s)

2.2.2: Power curve of a 3MW wind turbine [Ves]

Figure 2.2 – Characteristic of wind power production.

2.3.1: Solar radiation on PV array 2.3.2: PV power curve

Figure 2.3 – Characteristic of solar power production, adapted from [Mer13].

2.2.2.2 Solar PV power

Sunlight is an ambient energy source that is available almost everywhere and can
be used to satisfy some parts of energy demand. Solar panels convert the sunlight
into electrical energy in a PV system. Solar panels are composed of a number
of solar cells that contain semiconducting materials which exhibit photovoltaic
effects. To increase conversion efficiency, the PV panel has to operate at its
Maximum Power Point (MPP) on its PV power curve [EC07]. Figure 2.3 shows
a PV array and its power curve characteristic.

In a PV system, the electricity generated by solar cells is given as [RY07]:

PP V = SR ∗ cosφ ∗ ηm ∗ Ap ∗ ηp, (2.2)

where
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• SR is solar radiation (W/m2),

• φ is angle of incidence calculated by considering β = 45°,

• ηm is efficiency of the Maximum Power Point Tracking (MPPT),

• Ap is area of the PV panel (m2),

• ηp is efficiency of the PV panel.

According to MacKay [Mac08], typical solar panels have efficiency (ηp) of about
10%; expensive ones with tracking device can perform up to 20%. The MPPT
efficiency (ηm) can have a value of 96% according to [RY07].

2.2.2.3 Energy storage systems

As mentioned in the previous chapter, there is a huge potential in Renewable
Energy Sources (RESs) to produce clean electricity and decrease greenhouse gas
emissions by reducing our dependence on fossil fuels as primary energy resources.
However, the variability of RESs has led to concerns regarding the reliability of
an electric grid that derives a large fraction of its energy from these sources as
well as the cost of reliably integrating large amounts of variable generation into
the power system. Due to these effects, there has been an increased call for the
deployment of ESSs as an essential component of future energy systems that use
large amounts of variable renewable resources.

As described in [Den+10], ESSs play an important role in electric grid. The
significant impact of ESSs is on energy arbitrage in which energy is purchased
during low-cost off-peak periods and sold back during expensive peak periods.
This reduces use of peaking plants (power plants that run only when there is a
high demand) and can lower fuel costs. Other roles of ESSs include smoothing
of renewable energy generation, operating reserves for electricity regulation,
load following to follow longer term (hourly) changes in electricity demand, to
black-start a system after system-wide failure (blackout), etc.

Common energy storage technologies in use today include mechanical, ther-
modynamic, electromagnetic and electrochemical [Che+09]. Mechanical energy
storage devices are classified into three types: pumped hydroelectric storage
(PHS), compressed air energy storage (CAES) and flywheels. Thermodynamic
energy storage (e.g., combined heat and power (CHP)) allows excess thermal
energy to be collected for later use. Electromagnetic storage devices such as
capacitors and super-capacitors store energy in the magnetic field created by the
flow of direct current in a superconducting coil. Among electrochemical storage
technologies, the most common Battery Energy Storage Systems (BESSs) are
lead-acid and lithium-ion batteries.
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The BESSs have less cost per kWh and commonly used in different applications
such as microgrids and electric vehicles. Since we consider BESSs size/capac-
ity determination in chapter 3, we detail their important characteristics from
[GFKR15] in the following list:

• Battery storage capacity (B): it is the maximum amount of electric charge
a BESSs can store. Storage capacity is measured in Amp-hour (Ah). The
fraction of the stored charge that a BESS can deliver depends on factors
such as BESSs type, ambient temperature, charge/discharge rate, terminal
voltage, etc.

• State of Charge (SoC) (06SoC6100%): it describes how full a storage
device is. We say that a BESSs is fully charged when its SoC is 100%.

• Depth of Discharge (DoD) (06DoD6100%): it describes how deeply the
battery is discharged. For instance, if a battery is fully charged, its DoD
is 0%. Moreover, if a battery is empty, its DoD is 100%. The relationship
between DoD and SoC can be described as SoC = 100% - DoD. For some
battery types such as lithium-ion, it is not advisable to discharge them
100% DoD, as such discharge could shorten battery life. For this reason,
maximum DoD (DoDmax) can be set to lower value than 100% (e.g., 90%).

• State of Health (SoH) (06SoH6100%): This factor reflects the general
condition of the storage device with respect to its initial condition.

• Efficiency (06 η 6100%): each unit of energy stored is reduced by η units
that can be used at a later time. This happens due to inefficiencies in
BESSs materials. The efficiency η can be charge efficiency ηc or discharge
efficiency ηd. In our case, we consider η = ηc = ηd.

• Self-discharge (in W): it is due to non-current-producing side chemical
reactions when there is no load attached to the BESSs. In most cases,
self-discharge amount ranges from 8 to 20% per year at room temperature.

• Life cycle: number of full charge/discharge cycles before the capacity of
BESSs is reduced to 80%.

Charging and discharging models A BESSs charging/discharging process
is described as [CGW12]:

b(t+ ∆t) =
b(t) + ∆t ∗ P c(t) charging,
b(t)−∆t ∗ P d(t) discharging,

(2.3)

where b(t) represents state of the BESSs at time t, ∆t is time step, and P c(t) and
P d(t) are charging and discharging rates at time t, respectively.
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For normal operations of BESSs, constraints should be imposed on power and
energy limits. For example, stored energy cannot be greater than its predefined
battery capacity (B) and cannot be lower than its minimum battery capacity
(Bmin), i.e., Bmin 6 b(t) 6 B, where Bmin = (1 - DoDmax)*B. Furthermore,
charging/discharging rate constraints are 0 6 P c(t) 6 P c

max(t) and 0 6 P d(t) 6
P d

max(t), where P c
max(t) is maximum charging rate and P d

max(t) is maximum
discharge rate at time t.

2.2.3 Industrial loads and manufacturing types
Industrial load consists of electrical load demands by manufacturing plants or
industries. According to Zhang et al. [Zha+16], most manufacturing plants have
already installed smart meters and control infrastructures which are necessary for
DR. In this section, we discuss a specific manufacturing type that we use for our
work on DR in chapter 4. Furthermore, we provide a brief description of other
manufacturing types (just for comparison of their working principles) as depicted
in Figure 2.4.

Production Systems

Serial
Lines

Assembly/
disassemby

Systems

Parallel
Lines

Split/Merge
Scrapping

Closed Loop
Systems

Rework
Loops

Loops with
Constant Number

of carriers

Figure 2.4 – Classification of production systems, adapted from [Li+09].

2.2.3.1 Serial production (or transfer) lines

Since we use notations and concepts of serial production lines in chapter 4, we
give more emphasis on these manufacturing types. Serial lines are the most
practical production systems in many manufacturing plants. Serial lines have
been classified according to the type of part transfers: continuous, asynchronous
and synchronous [GF99]. In continuous part transfer lines, the movement of parts
is continuous with constant speed. In systems with asynchronous part transfer,
each part moves independently of other parts which results in cycle variations
between workstations/machines. Parts move simultaneously between machines in
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systems with synchronous part transfer. Focusing on the Synchronous Production
Line (SPL) shown in Figure 2.5, the following assumptions are defined [DG92;
Li+09]:

• the production line consists of M machines in series that are connected by
a conveyor system,

• each part is processed on a machine for some fixed duration, i.e., its
processing time,

• the machines are reliable, i.e., there is no failure among the machines,

• the conveyor is blocked until the machine with the maximum processing
time finishes,

• machine Mi consumes pi amount of power when it processes a part,

• the production rate, i.e., number of finished parts per time unit, depends
on the processing rate of the last machine(MM) in the system.

Figure 2.5 – A synchronous production line.

Regarding the working principle of the serial production line, we assume that
the machines start processing at the same time but may not necessarily finish
equally because the processing times could be different. In the system, unfinished
tasks are processed first at machine M1, then at machine M2, and so on until
the last machine MM after which they leave the system. All the tasks have to
be processed for a duration of Ci at machine Mi. When the conveyor is moving,
all the machines wait until an unfinished task arrives in their respective slots.
Hence, the system uses Blocking After Service (BAS) mechanism to handle
synchronization between the machines and the conveyor.
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2.2.3.2 Assembly/disassembly lines

In assembly systems, the assembly machine will only process a part when upstream
buffers are not empty, i.e., parts have to wait not only for the machine to become
available but also for the other parts of the assembly to arrive before the machine
can begin processing. This imposes synchronization constraints at assembly
stations and this introduces dependencies between the machines. More details
and models are provided by Li, Alden, and Rabaey [LAR05].

2.2.3.3 Parallel lines

To increase production, parallel lines have been used in manufacturing system.
The machines at each stage could have identical processing times and aggregating
the machines at the stage can form a serial production line to simplify analysis
and modeling. Details can be found in [Li04].

2.2.3.4 Split/merge system

Split and merge operations are typically used to increase production capacity and
variety, improve product quality, and implement product control and scheduling
policies. Merge operations load parts at the same time to compose them to a
single part when parts exist in the upstream buffers. Split operations split a part
into multiple parts when downstream buffers are not full [LH05].

2.2.3.5 Closed-loop lines

Closed-loop lines are serial production systems where one or more loops are
attached to the line. The loops can be used for rework of defective parts or quality
improvement. Frein, Commault, and Dallery [FCD96] and Gershwin and
Werner [GW07] give more details on this manufacturing type.

2.2.4 Spot market
An electricity spot market can be regarded as a market where the electricity can
be sold or purchased at varying prices throughout a day. Wholesale transactions
(bids and offers) in electricity are managed by the market operator. In Europe,
EPEX (European Power EXchange) handles these transactions. It operates
in France, Germany, the United Kingdom, the Netherlands, Belgium, Austria,
Switzerland and Luxembourg. EPEX spot manages two types of spot markets,
namely, day-ahead and real-time markets.

In day-ahead spot markets, an auction process is organized by EPEX spot. It
determines market price based on the intersection of supply and demand curves
as shown in Figure 2.6. Once the prices are determined for each hour of the
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Figure 2.6 – EPEX spot energy supply and demands curves.

following day, the results are published to buyers and sellers from 11:10 am (in
Switzerland) and 12:55 pm (in all other markets) [EPE17].

For real-time spot markets, the transaction of energy is performed close
to real-time (e.g., in 15 minutes) based on contracts. These contracts help to
accommodate intermittent energy resources by responding to intra-hour variations
of energy production and consumption.

In this section, we discussed concepts of microgrids including the architecture
and basic components of an industrial microgrid. The following section presents
an important concept: DR.

2.3 Demand Response (DR)
In legacy power systems, the main focus has been improving power supply based
on evolution of electricity demands. However, due to recent emergence of smart
grids, a Demand Side Management (DSM) also plays a crucial role by managing
flexible loads. According to a World Bank report prepared by River [Riv05],
DSM is defined as follows.

Definition 2.2 (DSM [Riv05]).
DSM encompasses systematic utility and government activities designed to change
the amount and/or timing of the customer’s use of electricity for the collective
benefit of the society, the utility and its customers.

Under DSM, there are two concepts: Energy Efficiency (EE) and DR. Referring
to [YK05], a definition of EE is given below.

Definition 2.3 (EE [YK05]).
EE involves technology measures that produce the same or better levels of energy
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services (e.g., light, space conditioning, motor drive power, etc.) using less energy.
The technologies that comprise efficiency measures are generally long-lasting
and save energy across all times when the end-use equipment is in operation.
Depending on the timing of equipment use, EE measures can also produce
significant reductions in peak demand.

According to this definition, EE programs involve replacing existing consumers’
devices with new devices that are energy efficient (e.g., replacing old incandescent
lamps with new fluorescent lamps). These programs offer financial incentives to
encourage customers to acquire, install and adopt more energy efficient technolo-
gies. EE actions incorporate both short-term conservation actions and long-term
investments in EE. Besides investing in EE, customers can also participate in
DR programs (see section 2.3.1). The objective of this section is to pursue in the
direction of DR because the concepts we discuss here lay the groundwork for our
work in chapter 4.

In a power system, DR is regarded as an effective approach to increase
electricity grid performance and consumer benefits. According to US Federal
Energy Regulatory Commission [Kat+12], DR is defined as follows.

Definition 2.4 (DR [Kat+12]).
DR refers to changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over time,
or to incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized.

In the following sections, we first discuss different categories of DR programs.
Then, discussions of DR potential benefits and mathematical problems and
approaches in DR are provided. The concluding section of DR portion of this
chapter gives a brief description of a smart DR enabling technology called Open
Automated Demand Response (OpenADR).

2.3.1 DR programs
DR programs throttle energy demands of different loads such as industrial,
commercial and residential for adjusting demands to available power productions.
DR programs are mainly divided into two branches: price- and incentive-based DR
programs. The following sections discuss the two DR programs citing references
such as [Riv05; Qdr06; Den+15; ZG16].

2.3.1.1 Price-based DR programs

In price-based DR (PDR) programs, the price of electricity varies over time so
that customers are motivated to adjust their power consumption patterns. The
price of electricity may differ from peak to off-peak times significantly. Hence,
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customers would pay the highest prices during the peak periods and the lowest
prices during the off-peak periods. The prices can be communicated to customers
a day in advance or in real-time based on pricing mechanisms. The pricing
mechanisms are classified into 4 types [Riv05; Qdr06; Den+15]:

• Time Of Use (TOU): customers are charged with different prices when
they consume electricity at different time intervals of a day or different
seasons of a year. In most cases, the time intervals are divided into block of
1 hour. TOU rates charge customers based on tariffs for off-peak and peak
time blocks. Electricity prices at the peak time blocks are much higher
than that at off-peak time blocks.

• Critical Price Peaking (CPP): in this pricing mechanism, customers are
on TOU rates for most hours of the year. However, they face additional
charges during a small number of critical hours when system reliability
is jeopardized or very high prices are encountered in wholesale markets
because of extreme weather conditions. During non-CPP periods, CPP
customers typically receive a price discount. The Tempo tariff of EDF
(Électricité de France) is an example of CPP tariff. With tempo tariff, a
year is divided into 22 red, 43 white and 300 blue days, and each day has a
peak and an off-peak periods and corresponding tariffs [Alt+11].

• Real-Time Pricing (RTP): in this tariff type, the electricity price usually
varies at different time intervals of a day close to real-time, i.e., every 15
minutes or every hour. RTP prices are typically known to customers on
a day-ahead, hour-ahead or 15 minutes ahead basis (see an illustration in
Figure 2.7b).

• Inclining Block Rate (IBR): rate structure of this tariff has two levels: lower
and higher blocks (see Figure 2.7c). If customers’ hourly/daily/monthly
energy consumption exceeds a predefined threshold, electricity prices climb
up to the higher block. Several energy providers in USA such as Pacific Gas
and Electric (PG&E), Southern California Edison (SCE), San Diego Gas
and Electric (SDG&E) have been using IBR tariffs since the 1980s [Bor08].

A graphical summary of some of the price-based DR programs is shown in
Figure 2.7. In the figure, the TOU rates are divided into three time block types:
off-peak, mid-peak, and on-peak. The electricity price at the on-peak time block is
much higher than that at the mid-peak and off-peak time blocks so that customers
shift their loads over another time horizon.

2.3.1.2 Incentive-based DR programs

Incentive-based DR (IDR) programs reward participating customers for reducing
their electricity usage in response to DR requests from grid operators. IDR
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Figure 2.7 – Illustration of PDRs: (a) TOU, (b) RTP, and (c) IBR [Den+15].

programs diversify the ways in which demand side management contributes to
reliable and efficient grid operations because these programs can be tailored
according to specific requirements. The programs in this category are listed as
follows [Qdr06; ZG16]:

• Direct load control is a program in which customers receive incentive pay-
ments for allowing the utility operator some degree of control over their
equipments such as air conditioners and water heaters. While direct load
control programs are primarily offered to residential and small commercial
customers, it usually cannot be applied to industrial customers due to safety
concerns.

• Interruptible/curtailable service is used to provide customers with a discount
rate or bill for agreeing to reduce load on request. These services have
traditionally been offered only to the largest industrial and commercial
customers.

• Demand Bidding/Buyback Programs encourage large customers to bid into
a wholesale electricity market by providing load reduction prices at which
they are going to be curtailed.

• Emergency Demand Response Programs provide incentive payments for
customers to reduce loads during reliability-triggered events. Enrolled
customers that do not respond to this program may incur penalties.

• Capacity Market Programs give incentive payments for customers that can
commit to providing pre-specified load reductions when system contingencies
arise. These programs typically entail significant penalties for customers
that do not respond when asked for load reduction.

• Ancillary Services Market Programs provide incentive payments for cus-
tomers from the grid operator for committing load curtailment to be standby
as operating reserves. If load curtailment is requested from the operator,
the customers may get paid according to prices on the spot market.
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Figure 2.8 – Time scales of DR programs [Qdr06]

Figure 2.8 shows time scales of both price- and incentive-based DR programs.
Price-based DR programs can be incorporated into utilities’ planning at different
time scales that can include TOU, CPP and RTP rates. Incentive-based DR
programs may be introduced at virtually all time scales which can notify customers
in hourly, daily, and real-time fashions based on the programs. In chapter 4, we
consider the incentive-based DR in which power consumption is upper bounded
by the request of the utility grid.

2.3.2 Potential benefits of DR

DR has a broad range of potential benefits primarily as resource savings (e.g.,
reduction in peaking plants) that improve the efficiency of power systems. In
practice, these benefits depend on many factors including purpose, design, and
performance of the implemented DR programs, the enabling technologies and the
structure of the electricity markets [Qdr06]. The benefits of demand response can
be classified in terms of whether they are interesting directly to participants or
to some or all groups of electricity consumers as follows:

• Participant bill savings: electricity bill savings and incentive payments for
customers willing to adjust their loads in response to current supply costs
or other incentives.

• Bill savings for other customers: DR results in lower wholesale market
prices which in turn reduces supply costs to retailers that provide electricity
to non-DR costumers.
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• Reliability benefits: refers to reduced probability of power outages and not
incurring higher financial costs and inconvenience for customers.

• Market performance: DR prevents the exercise of market power by electric
power producers, i.e., it encourages fair marketers (e.g., prevents over
reduction of prices to influence the market).

• Improved choices: more options for customers to manage their electricity
costs by choosing energy providers according to their will.

• Power system security: grid operators are endowed with more flexible means
to meet contingencies and reduce costs.

2.3.3 Mathematical problems and approaches in DR
Based on a survey by Deng et al. [Den+15], this section provides a list of existing
mathematical problems in DR and different approaches for solving them. The
major DR mathematical problems include utility maximization, cost minimization,
price forecast, and renewable energy integration.

2.3.3.1 Utility maximization

In utility maximization problem, the aim is to first define utility functions that
quantify levels of customer satisfactions as a function of customer’s power consump-
tion [Sam+10; LCL11]. Then, the objective function is to maximize customer’s
welfare respecting varies constraints including power consumption profiles of
devices, available power, etc. Several approaches such as convex optimization
[Sam+10] and dynamic programming [JL11] are proposed in the literature to
tackle this problem.

2.3.3.2 Cost minimization

This problem defines an energy consumption scheduling where the objective is
to minimize energy costs for the customers. Potential approaches include game
theory and convex optimization [Sam+10].

2.3.3.3 Price forecast

In price prediction problem, the goal is to include a dynamic price predictor in
an energy consumption scheduler. The dynamic price predictor computes prices
that can reflect the actual wholesale price at the time of consumption and type of
a day (working or weekend). Mohsenian-Rad and Leon-Garcia [MRLG10]
proposed a linear programming (LP) approach for the price prediction problem.
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2.3.3.4 Renewable energy integration

This problem considers integration of DR with intermittent RESs such as wind,
solar, etc. It incorporates energy generation of the resources into an optimization
problem (e.g., minimizing cost by using locally generated power when electricity
price is high or storing for later use). This type of DR problem was considered
by Jiang and Low [JL11].

2.3.4 OpenADR - a DR tool
OpenADR [All13] was developed at Demand Response Research Center (DRRC)
of Lawrence Berkeley National Laboratory (LBNL) [LBN] and its first specification
was released in 2009. To enhance the development, adoption and compliance of
OpenADR standards throughout the energy industry, a collaboration between
industry stakeholders was initiated to form an OpenADR Alliance [Ope] in
2010. The alliance was created to standardize, automate and simplify DR, to
meet growing cost effective energy demand of utilities, and to allow customers
controlling the way they use energy. In the version 1.0 of the specification [Pie+09],
the LBNL described OpenADR as follows.

Definition 2.5 (OpenADR [Pie+09]).
OpenADR is a communication data model designed to facilitate sending and
receiving DR signals from a utility or independent system operator to electric
customers. The intention of the data model is to interact with building and
industrial control systems that are pre-programmed to take action based on a DR
signal, enabling a demand response event to be fully automated, with no manual
intervention. The OpenADR specification is a highly flexible infrastructure design
to facilitate common information exchange between a utility or Independent
System Operator (ISO) and their end-use participants. The concept of an open
specification is intended to allow anyone to implement the signalling systems,
providing the automation server or the automation clients.

The OpenADR 1.0 specification was based on OASIS (Organization of Struc-
tured Information Standards) Energy Interoperation (EI) standard [OAS]. Under
OASIS’ EI, OpenADR 2.0 profile builds on OpenADR 1.0 and it handles more
complex interactions of DR and DERs, while keeping in mind the requirements
of diverse markets and stakeholders needs. In this section, we discuss OpenADR
architecture, some services and implementations of OpenADR 2.0.

2.3.4.1 OpenADR architecture

In OpenADR architecture, there are two communicating nodes that act as clients
or servers:



26 Chapter 2. General Concepts and Models

Figure 2.9 – OpenADR architecture [Haa13].

• nodes that publish and communicate event information to other nodes (e.g.,
utilities). These nodes are called Virtual Top Node (VTN) and act as
OpenADR servers,

• nodes that receive, process and respond to the information (e.g., electricity
consumers). These nodes are called Virtual End Node (VEN) and act as
OpenADR clients.

Figure 2.9 shows an architecture of OpenADR with different combination of
VTN and VEN interactions. In the figure, a VTN (i.e., DR service provider)
can communicate events (e.g., electricity prices, grid reliability, etc) directly to
an end customer (e.g., site A) or to an aggregator VEN. Then, the aggregator
becomes VTN for another VENs such as site C, D, and E. Based on pair-wise
relationship of VTN–VEN, a complex structure could be implemented that can
address complex interactions in DR such as shown in Figure 2.10.

