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This thesis studies the computer vision problem of image registration in the context of geological remote sensing surveys. More precisely we dispose in this work of two images picturing the same geographical scene but acquired from two different view points and possibly at a different time. The task of registration is to associate to each pixel of the first image its counterpart in the second image.

While this problem is relatively easy for human-beings, it remains an open problem to solve it with a computer. Numerous approaches to address this task have been proposed. The most promising techniques formulate the task as a numerical optimization problem. Unfortunately, the number of unknowns along with the nature of the objective function make the optimization problem extremely difficult to solve. This thesis investigates two approaches along with a coarsening scheme to solve the underlying numerical problem.

Each approach makes use of a different assumption to simplify the original problem. The convex approach is computationally faster while the non-convex approach delivers more precise solutions. On top of both approaches, we investigate coarsening frameworks to speed-up the computations.

In our context, we study the First order Primal-Dual techniques for convex optimization. After a progressive introduction of underlying mathematics, we study the dual optimal solution space of the TV-regularized problems. We prove a new theorem that greatly facilitates the demonstration of previously established theorems. We also provide a new algorithm to optimize the famous ROF-model.

As a second approach, we survey the graph-cuts techniques. We also investigate different mincut-maxflow solvers since they are an essential building block of the graph-cuts techniques. We propose a new implementation of the celebrated Fast-PD solver that drastically outperform the initial implementation provided by original authors.

We also study coarsening methods for both optimization approaches. We experiment with image and energy pyramid coarsening scheme for graph-cut techniques. In this context we propose a novel framework that drastically speeds-up the inference run-time while maintaining remarkable accuracy.

Finally, we experiment with different remote sensing problems to demonstrate the versatility and efficiency of our approaches. Especially, we investigate the computation of depth maps from stereo-images acquired from aerial and space surveys. Using LiDAR acquisitions we also propose an algorithm to automatically infer the damages due to earthquakes and soil liquefaction. Finally, we also monitor the ground deformation induced by earthquake using realistic simulated model.

Résumé

Dans le contexte de la vision par ordinateur cette thèse étudie le problème d'appariement d'images dans le cadre de la télédétection pour la géologie. Plus précisément, nous disposons dans ce travail de deux images de la même scène géographique, mais acquises à partir de deux points de vue différents et éventuellement à un autre moment. La tâche d'appariement est d'associer à chaque pixel de la première image un pixel de la seconde image.

Bien que ce problème soit relativement facile pour les êtres humains, il reste difficile à résoudre par un ordinateur. De nombreuses approches pour traiter cette tâche ont été proposées. Les techniques les plus prometteuses formulent la tâche comme un problème d'optimisation numérique. Malheureusement, le nombre d'inconnues ainsi que la nature de la fonction à optimiser rendent ce problème extrêmement difficile à résoudre. Cette thèse étudie deux approches avec un schéma multi-échelle pour résoudre le problème numérique sous-jacent.

Chaque approche utilise une hypothèse différente pour simplifier le problème initial. L'approche convexe est plus rapide, tandis que l'approche non convexe offre des solutions plus précises. En plus des deux approches, nous étudions les schéma multi-échelle pour accélérer les calculs.

Dans notre contexte, nous étudions les techniques Primal-Dual de première ordre pour l'optimisation convexe. Après une introduction progressive des mathématiques sous-jacentes, nous étudions l'espace dual de solution optimale des problèmes régularisés par a priori tv. Nous prouvons un nouveau théorème qui facilite grandement la démonstration d'autres théorèmes précédemment établis. Nous proposons également un nouvel algorithme pour optimiser le célèbre modèle ROF.

Pour la seconde seconde approche nous examinons les techniques de graphcut. Nous étudions également différents algorithmes de mincut-maxflow car ils constituent un élément essentiel des techniques de graph-cut. Nous proposons une nouvelle implémentation du célèbre algorithme Fast-PD qui améliore drastiquement les performances.

Nous étudions également les méthodes multi-échelles pour les deux approches d'optimisation. Nous expérimentons les schémas de pyramide d'image et d'énergie pour les techniques graph-cut. Dans ce contexte, nous proposons une nouvelle approche qui accélère considérablement le temps d'exécution de l'inférence tout en conservant remarquablement la précision des solutions.

Enfin, nous étudions différents problèmes de télédétection pour démontrer la polyvalence et l'efficacité de nos approches. En particulier, nous étudions le calcul des cartes de profondeur à partir d'images stéréo aériennes et spatiales. En utilisant les acquisitions de LiDAR, nous proposons également un algorithme pour déduire automatiquement les dommages causés par les séismes et la liquéfaction des sols. Enfin, nous étudions également la déformation du sol induite par tremblement de terre en utilisant une simulation sismique réaliste.

Chapitre 1

Introduction partielle (en français)

Nous débutons ce chapitre en introduisant le contexte de nos travaux 2.1. Nous expliquons comment la télédétection est utilisée dans les études géologiques. En particulier, nous expliquons le lien avec la vision par ordinateur et plus particulièrement l'appariement d'images. Les travaux précédents sont présentés dans la section 2.2. Nous introduisons dans la section 2.3 le model mathématique utilisé dans ce document. Finalement, dans la section 2.4 nous présentons un résumé du contenu technique de cette thèse ainsi que nos contributions scientifiques.

Contexte

Vue du ciel

Le siècle dernier a connu un nombre croissant de techniques et de dispositifs pour observer la Terre. Un développement majeur est l'utilisation de satellites et d'avions équipés de capteur d'imagerie pour observer la Terre vue du ciel. Avec le développement des technologie spatiales, les satellites ont largement contribué à l'étude de la Terre et d'autres planètes telles que Mars. Nous disposons maintenant de nombreuses images haute résolution de multiple planètes et de leurs satellites naturels.

On peut classer les capteurs d'observation en deux familles principales. Les capteurs actifs tels que le LiDAR et le Radar enregistrent le reflet du signal qu'ils ont émis. Au contraire, les capteurs passifs tels que les caméras panchromatiques, couleurs ou hyper-spectrales enregistrent directement le signal émis par la scène observée.

Observing sensors Dans ce travail, nous étudions des acquisitions à partir de caméras panchromatiques et de capteurs LiDAR.

Photogrammetry La photogrammétrie est l'ensemble des techniques qui utilisent la photographie pour mesurer les distances entre les objets. De 1850 à 1900, le goniographe était l'outil de référence pour dessiner des cartes comme illustré par la figure 1.1. La photogrammétrie analogique utilisée de 1900 à 1960 s'appuie sur le concept de vision stéréo-métrique. Cependant, un opérateur exécutait toujours la tâche essentielle d'appariement comme illustré dans la figure 1.2. À partir de 1960, la disponibilité des ordinateurs a progressivement diminué la nécessité d'une implication humaine. À partir de 2000, la photogrammétrie moderne repose entièrement sur des données numérisées et requiert très peu d'intervention humaine. Pour plus de détails, nous proposons au lecteur curieux les travaux de [START_REF] Hallert | Photogrammetry, basic principles and general survey[END_REF], [START_REF] Gosh | History of photogrammetry[END_REF], [START_REF] Luhmann | A historical review on panorama photogrammetry[END_REF] et [START_REF] Honkavaara | Digital airborne photogrammetry-a new tool for quantitative remote sensing?-a state-of-the-art review on radiometric aspects of digital photogrammetric images[END_REF] pour une analyse historique, et [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] pour les fondements mathématiques. LiDAR La NASA a investi pendant les années 1970 dans le développement de techniques modernes de télédétection à base de laser. Cette étude initiale visait principalement à mesurer les propriétés de l'atmosphère et de l'océan, la canopée forestière ou les couches de glace. Dans les années 1990, l'accessibilité aux dispositifs de positionnement tels que GPS, Global Positioning System et les centrales inertielles, permet d'utiliser le LiDAR à des fins de cartographie. Enfin, dans les années 2000, les logiciels de traitement et la diminution du coût des infrastructures informatiques a fait du LiDAR un outil de cartographie précis et efficace, comme illustré dans les figures 1.3 and 1.4. Pour plus de details, nous conseillons la lecture de [START_REF] Sorin | Lidar remote sensing[END_REF], [START_REF] Emanuel | Airborne laser scanning: existing systems and firms and other resources[END_REF], [START_REF] Bindschadler | Monitoring ice sheet behavior from space[END_REF] et [START_REF] John | A survey of lidar technology and its use in spacecraft relative navigation[END_REF] pour une revue des technologies LiDAR et ses applications, mais également [START_REF] Emmanuel | Airborne laser scanning: basic relations and formulas[END_REF] pour une introduction des fondations mathématiques. Plateformes d'observation Les techniques d'observation de la Terre sont un sujet de recherche et de développement critique pour les forces militaires. Des données historiques [START_REF] Finnegan | Shooting the Front: Allied Aerial Reconnaissance and Photographic Interpretation on the Western Front-World War I[END_REF] indiquent l'utilisation de photos aériennes par British Royal Air Force à des fins de reconnaissance pendant la Première Guerre mondiale. Ces approches se sont généralisées lors de la seconde guerre mondiale [START_REF] John F Kreis | Piercing the fog: Intelligence and army air forces operations in world war 2[END_REF] et [START_REF] Meixner | Multi-temporal analysis of wwii reconnaissance photos[END_REF]. En conséquence, la photographie aérienne et la photogrammétrie ont bénéficié d'énormes progrès.

Le 7 mars 1947, une caméra montée sur une fusée allemande V-2 modifiée a capturé la première image de la Terre à partir de l'espace. Cependant, étant donné que la fusée ne pouvait atteindre qu'une altitude légèrement supérieure à 150 kilomètres, elle n'a pas pu mettre en orbite sa charge utile. Néanmoins, un panorama jusque-là inédit 1.5 a pu être créé en raccordant plusieurs images. Nous conseillons l'ouvrage [START_REF]Earth observations from space: The first 50 years of scientific achievements[END_REF] pour une perspective historique de l'imagerie spatiale.

Débutant en 1960, le programme TIROS [START_REF] Schwalb | The tiros-n/noaa ag satellite series[END_REF], Television InfraRed Observation Satellite, dirigé par la NASA, a prouvé l'efficacité des satellites d'observation pour étudier la Terre. L'objectif principal de ce programme était de développer un système d'information météorologique par satellite. Lancé le 1er avril 1960, TIROS-1 embarquait deux caméras de télévision 1.6 qui ont capturé des milliers d'images lors des 78 jours de mission 1.7. Une revue technique du satellite TIROS-1 est disponible dans [START_REF] Sternberg | Tiros i-meteorological satellite[END_REF].

Le succès du programme TIROS a été suivi de nombreuses autres missions importantes. Par exemple, le populaire programme Landsat [START_REF] Donald T Lauer | The landsat program: Its origins, evolution, and impacts[END_REF] qui a débuté au début des années 1970 est toujours en activité. Il offre à ce jour l'enregistrement global continu le plus long de la surface terrestre [106]. Des programmes commerciaux ou publics plus récents tels que Worldview, Pleiades ou DubaiSat offrent une qualité et une résolution d'imagerie sans précédent. De plus, l'agilité de petits satellites tels que la constellation RapidEye ou les satellites SkySat permet une réponse rapide à des demandes d'acquisitions.

Nous avons également observé au cours de cette dernière décennie une démo- cratisation progressive des drones, créant une troisième option pour l'imagerie vue du ciel. Cependant, à ce jour, les drones restent plus adaptés à une imagerie locale et très précise. Par conséquent, ils semblent moins adaptés à notre tâche où de vastes zones doivent être cartographiées. En conséquence, nous nous concentrons uniquement sur l'imagerie aérienne et satellitaire.

Précision : La cartographie générée par acquisition LiDAR est généralement plus précise et plus dense. Cela est dû au fait que le LiDAR mesure directement les distances alors que la photogrammétrie mesure indirectement les distances.

Photographie : Les techniques de photogrammétrie peuvent produire en plus de la cartographie une image de la scène. Nous notons que certains capteurs LiDAR sont associés avec la caméra pour produire également une image de la scène.

Couverture : Bien que des bases de données d'acquisition LiDAR existent, elles demeurent limitées par rapport aux bases de données de photogrammétrie.

Comme pour la comparaison entre la l'imagerie aérienne et satellitaire, l'application finale définit quel type d'acquisition est le plus approprié.

Applications à la géologie

Les géologues ont rapidement adopté l'utilisation de la photogrammétrie et des acquisitions de LiDAR comme illustré dans [START_REF] Donnellan | Gazing at the solar system: Capturing the evolution of dunes, faults, volcanoes, and ice from space[END_REF], [START_REF] Ravi | Remote sensing geology[END_REF] et [START_REF] Robert | Fundamentals of geological and environmental remote sensing[END_REF]. Nous examinons dans ces sections certaines de ces applications.

Cartographie de la topographie L'obtention d'une cartographie précise du paysage est extrêmement importante pour les géologues. Le modèle d'élévation numérique, DEM, peut être produit soit par des techniques de photogrammétrie, soit par traitement d'acquisitions de LiDAR [START_REF] Francis | Digital elevation model technologies and applications: the DEM users manual[END_REF]. Les DEM sont généralement des données d'entrée requises pour beaucoup de tâches différentes. Par exemple, les géologues peuvent surveiller l'évolution du paysage en profitant des bases de données d'images satellites. Le DEM aide également les géologues à préparer leur sondage sur le sol où seules des mesures éparses et locales peuvent être réalisées.

Catastrophes naturelles Les catastrophes naturelles se produisent de manière imprévisible et peuvent entraîner des dégâts et des pertes de vie. Ils perturbent généralement la surface terrestre et les environnements urbains comme expliqué dans [START_REF] Jaboyedoff | Monitoring natural hazards[END_REF]. Une mesure précise de cette perturbation ne permet pas seulement d'améliorer notre compréhension scientifique, mais également de mieux organiser les secours. En utilisant une série temporelle de DEMs acquises avant et après l'événement catastrophique, il est possible d'obtenir de précieuses informations.

Tremblement de terre Les caractéristiques du paysage et la déformation de la surface le long des failles actives fournissent des informations sur la tectonique [START_REF] Geli | The effect of topography on earthquake ground motion: a review and new results[END_REF]. Il existe différents types de failles comme illustré dans la figure 1.8. Les séismes sont généralement mesurés à l'aide de sysmomètres. Cependant, les stations GPS peuvent fournir une mesure précise mais locale de la déformation du sol [START_REF] Irwan | Measuring ground deformations with 1-hz gps data: the 2003 tokachi-oki earthquake (preliminary report)[END_REF]. Les progrès de la télédétection permettent également d'estimer cette déformation à plus grande échelle mais au détriment de la précision [START_REF] Leprince | Co-registration of optically sensed images and correlation (cosicorr): An operational methodology for ground deformation measurements[END_REF]. L'utilisation d'un DEM pré et post-événement permet aux scientifiques de créer des cartes de la déformation. Ces cartes peuvent ensuite être combinées avec des mesures GPS ou des relevés au sol. L'ensemble de ces mesures fournissent des données importantes pour modéliser la physique du système de plaques. Figure 1.9 -Diagramme de glissement de terrain, Propriété USGS.

Liquéfaction du sol La liquéfaction du sol est la déformation du relief induite par un stress extérieur tel qu'un tremblement de terre [START_REF]Committee on Earthquake Engineering and National Research Council (US)[END_REF]. Pendant la liquéfaction, le sol perd de sa rigidité conduisant à des dommages massifs. Par exemple, des bâtiments se sont inclinés lors du séisme de Niigata de 1964. La liquéfaction du sol est principalement un phénomène local. Par conséquent, des DEM de haute résolution sont nécessaires pour capturer cette déformation du relief.

Glissement de terrain Les glissements de terrain surviennent dans une masse de terre ou de roche d'une montagne ou d'une falaise, comme l'illustre la figure 1.9. Les géologues surveillent les glissements de terrain à trois niveaux [START_REF] Kovari | General report: methods of monitoring landslides[END_REF] :

• En identifiant quelles pentes risquent d'être instables [START_REF] Hervás | Monitoring landslides from optical remotely sensed imagery: the case history of tessina landslide, italy[END_REF]. Cela fournit les informations nécessaires pour la prévention et le renforcement strucuturel de la pente.

• En surveillant les pentes instables pour déclencher des avertissements quelques minutes ou secondes avant un glissement de terrain [START_REF] Jones | Monitoring landslides in hazardous terrain using terrestrial lidar: an example from montserrat[END_REF]. C'est une préoccupation majeure pour l'exploitation minière à ciel ouvert.

• En mesurant la déformation de la pente due à un glissement de terrain [START_REF] Mcdougall | Dynamic modelling of entrainment in rapid landslides[END_REF]. Cela permet d'étalonner et d'améliorer les modèles numériques de glissement de terrain.

Dans ce contexte, autant les acquistions LiDAR que la photogrammétrie haute résolution sont pertinents pour extraire les informations.

Phénomène naturel Bien que les désastres naturels provoquent une déformation soudaine du paysage, de nombreux phénomènes naturels modifient progressivement la topographie des planètes.

Déplacement des dunes Une dune est une colline de sable construite par le vent ou un flux d'eau. Les dunes se déplacent, évoluent, fusionnent ou se divisent en raison des forces éoliennes et de la forme du bassin rocheux [START_REF] Carolina | A study of moving sand dunes by means of satellite images[END_REF]. Les dunes existent non-seulement sur Terre, mais aussi sur Venus, Mars et Titan. À l'aide de séries temporelles de DEM de champs de dunes obtenus par photogrammétrie, des chercheurs ont récemment pu démontrer que Mars est une planète géologiquement active [START_REF] Silvestro | Ripple migration and dune activity on mars: Evidence for dynamic wind processes[END_REF]. Des études suivantes ont même été en mesure d'estimer les cycles climatiques à partir du mouvement des champs de dunes [START_REF] Ayoub | Measuring mars sand flux seasonality from a time series of hirise images[END_REF]. dense. Un problème d'appariement d'image dense est la tâche de trouver pour chaque pixel d'une image donnée son homologue dans une autre image. Selon l'application finale, le problème d'appariement aura un degré de liberté différent. Si les homologues doivent être sur une certaine ligne, nous obtenons un problème d'appariement mono-dimmensionnel. Si les homologues sont dans un plan donné, nous obtenons un problème d'appariement bi-dimmensionnel. Si aucune hypothèse n'est possible, nous avons un problème d'appariement tri-dimmensionnel.

Hypothèse sur les DEM

Comme nos observations proviennent d'un avion ou d'un satellite, nous proposons de transformer avec très peu de perte d'information le DEM acquis en une carte d'élévation d'image [START_REF] Krishnan | Evaluation of mapreduce for gridding lidar data[END_REF]. La position des pixels définit les coordonnées géographiques locales tandis que leurs intensités encodent l'élévation au-dessus d'une référence. Nous détaillons cela dans le chapitre 6.2.3 de cette thèse.

Appariement 1D

Pour la photogrammétrie aérienne, nous recevons deux images acquises par une caméra de type frame. Après avoir prise en compte la géométrie d'acquisition, le calcul de la carte d'élévation repose principalement sur la résolution d'un problème d'appariement dense 1D appelé appariement stéréo. Nous présentons dans la section 6.3 le concept d'appariement stéréo.

Appariement 2D

Pour la photogrammétrie satellitaire, nous recevons deux images acquises par un capteur de type push-broom. Cela complexifie la géométrie de l'acquisition. Par conséquent, le calcul de la carte d'élévation repose sur la résolution d'un problème d'appariement dense 2D. Nous en discutons dans la section 6.3.1.

Appariement 3D

Etant donné une série chronologique de cartes d'élévations du même paysage, nous pouvons effectuer un appariement 3D pour estimer la déformation induite par un phénomène d'intérêt. Dans ce contexte, les cartes d'élévations peuvent être produites par photogrammétrie ou par maillage d'une acquisition LiDAR. Nous en discutons dans la section 6.4.

Chapter 2

Introduction (English language)

We begin this first chapter by introducing in section 2.1 the context of our work.

In particular, we explain how remote sensing techniques are used for geological studies and how this relates to the computer vision task of image registration. We review in section 2.2 some of the past work. The section 2.3 describes the mathematical modeling we use through this document. Finally, in section 2.4 we present a summary of the technical content of this thesis and our contributions.

Context

Monitoring from above

The last century has seen an increasing number of techniques and devices to monitor Earth. One major development is the use of satellites and airplanes equipped with imaging sensors to monitor the Earth from above. With the development of space technology satellites have extensively surveyed Earth and other planets such as Mars with an increasing accuracy. We now dispose of many high resolution pictures of many planets and their natural satellites.

One can classify monitoring sensors in two main families. The active sensors such as LiDAR and Radar that record the reflection of the signal they emitted. On the contrary, the passive sensors such as panchromatic, color or hyper-spectral cameras directly record the signal emitted by the observed scene.

Observing sensors In this work we consider acquisitions from panchromatic cameras and LiDAR sensors.

Photogrammetry Photogrammetry refers to the set of techniques that use photography to measure the distances between objects. From 1850 to 1900, people relied on techniques such as those of the plane tables to draw maps. This is illustrated by figure 2.1. The analog photogrammetry which spanned the period from 1900 to 1960 relied on the concept of stereo-metric vision. However, an operator was still performing the essential registration task as depicted in figure 2.2. From 1960 the availability of computers progressively has decreased the need for human involvement. Starting from 2000's the modern photogrammetry completely relies on fully digitalized data and requires very little human intervention. For more detail, we refer the curious reader to [START_REF] Hallert | Photogrammetry, basic principles and general survey[END_REF], [START_REF] Gosh | History of photogrammetry[END_REF], [START_REF] Luhmann | A historical review on panorama photogrammetry[END_REF] and [START_REF] Honkavaara | Digital airborne photogrammetry-a new tool for quantitative remote sensing?-a state-of-the-art review on radiometric aspects of digital photogrammetric images[END_REF] for an historical review, and to [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] for an introduction to the mathematical foundations. LiDAR The NASA invested in the 1970s in the development of modern laser-based remote sensing acquisition techniques. This initial study was mainly aimed at measuring the properties of the atmosphere and the ocean water, the forest canopy or the ice sheets. In the 1990s the accessibility to positioning devices such as GPS, Global Positioning Systeme, and IMU, Inertial Measurement Unit, allowed to use LiDAR for mapping purposes. Finally, in the 2000s the availability of processing software coupled with the decreased cost of computing infrastructures made the LiDAR a precise and efficient mapping tool as illustrated in figures 2.3 and 2.4. For more detail, we refer the curious reader to [START_REF] Sorin | Lidar remote sensing[END_REF], [START_REF] Emanuel | Airborne laser scanning: existing systems and firms and other resources[END_REF], [START_REF] Bindschadler | Monitoring ice sheet behavior from space[END_REF] and [START_REF] John | A survey of lidar technology and its use in spacecraft relative navigation[END_REF] for a review of the technology and its application, and to [START_REF] Emmanuel | Airborne laser scanning: basic relations and formulas[END_REF] for an introduction to the mathematical foundations.

Observing platforms Earth observation techniques have been a major research and development study for military forces. Records indicate that aerial photos used by British R.A.F. for reconnaissance helped to review military tactics during World War I [START_REF] Finnegan | Shooting the Front: Allied Aerial Reconnaissance and Photographic Interpretation on the Western Front-World War I[END_REF]. Such practice was generalized during World War II [START_REF] John F Kreis | Piercing the fog: Intelligence and army air forces operations in world war 2[END_REF] and [START_REF] Meixner | Multi-temporal analysis of wwii reconnaissance photos[END_REF]. As a result aerial photography and photogrammetry made tremendous strides.

On March 7, 1947, a camera mounted on a modified German V-2 rocket captured the first picture of Earth from space. However, since the rocket could only reach an altitude slightly above 100 miles, it was unable to place into orbit its payload. Nevertheless, stitching several pictures together as illustrated in 2.5 created unseen before panoramas. We advise the reader to [START_REF]Earth observations from space: The first 50 years of scientific achievements[END_REF] for an historical perspective of imaging from space . Starting in 1960, the TIROS Program [START_REF] Schwalb | The tiros-n/noaa ag satellite series[END_REF], Television InfraRed Observation Satellite, directed by NASA proved the efficiency of observation satellites to study Earth. The main focus of this program was to develop a meteorological satellite information system. Launched on April 1, 1960, TIROS-1 embarked two television cameras 2.6 that captured thousands of pictures during its 78 days mission 2.7. A technical review of the TIROS-1 satellite is given in [START_REF] Sternberg | Tiros i-meteorological satellite[END_REF]. The success of the TIROS program was followed by many other important missions. For instance, the popular Landsat program [START_REF] Donald T Lauer | The landsat program: Its origins, evolution, and impacts[END_REF] that started in the early 1970s is still operating. It offers to this day the longest continuous global record of the Earth surface [106]. More recent commercial or public programs such as Worldview, Pleiades or DubaiSat offer unprecedented imaging quality and resolution. Moreover, the agility of small satellites such as the RapidEye constellation or the SkySat satellites allow for quick response to on demand acquisitions.

We also observed over the last decade a progressive democratization of drones, creating a third option for imaging from above. However, to this day drones remain more suited to very precise and local imaging. Hence, they appear less suited to our task where large areas need to be mapped. As a result we only focus on aerial and satellite imaging.

Aerial vs Satellite imaging Aerial and satellite imaging present different strong points and weaknesses as explained in [START_REF] Dd Gilbertson | Aerial photography and satellite imagery[END_REF] and [START_REF] Thurston | How does satellite imagery compare with aerial photography[END_REF]:

Coverage : aerial images are mainly gathered through the use of airplanes flying over the landscape of interest. This means that remote places can be difficult to survey with aerial imaging while satellite imaging generally offer a global coverage. Moreover, remote sensing satellite allows imaging of way larger landscapes than aerial survey.

Timing : the satellite orbits defines a time frame when a defined location can be imaged. Depending on the positions and the orbit cycle of the satellite constellation, the response to survey at a given location can take hours, days or even weeks. With proper planning an airplane can be at a certain location at the desired time. Moreover, if different locations need to be imaged at the same time one can always use more planes.

Weather : severe cloud coverage or rain nullify both types of acquisition. Since the light reaching the satellite is affected by the entire atmosphere, space survey tends to be more sensitive to the weather. For instance, aerial acquisitions are less likely to be affected by high altitude clouds.

Historical data : satellite imaging benefits from massive historical archives that sometimes allows observers to monitor the evolution of a desired location through time. Such large databases do not exist for aerial survey.

Image resolution : an aerial survey generally provides images with a resolution down to 6.50cm. Satellite survey captures images with resolution down to 50cm for the public viewing.

As it should always be, the final task is the one driving the choice between aerial and satellite imaging.

Photogrammetry vs Lidar Photogrammetry and Lidar mapping techniques present different benefits and drawbacks as detailed in [START_REF] Emmanuel | A comparison between photogrammetry and laser scanning[END_REF] and [START_REF] Paul L Basgall | Comparison of lidar and stereo photogrammetric point clouds for change detection[END_REF]:

Canopy penetration : LiDAR has the ability to penetrate even dense forest canopies [START_REF] Joshua R Ben-Arie | Development of a pit filling algorithm for lidar canopy height models[END_REF]. This allows the LiDAR to map with high accuracy the bare earth topography. The photogrammetry techniques have to rely on algorithms to remove the estimated canopy height [START_REF] St-Onge | Mapping canopy height using a combination of digital stereo-photogrammetry and lidar[END_REF].

Precision : As a rule of thumb, the mapping generated from LiDAR is generally more precise and dense. This is because the LiDAR directly measures distances while photogrammetry uses a proxy measurement (image registration) to estimate those distances.

Photography : The photogrammetry techniques can produce along with the mapping a picture of the scene. We note that some LiDAR are augmented with camera to also produce a picture of the scene.

Coverage : While LiDAR databases exist they do not compare in extent with photogrammetry databases.

As for the previous discussion comparing the aerial and satellite imaging, the final task will drive which type of acquisition is the most relevant.

Application to geology

Geologists and Earth scientists were among the early users of photogrammetry and LiDAR acquisitions as illustrated in [START_REF] Donnellan | Gazing at the solar system: Capturing the evolution of dunes, faults, volcanoes, and ice from space[END_REF], [START_REF] Ravi | Remote sensing geology[END_REF] and [START_REF] Robert | Fundamentals of geological and environmental remote sensing[END_REF]. We review in this sections some of their applications.

Mapping topography Obtaining precise mapping of the landscape is extremely important to geologists. Digital Elevation Model, DEM, can be produced using either by photogrammetry techniques or by processing LiDAR acquisitions [START_REF] Francis | Digital elevation model technologies and applications: the DEM users manual[END_REF]. DEMs are generally required inputs for a lot of different tasks. For instance, geologists can monitor the evolution of the landscape by taking advantage of the satellite images databases. DEM also helps geologists to prepare their ground survey where only sparse and local measurements can be made.

Natural hazards Natural hazards occur unpredictably and can cause widespread damage and loss of life. They usually disrupt the Earth surface or built environment as explain in depth in [START_REF] Jaboyedoff | Monitoring natural hazards[END_REF]. Accurate measurement of this disruption non only helps to improve our scientific understanding but allows to better organize the emergency response. Using a time series of DEMs spanning before and after the catastrophic event one can automatically derive precious information.

Earthquake Landscape features and surface deformation along active faults provide insights into faulting and tectonics [START_REF] Geli | The effect of topography on earthquake ground motion: a review and new results[END_REF]. There exists different type of faults as illustrated in figure 2.8. Earthquakes are generally measured using seismometers. However, GPS stations can provide accurate but local measurement of the ground deformation [START_REF] Irwan | Measuring ground deformations with 1-hz gps data: the 2003 tokachi-oki earthquake (preliminary report)[END_REF]. The progress of remote sensing imagery also allows to estimate this deformation at a larger scale at the expense of precision [START_REF] Leprince | Co-registration of optically sensed images and correlation (cosicorr): An operational methodology for ground deformation measurements[END_REF]. The use of a pre and post-event DEMs allows researcher to create maps of the deformation. Those maps can then be used to augment GPS point measurements or ground surveys. All those measurements provide important data to estimate the physical modeling of fault systems. Figure 2.9 -Landslide diagram.

Soil liquefaction Soil liquefaction is the deformation of the landscape induced by an external stress such as an earthquake [START_REF]Committee on Earthquake Engineering and National Research Council (US)[END_REF]. During liquefaction, The soil loses strength and stiffness creating massive damages. For instance buildings were tilted during the 1964 Niigata earthquake. Soil liquefaction is mainly a local phenomenon. Hence, high resolution DEMs are necessary to capture landscape deformation induced by soil liquefaction Landslides Landslides are sliding down of a mass of earth or rock from a mountain or cliff as illustrated by figure 2.9. Geologists monitor landslides at three levels [START_REF] Kovari | General report: methods of monitoring landslides[END_REF]:

• Identifying which slopes are likely to be unstable [START_REF] Hervás | Monitoring landslides from optical remotely sensed imagery: the case history of tessina landslide, italy[END_REF]. This provides the necessary information for prevention and potential structural reinforcement of the slope.

• Monitoring at high-frequency unstable slopes to trigger early landslide warnings [START_REF] Jones | Monitoring landslides in hazardous terrain using terrestrial lidar: an example from montserrat[END_REF]. This is a main concern for open-pit mining.

• Measuring the slope deformation due to a landslide [START_REF] Mcdougall | Dynamic modelling of entrainment in rapid landslides[END_REF]. This help to calibrate and improve numerical landslide models.

In this context, one can rely on LiDAR processing or high resolution photogrammetry to extract the pertinent information.

Natural processes While natural hazards trigger sudden deformation of the landscape, many slow natural processes progressively alter planets topography.

Motion of dunes A dune is a hill of loose sand built by wind or the flow of water. Dunes move, evolve, merge or divide due to eolian forces and the shape of the bed rock [START_REF] Carolina | A study of moving sand dunes by means of satellite images[END_REF]. Dunes non-only exist on Earth but also on Venus, Mars and Titan. Using time series of DEMs of dune fields obtained with photogrammetry, researchers have recently been able to demonstrate that Mars is geologically active [START_REF] Silvestro | Ripple migration and dune activity on mars: Evidence for dynamic wind processes[END_REF]. Furthermore, follow-up studies were even able to estimate climate cycles from the motion of dune fields [START_REF] Ayoub | Measuring mars sand flux seasonality from a time series of hirise images[END_REF]. Motion of glaciers and ice Glaciers are of critical importance since they provide large quantity of drinking water in some areas. Understanding the changing mass balances of mountain glaciers and snow packs is crucial for mitigating impacts to water supplies, sea level, and hazards from outburst floods and avalanches. Moreover, accurate prediction of future mass balance changes requires an understanding of the nature and rate of glacier response to various forces. Changes in precipitation, temperature, solar input and surface contaminants contribute to glaciers advance and retreat. By nature, glaciers are difficult to access. Hence, remote sensing provides a handy observation technique. Using time series of DEMs, one can track the motion of glaciers or the change in ice coverage [START_REF] Scherler | Glaciersurface velocities in alpine terrain from optical satellite imagery-accuracy improvement and quality assessment[END_REF].

An image registration problem

From a modeling standpoint, we can formulate the monitoring of natural hazards and processes as a dense image registration problem. A dense image registration problem is the task of finding for each pixel of a given image its counterpart in an other image. Depending on the task the registration problem will have different degrees of freedom. If we know that the counterparts have to be on a certain line we get a 1D registration problem. If the know that the counterparts are on a given plane, we end-up with a 2D registration problem. If no assumption can be made, then we have a 3D registration problem.

Assumption for DEM

Since our observations originate from a plane or a satellite, we propose to transform with very little loss of information the acquired DEM to an image elevation map [START_REF] Krishnan | Evaluation of mapreduce for gridding lidar data[END_REF]. The position of the pixels refers to local geographic coordinates while their intensities encode the elevation above a reference. We detail this in the chapter 6.2.3 of this thesis.

1D Registration

For aerial photogrammetry we are given two images acquired by a frame camera. After accounting for the geometry of acquisition, the computation of the elevation map mainly relies on solving a 1D dense registration problem called stereomatching. We will in the last chapter 6.3 present the stereo-matching concept.

2D Registration

For satellite photogrammetry we are given two images acquired by a push-broom sensor. This complexifies the geometry of acquisition. Hence, the computation of the elevation map relies on solving a 2D dense registration problem apparent to optical-flow. We will discuss this in the last chapter 6.3.1.

3D Registration

Given a time series of elevation maps of the same landscape, we can perform a 3D registration to estimate the deformation induced by a phenomenon of interest. In this context the elevation maps could have been produced by photogrammetry or by griding a LiDAR. We will discuss this in the last chapter 6.4.

Reviewing previous work

Dense image registration has been extensively studied since the inception of computer vision. We can find dense image registration problems in many fields such as medical and biology imagery, planetary sciences, industrial verification or video surveillance. We point the curious reader toward [START_REF] Brown | A survey of image registration techniques[END_REF], [START_REF] Zitova | Image registration methods: a survey[END_REF], [START_REF] Roger D Eastman | Survey of image registration methods[END_REF] and [START_REF] Francisco | Medical image registration: a review[END_REF] for an extensive review on image registration.

Priors

Independently on their approach, all registration methods try to enforce a matching prior and a regularization prior.

Matching priors

The goal of the matching prior is to measure the similarity between parts of two images. There exist many different approaches as illustrated in [START_REF] Ardeshir | Image registration: Principles, tools and methods[END_REF], [START_REF] Chen | Similarity measurement between images[END_REF], [START_REF] Charles | Measures of similarity between two images[END_REF], [START_REF] Sabater | Meaningful matches in stereovision[END_REF], [START_REF] Sabater | How accurate can block matches be in stereo vision[END_REF] and [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF]. The simplest technique is to directly compare the value of pixels, eventually on a patch centered around the points of interest. More advanced technique computes descriptors that encode non only the information contained by the pixel of interest but also its neighborhood. These descriptors or features are then compared to estimate a similarity score. Unfortunately, relying only on matching priors is insufficient to register images. For instance, noisy regions or geometric deformations deteriorate the quality of the similarity estimation. Moreover, texture-less areas or repetitive patterns create ambiguities. Finally, in some context some pixels have no corresponding counterparts due to occlusion.

Regularization priors

The role of the regularization prior is to enforce some a-priori information on how the pixels should register. In most tasks, one can assume that the geometric transformation that registers the images should follow some structure. The regularization priors simply define the properties that geometric transformations should follow. This helps to correct some of the errors or uncertainty of the matching prior. The most popular regularization favors geometric transformation that have a smooth gradient. The choice of the regularization priors mainly depends on the task and the ability to enforce it to a desired accuracy. One can refer to [START_REF] Gary | Consistent image registration[END_REF] and [START_REF] Sotiras | Deformable medical image registration: A survey[END_REF] for examples of different regularization priors in the context of image registration.

Framework

We distinguish two main frameworks to enforce both the matching and regularization priors. While both frameworks have the same intent, their theoretical foundations differ.

Heuristic framework

The heuristic based framework relies on alternate application of heuristics to enforce the priors. Generally, the matching prior is enforced first giving a noisy and possibly sparse estimation of the registration. Then, the regularization prior is applied to obtain a dense and denoized registration. For instance, the median filter has been extensively used as a regularization prior. Eventually, one can proceed with multiple rounds of alternating between the priors. The decoupling of the prior's enforcement in successive steps leads to simple algorithm. However, in this setting it is unclear what is globally enforced. Indeed, alternating between priors is different than directly enforcing both priors at the same time.

Optimization framework

The optimization based framework formulates the registration task as an energy minimization problem. This framework makes use of a global energy obtained by modeling both priors with their respective energies. The main challenge remains to find a registration that minimizes this energy. We remind that one can link an energy to a probability through the use of Gibb's free energy function. Hence, the energy minimization problem is in fact equivalent to finding the most probable registration given the inputs. This connection gives strong theoretical foundation to this framework. Moreover, in some cases, the optimization problem can generalize a heuristic. For instance, it is well known that the median filter is equivalent to solving a certain 1 -norm problem. This framework gives more precise results than its heuristic base counterpart (see an example in the context of 2D image registration [START_REF] John L Barron | Performance of optical flow techniques[END_REF]). However, this comes with an added computational complexity. In this work, we will investigate different approaches for the optimization framework.

An approximate modeling

Mathematical modeling

We now assume that we are given two images: a reference image and a target image. The goal of the dense image registration task is to find for each pixel of the reference image its counterpart in the target image. Without loss of generality we can model this problem as finding the apparent pixel motion between the reference image and the target image.

Notations We introduce the following notations:

• Ω is the finite set t1, . . . , nu with n P N ˚that represents the pixels of the reference image.

• X i with i P Ω is a convex subset of R d with d P N ˚that defines the admissible range of motions for a given pixel.

• X is a convex subset formed by X 0 ˆ. . . ˆXn : that represent the admissible registrations.

• x is an element of X and represents a potential registration.

• x i is the i th element of x and represents the motion of a given pixel.

• M i : x i P X i Ñ R encodes the matching prior as an energy.

• L is a continuous linear operator mapping space X to a vector space Y that encodes the dependency between the pixel motions. This is the first part of the regularization prior.

• R : y P Y Ñ R encodes as an energy the second part of the regularization prior.

Optimization model We now need to optimize the following model:

arg min xPX ÿ iPΩ M i px i q `RpLxq (2.1)
This mathematical problem is extremely difficult to solve. Indeed, the objective function exhibits the following properties:

• Non convexity: there is no convexity assumption on the functions pM i q i and R, hence the objective function can be non-convex.

• Non smoothness: there is no smoothness assumption on the functions pM i q i and R, hence the objective function can be non-smooth.

• Continuous variables: we assume that each variable x i lives in a continuous convex space.

• High order terms: the operator L can create dependencies between variables in sub-sets of x.

• Large number of variables: since we work in the image registration context, the size of x is in the order of millions of elements.

For all these reasons, the problem (2.1) is generally NP-hard and only approximate solution may be sought. Notice however that in practice an approximate solution is good enough because there is no guarantee that the mathematical model is entirely faithful to the reality.

Approximations

Directly attempting to solve (2.1) is extremely challenging. We need to make further assumptions on the objective function to decrease its optimization complexity. By using various simplification strategies we obtain different classes of optimization problems that become tractable. However, this simplification makes the modeling of the registration task less accurate.

Discarding non convexity

We propose to use convex functions to approximate the matching and regularization functions pM i q i and R around the current solution. The quality of the approximation generally quickly deteriorates with an increased distance to the current solution. However, this approximation gives us a convex function that represents locally the original objective function. In this settings we can use various optimization schemes.

Majorization minimization

The majorization minimization scheme relies on using a convex surrogate function [START_REF] David | A tutorial on mm algorithms[END_REF]. The surrogate function needs to coincide with the objective function at the current solution and should majorize the objective function everywhere else. Since we have some freedom to define the surrogate function, we have interest to choose one that is easy to minimize. The most appealing surrogate functions are those that can be minimized with a close-form formula. The minimization of the surrogate function gives a new solution. We iterate between these two steps until no further progress can be made.

The majorization minimization scheme is easy to apply and implement. However, it suffers of two main drawbacks. If the function is not smooth, then this scheme can terminate in a sub-optimal solution. Moreover, the convergence rate generally slows drastically when it approaches a minimum solution.

Splitting techniques

The splitting techniques rely on auxiliary variables that are introduced to decouple the matching and regularization parts of the energy (see [START_REF] Patrick | Proximal splitting methods in signal processing[END_REF] and [START_REF] Patrick | A douglas-rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] for a detailed introduction). In our context, this means to add a set of variables y in place of the term Lx. Then, an additional constraint is added to the objective function to enforce that y " Lx. We can use penalty terms, Lagrangian multipliers or ADDM, Alternating Direction Multiplier Method, schemes to enforce this new constraint. This creates different splitting techniques. In most cases the splitting scheme alternates between 3 optimizing steps: optimizing the matching variables x, optimizing the regularization variables y, and enforcing the constraint y " Lx.

The splitting techniques scheme is generally more difficult to apply and implement than the majorization minimization scheme. However, this scheme has the ability to minimize non smooth functions. Unfortunately, enforcing the constraint slows down the convergence of the splitting techniques.

Primal-dual techniques

The primal dual scheme of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] relies on the concept of duality to add auxiliary variables that dynamically approximate the regularization function R by a set of linear terms. In our context, this means to add a set of variables y that model RpLxq by the scalar product ă y, Lx ą. We notice that the auxiliary variables make the optimization over each x i independent. Hence, the optimization over x is easy as long as the functions pM i q i are reasonably complex. This creates a very appealing scheme where we iterate between minimizing for each x i and update the variable y to get a better approximation.

The primal dual scheme can handle non-smooth objective functions and has superior convergence properties than the splitting techniques. For these reasons we elect to choose the primal-dual scheme.

Discretization of the solution space and first order regularization

Another approach to simplify the problem (2.1) is to discretize the solution space X and to limit the linear operator L to a first order operator like a gradient. These two assumptions make the problem (2.1) belong to the class of first order pairwise MRF, Markov Random Field if the regularization function R does not rely on input images, or CRF, Conditional Random Field if it does. In this context, we can use different optimization schemes. Unfortunately, even with this simplification the problem remains generally NP-Hard. Hence, we are only guaranteed to obtain an approximate solution.

Message passing

The message passing method builds on dynamic programming schemes (see [START_REF] Murphy | Loopy belief propagation for approximate inference: An empirical study[END_REF] and [START_REF] Yedidia | Generalized belief propagation[END_REF] for a detailed introduction). It relies on propagating information through the variables to update their respective probabilities of being assigned to a given discrete value. There exist many approaches to propagate the information. However in the context of image based problems, the belief propagation with the checkerboard update rule of [START_REF] Pedro | Efficient belief propagation for early vision[END_REF] and the treereweighted message passing scheme of [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF] obtain the best results. Moreover, if the problem takes the form of a chain we can use the famous Viterbi algorithm [START_REF] Forney | The viterbi algorithm[END_REF] to compute an optimal solution.

The message passing unfortunately does not always obtain good approximations as demonstrated in [START_REF] Szeliski | A comparative study of energy minimization methods for markov random fields with smoothness-based priors[END_REF] and [START_REF] Kappes | A comparative study of modern inference techniques for discrete energy minimization problems[END_REF]. Moreover, the procedure of these algorithms is quadratic with respect to the average number of discrete possible values for variables px i q i . We note that for some regularization functions R, this complexity can be reduced to a linear one as explained in [START_REF] Felzenszwalb | Distance transforms of sampled functions[END_REF].

Dual decomposition

The dual decomposition scheme relies on duplicating some variables of the original problem to obtain a set of sub-problems that can be optimally solved. The duplicated variables are constrained through the use of auxiliary variables to converge to the same discrete value. This scheme alternates between solving each sub-problem and updating the auxiliary variables to enforce the constraints. Two main variations exist. The original dual decomposition algorithm of [START_REF] Komodakis | Mrf energy minimization and beyond via dual decomposition[END_REF] used Lagrangian multipliers to enforce the constraints while the alternative direction dual decomposition algorithm of [START_REF] André | Ad3: alternating directions dual decomposition for map inference in graphical models[END_REF] makes use of the ADMM scheme. In our context the most natural and efficient decomposition is to create a chain per line and column.

The dual decomposition scheme obtains excellent approximations as demonstrated in [START_REF] Komodakis | Mrf optimization via dual decomposition: Message-passing revisited[END_REF]. However, it is slow to converge since it has the same complexity as the underlying algorithm used to solve the sub problems. Moreover, many iterations are needed to enforce the constraint on the auxiliary variables.

Graph-Cuts

The Graph-Cuts approach of [START_REF] Boykov | Graph cuts in vision and graphics: Theories and applications[END_REF] also known as the making move approach, relies on iteratively updating a current solution by solving a binary problem. During an iteration, each variable can choose between maintaining its current solution or choosing a proposed one. By cycling the proposed solution through the list of admissible discrete solutions, the making move approach progressively obtains a better solution. Interestingly, the associated binary problem is in fact a maxflow-mincut problem which can be solved very efficiently. Different approaches exist and result in different making move algorithms such as [START_REF] Boykov | Markov random fields with efficient approximations[END_REF], [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF] or [START_REF] Schmidt | Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves[END_REF].

The making move proposes a good balance between speed and the quality of approximations. Moreover, the complexity of algorithm such as the alpha expansion of [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF] and Fast-PD [START_REF] Komodakis | Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies[END_REF] is linear with respect to the average number of discrete possible values for variable px i q i . For these reasons we elect to investigate the alpha expansion and Fast-PD .

Thesis overview

Document organization

Besides the current introduction and conclusion, this manuscript articulates around three technical chapters 3, 4, 5 and one applications chapter 6.

First order Primal-Dual techniques for convex optimization In this first technical chapter 3 we start with the basis of convex optimization. We follow with a didactic review of first order primal dual scheme for convex optimization. Then, we study the dual optimal space of TV regularized problems. Finally, we perform experiments to illustrate the techniques presented in this chapter.

Coarsening schemes for optimization techniques

The last technical chapter 5 compares various coarsening schemes for the first order Primal-Dual techniques and graph cuts schemes. We also introduce a new pyramidal scheme for graph cuts that drastically speeds-up the computation without compromising on the quality of the obtained solutions.

Applications The last chapter of this manuscript 6 revolves around the applications of techniques presented in chapters 3, 4 and 5. We perform experiments with tasks such as stereo-matching, monitoring Earth crust deformation and damage detection due to an earthquake.

Contributions

We present here a summary of our contributions that we further detail in each technical chapter.

First order Primal-Dual techniques for convex optimization We derive theorems that explain how dual optimal solution spaces relate to one another for TV regularized problems. This understanding helps to derive a new proof to a variety of theorems.

Maxflow and Graph cuts techniques

We completely re-implemented the Fast-PD algorithm to obtain a drastic reduction of the memory footprint while providing faster run-time. This allows us to use Fast-PD on large scale problems on a modern laptop computer.

Coarsening scheme for optimization techniques We propose a coarsening scheme that speeds up the optimization of Graph-Cuts techniques. We extend this coarsening scheme with a novel framework that drastically speeds-up the inference run-time while maintaining remarkable accuracy. The underlying mathematical mechanism can appear quite frightening at first glance, with terms such as "Moreau envelope", "Proximity operator" or "Flenchel transform". However, the framework is in fact fairly easy to understand. A large quantity of published materials or technical reports extensively cover the subject. As a personal preference, I would recommend the seminal paper of Chambolle and Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] for its clarity and exhaustive list of experiments related to computer vision. Another great source of information is the technical report of Parikh and Boyd [START_REF] Parikh | Proximal algorithms[END_REF] that covers in more depth the proximal operators.

List of publications

Finally, implementing a first order primal dual algorithm is relatively straightforward on both CPU and GPU based architectures. For instance, the core of the Mincut/Maxflow algorithm is only 10 lines of Matlab code and barely more in C++. Furthermore, many components can be reused from one algorithm to the next, which makes this technique well suited for quick prototyping or modular framework.

Chapter organization

In section 3.2 we introduce the basics of convex optimization and we describe the problems of interest. We progressively explain and detail in section 3.3 the different components of the first order primal dual algorithms. The section 3.4 presents frequently used proximal operators and Fenchel transformations. In section 3.5 we introduce various TV-regularized problems and we study the relationship between the optimal dual solution spaces of the TV-regularized problems. The section 3.6 illustrates the application of the first order primal dual techniques with different examples.

Contributions

In this chapter we demonstrate some TV regularized problems share a particular connexion through their optimal dual solution space. We prove that there exists a hierarchy of optimal dual solution spaces connecting the ROF model to a linear TV model. Furthermore, we establish that the intersection of the optimal dual solution space of a set of ROF models defines the optimal dual space of some linear TV model. To the best of our knowledge these are new results.

Building on these theorems, we state and prove a generalization of the Friedmann's theorems for Fused Lasso approximation. We also propose a new proof for quickly finding the solution of a ROF model with various global regularization terms. Finally, we introduce a new primal-dual formulation to solve the ROF model that experimentally outperform the traditional primal-dual scheme.

Problem formulation

Basics of convex optimization in a tiny nutshell

As a preamble, we remind some mathematical definitions useful in the context of this chapter. For an extended introduction on convex optimization, we refer the curious reader to Fundamentals of Convex Analysis by Hiriart-Urruty and Lemaréchal [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF], Convex Optimization by Boyd and Vandenberghe [START_REF] Boyd | Convex Optimization[END_REF] or Optimization. Applications in image processing. by Nikolova [START_REF] Nikolova | Optimization[END_REF] from which we borrow the following definitions and theorems.

Existence of minimums

Before even thinking of searching for the minimums of a function, we need to establish the conditions of their existence. To this end, we need the following definitions: Definition 1. A function f on a normed real vector space V is proper if f : V Ñ s´8, `8s and if it is not identically equal to `8. Definition 2. A function f on a normed real vector space V is coercive if lim }u}Ñ`8 f puq " `8. Definition 3. A function f on a real topological space X , say f : V Ñ s´8, 8s is lower semi-continuous (l.s.c.) if @λ P R the set tu P V : f puq ď λu is closed in V . Now, we can state the following theorem: Theorem 1. Let U Ă R n be non-empty and closed, and f : R n Ñ R be l.s.c. and proper. In the case that U is not bounded, we also suppose that f is coercive. Then, Dû P U such that f pûq " inf uPU f puq.

Gradient and subgradient

For the following definitions we assume that V is normed real vector space. Definition 4. A function f : U Ă V Ñ R is said differentiable at v P U if the following limit exists:

lim hÑ0 f pv `hq ´f pvq h (3.1) Definition 5. A function f : U Ă V Ñ R is smooth if it is differentiable @u P U . Definition 6. A function f : U Ă V Ñ R is not smooth if Du P U where f is not differentiable.
When f is not smooth we can extend the notion of derivative with subderivative (also refereed to as subgradient): Definition 7. The subderivative of function f : U Ă V Ñ R at u P U is the set of p P R verifying @v P U :

f puq ´f pvq ě p, u ´v (3.2)
We note Bf puq the subderivative of f at u P U .

Convexity

Let us properly introduce the notion of convexity for spaces and functions.

Definition 8. Let V be any real vector space. U Ă V is convex if @pu, vq P U ˆU and @θ P s0, 1r, we have: θu `p1 ´θqv P U.

(3.3) Definition 9. A proper function f : U Ă V Ñ R is convex if @pu, vq P U ˆU and @θ P p0, 1q, we have:

f pθu `p1 ´θqvq ď f puq `p1 ´θqf pvq (3.4)
f is strictly convex when the inequality is strict whenever u ‰ v.

The space of strong convex functions is a subset of convex functions.

Definition 10. A proper function f : U Ă V Ñ R is strongly convex with convexity parameter α P R `if @pu, vq P U ˆU and @p P Bf pvq we have:

f puq ě f pvq`ă p, u ´v ą `α 2 }u ´v} 2 2 (3.5)
The uniform convexity generalizes the concept of strongly convex function:

Definition 11. A proper function f : U Ă V Ñ R is uniformly convex with modulus φ if @pu, vq P U ˆU and @t P r0, 1s we have:

f ptx `p1 ´tqyq ď tf pxq `p1 ´tqf pyq ´tp1 ´tqφp}x ´y}q (3.6)
where φ is a function that is increasing and vanishes only at 0.

Characterization of minimums in convex optimization

Supposing that the condition stated in theorem 1 are met, we can define the properties that characterize minimums for convex functions defined on a convex set. We now state a central theorem in convex optimization:

Theorem 2. For U Ă V a convex space and f : U Ă V Ñ R a proper l.s.c. convex function.

1. If f has a local minimum at û P U , then it is a global minimum w.r.t U .

2. The set of minimizers of f w.r.t U is convex and closed.

3. If f is strictly convex, then f admits at most one minimum.

4. If f is also coercive or U bounded then he set of minimizers of f w.r.t U is non empty.

We note that the theorem 2 makes use of all hypotheses of theorem 1 and adds the key hypothesis of convexity.

Problem of interest

As stated in the introduction chapter our goal is to optimize functions of the following prototype:

arg min xPX ÿ iPΩ M i px i q `RpLxq (3.7)
with:

• Ω the finite set t1, . . . , nu with n P N ˚.

• X is a convex subset of R n .

• x is a vector of X .

• x i is the i th element of x.
In this chapter, we assume the following hypotheses:

• All functions M i : • L is a continuous linear operator mapping space X to Y.

x i P R d Ñ R
• R : y P Y Ñ R is a (not necessarily smooth) proper l.s.c. convex function over Y.

As a sum of proper l.s.c. convex functions, the function ř iPΩ M i px i q `RpLxq is a proper l.s.c. convex function over X . Hence, it admits at least one minimizer w.r.t. X 2, which is unique in the case of strict convexity. We call (3.7) the primal formulation of our problem.

From a primal to a primal dual form

Solving (3.7) presents two main challenges. First, if any of the tM i u and R functions is not smooth, the problem (3.7) is not a smooth optimization problem. Consequently, we need a technique that is not solely based on pure gradient descent. Secondly, the linear operator L and the function R generally couple the variables of x, i.e., elements of x interact one with another. This, again, makes the optimization harder.

However, by exploiting two brilliant yet simple ideas, primal dual optimization techniques overcome the stated challenges. For the lack of smoothness, we optimize a slightly different problem than (3.7) by operating on the Moreau envelope of ř iPΩ M i px i q `RpLxq. It turns out that the Moreau envelope of any convex function is always smooth and shares the exact same set of minimizers. For the coupling of variables, we proceed by computing the Fenchel Conjugate of R. This removes the coupling at the cost of adding a new set of variables named dual variables. These two ideas, using the Moreau envelope and applying the Fenchel transformation, are instrumental in establishing a fast iterative optimization algorithm. They transform (3.7) into a saddle point smooth problem where each variable x i can be optimized independently. Definition Given a proper lsc convex function F : X Ă V Ñ R, the Moreau envelope [START_REF] Moreau | Propriétés des applications "prox[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] constructs a smoothed version of function F where the degree of smoothing is controlled by a parameter τ P R `. The Moreau envelope is defined as the unique solution of the optimization problem:

First order Primal Dual techniques

M F,τ pxq " min xPX F pxq `1 2τ }x ´x} 2 2 . (3.8) 
We note that this problem is smooth and it admits a unique minimizer due to the added smoothing 2 norm term. Moreover, the domain of function M F,τ is V independently of the initial domain X of function F .

At this stage, it is important to remind that a strictly convex optimization problem can still be very hard to solve. As a rule of thumb, if F is a difficult function to optimize, its Moreau envelope might still be challenging to compute. However, for a lot of interesting functions such as the 1 or Huber norm, one can derive close form formulas for the Moreau envelope. (3.9)

We also make use of the proximal function:

P τ F px, xq " F pxq `1 2τ }x ´x} 2 2 .
(3.10) Some properties of the Moreau envelope From figure 3.1 we see that optimizing F or its Moreau envelope leads to the same minimizer. This is a critical property of the Moreau envelope. One can easily prove the following properties [START_REF] Lemaréchal | Practical aspects of the moreau-yosida regularization: Theoretical preliminaries[END_REF] for any proper lsc convex function F , for any smoothing factors τ P R `and for any point x P X :

min xPX F pxq ď M f,τ pxq (3.11) M f,τ pxq ď F pxq (3.12) M f,τ pxq " F pxq ðñ x " arg min xPX F pxq (3.13)
Hence, minimizing the Moreau envelope of the function F provides an enticing alternative to the direct optimization of F . Fixed point of the proximal operator One can demonstrate that by iteratively composing [START_REF] Parikh | Proximal algorithms[END_REF][START_REF] Rockafellar | Convex Analysis. Princeton landmarks in mathematics and physics[END_REF] the proximal operator, we converge to a fixed point that is a minimizer of the function F . The reasoning follows these lines:

• Equation (3.12) states that iteratively applying the proximal operator leads to a sequence of points of decreasing value.

• Equation (3.11) provides a lower bound for the sequence. This guarantees the convergence of the sequence to a fixed point.

• Finally, (3.13) states that if a stationary point of X is found, it is a minimizer of F .

Hence, the proximal operator provides a very powerful method to optimize F . Computing the proximal operator associated to F remains the only difficulty. Some properties of the proximal operator In the subsequent paragraphs, we introduce some other important properties of proximal operators. The curious reader can find proofs in [START_REF] Parikh | Proximal algorithms[END_REF]. We make use of the following notations:

• G : R Ñ R is a mono-dimensional proper convex function.

• a a vector of R d .

• α and β are real scalars,

• λ is a strictly positive scalar.

• x is a multi-dimensional variable of R d .
• y is a mono-dimensional variable of R.

Postcomposition If x P R and F pxq " αGpxq `β, then: Affine addition If x P R and F pxq " Gpxq `αx `β, then:

prox τ F pxq " prox ατ G pxq (3.14)
prox τ F pxq " prox τ G px ´τ αq (3.15)
This property is very handy for the primal dual algorithm.

Affine reduction If F pxq " Gpa T x `βq, then:

prox τ F pxq " prox τ G pa T x `βqa (3.16)
with τ " τ {a T a. This property is instrumental in computing the proximal operator for 2D and 3D registration problems.

Sum of functions

The proximal operator is not a linear operator. Consequently, calculating the proximal operator of the sum of functions is generally computationally expensive even if the proximal operator of each function composing the sum is simple. However, in the latter case, one can take advantage of the ADMM technique to compute the proximal operator by formulating the optimization as a consensus problem [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] 

Decoupling: Fenchel transform

The coupling issue Another difficulty of our optimization problem (3.7) is the coupling of variables px i q due to the linear operator L and the function R. Combined to the eventual non smoothness of R, this imposes to optimize all variables x i jointly. The figure (3.3) illustrates the problem.

One solution is to smooth the objective function R to make corners disappear. However, this changes the objective function as seen in figure 3.4 which might not be desirable. Using the Moreau envelope is generally computationally very intensive in general because, as seen in Section 3.3.1, the proximal operator is not an additive function. The first order primal dual technique relies on the Fenchel transformation of [START_REF] Fenchel | On conjugate convex functions[END_REF] to decouple the variables. This transformation comes with the cost of adding new variables, named dual variables, to the optimization problem (3.7). The Fenchel transform augments (3.7) to a saddle point optimization problem, i.e., a convex minimization problem for the primal and a concave maximization problem for the dual variables. If R ˚is simple enough to compute, i.e., a close form exists, then the transformation gives an efficient approach to decouple the variable x in our context.

Some properties of the Fenchel transform

We use the same notation as in paragraph 3.3.1, i.e.:

• G : R Ñ R is a proper convex function.

• α and β are real scalars.

• x and y are mono-dimensional variables of R.

Affine reduction If F pxq " Gpαx `βq, then:

F ˚pyq " ´β α y `G˚´y α ¯(3.20)
Affine addition If F pxq " Gpxq `αx `β, then:

F ˚pyq " ´β `G˚p y ´αq (3.21)
This property is very handy for the primal dual algorithm.

Postcomposition If F pxq " αGpxq `β, then:

F ˚pyq " ´β `αG ˚´y α ¯(3.22)

Primal Dual algorithm

To a primal dual solver

Now that we are equipped with the proximal operator and the Fenchel transform we can gradually modify our original optimization problem (3.7) to a more pleasant problem [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Zhu | An efficient primal-dual hybrid gradient algorithm for total variation image restoration[END_REF]. First, we make use of the Moreau envelope and we substitute to the functions M i px i q their smoothed version:

arg inf xPX ÿ iPΩ M i px i q `1 2τ }x i ´x i } 2 2 `RpLxq. (3.23) 
Then, we apply the Fenchel transform to R:

arg inf xPX sup yPZ ÿ iPΩ M i px i q `1 2τ }x i ´x i } 2 2 ` y, Lx ´R˚p yq. (3.24) 
At this stage the x i are totally decoupled and their optimization is achieved by computing a proximal operator. However, the function R ˚might not be smooth. Hence, we use the Moreau envelope again, but this time on R ˚. We get:

arg inf xPX sup yPZ ÿ iPΩ M i px i q `1 2τ }x i ´x i } 2 2 ` y, Lx ´R˚p yq ´1 2σ }y ´ỹ} 2 2 . (3.25)
Writing x and y as time series px n q n and py n q n , we obtain for each time step n:

arg inf x n PX sup y n PY ÿ iPΩ M i px n i q`1 2τ }x n i ´xn´1 i } 2 2 ` y n , Lx n ´R˚p y n q´1 2σ }y n ´yn´1 } 2 2 .
(3.26) For all time steps, the problem (3.24) is convex with respect to x n and concave with respect to y n . The two series converge to a fixed saddle point. Moreover, we can carry the optimization by alternating on x n and y n since the functional is now smooth.

One last trick, that we do not develop in this document is the smoothing of the sequence x n . When optimizing with respect to y n , we substitute x n by xn " x n `θpx n ´xn´1 q with θ P r0, 1s. This trick greatly improves the convergence rate in general.

Hypothesis for convergence and convergence rate

As the first order primal dual optimization algorithm is iterative, we need to pay a particular attention to the values of τ and σ to ensure its convergence [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. As illustrated by figure 3.1, τ and σ control the step size of primal and dual variables updates. While smaller steps slow down the convergence, too large steps make the algorithm unstable, leading to a possible divergence of the sequences px n q and py n q. We notice that at each iteration x n and y n exchange information through an interface expressed as the linear operator L. Hence, the nature of L plays a critical role on the range of τ and σ.

In our context, the linear operator L is generally the weighted gradient (possibly oriented and non local) or the laplacian operator. Hence, the value of }L} can easily be precomputed or closely upper-bounded.

The Algorithm 1 can be slightly modified to make use of strong convexity to achieve Op1{N 2 q and even Op1{e N q convergence rate. We refer the reader to Algorithms 2 and 3 in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] for more details.

Algorithm description for non smooth problems

When neither the sum of pM i q i nor R is smooth, we make use of the general first order primal dual algorithm:

It was proved in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that to guarantee convergence τ and σ have to satisfy the following inequality:

τ σ}L} ă 1 (3.30)
with: }L} " maxt}Lx} : x P X with }x} ď 1u (3.31)

It has been demonstrated in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that the Algorithm 1 converges to an optimal primal-dual saddle point in Op1{N q. This convergence rate is optimal for first order algorithm and non smooth function [START_REF] Yu | Smooth minimization of nonsmooth functions[END_REF].

Algorithm 1: First order primal dual algorithm Data: Inputs:

pM i q i , R, L Result: x Compute the Fenchel transform: Ñ R ˚.
Initialize primal and dual variable Ñ x 0 " 0, y 0 " 0. Set x " x 0 while Stopping criterion is not verified do Optimize the dual variables:

y n`1 " prox σp y,Lx ´R˚p y n qq py n q (3.27)
Optimize the primal variables:

x n`1 " prox τ p ř iPΩ Mipxiq` L T y n ,x q px n q (3.28) Smooth variable: x " x n`1 `θ `xn`1 ´xn ˘(3.29)

Algorithm description for half-uniformly convex problems

If the sum of pM i q i or R ˚is uniformly convex, we can make use of an accelerated algorithm. For simplicity we assume that the sum of pM i q i is γ-uniformly convex function.

It was proved in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that to guarantee convergence τ 0 and σ 0 have to satisfy the following inequality:

τ 0 σ 0 }L} ă 1 (3.36)
It has been demonstrated in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that Algorithm 2 converges to an optimal primal-dual saddle point in Op1{N 2 q. This convergence rate is optimal for first order algorithm and uniformly convex problem with respect to either the primal or dual variables [START_REF] Yu | Smooth minimization of nonsmooth functions[END_REF].

Algorithm description for uniformly convex problems

It was proved in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that Algorithm 3 converges if µ satisfies the following inequality:

µ ď 2 ? γδ }L} (3.41)
It has been demonstrated in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that Algorithm 3 converges to an optimal primal-dual saddle point in Op1{e N q. This convergence rate is optimal for first order algorithm and uniformly convex problem [START_REF] Yu | Smooth minimization of nonsmooth functions[END_REF].