In Figure 2.10, certain nodes (B, E and G) act as both VTN and VEN. The
arrows from VTN to its VENs could model a DR event initiated by the utility
grid A that can invoke an operation on its second level VTNs (B to E) which are
group of aggregators. For example, the second level VTN B can invoke services
on its VENs F , G and H, which represent their customers. The customers might
be industrial parks with multiple facilities, real estate developments with multiple
tenants, or a company headquarters with facilities in many different geographical
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Figure 2.10 – Example of interactions between VTN and VEN [Haa13].

areas.
Regarding to communication protocols, the VTN and VEN can communicate

using HTTP (HyperText Transfer Protocol) either in PUSH mode where the VTN
initiates communication or in a PULL mode where the VEN continuously requests
VTN for information [All13]. XML Messaging and Presence Protocol (XMPP)
can also be used as transport mechanism between VTN and VEN. Both HTTP
and XMPP use XML (eXtensible Markup Language) format for a standardized
data representation during OpenADR message communication. According to the
protocol specification, the VTN should support both HTTP and XMPP protocols,
but the VEN should support either of the two.

2.3.4.2 OpenADR services

To facilitate common information exchanges between VTNs and VENs, OpenADR
2.0 provides the following 8 services [All13]:

• EiRegisterParty: used by VENs to perform in-band registration to VTNs.
In this service, VENs and VTNs agree on parameters such as transport
mechanisms (HTTP or XMPP), OpenADR profiles (2.0a or b), etc.

• EiEnroll: used by VENs to enroll their resources to participate in DR.

• EiMarketContext: used to discover DR program rules, standard reports,
etc. Since market information rarely changes, it is not necessary to send
market information every time.

• EiEvent: used by VTNs to convey DR events to VENs to indicate whether
resources are going to participate in the event. It is a core function in the
information models of OpenADR.

• EiQuote: used by VTNs to communicate complex dynamic prices such as
block and tier tariffs to VENs.
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• EiReport: used by VTNs and VENs to exchange historical, telemetry, and
forecast reports. Using this service, VENs can report their resource status
including availability, forecast, real-time energy and curtailment readings.

• EiOpt: used by VENs to communicate Opt-in and Opt-out (temporary
availability to accept DR) schedules to VTNs. The VEN sends Opt-in
message to the VTN if it accepts the DR request or Opt-out otherwise.

• EiAvail: used by VENs to indicate when an event may or may not be
accepted. VENs execute EiAvail with respect to a Market Context. If
VTNs know the availability and opt information of VENs, they can improve
their ability to estimate VEN’s response to events or requests.

Figure 2.11 – VTN and VEN communications using OpenADR services [Haa13].

As shown in Figure 2.11, VTN and VEN commences communication by
using EiRegisterParty service which is sent from VEN to VTN, assuming that
enrollment and market information exchange were done a priori. After agreeing
on OpenADR parameters in EiRegisterParty, VEN and VTN exchange report
capabilities using EiReport service. Then, the VTN can send DR event to VEN
by specifying DR start time, DR duration, amount/percentage of load shedding,
etc in EiEvent service. At this moment, the VEN not only responds with EiOpt
but also with temporary availability schedule. The communication continues with
exchange of periodic reports to verify if the DR event has resulted in the targeted
load shed. The VTN and VEN can repeat the same process in other times to
notify another DR event.
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2.3.4.3 OpenADR implementations

Existing implementations of OpenADR use either HTTP or XMPP as trans-
port mechanisms. OpenADR Alliance certified OpenADR implementations are
mostly provided by two organizations: EPRI (Electric Power Research Institute)
and EnerNOC. EPRI selected a simple HTTP implementation and uses C#
programming language to implement the OpenADR services in VEN side and
Ruby on Rails web-application framework for VTN side. Source codes for VTN
and VEN are available from [EPR]. EnerNOC provides XMPP-based OpenADR
implementation and use Java and Python programming languages for VEN and
Grails/Groovy web-application framework for VTN. Source codes are available in
EnerNOC’s GitHub [Ene].

Since the OpenADR protocol specification is based on XML, the availability
of Java language specific tools for creating, manipulating and binding XML
documents to program elements encourages us to choose the EnerNOC imple-
mentations of OpenADR. As both Java and Python languages are frequently
used in the enterprise METRON, the integration of OpenADR to METRON’s
architecture was done with relative ease. Since the source code of EnerNOC only
provide the EiEvent service, we modified the code to add the other services. In
chapter 4, we provide a use case of OpenADR in METRON.

In the next section, we detail relevant concepts of service curve which will be
used in chapter 3 to model power generation of DERs.

2.4 Service curves of Network Calculus
NC is a system theory that has been developed to give a theoretical framework
for analyzing performance guarantees in computer networks based on min-plus
and max-plus algebras. Specifically, NC is used to compute worst case bounds on
delay and buffer requirements in a network. It was initially introduced by Cruz
[Cru91] for communication network elements where the analysis of delay bounds
and buffer requirements followed a non-probabilistic approach. After this initial
work on NC, two works were published around the beginning of 2000. In 2000,
the book of Chang [Cha00] gave formal presentation of the operators of the NC
and their use in a case where time and data are discrete values. Then, in 2001,
Le Boudec and Thiran [LBT01] described all the necessary tools of NC as
well as the conditions of application and provided several illustrating examples of
application on different problems in their book.

NC consists of two branches: stochastic and deterministic NC. In Stochastic
Network Calculus (SNC), computations of worst case performance bounds are
based on probabilistic distributions, i.e., some violations of the deterministic
bounds are tolerable with small probability. More details on SNC can be found
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in [JL08]. In this work, we focus on the deterministic Network Calculus (DNC)
where deterministic worst case performance bounds are computed. Under DNC,
NC provides basic concepts including arrival, service curves and shapers. Since
we don’t rely on arrival curves and shapers, a reader may want to refer to [LBT01]
for more details on the two concepts.

In the following sections, focusing on the service curve concepts, we discuss
notations and theories which are relevant to our work on modeling of energy
generation of DERs in chapter 3. First, a brief overview of min-plus and max-plus
algebras is given in section 2.4.1. Next, section 2.4.2 details the service curve
concepts with few demonstrating examples. Finally, some applications of NC are
provided in section 2.4.3.

2.4.1 Min-plus and Max-plus Algebras

Before defining the concepts of service curves, we first introduce the two important
underlying mathematical concepts: min-plus and max-plus algebras. Since the
min-plus algebra is frequently used in service curves, we give more emphasis
on the concepts of the min-plus algebra and detail only few notations on the
max-plus algebra concepts.

2.4.1.1 Min-plus Algebra

In conventional algebra, addition and multiplication are the two most common
operations on real R and integer Z numbers. The particular properties of the two
operators make the algebraic structure (Z, +, x) as a commutative ring and (R,
+, x) as a commutative field [LBT01]. In min-plus algebra, the multiplication
operator is replaced by the addition operator and the addition operator is replaced
by the infimum (or minimum if it exists) operator (∧). Min-plus operators can
also be applied to +∞ that results in another algebraic structure (R∪{+∞},∧,+).
Algebraic properties of the structure such as associativity, commutativity, etc are
detailed in the book of Le Boudec and Thiran [LBT01](page 105). Based
on the properties of the min-plus algebra, we discuss important features such as
property of wide-sense increasing functions and convolutions that are necessary
to define service curve concepts.

Wide-sense increasing functions A function f is said to be wide-sense
increasing if and only if f(s) > f(t), ∀s > t. We adopt the following notations:

• G: a set of non-negative wide-sense increasing functions,

• F : a set of non-negative wide-sense increasing functions such that f(t) = 0
if t < 0.
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The range of F and G functions is R+ = [0, +∞]. Some of these functions can
be used as service curves (see section 2.4.2.1).

Pseudo-inverse of wide-sense increasing functions For an invertible func-
tion f , there exists a function f−1 such that f−1(f(t)) = t for all t. However,
wide-sense increasing functions are not always invertible. Hence, a pseudo-inverse
f−1 of a function f ∈ F is defined as:

f−1(x) = inf
t>0
{t : f(t) > x}. (2.4)

Concave and convex functions Concave and convex functions are important
functions of the min-plus algebra. A function f : R 7→ R is convex if and only if

f(ux+ (1− u)y) 6 uf(x) + (1− u)f(y), ∀x, y ∈ R, u ∈ [0, 1], (2.5)

and, a function f : R 7→ R is concave if and only if −f is convex or if and only if

f(ux+ (1− u)y) > uf(x) + (1− u)f(y), ∀x, y ∈ R, u ∈ [0, 1]. (2.6)

Some functions such as rate-latency functions are convex functions and some
piece-wise linear functions are concave functions.

Min-plus convolution In classical system theory, the convolution of two
functions f(t) and g(t) is defined as:

(f ∗ g)(t) =
∫ t

0
f(t− s)g(s) ds, t > 0. (2.7)

Changing the addition into infimum and the multiplication into addition, the
following definition of the min-plus convolution is given.

Definition 2.6 (Min-plus convolution).
Assuming that f, g ∈ F , the min-plus convolution of f and g is:

(f ⊗ g)(t) = inf
06s6t
{f(t− s) + g(s)}, (2.8)

given that (f ⊗ g)(t) = 0 if t < 0.

An important property of min-plus convolution is that if f and g are convex
and piece-wise linear functions, their convolution f⊗g is obtained by putting end-
to-end the different linear pieces of the individual functions, sorted by increasing
slopes. This property is very useful during concatenation of two functions as will
be shown in section 2.4.2.4.
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Min-plus deconvolution The dual operation of the min-plus convolution is
defined as follows.

Definition 2.7 (Min-plus deconvolution).
Assuming that two functions f and g are in F , their min-plus deconvolution is
given by:

(f � g)(t) = sup
u>0
{f(t+ u)− g(u)}. (2.9)

Illustrating examples and proofs are provided in the work of Le Boudec and
Thiran [LBT01], and Van Bemten and Kellerer [VBK16]. These references
can be consulted if more details are required.

2.4.1.2 Max-plus Algebra

In max-plus algebra, the algebraic structure is changed into (R ∪ {−∞},∨,+) by
replacing the infimum operator by supremum operator ∨ and +∞ by −∞. Since
we don’t use the max-plus algebra in this work, interested readers may want to
refer to the book of Le Boudec and Thiran [LBT01]. The following section
discusses the concepts of service curves.

2.4.2 Service curve concepts
The concept of service curve is used to abstract the details of packet scheduling
which requires a network or node to offer some guarantees to flows. The following
definition of a service curve gives a general service curve concept used in NC.
Referring to [LBT01], a service curve is defined as follows.

Definition 2.8 (Service curve [LBT01]).
Consider a system S and a flow through S with input and output functions R
and R∗, respectively. We say that S offers to the flow a service curve β if and
only if for all t > 0, there exists some s > 0, with s 6 t, such that

R∗(t)−R(s) > β(t− s), (2.10)

or equivalently,
R∗ > R⊗ β, (2.11)

or alternatively,
R∗(t) > inf

s6t
{R(s) + β(t− s)}, (2.12)

where β(0) = 0, β is wide-sense increasing, and R(t)/R∗(t) are cumulative number
of input/output bits in interval (0,t].

Figure 2.12 illustrates the concept of service curve. In the figure, the output
R∗ of the system must always be greater than the convolution of the input R
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Figure 2.12 – An illustration of service curve concept [LBT01].

with the service curve β of the system. The output R∗ lies in the area between
the input R and R⊗ β. From the figure, we can also see that the service curve
concept provides a lower bound on the service a system can offer. Based on this
general definition of service curves, the following sections detail three types of
service curves: functions as service curves, strict, and maximum service curves.
Furthermore, we investigate concatenation of service curves.

Figure 2.13 – Common functions as service curves: (a) peak-rate (b) burst-delay
(c) rate-latency, and (d) affine functions. Adapted from [LBT01].
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2.4.2.1 Common functions as service curves

The functions most commonly used as service curves include peak-rate, burst-delay,
rate-latency, and affine functions. They are defined as follows:

• peak-rate function: for some rate R > 0, a peak-rate function is defined as:
(see Figure 2.13a):

λR(t) =
Rt if t > 0,

0 otherwise.
(2.13)

• burst-delay function: referring to Figure 2.13b, a burst-delay function with
delay time T > 0 is given as:

δT (t) =
+∞ if t > T,

0 otherwise.
(2.14)

By convolving any function with δT , it can be shifted to the right by T .

• rate-latency function: with delay T > 0 and rate R > 0, a rate-latency
function can be expressed as (see Figure 2.13c):

βR,T (t) = R[t− T ]+ =
R(t− T ) if t > T,

0 otherwise.
(2.15)

The rate-latency service curve is usually used to model a generalized process
sharing (GPS) scheduler where each flow gets a share of at least R.

• affine function: for some rate r > 0 and burst b > 0, an affine function is
defined as (see Figure 2.13d):

γr,b(t) =
rt+ b if t > 0,

0 otherwise.
(2.16)

2.4.2.2 Strict service curve

Definition 2.9 (Strict service curve).
A system S offers a strict service curve β to a flow if, during any backlogged
period of duration d, the output R∗ of the system is at least equal to β(d).
Mathematically, for any backlogged period (s, t],

R∗(t)−R∗(s) > β(t− s). (2.17)
In strict service curve property, a flow is guaranteed a service during any

backlogged period, which is not possible with the general service curve. Since the
strict service curve is stricter than the general service curve, if a node offers β
service curve to a flow, then it also offers the same curve β as a general service
curve to the flow. For example, a GPS node offers a strict service curve in the
form of β = rt because it will always serve the backlogged data at least at the
promised rate r.
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2.4.2.3 Maximum service curve

Definition 2.10 (Maximum service curve).
Considering a system S with input R and output R∗ functions, we say that S
offers a maximum service curve γ to a flow if and only if γ ∈ F and

R∗ 6 R⊗ γ, (2.18)

or alternatively,
R∗(t) 6 R(s) + γ(r − s), ∀t, s 6 t, (2.19)

or equivalently with consideration of backlog B(·),

R∗(t)−R∗(s) 6 B(s) + γ(r − s), ∀t, s 6 t. (2.20)

In the maximum service curve concept, a system is allowed to provide an
upper bound on the service it can give to the flows. For example, a node is said to
offer a maximum service curve of δT if and only if it imposes a minimum virtual
delay of T . In the same way, the virtual delay d(t) satisfies d(t) 6 D for all t if a
flow traverses a node with maximum service curve γ such that γ(D) = 0.

2.4.2.4 Concatenation and aggregation of service curves

In the above section, we have discussed several service curves for a standalone
system. Now, we would like to concatenate the service curves and find a service
curve that represents a global view of the systems concatenated in series. Assume
that a flow traverses two systems S1 and S2 in series and the systems offer service
curves β1 and β2 to the flow, respectively. Hence, for the input R at S1, the
output R∗ at S2 can be expressed as:

R∗ > (R⊗ β1)⊗ β2 = R⊗ (β1 ⊗ β2). (2.21)

According to Van Bemten and Kellerer [VBK16], β1⊗β2 is not necessary strict
even if β1 and β2 are strict service curves. Figure 2.14 shows the concatenation of
two rate-latency service curves βR1,T1 and βR2,T2 of systems S1 and S2, respectively.
Generally, for n rate-latency service curves βRi,Ti , i ∈ [1, 2, ..., n], the concatenation
becomes βmin{R1,...,Rn},T1+...+Tn which is also a rate-latency service curve.

For aggregation property, a single service curve can be obtained by summing
service curves of the systems. For example, if there are n service curves, the
aggregated system service curve becomes βR1+...+Rn,T1+...+Tn . A similar expression
is also provided in [Wan+12]. We rely on this aggregation property in chapter 3
to model a composite power production curve of DERs.
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Figure 2.14 – Concatenation of service curves [VBK16].

2.4.3 Applications of Network Calculus
Most of the applications of NC are in the context of computer and communication
networks. For instance, in [GDR11], the authors relied on network calculus
concepts to determine whether a switched network may satisfy timing constraints
of a real-time application. They computed upper bound on end-to-end delay in
an Ethernet switch by setting service curves for fair queuing and weighted round
robin scheduling algorithms.

Focusing on wireless networks, a work in [AZLB12] used NC to analyse delay
and backlog performance metrics for multi-hop fading communication channels.
Other applications on NC include delay and queue size analysis in AFDX (Avionics
Full-Duplex Switched Ethernet) [FFG06] and guaranteed service networks [LB98].

In our work, we extend the service curve concepts of NC to energy domain
and we will describe it in chapter 3. The next section discusses basic queuing
theories which are relevant to chapter 4.

2.5 Queuing theory overview
In general, queues (waiting lines) are parts of our daily life. For example, once
we finished shopping in a supermarket, we wait at checkouts if there are people
ahead of us. What happens if we arrive at the checkouts during peak hours? How
many checkout points to activate or deactivate based on the number of customers
in the queue? The very same questions can be asked in queuing systems such as
manufacturing systems, data communication, computer systems, etc. To analyze
such situations in queuing systems, a queuing theory-based model is particularly
a useful tool.

The first queuing theory problem was raised by calls in telephone exchange in
which Erlang [Erl09] was the first to address congestion problems of calls at
the beginning of 20th century. Engineers and mathematicians were inspired by
his work to further extend the results in computer science, operation research,
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telecommunication, traffic engineering, etc. Here, our objective is to rely on some
queuing theory models for performance analysis of a manufacturing system which
is given in chapter 4. Hence, we only mention relevant theories from queuing
models to attain our goal.

We start with discussions of Kendall’s notations and Little’s theorem in
sections 2.5.1 and 2.5.2, respectively. Then, section 2.5.3 highlights average-based
performance measures such as mean queue length and average waiting time. After
that, temporal evolution of a queuing system is provided in section 2.5.4. Finally,
some research works on application of queuing theory to manufacturing systems
are given in section 2.5.5.

2.5.1 Kendall’s notation for queues
Figure 2.15 shows basic components of a queuing system. In the figure, the small
circles represent customers or parts and the small boxes represent servers or
processing stations in the system. Kendall’s notation provides a standard way to
describe and classify queuing systems.

Figure 2.15 – A queuing system.

In Kendall’s notation, a queuing system is denoted by [Szt12]:

A/B/m/K/n/S,
where

• A: Arrival process
In arrival process, we assume that interarrival times are Independent and
Identically Distributed (IID). Most commonly used distributions are M
(exponential or memoryless/Markovian), D (deterministic), G (general) and
Ek (Erlang with shape parameter k).
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• B: Service time distribution
Service times are also assumed to be IID and they can have the same
distributions as the arrival process.

• m: Number of servers
Available servers to serve customers. For example, the G/G/1 queue has
single server while the G/G/c queue has c servers.

• K: Number of places in the system
It represents the maximum number of customers allowed in the system
including those in service. Incoming customers may be refused to enter the
system if this value is the maximum number the system can hold.

• n: Client/costumer source size
n indicates a population size from which customers arrive to a queuing
system. For instance, in the M/M/1 notation, the population size is
considered to be unlimited or infinite.

• S: Service discipline
Servers serve customers based on a specific service discipline. The service
disciplines in queuing systems include First In First Out (FIFO), LIFO
(Last in First Out), PS (Process Sharing), SIRO (Service In Random Order),
and SPT (Shortest Processing Time first). The default service discipline is
FIFO if it is not mentioned explicitly.

As an example of Kendall’s notation, the shorthand M/M/m/K/n stands
for a system where arrival and service processes are exponential distributed, the
service is carried out with m servers to serve n customer sources and system
capacity of K slots with FIFO service discipline. In our work, we use a D/D/1
queue where both arrival and service processes are deterministic and a single server
serves unlimited number of customers with FIFO service discipline. The queuing
system is used to represent a processing station (or machine) in a manufacturing
system. Consequently, production line of a manufacturing system can be viewed
as a tandem of D/D/1 queues. Hence, we limit ourselves to give details on
performance measures of D/D/1 queues.

2.5.2 Little’s Formula
Little’s formula or theorem was proposed by John Little [Lit61] to prove a queuing
formula that relates average number of customers in a queue to average waiting
time and arrival rate of the customers. The theorem is defined as follows.

Definition 2.11 (Little’s theorem, adapted from [Lit61]).
Under steady state conditions, the long-term average number of customers in a
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stable system is equal to the mean arrival rate multiplied by the average time a
customer spends in the system.

Based on this definition, the stationary mean queue length E[Q] of queue Q
is formulated as follows:

E[Q] = λ̂E[DQ] (2.22)

where λ̂ is mean arrival rate and E[DQ] represents the mean delay of customer
in queue Q from the time it enters to the queue until its service is completed.
In section 2.5.3.3, we use this formula to obtain the average delay E[DQ] after
computing the average queue length E[Q].

2.5.3 Average-based performance measures of D/D/1 queue
A D/D/1 queuing system is the simplest queuing type (but very useful) where
arrival rates (λ) have deterministic IID inter-arrival times and service times (µ)
are also distributed in the same way. To avoid that the queue eventually grows
to infinity, we have to require that λ 6 µ, with the equality case also stable in
deterministic queues. Important performance measures in the queuing system
include mean waiting times and average number of customers in the system (or
mean queue length).

In this section, we provide server utilization and the average-based performance
measures such as the mean waiting time and mean queue length in the D/D/1
queue. Now, we recall some performance measures of the D/D/1 queue from
works of Sztrik [Szt12] and Zukerman [Zuk13]. Assume that if an arrival and a
departure occur at the same time, the departure takes place first. This assumption
is not required for Markovian queuing systems such as M/M/1, G/M/1, and
M/G/1 queues since occurrences arrival and departure events are probabilistic.
In the following sections, analytical results of the performance measures of the
D/D/1 queue are provided.

2.5.3.1 Server Utilization

The server utilization of the D/D/1 queue can be considered in two cases. If we
consider the case where λ > µ, the queue size grows to infinity as t → ∞. Hence,
there is always a customer in the queue waiting for service which makes the server
always busy. The result is that the utilization is equal to one. However, in this
case, the system becomes unstable due its queue size.

In the other case where λ < µ, the system is always stable. Let us assume
that the first customer arrives at t = 0. Its service time ends at t = 1/µ. Then,
the second arrival will occur at t = 1/λ and it will be served at t = 1/µ + 1/λ.
This continues for all arrivals and it forms a deterministic cyclic process where
the queue size is either 0 or 1. Thus, the cycle contains three parts: a period
of customer arrival of 1/λ, then there is a customer to be served for a period of
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1/µ, and a period where there is no activity (1/λ - 1/µ). Therefore, the server
utilization becomes U = (1/µ)/(1/λ) = λ/µ.