Algorithm 2: First order primal dual algorithm for half smooth problem Data: Inputs:

pM i q i , R, L, τ , σ Result: x Compute the Fenchel transform: Ñ R ˚.
Initialize primal and dual variable Ñ x 0 " 0, y 0 " 0. Set x " x 0 while Stopping criterion is not verified do Optimize the dual variables:

y n`1 " prox σnp y,Lx ´R˚p y n qq py n q (3.32)
Optimize the primal variables:

x n`1 " prox τnp ř iPΩ Mipxiq` L T y n ,x q px n q (3.33)

Update the smoothing and steps size parameters:

θ n " 1 ? 1 `2γτ n , τ n`1 " θ n τ n , σ n`1 " σ n θ n (3.34)
Smooth variable:

x " x n`1 `θn `xn`1 ´xn ˘(3.35)

Algorithm 3: First order primal dual algorithm for half smooth problem Data: Inputs:

pM i q i , R, L, µ Result: x Compute the Fenchel transform: Ñ R ˚.
Initialize primal and dual variable Ñ x 0 " 0, y 0 " 0. Set x " x 0 Set step sizes and smoothing value:

θ n P " 1 1 `µ , 1  , τ " µ 2γ , σ " µ 2δ (3.37) 
while Stopping criterion is not verified do Optimize the dual variables:

y n`1 " prox σnp y,Lx ´R˚p y n qq py n q (3.38)

Optimize the primal variables:

x n`1 " prox τnp ř iPΩ Mipxiq` L T y n ,x q px n q (3.39)
Smooth variable:

x " x n`1 `θn `xn`1 ´xn ˘(3.40)

Conditioning and Auto tuning of step sizes

Improving conditioning

The convergence speed of Algorithm 1 is tightly linked to the conditioning of the linear operator L since its norm impacts the step size parameters τ and σ. We can always make one of τ or σ larger, but this comes at the expense of reducing the other. Hence, improving the conditioning of L is critical.

Fortunately, conditioning improvement has been studied for a long time and successfully applied to primal dual problems [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF][START_REF] Takapoui | Preconditioning via Diagonal Scaling[END_REF]. In our context, we only investigate the simple case where the operator L can be written as a diagonal matrix D with strictly positive elements and a well conditioned linear operator G:

L " DG (3.42)
Here, the diagonal matrix D deteriorates the condition number of G, leading to the badly conditioned operator L. However, by applying a simple change of variable in the functional to optimize we can recover a well conditioned problem. By defining, y " D ´1z, we transform (3.26) to:

arg min x n PX max z n PDY ÿ iPΩ M i px n i q `1 2τ }x n i ´xn´1 i } 2 2 ` z n , Gx n ´R˚p D ´1z n q ´1 2σ }D ´1pz n ´zn´1 q} 2 2 . (3.43) 
Hence, we can now have larger step sizes τ and σ. Moreover, the overall problem retains the same complexity since the computation of proximal operators are not made more complicated by linear scaling.

If necessary, the same transformation can be applied to primal variables x. We refer the curious reader to [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF].

Auto tuning of step sizes and stopping criterion

At this stage, defining correctly the step sizes τ and σ remains of critical importance to obtain a fast convergence. As a rule of thumb, we want the algorithm to make as much progress in the primal space as it does in the dual space. We can measure such progress by tracking the primal and dual residuals. If the primal residual is large compared to the dual residual, then we want to make more progress in the primal space at the next iteration. To this end, we need to increase τ . An analogue reasoning stands if the dual residual is larger than the primal residual. If both residuals are roughly equally large, then we are on course and no update of τ or σ is necessary.

Hence, we now make use of sequences pτ n q n and pσ n q n to describe the evolution of τ and σ through time. Moreover, it has been demonstrated in [START_REF] Goldstein | Adaptive primal-dual splitting methods for statistical learning and image processing[END_REF] that the convergence of algorithm 1 is achieved only if the sequences pτ n q n and pσ n q n also converge. To this end, we introduce another sequence pα n q n that strictly decreases over time and controls how much pτ n q n and pσ n q n are updated.

The primal residual of (3.26) is defined as:

p n`1 " 1 τ n px n ´xn`1 q ´LT py n ´yn`1 q (3.44)
Similarly, the dual residual of (3.26) is defined as:

d n`1 " 1 σ n py n ´yn`1 q ´Lpx n ´xn`1 q (3.45)
Algorithm 4 describes the update rules for pτ n q n and pσ n q n . Algorithm 4: Auto tuning of step sizes Data:

Inputs: p n`1 , d n`1 , τ n , σ n , α n , η Result: τ n`1 , σ n`1 , α n`1 if ρ}p n`1 } ă }d n`1 } then
We need to increase dual variables convergence speed:

τ n`1 " τ n p1 ´αn q, σ n`1 " σ n 1 ´αn , α n`1 " ηα n (3.46) else if ρ}d n`1 } ă }p n`1 } then
We need to increase primal variables convergence speed:

τ n`1 " τ n 1 ´αn , σ n`1 " σ n p1 ´αn q, α n`1 " ηα n (3.47) else τ n`1 " τ n , σ n`1 " σ n , α n`1 " α n (3.48)
With:

• ρ is a parameter in r1, `8q controlling when a correction needs to be applied.

• η is a parameter in r0, 1q enforcing the convergence of the sequences pα n q n , pτ n q n and pσ n q n .

Reformulating 1 based functions, Proximal operators, and Fenchel transformations

Before diving in the computations of proximal operators and Fenchel transforms, we introduce an important reformulation of 1 based functions.

On reformulating 1 based functions

Reformulation formula

We assume we are given an 1 based function f : R Ñ R parametrized by pw ´, w `q P R ˆR of the following prototype:

f pxq " w ´maxp´x, 0q `w`m axpx, 0q. (3.49) 
We show that for any a P R we can reformulate the equation as

f pxq " `w´´a ˘maxp´x, 0q ``w ``a ˘maxpx, 0q ´ax (3.50)
The proof follows from:

ax " a pminpx, 0q `maxpx, 0qq , (3.51) 
ax " ´a maxp´x, 0q `a maxpx, 0q,

0 " ´a maxp´x, 0q `a maxpx, 0q ´ax. 

Some examples of reformulations

Using (3.50) we can transform f p.q to a symmetric function plus a linear term by choosing:

a " w ´´w 2 (3.54) f pxq " w ``w 2 maxp´x, 0q `w``w2 maxpx, 0q `w`´w2 x (3.55) " w ``w 2 |x| `w`´w2 x (3.56)
We can also transform f p.q to half linear term and a linear term by choosing either:

a " w ´(3.57)
f pxq " `w´´w´˘m axp´x, 0q ``w ``w ´˘maxpx, 0q ´w´x (3.58)

" `w``w´˘m axpx, 0q ´w´x (3.59)

or:

a " ´w`( 3.60)

f pxq " `w´`w`˘m axp´x, 0q ``w `´w `˘maxpx, 0q `w`x (3.61)

" `w``w´˘m axp´x, 0q `w`x (3.62)

We illustrate these three reformulations in figure 3.6. 

Proximal operators

We present here some useful proximal operators.

Asymmetric 1

The asymmetric 1 function illustrated in figure 3.7 has the following prototype:

F pxq " # ´w´x if x ă 0 w `x if x ě 0 (3.63) " w ´maxp´x, 0q `w`m axpx, 0q (3.64) 
with pw ´, w `q P R ˆR and w ´`w `ě 0 to ensure convexity. The proximal operator associated to the asymmetric 1 function is:

prox F,τ pxq " $ & % x `τ w ´if x ă ´τ w 0 if x P r´τ w ´, τ w `s x ´τ w `if x ą `τ w `(3.65)
One can recognize in (3.65) a generalization of the soft-thresholding operator.

Sum of asymmetric 1

We now examine a function F , illustrated in figure 3.8, of the following prototype:

F pxq " N ÿ i"1 w í maxp´x `bi , 0q `wì maxpx ´bi , 0q (3.66) 
where each pair of pw í , w ì q P R ˆR verifies w í `wì ě 0 and each b i P R. Without any loss of generality we reformulate F as a sum of half linear terms using example from (3.59):

F pxq " c `ax `N ÿ i"1 w i maxpx ´bi , 0q (3.67) 
with: c "

ř N i"1 w í b i , a "
ř N i"1 w í and, each w i " w ì `wí To compute the proximal operator we need to minimize the following function illustrated in figure 3.9:

P pxq " F pxq `1 2τ px ´xq 2 (3.68) " N ÿ i"1 w i maxpx ´bi , 0q `1 2τ px ´px ´τ aqq 2 `constant (3.69) " N ÿ i"1 w i maxpx ´bi , 0q `Gpxq (3.70)
with τ P R `and x P R.

The function F is a piecewise linear function composed of N `1 segments as illustrated in figure 3.8. Since P is a convex function, its derivative is a monotonic increasing function. Hence, by identifying a segment that has a negative gradient at one hand and a positive derivative at the other hand we have found that an interval that contains the minimizer of P . Finally, over this interval the function P is purely quadratic. Hence, computing the minimum is then trivial. We describe this procedure in algorithm 5. One can obtain a simpler algorithm if the tb i u iPt1,...,N u are given sorted.

Asymmetric Huber

The asymmetric Huber illustrated in figure 3.10 naturally extends both Huber and 1 norms, and it remains a convex function: x " x, l " minpdompF qq, u " minpdompF qq, w cur " 0, Σ w " 0. B " tb i u i , W " tw i u i ,

F pxq " $ ' ' ' & ' ' ' % ´apx `α{2q if x ă ´α ax 2 {p2αq if x P r´α, 0s bx 2 {p2βq if x P p0, βs bpx ´β{2q if x ą β
for i P t1, ..., N u do if Σ w `wcur `dG dx puq ą 0 then Exit for loop else Get bounds of next segment: l Ð u j Ð indice of minimun element of B u Ð Brjs Update gradient: Σ w Ð Σ w `wcur w cur " W rjs Update B and W: B Ð B ´Brjs W Ð W ´W rjs if i "" N then Get bounds of last segment: l Ð u u Ð `8 Σ w Ð Σ w `wcur
Find minimizer on found segment:

x ˚" arg min rl,us Σ w `Gpxq (3.71) return x ˚51
with H a semi-definite positive matrix to ensure convexity. Their proximal operator is given by: prox τ F pxq " pI `τ Hq ´1 px ´τ aq (3.75)

Note that evaluating the proximal operator relies on computing the inverse of I `τ H. If H is diagonal, then evaluating this proximal operator is trivial. For others cases, we can rely on computing once and caching the inverse of operator pI `τ Hq.

Localization technique for complicated mono-dimensional variable

When F is a complicated function of a mono-dimensional variable, one can apply the localization technique [START_REF] Boyd | Localization and cutting-plane methods[END_REF] that iteratively reduces the search space of the minimum. This technique shares similarity with the bisection method but yields faster convergence by integrating topological information provided by the sub-gradients of the proximal function.

At each iteration, the localization technique defines a search direction by computing g, an element of the sub-derivative of the proximal function at current point x. Hence, any point situated in the opposite direction can be removed from the search space since the function to optimize is convex. Using the monotonicity of the sub-derivative of the proximal operator we can demonstrate that the minimum cannot be further to the current point x than |τ g|. Hence, this gives us another bound to truncate the search space. Finally, we move x to the middle of the search space and iterate as illustrated in figure 3.11.

The range of the search space gives us an upper bound on the precision of x with respect to optimality. We can stop the algorithm iterations when a desired precision of has been reached. The algorithm 6 describes the localization procedure illustrated by figure 3.11.

This technique is a special case of the cutting plane algorithm. One can easily apply cutting plane to a multi-dimensional variable but the computational complexity becomes greatly increased.

Figure 3.11 -The doted segments show the trajectory followed by x to compute the minimizer of F pxq`1{p2τ q}x´x} 2 2 s plotted as a red curve.

Algorithm 6: Localization technique

Data: Inputs: F , x, τ and Result: x Initialize variables:

x " x, l " minpdompF qq, u " maxpdompF qq (3.76)

while u ´l ě do Compute an element of the sub-gradient of F at point x:

h P BF Bx (3.77) 
Compute an element of the sub-gradient of the proximal function:

g " h `1 τ px ´xq (3.78) if g ą 0 then l " maxpl, x ´τ gq, u " minpu, xq (3.79) 
else if g ă 0 then l " maxpl, xq, u " minpu, x ´τ gq (3.80)

Update position of x:

x " l `u 2 (3.81)

Fenchel transform

We present here some useful Fenchel transform.

Asymmetric Huber

We remind the definition of the asymmetric Huber function:

F pxq " $ ' ' & ' ' % ´apx `α{2q if x ă ´α ax 2 {p2αq if x P r´α, 0s bx 2 {p2βq if x P p0, βs bpx ´β{2q if x ą β (3.82)
Its Fenchel transform has a closed form solution:

F ˚py ˚q " $ ' ' & ' ' % 8 if y ˚ă ´a α}y ˚}2 2 if y ˚P ra, 0s β}y ˚}2 2 if y ˚P r0, bs 8 if y ˚ą b (3.83)
It is interesting to note that the Fenchel transform of the asymmetric Huber function is strongly convex.

Convex second order form

F pxq " 1 2 x T Hx `aT x `c, (3.84) 
with H a semi-definite positive matrix.

F ˚pyq " ´1 2 pa `yq T H ´1pa `yq `c (3.85)
3.5 TV regularized problems

Notations

We now restrict the operator L to be pairwise weighted operator. Hence, we make use of a directed graph G and a set of weights tw ij u ij to make notations more explicit. The graph G " rV, Es is composed of a finite set of vertices V and a finite set of directed edges E. The edge pi, jq of E creates a connexion from a vertex i P V to a vertex j P V. Moreover, each edge pi, jq of E is associated to a weight

w ij P R `.
With these notations the problems of interest become:

min xPX ÿ iPV M i px i q `ÿ pi,jqPE w ij R px i ´xj q .
(3.86)

Some classic TV regularized problems

We now present some classic TV regularized problems in their primal and dual forms.

TV-linear

The simplest non degenerate problem uses a linear function for each vertex term and an 1 -norm as regularizer:

x i P r´1, 1s M i px i q " c i x i , c i P R, @i P V Rpxq " |x|
The primal forms of the TV-linear problem is:

min pxiPr´1,1sqi ÿ iPV c i x i `ÿ pi,jqPE w ij |x i ´xj | . (3.87)
Its dual form is:

max pyij Pr´wij ,wij sqij ´ÿ iPV |c i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji | (3.88)
TV-2 : The general ROF model

The TV-2 problem was introduced by Rudin,Osher,and Fatemi in [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF] for image denoising. Hence, it is also known as the ROF model. We present a slightly more general form here with:

x i P R M i px i q " a i 2 x 2 i `ci x i , a i P R `,˚, c i P R, @i P V Rpxq " |x|
The primal forms of the TV-2 problem is:

min pxiPRqi ÿ iPV a i 2 x 2 i `ci x i `ÿ pi,jqPE w ij |x i ´xj | . (3.89)
Its dual form is:

max pyij Pr´wij ,wij sqij ´ÿ iPV 1 2a i ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 (3.90)
TV-1

The famous TV-1 improves the ROF model by making the vertices terms less sensitive to outliers:

x i P R M i px i q " a i |x `ci |, a i P R `,˚, c i P R, @i P V Rpxq " |x|
The primal form of the TV-1 problem is:

min pxiPRqi ÿ iPV a i |x i `ci | `ÿ pi,jqPE w ij |x i ´xj | . (3.91)
Its dual form is (up to a constant term):

max pyij Pr´wij ,wij sqij ´ÿ iPV c i ¨ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ' subject to. ˇˇˇˇˇÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ˇˇˇˇˇď a i @i P V (3.92)

TV-Huber

The TV-Huber model smoothes the TV-1 vertices and edges terms:

x i P R M i px i q " a i |x `ci | α , a i P R `,˚, c i P R, α P R `, @i P V Rpxq " |x| β β P R ẁhere |.
| β is the symmetric Huber norm defined by (3.72) with smoothing parameter β.

The primal forms of the TV-Huber problem is:

min pxiPRqi ÿ iPV a i |x i `ci | α `ÿ pi,jqPE w ij |x i ´xj | β . (3.93)
Its dual form is (up to a constant term):

max pyij Pr´wij ,wij sqij ´α 2 ÿ iPV ¨ci α `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 ´β 2 ÿ pi,jqPE y 2 ij subject to. ˇˇˇˇˇÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ˇˇˇˇˇď a i @i P V (3.94)

Truncation theorem for convex TV regularized problems

Theorem 3. Truncation theorem for TV regularized problems We suppose we have solved the following problem:

pz i q i " arg min pziPrα,βsqi ÿ iPV f i pz i q `ÿ pi,jqPE w ij max pz i ´zj , 0q . (3.95) 
where:

• α P ´8 Y R, β P R Y `8
, and α ď β,

• The function f i : R Ñ R is a proper, l.s.c convex function @i P V.

For all ra, bs Ď rα, βs, the following problem shares a special relationship with (3.95):

z t i " arg min pziPra,bsq i ÿ iPV f i pz i q `ÿ pi,jqPE w ij max pz i ´zj , 0q . (3.96)
Indeed, a solution of (3.96) is simply the truncation of a solution of (3.95):

z t i " `rz i s ra,bs ˘i , @i P V (3.97)
where r.s ra,bs is the truncation operator:

rxs ra,bs " $ & % a if x ď a x if x P ra, bs b if x ě b (3.98)
Lemma 1. Let py ij q ij the optimal dual variables of the dual problem associated to (3.95). Then, py ij q ij are also optimal for the dual problem associated to (3.96).

Proof

The demonstration relies on the proof that a primal dual fixed point of equation (3.96) is obtained from a primal-dual fixed point of equation (3.95).

We first express the primal dual problems of equation (3.95):

pz i q i , py ij q ij " arg min pziPrα,βsqi max pyij Pr0,wij sqij ÿ iPV f i pz i q `ÿ pi,jqPE y ij pz i ´zj q .
(3.99) and equation (3.96):

pz t i q i , py t ij q ij " arg min pziPra,bsqi max pyij Pr0,wij sqij ÿ iPV f i pz i q `ÿ pi,jqPE y ij pz i ´zj q . (3.100)
We initialize the variables of problem (3.100) to:

z i " rz i s ra,bs , @i P V y ij " y ij @ pi, jq P E (3.101)
We show that the optimal dual variables of (3.99) are also optimal dual variables for (3.100). Using the dual update rule of the primal-dual algorithm 1 we have @ pi, jq P E:

y n ij " " y ij `σ `rz i s ra,bs ´rz j s ra,bs ˘‰r0,wijs (3.102) 
Supposing that z i ´zj ą 0 we have:

rz i s ra,bs ´rz j s ra,bs ě 0 y ij " w ij (3.103)
Hence, we obtain:

y n ij " w ij " y ij (3.104) 
The same reasoning holds for z i ´zj ă 0:

y n ij " 0 " y ij (3.105)
Finally, if z i ´zj " 0, we trivially obtain:

y n ij " y ij (3.106)
Hence, the dual variables py ij q ij are fixed points of the equation (3.100).

We now look at the primal variables. Using the primal update rules of algorithm 1 we have:

z n i " arg min xiPra,bs f i px i q `xi ˜ÿ j y ij ´yj i ¸`1 2τ }rz i s ra,bs ´xi } 2 2 " « arg min xiPR f i px i q `xi ˜ÿ j y ij ´yj i ¸`1 2τ }rz i s ra,bs ´xi } 2 2 ff ra,bs " rz i s ra,bs (3.107) 
The second equality holds since we are optimizing a mono dimensional convex function. Hence, the primal variables prz i s ra,bs q i are fixed points of the equation (3.100).

This completes the proof.

A hierarchy of optimal dual spaces for TV-2

Theorem 4. Let Y ˚ 2 be the space of optimal solutions for equation:

max yij Prw íj ,w ìj s ´ÿ iPV 1 2a i }c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji } 2 2 , (3.108) 
and let Y α be the space of optimal solutions for equation:

max yij Prw íj ,w ìj s ´ÿ iPV 1 2a i ˇˇˇˇˇc i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ˇˇˇˇˇα (3.109)
Then, for any pα, βq P R `ˆR `and α ě β we have: 

Y ˚ 2 Ď Y α Ď Y β Ď Y 0 " Y ˚ 1 (3.
ÿ iPV a i 2 x 2 i `ci x i `ÿ pi,jqPE w ij |x i ´xj | . min pxiPr´α,αsqi max pyij Pr´wij ,wij sqij ÿ iPV a i 2 x 2 i `xi ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ' max pyij Pr´wij ,wij sqij ´ÿ iPV 1 2a i ˇˇˇˇˇc i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ˇˇˇˇˇα
To obtain the last equation, we simply recognize the equation of the Fenchel transform for a Huber function with smoothness α .

The proof is a simple application of the lemma of the truncation theorem. Indeed the lemma states that the optimal dual variables of the less constrained problem are also optimal for the more constrained problem. This concludes the proof.

Intersection of optimal dual space

Theorem 5. Let Y ˚ 2 be the space of optimal solutions for:

max yij Prw íj ,w ìj s ´ÿ iPV 1 2a i }c i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji } 2 2 (3.111)
and λ be a real valued scalar and Y ˚ 1,λ be the space of optimal solution for:

max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i ˇˇˇˇˇc i `λa i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ˇˇˇˇˇ( 3.112) Then Y ˚ 2 " č λPR Y ˚ 1,λ (3.113) 

First lemma

We demonstrate a first intermediate result:

Lemma 2. Let α be a real valued scalar and Y ˚ 2,α be the space of optimal solution for:

arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i }c i `αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji } 2 2 (3.114)
and β be a real valued scalar and Y ˚ 2,β be the space of optimal solution for:

arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i }c i `βa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji } 2 2 (3.115) Then, Y ˚ 2,α " Y ˚ 2,β (3.116) 

Proof of first Lemma

The proof of the previous lemma is straightforward:

y ˚" arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i }c i `βa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji } 2 2 " arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i }c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji } 2 2 ´ÿ iPV β ¨ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ' " arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i }c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji } 2 2
Hence, for all couple of real scalars pα, βq we have:

Y ˚ 2,α " Y ˚ 2,0 and Y ˚ 2,β " Y ˚ 2,0 . Therefore, we have Y ˚ 2,α " Y ˚ 2,β .
This concludes the proof of the lemma.

Second lemma

We demonstrate another intermediate result:

Lemma 3. There exist a positive real scalar α such that:

č λPR Y ˚ 1 ,λ " č λPr´α,αs Y ˚ 1,λ (3.117) 

Proof of Lemma

Since, a is positive vector, c i is fixed and y is bounded, we can find α P R `such that for a y:

c i `αa i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ě 0, @i P V (3.118)
and c i ´αa i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ď 0, @i P V (3.119)

Hence, for any λ ď ´α or λ ě α the solution space Y ˚ 1,λ is the space " py ij q ij | @pi, jq P E, y ij P " w íj , w ìj ‰‰ . Therefore, we have:

č λď´α Y ˚ 1,λ " Y ˚ 1 ,´α and č λěα Y ˚ 1,λ " Y ˚ 1,α , (3.120) 
from which we easily derive the lemma.

Proof of Theorem

We start by proving

Y ˚ 2 Ď Ş λPR Y ˚ 1 ,λ .
Thanks to theorem (4) and lemma (2) we have for all λ P R:

Y ˚ 2,λ Ď Y ˚ 1,λ ô Y ˚ 2 Ď Y ˚ 1 ,λ (3.121) 
Hence, we have

Y ˚ 2 Ď Ş λPR Y ˚ 1 ,λ . Let us now prove Ş λPR Y ˚ 1,λ Ď Y ˚ 2
From the lemma (3) we get

Y ˚ 2 " č λPr´α,αs Y ˚ 1 ,λ (3.122) 
Let y ˚P Ş λPr´α,αs Y ˚ 1 ,λ . We have:

y ˚" arg max yij "rw íj ,w ìj s ´ż α ´α ÿ iPV 1 2a i |c i `λa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji |dλ (3.123)
" arg max yij "rw íj ,w ìj s ´ÿ iPV

1 2a i ż α ´α |c i `λa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji |dλ (3.124)
We remind the anti-derivative formula for the absolute value:

ż α β |λ|dλ " 1 2 pα|α| ´β|β|q (3.125)
Hence, we get:

y ˚" arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i ¨ci `αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ' ˆ|c i `αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji | ´¨c i ´αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ' ˆ|c i ´αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji |
But since we have chosen α large enough the last equation simplifies to:

y ˚" arg max yij "rw íj ,w ìj s ´ÿ iPV 1 2a i ¨ci `αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji '2 `¨c i ´αa i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji

'2

Hence, we recognize that:

y ˚P Y ˚ 2,´α X Y ˚ 2,α y ˚P Y ˚ 2
The last equation stands thanks to lemma (2). Therefore we have

Ş λPR Y ˚ 1 ,λ Ď Y ˚
2 which completes the proof.

A new primal-dual formulation of the ROF model

We now consider optimizing the ROF model. We propose a new primal dual formulation of the ROF model that we label L-ROF for short of linear ROF:

min pxiPRqi ÿ iPV c i x i `ÿ pi,jqPE w ij |x i ´xj | . (3.126)
The primal dual form of the L-ROF model is:

min xiPR max pyij Prw íj ,w ìj sqij ´ÿ iPV x i ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ' (3.127)
The following theorem achieves the connexion with the ROF model: Theorem 6. Let Y ˚ 2 be the space of optimal solution for the ROF model:

max pyijPrw íj ,w ìj sq ij ´ÿ iPV 1 2 ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji

'2

Let Y L´ROF be the space of optimal solution for the L-ROF given by:

min xiPR max pyij Prw íj ,w ìj sqij ´ÿ iPV x i ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ' (3.128)
Then:

Y ˚ 2 " Y L´ROF (3.129)
Proof: preliminary First, we observe that both models share the same dual update rule:

y n`1 ij " " y n ij `σ `xn i ´xn j ˘‰rw íj ,w ìj s (3.130)
Furthermore, at optimality the primal and dual variables of the ROF model verify:

$ ' & ' % y ˚,ROF " w íj if x ˚,ROF i ď x ˚,ROF j y ˚,ROF P ‰ w íj , w ìj " if x ˚,ROF i " x ˚,ROF j y ˚,ROF " w ìj if x ˚,ROF i ě x ˚,ROF j (3.131)
Proof: Y ˚ 2 Ď Y L´ROF Let's now assume that we have solved the ROF model. We use these variables as initialization for a primal and dual update of the L-ROF model:

x 1,L´ROF i " x ˚,ROF i ´τ ¨ci `ÿ jPEpi,.q y ˚,ROF ij ´ÿ jPEp.,iq y ˚,ROF ji ' " p1 `τ qx ˚,ROF i and y 1,L´ROF ij " " y ˚,ROF ij `σ ´x1,L´ROF i ´x1,L´ROF j ¯ırw íj ,w ìj s " " y ˚,ROF ij `σp1 `τ q ´x˚,ROF i ´x˚,ROF j ¯ırw íj ,w ìj s " y ˚,ROF ij 63
We obtain the last equation thanks to (3.131). By induction we obtain:

x n,L´ROF i " p1 `τ q n x ˚,ROF i and

y n,L´ROF ij " y ˚,ROF ij
Hence, the dual optimal variables of the ROF model are also optimal for the L-ROF model.

Proof: Y L´ROF Ď Y ˚ 2
Let us assume we have optimized the L ´ROF up to a point (k updates) where the dual variables are optimal (un-changed by any further updates). We use these dual variables as initialization for a primal and dual update of the ROF model:

x 1,ROF i " x k,L´ROF i ´τ ´ci `řjPEpi,.q y ˚,L´ROF ij ´řjPEp.,iq y ˚,L´ROF ji 1 `τ " x k`1,L´ROF i 1 `τ and y 1,ROF ij " " y ˚,L´ROF ij `σ ´x1,ROF i ´x1,ROF j ¯ırw íj ,w ìj s " " y ˚,L´ROF ij `σ p1 `τ q ´xk`1,L´ROF i ´xk`1,L´ROF j ¯rw íj ,w ìj s " y ˚,L´ROF ij
The last equation stands from the assumption that optimizing further the L ´ROF model does not modify its dual variables and from (3.131).

By induction we obtain:

x n,L´ROF i " x k`n,L´ROF i p1 `τ q n and y n,L´ROF ij " y ˚,L´ROF ij
Hence, the dual optimal variables of the L-ROF model are also optimal for the ROF model. This concludes the proof.

Properties of the L-ROF model

Property 1. Let us consider the global affine transforms of the following form: z i " ax i `b for any i P V and pa, bq P R `,˚ˆR . Then, the global affine transform lets the optimal dual space of the L-ROF model unchanged.

The proof follows from simple calculus using equation (3.127).

Property 2. Once the optimal dual variables of the L-ROF model have been computed then, the optimal primal variable of the ROF model can be obtained in linear time:

x ˚,ROF i " ´¨c i `ÿ jPEpi,.q y ˚,L´ROF ij ´ÿ jPEp.,iq y ˚,L´ROF ji '
The proof follows from the equality of optimal dual spaces given by Theorem 6 and from the optimal primal-dual relationship of the ROF model.

Primal scaling

To optimize the L-ROF model we propose to modify Algorithm 1 by introducing a linear scaling of the primal variables every k iterations. Thanks to Property 1 this has no impact on the dual variables.

The scaling guarantees the primal variables remain bounded. It also allows to give more weight to the current updates by progressively forgetting the past. One can think of it as a more gentle way to restart the smoothing of primal variables.

The L-ROF optimization is described in Algorithm 7.

Fused Lasso approximation on pairwise graph for various sparsifying strength

The fused lasso approximation problem

We now consider a direct application of the hierarchy of optimal dual spaces with the following problem:

x i P R M i px i q " 1 2 x 2 i `ci x i `λ|x i |, c i P R, λ P R `, @i P V Rpxq " |x| (3.132)
The primal form of the fused lasso is:

min pxiPRqi ÿ iPV 1 2 x 2 i `ci x i `λ|x i | `ÿ pi,jqPE w ij |x i ´xj | . (3.133)
Algorithm 7: L-ROF primal dual optimization Data: Inputs: pc i q i , pw ij q ij , τ , σ, δ Result: x Initialize primal and dual variable Ñ x 0 " 0, y 0 " 0. Set x " x 0 and n " 0 while n ď max iteration do Optimize the dual variables:

y n`1 ij " " y n ij `σ `x n i ´x n j ˘‰r´wij,wijs , @ pi, jq P E
Optimize the primal variables:

x n`1 i " x n i ´τ ¨ci `ÿ jPEpi,.q y n`1 ij ´ÿ jPEp.,iq y n`1 ji ', @i P V Smooth variable: xn`1 i " x n`1 i `θ `xn`1 i ´xn i ˘, @i P V Primal scaling: if modpn, kq is 0 then x n`1 i " δx n`1 i xn`1 i " δ xn`1 i Increment iteration counter: n " n `1
An extended dual form is:

max pyij Pr´wij ,wij sqij max pziPr´λ,λsqi ´1 2 ÿ iPV ¨ci `zi `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 (3.134) and x i " ´¨c i `zi `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ' (3.135)
Which simplifies to:

max pyij Pr´wij ,wij sqij ´1 2 ÿ iPV ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 `ˇˇˇˇˇc i `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ˇˇˇˇˇλ (3.136)

Generalization of Friedmann Theorem

We generalize the theorem of Friedmann [START_REF] Friedman | Pathwise coordinate optimization[END_REF] to any pairwise graph:

Theorem 7.
Once the ROF model (3.133), with λ " 0, has been solved, one can compute in linear time the solution of (3.133) for any λ P R `.

Proof

We notice that the dual problem of the fused lasso (3.136) is composed of 2 and huber terms. Hence, thanks to theorem (4), we know that the optimal dual variables of the ROF model are also optimal for the fused lasso (and for any λ).

Let suppose we dispose of y ˚,ROF by having solved the dual problem associated to the ROF model. We have to solve the remaining problem:

min pxiPRqi ÿ iPV 1 2 x 2 i `xi ¨ci `ÿ jPEpi,.q y ˚,ROF ij ´ÿ jPEp.,iq y ˚,ROF ji '`λ|x i |. (3.137)
The problem (3.137) entirely decouples with respect to px i q i . We obtain the solution of each subproblem by applying the soft-thresholding operator.

On the other hand, let us suppose we dispose of x ˚,ROF by having solved the primal problem associated to the ROF model. We will have a bit more work to do.

First, we obtain in linear time:

x ˚,ROF i " ´¨c i `ÿ jPEpi,.q y ˚,ROF ij ´ÿ jPEp.,iq y ˚,ROF ji ' (3.138)
We then introduce the Fenchel transform for the huber terms in (3.136):

max pziPr´λ,λsqi ´1 2 ÿ iPV ¨ci `zi `ÿ jPEpi,.q y ˚,ROF ij ´ÿ jPEp.,iq y ˚,ROF ji '2 . (3.139)
We obtain in linear time:

z i " » -´¨c i `ÿ jPEpi,.q y ˚,ROF ij ´ÿ jPEp.,iq y ˚,ROF ji 'fi fl r´λ,λs (3.140) 
Hence, using equation (3.135) we obtain in linear time the optimal primal variables of (3.133). This concludes the proof.

ROF model with a Global regularization term

We now consider optimizing an ROF model with an additional global regularization term: The primal forms of the TV-2 problem is:

min pxiPRqi ÿ iPV 1 2 x 2 i `ci x i `ÿ pi,jqPE w ij |x i ´xj | `G ˜ÿ iPV x i ¸. (3.141)
where Gp.q : R Ñ R is a convex function possibly not smooth acting as a global regularizer.

Theorem 8. A solution of problem (3.141) can be obtained in linear time from a solution of the associated ROF model if the global regularizer dual function G ˚p.q has a proximal operator which can be computed in linear time.

Proof

The dual form of problem (3.141) is:

max pyij Pr´wij ,wij sqij max zPR ´1 2 ÿ iPV ¨ci `z `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 ´G˚p zq (3.142)
and the optimal primal variables verify:

x i " ´¨c i `z˚`ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji ' (3.143)
We develop the dual form to:

max pyij Pr´wij ,wij sqij max zPR ´1 2 ÿ iPV ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 (3.144) `ÿ iPV ´1 2 z 2 `z ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '´G ˚pzq (3.145)
Since we have:

ÿ iPV ¨ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '" 0, (3.146) 
we can simplifies the dual to:

max pyij Pr´wij ,wij sqij max zPR ´1 2 ÿ iPV ¨ci `ÿ jPEpi,.q y ij ´ÿ jPEp.,iq y ji '2 (3.147) ´N 2 z 2 ´z ˜ÿ iPV c i N ¸´G ˚pzq (3.148)
where N is the number of elements in V.

The optimization over py ij q ij and z is decoupled. Solving with respect to py ij q ij is the same than solving a ROF model. The optimization with respect to z is nothing more than computing the proximal operator of G ˚.

Assuming the proximal operator of G ˚is simple to compute, we obtain in linear time the primal solution of (3.141):

x i " x ˚,ROF i ´z˚( 3.149)
This concludes the proof.

Examples of application

We illustrate features of algorithms 1 and 4 with two classic computer vision tasks: maxflow/mincut and image denoising. We could also have experimented with formulating image ressampling as an optimization problem as in [START_REF] Guichard | Total variation based interpolation[END_REF].

Mincut/Maxflow

Mincut/Maxflow is ubiquitous in computer science [START_REF] Lr | Maximal flow through a network[END_REF][START_REF] Harris | Fundamentals of a method for evaluating rail net capacities[END_REF]. Indeed tasks such as edge-disjoint paths, vertex-disjoint paths, maximum matchings in bipartite graphs and some assignment problems can be formulated as either a maxflow or a mincut problem [47]. In our registration context, it is a key component of graph-cut for multi-label optimization.

Mincut as a non smooth continuous optimization problem

We are given a directed graph, G " rV, Es, where V is the set of vertices and E Ă V ˆV is a set of directed edges. A binary variable x i P t0, 1u defines the configuration of each vertex i P V. The potential of the configuration of each vertex i is φ i P R. The potential of the configuration of each edge pi, jq P E is ψ i,j P R `. We will present in more detail the mincut and maxflow problem in the next chapter 4.3. To solve the mincut problem [START_REF] Yuan | A study on continuous max-flow and min-cut approaches[END_REF] proved that we can compute:

arg min

xiPt0,1u ÿ iPV φ i x i `ÿ pi,jqPE ψ i,j maxpx i ´xj , 0q (3.150) 
The authors of [START_REF] Yuan | A study on continuous max-flow and min-cut approaches[END_REF] show that one can relax the support of all x i from t0, 1u to r0, 1s and still recover the optimal binary solution of (3.150). This leads to compute:

arg min xiPr0,1s ÿ iPV φ i x i `ÿ pi,jqPE ψ i,j maxpx i ´xj , 0q (3.151) 
To recover previously introduced notation we identify:

• M i pxq " φ i x i for @i P V

• Rpxq " maxpx, 0q which is a special case of the point wise asymmetric Huber function.

• L " W G the weighted adjacency matrix representing the directed edges of E with potential ψ. Hence, we have

L ij " ψ ij .
Hence, we can use algorithm 1 to solve problem (3.151).

Experiments

Settings We generate random mincut problems where the vertices are arranged on a grid of size r100, 100s and the edges follow the 4-connectivity of the grid. We draw pφ i q from a normal distribution N p0, 1q and we draw pψ i,j q uniformly in rρ, λs with pρ, λq P R `ˆR `and ρ ď λ.

For all experiments, we initialize all primal variables randomly in r0, 1s and all dual variables to 0. We monitor the primal dual gap throughout the iterations of algorithm 1.

Conditioning In this first set of experiments, we investigate how conditioning affects the convergence rate. We generate 6 problems with rρ, λs P tp0.99, 1.01q, p0.9, 1.1q, p0.75, 1.25q, p0.5, 1.5q, p0.25, 1.75q, p0, 2qu. This progressively deteriorates the conditioning number of operator L. For each problem we run the algorithm with and without conditioning improvement as defined in Section 3.3.4. We hand pick step sizes τ and σ to ensure a fast convergence. Figure 3.12 exemplifies the importance of conditioning for ensuring a fast convergence of algorithm 1. The simple diagonal preconditioning technique described in Section 3.3.4 helps to maintain a good conditioning. This results in a faster convergence illustrated by a smaller primal-dual gap (red curves) when compared with the initial problem (blue curves). In all circumstances, the preconditioning yields a lower primal-dual gap. Auto tuning of step sizes We now investigate the tuning of step sizes.

To this end, we set ρ " 1 and λ " 1 and we run the algorithm with and without auto-tuning as defined in Section 3.3.4 for a collection of initial τ P t0.001, 0.01, 0.1, 1, 10, 100u. The other step size σ is set to the highest possible that guarantees convergence as defined by (3.30). We run the algorithm for 200 iterations.

Figure 3.13 pictures the sensitivity of algorithm 1 with respect to step size τ init " 0.001 parameters τ and σ. In our experiments the sweet spot seems to be around τ " 0.5. We notice that as soon as we move away from τ " 0.5, the convergence rate greatly slows down as illustrated by the blue curves for τ " t0.001, 0.01, 10, 100u. This underlines the importance of auto-tuning algorithm 4. Indeed, for any tested initial value of τ , the auto-tuning algorithm properly adjusts the values of τ and σ to ensure a fast convergence since all red curves end-up at a similar primal dual gap.

τ init " 0.01 τ init " 0.1 τ init " 1 τ init " 10 τ init " 100

Image denoising

Image denoising is generally one of the first components of many vision system. It has been studied for decades by the computer vision community [START_REF] Gupta | A review and comprehensive comparison of image denoising techniques[END_REF][START_REF] Mukesh C Motwani | Survey of image denoising techniques[END_REF][START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF].

In our context, we sometimes have to process images contaminated by various degrees of additive or multiplicative noise. We can use denoising techniques either as a pre-processing step to improve the quality of image to process. But, we can also use denoising as a post-processing step to improve the quality of a disparity map for instance. Hence, in this chapter we present a very general formulation of denoising.

Image denoising as an optimization problem

In this task we are given an image r : Ω Ñ r0, 1s contaminated by Gaussian noise and we attempt to estimate the uncontaminated image x. To this end, we optimize the following equation:

arg min xiPr0,1s ÿ iPΩ H 1,α px i ´ri q `ÿ iPΩ ÿ jPNipρq H wij ,β px i ´xj q (3.152)
Where:

• H a,α is a symmetric Huber function with a a-slope and α-curvature:

H a,α " # ax 2 {p2αq if x P r´α, αs ap|x| ´α{2q otherwise (3.153)

• N i is the set of neighbor pixels of i within a ρ-radius.

• w ij are positive real scalars.

The equation (3.152) enforces two fundamental properties. First, the value of each pixel of the denoised image needs to be somehow close to the value of the pixel of the contaminated image. This is achieved by penalizing the distance of x i to r i under the Huber norm H 1,α . Second, natural images exhibit some notion of smoothness. Therefore, for each pixel i P Ω we penalize a weighted disagreement with its neighbors N i through another Huber norm H wij ,β .

The neighborhood N i of a pixel i is the set of pixels of Ω within a given radius ρ:

N i pρq " rj P Ω | }i ´j} 2 ď ρs .

(3.154)

The weights w ij are defined as:

w ij " λ exp p´β|r i ´rj |q , (3.155) 
where λ and β are real positive scalar used to tune the regularization strength.

Experiments

As a toy example, we proceed to denoise an image contaminated with a moderate white Gaussian noise. We perform a first denoising with the neighborhood radius ρ set to 1 and another denoising with ρ " 3. All other parameters are adjusted to produce pleasant looking results.

Noise free image Image contaminated with noise 1-radius denoised image 3-radius denoised image We observe in figure 3.14 that both denoised images look smooth but exhibit the noise-free image structure. However, most of the fine details are lost. We notice that increasing the neighborhood radius creates a smoother result while preserving strong edges.

We could easily improve this simple yet effective denoising formulation. We point the curious reader to recent work that solely focus on denoising [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Hu | Higher degree total variation (hdtv) regularization for image recovery[END_REF][START_REF] Oh | Nonconvex hybrid total variation for image denoising[END_REF][START_REF] Almansa | A tv based restoration model with local constraints[END_REF][START_REF] Malgouyres | Combining total variation and wavelet packet approaches for image deblurring[END_REF][START_REF] Malgouyres | Minimizing the total variation under a general convex constraint for image restoration[END_REF][START_REF] Malgouyres | Mathematical analysis of a model which combines total variation and wavelet for image restoration[END_REF].

L-ROF model vs ROF model for denoising

We investigate the convergence rate of the L-ROF model through several numerical experiments. To this end, we consider the denoising task of an image c : Ω Ñ r0, 1s contaminated with white Gaussian noise, and we solve the following L-ROF optimization problem:

min xiPR max yij Pr´w,ws ÿ iPΩ ´ci x i `ÿ iPΩ ÿ jPNipρq y ij |x i ´xj | (3.156)
As a baseline we use the ROF model optimized with Algorithm 2 that yields a 1 N 2 convergence rate:

min xiPR ÿ iPΩ 1 2 x 2 i ´ci x i `ÿ iPΩ ÿ jPNipρq w |x i ´xj | (3.157)

Settings

For all experiments, we always set the regularization parameter w to be equal to the standard deviation σ n of the Gaussian noise. We consider three noise levels, low with σ n " 0.02, medium with σ n " 0.1 and high σ n " 0.25 as illustrated in figure 3.15. We set the smoothing parameter θ to 1 for both primal-dual optimization algorithms. The primal and dual variables are initialized to 0 for both algorithms.

Experiments with no scaling

In this first set of experiments we compare the L-ROF model without any scaling, δ " 0, to the ROF model. We sweep space of the initial primal update step size τ from 1000 to 1 and set the dual step size accordingly to ensure convergence. We remind that internally the algorithm optimizing the ROF model adjusts both the primal-dual step sizes along with the smoothing parameter θ. The L-ROF model maintains the initial values throughout the optimization.

For each noise level, we run each algorithm for 500 iterations and we display the primal dual gap at iterations 100, 250 and 500 in figures 3.16, 3.17 and 3.18.

For the L-ROF model, due to Property 1 and the constant initialization of the primal variable, the algorithm is insensitive to the primal update step size. We observe this behavior for the three noise regimes as all red curves of figures 3.16, 3.17 and 3.18 are constant. Since primal dual algorithms convergence are sensitive to rightly tuning the update step sizes, this is a nice property of the L-ROF model.

In terms of convergence, we see that without scaling the L-ROF model slightly outperforms the ROF model. This is somehow unexpected since the ROF model benefits of a 1{N 2 convergence rate while the L-ROF model converges with 1{N rate. However, it has been observed in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that algorithm [START_REF] Edward H Adelson | Pyramid methods in image processing[END_REF] primal-dual update step-sizes are properly tuned. Since the L-ROF model is insensitive to update step-size tuning, the optimization algorithm might always perform in its optimal regime. This could explain the observed exponential convergence rate.

Experiments with scaling

We now proceed with a second set of experiments where we compare the L-ROF model with scaling to the ROF model. We set the initial primal update step size τ to 5 since it seems optimal in the last set of experiments, and we set the dual step size accordingly to ensure convergence. We sweep space of the scaling factor δ from 0.5 to 1 by 0.1 increments and the space of scaling period from 2 to 12 by 1 increments.

For each noise level, we run each algorithm for 500 iterations and we display The optimal scaling factor varies with the scaling period. The more we scale the less frequent we should do it. This is in line with the role of scaling. Indeed, the scaling decreases the influence of the past updates. A possible interpretation is that since the early updates are far from being optimal they can and should be progressively discarded. However, discarding too much of the past is counter productive. We let to future work the study of an optimal or heuristic criterion to dynamically tune the scaling factor parameter δ and the scaling period.

To conclude, the L-ROF model provides an interesting alternative to the classic ROF model when highly accurate solutions are required. 

Conclusion

This first technical chapter introduced the basic of convex optimization. We progressively yet precisely introduce the fundamentals of the First order Primal-Dual techniques for convex optimization. We thoroughly studied the dual solution space of TV regularized problems and we propose through some theorems a better understanding of how different TV models relate one to another.

However, not all tasks can be formulated as a convex optimization problem without scarifying to much modeling accuracy. To this end, we present in the next chapter techniques for non-convex optimization.

Chapter 4

Maxflow and Graph cuts techniques

Introduction and contributions

Introduction

In this chapter we consider the optimization of a non convex discrete energy. To this end we quickly introduce some basic background related to discrete optimization. Then, we introduce a key algorithm in computer science: mincut / maxflow. We study four different algorithms to solve the mincut / maxflow problem.

Finally, we study graph-cuts techniques for their known efficiency to optimize pairwise non convex discrete energies. We introduce two algorithms: Alpha Expansion and Fast PD. Fast PD is known to be significantly faster than the Alpha Expansion. However, its current implementation requires a large amount of memory which makes it unsuitable to our context. Hence, we investigate in details the implementation of the Fast-PD algorithm.

Chapter organization

The section 4.2 introduces the basics of discrete optimization and we describe the problem of interest. We discuss in section 4.3 the mincut and maxflow problems as the primal and dual form of the same task. The section 4.4 presents dedicated solver for the mincut and maxflow problems. The section 4.5 introduces the alpha-expansion and the Fast-PD algorithms for solving multi-label pairwise problems. In the section 4.6 we perform numerous experiments to compare different mincut / maxflow solvers and we evaluate our own implementation of Fast-PD.

Contributions

The main contribution of this chapter is the complete re-implementation of the famous Fast-PD algorithm. Our implementation non only drastically reduces the amount of memory required but it also runs faster than the implementation proposed by the original authors of Fast-PD. We also propose an even faster implementation dedicated to grid-like problems. This allows us for instance to perform discrete optimization in the context of stereo-matching with large images while only using a recent laptop.

Discrete optimization in a tiny nutshell

We start by presenting the necessary knowledge to further study both mincut / maxflow algorithms and graph-cuts techniques. We refer the reader to [START_REF] Parker | Discrete optimization[END_REF], [START_REF] George | Constraint Classification for Mixed Integer Programming Formulations[END_REF] and [START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF] for more details.

Sub-modularity

Sub-modularity plays a central role for discrete optimization in the same way that convexity is crucial for convex optimization [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF].

In this work we make extensive use of binary functions. In this settings, the sub-modularity simplifies to: Definition 12. Let φ : t0, 1u ˆt0, 1u Ñ R be a 2-binary function. We say that φ is sub-modular if and only if:

φp0, 0q `φp1, 1q ď φp0, 1q `φp1, 0q (4.1) 
We introduce some useful properties about sub-modular functions.

Property 3. If φ is a sub-modular function, then @α P R `and @β P R the following function:

αφp.q `β (4.2)
is also sub-modular.

Property 4. If φ and ψ are sub-modular functions, then φ `ψ is a sub-modular function.

Property 5. Any finite positive weighted sum of sub-modular functions is a sub-modular function.

Theorem 9. If φ is a sum of binary sub-modular functions, then one can compute its minimum in polynomial time by solving a min-cut problem.

Hence, if we can formulate our discrete optimization problems as a sum of binary sub-modular functions to optimize, or as a sequence of sums of binary sub-modular functions to optimize, we can derive a polynomial time optimization scheme.

Problems of interest

We remind the problems studied in this chapter.

Notations

We make use of the following notations:

• The graph G is a directed graph G " rV, Es composed of a finite set of vertices V and a finite set of directed edges E. The edge pi, jq of E creates a connexion from the vertex i to another vertex j.

• The discrete variable x i defines the configuration of each vertex i P V. The domain of x i is L " t0, . . . , L ´1u with L P N.

• A discrete unary potential function φ i defines the configuration cost of each vertex i P V: φ i : L Ñ R.

• A discrete potential function φ ij defines the configuration cost of each directed edge pi, jq of E:

φ ij : L ˆL Ñ R `.
We assume that φ ij pl, lq " 0, @l P L.

Canonical problems

We are interested in solving the following problem:

px i q i " arg min pxiPLq i ÿ iPV φ i px i q `ÿ pi,jqPE φ ij px i , x j q. (4.3)

Representation of pairwise binary sub-modular functions

We suppose we are given a pairwise binary sub-modular function ψ ij : t0, 1u t0, 1u Ñ R:

ψ ij " " A B C D  (4.4)
where pA, B, C, Dq P R ˆR ˆR ˆR Theorem 10. Any pairwise binary sub-modular function ψ ij : t0, 1uˆt0, 1u Ñ R can be represented as:

ψ ij px i , x j q " c i x i `cj x j `wij maxpx i ´xj , 0q `d (4.5) 
with: c i " C ´A, c j " D ´C, w ij " B `C ´A ´D, and d " A.

Proof

The proof, given in [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF], derives from basic calculus:

c i x i `cj x j " ˇˇˇ0 D ´C C ´A D ´Aˇˇˇč i x i `cj x j `wij maxpx i ´xj , 0q " ˇˇˇ0 B ´A C ´A D ´Aˇˇˇč i x i `cj x j `wij maxpx i ´xj , 0q `d " ˇˇˇA B C D ˇˇč i x i `cj x j `wij maxpx i ´xj , 0q `d " ψ ij px i , x j q (4.6)

A link between discrete and convex optimization through TV regularization

Theorem 11. Let pz i q i be the solution of the following problem:

pz i q i " arg min pziPr0,1sqi ÿ iPV c i z i `ÿ pi,jqPE w ij max pz i ´zj , 0q . (4.7) 
Then, @t P r0, 1r:

x i " " 0 if z i ď t 1 if z i ą t (4.8) 
The set of variables px i q i are a solution of the associated binary problem:

px i q i " arg min pxiPt0,1uqi ÿ iPV c i x i `ÿ pi,jqPE w ij max px i ´xj , 0q . (4.9) 

Proof

We introduce the following change of variables for a P R ˚,`a nd t P r0, 1r:

z a i " 1 a pz i ´tq, @i P V (4.10)
We apply this change of variable to (4.7):

ˆ1 a pz i ´tq ˙i " arg min ˜ziP « ´t a , 1 ´t a ff¸i ÿ iPV c i z i `ÿ pi,jqPE w ij max pz i ´zj , 0q . 
(4.11) We notice that Da ą 0 such that:

$ ' & ' % 1 a pz i ´tq ě 1 and 1 ´t a ě 1 if z i ą t 1 a pz i ´tq ď 0 and ´t a ď 0 if z i ď t (4.12)
We apply the truncation theorem of TV regularized problems 3 with the r0, 1s interval to equation (4.11):

˜" 1 a pz i ´tq  r0,1s
¸i " arg min

pxiPr0,1sq i ÿ iPV c i x i `ÿ pi,jqPE w ij max px i ´xj , 0q . px i q i " arg min pxiPt0,1uq i ÿ iPV c i x i `ÿ pi,jqPE w ij max px i ´xj , 0q . (4.13) 
This completes the proof.

Primal dual scheme for integer Linear programming

To study Fast-PD, we need to introduce the fundamental of linear programming and the approximate primal-dual scheme of [START_REF] Michel | The primal-dual method for approximation algorithms and its application to network design problems[END_REF] and [START_REF] Renato | Interior path following primal-dual algorithms. part i: Linear programming[END_REF] for integer Linear programming optimization. We refer the curious reader to [START_REF] Dantzig | Linear programming and extensions[END_REF] for more details.

Primal and dual forms of a linear programming problem Definition 13. A Linear Programming, LP, problem consists of minimizing a linear combination of variables under inequality constraints that can be expressed in canonical primal form as:

min pxiqi I ÿ i"1 c i x i s.t. I ÿ i"1
a ji x i ď b j , @j P r1, Js

x i ě 0, @i P r1, Is with: pI, Jq P N ˆN, pc i q i P R, pa ji q ij P R, and pb j q j P R.

Definition 14. The dual canonical form of LP is:

max pyj qj J ÿ j"1 b j y j s.t. J ÿ j"0
a ji y j ď c i , @i P r1, Is y j ě 0, @j P r1, Js

We note that any LP can be easily transformed into either a canonical primal or dual form.

Complementary slackness conditions

The complementary slackness plays a central role to certify the optimality of a primal-dual solution.

Property 6. The primal complementary slackness condition is:

@i P r1, Is , x i ą 0 ñ J ÿ j"0
a ji y j " c i Property 7. The dual complementary slackness condition is: @j P r1, Js , y j ą 0 ñ

I ÿ i"1 a ji x i " b j
Theorem 12. If a pair px, yq of primal-dual pair verifies the primal and dual complementary slackness conditions, then x and y are solutions of the primal and dual LP problem.

Hence, the primal and dual complementary slackness conditions can be used as an optimality certificate.

Relaxed complementary slackness conditions

Interestingly, we can also derive a more general definition for the complementary slackness conditions by relaxing the equality in the second term of each conditions. Property 8. For a given α P r1, `8s the primal relaxed complementary slackness condition is:

@i P r1, Is , x i ą 0 ñ c i α ď J ÿ j"0
a ji y j ď c i Property 9. For a given β P r1, `8s the dual relaxed complementary slackness condition is:

@j P r1, Js , y j ą 0 ñ b j ď I ÿ i"1
a ji x i ď βb j Theorem 13. If a pair px, yq of primal-dual solution verifies the primal and dual relaxed complementary slackness conditions with factor α and β:

I ÿ i"1 c i x i ď αβ J ÿ j"1
b j y j then x and y are αβ optimal solutions of the primal and dual LP problem Using the representation defined by theorem [START_REF] Joshua R Ben-Arie | Development of a pit filling algorithm for lidar canopy height models[END_REF], we can formulate, up to a constant term, any sum of binary pairwise sub-modular functions as :

ÿ iPV φ i p0q p1 ´xi q `φi p1qx i `ÿ pi,jqPE w ij max px i ´xj , 0q (4.14) 
The min-cut problem

The binary min-cut problem is simply the configuration of minimum cost of the previous equation 4.14:

px i q i " arg min pxiPt0,1uq i ÿ iPV φ i p0q p1 ´xi q `φi p1qx i `ÿ pi,jqPE w ij max px i ´xj , 0q (4.15) 

Relaxing primal variables

Thanks to theorem 11 we can solve the relaxed problem while still being able to retrieve by a simple truncation an optimal solution of (4.15).

min pliPr0,1sq i ÿ iPV φ i p0q p1 ´li q `φi p1ql i `ÿ pi,jqPE w ij max pl i ´lj , 0q . (4.16) 
where s-indexed variables are connected to the source and t indexed variables are linked to the sink. We observe that we now deal with a non smooth convex optimization problem. This transformation was observed by [START_REF] Tony F Chan | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF] and then [START_REF] Yuan | A study on continuous max-flow and min-cut approaches[END_REF].

Dualizing the potentials

We transform the previous problem by dualizing the potentials. We formulate both unary and pairwise potentials using the techniques of previous chapter:

φ i p0q " max ρsiPr0,φip0qs ρ si φ i p1q " max ρitPr0,φip1qs ρ it w ij max px i ´xj , 0q " max fij Pr0,wij s f ij px i ´xj q (4.17)
We obtain the following primal dual problem: min pxiq max pρsiq,pρitq,pfij q ÿ iPV ρ si p1 ´xi q `ρit x i `ÿ pi,jqPE f ij px i ´xj q .

subject to x i P r0, 1s, @i P V f ij P r0, w ij s , @ pi, jq P E ρ si P r0, φ i p0qs , @i P V ρ it P r0, φ i p1qs , @i P V (4.18)

We introduce the following notations to minimize clutter in equations:

Epi, .q " tj P V | pi, jq P Eu. Ep., iq " tj P V | pj, iq P Eu (4.20)

After factorization with respect to each x i we obtain:

min pxiq max pρsiq,pρitq,pfij q ÿ iPV ρ si `ÿ iPV x i » -ρ it ´ρsi `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji fi fl
subject to x i P r0, 1s, @i P V f ij P r0, w ij s , @ pi, jq P E ρ si P r0, φ i p0qs , @i P V ρ it P r0, φ i p1qs , @i P V (4.21)

Dualizing the constraints on primal variables

For each vertex i P V, we introduce two variables pk i , s i q P R `ˆR `to enforce x i P r0, 1s. Hence, we can drop the domain constraint for all px i q i min pxiq max pρsiq,pρitq,pfij q,pkiq,psiq

ÿ iPV ρ si `ÿ iPV x i » -ρ it ´si ´ρsi `ki `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji fi fl `ÿ iPV px i ´1q k i ´xi s i
subject to f ij P r0, w ij s , @ pi, jq P E ρ si P r0, φ i p0qs , @i P V ρ it P r0, φ i p1qs , @i P V k i ě 0, @i P V s i ě 0, @i P V (4.22)

We factorize again with respect to x i to obtain: min pxiq max pρsiq,pρitq,pfij q,pkiq,psiq

ÿ iPV ρ si ´ki `ÿ iPV x i » -ρ it ´si ´ρsi `ki `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji fi fl
subject to f ij P r0, w ij s , @ pi, jq P E ρ si P r0, φ i p0qs , @i P V ρ it P r0, φ i p1qs , @i P V k i ě 0, @i P V s i ě 0, @i P V (4.23)

Introducing the source and sink flows

We introduce the flow variables from the source and the sink:

f si " ρ si ´ki , @i P V. f it " ρ it ´si , @i P V. (4.24) 
We observe that: f si ď φ i p0q, @i P V. f it ď φ i p1q, @i P V. (4.25)

Hence, we obtain:

min pxiq max pfsiq,pfitq,pfij q ÿ iPV f si `ÿ iPV x i » -f it ´fsi `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji fi fl subject to f ij P r0, w ij s , @ pi, jq P E f si ď φ i p0q, @i P V f it ď φ i p1q, @i P V (4.26)

Solving for primal variables and refactoring

We recognize that each variables x i acts as a Lagrangian multiplier to enforce the following equality constraint:

f it ´fsi `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji " 0 (4.27)
The maxflow equations

Finally we get the Maxflow equations:

max pfsiq,pfitq,pfij q ÿ iPV f si subject to f ij P r0, w ij s , @ pi, jq P E f si ď φ i p0q, @i P V f it ď φ i p1q, @i P V f it ´fsi `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji " 0, @i P V (4.28)
The last constraint enforces the conservation of the flow.

Simplified equations

We now introduce simplified equations for primal, primal-dual and dual problems modeling the maxflow-mincut.

The primal problem

We start from the relaxed mincut equations. We introduce the following simple factorizations: During optimization we can discard the constant φ Σ p0q. The primal variables are the same as in (4.16). Hence, we can use the truncating technique 11 we recover an optimal solution for (4.15).

c i " φ i p1q ´φi p0q, @i P V. ( 4 

The primal-dual problem

We get the simplified primal dual problem by simply dualizing the pairwise terms:

E ˚" min xiPr0,1s max fij Pr0,wij s ÿ iPV c i x i `ÿ pi,jqPE f ij px i ´xj q `φΣ p0q. (4.34)
The dual variable f ij represents the flow from vertex i to vertex j.

The dual problem

For the simplified Maxflow problem we start by factorizing (4.34) with respect to each primal variable i and then we solve for the primal variables. 

E ˚" min xiPr0,
" max fij Pr0,wij s ´1 2 » - ÿ iPV ˇˇˇˇˇc i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ˇˇˇˇˇ´c i fi fl `φΣ p0q. (4.38) 
The last equation is obtained by applying the 1 reformulation presented in 3.4.1 and noting that the terms out of the absolute values cancel out. We also note that the simplified equation of the Maxflow does not contain the flow from the source and the flow to the sink.

Max-flow / min-cut as a reparametrization

Suppose that we obtain dual variables pf ij q ij by solving, for instance, the problem (4.37). We can apply the following re-parametrization:

c 1 i " c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji (4.39)
This gives use the following primal dual problem:

E ˚" min pxiPr0,1sqi max f 1 ij Pr´fij ,wij ´fij s ÿ iPV c 1 i x i `ÿ pi,jqPE f 1 ij px i ´xj q `φΣ p0q.
(4.40) And the following primal problem:

E ˚" min pxiPr0,1sqi ÿ iPV c 1 i x i `ÿ pi,jqPE pw ij ´fij q maxpx i ´xj , 0q
`fij maxpx j ´xi , 0q `φΣ p0q. Hence, solving the max-flow problem is equivalent to finding a re-parametrization of the min-cut problem where its sum of unary potentials has a minimum 1 norm. It is also equivalent to find a re-parametrization of the dual problem where the new optimal dual variables are equal to 0.

Recovering primal variables from dual variables

To obtain optimal primal variables from optimal dual variables we can solve the following problem:

min pxiq ÿ iPV Rpx i q subject to x i P r0, 1s , @i P V x i " 0, if c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ą 0 x i " 1, if c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ă 0 x i " x j if f ij P s0, w ij r x i ď x j if f ji " 0 x i ě x j if f ji " w ij (4.42)
where Rp.q : R Ñ R is a convex function acting as a regularizer. We note that if Rp.q " 0, then the problem (4.42) can be solved very easily by applying a depth first search scheme as described in the Ford-Fulkerson max-flow algorithm as explain in section 26.2 of [START_REF] Thomas | Introduction to algorithms[END_REF]. For other regularization functions one can use the primal dual techniques of the previous chapter for instance.

Proof: The primal update rule states that @i P V:

x i " » -x i ´τ ¨ci `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji 'fi fl r0,1s (4.43) 
Hence, we can recover a partial set of optimal primal variables px i q ˚:

x i " $ & % 0 if c i `řjPEpi,.q f ij ´řjPEp.,iq f ji ą 0 1 if c i `řjPEpi,.q f ij ´řjPEp.,iq f ji ă 0 P r0, 1s if c i `řjPEpi,.q f ij ´řjPEp.,iq f ji " 0 (4.44)
The dual update rule states that @ pi, jq P E:

f ij " " f ij `σpx i ´xj q ‰ r0,wij s (4.45)
Hence, we gather the following additional constraints:

$ & % x i " x j if f ij P s0, w ij r x i ď x j if f ji " 0 x i ě x j if f ji " w ij (4.46)
Therefore, the optimal primal variable belongs to the space verifying constraints (4.44) and (4.46). Since, this space is not necessarily a singleton, we can enforce a particular solution by adding a regularization cost. This concludes the proof.

Recovering dual variables from primal variables

To obtain optimal dual variables from optimal primal variables we can solve the following problem:

min pfij q ÿ pi,jqPE Rpf ij q subject to f ij P r0, w ij s , @ pi, jq P E f ij " w ij , if x i ´xj ą 0 f ij " 0, if x i ´xj ă 0 c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ă 0, if x i ą 0 c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ą 0, if x i " 0 (4.47)
where Rp.q : R Ñ R is a convex function acting as a regularizer.

The problem (4.47) can be solved with primal dual techniques presented in the previous chapter.

Proof: The dual update rule states that @ pi, jq P E:

f ij " " f ij `σpx i ´xj q ‰ r0,wij s (4.48) 
Hence, we can easily derive a partial set of dual variables:

f ij P $ & % tw ij u if x i ´xj ą 0, t0u if x i ´xj ă 0, r0, w ij s if x i ´xj " 0. (4.49)
However, for any couple pi, jq P E where x i " x j we have to find another set of constraints.

The primal update rule states that @i P V:

x i " » -x i ´τ ¨ci `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji 'fi fl r0,1s (4.50) 
Therefore, we deduce additional constraints for pf ij q ij :

c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ă 0, if x i ą 0 c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji ą 0, if x i " 0 (4.51)
Hence, the optimal dual variable belongs to the space verifying constraints (4.49) and (4.51). Since, this space is not necessarily a singleton, we can enforce a particular solution by adding a regularization cost. This concludes the proof.