2.5.3.2 Mean queue length

If λ < µ (i.e., when the system is stable), customers entering the system are
served before the next one arrives. This means that the queue length alternates
between 1 or 0 with 1/λ time spent in state 1 and (1/λ - 1/µ) time spent in
state 0. Assume that the probability of having n customers in the queue Q at a
randomly chosen point in time is P(Q = n), the mean queue length is defined as
[Zuk13]:

E[Q] =
∞∑

n=0
nP(Q = n) (2.23)

Now, the probability that there is one customer in the queue Q is P(Q = 1)
= (1/µ)/(1/λ), and the probability that there is no customer is P(Q = 0) =
1 - (1/µ)/(1/λ). Based on equation (2.23), the mean queue length is E[Q] =
0*P(Q = 0) + 1*P(Q = 1) = λ/µ, which is the same as the server utilization
given above.

2.5.3.3 Mean waiting time

Using the Little’s formula (see section 2.5.2), the mean waiting time is E[DQ]
= E[Q]/λ = (λ/µ)/λ = 1/µ. According to Sztrik [Szt12], every other queuing
system (M/M/1, G/G/1, etc) has greater mean waiting time than D/D/1.

2.5.4 Temporal evolution of arrivals and departures
The performance measures discussed above are time-averaged values under steady
state conditions. The steady state measures are independent of the initial
conditions of the system. To characterize and predict the behavior (transient
and steady state) of the system at any time t, we define two processes: arrival
Arr(t) and departure Dep(t) processes. The process Arr(t) is defined as the
total number of arrivals and Dep(t) is defined as the total number of departures
during the interval [0,t]. For a system in which arrivals and departures occur one
at a time (e.g., D/D/1 queue), a realization of Arr(·) and Dep(·) is displayed in
Figure 2.16. From these two processes, we can compute the average values such
as mean waiting time and average number of jobs in the queue.

Now, let taj and tdj are arrival and departure times of job j, respectively.
Assuming that the system starts working at time ta and finishes at time tb, the
average waiting times (WT ) of jobs can be expressed as [CF10]:

WTta,tb = 1
n

n∑
j=0

(
tdj − taj

)
= E[DQ], (2.24)
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Figure 2.16 – A realization of arrival and departure processes of jobs where the
left curve represents cumulative arrivals and the right curve represents

cumulative departures [CF10].

where n is the number of job arrivals to the system during the interval (ta,tb).
The area between Arr(t) and Dep(t) represents the integral of the number of
jobs in the system at time t (see Figure 2.16). Hence, the average number of jobs
waiting in the system during the time interval (ta, tb) is given by:

Nta,tb = 1
tb − ta

∫ tb

ta

[
Arr(t)−Dep(t)

]
dt = E[Q]. (2.25)

According to Curry and Feldman [CF10], Equation 2.25 is called work-in-
process in manufacturing systems where jobs are either undergoing processing or
waiting in a queue for processing. From Little’s theorem, the relationship between
the mean waiting time and the average number of jobs is given as:

Nta,tb = λ̂ ∗WTta,tb , (2.26)

where λ̂ = n/(tb − ta) is the mean arrival rate of the jobs arriving to the system
in the interval (ta, tb).

The above equations depend on the values of Arr(·) and Dep(·) to compute
average-based performance measures. In chapter 4, we analytically compute the
temporal arrival and departure processes for a manufacturing system. Then, we
verify the analytical computations using simulations.

2.5.5 Applications of queuing theory to manufacturing
A considerable body of research has shown that queueing theory can be a useful
analysis tool for several application domains. Besides its application in telecommu-
nications and computer networks, queuing theory based models for manufacturing
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systems have been gained much attention since three decades ago with initial
works by Buzacott and Shanthikumar [BS92]. After this work, several
applications of queuing models in manufacturing systems are provided in the
literature.

Considering multi-stage assembly lines, Manitz [Man08] proposed aG/G/1/K
(general arrival and service processes, single server with FIFO service discipline
and system capacity of K slots) queuing model for performance evaluation of
the system with general processing times and finite buffers between machines.
Another work on assembly lines with Bernoulli reliability model and finite buffers
is given in [Jia+16]. Further surveys on queuing theory-based manufacturing
systems are provided in [PH96], [GF99] and [Li+09].

2.6 Summary
In this chapter, we discussed several important concepts, models and theories
which are relevant to the next chapters. The following list summarizes this chapter
referring back to the sections:

• Section 2.2 presented the microgrid concept focusing on issues such as
architecture of microgrid, models of wind/solar power and energy storages,
industrial/manufacturing load types and spot market.

• In section 2.3, we detailed Demand Response (DR) programs (price- and
incentive-based), benefits of DR, approaches and mathematical problems
in DR and an automated DR protocol called Open Automated Demand
Response (OpenADR).

• Then, the service curve concepts of Network Calculus (NC) were discussed
in section 2.4. Not only the underlying mathematical concepts such as
min-plus and max-plus algebras but also concatenation and aggregation of
service curves were provided.

• Finally, in section 2.5, we presented basic queuing theory notations such
as Kendall’s notations and Little’s theorem. Moreover, some performance
measures and temporal evolution of the D/D/1 queue were discussed.

Based on these relevant concepts, the following chapter details our work on
energy supply side of the industrial microgrid. Specifically, we rely on service
curve concepts to model power production of Distributed Energy Resources
(DERs). The next chapter also discusses on smoothing of power generation of
wind and solar using Battery Energy Storage Systems (BESSs).
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3.1 Introduction
In this chapter, we present two of our works on the energy supply side of the
industrial microgrid. In section 3.2, we provide a literature review on modeling of
Distributed Energy Resources (DERs) and smoothing of their power productions.
Then, based on the service curve concepts defined in the previous chapter (section



46 Chapter 3. Modeling and Smoothing of DERs

2.4), we give a service curve model of the power generations of DERs in section
3.3. The model will help us know the minimum power produced by DERs so
that we can do energy transactions on spot markets or with the utility grid
if there is energy deficit or surplus. Section 3.4 discusses smoothing of the
renewable resources using three smoothing algorithms. Performance measures
of the algorithms are also provided in the section. After that, numerical results
are given in section 3.5. Finally, section 3.6 concludes the chapter by invoking
important results discussed in this chapter.

3.2 Related work
The intermittent nature of Renewable Energy Sources (RESs) such as solar
and wind cause significant power fluctuations and integrating them to power
systems requires control mechanisms in the form of smoothing and modeling of
these resources. This section provides a review of relevant research works on
the two categories: modeling and smoothing of DERs in sections 3.2.1 and 3.2.2,
respectively.

3.2.1 DER modeling
A challenging aspect of DERs in the microgrid is that the energy produced by
the renewable resources is intermittent. Hence, individual components of DERs
should be modeled in order to know system’s total available energy and then
energy transactions can be done to minimize energy costs. To model power
generation of DERs, there are two type of models: simulation and analytical
models. In [ZYF07] and [CS02], the authors considered simulations models to
estimate the actual performance of Photovoltaics (PV) modules under varying
operating conditions. In simulation models, the models may not capture the
system’s dynamics and the results could be inaccurate and misleading due to
inappropriate simulation parameters or other factors. However, analytical models
can capture complex dynamics of the system better than simulation models.
Following the description in [WJM12], generic analytical frameworks such as
Network Calculus (NC) provide better performance modeling and evaluation
of DERs. The research works mentioned above relied on complex probability
functions to give probabilistic upper and lower bounds on energy production. In
this work, we use the deterministic version of NC to give a deterministic lower
bound on an energy DERs produce.

As noted in the preceding chapter (section 2.4.3), the application of NC
theories were limited to performance analysis of computer and communication
networks. There are only few research papers on NC’s application in energy
domain. For example, [WLL11] and [Wan+12] considered a stochastic NC
framework for modeling DERs and energy demands. They used probabilistic
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cumulative distribution functions to express energy arrival processes to an energy
queue. Stochastic NC is also used in [WJM12] for performance modeling and
evaluation of network systems powered with RESs. Le Boudec and Tomozei
[LBT12] relied on the concept of service curves to ensure the existence of a feasible
battery charging and discharging schedules given an energy demand curve. They
computed a sufficient battery size so that the feasible online schedule can be
ensured during the scheduling period.

Our motivation to extend NC theory to energy management in a microgrid is
that the theory can provide an analytical framework for different scenarios and
its applicability to different research domains. Among the concepts of network
calculus theory, we rely on the concepts of service curves as described in section
2.4 of chapter 2. In our context, we use service curves to model DERs of the
power system. After that, we obtain the total energy production which is used to
satisfy some part or the total energy demand. Then, when the demand is greater
than the supplies, we can purchase energy from either spot markets or the utility
grid. Hence, we also discuss different strategies to minimize energy procurement
costs by using locally produced energies as much as possible.

3.2.2 Smoothing of energy production

One way to reduce power fluctuations in RESs is to smooth power production
using Energy Storage Systems (ESSs) such as electric double-layer capacitor
[Kak+09], superconducting magnetic energy storage [TKF89], fuel cells [RT88],
and Battery Energy Storage Systems (BESSs) [HGB10]. The ESSs can be used
to store surplus energy and to shave peak demands. Further roles of ESSs in
power systems are described in section 2.2.2.3 of the previous chapter. In this
work, we use BESSs such as lithium-ion and lead-acid batteries for the purpose
of smoothing.

For smoothing power production of RESs, different approaches have been
proposed in the literature. A Simple Moving Average (SMA) based smoothing
was proposed by Ellis et al. [Ell+12], Johnson et al. [Joh+13], and Hund,
Gonzalez, and Barrett [HGB10]. They used the SMA method to mitigate
short-term fluctuations of PV power using BESSs. An Exponential Moving
Average (EMA) method with hydrogen storage system is used by Tesfahunegn
et al. [Tes+11]. The EMA gives more weights on recent values. In both SMA and
EMA, length of the averaging window determines how the storage systems charge
or discharge. If the window is long, it requires the storage systems to cover the
difference between the actual and smoothed powers, even if the fluctuation is not
significant. In [Li+11], a fuzzy wavelet transform method is used to smooth out
wind and solar power productions using BESSs.

Although the moving average methods (SMA and EMA) are easy to implement
alongside the BESSs, they are affected by peaks and troughs during power
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generations which could result in bigger battery sizes. In [Add+17c], we proposed
a Gaussian-based smoothing algorithm that solves the pitfalls of the moving
average methods. Gaussian filters have been extensively used in computer vision
and image processing domains. In our work, we would like to investigate it in
energy domain. Section 3.4.1 describes the Gaussian-based, SMA and EMA
methods in more details. Then, in section 3.5.3, we compare performances of the
three approaches using real and forecast datasets.

In the following section, we present one of the two works, namely, modeling
energy generation of DERs using service curves.

3.3 DER modeling using Service Curves
This section details the modeling of DERs power productions using the concept
of service curves. We first provide the service curve model of solar and wind
powers in section 3.3.1. After having the two service curves, we modify the
battery equation to reflect the changes by including the service curves and energy
demands. Then, in section 3.3.2, we discuss a problem of energy supply and
demand by incorporating the service curves of DERs. Finally, cost minimization
strategies are provided in section 3.3.3.

3.3.1 Service curves of DERs
We consider a system where solar and wind powers provide energy and a battery
system that can charge or discharge according to difference between energy supply
and demand. Based on the description of service curves in chapter 2 (section
2.4), we define service curves to model the minimum amount of energy that the
DERs can provide. A service curve Si(t) is defined as:

Si(t) = αi + βi ∗ t (3.1)

where (αi, βi) are service curve parameters of energy resource i. This is to say
that the node of DERs provides the amount of energy which is represented by
its service curve Si(t) that can be seen as a local minimum [Flo+13] amount of
energy at time t. Equation (3.1) is similar to Equation (2.16) (defined in section
2.4.2.1 of chapter 2) which is one of the common functions as service curves.

3.3.1.1 Service curves of solar and wind

Performing mathematical integration on extracted power over a specific time
interval will give us energy (in kWh). From these sets of data, we can obtain
the service curve parameters such as αi (in kWh) and βi (in kW) where i is a
component of DERs (solar or wind).
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3.1.1: Solar/wind power generation 3.1.2: Corresponding service curve

Figure 3.1 – Service curve example for a node of DERs (solar or wind).

Figure 3.1 illustrates how to setup a service curve for a solar or wind power.
For the sake of simplicity, assume that the power generation is constant over a
short period of time as shown in Figure 3.1.1. Referring to Figure 3.1.1 and 3.1.2,
in the time interval [t0, t1], the generated power is 200kW and the corresponding
linear line has a slope of 200. Therefore, the service curve in this interval is S(t)
= 200t, t ∈ [t0, t1], that is α = 0 and β = 200. Then, when t is between t1 and
t2, the new service curve becomes S(t) = 200 + 250t, that is α = 200 and β =
250. Hence, the curve in Figure 3.1.2 is piece-wise linear curve that contains the
different service curves in the interval [t0, t3].

In the above example, we setup a service curve for a single energy resource.
Now, we would like to aggregate the different service curves. The aggregation of
heterogeneous power supply sources provide a single service curve that represents
the total energy production. Consider a power system which consists of N
renewable power producers in parallel. If a power producer n (n = 1, 2, ..., N)
provides an energy service curve Sn, then the power system provides a system
service curve defined as:

S(t) = S1(t) + S2(t) + · · ·+ SN(t), (3.2)

As noted in previous chapter (section 2.4.2.4), aggregated system service curve
can be obtained by summation of the individual service curves of the energy
resources. Next, we incorporate the system service curve into battery charging
and discharging processes.

3.3.1.2 Energy storage

The energy storage (e.g., battery) is modeled by a discrete time process b(t) (refer
to section 2.2.2.3 of chapter 2), with maximum battery capacity B and it can be
defined recursively. If the energy generated from the PV/wind hybrid system is
greater than the load for a particular hour, then the surplus energy is stored in
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the battery and the battery is charged as:

b(t) = min
{
B, b(t− 1) + [S(t)−D(t)] ∗ ηc

}
, (3.3)

where S(t) represents a system service curve as shown in equation 3.2, D(t) is an
energy demand at time t, and ηc is charge efficiency of the battery. When the
battery reaches its maximum value B, any excess energy generated is wasted and
hence the battery cannot be charged.

In the discharging case, if the energy demand is greater than the supply for a
particular hour, then the battery is discharged in order to fill the void between
energy supply and demand. The battery can be discharged as below:

b(t) = max
{

(1−DoDmax) ∗B, b(t− 1)− [D(t)− S(t)]/ηd

}
, (3.4)

where ηd is the battery discharge efficiency. Due to physical constraints, the mini-
mum battery level should be lower bounded with the value of Depth of Discharge
(DoD). For instance, if DoDmax has a value of 80% (for lead-acid/lithium-ion
battery as shown in Table 3.1), then the minimum battery level (Bmin) is de-
termined as Bmin = (1 - 0.8)*B = 0.2B. Hence, if the battery decreases to its
minimum value Bmin, then the energy deficit cannot be met by the battery.

3.3.2 Energy supply and demand balance

In the above section, we provided our approach of modeling the DERs using
service curves of NC. In this section, we use the models to formulate our problem
which is to balance demand and supply. We consider a constant energy demand
D for a particular period and N energy resources. Suppose that each resource
n = 1, 2, ..., N provides a service curve guarantee Sn. Then, the total energy
demand is satisfied if:

S1(t) + S2(t) + · · ·+ SN(t) > Dt (3.5)

Equation (3.5) can be interpreted as the aggregation of all the source service
curves have to be greater than the demand curve.

As shown in Figure 3.2, the cumulative energy demand is given by straight
line Dt which has a slope of D. When the summation of energy provided by
wind and solar is greater than the demand line, we say that the demand is met.
Otherwise, we discharge the battery if there is enough energy. If the battery is
unable to cover the shortage, we need to buy the required energy from either
spot market or utility grid based on costs of energy. In the following section, we
outline different strategies that minimizes energy procurement costs and enable
us to use as much as possible locally produced energy.
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Figure 3.2 – Energy demand and supply curves [Add+15].

3.3.3 Cost minimization strategies
Before discussing different strategies for procurement cost minimization, we define
a net energy procurement cost as follows:

Netcost =
∑

t∈year

[
Prbuy(t) ∗ Ebuy(t)− Prsell(t) ∗ Esell(t)

]
(3.6)

where Pr(·) and E(·) are selling/buying prices in AC/MWh and sold/bought
energy in MWh, respectively. When we consume local energy from wind, solar or
battery, we assume that the energy cost is zero. Furthermore, we assume that
there is no upper bound on the amount of energy that can be bought from the
spot market. However, there are minimum limits on energy volume that we want
to sell or buy as discussed below.

In this section, we define three strategies that minimize the reliance on external
energy sources and make use of local energy more often. We compare them based
on their performances against the total net energy procurement cost defined
by Equation (3.6). Algorithm 1 describes an implementation of the three cost
minimization strategies. The following three strategies are taken from our work
on service curves [Add+15].

3.3.3.1 Strategy 1 – Sell excess energy

In this strategy, we would like to sell the excess energy which is a leftover after a
demand is met, i.e., when S[t] > D[t] in Algorithm 1. According to EPEX Spot
[EPE17] (see section 2.2.4 of chapter 2), the possibility to sell energy on the spot
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Algorithm 1 Cost minimization strategies
Require: (S, D, grid_price, spot_price, B)
net_cost ← 0 . energy procurement net cost
stored_energy ← ε . stored energy in the battery
T ← 8760 . Number of hours in a year
buy_when_cheap ← false . To buy energy from spot when it is cheap
sell_excess_energy ← false . To sell excess energy or not
spot_energy_volume ← 1000 . Minimum energy to sell on spot in kWh
max_spot_price ← ε . Max. spot price we wish to buy
sold_energy ← 0 . aggregated sold energy
bought_energy ← 0 . aggregated bought energy
while t < T do

difference← S[t] - D[t]
if difference > spot_energy_volume then . Surplus energy

if sell_excess_energy == true then . STRATEGY 1
sold_energy ← sold_energy + difference

net_cost← net_cost - (spot_price[t] ∗ difference)/1000
else . STRATEGY 2

if stored_energy + difference 6 B then . If battery is not full
stored_energy ← stored_energy + difference

else if diff == stored_energy + difference - B > 1000 then
stored_energy ← B

sold_energy ← sold_energy + diff

net_cost← net_cost - (spot_price[t] ∗ diff)/1000
else if 0 < difference < spot_energy_volume then

if stored_energy < B then . Store the leftover
stored_energy ← min(B, stored_energy + difference)

else . There is no enough energy, BUY!
bought_energy ← bought_energy + difference

net_cost ← net_cost + min(spot_price[t], grid_price[t]) ∗
difference/1000

if spot_price[t] < max_spot_price then . STRATEGY 3
stored_energy ← B . Make the battery full
bought_energy ← bought_energy + (B − stored_energy)
net_cost← net_cost + spot_price[t] ∗ (B − stored_energy)/1000
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market depends on the minimum energy volume available to be sold. In EPEX
Spot, the minimum volume is 1MWh (spot_energy_volume in the algorithm).
Therefore, if we have an excess energy greater than 1MWh for some period, we
can sell it on the spot market at market price. Otherwise (i.e., excess energy less
than 1MWh ), if the battery is not full, we store it for future use.

3.3.3.2 Strategy 2 – Store excess energy

Under this strategy, instead of selling the excess energy, we would like to store
it for future use if the battery is not full. If the battery is full, there are two
possibilities: either sell the excess energy if it is above 1MWh or otherwise dispose
it. For bigger battery sizes, this condition cannot happen too often because they
can store much of the surplus energy due to their sizes. However, for smaller
battery sizes, if there are lower energy consumption, the user can opt to sell the
excess energy. This could be another good strategy. Strategy 2 also minimizes the
net energy cost by providing zero-cost local energy from solar, wind and battery.
If the energy from battery, solar and wind cannot meet the load, we buy from
either the utility grid or spot market whichever has lower energy price.

3.3.3.3 Strategy 3 – Use external energy to charge battery

The objective of this strategy is to make use of the varying prices of electricity
in spot markets. The cost of energy on the spot market is cheap during some
periods of the day. Charging the batteries during these periods can be a good
strategy to minimize the net energy procurement cost defined by Equation 3.6.
We assume that the battery can start charging at the beginning of a particular
time slot (which has length of 1 hour) and it can be ready at the end of the
slot. We give charging precedence for locally produced energy from solar and
wind. Moreover, if the battery is not full yet, we can buy the energy from the
spot market. For this, we set a price limit that we would like to buy from the
market (max_spot_price in the algorithm). For example, If we set this limit to
20AC/MWh, then we buy energy from the market whenever the price is under
20AC/MWh. Under this strategy, we store more energy for future use.

In section 3.5.2, we compare the performance of the strategies using real
datasets of energy demand of a factory, sport prices, solar and wind data. The
section also provides discussions on payback periods which are the period of time
required to recoup the funds expended in an investment on solar PV panels, wind
turbines and batteries.

The above sections presented our work on modeling of DERs using concepts
of service curve. The following section outlines the second part of this work:
smoothing energy production of the RESs.
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3.4 Smoothing renewable energy production
As discussed in section 3.2.2, there are ways to deal with fluctuations in renewable
energy resources by implementing smoothing in conjunction with energy storage
systems. In the literature, the commonly used approaches for smoothing (for
instance, simple and exponential moving averages) result in a big battery size.
Hence, we would like to come up with a smoothing algorithm which has more
performance in terms of battery sizes, i.e., it has to attain lower battery sizes.

Figure 3.3 – Conceptual schematic representation of solar, wind and battery
hybrid system [Add+17c].

We consider a scenario where the energy supply side of the microgrid has a
combination of solar PV panels, wind turbines and battery. Figure 3.3 shows
a conceptual schema of solar, wind and battery hybrid system. Based on the
figure, we first aggregate the solar and wind power productions. Then, we apply
smoothing algorithms to smooth out power fluctuations. After that, to make-up
the difference between the actual power and the smoothed one, we charge or
discharge the battery accordingly. The final smoothed power Psm(·) is expressed
as:

Psm(t) =
Ppv(t) + Pwind(t) + P d

bat(t) discharge battery (release power)
Ppv(t) + Pwind(t) - P c

bat(t) charge battery (absorb power),
(3.7)

where Ppv(t) and Pwind(t) are solar and wind powers, and P c
bat(t) and P d

bat(t) are
charging and discharging rates at time t, respectively. P c

bat(·) and P d
bat(·) should

respect the charging and discharging constraints described in chapter 2 (section
2.2.2.3). The battery can be then charged or discharged based on the output of
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the smoothing algorithms.