Recovering the flow from the source and to the sink

The optimal flow from the source and to the sink is given by: f it " minpφ i p0q ´ÿ jPEpi,.q f ij `ÿ jPEp.,iq f ji , φ i p1qq (4.52)

f si " minpφ i p1q `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji , φ i p0qq (4.53) 
Proof: For each vertex i P V we know from equation (4.28) that:

f it ´f si `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji " 0 (4.54) f si ´f it " ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji (4.55) f si ´f it " f sit (4.56)
Since we already know the optimal flow between vertices, the canonical maxflow problem simplifies to:

max pfsiq,pfitq ÿ iPV f si subject to f si ď φ i p0q, @i P V f it ď φ i p1q, @i P V f si " f sit `fit , @i P V (4.57)
We can easily solve for all pf si q:

max pfitq ÿ iPV f sit `fit subject to f sit `fit ď φ i p0q, @i P V f it ď φ i p1q, @i P V (4.58)
We can reformulate to:

max pfitq ÿ iPV f sit `fit subject to f it ď φ i p0q ´f sit , @i P V f it ď φ i p1q, @i P V (4.59)
Finally, we obtain:

f it " minpφ i p0q ´f sit , φ i p1qq (4.60) f si " minpφ i p1q `f sit , φ i p0qq (4.61)
This completes the proof.

Characterization of obvious partial primal solutions

We study some sufficient conditions for a primal variable x k to be equal to either 0 or 1. One can show that for a given vertex k P V, there exists an optimal solution that verifies:

x k " " 0 if c k ě ř jPEp.
,kq w jk 1 if c k ď ´řjPEpk,.q w kj (4.62) We apply the reformulation trick of (3.59) introduced in previous chapter, we have:

f px k q " c k x k `ÿ jPEp.,kq w jk max px j ´xk , 0q `ÿ jPEpk,.q w kj max px k ´xj , 0q (4.64) 
" c k x k `ÿ jPEp.,kq w jk px j ´xk q `ÿ jPEpk,.q pw kj `wjk q max px k ´xj , 0q

" δ `xk `ÿ jPEpk,.q pw kj `wjk q max px k ´xj , 0q `ÿ jPEp.,kq w jk x j (4.66)

Hence, f px k q is an increasing function and we have x k " 0 an optimal solution. This is illustrated by figure 4.1.

Proof for x k " 1

Let us assume that c k ď ´řjPEpk,.q w kj . We can write for a certain δ ´P R

´:

c k " δ ´´ÿ jPEpk,.q
w kj (4.67)

We apply the reformulation trick of (3.59) introduced in previous chapter:

f pl k q " c k x k `ÿ jPEp.,kq w jk max px j ´xk , 0q `ÿ jPEpk,.q w kj max px k ´xj , 0q (4.68) 
" c k x k `ÿ jPEp.,kq pw jk `wkj q max px j ´xk , 0q `ÿ jPEpk,.q w kj px k ´xj q (4.69)

" δ ´xk `ÿ jPEp.,kq pw jk `wkj q max px j ´xk , 0q ´ÿ jPEpk,.q w kj x j (4.70)

Hence, f px k q is an decreasing function and we have x k " 1 an optimal solution. This is illustrated by figure 4.2.

ROF and Maxflow

The previous chapter gives us a surrogate set of problems that give an optimal solution for the max-flow. Indeed, we see that the optimal solution space of the simplified max-flow problem (4.38) corresponds to Y ˚ 1 of theorem (4). The theorem (4) guaranties any optimal dual solution of ROF model also gives a solution of the associated max-flow problem. This was previously observed in [START_REF] Chambolle | Total variation minimization and a class of binary mrf models[END_REF].

Hence, we can directly solve the following ROF in its dual form:

max pfij Pr0,wij sqij ´1 2 ÿ iPV ¨ci `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji '2 (4.71)
However, if we solve the primal form of the ROF model:

min pxiPRqi ÿ iPV 1 2 x 2 i `ci x i `ÿ pi,jqPE w ij max px i ´xj , 0q , (4.72) 
we can then recover the optimal dual variable by slightly adjusting problem (4.47)

to:

min pfij q ÿ pi,jqPE Rpf ij q subject to f ij P r0, w ij s , @ pi, jq P E f ij " w ij , if x i ´xj ą 0 f ij " 0, if x i ´xj ă 0 c i `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji " ´xROF,i , @i P V (4.73)
where Rp.q : R Ñ R is a convex function acting as a regularizer.

Solvers for min-cut / max-flow problems

We now present solvers that optimally solve the min-cut / max-flow problem.

Solver for chain graphs

We devise a first solver when the graph G is a chain of C vertices. We describe algorithms that solve in OpCq the primal and dual forms.

Primal algorithm

In its primal form, we need to optimize the following problem:

E ˚" min pxiPt0,1uqi ÿ iPt1,..,N u c i x i `ÿ iPt2,.
.,Cu w i max px i`1 ´xi , 0q `φΣ p0q. (4.74)

The problem (4.74) can be solved by the Viterbi algorithm [START_REF] Hagenauer | A viterbi algorithm with softdecision outputs and its applications[END_REF], a dynamic programing algorithm [START_REF] Stuart | Art and Theory of Dynamic Programming[END_REF]. We present in algorithm 9 a simplified version where the inner loops are unrolled since we work with binary variables.

Dual algorithm

For the dual form, we have to solve:

E ˚" max fiPr0,wis ´1 2 » - ÿ iPt1,..,Cu |c i `fi ´fi´1 | ´ci fi fl `φΣ p0q. (4.75)
where we introduce f 0 " 0 and w 0 " 0 to ease the notations. The problem (4.75) can also be solved by dynamic programing as in algorithm 10.

Dual algorithm with backtracking

We can even improve the dual algorithm to also return the optimal primal variables. To this end, we run the depth-first-search algorithm while computing the dual variables. As soon as we saturate a dual variable, we can backtrack to label the primal variables accordingly. This leads to algorithm 11.

Algorithm 11: Algorithm for max-flow on chain graph with backtracking

Data: Inputs: pc i q i , pw i q i Result:

pf i q i Initialization for backtracking s Ð 1 backtrack Ð 0 for i " 1, C ´1 do Compute excess of flow: e Ð c i ´fi´1 if e ď 0 then if wpiq ă ´e then f i Ð w i x i Ð 1 backtrack Ð 1 else f i Ð ´e else f i Ð 0 x i Ð 0
backtrack Ð 1 Backtrack to set optimal primal variables: if backtrack then for j P ti ´1, . . . , su do

x j Ð x j`1 s Ð i `1 backtrack Ð 0

Iterative solvers

TV-linear

We know focus on general graph. The primal dual formulation of the min-cut / max-flow problem is given by:

E ˚" min xiPr0,1s max fij Pr0,wij s ÿ iPV c i x i `ÿ pi,jqPE f ij px i ´xj q `φΣ p0q. (4.76)
We can apply the primal dual techniques of the last chapter to solve the problem (4.76) using algorithm [START_REF] Birchfield | A pixel dissimilarity measure that is insensitive to image sampling[END_REF]. This techniques returns both the (relaxed) primal and dual variables. It can also be warm-started when we dispose of an initial guess of the primal and dual variables.

The convergence rate to an optimal solution in guaranteed in O ˆ1 N ˙, where N is the number of iterations. However, the algorithm (12) does neither guaranty to decrease the primal energy nor increase the dual energy at each iteration. The algorithm 12 describes the TV-linear method for solving the maxflow / mincut problem.

Algorithm 12: Primal dual algorithm for min-cut / max-flow as TV-linear problem Data: Inputs: pc i q i , pw ij q ij , G, τ , σ Result: px i q i , pf ij q ij Initialize primal and dual variable Ñ x 0 " 0, f 0 " 0. Set x " x 0 while Stopping criterion is not verified do Optimize the dual variables, @pi, jq P E:

f n`1 ij " " f n ij `σpx i ´x j q ‰ r0,wij s (4.77) 
Optimize the primal variables, @i P V:

x n`1 i " » -x n i ´τ ¨ci `ÿ jPEpi,.q f ij ´ÿ jPEp.,iq f ji 'fi fl r0,1s (4.78) 
Smooth variable, @i P V:

xi " x n`1 i `θ `xn`1 i ´xn i ˘(4.79)

TV-l2: ROF

We have demonstrated that the ROF model gives an alternative approach to solve the min-cut / max-flow problem. Hence, we make use of the primal-dual form of the ROF model:

min pxiPRqi max fij Pr0,wij s ÿ iPV 1 2 x 2 i `ci x i `ÿ pi,jqPE f ij px i ´xj q (4.80)
As for the TV-linear problem, we apply the primal dual technique of the last chapter. Therefore, we directly recover optimal dual variables that solve the max-flow problem (from which we can easily obtain optimal binary primal variables). The algorithm 13 describes the TV-2 method for solving maxflow / mincut problems.

Algorithm 13: Primal dual algorithm for min-cut / max-flow as TV-2 problem Data: Inputs: pc i q i , pw ij q ij , G, τ , σ Result: px i q i , pf ij q ij Initialize primal and dual variable Ñ x 0 " 0, f 0 " 0. Set x " x 0 while Stopping criterion is not verified do Optimize the dual variables, @pi, jq P E:

f n`1 ij " " f n ij `σn px i ´x j q ‰ r0,wij s (4.81) 
Optimize the primal variables, @i P V:

x n`1 i "

x n`1 i `τn ´ci `řjPEpi,.q f ij ´řjPEp.,iq f ji 1 `τn (4.82)

Update the smoothing and steps size parameters:

θ n " 1 ? 1 `2γτ n , τ n`1 " θ n τ n , σ n`1 " σ n θ n (4.83)
Smooth variable, @i P V:

xi " x n`1 i `θn `xn`1 i ´xn i ˘(4.84)
For algorithm [START_REF] Blinchikoff | Filtering in the time and frequency domains[END_REF] the convergence rate to an optimal solution in guaranteed in O ˆ1 N 2 ˙, where N is the number of iterations.

Augmenting path solvers

Augmenting path solvers [START_REF] Roughgarden | Lecture 2: Augmenting path algorithms for maximum flow[END_REF] are algorithms designed to solve the dual form of the max-flow / min-cut, i.e., problem (4.28). Here, we describe the augmenting path method of [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF] that experimentally outperforms other variant for computer vision problems [START_REF] Verma | Maxflow revisited: An empirical comparison of maxflow algorithms for dense vision problems[END_REF]. It sequentially alternates three stages:

1. Find an augmenting path: a chain subgraph A of the main graph G whose dual variables can be further optimized. For computer vision problems, this is generally done by growing two binary trees simultaneously from the source and sink by following edges that have positive capacities. An augmenting path is found when the two trees meet. If no augmenting path can be found, then the algorithm terminates.

2. The augmenting phase: optimize the dual variables of the chain subgraph A.

Apply a re-parametrization of the problem as describe in paragraph 4.3.3.

3. Adopt orphan: An optional step that greatly speeds up augmenting path is to update dynamically the growing trees after the augmentation phase.

During the augmentation the re-parametrization might have set the capacities of some edge to 0, potentially invalidating parts of the source and sink trees. The adoption phase corrects this phenomenon.

The efficiency of augmenting path algorithms resides in their ability to quickly find augmenting paths. The celebrated BK algorithm uses a heuristic that deliver great performance for computer vision related maxflow problems. We refer the reader to its original publication [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF] for more details.

Graph-cuts for non convex problems

We now look at graph-cuts techniques to optimize a sub class of non convex problems given by equation (4.3):

px i q i " arg min pxiPLq i ÿ iPV φ i px i q `ÿ pi,jqPE φ ij px i , x j q.
Unfortunately, such problems are known to be NP-hard [START_REF] Komodakis | Approximate labeling via graph cuts based on linear programming[END_REF]. Hence, theoretically the best we can get is an approximate solution with some mathematical guaranties on the goodness of the approximation.

Algorithm 14: Alpha expansion

Data: Inputs: pφ i q i , pφ ij q ij , G, px i q i Result: px i q i while Until no expansion improves the solution do for α P L do Create binary function for expansion:

ψ i " ˇˇˇφ i px i q φ i pαq ˇˇˇa nd ψ ij " ˇˇˇφ i,j px i , x j q φ i,j px i , αq φ i,j pα, x j q φ i,j pα, αq ˇˇŠ olve mincut -maxflow problem using the representation forumula (4.5) of theorem [START_REF] Joshua R Ben-Arie | Development of a pit filling algorithm for lidar canopy height models[END_REF]:

z ˚" arg min zit0,1u ÿ iPV ψ i pz i q `ÿ pi,jqPE ψ ij pz i , z j q
Update current solution:

x i " p1 ´zi qx i `zi α, @i P V.

Fast-PD

Overview of the method

We now move on to a different graph-cut technique: Fast-PD [START_REF] Komodakis | Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies[END_REF]. Fast-PD relies on first transforming the original multi-labels problem (4.3) to a binary linear programming problem as in [START_REF] Glocker | Dense image registration through mrfs and efficient linear programming[END_REF] or [START_REF] Komodakis | A new framework for approximate labeling via graph cuts[END_REF]. Then, it makes use of the approximate primal dual scheme presented at the beginning of this chapter to derive a sub-optimal solution. Fast-PD shares similarity with the alpha expansion, since it also relies on solving a series of maxflow problems in a cycling fashion. However, Fast-PD can handle a larger set of pairwise functions since it only requires the following assumptions on the functions pφ ij p., .qq ij : φ ij pa, bq " 0 ô a " b @pa, bq P L ˆL φ ij pa, bq ě 0, @pa, bq P L ˆL

A binary LP formulation

As preliminary work, we formulate problem (4.3):

px i q i " arg min pxiPLq i ÿ iPV φ i px i q `ÿ pi,jqPE φ ij px i , x j q.
as a binary linear programing problem.

A primal LP formulation

Solving the previous binary LP problem is very challenging. Hence, Fast-PD proceeds with the primal dual approximation framework by relaxing the domain of variables z to the real positive half space. Since, we also have the uniqueness constraints the feasible domain of each element of z is in fact r0, 1s. We get the following LP that we refer as the primal form of our problem:

min z θ T z s.t. U z " 1, (uniqueness constraints) Cz " 0, (consistency constraints) z ě 0 A dual LP formulation
We proceed to a second transformation by computing the dual of the primal LP.

To this end, we introduce a set of N L variables, s, for the uniqueness constraints.

We use a set of 2EL variables y for the consistency constraints. The dual form of the LP problem is given by:

max s,y " 1 0  T " s y  s.t. " U C  T " s y  ď θ
that we can simplify to:

max s,y ÿ iPV s i s.t. s i ď θ i,a `ÿ jPEpiq y ij,a , @pi, aq P V ˆL y ij,a `yji,b ď θ ij,a,b @pij, a, bq P E ˆL ˆL
where Epiq " Epi, .q Y Ep., iq is the set of all nodes of V linked to i by an edges in E.

Using the relaxed complementary slackness conditions

Since we work in an approximate primal dual scheme, we only make use of binary primal solution. Assuming we start from a feasible binary primal solution, it is trivial during any primal update to maintain primal feasibility.

Hence, we can simplify the primal relaxed complementary slackness conditions associated to variables pz i q i to:

z i,l " 1 ñ θ i,l α 1 `ÿ jPEpiq y ij,l ď s i ď θ i,l `ÿ jPEpiq y ij,l , @a P L
primal solution is a δ-approximation of the optimal primal solution. In the original publication the authors derive different approximation bounds of Fast-PD for regularization functions such as weighted Potts or weighted 1 . While those bounds are quite large, they show that in practice the approximation is less than 1 percent.

A primal dual problem

We now have to optimize the following problem:

px i q i " arg min pxiPLqi max y ÿ iPV θ i,xi `ÿ jPEpiq y ij,xi s.t. y ij,x i `yji,x j " θ ij,x i ,x j , @pi, jq P E y ij,a `yji,b ď 2 max pc,dqPLˆL θ ij,c,d @pij, a, bq P E ˆL ˆL
To do so, we proceed by iteratively picking a label α P L, and optimize simultaneously the dual variables belonging to this label and the primal variables. This scheme shares a lot of similarity with the Alpha-Expansion algorithm previously presented. Hence, we refer to this step as expansion.

Expansion

It turns out that by properly setting the capacities of a maxflow problem, one can jointly optimize the primal and dual variables for a given label l. The curious reader can find proof of correctness in the original publication [START_REF] Komodakis | Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies[END_REF].

Pre-editing dual variables: We need to ensure that after the maxflow the following constraints are verified whether x i or x j are updated or not:

y ij,x i `yji,x j " θ ij,x i ,x j , @pi, jq P E y ij,a `yji,b ď 2 max pc,dqPLˆL θ ij,c,d , @pij, a, bq P E ˆxi , x j , l ˆxi , x j , l
To this end, and before maxflow, we always force the dual variables py ij,l q ij to verify:

´θij,xj,l `yij,xi ď y ij,l ď θ ij,l,xj `yji,xj
Setting-up the maxflow problem: We set the capacities between nodes pi, jq P E to:

cap ij " rθ ij,l,xj ´py ij,l `yji,xj qs R cap ji " rθ ij,xj ,l ´py ij,xi `yji,l qs R
To simplify notations we introduce the height variable for each vertex i P V and each label l P L:

h i,l " θ i,l `ÿ jPEpiq y ij,l
Updating the source and sink trees for each maxflow

As previously explained the maxflow algorithm finds an augmenting path by simultaneously growing two trees, one from the source and one from the sink. This is efficient if we expect the amounts of nodes connected to the source and the sink to be balanced. However, as Fast-PD progresses, fewer nodes are going to be connected to the source. Hence, the original implementation makes use of a modified maxflow that only grows the source tree to find augmenting paths. This potentially avoids to grow a very large sink tree which could slow down the maxflow computation.

Unfortunately, to the best of our knowledge, no experiment quantifies the improvement gained by only growing the source tree. Hence, we investigate this during our experiments.

Maintaining the trees and capacities of each maxflow

As Fast-PD progresses fewer modifications are made to primal and dual variables. Hence, the original implementation proposed to keep in memory the capacities of each maxflow problem along with the tree structures for finding the augmenting path. This allows to only recompute the capacities that might have changed during a full cycle of expansion. Furthermore, the trees can also be used to warm start the computation of the maxflow since only a small part is likely to be obsolete. However, the down side is that a large amount of extra memory is required for storing the capacities and the trees. Hence, we elect to recompute from scratch the capacities for each expansion. We maintain in memory only one maxflow that we reinitialize before each expansion. This allows us to avoid allocating and de-allocating at each iteration.

Cache friendly indexation

During each expansion phase of Fast-PD, the algorithm goes through all edges to pre-edit dual variables, computes the capacities, and then post-updates the dual variables. Hence, we need to pay attention that the pattern used to access the variables maximizes cache friendliness. Hence, we perform experiments to investigate and quantify the benefit of different memory layouts.

Experiments

In our context we mainly deal with neighborhood structures defined on a grid. Moreover, due to the nature of our applications, our problem tends to be quite large. For instance, a satellite image is generally of the order of ten thousand pixel per dimension. Hence, we limit our experiments to 4-connected grid.

We make use of the stereo matching task to illustrate the differences between maxflow solvers on the one hand, and between the Alpha Expansion and the different implementations of Fast PD on the other hand.

The stereo-Matching Problem

In the stereo-matching task [START_REF] Mjpm Lemmens | A survey on stereo matching techniques[END_REF] we are given a stereo-pair in epipolar geometry composed of a reference image I r and a target image I t , and a finite set of potential disparities D " rd 0 , d 1 , ...d D s, i.e., a one-dimensional apparent displacement along the epipolar line. The goal is to retrieve the most likely disparity map, i.e., the apparent motion of the pixel from the reference image to the target image. For each stereo-pair, the support graph G " rV, Es is inherited from the 4-connectivity of the reference image. The node i directly corresponds to pixels p i " pr i , c i q of row r i and column c i . The label set L simply indexes the set of potential disparities D.

Defining the potentials: For the unary potential we rely on the ZNCC, Zero Normalized Cross Correlation, coefficient [START_REF] John | Fast normalized cross-correlation[END_REF]. For each label l P L and each node i P V, we compute:

φ i plq " 1 ´ZN CC W pI r , I t , i, Dplqq
where ZN CC computes the ZNCC coefficient between the square patch of width W extracted from image I r around pixel pr i , c i q and the patch of width W extracted from image I t around pixel rr i , c i `Dplqs. We set W " 5 to get patches of size 5 ˆ5.

For the pairwise potential, we used the popular weighted l1-distance to favor a piecewise constant disparity maps. For each edge pi, jq P E and each pair of labels pa, bq P L ˆL we define: φ ij pa, bq " pw 0 `w1 expp´w 2 ||I r piq ´Ir pjq|| 2 2 qq ˆ|Dpaq ´Dpbq| where w 0 , w 1 and w 3 are positive real scalars.

Remote sensing stereo-pairs: We use a large stereo pair acquired with the Ultracam camera during an aerial survey above an urban environment to extract 4 subsets of size 1500 ˆ1500. The figure 4.3 displays the reference image of each subset. The stereo pair has been beforehand calibrated and globally registered. Hence, the remaining registration only consists of an horizontal offset ranging from ´50 to 50 pixels. We remind that the goal of this experiments is to study the optimization algorithms with realistic problems and not to get the best disparity maps. The figure 4.4 displays the obtained disparity maps.

We create 3 different sizes of stereo matching problems by sampling if needed the stereo pair subsets:

• Small: the graph is 500 ˆ500 nodes and 21 labels are to be optimized. • Medium: the graph is 1000 ˆ1000 nodes and 51 labels are to be optimized.

• Large: the graph is 1500 ˆ1500 nodes and 101 labels are to be optimized. an implementation using the BK maxflow can handle any graph architecture while the implementation based on the Grid-Cut maxflow can only handle 4connectivity grid. However, we note that it is relatively easy to extend the Grid-Cut version to 8-connectivity for instance.

Implementations

Implementation memory footprint limitations

Since we work with large images in our context, we need to pay a close attention to the memory footprint of our algorithms. Hence, our first experiment quantifies the memory footprint of the different implementations. The table 4.4 gives the memory required by each algorithm. The memory footprint required by the original implementation of Fast-PD makes it unsuitable in our context. Our implementations only needs on average less than 10% of the original implementation memory requirement. The Fast PD (GC) requires less memory than the Fast PD (BK) since the grid-cut maxflow can take advantage of the implicit grid structure to avoid storing the neighbors connectivity in memory. While our implementations still require a significant amount of memory, they can easily run even on modern laptops.

Cache friendly indexation

We now proceed to exhibit the importance of cache friendliness when implementing algorithm such as Fast-PD. To this end, we propose two experiments.

Fast PD (BK) experiment: The first one makes use of Fast PD (BK). We compare the runtime when the edges are randomly ordered and when they are ordered to maximize cache friendliness. For both cases the memory layout of all edge related variables (weights and dual variables) matches the order of the edges. All node related variables (the primal and height variables) are stored as a continuous vector that follows the vertical lines of the graph.

The main cases for cache misses happen during the pre-edit phase of the expansion. In this phase the algorithm computes the inner capacities of the maxflow problem by scanning the dual variables following the order of the edges. It also needs to fetch the two primal variables associated to the edge, and it might also update the two height variables associated to the edge. If from one edge to the next, those two primal and two height variables are far away in memory (not in the same cache line), then a cache miss occurs, forcing to load a new cache line. Sometime this loading time can be hidden by some others computations. However, we illustrate that ordering the edges such that they follow the node memory layout favors cache hits, and as a result boosts performance. The results are presented in table 4.5.

Hence, just by properly ordering the memory layout we obtain up to 1.7 speed-up. Hence, from now on we only use the proper memory layout for our experiments.

Fast PD (GC) experiment: For our second experiment we propose two memory layouts for the node and edge related variables. The first layout is exactly the one we used for the Fast PD (BK) with proper ordering. However, the grid-cut maxflow algorithm uses a particular memory layout to favor cache locality during the growing and augmenting phases. Hence, we derive a second version of Fast PD (GC) that matches the grid-cut memory layout. The results are reported in the table 4.6.

As for the Fast PD (BK) experiment, the proper memory layout leads to improved performances up to 1.3. We note that for the pre-edit dual phase of Fast-PD the grid-cut memory layout is a bit less efficient than the BK layout. However, this is largely compensated by the gain obtained when filling the maxflow capacities. Therefore, for Fast PD (GC) we elect to use the same memory layout than grid-cut.

Growing source and sink trees

We now verify the claim of the original authors of Fast PD about growing only the source tree. To this end, we perform a simple experiment. We solve each of our stereo matching problem twice, once growing only the source tree and once growing both source and sink trees. We carry-out this experiment for both Fast PD (BK) and Fast PD (GC). The results are reported in table 4.7 and 4.8.

For Fast PD (BK) the results illustrates that as the problems grow larger less than swapping to hardrive even for SSD. We report the results in table 4.9. For all experiments, Fast PD (GC) outperforms the other two implementations. This is an ideal situation since it is also the implementation that requires the less memory. Hence, for 4-connected problems and in our context, Fast PD (GC) should always be the algorithm of choice.

Small size problems

It was a bit surprising to us that for small size problems Fast PD (NK), the original implementation, is the slowest version. In fact, the extra allocation time needed by Fast PD (NK) cannot be compensated by the speed-up obtained in the last expansion phases. For medium size problem, we witness no evidence that the OS decided to compress memory. In these settings, Fast PD (NK) outperforms Fast PD (BK) by 10%. Given the amount of memory saved by Fast PD (BK), this is good trade-off since we reduce the memory consumption by 90% to only increase the computation by 10%. For large problems, Fast PD (GC) is on average 1.6 time faster than Fast PD (BK). This is mainly thanks to a faster maxflow algorithm. However, it is important to keep in mind that Fast PD (BK) can handle any graph connectivity.

To conclude, our two implementations are suitable for large size problems. In term of running time both are very competitive since they outperform the original problem except for the medium size problems for Fast PD (BK). For 4-connected problems, we elect to use Fast PD (GC). For any other graph connectivity, we use Fast PD (BK).

Fast PD vs Alpha-expansion

We now need to compare our implementation against the Alpha-expansion algorithm. To this end, for the Alpha-expansion we use the C++ implementation provided by [START_REF] Veksler | Alpha expansion code[END_REF] that we compile with the same optimization flags as our implementations. As stated in [START_REF] Komodakis | Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies[END_REF], both Alpha-expansion and Fast-PD obtain similar results in term of energy and solution. Hence, we only provide the results of our experiments on running time in table 4.10.

Both Fast PD (BK) and Fast PD (GC) outperform Alpha Expansion significantly. This is conform with the experiments of [START_REF] Komodakis | Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies[END_REF]. Fast PD (BK) is on average twice as fast as the Alpha Expansion and Fast PD (GC) runs between 3 and 4 times faster than Alpha Expansion. Moreover, Fast-PD is also capable of solving a larger class of problems than the Alpha Expansion. Hence, since the memory footprint of both Fast PD (BK) and Fast PD (GC) is suitable to our context, we elect to use Fast PD (BK) and Fast PD (GC) over Alpha Expansion. 

Small size problems

Conclusion

This second technical chapter introduced the basic of non-convex optimization. We presented and demonstrated the link between the maxflow and mincut problems. We surveyed different algorithm to solve either a maxflow or mincut problem. Then, we presented the α expansion algorithm along with Fast-PD. We extensively experiment with our own implementation of Fast-PD in the context 125 of stereo-matching where it drastically outperforms the original implementation.

Despite these improvement non convex optimization techniques remains computationally intensive. Hence, we investigate in the next chapter coarsening scheme for non convex optimization. We also provide a comparison in the context of remote sensing between the non convex optimization techniques of this chapter and the First order Primal-Dual methods of the previous chapter.

Chapter 5

Coarsening schemes for optimization techniques

Introduction and contributions

Introduction

In this chapter we consider coarsening scheme for the optimization techniques presented in the two previous chapters 3 and 4.

Hence, we study coarsening schemes suited for the First order Primal-Dual techniques for convex optimization. In this context, we review how to transform our initial non convex problem to a series of convex surrogate problems. We use the stereo-matching task of last chapter 4 to evaluate the performances and trade-offs of different schemes.

We also investigate coarsening schemes for Graph-Cuts techniques. In this context, the goal is to reduce the overall computational complexity. To this end, we present a new coarsening scheme that uses machine learning techniques to deliver impressive trade-off between speeding-up and precise optimization. As for the First order Primal-Dual techniques, we perform experiments with the stereo-matching task.

Chapter organization

The section 5.2 introduces and compares the smoothing and coarsening scheme for first order primal-dual techniques. We discuss in section 5.3 the image and energy pyramid schemes for graph-cuts optimization techniques. We also introduce a powerful optimization framework named Inference by learning.

Contributions

The main contribution of this chapters related to the coarsening scheme for Graph-Cuts techniques where we present different approaches to coarsen an MRF model. None only our coarsening scheme speeds up the optimization but it also delivers more accurate solution. Finally, we present a novel framework built on top of the coarsening scheme that drastically speeds-up the inference while maintaining impressive accuracy.

Smoothing and Coarsening scheme for first order primal dual optimization techniques

The first order primal dual scheme assumes that the function to optimize is convex. However, we can not guaranty the convexity of the functions of interest. Hence, we detail a scheme to approximate any given function with a convex surrogate function.

To this end, we first survey the causes of non convexity. Then, we show that we can easily create a convex surrogate function that locally approximates the given function. Finally, we analyze two schemes, smoothing and coarsening, to extend the approximation to larger support.

Preliminary work

Approximation measure

We propose to make use of the approximation measure to evaluate the quality of the approximation of the surrogate function. We use the following definition to measure how close a function f approximates a reference function f ref :

100 ş |f pxq ´fref pxq|dx ş |f ref pxq|dx (5.1) 
We note that many other approximation measures exist.

Origin of the non convexity

The non convexity can arise in both the matching and the regularization terms of the given function.

Non convex matching term The matching term is the main culprit of nonconvexity for registration problems. The non convexity comes from the spatial ressampling and is amplified by the matching criterion. We also note that the matching criteria such as census, ZNCC or truncated norms are also non convex functions.

Image ressampling

The spatial ressampling of an image I at point p i " pr i , c i q P Ω, the spatial support of image, of row r i and column c i with a displacement vector d i " pd ri , d ci q defines the following function:

f I,pi pd i q " Ipr i `dri , c i `dci q
The spatial ressampling of any natural digital image is almost statistically guaranteed to yield a non convex function. We exemplify this phenomenon by ressampling along the horizontal axis images of aerial survey acquired with the UltraCam camera. We use the same images than in the stereo matching application of the previous chapter. The figure 5.1 illustrates typical ressampling functions pf I,pi q i at four different points with the following ressampling techniques: nearest, linear and cubic. We point the interested reader to [START_REF] Almansa | Echantillonnage, interpolation et détection: applications en imagerie satellitaire[END_REF] for a detailed definition of these ressampling techniques. The curves highlights the non convexity of the ressampling function independently of the method. The non convexity is directly linked to image content. Hence, it generally drastically varies within the same image. The main difference between ressampling techniques is the smoothness. The cubic method always generates smooth curves while the nearest and linear methods generate non smooth curves with the nearest methods being the least smooth. We also note that the algorithmic complexity increases between methods, with the nearest method being the fastest and the cubic method being the slowest. Yet, in our context this only accounts for a negligible part of the total computational complexity.

Matching criterion We survey how much the matching criterion amplifies the non convexity. To this end, in the context of stereo matching introduced in the last chapter we make use of the 1 and ZN CC matching criteria. We display with figures 5.2 and 5.3 for the same points that figure 5.1 the curves associated to each matching criterion with the different ressampling methods. We observe that the matching criterion amplifies the non convexity. Moreover, the ZN CC being a non-convex function accentuates the non-convexity more than the 1 matching criterion. For both criteria, we observe the function maintains the smoothness property of the ressampling method. The matching criterion also increases the difference between ressampling methods. We quantify this phenomenon by taking the cubic ressampling as reference and computing the approximation measure for the nearest and linear ressampling methods.

The table 5.1 details the approximation measure for all 4 subsets of the stereo matching application of the previous chapter. The figure 5 Table 5.1 -Approximation measure for the ressampling and computation of unary terms using the ZNCC matching criterion.

The table 5.1 confirms that the matching criteria are amplifying the differences between the ressampling methods. The difference between nearest and linear ressampling is as expected significant. Surprisingly, the 1 matching criterion is twice as more sensitive to the ressampling method than the ZN CC matching φ ij pa, bq " w ij ψp||a ´b|| q, @pa, bq P R d ˆRd Hence, the non-convexity actually entirely comes from the function ψp.q when it takes for instance one of the following forms: Truncated: ψpxq " minpx, γq, @px, γq P R ˆRC • Truncated with γ " 3,

• Cauchy with γ " 7 and α " 2,

• Welsch with γ " 8 and α " 1.5.

Taylor approximation for unary terms

When we are only interested to get a convex surrogate function on a small interval we can rely on Taylor series.

Taylor series An infinite differentiable function f can be represented as an infinite sum of terms, a Taylor series, computed from its derivatives:

f pxq " 8 ÿ n"0 f pnq paq n! px ´aq n
We note that the high order terms progressively vanish as x gets closer to the neighborhood of a. This property allows us to build a polynomial of small order that approximately represents a function around a certain point of interest.

For the unary term, we can exploit this idea in two different ways depending on the convexity of the matching criterion.