3.4.1 Smoothing algorithms
In this section, we present three smoothing algorithms, namely, simple moving
average, exponential moving average, and Gaussian-based algorithm. With
demonstrating examples, we show how parameters of the algorithms affect the
smoothing of solar and wind power generations.

3.4.1.1 Moving average-based smoothing

A moving average (rolling average or running average) is a technique to get an
overall idea of the trends in a data set. The averaging technique is based on
a sliding window size. Under moving average, we consider two types: simple
moving average and exponential moving average.

Simple Moving Average (SMA) According to Alessio et al. [Ale+02], a
moving average method is a well-known low-pass filter for time series and it is
defined as:

ỹ(i) = 1
w

w−1∑
k=0

y(i− k) (3.8)

where y(·) is a time series data with window length w. Although it is simple and
traditionally accepted way to reduce fluctuations in renewable resources [AMS14],
it exhibits a memory effect which depends on the length of the averaging window.
Numerically, a moving average with window length of w contains only (1/w)%
of present values of a fluctuating variable. To see the effect, a demonstrating
example is shown in Figure 3.4. In Figure 3.4.1, an input signal with a glitch and
its smoothed output using a moving window of 10 samples are shown. The effect
of the glitch lasts for the size of the averaging window.

In [AMS14], the authors also showed the memory effect of a moving average
method on a PV power data obtained from National Renewable Energy Laboratory
(NREL). Figure 3.4.2 shows an actual PV power and its 20 minutes moving average
taken from [AMS14]. From the figure, we can see that the moving average values
in the broken circles deviate significantly from the actual PV power due to memory
effect of the moving average. However, there is no much fluctuations in power
output during these periods. Hence, to accommodate the difference, the battery
has to be charged or discharged and this forces a battery to operate frequently.

Exponential Moving Average (EMA) The moving average has an extension
in the form of EMA. The EMA gives greater weights to recent changes in data,
i.e., only one old value has to be remembered if it is of first order [BN02]. Hence,
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3.4.1: An example to show limitation of moving
average where F(x) is an original function and f(x)

is a smoothed output

3.4.2: A 20-min moving average of an actual PV
output [AMS14]

Figure 3.4 – Pitfalls of a moving average method.

based on Equation (3.8), a new estimation ỹ is calculated as follows:

ỹ(i) = (1− α)ỹ(i− 1) + αy(i), (3.9)

where α ∈ [0,1] is an exponential weight. The choice of α has two effects: with a
large value the estimation follows the measurement truly, but does not suppress
peaks, whereas with a small value peaks are suppressed but the estimation follows
real changes too slowly.

As noted above, both SMA and EMA have the memory effects. To lessen
these effects and to have more smoother power production curves of solar and
wind, we rely on a Gaussian-base method as proposed in our work [Add+17d]
and we detail it in the next section.

3.4.1.2 Gaussian-based smoothing

The Gaussian filter has been a de-facto standard for applications such as image
processing and computer vision. In one dimension, a first order zero-mean
Gaussian filter is given as [Wei02]:

G(y, σ) = 1√
2πσ

e
−y2

2σ2 , (3.10)

where the parameter σ is the standard deviation of the Gaussian distribution
and y is a one dimensional input variable. Typically σ is used as a parameter
for smoothing. Hence, we change the values of σ to obtain different results for
smoothing purpose.

In [RLK06], Gaussian filters are used to effectively suppress impulse noises in
image processing. In our context, the impulse noises are glitches of wind and solar
power productions. Suppressing the peaks and troughs could result in smooth
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power generation from the renewable resources and helps to seamlessly integrate
them into a power system. But, how do we measure the smoothness of power
production curves? The answer is given in the next section.

3.4.2 Measure of smoothness
According to Adams and Van Deventer [AVD94], an expression for common
mathematical definition of smoothness is written as:

Z =
∫ T

0
[f ′′(s)]2ds, (3.11)

for function f(t), where t ∈ [0, ..., T ]. Equation (3.11) is described as an integral
of squared second-order differential of function f(·). The minimum value of Z
corresponds to the maximum smoothness level [AVD94]. Hence, this parameter
can be used to compare the performance of the three smoothing algorithms (SMA,
EMA, and Gaussian-based). In simulation results section (section 3.5), we will
use Equation (3.11) to show which algorithm is better in terms of smoothness
measure.

3.4.3 Constraint on successive power levels
For big solar plants and wind farms, it is necessary that the power generation
differences from one time to another is kept as minimum as possible. For example,
in La Réunion island (overseas region of France), the grid operator asks energy
providers to provide power with a bounded difference in consecutive time slots.
One way to define this constraint is to take the derivative of the generated power
P (·) as follows:

Diff(t) =
∣∣∣∣∣∆P (t)

∆t

∣∣∣∣∣ 6 γ, (3.12)

where γ is desired power level difference at time t ∈ [1, 2, ..., T ]. By changing the
value of γ, we can obtain different battery sizes for smoothing power productions
which we deal with it in the next section.

3.4.4 Determining battery size
To determine the battery capacity B (in kWh) needed to absorb fluctuations in
power generations of RESs, we consider charging and discharging cases and then
we take the maximum of the two cases.

3.4.4.1 Charging capacity

First, we consider a charging case for storing energy in the battery. When actual
power of solar and wind Pact(·) is greater than smoothed power Psm(·), the
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Figure 3.5 – An illustrating example for battery size computation where the As
and Bs represent charging and discharging cases, respectively.

capacity is calculated as follows:

Echarge =
∫ T

1

[
Pact(t)− Psm(t)

]
dt, (3.13)

where t ∈ [1, 2, ..., T ]. In Figure 3.5, Equation 3.13 refers to the aggregated areas
of the As (i.e., A1 + A2 + A3).

3.4.4.2 Discharging capacity

Secondly, the discharge capacity is calculated as follows:

Edis =
∫ T

1

[
Psm(t)− Pact(t)

]
dt, (3.14)

provided that smoothed power Psm(t) is greater than actual power Pact(t) at time
t ∈ [1, 2, ..., T ]. Equation 3.14 refers to the aggregated areas of the Bs (i.e., B1
+ B2 + B3) in Figure 3.5.

3.4.4.3 Final battery capacity

Finally, the rated capacity B of a battery is given as:

B = max
(
Echargeηc, Edis/ηd

)
, (3.15)

which is the maximum of Equation (3.13) and (3.14) after incorporating ηc and
ηd as charging and discharging efficiencies, respectively. Equation (3.15), which
is similar to an equation defined in [CGW12], determines the size of a battery
considering charging and discharging cycles separately. This results in a bigger
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battery size. In reality, the battery alternately charges and discharges multiple
times during the considered period which could result in a smaller battery size.

Besides the above case, if we take the difference between the charging and
discharging capacities as:

B =
∣∣∣Echargeηc − Edis/ηd

∣∣∣, (3.16)

then, the resulted battery size is smaller than the size determined by Equation
(3.15). However, if the charging and discharging capacities are equivalent, we
arrive at very small battery size which cannot be sufficient to smooth the power
productions. Hence, a compromise between the two methods of battery size deter-
mination is important. For instance, a compromise between the two approaches is
to look for consecutive charging and discharging cycles to determine battery size
[Add+17c]. For this, we setup a recursive function that sums up the consecutive
charging/discharging cycles. Then, the battery size is determined as the maximal
value of the charging and discharging cases. Mathematically, a recursive function
for a charging case is expressed as follows:

Ec(t+ 1) =
Ec(t) + Pact(t+ 1) - Psm(t+ 1) if Pact(t) > Psm(t),∀t > 0

0 otherwise.
(3.17)

Then, the charging capacity is Echarge = max(Ec). By the same manner, a
function for a discharging case is given below:

Ed(t+ 1) =
Ed(t) + Psm(t+ 1) - Pact(t+ 1) if Psm(t) > Pact(t),∀t > 0

0 otherwise.
(3.18)

Then, the discharging capacity is Edis = max(Ed). Finally, battery size is
determined by taking the maximum of the charging and discharging cases, i.e., B
= max(Echargeηc, Edis/ηd) which is the same as Equation (3.15).

To make the calculations, we refer to Figure 3.5 as an illustrating example.
In the figure, a sample solar and wind power production and their predictions
are given (see section 3.5.3 for more description of the data). We consider a
lithium-ion battery with ηc and ηd set to 85% which is a common value for
lithium-ion batteries according to [CGW12]. Now, using Equation (3.17) for the
charging case, we find that A2 (646kWh) is the maximum of the As. Then, for
the discharging case, B2 (1316kWh) is found to be the maximum of the Bs. This
leads to battery size of 1316kWh. However, if we compute the battery size using
Equation (3.15), we arrive at a size of 2028kWh which is 712kWh bigger than B2.
Hence, we attained a 35% reduction in battery size by applying our approach.
Moreover, if we use Equation (3.16) to compute the battery size, this will result
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in a capacity of 670kWh. Apparently, this value is not sufficient for a discharging
case at B2 which is 1316kWh. The limitations to our approach could be for the
cases where discharging cycles are small and charging cycles are big. In these
cases, if we consider consecutive charging/discharging cycles to determine the
battery sizes, the energy to be stored will be bigger than the determined battery
size. The approach in Equation (3.15) that considers charging and discharging
cycles separately could be better for these cases.

In this section, we discussed the smoothing algorithms and outlined how to
computer battery sizes. The following section provides numerical results on the
two parts of this chapter: modeling of DERs and smoothing.

3.5 Simulation results

In this section, we provide descriptions of our datasets and discussions on results
of different simulation results on both DERs modeling and smoothing parts which
are discussed in the above sections.

3.5.1 Description of datasets

For our experiments, we consider a real datasets of solar and wind power data
for an industrial site located in Bourbourg, France. The datasets consist of solar,
wind, energy demand of the factory, EPEX spot market prices, and battery
parameters.

3.5.1.1 Solar PV data

Based on the PVWatts of NREL [PW], we retrieved hourly per unit (25m2)
solar PV data as shown in Figure 3.6.1. The PVWatts calculator uses Equation
(2.2) (see section 2.2.2.2 in the preceding chapter) as a reference and it also
incorporates temperature effect to the equation. For our experiments, We take
power production of 100 units of PV panels with the power curve shown in
Figure 3.6.3. For forecasting purpose, we use Auto Regressive Integrated Moving
Average (ARIMA) (in the book of Wei [Wei94], chapter 4) model to predict
day-ahead solar power production. The ARIMA model has been widely used in
time series forecasting applications such as stock [PL05] and next-day electricity
prices forecasts [Con+03]. In our simulations, the ARIMA model is trained with
solar data of 1 hour interval for 245 days. Then, the prediction is performed for
the 246th day. Forecast and real solar powers are depicted in Figure 3.7.1.
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3.6.1: Hourly average solar power data 3.6.2: Hourly average wind speed data

3.6.3: Solar PV power curve 3.6.4: Wind turbine power curve

Figure 3.6 – Solar and wind input data for year 2014 and their power curves.

3.5.1.2 Wind speed data

We obtained hourly average wind speed data for the year 2014 from Weather
underground website [WU]. The hourly wind speed data is shown in Figure 3.6.2.
The forecasting process is also performed following the same procedure as that of
the solar data. Forecast and real wind speeds are shown in Figure 3.7.2. Using
Equation (2.1) in section 2.2.2.1 of the previous chapter, we computed the power
extracted from the wind speed for a 3MW wind turbine which has the power
curve depicted in Figure 3.6.4. In Figure 3.7.3, the aggregation of actual and
predicted solar and wind powers are provided.
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3.7.1: Predicted solar power 3.7.2: Predicted wind speed

3.7.3: Actual and predicted total power

Figure 3.7 – Actual and predicted solar and wind data for a period of 24 hours.

3.5.1.3 Battery parameters

A battery can be characterized by its maximum battery capacity B, DoD, charg-
ing and discharging rates, efficiency and other parameters. Table 3.1 shows
the characteristics of Lead-acid and Lithium-ion batteries. Descriptions of the
parameters are provided in section 2.2.2.3 of chapter 2.

3.5.1.4 Energy demand data

For energy demand (load) data, we obtained hourly energy consumption data
from METRONLab servers (see Figure 3.8). These data represent a yearly energy
demand of the industrial site.
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Table 3.1 – Characteristics of two common battery types [Che+09; GFKR15;
WLD15; MW15].

Characteristics Lead-acid Lithium-ion
Efficiency (%) 75 85
Charge time 8-16h 2-4h
Discharge to charge rate ratio 10 5
Self-discharge per day (%) 0.3 0.1
Depth of Discharge (%) 80 80
Energy density (Wh/L) 80 150
Power density (W/L) 125 450
Lifetime cycle 2000 5000
Expected lifetime (Years) 4 10
Cost ($/kWh) 100 - 200 400 - 600

Figure 3.8 – Hourly energy demand of a factory from METRONLab server.

3.5.1.5 Spot market price data

We retrieved hourly market price from EPEX Spot website [EPE17]. These prices
were published for the day-ahead spot market in 2014 and they are shown in
Figure 3.9. Based on these data, we detail results and discussions on modeling of
DERs in the next section.
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Figure 3.9 – EPEX Day-ahead spot price data for 2014.

3.5.2 Results and discussions on modeling of DERs

In this section, we provide different results on the performance of the cost
minimization strategies, namely, sell surplus energy (Strategy 1), store excess
energy (Strategy 2), and use external energy to charge battery (Strategy 3).
These strategies are described in section 3.3.3 alongside their implementation in
Algorithm 1 which relied on the service curve models of DERs. As a performance
metric, we refer to Equation (3.6) that computes the net energy procurement
cost and we compare the strategies based on the equation. As initial simulation
conditions, we set a price of 40AC/MWh to buy electricity from a utility grid and
batteries can be considered full in beginning of the simulations.

Table 3.2 – Cost comparison of different strategies (taking 40AC/MWh for cost of
utility grid energy, battery size of 20MWh for the three strategies, and spot

market price limit of 5AC/MWh for strategy 3).

Strategies Net energy procurement cost (in AC)
Grid-only 621,915
Spot-only 586,301
Strategy 1 400,845
Strategy 2 405,815
Strategy 3 396,387
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3.5.2.1 Performance of the strategies

First, we compare the strategies against the case of no strategies, i.e., we buy all
the energy demand from the utility grid (Grid-only) or on the spot market (Spot-
only). Table 3.2 shows the results of the annual net procurement costs (defined
by Equation 3.6) that are calculated by using the strategies with fixed battery
size of 20MWh, sport market price limit of 5AC/MWh, and utility grid price of
40AC/MWh. From the table, we can see that the actual annual cost of the factory
is 621,915AC if it buys all the energy from the utility grid. However, if the factory
buys all its demands from the sport market, then the cost decreases to 586,301AC
per annum. With the specified parameter settings, the three strategies can be
comparable with respect to the net energy cost. However, when compared to
the Grid-only and Spot-only strategies, using Strategy 3 (since it is the minimum
of the three) could save upto 36% (from 621,915 down to 396,387AC) and 33%
(from 586,301 down to 396,387AC), respectively. Next, we investigate the effect of
battery sizes on the performance of the strategies.

Figure 3.10 – The three strategies with different battery sizes and fixed spot
price limit of 5AC/MWh for strategy 3.

3.5.2.2 Effect of battery sizes

Now, by varying the battery sizes, we compare the performance of the strategies
against each other using the performance metric defined in Equation (3.6). The
results of the three strategies are depicted in Figure 3.10. From the figure, we can
see that for smaller battery sizes (B 6 10MWh), Strategy 1 is the best among
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the three strategies because its net cost is less than the other two. This shows
that it is better to sell energy instead of storing it when the battery size is less
than 10MWh. However, as the battery size increases (B > 10MWh), Strategy 3
outperforms the others. Hence, for bigger battery sizes, a good strategy is to buy
energy from the spot market and then store it. The stored energy could be used
later when the prices are high or load-shedding is required.

Figure 3.11 – Effect of varying spot price with fixed battery capacity of 20MWh.

3.5.2.3 Effect of spot market prices

Figure 3.11 shows the effect of different spot market prices and a fixed battery
size of 20MWh. The variable spot market prices have likely effect on Strategy
3 than the others because this strategy buys energy on spot markets to charge
the battery during lower price periods. For Strategy 3, an optimal point is found
at [30AC/MWh, 329,749AC] which corresponds to a saving of 47%. The other
strategies remain unaltered under variable spot market prices.

In Figure 3.11, we considered a fixed battery size to determine the effect
of variable sport market prices. To see how different battery sizes affect the
performance of Strategy 3, we use three battery sizes: 10, 20, and 30MWh. The
resulting curves are shown in Figure 3.12. From the figure, we can see that the
optimal point of the three curves are obtained when the spot market price is
30AC/MWh. However, the cost saving has inverse relationship with the battery
sizes: the smaller the battery size the less cost saved. With bigger battery sizes,
the cost of having these storage devices could hinder cost savings and it may
result in longer payback periods.
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Figure 3.12 – Performance of strategy 3 with spot prices in the range
[0,50]AC/MWh and battery size in the range [10,30]MWh.

3.5.2.4 Payback period estimation

One of the major hindering factors of microgrid development is the cost of
microgrid components such as batteries, wind turbines, solar PV panels, AC/DC
(Alternating Current/Direct Current) converters, etc [Bur+13]. To perform the
payback period estimation, we consider the costs of the microgrid components
(solar, wind, and battery) used in our experiments. Nowadays, the cost of a
Lithium-ion battery ranges from $400 to 600 per kWh and that of Lead-acid
ranges from $100 to 200 per kWh (see Table 3.1). For solar PV panels, a PV
panel that produces 1W cost $4.9 according to [Fel+12]. Concerning the cost
of wind turbines, Bolinger and Wiser [BW11] did a study on trends of wind
turbine prices for the past decade (from 2000 to 2010). According to the authors,
the trend for wind turbine prices declined on an average of 20% from 2002 to
2010. They also pointed out that the price for a wind turbine ranges from $900
to 1,400 per kW and the average cost is $1,100/kW.

We use the following equation to calculate payback periods:

Payback = Costbattery + CostP V + Costwind

CostGrid−only − minCoststgi

(in years), (3.19)

where srgi ∈ [Strategy 1, Strategy 2, Strategy 3 ] and Coststgi is computed using
Equation 3.6 which is the net energy cost metric.

Taking into account the above device costs, we now calculate payback periods
by setting costs of PV panels to $4.9/W, the average cost of $1,100/kW for the
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Table 3.3 – Simulation results for payback period estimation by taking 100 PV
units, a 3MW wind turbine, and varying sizes of two battery types with costs of
$400/kWh and $100/kWh for Lithium-ion and Lead-acid batteries, respectively.

Battery Solar Wind Payback (in years)Type Size (in MWh)
Lithium-ion 1 X X ∼23
Lithium-ion 5 X X ∼27
Lithium-ion 10 X X ∼33
Lead-acid 1 X X ∼22
Lead-acid 5 X X ∼22
Lead-acid 10 X X ∼22
Lithium-ion 1 7 X ∼15
Lithium-ion 5 7 X ∼20
Lithium-ion 10 7 X ∼26
Lead-acid 1 7 X ∼14
Lead-acid 5 7 X ∼14
Lead-acid 10 7 X ∼15

wind turbine, $400/kWh for Lithium-ion, and $100/kWh for Lead-acid battery.
Table 3.3 shows the estimation of payback periods with different battery sizes
(for both Lithium-ion or Lead-acid), with/without solar PV panels, and 1 wind
turbine. Since the wind turbine generates more power than solar power, we
always assume that we have the wind power in the energy mix. Hence, cost of
PV panels is $1.96m (or approx. 1.76mAC at the time of thesis writing) and cost
of a 3MW wind turbine is $3.3m (or approx. 2.95mAC). Since the cost of big
battery sizes are very high, we use smaller battery sizes (B 6 10MWh). The
results shown in Table 3.3 use Equation (3.19) to compute the payback periods.
When the battery size is 1MWh, Strategy 1 results in less net cost (408,432AC)
compared to the other two (refer to Figure 3.10). However, for battery sizes of 5
and 10MWh, Strategy 3 (taking the optimal market price limit) performs better
than the others.

From Table 3.3, we can infer a couple of important points. The first point is
that the inclusion of solar PV panels into the energy mix increases the payback
periods. For example, considering a 1MWh Lithium-ion battery, the payback
period increased from 15 years (without taking account PV panels) to 23 years
when there are PV panels. This is because the area where the factory is located
has small amount of solar radiation per annum due to its geographical location.
Hence, it is better to use a hybrid system of wind and battery in this location.
Another important point is that the the payback period depends on both battery
type and size. Since the cost of Lead-acid batteries are less than that of Lithium-
ion, the payback periods are also less for the Lead-acid batteries. However,
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Lead-acid batteries have low energy and power densities and shorter expected
lifetime (see Table 3.1). The following sections discusses the second part of this
chapter, namely, smoothing of solar and wind power generations.

3.5.3 Results and discussions on smoothing
In this section, we first compare the performance of the smoothing algorithms,
viz., Simple Moving Average (SMA), Exponential Moving Average (EMA),
and Gaussian-based which are presented in section 3.4.1. To measure their
performances, we vary their respective smoothing parameters. Then, we determine
minimum battery sizes considering two cases: with and without successive power
difference constraints. Finally, we determine a power production curve for a
day-ahead forecast period based on the real datasets described in section 3.5.1.

3.5.3.1 Performance of the smoothing algorithms

As for the smoothing parameters, we use the standard deviation (σ) for Gaussian-
based and window length (w) for moving average based smoothing algorithms.
Hence, we compare the algorithms by changing smoothing parameters and see
the effects of increasing or decreasing these parameters. In the following experi-
mentation, we consider the two case: with and without power level constraints.

Case 1 - no constraint To start our comparisons, we set σ to 1 for Gaussian-
based and w to 3 for moving average methods without imposing constraints on
consecutive power levels. Figure 3.13.1 shows smoothing performance of the three
algorithms (SMA, EMA, and Gaussian-based) when the smoothing parameters
σ and w are 1 and 3, respectively. In the figure, the Gaussian-based smoothed
power closely follows the predicted total power of solar and wind. This shows
that the smaller the difference between the smoothed and unsmoothed powers,
the lesser available power to charge or discharge a battery at any given time.
This leads to smaller battery sizes for smoothing.