1st order approximation Here, we assume that the matching criterion ρ is a convex non decreasing function. Moreover, we limit ourself to the first order polynomial functions to approximate the image ressampling. We obtain for a given point of interest a P R d :

Ipa `xq « Ipaq `p∇Ipaqq t x
This approximation is also sometimes referred to as linearization.

Hence, we obtain for a convex function ρ the resulting approximation:

ρpIpa `xqq « ρpIpaq `p∇Ipaqq t xq
The resulting function is a convex function since it is composed of a convex function, the linear term, with a convex non decreasing function, the matching criterion.

2 nd order approximation If we can't make the previous assumption on the matching criterion, then we proceed with a second order approximation. We define as f p.q the composition of the image ressampling and the matching criterion. By limiting the Taylor series of f to the second order we get:

f pxq « f paq `p∇f paqq t x `xt ∇ 2 f paqx
We note that this approximation is guaranteed to yield a convex function only if the Hessian matrix ∇ 2 f paq is semi definite positive for any point a. Hence, we not only set to zero all non diagonal elements but also the negative diagonal elements of the Hessian matrix as in [START_REF] Werlberger | Motion estimation with non-local total variation regularization[END_REF]. We refer to this modified Hessian matrix as ∇ 2 `f paq. Finally, we obtain the following 2 nd order convex approximation:

f pxq « f paq `p∇f paqq t x `xt ∇ 2 `f paqx
Discretization of derivative operators The computation of a Taylor series heavily relies on calculating derivatives of different orders. Considering we work with discretized images we need to define the discretized counterparts of the continuous derivative operators. Different discretization schemes exist. We limit the definition to the case of a mono-dimensional function defined on a rectangular uniform grid. The extension of each scheme to multi-dimensional variables is straight forward. Since we always assume that our data are uniform gridded, we will not discuss the extension of these definitions to non uniform grid or un gridded space. However, we point the curious reader to the following works [START_REF] Louis M Milne-Thomson | The calculus of finite differences[END_REF] for more details on discretization.

For the following definitions we make use of the discrete function f p., .q : R ˆC Ñ R where R Ă N and C Ă N index respectively the row and columns of the grid.

First order derivatives The forward, backward and central schemes are the most used approximations to calculate the first order derivatives.

The forward method computes: ∇f pi, jq " " f pi `1, jq ´f pi, jq f pi, j `1q ´f pi, jq



The backward method computes:

∇ i f pi, jq " " f pi, jq ´f pi ´1, jq f pi, jq ´f pi, j ´1q 
The central method computes: ∇f pi, jq " " f pi `0.5, jq ´f pi ´0.5, jq f pi, j `0.5q ´f pi, j ´0.5q

 " » - - f pi `1, jq ´f pi ´1, jq 2 f pi, j `1q ´f pi, j ´1q 2 fi ffi fl (with linear interpolation)
since we always discard the others in our Hessian approximation scheme:

The forward method computes:

∇ 2 ii f pi, jq " f pi `2, jq ´2f pi `1, jq `f pi, jq ∇ 2 jj f pi, jq " f pi, j `2q ´2f pi, j `1q `f pi, jq
The backward method computes:

∇ 2 ii f pi, jq " f pi, jq ´2f pi ´1, jq `f pi ´2, jq ∇ 2 jj f pi, jq " f pi, jq ´2f pi, j ´1q `f pi, j ´2q
The central method computes:

∇ 2 ii f pi, jq " f pi `1, jq ´2f pi, jq `f pi ´1, jq ∇ 2 jj f pi, jq " f pi, j `1q ´2f pi, jq `f pi, j `1q
Comparison Once more we make use of the stereo matching task of last chapter with the four UltraCam subsets. We focus on the unary terms created by matching criteria derived from the Huber norm and the ZN CC criterion. We propose a series of experiments to examine the various discretization schemes and the different orders of approximation. We use bicubic image ressampling as a baseline to compute the approximation measurement for disparities ranging from ´1 to 1 along the horizontal axis.

Huber: 1 st order vs 2 nd order discretization schemes First, we define the matching criterion as the Huber norm with smoothing threshold in t0, 5, 10u (images are quantized on 255 gray levels). We investigate the first order approximation scheme with different discretization methods of the differential operator, forward, backward and central schemes. We also study the second order approximation scheme but only for the central differentiation scheme. The table 5.2 details the approximation measure for all 4 subsets of the stereo matching application of the previous chapter.

As expected, the 1 st order central scheme and 2 nd order central scheme outperform the backward and forward schemes. Interestingly, the 2 nd order central scheme outperforms its 1 st order counterparts for the 1 . When the smoothing increases, the 1 nd order central scheme slightly outperforms its 2 nd order equivalent. Hence, we would only use either the 1 st or 2 nd order central schemes.

ZNCC: 2 nd order discretization scheme For the ZN CC criterion we investigate how the approximation measure evolves with the size of patch from 3 ˆ3 to 7 ˆ7. We report our results in table 5.3.

The approximation improves with a growing size of the patch. In fact, the ZN CC is made smoother when the patch grows larger. As a result the 2 nd order approximation becomes more accurate. 

Taylor approximation for pairwise terms

For the pairwise terms and the regularization criterion that we investigate, the 1st and 2nd order approximation lead to exactly the same results. Indeed, since the functions of interest are non convex the 2nd order term is always set to 0.

Approach

Ideally, we want to represent with as much accuracy as possible the energy manifold with a convex function around a current solution. This clearly looks like a chicken and egg problem. On the one hand we need a current solution to define the locality where to represent the energy manifold. On the other hand, we need to get a current solution that is as close as possible to the unknown minimum of the energy manifold. Hence, we rely on an iterative scheme that:

1. Creates a surrogate function that approximate the energy manifold within a certain range around the current solution.

2. Computes the minimum of this surrogate functions to get an updated solution.

3. Defines a new range for the next approximation.

Moreover, we also need to quickly compute the convex surrogate function otherwise any computational speed-up gained by using a primal-dual scheme over the graph-cut scheme will be negated. To this end, we propose to work directly on the images used to compute the energy manifold with two classic approaches: Filtering and Coarsening.

Surrogate function via Filtering scheme

The first approach, that we refer to as the Filtering scheme, only modifies the unary terms.

Filtering

We suppose we are given a function f : R Ñ R to smooth and a continuous filter k : R Ñ R. The convolution of f by k gives the filtered function f s : R Ñ R:

f s pxq " ż
kpyqf px ´yqdy, @x P R Since we mainly work with discretized functions we remind the definition of the discrete convolution operator. The convolution of a discrete function f : Z Ñ R by a filter k : K Ñ R with limited support K Ď Z computes:

f s piq " ÿ jPK kpjqf pi ´jq, @i P Z
To simplify notations, we use the operator ‹ to indicate convolution indifferently of the continuous and discrete domain. For instance the convolution of the function f p.q by filter kp.q is noted k ‹ f and we also write for all i P Z, f s piq " pk ‹ f qpiq.

If we assume that kp.q is a low pass filter, it reduces the average curvature of the function it is convoluted to. Indeed, the second order derivatives gives the curvature along each directions. Since the second order derivative is a linear operator we have:

pk ‹ f q 2 " k ‹ pf 2 q

Gaussian filtering

We choose to use a Gaussian filter as low pass filter. The Gaussian filter minimizes group delay making it an ideal time domain filter as explained in [START_REF] Blinchikoff | Filtering in the time and frequency domains[END_REF]. We remind the impulse response function of a Gaussian filter for a real d dimensional variables x:

gpxq "

1 a det p2πΣq exp ˆ´1 2 x t Σ ´1x ˙(5.2)
The matrix Σ is a SDP d ˆd matrix controlling the filtering in each of the d direction. For our filtering scheme, we only use some diagonal matrix Σ " diagpσ 2 1 , σ 2 2 , . . . , σ 2 d q. Hence, the Gaussian filter simplifies to:

gpxq " 1 a p2πq d ś d j"1 σ d exp ˜´d ÿ j"1 x 2 j 2σ 2 j ¸(5.3)
By nature the Gaussian filter has an infinite support. However, we notice that when x grows large the value of gpxq tends to 0. Hence, in our context we only use a limited support for the Gaussian filter. However, we properly renormalize the output of filtering such that a constant signal is unmodified. We display in figure 5.8 the impulse response of 1dimensional Gaussian filters for different values of σ. We notice that as sigma grows larger, the Gaussian filter has a larger spread, and hence, a lower low pass frequency cut-off.

Reducing curvature and non convexity

Filtering with a low pass filter helps to reduce the curvature. If we now assume that the function f p.q is close to be convex, we can find a low pass filter kp.q that after convolution creates a convex function. And, then we can use this created convex function as a surrogate function in the first order primal dual scheme.

We note that if the function f p.q is far from being convex we then need the filter kp.q to be low pass filter with a potentially very low frequency cut-off to get a convex function. The worst case scenario is when f p.q is strongly concave. The only convex function we can obtain with filtering is the constant function with value corresponding to the average of f p.q over its entire domain.

However, in our context, we are going to filter the images instead of filtering the energy to maintain a low computational complexity. Hence, after filtering we do not seek to obtain a fully convex function but only attempt to reduce the initial non convexity. Moreover, even if the images are smooth, the matching criterion can potentially create matching potentials with high curvature. The figure 5.9 displays the matching term obtained with the ZN CC matching criterion in the context of stereo matching. 

The filtering scheme

To simplify notations in the algorithm 16 description we use the function φ i,Ir,It,di : r´1, 1s ˆr´1, 1s Ñ R to represent the combination of the Taylor approximation of image I t around d i and the matching criterion φ.

Surrogate function via coarsening

The second approach, referred as the coarsening scheme, is well established in the computer vision community. Hence, we only give a brief description of it. We refer the curious reader to [START_REF] Edward H Adelson | Pyramid methods in image processing[END_REF] for more details.

Coarsening

The coarsening scheme simply downsamples the images used to compute the energy manifold by a given factor, and then computes a coarsen energy manifold from the downsampled images. We remind that image downsampling simply consists of a low pass filtering followed by a decimation. Hence, the coarsening scheme can be seen as an extension of the Filtering scheme. To simplify the Algorithm 17: Coarsening scheme Data: Inputs: I r , I t , pφ i q i , ψ, Σ list Result: pd i q i

Initialize displacement field at coarsest scale Ñ d " 0 for σ P Σ list do Compute the Gaussian filter Ñ g σ Downsample both image:

I r,σ "Ó pg σ ‹ I r q and I t,σ "Ó pg σ ‹ I t q

Compute weights of regularization pw ij,σ q ij from I r,σ . while pd i q i is updated do Solve optimization problem:

min xiPr´1,1s 2 ÿ iPVσ φ i,Ir,σ,It,σ,di px i q `ÿ pi,jqPEσ w ij,σ ψp||d i `xi ´dj ´xj || q
Update displacement field:

d i Ð d i `xi , @i P V σ
Upsample displacement field for next scale:

d ÐÒ d
For both schemes, we compute 3 successive Taylor approximations per scale and we perform 30 iterations of the Primal-Dual solver for each Taylor approximation. We found that increasing the number of iterations of the Primal-Dual solver is only slightly modifying the results. For the filtering scheme we use a 2D Gaussian filter with standard deviation ranging from 7 to 0.5 with a decrement of 0.5. A last iteration is performed with the unfiltered image. For the coarsening scheme we use a 0.66 downsampling factor with 8 scales. We use the bicubic filter to interpolate the images. Table 5.4 summarizes the results. From table 5.4 we see that for both schemes the energy ratio is mostly under 1.10 and the mean error is under 0.6. Both schemes are always out-performed by the Fast-PD baseline. Hence, the non-convexity of the energy manifold clearly needs to be taken into account by the optimization scheme. The figure 5.10 highlights the difference between the two schemes and the baseline.

For most experiments the Filtering scheme yields a lower energy than the Coarsening scheme. However, we see that Mean Error criterion is often significantly better for the Coarsening scheme. This indicates that the Filtering scheme has found a solution of relative low energy, but higher than Fast-PD, that significantly differs from the Fast-PD solution.

A visual inspection of the disparity maps confirms this phenomenon. For instance, we see in figure 5.10 that the roof of the church is poorly estimated by the filtering scheme.

The filtering scheme creates artifacts for the church and factory subsets. Hence, for the following experiments we discard the filtering scheme to only retain the coarsening scheme. Slightly abusing mathematical notation, we denote the coarse model g n pMq " M 1 . We also make use of g ´1 n px 1 q " x, where x i " x 1 gnpiq for each i P V, to "upsample" a solution x 1 of M 1 to a solution of x of M.

Large size problems

The node coarsening implies that the nodes of V grouped together are assigned the same state.

Label coarsening

The label space coarsening reduces the solution space by coarsening the label space of each random variables. From the input label space L we make use of a label grouping function g l : L Ñ N to compute the coarse label space L 1 : L 1 " tg l plq : l P Lu .

(5.11)

The coarse model M 1 " `V, E, L 1 , tφ 1 i u iPV , tφ 1 ij u pi,jqPE ˘inherits the coarse label space L 1 and its potentials are computed from the potentials of the input model M and the label coarsening function g l . The coarse unary potentials are computed as:

p@l 1 P L 1 q, φ 1 i pl 1 q " ÿ l 1 PL|l 1 "g l plq φ i plq (5.12)

The coarse pairwise potentials computation follows:

p@pl 0 , l 1 q P L ˆLq, φ 1 ij pl 1 0 , l 1 1 q " ÿ pl0,l1qPLˆL|l 1 0 "g l pl0q,l 1 1 "g l pl1q φ ij pl 0 , l 1 q (5.13)

Composing node and label coarsenings One interesting property of the node and label coarsening operators is that they are commutative with respect to the composition operator. This means that applying the node coarsening before the label coarsening gives exactly the same coarse model as applying the label coarsening before the node coarsening. In the following paragraph, we will simply use the term of coarsening and the coarsening function g where g " g n ˝gl .

Energy pyramid scheme

Label pruning In this coarsening framework we keep track of the status of each label of each node with the pruning matrix A : V ˆL Ñ t0, 1u. This matrix indicates whether a label of a node is active or pruned. Only active label can be part of the optimization solution.

Api, lq "

" 1 if label l is active at vertex i 0 if label l is pruned at vertex i (5.14)
During the coarse-to-fine scheme, we also make use of a pruned solution space that restricts the initial solution space to solutions formed with only active labels:

SpM, Aq "

! x P L |V| | p@iq, Api, x i q " 1
) .

Pruning function To define whether a label is active or pruned we make use of the heuristically defined pruning function p. For instance, in the stereomatching context, for a given node, labels that represent a potential displacement that are far from the current solution is good pruning candidates.

Coarse-to-fine optimization Given an input model M and a sequence of N grouping functions pg psq q 0ďsăN , our framework first computes a series of N `1 progressively coarser models pM psq q 0ďsďN : M p0q " M and p@sq, M ps`1q " g psq pM psq q .

(5.15)

This builds a coarse-to-fine representation of the input model, where each scale s P 0 ď s ă N is populated by a model M psq and a pruning matrix A psq . Each coarse model is defined as:

M psq " ´Vpsq , E psq , L, tφ psq i u iPV psq , tφ psq ij u pi,jqPE psq ¯(5.16)
Our progressive MAP estimation framework starts with the coarsest scale N , and initializes all elements of its pruning matrix A pN q to 1, i.e., all labels are active. From this point, we repeat an iterative procedure at each scale from the coarsest to the finest scale. At scale s, our framework applies the following steps: i. Compute the MAP-solution or its approximation (via any existing MRF optimization method) of the model M psq over the reduced solution space SpM psq , A psq q:

x psq « arg min xPSpM psq ,A psq q Epx|M psq q .

ii. Given the estimated MAP-solution x psq , compute the feature map, defined in 5.3.4, f psq : V psq ˆL Ñ R K

iii. Label pruning: Update the pruning matrix A psq with the pruning function.

iv. Upsample the pruning matrix A psq to the next scale:

p@i P V ps´1q , @l P Lq, A ps´1q pi, lq " A psq pg ps´1q n piq, g ps´1q l plqq .

v. Upsample solution x psq to the next scale to warm start next MAP-inference @i P V ps´1q :

x ps´1q i Ð x psq g ps´1q piq
The Energy pyramid scheme algorithm

The pseudocode of the resulting algorithm appears in Algo. 19.

Algorithm 19: Energy pyramid scheme

Data: Model M, grouping functions pg psq q 0ďsăN , classifiers pz psq q 0ăsďN Result: x p0q Compute the coarse to fine sequence of MRFs: M p0q Ð M for s " r0 . . . N ´1s do M ps`1q Ð g psq pM psq q Optimize the coarse to fine sequence of MRFs over pruned solution spaces: Initialize x pN q and A pN q " 1 for s " rN...0s do Update x psq by MAP inference: x psq « arg min xPSpM psq ,A psq q Epx|M psq q if s ‰ 0 then Label pruning: update current pruning matrix A psq Upsample to next finest pruning matrix: A ps´1q Ð rg ps´1q s ´1pA psq q Upsample x psq to initialize solution x ps´1q of next scale:

x ps´1q Ð rg ps´1q s ´1px psq q

Inference by Learning

We propose the enhance the energy pyramid scheme by revisiting how the labels are pruned. Instead of relying on pruning heuristics we make use of learning techniques to define the pruning function as in [START_REF] Conejo | Inference by learning: Speeding-up graphical model optimization via a coarse-to-fine cascade of pruning classifiers[END_REF].

Pruning: features and classifiers

Rightly deciding on which label to prune at each scale is essential for the energy pyramid scheme. Wrongly pruning labels belonging to the MAP solution leads to decreasing the accuracy of the estimated solution at the finest scale. Maintaining too many labels active means to explore at each scale a large solution space during inference, resulting in a poor speed-up for the overall MAP estimation. The efficiency of our pruning approach relies on both the feature map f psq and the off-line trained classifiers z psq . We need the feature map to be discriminative but efficient to compute and the classifiers to be precise but fast to apply.

Features We form the feature map f psq : V psq ˆL Ñ R K by stacking K individual real-valued features defined on V psq ˆL. As in [START_REF] Conejo | Inference by learning: Speeding-up graphical model optimization via a coarse-to-fine cascade of pruning classifiers[END_REF], we focus on generality rather than any dedicated computer vision task. Hence, we only compute features that depend on the energy function and its current solution x psq , letting to future research the definition of task specific features. At each scale we compute the following features:

Strength of discontinuity We compute the SOD psq feature to account where the solution x psq is going against the regularization prior enforcing smoothness. For each node in V psq we compute the sum of the potential of its related pairwise terms: SOD psq pi, lq "

ÿ j|ijPE psq φ ij px psq i , x psq j q (5.17)
Local energy variation This feature computes the normalized discretized gradient of the energy manifold around the current solution x psq . The local energy variation feature, LEV psq , is defined for any i P V psq and l P L as follows:

LEV psq pi, lq " φ psq i plq ´φpsq i px psq i q N psq V piq `ÿ j:pi,jqPE psq φ psq ij pl, x psq j q ´φpsq ij px psq i , x psq j q N psq E piq
(5.18) with N psq V piq " cardti 1 P V ps´1q : g ps´1q pi 1 q " iu and N psq E piq " cardtpi 1 , j 1 q P E ps´1q : g ps´1q pi 1 q " i, g ps´1q pj 1 q " ju.

Unary "coarsening" This feature UC psq aims at estimating the amount of information lost during the coarsening. It is defined for any i P V psq and l P L:

UC psq pi, lq " ÿ i 1 PV ps´1q |g ps´1q pi 1 q"i |φ ps´1q i 1 plq ´φpsq i plq N psq V piq | N psq V piq (5.19)
Distance to the current label This feature DL psq is defined for pairwise terms pφ ij q that can be expressed as a combination of a so-called distance function d : L ˆL Ñ R `and a scalar weight w ij : φ ij pl 0 , l 1 q " w ij dpl 0 , l 1 q (5.20)

It computes for each node i and each label the minimum "distance" given by d to the active label over all nodes of the k-ring of node i1 . We denote R psq k piq all the nodes belonging to the k-ring of node i P V psq . For each node i P V psq and label l P L, we compute:

DL psq pi, lq " min jPR psq k piq dpx psq pjq, lq (5.21) 
Feature normalization For a given computer vision task, parameters might change from one input to the other leading to scaling factors independently applied on the unary and pairwise terms. Hence, we normalize the SOD psq , LEV psq , UC psq and DL psq features to make them insensitive to such scaling. To this en, we divide each of these feature by the average of the minimum values over all labels for each node.

Learning the cascade of classifiers

Defining the pruning ground truth We train the classifiers from a given training set of MRFs all formulating the same class of computer vision tasks, e.g., stereo-matching. For each MRF of the training set, we apply the algorithm 21 without any pruning (i.e., A psq " 1). At the finest scale, we obtain an (approximate) MAP solution. To compute the pruning ground truth, we make use at each scale of the binary function X psq MAP : V psq ˆL Ñ t0, 1u. For the finest scale, we can simply convert the approximate MAP solution found: p@i P V, @l P Lq, X p0q MAP pi, lq " # 1, if l is the MAP label of node i 0, otherwise (5.22) To obtain the pruning ground truth at each scale s ą 0, we simply iteratively apply the grouping functions:

p@i P V psq , @l P Lq, X psq MAP pi, lq "

ł i 1 PV ps´1q :g psq pi 1 q"i X ps´1q MAP pi 1 , lq (5.23) 
where Ž denotes the binary OR operator.

Cascade training Since for each scale the feature map heavily depends on current solution, we need to anticipate the impact of the pruning of previous coarse scales. This is a major difference from the training method proposed in [START_REF] Conejo | Inference by learning: Speeding-up graphical model optimization via a coarse-to-fine cascade of pruning classifiers[END_REF]. To this end we propose the following learning framework:

Classifier training At each scale we need to train a classifier z psq from a feature map f psq and a pruning ground truth X i.e., the label can be pruned, while c 1 corresponds to the 1 values in X psq MAP , i.e., the labels that should remain active since they are part of the ground truth estimated MAP at the finest scale.

We normalize all features of f psq to the r0, 1s interval to avoid numerical instability. We treat nodes sitting on the border of a strong discontinuity separately from the nodes laying in smooth regions. Indeed, a discontinuity at coarse scale is very likely to be refined during the next finest scales. Hence, there is more uncertainty on the solution in the vicinity of discontinuities than on smooth areas. Using the SOD feature, we split the feature map f psq into a first group f psq 0 containing only features where SOD psq ď ρ s (smooth area), and a second group f psq 1 containing only features where SOD psq ą ρ (strong discontinuity). We also split the ground truth X psq MAP the same way. Since we need to compromise between good enough accuracy during training and fast evaluation at test time, we rely on linear classifiers for each group. To that matter, we train a standard linear C-SVM, Support Vector Machine, classifier with l 2 -norm regularization. We refer the reader to [START_REF] Cortes | Support vector machine[END_REF] for details about SVM. As we have many more samples in class c 0 , we randomly trim c 0 such that its cardinal, cardpc 0 q, reaches a 10 to 1 ratio with respect to cardpc 1 q, the cardinal of c 1 (cardp¨q counts the number of samples in each class). This greatly speeds-up the training without compromising its quality. Nevertheless, we still Energy pyramid For the Energy pyramid, we evaluate both the node and label coarsening. For node coarsening, we investigate different geometric grouping functions g n that groups the nodes in a rk ˆks fashion, with k being a positive integer in t1, 2, 3, 4u. For the label coarsening, we set the grouping function g l to group the labels of L by set of m labels with m being a positive integer among t1, 2, 3, 4u. We select one every m labels to form the set of coarse labels L 1 . Unselected labels are grouped with the closest selected label. If a tie appears for an unselected label, we arbitrarily associate it to the closest selected label of smaller index. As for the image pyramid, at each scale, we only activate the labels that are within a 5 label range of the current labeling solution.

Due to the number of experiments we only report the average results over the four subset Church, Factory, Buildings and Industry. 5.12 -Energy pyramid scheme for small size problems.

Small size problems

The 5.12, 5.13 and 5.14 summarize all the experiments. In our setting, without any label coarsening the energy scheme is only exploring the immediate neighborhood of the current solution. Hence, if the initialization is good, we get acceptable results as demonstrated by small size experiments or for experiments with label coarsening set to 1 and node coarsening set to 2. However as we increasing the node coarsening to 3 or 4, we deteriorate the initialization during the node coarsening. As a result we get poor performance since the method might not explore the relevant label range.

When we combine both node and label coarsening, we obtain results close to be on par with the baseline and that significantly outperform the image pyramid scheme for both alpha-expansion and Primal-Dual optimization as pictured by figure 5.15. We explain this improvement due to the fact that the energy pyramid scheme represents the initial energy with better precision than the image pyramid approaches. This is illustrated by figure 5.14 where at coarse scales the solutions 

Inference by learning

For the evaluation of the inference by learning framework we make use of exactly the same coarsening functions as for the energy coarsening scheme. Hence, we group the nodes in a rk ˆks fashion, with k being a positive integer in t1, 2, 3, 4u. We also group m labels together with m being an positive integer among t1, 2, 3, 4u.

During our experiments, we compare the baseline inference (optimizing the input MRF with Graph-Cuts), the multi-scale inference (λ " 0, i.e., this framework without any pruning), and our Inference by Learning method with different pruning aggressiveness factors λ that range between 0.001 and 1. We use 5 scales and we decrease at each scale the λ factor by an order of magnitude.

As for other experiments we use the energy ratio and the mean error to assess the performance of this framework. We also compute the speed-up factor that measure the ratio of computation time between the baseline optimization and the current optimization strategy. To verify the expected correlation between the speed-up and the number of active labels, we keep track of the Active label ratio that computes the percentage of active labels at the finest scale.

We report all results in figures 5.20, 5.21, 5.22 and 5.23. An analysis of these results reveals that by setting the node and label coarsening to 2 we achieve a best comprise between high quality solution and speed-up. Hence, we now focus only on this particular set of experiments.

For all experiments illustrated in figure 5.19, λ " 0.1 seems to be the sweet spot. This is also consistent for most of the other node and label coarsening values. For aggressiveness factors lower than λ " 0.1, the inference by learning scheme computes a lower energy solution than the baseline. Hence, we get a better solution for less computation. This happens because the approximation bounds of Fast-PD are reduced due the labels being pruned. In terms of speed, for λ " 0.1 we get consistent and large speed-up ranging from 6 to 12. For higher λ, the accelerations are even better. However, the quality of the solution deteriorates as pictured in figure 5.18.

As for the energy pyramid scheme, the inference by learning framework properly represents the energy even at coarse scales. The figure 5.17 illustrates the behavior. We see that the disparity maps estimated at coarse scales already contained the global structure. The details are then progressively resolved throughout the next fine scales.

As expected, the percentage of active labels strongly correlates with the speed-up factor. In fact, the speed-up is mainly caused by having a large number of labels being pruned. In figure 5.16, we see that a lot of labels are pruned early on and as predicted, less pruning happens near label discontinuities. This justifies the use of a dedicated linear classifier. Moreover, large homogeneously labeled regions are pruned earlier in the coarse to fine scale. λ " 0.001 λ " 0.01 λ " 0.1 λ " 1 

Conclusion

This last technical chapter introduced smoothing and coarsening schemes for both First order Primal-Dual methods and non convex optimization techniques such as Fast-PD. For the latter one, we detailed a new framework, Inference by Learning, to drastically speed-up the optimization.

We now propose to apply some of the techniques presented to practical problems encountered in remote sensing tasks for Earth Sciences. a unique pixel p i " pr i , c i q P Ω. To ease the notations, we access the value of a pixel p i " pr i , c i q of an image I by either Ipp i q or Ipr i , c i q.

Graph

A neighborhood graph G " pV, Eq is associated to the image I. The set of vertices V of G simply denotes the pixels of Ω. The set of edges E defines the canonical 4-neighborhood connectivity.

LiDAR as elevation maps

Light Detection and Ranging, LiDAR, is a class of instrument used in remote sensing to measure distances. A LiDAR is generally composed of a laser, a scanner, and a GPS receiver. Using light pulses in a form of a laser, the LiDAR measures the time to receive a reflection of the pulse in order to estimate a range of distance to an object of interest. This is illustrated by figure 6.1. In our context LiDAR instruments are mainly used for topographic purposes [START_REF] Gutierrez | Development of laser waveform digitization for airborne lidar topographic mapping instrumentation[END_REF]. They can be mounted on small aircraft during aerial surveys to estimate the topography. However, it is also common to mount LiDAR instruments on boat to estimate the bathymetry of the seafloor or a riverbed elevation [START_REF] Costa | Comparative evaluation of airborne lidar and ship-based multibeam sonar bathymetry and intensity for mapping coral reef ecosystems[END_REF] and [START_REF] Harsdorf | Submarine lidar for seafloor inspection[END_REF]. In both settings, LiDAR are precious equipments that allow scientists and mapping professionals to build precise 3D model of their environment.

The LiDAR acquisitions create a 3D point cloud such as illustrated in figure 6.2. Since our acquisitions are mainly from zenith incidence with respect to the ground, we can transform the 3D point cloud into an elevation image. We set the elevation image grid to align with some portion of the ellipsoid of reference used to represent the Earth. Each pixel represents a square surface, for instance a square meter. The intensity of each pixel defines the elevation. Popular GIS, Geographic Information System, softwares like GRASS [START_REF] Neteler | Open source GIS: a GRASS GIS approach[END_REF] have routines to convert a 3D point cloud to an elevation image. We note that the elevation image representation makes it very easy to apply the techniques presented in previous chapters. 

Matching criterion

We also remind two useful matching criteria based respectively on the ZNCC and the census coefficient. Both criteria compute a matching likeliness score between two patches P 1 and P 2 of the same size with spatial support P.

Zero Normalized Cross Correlation: ZNCC

The ZNNC matching criterion derives from the Zero Normalized Cross Correlation coefficient that computes the angles between the normalized patches P 1 and P 2 . ZNCCpP 1 , P 2 q " 1 cardpPq ÿ iPP pP 1 piq ´m1 q pP 2 piq ´m2 q σ 1 σ 2 (6.1)

where:

• m 1 and m 2 are the mean values of patches P 1 and P 2 ,

• σ 1 and σ 2 are the standard deviations of patches P 1 and P 2 .

The ZNCC matching criterion ρ simply computes: ρpP 1 , P 2 q " 1 ´ZNCCpP 1 , P 2 q (6.2)

To simplify the notations, we define by

ZNCC W pI r , I t , i, dq (6.3) 
the ZNCC coefficient computed on patches of size W ˆW from image I r centered at pixel i and from image I t centered at pixel i `d.

By construction the ZNCC coefficient and the ZNCC matching criterion are unaffected by global illumination and contrast changes. These invariance properties come extremely handy for image matching. We note that [START_REF] Yoo | Fast normalized cross-correlation[END_REF] describes an efficient implementation to compute the ZNCC coefficient in the context of overlapping patches. 

Camera models and Epipolar geometry

Pinhole camera model

We first need to present a camera model that describes the mathematical relationship between 2D coordinates Q " py 1 , y 2 q on the image plane and the 3D coordinates P " px 1 , x 2 , x 3 q in the world. As for many modeling, we start with the pinhole camera model [START_REF] Sturm | Pinhole camera model[END_REF] which assumes that the camera aperture is a simple point with no optic as illustrated by figure 6 

Camera parameters

To enhance the pinhole camera model, we need to introduce the intrinsic and extrinsic camera parameters.

Intrinsic parameters

The intrinsic parameters describe features that are internal to the camera. These features are fixed for a given camera and digitalization setup. These parameters model:

• the focal length,

• the position of the optical center,

• the distortion introduced by the lenses,

• the size and shape of pixels.

Extrinsic parameters

The extrinsic parameters define the location and orientation of the camera in the 3D world frame. Hence, these parameters include:

• a 3D translation to define the position,

• a 3D rotation to define the orientation.

Frame and Push-broom sensors

In our context we work with images acquired with frame and push-broom sensors. The frame sensors are the most common for aerial surveys while push-broom sensors are ubiquitous in satellite based acquisitions.

All pixels composing an image of a frame sensor are acquired at the same time by individual CCD (charge-coupled device) or CMOS (complementary metaloxide semiconductor) sensors. In contrast, push-broom sensors only contain a single array of CCD or CMOS sensors. Using the motion of the satellite, one can construct an image by stacking the series of acquisition made by the array. The figure 6.5 illustrates the two technologies.

Epipolar geometry

Epipolar geometry refers to the particular geometry of the stereo-vision task. It describes the geometric relationship between a 3D point of the world frame and its projection onto 2D images acquired by two cameras in distinct positions. Both camera are assumed to be modeled by the pinhole camera model previously presented. While we do not present the detailed formulation of the epipolar geometry, we illustrate with figure 6.6 its concept. We refer to the seminal book of [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] for an extensive discussion around the epipolar geometry.

Interestingly for frame camera, in the epipolar geometry we know that a given object image at point X L in the left camera lies on a line in the right camera named the epipolar line. The position on this epipolar line is proportional to the depth. However, for push-broom sensors the epipolar line is not straight, but hyperbola-like curve as explained in [START_REF] Oh | Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images[END_REF]. Figure 6.5 -Frame camera for a 4 band sensor and Push-broom camera for a panchromatic camera, courtesy NASA.