Using Equation (3.11), we compute the smoothness measures and the results
are shown in Table 3.4. From the table, we can see that Gaussian-based algorithm
has lower charge/discharge rates than both EMA and SMA. The effect of lower
charge/discharge rates is that the smoothness measures will have lower values
as the minimum value corresponds to the smoothest curve (see section 3.4.2).
In this aspect, the Gaussian-based method performs better than the other two
algorithms. Numerically, Gaussian-based is 34% more smoother than EMA and
47% more smoother than EMA.

To investigate the effects of increased smoothing parameters, we refer to
Figure 3.13.2 where σ and w set to 2 and 5, respectively. From the figure, we
can see that the Gaussian-based approach is more smoother but the difference
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3.13.1: Smoothing when σ is 1 and w is 3 3.13.2: Smoothing when σ is 2 and w is 5

Figure 3.13 – Smoothing performance of SMA, EMA, and Gaussian-based
algorithms with different smoothing parameter values.

Table 3.4 – Maximum charge/discharge rates and smoothness measure of the
algorithms (when σ is 1 and 2 and w is 3 and 5).

Models Parameters Charge rate (kW) Discharge rate (kW) Smoothness measure Z

Gaussian-based σ = 1 106 89 15980
σ = 2 110 105 4217

SMA w = 3 116 127 24189
w = 5 254 163 11163

EMA w = 3 135 149 30204
w = 5 186 310 11444

between the predicted and smoothed powers is getting bigger. The same is true
for SMA and EMA. Their curves are shifted right by the size of the averaging
window. These bring up a dilemma between increase of smoothness and frequent
charging/discharging. When the smoothing parameters are smaller, the result
will have less smoothed feature and higher frequency of charging/discharging. On
the other hand, as the parameters increase, it is more smooth but the deviation
from real values is bigger and this could result in bigger battery sizes. Hence, the
choice of the parameters need to align with required applications.

To determine battery sizes, we take the difference between the actual solar
and wind powers and the predicted (and smoothed) ones. The positive difference
shows a charging case and the negative shows otherwise. Figure 3.14 depicts
power charge and discharge rates by varying the smoothing parameters of the
three smoothing algorithms. Moreover, maximum charging and discharging rates
are also shown in Table 3.5. From Figure 3.14.1 and 3.14.2, we can deduce that
when the smoothing parameters increase, the positive and negative amplitudes
decrease which give rise to smaller battery sizes. However, the increase in the
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3.14.1: Charging and discharging rates when σ is 1
and w is 3

3.14.2: Charging and discharging rates when σ is 2
and w is 5

Figure 3.14 – Charging and discharging rates where positive values represent
charging and negative values represent discharging.

Table 3.5 – Battery sizes for different smoothing parameters of the algorithms
where ηc = ηd = 85%.

Capacity (kWh) Gaussian-based SMA EMA
σ=1 σ=2 w=3 w=5 w=3 w=5

Ec = Echargeηc 184 276 232 567 316 734
Ed = Edis/ηd 294 404 361 729 514 938
B = max(Ec, Ed) 294 404 361 729 514 938

amplitudes of charging and discharging will result in bigger battery sizes.

Based on the charge/discharge rates, we then compute battery sizes by apply-
ing Equation (3.17) and (3.18) and taking the maximum of the two values. Table
3.5 shows the results of battery size computations when charge and discharge
efficiencies are set to 85%. From the table, we can infer that for smaller smoothing
parameters, i.e., when σ is 1 and w is 3, the Gaussian-based method achieves
19% (from 361 to 294kWh) smaller battery size than SMA and 43% (from 514
to 294kWh) smaller than EMA. The table also shows the effect of increased
smoothing parameters. In Gaussian-based method, the battery size is increased
from 294kWh to 404kWh when σ increased from 1 to 2. Moreover, for SMA and
EMA, when window w increased from 3 to 5, the battery sizes are also increased
from 361 to 729kWh in case of SMA and from 514 to 938kWh in case of EMA.
Next, we introduce constraints on power levels between consecutive time slots.
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Table 3.6 – Smoothness measures of the algorithms with successive power level
constraints of γ% (resulted from Equation (3.12)).

γ (%) Gaussian-based SMA EMA
σ=1 σ=2 w=3 w=5 w=3 w=5

5 2037 1614 1686 2349 3247 1433
10 5298 6373 8368 4078 4493 4923
15 8261 4217 13961 15583 20183 7666
20 15037 4217 11674 11163 20183 17266
25 15980 4217 24189 11163 30204 11444
30 15980 4217 24189 11163 30204 11444

3.15.1: Battery sizes when σ is 1 and w is 3 3.15.2: Battery sizes when σ is 2 and w is 5

Figure 3.15 – Battery sizing based on successive power level constraints with γ ∈
[0.05,0.30].

Case 2 - power level constraint The above results are obtained without
considering power level constraints between two successive time slots. In this
case, we now impose the constraints on the power differences and evaluate the
performance of the smoothing algorithms in terms of smoothness measure and
battery sizes. We use Equation (3.12) to upper bound the successive power
differences to some fixed value γ (in %). The value of γ could range from 5 to 30%
of the peak power which is found to be 541kW from the datasets. To compute
the power differences in power levels in this case, we first smooth the unsmoothed
solar and wind data and then apply an averaging mechanism when the difference
exceeds Pdiff = (γ*541kW)/100. We apply recursively the averaging mechanism
until the power difference is less or equal to Pdiff .

Table 3.6 shows the results of smoothness measures (denoted as Z in Equation
(3.11)) of the three algorithms with different smoothing parameters and power
level constraints. From the table, we can see that for smaller values of γ (i.e., more
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3.16.1: When γ = 5% 3.16.2: When γ = 10%

3.16.3: When γ = 15% 3.16.4: When γ = 25%

Figure 3.16 – Power curves for a day-ahead forecast considering different of
values γ and when σ is 1 and w is 3.

stringent constraint), the value of Z is small when compared to bigger values of γ.
This is due to the fact that when γ is small, the averaging mechanism smooths
the power data so that the resulted smoothed curve has minimum difference
between the successive points. However, as the γ increases, the value of Z also
increases until there is no more to smooth. When γ is above 25%, the smoothness
measures are the same as Table 3.5 where the constraints are not considered.

To determine battery sizes in this case, we follow the same procedure as the
above case where the battery sizes are computed using Equation (3.17) and (3.18)
and then we take the maximum of the two. Figure 3.15 shows the battery sizes for
the values of γ ranging from 5 to 30% of the peak power and when the smoothing
parameters are σ ∈ {1,2} and w ∈ {3,5}. In both Figure 3.15.1 and 3.15.2, we
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3.17.1: When γ = 5% 3.17.2: When γ = 10%

3.17.3: When γ = 15% 3.17.4: When γ = 25%

Figure 3.17 – Power curves for a day-ahead forecast considering different values
of γ and when σ is 2 and w is 5.

can see that for smaller values of γ (for γ < 10%), the battery sizes are bigger.
However, as the constraint is relaxed (for γ > 10%), the battery sizes are reduced.
Here also, when γ > 25%, the battery sizes are the same as the case of without
constraints.

3.5.3.2 The final power production curve

The final output of our simulations is to determine a power production curve for
a day-ahead forecast period. The power production curve enables one to know
precise power production of solar and wind and helps one to decide buying energy
from the utility grid or the spot market if energy demand is higher than energy
supply. To attain this goal, we did multiple simulations considering the three
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3.18.1: Power curve when σ is 1 and battery size is
294kWh

3.18.2: Power curve when σ is 1, γ is 10%, and
battery size is 834kWh

Figure 3.18 – Gaussian-based power production curves for day-ahead forecast
considering the two cases.

smoothing algorithms: Gaussian-based, SMA, and EMA. In Figure 3.16 and 3.17,
the power production curves are shown for the smoothing algorithms considering
power level constraints and different smoothing parameters. From these figures,
we can see that the peak powers for the smoothed curves are less when the
constraints are strict, i.e., smaller values of γ. For example, fixing σ to 1, w to
3 and γ to 5%, the peak power is 310kW for Gaussian-based, 300kW for SMA,
and 320kW for EMA. However, when γ is increased to 10%, the peak powers
are also increased by 14%, 22% and 10% for Gaussian-based, SMA and EMA,
respectively. This shows that by relaxing the constraints, we could have more
peak power and it requires smaller battery sizes to smooth the power productions
of the Renewable Energy Sources (RESs).

Among the smoothing algorithms, the Gaussian-based algorithm performed
better than the other two in terms of battery sizes and smoothness measures in
both cases. Figure 3.18 shows the power curves for a day-ahead period considering
the two cases. These curves are determined by Gaussian-based algorithm with
battery size of 294kWh in no-constraint case and 836kWh in the other case. In
the above simulations, we considered smoothing and battery sizing for only one
day-ahead. Our approaches can be extended easily to handle multiple days.

3.6 Summary
This chapter discussed two of our works on the supply side of the industrial
microgrid. In section 3.3, we adopted service curves of Network Calculus theories
to model Distributed Energy Resources (DERs) such as solar, wind and battery.
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We relied on the service curve concepts for modeling the capacity of DERs. In
this context, the service curves model the minimum amount of energy that a DER
can offer. After modeling the resources, we set up three strategies for testing the
benefits of our approach in terms of minimizing energy procurement costs. The
strategies are sell surplus energy (Strategy 1), store excess energy (Strategy 2),
and use external energy to charge battery (Strategy 3). Based on real datasets,
we compared the performance of different strategies. Our results show that we
could gain an energy cost saving upto 47% which can be very interesting to large
industries.

Section 3.4 detailed the Gaussian-based smoothing algorithm and compared its
performances by bench-marking two classical approaches, namely, Simple Moving
Average (SMA) and Exponential Moving Average (EMA) to smooth out power
fluctuations of renewable energy sources. In our simulations, we used real datasets
of energy demand, spot market prices, solar and wind for an industrial site located
in France. To show the performances of the algorithms, we considered two cases:
with and without power level constraints. In both cases, the Gaussian-based
algorithm performed better than SMA and EMA when smoothness measure is
taken to account. Furthermore, the proposed method required up to 19% less
battery size than the other two for the purpose of smoothing a day-ahead forecast.
Finally, we determined a power production curve for a day-ahead forecast period
using the Gaussian-based algorithm as it performed better than SMA and EMA.

The above two paragraphs summed up our works on the energy supply side.
In the following chapter, we move to the demand side of the industrial microgrid
and we present our works on Demand Response and related concepts.
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4.1 Introduction
This chapter details our works in the demand side of industrial microgrid energy
management. In the industrial context, the energy demand side consists of
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different industrial processes to produce a variety of end products. According
to [IEA16], the industrial processes are one of the major energy consumers
that are accounted for 42.5% of global electricity consumption in 2015. Due
to increased energy costs and environmental concerns such as elevated carbon
footprint, manufacturing sectors are investigating different options to address
these challenges. The potential to reduce energy costs can be gained through
implementing Demand Side Management (DSM) approaches such as Energy
Efficiency (EE) and Demand Response (DR). EE refers to achieving the same
output with less energy consumption by adopting a more efficient technology
or production processes or enforcing policies to commonly accepted methods to
reduce energy losses. However, EE is not the only approach to reduce energy
consumption in manufacturing sectors. There are also DR mechanisms which
include peak-shaving and load shifting for moving loads from peak to off-peak
hours to reduce energy cost.

DR programs throttle energy demands of different loads such as industrial,
commercial and residential for adjusting demands to available productions. For
example, with DR, a manufacturing plant is requested to stop energy consumption
by a legacy energy provider (e.g., Électricité de France (EDF) in France). In so
doing, the plant can get paid for not consuming. This helps the energy provider to
smooth consumption peaks instead of buying energy at the highest price on spot
markets. Hence, the more a consumer has DR potential the more stable the grid
performance will be and more benefits for both parties (for detailed description
on DR types and benefits, refer to section 2.3 of chapter 2). According to a study
in [SAM13] on top 20 USA industries, the DR potential in those industries could
reach up to 12GW in available load flexibility.

To harness the potential of DR in industrial context, a crucial step could be
merging both production process modeling and scheduling which were separately
tackled in the literature. For production process modeling, a substantial amount
of research is devoted to analyze performance metrics such as throughput analysis
and job completion time using queuing theory models. These models capture
the dynamics of production processes better than simulation approaches. In the
production scheduling and cost minimization aspects, the objective is to adapt
production according to available power and production rate constraints. This
chapter provides analytical and simulation results for both problems beginning
with a literature review in section 4.2. Then, in section 4.3, we present our works
on modeling of a production line using models from queuing theory which were
discussed in section 2.5 of chapter 2. We use the queuing model to characterize
temporal evolution of a production line. After that, section 4.4 details a DR
scheduling algorithm that adapts power consumption of a production line to
available power and production rate constraints. In section 4.6, we provide our
experiments with Open Automated Demand Response (OpenADR) protocol.
Finally, we summarize this chapter in section 4.7.
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4.2 Related Work
This section provides a literature review on the two aspects, namely, modeling of
production lines and DR scheduling under available power and production rate
constraints.

4.2.1 Production line modeling

Modeling and analysis of manufacturing systems are important factors to support
design and operational decision makings. According to Papadopoulos and
Heavey [PH96], modeling techniques such as generative and evaluative models
are used to address manufacturing design and operational problems. Generative
models provide optimal solutions to a modeling problem. However, they are
restrictive in terms of their structural assumptions that are only transparent to
the model designer. Unlike generative models, evaluative models are more flexible,
but they don’t guarantee optimal solutions. Nevertheless, they provide valuable
performance measures of the problem under consideration. In this thesis, we
consider queuing theory-based models which are evaluative models. Referring to
the book of Curry and Feldman [CF10], the queuing models estimate system’s
performance measures from cumulative number of arrivals and departures of jobs
or parts to/from workstations.

Queuing theory-based models for manufacturing systems have been gained
much attention since a couple of decades ago with initial works by Buzacott and
Shanthikumar [BS92], Askin and Standridge [AS93], and Govil and Fu
[GF99]. Comparing with simulation, queuing theory based analytical modeling
is much faster in estimating manufacturing system performance and provides
more insights for performance improvement. However, existing queuing models
focus on simple extensions of the classical queuing theory and fail to question
its applicability to the complicated manufacturing systems. To address this
issue, different works on the extensions of queuing theory have been given in the
literature. For instance, Manitz [Man08] used a queuing model for performance
analysis in assembly manufacturing lines in which work-pieces from two or more
input workstations have to be merged to form a new one for further processing
downstream. The author set up a mathematical model to find an optimal schedule
in a single workstation scheduling problem. The output of the model decides
when to turn ON or OFF the workstation based on energy prices.

Another recent work on the performance analysis of manufacturing systems
using queuing models is described in [Jia+16]. The authors focused only on a
transient state of the manufacturing system to study performance metrics such as
production rate, workstation starvation and blockage. For throughput analysis of
flow lines (can be named as production lines or serial lines), there is an extensive
body of research that considered reliable and unreliable workstations, see research
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works in [BS93], [DPH07] and [Alt12]. These works mostly aimed at performance
analysis of asynchronous transfer lines and other manufacturing types discussed
in section 2.2.3 of chapter 2. However, models on a Synchronous Production Line
(SPL) are less addressed. We see a gap in the literature on these manufacturing
types and we rely on a queuing model for performance analysis of both transient
and steady states. In section 4.3, we formulate the arrival and departure processes
at workstations of an SPL system based on the queuing model described in section
2.5 of chapter 2.

4.2.2 Scheduling in production lines

On the scheduling side, the most important production scheduling problems
in manufacturing systems include minimizing makespan [MDC04], improving
production efficiency, reducing power consumption and energy costs [Shr+14].
In the literature, different optimization approaches and mathematical models
have been used in the production scheduling problems. Most of these methods
consist of algorithms such as linear programming, integer programming, dynamic
programming, genetic algorithms, etc. Among these techniques, few handle
specific objectives and few tackle specific problem instances that takes into
account necessary computational times.

Fang et al. [Fan+11] proposed a general multi-objective mixed integer linear
programming for flow shop scheduling problem that considers peak power load,
energy consumption, and associated carbon footprint in addition to makespan.
They considered the operation speed of two workstations in the flow shop as an
independent variable that can be changed to affect the peak load and energy
consumption. However, it is not necessary true that all workstations are regulated
by their processing speeds as some workstations have only ON and OFF modes
(e.g., hydraulic presses, grinders, choppers, etc) according to [SAM13].

Focusing on scheduling during off-peaks times, Luo et al. [Luo+13] used ant
colony optimization to solve a hybrid flow shop scheduling considering production
and EE. They proposed a multi-objective optimization solution for minimizing
makespan and energy consumption power with Time Of Use (TOU) prices. They
assumed fixed electricity price during some time of a day. However, changes of
electricity prices in short periods should also be considered as it is the case with
a real-time pricing DR mechanism such as Real-Time Pricing (RTP). Similar
works are also discussed in [MSP13], [Shr+14] and [THL13].

All the research works mentioned above used heuristic algorithms to solve
cost minimization problems by relying on variable electricity prices. That is,
they focused on price-based DR programs discussed in section 2.3.1.1 of chapter
2. However, an incentive-based DR (refer to section 2.3.1.2 of chapter 2) was
not considered. In this type of DR, power consumption is upper bounded with
the request of a legacy energy provider. For instance, in France, EDF asks its
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customers to shave some percentage of their loads in response to changes in
electricity prices due to environmental conditions. Then, in case of industrial
customers, they stop some industrial processes to respect the upper bound on their
power consumption. Hence, finding an scheduling algorithm to adapt the power
consumption of the industrial processes to the available power has a paramount
significance. In section 4.4, we present our DR scheduling algorithm which adapts
power consumption of industrial processes to available power and production rate
constraints. Illustrating examples for an SPL system are also provided.

In the following section, we detail our works on the modeling of an SPL system
using a queuing theory-based model.

4.3 Modeling a Synchronous Production Line
In this section, we first define a virtual cell concept which is used to model
the property of an SPL system. Secondly, we provide a theoretical framework
based on queuing theory to analyze temporal evolution of the system. For formal
description of the SPL system, refer to section 2.2.3.1 of chapter 2.

4.3.1 Virtual cell
Virtual cell is a logical concept that allows us to decompose conveyor of the
SPL system into several consecutive areas of the same size and shape. Each
part/task is placed in the cell center when it arrives to the system. The distance
between two cell centers is computed according to conveyor speed, Vc, and fixed
inter-arrival time, Ta, of tasks at the conveyor. Let V Ci denote the virtual cell
at position i, and dist(V Ci, V Ci+1) denote the distance between V Ci and V Ci+1
cell centers. Then, dist(V Ci, V Ci+1) is given by the following formula:

dist(V Ci, V Ci+1) = Vc ∗ Ta. (4.1)

According to Equation (4.1), the time the conveyor needs to move tasks between
two consecutive cells is Ta. In order to establish the synchronization (processing
at the same time) between workstations (machines hereafter), their positions
must coincide with cell centres. It means that the position of any machine from
the 1st virtual cell is a multiple of cell size. More formally, for machine MQ, there
exists a strictly positive integer l such that:

dist(V C1,MQ) = l ∗ dist(V Ci, V Ci+1). (4.2)

Since the positions of machines are fixed with respect to the conveyor, the task
inter-arrival time must be carefully selected to satisfy Equation (4.2). Thus, for
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l ∈ N∗ and merging both Equation (4.1) and (4.2), the value of Ta is given by:

Ta = dist(VC1,MQ)
l ∗ Vc

. (4.3)

4.3.2 Queuing theory-based model for the SPL
Based on the virtual cell concept discussed above, the SPL system can be
constructed as shown in Figure 4.1. We assume that the system contains M
machines labeled as M1, M2, ..., MM located on virtual cells at K1, K2, ..., KM ,
respectively with K0 = V C1 6 K1 6 K2 6 ... 6 KM = V Ck 6 KM+1 = ∞.
Machine Mi has a constant processing time Ci, 0 < Ci <∞, to process a task.
Note that processing times of two machines Mi and Mj, i 6= j, can be the same
(Ci = Cj) or different (Ci 6= Cj). For mathematical convenience, we assign C0
= 0 as an initial condition for fictitious machine M0. The inter-arrival time of
tasks to the conveyor is noted as Ta. Due to the idle time of the conveyor when
the machines process tasks, Ta is modified according to the maximum processing
time among the machines.

Figure 4.1 – General configuration of a synchronous production line

We decompose the SPL system into M sub-systems (since there are M

machines). We assume that the sub-systems are reliable, i.e., there is no failure.
Each sub-system i is composed of machine Mi and a set of virtual cells of size
Ki −Ki−1 − 1 that are just after the predecessor machine Mi−1. We represent
the sub-system i as D/D/1/(Ki −Ki−1) queuing system (for descriptions of the
queue model, refer to section 2.5 of chapter 2). Indeed, each queue has a single
server (which is the machine itself), a buffer composed of a set of virtual cells
with capacity Ki −Ki−1 and a First In First Out (FIFO) service discipline. The
inter-arrival and service times of each queue are deterministic and they can evolve
based on synchronization between the queues. Tasks entering the queue are
blocked when there is no free virtual cell downstream. Moreover, if the processing
time of machine Mi is greater than that of Mi−1, machine Mi−1 suspends any
activity (i.e., it is blocked) and the tasks waits until a departure occurs from
machine Mi. After this, simultaneous departures take place in both machines. In
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general case, the machine with maximum service time blocks all other machines
and all departures happen at the same time. This is why the SPL system can be
modeled as a network of D/D/1/(Ki−Ki−1) queues with Blocking After Service
(BAS) mechanism.

Before defining temporal behaviors of the machines, we first need to ensure
steady state conditions. For this purpose, we provide the following lemma.

Lemma 4.1 (Steady state conditions).
Once the SPL system starts working, it will always reach a steady state.