Image rectification

Finally, the rectification projects an image onto a reference image plane as illustrated by figure 6.7. With a judicious choice of the reference plane the rectification makes the epipolar lines horizontal for frame camera. This comes particularly handy for the stereo-matching task since one obtains a 1D registration problem. For push-broom, since the epipolar lines are curved one can make use of rectification but only to obtain locally horizontal line. We encourage the curious reader to study the work of [START_REF] De Franchis | On stereo-rectification of pushbroom images[END_REF] and [START_REF] De Franchis | An automatic and modular stereo pipeline for pushbroom images[END_REF] on this particular topic.

The stereo matching problem

We assume that we are given two rectified images, I r and I t . Let I r be a reference image, Ω its spatial support and G " pV, Eq its associated graph. The set of nodes V consists of the pixels of I r and the set of edges E is defined by the 4 connectivity as illustrated in Fig. 6.8. Let I t be the target image. 

Probability formulation

Given I r and I t , we need to find the most probable 1D deformation d, that associates each pixel of I r to a pixel of I t with d being a function of p P V Ñ dppq P R. Thus, d lives in D " R Ω . We measure how a given d fits the data I r and I t by defining: P pd|I r , I t q. (6.9)

The definition of P is context dependent, but most approaches enforce: (1) a Figure 6.8 -Graph G " pV, Eq of a 4 by 4 pixels image with a 4 connectivity.

notion of the similarity between I r and I t ˝pid`dq (where id refers to the identity operator) by expressing P M pd|I r , I t q and; (2) a notion of regularity for d by expressing P R pd|I r q. If we suppose that these two probabilities are independent, we can write: P pd|I r , I t q " P M pd|I r , I t qP R pd|I r q. (6.10)

Instead of directly working with probabilities, we prefer using the energy domain as in [START_REF] Igual | Automatic low baseline stereo in urban areas[END_REF] since it is easier to define measure on images. One can simply relate probability density function to energy through the Gibbs measure:

P pX " xq " 1 Z expp´Epxqq, (6.11) 
with Z being a normalization factor so that the integral of the probability function equal to 1.

Energy formulation

Through Eq. 6.11, we relate E, E M , and E R to P , P M , and P R respectively, which gives the following energy:

Epdq " ÿ pPV E M pd, pq `ÿ pqPE E R pd, p, qq. (6.12) 
We define a pixel-wise similarity measure based on the similarity function ρ. Commonly used similarity functions are L1 or L2 norms [START_REF] Birchfield | A pixel dissimilarity measure that is insensitive to image sampling[END_REF], Census, Normalized Cross Correlation (NCC) or Zero Normalized Cross Correlation (ZNCC) [START_REF] Brown | A survey of image registration techniques[END_REF], and the different versions of the Mutual Information [START_REF] Viola | Alignment by maximization of mutual information[END_REF][START_REF] Kim | Visual correspondence using energy minimization and mutual information[END_REF][START_REF] Hirschmuller | Accurate and efficient stereo processing by semiglobal matching and mutual information[END_REF]. In any case, the matching energy of a pixel p is defined as: E M pd, pq " ρpI r , I t ˝pid `dqqppq.

(6.13)

If the similarity measure is defined on a patch, we apply a rigid translation to the patch. Here, we use the ZNCC coefficient as it is robust to changes of illumination and contrast between I r and I t that appear due to specular objects or different acquisition times.

To enforce the regularity of d we choose to penalize the L1-norm of its discretized gradient, modulated by a weight function w. For each edge pq P E: [START_REF] Gamble | Visual integration and detection of discontinuities: The key role of intensity edges[END_REF][START_REF] Conejo | Fast global stereo matching via energy pyramid minimization[END_REF]. This is an effective heuristic as most of the edges of the disparity maps are also edges of the image I r .

E R pd, p,

Experiments

We perform experiments with images acquired by the Ultra-cam and the Hirise cameras to illustrate the different components of our model. We start by displaying the images of the stereo-pairs. Then, we illustrate the unary terms issued from two different the matching criteria: the ZNCC and the Census measure. Finally, we study the influence of the regularization strength.

Images

Ultra-cam acquisitions The Ultra-cam cameras belong to the class of a frame sensor [START_REF] Leberl | The ultracam large format aerial digital camera system[END_REF]. Hence, we can perform the calibration and rectification steps previously presented to end-up with a horizontal apparent motion to estimate.

From a large calibrated and rectified Ultra-cam stereo-pair we extract four subsets: Factory, Church, Buildings and Industry. The subsets, illustrated in figure 6.9, portray urban and industrial environments. Man-made structures present numerous challenges for the stereo-matching task. For instance, the tall chimney of the Factory subset creates a large occlusion zone. Some areas in the Factory and Industry subsets are texture-less or repetitive, making the matching very challenging. Finally, the Church and Buildings subsets have many fine-details due to their urban or suburban locations. This creates fine and sharp discontinuities in the disparity maps that are challenging to recover. Hirise acquisitions The Hirise camera belongs to the class of a push-broom sensor [START_REF] Alfred S Mcewen | Mars reconnaissance orbiter's high resolution imaging science experiment (hirise)[END_REF]. Hence, we perform the calibration on the full image but the rectification step is applied onto each of the subsets. As for the Ultra-cam acquisitions we end-up with a near horizontal apparent motion to estimate.

Using two stereo-pairs from the Hirise website [134], we extract the four subsets pictured in figure 6.10: Valley, Dunes, Crater and Channel. Since the Hirise camera is mounted on a satellite orbiting the planet Mars, the subsets illustrate natural scenes of dunes, channels, valleys and carters. These natural scenes present different challenges compared to the urban environment of the UltraCam experiments. Indeed, most areas are heavily textured and non repetitive, which greatly helps the matching. However, change in disparity is less likely to follow the radiometric variation of the reference image. This hinders the a-priori prior enforced by the regularization costs. Moreover, large change of elevation can be observed at the edges of craters, cliff, canyons and channels. 

Unary terms

In our context of stereo-matching, one can advocate that the unary terms are the most important part of the model. Indeed, their purpose is to measure the likelihood of one patch to match another. In a perfect world, we would like to rely only on the matching terms to estimate the disparity. Unfortunately, texture-less patches, noise, occlusions or change in illumination all hinder the reliability of the matching terms. Hence, as an illustration we display in figure 6.11 and 6.12 the disparity maps obtained solely from the matching terms, i.e. we set all regularization terms to 0.

Census Zncc Figure 6.11 -Disparity maps obtained for the Ultra-cam stereo-pairs using exclusively the matching terms.

Census ZNCC Figure 6.12 -Disparities maps obtained for the Hirise stereo-pairs using exclusively the matching terms.

Independently of the matching criterion, the disparity maps obtained for the Ultra-cam images are extremely noisy and entire areas are completely missestimated. The ZNCC criterion seems to perform a bit better than the Census. This can be attributed to the fact that the Census is more robust than the ZNCC. In our context, this extra-robustness seems to slightly deteriorate the matching performance. Interestingly, the disparity maps computed for the Hirise stereo-pairs are quite good. This is likely due to the heavily textured patches of natural scenes. However, we still observe numerous artifacts. As for the Ultra-cam results, the ZNCC outperforms the Census criterion.

Regularization weights

The regularization weights are an important part of the imposed prior on the disparity estimation. In our model they modulate the strength of the regularization according to the radiometric discontinuity of the reference image. We illustrate in figure 6. [START_REF] Blinchikoff | Filtering in the time and frequency domains[END_REF] The results for the Hirise acquisitions exhibit the same tendency but to a lesser extent. We note that a regularization with a factor between 0.5 and 2 already gives good results for all subsets. This is because the matching terms become more discriminatory for images with lots of texture.

Context

Earthquakes are one of the most dangerous natural hazard on Earth. Contrary to volcano, hurricanes or tornado, it is as of today quite impossible to precisely predict when and where an earthquake will happen [START_REF] Robert | Earthquake prediction: a critical review[END_REF]. Earthquakes occur at a fault, i.e., a boundary between two or more tectonic plates, producing seismic waves that result from a sudden release of energy in the Earth's lithosphere. The figure 6.18 displays the epicenter of referenced earthquakes between 1963 to 1998. Earthquake are classified on a scale by their moment magnitude. The USGS maintains an active mapping of earthquakes thanks to an international network of seismometer [START_REF] David J Wald | Shakemap manual: technical manual, user's guide, and software guide[END_REF]. The destruction and subsequent events caused by earthquakes are staggering: ground rupture and soil liquefaction, landslides and avalanches, fires, tsunami and flood. At multiple times in the past, a single quake and its aftermath have claimed more than ten of thousands lives as illustrated by figure 6.19.

Geologists have historically relied on seismometers to measure the motion of the ground. However, in the last decades they have started to heavily rely on GPS stations. The instantaneous position of civilian GPS is fairly inaccurate, within 10 meters. Nonetheless, using temporal aggregation of a GPS signal, one can retrieve precision up to a few millimeters. Some locations like the San Andreas fault in California, the Himalaya mountains or Japan are surveyed by networks of GPS stations. Unfortunately, many remote places do not benefit from this level of monitoring. Hence, for a large number of earthquake the scientific community does not have access to data acquired close to the epicenter. Another downside of the GPS monitoring is that even with large networks one can only obtain local and sparse measurements.

Hence, thanks to the progress of space imaging and aerial monitoring devices, geologists have started to take advantage of remote sensing acquisitions. In this context, they seek to obtain a more global view of the ground motion induced by an earthquake. Nevertheless, remote sensing techniques can not bring the level of accuracy obtained with GPS stations. Hence, it remains important to properly fuse the different modalities of information.

In this work, we only propose to retrieve the ground motion induced by a quake using two elevation maps: one acquired before and after the quake. To keep this experiment simple, we make use of a crop of an elevation map of the San Andreas fault in California, USA illustrated in figures 6.20 and 6.21. The crop serves as the pre-event elevation map. We simulate using an Okada model [START_REF] Okada | Surface deformation due to shear and tensile faults in a half-space[END_REF] the ground motion induced by a large earthquake. From this simulated ground motion we transform the pre-event elevation map to a post-event elevation map. We do not claim that the position of the simulated fault nor the generated earthquake are realistic. However, this experiment shows how to make use of our mathematical techniques in such context.

Model

We make use of notations I pre and I post for the pre and post geo-registered elevation images. Instead of directly looking for a full 3D deformation, we limit our model to estimate a 2D motion and we automatically infer the change of elevation. This modeling reduces the number of unknowns and it performed better than others of our unreported attempts with full 3D motions. We elect to use the ZNCC matching criterion ρpq. The matching cost for pixel pr i , c i q P Ω with displacement pu i , v i q is defined by: ρpr i , c i , v i , u i q (6.16)

We formulate the registration problem as: arg min ppui,viqPRˆRq i ÿ pri,ciqPΩ ρpr i , c i , v i , u i q `ÿ pi,jqPE λ u |u i ´uj | `λv |v i ´vj | (6.17) with λ u and λ v being real valued scalars.

We solve model 6.17 using the α-expansion technique embedded in a Image Pyramid. We elect for 4 scales with 49 labels per scale, i.e, 7 potential values for each u i and v i .

To recover the change of elevation w, we simply compute the change of elevation between the pre-event elevation map and the transformed post-event elevation map with the recovered deformation pu, vq. We note that a further post processing smoothing step could also be performed if necessary.

Experiments

We display in figure 6.22 the results of our method. In figure 6.23, we show a profile for each motion direction across the fault as illustrated in figure 6.21. From the three profiles, we see that our method correctly recovers the ground motion for this toy example. We observe that the change of elevation w-component, is noisier. For real experiments, we would advocate to proceed with a smoothing post-processing step. One can for instance adapt the TV-L1 denoising framework to tailor an adequate smoothing algorithm.

6.5 Damage detection in New-Zealand

Context

For this final experiment, we study the application of damage detection induced by natural hazards from aerial LiDAR time series with one acquisition before and after the damaging event.

Natural disasters

In the context of natural disaster such as landslides, a tornadoes, hurricanes or earthquakes, a detailed cartography of the impacted area is of crucial importance.

In many cases, usual communication medium such as telephone or Internet are sometimes unavailable in some remote or less developed area or non-operational due damages induced by the natural disaster. Hence, gathering and centralizing information can be very challenging. First emergency responses face the challenge to adequately organize search and rescue operation while lacking a global view of the situation. Simple images from satellite and areal survey can provide crucial information of impacted areas.

Once the humanitarian situation has been resolved comes the time of reconstruction. In most modern countries, habitation and buildings are insured through various private or governmental based policies. Hence, one needs to provide a detail map of which building was affected by the natural hazard. This inspection is generally conducted on the ground. Depending on the size of the area impacted, this investigation can last quite a lot of time delaying families and business owners to obtain compensation from their insurance. Again, a detailed map of damages could fasten the economic recovery process.

Christchurch, New Zealand

Christchurch is located in the Canterbury Region in New Zealand's South Island as illustrated by figures 6.24 and 6.25. With a population of 389000 in 2016, Christchurch is one of the largest populated cities in New Zealand see 6.27 and 6.26. On February 22, 2011 at 2:51 p.m. local time, Christchurch was struck by a 6.3 earthquake on the Richter scale [START_REF] Brendon | Near-source strong ground motions observed in the 22 february 2011 christchurch earthquake[END_REF]. This natural disaster claimed 185 lives while injuring a thousand individuals. The infrastructure and building were seriously damaged as illustrated by figures 6.28, 6.29, 6.30 and 6.31. For instance, the Canterbury Television (CTV) building nearly entirely collapsed leaving only its lift shaft standing. A series of thirty subsequent earthquakes of smaller magnitude, referred to as aftershocks, happened for approximatively a year. 

Model

We propose to establish a damage map from LiDAR aerial surveys pre and post event by using our registration technique. We first transform both LiDAR acquisitions to elevation images. We geo-register both elevation images such that corresponding pixels of both images represent the same portion of the land. Such registration can be handled within GIS softwares for instance.

We were provided directly with elevation images of the downtown of Christchurch gridded at 1 meter. The figures 6.32 and 6.33 display these elevation images. Figure 6.32 -LiDAR pre earthquake. Figure 6.33 -LiDAR post earthquake.

Brighter grays represent higher elevation (Images have been enhanced for display).

To detect the damaged building, we propose to create a map that monitors the change of elevation between the pre and post event. If we were to dispose of perfect elevation images then a simple difference between the pre and the post event elevation image should create a perfect map. Unfortunately, the LiDAR acquisitions, and hence the derived elevation images, suffer from noise and artifacts. For instance, LiDAR might have difficulties to resolve with accuracy the edges of tall buildings. Therefore, we propose to use a registration framework with regularization to obtain the damage map.

We make use of notations I pre and I post for the pre and post geo-registered elevation images. Our goal is to find a transformation that registers I pre to I post . The dominant part of the transformation belongs to the change of elevation caused by building collapsing. The horizontal and vertical component of the transformation attempt to account for acquisition artifacts created near building edges. Hence, we formulate the following optimization problem: arg min puiPr´1,1sq i ,pviPr´1,1sq i ,pwiPRq i ÿ pri,ciqPΩ |I pre pr i , c i q ´pI post pr i ´vi , c i ´ui q ´wi q| `ÿ pi,jqPE λ u |u i ´uj | `λv |v i ´vj | `ÿ pi,jqPE λ w ij |w i ´wj | (6.18) We set λ u and λ v to a small positive real value and we define for pi, jq P E: λ w ij " λ w 0 `expp´λ w 1 ||I pre pr i , c i q ´Ipre pr j , c j q|| 2 2 qq (6. [START_REF] Boykov | Markov random fields with efficient approximations[END_REF] 201 with pλ w 0 , λ w 1 q P R `ˆR `.

We make use of first order primal dual techniques embedded in image pyramid scheme to optimize equation (6.18).

Experiments

As a baseline, we propose to simply subtract the post event image to the pre event image. We display the results of the both the baseline and our approach in figures 6.34 and 6.35. The result of the baseline technique in figure 6.34 highlights contour of each building, creating ghost contours. This is caused by the difficulties to resolve the edges of tall objects with aerial LiDAR acquisitions. However, our regularized framework produces a clearer damage map free of ghost contours while preserving fine details. We note since the LiDAR acquisitions are a few months apart, both methods capture vegetation changes. The disappearance of tree foliage in the post event acquisition creates a negative change of elevation. To enhance the quality of the damage map, one could classify building from vegetation by using an additional hyper-spectral information for instance.

Chapter conclusion

This final chapter illustrated the techniques presented in chapters 3, 4 and 5 with concrete applications ranging from stereo-matching to damage detection. We leave for future work the detailed study of each of these problems.

We strongly believe in the relevance of the presented techniques. Nevertheless, we are conscious that much work still remains to be done for achieving significant scientific contributions in tasks such as studying Earth crust deformation. However, we hope to have made accessible to other communities the mathematical concepts and methods to tackle those challenges.

Chapter 7

Conclusions, limits and future work

We conclude this thesis by summarizing each chapter and mentioning potential future research avenues.

First order Primal-Dual techniques for convex optimization This chapters introduced the basics of convex optimization and presented in detail the First order Primal-Dual techniques for convex optimization. A study of the dual solution space of TV regularized problems leads to the demonstration of various theorems. Using those theorems we were able to connect through their dual space several TV regularized models.

In future work one could attempt to extend the demonstrated theorems to other classes of regularized problems. Furthermore, one could investigate to decrease the computational cost of the first order Primal-Dual techniques by restricting the space of functions on which the convergence is ensured. Moreover, a detailed study of the implementation of such technique on GPU remains to be done.

Maxflow and graph cuts

This chapter introduced the basics of non-convex optimization, the famous link between the maxflow and mincut problems, and presented two graph cuts techniques, namely the α expansion and Fast-PD. We proposed our own implementation of Fast-PD that drastically outperformed the original implementation.

In future work, one could investigate to extend graph-cut techniques to higher order terms as in [START_REF] Fix | A graph cut algorithm for higher-order markov random fields[END_REF], [START_REF] Ishikawa | Higher-order gradient descent by fusion-move graph cut[END_REF] or [START_REF] Kohli | P3 & beyond: Solving energies with higher order cliques[END_REF]. Furthermore, one could research on how to implement a CPU multi-threated code of Fast-PD. Moreover, efficient GPU based implementation of maxflow-minuct and graph cuts would also be greatly welcome by the computer vision community.

Coarsening schemes for optimization techniques In this chapter we studied coarsening frameworks for First order Primal-Dual techniques and for the graph cuts methods. We also introduced a new approach, the inference by learning framework, that drastically speeds-up the optimization of graph cuts methods.

In future work, one could research on novel ways to coarsen both nodes and labels. One could also investigate different coarsening approaches depending on how coarse the current scale is. Finally, a multi-grid approach could be used instead of the current pyramidal coarsening scheme.

Applications The final chapter of this thesis illustrated the technical methods presented in the previous chapters. In particular, we studied the stereo-matching problem to estimate depth from aerial and space surveys. We also illustrated how to retrieve from LiDAR acquisitions damages induced by earthquake. Finally, we showed with a simulated earthquake the potential of our approaches to track the ground deformation due to geological activities.

In future work, we hope that the geologists and remote sensing practitioners will build from our methods algorithms to extract pertinent information from aerial and space surveys. For instance, one could attempt to monitor the motion of glaciers and dunes, to estimate the ground deformation induced by real earthquakes, or monitor the change of volume created by landslides. All those measurements could help to design better physical model of those natural phenomena.
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 11 Figure 1.1 -Operateur manipulant un goniographe. Propriété NOAA.
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 1 Figure 1.2 -Operateur dessinant une carte en utilisant les techniques de photogrammétrie analogique. Propriété WSP group.
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 110 Figure 1.10 -Dune de sable Namib sur Mars (Curiosity rover ; 17 December 2015), Propriété JPL.Figure 1.11 -Diagramme représentant le déplacement d'un glacier, Propriété USGS.
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 111 Figure 1.10 -Dune de sable Namib sur Mars (Curiosity rover ; 17 December 2015), Propriété JPL.Figure 1.11 -Diagramme représentant le déplacement d'un glacier, Propriété USGS.
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 21 Figure 2.1 -Operator manipulating a plane table. Courtesy NOAA.
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 22 Figure 2.2 -Operator drawing maps during the analog photogrammetry era. Courtesy WSP group.
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 2 Figure 2.3 -Rendered LiDAR acquisitions of Mars.
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 24 Figure 2.4 -3d points cloud of New-York City acquired by a Li-DAR device augmented with a color camera.
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 25 Figure 2.5 -The first picture of Earth from space, Courtesy NASA.
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 26 Figure 2.6 -Equipments of the TIROS-1 satellite, Courtesy NOAA.
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 27 Figure 2.7 -Picture of Earth from the TIROS-1 satellite, Courtesy NASA.
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 28 Figure 2.8 -Different types of faults.Figure2.9 -Landslide diagram.
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 210 Figure 2.10 -Namib sand dune (downwind side) on Mars (Curiosity rover; 17 December 2015).Figure 2.11 -Glacier diagram.
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 211 Figure 2.10 -Namib sand dune (downwind side) on Mars (Curiosity rover; 17 December 2015).Figure 2.11 -Glacier diagram.
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 31 Smoothing: Moreau envelope and the proximal operator

Figure 3 .

 3 1 illustrates the Moreau envelope of a non smooth function, and Figure 3.2 the inner optimization problem solved during the Moreau envelope computation. Associated to the Moreau envelope is the proximal operator that returns its unique minimizer: prox τ F pxq " arg min xPX
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 31 Figure 3.1 -Function F and its associated Moreau envelope M τ F for τ " 1
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 32 Figure 3.2 -Function F and F pxq 1{p2τ q}x ´x} 2 2 with x " 0.5 and different τ .
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 33 Figure 3.3 -Level set of a non smooth function. Alternating optimization methods ala Gauss Seidel can get stuck in acute corners.
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 34 Figure 3.4 -Smoothing of previous level sets. The corners have been removed but the level sets are impacted.

Definition

  The Fenchel transform [50] also named convex conjugate of a function R computes: R ˚pyq " sup x x, y ´Rpxq (3.17) This transformation encodes the convex hull of the function R epigraph as a set of hyperplanes. It is worth noting that the Fenchel transform always yields a convex function. The figure 3.5 illustrate the Fenchel transform.
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 35 Figure 3.5 -Illustration of the Fenchel transform. The function Rp.q is given by the red curve. The blue line is the tangent of function Rp.q for the point represented by the blue dot. The intersection of tangent with the vetical axis reprensented by the pink dot gives the opposite value of the Fenchel transform.

(3. 53 )

 53 By adding(3.53) to(3.49) and rearranging terms, we obtain (3.50), thus, completing the proof.
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 36 Figure 3.6 -Example of a reformulations of the same function: left is a symmetric reformulation, center is a half negative reformulation, and right is a half positive reformulation.
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 37 Figure 3.7 -Various instances of asymmetric 1 functions
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 38 Figure 3.8 -The function F , a sum of asymmetric 1 functions. Each segments composing F is plotted in a different color.
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 39 Figure 3.9 -The function P that needs to be minimized to obtain the proximal operator of function F with x " 0.7 and τ " 0.1
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 723105 Figure 3.10 -Various instances of asymmetric Huber functions
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 2312 Figure 3.12 -Primal dual gap for various conditioned operator L: red curves with conditioning improvement, blue curves without.
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 313 Figure 3.13 -Primal dual gap for various initial values of τ : red curves with auto tuning, blue curves without auto-tuning.
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 314 Figure 3.14 -Denoising of an image contaminated with white Gaussian noise.

  Figure 3.15 -Reference image and different levels of noise contamination.
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 316 Figure 3.16 -Primal dual gap for low noise experiment without scaling at iteration 100, 200 and 500
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 319 Figure 3.19 -Primal dual gap for the L-ROF model with scaling (δ " 0.7 and scaling period of 10) and the ROF model
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 317 Figure 3.17 -Primal dual gap for medium noise experiment without scaling at iteration 100, 200 and 500
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 318321322 Figure 3.18 -Primal dual gap for high noise experiment without scaling at iteration 100, 200 and 500
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 31 The max-flow / min-cut 4.3.2 From a min-cut problem to a max-flow problem
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 42 Figure 4.2 -Example of function f px k q for c k ď ´řjPEpk,.q w kj .
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 43 Figure 4.3 -Reference images of stereo pair subsets for the stereo-matching experiments.
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 123451 Figure 5.1 -Non convexity and image ressampling.
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 123452 Figure 5.2 -Non convexity and ZN CC matching criterion.
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 123453 Figure 5.3 -Non convexity and 1 matching criterion.
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 154 Figure 5.4 -Histogram of approximation measures for ressampling methods and matching criteria.

  γ, αq P R ˆR`ˆRẀ e display the regularization functions in figure 5.5.
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 55 Figure 5.5 -Non convex regularization terms
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 58 Figure 5.8 -1-dimensional Gaussian filters for different values of σ.
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 59 Figure 5.9 -ZN CC matching cost. From blue to red the images used to compute the ZN CC are more and more smoothed. While the smoothing can reduce the non convexity it also creates poor approximation of the original curve (bluest curve).
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 513 Figure 5.13 -The blue circles and the green square represent the unary potentials attached to nodes of V and the pairwise potentials associated to edges E respectively. The blue squares represent the coarse unary potentials of nodes in V 1 and the green rectangle are the coarse pairwise potentials of edges belonging to E 1 .
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 20 The pruning ground truth X psq MAP defines the class c 0 from c 1 , where c 0 corresponds to the 0 values in X psq MAP , Cascade learning of pruning classifier framework Data: Set of training models pM m q 0ďmăM , grouping functions pg psq m q 0ďsăN , pruning ground truth pX psq MAP,m q 0ăsďN Result: pz s q 0ďsăN for s " rN...0s do for m " r0...M s do Update x psq m by MAP inference: x psq m « arg min xmPSpM psq m ,A psq m q Epx m |M psq m q if s ‰ 0 then Compute the feature MAP f psq m from current solution x psq m if s ‰ 0 then Train pruning classifier z s from pf psq m q m and pX psq MAP,m q m for m " r0...M s do Update pruning matrix A psq m pi, lq " z psq post pf psq post,m pi, lqq Upsample to next finest pruning matrix:
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 514 Figure 5.14 -Image coarsening results for odd rows and Energy coarsening for even rows. The energy coarsening scheme clearly outperforms the image coarsening scheme for coarse scales.
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 518519 Figure 5.18 -Disparity maps produced by the Inference by Learning framework for different pruning factors λ with node and label coarsening both set to 2.Only the most aggressive pruning factor, λ " 1, is unable to resolve some fine details like the chimney of the factory subset.
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 61 Figure 6.1 -Principle of LiDAR.
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 62 Figure 6.2 -LiDAR acquisition over New Orleans, LA, USA (Courtesy of USGS).
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 63 Figure 6.3 -Stereo-matching principle, courtesy of Wikipedia.
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 226864 Figure 6.4 -Pinhole camera diagram
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 66 Figure 6.6 -Epipolar geometry for a frame sensor courtesy of Wikipedia.
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 67 Figure 6.7 -Illustration of the image rectification transformation to obtain horizontal epipolar lines, courtesy of Wikipedia.
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 69 Figure 6.9 -Reference images of stereo pair subsets for the Ultra-cam experiments.
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 610 Figure 6.10 -Reference images of stereo pair subsets for the Hirise experiments.
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 614616 Figure 6.14 -Impact of the regularization for the Church and Factory subsets for the Ultra-Cam acquisition.
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 618 Figure 6.18 -Epicenter of earthquakes from 1963 to 1998.
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 619 Figure 6.19 -Earthquakes of magnitude 8.0 and greater since 1900. The apparent 3D volumes of the bubbles are linearly proportional to their respective fatalities (Courtesy of Wikipedia).
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 6 Figure 6.20 -The San Andreas fault.
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 621 Figure 6.21 -Simulated fault.

Figure 6 . 23 -

 623 Figure 6.22 -Retrieved motion.
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 624 Figure 6.24 -New Zealand on the planisphere.
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 6 Figure 6.25 -New Zealand map.
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 626 Figure 6.26 -Sattelite image of Christchurch.
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 627 Figure 6.27 -Christchurch skyline with Southern Alps in background.
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 628 Figure 6.28 -Collapsed bell tower.Figure 6.29 -CTV building.
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 629 Figure 6.28 -Collapsed bell tower.Figure 6.29 -CTV building.
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 630 Figure 6.30 -Soil liquefaction caused by the earthquake.
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 631 Figure 6.31 -Lanslide triggered by the earthquake.
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 634 Figure 6.34 -Results from the baseline method.
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 635 Figure 6.35 -Results from our framework (elevation component only). Blue color represents a negative change of elevation while the red color marks a positive change of elevation.

Table 4 .

 4 1 -Comparing maxflow algorithm on small scale problems.

	: We consider only CPU C++ implementations compiled
	with Clang (Apple LLVM version 8.0.0) on the same device: Mac-book Pro mid
	2015 with 2.2 GHz Intel Core i7, 16GB of RAM, and a 64bits operating system.
	All programs are compiled in 64bits.

Table 4 .

 4 2 -Comparing maxflow algorithm on medium scale problems.

	4.6.3 Fast PD implementation experiments
	We propose to compare three different implementations of Fast-PD. As a baseline,
	we use the C++ implementation provided by the original authors based on a
	modified BK maxflow, we refer to it as Fast PD (NK). We propose two alternative
	implementations: one also based on the BK maxflow, named Fast PD (BK),
	and one based on the Grid-Cut maxflow, called Fast PD (GC). We note that

Table 4 . 3

 43 

-Comparing maxflow algorithm on large scale problems.

Table 4 .

 4 4 -Memory footprint for different Fast PD implementations.

		Fast PD (NK) Fast PD (BK) Fast PD (GC)
		(baseline)		
	Small size problems:			
	Memory footprint	981 MB	115 MB	92 MB
	Ratio vs baseline	1	0.1172	0.0938
	Medium size problems:			
	Memory footprint	9066 MB	774 MB	648 MB
	Ratio vs baseline	1	0.0854	0.0715
	Large size problems:			
	Memory footprint	40.02 GB	2.91 GB	2.61 GB
	Ratio vs baseline	1	0.0727	0.0652

Table 4 . 6
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	Random ordering Proper ordering
		(baseline)	
	Small size problems:		
	Average runtime (sec)	1.7	1.1
	Average speed-up vs baseline	1	1.52
	Medium size problems:		
	Average runtime (sec)	49.0	28.2
	Average speed-up vs baseline	1	1.73
	Large size problems:		
	Average runtime (sec)	330.2	189.6
	Average speed-up vs baseline	1	1.74
	Table 4.5 -Cache friendliness experiments for Fast PD (BK)
		BK layout Grid-cut layout
		(baseline)	
	Small size problems:		
	Average execution time (sec)	1.2	1.0
	Average speed-up vs baseline	1	1.24
	Medium size problems:		
	Average execution time (sec)	24.2	18.2
	Average speed-up vs baseline	1	1.33
	Large size problems:		
	Average execution time (sec)	144.6	116.4
	Average speed-up vs baseline	1	1.24

-Cache friendliness experiments for Fast PD (GC)

Table 4 .

 4 9 -Comparison of Fast PD different implementations

		Church Factory Buildings Industry Average
	Fast PD (NK) (baseline)					
	Runtime (sec)	1.65	1.41	1.24	1.40	1.42
	Speed-up vs baseline	1	1	1	1	1
	Fast PD (BK)					
	Runtime (sec)	1.48	1.10	1.08	1.29	1.24
	Speed-up vs baseline	1.11	1.28	1.14	1.08	1.15
	Fast PD (GC)					
	Runtime (sec)	1.26	0.89	0.96	1.04	1.04
	Speed-up vs baseline	1.30	1.57	1.29	1.35	1.37
			Medium size problems	
		Church Factory Buildings Industry Average
	Fast PD (NK) (baseline)					
	Runtime (sec)	28.35	25.96	18.73	23.24	24.07
	Speed-up vs baseline	1	1	1	1	1
	Fast PD (BK)					
	Runtime (sec)	24.01	35.11	23.09	28.69	27.73
	Speed-up vs baseline	1.18	0.74	0.81	0.81	0.87
	Fast PD (GC)					
	Runtime (sec)	15.80	22.05	15.86	18.37	18.02
	Speed-up vs baseline	1.79	1.18	1.18	1.26	1.34
			Large size problems	
		Church Factory Buildings Industry Average
	Fast PD (NK)					
	Runtime (sec)	-	-	-	-	-
	Fast PD (BK)					
	Runtime (sec)	171.37	212.90	139.71	218.52	185.63
	Fast PD (GC)					
	Runtime (sec)	108.88	118.24	96.60	137.57	115.32
	Speed-up vs Fast PD (BK)	1.57	1.80	1.45	1.59	1.61

Table 4 .

 4 10 -Comparing Fast PD and graph cuts.