Proof. To be in a steady state, the inter-arrival time must be greater than the
maximum processing time among the machines. Injecting tasks on the conveyor
are stopped when at least one machine is processing. It means that the initial
deterministic inter-arrival time Ta is modified to take into account the blockage
time. The blocking time takes the maximum processing time among the machines
and it can be changed as the first task moves from the first machine to a
machine having the maximum processing time (any machine downstream). This
phase represents a transient state. After that, the system is in steady state.
Consequently, the modified inter-arrival time T ∗a is given below:

T ∗a = Ta + max
16j6M

Cj > Ta (4.4)

�

Now, our objective is to characterize and predict the behavior of each machine
in temporal domain. In other words, we need to know the exact state of the
system at any time t. We don’t focus on expressing the performance of the system
in average values. Hence, we don’t rely on the well-known results of queuing
network theories with BAS mechanism. To attain our goal, we define a temporal
behavior of any machine MQ as a function of utilization, UMQ

(t), for any time t.
Before providing the utilization function, we define arrival instants of tasks to
the machines. This helps us to characterize arrival and departure processes at
every machine. The utilization function is based on the two processes.

4.3.2.1 Arrival instants

Let us denote arrival instant of task n to the virtual cell corresponding to MQ

as Inst(n,MQ). To compute the arrival instant Inst(n,MQ), we consider the
SPL configuration example shown in Figure 4.2 where four machines having
different processing times are linked by the same conveyor. The arrival instants
of tasks to the virtual cells (machines included) are given in Table 4.1. From
the table, we note that the arrival instants of tasks to machine 1, Inst(n,M1),
are divided into four levels (highlighted by colored cases) based on increments
on Ta (it is due to synchronizations between machines). The 1st level represents
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Figure 4.2 – An SPL system with 13 virtual cells and 4 machines.

Table 4.1 – Instantaneous arrival times of tasks on the virtual cells.

Tasks VC1 VC2 VC3 M1 VC5 M2 VC7 VC8 VC9 VC10 M3 VC12 M4 VC14

1 0 5 10 15 23 31 42 53 64 75 86 100 114 131
2 5 10 15 23 31 42 53 64 75 86 100 114 131 148
3 10 15 23 31 42 53 64 75 86 100 114 131 148 165
4 15 23 31 42 53 64 75 86 100 114 131 148 165 182
5 23 31 42 53 64 75 86 100 114 131 148 165 182 199
6 31 42 53 64 75 86 100 114 131 148 165 182 199 216
7 42 53 64 75 86 100 114 131 148 165 182 199 216 233
8 53 64 75 86 100 114 131 148 165 182 199 216 233 250
9 64 75 86 100 114 131 148 165 182 199 216 233 250 267
10 75 86 100 114 131 148 165 182 199 216 233 250 267 284
11 86 100 114 131 148 165 182 199 216 233 250 267 284 301
12 100 114 131 148 165 182 199 216 233 250 267 284 301 318
13 114 131 148 165 182 199 216 233 250 267 284 301 318 335
14 131 148 165 182 199 216 233 250 267 284 301 318 335 352

the time between receiving the 1st task by machines 1 and 2. In this level, the
increment value is Ta + C1 = 8s and concerns tasks 1, 2 and 3. We can see that
Inst(2,M1) = Inst(1,M1) + (Ta + C1) and Inst(3,M1) = Inst(2,M1) + (Ta + C1).
The 2nd level represents the time between receiving the 1st task by machines
2 and 3. The increment value of this level is Ta + max

16j62
Cj = Ta + C2 = 11s,

and the concerned tasks are from 4 to 8. The 3rd level represents the time
between receiving the 1st task by machines 3 and 4, and the increment value
is Ta + max

16j63
Cj = Ta + C3 = 14s. The last level begins when the 1st task is

received by machine 4 until the last task is processed. The increment value
becomes Ta + max

16j64
Cj = Ta + C4 = 17s. In the same way, we remark that the

arrival instants of tasks to machines 2, 3 and 4 have three, two and one levels,
respectively. In general case, the arrival instant levels of tasks to a machine
depend on the maximum processing times of other machines and on the order of
successors/predecessors. To determine the existence of new levels, we give the
following lemma.

Lemma 4.2 (Level change).
The arrival instant of tasks to machine Mi will have a new level if and only if
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there exits a machine Mj (downstream of Mi) having a greater processing time.

Proof. The proof contains two aspects. First, let us consider machine Mj which
is downstream of Mi with Cj > Ci. Before the 1st task arrives at machine Mj,
the maximum increment value is Ta + max

16l<j
Cl. When it arrives at the machine,

the new increment value will be Ta + Cj > Ta + max
16l<j

Cl. Hence, we have a new
level. Secondly, let us consider that machine Mi has new level. It means that
we have a new increment value Ta + α with α > Ta. This shows that there is
machine Mk downstream with Ck = α. �

Based on Lemma 4.2, if a task arrives in a machine with maximum processing
time among all the machines, we won’t have a new level. If the first machine is
the one with the maximum processing time, all the machine will have only one
level. Now, we give a lemma to show the arrival instants of tasks at beginning of
each level. For mathematical simplicity, we suppose that the levels of machine
MQ are numbered from Q. That is, the first level of machine MQ is numbered as
Q, second level as Q+ 1, and so on. The following lemma formalizes task arrival
instants to the machines.

Lemma 4.3 (Beginning of level change due to task arrival).
A level m = Q,Q + 1, ...,M in machine MQ begins with an arrival instant
t0 +∑m−1

i=0 (Ki+1 −Ki)(Ta + max
06j6i

Cj).

Proof. The 1st level of each machine begins when the 1st task arrives at the
machine. The corresponding arrival instants can be given by:

Inst(1,M1) = t0 + (K1 −K0)(Ta + max
06j60

Cj)

Inst(1,M2) = Inst(1,M1) + (K2 −K1)(Ta + max
06j61

Cj)
...
Inst(1,MM) = Inst(1,MM−1) + (KM −KM−1)(Ta + max

06j6M−1
Cj)

(4.5)

By replacing the recursive equations, we generalize as Inst(1,MQ) = t0+∑Q−1
i=0 (Ki+1−

Ki)(Ta + max
06j6i

Cj), where Q = 1, 2, ...,M . Now, let us consider level m > 1
of machine MQ. Based on Lemma 4.2, there exists a machine MQ′ where
Q′ > Q having greater processing time. When task number 1 arrives at
this machine, a new level begins on all upstream machines. It is easy to
see that MQ′ is the same with Mm due to synchronization (see diagonal val-
ues in Table 4.1). We recall that m > Q. Let tasks number 1 and n ar-
rive simultaneously at machines MQ and Mm, respectively. It implies that
Inst(n,MQ) = Inst(1,Mm) = t0 +∑m−1

i=0 (Ki+1 −Ki)(Ta + max
06j6i

Cj) �

To generalize the arrival instants of tasks for every machine, we provide the
following theorem.
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Theorem 1 (Arrival instant of tasks).
The instantaneous arrival time of task n in machine MQ is given by:

Inst(n,MQ) =t0 +
m−1∑
i=0

(Ki+1 −Ki)(Ta + max
06j6i

Cj)+

(n− (Km −KQ)− 1)(Ta + max
16j6m

Cj),

with Km −KQ + 1 6 n < Km+1 −KQ + 1,
and m = Q,Q+ 1, ...,M

(4.6)

Proof. It can be easily proved by generalizing Equation (4.5) to handle n arrivals
to all machines. �

4.3.2.2 Arrival processes at machines

Now, under steady state conditions and based on the arrival instant function, the
arrival processes to every machine in the SPL system can be given as:

AMQ
(t) =

0 if t0 6 t < Inst(1,MQ),
n if Inst(n,MQ) 6 t < Inst(n+ 1,MQ).

(4.7)

Then, by applying Theorem 1 to Equation 4.7, we can compute generalized arrival
processes as follows:

AMQ
(t) =



0 if t0 6 t < Inst(1,MQ), t−(t0+
∑m−1

i=0 (Ki+1−Ki)(Ta+ max
06j6i

Cj)−(Km−KQ)(Ta+ max
16j6m

Cj))

Ta+ max
16j6m

Cj

+ 1

if Inst(n,MQ) 6 t < Inst(n+ 1,MQ).

(4.8)

4.3.2.3 Departure processes at machines

Under the same assumptions as the arrival processes, the departure processes
from the machines in the SPL system can be given as:

DMQ
(t) =


0 if t0 6 t < Inst(1,MQ) + max

16j6Q
Cj,

n if Inst(n,MQ) + max
16j6m

Cj 6 t < Inst(n+ 1,MQ) + max
16j6m

Cj.

(4.9)
By applying Theorem 1 to Equation 4.9, we generalize the departure processes as
follows:

DMQ
(t) =



0 if t0 6 t < Inst(1,MQ) + max
16j6Q

Cj, t−(t0+
∑m−1

i=0 (Ki+1−Ki)(Ta+ max
06j6i

Cj)−(Km−KQ)(Ta+ max
16j6m

Cj))+ max
16j6m

Cj

Ta+ max
16j6m

Cj

+ 1

if Inst(n,MQ) 6 t < Inst(n+ 1,MQ).
(4.10)
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4.3.2.4 Utilization function

The utilization function includes two states: working and blocking (or idle) states.
The working state is more important because it is the state in which the machine
consumes power. This defines an effective utilization function ÛMQ

(·) of machine
MQ. The function is given by:

ÛMQ
(t) = UMQ

(t) ∗ g(t), (4.11)

where g(·) is a filter function to separate the two states, so that the working state
takes CQ time units. This filter function can be expressed as:

g(t) =
1 if UMQ

(t)− UMQ
(t− CQ) = 1

0 otherwise
(4.12)

The utilization function UMQ
(t) indicates whether a task exists under machine

MQ or not at time t. This can be expressed in queuing theory as the difference
between arrival and departure processes to/from the corresponding machines.
Based on the arrival and departure processes (Equation (4.8) and (4.10)), we can
now express the utilization function UMQ

(·) as follows:

UMQ
(t) = AMQ

(t)−DMQ
(t). (4.13)

4.3.2.5 Power consumption and utilization function

In the above section, we determined the effective utilization function that shows
the temporal evolution of the machines. Based on Equation. (4.11), we can
determine power consumption PMQ

(t) of machine MQ at time t as:

PMQ
(t) = ÛMQ

(t) ∗ pQ, (4.14)

where pQ is power consumption of machineMQ in working state. When a machine
is idle (i.e., blocked after processing), it consumes a small amount of power. We
assume that this amount is negligible in this work. Hence, the total power
consumption of the SPL system is expressed as:

PM(t) =
M∑

Q=1
PMQ

(t). (4.15)

Equation (4.15) gives system’s total power consumption at any time t under
steady state conditions. It describes the temporal power consumption evolution
of the system. In section 4.5, we provide analytical and simulation results of
queuing theory-based temporal characteristics of the SPL system.

The next section presents our DR scheduling algorithm that adjusts the power
consumption of the SPL system to satisfy DR and production rate constraints.
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4.4 Scheduling in the SPL system
The second part of this chapter describes our DR scheduling algorithm which
is used to adapt power consumption of all machines to the available power (or
DR threshold). In section 4.4.1, we highlight the scheduling problem in the SPL
system. Then, section 4.4.2 presents the scheduling algorithm using examples. DR
optimality conditions are discussed in section 4.4.3. We also illustrate existence
and feasibility conditions of schedules. Finally, we provide a necessary and
sufficient conditions to accept DR requests positively in section 4.4.4. At first,
we provide the following definitions.

Definition 4.1 (Production rate).
In manufacturing systems, production rate is the number of items that can be
produced during a given period of time, i.e., items per unit time.

Definition 4.2 (Power consumption block).
Power consumption block of a machine is defined by its height which represents
the amount of power required to process a task on the machine and by its width
which represents the processing time of a task.

Figure 4.3 – Power consumption blocks and additional energy from DERs.

We refer to Figure 4.3 for better understanding of definition 4.2. From the
figure, we can see that machine M1 has a power consumption block of C1*p1
where C1 is its processing time and p1 is its power consumption when it processes
a task. Under normal conditions, the available power is enough to accept all the
power consumption blocks. However, during DR interval, the available power may
satisfy only one consumption block at a time. The existence of local Distributed
Energy Resources (DERs) can increase the total available power so that one or
more consumption blocks can be added to maximize the production rate (see
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definition 4.1). However, the intermittent nature of DERs requires energy storage
devices (e.g., battery) to fill voids created by forecasting errors. For this purpose,
determining battery size and smoothing out of fluctuations were investigated in
chapter 3, but we do not consider it in this chapter. Based on the above definition,
we now define production mode of a manufacturing system.

Definition 4.3 (Production mode).
Production mode of a manufacturing system is defined by the available power levels
which defines discrete values to match power consumption blocks of machines.

Figure 4.4 – DR mechanism and available power levels.

To clarify the above definition, we refer to Figure 4.4. In the figure, possible
power levels are marked by L0, L1, ..., Lmax. L0 corresponds to a case where
there is no available power. At this power level, the system is in power outage (or
in complete shutdown). However, at Lmax, power requirement of all machines can
be satisfied and this provides the maximum production rate in the system. Based
on these information, we can construct status and power consumption vectors
that consist of the status (ON/OFF) of machines and their corresponding power
consumption. Let xi (1 for ON and 0 for OFF) denotes the status of machine Mi

and pi denotes power consumption of Mi when it is processing a task. Hence, a
status vector for a production line with M machines is represented as X = [x1,
x2, ..., xM ] and the corresponding power consumption vector is p = [p1, p2, ...,
pM ]. Then, total power consumption is given by:

P = XT ∗ p. (4.16)

Figure 4.4 also shows power consumption modes under maximum available
power and observed power consumption during DR interval. Under normal
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conditions, every machine can get its share of the available power. To enter
the DR power consumption mode, a DR event (with reduction percentage and
duration) should be communicated at some time (Time to DR in the figure)
before the actual mode change happens. Assume that the DR event is emitted
from a legacy energy provider at tj and the actual load shaving starts at tk. We
represent the difference between these times (tk - tj) by DDR (deadline for DR).
The length of DDR can vary from 10 minutes to 1 hour. In most of the cases, DR
event is communicated 1 hour earlier than the start of DR. In some cases, a DR
event can be issued in short time (emergency DR) to correct forecast errors or to
handle some unanticipated events such as partial electricity grid failure. In such
situations, the availability of local DERs such as wind, solar, etc could help the
manufacturing plants to accept the DR call positively.

The following section states the scheduling problem of the SPL system under
available power and production rate constraints.

4.4.1 Scheduling problem
A schedule in the SPL system is a finite sequence of actions spaced by a de-
terministic (not necessarily constant) inter-arrival time and performed at the
conveyor input. An action consists of inserting a new task (denoted by symbol I)
or not inserting (I). Consequently, a schedule can be considered as a word over
alphabet Σ = {I, I}. Each schedule word has a prefix, sub-word and suffix. The
prefix is used to resume actions in transient phases, while the sub-word represents
steady phases, and the suffix word is used to flush the conveyor (i.e., to empty
the system). Note that the prefix word necessarily begins with I and has length
K, the sub-word is a periodic sequence of symbols, and the suffix word takes
I

K value where K is the number of virtual cells in the system. For instance,
for the SPL shown in Figure 4.2, a schedule is I13InI

13 where I13 is the prefix
word formed by thirteen consecutive task insertions (in a transient phase), In

is the sub-word representing the insertion of n consecutive tasks in the steady
state, and finally I

13 is the suffix word to purge the conveyor formed by not
inserting tasks for 13 times. It is clear that this schedule provides a maximum
production rate, and results in higher total power consumption because all the
machines work simultaneously. However, the schedule I(I12

I)
n
I

13 ensures that at
each time only one task is finished before inserting a new task and at maximum
only one machine is working and this results in reduced power consumption. In
the following lemma, we show how to compare two schedule words based on a
production rate.

Lemma 4.4 (A schedule word with higher production rate).
For two schedule words of the same length, the schedule having more number of
occurrence of I produces maximum number of finished tasks.
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Proof. Let w1 and w2 are two schedule words of the same length, i.e., ||w1|| = ||w2||.
Let n1 and n2 (with n1 > n2) are number of occurrence of symbol I within w1 and
w2, respectively. Based on schedule word definition, both words ends with the
same suffix IK where K is number of virtual cells in the system. Consequently,
there are no tasks on the conveyor when the schedule ends. All the inserted tasks
are processed in both schedules. Since n1 > n2, schedule word w1 produces more
finished tasks than w2. �

Now, we formally define the scheduling algorithm based on the construction
of a graph of activities with power consumption constraints.

4.4.2 DFSM schedule coding
The working principle of SPL can be regarded as a Deterministic Finite State
Machine (DFSM) [Sak09] where states represent whether there is a task or not
in each virtual cell and transitions from one state to another represent symbols
of schedules. We distinguish left and right successors according to the symbols,
i.e., we go to the left for symbol I and go to the right for symbol I. We write a
state with binary values of size K, the number of virtual cells. More precisely,
a state is expressed as (b1b2...bK)2 where bi can be 1 if there is a task in V Ci or
0 otherwise. The state (00...0)2 is both start and end state. The left successor
of (b1b2...bK)2 corresponds to shifting right by one bit and adding (2K−1)2. The
new state will have (b1b2...bK)2 � 1 ⊕ (2K−1)2 value. The right successor of
(b1b2...bK)2 corresponds to shifting right by one bit. Then, the new state will have
(b1b2...bK)2 � 1 value. The duration of each transition in the DFSM takes the
deterministic inter-arrival Ta time units. The time spent in each state depends
on maximum processing time among working machines. Figure 4.5 illustrates an
example of DFSM of an SPL system with three machines. We consider that each
machine corresponds to a virtual cell, i.e., there are three virtual cells in the SPL.

Based on the above description, the DFSM is defined as a quintuple (Σ, V, v0, δ, F ),
where:

• Σ = {I, I} is the input alphabet;

• V is the set of states with cardinality O(2K),

• vo = (00...0)2 is the initial state,

• δ is the state transition function, δ: V × Σ→ V . According to the input
symbol: δ(I, (b1b2...bK)2) shifts right the state value by one bit and adds
2K−1

2, and δ(I, (b1b2...bK)2) shifts right by one bit,

• F is the set of final states. It has only one state, v0.
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Figure 4.5 – A DFSM for an SPL system with three machines

A default schedule in the SPL is to insert a task every Ta time unit. Therefore,
the corresponding schedule word is given by IKInI

K , where n is the number of
consecutive tasks inserted during the steady state. Regarding the DFSM, the
prefix of the default schedule (IK) is to go from the first state (00...0)2 to (11...1)2
taking the left successors during transitions. The sub-word (In) is to stay in the
state (11...1)2 by looping for n times. The suffix (IK) is to go back to end state
(00...0)2.

4.4.3 Optimal schedule under DR
When a given schedule transits to state (11...1)2, the SPL system consumes
maximum power. The following lemma confirms this SPL behavior.

Lemma 4.5 (State of peak power consumption).
The peak power consumption is attained when the system is in state (11...1)2.

Proof. The total power consumption at state (11...1)2 is ∑M
i=1 pi which is derived

from Equation (4.16). Since it is the state where all machines are working, it is
obvious that the power consumption is peak. �

Since the default schedule is looping in state (11...1)2, the power consumption
is peak from the above lemma. Assume that a DR signal is emitted at tr from
start of the SPL demanding to reduce power consumption in DDR time unit for
duration of Γ by an amount of ∆ (refer to Figure 4.6). During the DR interval,
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Figure 4.6 – DR timelines

the default schedule is not attainable due to its peak power limitation, i.e., the
available power is not enough for all machines to work at the same time. Now,
we need to find a new schedule reducing the peak power consumption in the DR
interval by amount of ∆ as formulated below:P (t) 6max{P (t′)} −∆,

with t0 6 t′ < tr +DDR and tr +DDR 6 t 6 tr +DDR + Γ
(4.17)

Under the DR constraints, the scheduling algorithm consists of three phases.
The first phase determines if a feasible schedule exits or not. Then, the second
phase computes the optimal schedule satisfying DR constraints. Finally, in the
third phase, we search for the shortest path to go from the previous schedule to
the new optimal one. The procedures in the three phases are described in the
following section.

4.4.3.1 Phase 1 - Existence of feasible schedule

In phase one, we would like to know if a feasible schedule exists or not. The
following lemma considers if a schedule exits or not under DR constraint.

Lemma 4.6 (Existence of feasible schedule).
A feasible schedule exists if the power consumption of each machine is less than
the available power.

Proof. A simple schedule is when there is only one task in the SPL system at a
time. Consequently, only one machine is processing in the system at maximum.
Since the power consumption of each machine is below DR threshold, the total
consumption using this schedule is less than the available power. Hence, the
schedule word exists and it is given by I(IK−1

I)
n
I

K . �

Based on Lemma 4.6, a DR constraint cannot be less than a lower bound
given by the schedule in which only one machine is processing a task at a time.
This schedule (I(IKM−1

I)
n
I

K) corresponds to go from state (00...0)2 as 1st step
to the most right side state (00...01)2 until state (10...0)2 and go back to state
(00...01)2 to form a cycle. For example, let us see the feasible schedule of an SPL
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Figure 4.7 – Feasible schedule under DR constraint.

system with three machines in three consecutive virtual cells. We assume that
the power consumption of machines 1, 2 and 3 are 100kW, 200kW and 300kW,
respectively. Furthermore, we set ∆ to 200kW. Hence, the new available power
(or DR threshold) is 400kW according to Equation (4.17). The feasible schedule is
to go from state (000)2 to (100)2, then we take right until state (001)2. After that,
we go back to state (100)2. The transitions (thick lines) in Figure 4.7 represent a
feasible schedule. We can see that the peak power consumption in the SPL is
300kW which is less than the DR threshold of 400kW.

4.4.3.2 Phase 2 - Finding optimal schedule

In phase 2, the objective is to find, if possible, an optimal schedule better than
the feasible schedule that satisfies DR power constraint. This schedule must
give the maximum production rate under the constraint. In other words, the
number of occurrence of I in the schedule should be higher. A simple algorithm
consists of exploring the DFSM by taking left successors to increase number of
Is verifying the DR constraint at each state. This algorithm can be seen as a
branch and bound (B&B) [Cla99] algorithm where the entire candidate solutions
are enumerated and a search is optimized based on upper and lower bounds. This
algorithm tries to find a prefix word going from initial state to the depth (K) of
DFSM and then it finds the shortest cycle that satisfies DR power constraints to
form a sub-word.

In order to find the optimal prefix, we apply Algorithm 2 to the binary tree
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Algorithm 2 Prefix searching in DFSM
Require: (Σ, V, v0, δ, F ), a DFSM
Pow_dr, the available power under DR
x.state← v0
x.visited_left← false

x.visited_right← false

Prefix ← ε

Sub-word ← ε

while |Prefix| < K do
if x.visited_left == true & x.visited_right == true then

x← parent[x]
Prefix← Prefix− Last_symbol(Prefix)

else
if x.visited_left == false then

y ← left[x]
x.visited_left← true

if y.power 6 Pow_dr then
Prefix← Prefix.I

else
y ← x

else
y ← right[x]
x.visited_right← true

if y.power 6 Pow_dr then
Prefix← Prefix.I

else
y ← x

x← y

resulted by removing cycles from the DFSM. All states having impaired value
or the last bit fixed to one, (1)2, become leaf nodes. This algorithm defines a
preorder traversal: while a leaf node is not visited and under meeting the DR
constraint, we recursively do a preorder traversal of the left sub-tree, followed by
a recursive preorder traversal of the right sub-tree.

Figure 4.8 illustrates the optimal prefix (transitions in thick lines) after
executing Algorithm 2 on the binary tree of the DFSM shown in Figure 4.7. We
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Algorithm 3 Sub-word searching in DFSM
Require: (Σ, V, v0, δ, F ), a DFSM, and the last state found by the prefix searching
algorithm, vprefix
Pow_dr, the available power under DR
x.state← vprefix
x.visited_left← false

x.visited_right← false

cycle← false

Sub-word ← ε

while cycle == false do
if x.visited_left == true & x.visited_right == true then

x← parent[x]
Sub-word← Sub-word− Last_symbol

else
if x.visited_left == false then

y ← left[x]
x.visited_left← true

if y.power 6 Pow_dr then
Prefix← Sub-word.I
if y.state == vprefix then

cycle← true

else
y ← x

else
y ← right[x]
x.visited_right← true

if y.power 6 Pow_dr then
Prefix← Sub-word.I
if y.state == vprefix then

cycle← true

else
y ← x

x← y

can see that the peak power consumption of this prefix in the SPL is 400kW
which is equal to the DR threshold.
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Figure 4.8 – Prefix searching example.
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Figure 4.9 – Optimal sub-word searching example.

In order to find the sub-word of the schedule, we search a cycle going from the
last state (at depth K) obtained by prefix searching and that eventually returns
to the state. It is easy to see that the best method to continue producing at
higher rate is the same as that used for prefix searching, i.e., while the starting
state is not visited twice and under meeting DR power constraint, we recursively
do a preorder traversal of the left successors, followed by a recursive preorder
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traversal of the right successors. Algorithm 3 details such a principle.
Figure 4.9 illustrates the optimal sub-word (transitions in thick lines) after

executing Algorithms 3 on the DFSM shown in Figure 4.7. We can see that the
peak power consumption of this sub-word in the SPL system is 400kW which is
equal to the DR threshold.

The performance of Algorithms 2 and 3 depend on the number of virtual
cells K of the system. When K increases, the total number of states increases
exponentially to 2K states. Hence, the worst time complexity to search in the
DFSM is O(2K). Since the number of cells on the conveyor is limited, this
algorithm could be of great help to find optimal solutions. To reduce this curse of
dimensionality, we rely on a more efficient algorithm to search for a near-optimal
solution based on linear programming (LP) formulations. To compute the prefix
word, we find theoretically the best leaf state in the binary tree having a path
from the root state satisfying the DR power consumption on each intermediate
state. Then, we use the reverse path to set the prefix. The LP problem for the
leaf state can be formulated as follows:

max
K∑

i=1
xi (4.18)

s.t: A ∗ x 6 Pavail (4.19)

xi ∈ {0, 1}, i = 1, 2, ..., K − 1 and xK = 1

where:

• xi indicates whether a task exists or not in virtual cell i. For the leaf states,
the last bit is set to one, i.e., xK = 1,

• x is the vector of xi,

• A is an upper triangular matrix representing power of intermediate states
in the binary tree:

A =



p1 p2 · · · · · · pK

p1 · · · · · · pK−1
. . . · · · ...

0 . . . · · ·
p1


(4.20)

• Pavail is the available power.

The objective function (Equation (4.18)) is to choose machines so as to maximize
production rate and Equation (4.19) poses constraint on total power consumption
in the path from root to leaf states to respect the available power constraint.
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By applying the LP equations to the binary tree of the DFSM shown in
Figure 4.7, we find that the state (101)2 satisfies both DR threshold and max-
imum number of 1s in the vector x. The reverse path is (000)2 → (100)2 →
(010)2 → (101)2, and so the prefix is III which corresponds to the one found
using Algorithm 2. To find a cycle starting and ending at the state obtained by
the LP equations above, we rely on the well known problem of finding minimum
cycle in weighted directed graphs [Kar78]. We replace cost metric by power
consumption metric. We define the power consumption of an arc as the maximum
between its ending states, and a path’s power consumption as the maximum
power consumption among its arcs. The mathematical formulation of the problem
can be given as:

maximize
z(e)

{p(e)z(e), e ∈ E}

subject to
∑

e∈V +(v)
z(e)−

∑
e∈V −(v)

z(e) = 0, ∀v ∈ V
∑
e∈E

z(e) = 1

p(e) 6 pavail

z(e) > 0

(4.21)

where V +(v) is the set of arcs having extremities in v, V −(v) is the set of arcs
originated in v and z(e) is the variable associated to each arc e in the DFSM. By
applying our LP equations for cycle searching in the DFSM (shown in Figure 4.7),
we find a loop between (101)2 and (101)2.

4.4.3.3 Phase 3 - Path to optimal schedule

In phase three, we would like to find a shortest path from current state to the
state obtained in phase 2 (transitions in red dotted lines in Figure 4.10). For this
purpose, we use the well-known Dijkstra’s algorithm [Dij59].

Dijkstra’s algorithm finds a shortest path starting from an initial node to a
target node (or all other nodes) on a graph. The algorithm assigns initial distance
values and try to improve them step by step. In our case, we would like to find
the shortest path between two states on the DFSM graph (see Figure 4.10), i.e.,
the short path between the optimal state (101)2 found in phase 2 and the initial
state which is (111)2. The following steps are used to find the shortest path
starting from initial state (111)2:

(1) Assign some values for every state on the DFSM graph: set zero for the
initial state (111)2 and infinity for all other states,

(2) Set the initial state as current. Mark all other state unvisited. Construct
an unvisited set for representing all unvisited states within the DFSM,
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Figure 4.10 – Shortest path to the optimal schedule (phase 3) marked in red
dotted lines.

(3) For the current state, consider all of its neighbors and calculate their
tentative distances. Here, we assign a distance of value 1 for a neighbor
state. For example, the distance beween states (111)2 and (011)2 is 1 as
can be seen from Figure 4.10,

(4) After examining all the neighbors of the current state, mark the current
state as visited and remove it from the unvisited set,

(5) If the destination state has been marked visited, then stop. The algorithm
has finished, else

(6) Select the unvisited state that is marked with the smallest distance, i.e.,
state (011)2 and set it as the new current node, and go back to step (3).

By following the above steps, state (101)2 can be reached with a distance
value of 2 which is the shortest path through state (011)2. This path is marked
by dotted lines in Figure 4.10.

The total duration the shortest path takes from current state to the state
obtained in phase 2 determines if it is possible to accept the DR request or not.
The next section analyses acceptance conditions of a DR request.

4.4.4 DR acceptance conditions
We now give a necessary and sufficient condition to be able to accept a DR request
positively or not.
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Lemma 4.7 (Condition to accept DR).
A necessary and sufficient condition to be able to positively answer to a DR
request is that the time to switch from any state A to another state B satisfying
the maximum power imposed by DR should be less than or equal to duration of
DDR (deadline to DR, refer to Figure 4.4). This time is equal to the duration of
each visited states in the DFSM graph described in Figure 4.10 plus the time of
the state transitions (Ta) for each transition.

Proof. Under normal conditions, the system is at the state (11...1)2 with duration
corresponding to the maximum processing time among the machines. Then,
starting from this state, we go to right successor to the next state (11..10)2 which
takes Ta and its processing time coincides with the working machines. We sum
both the maximum processing time and transition time until we arrive at the
required state B. If this sum is less than duration of DDR, it is obvious that the
DR requested can be accepted. �

From phase 3 above, the transition path required for DR in the DFSM graph
of Figure 4.10 leads to a state maximizing the production rate by searching for a
shortest path to the state. As an example, let us consider the case of a production
line with three machines represented by a DFSM in Figure 4.7. During normal
production periods, the system is at state (111)2 (i.e., current state) and the
system’s total power consumption is 600kW. If DR asks for a maximum power
consumption of 400kW, which corresponds to state (101)2, the production line
system will follow, according to Algorithm 2, the path (111)2 with state transition
I of duration Ta reaching state (011)2 where M1 will not be working. Then after
a state transition I of duration Ta, we reach at state (101)2 where M2 will not be
working. The state is still valid for the power threshold of 400kW. A production
cycle satisfying maximum power 400kW can indeed start after DR, i.e., the cycle
is (101)2 → (010)2 → (101)2, . . .. Notice that it is the production cycle that
maximizes the production rate. The total duration for answering DR to reach this
production cycle is then max(C1, C2, C3) + Ta + max(C2, C3) + Ta that should
be less than or equal to duration of DDR from Lemma 4.7, where Ci is processing
time of machine Mi, i = 1, 2, 3.

In the above sections, we discussed the two works: modeling of the SPL system
using a queuing model and DR scheduling under constraints of available power
and production rate. In the following section, we provide numerical results.

4.5 Analytical and Simulation Results
In this section, we present our analytical and simulation results of both modeling
of SPL and DR scheduling under available power constraint. As a study model,
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we consider the example shown in Figure 4.2 which has 13 virtual cells and 4
machines. For processing times (Ci) of the machines, we take values of 3s, 6s, 9s
and 12s (s = seconds) for machine 1, 2 , 3 and 4, respectively. Since there is no
restrictions on these values, any other values can be taken. We assume that each
machine consumes 100kW when it processes a task and 0kW otherwise. We also
assume that the SPL system starts working at time t = 0. We commence with
results on SPL modeling in the following section.

4.5.1 Results on SPL modeling
As discussed in section 4.3, we relied on queuing theories to model the SPL system
with deterministic inter-arrival and service times. The D/D/1 queuing model
was used to characterize arrivals and departures of parts/tasks in the SPL system.
This section presents analytical and simulation results of the system.

4.5.1.1 Analytical results

To analyze the SPL system, we used python programming language to implement
Equation (4.8) and (4.10) which represent the arrivals and departures processes at
the machines, respectively. Based on these processes, the utilization and effective
utilization functions (Equation (4.13) and (4.11)) are also implemented in python.
Moreover, analytical power consumption function PMi

(·), for machine Mi, i = 1,
2, ..., M , is also computed by using Equation (4.14). Then, we compare it with a
real power consumption of a typical production process of a factory taken from
METRONLab server.

Figure 4.11.1 shows cumulative arrivals of tasks to the 4 machines. From the
figure, we can see that the arrival of the 1st task to machine M1 at time t = 15s
initializes the SPL system in a transient phase. As soon as the 1st task arrives
at machine M2, the two machines (M1 and M2) synchronize themselves. This
continues until the 1st task reaches machine M4 in which all the machines are
synchronized to the one with the maximum processing time (i.e., C4). Furthermore,
the arrival of the 1st task at M4 at t = 114s signals the end of the transient
phase. Afterwards, the SPL system is in a steady state. The cumulative number
of departed tasks from the machines are shown in Figure 4.11.2. In the steady
state, the departures from all of the machines occur at the same time.

In Figure 4.11.3, the difference between the cumulative number of arrivals and
departures (i.e., the utilization) of all the machines are shown. For clearer view,
we added some constant value to each UMi

(·) so that the curves are moved up
the y-axis. However, the values of UMi

(·) is either 1 or 0 because only one task is
processed at any time because each machine is considered as a single server. Since
the utilization functions are derived from the arrival and departure processes, the
figure can also show both the transient and steady states. However, the utilization
function cannot differentiate between the two modes of a machine (working or
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4.11.1: Arrival processes using Equation (4.8) 4.11.2: Departure processes using Equation (4.10)

4.11.3: Utilization using Equation (4.13) 4.11.4: Effective utilization using Equation (4.11)

Figure 4.11 – Arrival and departure processes, utilization and effective utilization
of the four machines with processing time of 3s, 6s, 9s and 12s for machine 1, 2,

3 and 4, respectively.

idle) and it cannot show us the power consuming mode of the machines. Hence,
we use the effective utilization functions as depicted in Figure 4.11.4. The figure
shows that the machine start processing tasks at the same time but don’t finish
at the same as their processing times are different. The idle modes are effectively
suppressed and only the working modes are prevailed. This is important because
we can multiply the effective utilization function of a machine by its power
consumption to get a power consumption curve. For example, Figure 4.12 shows
such a power consumption curve for machine M2 when it consumes 300kW while
processing a task. This value is taken from a real production process power
consumption trace shown in Figure 4.13. As can be seen from Figure 4.12 and
4.13, there is a small difference between the approximated power curve (i.e., based
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Figure 4.12 – Analytical power consumption of machine M2 using Equation
(4.14) which is derived from the effective utilization function.

Figure 4.13 – A real power consumption of a typical production process from
METRONLab server.

on the queuing model) and the real power curve. This happens when a machine
changes its mode from idle to working and vice-versa. The difference can be
corrected by adding a positive slope when the mode changes from idle to working
and a negative slope when the mode changes from working to idle. The slopes
can be inferred from the real power consumption curve.

4.5.1.2 Simulation results

To verify our analytical works, we use an Objective Modular Network Testbed
in C++ (OMNET++) [OMN] simulator which is a modular, component-based
C++ simulation library and framework, primarily used for building network
simulators. It has been widely used as a modeling tool in applications such as
communication networks, distributed or parallel systems, etc [Var01]. In our
work, we modified source codes of OMNET++ so that it fits to our objective
of modeling the SPL system using a queuing library in OMNET++. In the
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Figure 4.14 – OMNET++ network description of the SPL system with 4
machines.

queuing library, OMNET++ contains modules such as source, sink, delay, queue,
etc to describe a specific topology that users want to simulate. Descriptions
of the modules and use cases are provided in the website of [OMN]. However,
these modules could not satisfy our needs to simulate the SPL system in the
OMNET++ simulator. Hence, we created conveyor and machine modules in
OMNET++ by modifying the C++ source codes of the queuing library.

As shown in Figure 4.14, we use 5 different OMNET++ module types to
describe the SPL system. The modules are given below:

• The source module is used to generate the tasks labeled from 1 to n,

• The machine module is used to represent a machine. The source codes of a
queue module in queuing library is modified for this purpose,

• The conveyor module is synchronizing the machines by realizing the tasks
at a specific time,

• The delay module is used to keep (or delay) a task until a downstream
machine is available.

• The sink module can be viewed as a storage for finished tasks.

After creating the necessary modules, a NEtwork Description (NED) file is
created by drag and drop of the modules. The final NED graph is shown in
Figure 4.14. The next step is to run the OMNET++ program so that live task
transfers between the machines can be viewed. Figure 4.15 shows when the SPL
system is running in OMNET++. After the source module releases tasks (marked
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Figure 4.15 – The OMNET++-based SPL system in action.

Figure 4.16 – OMNET++ time line graph for the SPL system.

by red dot), the tasks pass under each machine until the sink module collects
them. From the OMNET++ simulator, we can also see the arrival and departure
times of the tasks to and from the machine as depicted in Figure 4.16. From
the figure, we notice that the system synchronizes when the 1st task arrives at
machine M4. This is in accordance with the one that we have achieved using the
analytical effective utilization function shown in Figure 4.11.4.

4.5.2 Result on DR scheduling
In section 4.4, we provided details of the our DR scheduling algorithm that
adapts power consumption of the SPL system to available power and production
rate constraints. We used different illustrating examples and described the p
participles on how the algorithm works. In this section, we use the exemplary
SPL system configuration shown in Figure 4.2 with 4 machines and 13 virtual
cells to compute prefixes and sub-words of schedules. As describe in the above
section, processing times (Ci) are set to values 3s, 6s, 9s and 12s for machine 1,
2, 3 and 4, respectively. Now, we assume that each machine consumes 100kW
when it processes a task (but this value can be any amount). Furthermore, the
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Table 4.2 – Prefix and sub-word when DR threshold is 100kW.

State Symbol max. power conso. (kW) maxCi (sec)
1111111111111 . 400 12
0111111111111 I 400 12
0011111111111 I 400 12
0001111111111 I 400 12
0000111111111 I 300 12
0000011111111 I 300 12
0000001111111 I 200 12
0000000111111 I 200 12
0000000011111 I 200 12
0000000001111 I 200 12
0000000000111 I 200 12
0000000000011 I 100 12
1000000000001 I 100 12
1100000000000 I 0 0
0110000000000 I 0 0
0011000000000 I 100 3
0001100000000 I 100 3
0000110000000 I 100 6
0000011000000 I 100 6
0000001100000 I 0 0
0000000110000 I 0 0
0000000011000 I 0 0
0000000001100 I 100 9
0000000000110 I 100 9

available power levels for DR (i.e., DR thresholds) are considered to be 400, 300,
200, 100, and 50kW. These values are used to find the schedule words in the next
section. We also investigate the monetary gain of accepting DR request positively
in section 4.5.2.2.

4.5.2.1 Finding schedule words

Based on Lemma 4.6, when the available power is 50kW, there is no feasible
schedule as it is not enough even for a single machine. The next threshold is
when the available power is 100kW in which a simple feasible schedule exists.
Table 4.2 shows the resulting symbols of a schedule that satisfies the DR threshold
of 100kW. In the table, each row of the 1st column has length of 13 bits which
correspond to the virtual cells (1 if there is a task in a virtual cell or 0 otherwise).
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Table 4.3 – Prefix and sub-word when DR threshold is 300kW.

State Symbol max. power conso. (kW) maxCi (sec)
1111111111111 . 400 12
0111111111111 I 400 12
0011111111111 I 400 12
1001111111111 I 400 12
0100111111111 I 300 12
0010011111111 I 300 12
1001001111111 I 300 12
1100100111111 I 200 12
1110010011111 I 300 12
1111001001111 I 300 12
1111100100111 I 300 12
1111110010011 I 300 12
1111111001001 I 300 12
1111111100100 I 300 9
0111111110010 I 200 6
0011111111001 I 300 12
1001111111100 I 300 9
0100111111110 I 200 9

Machine 1, 2, 3 and 4 are on virtual cell 4, 6, 11 and 13, respectively (see Figure
4.2). Hence, the values of these virtual cells are required to compute the system’s
total power consumption (3rd column) and the maximum processing times among
the machines (4th column). The 2nd column represent an action of inserting (I)
or not (I) a task at the conveyor input.

From Table 4.2, we can easily find the prefix and the sub-word of the schedule
when the available power is 100kW. The prefix (path to optimal state) is I8, i.e.,
we arrive at this state by not inserting tasks for 8 times or taking right successors
8 times from the initial state (11...1)2. Then, the sub-word is (II2I

10) (gray
colored rows) which repeats until the end of the DR interval. During this interval,
the peak power consumption is 100kW, i.e., only one machine is working at a time.
In the sub-word, the number of Is determines the production rate per sub-word’s
total duration. The duration can be computed from the 4th column of the table
by summing up the processing times (12 + 12 + ... + 9 = 60s) at each state in
the DR interval and the transition times (12*5 = 60s). Hence, the production
rate in the sub-word is 2 items per 120 seconds (1 item per minute). However,
under normal conditions, the production rate is 13 items per 216 seconds (3.6
items per minute).
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To see the effect of less strict DR constraint than the above case, we consider
another case where the available power is 300kW. Table 4.3 shows results under
the given DR constraint. In this case, the length of prefix (I2

II
2) is shorter than

the prefix of the above case. It means that we arrived at the optimal state with
few transitions. The sub-word is found to be (II8I

2
II). Referring to the table,

the number of Is in the sub-word is 9 and their total duration is 165s (12*9 + 9*3
+ 6 + 5*12). The resulting production rate becomes 9 items per 2.75 minutes
(approx. 3 items per minute). In this case, the number of Is in sub-word is higher
than that of the above case and is in accordance with Lemma 4.4 that compare
two schedule words based on the number of Is for higher production rate.

4.5.2.2 Monetary gains of accepting DR

Based on our discussion in section 2.3.1.2 of chapter 2, incentive-based DR
programs pay customers for not consuming power (or consuming less) in DR
intervals. Hence, customers can benefit from monetary gain for accepting the DR
positively. The monetary gain can be formulated as follows:

Gmoney =
(
Nnorm −NDR

)
∗ Prunit ∗ Inpct (4.22)

where Nnorm is number of items produced during normal periods, NDR is number
of items produced during DR periods, Prunit is unit price of an item and Inpct is
percentage of incentive for the items that are not produced due to DR.

Now, we use Equation (4.22) to calculate a monetary gain for positively
answering a DR request. Assume that a factory could receive 20% as an incentive
for not consuming power to produce items using the default schedule ((I13)n,
n >0). In the default schedule, the factory produces 13 items. As a first case,
we consider that the available power is 100kW and the corresponding number
of produced items are 2. That is, only two items are produced instead of 13
items and the factory gets paid for the remaining 11 items that are not produced.
Taking 50AC per item, the monetary gain is found to be Gmoney = (13 - 2)*0.2*50
= 110AC.

Considering an available power of 300kW where the number of produced items
are 9, the monetary gain could be Gmoney = (13 - 9)*0.2*50 = 40AC. This shows
that the less the factory consumes the more money paid for not consuming power
and vice-versa. If the factory owns some Renewable Energy Sources (RESs) in
its local premises, this will help it benefit more from the DR mechanism. Assume
that the RESs generate power in order of 100kW. That means, the total available
power is 400kW that is enough for all the machines. In this way, the number
of items produced is 13 which is the same with the default schedule. Besides
producing at full capacity, the factory can save 40AC. In conclusion, the benefits
should be interesting for the factory to participate in DR programs.
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In the above sections, we discussed analytical and simulation results of our
works on modeling of an SPL system and DR scheduling. In the next section, we
details our experiments with the DR protocol: OpenADR.

4.6 Experimentation with OpenADR
Based on the description of OpenADR in section 2.3.4 of chapter 2, the objective
of OpenADR is to facilitate information exchange between electricity service
providers, aggregators and energy consumers. In this section, we provide the
experiments that are done in METRON for the purpose of integrating OpenADR
to METRONLab platform and testing OpenADR on a real testbed. Setup
procedures of the testbed is given below.

Figure 4.17 – Testbed for implementing OpenADR.