		Church Factory Buildings Industry Average
	Alpha Expansion (baseline)					
	Runtime (sec)	3.49	2.55	3.22	3.39	3.16
	Speed-up vs baseline	1	1	1	1	1
	Fast PD (BK)					
	Runtime (sec)	1.56	1.03	1.11	1.30	1.25
	Speed-up vs baseline	2.24	2.47	2.90	2.60	2.53
	Fast PD (GC)					
	Runtime (sec)	1.28	0.90	0.96	1.14	1.07
	Speed-up vs baseline	2.73	2.84	3.36	2.98	2.96
			Medium size problems	
		Church Factory Buildings Industry Average
	Alpha Expansion (baseline)					
	Runtime (sec)	77.74	86.83	71.37	69.14	76.27
	Speed-up vs baseline	1	1	1	1	1
	Fast PD (BK)					
	Runtime (sec)	23.84	35.11	23.71	32.75	28.85
	Speed-up vs baseline	3.26	2.47	3.01	2.11	2.64
	Fast PD (GC)					
	Runtime (sec)	16.13	22.10	16.49	19.57	18.57
	Speed-up vs baseline	4.82	3.93	4.33	3.53	4.11
			Large size problems	
		Church Factory Buildings Industry Average
	Alpha Expansion (baseline)					
	Runtime (sec)	409.76	399.50	354.75	557.20	430.30
	Speed-up vs baseline	1	1	1	1	1
	Fast PD (BK)					
	Runtime (sec)	171.78	213.84	140.24	227.14	188.25
	Speed-up vs baseline	2.39	1.87	2.53	2.45	2.29
	Fast PD (GC)					
	Runtime (sec)	108.47	118.44	97.02	143.02	116.74
	Speed-up vs baseline	3.78	3.37	3.66	3.90	3.69

Table 5 .

 5 3 -Approximation measurement for different patch sizes with ZN CC based matching criterion.

			Smoothing threshold of 0: 1 norm
			Church Factory Buildings Industry Average
	Discretization					
	1 st order backward	20.14	28.42	19.06	19.30	21.73
	1 st order central		17.99	24.95	16.89	17.12	19.24
	1 st order forward		20.02	28.36	18.88	19.21	21.62
	2 nd order central		16.97	24.96	15.96	16.28	18.54
			Smoothing threshold of 10	
			Church Factory Buildings Industry Average
	Discretization					
	1 st order backward	37.15	55.40	34.49	36.07	40.78
	1 st order central		28.96	40.46	26.87	28.08	31.09
	1 st order forward		36.78	53.48	34.25	36.05	40.14
	2 nd order central		29.90	44.98	27.87	29.28	33.01
			Smoothing threshold of 20	
			Church Factory Buildings Industry Average
	Discretization					
	1 st order backward	39.13	57.44	36.82	37.74	42.78
	1 st order central		30.10	41.38	28.17	29.18	32.21
	1 st order forward		38.86	54.92	36.59	37.84	42.05
	2 nd order central		31.33	46.43	29.42	30.57	34.44
	Table 5.2 -Approximation measurement for different discretization schemes with
	Huber based matching criterion.		
		Church Factory Buildings Industry Average
	Patch size					
	3 ˆ3	14.13	20.97	11.91	10.86	14.47
	5 ˆ5	8.12	15.05	5.98	4.97	8.53
	7 ˆ7	6.34	13.81	4.18	3.20	6.88

Table 5 .

 5 [START_REF] Ayoub | Measuring mars sand flux seasonality from a time series of hirise images[END_REF] -Comparing the filtering and coarsening scheme.

				Small size problems	
		Church Factory Buildings Industry Average
	Filtering					
	Energy (ratio)	1.02	1.03	1.04	1.02	1.03
	Mean Error	0.30	0.28	0.27	0.27	0.28
	Coarsening					
	Energy (ratio)	1.13	1.12	1.15	1.11	1.13
	Mean Error	0.33	0.30	0.30	0.30	0.31
			Medium size problems	
		Church Factory Buildings Industry Average
	Filtering					
	Energy (ratio)	1.03	1.06	1.04	1.03	1.04
	Mean Error	0.40	0.45	0.40	0.40	0.41
	Coarsening					
	Energy (ratio)	1.09	1.08	1.12	1.08	1.09
	Mean Error	0.44	0.34	0.42	0.42	0.40
				Large size problems	
		Church Factory Buildings Industry Average
	Filtering					
	Energy (ratio)	1.05	1.11	1.07	1.03	1.06
	Mean Error	0.62	0.93	0.65	0.59	0.70
	Coarsening					
	Energy (ratio)	1.08	1.07	1.10	1.06	1.08
	Mean Error	0.53	0.42	0.57	0.57	0.52

  qqq " wpp, qq}dppq ´dpqq} 1 , , λ 2 , and σ are real positive scalar parameters. The L1-norm of the gradient naturally enforces piece-wise constant disparities. The weight function wpp, qq relaxes the regularization on radiometric discontinuities of the reference image as in

					(6.14)
	ith :	wpp, qq " λ 1 `λ2 exp	ˆ´}I r ppq ´Ir pqq} 2 σ 2	˙.	(6.15)
	λ 1				

Mouvement des glaciers Les glaciers sont d'une importance cruciale car ils fournissent une grande quantité d'eau potable dans certaines régions. La compréhension de l'évolution de la masse des glaciers et des paquets de neige est cruciale pour atténuer les impacts sur l'approvisionnement en eau, le niveau de la mer et les dangers liés aux inondations et aux avalanches. En outre, une prédiction précise de cette évolution nécessite une compréhension de la nature et de la réponse des glaciers à diverses forces. Les changements de précipitations, de température, d'ensoleillement et des contaminants superficiels contribuent à l'avancée et à la retraite des glaciers. Par nature, les glaciers sont difficiles à accéder. Par conséquent, la télédétection offre une technique d'observation pratique. En utilisant des séries chronologiques de DEM, il est possible de suivre le mouvement des glaciers[START_REF] Scherler | Glaciersurface velocities in alpine terrain from optical satellite imagery-accuracy improvement and quality assessment[END_REF].1.1.3 Un problème d'appariement d'images.Du point de vue de la modélisation, nous pouvons formuler l'onservation des désastres et phénomènes naturels comme un problème d'appariement d'images

Maxflow and Graph cuts techniquesThe second technical chapter 4 introduces the basis of discrete optimization. We then review the maxflow-mincut problem in the context of graph cuts techniques. Then, we provide an extensive discussion around the implementation of the Fast-PD algorithm. Finally, we justify the superiority of our implementation in numerous experiments.

The set of nodes that are reachable by a path starting from i and traversing at most k edges

Acknowledgment

Primal dual scheme for binary LP

We now give a general framework to optimize approximately a given Binary LP, BLP, B. The key idea is to relax this BLP to an LP, and to compute the dual problem. The framework makes use of both the primal and dual problems by iteratively improving the dual solution while generating integer primal solutions until no dual improvement can be made. The quality of the approximation of the integer primal solution is controlled by factors α and β. The algorithm 8 sums up the primal dual scheme for binary LP.

Algorithm 8: Approximate primal dual scheme for Binary Linear Programming problems Data: Inputs: B, α and β Result: px i q i , py j q j Relax the ILP to an LP: Ñ P.

Compute the dual of P : Ñ D.

Initialize the primal variables to be binary. Initialize the dual variables to be feasible. while Relaxed complementary slackness conditions are not all statisfied do Select a subset of dual variables that does not satisfy the relaxed complementary slackness conditions.

Update this subset of dual variables with a method of choice.

Use the primal relaxed complementrary slackness conditions to update the primal variables by an integer quantity.

Max-flow and min-cut problems

In 1956, two research teams composed of P. Elias, A. Feinstein, and C.E. Shannon for the first one [START_REF] Elias | A note on the maximum flow through a network[END_REF], and L.R. Ford, Jr. and D.R. Fulkerson [START_REF] Lester | Maximal flow through a network[END_REF] for the second demonstrated the celebrated max-flow / min-cut theorem. This theorem derives from the strong duality in linear programming problems [START_REF] Lawler | Combinatorial optimization: networks and matroids[END_REF].

In this section, we start by proving the max-flow / min-cut theorem, then we introduce simply equations for both the primal (min-cut), the primal-dual, and the dual (max-flow) problems. Those simplified equations ease the creation of max-flow / min-cut solvers dedicated to image processing tasks.

Algorithm 9: Primal algorithm for min-cut on chain graph Data: Inputs: pc i q i , pw i q i Result: px i q i Initialization: c n0 " t0, c 1 u Message passing on chain: for i P t2, . . . , Cu do Compute minimum cost for transition to next node: if c n0 p1q ă c n0 p2q `wi´1 q then c n1 p1q Ð c n0 p1q labelspi ´1, 1q Ð 0 else c n1 p1q Ð c n0 p2q `wi´1 labelspi ´1, 1q Ð 1 if c n0 p1q ă c n0 p2q then c n1 p2q Ð c n0 p1q labelspi ´1, 2q Ð 0 else c n1 p2q Ð c n0 p2q labelspi ´1, 2q Ð 1 Add unary term: c n1 p2q Ð c n1 p2q `ci Copy temporary buffer: c n0 Ð c n1 Decoding: if c n0 p1q ă c n0 p2q then

x C " 0 else x C " 1 for i P tC ´1, . . . , 1u do

x i " labelspi, x i`1 `1q

Algorithm 10: Algorithm for max-flow on chain graph Data: Inputs: pc i q i , pw i q i Result: pf i q i for i " 1, C ´1 do Compute excess of flow: e Ð c i ´fi´1 if e ď 0 then f i Ð minpw i , ´eq else f i Ð 0q

Alpha-expansion

Overview of the method A first technique to optimize equation (4.3) is to use the alpha expansion algorithm [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. Instead of optimizing for all possible labels at the same time, the alpha expansion selects at a given time a unique label, that we refer to as alpha.

Then, it tries to substitute (expand) the alpha label to some variables x i of the current solution. Since the goal remains to decrease the energy represented by equation (4.3), the expansion is obtained by solving a binary problem where the zero values represent the choice to keep the current labeling and the one values indicate substitution by the alpha label.

The Alpha-expansion method requires that the functions pφ ij p., .qq ij are metric: φ ij pa, aq " 0, @a P L φ ij pa, bq ě 0, @pa, bq P L ˆL φ ij pa, cq ď φ ij pa, bq `φij pb, cq @pa, b, cq P L ˆL ˆL

Expansion as a maxflow problem

Let us assume we are given a current solution px i q i and a label to expand α P L.

We make use of the following binary functions: for each i P V:

for each pi, jq P E:

ψ ij " ˇˇˇφ i,j px i , x j q φ i,j px i , αq φ i,j pα, x j q φ i,j pα, αq ˇˇŤ he functions pψ i q i are obviously submodular and since the functions pφ ij q ij are metric, they make the functions pψ ij q ij submodular: φ i,j px i , x j q `φi,j pα, αq ď φ i,j px i , αq `φi,j pα, x j q Finally the binary function ψpzq "

is submodular thanks to property (4). The theorem [START_REF] Joshua R Ben-Arie | Development of a pit filling algorithm for lidar canopy height models[END_REF] informs us that optimizing ψp.q is equivalent to solving a mincut-maxflow problem. Hence, we can solve the expansion in polynomial time.

Alpha expansion algorithm

We now have a sub-routine to perform the expansion. The alpha expansion algorithm simply cycles through each possible label of L until no expansion changes the current solution. We summarize this method in algorithm 14.

Potentials:

We make use of vectors pθ i q i to represent the value of each discrete function φ i p.q and vectors pθ ij q i to represent the φ ij p., .q: θ i " rφ i p0q, φ i p1q, . . . , φ i pL ´2q, φ i pL ´1qs θ ij " rφ ij p0, 0q, . . . , φ ij p0, L ´1q, . . . , φ ij pL ´1, 0q, . . . φ ij pL ´1, L ´1qs θ " rθ 0 , . . . , θ i , . . . , θ N , . . . , θ ij , . . .s

Each vector θ i has length of L and each vector θ ij has L 2 elements. This makes the length of vector θ equal to N L `EL 2 .

Variables: We also make use of binary indicator variables pz i q i and pz ij q ij to represent a solution x:

We need to add constraint to the solution space of z. The uniqueness of label assignment constraint forces that an unique element of each z i is equal to 1:

We make use of a sparse matrix U of size N ˆpN L `EL 2 q to enforce the uniqueness constraints.

The consistency constraints enforce for any edge pi, jq and any label pa, bq P L ˆL that if z i,a " 1 and z j,b " 1 then, we need to have z ij,a,b " 1 and all other elements of z ij must be equal to 0:

We make use of sparse matrix C of size 2EL ˆpN L `EL 2 q to enforce the consistency constraint.

Binary problem:

Putting everything together we get the following binary Linear Programming problem:

We can simplify the primal relaxed complementary slackness conditions associated to variables pz ij q ij to:

Due to the assumption on the regularization functions we have θ ij,l,l " φ ij pl, lq " 0 for any l P L. Hence, we get: z i,l " 1 and z j,l " 1 ñ y ij,l `yji,l " 0, @l P L In the approximate primal dual framework, we seek to find a pair of binary primal and dual feasible solutions that satisfy these slackness conditions for some values of α 1 and α 2 .

By setting y ij,a " ´yji,a for any pair pa, bq P L ˆL and any edge pi, jq P E, we simplify the optimization problem and the dual variables are now always guaranteed to verify the last complementary slackness condition.

Loosen up the dual constraints

A key observation is to note that we can always easily obtain dual feasible variables from in-feasible dual variables, i.e. variables not verifying their associated constraints, as long as the in-feasibility is bounded. Obtaining dual feasible variables from in-feasible dual variables is often refereed as dual-fitting by the LP community. The dual-fitting operation simply divides the dual variables by a certain amount to make them feasible.

The authors of Fast-PD make use of this scheme. They seek a solution that enforces the primal complementary slackness conditions with α 1 " 1 and α 2 " 1 while only imposing the dual constraints on variables s and simply controlling the in-feasibility of dual variables y. Hence, they look for primal dual solution verifying:

Once such a solution is found, one can simply apply dual fitting by scaling each y ij with factor 1 δ ij with:

It turns out that the fitted dual solution verifies the relaxed complementary slackness conditions with α 1 " δ and α 2 " δ for δ " max pi,jqPE δ ij . Hence, the The capacities from the source to each vertex i P V are given by: cap si " rh i,xi ´hi,l s R ẁhile the capacities from each vertex i P V to the sink are given by: cap it " rh i,xi ´hi,l s R Post-updating primal and dual variables: Once the maxflow has been computed the outer flow variables pf si q i and the inner flow variables pf ij q ij indicate the update for the primal and dual variables.

The primal variables are updated to label l only if there is an unsaturated path from the source to the node:

We update the dual variables using the inner flow pf ij q ij as follow:

@pi, jq P E. y ij,l Ð ´yij,l , @pi, jq P E.

The Fast PD algorithm

Finally, we put everything together to get the method Fast-PD that we summarize in algorithm 15.

A note on Fast-PD implementation

We decided to implement Fast-PD from scratch in C++ for two main reasons:

(1) the current implementation [START_REF] Komodakis | Fastpd mrf optimization code[END_REF] is using way too much memory to run on our remote sensing tasks, and (2) both the architecture and readability need to be improved to allow others to easily tailor to their needs a custom version of Fast-PD.

We have to make several design choices when implementing Fast-PD. We want to make the implementation as fast as possible while maintaining a reasonable memory footprint since we are going to process large problems. Hence, we are making different choices than the implementation provided by the original authors.

Conjugate dual variables

The algorithm always enforces and maintains conjugacy between y ij,l and y ji,l : y ij,l " ´yji,l , @pi, jq P E and l P L Hence, in the implementation of Fast-PD we only maintain in memory half of the dual variables: py ij,l q pij,lq . When we need the other half we simply return minus its conjugate. This reduces the memory footprint of the dual variables by half at the price of a minor computation. The original implementation also made use of this.

Algorithm 15: Fast-PD Data: Inputs: pφ i q i , pφ ij q ij , G, px i q i Result: px i q i Initialize dual variables to verify:

while Until no expansion improves the solution do for l P L do Pre-edit dual variables such that:

Setup and solve maxflow problem.

Post-updating primal variables:

Post-updating dual variables:

@pi, jq P E.

Maintaining the height variables

During the expansion sub-routine of Fast PD, we make use of the height variables:

Since, we need to have access to the pθ i q i we are going to store in memory all the ph i,l q i,l . However, contrary to the original implementation that uses the space allocated to the pθ i q i to store the ph i,l q i,l , we are going to allocate the ph i,l q i,l in their own space. This is much better in terms of software architecture. If the pθ i q i are not needed by another process, the class that owns them can deallocate their space. In case they are needed after Fast-PD, we provide a method to retrieve the pθ i q i from the ph i,l q i,l . This way, we keep a clean architecture, maintain the same memory footprint, and only add the cost of copying the pθ i q i (which is negligible). 

Maxflow experiments for 4 connected graph

We start by investigating the maxflow algorithm since it is a building block for the expansion phase of Fast PD.

Solvers

We evaluate 4 different maxflow-mincut algorithms: BK maxflow, GridCut (GC), TV-linear and the TV-L2 (ROF).

Augmenting path solvers: The first two belong to the class of Augmenting Path techniques. The famous BK maxflow [START_REF] Kolmogorov | Bk-maxflow code[END_REF], a standard in the computer vision, makes use of a heuristic to find an augmenting path that is well suited for image derived problems. The original implementation assumes any connectivity and therefore, it requires extensive additional data structure.

The GridCut maxflow based on [START_REF] Jamriška | Cache-efficient graph cuts on structured grids[END_REF] and [START_REF] Liu | Parallel graph-cuts by adaptive bottom-up merging[END_REF] is a re-implementation of BK maxflow that supports only grid graph. This additional assumption coupled with an efficient data structure favoring cache locality allows to reduce the quantity of additional data structure. We use the code provided by the authors [START_REF] Jamriška | Grid cut code[END_REF].

Iterative solvers: The last two algorithms are iterative solvers based on primal dual optimization techniques. They are suited for both CPU and GPU implementation and they require minimal additional data structure. We do not expect these two algorithms to compete with the augmenting path technique. Indeed, the augmenting path technique is extremely well tuned for serial computation (single thread CPU implementation). We implement our own version of the TV-linear and the TV-L2 algorithms that favors cache friendliness. We stop the algorithm when the average update of the primal variables is less than 0.1% or if the number of iteration exceed 500.

Experiments settings

We create maxflow problems that correspond to the expansion phase of the Alpha expansion. We consider the expansion of each label against the labeling that minimizes the cost of unary terms. This helps us to create realistic problems to compare our different maxflow algorithms.

We monitor for each algorithm the runtime. To estimate the accuracy of the TV-linear and TV-L2 algorithm we compute the normalized PD-gap:

Results

We present the results of all experiments in tables 4.1, 4.2 and 4.3. In all our experiments the grid-cut maxflow performs more than twice as fast as the BK-maxflow. This is consistent with the results announced by the grid-cut authors for stereo-matching based problems. Both iterative solvers TV-linear and TV-L2 perform significantly worse despite only returning an approximate solution. This was to be somehow expected since the iterative solver does not exploit the structure of dual solution space. The TV-L2 algorithm largely outperforms its TV-linear counterpart which is conform to the theoretical convergence rates of both methods. We note that the TV-L2 is only 4 times slower than the baseline. Hence, it remains a great candidate for GPU implementation.

Given the results, we will only keep the augmenting path based maxflow solver when implementing Fast-PD. While the grid-cut maxflow is faster, it lacks the generality of the BK maxflow. 

Comparing Fast PD implementations

We now compare the run time between the different implementations of Fast PD. For Fast PD (NK) we did not run the experiments for large problems due to the memory footprint. For the medium size problem, it is possible that the OS decided to compress the memory allocated to Fast PD (NK). This would have an impact on the runtime but we decided not to discard this experiment since it is a normal behavior and we can expect our users to run in the same situation. We remind that compressing the memory penalizes the runtime far Discretization scheme Backward Central Forward In agreement with their respective equations, the forward and backward schemes are slightly out of phase. The central discretization scheme seems to perform better. During our experiments, we will pursue this investigation in more depth with functions derived from realistic unary terms.

Second order derivatives The forward, backward and central scheme also extend to second order derivatives. We only gives the diagonals elements Algorithm 16: Image filtering scheme Data: Inputs: I r , I t , pφ i q i , ψ, Σ list Result:

Compute weights of regularization pw ij q ij from I r . for σ P Σ list do Compute the Gaussian filter Ñ g σ Apply filtering on both image:

I r,σ " g σ ‹ I r and I t,σ " g σ ‹ I t while pd i q i is updated do Compute the Taylor approximation of unary term Ñ φ i,Ir,σ,It,σ,di

Solve optimization problem:

Update displacement:

notations we denote the upsampling by the Ò symbol and the downsampling with the Ó symbol.

We describe the Coarsening scheme in algorithm 17.

Experiments

We proceed to evaluate the Filtering and the Coarsening schemes. We make use of the stereo matching application of last chapter. Since we optimize non-convex energy we use a baseline reference the solution obtained with the graph-cuts optimization technique of chapter 4. For both schemes, we monitor the energy ratio with respect to the energy obtained with Fast-PD. We also compute the mean error in pixel using 1 norm with respect to the solution of Fast-PD.

Filtering vs coarsening

Our first experiment directly compares the filtering scheme to the coarsening scheme.

Filtering scheme Coarsening scheme Figure 5.10 -Comparing the filtering and coarsening schemes for the subsets at full resolution. We notice that neither the Filtering and Coarsening scheme resolve fine details such as the church's bell tower or the factory chimney. Moreover, the Filtering scheme produces unacceptable artifacts.

Coarsening 1D vs 2D

We now investigate the differences between the 1D and 2D coarsening. In the context of the stereo-matching, we deal with a 1D problem. Hence, instead of 2D For both coarsening scheme the results are very similar. Both the visual inspection of figure 5.11 and the review of table 5.5 show no significant improvement of the 1D coarsening scheme over the 2D coarsening scheme. From now on, we only retain the latter because of its better computational cost. 

Downsampling

We perform a last experiment that investigates the impact of the downsampling factor. We vary the downsampling ratio from 0.5 to 0.8 with 0.1 increment. For each ratio we adequately tune the number of scales such that the coarsest scale represents approximately the same downsampling factor with respect to the full resolution images. The tables 5.6, 5.7 and 5.8 all indicate that a progressive downsampling yields better results. However, the improvement is relatively small as we can see in figure 5.12. Moreover, high value downsampling factors require more scales which lead to larger computational complexity. For those reasons we advocate to choose a downsampling factor between 0.5 and 0.6. coarsening 0.5 coarsening 0.8

Small size problems

Figure 5.12 -Impact of downsampling factor for the coarsening scheme.

Coarsening scheme for Graph-Cuts solvers

We now introduce coarsening schemes for Graph-Cuts solvers.

Pairwise undirected discrete MRF

Let us recall the notations. We represent a pairwise undirected discrete MRF model M as follow:

M " `V, E, L, tφ i u iPV , tφ ij u pi,jqPE ˘.

(5.4)

The support graph G " pV, Eq is composed of a set of nodes V and a set of undirected edges E. The random variable x " px i q iPV defines the state of each node of V, and takes values in the discrete label space L Ă N: we assume without loss of generality the same state space for all random variables with each label of L representing one of these possible states. For each node i P V, the potential function φ i : L Ñ R encodes the unary cost of variables x i . For each edge pi, jq P E, the potential function φ ij : L 2 Ñ R encodes the pairwise cost of variable x i and x j . The collection of functions tφ i u iPV and tφ ij u pi,jqPE form the unary potentials and, respectively, the pairwise potential. We also assume that the unary and pairwise potentials are computed from the reference and target images as for the stereo-matching application.

The energy of the MRF, given a solution x, computes the sum of the potentials:

The MAP inference computes a configuration of minimum energy over the entire solution space L |V| :

x MAP " arg min xPL |V|

Epx|Mq

(5.6)

Image pyramid

This first coarsening scheme mimics the image pyramid scheme for first order primal dual method. The key idea is to create a coarse MRF model by computing the potentials from downsampled reference and target images as in [START_REF] Rosu | Measurement of ground displacement from optical satellite image correlation using the free open-source software micmac[END_REF] or [START_REF] Glocker | Nonrigid registration using discrete mrfs: Application to thoracic ct images[END_REF].

Energy pyramid

Another coarsening method introduced in [START_REF] Conejo | Inference by learning: Speeding-up graphical model optimization via a coarse-to-fine cascade of pruning classifiers[END_REF], [START_REF] Conejo | Fast global stereo matching via energy pyramid minimization[END_REF], [START_REF] Pedro | Efficient belief propagation for early vision[END_REF] or [START_REF] Komodakis | Towards more efficient and effective lp-based algorithms for mrf optimization[END_REF] relies on first computing the potential of the MRF model at the finest scale, and then directly apply the coarsening on the MRF model.

Coarsening

To coarsen an MRF model, we need to define how to coarsen the nodes (spatial component) but also how to coarsen the labels (domain component). 

E 1 " tpg n piq, g n pjq : pi, jq P E, g n piq ‰ g n pjqu (5.8)

An example of grouping function and its associated coarsening is shown in Fig. 5.13.

The coarse model 1 ˘naturally inherits the original support graph and its potentials are computed from the potentials of the input model M and the node coarsening function. The coarse unary potentials are computed as:

The coarse pairwise potentials are defined as:

p@pi 1 , j 1 q P E 1 q, φ 1 i 1 j 1 pl 0 , l 1 q " ÿ pi,jqPE|i 1 "gnpiq,j 1 "gnpjq φ ij pl 0 , l 1 q (5.10) need to balance the classes c 0 and c 1 so that a misclassification in each class accounts for the same energy in the SVM object function. We also want to limit misclassification in c 1 since this kind of error prunes labels that are part of the MAP. Hence, we weigh c 0 to 1 and weigh c 1 to λ cardpc0q cardpc1q with λ P R `. We name the parameter λ the pruning aggressiveness factor as it relates to proportion of labels that get pruned.

To determine the best value for the C s parameter common to both SVM objective functions and the best value for the threshold ρ s , we equally split the samples into a training set and a validation set. We introduce a quality factor that accounts for the percentage of samples properly classified:

z psq pf psq pi, lqq`ÿ pi,lqPc0

p1´z psq pf psq pi, lqqq (5.24)

We perform a simple grid search over C s P r0.01, 0.1, 1, 10, 100, 1000s and ρ s P r0.0001, 0.001, 0.01, 0.1, 0.25, 0.5s and we retain the couple rC s , ρ s s that maximizes the QF factor on the validation set.

During on-line testing, the classifier z psq applies the linear classifier learned for group

Inference by Learning algorithm

Finally, Inference by Learning algorithm built on the multi-scale approach to speed-up the MAP inference where we iteratively reduce the solution space by progressively estimating the MAP solution. We proceed by: (i) Building a coarse to fine representation of the input model.

(ii) At each scale, we alternate between:

-Refining the MAP solution with the current scale model.

-Pruning the solution space by cleverly leveraging information of the current scale MAP estimation.

The pseudocode of the resulting algorithm appears in Algorithm 21.

Experiments

For this set of experiments we first evaluate and compare the Image and Energy pyramid schemes. Then, we evaluate the Inference by Learning method. Again, we make use of the stereo matching application of last chapter. As a baseline, we use the solution obtained with the α-expansion optimization technique. For both scheme, we monitor the energy ratio with respect to the energy obtained with α-expansion. We also compute the mean error using 1 norm with respect to the solution of the Graph-Cuts method.

Algorithm 21: Inference by learning framework

Data: Model M, grouping functions pg psq q 0ďsăN , classifiers pz psq q 0ăsďN Result: x p0q Compute the coarse to fine sequence of MRFs: M p0q Ð M for s " r0 . . . N ´1s do M ps`1q Ð g psq pM psq q Optimize the coarse to fine sequence of MRFs over pruned solution spaces: Initialize x pN q and A pN q " 1 for s " rN...0s do Update x psq by MAP inference: x psq « arg min xPSpM psq ,A psq q Epx|M psq q if s ‰ 0 then Compute feature map f psq Label pruning: update current pruning matrix A psq pi, lq " z psq pf psq pi, lqq Upsample to next finest pruning matrix: A ps´1q Ð rg ps´1q s ´1pA psq q Upsample x psq to initialize solution x ps´1q of next scale:

x ps´1q Ð rg ps´1q s ´1px psq q Image and Energy pyramids Image pyramid For the Image pyramid, we vary the downsampling factor from 0.5 to 0.8. Furthermore, at each scale, we set the label range to be within 5 pixels of the current solution.

We present the obtained results in tables 5.9, 5.10 and 5.11. For all experiments the Image pyramid scheme for Graph-Cuts delivers performances very close to the baseline and significantly outperforms the Image pyramid scheme for Primal dual techniques. This indicates that the non-convexity of the function to optimize plays a central role. For this final chapter, we display some applications of the techniques presented in chapters 3, 4 and 5. Our experiments mainly focus on remote sensing tasks performed in geological studies.

Small size problems

For each task, we introduce the context and the necessary background. We model the problem as an energy optimization task and then we perform experiments to illustrate the model's features. In any circumstances, we do not claim to get better results than other techniques. Indeed, we keep our models fairly generic and we leave for future work the derivation of a finely tuned version of our models.

Chapter organization

The section 6.2 introduces the notation and terminology used throughout the chapter. We present in section 6.3 the stereo-matching task with Earth and Mars bound acquisitions. The section 6.4 proposes a study of earth crust deformation from LiDAR acquisition with a simulated earthquake model. In the section 6.5 we apply our techniques to damage detection due to an earthquake from LiDAR acquisitions of Christchurch, New-Zealand.

Notations and Preliminaries

Images

We remind some useful notation for this final chapter. An image I is a collection of pixels taking value in R for gray images and R 3 for color images. The pixels of I are organized on a rectangular grid Ω. A row and column pr i , c i q identifies

Ternary Census

The Ternary Census matching criterion of [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF] and relies on the Ternary Census code. The Ternary Census code of a patch P is defined by: T CpP, δq " b iPP tpP pi c q, P piq, δq

Where:

• b is the concatenation operator,

• i c is the central pixel of the patch P ,

• t : R ˆR ˆR`Ñ t´1, 0, 1u is the ternary function parametrized by δ P R `:

tpx, y, δq "

The Ternary Census matching criterion ρ simply computes:

To simply the notations, we define by TC W,δ pI r , I t , i, dq

the Ternary Census coefficient computed on patches of size W ˆW from image I r centered at pixel i and from image I t centered at pixel i `d.

As for the ZNCC matching criterion, the Census matching criterion is unaffected by global illumination change. The Census matching criterion is also robust to mild contrast variation.

Stereo-matching

We briefly introduce the background of the stereo matching task. The figure 6.3 illustrates the key principle of stereo-matching: the apparent motions of an object between the two images is proportional to the object's depth. With additional information about the two cameras and their positions in space, one can recover the 3D position of each object imaged.

We explain in more detail how the problem is formulated. To this end, we first present the classic camera model and the epipolar geometry. Then, we formulate the stereo matching task as an optimization model which we evaluate with a series of experiments. subset's reference image and its derived regularization weights.

Horizontal gradients Vertical gradients

Horizontal weights Vertical weights Figure 6.13 -Gradients and weights of the Church subset (brighter grays means higher values).

Impact of regularization

To study the regularization we modulate the strength of the pairwise terms by a global factor varying in t0.1, 0.5, 1, 2, 5u where a factor of 1 sets the regularization of optimal hand-picked regularization parameters. This allows us to create models that are barely regularized (factor set to 0.1) to models that are heavily regularized (factor set to 5). We illustrate the results in figures 6.14, 6.15, 6.16 and 6.17 

Simulated Earth crust deformation

We now move on to 3D registration of elevation maps. In this particular example we assume that an earthquake has occurred between the time of the acquisition of two elevation maps.

Résumé

Dans le context de la vision par ordinateur cette thèse étudie le problème d'appariement d'images dans le cadre de la télédétection pour la géologie. Plus précisément, nous disposons dans ce travail de deux images de la même scène géographique, mais acquises à partir de deux points de vue différents et éventuellement à un autre moment. La tâche d'appariement est d'associer à chaque pixel de la première image un pixel de la seconde image.

Bien que ce problème soit relativement facile pour les êtres humains, il reste difficile à résoudre par un ordinateur. De nombreuses approches pour traiter cette tâche ont été proposées. Les techniques les plus prometteuses formulent la tâche comme un problème d'optimisation numérique. Malheureusement, le nombre d'inconnues ainsi que la nature de la fonction à optimiser rendent ce problème extrêmement difficile à résoudre. Cette thèse étudie deux approches avec un schéma multi-échelle pour résoudre le problème numérique sous-jacent.

Abstract

This thesis studies the computer vision problem of image registration in the context of geological remote sensing surveys. More precisely we dispose in this work of two images picturing the same geographical scene but acquired from two different view points and possibly at a different time. The task of registration is to associate to each pixel of the first image its counterpart in the second image.

While this problem is relatively easy for human-beings, it remains an open problem to solve it with a computer. Numerous approaches to address this task have been proposed. The most promising techniques formulate the task as a numerical optimization problem. Unfortunately, the number of unknowns along with the nature of the objective function make the optimization problem extremely difficult to solve. This thesis investigates two approaches along with a coarsening scheme to solve the underlying numerical problem.