4.6.1 Testbed setup
Figure 4.17 shows our testbed that is used to implement the OpenADR protocol.
The testbed contains two parts: hardware and software parts.

4.6.1.1 Hardware

The hardware part of the testbed consists of:

• Personal computer (PC): a PC with Ubuntu 16.04 is used as a Virtual Top
Node (VTN). It emits DR requests as per users requirements,

• METRONLab: the METRONLab device hosts the Virtual End Node
(VEN). The VEN processes DR requests of the VTN,
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• Water pump: the pump is used as a controllable load, i.e., it can be turned
ON or OFF based on DR requests,

• Raspberry Pi: the raspberry pi (Model B) board receives a command from
the METRONLab and controls the pump through a relay. A relay module
can be interfaced to the pi board by soldering the module on the General
Purpose Input/Output (GPIO) pins.

4.6.1.2 Software

In the software part, the following software are used in the experiment:

• OpenADR source code: VTN and VEN source codes are available in Ener-
NOC’s GitHub [Ene]. Since the source code of EnerNOC only provide the
EiEvent service, major modifications have been done to implement the rest
7 services of OpenADR described in section 2.3.4 of chapter 2.

• XML Messaging and Presence Protocol (XMPP) server : as an XMPP
server, we used an OpenFire [OFR] server which is instant messaging and
group chat server. OpenFire accounts (JID - Jabber ID) are created for
both VTN and VEN nodes,

• Modbus TCP (Transmission Control Protocol): Modbus [Mod04] is a de-
facto standard communication protocol for connecting industrial electronic
devices. It is a software originally developed in Schneider Electric. Modbus
TCP is used for communications over TCP/IP (Internet Protocol) networks,

• Open Platform Communications Unified Architecture (OPC UA): OPC
UA is a machine to machine communication protocol developed for indutrial
automation. For more decription of the OPC UA protocol, refer to [LM06].
As shown in Figure 4.17, we included codes of the VEN node together with
OPC UA client in METRONLab device.

• Grails/Groovy: For web application framework in VTN, we used Grails/-
Groovy [GRL] web framework which is used in the OpenADR source code.
We extended the Grails/Groovy source code so that a user can view the
status of a VEN as a form of live feed (see Figure 4.18).

After configuring both the hardware and software parts, a simple web page
can be displayed as shown in Figure 4.18. In the right hand side of the figure, a
portion is dedicated for showing incoming messages and the sending VENs. The
tabs at the center display information including real-time status, available VENs,
DR event creation and emitting to VENs, and market context (i.e., available DR
programs such as TOU, RTP, etc).
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Figure 4.18 – Web interface of the VTN.

Figure 4.19 – Parameters of a DR event.

4.6.2 Description of a DR event
Referring to Figure 4.19, important DR event parameters include:

• Start time is a time in near future when an actual load shed starts. According
to OpenADR specification in [All13], the time variable is represented by
ZULU (same as UTC (Coordinated Universal Time)) time format,
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• Duration is the length of the DR interval (Γ in Figure 4.6),

• Market Context is a DR program (e.g., TOU, RTP, etc),

• Priority is set to 1 if the event has higher priority than the other events
which were emitted and that did not start,

• Response Required is set to ALWAYS if a response is required for a DR
event that a VTN sent to a VEN,

• Signal Name is a name of an event signal (e.g., ELECTRICITY_PRICE,
LOAD_DISPATCH, LOAD_CONTROL, etc),

• Signal Type is an element of a signal name (e.g., LOAD_CONTROL has
signal types of x-LoadControlPercentOffset, x-LoadControlSetpoint, etc).
[All13] provides the full list of signal names and types,

• Value is a corresponding value to the chosen signal name and type.

Figure 4.20 – Real-time status of the pump during normal periods.

4.6.3 Communicating DR events between VTN and VEN
For description of service types to establish initial communication between VTN
and VEN, see section 2.3.4.2 of chapter 2. During normal periods, the status
of the water pump is ON (or 1) as shown in Figure 4.20. At some time, if
the VTN wants to send a DR event to the VEN, it uses oadrDistributeEvent
payload of EiEvent service. The oadrDistributeEvent payload specifies all the
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Figure 4.21 – Real-time status of the pump during DR periods.

event parameters described in the above section. After the VEN receives the
event, it replies with oadrCreatedEvent payload of EiEvent service. As shown
in Figure 4.21, the pump has changed its status from ON to OFF (or 0) for the
specified duration (20 seconds) to respect the DR constraint.

4.7 Summary
This chapter presented two of our works on the demand side of the industrial
microgrid together with experiments of a Demand Response (DR) protocol. In
section 4.3, we detailed modeling of a Synchronous Production Line (SPL) based
on D/D/1 queuing model. The SPL system was represented by a tandem of
D/D/1 queues. It was used to characterize temporal properties such as arrival
and departure processes, utilization and effective utilization of the SPL system.
Analytical and simulation results were also given for a specific SPL configuration.

Then, section 4.4 discussed our DR scheduling algorithm that adapts power
consumption of the SPL system to constraints of production rate and available
power. The algorithm was coded using Deterministic Finite State Machine
(DFSM) in which state transitions happen by inserting a task or not. Finding
an optimal schedule under DR constraint has followed three phases: existence of
a schedule, finding optimal schedule and shortest path to optimal schedule. We
showed different results of the scheduling algorithm using illustrative examples.

Finally, we provided our experiments with a DR protocol called Open
Automated Demand Response (OpenADR) in section 4.6. For this, we setup a
testbed that contains devices such as water pump, raspberry pi and METRONLab.

The following chapter summarizes the works done in thesis by mentioning
important points. It also highlights perspectives of the thesis.
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5.1 Conclusions
In this thesis, we have addressed energy management challenges in the context
of industrial microgrid. The challenges can be categorized into the two sides of
microgrid energy management:

• In the supply side:

– We proposed a mathematical framework that is used to model power
generations ofDistributed EnergyResources (DERs) so that the power
sources can be seamlessly integrated into the microgrid. Moreover, we
also proposed cost minimization strategies that enable us choose from
an energy mix (solar, wind, battery, utility grid) which reduces total
energy costs,

– To reduce the inherent power fluctuation behavior of Renewable
Energy Sources (RESs), an approach of smoothing their power pro-
duction was also proposed. Its performance comparisons have been
done against other smoothing algorithms.

• In the demand side:

– A queuing theory-based mathematical model was proposed that pro-
vides temporal characterization of a Synchronous Production Line
(SPL) such as arrival and departure processes,
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– We proposed a Demand Response (DR) scheduling algorithm which
addresses how an SPL system adapts its power consumption to con-
straints such as available power and production rate.

Figure 5.1 summarizes the works in this thesis with corresponding publications.
The following sections provide more insights to the works in both supply and
demand sides of microgrid energy management.

Thesis works in the context of Industrial Microgrid

In Supply Side

Modeling of DERs and
Cost minimization strategies

[Add+15]

Smoothing of RESs
[Add+17c]
[Add+17d]

In Demand Side

Production line modeling
[Add+17b]

DR scheduling
[Add+17a]
[Add+17b]

Figure 5.1 – Summary of our works in this thesis.

5.1.1 Modeling of DERs and cost minimization strategies
We discussed modeling of DERs in the supply side of the industrial microgrid in
section 3.3 of chapter 3. The following questions can be inferred from the section:

• What is a minimum power produced by DERs? How can we model this
value using a mathematical framework?

• When energy demand is greater than energy supply, can we buy energy
from spot markets, utility grid, or discharge from Battery Energy Storage
Systems (BESSs)? What happens if supply is greater than demand?

A service curve concept ofNetworkCalculus (NC) was proposed for responding
to the above questions. We used service curves to model the minimum power the
DERs can provide. To obtain total power production, we aggregate the service
curves of the DERs. After that, a balance should be reached between energy
demand and supply. For cases of imbalance (i.e., when supply is greater than
demand or vice-versa), we proposed different strategies that minimize energy
procurement costs. The strategies were sell surplus energy, store excess energy
and use external energy to charge battery. To compare the performance of the
strategies, we used real power consumption data of a factory located in France.
Our results showed that interesting saving can be made by adopting the strategies.
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5.1.2 Smoothing of RESs
In section 3.4 of chapter 3, we focused on smoothing of RESs to reduce power
fluctuations in conjunction with BESSs. The following questions were raised:

• How to smooth power production curves of RESs and how to measure the
smoothness of the curves?

• What battery size is required so that a production curve for a day-ahead
forecast period can be guaranteed?

• From regulatory aspect, how much power differences between any two
successive time slots are tolerated?

To deal with the above questions, we proposed a Gaussian-based smoothing
algorithm. We compared its performances by bench-marking classical approaches
such as SimpleMovingAverage (SMA) and ExponentialMovingAverage (EMA)
for the purpose of smoothing out power fluctuations of RESs. The performances
of the algorithms were showed based on real datasets and considered two cases:
with and without power level constraints. In both cases, the Gaussian-based
algorithm performed better than both SMA and EMA when smoothness measures
and battery sizes are taken to account.

5.1.3 A queue theory-based model of a production line
We discussed modeling of an SPL system using a queuing model in section 4.3 of
chapter 4.4. It could give an interesting solution to the following inquiries:

• How to model temporal behaviors of an SPL system such as arrival and
departure processes to/from a machine? Which model to use?

• Relationship between effective utilization functions and real power consump-
tion of a machine?

Based on the description of an SPL system in section 2.2.3 of chapter 2, we
modeled each machine in SPL as D/D/1 queue where each queue has a single
server (which is the machine itself) with First In FirstOut (FIFO) service disciple,
deterministic inter-arrival and service times. Hence, the SPL system is considered
as a tandem of D/D/1 queues that can be synchronized by a conveyor. After
setting up the system, we defined temporal behaviors of the machines in the form
of arrival and departure processes and utilization functions. Then, the effective
utilization functions can be used predict the behavior of a machine in temporal
domain and it can help us know the status of a machine (either working or idle).

To validate mathematical computations, we showed analytical and simulation
results in section 4.5.1 of chapter 4. For analytical results, we used python
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programming language to implement different equations. For simulation results,
ObjectiveModularNetwork Testbed in C++ (OMNET++) simulation software
was used to simulate the SPL system with 13 virtual cells and 4 machines.

5.1.4 DR scheduling in a production line
In section 4.4 of chapter 4.4, we presented our works on a DR scheduling algorithm
which can respond to the following questions:

• How can we effectively schedule the SPL system considering available power
and production rate constraints?

• What are the conditions for existence of feasible schedules?

• What are the conditions for accepting a DR request positively?

• If we accept a DR request positively, how much could we gain in terms of
monetary values?

To respond to the above questions, we proposed a novel scheduling algorithm
that adapts the power consumption of the SPL system to available power under
DR. The algorithms was coded in Deterministic Finite State Machine (DFSM).
The term deterministic refers to a deterministic action of either inserting a task
or not at a conveyor input in the SPL system. Through multiple illustrating
examples, we not only studied feasibility conditions for existence of schedules
but also showed DR acceptance conditions. Besides these conditions, we setup a
procedure on how to find optimal schedules under DR constraints. We have also
investigated the monetary gain of accepting DR requests and showed analytical
results of a specific SPL system configuration with 4 machines.

Alongside our DR scheduling algorithm, we also presented a use case of Open
Automated Demand Response (OpenADR) protocol which is a DR protocol for
communicating DR signals. In OpenADR, a Virtual Top Node (VTN) (e.g.,
utility grid) sends a DR requests to Virtual End Node (VEN) (e.g., electricity
customers) due to surge in total power consumption of the VTN’s premises. A
testbed is setup in METRON for implementing OpenADR and making it an
integral part of METRONLab platform.

5.2 Perspectives
We are sure that this thesis has opened up a lot of interesting questions and
further improvements can be investigated. As usual, we divide a non-exhaustive
list of perspectives into supply and demand sides as follows:

• In supply side:
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– Since the service curve models of DERs are offline approach, extending
it to an online approach is conceivable. In the online approach, the
system can adapt to real-time supply and demand,

– Regarding the smoothing algorithms (Gaussian-based, SMA and EMA),
we considered fixed smoothing parameters. An interesting extension
to this aspect could be finding optimal smoothing parameters given
battery size and allowable range of power fluctuations,

– Multiple days-ahead smoothing and energy losses due to conversion
could be interesting to incorporate into the smoothing algorithms.

• In demand side:

– Our queuing theory-based model can be extended to model other man-
ufacturing systems described in section 2.2.3 of chapter 2. Furthermore,
another queuing model could also be provisioned based on working
principles of the manufacturing systems,

– Our DFSM-based DR scheduling algorithm can be enhanced by fur-
ther studies and possibly extended to handle different manufacturing
systems,

– Another extension to our DR scheduling algorithm could be to add
some probabilities in the DFSM graph. This can handle a case where
the machines are unreliable and could fail with a given probability.
We have started working on it for while but cannot add to thesis
manuscript due to time limitations.

– As given in our work [Add+17a], a mixed-criticality approach (refer to
[Ves07] and [BD13]) is an interesting aspect to investigate how mixed-
criticality scheduling principles can be used to address DR scheduling
in production lines. Hence, it requires further study into the problem
formulation.

Collaborative works are also on the horizon that expand the theories and
practices of research developed during this thesis to other application areas:

• To further expand the scope of our DR scheduling algorithm, we are
investigating other domains where the algorithm can be applied. Application
of the algorithms to energy efficiency in data centers seems interesting
because data centers are one of immense energy consumers,

• After having fruitful discussions with Dr Rafik Zitouni (lecturer at Engi-
neering School of Paris - ECE Paris), applications of energy management
in DERs powered Road Side Unit (RSU) of Vehicular Networks seems
promising.
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Z Integers numbers: . . . ,−2,−1, 0, 1, 2, . . .
N Natural numbers: 0, 1, 2, . . .
R Real numbers
dxe Ceiling of x
bxc Floor of x
|x| Absolute value of x ( |x| = x if x >0 else -x)
||x|| Cardinality of x (i.e., number of elements in set x)
x⊗ y Convolution of functions x and y
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max Maximum
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W Watt (unit of power derived from joule per second)
Wh Watt-hour (unit of energy derived from joule)
Si(t) Service curve of energy resource i at time t
αi Service curve parameter of energy resource i (in kWh)
βi Service curve parameter of energy resource i (in kW)
N Total number of Renewable Energy Sources (RESs)
Pr(t) Selling or buying energy price at time t (in AC/MWh)
Esell(t) Sold energy volume at time t (in MWh)
Ebuy(t) Bought energy volume at time t (in MWh)
D(t) Energy demand at time t
b(t) Battery status (stored energy) at time t
ηc Charge efficiency of a battery
ηd Discharge efficiency of a battery
B Rated battery capacity (or maximum capacity)
Bmin Minimum battery level in terms of stored energy
P c

bat(t) Charge rate of a battery at time t
P d

bat(t) Discharge rate of a battery at time t
Echarge Charged energy volume to a battery
Edis Discharged energy volume from a battery
Ppv(t) Solar PV power at time t
Pwind(t) Wind power at time t
Pact(t) Actual power of solar and wind at time t
Psm(t) Smoothed power of solar and wind at time t
Z Smoothness measure of solar and wind powers
γ Desired power level difference between successive time slots
Ta Inter-arrival time of parts/tasks on a conveyor system
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n Sequence number of parts/tasks
Inst(n, Si) Arrival instant of part n at machine/station i
Ci Processing time of machine i
V Ci Virtual cell at position i
dist(V Ci, V Ci+1) Distance between V Ci and V Ci+1 virtual cell centers
K Number of virtual cells in a production line
Ki Position of machine Mi on a conveyor
M Number of machines in a production line
pi Power consumption of machine i when processing a task
ASi(t) Total number of arrivals at time t in station i
DSi(t) Total number of departures at time t in station i
NSi(t) Effective number of parts at time t in station i
USi(t) Utilization of station i at time t
ÛSi(t) Effective utilization of station i at time t
Pi(t) Power consumption of machine i at time t
Lj Available power at level j
∆ Amount of energy to be reduced in Demand Response (DR) interval
DDR Time between DR notification and start of DR
Γ Duration of DR (or DR interval)
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Glossary
ARIMA

Auto Regressive Integrated Moving Average (ARIMA) models are applied
to time series data in order to better understand the data or perform
forecasting of future data points. 125

BAS

In queuing systems, the Blocking After Service (BAS) mechanism allows a
job to be blocked upon service completion at a node until a downstream
node is available to process the job. 125

BESSs

Battery Energy Storage Systems (BESSs) are electrochemical storage
technologies. The most common BESSs are lead-acid and lithium-ion
batteries. 125

CPP

Critical Price Peaking (CPP) is a price-based Demand Response (DR)
mechanism in which prices for electricity during a specified time period is
substantially raised due to utilities’ anticipation of high wholesale market
prices or power system emergency conditions. 125

DERs

Distributed Energy Resources (DERs) are not limited to generations of
electricity by Renewable Energy Sources (RESs) but also include a device
to store energy. 125

DFSM

A Deterministic Finite State Machine (DFSM) is a deterministic version of
FSM (Finite State Machine) which is a mathematical model of computation.
In DFSM, state change is deterministic, i.e., transitions are only occurred by
few known conditions. For example, In our Synchronous Production Line
(SPL) model, transitions happen by inserting a task or not at a conveyor.
125

DoD

Depth of Discharge (DoD) describes how deeply the battery is discharged.
DoD uses percentage points (100% = empty; 0% = full). The DoD is the
complement of State of Charge (SoC): as one increases, the other decreases.
125
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DR
DR refers to changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over
time, or to incentive payments designed to induce lower electricity use
at times of high wholesale market prices or when system reliability is
jeopardized. 125

DSM
The Demand Side Management (DSM) encompasses systematic utility and
government activities designed to change the amount and/or timing of the
customer’s use of electricity for the collective benefit of the society, the
utility and its customers. 126

EE
Energy Efficiency (EE) involves technology measures that produce the
same or better levels of energy services (e.g., light, space conditioning,
motor drive power, etc.) using less energy. The technologies that comprise
efficiency measures are generally long-lasting and save energy across all
times when the end-use equipment is in operation. Depending on the timing
of equipment use, EE measures can also produce significant reductions in
peak demand. 126

EMA
An Exponential Moving Average (EMA), also known as an exponentially
weighted moving average (EWMA), is a type of infinite impulse response
filter that applies weighting factors which decrease exponentially. That is,
it gives more weights to recent values in a sliding window. 126

ESSs
Energy Storage Systems (ESSs) capture of energy generated at one time
for use at a later time. Common ESSs include mechanical, thermodynamic,
electromagnetic, and electrochemical storage systems. 126

FIFO
First In First Out (FIFO) is a service discipline where customers are served
according to their order of arrival to a system (e.g., queuing system). 126

IBR
Inclining Block Rate (IBR) divides the electricity price into blocks. The
1st block of electricity is at the lowest price. As the customer purchases
more electricity during a month, the electricity bought will eventually fall
in the 2nd block which is more expensive than price of the 1st block. 126
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IID

Random variables are said to be Independent and Identically Distributed
(IID) if each random variable has the same probability distribution as the
others and all are mutually independent. 126

MPP

The Maximum Power Point (MPP) is a point on a power curve of a
Photovoltaics (PV) system that has the highest value of the product of its
corresponding voltage and current, or the highest power output. 126

MPPT

Maximum Power Point Tracking (MPPT) is a technique used commonly
with solar PV system to maximize power extraction by tracking the sun.
The MPPT finds the MPP and keeps it there. 126

NC

Network Calculus (NC) a set of mathematical results which give insights
into man-made systems such as concurrent programs, digital circuits and
communication networks. It gives a theoretical framework for analysing
performance guarantees (e.g., delay and backlog) in computer networks.
We used the concepts of service curves in NC to model power production of
DERs. 126

NED

NEtworkDescription (NED) is the topology description language ofObjective
Modular Network Testbed in C++ (OMNET++). NED lets users declare
simple modules, and connect and assemble them into compound modules.
127

OMNET++

OMNET++ is a modular, component-based C++ simulation library and
framework, primarily for building network simulators. It is a discrete event
simulator. 127

OPC UA

Open Platform Communications Unified Architecture (OPC UA) is a plat-
form independent service-oriented architecture that allows communication
of machine to machine for industrial automation. 127
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OpenADR

Open Automated Demand Response (OpenADR) is a communications
data model designed to facilitate sending and receiving DR signals from a
utility or independent system operator to electric customers. 127

PCC

The Point of Common Coupling (PCC) is a point in the electrical system
where multiple electrical sources or loads may be connected. For instance,
the PCC circuit breaker connect or disconnect a microgrid to/from a utility
grid. 127

PV

PV is a term that refers to the conversion of sunlight into electricity using
semiconducting materials that exhibit photovoltaic effects. 127

RESs

RESs are naturally replenished energy resources such as solar, wind, waves,
etc. 127

RTP

Real-Time Pricing (RTP) gives consumers information about the actual
cost of electricity at any given time (every 15 minutes or one hour). It lets
consumers adjust their electricity usage accordingly, for example, scheduling
usage during periods of low demand to pay cheaper rates. 127

SMA

A Simple Moving Average (SMA) is an arithmetic moving average calcu-
lated by adding data points inside a sliding window and then dividing this
total by the window’s length. 127

SoC

SoC describes how full a battery is. The units of SoC are percentage points
(0% = empty; 100% = full). The SoC is the complement of DoD: as one
increases, the other decreases. 127

SoH

State of Health (SoH) is a measurement that reflects the general condition
of a battery and its ability to deliver the specified performance compared
with initial conditions of a battery. It takes into account such factors as
charge acceptance, internal resistance, voltage and self-discharge. 128
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SPL
The SPL is a manufacturing system where transfer of parts/tasks are
synchronous in which stations/machines start working simultaneously. 128

TOU
Time Of Use (TOU) tariffs apply different prices for electricity at different
times of the day. Mostly, time is divided into peak and off-peak. During
off-peak periods electricity prices will be cheaper than peak periods. 128

VEN
In OpenADR, Virtual End Node (VEN) acts as a client and it is used to
interact with the Virtual Top Node (VTN). 128

VTN
In OpenADR, VTN acts as a server and it is used to interact with the
resources enrolled in DR programs. 128

XMPP
XML Messaging and Presence Protocol (XMPP) is a communications pro-
tocol for message-oriented middleware based on XML (Extensible Markup
Language). It enables the near-real-time exchange of structured yet exten-
sible data between any two or more network entities. 128
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